Direzione Generale

# DG 41/08

LAVORI DI COSTRUZIONE DEL 3º MEGALOTTO DELLA S.S. 106 JONICA - CAT. B - DALL'INNESTO CON LA S.S. 534 (km 365+150) A ROSETO CAPO SPULICO (km 400+000)

# PROGETTO ESECUTIVO

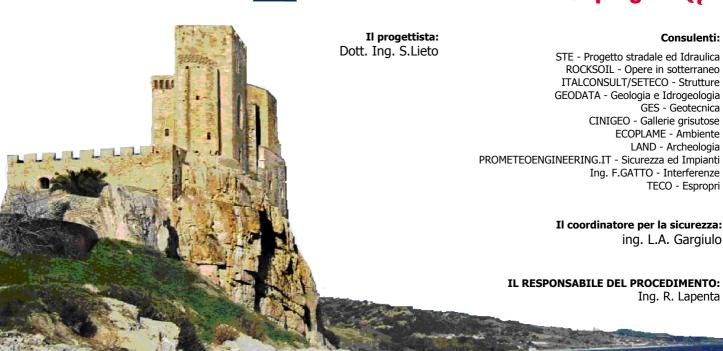
INTERVENTI DI PROTEZIONE ACUSTICA

Fondazioni - Relazione di calcolo

# **CONTRAENTE GENERALE:**

Società di Progetto

SIRJO s.c.p.A.


Presidente:

Dott. Arch. Maria Elena Cuzzocrea

### **PROGETTAZIONE:**







Rep.: A-70 Scala di rappresentazione: 1:50

 Codice Progetto:
 Codice Elaborato:

 L O 7 1 6 C E 1 9 0 1
 T 0 0 I A 0 2 A M B R E 0 3 A

| Rev. | Data       | Descrizione                       | Redatto               | Verificato | Approvato     |
|------|------------|-----------------------------------|-----------------------|------------|---------------|
| Α    | 15.04.2019 | Interventi di protezione acustica | Ing. Andrea Angrisani | ECOPLAME   | Ing. S. Lieto |
|      |            |                                   |                       |            |               |
|      |            |                                   |                       |            |               |
|      |            |                                   |                       |            |               |
|      |            |                                   |                       |            |               |
|      |            |                                   |                       |            |               |

# **INDICE**

| 1.   | DESCRIZIONE GENERALE DELL'OPERA                          |
|------|----------------------------------------------------------|
| 2.   | NORMATIVA DI RIFERIMENTO7                                |
| 3.   | MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO8             |
| 4.   | TERRENO DI FONDAZIONE                                    |
| 5.   | ANALISI DEI CARICHI12                                    |
| 6.   | CLASSI DI SERVIZIO14                                     |
| 7.   | VALUTAZIONE DELL'AZIONE SISMICA14                        |
| 7.1. | Verifiche di regolarità16                                |
| 7.2. | Classe di duttilità17                                    |
| 7.3. | Spettri di Progetto per S.L.U. e S.L.D19                 |
| 7.3. | 1. Azioni di Progetto dovute al Vento per S.L.U. e S.L.D |
| 7.4. | Metodo di Analisi22                                      |
| 7.5. | Valutazione degli spostamenti24                          |
| 7.6. | Combinazione delle componenti dell'azione sismica25      |
| 7.7. | Eccentricità accidentali25                               |
| 8.   | AZIONI SULLA STRUTTURA25                                 |
| 8.1. | Stato Limite di Salvaguardia della Vita26                |
| 8.2. | Stato Limite di Danno29                                  |
| 8.3. | Stati Limite di Esercizio30                              |
| 9.   | CODICE DI CALCOLO IMPIEGATO32                            |
| 9.1. | Denominazione                                            |

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.    |
|----------------------------------|-----------------------------------|------------|---------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 2 di 53 |

| 9.2.   | Sintesi delle funzionalità generali32                  |
|--------|--------------------------------------------------------|
| 9.3.   | Sistemi di Riferimento34                               |
| 9.3.1. | Riferimento globale34                                  |
| 9.3.2. | Riferimento locale per travi34                         |
| 9.3.3. | Riferimento locale per pilastri35                      |
| 9.3.4. | Riferimento locale per pareti36                        |
| 9.3.5. | Riferimento locale per solette38                       |
| 9.3.6. | Riferimento locale per platee39                        |
| 9.4.   | Modello di Calcolo39                                   |
| 9.5.   | Progetto e Verifica degli elementi strutturali41       |
| 9.5.1. | Verifiche di Resistenza41                              |
| 9.5.2. | Gerarchia delle Resistenze46                           |
| 9.5.3. | Verifiche di Instabilità (Aste in acciaio)49           |
| 9.5.4. | Verifiche di Instabilità (Aste in legno)49             |
| 9.5.5. | Verifiche di Deformabilità (Aste in acciaio)49         |
| 9.5.6. | Verifiche di Deformabilità (Aste in legno)50           |
| 10.    | Progetto e Verifica dei Collegamenti51                 |
| 10.1.1 | . Verifiche delle unioni legno-legno e degli appoggi52 |
| 11.    | TABULATI DI CALCOLO53                                  |

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.    |
|----------------------------------|-----------------------------------|------------|---------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 3 di 53 |

# Allegati: Elaborati Grafici Sintetici

- Comune di Trebisacce Barriere h=2,5 mt
- Comune di Amendolara Barriere h=2 mt
- Comune di Villapiana Barriere h=3,5 mt
- Comune di Amendolara Barriere h=3 mt
- Comune di Roseto Capo Spulico Barriere h=4 mt
- Comune di Villapiana Barriere h=5 mt
- TABULATI DI CALCOLO Tomo 1 di 1 Comune di Amendolara- Barriera Antirumore h=mt. 3 MIT 24 trasparente
- TABULATI DI CALCOLO Tomo 1 di 1 Comune di Villapiana Barriera Antirumore h=mt. 5 MIT 09 legno

# 1. DESCRIZIONE GENERALE DELL'OPERA

Il presente documento costituisce parte integrante del progetto defintivo dei lavori di costruzione del 3° macrolotto della S.S.106 Jonica, dall'innesto von la S.S. 534 (Km 365+150) a Roseto Capo Spulico (Km 400+000).

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.    |
|----------------------------------|-----------------------------------|------------|---------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 4 di 53 |

Nel suo sviluppo, la strada in progetto passa attraverso centri abitati, o comunque nelle vicinanze di manufatti edilizi abitativi.

Al fine di ridurre l'impatto acustico sul territorio, è stata prevista l'installazione di barriere fonoassorbenti di altezza pari a 2,5m - 3,00m - 3,5m - 4,00m - 4,5m - 5,00m e 6,00m a secondo delle necessità, per il cui dimensionamento e posizionamento si rimanda agli elaborati specifici.

La presente relazione di calcolo ha lo scopo di verificare la sicurezza e le prestazioni attese, secondo il metodo agli Stati Limite ultimi e di servizio in conformità alle indicazioni del D.M. 14 gennaio 2008 "Norme tecniche per le costruzioni", dell'opera ed in particolare dei cordoli di fondazione, dei relativi pali e della struttura portante verticale di dette barriere lì dove queste sono previste in rilevato/trincea.

Nel prosieguo della presente relazione, vengono individuate le azioni di carico dovute al sisma ed al vento per ciascuna tipologia di barriera nelle condizioni più gravose individuate lungo il tracciato dell'arteria viaria.

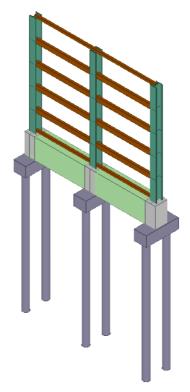
Le prime tre tipologie di altezza pari a mt. 5,00, 4,00 e 3,50 più alte, avranno un cordolo di ancoraggio formato da una trave parete solidale a dei plinti con n.2 pali diam. mm. 300 della profondità di mt. 6,00 mentre per le restanti più basse da mt. 3,00,2,50 e 2,00, il cordolo insisterà su un singolo palo. Le condizioni di carico più gravose sono state individuate lungo il tracciato della strada per le seguenti barriere:

- MIT 09 h mt. 5,00 barriera con pannelli in legno;
- MIT 32 h mt. 4,00 barriera con pannelli in legno;
- MIT 05 h mt. 3,50 barriera con pannelli in legno;
- MIT 24 h mt. 3,00 barriera con pannelli trasparenti;
- MIT 18 h mt. 2,50 barriera con pannelli trasparenti;
- MIT 23 h mt. 2,00 barriera con pannelli trasparenti;

Le elaborazioni di calcolo sono state effettuate per le barriere di cui al precedente elenco considerando due moduli consecutivi.

Per ciascuna barriera di cui sopra, i risultati di calcolo sono poi stati sintetizzati in elaborati personalizzati in cui, sono stati riportati i grafici sintetici dei risultati ottenuti.

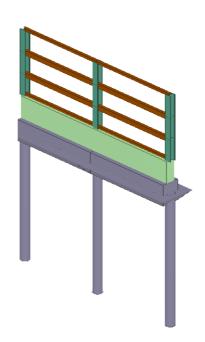
| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.    |
|----------------------------------|-----------------------------------|------------|---------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 5 di 53 |


Per le barriere antirumore la cui posa in opera è prevista su impalcati di viadotti o ponti, si rimanda alla relazione di calcolo degli impalcati stessi.

Vengono di seguito riportate due viste assonometriche delle barriere, allo scopo di consentire una migliore comprensione della struttura oggetto della presente relazione:

# **Vista Anteriore**

La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale


0,X,Y, Z, ha versore (1;1;-1) barriere mt. 5,00 - MIT 09 , 4,00 - MIT 32, 3,50 - MIT 05



**Vista Anteriore** 

La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (1;1;-1) barriere mt. 3,00 - MIT 24 , 2,50 - MIT 18 , 2,00 - MIT 23 .

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.    |
|----------------------------------|-----------------------------------|------------|---------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 6 di 53 |



| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.    |
|----------------------------------|-----------------------------------|------------|---------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 7 di 53 |

### 2. NORMATIVA DI RIFERIMENTO

Le fasi di analisi e verifica della struttura sono state condotte in accordo alle seguenti disposizioni normative, per quanto applicabili in relazione al criterio di calcolo adottato dal progettista, evidenziato nel prosieguo della presente relazione:

# **Legge 5 novembre 1971 n. 1086** (G. U. 21 dicembre 1971 n. 321)

"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".

# **Legge 2 febbraio 1974 n. 64** (G. U. 21 marzo 1974 n. 76)

"Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"

Indicazioni progettive per le nuove costruzioni in zone sismiche a cura del Ministero per la Ricerca scientifica - Roma 1981.

### D. M. Infrastrutture Trasporti 14 gennaio 2008 (G.U. 4 febbraio 2008 n. 29 - Suppl. Ord.)

Inoltre, in mancanza di specifiche indicazioni, ad integrazione della norma precedente e per quanto con esse non in contrasto, sono state utilizzate le indicazioni contenute nella:

Circolare 2 febbraio 2009 n. 617 del Ministero delle Infrastrutture e dei Trasporti (G.U. 26 febbraio 2009 n. 27 – Suppl. Ord.).

"Istruzioni per l'applicazione delle 'Norme Tecniche delle Costruzioni' di cui al D.M. 14 gennaio 2008".

**Eurocodice 3** – "Progettazione delle strutture in acciaio" - ENV 1993-1-1.

CNR-DT 206/2007 – "Istruzioni per la Progettazione, l'Esecuzione ed il Controllo delle Strutture in Legno".

<sup>&</sup>quot;Norme tecniche per le Costruzioni".

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.    |
|----------------------------------|-----------------------------------|------------|---------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 8 di 53 |

# 3. MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO

Per la realizzazione dell'opera in oggetto saranno impiegati i seguenti materiali:

- LM C14 (Resistenza caratteristica 16.0 N/mm<sup>2</sup>);
- Calcestruzzo tipo C35/45 (Resistenza caratteristica Rck = 45.0 N/mm<sup>2</sup>) armato con barre di acciaio ad aderenza migliorata tipo Acciaio B450C (Resistenza caratteristica Fyk = 450.0 N/mm<sup>2</sup>);
- Acciaio per strutture metalliche S275 (Resistenza caratteristica Fyk275.0 N/mm²);
- Materiale d'apporto per saldature S275 (Resistenza caratteristica Fyk = 275.0 N/mm²);


I valori dei parametri caratteristici dei suddetti materiali sono riportati nei **tabulati di calcolo**, nella relativa sezione.

Per ciascuna classe di calcestruzzo impiegata sono riportati i valori di:

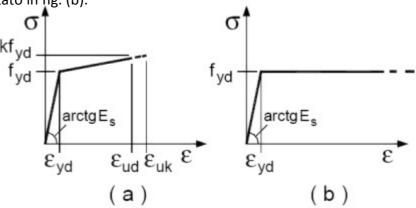
- Resistenza di calcolo a trazione (fctd)
- Resistenza a rottura per flessione (fcfm)
- Resistenza tangenziale di calcolo (**t**Rd)
- Modulo elastico normale (E)
- Modulo elastico tangenziale (G)
- Coefficiente di sicurezza allo Stato Limite Ultimo del materiale (gc)
- Resistenza cubica caratteristica del materiale (Rck)
- Coefficiente di Omogeneizzazione
- Peso Specifico
- Coefficiente di dilatazione termica

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.    |
|----------------------------------|-----------------------------------|------------|---------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 9 di 53 |

I diagrammi costitutivi del calcestruzzo sono stati adottati in conformità alle indicazioni riportate al punto 4.1.2.1.2.2 del D.M. 14 gennaio 2008; in particolare per le verifiche effettuate a pressoflessione retta e pressoflessione deviata è adottato il modello riportato in fig. (a).



Diagrammi di calcolo tensione/deformazione del calcestruzzo.


La deformazione massima ec max è assunta pari a 0.0035.

Relativamente all'acciaio per cemento armato sono riportati i valori di:

- Tensione caratteristica di snervamento trazione (fyk)
- Modulo elastico normale (E)
- Modulo elastico tangenziale (G)
- Coefficiente di sicurezza allo Stato Limite Ultimo del materiale (gf)
- Peso Specifico
- Coefficiente di dilatazione termica

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 10 di 53 |

I diagrammi costitutivi dell'acciaio sono stati adottati in conformità alle indicazioni riportate al punto 4.1.2.1.2.3 del D.M. 14 gennaio 2008; in particolare è adottato il modello elastico perfettamente plastico rappresentato in fig. (b).



La resistenza di calcolo è data da fyk/gf. Il coefficiente di sicurezza gf si assume pari a 1.15.

Relativamente all'acciaio per strutture metalliche sono riportati i valori di:

- Resistenza Caratteristica allo Snervamento (fyk) per spessore nominale = 40 mm.
- Resistenza Caratteristica allo Snervamento (fyk) per spessore nominale > 40 e = 80 mm.
- Modulo elastico normale (E)
- Modulo elastico tangenziale (G)
- Coefficiente di sicurezza allo Stato Limite Ultimo del materiale (gM0)
- Peso Specifico
- Coefficiente di dilatazione termica

Per ciascun materiale d'apporto per saldature sono riportati i valori di:

- Resistenza Caratteristica allo Snervamento (fyk)
- Modulo elastico normale (E)
- Modulo elastico tangenziale (G)
- Coefficiente di sicurezza allo Stato Limite Ultimo del materiale (gM0)
- Peso Specifico

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 11 di 53 |

- Coefficiente di dilatazione termica

Per ciascuna classe d'acciaio per bulloni sono riportati i valori di:

- Resistenza Caratteristica allo Snervamento (fyb)
- Resistenza Caratteristica a Rottura (ftb)
- Modulo elastico normale (E)
- Modulo elastico tangenziale (G)
- Coefficiente di sicurezza allo Stato Limite Ultimo del materiale (gM2)
- Coefficiente di sicurezza allo Scorrimento allo SLU (gM3)
- Coefficiente di sicurezza allo Scorrimento allo SLE (gM3)
- Coefficiente di sicurezza Precarico Bulloni ad Alta resistenza (gM7)
- Peso Specifico
- Coefficiente di dilatazione termica

Relativamente al materiale legno utilizzato per i diversi elementi strutturali, nei tabulati di calcolo sono riportati i valori di:

- Resistenza di calcolo a trazione parallela alla fibratura (ft,0,k)
- Resistenza di calcolo a trazione perpendicolare alla fibratura (ft,90,k)
- Resistenza di calcolo a compressione parallela alla fibratura(fc,0,k)
- Resistenza di calcolo a compressione perpendicolare alla fibratura (fc,90,k)
- Modulo elastico normale medio parallelo alla fibratura (E0,mean)
- Modulo elastico normale caratteristico parallelo alla fibratura (E0,05)
- Modulo elastico normale medio perpendicolare alla fibratura (E90,mean)
- Modulo elastico caratteristico tangenziale parallelo (G0,05)
- Modulo elastico tangenziale medio perpendicolare alla fibratura (G90,mean)
- Coefficiente parziale di sicurezza del materiale allo SLU (gM)
- Massa volumica caratteristica (rK)

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 12 di 53 |

- Massa volumica media (rmean)
- Coefficiente di dilatazione termica parallelo alla fibratura
- Coefficiente di dilatazione termica normale alla fibratura

Tutti i materiali impiegati dovranno essere comunque verificati con opportune prove di laboratorio secondo le prescrizioni della vigente Normativa.

#### 4. TERRENO DI FONDAZIONE

Le indagini effettuate, mirate alla valutazione della velocità delle onde di taglio (VS30) e/o del numero di colpi dello Standard Penetration Test (NSPT), permettono di classificare il profilo stratigrafico, ai fini della determinazione dell'azione sismica, di categoria C [Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs, 30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu, 30 < 250 kPa nei terreni a grana fina).].

Tutti i parametri che caratterizzano i terreni di fondazione costituito da rilevati riportati sul terreno esistente sono richiamati nei tabulati di calcolo, nella relativa sezione. Per ulteriori dettagli si rimanda alle relazioni geologica e geotecnica.

#### 5. ANALISI DEI CARICHI

Un'accurata valutazione dei carichi è un requisito imprescindibile di una corretta progettazione, in particolare per le costruzioni realizzate in zona sismica.

Essa, infatti, è fondamentale ai fini della determinazione delle forze sismiche, in quanto incide sulla valutazione delle masse e dei periodi propri della struttura dai quali dipendono i valori delle

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 13 di 53 |

accelerazioni (ordinate degli spettri di progetto).

La valutazione dei carichi e dei sovraccarichi è stata effettuata in accordo con le disposizioni del **Decreto Ministero Infrastrutture Trasporti 14 gennaio 2008** (G. U. 4 febbraio 2008, n. 29 - Suppl. Ord.) "Norme tecniche per le Costruzioni".

La valutazione dei carichi permanenti è effettuata sulle dimensioni definitive.

Per quanto riguarda le azioni di calcolo delle membrature in legno, queste sono assegnate ad una delle classi di durata del carico elencate nella Tab. 4.4.I, di cui sotto.

| Classe di durata del carico | Durata del carico    |
|-----------------------------|----------------------|
| Permanente                  | Più di 10 anni       |
| Lunga durata                | 6 mesi – 10 anni     |
| Media durata                | 1 settimana – 6 mesi |
| Breve durata                | Meno di 1 settimana  |
| Istantanea                  |                      |

Le classi di durata del carico si riferiscono a un carico costante attivo per un certo periodo di tempo nella vita della struttura. Per un'azione variabile la classe appropriata deve essere determinata in funzione dell'interazione fra la variazione temporale tipica del carico nel tempo e le proprietà reologiche dei materiali.

Le analisi effettuate, corredate da dettagliate descrizioni, sono riportate nei tabulati di calcolo nella relativa sezione.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 14 di 53 |

### 6. CLASSI DI SERVIZIO

Per tener conto della sensibilità del legno alla variazione di umidità e dell'influenza di questa sulle caratteristiche di resistenza e di deformabilità, si definiscono tre classi di servizio elencate nella Tab. 4.4.II, di cui sotto.

|                      | È caratterizzata da un'umidità del materiale in equilibrio con                 |  |  |  |
|----------------------|--------------------------------------------------------------------------------|--|--|--|
| Classe di servizio 1 | l'ambiente a una temperatura di 20°C e un'umidità relativa dell'aria           |  |  |  |
|                      | É caratterizzata da un'umidità del materiale in equilibrio con                 |  |  |  |
| Classe di servizio 2 | l'ambiente a una temperatura di 20°C e un'umidità relativa dell'aria           |  |  |  |
| Classe di servizio 3 | E' caratterizzata da umidità più elevata di quella della classe di servizio 2. |  |  |  |

### 7. VALUTAZIONE DELL'AZIONE SISMICA

L'azione sismica è stata valutata in conformità alle indicazioni riportate al capitolo 3.2 del D.M. 14 gennaio 2008 "Norme tecniche per le Costruzioni".

In particolare il procedimento per la definizione degli spettri di progetto per i vari Stati Limite per cui sono state effettuate le verifiche è stato il seguente:

- definizione della Vita Nominale e della Classe d'Uso della struttura, il cui uso combinato ha portato alla definizione del Periodo di Riferimento dell'azione sismica.
- Individuazione, tramite latitudine e longitudine, dei parametri sismici di base ag, F0 e T\*c per tutti e quattro gli Stati Limite previsti (SLO, SLD, SLV e SLC); l'individuazione è stata effettuata interpolando tra i 4 punti più vicini al punto di riferimento dell'edificio.
- Determinazione dei coefficienti di amplificazione stratigrafica e topografica.
- Calcolo del periodo Tc corrispondente all'inizio del tratto a velocità costante dello Spettro.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 15 di 53 |

I dati così calcolati sono stati utilizzati per determinare gli Spettri di Progetto nelle verifiche agli Stati Limite considerate.

Si riportano di seguito le coordinate geografiche dei Comuni in cui ricadono le diverse tipologie analizzate rispetto al Datum ED50:

Comune di Villapiana barriere: mt. 5,00 - MIT 09, 3,5 - MIT 05

| Latitudine | Longitudine | Altitudine |
|------------|-------------|------------|
| [°]        | [°]         | [m]        |
| 39.8489    | 16.4543     | 237        |

Comune di Trebisacce barriera: mt. 2,50 - MIT 18

| Latitudine | Longitudine | Altitudine |
|------------|-------------|------------|
| [°]        | [°]         | [m]        |
| 39.8842    | 16.5181     | 371        |

Comune di Amendolara barriere: mt. 2,00 - MIT 23, 3,00 - MIT 24

| Latitudine | Longitudine | Altitudine |
|------------|-------------|------------|
| [°]        | [°]         | [m]        |
| 39.9549    | 16.5475     | 161        |

Comune di Roseto Capo Spulico barriera: mt. 4,00 - MIT 32

| Latitudine | Longitudine | Altitudine |
|------------|-------------|------------|
| [°]        | [°]         | [m]        |
| 39.9900    | 16.6029     | 166        |

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 16 di 53 |

# 7.1. Verifiche di regolarità

Sia per la scelta del metodo di calcolo, sia per la valutazione del fattore di struttura adottato, deve essere effettuato il controllo della regolarità della struttura.

La tabella seguente riepiloga, per la struttura in esame, le condizioni di regolarità in pianta ed in altezza soddisfatte.

| REGOLARITÀ DELLA STRUTTURA IN PIANTA                                                                                                                              |    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| La configurazione in pianta è compatta e approssimativamente simmetrica rispetto a due direzioni ortogonali, in relazione alla distribuzione di masse e rigidezze | NO |  |  |  |  |
| Il rapporto tra i lati di un rettangolo in cui la costruzione risulta inscritta è inferiore a 4                                                                   | NO |  |  |  |  |
| Nessuna dimensione di eventuali rientri o sporgenze supera il 25 % della dimensione totale della costruzione nella corrispondente direzione                       | NO |  |  |  |  |
| Gli orizzontamenti possono essere considerati infinitamente rigidi nel loro piano rispetto agli elementi verticali e sufficientemente resistenti                  | SI |  |  |  |  |

| REGOLARITÀ DELLA STRUTTURA IN ALTEZZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| Tutti i sistemi resistenti verticali (quali telai e pareti) si estendono per tutta l'altezza della costruzione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO |  |  |  |
| Massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25 %, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o pareti e nuclei in muratura di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base | NO |  |  |  |

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 17 di 53 |

| Nelle strutture intelaiate progettate in CD "B" il rapporto tra resistenza effettiva e resistenza richiesta dal calcolo non è significativamente diverso per orizzontamenti diversi (il rapporto fra la resistenza effettiva e quella richiesta, calcolata ad un generico orizzontamento, non deve differire più del 20% dall'analogo rapporto determinato per un altro orizzontamento); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti                          |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Eventuali restringimenti della sezione orizzontale della costruzione avvengono in modo graduale da un orizzontamento al successivo, rispettando i seguenti limiti: ad ogni orizzontamento il rientro non supera il 30% della dimensione corrispondente al primo orizzontamento, né il 20% della dimensione corrispondente all'orizzontamento immediatamente sottostante. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro piani per il quale non sono previste limitazioni di restringimento | NO |

La rigidezza è calcolata come rapporto fra il taglio complessivamente agente al piano e d, spostamento relativo di piano (Il taglio di piano è la sommatoria delle azioni orizzontali agenti al di sopra del piano considerato).

Tutti i valori calcolati ed utilizzati per le verifiche sono riportati nei tabulati di calcolo nella relativa sezione.

La struttura è pertanto:

- NON REGOLARE in pianta
- NON REGOLARE in altezza

# 7.2. Classe di duttilità

La classe di duttilità è rappresentativa della capacità dell'edificio in cemento armato di dissipare energia in campo anelastico per azioni cicliche ripetute.

Le deformazioni anelastiche devono essere distribuite nel maggior numero di elementi duttili, in particolare le travi, salvaguardando in tal modo i pilastri e soprattutto i nodi travi pilastro che sono gli elementi più fragili.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 18 di 53 |

Il D.M. 14 gennaio 2008 definisce due tipi di comportamento strutturale:

- a) comportamento strutturale non-dissipativo;
- b) comportamento strutturale dissipativo.

Per strutture con comportamento strutturale dissipativo si distinguono due livelli di Capacità Dissipativa o Classi di Duttilità (CD).

- CD"A" (Alta);
- CD"B" (Bassa).

La differenza tra le due classi risiede nell'entità delle plasticizzazioni cui ci si riconduce in fase di progettazione; per ambedue le classi, onde assicurare alla struttura un comportamento dissipativo e duttile evitando rotture fragili e la formazione di meccanismi instabili imprevisti, si fa ricorso ai procedimenti tipici della gerarchia delle resistenze.

La struttura in esame è stata progettata in classe di duttilità BASSA.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 19 di 53 |

# 7.3. Spettri di Progetto per S.L.U. e S.L.D.

L'edificio è stato progettato per una Vita Nominale pari a 50 e per Classe d'Uso pari a 4.

In base alle indagini geognostiche effettuate si è classificato il suolo di fondazione di categoria **C**, cui corrispondono i seguenti valori per i parametri necessari alla costruzione degli spettri di risposta orizzontale e verticale:

| Stato Limite                         | Coef. Ampl. Strat. |
|--------------------------------------|--------------------|
| Stato limite di operatività          | 1.50               |
| Stato limite di danno                | 1.50               |
| Stato limite salvaguardia della vita | 1.42               |
| Stato limite prevenzione collasso    | 1.33               |

Per la definizione degli spettri di risposta, oltre all'accelerazione ag al suolo (dipendente dalla classificazione sismica del Comune) occorre determinare il Fattore di Struttura q.

Il Fattore di struttura q è un fattore riduttivo delle forze elastiche introdotto per tenere conto delle capacità dissipative della struttura che dipende dal sistema costruttivo adottato, dalla Classe di Duttilità e dalla regolarità in altezza.

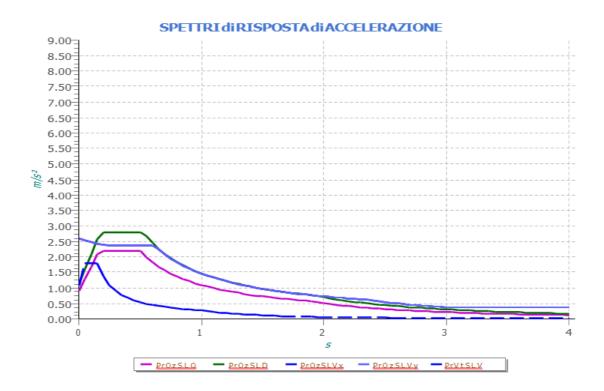
Si è inoltre assunto il Coefficiente di Amplificazione Topografica ST pari a **1,00**.

Tali succitate caratteristiche sono riportate negli allegati tabulati di calcolo al punto "DATI GENERALI ANALISI SISMICA".

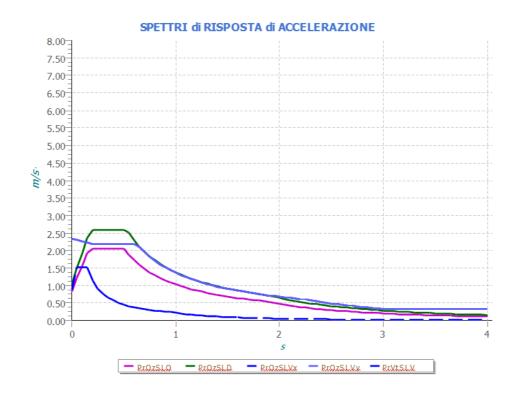
Per la struttura in esame sono stati determinati i seguenti

valori: Stato Limite di salvaguardia della Vita

Fattore di Struttura q per sisma orizzontale in direzione X: 2,76

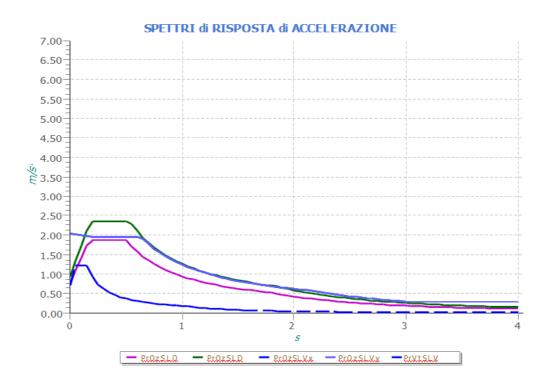

Fattore di Struttura q per sisma orizzontale in direzione Y: 2,76

Fattore di Struttura q per sisma verticale: 1,50


Gli spettri utilizzati sono riportati nella successiva figura.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 20 di 53 |

# Comune di Villapiana




# Comune di Trebisacce



| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 21 di 53 |

# Comune di Amendolara



# Comune di Roseto Capo Spulico



| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 22 di 53 |

# 7.3.1. Azioni di Progetto dovute al Vento per S.L.U. e S.L.D.

| CODICE | TIPOLOGIA            | ALTEZZA |   |                     |                 | VENTO      |            |            |
|--------|----------------------|---------|---|---------------------|-----------------|------------|------------|------------|
|        |                      |         |   | COMUNE              | dist.mare( mt.) | ALTITUDINE | Pvm(KN/mq) | Pvv(KN/mq) |
| MIT_05 | Barriera Legno       | 3.5     |   | VILLAPIANA          | 3539.31         | 82         | 0.919      | 0.552      |
| MIT_09 | Barriera Legno       | 5.0     | 1 | VILLAPIANA          | 3519.94         | 74         | 1.002      | 0.601      |
| MIT_18 | Barriera Trasparente | 2.5     | 1 | TREBISACCE          | 1522.73         | 75         | 1.071      | 0.643      |
| MIT_23 | Barriera Trasparente | 2.0     | * | AMENDOLARA          | 1799.95         | 85         | 1.03       | 0.618      |
| MIT_24 | Barriera Trasparente | 3.0     |   | AMENDOLARA          | 1564.29         | 61         | 1.107      | 0.664      |
| MIT_32 | Barriera Legno       | 4.0     | * | ROSETO CAPO SPULICO | 202.61          | 50         | 1.168      | 0.701      |

### 7.4. Metodo di Analisi

Il calcolo delle azioni sismiche è stato eseguito in analisi dinamica modale, considerando il comportamento della struttura in regime elastico lineare.

Il numero di modi di vibrazione considerato (15) ha consentito, nelle varie condizioni, di mobilitare le seguenti percentuali delle masse della struttura:

| Stato Limite            | Direzione Sisma | %     |
|-------------------------|-----------------|-------|
| salvaguardia della vita | X               | 100,0 |
| salvaguardia della vita | Υ               | 100,0 |
| salvaguardia della vita | Z               | 99,9  |

Per valutare la risposta massima complessiva di una generica caratteristica E, conseguente alla sovrapposizione dei modi, si è utilizzata una tecnica di combinazione probabilistica definita CQC (Complete Quadratic Combination - Combinazione Quadratica Completa):

$$E = \sqrt{\underset{i,j}{\text{å }} r_{ij} \times E_i \times E_j}$$

$$= 1, n$$

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 23 di 53 |

con:

$$8x^{2} \times (1 + ij)$$

$$b = \frac{w_{i}}{(1 - b^{2})^{2} + 4x^{2}}$$

$$b = \frac{w_{i}}{w_{j}}$$

$$ij$$

dove:

- n è il numero di modi di vibrazione considerati
- x è il coefficiente di smorzamento viscoso equivalente espresso in percentuale;
- bij è il rapporto tra le frequenze di ciascuna coppia i-j di modi di vibrazione.

Le sollecitazioni derivanti da tali azioni sono state composte poi con quelle derivanti da carichi verticali, orizzontali non sismici secondo le varie combinazioni di carico probabilistiche. Il calcolo è stato effettuato mediante un programma agli elementi finiti le cui caratteristiche verranno descritte nel seguito.

Il calcolo degli effetti dell'azione sismica è stato eseguito con riferimento alla struttura spaziale, tenendo cioè conto degli elementi interagenti fra loro secondo l'effettiva realizzazione escludendo i tamponamenti. Non ci sono approssimazioni su tetti inclinati, piani sfalsati o scale, solette, pareti irrigidenti e nuclei.

Si è tenuto conto delle deformabilità taglianti e flessionali degli elementi monodimensionali; pareti, setti, solette sono stati correttamente schematizzati tramite elementi finiti a tre/quattro nodi con comportamento sia a piastra che a lastra.

Sono stati considerati sei gradi di libertà per nodo; in ogni nodo della struttura sono state applicate le forze sismiche derivanti dalle masse circostanti.

Le sollecitazioni derivanti da tali forze sono state poi combinate con quelle derivanti dagli altri carichi

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 24 di 53 |

come prima specificato.

# 7.5. Valutazione degli spostamenti

Gli spostamenti dE della struttura sotto l'azione sismica di progetto allo SLV si ottengono moltiplicando per il fattore  $\mu$  d i valori dEe ottenuti dall'analisi lineare, dinamica o statica, secondo l'espressione seguente:

$$d_E = \pm \ \mu_d \cdot d_{Ee}$$
 dove 
$$\mu_d = q \qquad \qquad \text{se T1} = TC$$
 
$$\mu_d = 1 + (q - 1) \cdot TC/T1 \qquad \text{se T1} < TC$$
 In ogni caso 
$$\mu_d = 5q - 4.$$

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 25 di 53 |

# 7.6. Combinazione delle componenti dell'azione sismica

Il sisma viene convenzionalmente considerato come agente separatamente in due direzioni tra loro ortogonali prefissate; per tenere conto che nella realtà il moto del terreno durante l'evento sismico ha direzione casuale e in accordo con le prescrizioni normative, per ottenere l'effetto complessivo del sisma, a partire dagli effetti delle direzioni calcolati separatamente, si è provveduto a sommare i massimi ottenuti in una direzione con il 30% dei massimi ottenuti per l'azione applicata nell'altra direzione. L'azione sismica verticale è stata considerata in presenza di elementi pressoché orizzontali con luce superiore a 20 m, di elementi principali precompressi o di elementi a mensola.

### 7.7. Eccentricità accidentali

Per valutare le eccentricità accidentali, previste in aggiunta all'eccentricità effettiva sono state considerate condizioni di carico aggiuntive ottenute applicando l'azione sismica nelle posizioni del centro di massa di ogni piano ottenute traslando gli stessi, in ogni direzione considerata, di una distanza pari a +/- 5% della dimensione massima del piano in direzione perpendicolare all'azione sismica.

### 8. AZIONI SULLA STRUTTURA

I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 14 gennaio 2008.

I carichi agenti sui solai, derivanti dall'analisi dei carichi, vengono ripartiti dal programma di calcolo in modo automatico sulle membrature (travi, pilastri, pareti, solette, platee, ecc.).

I carichi dovuti ai tamponamenti, sia sulle travi di fondazione che su quelle di piano, sono schematizzati come carichi lineari agenti esclusivamente sulle aste.

Su tutti gli elementi strutturali è inoltre possibile applicare direttamente ulteriori azioni concentrate

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 26 di 53 |

e/o distribuite (variabili con legge lineare ed agenti lungo tutta l'asta o su tratti limitati di essa).

Le azioni introdotte direttamente sono combinate con le altre (carichi permanenti, accidentali e sisma) mediante le combinazioni di carico di seguito descritte; da esse si ottengono i valori probabilistici da impiegare successivamente nelle verifiche.

### 8.1. Stato Limite di Salvaguardia della Vita

Le azioni sulla costruzione sono state cumulate in modo da determinare condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della probabilità ridotta di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli, come consentito dalle norme vigenti.

Per gli stati limite ultimi sono state adottate le combinazioni del tipo:

$$g_{G1} \times G_1 + g_{G2} \times G_2 + g_P \times P + g_{Q1} \times Q_{k1} + g_{Q2} \times y_{02} \times Q_{k2} + g_Q$$
  
 $3 \times y_{03} \times Q_{k3} + \dots$  (1)

dove:

- G1 rappresenta il peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo);
- G2 rappresenta il peso proprio di tutti gli elementi non strutturali;
- P rappresenta pretensione e precompressione;
- Q azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare sensibilmente diversi fra loro nel tempo:
  - di lunga durata: agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 27 di 53 |

 di breve durata: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura;

Qki rappresenta il valore caratteristico della i-esima azione variabile;

 $g_g$ ,  $g_q$ ,  $g_p$  coefficienti parziali come definiti nella tabella 2.6.I del DM 14 gennaio 2008;

y 0i sono i coefficienti di combinazione per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici.

Le 12 combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico elementare: ciascuna condizione di carico accidentale, a rotazione, è stata considerata sollecitazione di base (Qk1 nella formula precedente).

I coefficienti relativi a tali combinazioni di carico sono riportati negli allegati tabulati di calcolo.

In zona sismica, oltre alle sollecitazioni derivanti dalle generiche condizioni di carico statiche, devono essere considerate anche le sollecitazioni derivanti dal sisma. L'azione sismica è stata combinata con le altre azioni secondo la seguente relazione:

$$G_1 + G_2 + P + E + \stackrel{\circ}{\mathbf{a}}_{i} \mathbf{y}_{2i} \times Q_{ki}$$

dove:

- E azione sismica per lo stato limite e per la classe di importanza in esame;
- G1 rappresenta peso proprio di tutti gli elementi strutturali;
- G2 rappresenta il peso proprio di tutti gli elementi non strutturali;
- P rappresenta pretensione e precompressione;
- y 2i coefficiente di combinazione delle azioni variabili
- Qi; Qki valore caratteristico dell'azione variabile Qi.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 28 di 53 |

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_K + \mathring{\mathbf{a}}_{i}(\mathbf{y}_{2i} \times Q_{ki})$$

I valori dei coefficienti y 2i sono riportati nella seguente tabella:

| Categoria/Azione                                                    | <b>y</b> 2i |
|---------------------------------------------------------------------|-------------|
| Categoria A – Ambienti ad uso residenziale                          | 0,3         |
| Categoria B – Uffici                                                | 0,3         |
| Categoria C – Ambienti suscettibili di affollamento                 | 0,6         |
| Categoria D – Ambienti ad uso commerciale                           | 0,6         |
| Categoria E – Biblioteche, archivi, magazzini e ambienti ad uso     | 0,8         |
| Categoria F – Rimesse e parcheggi (per autoveicoli di peso = 30 kN) | 0,6         |
| Categoria G – Rimesse e parcheggi (per autoveicoli di peso > 30 kN) | 0,3         |
| Categoria H – Coperture                                             | 0,0         |
| Vento                                                               | 0,0         |
| Neve (a quota = 1000 m s.l.m.)                                      | 0,0         |
| Neve (a quota > 1000 m s.l.m.)                                      | 0,2         |
| Variazioni termiche                                                 | 0,0         |

Le verifiche strutturali e geotecniche, come definite al punto 2.6.1 del D.M. 14 gennaio 2008, sono state effettuate con l'**Approccio 2** come definito al citato punto, definito sinteticamente come (A1+M1+R3); le azioni sono state amplificate tramite i coefficienti della colonna A1 definiti nella tabella 6.2.I del D.M. 14 gennaio 2008, i valori di resistenza del terreno sono stati considerati al loro valore caratteristico (coefficienti M1 della tabella 2.6.II tutti unitari), i valori calcolati delle resistenze totali dell'elemento strutturale sono stati divisi per R3 nelle verifiche di tipo GEO.

Si è quindi provveduto a progettare le armature di ogni elemento strutturale per ciascuno dei valori ottenuti secondo le modalità precedentemente illustrate. Nella sezione relativa alle verifiche dei "Tabulati di calcolo" in allegato sono riportati, per brevità, i valori della sollecitazione relativi alla combinazione cui corrisponde il minimo valore del coefficiente di sicurezza.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 29 di 53 |

# 8.2. Stato Limite di Danno

L'azione sismica, ottenuta dallo spettro di progetto per lo Stato Limite di Danno, è stata combinata con le altre azioni mediante una relazione del tutto analoga alla precedente:

$$G_1 + G_2 + P + E + \mathring{\mathbf{a}}_{i} \mathbf{y}_{2i} \times Q_{ki}$$

dove:

- E azione sismica per lo stato limite e per la classe di importanza in esame;
- G1 rappresenta peso proprio di tutti gli elementi strutturali;
- G2 rappresenta il peso proprio di tutti gli elementi non strutturali
- P rappresenta pretensione e precompressione;
- y 2i coefficiente di combinazione delle azioni variabili
- Qi; Qki valore caratteristico dell'azione variabile Qi.

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_K + \mathring{\mathbf{a}}_i(\mathbf{y}_{2i} \times \mathbf{Q}_{\mathbf{k}})$$

I valori dei coefficienti y 2i sono riportati nella tabella di cui allo SLV.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 30 di 53 |

### 8.3. Stati Limite di Esercizio

Allo Stato Limite di Esercizio le sollecitazioni con cui sono state semiprogettate le aste in c.a. sono state ricavate applicando le formule riportate nel D.M. 14 gennaio 2008 - Norme tecniche per le costruzioni - al punto 2.5.3. Per le verifiche agli stati limite di esercizio, a seconda dei casi, si fa riferimento alle seguenti combinazioni di carico:

combinazione rara

$$F_{d} = \mathring{\overset{m}{a}} \left( G_{K} \right) + Q_{k1} + \mathring{\overset{n}{a}} \left( y_{0i} \times Q_{ki} \right) + \mathring{\overset{l}{a}} \left( P_{kh} \right)$$

combinazione frequente

$$F_{d} = \overset{m}{\overset{m}{\circ}} \left( G_{\underbrace{K}} \right) + y_{21} \times Q_{11} + \overset{n}{\overset{n}{\circ}} y_{2i} \times Q_{\underbrace{k}} + \overset{l}{\overset{n}{\circ}} \left( P_{\underbrace{kh}} \right)$$

combinazione quasi permanente

$$F_{d} = \mathring{\mathbf{a}}_{i=1}^{m} (G_{\underline{k}i}) + y_{11} \times Q_{i1} + \mathring{\mathbf{a}}_{i=2}^{n} (y_{2i} \times Q_{\underline{k}i}) + \mathring{\mathbf{a}}_{i=1}^{l} (P_{\underline{k}h})$$

dove:

Gkj valore caratteristico della j-esima azione permanente;

Pkh valore caratteristico della h-esima deformazione impressa;

QkI valore caratteristico dell'azione variabile di base di ogni combinazione;

Qki valore caratteristico della i-esima azione variabile;

- y 0i coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei riguardi della possibile concomitanza con altre azioni variabili;
- y 1i coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori istantanei;
- y 2i coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni dei valori istantanei.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 31 di 53 |

# Ai coefficienti y 0i, y 1i, y 2i sono attribuiti i seguenti valori:

| Azione                                                                      | <b>y</b> 0i | <b>y</b> 1i | <b>y</b> 2i |
|-----------------------------------------------------------------------------|-------------|-------------|-------------|
| Categoria A – Ambienti ad uso residenziale                                  | 0,7         | 0,5         | 0,3         |
| Categoria B – Uffici                                                        | 0,7         | 0,5         | 0,3         |
| Categoria C – Ambienti suscettibili di affollamento                         | 0,7         | 0,7         | 0,6         |
| Categoria D – Ambienti ad uso commerciale                                   | 0,7         | 0,7         | 0,6         |
| Categoria E – Biblioteche, archivi, magazzini e ambienti ad uso industriale | 1,0         | 0,9         | 0,8         |
| Categoria F – Rimesse e parcheggi (per autoveicoli di peso = 30 kN)         | 0,7         | 0,7         | 0,6         |
| Categoria G – Rimesse e parcheggi (per autoveicoli di peso > 30 kN)         | 0,7         | 0,5         | 0,3         |
| Categoria H – Coperture                                                     | 0,0         | 0,0         | 0,0         |
| Vento                                                                       | 0,6         | 0,2         | 0,0         |
| Neve (a quota = 1000 m s.l.m.)                                              | 0,5         | 0,2         | 0,0         |
| Neve (a quota > 1000 m s.l.m.)                                              | 0,7         | 0,5         | 0,2         |
| Variazioni termiche                                                         | 0,6         | 0,5         | 0,0         |

In maniera analoga a quanto illustrato nel caso dello SLU le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico; a turno ogni condizione di carico accidentale è stata considerata sollecitazione di base (Qk1 nella formula (1)), con ciò dando origine a tanti valori combinati. Per ognuna delle combinazioni ottenute, in funzione dell'elemento (trave, pilastro, etc...) sono state effettuate le verifiche allo SLE (tensioni, deformazioni e fessurazione).

Negli allegati tabulati di calcolo sono riportanti i coefficienti relativi alle combinazioni di calcolo generate relativamente alle combinazioni di azioni "Quasi Permanente" (1), "Frequente" (2) e "Rara" (3).

Nelle sezioni relative alle verifiche allo SLE dei citati tabulati, inoltre, sono riportati i valori delle sollecitazioni relativi alle combinazioni che hanno originato i risultati più gravosi.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 32 di 53 |

### 9. CODICE DI CALCOLO IMPIEGATO

### 9.1. Denominazione

| Nome del Software            | EdiLus                                                                                                                                                    |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Versione                     | 25.00h                                                                                                                                                    |
| Caratteristiche del Software | Software per il calcolo di strutture agli elementi finiti per<br>Windows                                                                                  |
| Numero di serie              | 12070087                                                                                                                                                  |
| Intestatario Licenza         | ANGRISANI ing. ANDREA                                                                                                                                     |
| Produzione e Distribuzione   | ACCA software S.p.A.  Via Michelangelo Cianciulli  83048 Montella (AV)  Tel. 0827/69504 r.a Fax 0827/601235  e-mail: info@acca.it - Internet: www.acca.it |

# 9.2. Sintesi delle funzionalità generali

Il pacchetto consente di modellare la struttura, di effettuare il dimensionamento e le verifiche di tutti gli elementi strutturali e di generare gli elaborati grafici esecutivi.

È una procedura integrata dotata di tutte le funzionalità necessarie per consentire il calcolo completo di una struttura mediante il metodo degli elementi finiti (FEM); la modellazione della struttura è realizzata tramite elementi Beam (travi e pilastri) e Shell (platee, pareti, solette, setti, travi-parete).

L'input della struttura avviene per oggetti (travi, pilastri, solai, solette, pareti, etc.) in un ambiente grafico integrato; il modello di calcolo agli elementi finiti, che può essere visualizzato in qualsiasi momento in una apposita finestra, viene generato dinamicamente dal software.

Apposite funzioni consentono la creazione e la manutenzione di archivi Sezioni, Materiali e Carichi; tali archivi sono generali, nel senso che sono creati una tantum e sono pronti per ogni calcolo,

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 33 di 53 |

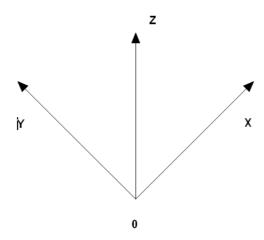
potendoli comunque integrare/modificare in ogni momento.

L'utente non può modificare il codice ma soltanto eseguire delle scelte come:

- definire i vincoli di estremità per ciascuna asta (vincoli interni) e gli eventuali vincoli nei nodi (vincoli esterni);
- modificare i parametri necessari alla definizione dell'azione sismica;
- definire condizioni di carico;
- definire gli impalcati come rigidi o meno.

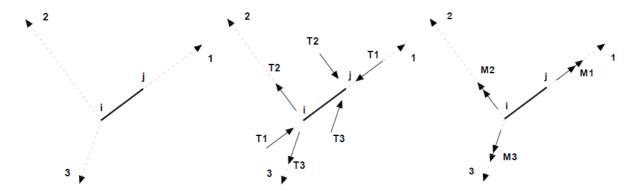
Il programma è dotato di un manuale tecnico ed operativo. L'assistenza è effettuata direttamente dalla casa produttrice, mediante linea telefonica o e-mail.

Il calcolo si basa sul solutore agli elementi finiti MICROSAP prodotto dalla società TESYS srl. La scelta di tale codice è motivata dall'elevata affidabilità dimostrata e dall'ampia documentazione a disposizione, dalla quale risulta la sostanziale uniformità dei risultati ottenuti su strutture standard con i risultati internazionalmente accettati ed utilizzati come riferimento.


Tutti i risultati del calcolo sono forniti, oltre che in formato numerico, anche in formato grafico permettendo così di evidenziare agevolmente eventuali incongruenze.

Il programma consente la stampa di tutti i dati di input, dei dati del modello strutturale utilizzato, dei risultati del calcolo e delle verifiche dei diagrammi delle sollecitazioni e delle deformate.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 34 di 53 |


### 9.3. Sistemi di Riferimento

# 9.3.1. Riferimento globale



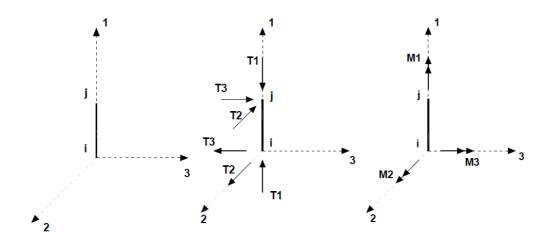
Il sistema di riferimento globale, rispetto al quale va riferita l'intera struttura, è costituito da una terna di assi cartesiani sinistrorsa OXYZ (X,Y, e Z sono disposti e orientati rispettivamente secondo il pollice, l'indice ed il medio della mano destra, una volta posizionati questi ultimi a 90° tra loro).

# 9.3.2. Riferimento locale per travi



L'elemento Trave è un classico elemento strutturale in grado di ricevere Carichi distribuiti e Carichi Nodali applicati ai due nodi di estremità; per effetto di tali carichi nascono, negli estremi, sollecitazioni di taglio, sforzo normale, momenti flettenti e torcenti.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 35 di 53 |


Definiti i e j i nodi iniziale e finale della Trave, viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:

- asse 1 orientato dal nodo i al nodo j;
- assi 2 e 3 appartenenti alla sezione dell'elemento e coincidenti con gli assi principali d'inerzia della sezione stessa.

Le sollecitazioni verranno fornite in riferimento a tale sistema di riferimento:

- Sollecitazione di Trazione o Compressione T1 (agente nella direzione i-j);
- Sollecitazioni taglianti T2 e T3, agenti nei due piani 1-2 e 1-3, rispettivamente secondo l'asse 2 e l'asse 3;
- Sollecitazioni che inducono flessione nei piani 1-3 e 1-2 (M2 e M3);
- Sollecitazione torcente M1.

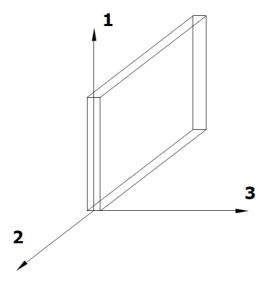
# 9.3.3. Riferimento locale per pilastri



Definiti i e j come i due nodi iniziale e finale del pilastro, viene individuato un sistema di assi cartesiani 1-2- 3 locale all'elemento, con origine nel Nodo i così composto:

- asse 1 orientato dal nodo i al nodo j;
- asse 2 perpendicolare all'asse 1, parallelo e discorde all'asse globale Y;
- asse 3 che completa la terna destrorsa, parallelo e concorde all'asse globale X.

Tale sistema di riferimento è valido per Pilastri con angolo di rotazione pari a '0' gradi; una rotazione


| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 36 di 53 |

del pilastro nel piano XY ha l'effetto di ruotare anche tale sistema (ad es. una rotazione di '90' gradi porterebbe l'asse 2 a essere parallelo e concorde all'asse X, mentre l'asse 3 sarebbe parallelo e concorde all'asse globale Y). La rotazione non ha alcun effetto sull'asse 1 che coinciderà sempre e comunque con l'asse globale Z.

Per quanto riguarda le sollecitazioni si ha:

- una forza di trazione o compressione T1, agente lungo l'asse locale 1;
- due forze taglianti T2 e T3 agenti lungo i due assi locali 2 e 3;
- due vettori momento (flettente) M2 e M3 agenti lungo i due assi locali 2 e 3;
- un vettore momento (torcente) M1 agente lungo l'asse locale nel piano 1.

#### 9.3.4. Riferimento locale per pareti



Una parete è costituita da una sequenza di setti; ciascun setto è caratterizzato da un sistema di riferimento locale 1-2-3 così individuato:

- asse 1, coincidente con l'asse globale Z;
- asse 2, parallelo e discorde alla linea d'asse della traccia del setto in pianta;
- asse 3, ortogonale al piano della parete, che completa la terna levogira.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 37 di 53 |

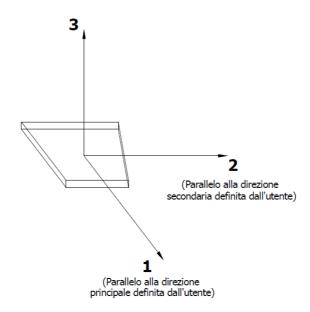
Su ciascun setto l'utente ha la possibilità di applicare uno o più carichi uniformemente distribuiti comunque orientati nello spazio; le componenti di tali carichi possono essere fornite, a discrezione dell'utente, rispetto al riferimento globale XYZ oppure rispetto al riferimento locale 123 appena definito.

Si rende necessario, a questo punto, meglio precisare le modalità con cui EdiLus restituisce i risultati di calcolo.

Nel modello di calcolo agli elementi finiti ciascun setto è discretizzato in una serie di elementi tipo "shell" interconnessi; il solutore agli elementi finiti integrato nel programma EdiLus, definisce un riferimento locale per ciascun elemento shell e restituisce i valori delle tensioni esclusivamente rispetto a tali riferimenti.

Il software EdiLus provvede ad omogeneizzare tutti i valori riferendoli alla terna 1-2-3. Tale operazione consente, in fase di input, di ridurre al mimino gli errori dovuti alla complessità d'immissione dei dati stessi ed allo stesso tempo di restituire all'utente dei risultati facilmente interpretabili.

Tutti i dati cioè, sia in fase di input che in fase di output, sono organizzati secondo un criterio razionale vicino al modo di operare del tecnico e svincolato dal procedimento seguito dall'elaboratore elettronico.

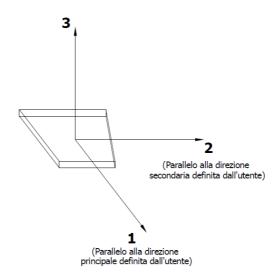

In tal modo ad esempio, il significato dei valori delle tensioni può essere compreso con immediatezza non solo dal progettista che ha operato con il programma ma anche da un tecnico terzo non coinvolto nell'elaborazione; entrambi, così, potranno controllare con facilità dal tabulato di calcolo, la congruità dei valori riportati.

Un'ultima notazione deve essere riservata alla modalità con cui il programma fornisce le armature delle pareti, con riferimento alla faccia anteriore e posteriore.

La faccia anteriore è quella di normale uscente concorde all'asse 3 come prima definito o, identicamente, quella posta alla destra dell'osservatore che percorresse il bordo superiore della parete concordemente al verso di tracciamento.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 38 di 53 |

## 9.3.5. Riferimento locale per solette




In maniera analoga a quanto avviene per i setti, ciascuna soletta è caratterizzata da un sistema di riferimento locale 1,2,3 così definito:

- asse 1, coincidente con la direzione principale di armatura;
- asse 2, coincidente con la direzione secondaria di armatura;
- asse 3, ortogonale al piano della parete, che completa la terna levogira.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 39 di 53 |

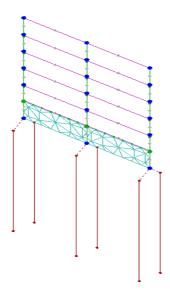
#### 9.3.6. Riferimento locale per platee



Anche per le platee, analogamente a quanto descritto per le solette, è definito un sistema di riferimento locale 1,2,3:

- asse 1, coincidente con la direzione principale di armatura;
- asse 2, coincidente con la direzione secondaria di armatura;
- asse 3, ortogonale al piano della parete, che completa la terna levogira.

#### 9.4. Modello di Calcolo


Il modello della struttura viene creato automaticamente dal codice di calcolo, individuando i vari elementi strutturali e fornendo le loro caratteristiche geometriche e meccaniche.

Viene definita un'opportuna numerazione degli elementi (nodi, aste, shell) costituenti il modello, al fine di individuare celermente ed univocamente ciascun elemento nei tabulati di calcolo.

Qui di seguito è fornita una rappresentazione grafica dettagliata della discretizzazione operata con evidenziazione dei nodi e degli elementi.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 40 di 53 |

#### **Vista Anteriore**



Dalle illustrazioni precedenti si evince come le aste, sia travi che pilastri, siano schematizzate con un tratto flessibile centrale e da due tratti (braccetti) rigidi alle estremità. I nodi vengono posizionati sull'asse verticale dei pilastri, in corrispondenza dell'estradosso della trave più alta che in esso si collega. Tramite i braccetti i tratti flessibili sono quindi collegati ad esso.

In questa maniera il nodo risulta perfettamente aderente alla realtà poiché vengono presi in conto tutti gli eventuali disassamenti degli elementi con gli effetti che si possono determinare, quali momenti flettenti/torcenti aggiuntivi.

Le sollecitazioni vengono determinate, com'è corretto, solo per il tratto flessibile. Sui tratti rigidi, infatti, essendo (teoricamente) nulle le deformazioni le sollecitazioni risultano indeterminate.

Questa schematizzazione dei nodi viene automaticamente realizzata dal programma anche quando il nodo sia determinato dall'incontro di più travi senza il pilastro, o all'attacco di travi/pilastri con elementi shell.

Il vincolo offerto dai plinti è del tipo incastro cedevole con rigidezze traslazionali in direzione X,Y,Z e rotazionali in X, Y e Z. Il calcolo di tali rigidezze è effettuato per plinti diretti in funzione delle costanti di sottofondo del terreno, mentre per i plinti su pali la rigidezza complessiva è funzione delle rigidezze calcolate per i singoli pali.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 41 di 53 |

## 9.5. Progetto e Verifica degli elementi strutturali

La verifica degli elementi allo SLU avviene col seguente procedimento:

- si costruiscono le combinazioni non sismiche in base al D.M. 14.01.2008, ottenendo un insieme di sollecitazioni;
- si combinano tali sollecitazioni con quelle dovute all'azione del sisma (nel caso più semplice si hanno altre quattro combinazioni, nel caso più complesso una serie di altri valori).
- per sollecitazioni semplici (flessione retta, taglio, etc.) si individuano i valori minimo e massimo con cui progettare o verificare l'elemento considerato; per sollecitazioni composte (pressoflessione retta/deviata) vengono eseguite le verifiche per tutte le possibili combinazioni e solo a seguito di ciò si individua quella che ha originato il minimo coefficiente di sicurezza.

#### 9.5.1. Verifiche di Resistenza

Per quanto concerne il progetto degli elementi in c.a. illustriamo, in dettaglio, il procedimento seguito quando si è in presenza di pressoflessione deviata (pilastri e trave di sezione generica):

• per tutte le terne Mx, My, N, individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza in base alla formula 4.1.10 del D.M. 14 gennaio 2008, effettuando due verifiche a pressoflessione retta con la seguente formula:

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 42 di 53 |

#### dove:

MEx, MEy sono i valori di calcolo delle due componenti di flessione retta dell'azione attorno agli assi di flessione X ed Y del sistema di riferimento locale;

MRx, MRy sono i valori di calcolo dei momenti resistenti di pressoflessione retta corrispondenti allo sforzo assiale NEd valutati separatamente attorno agli assi di flessione.

L'esponente a può dedursi in funzione della geometria della sezione, della percentuale meccanica dell'armatura e della sollecitazione di sforzo normale agente.

 se per almeno una di queste terne la relazione 4.1.10 non è rispettata, si incrementa l'armatura variando il diametro delle barre utilizzate e/o il numero delle stesse in maniera iterativa fino a quando la suddetta relazione è rispettata per tutte le terne considerate.

Sempre quanto concerne il progetto degli elementi in c.a. illustriamo in dettaglio il procedimento seguito per le travi verificate/semiprogettate a pressoflessione retta:

- per tutte le coppie Mx, N, individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza in base all'armatura adottata;
- se per almeno una di queste coppie esso è inferiore all'unità, si incrementa l'armatura variando il diametro delle barre utilizzate e/o il numero delle stesse in maniera iterativa fino a quando il coefficiente di sicurezza risulta maggiore o al più uguale all'unità per tutte le coppie considerate.

Nei tabulati di calcolo, per brevità, non potendo riportare una così grossa mole di dati, si riporta la terna Mx, My, N, o la coppia Mx, N che ha dato luogo al minimo coefficiente di sicurezza.

Una volta semiprogettate le armature allo SLU, si procede alla verifica delle sezioni allo Stato Limite di Esercizio con le sollecitazioni derivanti dalle combinazioni rare, frequenti e quasi permanenti; se necessario, le armature vengono integrate per far rientrare le tensioni entro i massimi valori previsti.

Successivamente si procede alle verifiche alla deformazione, quando richiesto, ed alla fessurazione che, come è noto, sono tese ad assicurare la durabilità dell'opera nel tempo.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 43 di 53 |

Il plinto su pali è stato calcolato pensandolo come un insieme di travi isostatiche che collegano le teste dei pali. Il carico verticale viene ripartito in base al numero di esse ed idealmente posto al centro; le verifiche delle armature a flessione e taglio di tali travi sono effettuate di conseguenza. Vengono calcolate, quando necessarie, le armature di punzonamento ed i plinti sono completati con armature di ripartizione per particolari geometrie che lo richiedono, ed ancora con armature perimetrali di circondamento.

Il carico limite verticale dei pali è stato calcolato col metodo di Berezantzeev, tenendo conto della stratigrafia, delle condizioni del terreno (drenato/non drenato), se trattasi di pali con grosso diametro (>80 cm), della eventuale presenza della falda e della riduzione dovuta agli effetti di interazione per gruppi di pali. Tale carico limite viene confrontato col valore massimo dell'azione verticale, che, nel caso di plinti su pali, viene calcolato tenendo conto della geometria effettiva del plinto e degli effetti di Mx ed My oltrechè Fz.

Il carico limite orizzontale viene invece ricavato secondo la metodologia indicata da Broms per pali vincolati in testa. Viene calcolata l'armatura principale e secondaria del palo rispettivamente a pressoflessione ed a taglio, il meccanismo di rottura del complesso palo-terreno (palo corto/medio/lungo) e l'eventuale profondità di formazione della cerniera plastica in caso di palo lungo.

Anche in tal caso l'azione orizzontale è quella massima calcolata tenendo conto della geometria del problema.

Per quanto concerne la verifica degli elementi strutturali in legno, le verifiche effettuate per ogni elemento dipendono dalla funzione dell'elemento nella struttura. Ad esempio, elementi con prevalente comportamento assiale (controventi o appartenenti a travature reticolari) sono verificate a trazione e/o compressione; elementi con funzioni portanti nei confronti dei carichi verticali sono verificati a Pressoflessione retta e Taglio; elementi con funzioni resistenti nei confronti di azioni orizzontali sono verificati a pressoflessione/tensoflessione deviata e taglio oppure a sforzo normale se hanno la funzione di controventi.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 44 di 53 |

Le verifiche allo SLU sono effettuate sempre controllando il soddisfacimento della relazione:

dove Rd è la resistenza calcolata come indicato dalla (4.4.1), ossia:

$$R_d = \frac{k_{mod} \cdot R_k}{\gamma_M}$$

dove:

Rk è il valore caratteristico della resistenza del materiale. Per sezioni in legno massiccio o lamellare incollato sottoposti a flessione o a trazione parallela alla fibratura che presentino rispettivamente una altezza o il lato maggiore della sezione trasversale inferiore a 150 mm per il legno massiccio e 600 mm per il legno lamellare incollato, i valori caratteristici della resistenza vengono incrementati tramite il coefficiente moltiplicativo kh, di cui al § 11.7.1.1.

gM è il coefficiente parziale di sicurezza relativo al materiale, i cui valori sono riportati nella Tab. 4.4.III;

kmod è un coefficiente correttivo che tiene conto dell'effetto, sui parametri di resistenza, sia della durata del carico sia dell'umidità della struttura. I valori di kmod sono forniti nella Tab. 4.4.IV.

Le tensioni interne sono calcolate nell'ipotesi di conservazione delle sezioni piane e di una relazione lineare tra tensioni e deformazioni fino alla rottura.

Le verifiche di resistenza degli elementi strutturali in legno sono riferite alla direzione della fibratura coincidente sostanzialmente con il proprio asse longitudinale e sezione trasversale costante.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 45 di 53 |

Le verifiche effettuate sono quelle previste al punto 4.4.8.1 ed in particolare:

- Verifiche di Trazione parallela alla fibratura;
- Verifiche di Compressione parallela alla fibratura;
- Verifiche di Pressoflessione/Tensoflessione;
- Verifiche di Taglio;
- Verifiche di Taglio e Torsione.

Nei tabulati, per ogni tipo di verifica e per ogni elemento interessato dalla verifica, sono riportati i valori delle resistenze e delle sollecitazioni che hanno dato il minimo coefficiente di sicurezza, calcolato generalmente come:

$$CS = Rd/Sd.$$

Per quanto concerne la verifica degli elementi in acciaio, le verifiche effettuate per ogni elemento dipendono dalla funzione dell'elemento nella struttura. Ad esempio, elementi con prevalente comportamento assiale (controventi o appartenenti a travature reticolari) sono verificate a trazione e/o compressione; elementi con funzioni portanti nei confronti dei carichi verticali sono verificati a Pressoflessione retta e Taglio; elementi con funzioni resistenti nei confronti di azioni orizzontali sono verificati a pressoflessione deviata e taglio oppure a sforzo normale se hanno la funzione di controventi.

Le verifiche allo SLU sono effettuate sempre controllando il soddisfacimento della relazione:

dove Rd è la resistenza calcolata come rapporto tra Rk (resistenza caratteristica del materiale) e g, coefficiente di sicurezza, mentre Sd è la generica sollecitazione di progetto calcolata considerando tutte le Combinazioni di Carico per lo Stato Limite esaminato.

La resistenza viene determinata, in funzione della Classe di appartenenza della Sezione metallica, col metodo Elastico o Plastico (vedi par. 4.2.3.2 del D.M. 14 gennaio 2008).

Viene portato in conto l'indebolimento causato dall'eventuale presenza di fori.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 46 di 53 |

Le verifiche effettuate sono quelle previste al punto 4.2.4.1.2 ed in particolare:

- Verifiche di Trazione
- Verifiche di Compressione
- Verifiche di Flessione Monoassiale
- Verifiche di Taglio (considerando l'influenza della Torsione) assiale e biassiale.
- Verifiche per contemporanea presenza di Flessione e Taglio
- Verifiche per PressoFlessione retta e biassiale

Nei tabulati, per ogni tipo di Verifica e per ogni elemento interessato dalla Verifica, sono riportati i valori delle resistenze e delle sollecitazioni che hanno dato il minimo coefficiente di sicurezza, calcolato generalmente come:

$$CS = Rd/Sd.$$

#### 9.5.2. Gerarchia delle Resistenze

Relativamente agli elementi in c.a., sono state applicate le disposizioni contenute al § 7.4.4 del D.M. 14/01/2008. Più in particolare:

- per le **travi**, al fine di escludere la formazione di meccanismi inelastici dovuti al **taglio**, le sollecitazioni di calcolo si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione delle cerniere plastiche nella trave e prodotte dai momenti resistenti delle due sezioni di estremità, amplificati del fattore di sovraresistenza gRd assunto pari, rispettivamente, ad 1,20 per strutture in CD"A", ad 1,00 per strutture in CD"B". La verifica di resistenza è eseguita secondo le indicazioni del § 7.4.4.1.2.2.
- per i pilastri, al fine di scongiurare l'attivazione di meccanismi fragili globali, come il
  meccanismo di "piano debole" che comporta la plasticizzazione, anticipata rispetto
  alle travi, di gran parte dei pilastri di un piano, il progetto a flessione delle zone

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 47 di 53 |

dissipative dei pilastri è effettuato considerando le sollecitazioni corrispondenti alla resistenza delle zone dissipative delle travi amplificata mediante il coefficiente gRd che vale 1,3 in CD "A" e 1,1 per CD "B". In tali casi, generalmente, il meccanismo dissipativo prevede la localizzazione delle cerniere alle estremità delle travi e le sollecitazioni di progetto dei pilastri possono essere ottenute a partire dalle resistenze d'estremità delle travi che su di essi convergono, facendo in modo che, per ogni nodo trave-pilastro ed ogni direzione e verso dell'azione sismica, la resistenza complessiva dei pilastri sia maggiore della resistenza complessiva delle travi amplificata del coefficiente gRd, in accordo con la formula (7.4.4) delle NTC. Le verifiche di resistenza sono eseguite secondo le indicazioni del § 7.4.4.2.2.1.Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di calcolo da utilizzare per le verifiche ed il dimensionamento delle armature si ottengono dalla condizione di equilibrio del pilastro soggetto all'azione dei momenti resistenti nelle sezioni di estremità superiore ed inferiore secondo l'espressione (7.4.5). Le verifiche di resistenza sono eseguite secondo le indicazioni del § 7.4.4.2.2.2.

- per i **nodi trave-pilastro**, si deve verificare che la resistenza del nodo sia tale da assicurare che non pervenga a rottura prima delle zone della trave e del pilastro ad esso adiacente. L'azione di taglio, agente in direzione orizzontale per le varie direzioni del sisma, nel nucleo di calcestruzzo del nodo è calcolata secondo l'espressione (7.4.6) per i nodi interni e (7.4.7) per quelli esterni. Le verifiche di resistenza sono eseguite invece secondo le indicazioni del § 7.4.4.3.1.
- per i setti sismo resistenti, le sollecitazioni di calcolo sono determinate secondo quanto indicato nel § 7.4.4.5.1. Le verifiche di resistenza sono eseguite invece secondo le indicazioni del § 7.4.4.5.2.

Per quanto riguarda la struttura di fondazione sono applicate le disposizioni contenute al § 7.2.5 del D.M. 14/01/2008. Più in particolare:

• le azioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera struttura, condotta esaminando la sola struttura in elevazione alla quale sono

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 48 di 53 |

applicate le azioni statiche e sismiche;

• per le strutture progettate sia in CD"A" che in CD"B" il dimensionamento della struttura di fondazione e la verifica di sicurezza del complesso fondazione-terreno sono eseguite assumendo come azioni in fondazione le resistenze degli elementi strutturali soprastanti. Più precisamente, la forza assiale negli elementi strutturali verticali derivante dalla combinazione delle azioni di cui al § 3.2.4 è associata al concomitante valore del momento flettente e del taglio ottenuto amplificando le azioni trasferite dagli elementi soprastanti con un gRd pari a 1,1 in CD"B" e 1,3 in CD"A".

I risultati delle suddette verifiche sono riportate nei tabulati di calcolo.

Per quanto riguarda le aste in acciaio, sono state applicate le disposizioni contenute al par. 7.5.3 del D.M. 14/01/2008. Più in particolare:

- per gli elementi travi e pilastri sono state effettuate le verifiche definite al par. 7.5.4 e relativi sotto paragrafi;
- per gli elementi di controventamento sono state effettuate le verifiche definite al punto 7.5.5; più specificatamente, per gli elementi dissipativi (aste tese di controventi a X o aste di controventi a V) sono state effettuate le relative verifiche di resistenza; per gli elementi in acciaio (travi o colonne) ad essi collegati le sollecitazioni di progetto sono state ricavate considerando come agenti le resistenze degli elementi dissipativi, opportunamente amplificate dal minimo coefficiente W tra tutti gli elementi dissipativi collegati alla trave o colonna.

Le relative verifiche sono riportate nei tabulati, con l'indicazione del coefficiente W utilizzato per la singola verifica.

Essendo la struttura di Classe 4 sono state condotte le Verifiche allo Stato Limite di Danno come indicato al par. 7.3.7.1 del D.M. 14 gennaio 2008, assumendo fattori parziali dei materiali pari a 1.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 49 di 53 |

#### 9.5.3. Verifiche di Instabilità (Aste in acciaio)

Per tutti gli elementi strutturali sono state condotte verifiche di stabilità delle membrature secondo le indicazioni del par. 4.2.4.1.3 del D.M. 14 gennaio 2008; in particolare sono state effettuate le seguenti verifiche:

- Verifiche di stabilità per compressione semplice, con controllo della snellezza.
- Verifiche di stabilità per elementi inflessi.
- Verifiche di stabilità per elementi inflessi e compressi.

Le verifiche sono effettuate considerando la possibilità di instabilizzazione flessotorsionale.

Nei tabulati, per ogni tipo di verifica e per ogni elemento strutturale, sono riportati i risultati di tali verifiche.

#### 9.5.4. Verifiche di Instabilità (Aste in legno)

Per tutti gli elementi strutturali sono state condotte verifiche delle membrature nei confronti di possibili fenomeni di instabilità, quali lo sbandamento laterale degli elementi compressi o pressoinflessi secondo le indicazioni del par. 4.4.8.2 del D.M. 14 gennaio 2008; in particolare sono state effettuate le seguenti verifiche:

- Verifiche di stabilità per elementi compressi;
- Verifiche di stabilità per elementi inflessi e compressi (secondo il § 6.5.2.3 della CNR-DT 206/2007).

Si precisa che nel caso della verifica di stabilità per elementi inflessi e compressi, sia per i pilastri che per le travi, sono considerati gli effetti di svergolamento per entrambi i piani di flessione.

Nei tabulati, per ogni tipo di verifica e per ogni elemento strutturale, sono riportati i risultati di tali verifiche.

#### 9.5.5. Verifiche di Deformabilità (Aste in acciaio)

Sono state condotte le verifiche definite al par. 4.2.4.2 del D.M. 14 Gennaio 2008 e in particolare si citano:

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 50 di 53 |

- Verifiche agli spostamenti verticali per i singoli elementi (par. 4.2.4.2.1).
- Verifiche agli spostamenti laterali per i singoli elementi (par. 4.2.4.2.2).
- Verifiche agli spostamenti per il piano e per l'edificio (par. 4.2.4.2.2).

I relativi risultati sono riportati nei tabulati.

#### 9.5.6. Verifiche di Deformabilità (Aste in legno)

Le deformazioni di una struttura, dovute agli effetti delle azioni applicate, degli stati di coazione, delle variazioni di umidità e degli scorrimenti nelle unioni, devono essere contenute entro limiti accettabili, sia in relazione ai danni che possono essere indotti ai materiali di rivestimento, ai pavimenti, alle tramezzature e, più in generale, alle finiture, sia in relazione ai requisiti estetici ed alla funzionalità dell'opera.

Considerando il particolare comportamento reologico del legno e dei materiali derivati dal legno, si devono valutare sia la deformazione istantanea sia la deformazione a lungo termine.

La deformazione istantanea si calcola usando i valori medi dei moduli elastici per le membrature.

La deformazione a lungo termine può essere calcolata utilizzando i valori medi dei moduli elastici ridotti opportunamente mediante il fattore 1/(1+kdef), per le membrature. Il coefficiente kdef tiene conto dell'aumento di deformabilità con il tempo causato dall'effetto combinato della viscosità e dell'umidità del materiale. I valori di kdef sono riportati nella Tab. 4.4.V.

Per la verifica di deformabilità, occorre determinare preventivamente la deformazione iniziale e la deformazione finale.

Per il calcolo della deformazione iniziale (uin) occorre valutare la deformazione istantanea con riferimento alla combinazione di carico rara. Per il calcolo della deformazione finale (ufin) occorre valutare la deformazione a lungo termine per la combinazione di carico quasi permanente e sommare a quest'ultima la deformazione istantanea dovuta alla sola aliquota mancante, nella combinazione quasi permanente, del carico accidentale prevalente (da intendersi come il carico variabile di base della combinazione rara).

In via semplificata la deformazione finale ufin, relativa ad una certa condizione di carico, si valuta

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 51 di 53 |

#### come segue:

$$U_{fin} = U_{in} + U_{dif}$$

#### dove:

u<sub>in</sub> è la deformazione iniziale (istantanea), calcolata con riferimento alla combinazione
 di carico rara;

u<sub>dif</sub> è la deformazione differita che può essere valutata attraverso la relazione:

#### nella quale:

u'<sub>in</sub> è la deformazione iniziale (istantanea), calcolata con riferimento alla combinazione di carico quasi permanente;

k<sub>def</sub> è il coefficiente riportato nella Tab. 4.4.V.

La verifica di deformabilità per gli elementi inflessi è eseguita come indicato nel § 6.4.3 della CNR-DT 206/2007. I relativi risultati sono riportati nei tabulati.

## 10. Progetto e Verifica dei Collegamenti

Sono state verificate le seguenti tipologie di Collegamenti in acciaio:

- Ripristino
- Ripristino flangiato
- Trave-Colonna flangiato
- Trave-Colonna squadretta
- Colonna-Trave flangiato
- Colonna-Trave squadretta
- Colonna-Fondazione
- Asta con elemento in c.a.
- Asta principale-Asta secondaria
- Asta reticolare

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 52 di 53 |

Per ogni collegamento sono state ricavate le massime sollecitazioni agenti sugli elementi componenti (Bulloni, Tirafondi, Piastre, Costole e Cordoni di Saldatura) considerando appropriati modelli di calcolo e quindi sono state effettuate le relative verifiche. In particolare:

- Per i bulloni sono state effettuate verifiche a Taglio e Trazione sia per la singola sollecitazione che per presenza contemporanea di tali sollecitazioni.
- Per le piastre sono state effettuate verifiche a Rifollamento, a Flessione con la presenza eventuale di costole, a Punzonamento e alle Tensioni nel piano della piastra.
- Per le costole è stata effettuata la verifica controllando la tensione ideale massima calcolata considerando le tensioni parallele e ortogonali al piano della costola.
- Per i cordoni di saldatura è stata effettuata la verifica controllando la tensione ideale massima calcolata considerando le tensioni tangenziali parallele e ortogonali alla lunghezza del cordone e la tensioni normali ortogonale alla lunghezza.
- Per i tirafondi sono state effettuate verifiche a sfilamento per trazione
- Per le piastre d'attacco con le fondazioni e gli elementi in c.a. è stata effettuata la verifica del calcestruzzo di base.

Nei tabulati, per ogni collegamento presente nella struttura, sono riportate le indicazioni geometriche e le relative verifiche.

#### 10.1.1. Verifiche delle unioni legno-legno e degli appoggi

Le unioni legno-legno sono rappresentate da intagli opportunamente sagomati per consentire la realizzazione, ad esempio di travature reticolari e simili. Un'asta può pertanto presentare alle estremità diverse facce variamente orientate, per le quali vengono effettuate verifiche a compressione generalmente inclinata rispetto alle fibre, previa ripartizione della componente di sforzo normale tra le facce stesse.

In maniera analoga si procede per gli elementi appoggiati, per i quali si valuta la resistenza a compressione inclinata rispetto alle fibre.

| Codifica:                        | INTERVENTI DI PROTEZIONE ACUSTICA | Data:      | Pag.     |
|----------------------------------|-----------------------------------|------------|----------|
| LO716C E 1901 T00 IA02 AMB RE03A | FONDAZIONI - RELAZIONI DI CALCOLO | 15.04.2019 | 53 di 53 |

#### 11. TABULATI DI CALCOLO

Per quanto non espressamente sopra riportato, ed in particolar modo per ciò che concerne i dati numerici di calcolo, si rimanda all'allegato "Tabulati di calcolo" della barriera di altezza mt. 5,00-MIT 09 e mt. 3,00 MIT 24 delle due diverse tipologie strutturali di barriera costituenti parte integrante della presente relazione mentre per i dettagli costruttivi si rimanda ai relativi elaborati grafici anche essi costituenti parte integrante della presente relazione.

Roma, 01/06/2013

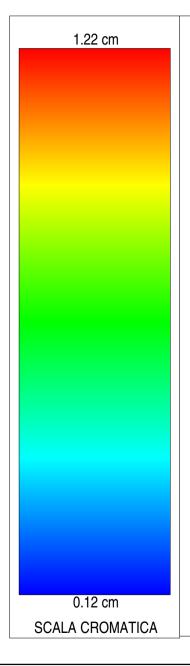
Il Progettista

(ing. Andrea Angrisani)

# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

Barriera Antirumore h=mt.2,5 MIT 18 trasparente

## **PREMESSA**


Il presente documento riporta gli **elaborati grafici sintetici** in conformità a lanto previsto nel par. 10.2 del D.M. 14 gennaio 200 la Tali elaborati hanno lo scopo di riassumere il comportamento della struttura relativamente al tipo di analisi svolta e possono riportare informazioni sintetiche e schemi relativi a carichi sollecitazioni e sforzi spostamenti tensioni sul terreno etc.

Al fine delle verifiche della misura della sicurezza si riportano delle rappresentazioni che ne sintetizzano i valori numerici dei coefficienti di sicurezza nelle sezioni significative della struttura stessa.

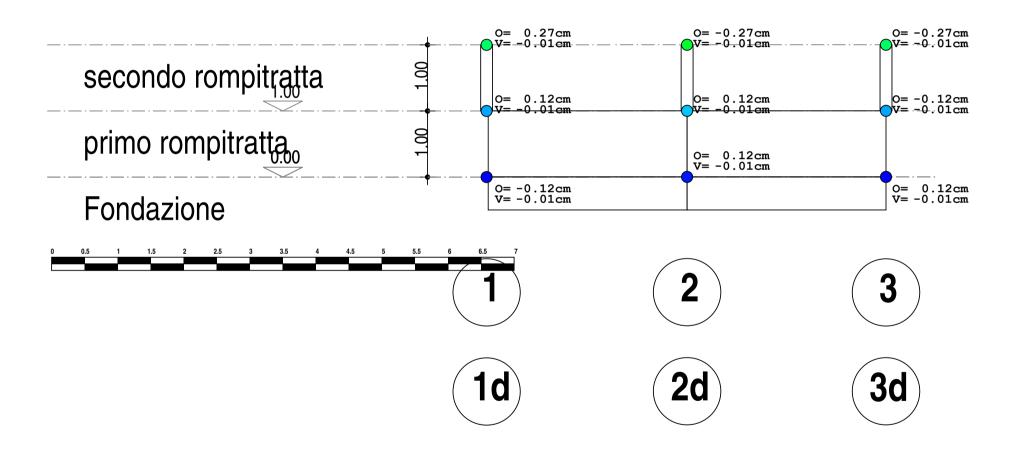
Per ogni singolo elaborato grafico □contenente un telaio □una parte della struttura o la struttura nel suo insieme □si riportano indicazioni sulle convenzioni adottate e sulle unità di misura □nonch □ disegni □schemi grafici e mappature cromatiche che schematizzano il comportamento complessivo della struttura.

Grazie alle mappature a colori per ciascun tipo di risultato i fornisce un □ladro chiaro e sintetico: □possibile rilevare agevolmente il valore delle diverse grandezze in base al colore assunto dagli elementi della struttura. Ogni colore rappresenta un determinato valore dal blu (corrispondente generalmente al valore minimo) al rosso (generalmente valore massimo) □passando attraverso le varie sfumature di colore corrispondenti ai valori intermedi.

Prima di ogni tipologia di risultato □riportata la scala cromatica con l\( \overline{\text{Im}}\) dicazione numerica del valore minimo e massimo.



# **SPOSTAMENTI NODALI**

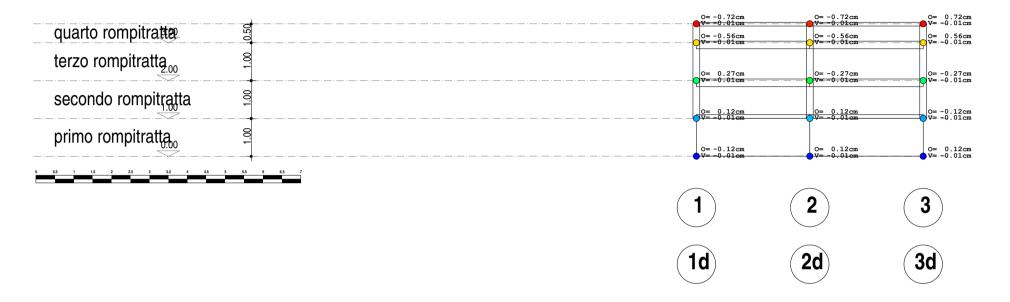

Rappresentazione cromatica nei nodi della componente orizzontale e verticale, nel piano del telaio, del vettore di spostamento massimo (in cm).

La scala cromatica riporta il range di valori da minimo 0.12 cm (COLORE BLU) a massimo 1.22 cm (COLORE ROSSO).

O = Spostamenti nodali orizzontali nel piano del telaio (positivi verso destra)

V = Spostamenti nodali verticali nel piano del telaio (positivi verso l'alto)

# Telaio 1-1d-2-2d-3-3d









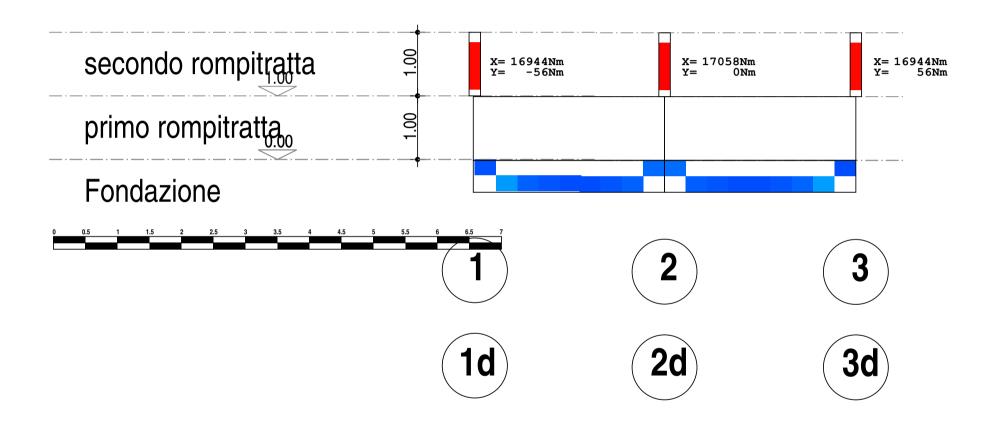

# Telaio 1-1d-2-2d-3-3d

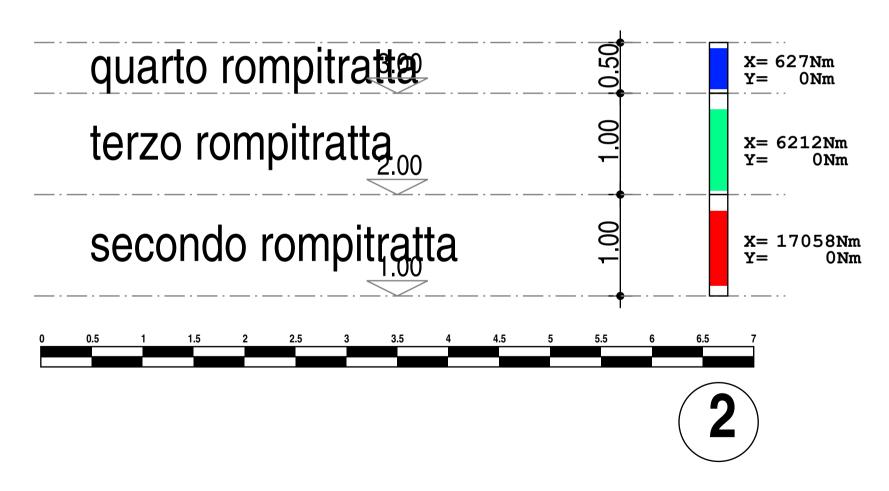


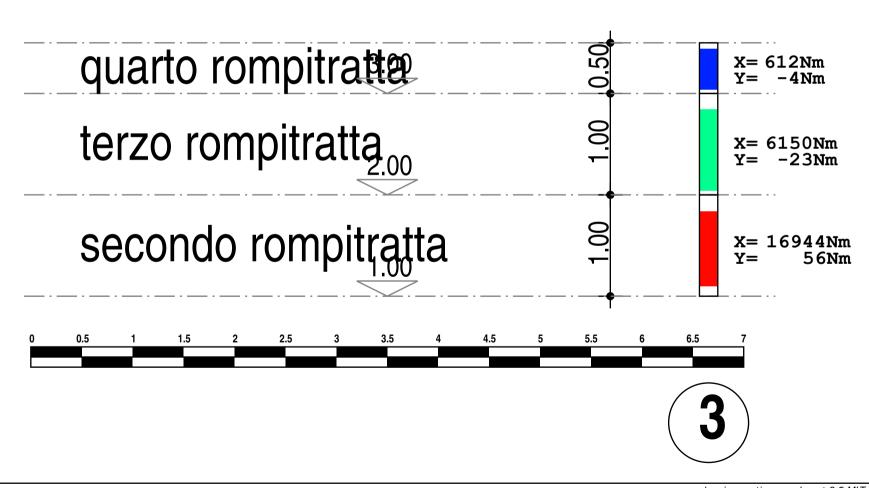
17058 Nm

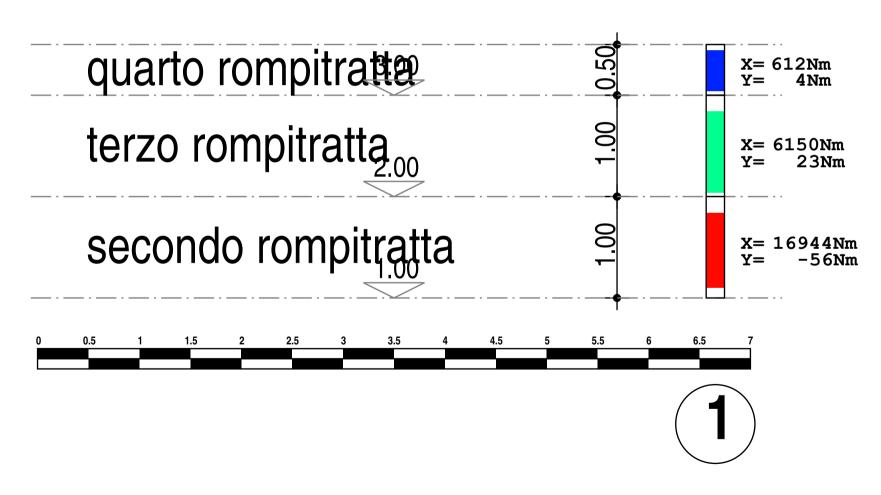
# **SOLLECITAZIONI FLESSIONALI**

Rappresentazione cromatica delle massime sollecitazioni flessionali di verifica allo SLU.


- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: per le diverse sezioni di verifica vengono riportate le due componenti nel piano del telaio della massima sollecitazione.
   La scala cromatica riporta il range di valori da minimo 0 Nm (COLORE BLU) a massimo 17058 Nm (COLORE ROSSO).


X = Sollecitazione flessionale intorno all'asse x della sezione del pilastro


Y = Sollecitazione flessionale intorno all'asse y della sezione del pilastro


0 Nm SCALA CROMATICA

# Telaio 1-1d-2-2d-3-3d









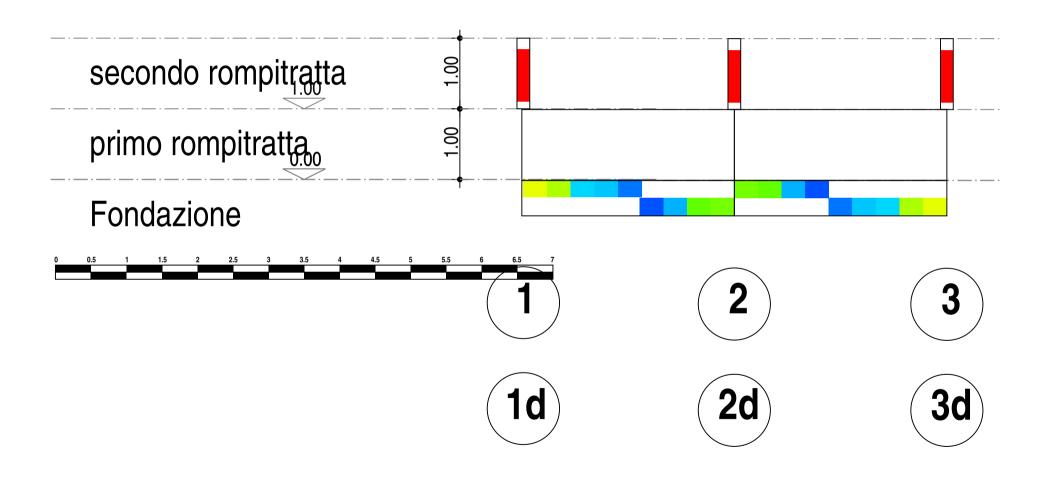
## Telaio 1-1d-2-2d-3-3d



# 14980 N

2 N SCALA CROMATICA

# **SOLLECITAZIONI DI TAGLIO**


Rappresentazione cromatica delle massime sollecitazioni di taglio di verifica allo SLU.

- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: viene riportato il taglio di verifica nella direzione con coefficiente di sicurezza minore.

La scala cromatica riporta il range di valori da minimo 2 N (COLORE BLU) a massimo 14980 N (COLORE ROSSO).

# Telaio 1-1d-2-2d-3-3d

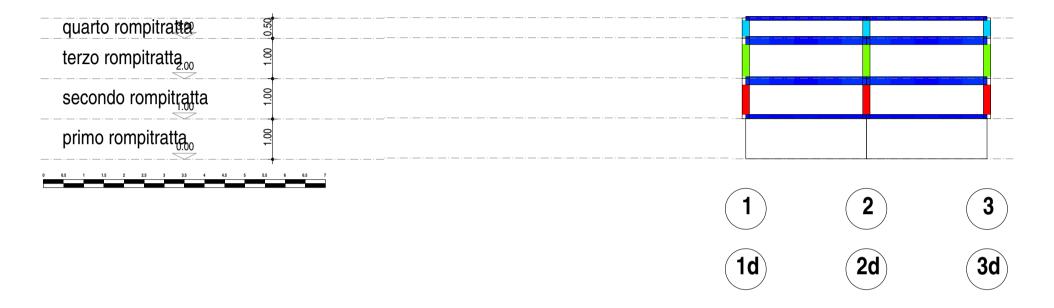
## **SOLLECITAZIONI DI TAGLIO**

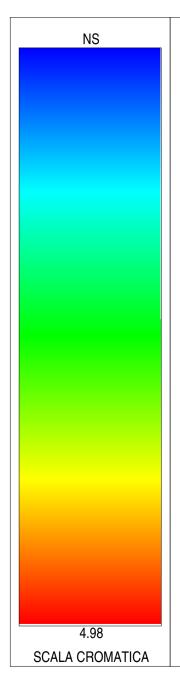


# **SOLLECITAZIONI DI TAGLIO**



# **SOLLECITAZIONI DI TAGLIO**





#### **SOLLECITAZIONI DI TAGLIO**

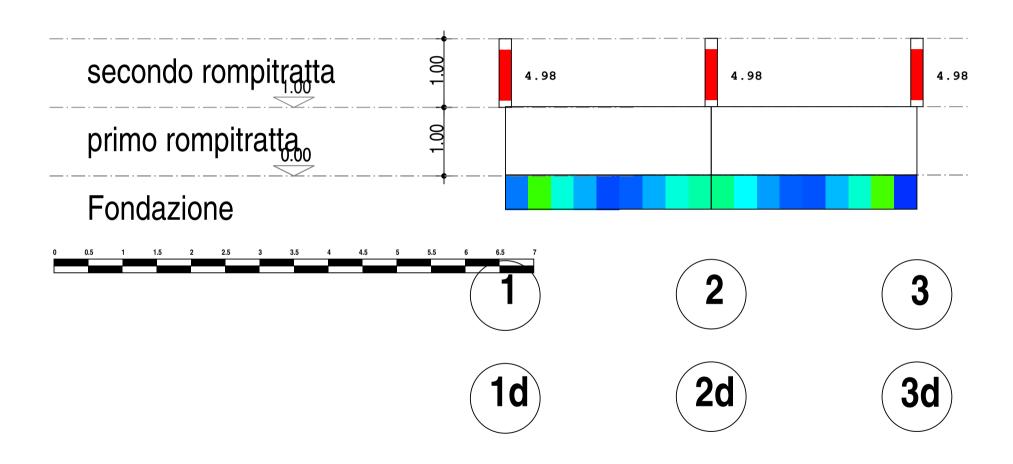


#### Telaio 1-1d-2-2d-3-3d

#### **SOLLECITAZIONI DI TAGLIO**





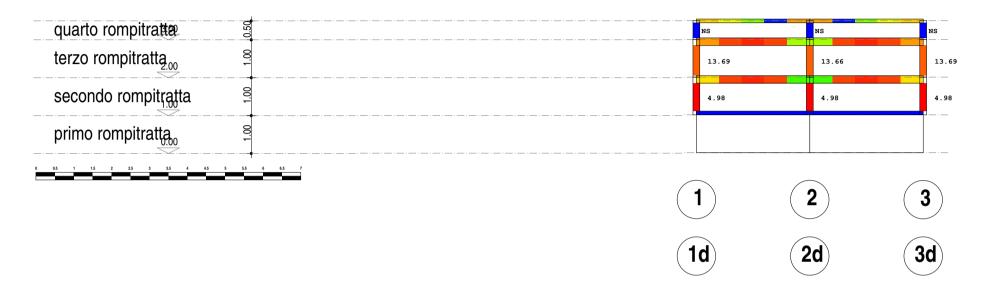

#### **COEFFICIENTE DI SICUREZZA A FLESSIONE**

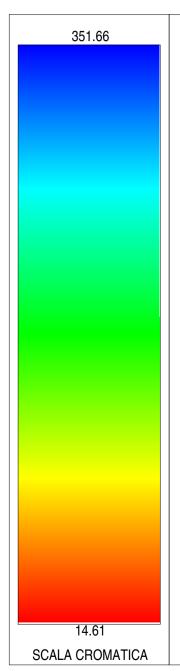
Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a flessione allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

La scala cromatica riporta il range di valori da minimo 4.98 (COLORE ROSSO) a massimo NS (COLORE BLU).

NS = Non significativo.

#### Telaio 1-1d-2-2d-3-3d





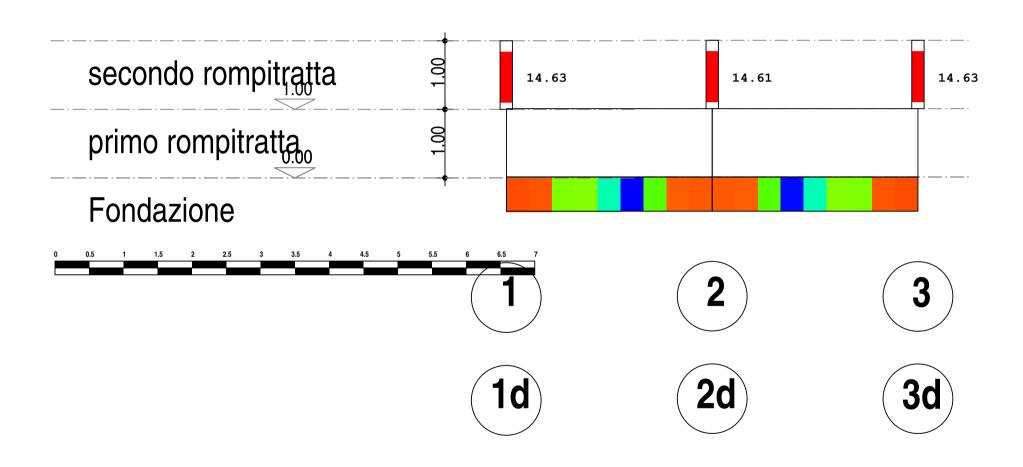


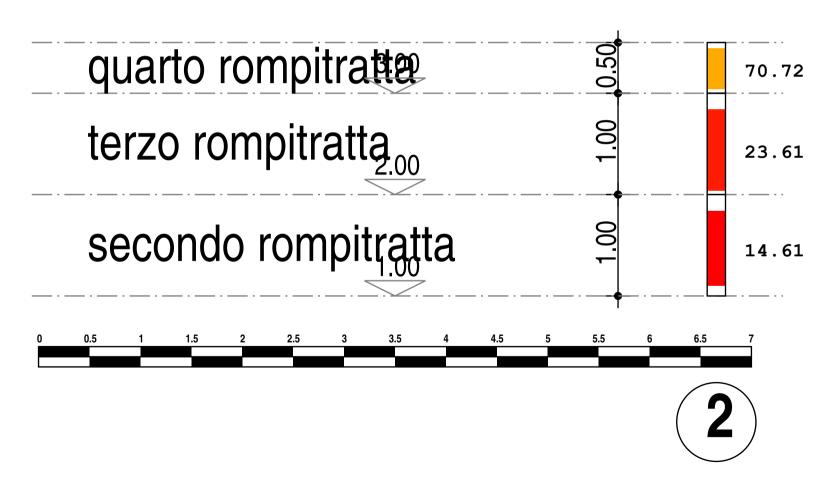

#### Telaio 1-1d-2-2d-3-3d



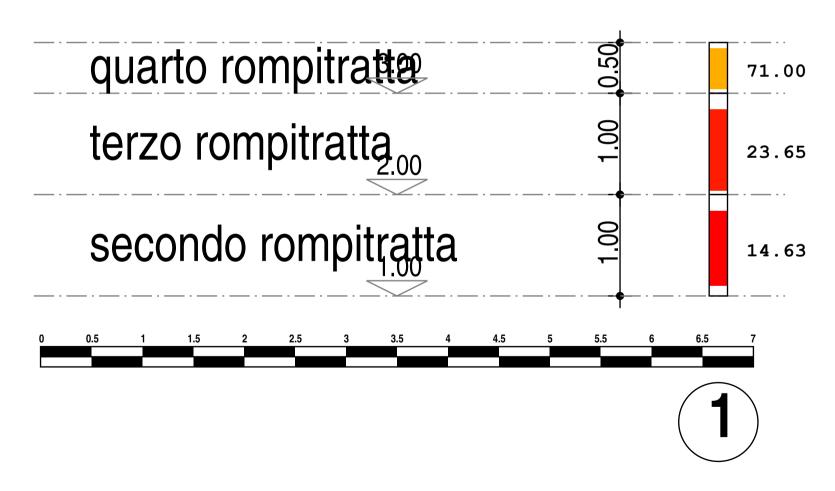


#### **COEFFICIENTE DI SICUREZZA A TAGLIO**


Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a taglio


allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

La scala cromatica riporta il range di valori


da minimo 14.61 (COLORE ROSSO) a massimo 351.66 (COLORE BLU).

#### Telaio 1-1d-2-2d-3-3d







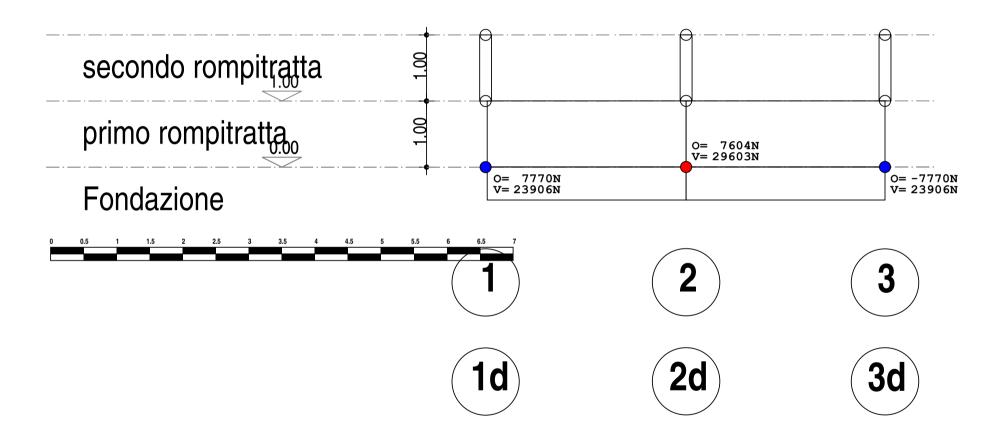


#### Telaio 1-1d-2-2d-3-3d



# 32542 N 27277 N SCALA CROMATICA

#### **REAZIONI VINCOLARI**


Rappresentazione cromatica delle componenti, nel piano del telaio, delle reazioni vincolari massime allo SLU.

La scala cromatica riporta il range di valori da minimo 27277 N (COLORE BLU) a massimo 32542 N (COLORE ROSSO).

O = Reazioni vincolari orizzontali nel piano del telaio (positive verso destra)

V = Reazioni vincolari verticali nel piano del telaio (positive verso l'alto)

#### Telaio 1-1d-2-2d-3-3d









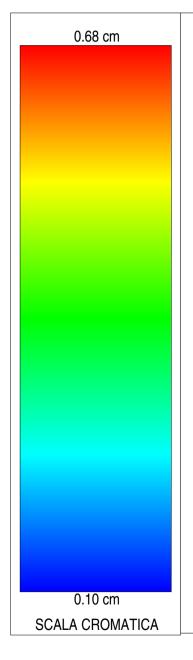
#### Telaio 1-1d-2-2d-3-3d



# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

Barriera Antirumore h=mt. 2 MIT 23 trasparente

#### **PREMESSA**


Il presente documento riporta gli **elaborati grafici sintetici** in conformità a □ anto previsto nel par. 10.2 del D.M. 14 gennaio 200 □ Tali elaborati hanno lo scopo di riassumere il comportamento della struttura relativamente al tipo di analisi svolta e possono riportare informazioni sintetiche e schemi relativi a carichi □ sollecitazioni e sforzi □ spostamenti □ tensioni sul terreno □ tensioni sul ten

Al fine delle verifiche della misura della sicurezza si riportano delle rappresentazioni che ne sintetizzano i valori numerici dei coefficienti di sicurezza nelle sezioni significative della struttura stessa.

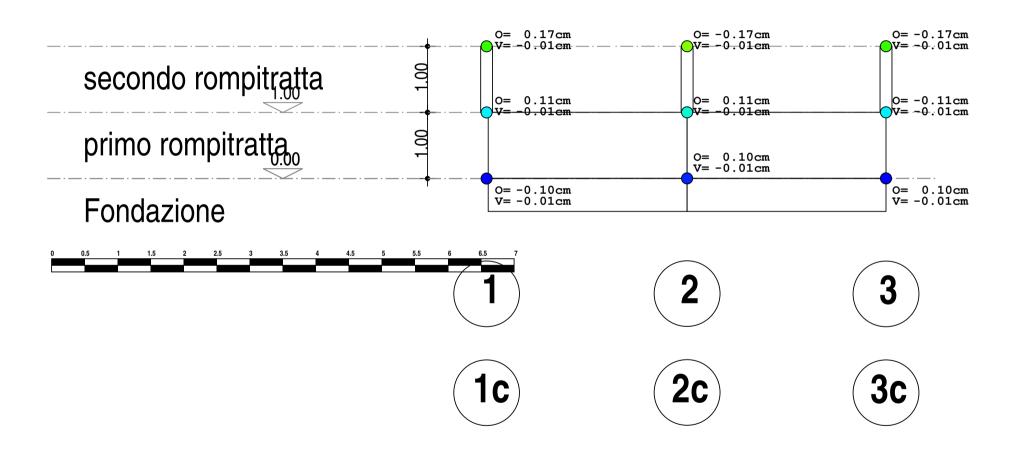
Per ogni singolo elaborato grafico contenente un telaio una parte della struttura o la struttura nel suo insieme i riportano indicazioni sulle convenzioni adottate e sulle unità di misura nonch disegni schemi grafici e mappature cromatiche che schematizzano il comportamento complessivo della struttura.

Grazie alle mappature a colori per ciascun tipo di risultato i fornisce un □ adro chiaro e sintetico: □ possibile rilevare agevolmente il valore delle diverse grandezze in base al colore assunto dagli elementi della struttura. Ogni colore rappresenta un determinato valore dal blu (corrispondente generalmente al valore minimo) al rosso (generalmente valore massimo) □ passando attraverso le varie sfumature di colore corrispondenti ai valori intermedi.

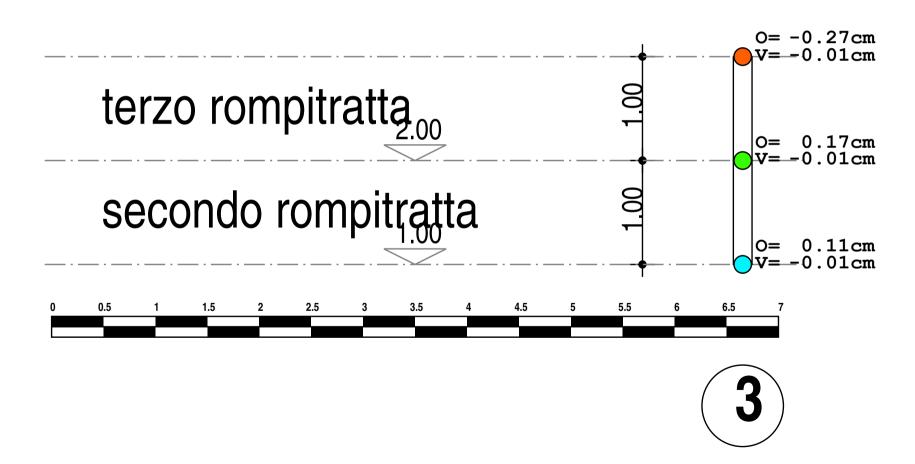
Prima di ogni tipologia di risultato □riportata la scala cromatica con l\( \overline{\text{Im}}\) dicazione numerica del valore minimo e massimo.

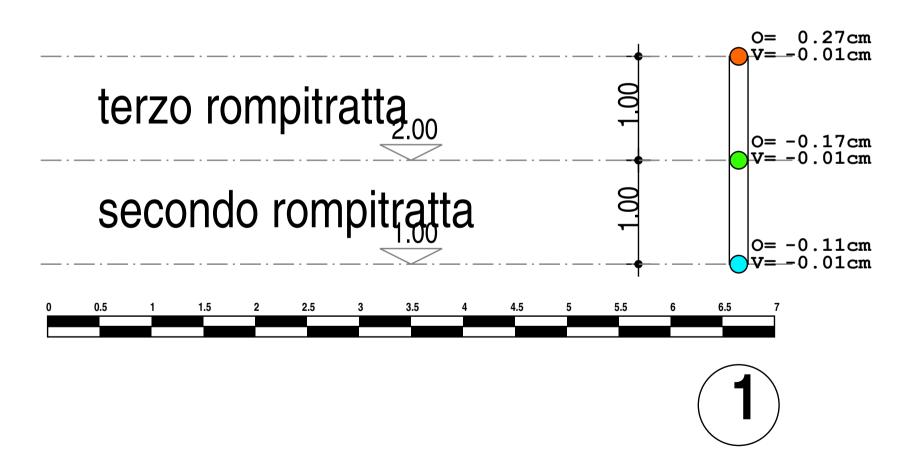


#### **SPOSTAMENTI NODALI**

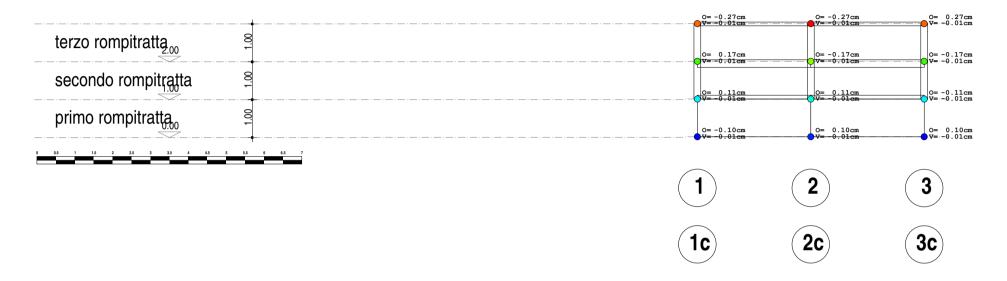

Rappresentazione cromatica nei nodi della componente orizzontale e verticale, nel piano del telaio, del vettore di spostamento massimo (in cm).

La scala cromatica riporta il range di valori da minimo 0.10 cm (COLORE BLU) a massimo 0.68 cm (COLORE ROSSO).


O = Spostamenti nodali orizzontali nel piano del telaio (positivi verso destra)


V = Spostamenti nodali verticali nel piano del telaio (positivi verso l'alto)

#### Telaio 1-1c-2-2c-3-3c









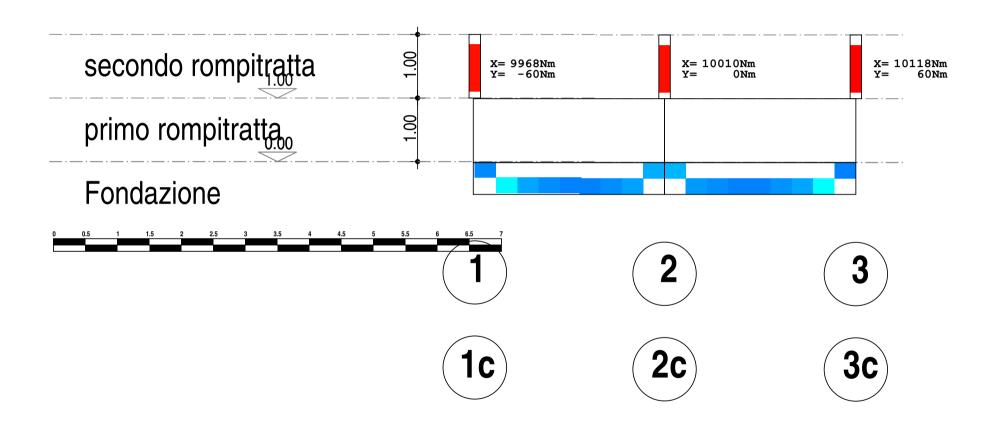

#### Telaio 1-1c-2-2c-3-3c

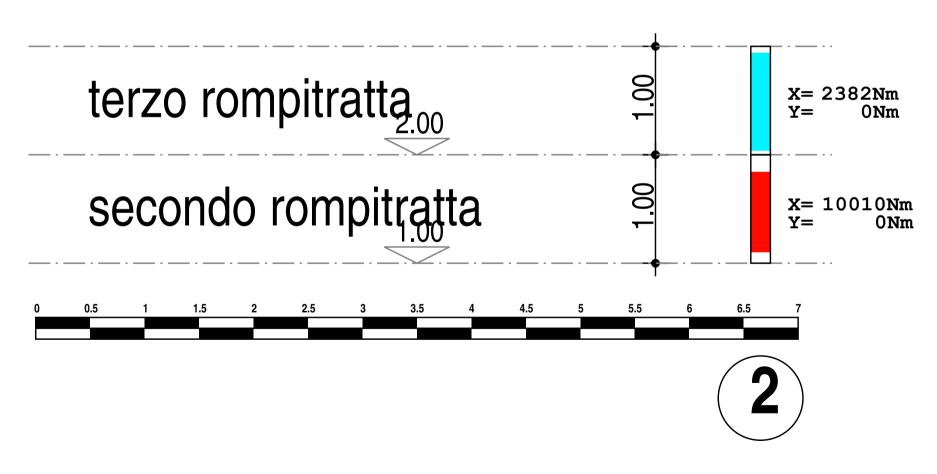


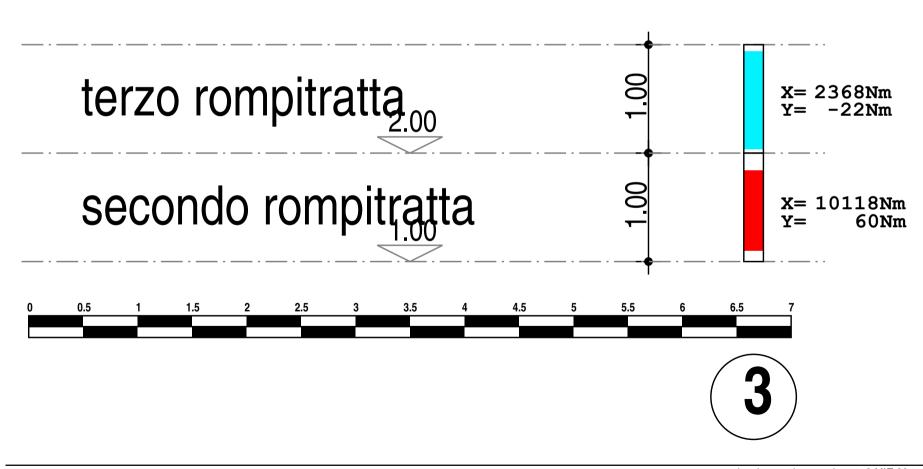
10118 Nm

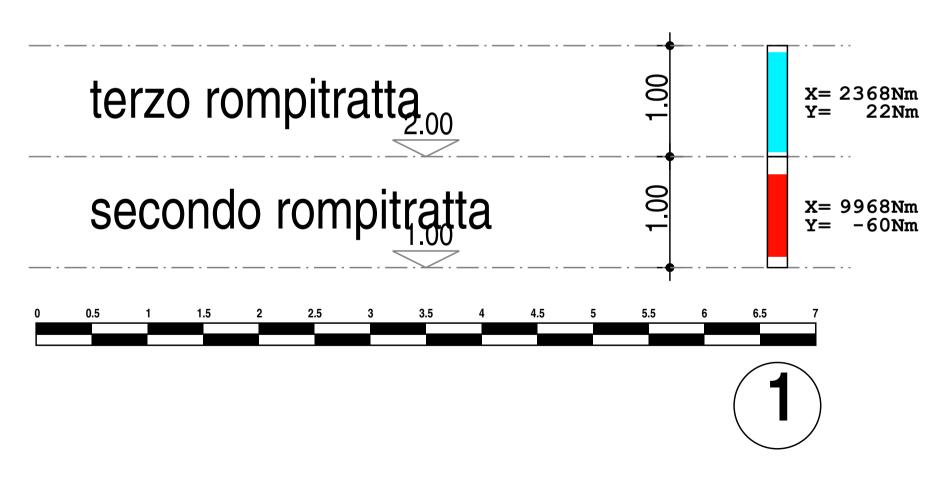
#### **SOLLECITAZIONI FLESSIONALI**

Rappresentazione cromatica delle massime sollecitazioni flessionali di verifica allo SLU.

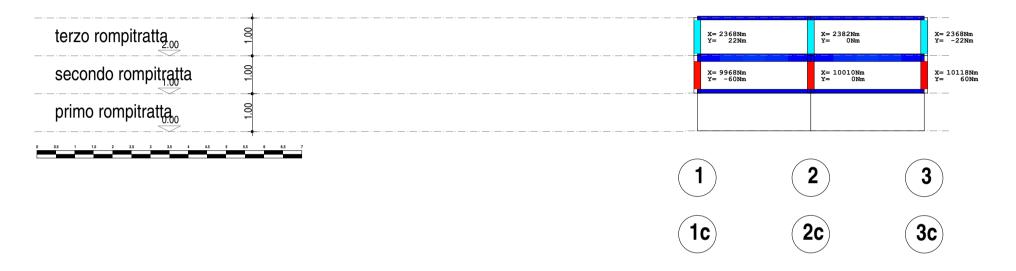

- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: per le diverse sezioni di verifica vengono riportate le due componenti nel piano del telaio della massima sollecitazione.
   La scala cromatica riporta il range di valori da minimo 0 Nm (COLORE BLU) a massimo 10118 Nm (COLORE ROSSO).


X = Sollecitazione flessionale intorno all'asse x della sezione del pilastro


Y = Sollecitazione flessionale intorno all'asse y della sezione del pilastro


0 Nm SCALA CROMATICA

#### Telaio 1-1c-2-2c-3-3c









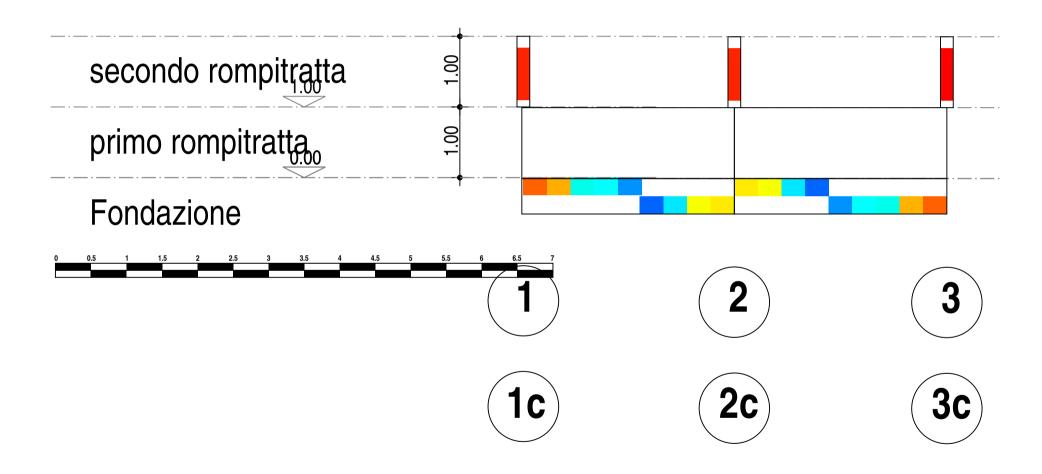

#### Telaio 1-1c-2-2c-3-3c

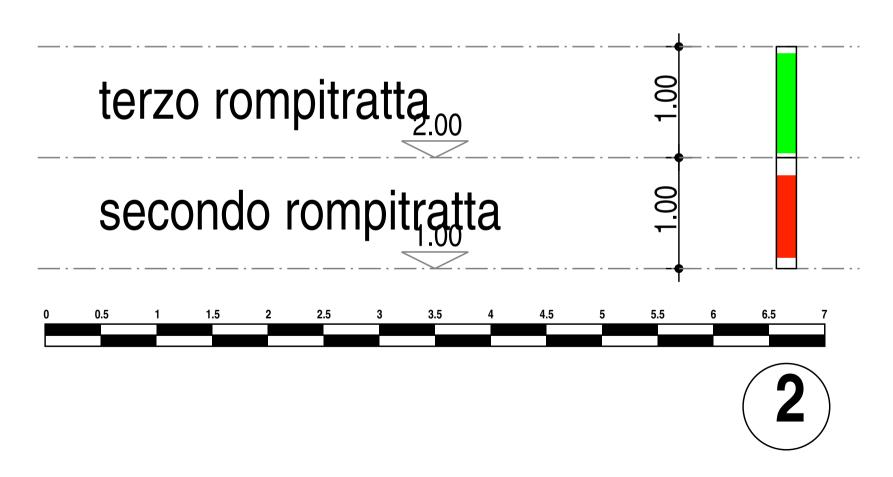


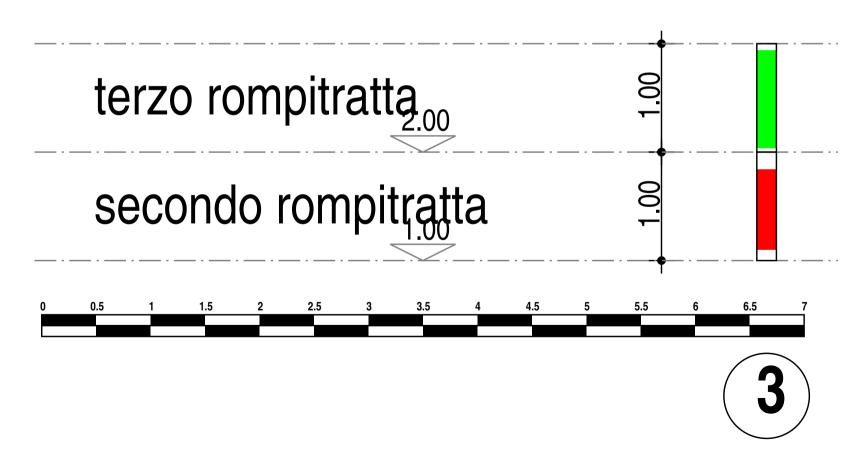
# 11828 N

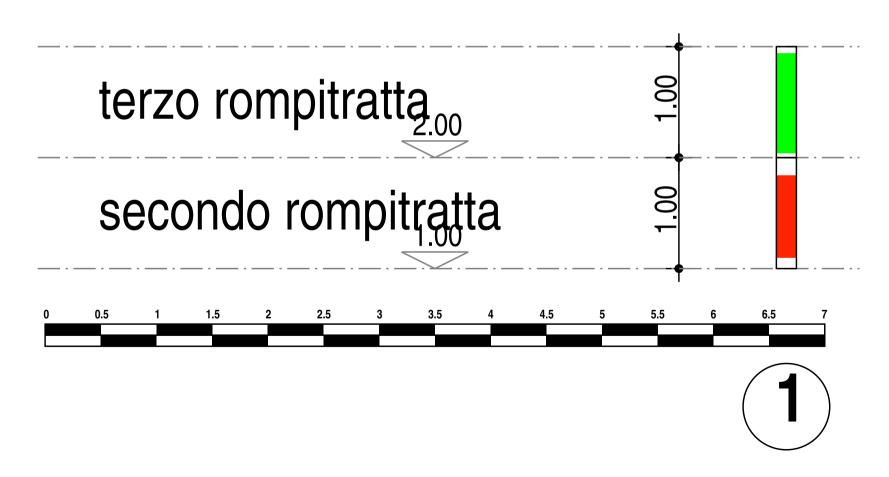
#### **SOLLECITAZIONI DI TAGLIO**

Rappresentazione cromatica delle massime sollecitazioni di taglio di verifica allo SLU.

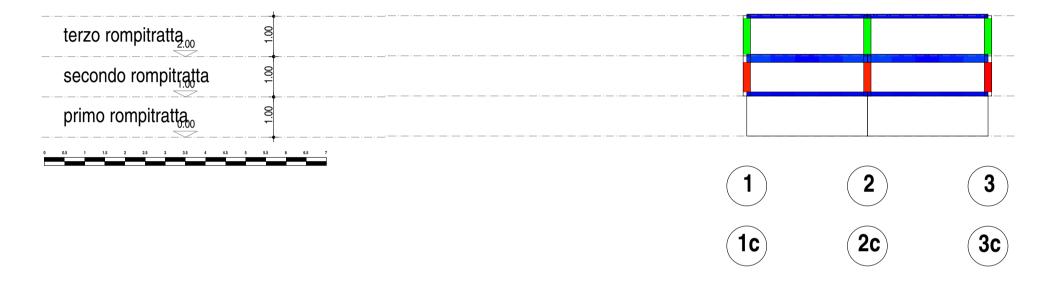

- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: viene riportato il taglio di verifica nella direzione con coefficiente di sicurezza minore.

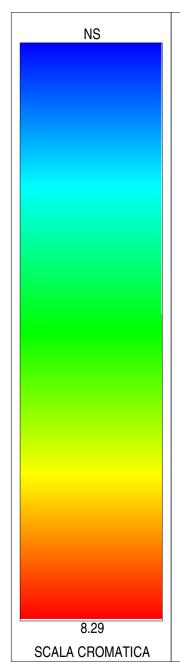

La scala cromatica riporta il range di valori da minimo 2 N (COLORE BLU) a massimo 11828 N (COLORE ROSSO).


2 N SCALA CROMATICA


#### Telaio 1-1c-2-2c-3-3c

#### **SOLLECITAZIONI DI TAGLIO**





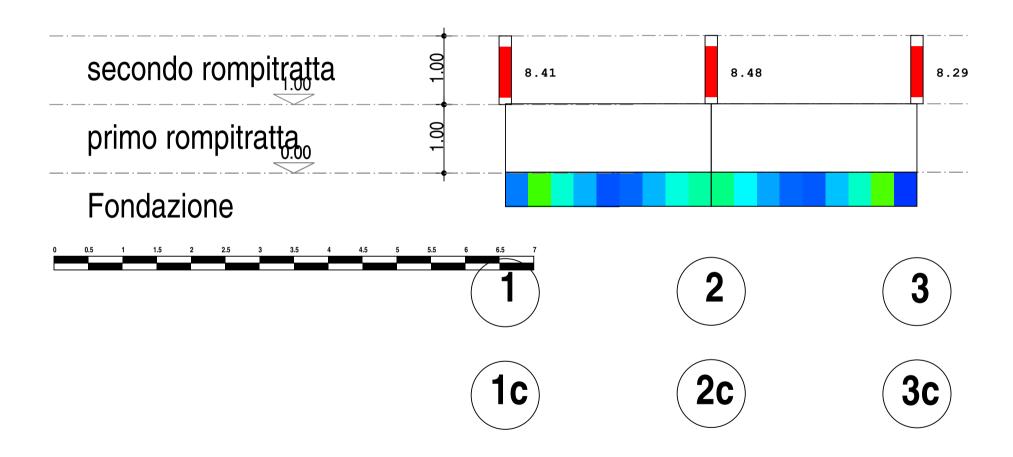


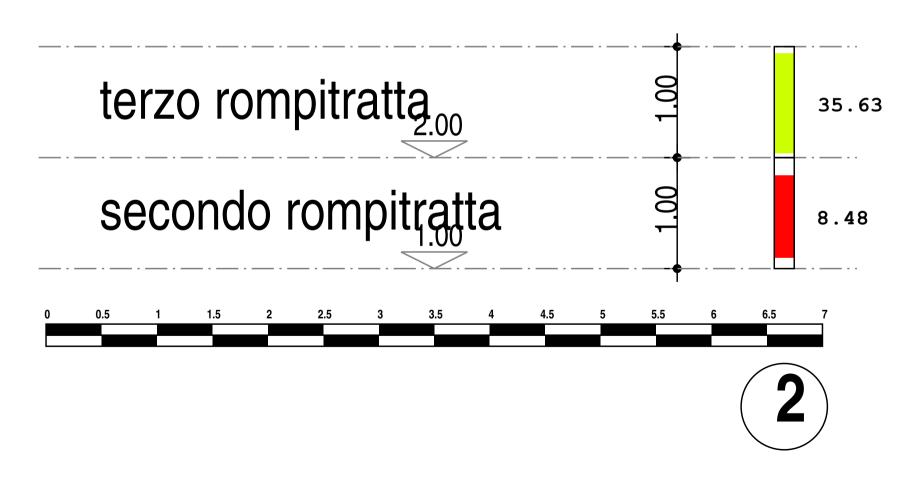

### Telaio 1-1c-2-2c-3-3c

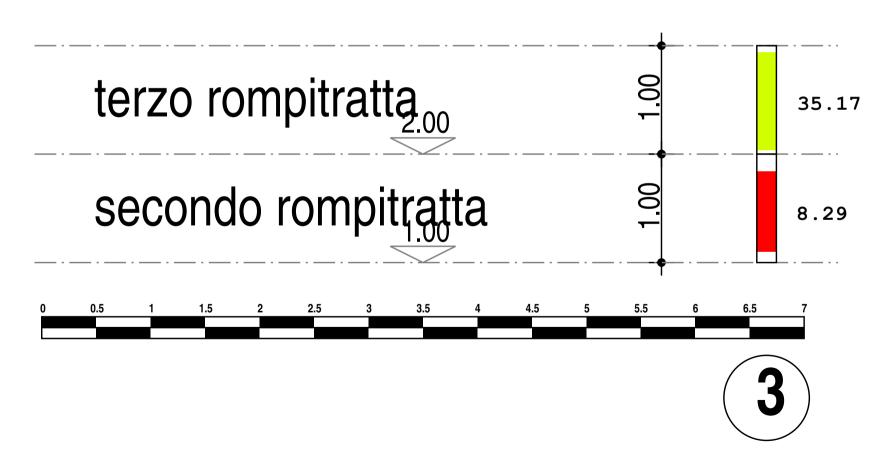


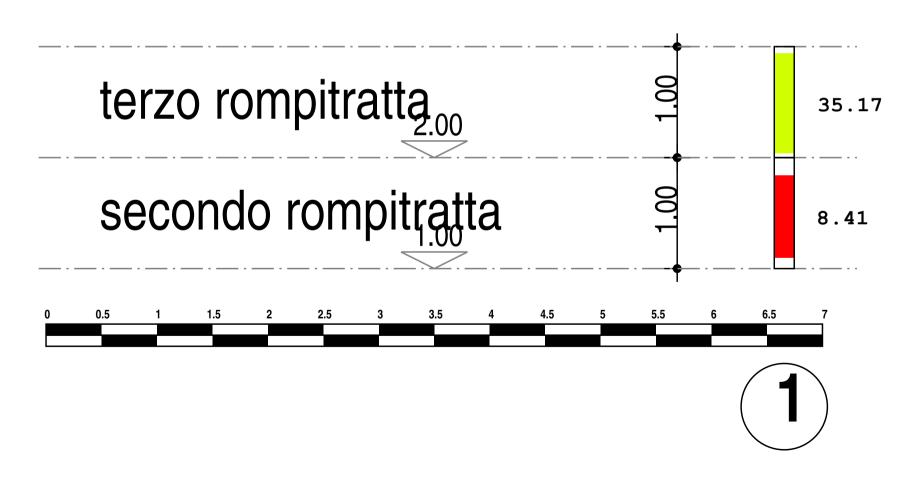


### **COEFFICIENTE DI SICUREZZA A FLESSIONE**

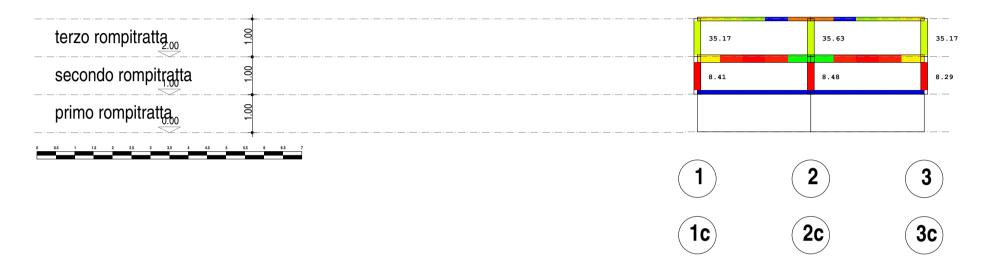

Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a flessione allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.


La scala cromatica riporta il range di valori


da minimo 8.29 (COLORE ROSSO) a massimo NS (COLORE BLU).


NS = Non significativo.

# Telaio 1-1c-2-2c-3-3c





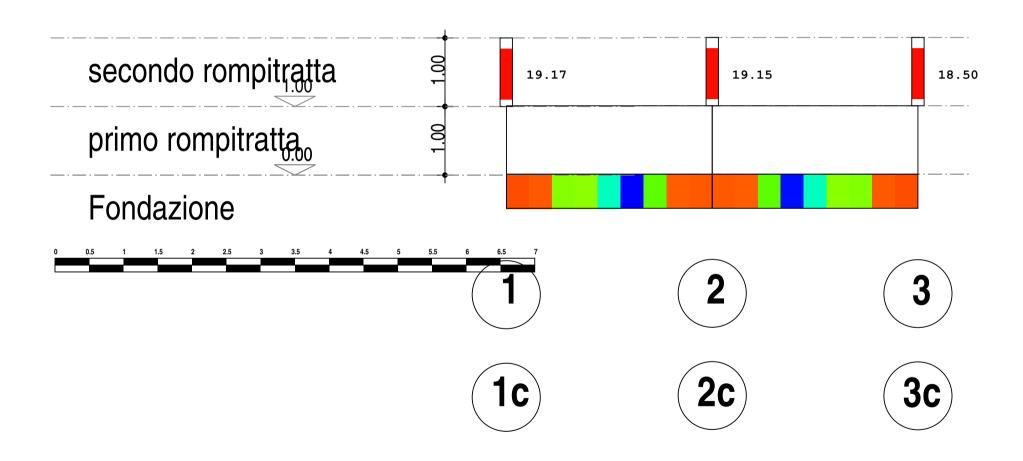


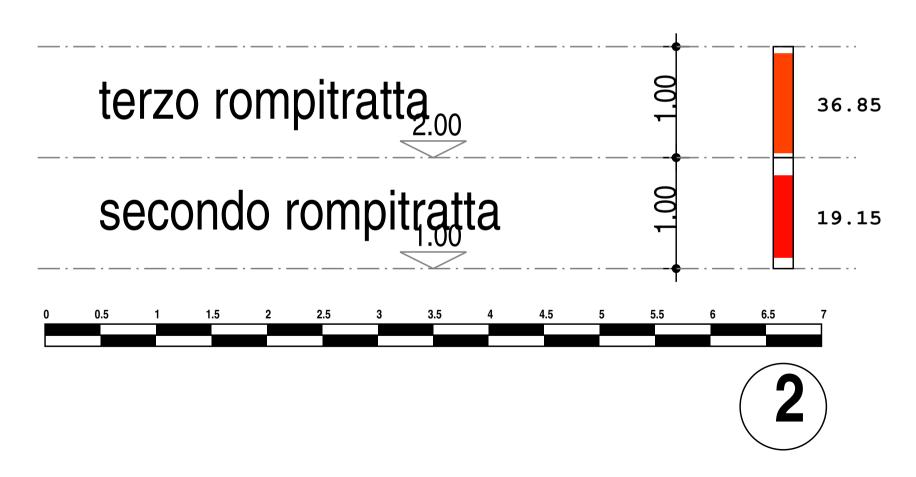


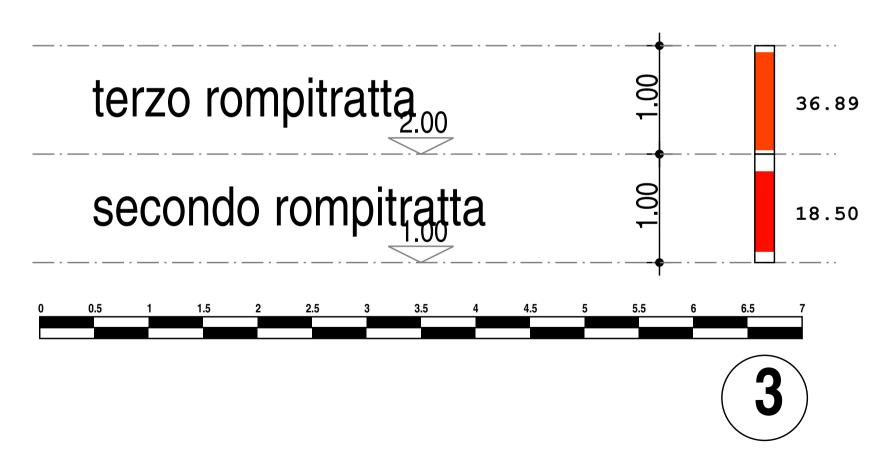


### Telaio 1-1c-2-2c-3-3c



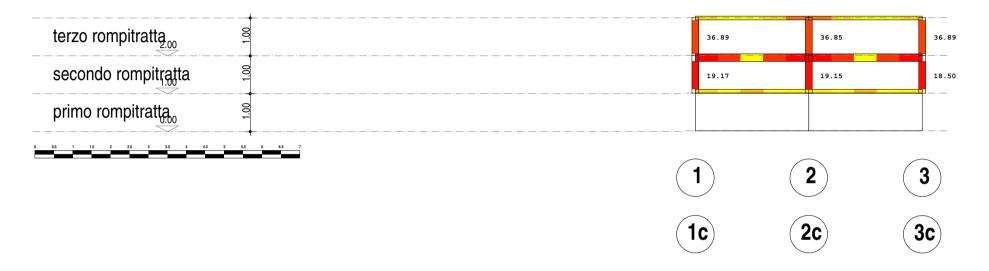




### **COEFFICIENTE DI SICUREZZA A TAGLIO**


Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a taglio allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo. La scala cromatica riporta il range di valori

da minimo 15.18 (COLORE ROSSO) a massimo 351.48 (COLORE BLU).

# Telaio 1-1c-2-2c-3-3c







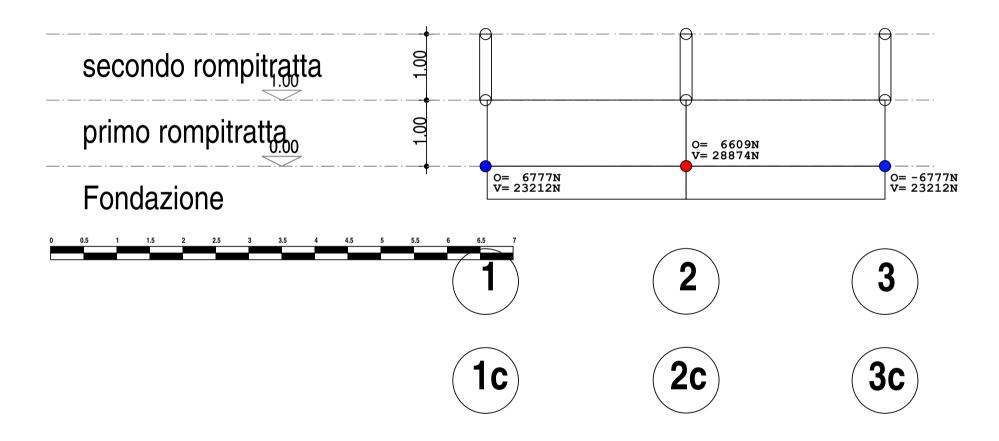


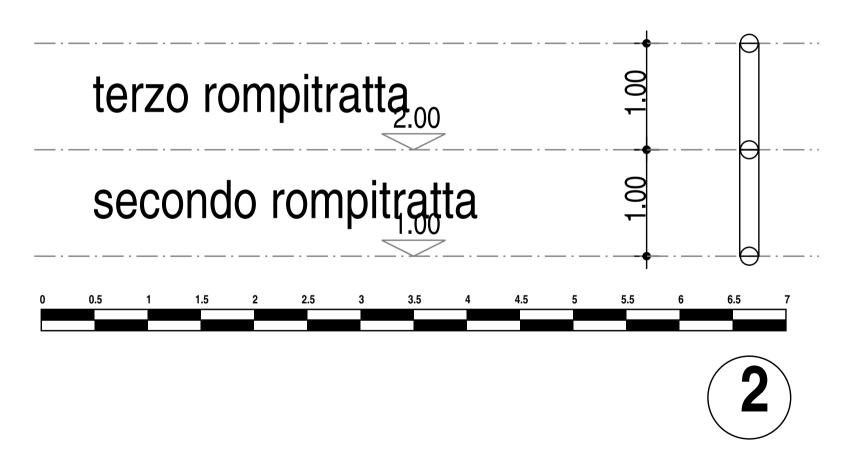

### Telaio 1-1c-2-2c-3-3c

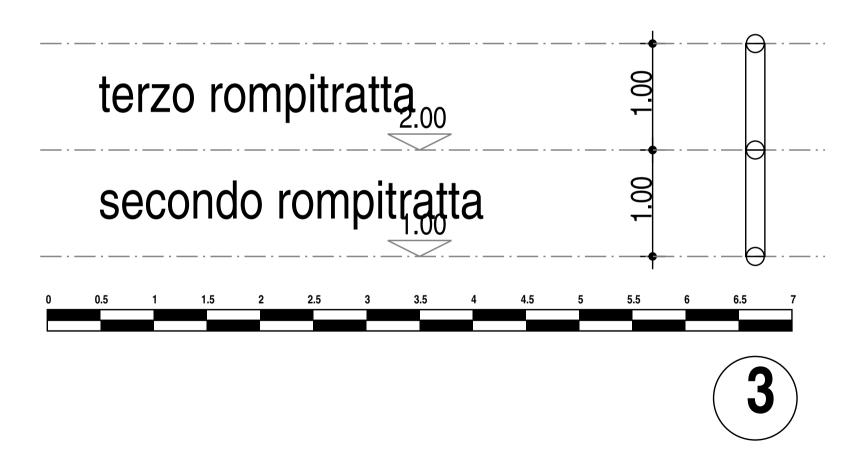


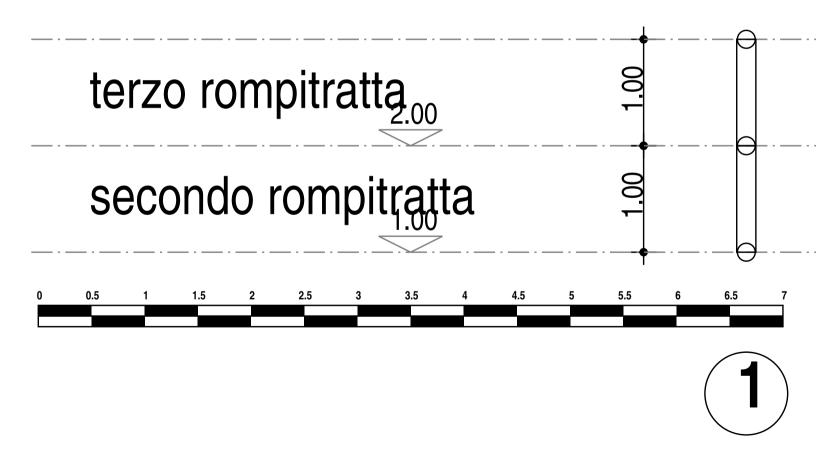
# 30832 N 25424 N SCALA CROMATICA

### **REAZIONI VINCOLARI**

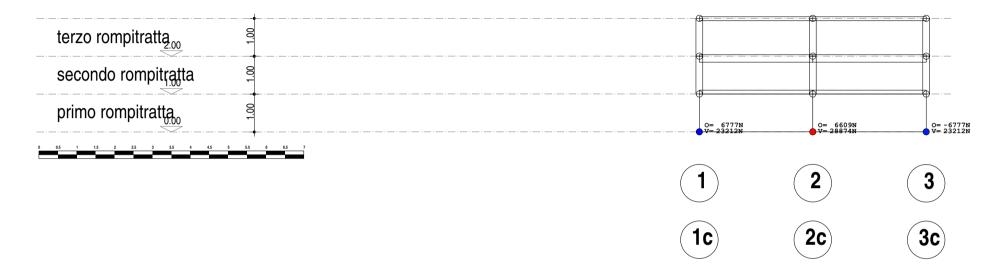

Rappresentazione cromatica delle componenti, nel piano del telaio, delle reazioni vincolari massime allo SLU.


La scala cromatica riporta il range di valori da minimo 25424 N (COLORE BLU) a massimo 30832 N (COLORE ROSSO).


O = Reazioni vincolari orizzontali nel piano del telaio (positive verso destra)


V = Reazioni vincolari verticali nel piano del telaio (positive verso l'alto)

# Telaio 1-1c-2-2c-3-3c









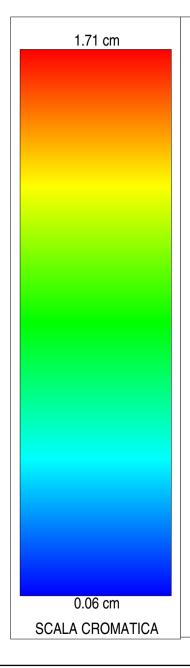

### Telaio 1-1c-2-2c-3-3c



# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

Barriera Antirumore h=mt. 3,50 MIT 05 legno

#### **PREMESSA**


Il presente documento riporta gli **elaborati grafici sintetici** in conformità a □ anto previsto nel par. 10.2 del D.M. 14 gennaio 200 □ Tali elaborati hanno lo scopo di riassumere il comportamento della struttura relativamente al tipo di analisi svolta e possono riportare informazioni sintetiche e schemi relativi a carichi □ sollecitazioni e sforzi □ spostamenti □ tensioni sul terreno □ tensioni sul ten

Al fine delle verifiche della misura della sicurezza si riportano delle rappresentazioni che ne sintetizzano i valori numerici dei coefficienti di sicurezza nelle sezioni significative della struttura stessa.

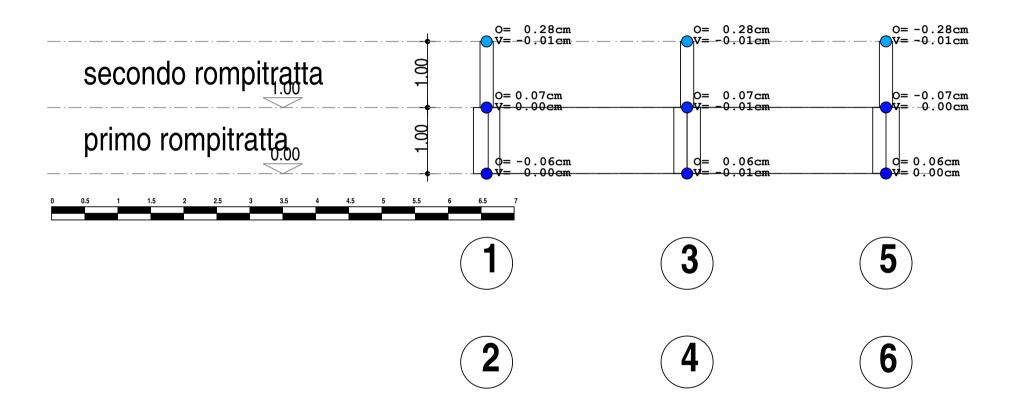
Per ogni singolo elaborato grafico contenente un telaio una parte della struttura o la struttura nel suo insieme i riportano indicazioni sulle convenzioni adottate e sulle unità di misura nonch disegni schemi grafici e mappature cromatiche che schematizzano il comportamento complessivo della struttura.

Grazie alle mappature a colori per ciascun tipo di risultato i fornisce un □ladro chiaro e sintetico: □possibile rilevare agevolmente il valore delle diverse grandezze in base al colore assunto dagli elementi della struttura. Ogni colore rappresenta un determinato valore dal blu (corrispondente generalmente al valore minimo) al rosso (generalmente valore massimo) □passando attraverso le varie sfumature di colore corrispondenti ai valori intermedi.

Prima di ogni tipologia di risultato □riportata la scala cromatica con l\( \overline{\text{Im}}\) dicazione numerica del valore minimo e massimo.



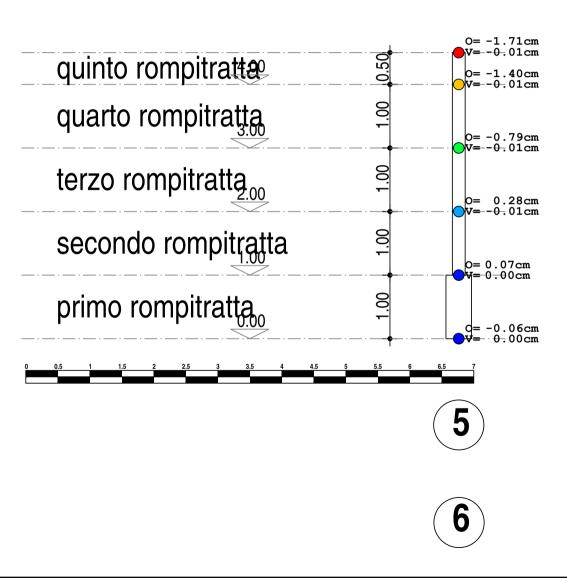
### **SPOSTAMENTI NODALI**


Rappresentazione cromatica nei nodi della componente orizzontale e verticale, nel piano del telaio, del vettore di spostamento massimo (in cm).

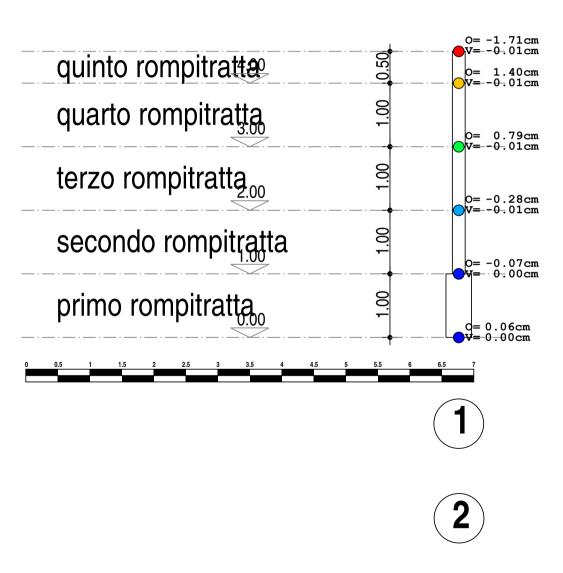
La scala cromatica riporta il range di valori da minimo 0.06 cm (COLORE BLU) a massimo 1.71 cm (COLORE ROSSO).

O = Spostamenti nodali orizzontali nel piano del telaio (positivi verso destra)

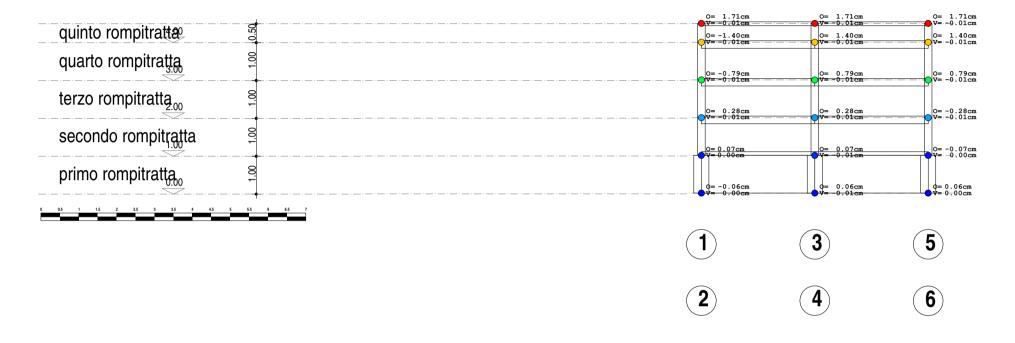
V = Spostamenti nodali verticali nel piano del telaio (positivi verso l'alto)


# Telaio 1-2-3-4-5-6




# Telaio 3-4




# Telaio 5-6



# Telaio 1-2



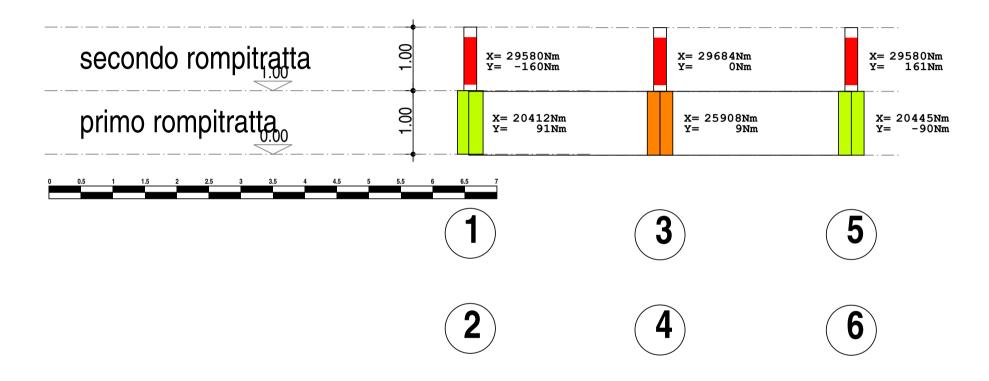
### Telaio 1-2-3-4-5-6



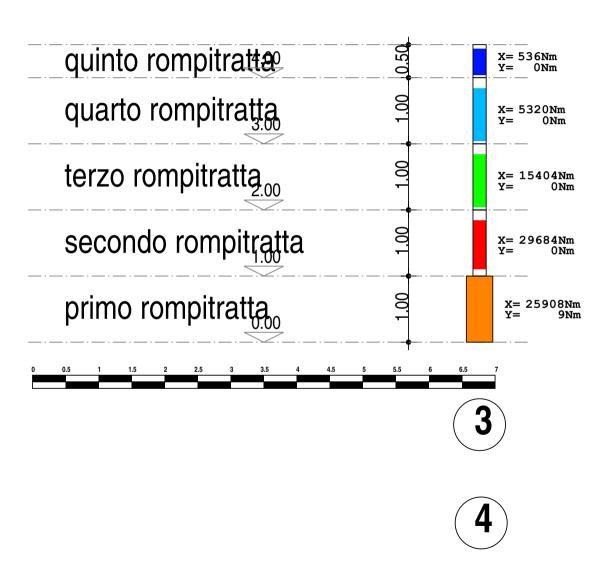
29684 Nm

### **SOLLECITAZIONI FLESSIONALI**

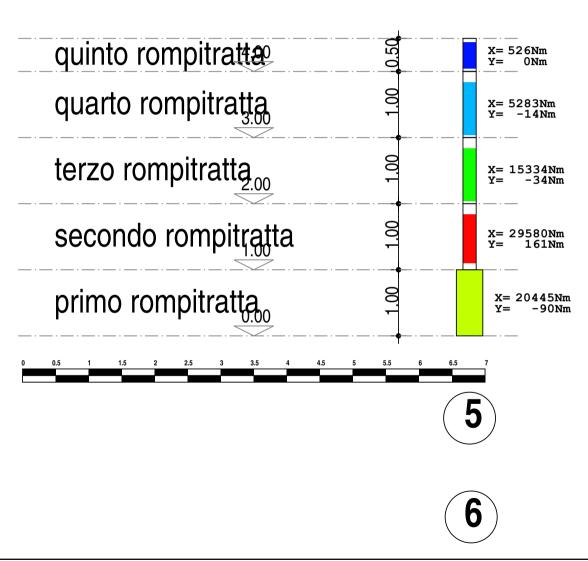
Rappresentazione cromatica delle massime sollecitazioni flessionali di verifica allo SLU.


- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: per le diverse sezioni di verifica vengono riportate le due componenti nel piano del telaio della massima sollecitazione.
   La scala cromatica riporta il range di valori da minimo 0 Nm (COLORE BLU) a massimo 29684 Nm (COLORE ROSSO).

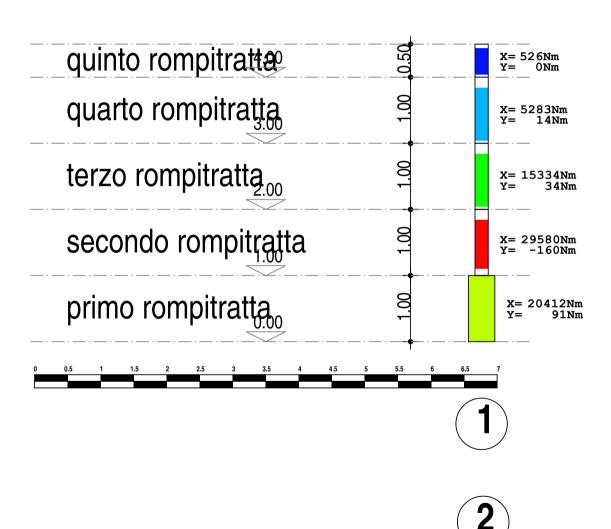
X = Sollecitazione flessionale intorno all'asse x della sezione del pilastro


Y = Sollecitazione flessionale intorno all'asse y della sezione del pilastro

0 Nm SCALA CROMATICA


# Telaio 1-2-3-4-5-6




# Telaio 3-4



# Telaio 5-6



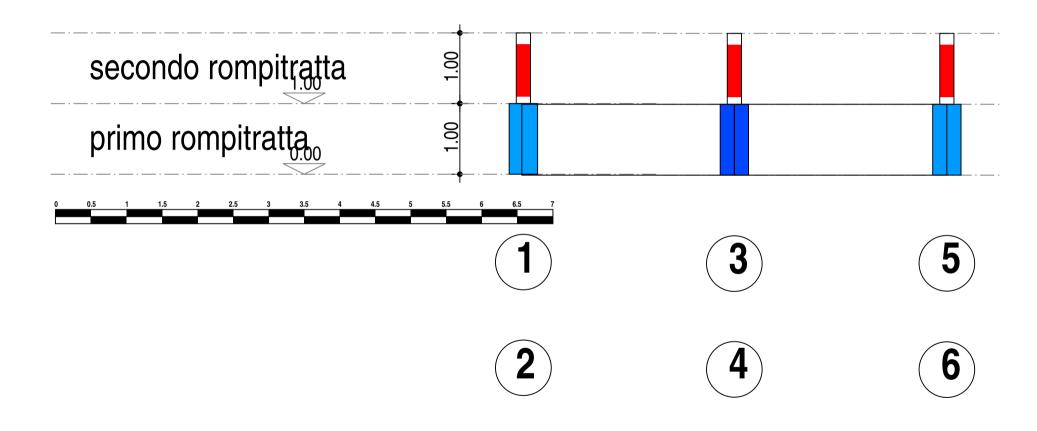
# Telaio 1-2



### Telaio 1-2-3-4-5-6



# 18152 N


#### **SOLLECITAZIONI DI TAGLIO**

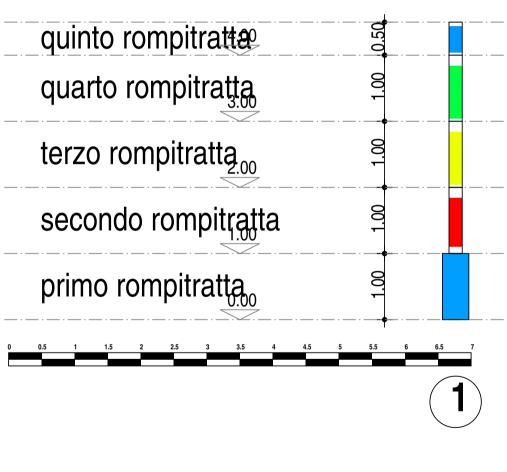
Rappresentazione cromatica delle massime sollecitazioni di taglio di verifica allo SLU.

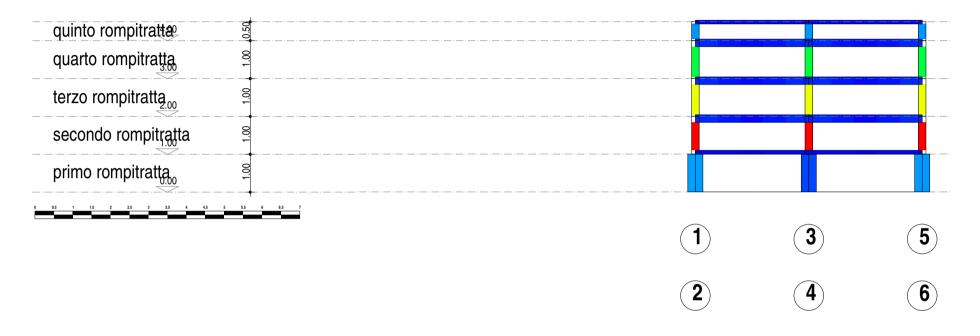
- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: viene riportato il taglio di verifica nella direzione con coefficiente di sicurezza minore.

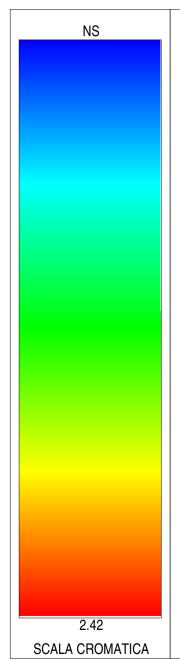
La scala cromatica riporta il range di valori da minimo 5 N (COLORE BLU) a massimo 18152 N (COLORE ROSSO).

5 N SCALA CROMATICA




Telaio 3-4





# Telaio 5-6

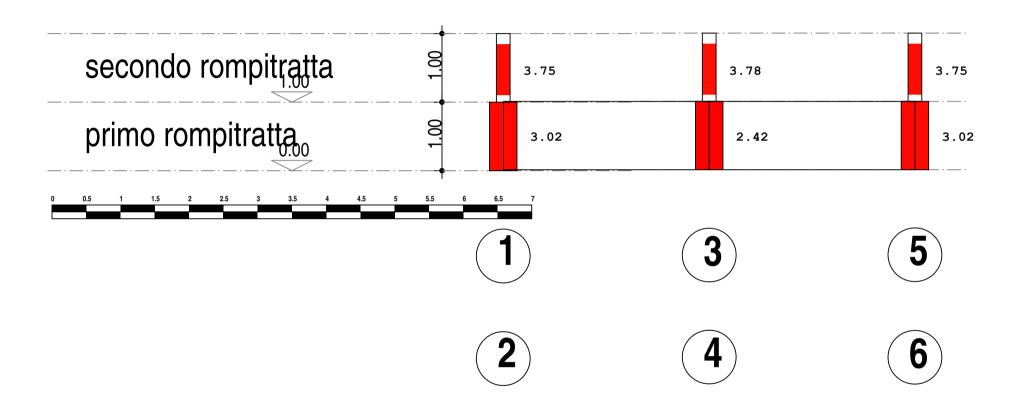


Telaio 1-2

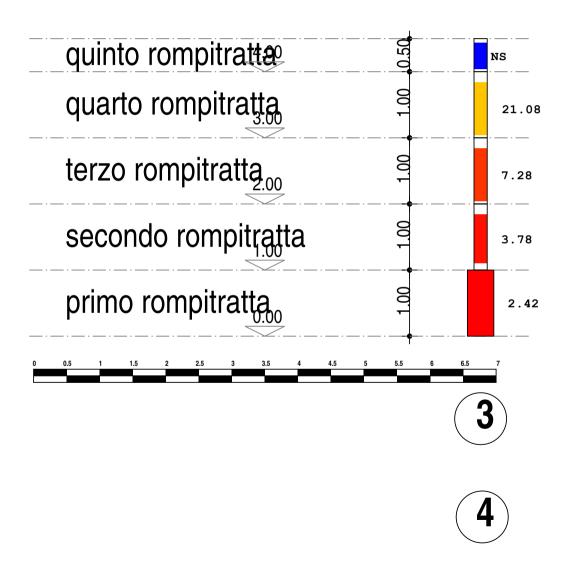




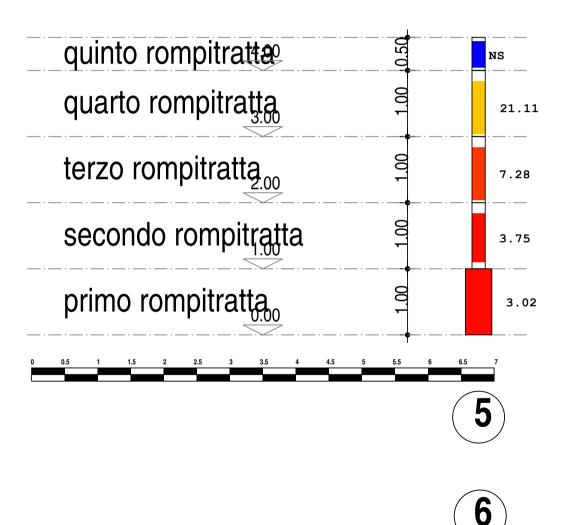



#### **COEFFICIENTE DI SICUREZZA A FLESSIONE**

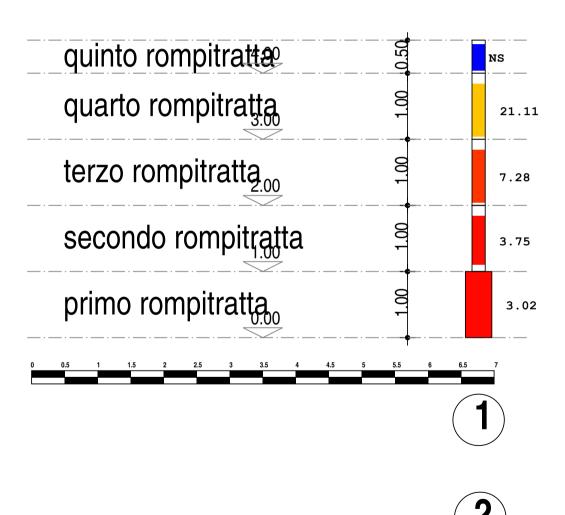
Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a flessione allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.


La scala cromatica riporta il range di valori

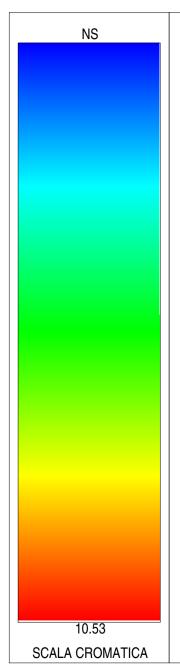
da minimo 2.42 (COLORE ROSSO) a massimo NS (COLORE BLU).


NS = Non significativo.




Telaio 3-4




Telaio 5-6
COEFFICIENTE DI SICUREZZA A FLESSIONE



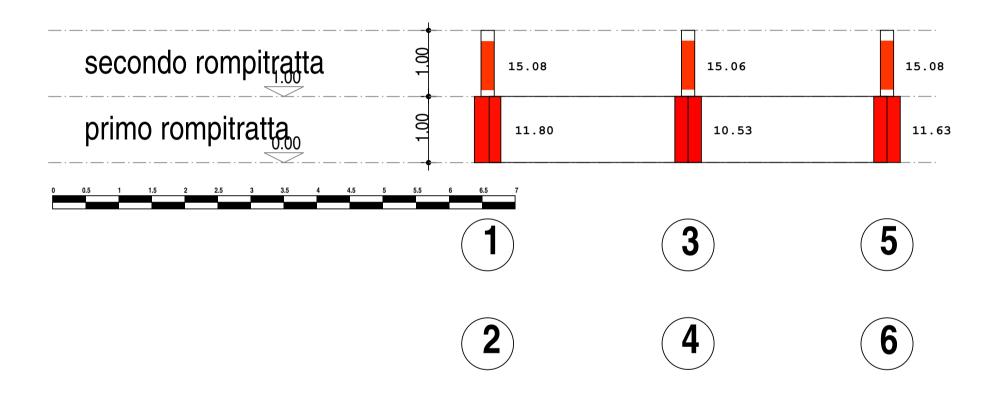
Telaio 1-2



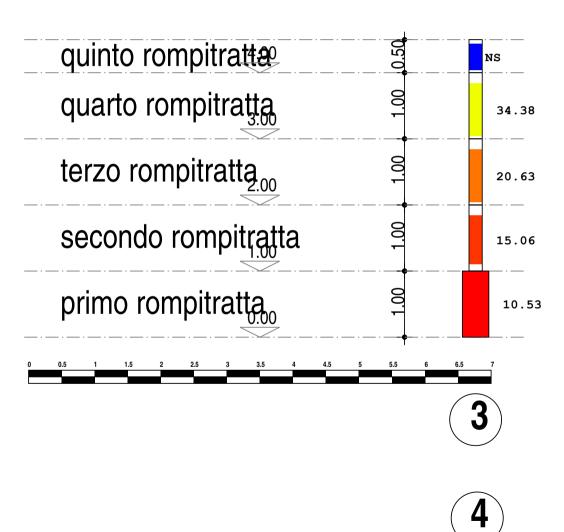




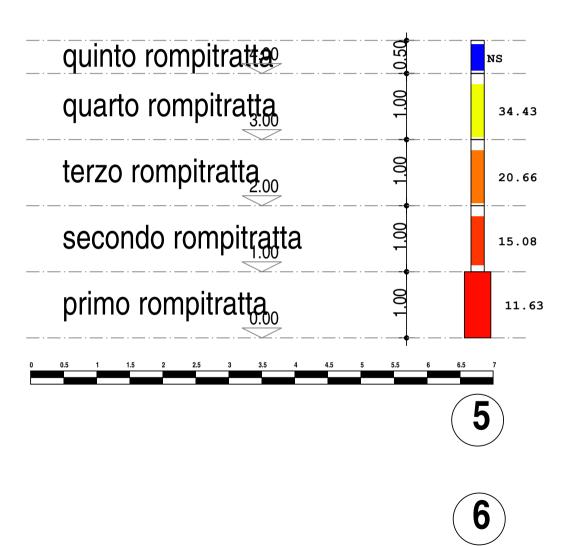
#### **COEFFICIENTE DI SICUREZZA A TAGLIO**


Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a taglio

allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

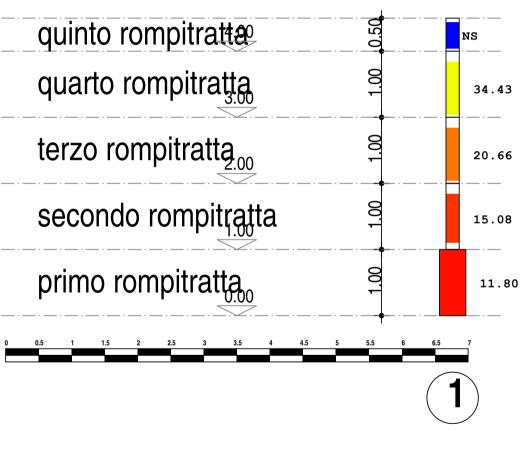

La scala cromatica riporta il range di valori

da minimo 10.53 (COLORE ROSSO) a massimo NS (COLORE BLU).


#### **COEFFICIENTE DI SICUREZZA A TAGLIO**



Telaio 3-4
COEFFICIENTE DI SICUREZZA A TAGLIO




Telaio 5-6
COEFFICIENTE DI SICUREZZA A TAGLIO



Telaio 1-2

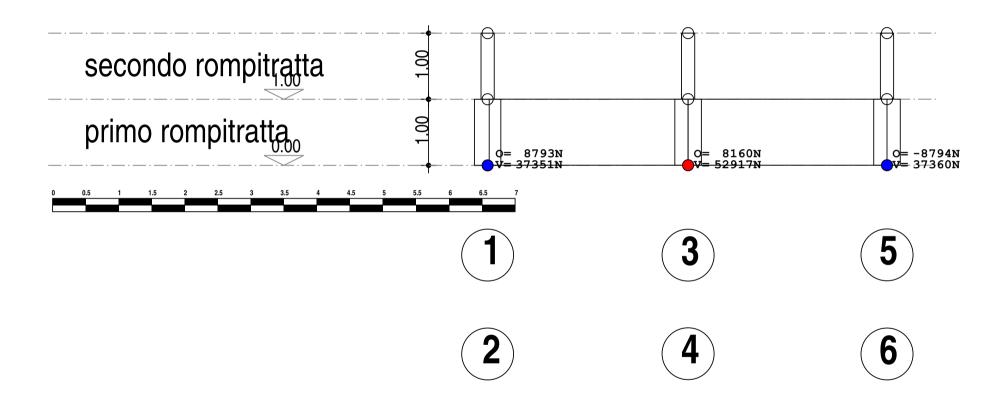
#### **COEFFICIENTE DI SICUREZZA A TAGLIO**



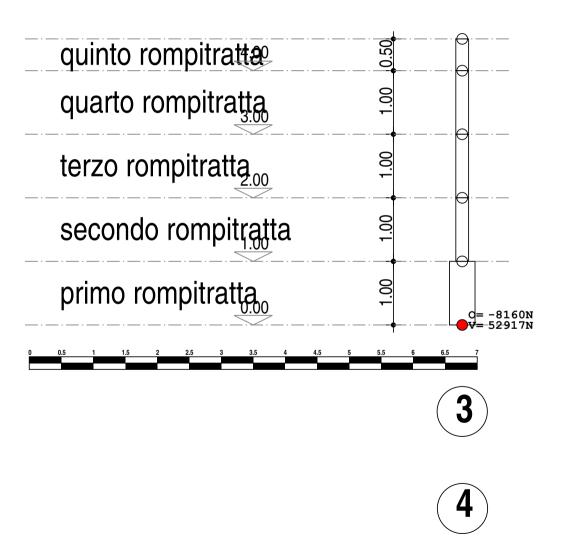
#### **COEFFICIENTE DI SICUREZZA A TAGLIO**



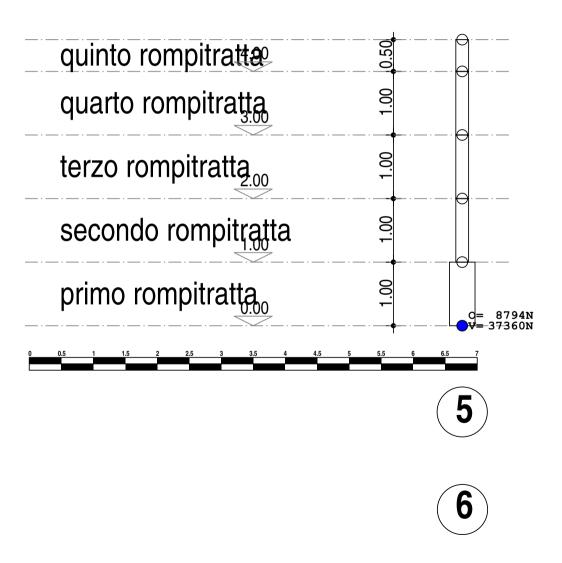
# 57686 N 41940 N SCALA CROMATICA


#### **REAZIONI VINCOLARI**

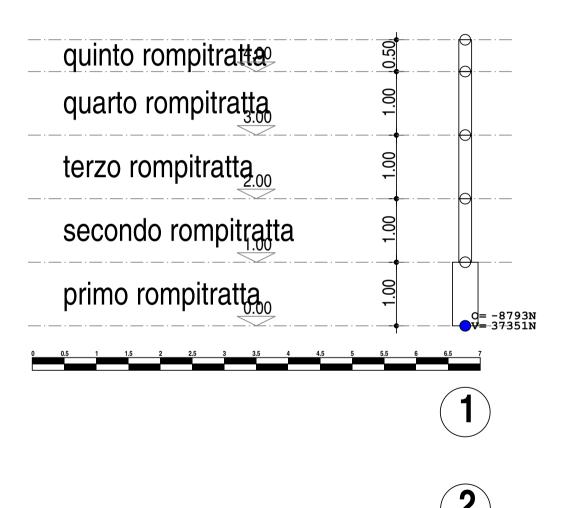
Rappresentazione cromatica delle componenti, nel piano del telaio, delle reazioni vincolari massime allo SLU.


La scala cromatica riporta il range di valori da minimo 41940 N (COLORE BLU) a massimo 57686 N (COLORE ROSSO).

O = Reazioni vincolari orizzontali nel piano del telaio (positive verso destra)


V = Reazioni vincolari verticali nel piano del telaio (positive verso l'alto)




# Telaio 3-4



# Telaio 5-6



# Telaio 1-2

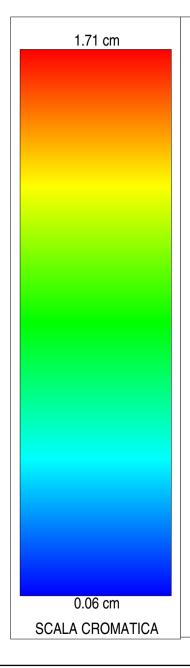




# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

Barriera Antirumore h=mt. 3,50 MIT 05 legno

#### **PREMESSA**


Il presente documento riporta gli **elaborati grafici sintetici** in conformità a □ anto previsto nel par. 10.2 del D.M. 14 gennaio 200 □ Tali elaborati hanno lo scopo di riassumere il comportamento della struttura relativamente al tipo di analisi svolta e possono riportare informazioni sintetiche e schemi relativi a carichi □ sollecitazioni e sforzi □ spostamenti □ tensioni sul terreno □ tensioni sul ten

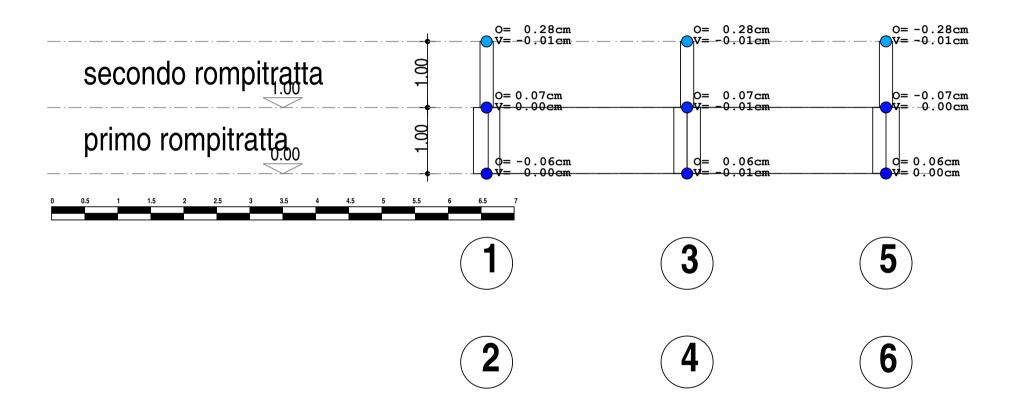
Al fine delle verifiche della misura della sicurezza si riportano delle rappresentazioni che ne sintetizzano i valori numerici dei coefficienti di sicurezza nelle sezioni significative della struttura stessa.

Per ogni singolo elaborato grafico contenente un telaio una parte della struttura o la struttura nel suo insieme i riportano indicazioni sulle convenzioni adottate e sulle unità di misura nonch disegni schemi grafici e mappature cromatiche che schematizzano il comportamento complessivo della struttura.

Grazie alle mappature a colori per ciascun tipo di risultato i fornisce un □ladro chiaro e sintetico: □possibile rilevare agevolmente il valore delle diverse grandezze in base al colore assunto dagli elementi della struttura. Ogni colore rappresenta un determinato valore dal blu (corrispondente generalmente al valore minimo) al rosso (generalmente valore massimo) □passando attraverso le varie sfumature di colore corrispondenti ai valori intermedi.

Prima di ogni tipologia di risultato □riportata la scala cromatica con l\( \overline{\text{Im}}\) dicazione numerica del valore minimo e massimo.

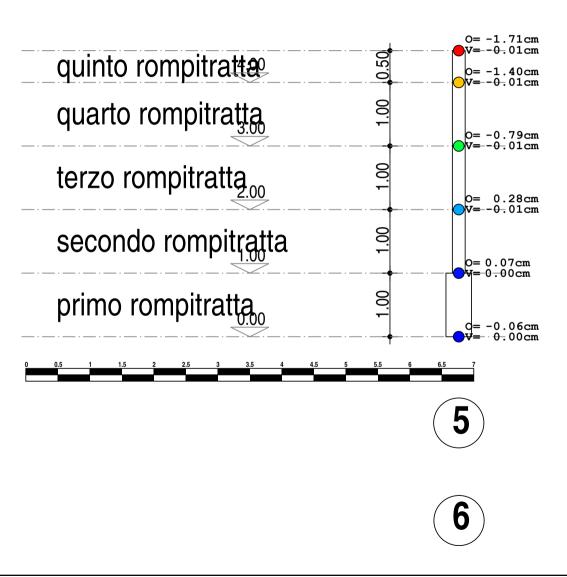



#### **SPOSTAMENTI NODALI**

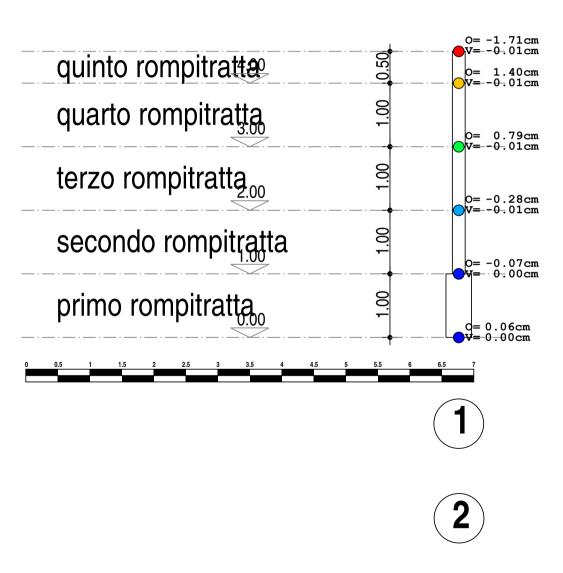
Rappresentazione cromatica nei nodi della componente orizzontale e verticale, nel piano del telaio, del vettore di spostamento massimo (in cm).

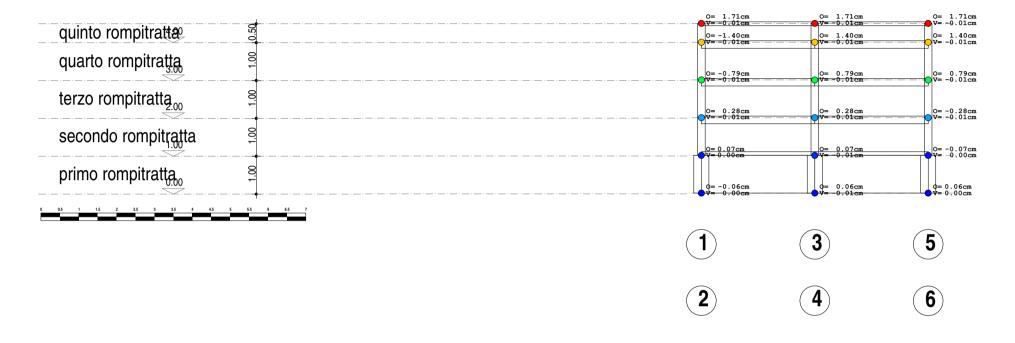
La scala cromatica riporta il range di valori da minimo 0.06 cm (COLORE BLU) a massimo 1.71 cm (COLORE ROSSO).

O = Spostamenti nodali orizzontali nel piano del telaio (positivi verso destra)


V = Spostamenti nodali verticali nel piano del telaio (positivi verso l'alto)




# Telaio 3-4




### Telaio 5-6



# Telaio 1-2

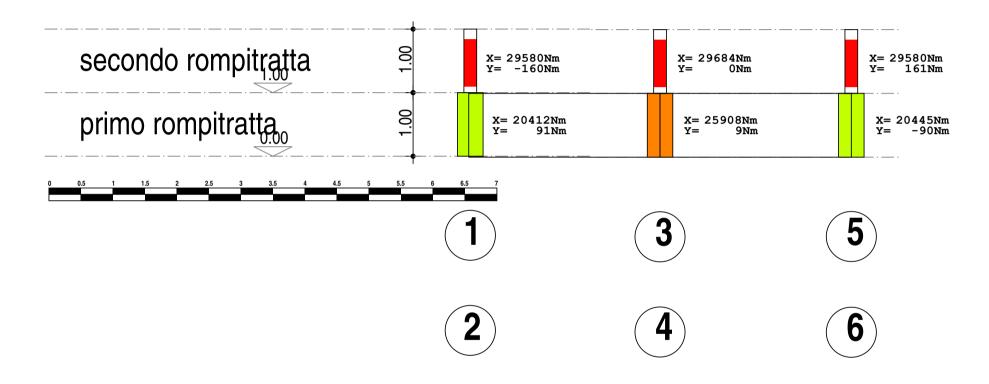




29684 Nm

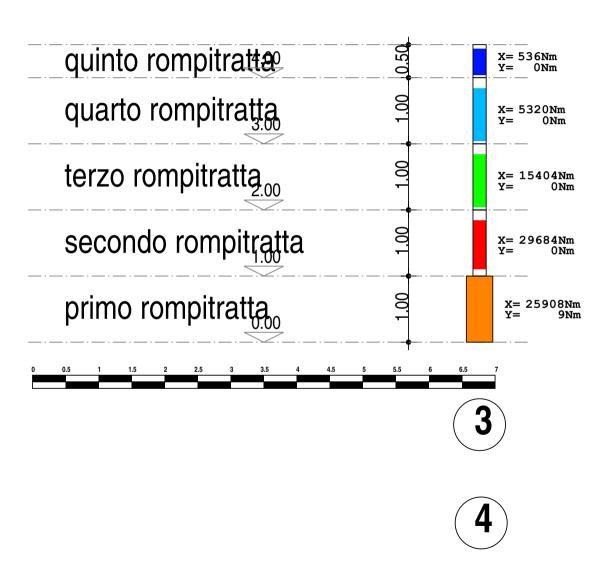
#### **SOLLECITAZIONI FLESSIONALI**

Rappresentazione cromatica delle massime sollecitazioni flessionali di verifica allo SLU.


- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: per le diverse sezioni di verifica vengono riportate le due componenti nel piano del telaio della massima sollecitazione.
   La scala cromatica riporta il range di valori da minimo 0 Nm (COLORE BLU) a massimo 29684 Nm (COLORE ROSSO).

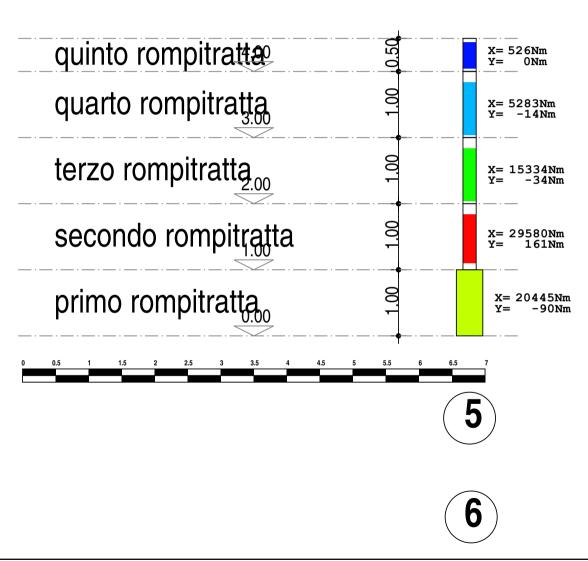
X = Sollecitazione flessionale intorno all'asse x della sezione del pilastro

Y = Sollecitazione flessionale intorno all'asse y della sezione del pilastro


0 Nm SCALA CROMATICA

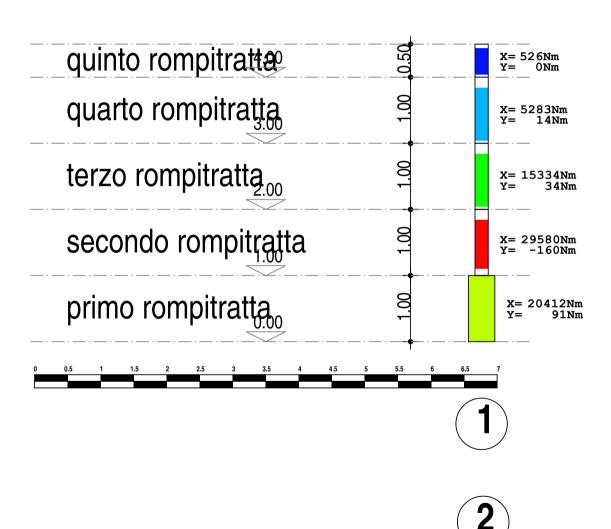
#### **SOLLECITAZIONI FLESSIONALI**




# Telaio 3-4

#### **SOLLECITAZIONI FLESSIONALI**




# Telaio 5-6

#### **SOLLECITAZIONI FLESSIONALI**



# Telaio 1-2

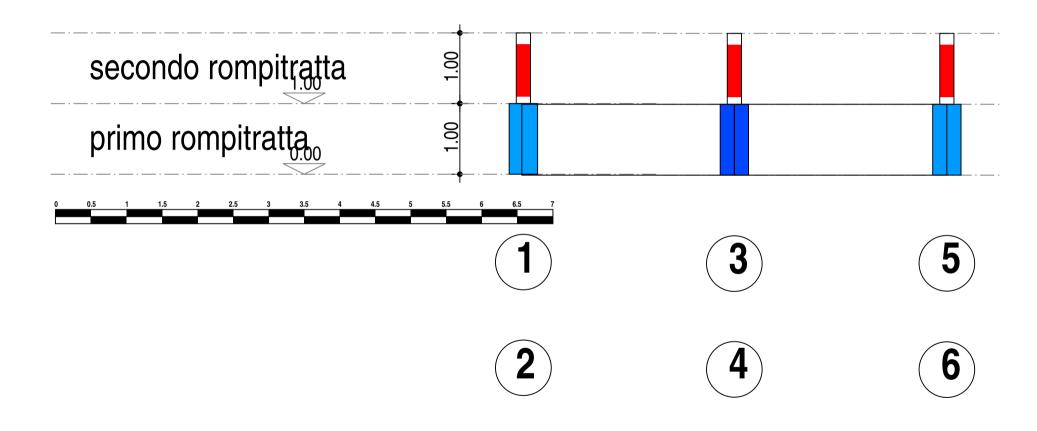
#### **SOLLECITAZIONI FLESSIONALI**



#### SOLLECITAZIONI FLESSIONALI



# 18152 N


#### **SOLLECITAZIONI DI TAGLIO**

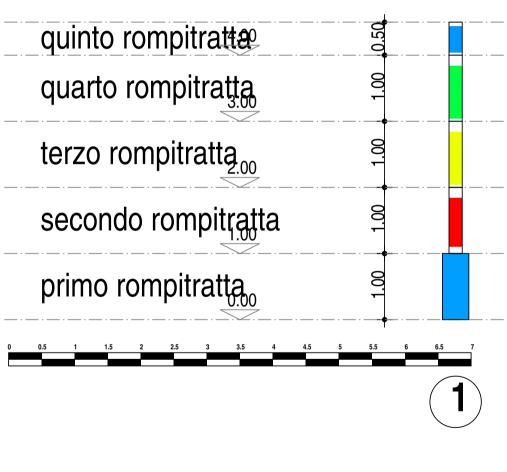
Rappresentazione cromatica delle massime sollecitazioni di taglio di verifica allo SLU.

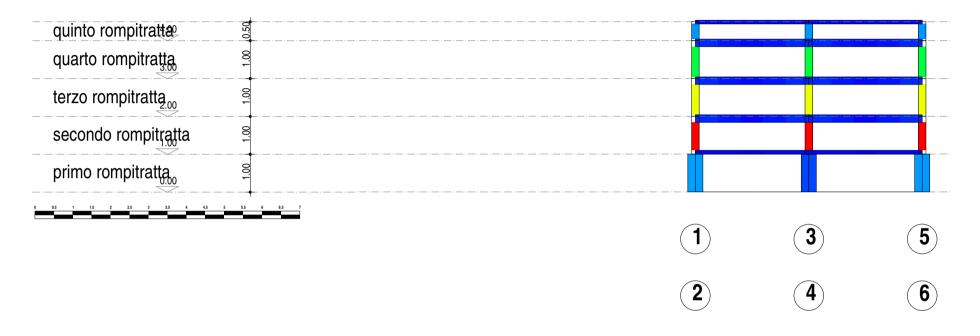
- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: viene riportato il taglio di verifica nella direzione con coefficiente di sicurezza minore.

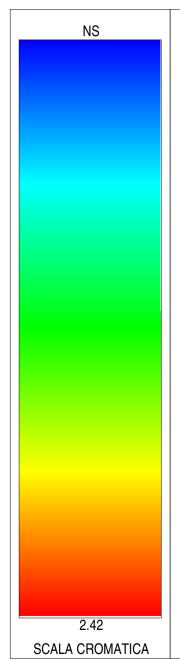
La scala cromatica riporta il range di valori da minimo 5 N (COLORE BLU) a massimo 18152 N (COLORE ROSSO).

5 N SCALA CROMATICA




Telaio 3-4





# Telaio 5-6

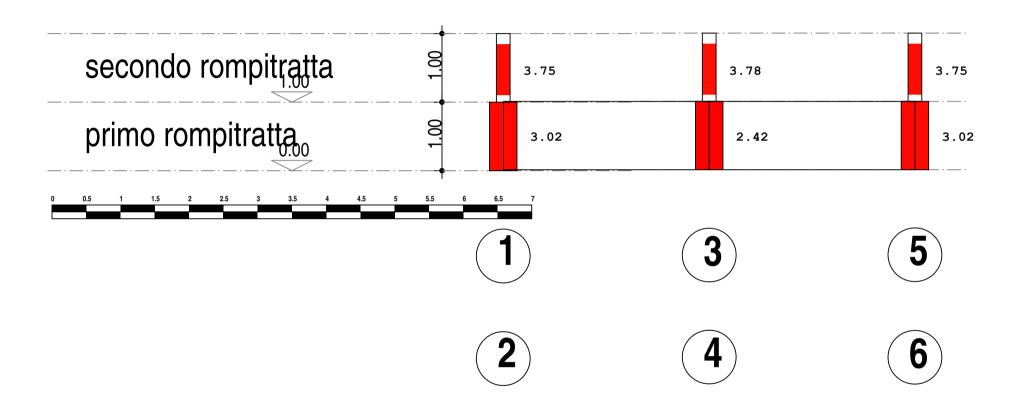


Telaio 1-2

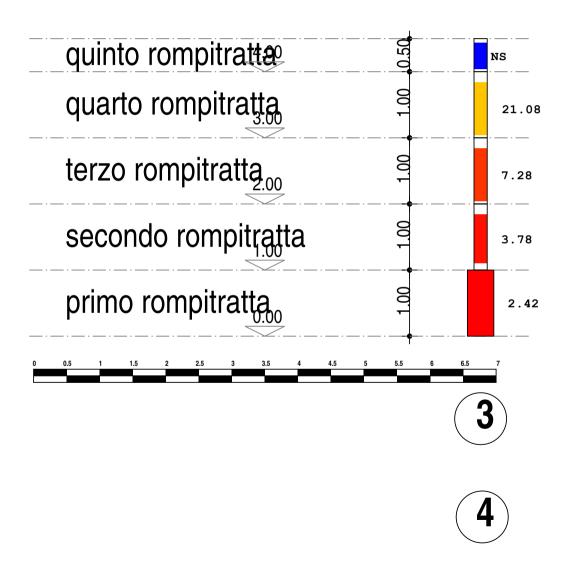




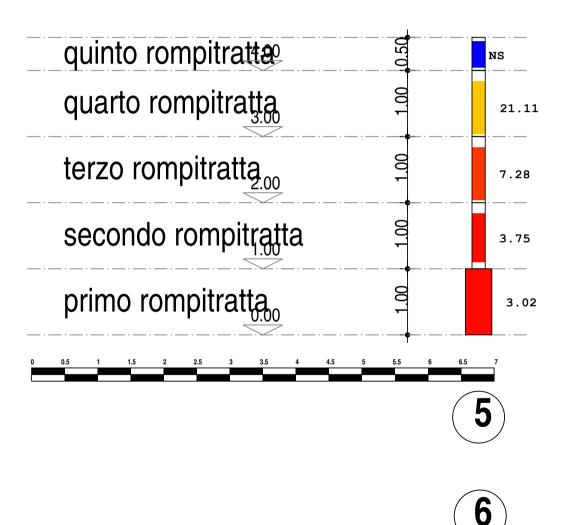



#### **COEFFICIENTE DI SICUREZZA A FLESSIONE**

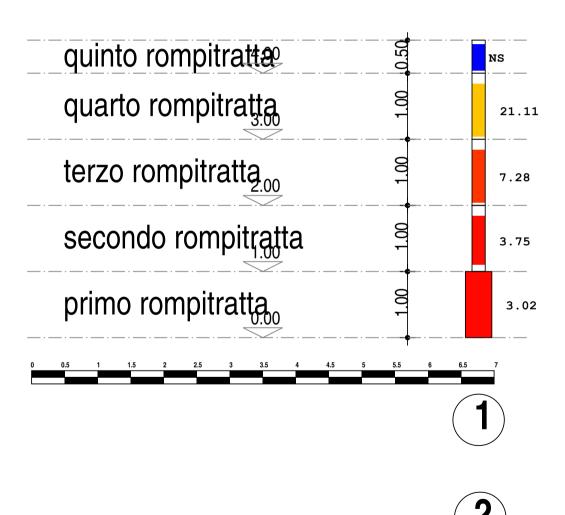
Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a flessione allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.


La scala cromatica riporta il range di valori

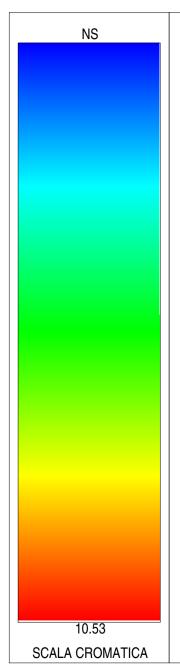
da minimo 2.42 (COLORE ROSSO) a massimo NS (COLORE BLU).


NS = Non significativo.




Telaio 3-4




Telaio 5-6
COEFFICIENTE DI SICUREZZA A FLESSIONE



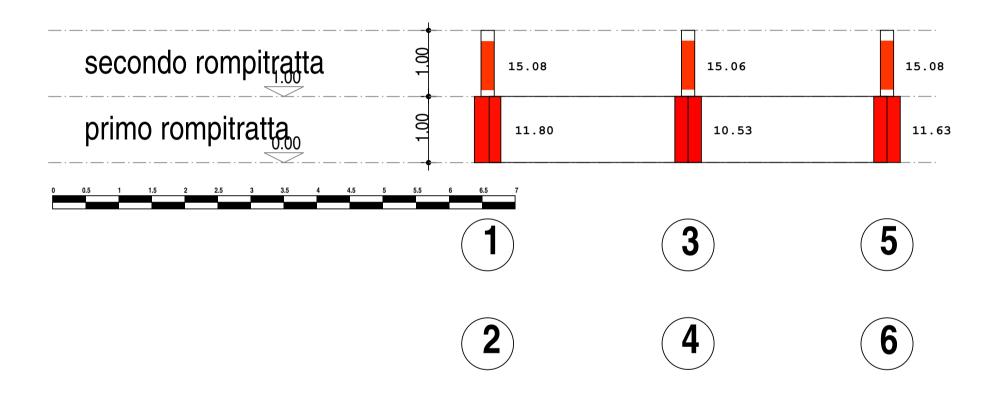
Telaio 1-2



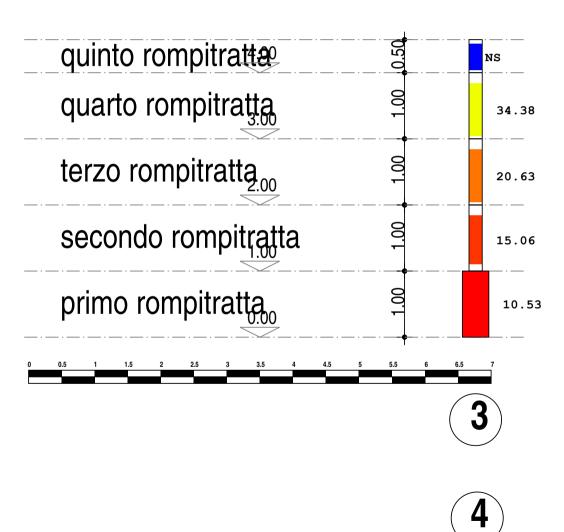




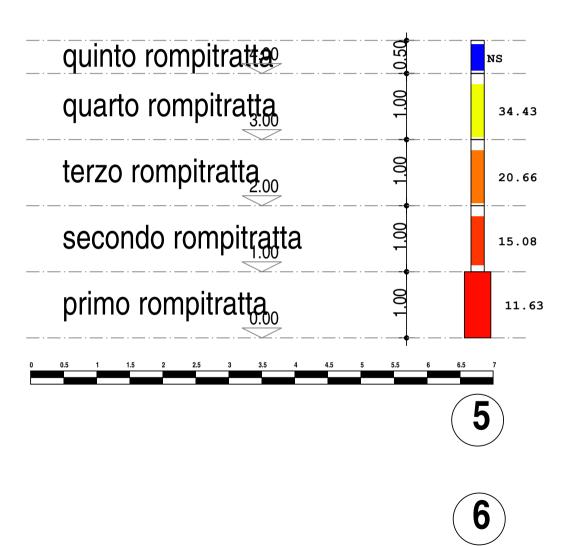
#### **COEFFICIENTE DI SICUREZZA A TAGLIO**


Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a taglio

allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

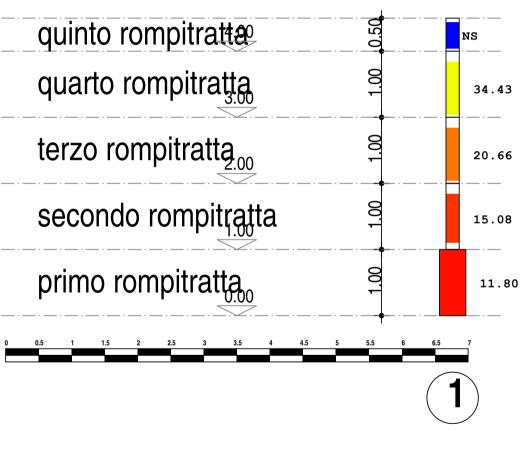

La scala cromatica riporta il range di valori

da minimo 10.53 (COLORE ROSSO) a massimo NS (COLORE BLU).


#### **COEFFICIENTE DI SICUREZZA A TAGLIO**



Telaio 3-4
COEFFICIENTE DI SICUREZZA A TAGLIO




Telaio 5-6
COEFFICIENTE DI SICUREZZA A TAGLIO



Telaio 1-2

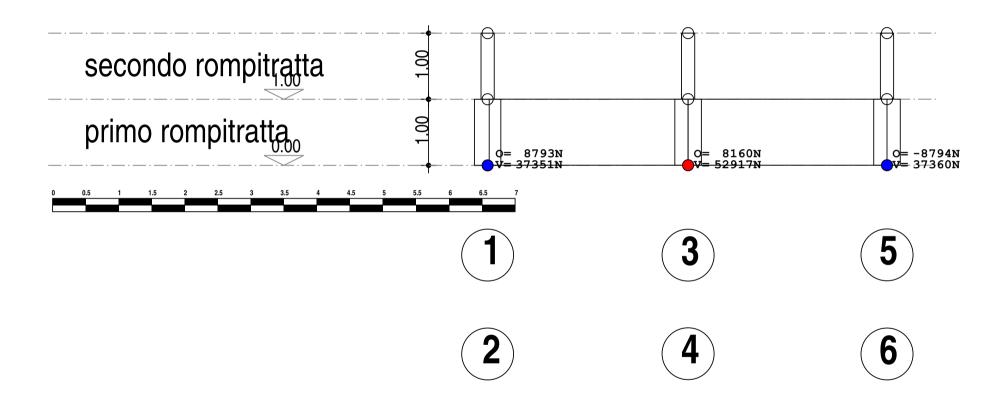
#### **COEFFICIENTE DI SICUREZZA A TAGLIO**



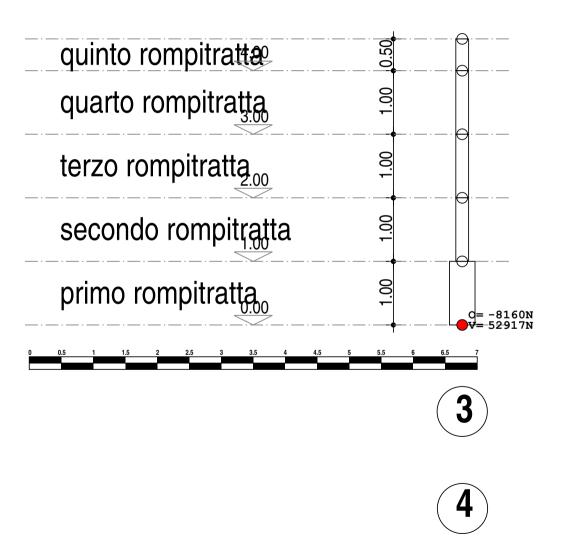
#### **COEFFICIENTE DI SICUREZZA A TAGLIO**



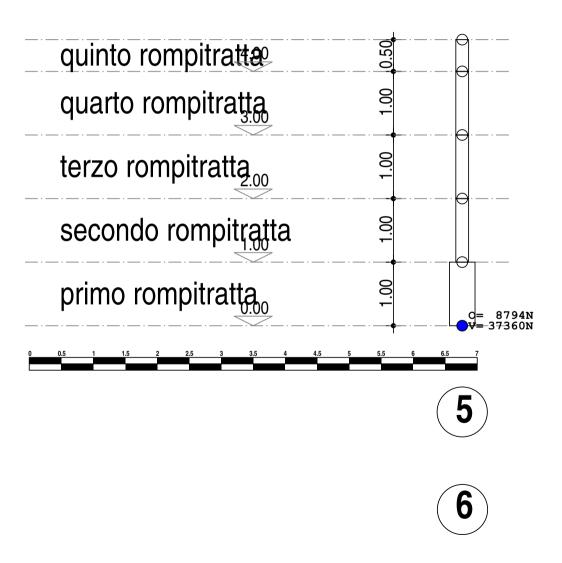
# 57686 N 41940 N SCALA CROMATICA


#### **REAZIONI VINCOLARI**

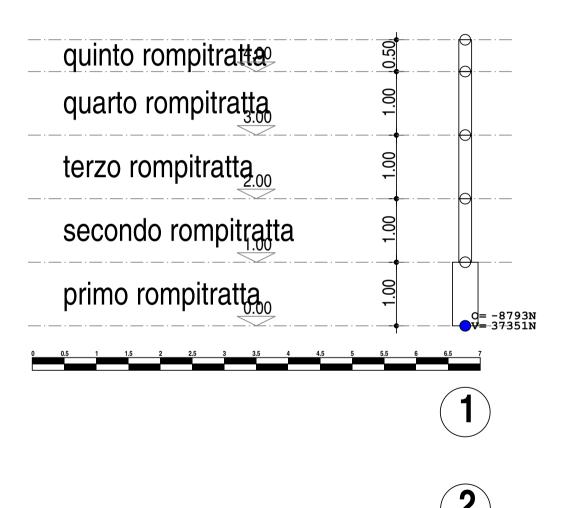
Rappresentazione cromatica delle componenti, nel piano del telaio, delle reazioni vincolari massime allo SLU.


La scala cromatica riporta il range di valori da minimo 41940 N (COLORE BLU) a massimo 57686 N (COLORE ROSSO).

O = Reazioni vincolari orizzontali nel piano del telaio (positive verso destra)


V = Reazioni vincolari verticali nel piano del telaio (positive verso l'alto)




## Telaio 3-4



## Telaio 5-6



# Telaio 1-2

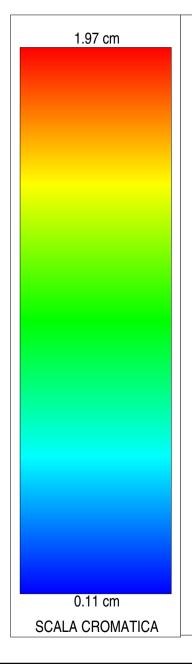




# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

Barriera Antirumore h=mt. 3 MIT 24 trasparente

#### **PREMESSA**


Il presente documento riporta gli **elaborati grafici sintetici** in conformità a □ anto previsto nel par. 10.2 del D.M. 14 gennaio 200 □ Tali elaborati hanno lo scopo di riassumere il comportamento della struttura relativamente al tipo di analisi svolta e possono riportare informazioni sintetiche e schemi relativi a carichi □ sollecitazioni e sforzi □ spostamenti □ tensioni sul terreno □ tensioni sul ten

Al fine delle verifiche della misura della sicurezza si riportano delle rappresentazioni che ne sintetizzano i valori numerici dei coefficienti di sicurezza nelle sezioni significative della struttura stessa.

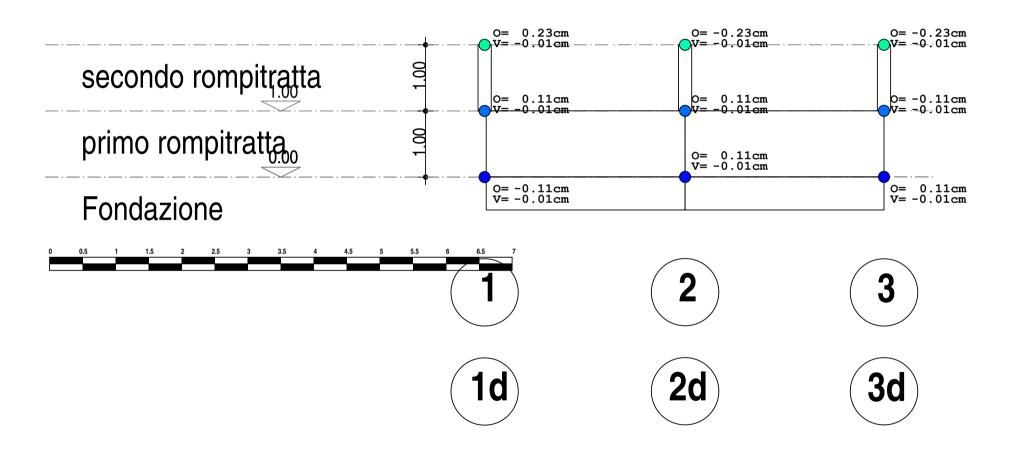
Per ogni singolo elaborato grafico contenente un telaio una parte della struttura o la struttura nel suo insieme i riportano indicazioni sulle convenzioni adottate e sulle unità di misura nonch disegni schemi grafici e mappature cromatiche che schematizzano il comportamento complessivo della struttura.

Grazie alle mappature a colori per ciascun tipo di risultato i fornisce un □ adro chiaro e sintetico: □ possibile rilevare agevolmente il valore delle diverse grandezze in base al colore assunto dagli elementi della struttura. Ogni colore rappresenta un determinato valore dal blu (corrispondente generalmente al valore minimo) al rosso (generalmente valore massimo) □ passando attraverso le varie sfumature di colore corrispondenti ai valori intermedi.

Prima di ogni tipologia di risultato □riportata la scala cromatica con l\( \overline{\text{Im}}\) dicazione numerica del valore minimo e massimo.



#### **SPOSTAMENTI NODALI**


Rappresentazione cromatica nei nodi della componente orizzontale e verticale, nel piano del telaio, del vettore di spostamento massimo (in cm).

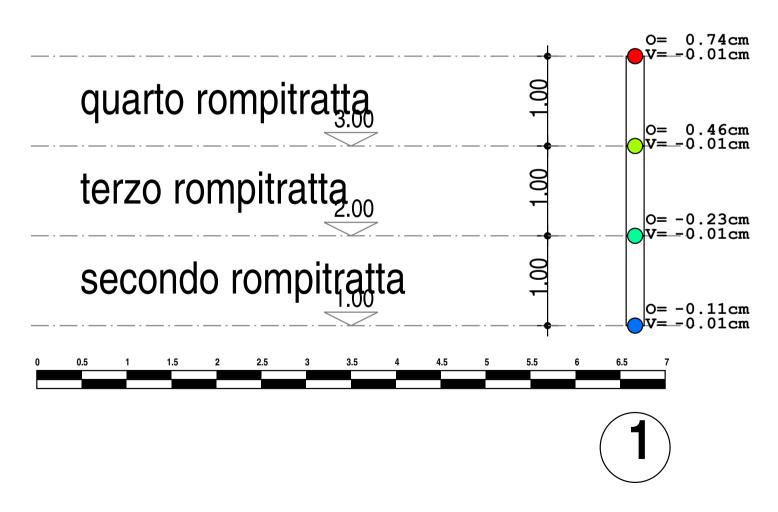
La scala cromatica riporta il range di valori da minimo 0.11 cm (COLORE BLU) a massimo 1.97 cm (COLORE ROSSO).

O = Spostamenti nodali orizzontali nel piano del telaio (positivi verso destra)

V = Spostamenti nodali verticali nel piano del telaio (positivi verso l'alto)

# Telaio 1-1d-2-2d-3-3d




# Telaio 2



# Telaio 3



# Telaio 1



#### Telaio 1-1d-2-2d-3-3d



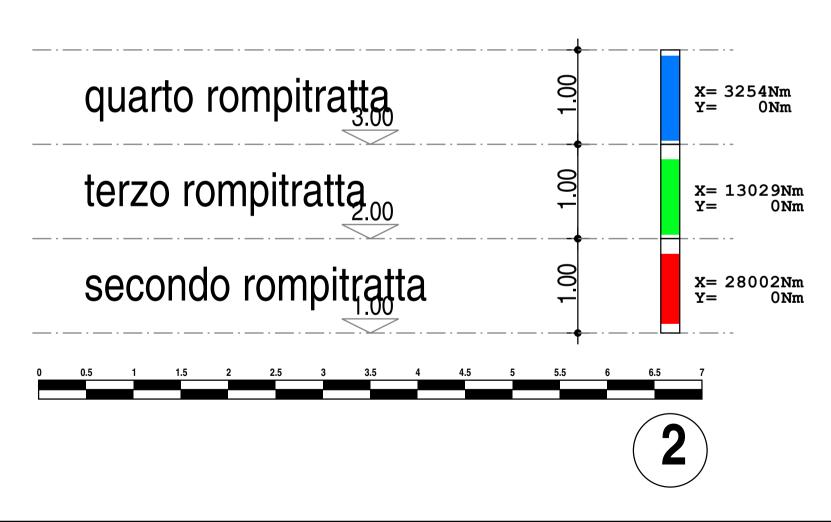
28002 Nm

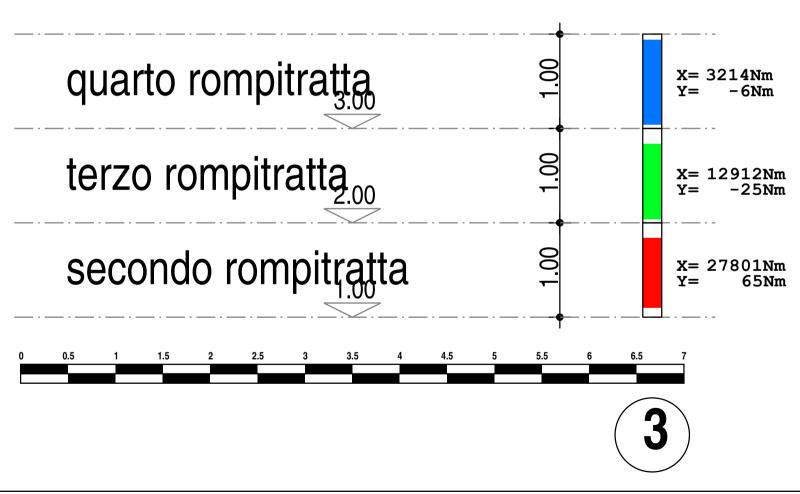
#### **SOLLECITAZIONI FLESSIONALI**

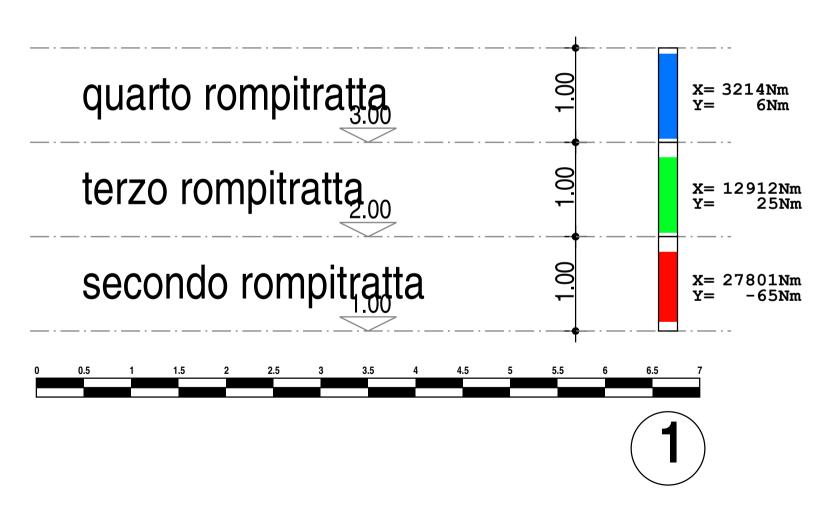
Rappresentazione cromatica delle massime sollecitazioni flessionali di verifica allo SLU.

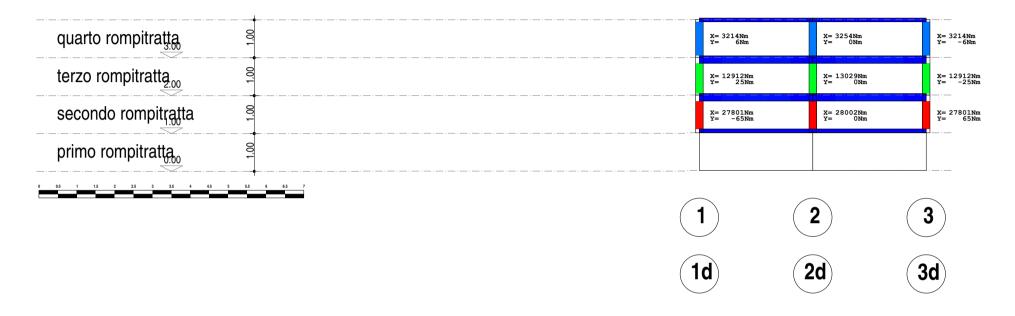
- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: per le diverse sezioni di verifica vengono riportate le due componenti nel piano del telaio della massima sollecitazione.
   La scala cromatica riporta il range di valori da minimo 0 Nm (COLORE BLU) a massimo 28002 Nm (COLORE ROSSO).

X = Sollecitazione flessionale intorno all'asse x della sezione del pilastro


Y = Sollecitazione flessionale intorno all'asse y della sezione del pilastro


0 Nm SCALA CROMATICA


# Telaio 1-1d-2-2d-3-3d


#### **SOLLECITAZIONI FLESSIONALI**



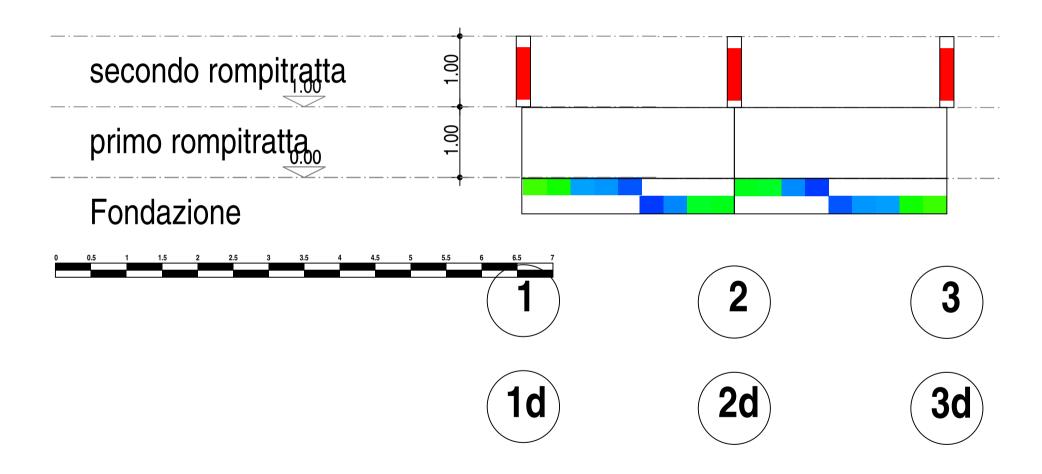








# 19474 N

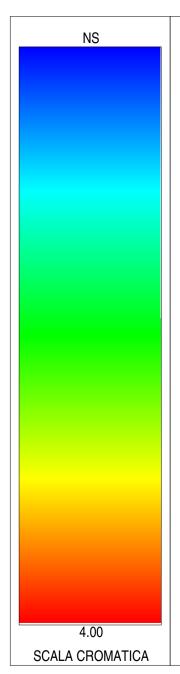

## **SOLLECITAZIONI DI TAGLIO**

Rappresentazione cromatica delle massime sollecitazioni di taglio di verifica allo SLU.

- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: viene riportato il taglio di verifica nella direzione con coefficiente di sicurezza minore.

La scala cromatica riporta il range di valori da minimo 2 N (COLORE BLU) a massimo 19474 N (COLORE ROSSO).

2 N SCALA CROMATICA



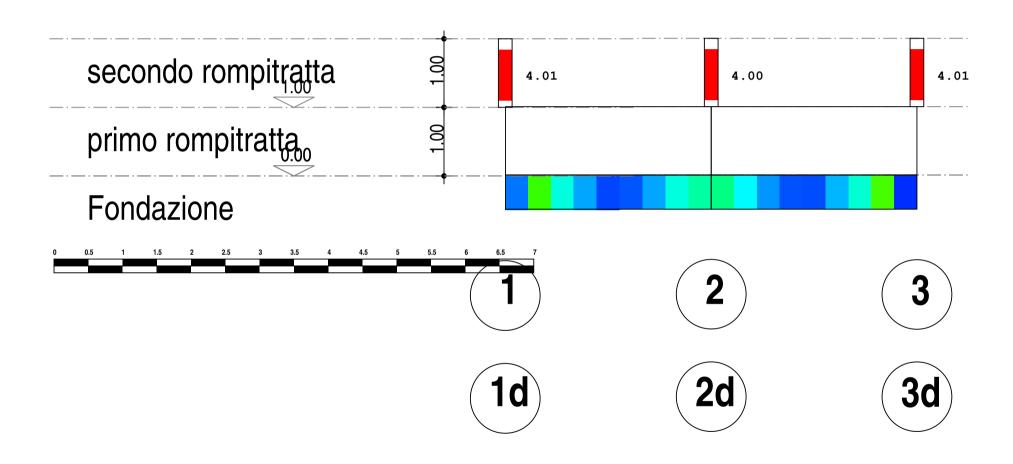








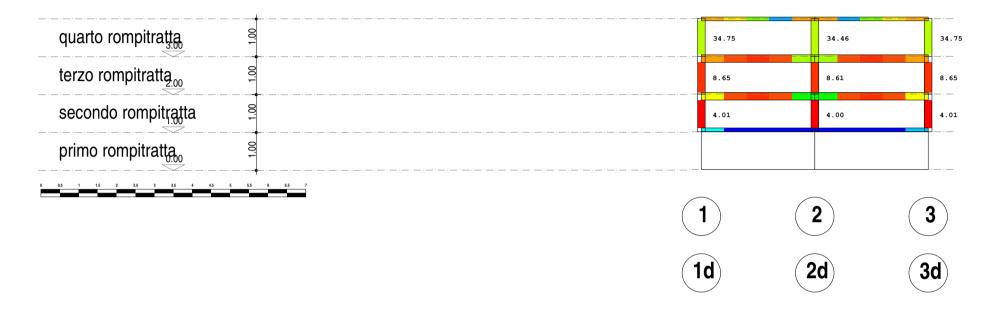


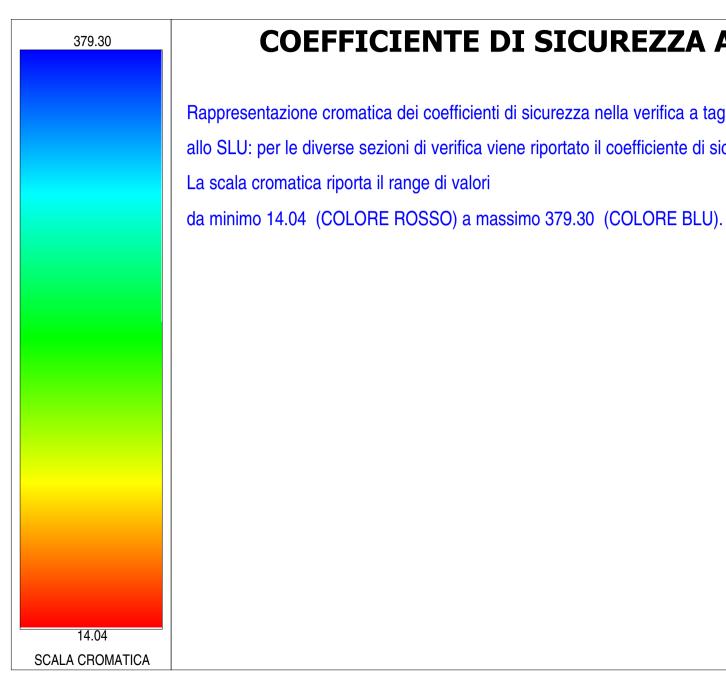


## **COEFFICIENTE DI SICUREZZA A FLESSIONE**

Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a flessione allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

La scala cromatica riporta il range di valori

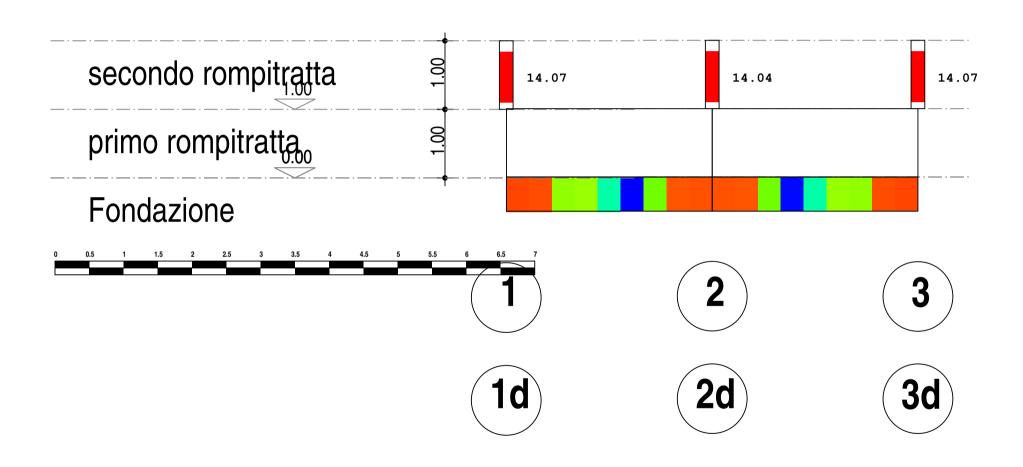
da minimo 4.00 (COLORE ROSSO) a massimo NS (COLORE BLU).


NS = Non significativo.





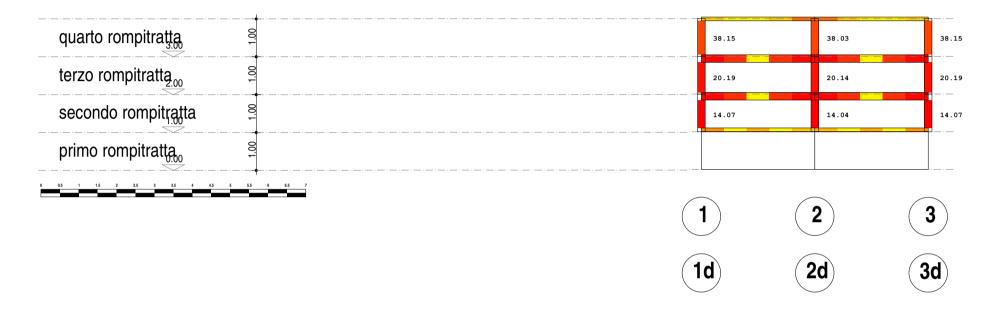


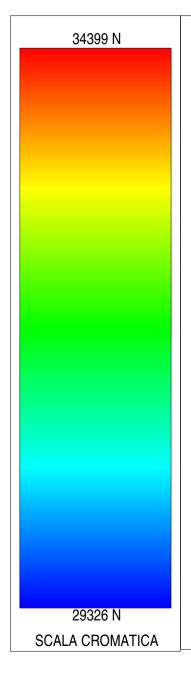








## **COEFFICIENTE DI SICUREZZA A TAGLIO**


Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a taglio allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo. La scala cromatica riporta il range di valori



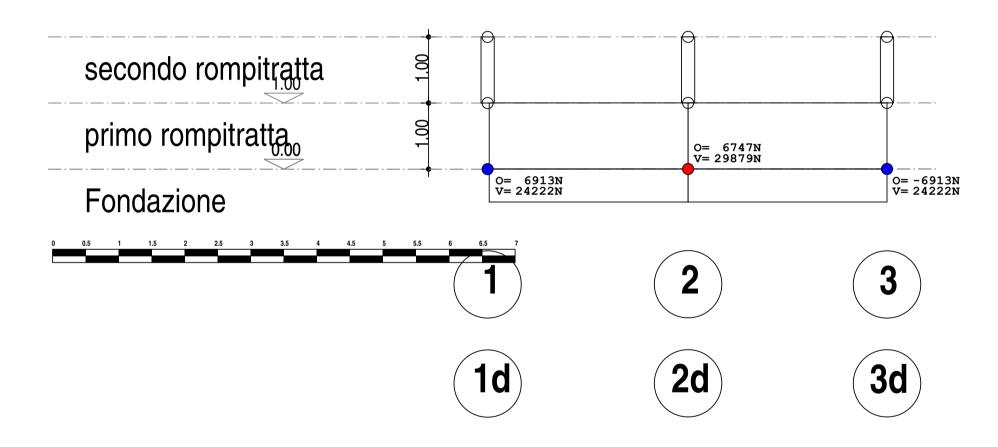








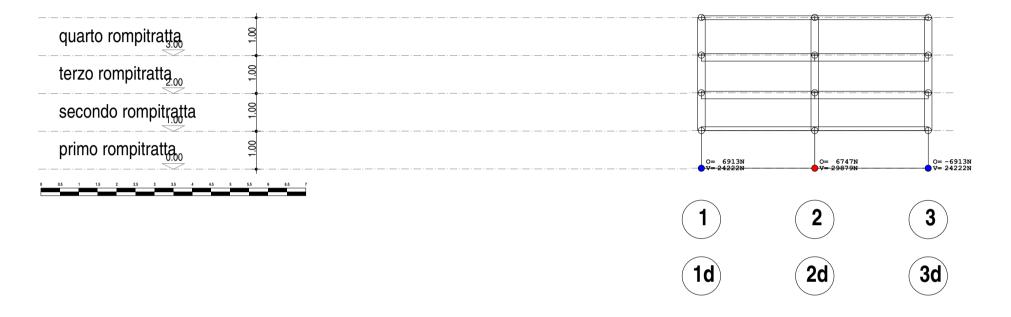




## **REAZIONI VINCOLARI**

Rappresentazione cromatica delle componenti, nel piano del telaio, delle reazioni vincolari massime allo SLU.

La scala cromatica riporta il range di valori da minimo 29326 N (COLORE BLU) a massimo 34399 N (COLORE ROSSO).

O = Reazioni vincolari orizzontali nel piano del telaio (positive verso destra)


V = Reazioni vincolari verticali nel piano del telaio (positive verso l'alto)







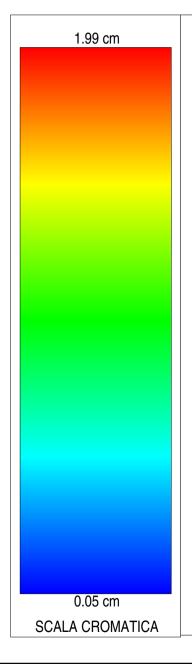




# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

Barriera Antirumore h=mt. 4 MIT 32 legno

#### **PREMESSA**


Il presente documento riporta gli **elaborati grafici sintetici** in conformità a lanto previsto nel par. 10.2 del D.M. 14 gennaio 200 la Tali elaborati hanno lo scopo di riassumere il comportamento della struttura relativamente al tipo di analisi svolta e possono riportare informazioni sintetiche e schemi relativi a carichi sollecitazioni e sforzi spostamenti tensioni sul terreno etc.

Al fine delle verifiche della misura della sicurezza si riportano delle rappresentazioni che ne sintetizzano i valori numerici dei coefficienti di sicurezza nelle sezioni significative della struttura stessa.

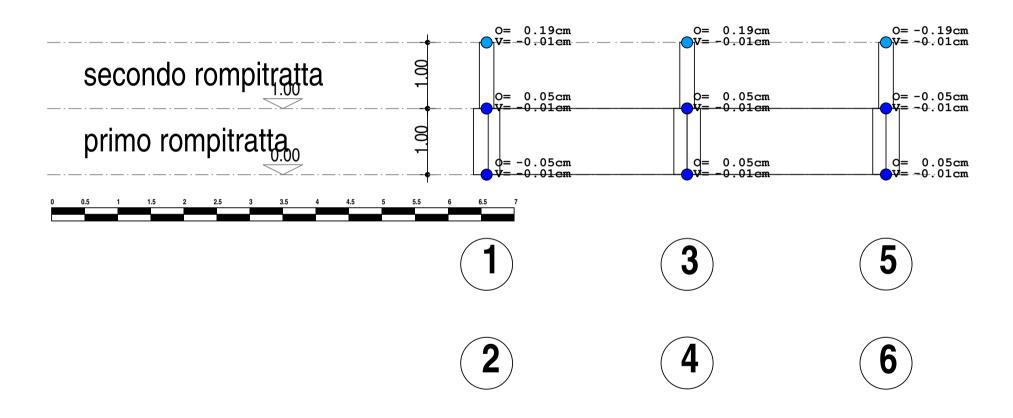
Per ogni singolo elaborato grafico contenente un telaio una parte della struttura o la struttura nel suo insieme i riportano indicazioni sulle convenzioni adottate e sulle unità di misura nonch disegni schemi grafici e mappature cromatiche che schematizzano il comportamento complessivo della struttura.

Grazie alle mappature a colori per ciascun tipo di risultato i fornisce un □ladro chiaro e sintetico: □possibile rilevare agevolmente il valore delle diverse grandezze in base al colore assunto dagli elementi della struttura. Ogni colore rappresenta un determinato valore dal blu (corrispondente generalmente al valore minimo) al rosso (generalmente valore massimo) □passando attraverso le varie sfumature di colore corrispondenti ai valori intermedi.

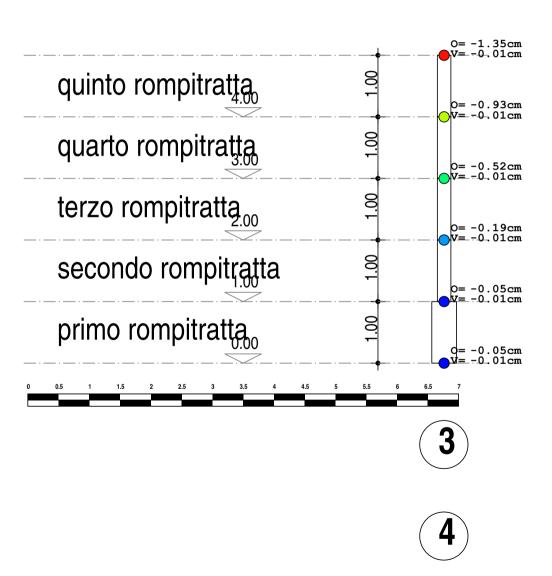
Prima di ogni tipologia di risultato □riportata la scala cromatica con l\( \overline{\text{Im}}\) dicazione numerica del valore minimo e massimo.



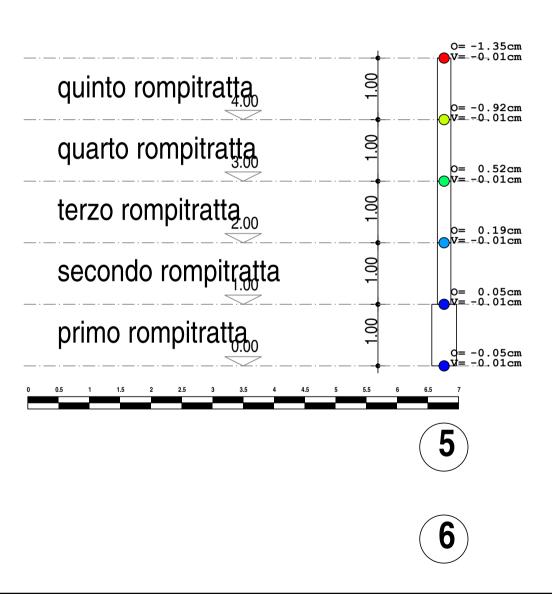
## **SPOSTAMENTI NODALI**


Rappresentazione cromatica nei nodi della componente orizzontale e verticale, nel piano del telaio, del vettore di spostamento massimo (in cm).

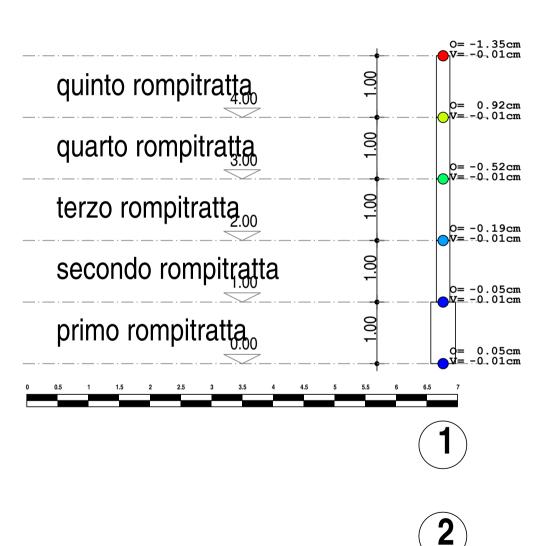
La scala cromatica riporta il range di valori da minimo 0.05 cm (COLORE BLU) a massimo 1.99 cm (COLORE ROSSO).


O = Spostamenti nodali orizzontali nel piano del telaio (positivi verso destra)

V = Spostamenti nodali verticali nel piano del telaio (positivi verso l'alto)


## Telaio 1-2-3-4-5-6




## Telaio 3-4



## Telaio 5-6



## Telaio 1-2

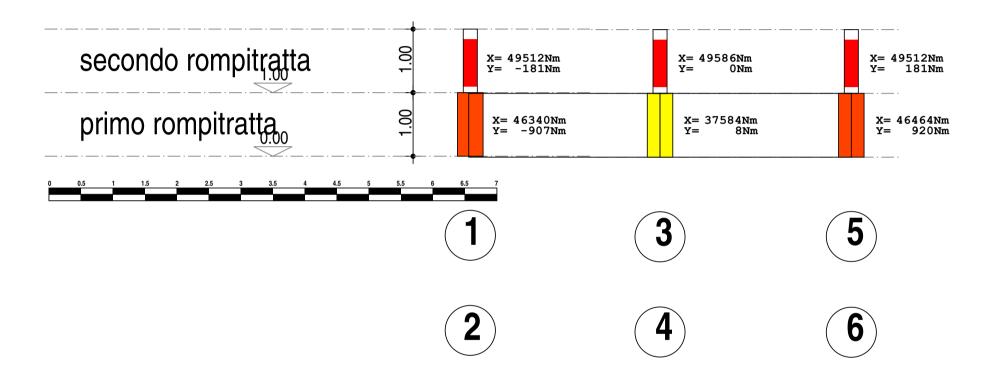


#### Telaio 1-2-3-4-5-6

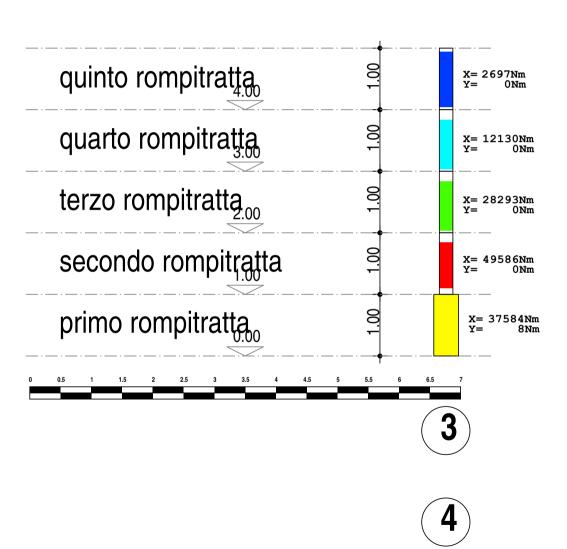


49586 Nm

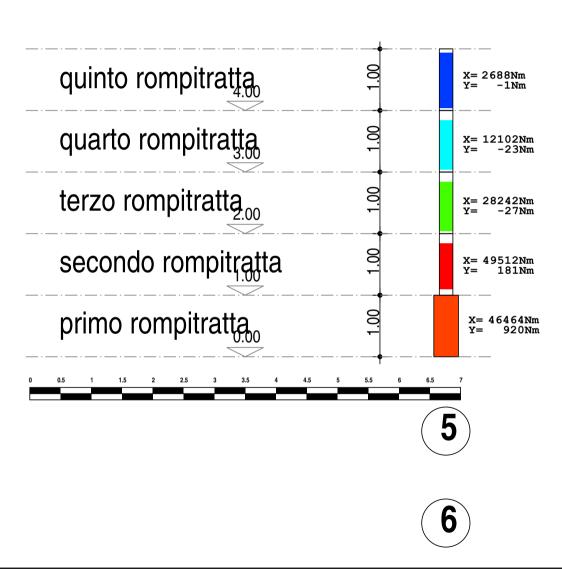
### **SOLLECITAZIONI FLESSIONALI**


Rappresentazione cromatica delle massime sollecitazioni flessionali di verifica allo SLU.

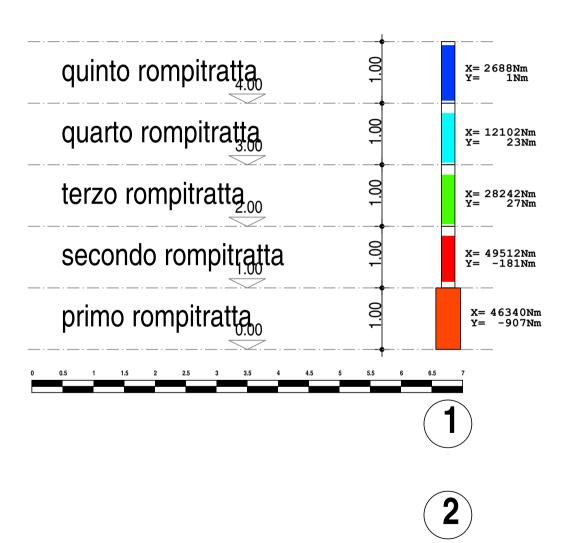
- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: per le diverse sezioni di verifica vengono riportate le due componenti nel piano del telaio della massima sollecitazione.
   La scala cromatica riporta il range di valori da minimo 0 Nm (COLORE BLU) a massimo 49586 Nm (COLORE ROSSO).

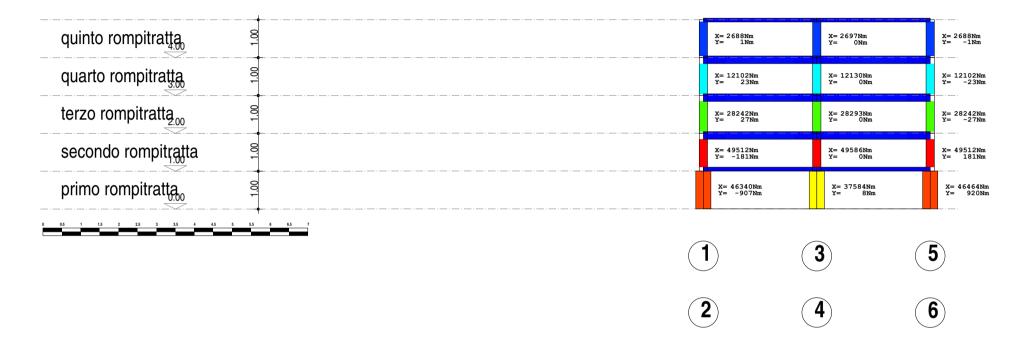

X = Sollecitazione flessionale intorno all'asse x della sezione del pilastro

Y = Sollecitazione flessionale intorno all'asse y della sezione del pilastro


0 Nm SCALA CROMATICA




Telaio 3-4




Telaio 5-6

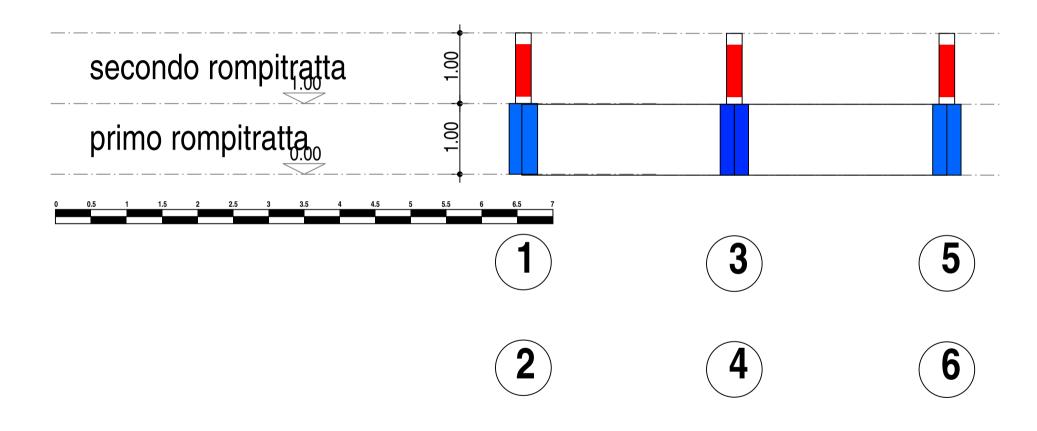


# Telaio 1-2





# 26418 N 4 N


SCALA CROMATICA

### **SOLLECITAZIONI DI TAGLIO**

Rappresentazione cromatica delle massime sollecitazioni di taglio di verifica allo SLU.

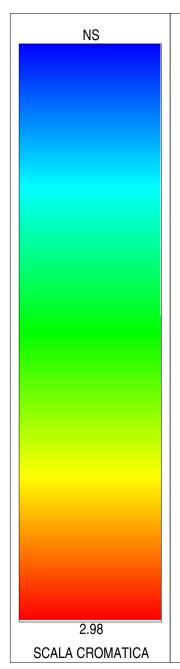
- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: viene riportato il taglio di verifica nella direzione con coefficiente di sicurezza minore.

La scala cromatica riporta il range di valori da minimo 4 N (COLORE BLU) a massimo 26418 N (COLORE ROSSO).



Telaio 3-4





Telaio 5-6

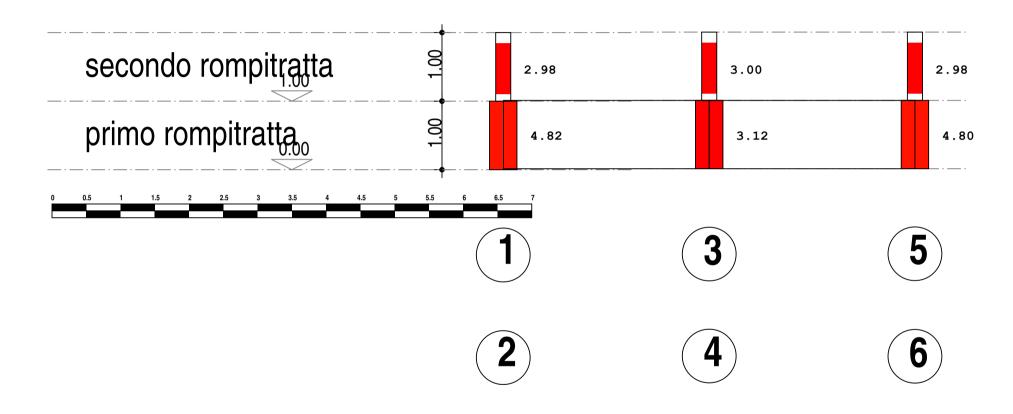


Telaio 1-2








### **COEFFICIENTE DI SICUREZZA A FLESSIONE**

Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a flessione allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

La scala cromatica riporta il range di valori da minimo 2.98 (COLORE ROSSO) a massimo NS (COLORE BLU).

NS = Non significativo.

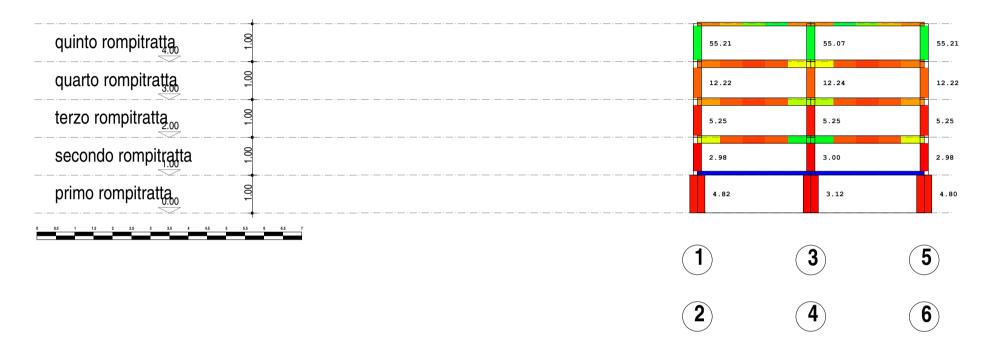
### **COEFFICIENTE DI SICUREZZA A FLESSIONE**

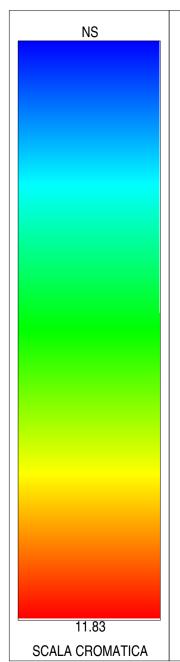


Telaio 3-4
COEFFICIENTE DI SICUREZZA A FLESSIONE



Telaio 5-6
COEFFICIENTE DI SICUREZZA A FLESSIONE





Telaio 1-2

### **COEFFICIENTE DI SICUREZZA A FLESSIONE**

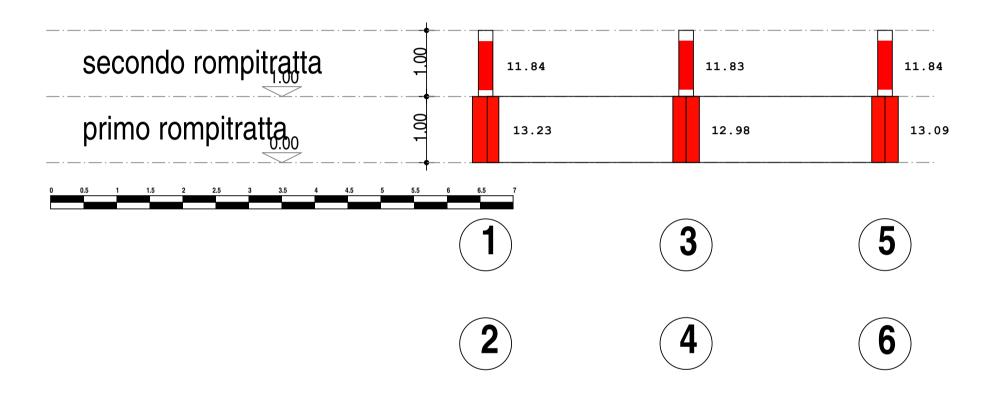


### **COEFFICIENTE DI SICUREZZA A FLESSIONE**





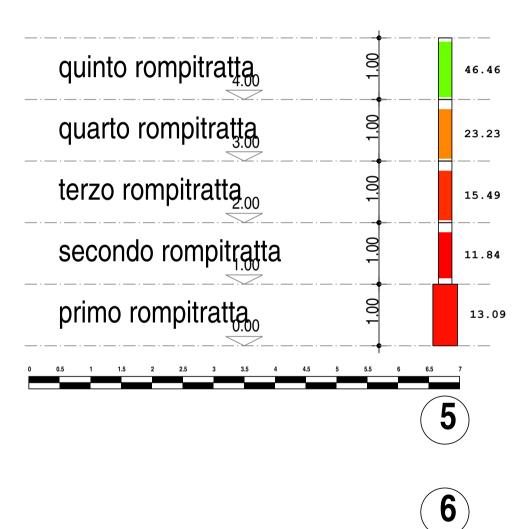
### **COEFFICIENTE DI SICUREZZA A TAGLIO**


Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a taglio

allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

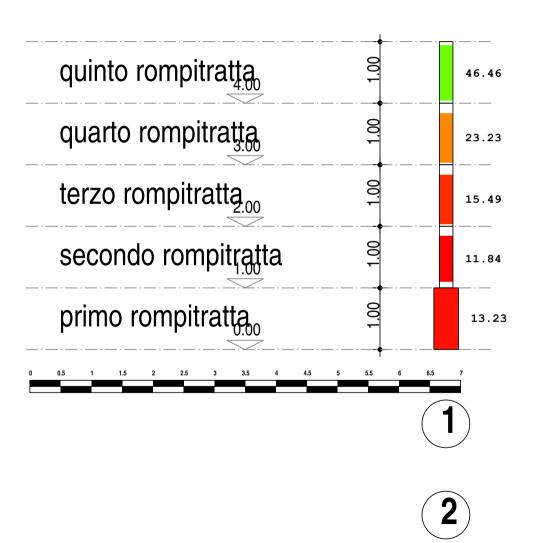
La scala cromatica riporta il range di valori

da minimo 11.83 (COLORE ROSSO) a massimo NS (COLORE BLU).


### **COEFFICIENTE DI SICUREZZA A TAGLIO**

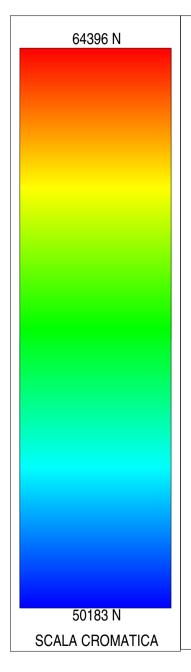


Telaio 3-4
COEFFICIENTE DI SICUREZZA A TAGLIO




**Telaio 5-6**COEFFICIENTE DI SICUREZZA A TAGLIO




Telaio 1-2

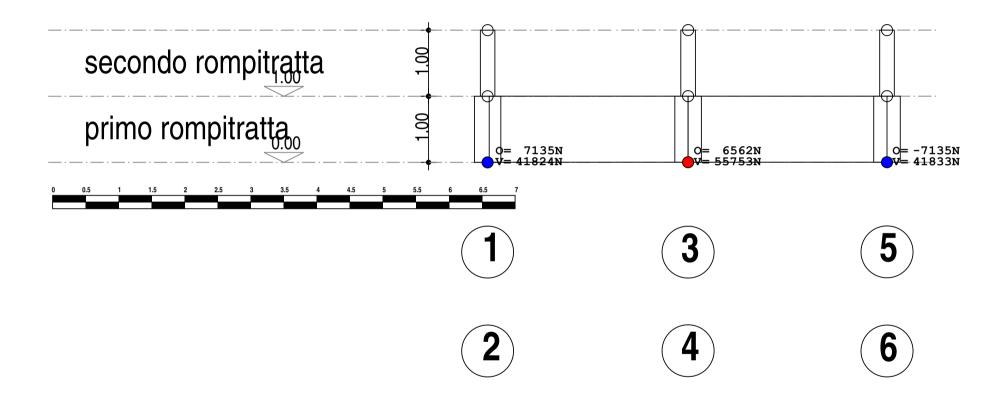
### **COEFFICIENTE DI SICUREZZA A TAGLIO**



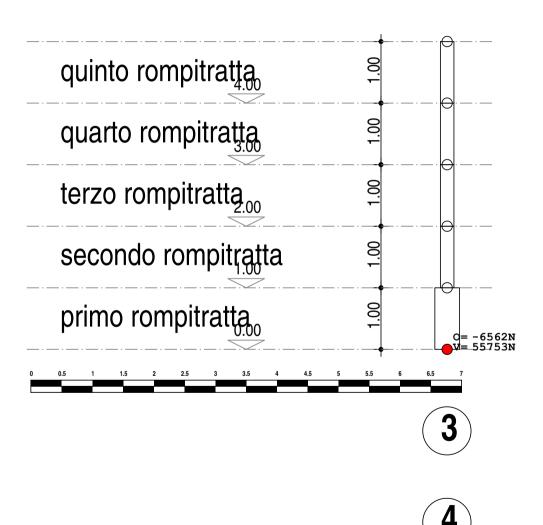
### **COEFFICIENTE DI SICUREZZA A TAGLIO**



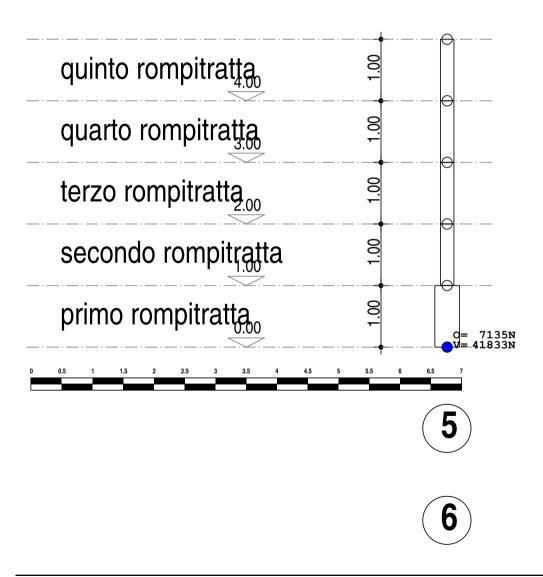



## **REAZIONI VINCOLARI**

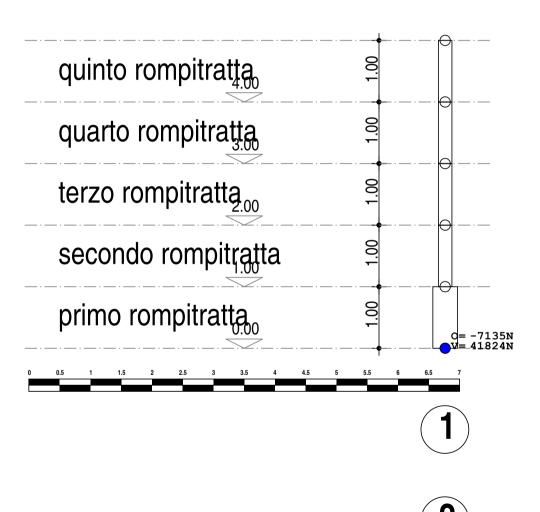
Rappresentazione cromatica delle componenti, nel piano del telaio, delle reazioni vincolari massime allo SLU.

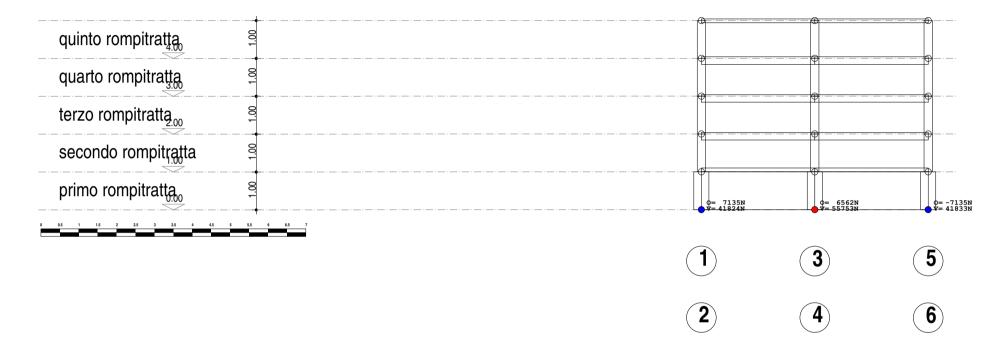

La scala cromatica riporta il range di valori da minimo 50183 N (COLORE BLU) a massimo 64396 N (COLORE ROSSO).

O = Reazioni vincolari orizzontali nel piano del telaio (positive verso destra)


V = Reazioni vincolari verticali nel piano del telaio (positive verso l'alto)




# Telaio 3-4




# Telaio 5-6



# Telaio 1-2

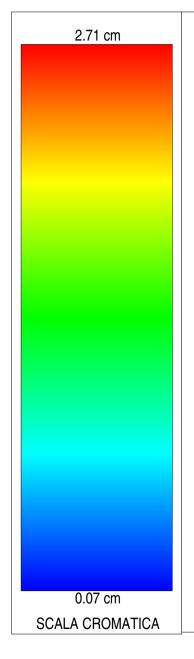




# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

Barriera Antirumore h=mt. 5 MIT 09 legno

### **PREMESSA**


Il presente documento riporta gli **elaborati grafici sintetici** in conformità a □ anto previsto nel par. 10.2 del D.M. 14 gennaio 200 □ Tali elaborati hanno lo scopo di riassumere il comportamento della struttura relativamente al tipo di analisi svolta e possono riportare informazioni sintetiche e schemi relativi a carichi □ sollecitazioni e sforzi □ spostamenti □ tensioni sul terreno □ tensioni sul ten

Al fine delle verifiche della misura della sicurezza si riportano delle rappresentazioni che ne sintetizzano i valori numerici dei coefficienti di sicurezza nelle sezioni significative della struttura stessa.

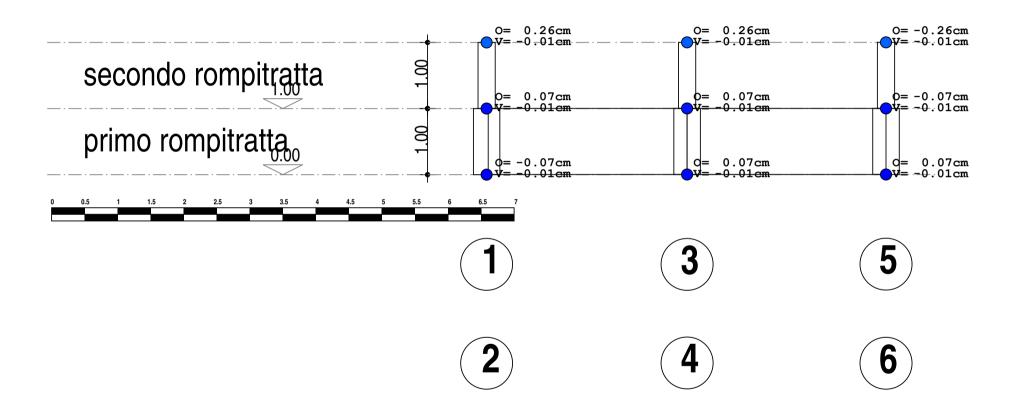
Per ogni singolo elaborato grafico contenente un telaio una parte della struttura o la struttura nel suo insieme i riportano indicazioni sulle convenzioni adottate e sulle unità di misura nonch disegni schemi grafici e mappature cromatiche che schematizzano il comportamento complessivo della struttura.

Grazie alle mappature a colori per ciascun tipo di risultato i fornisce un □ adro chiaro e sintetico: □ possibile rilevare agevolmente il valore delle diverse grandezze in base al colore assunto dagli elementi della struttura. Ogni colore rappresenta un determinato valore dal blu (corrispondente generalmente al valore minimo) al rosso (generalmente valore massimo) □ passando attraverso le varie sfumature di colore corrispondenti ai valori intermedi.

Prima di ogni tipologia di risultato □riportata la scala cromatica con l\( \overline{\text{Im}}\) dicazione numerica del valore minimo e massimo.

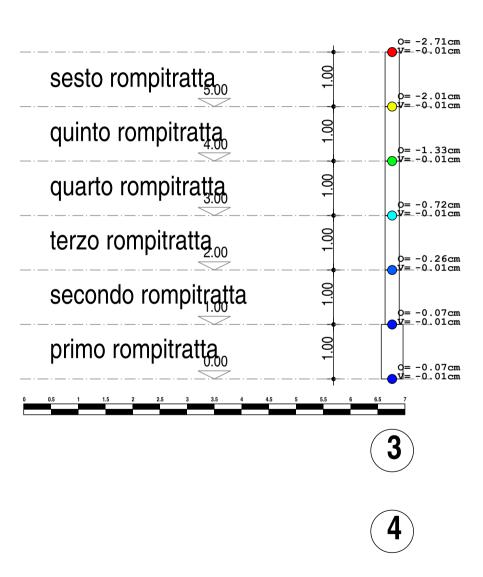


# **SPOSTAMENTI NODALI**


Rappresentazione cromatica nei nodi della componente orizzontale e verticale, nel piano del telaio, del vettore di spostamento massimo (in cm).

La scala cromatica riporta il range di valori da minimo 0.07 cm (COLORE BLU) a massimo 2.71 cm (COLORE ROSSO).

O = Spostamenti nodali orizzontali nel piano del telaio (positivi verso destra)


V = Spostamenti nodali verticali nel piano del telaio (positivi verso l'alto)

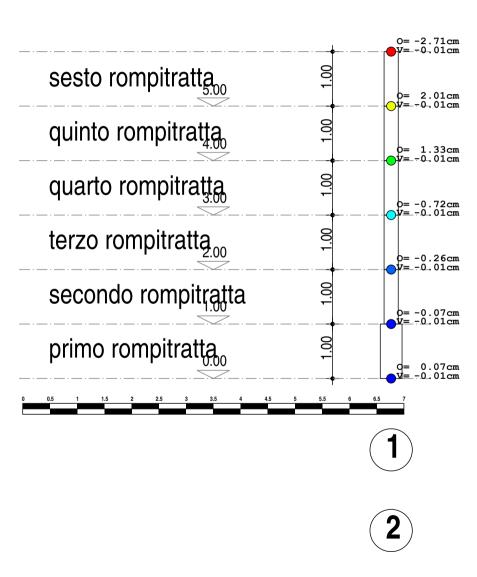
### **SPOSTAMENTI NODALI**



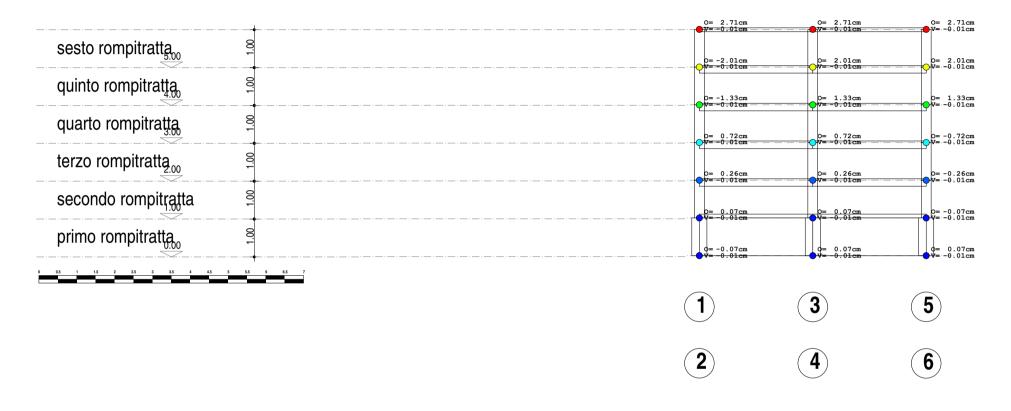
# Telaio 3-4

### **SPOSTAMENTI NODALI**




# Telaio 5-6

### **SPOSTAMENTI NODALI**




# Telaio 1-2

#### **SPOSTAMENTI NODALI**

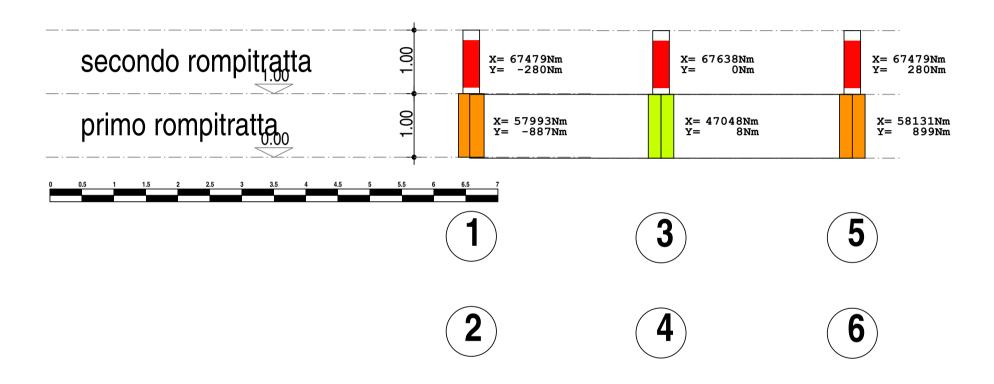


#### SPOSTAMENTI NODALI

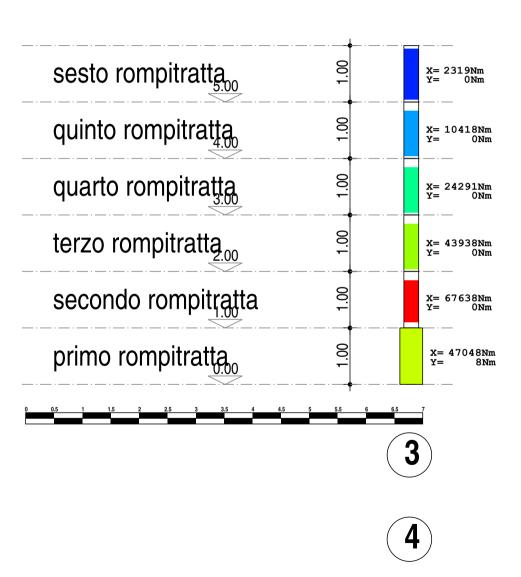


67638 Nm

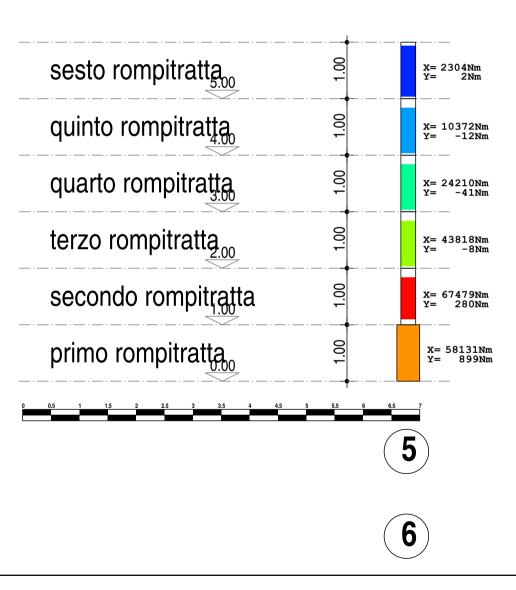
# **SOLLECITAZIONI FLESSIONALI**


Rappresentazione cromatica delle massime sollecitazioni flessionali di verifica allo SLU.

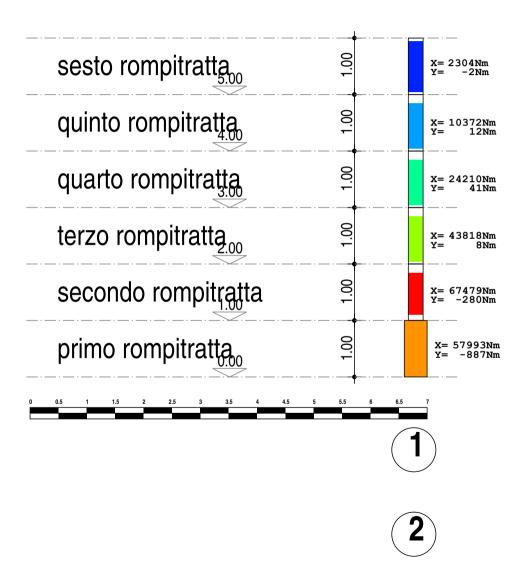
- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: per le diverse sezioni di verifica vengono riportate le due componenti nel piano del telaio della massima sollecitazione.
   La scala cromatica riporta il range di valori da minimo 0 Nm (COLORE BLU) a massimo 67638 Nm (COLORE ROSSO).

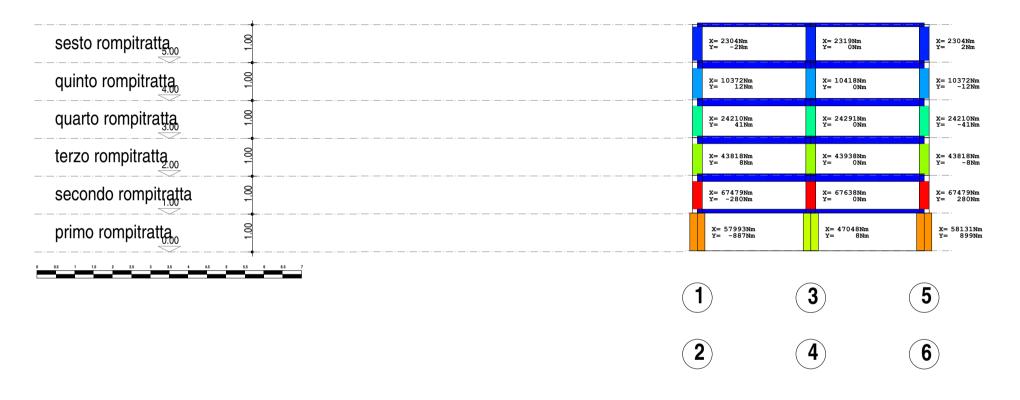

X = Sollecitazione flessionale intorno all'asse x della sezione del pilastro

Y = Sollecitazione flessionale intorno all'asse y della sezione del pilastro


0 Nm SCALA CROMATICA




Telaio 3-4




Telaio 5-6



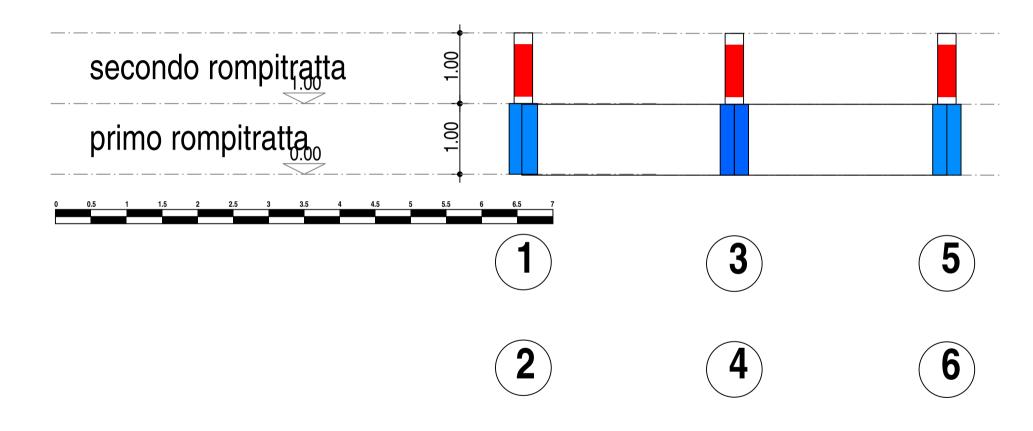
Telaio 1-2





# 28440 N 4 N

SCALA CROMATICA


# **SOLLECITAZIONI DI TAGLIO**

Rappresentazione cromatica delle massime sollecitazioni di taglio di verifica allo SLU.

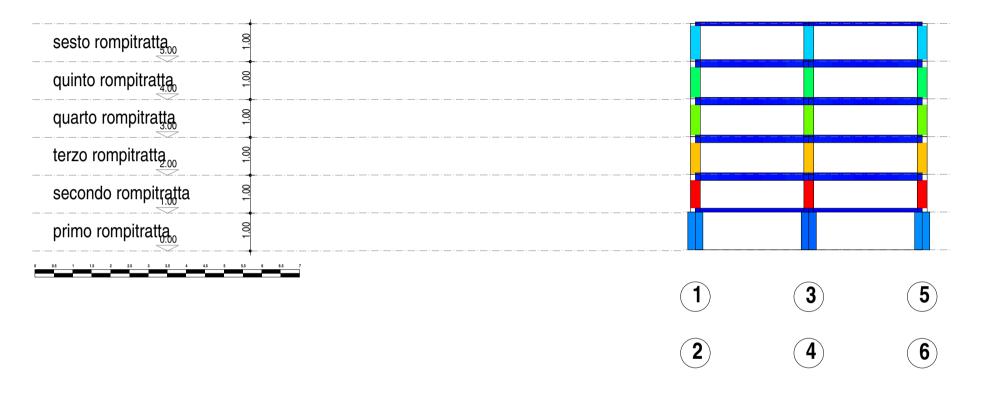
- TRAVI verificate a PFR: per le diverse sezioni di verifica viene riportata la massima sollecitazione in corrispondenza delle fibre superiori o inferiori.
- TRAVI verificate a PFD e PILASTRI: viene riportato il taglio di verifica nella direzione con coefficiente di sicurezza minore.

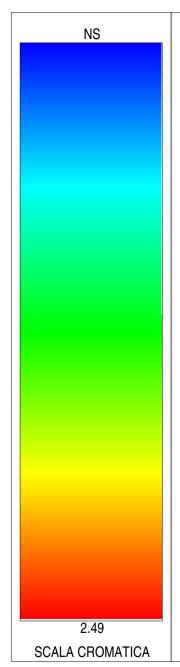
La scala cromatica riporta il range di valori da minimo 4 N (COLORE BLU) a massimo 28440 N (COLORE ROSSO).

barriera antirumore h= mt. 5 MT 09 legno



Telaio 3-4





Telaio 5-6



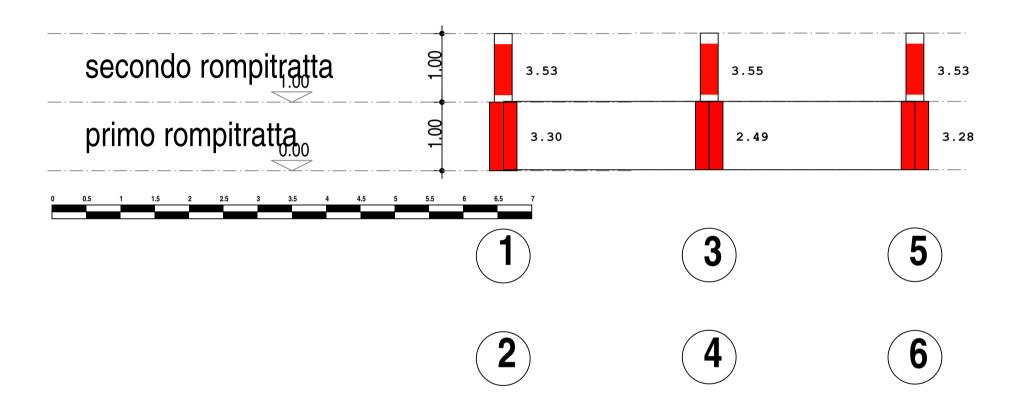
Telaio 1-2







# **COEFFICIENTE DI SICUREZZA A FLESSIONE**


Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a flessione allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

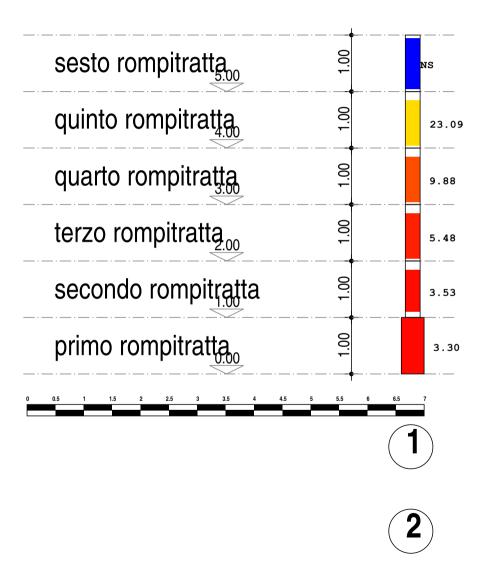
La scala cromatica riporta il range di valori

da minimo 2.49 (COLORE ROSSO) a massimo NS (COLORE BLU).

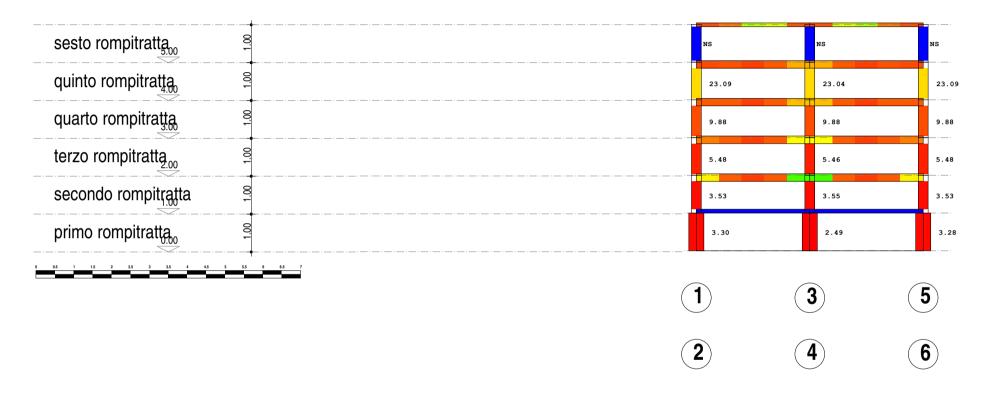
NS = Non significativo.

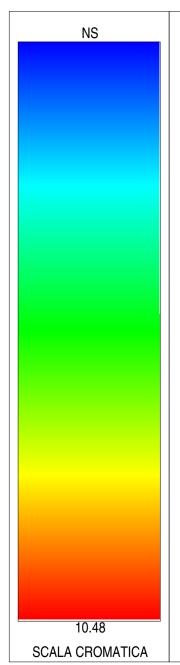
# **COEFFICIENTE DI SICUREZZA A FLESSIONE**




Telaio 3-4
COEFFICIENTE DI SICUREZZA A FLESSIONE




Telaio 5-6
COEFFICIENTE DI SICUREZZA A FLESSIONE



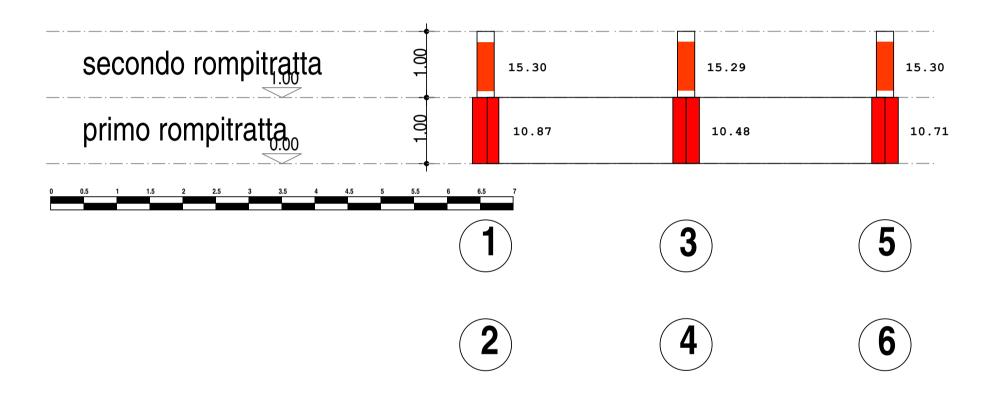

Telaio 1-2
COEFFICIENTE DI SICUREZZA A FLESSIONE



#### **COEFFICIENTE DI SICUREZZA A FLESSIONE**






# **COEFFICIENTE DI SICUREZZA A TAGLIO**

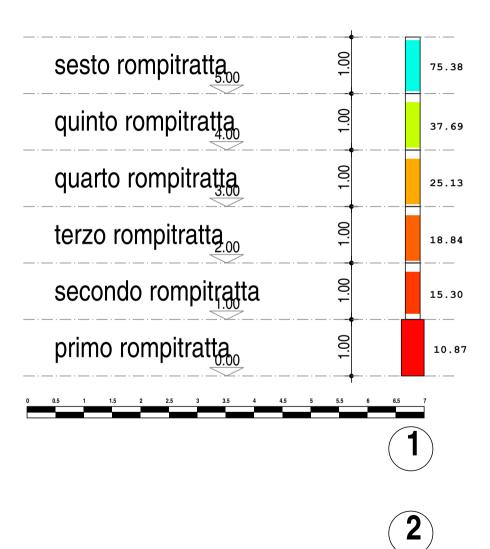
Rappresentazione cromatica dei coefficienti di sicurezza nella verifica a taglio allo SLU: per le diverse sezioni di verifica viene riportato il coefficiente di sicurezza minimo.

La scala cromatica riporta il range di valori

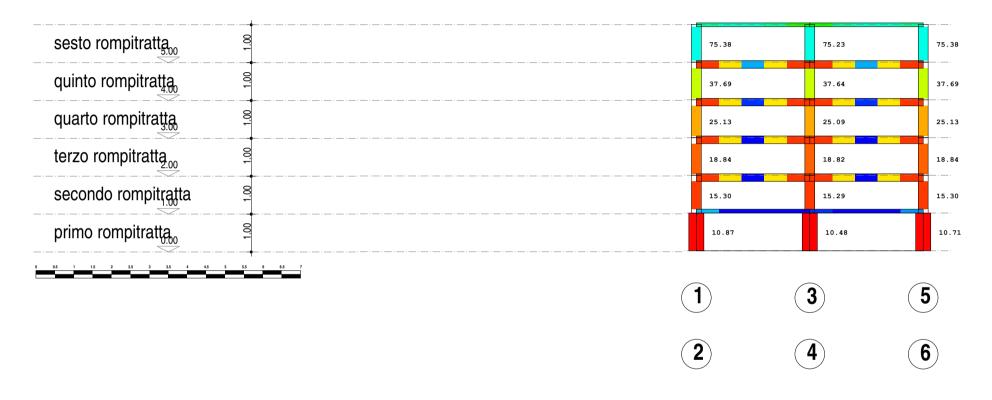
da minimo 10.48 (COLORE ROSSO) a massimo NS (COLORE BLU).

# **COEFFICIENTE DI SICUREZZA A TAGLIO**




Telaio 3-4
COEFFICIENTE DI SICUREZZA A TAGLIO




**Telaio 5-6**COEFFICIENTE DI SICUREZZA A TAGLIO



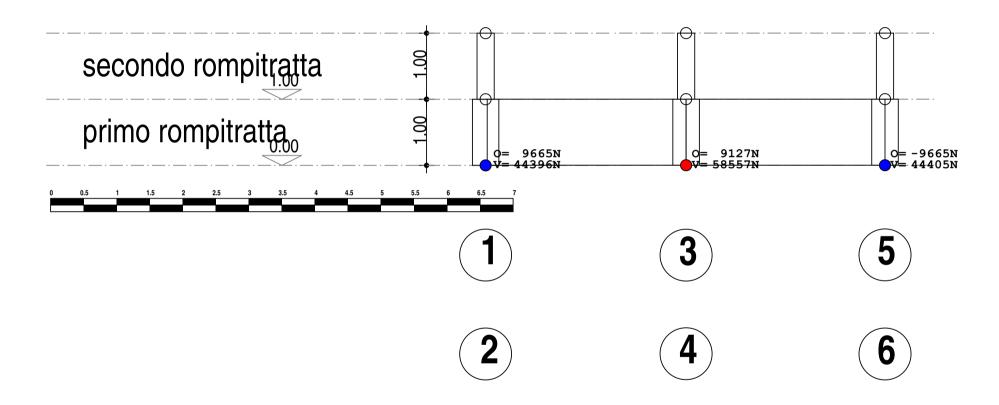
Telaio 1-2
COEFFICIENTE DI SICUREZZA A TAGLIO



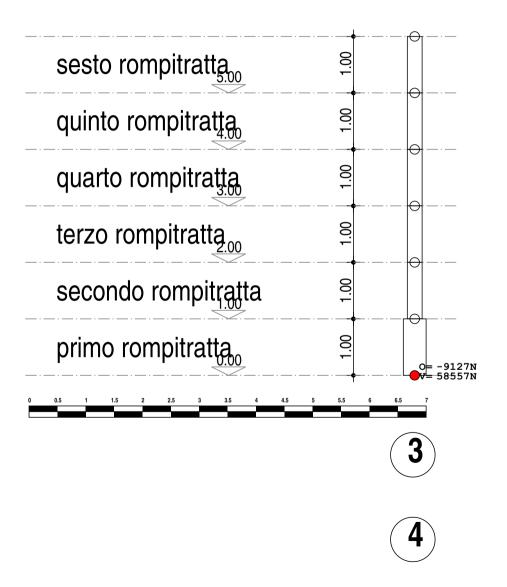
#### **COEFFICIENTE DI SICUREZZA A TAGLIO**



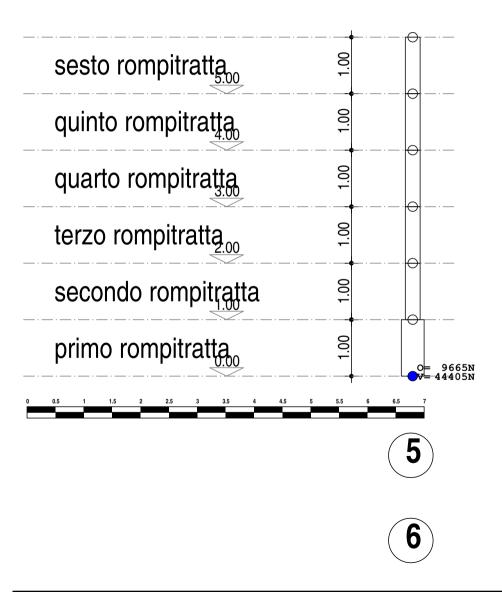
# 67812 N 53119 N SCALA CROMATICA


# **REAZIONI VINCOLARI**

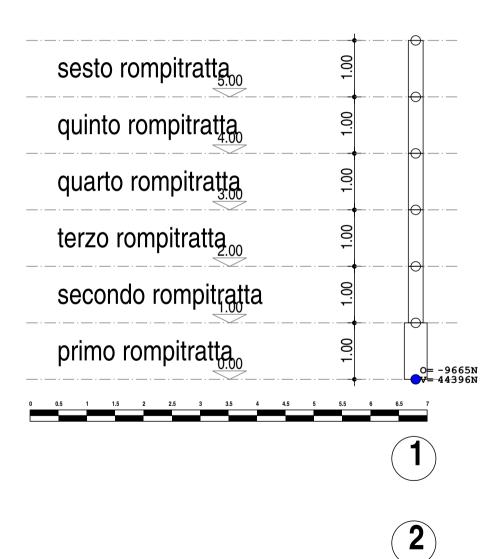
Rappresentazione cromatica delle componenti, nel piano del telaio, delle reazioni vincolari massime allo SLU.


La scala cromatica riporta il range di valori da minimo 53119 N (COLORE BLU) a massimo 67812 N (COLORE ROSSO).

O = Reazioni vincolari orizzontali nel piano del telaio (positive verso destra)


V = Reazioni vincolari verticali nel piano del telaio (positive verso l'alto)




# Telaio 3-4



# Telaio 5-6



# Telaio 1-2





# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

TABULATI DI CALCOLO- Tomo 1 di 1

Barriera Antirumore h=mt. 3 MIT 24 trasparente

#### **SEZIONI ASTE**

|     |    |        |      |            |      |      |       |       |       |       |       |       |   |                    |                    |                    |                    |                    |         | Sezi               | oni aste    |
|-----|----|--------|------|------------|------|------|-------|-------|-------|-------|-------|-------|---|--------------------|--------------------|--------------------|--------------------|--------------------|---------|--------------------|-------------|
|     |    |        |      | Dimensioni |      |      |       |       |       |       |       |       |   |                    | A per              | A per Taglio       |                    | Inerzia            |         |                    |             |
| N   | Тр | Label  | В    | Н          | S.An | L.An | S.AI0 | L.AI0 | S.Al1 | L.Al1 | L.AI2 | L.AI3 | ٧ | Area               | X                  | Υ                  | X                  | Torsiona<br>le     | Υ       | XY                 | Assi<br>Pr. |
|     |    |        | [cm] | [cm]       | [cm] | [cm] | [cm]  | [cm]  | [cm]  | [cm]  | [cm]  | [cm]  |   | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm4]   | [cm <sup>4</sup> ] | [°ssdc]     |
| 001 | !  | 60x50  |      |            |      |      |       |       |       |       |       |       |   | 3,000.0            |                    |                    |                    |                    |         |                    |             |
|     |    |        | 60   | 50         | -    | -    | -     | -     | -     | -     | -     | -     | 4 | 0                  | 2,500.00           | 2,500.00           | 625,000            | 1,245,750          | 900,000 | 0                  | 0.00        |
| 002 | 8  | Ø30    | 30   | -          | -    | -    | -     | -     | -     | -     | -     | -     | - | 706.86             | 636.17             | 636.17             | 39,761             | 79,522             | 39,761  | 0                  | 0.00        |
| 003 | !  | 30x100 |      |            |      |      |       |       |       |       |       |       |   | 3,000.0            |                    |                    |                    |                    |         |                    |             |
|     |    |        | 30   | 100        | -    | -    | -     | -     | -     | -     | -     | -     | 4 | 0                  | 2,500.00           | 2,500.00           | 2,500,000          | 900,000            | 225,000 | 0                  | 0.00        |

#### LEGENDA Sezioni aste

N Tp Numero identificativo della sezione. Identificativo del tipo di sezione.

Label Identificativo della sezione come indicato nelle carpenterie.

В Base/Diametro/Raggio. Н Altezza/Lato/Altezza di colmo.

S.An Spessore Anima. L.An Lunghezza Anima. S.AI0 Spessore Ala 0. L.AI0 Lunghezza Ala 0. S.AI1 Spessore Ala 1. L.Al1 Lunghezza Ala 1. L.AI2 Lunghezza Ala 2. L.AI3 Lunghezza Ala 3.

ν Nel caso di sezioni poligonali, indica il numero dei vertici della sezione.

Area Area della sezione.

X, Y Coppia di assi baricentrici di tipo ortolevogiro con x in direzione orizzontale.

Area per Taglio X, Aree della sezione deformabili a Taglio lungo gli assi x e y.

I nerzia: X,

Inerzie della sezione rispetto agli assi Torsionale, Y, XY

Rotazione degli assi principali d'inerzia rispetto agli assi x, y, espresse in gradi sessadecimali. Assi Pr.

#### PROFILATI ACCIAIO

|     | Dimensioni |             |    |    |    |               |               |          |               |          |          | res                  | Profile  A resisten |                |                |              |                            |                        |                             |                             |                     |    |          |         |         |          |                                |        |             |                    |                                |                    |             |          |          |                        |                     |                  |                          |
|-----|------------|-------------|----|----|----|---------------|---------------|----------|---------------|----------|----------|----------------------|---------------------|----------------|----------------|--------------|----------------------------|------------------------|-----------------------------|-----------------------------|---------------------|----|----------|---------|---------|----------|--------------------------------|--------|-------------|--------------------|--------------------------------|--------------------|-------------|----------|----------|------------------------|---------------------|------------------|--------------------------|
| N   | Тр         | Labe        | B1 | В2 | н  | S.<br>Al<br>1 | S.<br>Al<br>2 | S.<br>An | S.<br>Pt<br>t | R.<br>An | R.<br>Al | R.<br>An<br>/ A<br>I | H.<br>An            | H.<br>ra<br>cc | Pe<br>n.<br>An | Pe :<br>n. : | Di<br>st.<br>Sp<br>.A<br>n | Di<br>st.<br>Sp<br>.Al | Di<br>st.<br>Pr<br>of.<br>X | Di<br>st.<br>Pr<br>of.<br>Y | Ps<br>t.<br>Ab<br>b | TC | Ar<br>ea | Ax<br>T | Ay<br>T | In<br>.X | W <sub>el</sub> X <sub>s</sub> | WelXin | R.I n.<br>X | In.Y               | W <sub>el</sub> Y <sub>s</sub> | WelYin             | R.I n.<br>Y | In<br>.S | In<br>.T | Di<br>ff.<br>Ra<br>cc. | W V                 | ν Ιι<br>Υ Υ<br>Υ | n Rot.<br>( A.I n<br>' . |
|     | Т          |             | [m | [m | [m | [m            | [m            | [m       | [m            | [m       | [m       | [m<br>m]             | [m                  | [m             | [%]            | 1 1/01       | [m                         | [m                     | [m                          | [m                          | [m<br>m]            | Г  | [cm      | [cm     | [cm     | [cm      | [cm <sup>3</sup> ]             | [cm³]  | [cm]        | [cm <sup>4</sup> ] | [cm³]                          | [cm <sup>3</sup> ] | [cm]        | [cm      | [cm      | [m<br>m]               | [cm [c              | m [ci            | m [°ssdc                 |
| 001 | D          | HE<br>200 A | 20 |    | 19 | 10            |               | 7        |               |          |          | 18                   | 17                  |                |                |              |                            |                        |                             |                             | 0                   |    | 54       | 18      | 45      | 36<br>92 | 388.6                          | 388 6  | 8.3         | 1336.              | 133.6                          | 133.6              | 5.0         |          | 21       | 47                     | 42 2<br>9. 3<br>5 8 | . o              | 0.0                      |

#### LEGENDA Sezioni aste

Ν Numero identificativo del profilato. Тр Identificativo del tipo di profilato.

Label Identificativo del profilato come indicato nelle carpenterie.

R1 Base

B2 Seconda Base (per profilati composti)

н Altezza Spessore ala S.AI1

S.AI2 Spessore seconda ala (per profilati composti)

S.An Spessore Anima

S.Ptt Spessore piatto (per profilati composti)

R.An Raggio anima R.AI Raggio ala R.An/ Al Raggio anima/ala H.An Altezza Anima H.racc Altezza netta raccordi Pen.An Pen.Al Pendenza Anima Pendenza Ala Dist.Sp.An Distanza spessore anima

Dist.Sp.Al Dist.Prof.X Distanza spessore ala Distanza profilati lungo X (per profilati composti) Distanza profilati lungo Y (per profilati composti) Dist.Prof.Y Passo abbottonatura (per profilati composti)
Tipo collegamenti (per profilati composti) Pst.Abb

Area della sezione. Area

TC

AxTArea resistente a taglio lungo X AyT Area resistente a taglio lungo Y

In.X Inerzia lungo X

W<sub>el</sub>X<sub>sup</sub> Modulo resistenza elastica lungo X superiore Modulo resistenza elastica lungo X inferiore WelXinf

R.In.X Raggio inerzia lungo X Inerzia lungo Y In.Y

Modulo resistenza elastica lungo Y superiore  $W_{el}Y_{sup}$ 

W<sub>el</sub>Y<sub>inf</sub> Modulo resistenza elastica lungo Y inferiore

R.In.Y Raggio inerzia lungo Y
In.S Inerzia settoriale
In.T Inerzia torsionale
Diff.Racc. Diffusione raccordo ala

W<sub>pl</sub>X Modulo resistenza plastica lungo X W<sub>pl</sub>Y Modulo resistenza plastica lungo Y

In.XY Inerzia in XY
Rot.A.In. Rotazione assi inerzia

#### RI EPI LOGO MODI DI VI BRAZIONE

Modi di vibrazione considerati: n.15

| Spettro        | Periodo    | As.O                | As.V                | ne considera<br>C.Part | C.Mod            | P.M.M       | M.Ec       |
|----------------|------------|---------------------|---------------------|------------------------|------------------|-------------|------------|
| Spettro        | [s]        | [m/s <sup>2</sup> ] | [m/s <sup>2</sup> ] | U.Fait                 | C.IVIOU          | [%]         | [N·s²/m]   |
| Modo Vibra     |            | [                   | (                   | ·                      |                  | 1,-1        | (,         |
| SLU-X          | 0.017      | 2.046               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLU-Y          | 0.017      | 2.046               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLU-Z          | 0.017      | 0.000               | 0.887               | -100.3416              | -0.0008          | 99.3        | 10,068     |
| SLD-X          | 0.017      | 1.074               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-Y          | 0.017      | 1.074               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-Z          | 0.017      | 0.000               | 0.324               | -100.3416              | -0.0008          | 99.3        | 10,068     |
| Elast-X        | -          | 2.324               | 0.000               | -                      | -                | -           | -          |
| Elast-Y        | -          | 2.324               | 0.000               | -                      | -                | -           | -          |
| Elast-Z        | -          | 0.000               | 1.099               | -                      | -                | -           | -          |
| Modo Vibra     | zione n. 2 |                     |                     |                        |                  |             |            |
| SLU-X          | 0.045      | 2.032               | 0.000               | 95.3920                | 0.0048           | 89.8        | 9,100      |
| SLU-Y          | 0.045      | 2.032               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLU-Z          | 0.045      | 0.000               | 1.175               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-X          | 0.045      | 1.291               | 0.000               | 95.3920                | 0.0048           | 89.8        | 9,100      |
| SLD-Y          | 0.045      | 1.291               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-Z          | 0.045      | 0.000               | 0.500               | 0.0000                 | 0.0000           | 0.0         | 0          |
| Elast-X        | -          | 2.752               | 0.000               | -                      | -                | -           | -          |
| Elast-Y        | _          | 2.752               | 0.000               | -                      | -                | -           | -          |
| Elast-Z        | _          | 0.000               | 1.725               | -                      | _                | _           | _          |
| Modo Vibra     | zione n. 3 |                     |                     |                        |                  |             |            |
| SLU-X          | 0.042      | 2.033               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLU-Y          | 0.042      | 2.033               | 0.000               | -72.4217               | -0.0033          | 51.8        | 5,245      |
| SLU-Z          | 0.042      | 0.000               | 1.152               | 0.0000                 | 0.0000           | 0.0         | 0,210      |
| SLD-X          | 0.042      | 1.273               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-Y          | 0.042      | 1.273               | 0.000               | -72.4217               | -0.0033          | 51.8        | 5,245      |
| SLD-Z          | 0.042      | 0.000               | 0.486               | 0.0000                 | 0.0000           | 0.0         | 0,243      |
| Elast-X        | 0.042      | 2.717               | 0.000               | 0.0000                 | 0.0000           | 0.0         | -          |
| Elast-Y        | _          | 2.717               | 0.000               | -                      | -                | -           | -          |
| Elast-Z        | -          | 0.000               | 1.674               | -                      | -                | -           | -          |
| Modo Vibra     | zione n 1  | 0.000               | 1.074               | - 1                    | -                | -           | -          |
| SLU-X          | 0.090      | 2.008               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLU-Y          | 0.090      | 2.008               | 0.000               | -63.2238               | -0.0131          | 39.4        | 3,997      |
| SLU-Z          | 0.090      | 0.000               | 1.231               | 0.0000                 | 0.0000           | 0.0         | 0,997      |
| SLD-X          | 0.090      | 1.652               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-X          | 0.090      | 1.652               | 0.000               | -63.2238               | -0.0131          | 39.4        | 3,997      |
| SLD-T          | 0.090      | 0.000               | 0.534               | 0.0000                 | 0.0000           | 0.0         | 0,997      |
| Elast-X        | 0.090      | 3.467               | 0.000               | 0.0000                 | 0.0000           | 0.0         | U          |
| Elast-Y        | -          | 3.467               | 0.000               | -                      | -                | -           | -          |
| Elast-Z        | -          |                     |                     | -                      | -                | -           | -          |
| Modo Vibra     | ziono n E  | 0.000               | 1.847               | -                      | -                | -           | -          |
| SLU-X          |            | 2.010               | 0.000               | 22 0010                | 0.0061           | 10.1        | 1 004      |
| SLU-X<br>SLU-Y | 0.087      | 2.010<br>2.010      | 0.000               | 32.0018<br>0.0000      | 0.0061<br>0.0000 | 10.1<br>0.0 | 1,024<br>0 |
| SLU-Y<br>SLU-Z | 0.087      |                     |                     |                        |                  |             |            |
| SLU-Z<br>SLD-X | 0.087      | 0.000               | 1.231               | 0.0000                 | 0.0000           | 0.0         | 1 024      |
| -              | 0.087      | 1.625               | 0.000               | 32.0018                | 0.0061           | 10.1        | 1,024      |
| SLD-Y          | 0.087      | 1.625               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-Z          | 0.087      | 0.000               | 0.534               | 0.0000                 | 0.0000           | 0.0         | 0          |
| Elast-X        | -          | 3.413               | 0.000               | -                      | -                | -           | -          |
| Elast-Y        | -          | 3.413               | 0.000               | -                      | -                | -           | -          |
| Elast-Z        | -          | 0.000               | 1.847               | -                      | -                | -           | -          |
| Modo Vibra     |            | 0.045               | 0.000               | 0.0000                 | 0.0000           | 0.0         | _          |
| SLU-X          | 0.019      | 2.045               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLU-Y          | 0.019      | 2.045               | 0.000               | 21.2002                | 0.0002           | 4.4         | 449        |
| SLU-Z          | 0.019      | 0.000               | 0.911               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-X          | 0.019      | 1.092               | 0.000               | 0.0000                 | 0.0000           | 0.0         | 0          |
| SLD-Y          | 0.019      | 1.092               | 0.000               | 21.2002                | 0.0002           | 4.4         | 449        |
| SLD-Z          | 0.019      | 0.000               | 0.338               | 0.0000                 | 0.0000           | 0.0         | 0          |
| Elast-X        | -          | 2.358               | 0.000               | -                      | -                | -           | -          |
| Elast-Y        | -          | 2.358               | 0.000               | -                      | -                | -           | -          |
| Elast-Z        | -          | 0.000               | 1.150               | -                      | -                | -           | -          |
| Mada Vibra     | zione n. 7 |                     |                     |                        |                  |             |            |

| Spettro        | Periodo     | As.O                | As.V                | C.Part  | C.Mod   | P.M.M | M.Ec     |
|----------------|-------------|---------------------|---------------------|---------|---------|-------|----------|
| Spettro        | [s]         | [m/s <sup>2</sup> ] | [m/s <sup>2</sup> ] | C.Fait  | C.IVIOU | [%]   | [N·s²/m] |
| SLU-X          | 0.017       | 2.047               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Y          | 0.017       | 2.047               | 0.000               | 19.3601 | 0.0001  | 3.7   | 375      |
| SLU-Z          | 0.017       | 0.000               | 0.883               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-X          | 0.017       | 1.070               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-Y          | 0.017       | 1.070               | 0.000               | 19.3601 | 0.0001  | 3.7   | 375      |
| SLD-Z          | 0.017       | 0.000               | 0.321               | 0.0000  | 0.0000  | 0.0   | 0        |
| Elast-X        | -           | 2.316               | 0.000               | -       | _       | -     |          |
| Elast-Y        | _           | 2.316               | 0.000               | _       | _       | _     | _        |
| Elast-Z        | _           | 0.000               | 1.089               | _       | _       | _     | _        |
| Modo Vibra     | zione n 8   | 0.000               | 1.000               |         |         |       |          |
| SLU-X          | 0.007       | 2.052               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Y          | 0.007       | 2.052               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Z          | 0.007       | 0.000               | 0.781               | 7.3961  | 0.0000  | 0.5   | 55       |
| SLD-X          | 0.007       | 0.994               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-Y          | 0.007       | 0.994               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-T          | 0.007       | 0.000               | 0.259               | 7.3961  | 0.0000  | 0.5   | 55       |
| Elast-X        | 0.007       | 2.166               | 0.000               | 7.5301  | 0.0000  | 0.5   | 33       |
| Elast-Y        | -           | 2.166               | 0.000               | -       | _       | _     | -        |
| Elast-Z        | -           | 0.000               |                     | -       | -       | -     | -        |
| Modo Vibra     | Tione n 0   | 0.000               | 0.868               | -       | -       | -     | -        |
| SLU-X          |             | 0.005               | 0.000               | 0.0000  | 0.0000  | 0.0   |          |
|                | 0.058       | 2.025               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Y          | 0.058       | 2.025               | 0.000               | -6.7673 | -0.0006 | 0.5   | 46       |
| SLU-Z          | 0.058       | 0.000               | 1.231               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-X          | 0.058       | 1.394               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-Y          | 0.058       | 1.394               | 0.000               | -6.7673 | -0.0006 | 0.5   | 46       |
| SLD-Z          | 0.058       | 0.000               | 0.534               | 0.0000  | 0.0000  | 0.0   | 0        |
| Elast-X        | -           | 2.956               | 0.000               | -       | -       | -     | -        |
| Elast-Y        | -           | 2.956               | 0.000               | -       | -       | -     | -        |
| Elast-Z        | -           | 0.000               | 1.847               | -       | -       | -     | -        |
| Modo Vibra     |             |                     |                     |         |         |       |          |
| SLU-X          | 0.011       | 2.050               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Y          | 0.011       | 2.050               | 0.000               | -4.3086 | 0.0000  | 0.2   | 19       |
| SLU-Z          | 0.011       | 0.000               | 0.819               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-X          | 0.011       | 1.023               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-Y          | 0.011       | 1.023               | 0.000               | -4.3086 | 0.0000  | 0.2   | 19       |
| SLD-Z          | 0.011       | 0.000               | 0.282               | 0.0000  | 0.0000  | 0.0   | 0        |
| Elast-X        | -           | 2.223               | 0.000               | -       | -       | -     | -        |
| Elast-Y        | -           | 2.223               | 0.000               | -       | -       | -     | -        |
| Elast-Z        | -           | 0.000               | 0.952               | -       | -       | -     | -        |
| Modo Vibra     | zione n. 11 |                     |                     |         |         |       |          |
| SLU-X          | 0.015       | 2.047               | 0.000               | -2.8637 | 0.0000  | 0.1   | 8        |
| SLU-Y          | 0.015       | 2.047               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Z          | 0.015       | 0.000               | 0.869               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-X          | 0.015       | 1.060               | 0.000               | -2.8637 | 0.0000  | 0.1   | 8        |
| SLD-Y          | 0.015       | 1.060               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-Z          | 0.015       | 0.000               | 0.312               | 0.0000  | 0.0000  | 0.0   | 0        |
| Elast-X        | -           | 2.296               | 0.000               | -       | _       | -     | -        |
| Elast-Y        | _           | 2.296               | 0.000               | _       | _       | -     | -        |
| Elast-Z        | _           | 0.000               | 1.059               | _       | _       | _     | _        |
| Modo Vibra     | zione n. 12 |                     |                     |         |         |       |          |
| SLU-X          | 0.007       | 2.052               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Y          | 0.007       | 2.052               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Z          | 0.007       | 0.000               | 0.776               | 2.6636  | 0.0000  | 0.1   | 7        |
| SLD-X          | 0.007       | 0.990               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-Y          | 0.007       | 0.990               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-Z          | 0.007       | 0.000               | 0.255               | 2.6636  | 0.0000  | 0.1   | 7        |
| Elast-X        | 0.007       | 2.158               | 0.000               | 2.0000  | 0.0000  | -     |          |
| Elast-Y        | _           | 2.158               | 0.000               | _       | _       | _     | _        |
| Elast-Z        | _           | 0.000               | 0.857               | _       | _       | _     | _        |
| Modo Vibra     | zione n. 13 | 0.000               | 3.037               |         |         |       |          |
| SLU-X          | 0.014       | 2.048               | 0.000               | 1.7256  | 0.0000  | 0.0   | 3        |
| SLU-Y          | 0.014       | 2.048               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Z          | 0.014       | 0.000               | 0.852               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-X          | 0.014       | 1.047               | 0.000               | 1.7256  | 0.0000  | 0.0   | 3        |
| SLD-X<br>SLD-Y | 0.014       | 1.047               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-T          | 0.014       | 0.000               | 0.302               | 0.0000  | 0.0000  | 0.0   | 0        |
| Elast-X        | 0.014       | 2.271               | 0.000               | 0.0000  | 0.0000  | 0.0   | _        |
| Elast-Y        | _ [         | 2.271               | 0.000               |         |         |       | . []     |
| Elast-Z        | -           | 0.000               | 1.022               | -       |         | -     | -        |
| Modo Vibra     | zione n 14  | 0.000               | 1.022               | -       | -       | -     | -        |
| SLU-X          | 0.005       | 2.052               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-X<br>SLU-Y | 0.005       | 2.052               | 0.000               | 1.2977  | 0.0000  | 0.0   | 2        |
| SLU-Y<br>SLU-Z | 0.005       | 0.000               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Z<br>SLD-X | 0.005       | 0.000               | 0.764               | 0.0000  | 0.0000  | 0.0   | 0        |
|                |             |                     |                     |         |         |       |          |
| SLD-Y          | 0.005       | 0.981               | 0.000               | 1.2977  | 0.0000  | 0.0   | 2        |
| SLD-Z          | 0.005       | 0.000               | 0.248               | 0.0000  | 0.0000  | 0.0   | 0        |
| Elast-X        | -           | 2.141               | 0.000               | -       | -       | -     | -        |
| Elast-Y        | -           | 2.141               | 0.000               | -       | -       | -     | -        |
| Elast-Z        | -           | 0.000               | 0.832               | -       | -       | -     | -        |
| Modo Vibra     |             |                     |                     |         |         |       |          |
| SLU-X          | 0.009       | 2.050               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLU-Y          | 0.009       | 2.050               | 0.000               | 1.1042  | 0.0000  | 0.0   | 1        |
| SLU-Z          | 0.009       | 0.000               | 0.806               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-X          | 0.009       | 1.012               | 0.000               | 0.0000  | 0.0000  | 0.0   | 0        |
| SLD-Y          | 0.009       | 1.012               | 0.000               | 1.1042  | 0.0000  | 0.0   | 1        |
|                |             |                     |                     |         |         |       |          |

| Spettro | Periodo | As.O                | As.V                | C.Part | C.Mod  | P.M.M | M.Ec     |
|---------|---------|---------------------|---------------------|--------|--------|-------|----------|
|         | [s]     | [m/s <sup>2</sup> ] | [m/s <sup>2</sup> ] |        |        | [%]   | [N·s²/m] |
| SLD-Z   | 0.009   | 0.000               | 0.274               | 0.0000 | 0.0000 | 0.0   | 0        |
| Elast-X | -       | 2.202               | 0.000               | -      | -      | -     | -        |
| Elast-Y | -       | 2.202               | 0.000               | -      | -      | -     | -        |
| Elast-Z | _       | 0.000               | 0.921               | -      | -      | -     | _        |

## LEGENDA Modi di vibrazione

SpettroSpettro di risposta considerato.PeriodoPeriodo del Modo di vibrazione.

As.O Valore dell'Accelerazione Spettrale Orizzontale, riferita al corrispondente periodo.

As.V Valore dell'Accelerazione Spettrale Verticale, riferita al corrispondente periodo.

**C.Part** Coefficiente di partecipazione del Modo di Vibrazione.

**C.Mod** Coefficiente modale del modo di vibrazione.

P.M.M Percentuale di mobilitazione delle masse nel modo di vibrazione.

M.Ec Massa Eccitata nel modo di vibrazione.

SLU-X
Spettro di progetto allo S.L. Ultimo per sisma in direzione X.
SLU-Y
Spettro di progetto allo S.L. Ultimo per sisma in direzione Y.
SLU-Z
Spettro di progetto allo S.L. Ultimo per sisma in direzione Z.
SLD-X
Spettro di progetto allo S.L. di Danno per sisma in direzione X.
SLD-Y
Spettro di progetto allo S.L. di Danno per sisma in direzione Y.
SLD-Z
Spettro di progetto allo S.L. di Danno per sisma in direzione Z.

Elast-X Spettro Elastico per sisma in direzione X.
Elast-Y Spettro Elastico per sisma in direzione Y.
Elast-Z Spettro Elastico per sisma in direzione Z.

## CARICHI SUI NODI (per condizioni di carico non sismiche)

|                 |        |     |   |    |     |     |     |       | ioni di carico n |       |
|-----------------|--------|-----|---|----|-----|-----|-----|-------|------------------|-------|
| T. Carico       | Carico | CC  |   | SR | Fx  | Fy  | Fz  | Mx    | Му               | Mz    |
| Nodo 00012      |        |     |   |    | [N] | [N] | [N] | [N·m] | [N·m]            | [N·m] |
| C               | CR001  | 002 | - | G  | 0   | 52  | 0   | 0     | 0                | 0     |
| Nodo 00013      | 0.1001 | 002 |   |    |     | 02  | -   |       | -                |       |
| С               | CR001  | 002 | - | G  | 0   | 51  | 0   | 0     | 0                | 0     |
| С               | CR001  | 002 | - | G  | 0   | 51  | 0   | 0     | 0                | 0     |
| Nodo 00015      |        |     |   |    |     |     |     |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 51  | 0   | 0     | 0                | 0     |
| Nodo 00044      |        |     |   |    |     |     |     |       |                  |       |
| C               | CR001  | 002 | - | G  | 0   | 17  | 0   | 0     | 0                | 0     |
| C<br>Nodo 00045 | CR001  | 002 | - | G  | 0   | 17  | 0   | 0     | 0                | 0     |
| C               | CR001  | 002 | - | G  | 0   | 47  | 0   | 0     | 0                | 0     |
| C               | CR001  | 002 | - | G  | 0   | 47  | 0   | 0     | 0                | 0     |
| Nodo 00046      | Chool  | 002 | - | G  | U   | 49  | 0   | 0     | 0                |       |
| C               | CR001  | 002 | - | G  | 0   | 110 | 0   | 0     | 0                | 0     |
| Nodo 00047      | 0.1001 | 002 |   |    |     |     |     | -     |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 189 | 0   | 0     | 0                | 0     |
| Nodo 00048      |        |     |   |    |     |     | -   |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 167 | 0   | 0     | 0                | 0     |
| Nodo 00049      |        |     |   |    |     |     |     |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 189 | 0   | 0     | 0                | 0     |
| Nodo 00050      |        |     |   |    |     |     |     |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 110 | 0   | 0     | 0                | 0     |
| Nodo 00051      |        |     |   |    |     |     |     |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 49  | 0   | 0     | 0                | 0     |
| Nodo 00052      |        |     |   |    |     |     |     |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 17  | 0   | 0     | 0                | 0     |
| Nodo 00059      |        |     |   | _  |     |     |     |       |                  |       |
| C               | CR001  | 002 | - | G  | 0   | 17  | 0   | 0     | 0                | 0     |
| Nodo 00060      | ODOO   | 000 |   | _  | 0   | 40  |     |       |                  | 0     |
| C<br>Nodo 00061 | CR001  | 002 | - | G  | 0   | 49  | 0   | 0     | 0                | 0     |
| C               | CR001  | 002 | - | G  | 0   | 108 | 0   | 0     | 0                | 0     |
| Nodo 00062      | Chuui  | 002 | - | G  | U   | 106 | U   | U     | U                | U     |
| C               | CR001  | 002 | - | G  | 0   | 187 | 0   | 0     | 0                | 0     |
| Nodo 00063      | 011001 | 002 |   | u  | O   | 107 | 0   | U     | 0                | U     |
| C               | CR001  | 002 | - | G  | 0   | 166 | 0   | 0     | 0                | 0     |
| Nodo 00064      |        |     |   |    |     |     | -   |       | -                |       |
| С               | CR001  | 002 | - | G  | 0   | 187 | 0   | 0     | 0                | 0     |
| Nodo 00065      |        |     |   |    |     |     |     |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 108 | 0   | 0     | 0                | 0     |
| Nodo 00066      |        |     |   |    |     |     |     |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 22  | 0   | 0     | 0                | 0     |
| Nodo 00067      |        |     |   |    |     |     |     |       |                  |       |
| С               | CR001  | 002 | - | G  | 0   | 234 | 0   | 0     | 0                | 0     |
| Nodo 00068      | ae     | 1 1 |   |    |     |     |     |       |                  |       |
| C               | CR001  | 002 | - | G  | 0   | 233 | 0   | 0     | 0                | 0     |
| Nodo 00069      | OPOOL  | 000 |   |    |     | 00  |     |       | 2                |       |
| C               | CR001  | 002 | - | G  | 0   | 22  | 0   | 0     | 0                | 0     |
| Nodo 00070      | CD001  | 002 | - |    | 0   | 00  | 0   | 0     | 0                | ^     |
| C<br>Nodo 00071 | CR001  | 002 | - | G  | 0   | 92  | U   | U     | U                | 0     |
|                 | CR001  | 002 |   | G  | 0   | 299 | ^   | 0     | 0                | 0     |
| C<br>Nodo 00072 | CHUUI  | 002 | - | G  | 0   | 299 | 0   | 0     | 0                | 0     |
| NOUU 00012      |        |     |   |    |     |     |     |       |                  |       |

|            |        |     |   |    |     |     | Carichi sui | nodi (per condi | zioni di carico no | on sismiche) |
|------------|--------|-----|---|----|-----|-----|-------------|-----------------|--------------------|--------------|
| T. Carico  | Carico | CC  |   | SR | Fx  | Fy  | Fz          | Mx              | My                 | Mz           |
|            |        |     |   |    | [N] | [N] | [N]         | [N·m]           | [N·m]              | [N·m]        |
| С          | CR001  | 002 | - | G  | 0   | 354 | 0           | 0               | 0                  | 0            |
| Nodo 00073 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 92  | 0           | 0               | 0                  | 0            |
| Nodo 00074 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 300 | 0           | 0               | 0                  | 0            |
| Nodo 00075 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 22  | 0           | 0               | 0                  | 0            |
| Nodo 00076 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 232 | 0           | 0               | 0                  | 0            |
| Nodo 00077 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 232 | 0           | 0               | 0                  | 0            |
| Nodo 00078 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 22  | 0           | 0               | 0                  | 0            |
| Nodo 00079 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 91  | 0           | 0               | 0                  | 0            |
| Nodo 00080 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 299 | 0           | 0               | 0                  | 0            |
| Nodo 00081 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 353 | 0           | 0               | 0                  | 0            |
| Nodo 00082 |        |     |   |    |     |     |             |                 |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 91  | 0           | 0               | 0                  | 0            |
| Nodo 00083 |        |     |   |    |     |     |             | <u>'</u>        |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 299 | 0           | 0               | 0                  | 0            |

# LEGENDA Carichi sui nodi (per condizioni di carico non sismiche)

T.Carico Descrizione del tipo di carico.
Carico Descrizione del carico:
CR001= pressione del vento

CC Identificativo della condizione di carico, nella relativa tabella.

Nel caso di effettuazione dei calcoli secondo l'Ordinanza 3274/03 e s.m.i., è il valore del coefficiente di riduzione delle masse

sismiche.

SR Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale

1, 2, 3.

Fx, Fy, Fz Componenti del vettore Forza riferita agli assi del sistema di riferimento indicato nella colonna "SR".

Mx, My, Mz Componenti del vettore Momento riferito agli assi del sistema di riferimento indicato nella colonna "SR".

# CARI CHI SUI NODI IN FONDAZI ONE (Fondazione)

| Mz       | My      | Mx       | Fz        | E.   | Fx        | CC  | Carico         |
|----------|---------|----------|-----------|------|-----------|-----|----------------|
| [N·m]    | [N·m]   | [N·m]    | FZ<br>[N] | Fy   | FX<br>[N] | CC  | Carico         |
| [IN·III] | [IVIII] | [IN·III] | [N]       | [N]  | [N]       |     | do 00038       |
|          | 692     | 283      | 5,307     | 163  | 5,670     | _   | CR001          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | _   | CR002          |
|          | 692     | 283      | 5,307     | 163  | 5,670     | _   | CR003          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | _   | CR004          |
|          | 692     | 283      | 5,307     | 163  | 5,670     | _   | CR005          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | _   | CR006          |
|          | 692     | 283      | 5,307     | 163  | 5,670     | _   | CR007          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | _   | CR008          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | _   | CR009          |
|          | 692     | 283      | 5,307     | 163  | 5,670     | _   | CR010          |
| _        | 692     | -283     | 5,307     | -163 | 5,670     | _   | CR011          |
| _        | 692     | 283      | 5,307     | 163  | 5,670     |     | CR012          |
| _        | 692     | -283     | 5,307     | -163 | 5,670     |     | CR013          |
| -        | 692     | 283      | 5,307     | 163  | 5,670     | -   | CR014          |
| _        | 692     | -283     | 5,307     | -163 | 5,670     | -   | CR014<br>CR015 |
| -        | 692     | 283      | 5,307     | 163  | 5,670     | -   | CR015          |
|          |         | 283      | 4,531     | 163  | 3,418     | -   | CR016<br>CR017 |
|          | 920     |          |           | -163 |           | -   | CR017<br>CR018 |
| -        | 920     | -283     | 4,531     |      | 3,418     | -   |                |
|          | 920     | 283      | 4,531     | 163  | 3,418     | -   | CR019          |
| -        | 920     | -283     | 4,531     | -163 | 3,418     | -   | CR020          |
|          | 920     | 283      | 4,531     | 163  | 3,418     | -   | CR021          |
| -        | 920     | -283     | 4,531     | -163 | 3,418     | -   | CR022          |
|          | 920     | 283      | 4,531     | 163  | 3,418     | -   | CR023          |
| -        | 920     | -283     | 4,531     | -163 | 3,418     | -   | CR024          |
| -        | 920     | -283     | 4,531     | -163 | 3,418     | -   | CR025          |
|          | 920     | 283      | 4,531     | 163  | 3,418     | -   | CR026          |
| -        | 920     | -283     | 4,531     | -163 | 3,418     | -   | CR027          |
|          | 920     | 283      | 4,531     | 163  | 3,418     | -   | CR028          |
| -        | 920     | -283     | 4,531     | -163 | 3,418     | -   | CR029          |
|          | 920     | 283      | 4,531     | 163  | 3,418     | -   | CR030          |
| -        | 920     | -283     | 4,531     | -163 | 3,418     | -   | CR031          |
|          | 920     | 283      | 4,531     | 163  | 3,418     | -   | CR032          |
|          | 692     | 283      | 5,307     | 163  | 5,670     | -   | CR033          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | -   | CR034          |
|          | 692     | 283      | 5,307     | 163  | 5,670     | -   | CR035          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | -   | CR036          |
|          | 692     | 283      | 5,307     | 163  | 5,670     | -   | CR037          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | -   | CR038          |
|          | 692     | 283      | 5,307     | 163  | 5,670     | -   | CR039          |
| -        | 692     | -283     | 5,307     | -163 | 5,670     | -   | CR040          |
| _        | 692     | -283     | 5,307     | -163 | 5,670     | - ' | CR041          |

|                |        |                |              |                |                | Carichi sui noc | di in fondazione |
|----------------|--------|----------------|--------------|----------------|----------------|-----------------|------------------|
| Carico         | CC     | Fx             | Fy           | Fz             | Mx             | Му              | Mz               |
| CR042          | _      | [N] 5,670      | [N]<br>163   | [N]<br>5,307   | [N·m] 283      | [N·m] 692       | [N·m] 227        |
| CR043          | -      | 5,670          | -163         | 5,307          | -283           | 692             | -227             |
| CR044          | -      | 5,670          | 163          | 5,307          | 283            | 692             | 227              |
| CR045          | -      | 5,670          | -163         | 5,307          | -283           | 692             | -227             |
| CR046          | -      | 5,670          | 163          | 5,307          | 283            | 692             | 227              |
| CR047<br>CR048 | -      | 5,670<br>5,670 | -163<br>163  | 5,307<br>5,307 | -283<br>283    | 692<br>692      | -227<br>227      |
| CR049          | _      | 3,418          | 163          | 4,531          | 283            | 920             | 227              |
| CR050          | -      | 3,418          | -163         | 4,531          | -283           | 920             | -227             |
| CR051          | -      | 3,418          | 163          | 4,531          | 283            | 920             | 227              |
| CR052          | -      | 3,418          | -163         | 4,531          | -283           | 920             | -227             |
| CR053<br>CR054 | -      | 3,418          | 163<br>-163  | 4,531          | 283<br>-283    | 920<br>920      | 227<br>-227      |
| CR055          | -      | 3,418<br>3,418 | 163          | 4,531<br>4,531 | 283            | 920             | 227              |
| CR056          | _      | 3,418          | -163         | 4,531          | -283           | 920             | -227             |
| CR057          | -      | 3,418          | -163         | 4,531          | -283           | 920             | -227             |
| CR058          | -      | 3,418          | 163          | 4,531          | 283            | 920             | 227              |
| CR059          | -      | 3,418          | -163         | 4,531          | -283           | 920             | -227             |
| CR060<br>CR061 | -      | 3,418<br>3,418 | 163<br>-163  | 4,531<br>4,531 | 283<br>-283    | 920<br>920      | 227<br>-227      |
| CR062          | -      | 3,418          | 163          | 4,531          | 283            | 920             | 227              |
| CR063          | -      | 3,418          | -163         | 4,531          | -283           | 920             | -227             |
| CR064          | -      | 3,418          | 163          | 4,531          | 283            | 920             | 227              |
| CR065          | -      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR066          | -      | 4,206          | 543          | 4,802          | 942            | 840             | 755<br>755       |
| CR067<br>CR068 |        | 4,882<br>4,206 | 543<br>543   | 5,036<br>4,802 | 942<br>942     | 772<br>840      | 755<br>755       |
| CR069          |        | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR070          | -      | 4,206          | 543          | 4,802          | 942            | 840             | 755              |
| CR071          | -      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR072          | -      | 4,206          | 543          | 4,802          | 942            | 840             | 755              |
| CR073<br>CR074 | -      | 4,206<br>4,882 | 543<br>543   | 4,802          | 942<br>942     | 840<br>772      | 755<br>755       |
| CR075          | -      | 4,206          | 543          | 5,036<br>4,802 | 942            | 840             | 755              |
| CR076          | _      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR077          | -      | 4,206          | 543          | 4,802          | 942            | 840             | 755              |
| CR078          | -      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR079          | -      | 4,206          | 543          | 4,802          | 942            | 840             | 755              |
| CR080<br>CR081 | -      | 4,882<br>4,882 | 543<br>-543  | 5,036<br>5,036 | 942<br>-942    | 772<br>772      | 755<br>-755      |
| CR082          | _      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR083          | -      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR084          | -      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR085          | -      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR086<br>CR087 | -      | 4,206<br>4,882 | -543<br>-543 | 4,802          | -942<br>-942   | 840<br>772      | -755<br>-755     |
| CR088          | -      | 4,206          | -543         | 5,036<br>4,802 | -942           | 840             | -755             |
| CR089          | -      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR090          | -      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR091          | -      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR092<br>CR093 | -      | 4,882<br>4,206 | -543<br>-543 | 5,036<br>4,802 | -942<br>-942   | 772<br>840      | -755<br>-755     |
| CR094          | -      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR095          | -      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR096          | -      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR097          | -      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR098<br>CR099 | -      | 4,206<br>4,882 | 543<br>543   | 4,802<br>5,036 | 942<br>942     | 840<br>772      | 755<br>755       |
| CR099<br>CR100 |        | 4,882          | 543          | 4,802          | 942            | 840             | 755<br>755       |
| CR101          | _      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR102          | -      | 4,206          | 543          | 4,802          | 942            | 840             | 755              |
| CR103          | -      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR104<br>CR105 | -      | 4,206<br>4,206 | 543<br>543   | 4,802<br>4,802 | 942<br>942     | 840<br>840      | 755<br>755       |
| CR106          | -      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR107          | _      | 4,206          | 543          | 4,802          | 942            | 840             | 755              |
| CR108          | -      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR109          | -      | 4,206          | 543          | 4,802          | 942            | 840             | 755              |
| CR110<br>CR111 | -      | 4,882<br>4,206 | 543<br>543   | 5,036<br>4,802 | 942<br>942     | 772<br>840      | 755<br>755       |
| CR112          | -      | 4,882          | 543          | 5,036          | 942            | 772             | 755              |
| CR113          | _      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR114          | -      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR115          | -      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR116          | -      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR117<br>CR118 | -      | 4,882<br>4,206 | -543<br>-543 | 5,036<br>4,802 | -942<br>-942   | 772<br>840      | -755<br>-755     |
| CR119          | _      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR120          | _      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR121          | -      | 4,206          | -543         | 4,802          | -942           | 840             | -755             |
| CR122          | -      | 4,882          | -543         | 5,036          | -942           | 772             | -755             |
| CR123<br>CR124 | -      | 4,206<br>4,882 | -543<br>-543 | 4,802<br>5,036 | -942<br>-942   | 840<br>772      | -755<br>-755     |
| CR125          | -<br>- | 4,206          | -543<br>-543 | 4,802          | -942  <br>-942 | 840             | -755<br>-755     |
|                |        | -,=-9          |              | .,             | - ·-           | •               |                  |

|                |    |                |              |                |              |            | di in fondazione |
|----------------|----|----------------|--------------|----------------|--------------|------------|------------------|
| Carico         | CC | Fx             | Fy           | Fz             | Mx           | Му         | Mz               |
| 00400          |    | [N]            | [N]          | [N]            | [N·m]        | [N·m]      | [N·m]            |
| CR126<br>CR127 |    | 4,882<br>4,206 | -543<br>-543 | 5,036<br>4,802 | -942<br>-942 | 772<br>840 | -755<br>-755     |
| CR128          | _  | 4,882          | -543         | 5,036          | -942         | 772        | -755             |
| Nodo 00039     |    |                |              | ,              |              |            |                  |
| CR001          | -  | 3,811          | 204          | 8              | 173          | 245        | 116              |
| CR002          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR003<br>CR004 |    | 3,811<br>3,811 | 204<br>-204  | 8              | 173<br>-173  | 245<br>245 | 116<br>-116      |
| CR005          | _  | 3,811          | 204          | 8              | 173          | 245        | 116              |
| CR006          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR007          | -  | 3,811          | 204          | 8              | 173          | 245        | 116              |
| CR008<br>CR009 | -  | 3,811<br>3,811 | -204<br>-204 | 8              | -173<br>-173 | 245<br>245 | -116<br>-116     |
| CR010          | -  | 3,811          | 204          | 8              | 173          | 245        | 116              |
| CR011          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR012<br>CR013 | -  | 3,811          | 204<br>-204  | 8              | 173<br>-173  | 245<br>245 | 116<br>-116      |
| CR014          | -  | 3,811<br>3,811 | 204          | 8              | 173          | 245        | 116              |
| CR015          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR016          | -  | 3,811          | 204          | 8              | 173          | 245        | 116              |
| CR017          | -  | 1,417          | 204          | -568           | 173          | 479<br>479 | 116              |
| CR018<br>CR019 |    | 1,417<br>1,417 | -204<br>204  | -568<br>-568   | -173<br>173  | 479        | -116<br>116      |
| CR020          | -  | 1,417          | -204         | -568           | -173         | 479        | -116             |
| CR021          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR022          | -  | 1,417          | -204<br>204  | -568<br>-568   | -173         | 479<br>479 | -116             |
| CR023<br>CR024 |    | 1,417<br>1,417 | -204         | -568<br>-568   | 173<br>-173  | 479<br>479 | 116<br>-116      |
| CR025          | -  | 1,417          | -204         | -568           | -173         | 479        | -116             |
| CR026          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR027<br>CR028 | -  | 1,417<br>1,417 | -204<br>204  | -568<br>-568   | -173<br>173  | 479<br>479 | -116<br>116      |
| CR029          | -  | 1,417          | -204         | -568           | -173         | 479        | -116             |
| CR030          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR031          | -  | 1,417          | -204         | -568           | -173         | 479        | -116             |
| CR032<br>CR033 | -  | 1,417<br>3,811 | 204<br>204   | -568<br>8      | 173<br>173   | 479<br>245 | 116<br>116       |
| CR034          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR035          | -  | 3,811          | 204          | 8              | 173          | 245        | 116              |
| CR036          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR037<br>CR038 | -  | 3,811<br>3,811 | 204<br>-204  | 8              | 173<br>-173  | 245<br>245 | 116<br>-116      |
| CR039          | -  | 3,811          | 204          | 8              | 173          | 245        | 116              |
| CR040          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR041          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR042<br>CR043 |    | 3,811<br>3,811 | 204<br>-204  | 8              | 173<br>-173  | 245<br>245 | 116<br>-116      |
| CR044          | _  | 3,811          | 204          | 8              | 173          | 245        | 116              |
| CR045          | -  | 3,811          | -204         | 8              | -173         | 245        | -116             |
| CR046          | -  | 3,811<br>3,811 | 204<br>-204  | 8              | 173          | 245<br>245 | 116              |
| CR047<br>CR048 | -  | 3,811          | 204          | 8              | -173<br>173  | 245        | -116<br>116      |
| CR049          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR050          | -  | 1,417          | -204         | -568           | -173         | 479        | -116             |
| CR051<br>CR052 | -  | 1,417<br>1,417 | 204<br>-204  | -568<br>-568   | 173<br>-173  | 479<br>479 | 116<br>-116      |
| CR052          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR054          | -  | 1,417          | -204         | -568           | -173         | 479        | -116             |
| CR055          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR056<br>CR057 |    | 1,417<br>1,417 | -204<br>-204 | -568<br>-568   | -173<br>-173 | 479<br>479 | -116<br>-116     |
| CR057          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR059          | -  | 1,417          | -204         | -568           | -173         | 479        | -116             |
| CR060          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR061<br>CR062 | _  | 1,417<br>1,417 | -204<br>204  | -568<br>-568   | -173<br>173  | 479<br>479 | -116<br>116      |
| CR063          | -  | 1,417          | -204         | -568           | -173         | 479        | -116             |
| CR064          | -  | 1,417          | 204          | -568           | 173          | 479        | 116              |
| CR065          | -  | 2,974          | 678          | -193           | 574          | 327        | 385              |
| CR066<br>CR067 | -  | 2,254<br>2,974 | 678<br>678   | -367<br>-193   | 574<br>574   | 397<br>327 | 385<br>385       |
| CR068          | -  | 2,254          | 678          | -367           | 574          | 397        | 385              |
| CR069          | -  | 2,974          | 678          | -193           | 574          | 327        | 385              |
| CR070<br>CR071 | -  | 2,254<br>2,974 | 678<br>678   | -367<br>-193   | 574<br>574   | 397<br>327 | 385<br>385       |
| CR071<br>CR072 |    | 2,974          | 678<br>678   | -193<br>-367   | 574<br>574   | 327<br>397 | 385              |
| CR073          | _  | 2,254          | 678          | -367           | 574          | 397        | 385              |
| CR074          | -  | 2,974          | 678          | -193           | 574          | 327        | 385              |
| CR075<br>CR076 | -  | 2,254          | 678<br>678   | -367<br>-193   | 574<br>574   | 397        | 385              |
| CR076          |    | 2,974<br>2,254 | 678          | -193<br>-367   | 574<br>574   | 327<br>397 | 385<br>385       |
| CR078          | -  | 2,974          | 678          | -193           | 574          | 327        | 385              |
| CR079          | -  | 2,254          | 678          | -367           | 574          | 397        | 385              |
| CR080          | -  | 2,974          | 678          | -193           | 574          | 327        | 385              |

|                |    |                |              |              |              |            | g. Anarea Angrisa<br>di in fondazione |
|----------------|----|----------------|--------------|--------------|--------------|------------|---------------------------------------|
| Carico         | CC | Fx             | Fy           | Fz           | Mx           | My         | Mz                                    |
| CD091          | -  | [N]            | [N]<br>-678  | [N]          | [N·m]        | [N·m]      | [N·m]                                 |
| CR081<br>CR082 | -  | 2,974<br>2,254 | -678         | -193<br>-367 | -574<br>-574 | 327<br>397 | -385<br>-385                          |
| CR083          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| CR084          | -  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR085          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| CR086<br>CR087 | -  | 2,254<br>2,974 | -678<br>-678 | -367<br>-193 | -574<br>-574 | 397<br>327 | -385<br>-385                          |
| CR088          |    | 2,974          | -678         | -367         | -574         | 397        | -385                                  |
| CR089          | _  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR090          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| CR091          | -  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR092<br>CR093 | -  | 2,974          | -678         | -193         | -574<br>574  | 327        | -385                                  |
| CR094          | -  | 2,254<br>2,974 | -678<br>-678 | -367<br>-193 | -574<br>-574 | 397<br>327 | -385<br>-385                          |
| CR095          | -  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR096          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| CR097          | -  | 2,974          | 678          | -193         | 574          | 327        | 385                                   |
| CR098<br>CR099 | -  | 2,254<br>2,974 | 678<br>678   | -367<br>-193 | 574<br>574   | 397<br>327 | 385<br>385                            |
| CR100          | -  | 2,254          | 678          | -367         | 574          | 397        | 385                                   |
| CR101          | -  | 2,974          | 678          | -193         | 574          | 327        | 385                                   |
| CR102          | -  | 2,254          | 678          | -367         | 574          | 397        | 385                                   |
| CR103          | -  | 2,974          | 678          | -193         | 574<br>574   | 327        | 385                                   |
| CR104<br>CR105 |    | 2,254<br>2,254 | 678<br>678   | -367<br>-367 | 574<br>574   | 397<br>397 | 385<br>385                            |
| CR105          |    | 2,254          | 678          | -193         | 574          | 327        | 385                                   |
| CR107          | -  | 2,254          | 678          | -367         | 574          | 397        | 385                                   |
| CR108          | -  | 2,974          | 678          | -193         | 574          | 327        | 385                                   |
| CR109          | -  | 2,254          | 678          | -367         | 574          | 397        | 385                                   |
| CR110<br>CR111 |    | 2,974<br>2,254 | 678<br>678   | -193<br>-367 | 574<br>574   | 327<br>397 | 385<br>385                            |
| CR112          | -  | 2,974          | 678          | -193         | 574          | 327        | 385                                   |
| CR113          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| CR114          | -  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR115<br>CR116 | -  | 2,974<br>2,254 | -678<br>-678 | -193<br>-367 | -574<br>-574 | 327<br>397 | -385<br>-385                          |
| CR117          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| CR118          | -  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR119          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| CR120          | -  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR121<br>CR122 |    | 2,254<br>2,974 | -678<br>-678 | -367<br>-193 | -574<br>-574 | 397<br>327 | -385<br>-385                          |
| CR123          | _  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR124          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| CR125          | -  | 2,254          | -678         | -367         | -574         | 397        | -385                                  |
| CR126<br>CR127 | _  | 2,974<br>2,254 | -678<br>-678 | -193<br>-367 | -574<br>-574 | 327<br>397 | -385<br>-385                          |
| CR128          | -  | 2,974          | -678         | -193         | -574         | 327        | -385                                  |
| Nodo 00040     | _  |                |              |              |              |            |                                       |
| CR001          | -  | 2,970          | 321          | 955          | 91           | 193        | 92                                    |
| CR002<br>CR003 | -  | 2,970<br>2,970 | -321<br>321  | 955<br>955   | -91<br>91    | 193<br>193 | -92<br>92                             |
| CR004          | _  | 2,970          | -321         | 955          | -91          | 193        | -92                                   |
| CR005          | -  | 2,970          | 321          | 955          | 91           | 193        | 92                                    |
| CR006          | -  | 2,970          | -321         | 955          | -91          | 193        | -92                                   |
| CR007          | -  | 2,970          | 321          | 955          | 91           | 193        | 92                                    |
| CR008<br>CR009 |    | 2,970<br>2,970 | -321<br>-321 | 955<br>955   | -91<br>-91   | 193<br>193 | -92<br>-92                            |
| CR010          | -  | 2,970          | 321          | 955          | 91           | 193        | 92                                    |
| CR011          | -  | 2,970          | -321         | 955          | -91          | 193        | -92                                   |
| CR012          | -  | 2,970          | 321          | 955          | 91           | 193        | 92                                    |
| CR013<br>CR014 |    | 2,970<br>2,970 | -321<br>321  | 955<br>955   | -91<br>91    | 193<br>193 | -92<br>92                             |
| CR015          | _  | 2,970          | -321         | 955          | -91          | 193        | -92                                   |
| CR016          | -  | 2,970          | 321          | 955          | 91           | 193        | 92                                    |
| CR017          | -  | 0              | 321          | 797          | 91           | 421        | 92                                    |
| CR018          | -  | 0              | -321         | 797          | -91          | 421        | -92                                   |
| CR019<br>CR020 |    | 0 0            | 321<br>-321  | 797<br>797   | 91<br>-91    | 421<br>421 | 92<br>-92                             |
| CR021          | -  | 0              | 321          | 797          | 91           | 421        | 92                                    |
| CR022          | -  | 0              | -321         | 797          | -91          | 421        | -92                                   |
| CR023          | -  | 0              | 321          | 797          | 91           | 421        | 92                                    |
| CR024<br>CR025 |    | 0 0            | -321<br>-321 | 797<br>797   | -91<br>-91   | 421<br>421 | -92<br>-92                            |
| CR026          |    | 0              | 321          | 797          | 91           | 421        | 92                                    |
| CR027          | -  | 0              | -321         | 797          | -91          | 421        | -92                                   |
| CR028          | -  | 0              | 321          | 797          | 91           | 421        | 92                                    |
| CR029<br>CR030 | -  | 0 0            | -321<br>321  | 797<br>797   | -91<br>91    | 421<br>421 | -92<br>92                             |
| CR030          |    | 0              | -321         | 797<br>797   | -91<br>-91   | 421<br>421 | -92<br>-92                            |
| CR032          | -  | 0              | 321          | 797          | 91           | 421        | 92                                    |
| CR033          | -  | 2,970          | 321          | 955          | 91           | 193        | 92                                    |
| CR034          | -  | 2,970          | -321         | 955          | -91          | 193        | -92                                   |
| CR035          | -  | 2,970          | 321          | 955          | 91           | 193        | 92                                    |

| Carico         | CC |                  |                  |            |              |                    |              |
|----------------|----|------------------|------------------|------------|--------------|--------------------|--------------|
| 541.105        | CC | <b>Fx</b><br>[N] | <b>Fy</b><br>[N] | Fz<br>[N]  | Mx<br>[N·m]  | <b>My</b><br>[N·m] | Mz<br>[N·m]  |
| CR036          | -  | 2,970            | -321             | 955        | -91          | 193                | -92          |
| CR037          | -  | 2,970            | 321              | 955        | 91           | 193                | 92           |
| CR038          | -  | 2,970            | -321             | 955        | -91          | 193                | -92          |
| CR039          | -  | 2,970            | 321              | 955        | 91           | 193                | 92           |
| CR040<br>CR041 | -  | 2,970<br>2,970   | -321<br>-321     | 955<br>955 | -91<br>-91   | 193<br>193         | -92<br>-92   |
| CR042          | _  | 2,970            | 321              | 955        | 91           | 193                | 92           |
| CR043          | -  | 2,970            | -321             | 955        | -91          | 193                | -92          |
| CR044          | -  | 2,970            | 321              | 955        | 91           | 193                | 92           |
| CR045          | -  | 2,970            | -321             | 955        | -91          | 193                | -92          |
| CR046          | -  | 2,970            | 321              | 955        | 91           | 193                | 92           |
| CR047<br>CR048 | -  | 2,970<br>2,970   | -321<br>321      | 955<br>955 | -91<br>91    | 193<br>193         | -92<br>92    |
| CR049          | _  | 0                | 321              | 797        | 91           | 421                | 92           |
| CR050          | -  | 0                | -321             | 797        | -91          | 421                | -92          |
| CR051          | -  | 0                | 321              | 797        | 91           | 421                | 92           |
| CR052          | -  | 0                | -321             | 797        | -91          | 421                | -92          |
| CR053<br>CR054 | -  | 0 0              | 321<br>-321      | 797<br>797 | 91<br>-91    | 421<br>421         | 92<br>-92    |
| CR055          | -  | 0                | 321              | 797        | 91           | 421                | 92           |
| CR056          | -  | 0                | -321             | 797        | -91          | 421                | -92          |
| CR057          | -  | 0                | -321             | 797        | -91          | 421                | -92          |
| CR058          | -  | 0                | 321              | 797        | 91           | 421                | 92           |
| CR059          | -  | 0                | -321             | 797        | -91          | 421                | -92          |
| CR060<br>CR061 |    | 0 0              | 321<br>-321      | 797<br>797 | 91<br>-91    | 421<br>421         | 92<br>-92    |
| CR062          | _  | 0                | 321              | 797        | 91           | 421                | 92           |
| CR063          | -  | 0                | -321             | 797        | -91          | 421                | -92          |
| CR064          | -  | 0                | 321              | 797        | 91           | 421                | 92           |
| CR065          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR066<br>CR067 | -  | 1,039<br>1,931   | 1,069<br>1,069   | 852<br>900 | 306<br>306   | 341<br>273         | 308<br>308   |
| CR068          | _  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR069          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR070          | -  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR071          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR072<br>CR073 | -  | 1,039<br>1,039   | 1,069<br>1,069   | 852<br>852 | 306<br>306   | 341<br>341         | 308<br>308   |
| CR074          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR075          | -  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR076          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR077          | -  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR078          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR079<br>CR080 | -  | 1,039<br>1,931   | 1,069<br>1,069   | 852<br>900 | 306<br>306   | 341<br>273         | 308<br>308   |
| CR081          | _  | 1,931            | -1,069           | 900        | -306         | 273                | -308         |
| CR082          | -  | 1,039            | -1,069           | 852        | -306         | 341                | -308         |
| CR083          | -  | 1,931            | -1,069           | 900        | -306         | 273                | -308         |
| CR084          | -  | 1,039            | -1,069           | 852<br>900 | -306         | 341                | -308         |
| CR085<br>CR086 | -  | 1,931<br>1,039   | -1,069<br>-1,069 | 852        | -306<br>-306 | 273<br>341         | -308<br>-308 |
| CR087          | _  | 1,931            | -1,069           | 900        | -306         | 273                | -308         |
| CR088          | -  | 1,039            | -1,069           | 852        | -306         | 341                | -308         |
| CR089          | -  | 1,039            | -1,069           | 852        | -306         | 341                | -308         |
| CR090<br>CR091 | -  | 1,931            | -1,069           | 900<br>852 | -306<br>-306 | 273<br>341         | -308<br>-308 |
| CR091          | -  | 1,039<br>1,931   | -1,069<br>-1,069 | 900        | -306         | 273                | -308         |
| CR093          | -  | 1,039            | -1,069           | 852        | -306         | 341                | -308         |
| CR094          | -  | 1,931            | -1,069           | 900        | -306         | 273                | -308         |
| CR095          | -  | 1,039            | -1,069           | 852        | -306         | 341                | -308         |
| CR096          | -  | 1,931            | -1,069           | 900        | -306         | 273<br>273         | -308<br>308  |
| CR097<br>CR098 |    | 1,931<br>1,039   | 1,069<br>1,069   | 900<br>852 | 306<br>306   | 341                | 308          |
| CR099          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR100          | -  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR101          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR102<br>CR103 |    | 1,039<br>1,931   | 1,069<br>1,069   | 852<br>900 | 306<br>306   | 341<br>273         | 308<br>308   |
| CR104          | _  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR105          | -  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR106          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR107          | -  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR108<br>CR109 |    | 1,931<br>1,039   | 1,069<br>1,069   | 900<br>852 | 306<br>306   | 273<br>341         | 308<br>308   |
| CR110          | _  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR111          | -  | 1,039            | 1,069            | 852        | 306          | 341                | 308          |
| CR112          | -  | 1,931            | 1,069            | 900        | 306          | 273                | 308          |
| CR113          | -  | 1,931            | -1,069           | 900        | -306         | 273                | -308         |
| CR114<br>CR115 | -  | 1,039<br>1,931   | -1,069<br>-1,069 | 852<br>900 | -306<br>-306 | 341<br>273         | -308<br>-308 |
| CR116          | _  | 1,039            | -1,069           | 852        | -306         | 341                | -308         |
| CR117          | -  | 1,931            | -1,069           | 900        | -306         | 273                | -308         |
| CR118          | -  | 1,039            | -1,069           | 852        | -306         | 341                | -308         |
| CR119          | -  | 1,931            | -1,069           | 900        | -306         | 273                | -308         |

| Carico  CR120 CR121 CR122 CR123 CR124 CR125 CR126 CR127 CR128  Nodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR0009 CR011 CR011 CR012 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR016 CR017 CR018 CR019 CR020 CR021 |                       | N   1,039   1,039   1,931   1,039   1,931   1,039   1,931   1,039   1,931   1,039   1,931   1,039   1,931   1,039   1,931   1,039   1,931   1,039   1,931   1,039   1,931   1,039   1,037   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057   2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fy  [N]  -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -233 -233 -233 -233 -233 -233 -233 -23          | Fz                                                                                                                         | Nx   [N·m]                                                                                                    | My  [N·m]  341  341  273  341  273  341  273  341  273  341  273  -78  -78  -78  -78  -78  -78  -78  -              | N-m   -308   -308   -308   -308   -308   -308   -308   -308   -308   -308   -308   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44   -44 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CR121 CR122 CR123 CR123 CR124 CR125 CR126 CR127 CR128  Nodo 00041 CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR011 CR012 CR013 CR014 CR015 CR015 CR016 CR017 CR018 CR017 CR018 CR019 CR019 CR019 CR019     |                       | 1,039 1,039 1,931 1,039 1,931 1,039 1,931 1,039 1,931 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -233 -233 -233 -233 -233 -233 -233 -23                   | 852<br>852<br>900<br>852<br>900<br>852<br>900<br>852<br>900<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897 | -306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306                                                  | 341<br>341<br>273<br>341<br>273<br>341<br>273<br>341<br>273<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78 | -308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR121 CR122 CR123 CR124 CR125 CR126 CR127 CR128  Nodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR019 CR017 CR018 CR019 CR019 CR019          |                       | 1,039 1,931 1,039 1,931 1,039 1,931 1,039 1,931 1,039 1,931 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -233 -233 -233 -233 -233 -233 -233 -23                          | 852<br>900<br>852<br>900<br>852<br>900<br>852<br>900<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897        | -306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306                                                  | 341<br>273<br>341<br>273<br>341<br>273<br>341<br>273<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78 | -308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR122 CR123 CR124 CR125 CR126 CR127 CR128  Nodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR019 CR019 CR019 CR019                            |                       | 1,931<br>1,039<br>1,931<br>1,039<br>1,931<br>1,039<br>1,931<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057 | -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -1,069 -233 -233 -233 -233 -233 -233 -233 -23                                 | 900<br>852<br>900<br>852<br>900<br>852<br>900<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897        | -306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306                                                  | 273 341 273 341 273 341 273 341 273  -78 -78 -78 -78 -78 -78 -78 -78 -78 -7                                         | -308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CR123 CR124 CR125 CR126 CR127 CR128  Nodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR017 CR018 CR017 CR018 CR019 CR019 CR019          |                       | 1,039 1,931 1,039 1,931 1,039 1,931 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1,069<br>-1,069<br>-1,069<br>-1,069<br>-1,069<br>-1,069<br>-233<br>-233<br>-233<br>-233<br>-233<br>-233<br>-233<br>-23 | 852<br>900<br>852<br>900<br>852<br>900<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897               | -306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-388<br>-88<br>-88<br>-88<br>-88<br>-88<br>-88<br>-88 | 341<br>273<br>341<br>273<br>341<br>273<br>341<br>273<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78 | -308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CR124 CR125 CR126 CR126 CR127 CR128  Nodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR019 CR017 CR018 CR019 CR019 CR019 CR019                |                       | 1,931<br>1,039<br>1,931<br>1,039<br>1,931<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057 | -1,069<br>-1,069<br>-1,069<br>-1,069<br>-1,069<br>-1,069<br>-233<br>-233<br>-233<br>-233<br>-233<br>-233<br>-233<br>-23 | 900<br>852<br>900<br>852<br>900<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                             | -306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306<br>-306                                                  | 273 341 273 341 273 341 273 -78 -78 -78 -78 -78 -78 -78 -78 -78 -78                                                 | -308<br>-308<br>-308<br>-308<br>-308<br>-308<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CR126 CR127 CR128  Nodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR017 CR018 CR019 CR019 CR019                                              |                       | 1,931<br>1,039<br>1,931<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,069<br>-1,069<br>-1,069<br>-233<br>-233<br>-233<br>-233<br>-233<br>-233<br>-233<br>-23                               | 900<br>852<br>900<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                                           | -306<br>-306<br>-306<br>-306<br>-306<br>-38<br>-88<br>-88<br>-88<br>-88<br>-88<br>-88<br>-88                  | 273<br>341<br>273<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                    | -308<br>-308<br>-308<br>-308<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CR127 CR128  Nodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR019 CR019 CR019                                                                |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1,069<br>-1,069<br>233<br>-233<br>233<br>-233<br>233<br>-233<br>-233<br>-233<br>-                                      | 852<br>900<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                                           | -306<br>-306<br>-306<br>-88<br>-88<br>-88<br>-88<br>-88<br>-88<br>-88                                         | 341<br>273<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                           | -308<br>-308<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CR128  Nodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR017 CR018 CR019 CR019 CR019                                                          |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1,069  233 -233 -233 -233 -233 -233 -233 -23                                                                           | 900<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                                                  | -306<br>88<br>-88<br>88<br>-88<br>88<br>-88<br>88<br>-88                                                      | -78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                                  | -308<br>44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rodo 00041  CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR019 CR019 CR019                                                                             | -                     | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 233<br>-233<br>233<br>-233<br>233<br>-233<br>-233<br>-233<br>-2                                                         | 897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                                                         | 88<br>-88<br>-88<br>-88<br>-88<br>-88<br>-88                                                                  | -78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                                         | 44<br>-44<br>-44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR001 CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR019 CR019 CR019                                                                                         |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -233<br>233<br>-233<br>233<br>-233<br>-233<br>-233<br>-233<br>-                                                         | 897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                                                                | -88<br>88<br>-88<br>88<br>-88<br>-88<br>-88                                                                   | -78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                                         | -44<br>44<br>-44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR002 CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017 CR018 CR019 CR019 CR019                                                                                               |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -233<br>233<br>-233<br>233<br>-233<br>-233<br>-233<br>-233<br>-                                                         | 897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                                                                | -88<br>88<br>-88<br>88<br>-88<br>-88<br>-88                                                                   | -78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                                         | -44<br>44<br>-44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CR003 CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017                                                                                                                             |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 233<br>-233<br>233<br>-233<br>-233<br>-233<br>-233<br>-233<br>233                                                       | 897<br>897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                                                                | 88<br>-88<br>-88<br>-88<br>-88<br>-88                                                                         | -78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                                                | 44<br>-44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CR004 CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR017                                                                                                                                   |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -233<br>233<br>-233<br>233<br>-233<br>-233<br>-233<br>233<br>-233<br>233                                                | 897<br>897<br>897<br>897<br>897<br>897<br>897<br>897                                                                       | -88<br>88<br>-88<br>-88<br>-88<br>88                                                                          | -78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                                                       | -44<br>44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CR005 CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR019 CR019                                                                                                                                   |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 233<br>-233<br>-233<br>-233<br>-233<br>-233<br>-233<br>-233                                                             | 897<br>897<br>897<br>897<br>897<br>897<br>897                                                                              | 88<br>-88<br>88<br>-88<br>-88                                                                                 | -78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                                                       | 44<br>-44<br>-44<br>-44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CR006 CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR019 CR020                                                                                                                                         |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -233<br>233<br>-233<br>-233<br>233<br>-233<br>233<br>-233<br>233                                                        | 897<br>897<br>897<br>897<br>897<br>897<br>897                                                                              | -88<br>88<br>-88<br>-88<br>88<br>-88                                                                          | -78<br>-78<br>-78<br>-78<br>-78<br>-78                                                                              | -44<br>44<br>-44<br>-44<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CR007 CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR019 CR020                                                                                                                                               |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 233<br>-233<br>-233<br>233<br>-233<br>233<br>-233<br>233                                                                | 897<br>897<br>897<br>897<br>897<br>897                                                                                     | 88<br>-88<br>-88<br>88<br>-88                                                                                 | -78<br>-78<br>-78<br>-78<br>-78                                                                                     | 44<br>-44<br>-44<br>44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CR008 CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR019 CR020                                                                                                                                                     |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -233<br>-233<br>233<br>-233<br>233<br>-233<br>233                                                                       | 897<br>897<br>897<br>897<br>897                                                                                            | -88<br>-88<br>88<br>-88                                                                                       | -78<br>-78<br>-78<br>-78                                                                                            | -44<br>-44<br>44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CR009 CR010 CR011 CR012 CR013 CR014 CR015 CR016 CR017 CR018 CR019 CR020                                                                                                                                                           |                       | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -233<br>233<br>-233<br>233<br>-233<br>233                                                                               | 897<br>897<br>897<br>897                                                                                                   | -88<br>88<br>-88                                                                                              | -78<br>-78<br>-78                                                                                                   | -44<br>44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CR010<br>CR011<br>CR012<br>CR013<br>CR014<br>CR015<br>CR016<br>CR017<br>CR018<br>CR019                                                                                                                                            | -                     | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 233<br>-233<br>233<br>-233<br>233                                                                                       | 897<br>897<br>897                                                                                                          | 88<br>-88                                                                                                     | -78<br>-78                                                                                                          | 44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CR011<br>CR012<br>CR013<br>CR014<br>CR015<br>CR016<br>CR017<br>CR018<br>CR019<br>CR020                                                                                                                                            | -                     | 2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -233<br>233<br>-233<br>233                                                                                              | 897<br>897                                                                                                                 | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR012<br>CR013<br>CR014<br>CR015<br>CR016<br>CR017<br>CR018<br>CR019<br>CR020                                                                                                                                                     | -                     | 2,057<br>2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 233<br>-233<br>233                                                                                                      | 897                                                                                                                        |                                                                                                               |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CR013<br>CR014<br>CR015<br>CR016<br>CR017<br>CR018<br>CR019<br>CR020                                                                                                                                                              | -<br>-<br>-<br>-<br>- | 2,057<br>2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -233<br>233                                                                                                             |                                                                                                                            |                                                                                                               | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR014<br>CR015<br>CR016<br>CR017<br>CR018<br>CR019<br>CR020                                                                                                                                                                       | -                     | 2,057<br>2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 233                                                                                                                     | 007                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR015<br>CR016<br>CR017<br>CR018<br>CR019<br>CR020                                                                                                                                                                                | -                     | 2,057<br>2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR016<br>CR017<br>CR018<br>CR019<br>CR020                                                                                                                                                                                         | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR017<br>CR018<br>CR019<br>CR020                                                                                                                                                                                                  | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 233                                                                                                                     | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR018<br>CR019<br>CR020                                                                                                                                                                                                           | -                     | -1,0/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR020                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                   | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR021                                                                                                                                                                                                                             |                       | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                   | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR022                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR023                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR024                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR025                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR026                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR027                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR028                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR029<br>CR030                                                                                                                                                                                                                    | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233<br>233                                                                                                             | 1,011                                                                                                                      | -88                                                                                                           | 112<br>112                                                                                                          | -44<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CR030<br>CR031                                                                                                                                                                                                                    | -                     | -1,079<br>-1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -233                                                                                                                    | 1,011<br>1,011                                                                                                             | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR032                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR033                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233                                                                                                                     | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR034                                                                                                                                                                                                                             | _                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR035                                                                                                                                                                                                                             | _                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233                                                                                                                     | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR036                                                                                                                                                                                                                             | _                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR037                                                                                                                                                                                                                             | _                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233                                                                                                                     | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR038                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR039                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233                                                                                                                     | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR040                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR041                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR042                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233                                                                                                                     | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR043                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR044                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233                                                                                                                     | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR045                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR046                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233                                                                                                                     | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR047                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -233                                                                                                                    | 897                                                                                                                        | -88                                                                                                           | -78<br>79                                                                                                           | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR048                                                                                                                                                                                                                             | -                     | 2,057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233<br>233                                                                                                              | 897                                                                                                                        | 88                                                                                                            | -78                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR049<br>CR050                                                                                                                                                                                                                    | -                     | -1,079<br>-1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -233                                                                                                                    | 1,011<br>1,011                                                                                                             | -88                                                                                                           | 112<br>112                                                                                                          | 44<br>-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CR051                                                                                                                                                                                                                             | _                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR052                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR053                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR054                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR055                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR056                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR057                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR058                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR059                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR060                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR061                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR062                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR063                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -233                                                                                                                    | 1,011                                                                                                                      | -88                                                                                                           | 112                                                                                                                 | -44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR064                                                                                                                                                                                                                             | -                     | -1,079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                     | 1,011                                                                                                                      | 88                                                                                                            | 112                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CR065                                                                                                                                                                                                                             | -                     | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 776                                                                                                                     | 937                                                                                                                        | 292                                                                                                           | -12                                                                                                                 | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR066                                                                                                                                                                                                                             | -                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 776                                                                                                                     | 971                                                                                                                        | 292                                                                                                           | 46                                                                                                                  | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR067                                                                                                                                                                                                                             | -                     | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 776<br>776                                                                                                              | 937                                                                                                                        | 292                                                                                                           | -12<br>46                                                                                                           | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR068<br>CR069                                                                                                                                                                                                                    | -                     | 18<br>960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 776<br>776                                                                                                              | 971<br>937                                                                                                                 | 292<br>292                                                                                                    | 46<br>-12                                                                                                           | 148<br>148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CR070                                                                                                                                                                                                                             | -                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 776                                                                                                                     | 971                                                                                                                        | 292                                                                                                           | -12<br>46                                                                                                           | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR071                                                                                                                                                                                                                             | -                     | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 776                                                                                                                     | 937                                                                                                                        | 292                                                                                                           | -12                                                                                                                 | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR071                                                                                                                                                                                                                             | _                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 776                                                                                                                     | 971                                                                                                                        | 292                                                                                                           | -12<br>46                                                                                                           | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR073                                                                                                                                                                                                                             | _                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 776                                                                                                                     | 971                                                                                                                        | 292                                                                                                           | 46                                                                                                                  | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CR074                                                                                                                                                                                                                             | -                     | 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 776                                                                                                                     | 937                                                                                                                        | 292                                                                                                           | -12                                                                                                                 | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| -   |                |          |                  |              |                |              | Carichi sui noc | di in fondazione |
|-----|----------------|----------|------------------|--------------|----------------|--------------|-----------------|------------------|
|     | Carico         | CC       | Fx               | Fy           | Fz             | Mx           | Му              | Mz               |
| ŀ   | CR075          | -        | [N] 18           | [N] 776      | [N] 971        | [N·m]        | [N·m] 46        | [N·m] 148        |
|     | CR076          | -        | 960              | 776          | 937            | 292          | -12             | 148              |
|     | CR077          | -        | 18               | 776          | 971            | 292          | 46              | 148              |
|     | CR078<br>CR079 | -        | 960<br>18        | 776  <br>776 | 937<br>971     | 292<br>292   | -12<br>46       | 148<br>148       |
|     | CR080          | -        | 960              | 776          | 937            | 292          | -12             | 148              |
|     | CR081          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR082          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR083          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR084<br>CR085 | -        | 18<br>960        | -776<br>-776 | 971<br>937     | -292<br>-292 | 46<br>-12       | -148<br>-148     |
|     | CR086          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR087          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR088          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR089<br>CR090 | -        | 18<br>960        | -776<br>-776 | 971<br>937     | -292<br>-292 | 46              | -148<br>-148     |
|     | CR090          | -        | 18               | -776         | 971            | -292         | -12<br>46       | -148             |
|     | CR092          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR093          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR094          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR095<br>CR096 |          | 18<br>960        | -776<br>-776 | 971<br>937     | -292<br>-292 | 46<br>-12       | -148<br>-148     |
|     | CR097          | -        | 960              | 776          | 937            | 292          | -12             | 148              |
|     | CR098          | -        | 18               | 776          | 971            | 292          | 46              | 148              |
|     | CR099          | -        | 960              | 776          | 937            | 292          | -12             | 148              |
|     | CR100<br>CR101 | -        | 18<br>960        | 776<br>776   | 971<br>937     | 292<br>292   | 46<br>-12       | 148<br>148       |
|     | CR101<br>CR102 | -        | 18               | 776          | 937            | 292          | -12<br>46       | 148              |
|     | CR103          | -        | 960              | 776          | 937            | 292          | -12             | 148              |
|     | CR104          | -        | 18               | 776          | 971            | 292          | 46              | 148              |
|     | CR105          | -        | 18               | 776          | 971            | 292          | 46              | 148              |
|     | CR106<br>CR107 | -        | 960              | 776  <br>776 | 937<br>971     | 292<br>292   | -12<br>46       | 148<br>148       |
|     | CR108          | -        | 960              | 776          | 937            | 292          | -12             | 148              |
|     | CR109          | -        | 18               | 776          | 971            | 292          | 46              | 148              |
|     | CR110          | -        | 960              | 776          | 937            | 292          | -12             | 148              |
|     | CR111<br>CR112 | -        | 18<br>960        | 776<br>776   | 971<br>937     | 292<br>292   | 46<br>-12       | 148<br>148       |
|     | CR113          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR114          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR115          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR116          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR117<br>CR118 | -        | 960<br>18        | -776<br>-776 | 937<br>971     | -292<br>-292 | -12<br>46       | -148<br>-148     |
|     | CR119          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR120          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR121          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR122<br>CR123 | _        | 960<br>18        | -776<br>-776 | 937<br>971     | -292<br>-292 | -12<br>46       | -148<br>-148     |
|     | CR124          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR125          | -        | 18               | -776         | 971            | -292         | 46              | -148             |
|     | CR126          | -        | 960              | -776         | 937            | -292         | -12             | -148             |
|     | CR127<br>CR128 | _        | 18<br>960        | -776<br>-776 | 971<br>937     | -292<br>-292 | 46<br>-12       | -148<br>-148     |
|     | Nodo 00042     |          | 300              | 770          | 307            | 202          | 12              | 140              |
|     | CR001          | -        | 466              | 194          | 1,761          | 123          | -208            | 16               |
|     | CR002          | -        | 466              | -194         | 1,761          | -123         | -208            | -16              |
|     | CR003<br>CR004 | <u>-</u> | 466<br>466       | 194<br>-194  | 1,761<br>1,761 | 123<br>-123  | -208<br>-208    | 16<br>-16        |
|     | CR004<br>CR005 | -        | 466              | 194          | 1,761          | 123          | -208            | 16               |
|     | CR006          | -        | 466              | -194         | 1,761          | -123         | -208            | -16              |
|     | CR007          | -        | 466              | 194          | 1,761          | 123          | -208            | 16               |
|     | CR008<br>CR009 | -        | 466<br>466       | -194<br>-194 | 1,761<br>1,761 | -123<br>-123 | -208<br>-208    | -16<br>-16       |
|     | CR010          | -        | 466              | 194          | 1,761          | 123          | -208            | 16               |
|     | CR011          | -        | 466              | -194         | 1,761          | -123         | -208            | -16              |
|     | CR012          | -        | 466              | 194          | 1,761          | 123          | -208            | 16               |
|     | CR013<br>CR014 | -        | 466<br>466       | -194         | 1,761          | -123<br>123  | -208<br>-208    | -16<br>16        |
|     | CR014<br>CR015 | -        | 466              | 194<br>-194  | 1,761<br>1,761 | -123         | -208            | -16              |
|     | CR016          | -        | 466              | 194          | 1,761          | 123          | -208            | 16               |
|     | CR017          | -        | -2,670           | 194          | 1,129          | 123          | 12              | 16               |
|     | CR018          | -        | -2,670           | -194         | 1,129          | -123         | 12              | -16              |
|     | CR019<br>CR020 | -<br>-   | -2,670<br>-2,670 | 194<br>-194  | 1,129<br>1,129 | 123<br>-123  | 12<br>12        | 16<br>-16        |
|     | CR021          | -        | -2,670           | 194          | 1,129          | 123          | 12              | 16               |
|     | CR022          | -        | -2,670           | -194         | 1,129          | -123         | 12              | -16              |
|     | CR023          | -        | -2,670           | 194          | 1,129          | 123          | 12              | 16               |
|     | CR024<br>CR025 | -<br>-   | -2,670<br>-2,670 | -194<br>-194 | 1,129<br>1,129 | -123<br>-123 | 12<br>12        | -16<br>-16       |
|     | CR026          | -        | -2,670           | 194          | 1,129          | 123          | 12              | 16               |
|     | CR027          | _        | -2,670           | -194         | 1,129          | -123         | 12              | -16              |
| - 1 |                |          |                  |              |                |              |                 |                  |
|     | CR028<br>CR029 | -        | -2,670<br>-2,670 | 194<br>-194  | 1,129<br>1,129 | 123<br>-123  | 12<br>12        | 16<br>-16        |

|                |    |                  |              |                |              |              | di in fondazione |
|----------------|----|------------------|--------------|----------------|--------------|--------------|------------------|
| Carico         | CC | Fx               | Fy           | Fz             | Mx           | My           | Mz               |
| CR030          | -  | [N]<br>-2,670    | [N]<br>194   | [N]<br>1,129   | [N·m]<br>123 | [N·m]        | [N·m]            |
| CR031          | _  | -2,670           | -194         | 1,129          | -123         | 12           | -16              |
| CR032          | -  | -2,670           | 194          | 1,129          | 123          | 12           | 16               |
| CR033          | -  | 466              | 194          | 1,761          | 123          | -208         | 16               |
| CR034<br>CR035 | _  | 466<br>466       | -194<br>194  | 1,761<br>1,761 | -123<br>123  | -208<br>-208 | -16<br>16        |
| CR036          | _  | 466              | -194         | 1,761          | -123         | -208         | -16              |
| CR037          | -  | 466              | 194          | 1,761          | 123          | -208         | 16               |
| CR038          | -  | 466              | -194         | 1,761          | -123         | -208         | -16              |
| CR039          | -  | 466              | 194          | 1,761          | 123          | -208         | 16               |
| CR040<br>CR041 | _  | 466<br>466       | -194<br>-194 | 1,761<br>1,761 | -123<br>-123 | -208<br>-208 | -16<br>-16       |
| CR042          | _  | 466              | 194          | 1,761          | 123          | -208         | 16               |
| CR043          | -  | 466              | -194         | 1,761          | -123         | -208         | -16              |
| CR044          | -  | 466              | 194          | 1,761          | 123          | -208         | 16               |
| CR045<br>CR046 | -  | 466<br>466       | -194<br>194  | 1,761<br>1,761 | -123<br>123  | -208<br>-208 | -16<br>16        |
| CR047          | -  | 466              | -194         | 1,761          | -123         | -208         | -16              |
| CR048          | -  | 466              | 194          | 1,761          | 123          | -208         | 16               |
| CR049          | -  | -2,670           | 194          | 1,129          | 123          | 12           | 16               |
| CR050          | -  | -2,670           | -194         | 1,129          | -123         | 12           | -16              |
| CR051<br>CR052 | -  | -2,670<br>-2,670 | 194<br>-194  | 1,129<br>1,129 | 123<br>-123  | 12<br>12     | 16<br>-16        |
| CR052          |    | -2,670           | 194          | 1,129          | 123          | 12           | 16               |
| CR054          | -  | -2,670           | -194         | 1,129          | -123         | 12           | -16              |
| CR055          | -  | -2,670           | 194          | 1,129          | 123          | 12           | 16               |
| CR056          | -  | -2,670           | -194         | 1,129          | -123         | 12           | -16              |
| CR057<br>CR058 |    | -2,670<br>-2,670 | -194<br>194  | 1,129<br>1,129 | -123<br>123  | 12<br>12     | -16<br>16        |
| CR059          | -  | -2,670           | -194         | 1,129          | -123         | 12           | -16              |
| CR060          | -  | -2,670           | 194          | 1,129          | 123          | 12           | 16               |
| CR061          | -  | -2,670           | -194         | 1,129          | -123         | 12           | -16              |
| CR062<br>CR063 | -  | -2,670<br>-2,670 | 194<br>-194  | 1,129<br>1,129 | 123<br>-123  | 12<br>12     | 16<br>-16        |
| CR064          | _  | -2,670           | 194          | 1,129          | 123          | 12           | 16               |
| CR065          | -  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR066          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR067<br>CR068 | -  | -631<br>-1,573   | 646<br>646   | 1,540<br>1,350 | 411<br>411   | -131<br>-65  | 52<br>52         |
| CR069          | _  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR070          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR071          | -  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR072          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR073<br>CR074 | -  | -1,573<br>-631   | 646<br>646   | 1,350<br>1,540 | 411<br>411   | -65<br>-131  | 52<br>52         |
| CR075          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR076          | -  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR077          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52<br>52         |
| CR078<br>CR079 | -  | -631<br>-1,573   | 646<br>646   | 1,540<br>1,350 | 411<br>411   | -131<br>-65  | 52<br>52         |
| CR080          | -  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR081          | -  | -631             | -646         | 1,540          | -411         | -131         | -52              |
| CR082<br>CR083 | -  | -1,573           | -646<br>-646 | 1,350          | -411         | -65          | -52              |
| CR084          | -  | -631<br>-1,573   | -646         | 1,540<br>1,350 | -411<br>-411 | -131<br>-65  | -52<br>-52       |
| CR085          | -  | -631             | -646         | 1,540          | -411         | -131         | -52              |
| CR086          | -  | -1,573           | -646         | 1,350          | -411         | -65          | -52              |
| CR087<br>CR088 | -  | -631<br>-1,573   | -646<br>-646 | 1,540<br>1,350 | -411<br>-411 | -131<br>-65  | -52<br>-52       |
| CR089          |    | -1,573           | -646         | 1,350          | -411<br>-411 | -65          | -52<br>-52       |
| CR090          | -  | -631             | -646         | 1,540          | -411         | -131         | -52              |
| CR091          | -  | -1,573           | -646         | 1,350          | -411         | -65          | -52              |
| CR092<br>CR093 | -  | -631<br>-1,573   | -646<br>-646 | 1,540<br>1,350 | -411<br>-411 | -131<br>-65  | -52<br>-52       |
| CR094          | -  | -631             | -646         | 1,540          | -411         | -131         | -52              |
| CR095          | -  | -1,573           | -646         | 1,350          | -411         | -65          | -52              |
| CR096          | -  | -631             | -646         | 1,540          | -411         | -131         | -52              |
| CR097          | -  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR098<br>CR099 | -  | -1,573<br>-631   | 646<br>646   | 1,350<br>1,540 | 411<br>411   | -65<br>-131  | 52<br>52         |
| CR100          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR101          | -  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR102          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR103<br>CR104 |    | -631<br>-1,573   | 646<br>646   | 1,540<br>1,350 | 411<br>411   | -131<br>-65  | 52<br>52         |
| CR105          | _  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR106          | -  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR107          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR108<br>CR109 | -  | -631<br>-1,573   | 646<br>646   | 1,540<br>1,350 | 411<br>411   | -131<br>-65  | 52<br>52         |
| CR110          |    | -1,573           | 646          | 1,540          | 411          | -131         | 52               |
| CR111          | -  | -1,573           | 646          | 1,350          | 411          | -65          | 52               |
| CR112          | -  | -631             | 646          | 1,540          | 411          | -131         | 52               |
| CR113          | =  | -631             | -646         | 1,540          | -411         | -131         | -52              |

|                |    |                  |              |                |               | Carichi sui no | di in fondazione |
|----------------|----|------------------|--------------|----------------|---------------|----------------|------------------|
| Carico         | CC | Fx               | Fy           | Fz             | Mx            | Му             | Mz               |
| CR114          | _  | [N]<br>-1,573    | [N]<br>-646  | [N]<br>1,350   | [N·m]<br>-411 | [N·m]<br>-65   | [N·m]<br>-52     |
| CR115          | _  | -631             | -646         | 1,540          | -411          | -131           | -52              |
| CR116          | -  | -1,573           | -646         | 1,350          | -411          | -65            | -52              |
| CR117          | -  | -631             | -646         | 1,540          | -411          | -131           | -52              |
| CR118          | -  | -1,573           | -646         | 1,350          | -411          | -65            | -52              |
| CR119<br>CR120 | -  | -631<br>-1,573   | -646<br>-646 | 1,540<br>1,350 | -411<br>-411  | -131<br>-65    | -52<br>-52       |
| CR121          | -  | -1,573           | -646         | 1,350          | -411          | -65            | -52              |
| CR122          | -  | -631             | -646         | 1,540          | -411          | -131           | -52              |
| CR123          | -  | -1,573           | -646         | 1,350          | -411          | -65            | -52              |
| CR124          | -  | -631             | -646         | 1,540          | -411          | -131           | -52              |
| CR125<br>CR126 | -  | -1,573<br>-631   | -646<br>-646 | 1,350<br>1,540 | -411<br>-411  | -65<br>-131    | -52<br>-52       |
| CR127          | -  | -1,573           | -646         | 1,350          | -411          | -65            | -52              |
| CR128          | -  | -631             | -646         | 1,540          | -411          | -131           | -52              |
| Nodo 00043     |    |                  |              |                |               |                |                  |
| CR001          | -  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR002<br>CR003 | -  | -1,680<br>-1,680 | -176<br>176  | 5,075<br>5,075 | -166<br>166   | -553<br>-553   | 91               |
| CR004          | -  | -1,680           | -176         | 5,075          | -166          | -553           | -91<br>91        |
| CR005          | -  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR006          | -  | -1,680           | -176         | 5,075          | -166          | -553           | 91               |
| CR007          | -  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR008<br>CR009 |    | -1,680<br>-1,680 | -176<br>-176 | 5,075<br>5,075 | -166<br>-166  | -553<br>-553   | 91<br>91         |
| CR010          | _  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR011          | -  | -1,680           | -176         | 5,075          | -166          | -553           | 91               |
| CR012          | -  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR013          | -  | -1,680           | -176         | 5,075<br>5,075 | -166          | -553           | 91               |
| CR014<br>CR015 |    | -1,680<br>-1,680 | 176<br>-176  | 5,075<br>5,075 | 166<br>-166   | -553<br>-553   | -91<br>91        |
| CR016          | _  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR017          | -  | -4,544           | 176          | 4,405          | 166           | -261           | -91              |
| CR018          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR019<br>CR020 | -  | -4,544<br>-4,544 | 176<br>-176  | 4,405<br>4,405 | 166<br>-166   | -261<br>-261   | -91<br>91        |
| CR021          | -  | -4,544           | 176          | 4,405          | 166           | -261           | -91              |
| CR022          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR023          | -  | -4,544           | 176          | 4,405          | 166           | -261           | -91              |
| CR024          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR025<br>CR026 | -  | -4,544<br>-4,544 | -176<br>176  | 4,405<br>4,405 | -166<br>166   | -261<br>-261   | 91<br>-91        |
| CR027          | _  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR028          | -  | -4,544           | 176          | 4,405          | 166           | -261           | -91              |
| CR029          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR030<br>CR031 | -  | -4,544<br>-4,544 | 176<br>-176  | 4,405<br>4,405 | 166<br>-166   | -261<br>-261   | -91<br>91        |
| CR032          | -  | -4,544           | 176          | 4,405          | 166           | -261           | -91              |
| CR033          | -  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR034          | -  | -1,680           | -176         | 5,075          | -166          | -553           | 91               |
| CR035          | -  | -1,680           | 176          | 5,075<br>5,075 | 166           | -553           | -91<br>91        |
| CR036<br>CR037 | -  | -1,680<br>-1,680 | -176<br>176  | 5,075          | -166<br>166   | -553<br>-553   | -91              |
| CR038          | -  | -1,680           | -176         | 5,075          | -166          | -553           | 91               |
| CR039          | -  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR040          | -  | -1,680           | -176         | 5,075          | -166          | -553           | 91               |
| CR041<br>CR042 | -  | -1,680<br>-1,680 | -176<br>176  | 5,075<br>5,075 | -166<br>166   | -553<br>-553   | 91<br>-91        |
| CR042<br>CR043 |    | -1,680           | -176         | 5,075          | -166          | -553           | 91               |
| CR044          | -  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR045          | -  | -1,680           | -176         | 5,075          | -166          | -553           | 91               |
| CR046          | -  | -1,680           | 176          | 5,075          | 166           | -553           | -91              |
| CR047<br>CR048 |    | -1,680<br>-1,680 | -176<br>176  | 5,075<br>5,075 | -166<br>166   | -553<br>-553   | 91<br>-91        |
| CR048<br>CR049 |    | -4,544           | 176          | 4,405          | 166           | -553<br>-261   | -91<br>-91       |
| CR050          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR051          | -  | -4,544           | 176          | 4,405          | 166           | -261           | -91              |
| CR052          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR053<br>CR054 |    | -4,544<br>-4,544 | 176<br>-176  | 4,405<br>4,405 | 166<br>-166   | -261<br>-261   | -91<br>91        |
| CR055          | -  | -4,544           | 176          | 4,405          | 166           | -261           | -91              |
| CR056          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR057          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR058<br>CR059 |    | -4,544<br>-4,544 | 176<br>-176  | 4,405<br>4,405 | 166<br>-166   | -261<br>-261   | -91<br>91        |
| CR059          |    | -4,544<br>-4,544 | 176          | 4,405          | 166           | -261<br>-261   | -91              |
| CR061          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR062          | -  | -4,544           | 176          | 4,405          | 166           | -261           | -91              |
| CR063          | -  | -4,544           | -176         | 4,405          | -166          | -261           | 91               |
| CR064<br>CR065 | -  | -4,544<br>-2,682 | 176<br>587   | 4,405<br>4,841 | 166<br>553    | -261<br>-451   | -91<br>-304      |
| CR066          | -  | -3,542           | 587          | 4,639          | 553           | -363           | -304             |
| CR067          | -  | -2,682           | 587          | 4,841          | 553           | -451           | -304             |
| CR068          | -  | -3,542           | 587          | 4,639          | 553           | -363           | -304             |

|                     |          |                  |               |                  |               | Carichi sui no | di in fondazione       |
|---------------------|----------|------------------|---------------|------------------|---------------|----------------|------------------------|
| Carico              | CC       | Fx               | Fy            | Fz               | Mx            | My             | Mz                     |
| CR069               | -        | [N]<br>-2,682    | [N] 587       | [N]<br>4,841     | [N·m] 553     | [N·m]<br>-451  | [N·m]<br>-304          |
| CR070               | -        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR071               | -        | -2,682           | 587           | 4,841            | 553           | -451           | -304                   |
| CR072               | -        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR073<br>CR074      | -        | -3,542<br>-2,682 | 587<br>587    | 4,639<br>4,841   | 553<br>553    | -363<br>-451   | -304<br>-304           |
| CR075               | -        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR076               | -        | -2,682           | 587           | 4,841            | 553           | -451           | -304                   |
| CR077               | -        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR078               | -        | -2,682           | 587           | 4,841            | 553           | -451           | -304                   |
| CR079<br>CR080      | -        | -3,542<br>-2,682 | 587<br>587    | 4,639<br>4,841   | 553<br>553    | -363<br>-451   | -304<br>-304           |
| CR081               | _        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR082               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR083               | -        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR084               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304<br>304             |
| CR085<br>CR086      | -        | -2,682<br>-3,542 | -587<br>-587  | 4,841<br>4,639   | -553<br>-553  | -451<br>-363   | 304                    |
| CR087               | -        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR088               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR089               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR090               | -        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR091<br>CR092      |          | -3,542<br>-2,682 | -587<br>-587  | 4,639<br>4,841   | -553<br>-553  | -363<br>-451   | 304<br>304             |
| CR093               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR094               | -        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR095               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR096<br>CR097      | <u>.</u> | -2,682<br>-2,682 | -587<br>587   | 4,841<br>4,841   | -553<br>553   | -451<br>-451   | 304<br>-304            |
| CR098               |          | -2,662           | 587           | 4,639            | 553           | -363           | -304                   |
| CR099               | -        | -2,682           | 587           | 4,841            | 553           | -451           | -304                   |
| CR100               | -        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR101               | -        | -2,682           | 587           | 4,841            | 553           | -451           | -304                   |
| CR102<br>CR103      | _        | -3,542<br>-2,682 | 587<br>587    | 4,639<br>4,841   | 553<br>553    | -363<br>-451   | -304<br>-304           |
| CR104               | _        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR105               | -        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR106               | -        | -2,682           | 587           | 4,841            | 553           | -451           | -304                   |
| CR107<br>CR108      | -        | -3,542<br>-2,682 | 587<br>587    | 4,639<br>4,841   | 553<br>553    | -363<br>-451   | -304<br>-304           |
| CR109               | -        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR110               | -        | -2,682           | 587           | 4,841            | 553           | -451           | -304                   |
| CR111               | -        | -3,542           | 587           | 4,639            | 553           | -363           | -304                   |
| CR112               | -        | -2,682           | 587           | 4,841            | 553           | -451           | -304                   |
| CR113<br>CR114      | _        | -2,682<br>-3,542 | -587<br>-587  | 4,841<br>4,639   | -553<br>-553  | -451<br>-363   | 304<br>304             |
| CR115               | _        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR116               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR117               | -        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR118<br>CR119      | -        | -3,542<br>-2,682 | -587<br>-587  | 4,639<br>4,841   | -553<br>-553  | -363<br>-451   | 304<br>304             |
| CR120               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR121               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR122               | -        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR123               | -        | -3,542           | -587          | 4,639            | -553<br>553   | -363           | 304                    |
| CR124<br>CR125      |          | -2,682<br>-3,542 | -587<br>-587  | 4,841<br>4,639   | -553<br>-553  | -451<br>-363   | 304<br>304             |
| CR126               | _        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| CR127               | -        | -3,542           | -587          | 4,639            | -553          | -363           | 304                    |
| CR128               | -        | -2,682           | -587          | 4,841            | -553          | -451           | 304                    |
| Nodo 00053<br>CR001 | _        | 4,544            | 176           | 4,405            | 166           | 261            | 91                     |
| CR001               |          | 4,544            | -176          | 4,405            | -166          | 261            | -91                    |
| CR003               | _        | 4,544            | 176           | 4,405            | 166           | 261            | 91                     |
| CR004               | -        | 4,544            | -176          | 4,405            | -166          | 261            | -91                    |
| CR005               | -        | 4,544            | 176           | 4,405            | 166           | 261            | 91                     |
| CR006<br>CR007      | -        | 4,544<br>4,544   | -176<br>176   | 4,405<br>4,405   | -166<br>166   | 261<br>261     | -91<br>91              |
| CR008               | _        | 4,544            | -176          | 4,405            | -166          | 261            | -91                    |
| CR009               | -        | 4,544            | -176          | 4,405            | -166          | 261            | -91                    |
| CR010               | -        | 4,544            | 176           | 4,405            | 166           | 261            | 91                     |
| CR011<br>CR012      | <u>.</u> | 4,544<br>4,544   | -176<br>176   | 4,405<br>4,405   | -166<br>166   | 261<br>261     | -91<br>91              |
| CR012               |          | 4,544            | -176          | 4,405            | -166          | 261            | -91                    |
| CR014               | -        | 4,544            | 176           | 4,405            | 166           | 261            | 91                     |
| CR015               | -        | 4,544            | -176          | 4,405            | -166          | 261            | -91                    |
| CR016               | -        | 4,544            | 176           | 4,405            | 166           | 261            | 91                     |
| CR017<br>CR018      | -        | 1,680<br>1,680   | 176<br>-176   | 5,075<br>5,075   | 166<br>-166   | 553<br>553     | 91<br>-91              |
| CR019               | _        | 1,680            | 176           | 5,075            | 166           | 553            | 91                     |
| CR020               | -        | 1,680            | -176          | 5,075            | -166          | 553            | -91                    |
| CR021               | -        | 1,680            | 176           | 5,075            | 166           | 553            | 91                     |
| CR022<br>CR023      | -<br>-   | 1,680  <br>1,680 | -176  <br>176 | 5,075  <br>5,075 | -166  <br>166 | 553<br>553     | -91  <br>91            |
| UNU23               | -        | 1,000            | 1/0           | 5,075            | 100           |                | 91<br>MIT 04 transport |

|                |    |                |              |                |               |              | di in fondazione |
|----------------|----|----------------|--------------|----------------|---------------|--------------|------------------|
| Carico         | CC | Fx             | Fy           | Fz             | Mx            | My           | Mz               |
| CR024          | _  | [N]<br>1,680   | [N]<br>-176  | [N]<br>5,075   | [N·m]<br>-166 | [N·m] 553    | [N·m]<br>-91     |
| CR025          | _  | 1,680          | -176         | 5,075          | -166          | 553          | -91              |
| CR026          | -  | 1,680          | 176          | 5,075          | 166           | 553          | 91               |
| CR027          | -  | 1,680          | -176         | 5,075          | -166          | 553          | -91              |
| CR028<br>CR029 | -  | 1,680<br>1,680 | 176<br>-176  | 5,075<br>5,075 | 166<br>-166   | 553<br>553   | 91<br>-91        |
| CR029          |    | 1,680          | 176          | 5,075          | 166           | 553          | 91               |
| CR031          | -  | 1,680          | -176         | 5,075          | -166          | 553          | -91              |
| CR032          | -  | 1,680          | 176          | 5,075          | 166           | 553          | 91               |
| CR033          | -  | 4,544          | 176          | 4,405          | 166           | 261          | 91               |
| CR034<br>CR035 | -  | 4,544<br>4,544 | -176<br>176  | 4,405<br>4,405 | -166<br>166   | 261<br>261   | -91<br>91        |
| CR036          | _  | 4,544          | -176         | 4,405          | -166          | 261          | -91              |
| CR037          | -  | 4,544          | 176          | 4,405          | 166           | 261          | 91               |
| CR038          | -  | 4,544          | -176         | 4,405          | -166          | 261          | -91              |
| CR039<br>CR040 | -  | 4,544<br>4,544 | 176<br>-176  | 4,405<br>4,405 | 166<br>-166   | 261<br>261   | 91<br>-91        |
| CR041          | _  | 4,544          | -176         | 4,405          | -166          | 261          | -91              |
| CR042          | -  | 4,544          | 176          | 4,405          | 166           | 261          | 91               |
| CR043          | -  | 4,544          | -176         | 4,405          | -166          | 261          | -91              |
| CR044<br>CR045 | -  | 4,544          | 176<br>-176  | 4,405<br>4,405 | 166           | 261          | 91               |
| CR046          |    | 4,544<br>4,544 | 176          | 4,405          | -166<br>166   | 261<br>261   | -91<br>91        |
| CR047          | -  | 4,544          | -176         | 4,405          | -166          | 261          | -91              |
| CR048          | -  | 4,544          | 176          | 4,405          | 166           | 261          | 91               |
| CR049          | -  | 1,680          | 176          | 5,075          | 166           | 553          | 91               |
| CR050<br>CR051 |    | 1,680<br>1,680 | -176<br>176  | 5,075<br>5,075 | -166<br>166   | 553<br>553   | -91<br>91        |
| CR052          | _  | 1,680          | -176         | 5,075          | -166          | 553          | -91              |
| CR053          | -  | 1,680          | 176          | 5,075          | 166           | 553          | 91               |
| CR054          | -  | 1,680          | -176         | 5,075          | -166          | 553          | -91              |
| CR055<br>CR056 |    | 1,680<br>1,680 | 176<br>-176  | 5,075<br>5,075 | 166<br>-166   | 553<br>553   | 91<br>-91        |
| CR057          | _  | 1,680          | -176         | 5,075          | -166          | 553          | -91              |
| CR058          | -  | 1,680          | 176          | 5,075          | 166           | 553          | 91               |
| CR059          | -  | 1,680          | -176         | 5,075          | -166          | 553          | -91              |
| CR060<br>CR061 | -  | 1,680<br>1,680 | 176<br>-176  | 5,075<br>5,075 | 166<br>-166   | 553<br>553   | 91<br>-91        |
| CR062          | -  | 1,680          | 176          | 5,075          | 166           | 553          | 91               |
| CR063          | -  | 1,680          | -176         | 5,075          | -166          | 553          | -91              |
| CR064          | -  | 1,680          | 176          | 5,075          | 166           | 553          | 91               |
| CR065          | -  | 3,542          | 587          | 4,640          | 553           | 363          | 304              |
| CR066<br>CR067 |    | 2,682<br>3,542 | 587<br>587   | 4,841<br>4,640 | 553<br>553    | 451<br>363   | 304<br>304       |
| CR068          | -  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |
| CR069          | -  | 3,542          | 587          | 4,640          | 553           | 363          | 304              |
| CR070<br>CR071 | -  | 2,682          | 587          | 4,841          | 553<br>553    | 451          | 304              |
| CR071          |    | 3,542<br>2,682 | 587<br>587   | 4,640<br>4,841 | 553           | 363<br>451   | 304<br>304       |
| CR073          | -  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |
| CR074          | -  | 3,542          | 587          | 4,640          | 553           | 363          | 304              |
| CR075          | -  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |
| CR076<br>CR077 |    | 3,542<br>2,682 | 587<br>587   | 4,640<br>4,841 | 553<br>553    | 363<br>451   | 304<br>304       |
| CR078          | _  | 3,542          | 587          | 4,640          | 553           | 363          | 304              |
| CR079          | -  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |
| CR080          | -  | 3,542          | 587          | 4,640          | 553           | 363          | 304              |
| CR081<br>CR082 |    | 3,542<br>2,682 | -587<br>-587 | 4,639<br>4,840 | -553<br>-553  | 363<br>451   | -304<br>-304     |
| CR083          | _  | 3,542          | -587         | 4,639          | -553          | 363          | -304             |
| CR084          | -  | 2,682          | -587         | 4,840          | -553          | 451          | -304             |
| CR085          | -  | 3,542          | -587         | 4,639          | -553          | 363          | -304             |
| CR086<br>CR087 |    | 2,682<br>3,542 | -587<br>-587 | 4,840<br>4,639 | -553<br>-553  | 451<br>363   | -304<br>-304     |
| CR088          | -  | 2,682          | -587         | 4,840          | -553          | 451          | -304             |
| CR089          | -  | 2,682          | -587         | 4,840          | -553          | 451          | -304             |
| CR090          | -  | 3,542          | -587         | 4,639          | -553          | 363          | -304             |
| CR091<br>CR092 | -  | 2,682<br>3,542 | -587<br>-587 | 4,840<br>4,639 | -553<br>-553  | 451<br>363   | -304<br>-304     |
| CR093          | _  | 2,682          | -587         | 4,840          | -553          | 451          | -304             |
| CR094          | -  | 3,542          | -587         | 4,639          | -553          | 363          | -304             |
| CR095          | -  | 2,682          | -587         | 4,840          | -553          | 451          | -304             |
| CR096<br>CR097 |    | 3,542<br>3,542 | -587<br>587  | 4,639<br>4,640 | -553<br>553   | 363<br>363   | -304<br>304      |
| CR098          | -  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |
| CR099          | -  | 3,542          | 587          | 4,640          | 553           | 363          | 304              |
| CR100          | -  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |
| CR101          | -  | 3,542          | 587<br>587   | 4,640          | 553<br>553    | 363<br>451   | 304              |
| CR102<br>CR103 |    | 2,682<br>3,542 | 587<br>587   | 4,841<br>4,640 | 553<br>553    | 451<br>363   | 304<br>304       |
| CR104          | _  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |
| CR105          | -  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |
| CR106          | -  | 3,542          | 587  <br>587 | 4,640          | 553  <br>553  | 363  <br>451 | 304              |
| CR107          | -  | 2,682          | 587          | 4,841          | 553           | 451          | 304              |

|                |     |                |                  |                  |               | Carichi sui no | di in fondazione |
|----------------|-----|----------------|------------------|------------------|---------------|----------------|------------------|
| Carico         | CC  | <b>Fx</b> [N]  | <b>Fy</b><br>[N] | Fz<br>[N]        | Mx<br>[N·m]   | My<br>[N·m]    | Mz<br>[N·m]      |
| CR108          | -   | 3,542          | 587              | 4,640            | 553           | 363            | 304              |
| CR109          | -   | 2,682          | 587              | 4,841            | 553           | 451            | 304              |
| CR110<br>CR111 | -   | 3,542<br>2,682 | 587<br>587       | 4,640<br>4,841   | 553<br>553    | 363<br>451     | 304<br>304       |
| CR112          |     | 3,542          | 587              | 4,640            | 553           | 363            | 304              |
| CR113          | -   | 3,542          | -587             | 4,639            | -553          | 363            | -304             |
| CR114          | -   | 2,682          | -587             | 4,840            | -553          | 451            | -304             |
| CR115          | -   | 3,542          | -587             | 4,639            | -553          | 363            | -304             |
| CR116<br>CR117 | _   | 2,682<br>3,542 | -587<br>-587     | 4,840<br>4,639   | -553<br>-553  | 451<br>363     | -304<br>-304     |
| CR118          | _   | 2,682          | -587             | 4,840            | -553          | 451            | -304             |
| CR119          | -   | 3,542          | -587             | 4,639            | -553          | 363            | -304             |
| CR120          | -   | 2,682          | -587             | 4,840            | -553          | 451            | -304             |
| CR121<br>CR122 | _   | 2,682<br>3,542 | -587<br>-587     | 4,840<br>4,639   | -553<br>-553  | 451<br>363     | -304<br>-304     |
| CR123          | _   | 2,682          | -587             | 4,840            | -553          | 451            | -304             |
| CR124          | -   | 3,542          | -587             | 4,639            | -553          | 363            | -304             |
| CR125          | -   | 2,682          | -587             | 4,840            | -553          | 451            | -304             |
| CR126<br>CR127 | _   | 3,542<br>2,682 | -587<br>-587     | 4,639<br>4,840   | -553<br>-553  | 363<br>451     | -304<br>-304     |
| CR128          | _   | 3,542          | -587             | 4,639            | -553          | 363            | -304             |
| Nodo 00054     |     |                |                  |                  |               |                |                  |
| CR001          | -   | 2,670          | 194              | 1,129            | 123           | -12            | -16              |
| CR002<br>CR003 |     | 2,670<br>2,670 | -194<br>194      | 1,129<br>1,129   | -123<br>123   | -12<br>-12     | 16<br>-16        |
| CR003          |     | 2,670          | -194<br>-194     | 1,129<br>1,129   | -123          | -12<br>-12     | -16<br>16        |
| CR005          | -   | 2,670          | 194              | 1,129            | 123           | -12            | -16              |
| CR006          | -   | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR007<br>CR008 | -   | 2,670<br>2,670 | 194<br>-194      | 1,129<br>1,129   | 123<br>-123   | -12<br>-12     | -16<br>16        |
| CR009          |     | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR010          | -   | 2,670          | 194              | 1,129            | 123           | -12            | -16              |
| CR011          | -   | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR012<br>CR013 | -   | 2,670<br>2,670 | 194<br>-194      | 1,129<br>1,129   | 123<br>-123   | -12<br>-12     | -16<br>16        |
| CR013          |     | 2,670          | 194              | 1,129            | 123           | -12            | -16              |
| CR015          | -   | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR016          | -   | 2,670          | 194              | 1,129            | 123           | -12            | -16              |
| CR017<br>CR018 | -   | -466<br>-466   | 194<br>-194      | 1,761<br>1,761   | 123<br>-123   | 208<br>208     | -16<br>16        |
| CR019          |     | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR020          | -   | -466           | -194             | 1,761            | -123          | 208            | 16               |
| CR021          | -   | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR022<br>CR023 | -   | -466<br>-466   | -194<br>194      | 1,761<br>1,761   | -123<br>123   | 208<br>208     | 16<br>-16        |
| CR023          |     | -466           | -194             | 1,761            | -123          | 208            | 16               |
| CR025          | -   | -466           | -194             | 1,761            | -123          | 208            | 16               |
| CR026          | -   | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR027<br>CR028 | -   | -466<br>-466   | -194<br>194      | 1,761<br>1,761   | -123<br>123   | 208<br>208     | 16<br>-16        |
| CR029          | _   | -466           | -194             | 1,761            | -123          | 208            | 16               |
| CR030          | -   | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR031          | -   | -466           | -194             | 1,761            | -123          | 208            | 16               |
| CR032<br>CR033 | -   | -466<br>2,670  | 194<br>194       | 1,761<br>1,129   | 123<br>123    | 208<br>-12     | -16<br>-16       |
| CR034          | _   | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR035          | -   | 2,670          | 194              | 1,129            | 123           | -12            | -16              |
| CR036          | -   | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR037<br>CR038 |     | 2,670<br>2,670 | 194<br>-194      | 1,129<br>1,129   | 123<br>-123   | -12<br>-12     | -16<br>16        |
| CR039          | -   | 2,670          | 194              | 1,129            | 123           | -12            | -16              |
| CR040          | -   | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR041<br>CR042 |     | 2,670<br>2,670 | -194<br>194      | 1,129<br>1,129   | -123<br>123   | -12<br>-12     | 16<br>-16        |
| CR042          |     | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR044          | -   | 2,670          | 194              | 1,129            | 123           | -12            | -16              |
| CR045          | -   | 2,670          | -194             | 1,129            | -123          | -12            | 16               |
| CR046<br>CR047 | -   | 2,670<br>2,670 | 194<br>-194      | 1,129            | 123<br>-123   | -12<br>-12     | -16<br>16        |
| CR047          | ] - | 2,670          | 194              | 1,129<br>1,129   | 123           | -12            | -16              |
| CR049          | -   | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR050          | -   | -466           | -194             | 1,761            | -123          | 208            | 16               |
| CR051<br>CR052 |     | -466<br>-466   | 194<br>-194      | 1,761<br>1,761   | 123<br>-123   | 208<br>208     | -16<br>16        |
| CR053          | -   | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR054          | -   | -466           | -194             | 1,761            | -123          | 208            | 16               |
| CR055          | -   | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR056<br>CR057 |     | -466<br>-466   | -194<br>-194     | 1,761<br>1,761   | -123<br>-123  | 208<br>208     | 16<br>16         |
| CR058          |     | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR059          | -   | -466           | -194             | 1,761            | -123          | 208            | 16               |
| CR060          | -   | -466           | 194              | 1,761            | 123           | 208            | -16              |
| CR061<br>CR062 | -   | -466<br>-466   | -194<br>194      | 1,761  <br>1,761 | -123  <br>123 | 208<br>208     | 16  <br>-16      |
| 011002         |     | -400           | 134              | 1,701            | 123           | 200            | -10              |

|                     |    |                |                  |                  |              | Carichi sui noc | di in fondazione |
|---------------------|----|----------------|------------------|------------------|--------------|-----------------|------------------|
| Carico              | CC | Fx<br>[N]      | <b>Fy</b><br>[N] | <b>Fz</b><br>[N] | Mx<br>[N·m]  | My<br>[N·m]     | Mz<br>[N·m]      |
| CR063               | -  | -466           | -194             | 1,761            | -123         | 208             | 16               |
| CR064               | -  | -466           | 194              | 1,761            | 123          | 208             | -16              |
| CR065               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR066               | -  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR067<br>CR068      | -  | 1,573<br>632   | 646<br>646       | 1,350<br>1,540   | 411<br>411   | 65<br>131       | -52<br>-52       |
| CR069               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR070               | -  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR071               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR072               | -  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR073<br>CR074      | -  | 632<br>1,573   | 646<br>646       | 1,540<br>1,350   | 411<br>411   | 131<br>65       | -52<br>-52       |
| CR075               | _  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR076               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR077               | -  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR078               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR079<br>CR080      | -  | 632<br>1,573   | 646<br>646       | 1,540<br>1,350   | 411<br>411   | 131<br>65       | -52<br>-52       |
| CR081               | -  | 1,572          | -646             | 1,350            | -411         | 65              | 52               |
| CR082               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR083               | -  | 1,572          | -646             | 1,350            | -411         | 65              | 52               |
| CR084               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR085<br>CR086      |    | 1,572<br>631   | -646<br>-646     | 1,350<br>1,540   | -411<br>-411 | 65<br>131       | 52<br>52         |
| CR087               | -  | 1,572          | -646             | 1,350            | -411         | 65              | 52               |
| CR088               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR089               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR090<br>CR091      | -  | 1,572<br>631   | -646<br>-646     | 1,350<br>1,540   | -411<br>-411 | 65<br>131       | 52<br>52         |
| CR091               |    | 1,572          | -646             | 1,350            | -411<br>-411 | 65              | 52               |
| CR093               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR094               | -  | 1,572          | -646             | 1,350            | -411         | 65              | 52               |
| CR095               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR096<br>CR097      | _  | 1,572<br>1,573 | -646<br>646      | 1,350<br>1,350   | -411<br>411  | 65<br>65        | 52<br>-52        |
| CR098               | _  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR099               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR100               | -  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR101<br>CR102      | -  | 1,573<br>632   | 646<br>646       | 1,350<br>1,540   | 411<br>411   | 65<br>131       | -52<br>-52       |
| CR103               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR104               | -  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR105               | -  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR106               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR107<br>CR108      | _  | 632<br>1,573   | 646<br>646       | 1,540<br>1,350   | 411<br>411   | 131<br>65       | -52<br>-52       |
| CR109               | _  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR110               | -  | 1,573          | 646              | 1,350            | 411          | 65              | -52              |
| CR111               | -  | 632            | 646              | 1,540            | 411          | 131             | -52              |
| CR112<br>CR113      | -  | 1,573<br>1,572 | 646<br>-646      | 1,350<br>1,350   | 411<br>-411  | 65<br>65        | -52<br>52        |
| CR114               | _  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR115               | -  | 1,572          | -646             | 1,350            | -411         | 65              | 52               |
| CR116               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR117               | -  | 1,572          | -646<br>-646     | 1,350<br>1,540   | -411<br>-411 | 65              | 52<br>52         |
| CR118<br>CR119      |    | 631<br>1,572   | -646<br>-646     | 1,350            | -411<br>-411 | 131<br>65       | 52               |
| CR120               | _  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR121               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR122               | -  | 1,572          | -646             | 1,350            | -411         | 65              | 52               |
| CR123<br>CR124      | -  | 631<br>1,572   | -646<br>-646     | 1,540<br>1,350   | -411<br>-411 | 131<br>65       | 52<br>52         |
| CR124               |    | 631            | -646<br>-646     | 1,540            | -411<br>-411 | 131             | 52               |
| CR126               | -  | 1,572          | -646             | 1,350            | -411         | 65              | 52               |
| CR127               | -  | 631            | -646             | 1,540            | -411         | 131             | 52               |
| CR128<br>Nodo 00055 | -  | 1,572          | -646             | 1,350            | -411         | 65              | 52               |
| CR001               | _  | 1,079          | 233              | 1,011            | 88           | -112            | -44              |
| CR002               | _  | 1,079          | -233             | 1,011            | -88          | -112            | 44               |
| CR003               | -  | 1,079          | 233              | 1,011            | 88           | -112            | -44              |
| CR004               | -  | 1,079          | -233             | 1,011            | -88          | -112            | 44               |
| CR005               | -  | 1,079          | 233              | 1,011            | 88           | -112<br>-112    | -44              |
| CR006<br>CR007      |    | 1,079<br>1,079 | -233<br>233      | 1,011<br>1,011   | -88<br>88    | -112<br>-112    | 44<br>-44        |
| CR008               | -  | 1,079          | -233             | 1,011            | -88          | -112            | 44               |
| CR009               | -  | 1,079          | -233             | 1,011            | -88          | -112            | 44               |
| CR010               | -  | 1,079          | 233              | 1,011            | 88           | -112            | -44              |
| CR011<br>CR012      |    | 1,079<br>1,079 | -233<br>233      | 1,011<br>1,011   | -88<br>88    | -112<br>-112    | 44<br>-44        |
| CR013               | _  | 1,079          | -233             | 1,011            | -88          | -112            | 44               |
| CR014               | -  | 1,079          | 233              | 1,011            | 88           | -112            | -44              |
| CR015               | -  | 1,079          | -233             | 1,011            | -88          | -112            | 44               |
| CR016<br>CR017      | -  | 1,079          | 233<br>233       | 1,011            | 88  <br>88   | -112  <br>78    | -44  <br>-44     |
| UNU I /             | -  | -2,057         | 233              | 897              | 88           | 78              | -44              |

|                |     |                  |              |                |              | Carichi sui noc | di in fondazione |
|----------------|-----|------------------|--------------|----------------|--------------|-----------------|------------------|
| Carico         | CC  | Fx               | Fy           | Fz             | Mx           | Му              | Mz               |
| CR018          | _   | [N]<br>-2,057    | [N]<br>-233  | [N]<br>897     | [N·m]<br>-88 | [N·m] 78        | [N·m] 44         |
| CR019          | _   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR020          | -   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR021          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR022          | -   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR023<br>CR024 | -   | -2,057<br>-2,057 | 233<br>-233  | 897<br>897     | -88          | 78<br>78        | -44<br>44        |
| CR025          | _   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR026          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR027          | -   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR028          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR029<br>CR030 | -   | -2,057<br>-2,057 | -233<br>233  | 897<br>897     | -88<br>88    | 78<br>78        | 44<br>-44        |
| CR031          | _   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR032          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR033          | -   | 1,079            | 233          | 1,011          | 88           | -112            | -44              |
| CR034          | -   | 1,079            | -233         | 1,011          | -88          | -112            | 44               |
| CR035<br>CR036 | -   | 1,079<br>1,079   | 233<br>-233  | 1,011<br>1,011 | -88          | -112<br>-112    | -44<br>44        |
| CR037          | _   | 1,079            | 233          | 1,011          | 88           | -112            | -44              |
| CR038          | -   | 1,079            | -233         | 1,011          | -88          | -112            | 44               |
| CR039          | -   | 1,079            | 233          | 1,011          | 88           | -112            | -44              |
| CR040<br>CR041 | -   | 1,079<br>1,079   | -233<br>-233 | 1,011<br>1,011 | -88<br>-88   | -112<br>-112    | 44<br>44         |
| CR042          | -   | 1,079            | 233          | 1,011          | 88           | -112            | -44              |
| CR043          | -   | 1,079            | -233         | 1,011          | -88          | -112            | 44               |
| CR044          | -   | 1,079            | 233          | 1,011          | 88           | -112            | -44              |
| CR045          | -   | 1,079            | -233         | 1,011          | -88          | -112            | 44               |
| CR046<br>CR047 | -   | 1,079<br>1,079   | 233<br>-233  | 1,011<br>1,011 | -88          | -112<br>-112    | -44<br>44        |
| CR048          | -   | 1,079            | 233          | 1,011          | 88           | -112            | -44              |
| CR049          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR050          | -   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR051          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR052<br>CR053 | -   | -2,057<br>-2,057 | -233<br>233  | 897<br>897     | -88<br>88    | 78<br>78        | 44<br>-44        |
| CR054          | -   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR055          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR056          | -   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR057<br>CR058 | -   | -2,057<br>-2,057 | -233<br>233  | 897<br>897     | -88<br>88    | 78<br>78        | 44<br>-44        |
| CR059          | -   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR060          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR061          | -   | -2,057           | -233         | 897            | -88          | 78              | 44               |
| CR062          | -   | -2,057           | 233          | 897            | 88           | 78              | -44              |
| CR063<br>CR064 | -   | -2,057<br>-2,057 | -233<br>233  | 897<br>897     | -88<br>88    | 78<br>78        | 44<br>-44        |
| CR065          | -   | -18              | 776          | 971            | 292          | -46             | -148             |
| CR066          | -   | -960             | 776          | 937            | 292          | 12              | -148             |
| CR067          | -   | -18              | 776          | 971            | 292          | -46             | -148             |
| CR068<br>CR069 | -   | -960<br>-18      | 776<br>776   | 937<br>971     | 292<br>292   | 12<br>-46       | -148<br>-148     |
| CR070          | -   | -960             | 776          | 937            | 292          | 12              | -148             |
| CR071          | -   | -18              | 776          | 971            | 292          | -46             | -148             |
| CR072          | -   | -960             | 776          | 937            | 292          | 12              | -148             |
| CR073<br>CR074 | -   | -960<br>-18      | 776<br>776   | 937<br>971     | 292<br>292   | 12<br>-46       | -148<br>-148     |
| CR075          | ] - | -960             | 776          | 937            | 292          | 12              | -148             |
| CR076          | -   | -18              | 776          | 971            | 292          | -46             | -148             |
| CR077          | -   | -960             | 776          | 937            | 292          | 12              | -148             |
| CR078<br>CR079 |     | -18<br>-960      | 776<br>776   | 971<br>937     | 292<br>292   | -46<br>12       | -148<br>-148     |
| CR079          | ] - | -960             | 776<br>776   | 937<br>971     | 292          | -46             | -148<br>-148     |
| CR081          | -   | -18              | -776         | 971            | -292         | -46             | 148              |
| CR082          | -   | -960             | -776         | 937            | -292         | 12              | 148              |
| CR083          | -   | -18              | -776         | 971            | -292         | -46             | 148              |
| CR084<br>CR085 | -   | -960<br>-18      | -776<br>-776 | 937<br>971     | -292<br>-292 | 12<br>-46       | 148<br>148       |
| CR086          | -   | -960             | -776         | 937            | -292         | 12              | 148              |
| CR087          | -   | -18              | -776         | 971            | -292         | -46             | 148              |
| CR088          | -   | -960             | -776         | 937            | -292         | 12              | 148              |
| CR089          | -   | -960             | -776         | 937            | -292         | 12              | 148              |
| CR090<br>CR091 |     | -18<br>-960      | -776<br>-776 | 971<br>937     | -292<br>-292 | -46<br>12       | 148<br>148       |
| CR092          | _   | -18              | -776         | 971            | -292         | -46             | 148              |
| CR093          | -   | -960             | -776         | 937            | -292         | 12              | 148              |
| CR094          | -   | -18              | -776         | 971            | -292         | -46             | 148              |
| CR095<br>CR096 |     | -960<br>-18      | -776<br>-776 | 937<br>971     | -292<br>-292 | 12<br>-46       | 148<br>148       |
| CR096<br>CR097 |     | -18              | 776          | 971            | -292<br>292  | -46<br>-46      | -148             |
| CR098          | -   | -960             | 776          | 937            | 292          | 12              | -148             |
| CR099          | -   | -18              | 776          | 971            | 292          | -46             | -148             |
| CR100          | -   | -960  <br>-18    | 776          | 937            | 292          | 12              | -148             |
| CR101          | -   | -18              | 776          | 971            | 292          | -46             | -148             |

|                |          |                  |              |            |              |              | di in fondazione |
|----------------|----------|------------------|--------------|------------|--------------|--------------|------------------|
| Carico         | CC       | Fx               | Fy           | Fz         | Mx           | My           | Mz               |
| Ourico         | 30       | [N]              | [N]          | [N]        | [N·m]        | [N·m]        | [N·m]            |
| CR102          | -        | -960             | 776          | 937        | 292          | 12           | -148             |
| CR103          | -        | -18              | 776          | 971        | 292          | -46          | -148             |
| CR104          | -        | -960             | 776          | 937        | 292          | 12           | -148             |
| CR105          | -        | -960             | 776          | 937        | 292          | 12           | -148             |
| CR106          | -        | -18              | 776          | 971        | 292          | -46          | -148             |
| CR107<br>CR108 | -        | -960<br>-18      | 776  <br>776 | 937<br>971 | 292<br>292   | 12<br>-46    | -148<br>-148     |
| CR109          | _        | -960             | 776          | 937        | 292          | -46<br>12    | -148             |
| CR110          |          | -18              | 776          | 971        | 292          | -46          | -148             |
| CR111          | _        | -960             | 776          | 937        | 292          | 12           | -148             |
| CR112          | _        | -18              | 776          | 971        | 292          | -46          | -148             |
| CR113          | _        | -18              | -776         | 971        | -292         | -46          | 148              |
| CR114          | -        | -960             | -776         | 937        | -292         | 12           | 148              |
| CR115          | -        | -18              | -776         | 971        | -292         | -46          | 148              |
| CR116          | -        | -960             | -776         | 937        | -292         | 12           | 148              |
| CR117          | -        | -18              | -776         | 971        | -292         | -46          | 148              |
| CR118          | -        | -960             | -776         | 937        | -292         | 12           | 148              |
| CR119<br>CR120 | -        | -18<br>-960      | -776<br>-776 | 971<br>937 | -292<br>-292 | -46<br>12    | 148<br>148       |
| CR121          |          | -960             | -776         | 937        | -292         | 12           | 148              |
| CR122          | _        | -18              | -776         | 971        | -292         | -46          | 148              |
| CR123          | _        | -960             | -776         | 937        | -292         | 12           | 148              |
| CR124          | _        | -18              | -776         | 971        | -292         | -46          | 148              |
| CR125          | -        | -960             | -776         | 937        | -292         | 12           | 148              |
| CR126          | -        | -18              | -776         | 971        | -292         | -46          | 148              |
| CR127          | -        | -960             | -776         | 937        | -292         | 12           | 148              |
| CR128          | -        | -18              | -776         | 971        | -292         | -46          | 148              |
| Nodo 00056     |          |                  |              |            |              |              |                  |
| CR001          | -        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR002<br>CR003 | -        | 0 0              | -321<br>321  | 797<br>797 | -91          | -421<br>-421 | 92<br>-92        |
| CR004          |          | 0                | -321         | 797<br>797 | 91<br>-91    | -421<br>-421 | 92               |
| CR005          | _        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR006          | _        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR007          | _        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR008          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR009          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR010          | -        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR011          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR012          | -        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR013          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR014<br>CR015 | -        | 0 0              | 321<br>-321  | 797<br>797 | 91<br>-91    | -421<br>-421 | -92<br>92        |
| CR016          |          | 0                | 321          | 797        | 91           | -421<br>-421 | -92              |
| CR017          | _        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR018          | _        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR019          | _        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR020          | -        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR021          | -        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR022          | -        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR023          | -        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR024          | -        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR025<br>CR026 | -        | -2,970           | -321         | 955        | -91          | -193         | 92<br>-92        |
| CR027          | _        | -2,970<br>-2,970 | 321<br>-321  | 955<br>955 | 91<br>-91    | -193<br>-193 | 92               |
| CR028          |          | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR029          | _        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR030          | -        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR031          | -        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR032          | -        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR033          | -        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR034          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR035<br>CR036 | -        | 0 0              | 321<br>-321  | 797<br>797 | 91<br>-91    | -421<br>-421 | -92<br>92        |
| CR036          |          | 0                | -321<br>321  | 797<br>797 | -91<br>91    | -421<br>-421 | -92<br>-92       |
| CR038          | _        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR039          | _        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR040          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR041          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR042          | -        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR043          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR044          | -        | 0                | 321          | 797        | 91           | -421         | -92              |
| CR045          | -        | 0                | -321         | 797        | -91          | -421         | 92               |
| CR046<br>CR047 | -        | 0 0              | 321<br>-321  | 797<br>797 | 91           | -421<br>-421 | -92<br>92        |
| CR047          |          | 0                | -321<br>321  | 797<br>797 | -91<br>91    | -421<br>-421 | -92<br>-92       |
| CR049          |          | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR050          | _        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR051          | _        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR052          | -        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR053          | -        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR054          | -        | -2,970           | -321         | 955        | -91          | -193         | 92               |
| CR055          | -        | -2,970           | 321          | 955        | 91           | -193         | -92              |
| CR056          | <u> </u> | -2,970           | -321         | 955        | -91          | -193         | 92               |

|   |                |    |                  |                  |              |              |                    | di in fondazione   |
|---|----------------|----|------------------|------------------|--------------|--------------|--------------------|--------------------|
|   | Carico         | CC | <b>Fx</b> [N]    | <b>Fy</b><br>[N] | Fz<br>[N]    | Mx<br>[N·m]  | <b>My</b><br>[N·m] | <b>Mz</b><br>[N·m] |
| - | CR057          | -  | -2,970           | -321             | 955          | -91          | -193               | 92                 |
|   | CR058          | -  | -2,970           | 321              | 955          | 91           | -193               | -92                |
|   | CR059          | -  | -2,970           | -321             | 955          | -91          | -193               | 92                 |
|   | CR060          | -  | -2,970           | 321              | 955          | 91           | -193               | -92                |
|   | CR061<br>CR062 | -  | -2,970<br>-2,970 | -321<br>321      | 955<br>955   | -91<br>91    | -193<br>-193       | 92<br>-92          |
|   | CR063          | -  | -2,970           | -321             | 955          | -91          | -193               | 92                 |
|   | CR064          | -  | -2,970           | 321              | 955          | 91           | -193               | -92                |
|   | CR065          | -  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR066          | -  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR067<br>CR068 | -  | -1,039<br>-1,931 | 1,069<br>1,069   | 852<br>900   | 306<br>306   | -341<br>-273       | -308<br>-308       |
|   | CR069          | _  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR070          | -  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR071          | -  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR072          | -  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR073<br>CR074 | -  | -1,931<br>-1,039 | 1,069<br>1,069   | 900<br>852   | 306<br>306   | -273<br>-341       | -308<br>-308       |
|   | CR075          | _  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR076          | -  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR077          | -  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR078<br>CR079 | -  | -1,039<br>-1,931 | 1,069            | 852<br>900   | 306<br>306   | -341<br>-273       | -308<br>-308       |
|   | CR080          | -  | -1,039           | 1,069<br>1,069   | 852          | 306          | -341               | -308               |
|   | CR081          | -  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR082          | -  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR083          | -  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR084<br>CR085 | -  | -1,931<br>-1,039 | -1,069<br>-1,069 | 900<br>852   | -306<br>-306 | -273<br>-341       | 308<br>308         |
|   | CR086          | _  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR087          | -  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR088          | -  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR089          | -  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR090<br>CR091 | -  | -1,039<br>-1,931 | -1,069<br>-1,069 | 852<br>900   | -306<br>-306 | -341<br>-273       | 308<br>308         |
|   | CR092          | -  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR093          | -  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR094          | -  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR095<br>CR096 | -  | -1,931<br>-1,039 | -1,069<br>-1,069 | 900<br>852   | -306<br>-306 | -273<br>-341       | 308<br>308         |
|   | CR097          | _  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR098          | -  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR099          | -  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR100<br>CR101 | -  | -1,931<br>-1,039 | 1,069<br>1,069   | 900<br>852   | 306<br>306   | -273<br>-341       | -308<br>-308       |
|   | CR101          | -  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR103          | -  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR104          | -  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR105          | -  | -1,931<br>-1,039 | 1,069            | 900<br>852   | 306          | -273               | -308               |
|   | CR106<br>CR107 | -  | -1,931           | 1,069<br>1,069   | 900          | 306<br>306   | -341<br>-273       | -308<br>-308       |
|   | CR108          | -  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR109          | -  | -1,931           | 1,069            | 900          | 306          | -273               | -308               |
|   | CR110          | -  | -1,039           | 1,069            | 852          | 306          | -341               | -308               |
|   | CR111<br>CR112 |    | -1,931<br>-1,039 | 1,069<br>1,069   | 900<br>852   | 306<br>306   | -273<br>-341       | -308<br>-308       |
|   | CR113          | _  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR114          | -  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR115          | -  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR116<br>CR117 | -  | -1,931<br>-1,039 | -1,069<br>-1,069 | 900<br>852   | -306<br>-306 | -273<br>-341       | 308<br>308         |
|   | CR118          | -  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR119          | -  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR120          | -  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR121<br>CR122 | -  | -1,931<br>-1,039 | -1,069<br>-1,069 | 900<br>852   | -306<br>-306 | -273<br>-341       | 308<br>308         |
|   | CR123          | _  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR124          | -  | -1,039           | -1,069           | 852          | -306         | -341               | 308                |
|   | CR125          | -  | -1,931           | -1,069           | 900          | -306         | -273               | 308                |
|   | CR126<br>CR127 | -  | -1,039<br>-1,931 | -1,069<br>-1,069 | 852<br>900   | -306<br>-306 | -341<br>-273       | 308<br>308         |
|   | CR127<br>CR128 |    | -1,039           | -1,069           | 852          | -306         | -273<br>-341       | 308                |
|   | Nodo 00057     |    | .,220            | .,               |              |              |                    | -                  |
|   | CR001          | -  | -1,417           | 204              | -568         | 173          | -479               | -116               |
|   | CR002          | -  | -1,417           | -204             | -568         | -173         | -479<br>470        | 116                |
|   | CR003<br>CR004 |    | -1,417<br>-1,417 | 204<br>-204      | -568<br>-568 | 173<br>-173  | -479<br>-479       | -116<br>116        |
|   | CR005          | -  | -1,417           | 204              | -568         | 173          | -479               | -116               |
|   | CR006          | -  | -1,417           | -204             | -568         | -173         | -479               | 116                |
|   | CR007          | -  | -1,417           | 204              | -568         | 173          | -479               | -116               |
|   | CR008<br>CR009 | -  | -1,417<br>-1,417 | -204<br>-204     | -568<br>-568 | -173<br>-173 | -479<br>-479       | 116<br>116         |
|   | CR010          | -  | -1,417           | 204              | -568         | 173          | -479               | -116               |
|   | CR011          | -  | -1,417           | -204             | -568         | -173         | -479               | 116                |
|   |                |    |                  |                  |              |              |                    |                    |

|                |    |                  |              |              |               | Carichi sui noc | di in fondazione |
|----------------|----|------------------|--------------|--------------|---------------|-----------------|------------------|
| Carico         | cc | Fx               | Fy           | Fz           | Mx<br>[N·m]   | My<br>[N·m]     | Mz               |
| CR012          | -  | [N]<br>-1,417    | [N] 204      | [N]<br>-568  | 173           | -479            | [N·m]<br>-116    |
| CR013          | -  | -1,417           | -204         | -568         | -173          | -479            | 116              |
| CR014          | -  | -1,417           | 204          | -568         | 173           | -479            | -116             |
| CR015<br>CR016 | =  | -1,417<br>-1,417 | -204<br>204  | -568<br>-568 | -173<br>173   | -479<br>-479    | 116<br>-116      |
| CR017          | _  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR018          | -  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR019          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR020          | -  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR021<br>CR022 | -  | -3,811<br>-3,811 | 204<br>-204  | 8            | 173<br>-173   | -245<br>-245    | -116<br>116      |
| CR023          | _  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR024          | -  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR025          | -  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR026<br>CR027 | -  | -3,811<br>-3,811 | 204<br>-204  | 8            | 173<br>-173   | -245<br>-245    | -116<br>116      |
| CR028          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR029          | -  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR030          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR031<br>CR032 | -  | -3,811<br>-3,811 | -204<br>204  | 8            | -173<br>173   | -245<br>-245    | 116<br>-116      |
| CR033          | -  | -1,417           | 204          | -568         | 173           | -479            | -116             |
| CR034          | -  | -1,417           | -204         | -568         | -173          | -479            | 116              |
| CR035          | -  | -1,417           | 204          | -568         | 173           | -479            | -116             |
| CR036<br>CR037 | -  | -1,417<br>-1,417 | -204<br>204  | -568<br>-568 | -173<br>173   | -479<br>-479    | 116<br>-116      |
| CR038          | _  | -1,417           | -204         | -568         | -173          | -479            | 116              |
| CR039          | -  | -1,417           | 204          | -568         | 173           | -479            | -116             |
| CR040          | -  | -1,417           | -204         | -568         | -173          | -479            | 116              |
| CR041<br>CR042 | -  | -1,417<br>-1,417 | -204<br>204  | -568<br>-568 | -173<br>173   | -479<br>-479    | 116<br>-116      |
| CR043          | -  | -1,417           | -204         | -568         | -173          | -479            | 116              |
| CR044          | -  | -1,417           | 204          | -568         | 173           | -479            | -116             |
| CR045          | -  | -1,417           | -204         | -568         | -173          | -479            | 116              |
| CR046<br>CR047 | =  | -1,417<br>-1,417 | 204<br>-204  | -568<br>-568 | 173<br>-173   | -479<br>-479    | -116<br>116      |
| CR048          | -  | -1,417           | 204          | -568         | 173           | -479            | -116             |
| CR049          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR050          | -  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR051<br>CR052 | =  | -3,811<br>-3,811 | 204<br>-204  | 8            | 173  <br>-173 | -245<br>-245    | -116<br>116      |
| CR052          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR054          | -  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR055          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR056<br>CR057 | -  | -3,811<br>-3,811 | -204<br>-204 | 8            | -173<br>-173  | -245<br>-245    | 116<br>116       |
| CR058          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR059          | -  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR060          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR061<br>CR062 | -  | -3,811<br>-3,811 | -204<br>204  | 8            | -173<br>173   | -245<br>-245    | 116<br>-116      |
| CR063          | _  | -3,811           | -204         | 8            | -173          | -245            | 116              |
| CR064          | -  | -3,811           | 204          | 8            | 173           | -245            | -116             |
| CR065          | -  | -2,254           | 678          | -367         | 574           | -397            | -385             |
| CR066<br>CR067 | -  | -2,974<br>-2,254 | 678<br>678   | -193<br>-367 | 574<br>574    | -327<br>-397    | -385<br>-385     |
| CR068          | _  | -2,974           | 678          | -193         | 574           | -327            | -385             |
| CR069          | -  | -2,254           | 678          | -367         | 574           | -397            | -385             |
| CR070          | -  | -2,974           | 678          | -193         | 574<br>574    | -327            | -385             |
| CR071<br>CR072 | -  | -2,254<br>-2,974 | 678<br>678   | -367<br>-193 | 574<br>574    | -397<br>-327    | -385<br>-385     |
| CR073          | _  | -2,974           | 678          | -193         | 574           | -327            | -385             |
| CR074          | -  | -2,254           | 678          | -367         | 574           | -397            | -385             |
| CR075          | -  | -2,974           | 678          | -193         | 574           | -327            | -385             |
| CR076<br>CR077 | -  | -2,254<br>-2,974 | 678<br>678   | -367<br>-193 | 574<br>574    | -397<br>-327    | -385<br>-385     |
| CR078          | -  | -2,254           | 678          | -367         | 574           | -397            | -385             |
| CR079          | -  | -2,974           | 678          | -193         | 574           | -327            | -385             |
| CR080          | -  | -2,254<br>-2,254 | 678<br>-678  | -367         | 574           | -397<br>-397    | -385<br>385      |
| CR081<br>CR082 | -  | -2,254           | -678         | -367<br>-193 | -574<br>-574  | -327            | 385              |
| CR083          | _  | -2,254           | -678         | -367         | -574          | -397            | 385              |
| CR084          | -  | -2,974           | -678         | -193         | -574          | -327            | 385              |
| CR085          | -  | -2,254<br>-2,974 | -678<br>-678 | -367         | -574<br>-574  | -397<br>-327    | 385              |
| CR086<br>CR087 |    | -2,974<br>-2,254 | -678<br>-678 | -193<br>-367 | -574<br>-574  | -327<br>-397    | 385<br>385       |
| CR088          | _  | -2,974           | -678         | -193         | -574          | -327            | 385              |
| CR089          | -  | -2,974           | -678         | -193         | -574          | -327            | 385              |
| CR090          | -  | -2,254           | -678<br>679  | -367         | -574<br>574   | -397            | 385              |
| CR091<br>CR092 |    | -2,974<br>-2,254 | -678<br>-678 | -193<br>-367 | -574<br>-574  | -327<br>-397    | 385<br>385       |
| CR093          | _  | -2,974           | -678         | -193         | -574          | -327            | 385              |
| CR094          | -  | -2,254           | -678         | -367         | -574          | -397            | 385              |
| CR095          |    | -2,974           | -678         | -193         | -574          | -327            | 385              |

| Carlos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |    |        |      |       |      |      | g. Anarea Angrisa<br>di in fondazione |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|--------|------|-------|------|------|---------------------------------------|
| CHIOSE   - 2.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carico | CC |        |      |       |      | My   | Mz                                    |
| CRIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CB096  | _  |        |      |       |      |      |                                       |
| CP008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | _  |        |      |       |      |      |                                       |
| ORIGID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CR098  | -  | -2,974 |      | -193  |      | -327 |                                       |
| CRITICO   -   -2,254   678   -387   574   -397   -385   CRITICO   -   -2,274   679   -155   574   -327   -385   CRITICO   -   -2,274   679   -155   574   -327   -385   CRITICO   -   -2,274   679   -155   574   -327   -385   CRITICO   -   -2,274   679   -150   574   -327   -385   CRITICO   -   -2,274   679   -50   -574   -327   -385   CRITICO   -   -2,274   -678   -587   -574   -327   -385   CRITICO   -   -2,274   -678   -156   -574   -327   -385   CRITICO   -2,274   -678   -156   -574   -327   -385   -2,274   -327   -385   -2,274   -327   |        | -  |        |      |       |      |      |                                       |
| CRIG   -   -2.974   678   -193   574   -327   -385   CRIG   -2.264   678   -367   -367   574   -327   -385   CRIG   -2.274   678   -367   -367   574   -327   -385   CRIG   -2.274   678   -397   574   -397   -385   CRIG   -2.274   678   -397   574   -397   -385   CRIG   -2.274   678   -397   -357   -385   CRIG   -2.274   678   -397   -357   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -367   -   |        | -  |        |      |       |      |      |                                       |
| CRITICAL    |        | -  |        |      |       |      |      |                                       |
| CRILO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | _  |        |      |       |      |      |                                       |
| CRITICO   -   -2,254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | -  |        |      |       |      |      |                                       |
| CRITOR   -   -2.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | -  |        |      |       |      |      |                                       |
| CRITICO   -   -   -2,284   678   -3967   574   -397   -385   CRITICO   -   -2,274   678   -193   574   -327   -385   CRITICO   -   -2,264   678   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3967   -3   |        | -  |        |      |       |      |      |                                       |
| CRI10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CRIT     -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | _  |        |      |       |      |      |                                       |
| CR112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       | 574  |      |                                       |
| CRI114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | -  |        |      |       |      |      |                                       |
| CR114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR116   -   -2.974   -578   -193   -574   -327   385   CR117   -   -2.254   -678   -367   -574   -337   385   CR118   -   -2.974   -678   -193   -574   -327   385   CR118   -   -2.974   -678   -193   -574   -327   385   CR118   -   -2.974   -678   -193   -574   -327   385   CR128   -   -2.974   -678   -193   -574   -327   -385   CR122   -   -2.254   -678   -678   -367   -574   -327   -385   CR122   -   -2.254   -678   -678   -367   -574   -327   -385   CR123   -   -2.974   -678   -678   -367   -574   -327   -385   CR123   -   -2.974   -678   -367   -574   -327   -385   CR123   -   -2.974   -678   -3867   -574   -327   -385   CR123   -   -2.254   -678   -387   -574   -327   -385   -2.254   -678   -387   -574   -327   -385   CR123   -2.254   -678   -387   -574   -327   -385   CR123   -2.254   -678   -387   -574   -327   -385   -2.254   -678   -387   -574   -327   -385   -2.254   -678   -387   -574   -327   -385   -2.254   -678   -387   -387   -574   -327   -385   -2.254   -678   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387   -387    |        | -  |        |      |       |      |      |                                       |
| CR118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CR116  | -  |        |      | -193  | -574 | -327 | 385                                   |
| CRI19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| Chi20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CRI21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  | -2,254 | -678 | -367  |      | -397 | 385                                   |
| CR125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CH126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| Node 00058   CR001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | -  |        |      |       |      |      |                                       |
| CR0013,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -  | -2,254 | -678 | -367  | -574 | -397 | 385                                   |
| CR002 - 3,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |    | 0.440  | 100  | 4.504 | 222  | 200  | 207                                   |
| CR003 3,418 163 4,531 283 -920 227 CR004 - 3,418 163 4,531 283 -920 227 CR005 - 3,418 163 4,531 283 -920 227 CR0063,418 163 4,531 283 -920 227 CR007 - 3,418 163 4,531 283 -920 227 CR008 - 3,418 163 4,531 283 -920 227 CR008 - 3,418 163 4,531 283 -920 227 CR009 - 3,418 163 4,531 283 -920 227 CR010 - 3,418 163 4,531 283 -920 227 CR010 - 3,418 163 4,531 283 -920 227 CR011 - 3,418 163 4,531 283 -920 227 CR011 - 3,418 163 4,531 283 -920 227 CR011 - 3,418 163 4,531 283 -920 227 CR012 - 3,418 163 4,531 283 -920 227 CR013 - 3,418 163 4,531 283 -920 227 CR014 - 3,418 163 4,531 283 -920 227 CR015 - 3,418 163 4,531 283 -920 227 CR016 - 3,418 163 4,531 283 -920 227 CR017 - 3,418 163 4,531 283 -920 227 CR018 - 3,418 163 4,531 283 -920 227 CR019 - 3,418 163 4,531 283 -920 227 CR019 - 3,418 163 4,531 283 -920 227 CR010 - 3,418 163 4,531 283 -920 227 CR011 - 3,418 163 4,531 283 -920 227 CR011 - 3,418 163 4,531 283 -920 227 CR012 - 3,418 163 4,531 283 -920 227 CR015 - 3,418 163 4,531 283 -920 227 CR016 - 3,418 163 4,531 283 -920 227 CR017 - 5,670 163 5,307 283 682 227 CR020 - 5,670 163 5,307 283 682 227 CR022 - 5,670 163 5,307 283 682 227 CR023 - 5,670 163 5,307 283 682 227 CR024 - 5,670 163 5,307 283 682 227 CR025 - 5,670 163 5,307 283 682 227 CR026 - 5,670 163 5,307 283 682 227 CR027 - 5,670 163 5,307 283 682 227 CR028 - 5,670 163 5,307 283 682 227 CR029 - 5,670 163 5,307 283 692 227 CR020 - 5,670 163 5,307 283 692 227 CR024 - 5,670 163 5,307 283 692 227 CR033 - 5,670 163 5,307 283 692 227         |        | -  |        |      |       |      |      |                                       |
| CR004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | _  |        |      |       |      |      |                                       |
| CR006 - 3,418 168 4,531 283 920 227 CR007 - 3,418 168 4,531 283 920 227 CR008 - 3,418 168 4,531 283 920 227 CR009 - 3,418 168 4,531 283 920 227 CR010 - 3,418 168 4,531 283 920 227 CR011 - 3,418 168 4,531 283 920 227 CR011 - 3,418 168 4,531 283 920 227 CR012 - 3,418 168 4,531 283 920 227 CR013 - 3,418 168 4,531 283 920 227 CR014 - 3,418 168 4,531 283 920 227 CR015 - 3,418 168 4,531 283 920 227 CR016 - 3,418 168 4,531 283 920 227 CR017 - 5,670 168 4,531 283 920 227 CR018 - 5,670 168 5,307 283 692 227 CR021 - 5,670 163 5,307 283 692 227 CR022 - 5,670 163 5,307 283 692 227 CR022 - 5,670 163 5,307 283 692 227 CR022 - 5,670 163 5,307 283 692 227 CR024 - 5,670 163 5,307 283 692 227 CR026 - 5,670 163 5,307 283 692 227 CR027 - 6,670 163 5,307 283 692 227 CR028 - 5,670 163 5,307 283 692 227 CR029 - 5,670 163 5,307 283 692 227 CR020 - 5,670 163 5,307 283 692 227 CR021 - 5,670 163 5,307 283 692 227 CR022 - 5,670 163 5,307 283 692 227 CR024 - 5,670 163 5,307 283 692 227 CR026 - 5,670 163 5,307 283 692 227 CR026 - 5,670 163 5,307 283 692 227 CR027 - 5,670 163 5,307 283 692 227 CR028 - 5,670 163 5,307 283 692 227 CR029 - 5,670 163 5,307 283 692 227 CR026 - 5,670 163 5,307 283 692 227 CR026 - 5,670 163 5,307 283 692 227 CR027 - 5,670 163 5,307 283 692 227 CR028 - 5,670 163 5,307 283 692 227 CR029 - 5,670 163 5,307 283 692 227 CR030 - 5,670 163 5,307 283 692 227 CR031 - 5,418 163 4,531 283 9,20 227 CR032 - 5,670 163 5,307 283 692 227 CR034 - 3,418 163 4,531 283 9,20 227 CR044 - 3,418 163 4,531 283 9,20 227 CR044 - 3,418 163 4,531 283 |        | -  |        |      |       |      |      |                                       |
| CR007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR008 - 3,418 -163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | -  |        |      |       |      |      |                                       |
| CR009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | _  |        |      |       |      |      |                                       |
| CR011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR012 - 3,418 166 4,531 283 9-920 227 CR013 - 3,418 163 4,531 283 9-920 227 CR014 - 3,418 163 4,531 283 9-920 227 CR015 - 3,418 163 4,531 283 9-920 227 CR016 - 3,418 163 4,531 283 9-920 227 CR016 - 3,418 163 4,531 283 9-920 227 CR017 - 5,670 163 5,307 283 6-92 227 CR019 - 5,670 163 5,307 283 6-92 227 CR020 - 5,670 163 5,307 283 6-92 227 CR021 - 5,670 163 5,307 283 6-92 227 CR021 - 5,670 163 5,307 283 6-92 227 CR021 - 5,670 163 5,307 283 6-92 227 CR022 - 5,670 163 5,307 283 6-92 227 CR023 - 6,670 163 5,307 283 6-92 227 CR023 - 6,670 163 5,307 283 6-92 227 CR024 - 5,670 163 5,307 283 6-92 227 CR025 - 5,670 163 5,307 283 6-92 227 CR026 - 5,670 163 5,307 283 6-92 227 CR027 CR028 - 5,670 163 5,307 283 6-92 227 CR028 - 5,670 163 5,307 283 6-92 227 CR029 - 5,670 163 5,307 283 6-92 227 CR029 - 5,670 163 5,307 283 6-92 227 CR020 - 5,670 163 5,307 283 6-92 227 CR030 - 5,670 163 5,307 283 6-92 227 CR031 - 5,670 163 5,307 283 6-92 227 CR031 - 5,670 163 5,307 283 6-92 227 CR032 - 5,670 163 5,307 283 6-92 227 CR033 - 3,418 163 4,531 283 9,20 227 CR034 - 3,418 163 4,531 283 9,20 227 CR035 - 3,418 163 4,531 283 9,20 227 CR036 - 3,418 163 4,531 283 9,20 227 CR036 - 3,418 163 4,531 283 9,20 227 CR046 - 3,418 163 4,531 283 9,20 227 CR046 - 3,418 163 4,531 283 9,20 227 CR046 - 3,418 163 4,531 283 9,20 227 CR047 - 3,418 163 4,531 283 9,20 227 CR048 - 3,418 163 4,531 283 9,20 227 |        | -  | -3,418 | 163  |       | 283  |      | -227                                  |
| CR013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR015 CR016 CR016 CR017 CR017 CR017 CR017 CR018 CR018 CR018 CR018 CR018 CR018 CR018 CR019 CR019 CR019 CR019 CR020 CR020 CR021 CR022 CR022 CR022 CR022 CR023 CR024 CR025 CR025 CR025 CR026 CR026 CR026 CR026 CR027 CR027 CR027 CR027 CR028 CR028 CR028 CR028 CR029 CR029 CR029 CR029 CR029 CR029 CR020 CR020 CR020 CR020 CR020 CR021 CR020 CR021 CR020 CR021 CR020 CR021 CR022 CR022 CR022 CR022 CR022 CR023 CR024 CR025 CR026 CR026 CR026 CR027 CR026 CR027 CR027 CR027 CR028 CR048  |        | -  |        |      |       |      |      |                                       |
| CR017 CR0185,670 CR0185,670 CR0195,670 CR0205,670 CR0215,670 CR0215,670 CR0215,670 CR0235,670 CR0235,670 CR0235,670 CR0245,670 CR0245,670 CR0255,670 CR0265,670 CR027 CR027 CR0285,670 CR0285,670 CR0285,670 CR0295,670 CR0295,670 CR0295,670 CR0295,670 CR0295,670 CR0295,670 CR0295,670 CR0295,670 CR0295,670 CR0285,670 CR0285,670 CR0285,670 CR0295,670 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | -  |        |      |       |      |      |                                       |
| CR018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR020 - 5.6,670 -163 5,307 -283 -692 -227 CR021 5.6,670 -163 5,307 -283 -692 -227 CR023 5.6,670 -163 5,307 -283 -692 -227 CR023 5.6,670 -163 5,307 -283 -692 -227 CR024 5.6,670 -163 5,307 -283 -692 -227 CR025 5.6,670 -163 5,307 -283 -692 -227 CR026 5.6,670 -163 5,307 -283 -692 -227 CR027 5.6,670 -163 5,307 -283 -692 -227 CR028 5.6,670 -163 5,307 -283 -692 -227 CR029 5.6,670 -163 5,307 -283 -692 -227 CR029 5.6,670 -163 5,307 -283 -692 -227 CR030 5.6,670 -163 5,307 -283 -692 -227 CR031 5.6,670 -163 5,307 -283 -692 -227 CR031 5.6,670 -163 5,307 -283 -692 -227 CR031 5.6,670 -163 5,307 -283 -692 -227 CR032 5.6,670 -163 5,307 -283 -692 -227 CR033 3.418 -163 5,307 -283 -692 -227 CR034 3.418 -163 5,307 -283 -692 -227 CR035 3.418 -163 4,531 -283 -920 -227 CR036 3.418 -163 4,531 -283 -920 -227 CR037 3.418 -163 4,531 -283 -920 -227 CR038 3.418 -163 4,531 -283 -920 -227 CR038 3.418 -163 4,531 -283 -920 -227 CR038 3.418 -163 4,531 -283 -920 -227 CR039 3.418 -163 4,531 -283 -920 -227 CR038 3.418 -163 4,531 -283 -920 -227 CR039 3.418 -163 4,531 -283 -920 -227 CR040 3.418 -163 4,531 -283 -920 -227 CR041 3.418 -163 4,531 -283 -920 -227 CR042 3.418 -163 4,531 -283 -920 -227 CR044 3.418 -163 4,531 -283 -920 -227 CR044 3.418 -163 4,531 -283 -920 -227 CR044 3.418 -163 4,531 -283 -920 -227 CR045 3.418 -163 4,531 -283 -920 -227 CR046 3.418 -163 4,531 -283 -920 -227 CR047 3.418 -163 4,531 -283 -920 -227 CR048 3.418 -163 4,531 -283 -920 -227 CR049 3.418 -163 4,531 -283 -920 -227 CR040 3.418 -163 4,531 -283 -920 -227 CR041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | _  |        |      |       |      |      |                                       |
| CR021         -         -5,670         163         5,307         283         -692         227           CR022         -         -5,670         163         5,307         -283         -692         227           CR024         -         -5,670         163         5,307         -283         -692         227           CR025         -         -5,670         -163         5,307         -283         -692         227           CR026         -         -5,670         -163         5,307         -283         -692         227           CR026         -         -5,670         -163         5,307         -283         -692         227           CR027         -         -5,670         -163         5,307         -283         -692         227           CR028         -         -5,670         -163         5,307         -283         -692         -227           CR029         -         -5,670         -163         5,307         -283         -692         -227           CR031         -         -5,670         -163         5,307         -283         -692         -227           CR032         -         -5,670         -163 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | _  |        |      |       |      |      |                                       |
| CR023         -         -5,670         163         5,307         283         -692         -227           CR024         -         -5,670         -163         5,307         -283         -692         227           CR025         -         -5,670         163         5,307         -283         -692         227           CR026         -         -5,670         163         5,307         -283         -692         -227           CR027         -         -5,670         -163         5,307         -283         -692         -227           CR028         -         -5,670         -163         5,307         -283         -692         -227           CR029         -         -5,670         -163         5,307         -283         -692         -227           CR030         -         -5,670         -163         5,307         -283         -692         -227           CR031         -         -5,670         -163         5,307         -283         -692         -227           CR032         -         -5,670         -163         5,307         -283         -692         -227           CR033         -         -3,418         -16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | -  |        | 163  |       |      |      |                                       |
| CR024         -         -5,670         -163         5,307         -283         -692         227           CR025         -         -5,670         -163         5,307         -283         -692         227           CR026         -         -5,670         -163         5,307         283         -692         -227           CR027         -         -5,670         -163         5,307         -283         -692         -227           CR028         -         -5,670         -163         5,307         -283         -692         -227           CR029         -         -5,670         -163         5,307         -283         -692         -227           CR030         -         -5,670         -163         5,307         -283         -692         -227           CR031         -         -5,670         -163         5,307         -283         -692         -227           CR032         -         -5,670         -163         5,307         -283         -692         -227           CR033         -         -5,670         -163         5,307         -283         -692         -227           CR034         -         -3,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | -  |        |      |       |      |      |                                       |
| CR025         -         -5.670         -163         5,307         -283         -692         227           CR027         -         -5,670         163         5,307         283         -692         -227           CR028         -         -5,670         163         5,307         -283         -692         -227           CR029         -         -5,670         163         5,307         -283         -692         -227           CR030         -         -5,670         163         5,307         -283         -692         -227           CR031         -         -5,670         163         5,307         -283         -692         -227           CR031         -         -5,670         163         5,307         -283         -692         -227           CR031         -         -5,670         163         5,307         -283         -692         -227           CR032         -         -5,670         163         5,307         -283         -692         -227           CR033         -         -5,670         163         5,307         -283         -692         -227           CR034         -         -3,418         163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | -  |        |      |       |      |      |                                       |
| CR026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |    |        |      |       |      |      |                                       |
| CR027         -         -5,670         -163         5,307         -283         -692         227           CR028         -         -5,670         163         5,307         283         -692         -227           CR029         -         -5,670         163         5,307         283         -692         227           CR030         -         -5,670         163         5,307         283         -692         -227           CR031         -         -5,670         163         5,307         283         -692         -227           CR032         -         -5,670         163         5,307         283         -692         -227           CR033         -         -5,670         163         5,307         283         -692         -227           CR034         -         -3,418         163         4,531         283         -920         -227           CR035         -         -3,418         -163         4,531         283         -920         -227           CR036         -         -3,418         -163         4,531         283         -920         -227           CR037         -         -3,418         163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | -  |        |      |       |      |      |                                       |
| CR029         -         -5,670         -163         5,307         -283         -692         227           CR030         -         -5,670         163         5,307         283         -692         -227           CR031         -         -5,670         163         5,307         -283         -692         227           CR032         -         -5,670         163         5,307         283         -692         -227           CR033         -         -3,418         163         4,531         283         -920         -227           CR034         -         -3,418         -163         4,531         283         -920         -227           CR035         -         -3,418         -163         4,531         283         -920         -227           CR036         -         -3,418         -163         4,531         283         -920         -227           CR037         -         -3,418         -163         4,531         283         -920         -227           CR038         -         -3,418         -163         4,531         283         -920         -227           CR040         -         -3,418         -163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CR027  | -  | -5,670 | -163 | 5,307 | -283 | -692 | 227                                   |
| CR030         -         -5,670         163         5,307         283         -692         -227           CR031         -         -5,670         -163         5,307         -283         -692         227           CR032         -         -5,670         163         5,307         283         -692         -227           CR033         -         -5,670         163         5,307         283         -692         -227           CR034         -         -3,418         163         4,531         -283         -920         -227           CR035         -         -3,418         163         4,531         283         -920         -227           CR036         -         -3,418         -163         4,531         -283         -920         -227           CR037         -         -3,418         -163         4,531         -283         -920         -227           CR038         -         -3,418         -163         4,531         -283         -920         -227           CR040         -         -3,418         -163         4,531         -283         -920         -227           CR041         -         -3,418         -163 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | -  |        |      |       |      |      |                                       |
| CR031         -         -5,670         -163         5,307         -283         -692         227           CR032         -         -5,670         163         5,307         283         -692         -227           CR033         -         -3,418         163         4,531         283         -920         -227           CR034         -         -3,418         -163         4,531         283         -920         227           CR035         -         -3,418         163         4,531         283         -920         -227           CR036         -         -3,418         -163         4,531         -283         -920         -227           CR037         -         -3,418         163         4,531         283         -920         -227           CR038         -         -3,418         -163         4,531         283         -920         -227           CR049         -         -3,418         -163         4,531         283         -920         -227           CR041         -         -3,418         -163         4,531         -283         -920         -227           CR042         -         -3,418         -163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |    |        |      |       |      |      |                                       |
| CR032         -         -5,670         163         5,307         283         -692         -227           CR033         -         -3,418         163         4,531         283         -920         -227           CR034         -         -3,418         -163         4,531         -283         -920         227           CR035         -         -3,418         163         4,531         283         -920         -227           CR036         -         -3,418         -163         4,531         283         -920         227           CR037         -         -3,418         163         4,531         283         -920         -227           CR038         -         -3,418         -163         4,531         -283         -920         -227           CR039         -         -3,418         -163         4,531         -283         -920         -227           CR040         -         -3,418         -163         4,531         -283         -920         227           CR041         -         -3,418         -163         4,531         -283         -920         227           CR042         -         -3,418         -163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | _  |        |      |       |      |      |                                       |
| CR034         -         -3,418         -163         4,531         -283         -920         227           CR035         -         -3,418         163         4,531         283         -920         -227           CR036         -         -3,418         -163         4,531         -283         -920         227           CR037         -         -3,418         163         4,531         283         -920         -227           CR038         -         -3,418         -163         4,531         -283         -920         227           CR039         -         -3,418         -163         4,531         -283         -920         -227           CR040         -         -3,418         -163         4,531         -283         -920         227           CR041         -         -3,418         -163         4,531         -283         -920         227           CR042         -         -3,418         -163         4,531         -283         -920         -227           CR043         -         -3,418         -163         4,531         -283         -920         -227           CR044         -         -3,418         -163 </td <td>CR032</td> <td>-</td> <td>-5,670</td> <td>163</td> <td>5,307</td> <td>283</td> <td>-692</td> <td>-227</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CR032  | -  | -5,670 | 163  | 5,307 | 283  | -692 | -227                                  |
| CR035         -         -3,418         163         4,531         283         -920         -227           CR036         -         -3,418         -163         4,531         -283         -920         227           CR037         -         -3,418         163         4,531         283         -920         -227           CR038         -         -3,418         -163         4,531         -283         -920         227           CR039         -         -3,418         -163         4,531         283         -920         -227           CR040         -         -3,418         -163         4,531         -283         -920         227           CR041         -         -3,418         -163         4,531         -283         -920         227           CR042         -         -3,418         -163         4,531         -283         -920         -227           CR043         -         -3,418         -163         4,531         -283         -920         -227           CR044         -         -3,418         -163         4,531         -283         -920         -227           CR045         -         -3,418         -163 </td <td></td> <td>-</td> <td>-3,418</td> <td>163</td> <td>4,531</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | -  | -3,418 | 163  | 4,531 |      |      |                                       |
| CR036         -         -3,418         -163         4,531         -283         -920         227           CR037         -         -3,418         163         4,531         283         -920         -227           CR038         -         -3,418         -163         4,531         -283         -920         227           CR039         -         -3,418         163         4,531         283         -920         -227           CR040         -         -3,418         -163         4,531         -283         -920         227           CR041         -         -3,418         -163         4,531         -283         -920         227           CR042         -         -3,418         -163         4,531         -283         -920         -227           CR043         -         -3,418         -163         4,531         -283         -920         -227           CR044         -         -3,418         -163         4,531         -283         -920         -227           CR045         -         -3,418         -163         4,531         -283         -920         -227           CR046         -         -3,418         -163<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | -  |        |      |       |      |      |                                       |
| CR037         -         -3,418         163         4,531         283         -920         -227           CR038         -         -3,418         -163         4,531         -283         -920         227           CR039         -         -3,418         163         4,531         283         -920         -227           CR040         -         -3,418         -163         4,531         -283         -920         227           CR041         -         -3,418         -163         4,531         -283         -920         227           CR042         -         -3,418         163         4,531         283         -920         -227           CR043         -         -3,418         -163         4,531         -283         -920         -227           CR044         -         -3,418         163         4,531         -283         -920         -227           CR045         -         -3,418         163         4,531         -283         -920         -227           CR046         -         -3,418         163         4,531         -283         -920         -227           CR047         -         -3,418         -163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | -  |        |      |       |      |      |                                       |
| CR038         -         -3,418         -163         4,531         -283         -920         227           CR039         -         -3,418         163         4,531         283         -920         -227           CR040         -         -3,418         -163         4,531         -283         -920         227           CR041         -         -3,418         -163         4,531         -283         -920         227           CR042         -         -3,418         163         4,531         283         -920         -227           CR043         -         -3,418         -163         4,531         -283         -920         227           CR044         -         -3,418         163         4,531         283         -920         227           CR045         -         -3,418         -163         4,531         283         -920         227           CR046         -         -3,418         -163         4,531         283         -920         227           CR047         -         -3,418         -163         4,531         283         -920         -227           CR048         -         -3,418         -163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | -  |        |      |       |      |      |                                       |
| CR040         -         -3,418         -163         4,531         -283         -920         227           CR041         -         -3,418         -163         4,531         -283         -920         227           CR042         -         -3,418         163         4,531         283         -920         -227           CR043         -         -3,418         -163         4,531         -283         -920         227           CR044         -         -3,418         163         4,531         283         -920         -227           CR045         -         -3,418         -163         4,531         -283         -920         227           CR046         -         -3,418         163         4,531         283         -920         -227           CR047         -         -3,418         -163         4,531         -283         -920         -227           CR048         -         -3,418         163         4,531         -283         -920         -227           CR049         -         -5,670         163         5,307         283         -920         -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CR038  | -  | -3,418 | -163 | 4,531 | -283 | -920 | 227                                   |
| CR041         -         -3,418         -163         4,531         -283         -920         227           CR042         -         -3,418         163         4,531         283         -920         -227           CR043         -         -3,418         -163         4,531         -283         -920         227           CR044         -         -3,418         163         4,531         283         -920         -227           CR045         -         -3,418         -163         4,531         -283         -920         227           CR046         -         -3,418         163         4,531         283         -920         -227           CR047         -         -3,418         -163         4,531         -283         -920         -227           CR048         -         -3,418         163         4,531         -283         -920         -227           CR049         -         -5,670         163         5,307         283         -920         -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | -  |        |      |       |      |      |                                       |
| CR042         -         -3,418         163         4,531         283         -920         -227           CR043         -         -3,418         -163         4,531         -283         -920         227           CR044         -         -3,418         163         4,531         283         -920         -227           CR045         -         -3,418         -163         4,531         -283         -920         227           CR046         -         -3,418         163         4,531         283         -920         -227           CR047         -         -3,418         -163         4,531         -283         -920         227           CR048         -         -3,418         163         4,531         283         -920         -227           CR049         -         -5,670         163         5,307         283         -692         -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | -  |        |      |       |      |      |                                       |
| CR043         -         -3,418         -163         4,531         -283         -920         227           CR044         -         -3,418         163         4,531         283         -920         -227           CR045         -         -3,418         -163         4,531         -283         -920         227           CR046         -         -3,418         163         4,531         283         -920         -227           CR047         -         -3,418         -163         4,531         -283         -920         227           CR048         -         -3,418         163         4,531         283         -920         -227           CR049         -         -5,670         163         5,307         283         -692         -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    |        |      |       |      |      |                                       |
| CR044         -         -3,418         163         4,531         283         -920         -227           CR045         -         -3,418         -163         4,531         -283         -920         227           CR046         -         -3,418         163         4,531         283         -920         -227           CR047         -         -3,418         -163         4,531         -283         -920         227           CR048         -         -3,418         163         4,531         283         -920         -227           CR049         -         -5,670         163         5,307         283         -692         -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | -  |        |      |       |      |      |                                       |
| CR046         -         -3,418         163         4,531         283         -920         -227           CR047         -         -3,418         -163         4,531         -283         -920         227           CR048         -         -3,418         163         4,531         283         -920         -227           CR049         -         -5,670         163         5,307         283         -692         -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CR044  | -  | -3,418 | 163  | 4,531 | 283  | -920 | -227                                  |
| CR047     -     -3,418     -163     4,531     -283     -920     227       CR048     -     -3,418     163     4,531     283     -920     -227       CR049     -     -5,670     163     5,307     283     -692     -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | -  |        |      |       |      |      |                                       |
| CR0495,670 163 5,307 283 -692 -227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | _  |        |      |       |      |      |                                       |
| CR0505,670 -163 5,307 -283 -692 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CR049  | -  | -5,670 | 163  | 5,307 | 283  | -692 | -227                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CR050  | -  | -5,670 | -163 | 5,307 | -283 | -692 | 227                                   |

|                |    |                  |                   |                  |               | Carichi sui no | di in fondazione |
|----------------|----|------------------|-------------------|------------------|---------------|----------------|------------------|
| Carico         | CC | Fx               | Fy                | Fz               | Mx<br>[N·m]   | My             | Mz               |
| CR051          | -  | [N]<br>-5,670    | [N]               | [N]<br>5,307     | 283           | [N·m]<br>-692  | [N·m]<br>-227    |
| CR052          | -  | -5,670           | -163              | 5,307            | -283          | -692           | 227              |
| CR053          | -  | -5,670           | 163               | 5,307            | 283           | -692           | -227             |
| CR054<br>CR055 | -  | -5,670<br>-5,670 | -163<br>163       | 5,307<br>5,307   | -283<br>283   | -692<br>-692   | 227<br>-227      |
| CR056          | _  | -5,670           | -163              | 5,307            | -283          | -692           | 227              |
| CR057          | -  | -5,670           | -163              | 5,307            | -283          | -692           | 227              |
| CR058          | -  | -5,670           | 163               | 5,307            | 283           | -692           | -227             |
| CR059          | -  | -5,670           | -163              | 5,307            | -283          | -692           | 227              |
| CR060<br>CR061 | -  | -5,670<br>-5,670 | 163<br>-163       | 5,307<br>5,307   | 283<br>-283   | -692<br>-692   | -227<br>227      |
| CR062          | -  | -5,670           | 163               | 5,307            | 283           | -692           | -227             |
| CR063          | -  | -5,670           | -163              | 5,307            | -283          | -692           | 227              |
| CR064          | -  | -5,670           | 163               | 5,307            | 283           | -692           | -227             |
| CR065<br>CR066 | -  | -4,206<br>-4,882 | 543<br>543        | 4,802<br>5,036   | 942<br>942    | -840<br>-772   | -755<br>-755     |
| CR067          | _  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR068          | _  | -4,882           | 543               | 5,036            | 942           | -772           | -755             |
| CR069          | -  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR070          | -  | -4,882           | 543               | 5,036            | 942           | -772           | -755             |
| CR071<br>CR072 | _  | -4,206<br>-4,882 | 543<br>543        | 4,802<br>5,036   | 942<br>942    | -840<br>-772   | -755<br>-755     |
| CR073          | _  | -4,882           | 543               | 5,036            | 942           | -772           | -755             |
| CR074          | -  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR075          | -  | -4,882           | 543               | 5,036            | 942           | -772           | -755             |
| CR076          | -  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR077<br>CR078 |    | -4,882<br>-4,206 | 543<br>543        | 5,036<br>4,802   | 942<br>942    | -772<br>-840   | -755<br>-755     |
| CR079          | _  | -4,882           | 543               | 5,036            | 942           | -772           | -755             |
| CR080          | -  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR081          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR082<br>CR083 | -  | -4,882<br>-4,206 | -543<br>-543      | 5,036<br>4,802   | -942<br>-942  | -772<br>-840   | 755<br>755       |
| CR084          | -  | -4,882           | -543              | 5,036            | -942          | -772           | 755              |
| CR085          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR086          | -  | -4,882           | -543              | 5,036            | -942          | -772           | 755              |
| CR087          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR088<br>CR089 | -  | -4,882<br>-4,882 | -543<br>-543      | 5,036<br>5,036   | -942<br>-942  | -772<br>-772   | 755<br>755       |
| CR090          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR091          | -  | -4,882           | -543              | 5,036            | -942          | -772           | 755              |
| CR092          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR093<br>CR094 | -  | -4,882<br>-4,206 | -543<br>-543      | 5,036<br>4,802   | -942<br>-942  | -772<br>-840   | 755<br>755       |
| CR095          | -  | -4,882           | -543              | 5,036            | -942          | -772           | 755              |
| CR096          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR097          | -  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR098          | -  | -4,882           | 543               | 5,036            | 942           | -772           | -755             |
| CR099<br>CR100 | _  | -4,206<br>-4,882 | 543<br>543        | 4,802<br>5,036   | 942<br>942    | -840<br>-772   | -755<br>-755     |
| CR101          | -  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR102          | -  | -4,882           | 543               | 5,036            | 942           | -772           | -755             |
| CR103          | -  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR104          | -  | -4,882           | 543               | 5,036            | 942           | -772<br>772    | -755<br>755      |
| CR105<br>CR106 |    | -4,882<br>-4,206 | 543<br>543        | 5,036<br>4,802   | 942<br>942    | -772<br>-840   | -755<br>-755     |
| CR107          | -  | -4,882           | 543               | 5,036            | 942           | -772           | -755             |
| CR108          | -  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR109          | -  | -4,882           | 543               | 5,036            | 942           | -772           | -755<br>755      |
| CR110<br>CR111 |    | -4,206<br>-4,882 | 543<br>543        | 4,802<br>5,036   | 942<br>942    | -840<br>-772   | -755<br>-755     |
| CR112          | _  | -4,206           | 543               | 4,802            | 942           | -840           | -755             |
| CR113          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR114          | -  | -4,882           | -543              | 5,036            | -942          | -772           | 755              |
| CR115          | -  | -4,206<br>-4,882 | -543<br>-543      | 4,802<br>5,036   | -942          | -840<br>-772   | 755<br>755       |
| CR116<br>CR117 |    | -4,882<br>-4,206 | -543<br>-543      | 5,036<br>4,802   | -942<br>-942  | -772<br>-840   | 755<br>755       |
| CR118          | _  | -4,882           | -543              | 5,036            | -942          | -772           | 755              |
| CR119          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR120          | -  | -4,882           | -543              | 5,036            | -942          | -772<br>-770   | 755              |
| CR121<br>CR122 | -  | -4,882<br>-4,206 | -543<br>-543      | 5,036<br>4,802   | -942<br>-942  | -772<br>-840   | 755<br>755       |
| CR122          |    | -4,882           | -543              | 5,036            | -942          | -640<br>-772   | 755              |
| CR124          | -  | -4,206           | -543              | 4,802            | -942          | -840           | 755              |
| CR125          | -  | -4,882           | -543              | 5,036            | -942          | -772           | 755              |
| CR126          | -  | -4,206           | -543<br>542       | 4,802            | -942          | -840<br>773    | 755<br>755       |
| CR127<br>CR128 |    | -4,882<br>-4,206 | -543<br>-543      | 5,036<br>4,802   | -942<br>-942  | -772<br>-840   | 755<br>755       |
| Nodo 00084     |    | 7,200            | 570               | 7,002            | 542           | 040            | 755              |
| CR001          | -  | 2,273            | 2,016             | 8,632            | -937          | 491            | 0                |
| CR002          | -  | 2,273            | -2,016            | 8,632            | 937           | 491            | 0                |
| CR003          | -  | 2,273            | 2,016             | 8,632            | -937          | 491            | 0                |
| CR004<br>CR005 | -  | 2,273  <br>2,273 | -2,016  <br>2,016 | 8,632  <br>8,632 | 937  <br>-937 | 491<br>491     | 0                |
| 011000         |    | 2,270            | 2,010             | 0,002            | 307           | 7.71           | <u> </u>         |

|                |    |                  |                  |                |                  |              | di in fondazione |
|----------------|----|------------------|------------------|----------------|------------------|--------------|------------------|
| Carico         | CC | Fx               | Fy               | Fz             | Mx               | My           | Mz               |
|                |    | [N]              | [N]              | [N]            | [N·m]            | [N·m]        | [N·m]            |
| CR006          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR007<br>CR008 | -  | 2,273<br>2,273   | 2,016<br>-2,016  | 8,632<br>8,632 | -937<br>937      | 491<br>491   | 0                |
| CR009          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR010          | -  | 2,273            | 2,016            | 8,632          | -937             | 491          | o l              |
| CR011          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR012          | -  | 2,273            | 2,016            | 8,632          | -937             | 491          | 0                |
| CR013          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR014<br>CR015 | -  | 2,273            | 2,016            | 8,632          | -937<br>937      | 491<br>491   | 0                |
| CR016          |    | 2,273<br>2,273   | -2,016<br>2,016  | 8,632<br>8,632 | -937             | 491          | 0                |
| CR017          | _  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR018          | -  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR019          | -  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR020          | -  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR021<br>CR022 | -  | -2,273<br>-2,273 | 2,016<br>-2,016  | 8,632<br>8,632 | -937<br>937      | -491<br>-491 | 0                |
| CR023          | -  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR024          | _  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR025          | -  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR026          | -  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR027          | -  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR028<br>CR029 | -  | -2,273<br>-2,273 | 2,016<br>-2,016  | 8,632<br>8,632 | -937<br>937      | -491<br>-491 | 0                |
| CR030          | _  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR031          | -  | -2,273           | -2,016           | 8,632          | 937              | -491         | o l              |
| CR032          | -  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR033          | -  | 2,273            | 2,016            | 8,632          | -937             | 491          | 0                |
| CR034          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR035<br>CR036 |    | 2,273<br>2,273   | 2,016<br>-2,016  | 8,632<br>8,632 | -937<br>937      | 491<br>491   | 0                |
| CR037          | _  | 2,273            | 2,016            | 8,632          | -937             | 491          | 0                |
| CR038          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR039          | -  | 2,273            | 2,016            | 8,632          | -937             | 491          | 0                |
| CR040          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR041<br>CR042 | -  | 2,273            | -2,016           | 8,632          | 937<br>-937      | 491<br>491   | 0                |
| CR043          | _  | 2,273<br>2,273   | 2,016<br>-2,016  | 8,632<br>8,632 | 937              | 491          | 0                |
| CR044          | _  | 2,273            | 2,016            | 8,632          | -937             | 491          | 0                |
| CR045          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR046          | -  | 2,273            | 2,016            | 8,632          | -937             | 491          | 0                |
| CR047          | -  | 2,273            | -2,016           | 8,632          | 937              | 491          | 0                |
| CR048<br>CR049 | -  | 2,273            | 2,016            | 8,632          | -937<br>-937     | 491<br>-491  | 0                |
| CR050          | -  | -2,273<br>-2,273 | 2,016<br>-2,016  | 8,632<br>8,632 | 937              | -491<br>-491 | 0                |
| CR051          | _  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR052          | -  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR053          | -  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR054          | -  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR055<br>CR056 |    | -2,273<br>-2,273 | 2,016<br>-2,016  | 8,632<br>8,632 | -937<br>937      | -491<br>-491 | 0 0              |
| CR057          | _  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR058          | -  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR059          | -  | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR060          | -  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR061<br>CR062 | -  | -2,273<br>-2,273 | -2,016<br>2,016  | 8,632<br>8,632 | 937<br>-937      | -491<br>-491 | 0                |
| CR063          |    | -2,273           | -2,016           | 8,632          | 937              | -491         | 0                |
| CR064          | -  | -2,273           | 2,016            | 8,632          | -937             | -491         | 0                |
| CR065          | -  | 682              | 6,721            | 8,632          | -3,124           | 147          | 0                |
| CR066          | -  | -682             | 6,721            | 8,632          | -3,124           | -147         | 0                |
| CR067<br>CR068 |    | 682<br>-682      | 6,721<br>6,721   | 8,632<br>8,632 | -3,124<br>-3,124 | 147<br>-147  | 0                |
| CR069          |    | 682              | 6,721            | 8,632          | -3,124           | 147          | 0                |
| CR070          | _  | -682             | 6,721            | 8,632          | -3,124           | -147         | 0                |
| CR071          | -  | 682              | 6,721            | 8,632          | -3,124           | 147          | 0                |
| CR072          | -  | -682             | 6,721            | 8,632          | -3,124           | -147         | 0                |
| CR073<br>CR074 | -  | -682<br>682      | 6,721<br>6,721   | 8,632<br>8,632 | -3,124<br>-3,124 | -147<br>147  | 0                |
| CR075          | -  | -682             | 6,721            | 8,632          | -3,124           | -147         | 0                |
| CR076          | -  | 682              | 6,721            | 8,632          | -3,124           | 147          | 0                |
| CR077          | -  | -682             | 6,721            | 8,632          | -3,124           | -147         | 0                |
| CR078          | -  | 682              | 6,721            | 8,632          | -3,124           | 147          | 0                |
| CR079          | -  | -682             | 6,721            | 8,632          | -3,124           | -147         | 0                |
| CR080<br>CR081 |    | 682<br>682       | 6,721<br>-6,721  | 8,632<br>8,632 | -3,124<br>3,124  | 147<br>147   | 0                |
| CR082          |    | -682             | -6,721<br>-6,721 | 8,632          | 3,124            | -147<br>-147 | 0                |
| CR083          | -  | 682              | -6,721           | 8,632          | 3,124            | 147          | 0                |
| CR084          | -  | -682             | -6,721           | 8,632          | 3,124            | -147         | 0                |
| CR085          | -  | 682              | -6,721           | 8,632          | 3,124            | 147          | 0                |
| CR086<br>CR087 | _  | -682<br>682      | -6,721<br>-6,721 | 8,632<br>8,632 | 3,124<br>3,124   | -147<br>147  | 0                |
| CR088          |    | -682             | -6,721<br>-6,721 | 8,632          | 3,124            | -147<br>-147 | 0                |
| CR089          | -  | -682             | -6,721           | 8,632          | 3,124            | -147         | 0                |
|                |    |                  | ·                | <u> </u>       | •                |              |                  |

|                |    |                  |                  |                  |                  | Carichi sui no   | di in fondazione  |
|----------------|----|------------------|------------------|------------------|------------------|------------------|-------------------|
| Carico         | CC | Fx               | Fy               | Fz               | Mx<br>[N·m]      | My               | Mz                |
| CR090          | -  | [N] 682          | [N]<br>-6,721    | [N]<br>8,632     | 3,124            | [N·m]<br>147     | [N·m]             |
| CR091          | -  | -682             | -6,721           | 8,632            | 3,124            | -147             | 0                 |
| CR092          | -  | 682              | -6,721           | 8,632            | 3,124            | 147              | 0                 |
| CR093<br>CR094 | -  | -682<br>682      | -6,721<br>-6,721 | 8,632<br>8,632   | 3,124<br>3,124   | -147<br>147      | 0                 |
| CR095          | -  | -682             | -6,721           | 8,632            | 3,124            | -147             | 0                 |
| CR096          | _  | 682              | -6,721           | 8,632            | 3,124            | 147              | 0                 |
| CR097          | -  | 682              | 6,721            | 8,632            | -3,124           | 147              | 0                 |
| CR098          | -  | -682             | 6,721            | 8,632            | -3,124           | -147             | 0                 |
| CR099<br>CR100 | -  | 682<br>-682      | 6,721<br>6,721   | 8,632<br>8,632   | -3,124<br>-3,124 | 147<br>-147      | 0                 |
| CR101          | _  | 682              | 6,721            | 8,632            | -3,124           | 147              | 0                 |
| CR102          | -  | -682             | 6,721            | 8,632            | -3,124           | -147             | 0                 |
| CR103          | -  | 682              | 6,721            | 8,632            | -3,124           | 147              | 0                 |
| CR104<br>CR105 | -  | -682<br>-682     | 6,721            | 8,632            | -3,124<br>-3,124 | -147<br>-147     | 0                 |
| CR106          | -  | 682              | 6,721<br>6,721   | 8,632<br>8,632   | -3,124           | 147              | 0                 |
| CR107          | -  | -682             | 6,721            | 8,632            | -3,124           | -147             | 0                 |
| CR108          | -  | 682              | 6,721            | 8,632            | -3,124           | 147              | 0                 |
| CR109          | -  | -682             | 6,721            | 8,632            | -3,124           | -147             | 0                 |
| CR110<br>CR111 |    | 682<br>-682      | 6,721<br>6,721   | 8,632<br>8,632   | -3,124<br>-3,124 | 147<br>-147      | 0                 |
| CR112          | -  | 682              | 6,721            | 8,632            | -3,124           | 147              | 0                 |
| CR113          | -  | 682              | -6,721           | 8,632            | 3,124            | 147              | 0                 |
| CR114          | -  | -682             | -6,721           | 8,632            | 3,124            | -147             | 0                 |
| CR115<br>CR116 |    | 682<br>-682      | -6,721<br>-6,721 | 8,632<br>8,632   | 3,124<br>3,124   | 147<br>-147      | 0                 |
| CR117          |    | 682              | -6,721<br>-6,721 | 8,632<br>8,632   | 3,124            | -147<br>147      | 0                 |
| CR118          | -  | -682             | -6,721           | 8,632            | 3,124            | -147             | 0                 |
| CR119          | -  | 682              | -6,721           | 8,632            | 3,124            | 147              | 0                 |
| CR120          | -  | -682             | -6,721           | 8,632            | 3,124            | -147             | 0                 |
| CR121<br>CR122 |    | -682<br>682      | -6,721<br>-6,721 | 8,632<br>8,632   | 3,124<br>3,124   | -147<br>147      | 0                 |
| CR123          | -  | -682             | -6,721           | 8,632            | 3,124            | -147             | 0                 |
| CR124          | -  | 682              | -6,721           | 8,632            | 3,124            | 147              | 0                 |
| CR125          | -  | -682             | -6,721           | 8,632            | 3,124            | -147             | 0                 |
| CR126<br>CR127 | -  | 682<br>-682      | -6,721<br>-6,721 | 8,632<br>8,632   | 3,124<br>3,124   | 147<br>-147      | 0                 |
| CR128          | -  | 682              | -6,721           | 8,632            | 3,124            | 147              | 0                 |
| Nodo 00085     |    |                  | -,               | -,               | -,               |                  | -                 |
| CR001          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
| CR002          | -  | -3,034           | -1,317           | 9,012            | 666              | -400             | 215               |
| CR003<br>CR004 | -  | -3,034<br>-3,034 | 1,317<br>-1,317  | 9,012<br>9,012   | -666<br>666      | -400<br>-400     | -215<br>215       |
| CR005          | _  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
| CR006          | -  | -3,034           | -1,317           | 9,012            | 666              | -400             | 215               |
| CR007          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
| CR008<br>CR009 | -  | -3,034<br>-3,034 | -1,317<br>-1,317 | 9,012<br>9,012   | 666<br>666       | -400<br>-400     | 215<br>215        |
| CR010          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
| CR011          | -  | -3,034           | -1,317           | 9,012            | 666              | -400             | 215               |
| CR012          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
| CR013          | -  | -3,034           | -1,317           | 9,012            | 666              | -400             | 215               |
| CR014<br>CR015 | _  | -3,034<br>-3,034 | 1,317<br>-1,317  | 9,012<br>9,012   | -666<br>666      | -400<br>-400     | -215<br>215       |
| CR016          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
| CR017          | -  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215              |
| CR018          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215               |
| CR019<br>CR020 |    | -6,290<br>-6,290 | 1,317<br>-1,317  | 11,294<br>11,294 | -666<br>666      | -1,038<br>-1,038 | -215<br>215       |
| CR021          |    | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215              |
| CR022          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215               |
| CR023          | -  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215              |
| CR024<br>CR025 | -  | -6,290<br>-6,290 | -1,317<br>-1,317 | 11,294<br>11,294 | 666<br>666       | -1,038<br>-1,038 | 215<br>215        |
| CR026          | -  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215              |
| CR027          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215               |
| CR028          | -  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215              |
| CR029          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215               |
| CR030<br>CR031 | _  | -6,290<br>-6,290 | 1,317<br>-1,317  | 11,294<br>11,294 | -666<br>666      | -1,038<br>-1,038 | -215<br>215       |
| CR032          | _  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215              |
| CR033          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
| CR034          | -  | -3,034           | -1,317           | 9,012            | 666              | -400             | 215               |
| CR035          | -  | -3,034           | 1,317            | 9,012            | -666<br>666      | -400<br>-400     | -215<br>215       |
| CR036<br>CR037 |    | -3,034<br>-3,034 | -1,317<br>1,317  | 9,012<br>9,012   | 666<br>-666      | -400<br>-400     | 215<br>-215       |
| CR038          | -  | -3,034           | -1,317           | 9,012            | 666              | -400             | 215               |
| CR039          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
| CR040          | -  | -3,034           | -1,317           | 9,012            | 666              | -400             | 215               |
| CR041<br>CR042 |    | -3,034<br>-3,034 | -1,317<br>1,317  | 9,012<br>9,012   | 666<br>-666      | -400<br>-400     | 215<br>-215       |
| CR043          |    | -3,034           | -1,317           | 9,012            | 666              | -400             | 215               |
| CR044          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215              |
|                |    |                  |                  |                  |                  |                  | MIT Of transparen |

|                |    |                  |                  |                  |                  | Carichi sui nodi | in fondazione |
|----------------|----|------------------|------------------|------------------|------------------|------------------|---------------|
| Carico         | CC | <b>Fx</b> [N]    | <b>Fy</b> [N]    | Fz<br>[N]        | Mx<br>[N·m]      | My<br>[N·m]      | Mz<br>[N·m]   |
| CR045          | -  | -3,034           | -1,317           | 9,012            | 666              | -400             | 215           |
| CR046          | -  | -3,034           | 1,317            | 9,012            | -666             | -400             | -215          |
| CR047<br>CR048 | -  | -3,034<br>-3,034 | -1,317<br>1,317  | 9,012            | 666<br>-666      | -400<br>-400     | 215<br>-215   |
| CR049          | -  | -6,290           | 1,317            | 9,012<br>11,294  | -666             | -1,038           | -215          |
| CR050          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215           |
| CR051          | -  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215          |
| CR052          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215           |
| CR053<br>CR054 | -  | -6,290<br>-6,290 | 1,317<br>-1,317  | 11,294<br>11,294 | -666<br>666      | -1,038<br>-1,038 | -215<br>215   |
| CR055          | -  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215          |
| CR056          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215           |
| CR057          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215           |
| CR058<br>CR059 | -  | -6,290<br>-6,290 | 1,317<br>-1,317  | 11,294<br>11,294 | -666<br>666      | -1,038<br>-1,038 | -215<br>215   |
| CR060          | -  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215          |
| CR061          | -  | -6,290           | -1,317           | 11,294           | 666              | -1,038           | 215           |
| CR062<br>CR063 | -  | -6,290<br>-6,290 | 1,317<br>-1,317  | 11,294<br>11,294 | -666<br>666      | -1,038<br>-1,038 | -215<br>215   |
| CR064          | -  | -6,290           | 1,317            | 11,294           | -666             | -1,038           | -215          |
| CR065          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR066          | -  | -5,150           | 4,389            | 10,495           | -2,220           | -815             | -718          |
| CR067<br>CR068 | -  | -4,174<br>-5,150 | 4,389<br>4,389   | 9,811<br>10,495  | -2,220<br>-2,220 | -623<br>-815     | -718<br>-718  |
| CR069          | _  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR070          | -  | -5,150           | 4,389            | 10,495           | -2,220           | -815             | -718          |
| CR071          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR072<br>CR073 | -  | -5,150<br>-5,150 | 4,389<br>4,389   | 10,495<br>10,495 | -2,220<br>-2,220 | -815<br>-815     | -718<br>-718  |
| CR074          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR075          | -  | -5,150           | 4,389            | 10,495           | -2,220           | -815             | -718          |
| CR076          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR077<br>CR078 | -  | -5,150<br>-4,174 | 4,389<br>4,389   | 10,495<br>9,811  | -2,220<br>-2,220 | -815<br>-623     | -718<br>-718  |
| CR079          | -  | -5,150           | 4,389            | 10,495           | -2,220           | -815             | -718          |
| CR080          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR081          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR082<br>CR083 | -  | -5,150<br>-4,174 | -4,389<br>-4,389 | 10,495<br>9,811  | 2,220<br>2,220   | -815<br>-623     | 718<br>718    |
| CR084          | -  | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR085          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR086          | -  | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR087<br>CR088 | -  | -4,174<br>-5,150 | -4,389<br>-4,389 | 9,811<br>10,495  | 2,220<br>2,220   | -623<br>-815     | 718<br>718    |
| CR089          | -  | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR090          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR091          | -  | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR092<br>CR093 | -  | -4,174<br>-5,150 | -4,389<br>-4,389 | 9,811<br>10,495  | 2,220<br>2,220   | -623<br>-815     | 718<br>718    |
| CR094          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR095          | -  | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR096          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR097<br>CR098 | -  | -4,174<br>-5,150 | 4,389<br>4,389   | 9,811<br>10,495  | -2,220<br>-2,220 | -623<br>-815     | -718<br>-718  |
| CR099          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR100          | -  | -5,150           | 4,389            | 10,495           | -2,220           | -815             | -718          |
| CR101          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR102<br>CR103 |    | -5,150<br>-4,174 | 4,389<br>4,389   | 10,495<br>9,811  | -2,220<br>-2,220 | -815<br>-623     | -718<br>-718  |
| CR104          | -  | -5,150           | 4,389            | 10,495           | -2,220           | -815             | -718          |
| CR105          | -  | -5,150           | 4,389            | 10,495           | -2,220           | -815             | -718          |
| CR106<br>CR107 | -  | -4,174<br>-5,150 | 4,389<br>4,389   | 9,811<br>10,495  | -2,220<br>-2,220 | -623<br>-815     | -718<br>-718  |
| CR107          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR109          | -  | -5,150           | 4,389            | 10,495           | -2,220           | -815             | -718          |
| CR110          | -  | -4,174           | 4,389            | 9,811            | -2,220           | -623             | -718          |
| CR111<br>CR112 | -  | -5,150<br>-4,174 | 4,389<br>4,389   | 10,495<br>9,811  | -2,220<br>-2,220 | -815<br>-623     | -718<br>-718  |
| CR112          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR114          | -  | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR115          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR116<br>CR117 |    | -5,150<br>-4,174 | -4,389<br>-4,389 | 10,495<br>9,811  | 2,220<br>2,220   | -815<br>-623     | 718<br>718    |
| CR117          |    | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR119          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR120          | -  | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR121<br>CR122 |    | -5,150<br>-4,174 | -4,389<br>-4,389 | 10,495<br>9,811  | 2,220<br>2,220   | -815<br>-623     | 718<br>718    |
| CR123          |    | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR124          | -  | -4,174           | -4,389           | 9,811            | 2,220            | -623             | 718           |
| CR125          | -  | -5,150           | -4,389           | 10,495           | 2,220            | -815             | 718           |
| CR126<br>CR127 |    | -4,174<br>-5,150 | -4,389<br>-4,389 | 9,811<br>10,495  | 2,220<br>2,220   | -623<br>-815     | 718<br>718    |
| CR128          | -  | -4,174           | -4,389<br>-4,389 | 9,811            | 2,220            | -623             | 718           |
|                |    | .,               | .,500            | -,               | _,===            | 020              |               |

|                |    |                |                  |                  |                  | Carichi sui no | di in fondazione |
|----------------|----|----------------|------------------|------------------|------------------|----------------|------------------|
| Carico         | CC | Fx<br>[N]      | Fy<br>[N]        | <b>Fz</b><br>[N] | Mx<br>[N·m]      | My<br>[N·m]    | Mz<br>[N·m]      |
| Nodo 00086     |    | [N]            | [IV]             | [N]              | [N·III]          | [N·III]        | [IN·III]         |
| CR001          | -  | 6,290          | 1,317            | 11,294           | -666             | 1,038          | 215              |
| CR002<br>CR003 | -  | 6,290<br>6,290 | -1,317<br>1,317  | 11,294           | 666<br>-666      | 1,038          | -215<br>215      |
| CR004          | -  | 6,290          | -1,317           | 11,294<br>11,294 | 666              | 1,038<br>1,038 | -215             |
| CR005          | -  | 6,290          | 1,317            | 11,294           | -666             | 1,038          | 215              |
| CR006          | -  | 6,290          | -1,317           | 11,294           | 666              | 1,038          | -215             |
| CR007<br>CR008 | -  | 6,290<br>6,290 | 1,317<br>-1,317  | 11,294<br>11,294 | -666<br>666      | 1,038<br>1,038 | 215<br>-215      |
| CR009          | -  | 6,290          | -1,317           | 11,294           | 666              | 1,038          | -215             |
| CR010          | -  | 6,290          | 1,317            | 11,294           | -666             | 1,038          | 215              |
| CR011<br>CR012 | -  | 6,290<br>6,290 | -1,317<br>1,317  | 11,294<br>11,294 | 666<br>-666      | 1,038<br>1,038 | -215<br>215      |
| CR013          | -  | 6,290          | -1,317           | 11,294           | 666              | 1,038          | -215             |
| CR014          | -  | 6,290          | 1,317            | 11,294           | -666             | 1,038          | 215              |
| CR015<br>CR016 | -  | 6,290<br>6,290 | -1,317<br>1,317  | 11,294<br>11,294 | 666<br>-666      | 1,038<br>1,038 | -215<br>215      |
| CR017          | _  | 3,034          | 1,317            | 9,012            | -666             | 400            | 215              |
| CR018          | -  | 3,034          | -1,317           | 9,012            | 666              | 400            | -215             |
| CR019<br>CR020 | -  | 3,034<br>3,034 | 1,317<br>-1,317  | 9,012<br>9,012   | -666<br>666      | 400<br>400     | 215<br>-215      |
| CR021          | -  | 3,034          | 1,317            | 9,012            | -666             | 400            | 215              |
| CR022          | -  | 3,034          | -1,317           | 9,012            | 666              | 400            | -215             |
| CR023<br>CR024 | -  | 3,034<br>3,034 | 1,317<br>-1,317  | 9,012            | -666<br>666      | 400<br>400     | 215<br>-215      |
| CR025          | -  | 3,034          | -1,317<br>-1,317 | 9,012<br>9,012   | 666              | 400            | -215             |
| CR026          | -  | 3,034          | 1,317            | 9,012            | -666             | 400            | 215              |
| CR027          | -  | 3,034          | -1,317           | 9,012            | 666              | 400            | -215             |
| CR028<br>CR029 | -  | 3,034<br>3,034 | 1,317<br>-1,317  | 9,012<br>9,012   | -666<br>666      | 400<br>400     | 215<br>-215      |
| CR030          | -  | 3,034          | 1,317            | 9,012            | -666             | 400            | 215              |
| CR031          | -  | 3,034          | -1,317           | 9,012            | 666              | 400            | -215             |
| CR032<br>CR033 | -  | 3,034<br>6,290 | 1,317<br>1,317   | 9,012<br>11,294  | -666<br>-666     | 400<br>1,038   | 215<br>215       |
| CR034          | -  | 6,290          | -1,317           | 11,294           | 666              | 1,038          | -215             |
| CR035          | -  | 6,290          | 1,317            | 11,294           | -666             | 1,038          | 215              |
| CR036<br>CR037 | -  | 6,290<br>6,290 | -1,317<br>1,317  | 11,294<br>11,294 | 666<br>-666      | 1,038<br>1,038 | -215<br>215      |
| CR038          | _  | 6,290          | -1,317           | 11,294           | 666              | 1,038          | -215             |
| CR039          | -  | 6,290          | 1,317            | 11,294           | -666             | 1,038          | 215              |
| CR040<br>CR041 | -  | 6,290          | -1,317           | 11,294           | 666              | 1,038          | -215<br>-215     |
| CR042          | -  | 6,290<br>6,290 | -1,317<br>1,317  | 11,294<br>11,294 | 666<br>-666      | 1,038<br>1,038 | 215              |
| CR043          | -  | 6,290          | -1,317           | 11,294           | 666              | 1,038          | -215             |
| CR044          | -  | 6,290          | 1,317            | 11,294           | -666             | 1,038          | 215              |
| CR045<br>CR046 | -  | 6,290<br>6,290 | -1,317<br>1,317  | 11,294<br>11,294 | 666<br>-666      | 1,038<br>1,038 | -215<br>215      |
| CR047          | -  | 6,290          | -1,317           | 11,294           | 666              | 1,038          | -215             |
| CR048          | -  | 6,290          | 1,317            | 11,294           | -666             | 1,038          | 215              |
| CR049<br>CR050 | -  | 3,034<br>3,034 | 1,317<br>-1,317  | 9,012<br>9,012   | -666<br>666      | 400<br>400     | 215<br>-215      |
| CR051          | -  | 3,034          | 1,317            | 9,012            | -666             | 400            | 215              |
| CR052          | -  | 3,034          | -1,317           | 9,012            | 666              | 400            | -215             |
| CR053<br>CR054 | -  | 3,034<br>3,034 | 1,317<br>-1,317  | 9,012<br>9,012   | -666<br>666      | 400<br>400     | 215<br>-215      |
| CR055          | -  | 3,034          | 1,317            | 9,012            | -666             | 400            | 215              |
| CR056          | -  | 3,034          | -1,317           | 9,012            | 666              | 400            | -215             |
| CR057<br>CR058 |    | 3,034<br>3,034 | -1,317<br>1,317  | 9,012<br>9,012   | 666<br>-666      | 400<br>400     | -215<br>215      |
| CR059          | _  | 3,034          | -1,317           | 9,012            | 666              | 400            | -215             |
| CR060          | -  | 3,034          | 1,317            | 9,012            | -666             | 400            | 215              |
| CR061<br>CR062 | -  | 3,034<br>3,034 | -1,317<br>1,317  | 9,012<br>9,012   | 666<br>-666      | 400<br>400     | -215<br>215      |
| CR063          |    | 3,034          | -1,317           | 9,012            | 666              | 400            | -215             |
| CR064          | -  | 3,034          | 1,317            | 9,012            | -666             | 400            | 215              |
| CR065<br>CR066 | -  | 5,150<br>4,174 | 4,389<br>4,389   | 10,495           | -2,220           | 815            | 718<br>718       |
| CR067          | -  | 5,150          | 4,389            | 9,811<br>10,495  | -2,220<br>-2,220 | 623<br>815     | 718              |
| CR068          | -  | 4,174          | 4,389            | 9,811            | -2,220           | 623            | 718              |
| CR069          | -  | 5,150          | 4,389            | 10,495           | -2,220           | 815            | 718              |
| CR070<br>CR071 | -  | 4,174<br>5,150 | 4,389<br>4,389   | 9,811<br>10,495  | -2,220<br>-2,220 | 623<br>815     | 718<br>718       |
| CR072          | -  | 4,174          | 4,389            | 9,811            | -2,220           | 623            | 718              |
| CR073          | -  | 4,174          | 4,389            | 9,811            | -2,220           | 623            | 718              |
| CR074<br>CR075 |    | 5,150<br>4,174 | 4,389<br>4,389   | 10,495<br>9,811  | -2,220<br>-2,220 | 815<br>623     | 718<br>718       |
| CR076          |    | 5,150          | 4,389            | 10,495           | -2,220           | 815            | 718              |
| CR077          | -  | 4,174          | 4,389            | 9,811            | -2,220           | 623            | 718              |
| CR078<br>CR079 | -  | 5,150          | 4,389            | 10,495           | -2,220           | 815            | 718              |
| CR079<br>CR080 |    | 4,174<br>5,150 | 4,389<br>4,389   | 9,811<br>10,495  | -2,220<br>-2,220 | 623<br>815     | 718<br>718       |
| CR081          | -  | 5,150          | -4,389           | 10,495           | 2,220            | 815            | -718             |
| CR082          | -  | 4,174          | -4,389           | 9,811            | 2,220            | 623            | -718             |
| CR083          | -  | 5,150          | -4,389           | 10,495           | 2,220            | 815            | -718             |

|        |    |       |        |        |        | Carichi sui nodi | in fondazione |
|--------|----|-------|--------|--------|--------|------------------|---------------|
| Carico | CC | Fx    | Fy     | Fz     | Mx     | My               | Mz            |
|        |    | [N]   | [N]    | [N]    | [N·m]  | [N·m]            | [N·m]         |
| CR084  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR085  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR086  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR087  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR088  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR089  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR090  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR091  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR092  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR093  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR094  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR095  | _  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR096  | _  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR097  | _  | 5,150 | 4,389  | 10,495 | -2,220 | 815              | 718           |
| CR098  | _  | 4,174 | 4,389  | 9,811  | -2,220 | 623              | 718           |
| CR099  | _  | 5,150 | 4,389  | 10,495 | -2,220 | 815              | 718           |
| CR100  | _  | 4,174 | 4,389  | 9,811  | -2,220 | 623              | 718           |
| CR101  | _  | 5,150 | 4,389  | 10,495 | -2,220 | 815              | 718           |
| CR102  | -  | 4,174 | 4,389  | 9,811  | -2,220 | 623              | 718           |
| CR102  | -  | 5,150 | 4,389  | 10,495 | -2,220 | 815              | 718           |
| CR103  | -  | 4,174 | 4,389  | 9,811  | -2,220 | 623              | 718           |
|        | -  |       |        |        |        |                  |               |
| CR105  | -  | 4,174 | 4,389  | 9,811  | -2,220 | 623              | 718           |
| CR106  | -  | 5,150 | 4,389  | 10,495 | -2,220 | 815              | 718           |
| CR107  | -  | 4,174 | 4,389  | 9,811  | -2,220 | 623              | 718           |
| CR108  | -  | 5,150 | 4,389  | 10,495 | -2,220 | 815              | 718           |
| CR109  | -  | 4,174 | 4,389  | 9,811  | -2,220 | 623              | 718           |
| CR110  | -  | 5,150 | 4,389  | 10,495 | -2,220 | 815              | 718           |
| CR111  | -  | 4,174 | 4,389  | 9,811  | -2,220 | 623              | 718           |
| CR112  | -  | 5,150 | 4,389  | 10,495 | -2,220 | 815              | 718           |
| CR113  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR114  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR115  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR116  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR117  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR118  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR119  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR120  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR121  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR122  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR123  | -  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR124  | -  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR125  | _  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR126  | _  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |
| CR127  | _  | 4,174 | -4,389 | 9,811  | 2,220  | 623              | -718          |
| CR128  | _  | 5,150 | -4,389 | 10,495 | 2,220  | 815              | -718          |

#### LEGENDA Carichi sui nodi in fondazione

Carico

Descrizione del carico:

Identificativo della condizione di carico, nella relativa tabella.

CR001= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR002= + Carico Permanente + (Sx + ECx) - 0.3 \* (Sy + ECy) + 0.3 \* Sz CR003= + Carico Permanente + (Sx + ECx) - 0.3 \* (Sy + ECy) - 0.3 \* Sz CR004= + Carico Permanente + (Sx + ECx) - 0.3 \* (Sy + ECy) - 0.3 \* Sz CR005= + Carico Permanente + (Sx + ECx) - 0.3 \* (Sy + ECy) - 0.3 \* Sz CR005= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006= + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* (Sy + ECx) + 0.3 \* (Sy Permanente + (Sx + ECx) - 0.3\*(Sy - ECy) + 0.3\*Sz CR007 = + Carico Permanente + <math>(Sx + ECx) + 0.3\*(Sy - ECy) - 0.3\*Sz CR008 = + Carico Permanente + <math>(Sx + ECx) + 0.3\*(Sy - ECy) + 0.3\*(Sy - ECy) - 0.3\*Sz CR009 = + Carico Permanente + <math>(Sx + ECx) + 0.3\*(Sy - ECy) + 0.3\*(Sy - ECCH008= + Carico Permanente + (SX + ECX) - 0.3 (Sy - ECY) - 0.3 SZ G1009- + Carico Permanente + (SX + ECX) - 0.3 \* (Sy + ECY) + 0.3 \* SZ CR011= + Carico Permanente + (SX + ECX) - 0.3 \* (Sy + ECY) - 0.3 \* SZ CR011= + Carico Permanente + (SX + ECX) - 0.3 \* (Sy + ECY) - 0.3 \* SZ CR013= + Carico Permanente + (SX + ECX) - 0.3 \* (Sy + ECY) - 0.3 \* SZ CR013= + Carico Permanente + (SX + ECX) - 0.3 \* (Sy + ECY) - 0.3 \* SZ CR013= + Carico Permanente + (SX + ECX) - 0.3 \* (Sy + ECY) - 0.3 \* SZ CR013= + Carico Permanente + (SX + ECX) - 0.3 \* (Sy + ECY) - 0.3 \* SZ CR013= + Carico Permanente + (SX + ECX) - 0.3 \* (Sy + ECY) - 0.3 Permanente + (Sx + ECx) + 0.3 \* (-Sy - ECy) + 0.3 \* Sz CR014= + Carico Permanente + (Sx + ECx) - 0.3 \* (-Sy - ECy) + 0.3 \* Sz CR015= + Carico Permanente + (Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR016= + Carico Permanente + (Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR016= + Carico Permanente + (Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR016= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR016= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR016= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR016= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR018= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* (-Permanente + (-Sx + ECx) - 0.3 \* (Sy + ECy) - 0.3 \* Sz CR021= + Carico Permanente + (-Sx + ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz  $\text{CR022= + Carico Permanente + (-Sx + ECx) - 0.3 * (Sy - ECy) + 0.3 * Sz CR023= + Carico Permanente + (-Sx + ECx) + 0.3 * (Sy - ECy) + 0.3 * (S$ - ECy) - 0.3 \* Sz CR024= + Carico Permanente + (-Sx + ECx) - 0.3 \* (Sy - ECy) - 0.3 \* Sz CR025= + Carico Permanente + (-Sx + ECx) - 0.3 \* (Sy - ECy) - 0.3 \* Sz CR025= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR027= + Carico Permanente + (-Sx + EOx) + 0.3 \* (-Sy + EOy) - 0.3 \* Sz CR028= + Carico Permanente + (-Sx + EOx) - 0.3 \* (-Sy + EOy) - 0.3 Sz CR029= + Carico Permanente + (-Sx + ECx) + 0.3 \* (-Sy - ECy) + 0.3 \* Sz CR030= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) + 0.3 \* Sz CR031= + Carico Permanente + (-Sx + ECx) + 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR032= + Carico Permanente + (-Sx + ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR033 = + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR034 = + (Sx - ECx) + (Sx - EcxCarico Permanente + (Śx - ECx) - 0.3 \* (Sy + ECy) + 0.3 \* Sz CR035= + Carico Permanente + (Śx - ECx) + 0.3 \* (Sy + ECy) - 0.3 Sz CR036= + Carico Permanente + (Sx - ECx) - 0.3 \* (Sy + ECy) - 0.3 \* Sz CR037= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR038= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR038= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR038= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) - 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR041= + Carico Permanente + (Sx - ECx) + 0.3 \* (Sy - ECy) + Permanente + (Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR042= + Carico Permanente + (Sx - ECx) - 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR043= + Carico Permanente + (Sx - ECx) + 0.3 \* (-Sy + ECy) - 0.3 \* Sz CR044= + Carico Permanente + (Sx - ECx) - 0.3 \* (-Sy + ECy) - 0.3 \* Sz CR045= + Carico Permanente + (Sx - ECx) + 0.3 \* (-Sy - ECy) + 0.3 \* Sz CR046= + Carico Permanente + (Sx -ECx) - 0.3 \* (-Sy - ECy) + 0.3 \* Sz CR047= + Carico Permanente + (Sx - ECx) + 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR048= + Carico Permanente + (Sx - ECx) - 0.3 \* (-Sy - ECy) - 0.3 \* Sz CR049= + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR050= + Carico Permanente + (-Sx - ECx) - 0.3 \* (Sy + ECy) + 0.3 \* Sz CR051= + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR051= + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR051= + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR051= + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy + ECy) + ECy) - 0.3 \* Sz CR052= + Carico Permanente + (-Sx - ECx) - 0.3 \* (Sy + ECy) - 0.3 \* Sz CR053= + Carico Permanente + (-Sx -+ CCy) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR054 + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR055 + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR055 + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR056 + Carico Permanente + (-Sx - ECx) + 0.3 \* (Sy - ECy) + 0.3 \* Sz CR057 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR058 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* Sz CR059 + (-Sx - ECx) + 0.3 \* (-Sy + ECy) + 0.3 \* (-Sy + ECy) + 0.3 \* (-Sy + ECy) + 0.3 \* (-Sy (-Sx - ECx) - 0.3 \* (-Sy + ECy) - 0.3 \* Sz CR061= + Carico Permanente + (-Sx - ECx) + 0.3 \* (-Sy - ECy) + 0.3 \* Sz CR062= +

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carichi sui nod                                                                                              | i in fondazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carico     | CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | My                                                                                                           | Mz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [N]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [N]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [N]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [N·m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [N·m]                                                                                                        | [N·m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Carico     | Carico Permanente + 0.3 * Sz CR064= + (0.3 * Sz CR064= + (0.3 * (Sx + ECx) + Permanente + (Sy + ECx) + 0.3 * (Sx - ECx) + 0.3 * (Sx - ECx) + (Sx - ECx) + 0.3 * (Sx - | [N] (-Sx - ECX) - 0.3 * (-Carico Permanente + 0.3 * Sz CR066 + ECy) + 0.3 * (Sx + ECy) + 0.3 * (Sx + ECy) + 0.3 * Sz CR073 + ECY) - 0.3 * Sz CR073 + Carico Permanente + (Sy + ECy) - 0.3 * (Sx - ECX) - 0.3 * Sz (-Sy + ECy) + 0.3 * (Sx - ECX) - 0.3 * Sz (-Sy + ECY) + 0.3 * (Sx - ECX) - 0.3 * (Sx - E | [N]  Sy - ECy) + 0.3  (-Sx - ECx) - 0.3  - Carico Perman  (-Sx) + 0.3 * (Sx - 1)  nente + (Sy + E)  - Carico Perman  (-Sx) - 0.3 * Sz  (-Sx) - ECy) - 0.3 * (-Sx)  ECHOROLE + (Sx)  CAROBO = + Ca  (-Sx + ECx) + 0.0  (-Sy + ECy) + 0.0  (-Sy + ECy) + 0.0  Carico Perman  (-Sx) + Cx)  (-Sx) - ECx) + 0.0  Carico Perman  (-Sx) - Exx) + 0.0  (-Sx) - Exx) + 0.0  Carico Perman  (-Sx) - Exx) + 0.0  (-Sx) - Exx  (-Sx) - Exx) + 0.0  (-Sx) - Exx  (- | N  3 * Sz CR063= + 3 * (-Sy - ECy) - nente + (Sy + EC) + 0.3 * Sz (-Cy) + 0.3 * Sz (-Cy) + 0.3 * (-Sy + ECy) - 0.3 * Sz (-Cy) + 0.3 * Sz (-C | N-m   - Carico Permanente   0.3 * Sz CR065= +   20) - 0.3 * (Sx + E   Permanente + (Sy + CR070= + Carico Pe ECX) - 0.3 * (-Sx +   20) - 20 * (-S | N·m                                                                                                          | N·m    3 * (-Sy - ECy) -   + (Sy + ECy) -   + (Sy + ECy) -   + (Sy + ECy) -   + (Sy - ECy) - 0.3 * (Sx - ECy) - (Sx - ECy) - (Sx - ECy) - (Sx - ECy) - (Sx - ECx) - (Sx - Exx - |
|            | Permanente + (-Sy - CR121= + Carico Per Sx + ECx) + 0.3 * Sz (-Sy - ECy) - 0.3 * (-Sy - ECy) - 0.3 * (-Starioo Permanente + 0.3 * Sz CR128= + C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EÓy) + 0.3 * (Sx - EC<br>manente + (-Sy - EC<br>CR123= + Carico Pe<br>Sx + ECx) - 0.3 * Sz<br>(-Sy - ECy) - 0.3 * (-<br>arico Permanente + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cx) - 0.3 * Sz C<br>y) + 0.3 * (-Sx cermanente + (-S<br>CR125= + Car<br>Sx - ECx) + 0.3<br>-Sy - ECy) - 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CR120= + Carico<br>+ ECx) + 0.3 * 5<br>Sy - ECy) + 0.3 *<br>ico Permanente +<br>3 * Sz CR127= +<br>* (-Sx - ECx) - 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Permanente + (-Sy<br>Sz CR122= + Carico<br>(-Sx + ECx) - 0.3 *<br>(-Sy - ECy) + 0.3 *<br>- Carico Permanente<br>3 * Sz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - EOy) - 0.3 * (Sx -<br>- Permanente + (-Sy<br>Sz CR124= + Cario<br>(-Sx - ECx) + 0.3<br>+ (-Sy - ECy) + 0.3 | ECx) - 0.3 * Sz<br>- ECy) - 0.3 * (-<br>to Permanente +<br>* Sz CR126= +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fx, Fy, Fz | Componenti del vettor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

**CARICHI SULLE TRAVI** 

Componenti del vettore Momento riferito agli assi del sistema di riferimento indicato nella colonna "SR".

|                  |                                          |     |           |          |                               |                     |                     |                     |                                                    |                    |                    |                            |        |       | Car               | ichi sulle travi |
|------------------|------------------------------------------|-----|-----------|----------|-------------------------------|---------------------|---------------------|---------------------|----------------------------------------------------|--------------------|--------------------|----------------------------|--------|-------|-------------------|------------------|
| T.Cari<br>co     | Carico                                   | СС  |           | SR       | Dis[i]                        | Fx[i]<br>/<br>Qx[i] | Fy[i]<br>/<br>Qy[i] | Fz[i]<br>/<br>Qz[i] | Mx[i] / Mt[i]                                      | My[i]              | Mz[i]              | Dis[f]                     | Qx[f]  | Qy[f] | Qz[f]             | Mt[f]            |
|                  |                                          |     |           |          | [m]                           | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N·m] / [N·m/m]                                    | [N·m] /<br>[N·m/m] | [N·m] /<br>[N·m/m] | [m]                        | [N/m]  | [N/m] | [N/m]             | [N·m/m]          |
| quarto           | rompitratta<br>rompitratta<br>ompitratta |     | Travata   | ı: quart | o rompi<br>o rompi<br>rompiti | tratta              |                     |                     | Trave: Trave L<br>Trave: Trave L<br>Trave: Trave L | .egno 1-           | 2                  | Peso p<br>Peso p<br>Peso p | roprio |       | -35<br>-35<br>-70 |                  |
| L                | CR001<br>ompitratta                      | 003 | - Trovete | G        | 0.00                          |                     | 0                   | -250                | 0<br>Trave: Trave L                                | - anno 1           |                    | 0.00                       | 0      | 0     | -250              | C                |
| leizoit          | CR001                                    | 003 | IIavata   | G. (erzo | 0.00                          | 0                   | 0                   | -250                | nave. mave L                                       | egno i-            |                    | Peso p<br>0.00             | 0      | 0     | -250              | (                |
| secondo          | o rompitratta                            |     | Travata   | a: secon |                               | pitratta            |                     | 200                 | Trave: Trave L                                     | egno 2-            | 3                  | Peso p                     |        |       | -70               |                  |
| L                | CR001                                    | 003 | -         | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | (                |
| secondo          | o rompitratta                            |     | Travata   | a: secon | do rom                        | pitratta            |                     |                     | Trave: Trave L                                     | egno 1-            | 2                  | Peso p                     | roprio |       | -70               |                  |
| L                | CR001                                    | 003 | -         | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | C                |
| primo r          | ompitratta                               |     | Travata   | a: primo | rompit                        | ratta               |                     |                     | Trave: Trave L                                     | egno 2-            | 3                  | Peso p                     | roprio |       | -35               |                  |
| L                | CR001                                    | 003 | -         | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0                |
| primo r          | ompitratta                               |     | Travata   | a: primo | rompit                        | ratta               |                     |                     | Trave: Trave L                                     | egno 1-            | 2                  | Peso p                     | roprio |       | -35               |                  |
| L                | CR001                                    | 003 | -         | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0                |
| Fondaz<br>Fondaz |                                          |     |           |          | 1d-2d-3<br>1d-2d-3            |                     |                     |                     | Trave: Trave 1 Trave: Trave 2                      |                    |                    | Peso p                     | -      |       | -7,500<br>-7,500  |                  |

## LEGENDA Carichi sulle travi

Mx, My, Mz

T.Carico Descrizione del tipo di carico.
Carico Descrizione del carico:
CR001= permanente barriere

CC Identificativo della condizione di carico, nella relativa tabella.

Nel caso di effettuazione dei calcoli secondo l'Ordinanza 3274/03 e s.m.i., è il valore del coefficiente di riduzione delle masse sismiche.

SR Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3.

Dis[i] Distanza del punto "i" dall'estremo inferiore del pilastro. Il punto "i", in relazione alla descrizione riportata nella colonna "T. Carico' ("Lineare" o "Concentrato"), indica rispettivamente il punto iniziale del tratto interessato dal carico distribuito o in cui è posizionato il carico concentrato.

"Concentrato"), indica rispettivamente il punto iniziale dei tratto interessato dal carico distribuito o in cui e posizionato il carico concentrato Fx[i] / Qx[i],

Fy[i] / Qy[i], Fz[i] / Qz[i]

Valore (nel punto "i") della forza concentrata/distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR".

Mx[i] / Mt[i]

Se nella colonna "T.Carico" è riportato "Concentrato", è il valore del vettore momento concentrato collocato nel punto "i", riferito agli assi del sistema di riferimento indicato nella colonna "SR". Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "i", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "SR"

My[i], Mz[i] Valore (nel punto "i") del vettore momento concentrato riferito agli assi del sistema di riferimento indicato nella colonna "SR".

Distanza del punto "f" dall'estremo inferiore del pilastro. Il punto "f" indica il punto finale del tratto interessato dal carico distribuito.

|              |        |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       | Cai   | richi sulle travi |
|--------------|--------|----|----|--------|---------------------|---------------------|---------------------|-----------------|--------------------|--------------------|--------|-------|-------|-------|-------------------|
| T.Cari<br>co | Carico | СС | SR | Dis[i] | Fx[i]<br>/<br>Qx[i] | Fy[i]<br>/<br>Qy[i] | Fz[i]<br>/<br>Qz[i] | Mx[i] / Mt[i]   | My[i]              | Mz[i]              | Dis[f] | Qx[f] | Qy[f] | Qz[f] | Mt[f]             |
|              |        |    |    | [m]    | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N·m] / [N·m/m] | [N·m] /<br>[N·m/m] | [N·m] /<br>[N·m/m] | [m]    | [N/m] | [N/m] | [N/m] | [N·m/m]           |

Qx[f], Qy[f], Valore (nel punto "f") della forza distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR". Qz[f]

Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "f", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del Mt[f] pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "SR".

T1, T2, T3 Variazione di temperatura rispettivamente lungo gli assi 1, 2 o 3 del sistema Locale

## **CARICHI SULLE TRAVI**

|                               |                                                          |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       | Cai   | ichi sulle travi |
|-------------------------------|----------------------------------------------------------|----|----|--------|---------------------|---------------------|---------------------|-----------------|--------------------|--------------------|--------|-------|-------|-------|------------------|
| T.Cari<br>co                  | Carico                                                   | СС | SR | Dis[i] | Fx[i]<br>/<br>Qx[i] | Fy[i]<br>/<br>Qy[i] | Fz[i]<br>/<br>Qz[i] | Mx[i] / Mt[i]   | My[i]              | Mz[i]              | Dis[f] | Qx[f] | Qy[f] | Qz[f] | Mt[f]            |
|                               |                                                          |    |    | [m]    | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N·m] / [N·m/m] | [N·m] /<br>[N·m/m] | [N·m] /<br>[N·m/m] | [m]    | [N/m] | [N/m] | [N/m] | [N·m/m]          |
| terzo re<br>second<br>primo r | rompitratta<br>ompitratta<br>o rompitratta<br>ompitratta |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       |       |                  |
| Trave F                       | arete 1d-2d                                              |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       |       |                  |
| Trave F                       | arete 2d-3d                                              |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       |       |                  |
| Fondaz                        | ione                                                     |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       |       |                  |

#### LEGENDA Carichi sulle travi

T.Carico Descrizione del tipo di carico. Carico Descrizione del carico:

CC Identificativo della condizione di carico, nella relativa tabella.

Nel caso di effettuazione dei calcoli secondo l'Ordinanza 3274/03 e s.m.i., è il valore del coefficiente di riduzione delle masse sismiche. Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3.

SR

Dis[i] Distanza del punto "i" dall'estremo inferiore del pilastro. Il punto "i", in relazione alla descrizione riportata nella colonna "T. Carico' ("Lineare" o "Concentrato"), indica rispettivamente il punto iniziale del tratto interessato dal carico distribuito o in cui è posizionato il carico concentrato.

Se nella colonna "T.Carico" è riportato "Concentrato", è il valore del vettore momento concentrato collocato nel punto "i", riferito agli assi del sistema di

Fx[i] / Qx[i],

Fy[i] / Qy[i], Fz[i] / Qz[i] Valore (nel punto "i") della forza concentrata/distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR".

Mx[i] / Mt[i]

riferimento indicato nella colonna "SR". Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "i", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna

My[i], Mz[i] Valore (nel punto "i") del vettore momento concentrato riferito agli assi del sistema di riferimento indicato nella colonna "SR"

Dis[f] Distanza del punto "f" dall'estremo inferiore del pilastro. Il punto "f" indica il punto finale del tratto interessato dal carico distribuito.

Qx[f], Qy[f], Valore (nel punto "f") della forza distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR" Qz[f]

Mt[f] Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "f", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del

pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "SR".

T1, T2, T3 Variazione di temperatura rispettivamente lungo gli assi 1, 2 o 3 del sistema Locale.

# CARI CHI SUI PI LASTRI

|         |               |     |   |         |        |                |                |                |                 |                    |                    |        |       |       | Caric | hi sui pilast |
|---------|---------------|-----|---|---------|--------|----------------|----------------|----------------|-----------------|--------------------|--------------------|--------|-------|-------|-------|---------------|
| T.Cari  |               |     |   |         |        | Fx[i]          | Fy[i]          | Fz[i]          |                 |                    |                    |        |       |       |       |               |
| co      | Carico        | CC  |   | SR      | Dis[i] | /              | /              | /              | Mx[i] / Mt[i]   | My[i]              | Mz[i]              | Dis[f] | Qx[f] | Qy[f] | Qz[f] | Mt[f]         |
|         |               |     |   |         |        | Qx[i]          | Qy[i]          | Qz[i]          |                 |                    |                    |        |       |       |       |               |
|         |               |     |   |         | [m]    | [N] /<br>[N/m] | [N] /<br>[N/m] | [N] /<br>[N/m] | [N·m] / [N·m/m] | [N·m] /<br>[N·m/m] | [N·m] /<br>[N·m/m] | [m]    | [N/m] | [N/m] | [N/m] | [N·m/m]       |
| quarto  | rompitratta   |     |   | Pilastr | o 002  |                | . ,            |                |                 |                    | Peso p             | roprio |       |       | -423  |               |
| L       | CR001         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.90   | 0              | 0              | -25            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |
| quarto  | rompitratta   |     |   | Pilastr | o 003  |                |                |                |                 |                    | Peso p             | roprio |       |       | -423  |               |
| L       | CR001         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.90   | 0              | 0              | -25            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |
| quarto  | rompitratta   |     |   | Pilastr | o 001  |                |                |                |                 |                    | Peso p             | roprio |       |       | -423  |               |
| L       | CR001         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.90   | 0              | 0              | -25            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |
| erzo ro | ompitratta    |     |   | Pilastr | o 002  |                |                |                |                 |                    | Peso p             | roprio |       |       | -423  |               |
| L       | CR001         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.80   | 0              | 0              | -68            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |
| erzo ro | ompitratta    |     |   | Pilastr | o 003  |                |                |                |                 |                    | Peso p             | roprio |       |       | -423  |               |
| L       | CR001         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.80   | 0              | 0              | -68            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |
| erzo ro | ompitratta    |     |   | Pilastr | o 001  |                |                |                |                 |                    | Peso p             | roprio |       |       | -423  |               |
| L       | CR001         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.80   | 0              | 0              | -68            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |
| second  | o rompitratta |     |   | Pilastr | o 002  |                |                |                |                 |                    | Peso p             | roprio |       |       | -423  |               |
| L       | CR003         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.74   | 0              | 0              | -68            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |
| second  | o rompitratta |     |   | Pilastr |        |                |                |                |                 |                    | Peso p             | roprio |       |       | -423  |               |
| L       | CR003         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.74   | 0              | 0              | -68            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |
| second  | o rompitratta |     |   | Pilastr |        |                |                |                |                 |                    | Peso p             |        |       |       | -423  |               |
| L       | CR001         | 002 | - | G       | 0.00   | 0              | 5,313          | 0              | 0               | -                  | -                  | 0.00   | 0     | 5,313 | 0     |               |
| С       | CR002         | 001 | - | G       | 0.74   | 0              | 0              | -68            | 0               | 0                  | 0                  | -      | -     | -     | -     |               |

LEGENDA Carichi sui pilastri

| Carichi | sui | pilastri |
|---------|-----|----------|

|        |        |    |    |        |                |                |                |                 |                    |                    |        |       |       | ou.   | ioni sai piiastii |
|--------|--------|----|----|--------|----------------|----------------|----------------|-----------------|--------------------|--------------------|--------|-------|-------|-------|-------------------|
| T.Cari | Carico | СС | SR | Dis[i] | Fx[i]          | Fy[i]          | <b>Fz[i]</b> / | Mx[i] / Mt[i]   | My[i]              | Mz[i]              | Dis[f] | Qx[f] | Qy[f] | Qz[f] | Mt[f]             |
| CO     |        |    |    |        | Qx[i]          | Qy[i]          | Qz[i]          |                 |                    |                    |        |       |       |       |                   |
|        |        |    |    | [m]    | [N] /<br>[N/m] | [N] /<br>[N/m] | [N] /<br>[N/m] | [N·m] / [N·m/m] | [N·m] /<br>[N·m/m] | [N·m] /<br>[N·m/m] | [m]    | [N/m] | [N/m] | [N/m] | [N·m/m]           |

T.Carico Descrizione del tipo di carico.

Carico Descrizione del carico:

CR001= pressione del vento CR002= PESO PROPRIO (concio) CR003= spinta del vento

CC Identificativo della condizione di carico, nella relativa tabella.

Nel caso di effettuazione dei calcoli secondo l'Ordinanza 3274/03 e s.m.i., è il valore del coefficiente di riduzione delle masse sismiche. Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3. SR

Dis[i] Distanza del punto "i" dall'estremo inferiore del pilastro. Il punto "i", in relazione alla descrizione riportata nella colonna "T. Carico" ("Lineare" o "Concentrato"), indica rispettivamente il punto iniziale del tratto interessato dal carico distribuito o in cui è posizionato il carico concentrato.

Fx[i] / Qx[i],

Fy[i] / Qy[i], Fz[i] / Qz[i] Valore (nel punto "i") della forza concentrata/distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR".

Mx[i] / Mt[i]

Se nella colonna "T.Carico" è riportato "Concentrato", è il valore del vettore momento concentrato collocato nel punto "i", riferito agli assi del sistema di riferimento indicato nella colonna "SR". Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "i", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna

My[i], Mz[i]

Valore (nel punto "i") del vettore momento concentrato riferito agli assi del sistema di riferimento indicato nella colonna "SR"

Dis[f] Distanza del punto "f" dall'estremo inferiore del pilastro. Il punto "f" indica il punto finale del tratto interessato dal carico distribuito. Qx[f], Qy[f],

Qz[f] Mt[f] Valore (nel punto "f") della forza distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR"

Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "f", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "SR".

T1, T2, T3 Variazione di temperatura rispettivamente lungo gli assi 1, 2 o 3 del sistema Locale.

#### NODI - REAZIONI VINCOLARI ESTERNE PER CONDIZIONI DI CARICO NON SISMICHE

|       |     |      | Nodi - Reazio | ni vincolari es | sterne per cond | dizioni di carico | non sismiche |
|-------|-----|------|---------------|-----------------|-----------------|-------------------|--------------|
| N     | CC  | Fx   | Fy            | Fz              | Mx              | My                | Mz           |
|       |     | [N]  | [N]           | [N]             | [N·m]           | [N·m]             | [N·m]        |
| 00010 | 001 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00010 | 002 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00010 | 003 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00011 | 001 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00011 | 002 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00011 | 003 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00014 | 001 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00014 | 002 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00014 | 003 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00084 | 001 | 0    | 0             | 21,833          | 0               | 0                 | 0            |
| 00084 | 002 | 0    | -11,364       | 0               | 38,749          | 0                 | 1            |
| 00084 | 003 | 0    | 0             | 997             | 0               | 0                 | 0            |
| 00085 | 001 | -186 | 0             | 17,625          | 0               | 298               | 0            |
| 00085 | 002 | 0    | -11,021       | 0               | 37,379          | 0                 | 5,762        |
| 00085 | 003 | -5   | 0             | 873             | 0               | 9                 | 0            |
| 00086 | 001 | 186  | 0             | 17,625          | 0               | -298              | 0            |
| 00086 | 002 | 0    | -11,028       | 0               | 37,381          | 0                 | -5,762       |
| 00086 | 003 | 5    | 0             | 873             | 0               | -9                | 0            |
| 00087 | 001 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00087 | 002 | 0    | 0             | 0               | 0               | 0                 | 0            |
| 00087 | 003 | 0    | 0             | 0               | 0               | 0                 | 0            |

## LEGENDA Nodi - Reazioni vincolari esterne per condizioni di carico non sismiche

Ν Numero identificativo del nodo. CC

Identificativo della Condizione di Carico nella relativa tabella Fx, Fy, Fz, Mx, My, Mz Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

## NODI - REAZIONI VINCOLARI ESTERNE PER EFFETTO DEL SISMA

|       |     |       |       | Nodi - Rea | zioni vincolari | esterne per eff | etto del sisma |
|-------|-----|-------|-------|------------|-----------------|-----------------|----------------|
| N     | Dir | Fx    | Fy    | Fz         | Mx              | My              | Mz             |
|       |     | [N]   | [N]   | [N]        | [N·m]           | [N·m]           | [N·m]          |
| 00010 | X   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00010 | Υ   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00010 | Z   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00011 | Х   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00011 | Υ   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00011 | Z   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00014 | Х   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00014 | Υ   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00014 | Z   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00084 | Х   | 6,747 | 0     | 0          | 0               | 75              | 0              |
| 00084 | Υ   | 0     | 5,799 | 0          | 4,813           | 0               | 0              |
| 00084 | Z   | 0     | 0     | 2,077      | 0               | 0               | 0              |
| 00085 | Х   | 6,717 | 0     | 1,742      | 0               | 78              | 0              |
| 00085 | Υ   | 0     | 3,941 | 0          | 4,522           | 0               | 718            |
| 00085 | Z   | 18    | 0     | 1,660      | 0               | 29              | 0              |
| 00086 | Х   | 6,717 | 0     | 1,742      | 0               | 78              | 0              |
| 00086 | Υ   | 0     | 3,941 | 0          | 4,522           | 0               | 718            |
| 00086 | Z   | 18    | 0     | 1,660      | 0               | 29              | 0              |
| 00087 | Χ   | 0     | 0     | 0          | 0               | 0               | 0              |
| 00087 | Υ   | 0     | 0     | 0          | 0               | 0               | 0              |

|       |     |     |     | Nodi - Rea | zioni vincolari | esterne per eff | etto del sisma |
|-------|-----|-----|-----|------------|-----------------|-----------------|----------------|
| N     | Dir | Fx  | Fy  | Fz         | Mx              | My              | Mz             |
|       |     | [N] | [N] | [N]        | [N·m]           | [N·m]           | [N·m]          |
| 00087 | Z   | 0   | 0   | 0          | 0               | 0               | 0              |

## LEGENDA Nodi - Reazioni vincolari esterne per effetto del sisma

Numero identificativo del NODO.

Dir Direzione del sisma.
Fx, Fy, Fz, Mx, My, Mz Reazioni vincolari rel

Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

## NODI - REAZIONI VINCOLARI ESTERNE PER ECCENTRICITA' ACCIDENTALE

|       |     |   |     | Nodi | i - Reazioni vi | ncolari esterne | per eccentricit | à accidentale |
|-------|-----|---|-----|------|-----------------|-----------------|-----------------|---------------|
| N     | Dir | е | Fx  | Fy   | Fz              | Mx              | My              | Mz            |
|       |     |   | [N] | [N]  | [N]             | [N·m]           | [N·m]           | [N·m]         |
| 00010 | X   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00010 | X   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00010 | Y   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00010 | Y   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00011 | X   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00011 | X   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00011 | Y   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00011 | Υ   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00014 | X   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00014 | X   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00014 | Y   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00014 | Υ   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00084 | X   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00084 | X   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00084 | Y   | + | 0   | 0    | 0               | 0               | 0               | -276          |
| 00084 | Υ   | - | 0   | 0    | 0               | 0               | 0               | 276           |
| 00085 | X   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00085 | X   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00085 | Y   | + | 0   | -752 | 0               | 206             | 0               | -47           |
| 00085 | Y   | - | 0   | 752  | 0               | -206            | 0               | 47            |
| 00086 | X   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00086 | X   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00086 | Y   | + | 0   | 752  | 0               | -206            | 0               | -47           |
| 00086 | Y   | - | 0   | -752 | 0               | 206             | 0               | 47            |
| 00087 | X   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00087 | X   | - | 0   | 0    | 0               | 0               | 0               | 0             |
| 00087 | Y   | + | 0   | 0    | 0               | 0               | 0               | 0             |
| 00087 | Υ   | - | 0   | 0    | 0               | 0               | 0               | 0             |

## LEGENDA Nodi - Reazioni vincolari esterne per eccentricità accidentale

Numero identificativo del nodo.

**Dir** Direzione del sisma.

e Segno dell'eccentricità accidentale.

Fx, Fy, Fz, Mx, My, Mz

Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

#### EDIFICIO - VERIFICHE DI RIPARTIZIONE DELLE FORZE SISMICHE

|        |        |        |        |        |                           |                       |                       | Ed       | dificio - Ve | rifiche di ri | ipartizione | delle forze | sismiche |
|--------|--------|--------|--------|--------|---------------------------|-----------------------|-----------------------|----------|--------------|---------------|-------------|-------------|----------|
| TgtotX | TgtotY | TgpilX | TgpilY | % pilX | % <sub>pil</sub> <b>Y</b> | Tg <sub>setti</sub> X | Tg <sub>setti</sub> Y | % settiX | % settiY     | TgaltroX      | TgaltroY    | % altroX    | % altroY |
| [N]    | [N]    | [N]    | [N]    |        |                           | [N]                   | [N]                   |          |              | [N]           | [N]         |             |          |
| 0      | 0      | 0      | 0      | 100.0  | 100.0                     | 0                     | 0                     | 100.0    | 100.0        | 0             | 0           | 100.0       | 100.0    |

## LEGENDA Edificio - Verifiche di ripartizione delle forze sismiche

Tgtot Taglio totale alla quota Zero Sismico (nella direzione X o Y) [N]

Tgpil Taglio totale alla quota Zero Sismico assorbito dai pilastri (nella direzione X o Y) [N]

% pil Percentuale del Taglio totale alla quota Zero Sismico assorbito dai pilastri (nella direzione X o Y)

Tgsetti Taglio totale alla quota Zero Sismico assorbito dai setti [N]

% setti Percentuale del Taglio totale alla quota Zero Sismico assorbito dai setti (nella direzione X o Y)

Tgaltro Taglio totale alla quota Zero Sismico NON assorbito dai pilastri e dai setti (nella direzione X o Y)[N]

% altro Percentuale del Taglio totale alla quota Zero Sismico NON assorbito dai pilastri e dai setti (nella direzione X o Y)

# TRAVI PARETE - VERI FI CHE PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE ULTI MO (Elevazione)

|                    |       |       |       | Travi Parete | - Verifiche presso | flessione r        | etta allo st       | ato limite | ultim |
|--------------------|-------|-------|-------|--------------|--------------------|--------------------|--------------------|------------|-------|
| Trave              | % LLI | Ns    | Mxs   | Ni           | Mxi                | Afs                | Afi                | CSs        | CSi   |
|                    | [%]   | [N]   | [N·m] | [N·m]        | [N·m]              | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] |            |       |
| Trave Parete 1d-2d |       | 4,141 | 2,127 | 0            | 0                  | 9.58               | 9.58               | NS         |       |
| Trave Parete 1d-2d |       | 8,489 | 644   | 0            | 0                  | 9.58               | 9.58               | NS         |       |
| Trave Parete 1d-2d |       | 0     | 0     | 7,684        | 1,423              | 9.58               | 9.58               | -          | N:    |
| Trave Parete 1d-2d |       | 0     | 0     | 13,644       | 2,523              | 9.58               | 9.58               | -          | N:    |
| Trave Parete 1d-2d |       | 0     | 0     | 17,842       | 2,989              | 9.58               | 9.58               | -          | N:    |
| Trave Parete 1d-2d |       | 0     | 0     | 17,057       | 2,807              | 9.58               | 9.58               | -          | N:    |
| Trave Parete 1d-2d |       | 0     | 0     | 16,691       | 2,876              | 9.58               | 9.58               | -          | NS    |
| Trave Parete 1d-2d |       | 0     | 0     | 12,419       | 3,036              | 9.58               | 9.58               | -          | NS    |
| Trave Parete 1d-2d |       | 0     | 0     | 13,952       | 2,724              | 9.58               | 9.58               | -          | N:    |
| Trave Parete 2d-3d |       | 0     | 0     | 13,952       | 3,069              | 9.58               | 9.58               | -          | NS    |
| Trave Parete 2d-3d |       | 0     | 0     | 12,419       | 2,905              | 9.58               | 9.58               | -          | NS    |
| Trave Parete 2d-3d |       | 0     | 0     | 16,422       | 2,750              | 9.58               | 9.58               | -          | N:    |
| Trave Parete 2d-3d |       | 0     | 0     | 17,057       | 3,007              | 9.58               | 9.58               | -          | N:    |
| Trave Parete 2d-3d |       | 0     | 0     | 16,428       | 2,570              | 9.58               | 9.58               | -          | N:    |
| Trave Parete 2d-3d |       | 0     | 0     | 11,030       | 1,701              | 9.58               | 9.58               | - '        | N:    |
| Trave Parete 2d-3d |       | 0     | 0     | 10,517       | 555                | 9.58               | 9.58               | -          | N:    |

|                    |       |       |       | Travi Par | ete - Verifiche press | oflessione re      | etta allo s | tato limit | e ultimo |
|--------------------|-------|-------|-------|-----------|-----------------------|--------------------|-------------|------------|----------|
| Trave              | % LLI | Ns    | Mxs   | Ni        | Mxi                   | Afs                | Afi         | CSs        | CSi      |
|                    | [%]   | [N]   | [N·m] | [N·m]     | [N·m]                 | [cm <sup>2</sup> ] | [cm²]       |            |          |
| Trave Parete 2d-3d |       | 8,187 | 1,775 | 0         | 0                     | 9.58               | 9.58        | NS         | -        |
| Trave Parete 2d-3d |       | 4.141 | 2.029 | 0         | 0                     | 9.58               | 9.58        | NS         |          |

## LEGENDA Travi Parete - Verifiche pressoflessione retta allo stato limite ultimo

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione

della trave (LLI), a partire dal suo estremo iniziale

Ns, MxsCoppia M-N che dà origine alla massima armatura di trazione superiore.Ni, MxiCoppia M-N che dà origine alla massima armatura di trazione inferiore.Afs, AfiArea delle armature esecutive superiori ed inferiori.

CSs, CSi Coefficienti di sicurezza relativi rispettivamente, a "Ns", "Mxs", "Afs" e "Ni", "Mxi", "Afs" : [NS] = Non Significativo - Per valori di CS maggiori

o uguali a 100

# TRAVI PARETE - VERI FI CHE A TAGLI O PER PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE ULTI MO (Elevazione)

|            |     |      |             |      |      |       |       |       |       | 1   | ravi P | arete · | - Verif | iche a | taglio | per pr | essofl | ession                   | e retta                  | etta              | allo s                           | tato li                       | mite u        | ltimo         |
|------------|-----|------|-------------|------|------|-------|-------|-------|-------|-----|--------|---------|---------|--------|--------|--------|--------|--------------------------|--------------------------|-------------------|----------------------------------|-------------------------------|---------------|---------------|
| Tra        | LLI | Ty+  | Ty-         | CS+  | CS-  | Vcc+  | Vcc-  | Vwd   | Vwd-  | N+  | N-     | Vwp     | Vwp     | Vr1    | Vr1-   | ctg    | ctg    |                          | Afte                     | te                | Afp                              | Afp                           | AfD           | AfD           |
| ve         |     |      |             |      |      |       |       | +     |       |     |        | +       | -       | +      |        | +      | -      | +<br>[cm <sup>2</sup> /c | -<br>[cm <sup>2</sup> /c | 1 <sup>2</sup> /C | <b>e+</b><br>[cm <sup>2</sup> /c | <b>e-</b> [cm <sup>2</sup> /c | ge+<br>[cm²/c | ge-<br>[cm²/c |
|            | [%] | [N]  | [N]         |      |      | [N]   | [N]   | [N]   | [N]   | [N] | [N]    | [N]     | [N]     | [N]    | [N]    | [N]    | [N]    | m]                       | m]                       |                   | m]                               | m]                            | m]            | m]            |
| Trav       |     | 265, | -           | 2.92 | 3.10 | 95078 | 95078 | 77637 | 77637 | 0   | 0      | 0       | 0       | 477,   | 479,   | 2.50   | 2.50   | 0.09                     | 0.09                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Pare  |     | 928  | 250,<br>558 |      |      | 3     | 3     | 2     | 2     |     |        |         |         | 279    | 042    |        |        | 15                       | 15                       | 15                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 330         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 1d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 266, | -           | 2.92 | 3.10 | 95078 | 95078 | 77637 | 77637 | 0   | 0      | 0       | 0       | 478,   | 479,   | 2.50   | 2.50   | 0.09                     | 0.09                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Pare  |     | 082  | 250,<br>199 |      |      | 3     | 3     | 2     | 2     |     |        |         |         | 091    | 900    |        |        | 15                       | 15                       | 15                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 155         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 1d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 260, | -           | 1.64 | 1.67 | 95078 | 95078 | 42700 | 42700 | 0   | 0      | 0       | 0       | 461,   | 462,   | 2.50   | 2.50   | 0.05                     | 0.05                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Pare  |     | 735  | 255,<br>435 |      |      | 3     | 3     | 4     | 4     |     |        |         |         | 210    | 073    |        |        | 03                       | 03                       | 03                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 700         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 1d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 257, | -           | 3.02 | 2.99 | 95078 | 95078 | 77637 | 77637 | 0   | 0      | 0       | 0       | 456,   | 456,   | 2.50   | 2.50   | 0.09                     | 0.09                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Pare  |     | 032  | 259,<br>261 |      |      | 3     | 3     | 2     | 2     |     |        |         |         | 155    | 760    |        |        | 15                       | 15                       | 15                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 201         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 1d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 258, | -           | 3.01 | 3.01 | 95078 | 95078 | 77637 | 77637 | 0   | 0      | 0       | 0       | 452,   | 452,   | 2.50   | 2.50   | 0.09                     | 0.09                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Doro  |     | 094  | 258,        |      |      | 3     | 3     | 2     | 2     |     |        |         |         | 571    | 968    |        |        | 15                       | 15                       | 15                | 00                               | 00                            | 00            | 00            |
| Pare<br>te |     |      | 152         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 1d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 259, | -           | 2.99 | 3.02 | 95078 | 95078 | 77637 | 77637 | 0   | 0      | 0       | 0       | 456,   | 456,   | 2.50   | 2.50   | 0.09                     | 0.09                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Pare  |     | 345  | 256,<br>980 |      |      | 3     | 3     | 2     | 2     |     |        |         |         | 379    | 996    |        |        | 15                       | 15                       | 15                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 900         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 3d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 258, | -           | 3.00 | 3.01 | 95078 | 95078 | 77637 | 77637 | 0   | 0      | 0       | 0       | 454,   | 454,   | 2.50   | 2.50   | 0.09                     | 0.09                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Pare  |     | 620  | 257,<br>608 |      |      | 3     | 3     | 2     | 2     |     |        |         |         | 150    | 638    |        |        | 15                       | 15                       | 15                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 000         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 3d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 253, | -           | 1.68 | 1.63 | 95078 | 95078 | 42700 | 42700 | 0   | 0      | 0       | 0       | 467,   | 468,   | 2.50   | 2.50   | 0.05                     | 0.05                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Pare  |     | 452  | 262,<br>755 |      |      | 3     | 3     | 4     | 4     |     |        |         |         | 672    | 901    |        |        | 03                       | 03                       | 03                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 755         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 3d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 249, |             | 3.11 | 2.92 |       | 95078 |       |       | 0   | 0      | 0       | 0       |        |        | 2.50   | 2.50   |                          |                          |                   |                                  |                               | 0.00          |               |
| e<br>Pare  |     | 949  | 266,<br>294 |      |      | 3     | 3     | 2     | 2     |     |        |         |         | 816    | 664    |        |        | 15                       | 15                       | 10                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 234         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 3d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| Trav       |     | 253, | -           | 3.06 | 2.95 | 95078 |       | 77637 |       | 0   | 0      | 0       | 0       | 468,   | 469,   | 2.50   | 2.50   |                          | 0.09                     |                   | 0.00                             | 0.00                          | 0.00          | 0.00          |
| e<br>Pare  |     | 417  | 263,<br>069 |      |      | 3     | 3     | 2     | 2     |     |        |         |         | 223    | 483    |        |        | 15                       | 15                       | 15                | 00                               | 00                            | 00            | 00            |
| te         |     |      | 009         |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 2d-        |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |
| 3d         |     |      |             |      |      |       |       |       |       |     |        |         |         |        |        |        |        |                          |                          |                   |                                  |                               |               |               |

#### LEGENDA Travi Parete - Verifiche a taglio per pressoflessione retta allo stato limite ultimo

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave (LLI), a

|     |       |     |     |     |     |      |      |     |      | 7   | Γravi F | arete | <ul> <li>Verifi</li> </ul> | iche a | taglio | per pr | essofl | ession              | e retta             | ı allo s            | tato li             | mite u              | ltimo               |
|-----|-------|-----|-----|-----|-----|------|------|-----|------|-----|---------|-------|----------------------------|--------|--------|--------|--------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Tra | 111   | Tv+ | Tv- | CS+ | CS- | Vcc+ | Vcc- | Vwd | Vwd- | N+  | N-      | Vwp   | Vwp                        | Vr1    | Vr1-   | ctg    | ctg    | Afte                | Afte                | Afp                 | Afp                 | AfD                 | AfD                 |
| ve  |       | .,. | . , | •   |     | 100. |      | +   |      |     |         | +     | -                          | +      |        | +      | -      | +                   | -                   | e+                  | e-                  | qe+                 | ge-                 |
|     |       |     |     |     |     |      |      |     |      |     |         |       |                            |        |        |        |        |                     |                     |                     |                     |                     |                     |
|     | F9/ 1 | [N] | [N] |     |     | [N]  | TNII | [N] | [N]  | [N] | [N]     | [N]   | [N]                        | [N]    | [N]    | [N]    | [N]    | [cm <sup>2</sup> /c |

partire dal suo estremo iniziale.

Valori massimo e minimo della sollecitazione di taglio. Ty+, Ty-

Coefficienti di sicurezza relativi alle sollecitazioni "Ty+" e "Ty-" : [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. CS+, CS-

Vcc+, Valori massimo e minimo del taglio ultimo, per conglomerato compresso Vcc-

Vwd+. Contributi dell'acciaio al taglio ultimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-". Vwd-

N+, N-Sforzo Normale medio nella Sezione di Verifica.

Vwp+, Contributi dell'acciaio al taglio ultimo dovuti ai ferri piegati, relativi alle sollecitazioni "Ty+" e "Ty-". Vwp-

Vr1+, Taglio Massimo in assenza di ARMATURA incrociata, relativi alle sollecitazioni "Ty+" e "Ty-". Vr1-

ctg +, Ctg(Theta) utilizzato nel calcolo di Vcc, Vwd e Vwp, relativi alle sollecitazioni "Ty+" e "Ty-". cta -

Afte+,

Aree di ferro per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-". Afte-

Afpe+. Aree di ferri piegati per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-". Afpe-

AfDge+, Area di Ferri incrociati nelle zone critiche, relativi alle sollecitazioni "Ty+" e "Ty-". AfDge-

## TRAVI PARETE - VERI FI CHE PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE DI DANNO (Elevazione)

|                    |       |       |       | Travi Parete - | Verifiche pressofle | essione reti       | a allo stat        | o limite d | i danno |
|--------------------|-------|-------|-------|----------------|---------------------|--------------------|--------------------|------------|---------|
| Trave              | % LLI | Ns    | Mxs   | Ni             | Mxi                 | Afs                | Afi                | CSs        | CSi     |
|                    | [%]   | [N]   | [N·m] | [N·m]          | [N·m]               | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] |            |         |
| Trave Parete 1d-2d |       | 2,134 | 1,756 | 0              | 0                   | 9.58               | 9.58               | NS         | -       |
| Trave Parete 1d-2d |       | 3,594 | 895   | 0              | 0                   | 9.58               | 9.58               | NS         | -       |
| Trave Parete 1d-2d |       | 0     | 0     | 10,709         | 1,150               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 1d-2d |       | 0     | 0     | 11,826         | 1,975               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 1d-2d |       | 0     | 0     | 14,256         | 2,336               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 1d-2d |       | 0     | 0     | 13,347         | 2,184               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 1d-2d |       | 0     | 0     | 13,198         | 2,296               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 1d-2d |       | 0     | 0     | 10,329         | 2,394               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 1d-2d |       | 0     | 0     | 9,838          | 2,088               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 2d-3d |       | 0     | 0     | 9,838          | 2,353               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 2d-3d |       | 0     | 0     | 10,329         | 2,317               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 2d-3d |       | 0     | 0     | 12,945         | 2,158               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 2d-3d |       | 0     | 0     | 13,347         | 2,349               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 2d-3d |       | 0     | 0     | 13,583         | 2,046               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 2d-3d |       | 0     | 0     | 11,826         | 1,338               | 9.58               | 9.58               | -          | NS      |
| Trave Parete 2d-3d |       | 6,191 | 117   | 10,247         | 709                 | 9.58               | 9.58               | NS         | NS      |
| Trave Parete 2d-3d |       | 3,594 | 1,504 | 0              | 0                   | 9.58               | 9.58               | NS         | -       |
| Trave Parete 2d-3d |       | 2,134 | 1,640 | 0              | 0                   | 9.58               | 9.58               | NS         | -       |

#### LEGENDA Travi Parete - Verifiche pressoflessione retta allo stato limite di danno

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione

della trave (LLI), a partire dal suo estremo iniziale

Ns, Mxs Coppia M-N che dà origine alla massima armatura di trazione superiore. Ni, Mxi Coppia M-N che dà origine alla massima armatura di trazione inferiore.

Afs, Afi Area delle armature esecutive superiori ed inferiori.

Coefficienti di sicurezza relativi rispettivamente, a "Ns", "Mxs", "Afs" e "Ni", "Mxi", "Afi" : [NS] = Non Significativo - Per valori di CS maggiori CSs, CSi

o uguali a 100.

## TRAVI PARETE - VERI FI CHE A TAGLI O PER PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE DI **DANNO** (Elevazione)

|           |     |      |      |      |     |        |        |       |       | Tra | vi Par | ete - V | erifich | e a ta | glio pe | er pres | sofles | sione                     | retta a                   | llo sta      | to limi      | te di d                   | lanno        |
|-----------|-----|------|------|------|-----|--------|--------|-------|-------|-----|--------|---------|---------|--------|---------|---------|--------|---------------------------|---------------------------|--------------|--------------|---------------------------|--------------|
| Tra       | LLI | Ty+  | Ty-  | CS+  | CS- | Vcc+   | Vcc-   | Vwd   | Vwd-  | N+  | N-     | Vwp     | Vwp     | Vr1    | Vr1-    | Ctg     | Ctg    | Afte                      | Afte                      | Afp          | Afp          | AfD                       | AfD          |
| ve        | LLI | ı y+ | ı y- | C3+  | 03- | V CC+  | VCC-   | +     | vwu-  | 14+ | 14-    | +       | -       | +      | VI 1-   | +       |        | +                         | -                         | e+           | e-           | g+                        | g-           |
|           | [%] | [N]  | [N]  |      |     | [N]    | [N]    | [N]   | [N]   | [N] | [N]    | [N]     | [N]     | [N]    | [N]     |         |        | [cm <sup>2</sup> /c<br>m] | [cm <sup>2</sup> /c<br>m] | [cm²/c<br>m] | [cm²/c<br>m] | [cm <sup>2</sup> /c<br>m] | [cm²/c<br>m] |
| Trav      |     | 10,3 | 0    | 86.2 | -   | 14265  | 14265  | 89282 | 89282 | 0   | 0      | 0       | 0       | 1,35   | 1,35    | 2.50    | 2.50   |                           |                           |              |              |                           |              |
| е         |     | 51   |      | 6    |     | 05     | 05     | 7     | 7     |     |        |         |         | 8,60   | 8,60    |         |        |                           |                           |              |              |                           |              |
| Pare      |     |      |      |      |     |        |        |       |       |     |        |         |         | 0      | 0       |         |        |                           |                           |              |              |                           |              |
| te        |     |      |      |      |     |        |        |       |       |     |        |         |         |        |         |         |        |                           |                           |              |              |                           |              |
| 1d-       |     |      |      |      |     |        |        |       |       |     |        |         |         |        |         |         |        |                           |                           |              |              |                           |              |
| 2d        |     |      |      |      |     |        |        |       |       |     |        |         |         |        |         |         |        |                           |                           |              |              |                           |              |
| Trav      |     | 8,39 | 0    | NS   | -   | 14272  | 14272  | 89282 | 89282 | 0   | 0      | 0       | 0       | 1,35   | 1,35    | 2.50    | 2.50   |                           |                           |              |              |                           |              |
| е         |     | 3    |      |      |     | 57     | 57     | 7     | 7     |     |        |         |         | 8,60   | 8,60    |         |        |                           |                           |              |              |                           |              |
| Pare      |     |      |      |      |     |        |        |       |       |     |        |         |         | 0      | 0       |         |        |                           |                           |              |              |                           |              |
| te        |     |      |      |      |     |        |        |       |       |     |        |         |         |        |         |         |        |                           |                           |              |              |                           |              |
| 1d-       |     |      |      |      |     |        |        |       |       |     |        |         |         |        |         |         |        |                           |                           |              |              |                           |              |
| 2d        |     | 0.50 |      | NO   |     | 4 4000 | 4 4000 | 40405 | 40405 |     | _      |         |         | 4.05   | 4.05    | 0.50    | 0.50   |                           |                           |              |              |                           |              |
| Trav      |     | 2,52 | 0    | NS   | -   | 14282  | 14282  | 49105 | 49105 | 0   | 0      | 0       | 0       | 1,35   | 1,35    | 2.50    | 2.50   |                           |                           |              |              |                           |              |
| е         |     | 5    |      |      |     | 10     | 10     | 5     | 5     |     |        |         |         | 8,60   |         |         |        |                           |                           |              |              |                           |              |
| Pare      |     |      |      |      |     |        |        |       |       |     |        |         |         | 0      | 0       |         |        |                           |                           |              |              |                           |              |
| te<br>1d- |     |      |      |      |     |        |        |       |       |     |        |         |         |        |         |         |        |                           |                           |              |              |                           |              |
| 2d        |     |      |      |      |     |        |        |       |       |     |        |         |         |        |         |         |        |                           |                           |              |              |                           |              |
| _ Zu      |     |      |      |      |     |        |        |       |       |     |        |         |         |        |         |         |        |                           |                           |              |              |                           |              |

|           |     |      |      |     |      |        |        |            |       | Tra | vi Par   | ete - V | erifich | ne a ta | glio pe      | er pres | sofles | sione                     | retta a      | llo sta      | to lim                    | ite di d                  | lanno        |
|-----------|-----|------|------|-----|------|--------|--------|------------|-------|-----|----------|---------|---------|---------|--------------|---------|--------|---------------------------|--------------|--------------|---------------------------|---------------------------|--------------|
| Tra       | LLI | Ty+  | Ty-  | CS+ | CS-  | Vcc+   | Vcc-   | Vwd        | Vwd-  | N+  | N-       | Vwp     | Vwp     | Vr1     | Vr1-         | Ctg     | Ctg    | Afte                      | Afte         | Afp          | Afp                       | AfD                       | AfD          |
| ve        | LLI | ı y+ | ı y- | C3+ | C3-  | V CC+  | VCC-   | +          | vwu-  | 14+ | 14-      | +       | -       | +       | VI I-        | +       |        | +                         | -            | e+           | e-                        | g+                        | g-           |
|           | [%] | [N]  | [N]  |     |      | [N]    | [N]    | [N]        | [N]   | [N] | [N]      | [N]     | [N]     | [N]     | [N]          |         |        | [cm <sup>2</sup> /c<br>m] | [cm²/c<br>m] | [cm²/c<br>m] | [cm <sup>2</sup> /c<br>m] | [cm <sup>2</sup> /c<br>m] | [cm²/c<br>m] |
| Trav      |     | 0    | -    | -   | NS   | 14261  | 14261  | 89282      | 89282 | 0   | 0        | 0       | 0       | 1,35    | 1,35         | 2 50    | 2.50   | ,                         | ,            | ,            | ,                         | ,                         | ,            |
| e         |     |      | 3,03 |     |      | 74     | 74     | 7          | 7     |     |          |         |         | 8,60    | 8,60         | 2.00    | 2.00   |                           |              |              |                           |                           |              |
| Pare      |     |      | 7    |     |      |        |        |            |       |     |          |         |         | 0,00    | 0,00         |         |        |                           |              |              |                           |                           |              |
| te        |     |      | '    |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 1d-       |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 2d        |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| Trav      |     | 684  | _    | NS  | NS   | 14277  | 14277  | 89282      | 89282 | 0   | 0        | 0       | 0       | 1,16    | 1,16         | 2 50    | 2.50   |                           |              |              |                           |                           |              |
| e         |     | 001  | 2,39 | 110 | 110  | 01     | 01     | 7          | 7     |     |          |         |         | 4,51    | 4,51         | 2.00    | 2.00   |                           |              |              |                           |                           |              |
| Pare      |     |      | 2,33 |     |      | 01     | 01     | · '        | · '   |     |          |         |         | 4,51    | 4,51         |         |        |                           |              |              |                           |                           |              |
| te        |     |      | _    |     |      |        |        |            |       |     |          |         |         | -       | 7            |         |        |                           |              |              |                           |                           |              |
| 1d-       |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 2d        |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| Trav      |     | 3,50 | 0    | NS  | _    | 14277  | 14277  | 89282      | 89282 | 0   | 0        | 0       | 0       | 1,35    | 1,35         | 2.50    | 2.50   |                           |              |              |                           |                           |              |
| e         |     | 8    | 0    | 110 | -    | 01     | 01     | 7          | 7     | 0   | U        | 0       | 0       | 8,60    | 8,60         | 2.30    | 2.30   |                           |              |              |                           |                           |              |
| Pare      |     | 0    |      |     |      | 01     | 01     | · '        | _ ′   |     |          |         |         | 0,00    | 0,00         |         |        |                           |              |              |                           |                           |              |
|           |     |      |      |     |      |        |        |            |       |     |          |         |         | 0       | 0            |         |        |                           |              |              |                           |                           |              |
| te<br>2d- |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 3d        |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
|           |     | 2 20 | 0    | NS  | _    | 14280  | 14280  | 00000      | 89282 | 0   | 0        | 0       | 0       | 1,35    | 1.05         | 2 50    | 2.50   |                           |              |              |                           |                           |              |
| Trav      |     | 2,30 | 0    | INS | -    | 14280  |        | 89282<br>7 | 89282 | 0   | U        | 0       | 0       | 8,60    | 1,35<br>8,60 | 2.50    | 2.50   |                           |              |              |                           |                           |              |
| e<br>Poro |     | 1    |      |     |      | 67     | 67     | /          | _ ′   |     |          |         |         | 8,60    | 0,60         |         |        |                           |              |              |                           |                           |              |
| Pare      |     |      |      |     |      |        |        |            |       |     |          |         |         | U       | 0            |         |        |                           |              |              |                           |                           |              |
| te<br>2d- |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
|           |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 3d        |     | _    |      |     | NC   | 14001  | 1 1001 | 40105      | 40105 | 0   | 0        | _       | _       | 1.05    | 1.05         | 0.50    | 0.50   |                           |              |              |                           |                           |              |
| Trav      |     | 0    | 4.57 | -   | NS   | 14261  | 14261  | 49105      | 49105 | 0   | U        | 0       | 0       | 1,35    | 1,35         | 2.50    | 2.50   |                           |              |              |                           |                           |              |
| е         |     |      | 4,57 |     |      | 74     | 74     | 5          | 5     |     |          |         |         | 8,60    |              |         |        |                           |              |              |                           |                           |              |
| Pare      |     |      | 6    |     |      |        |        |            |       |     |          |         |         | 0       | 0            |         |        |                           |              |              |                           |                           |              |
| te        |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 2d-       |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 3d        |     |      |      |     | 07.4 | 4 4004 | 4 4004 | 00000      | 00000 | _   | _        | _       | _       | 4.05    | 4.05         | 0.50    | 0.50   |                           |              |              |                           |                           |              |
| Trav      |     | 0    | -    | -   | 97.4 | 14261  | 14261  | 89282      | 89282 | 0   | 0        | 0       | 0       |         |              | 2.50    | 2.50   |                           |              |              |                           |                           |              |
| е         |     |      | 9,16 |     | 6    | 74     | 74     | 7          | 7     |     |          |         |         | 8,60    | 8,60         |         |        |                           |              |              |                           |                           |              |
| Pare      |     |      | 1    |     |      |        |        |            |       |     |          |         |         | 0       | 0            |         |        |                           |              |              |                           |                           |              |
| te        |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 2d-       |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 3d        |     | 400  |      | NG  | NG   | 4 4005 | 4 4005 | 00000      | 00000 |     | _        |         |         | 4.0.    |              | 0.50    | 0.50   |                           |              |              |                           |                           |              |
| Trav      |     | 128  | - 45 | NS  | NS   |        | 14265  | 89282      | 89282 | 0   | 0        | 0       | 0       | 1,34    |              | 2.50    | 2.50   |                           |              |              |                           |                           |              |
| e         |     |      | 7,49 |     |      | 05     | 05     | 7          | 7     |     |          |         |         | 6,99    | 6,99         |         |        |                           |              |              |                           |                           |              |
| Pare      |     |      | 2    |     |      |        |        |            |       |     |          |         |         | 4       | 4            |         |        |                           |              |              |                           |                           |              |
| te        |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 2d-       |     |      |      |     |      |        |        |            |       |     |          |         |         |         |              |         |        |                           |              |              |                           |                           |              |
| 3d        |     |      |      |     |      |        |        |            |       |     | <b>-</b> |         |         |         |              |         |        |                           |              |              |                           |                           |              |

#### LEGENDA Travi Parete - Verifiche a taglio per pressoflessione retta allo stato limite di danno

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

**LLI** Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

Ty+, Ty- Valori massimo e minimo della sollecitazione di taglio.

CS+, CS- Coefficienti di sicurezza relativi alle sollecitazioni "Ty+" e "Ty-": [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100.

N+, N- Sforzo Normale medio nella Sezione di Verifica.

Vwd+, Vwd- Contributi dell'acciaio al taglio ultimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-".

Vcd+,
Contributi del calcestruzzo ai tagli ultimi massimo e minimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-".

VcdVwp+,
Contributi dell'acciona el taglia ultima dovuti ai forsi piageti, relativi alla collegitazioni "Tv." " a "Tv."

Vwp
Contributi dell'acciaio al taglio ultimo dovuti ai ferri piegati, relativi alle sollecitazioni "Ty+" e "Ty-".

Vr1+, Vr1- Taglio Massimo in assenza di ARMATURA incrociata, relativi alle sollecitazioni.

Ctg +, Ctg/Thota) utilizzata nel calcaladi Van Vand a Van relativi alla callacitazioni

Ctg +, Ctg(Theta) utilizzato nel calcolodi Vcc, Vwd e Vwp, relativi alle sollecitazioni.

Afte- Aree di ferro per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-".

Afpe+,
Aree di ferri piegati per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-".

AfpeAfDg+,

Area di Ferri ingregiati pella zapa eritigha relativi alla collegitazioni

Area di Ferri incrociati nelle zone critiche, relativi alle sollecitazioni.

AfDg-

# TRAVI PARETE - VERI FI CHE PRESSOFLESSI ONE RETTA E DEVI ATA ALLO STATO LI MI TE DI ESERCI ZI O (Elevazione)

|          |                      |           |              |             |                      | Travi Pa     | rete - Verificl         | he pressof | lessione r           | etta e devia | ta allo stato lim | ite di esercizio       |
|----------|----------------------|-----------|--------------|-------------|----------------------|--------------|-------------------------|------------|----------------------|--------------|-------------------|------------------------|
| % LLI    |                      | Trazione  | calcestruzzo | 0           |                      | Compression  | e calcestruzz           | ю.         |                      | Traz         | zione acciaio     |                        |
| 70 LLI   | ct                   | N         | M3           | M2          | cc                   | N            | М3                      | M2         | at                   | N            | М3                | M2                     |
| [%]      | [N/mm <sup>2</sup> ] | [N]       | [N·m]        | [N·m]       | [N/mm <sup>2</sup> ] | [N]          | [N·m]                   | [N·m]      | [N/mm <sup>2</sup> ] | [N]          | [N·m]             | [N·m]                  |
| Trave Pa | rete 1d-             | FRC= 1.00 | AA= MLA      | CA= FRQ s   | m=0.0000             | 0 Ae= 0.0 cm | n <sup>2</sup> sm= 0 mm |            | CA= QPR              | sm=0.000     | 000 Ae= 0.0 cm    | <sup>2</sup> sm = 0 mm |
| 2d       |                      | cm        | AA= WLA      | wk= 0.00 mn | n                    |              |                         |            | wk=0.00              | mm           |                   |                        |
|          | 0.002                | 6,029     | 1,259        | 0           | -0.039               | 6,029        | 1,259                   | 0          | 0.006                | 6,029        | 1,259             | 0                      |
|          | 0.000                | 0         | 0            | 0           | -0.027               | 6,494        | 475                     | 0          | 0.000                | 0            | 0                 | 0                      |
|          | 0.000                | 0         | 0            | 0           | -0.042               | 8,842        | -951                    | 0          | 0.000                | 0            | 0                 | 0                      |
|          | 0.000                | 0         | 0            | 0           | -0.063               | 10,677       | -1,905                  | 0          | 0.000                | 0            | 0                 | 0                      |
|          | 0.000                | 0         | 0            | 0           | -0.078               | 13,686       | -2,296                  | 0          | 0.000                | 0            | 0                 | 0                      |
|          | 0.000                | 0         | 0            | 0           | -0.074               | 13,070       | -2,153                  | 0          | 0.000                | 0            | 0                 | 0                      |

|          |                      |           |             |            |    |                      | Travi Pa     | rete - Verific | he pressof | lessione r           | etta e deviat | ta allo stato lim | ite di esercizio      |
|----------|----------------------|-----------|-------------|------------|----|----------------------|--------------|----------------|------------|----------------------|---------------|-------------------|-----------------------|
| % LLI    |                      | Trazione  | calcestruzz | 0          |    | (                    | Compression  | e calcestruzz  | zo         |                      | Traz          | zione acciaio     |                       |
| % LLI    | ct                   | N         | М3          | M2         |    | cc                   | N            | M3             | M2         | at                   | N             | M3                | M2                    |
| [%]      | [N/mm <sup>2</sup> ] | [N]       | [N·m]       | [N·m]      |    | [N/mm <sup>2</sup> ] | [N]          | [N·m]          | [N·m]      | [N/mm <sup>2</sup> ] | [N]           | [N·m]             | [N·m]                 |
|          | 0.000                | 0         | 0           |            | 0  | -0.074               | 12,774       | -2,201         | 0          | 0.000                | 0             | 0                 | 0                     |
|          | 0.008                | 9,491     | -2,319      |            | 0  | -0.066               | 9,491        | -2,319         | 0          | 0.085                | 9,491         | -2,319            | 0                     |
|          | 0.001                | 10,676    | -2,077      |            | 0  | -0.066               | 10,676       | -2,077         | 0          | 0.000                | 0             | 0                 | 0                     |
| Trave Pa | arete 2d-            | FRC= 1.00 | AA= PCA     | CA= FRQ    | sm | = 0.0000             | 0 Ae= 0.0 cm | n2 sm=0 mm     |            | CA= QPR              | sm= 0.000     | 000 Ae= 0.0 cm    | <sup>2</sup> sm= 0 mm |
| 3d       |                      | cm        | AA= FCA     | wk= 0.00 n | nm |                      |              |                |            | wk=0.00              | ) mm          |                   |                       |
|          | 0.005                | 10,676    | -2,342      |            | 0  | -0.070               | 10,676       | -2,342         | 0          | 0.036                | 10,676        | -2,342            | 0                     |
|          | 0.007                | 9,491     | -2,223      |            | 0  | -0.065               | 9,491        | -2,223         | 0          | 0.063                | 9,491         | -2,223            | 0                     |
|          | 0.000                | 0         | 0           |            | 0  | -0.072               | 12,571       | -2,108         | 0          | 0.000                | 0             | 0                 | 0                     |
|          | 0.000                | 0         | 0           |            | 0  | -0.077               | 13,070       | -2,309         | 0          | 0.000                | 0             | 0                 | 0                     |
|          | 0.000                | 0         | 0           |            | 0  | -0.071               | 12,830       | -1,977         | 0          | 0.000                | 0             | 0                 | 0                     |
|          | 0.000                | 0         | 0           |            | 0  | -0.052               | 10,677       | -1,210         | 0          | 0.000                | 0             | 0                 | 0                     |
|          | 0.000                | 0         | 0           |            | 0  | -0.030               | 8,219        | -296           | 0          | 0.000                | 0             | 0                 | 0                     |
|          | 0.000                | 0         | 0           |            | 0  | -0.037               | 6,494        | 1,063          | 0          | 0.000                | 0             | 0                 | 0                     |
|          | 0.000                | 6,029     | 1,163       |            | 0  | -0.037               | 6,029        | 1,163          | 0          | 0.000                | 0             | 0                 | 0                     |

#### LEGENDA Travi Parete - Verifiche pressoflessione retta e deviata allo stato limite di esercizio

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave % LLI

(LLI), a partire dal suo estremo iniziale

FRC Freccia della trave [cm].

Identificativo dell'aggressività dell'ambiente: [PCA] = Poco aggressivo - [MDA] = Moderatamente aggressivo - [MLA] = Molto aggressivo. Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FQR] = Frequente - [RAR] = Rara. AA

CA

Deformazione media nel calcestruzzo. sm Area efficace del calcestruzzo teso [mm²]. Ae sm Distanza media tra le fessure [mm]. wk Apertura massima delle fessure [mm].

Valori rispettivamente della tensione massima di trazione nel calcestruzzo e delle componenti della sollecitazione agenti che l'hanno generata.

ct, N, M3, М2 cc, N, M3,

Valori rispettivamente della tensione massima di compressione nel calcestruzzo e delle componenti della sollecitazione agenti che l'hanno generata.

at, N, M3, M2

M2

Valori rispettivamente della tensione massima di trazione nell'acciaio e delle componenti della sollecitazione agenti che l'hanno generata.

## PI LASTRI - VERI FI CHE A PRESSOFLESSI ONE DEVI ATA (Elevazione) allo SLU

|                          |                   |       |        |       |       |      |         |        |         |         |      | Pilas |       |       |      |      | deviata       |
|--------------------------|-------------------|-------|--------|-------|-------|------|---------|--------|---------|---------|------|-------|-------|-------|------|------|---------------|
| Livello                  | % LLI             | N     | Mx     | My    | cs    | Tipo | Mc      |        |         | Rd      |      |       | Α     |       | Tv   | -    | NpIRd         |
| 2110110                  |                   |       |        |       |       | pc   | Mag     | Min    | Mag     | Min     | Mag  | Min   | Mag   | Min   | Mag  | Min  |               |
| auarto r                 | [%]<br>ompitratta | [N]   | [N·m]  | [N·m] |       |      | [N·m]   | [N·m]  | [N]     | [N]     |      |       | [mm²] | [mm²] | [mm] | [mm] | [N]           |
| Pilastro<br>Acciaio<br>2 | 0%                | 536   | 3,254  | -     | 34.46 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
| 2                        | 50%               | 346   | 825    | -     | NS    | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 100%              | 141   | -3     | -35   | NS    | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>3 | 0%                | 578   | 3,214  | -6    | 34.75 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 50%               | 332   | 798    | -3    | NS    | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 100%              | 58    | -3     | -5    | NS    | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>1 | 0%                | 578   | 3,214  | 6     | 34.75 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 50%               | 332   | 798    | 3     | NS    | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 100%              | 58    | -3     | -5    | NS    | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | mpitratta         |       |        |       |       |      |         |        |         |         |      |       |       |       |      |      |               |
| Pilastro<br>Acciaio<br>2 | 0%                | 1,152 | 13,029 | -     | 8.61  | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 50%               | 983   | 8,236  | -     | 13.61 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 100%              | 746   | 4,720  | -     | 23.75 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>3 | 0%                | 1,243 | 12,912 | -25   | 8.65  | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 50%               | 1,023 | 8,134  | -17   | 13.72 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 100%              | 715   | 4,634  | -10   | 24.09 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>1 | 0%                | 1,243 | 12,912 | 25    | 8.65  | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 50%               | 1,023 | 8,134  | 17    | 13.72 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |
|                          | 100%              | 715   | 4,634  | 10    | 24.09 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808 | 4,512 | 6.5  | 20.0 | 1,409,8<br>66 |

|                          |          |       |        |       |      |      |         |        |         |         |      | Pilas | tri - Ver          | ifiche a | pressof | essione | deviata       |
|--------------------------|----------|-------|--------|-------|------|------|---------|--------|---------|---------|------|-------|--------------------|----------|---------|---------|---------------|
| Livelle                  | 0/ 111   | N     | Mx     | Mar   | 00   | Time | Mc      | Rd     | Vc      | Rd      |      |       | Α                  | v        | T۱      | v       | Na Ind        |
| Livello                  | % LLI    | IN    | IVIX   | My    | CS   | Tipo | Mag     | Min    | Mag     | Min     | Mag  | Min   | Mag                | Min      | Mag     | Min     | NpIRd         |
|                          | [%]      | [N]   | [N·m]  | [N·m] |      |      | [N·m]   | [N·m]  | [N]     | [N]     |      |       | [mm <sup>2</sup> ] | [mm²]    | [mm]    | [mm]    | [N]           |
| secondo                  | rompitra | tta   |        |       |      |      |         |        |         |         |      |       |                    |          |         |         |               |
| Pilastro<br>Acciaio<br>2 | 0%       | 1,743 | 28,002 | -     | 4.00 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |
|                          | 50%      | 1,586 | 21,342 | -     | 5.25 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |
|                          | 100%     | 1,362 | 15,774 | -     | 7.11 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>3 | 0%       | 1,875 | 27,801 | 65    | 4.01 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |
|                          | 50%      | 1,670 | 21,158 | 25    | 5.29 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |
|                          | 100%     | 2,501 | 15,604 | -18   | 7.17 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>1 | 0%       | 1,875 | 27,801 | -65   | 4.01 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |
|                          | 50%      | 1,670 | 21,158 | -25   | 5.29 | PLS  | 112,121 | 53,732 | ,       | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |
|                          | 100%     | 2,501 | 15,604 | 18    | 7.17 | PLS  | 112,121 | 53,732 | 273,408 | 682,282 | 0.00 | 0.00  | 1,808              | 4,512    | 6.5     | 20.0    | 1,409,8<br>66 |

# LEGENDA Pilastri - Verifiche a pressoflessione deviata

Livello Livello del Pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera

d'inflessione della trave (LLI), a partire dal suo estremo iniziale

Sforzo Normale.

Mx Vettore Momento intorno a X.

My Vettore Momento intorno a Y.

McRd Momento Resistente.\*

NpIRd Resistenza Plastica a Sforzo Normale

CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR] = Verifica non richiesta.

Tipo di Verifica considerata: PLS = con Modulo di resistenza plastico; ELA = con modulo di resistenza elastico; EFF = con modulo di resistenza efficace.

VcRd Taglio Resistente per il calcolo di \*

Coefficiente riduttivo per presenza di Taglio.\*

Av Area resistente a Taglio per Riduzione Momento Resistente.\*
Tw Spessore Area resistente a Taglio per Riduzione Momento Resistente.\*

Mag indica il valore per la verifica con modulo di resistenza maggiore e Min indica il valore per la verifica con modulo di resistenza

minore.

# PI LASTRI - VERI FI CHE A TAGLI O (Elevazione) per pressoflessione deviata allo SLU

|                       |       |       |                    |                      |        |         | Pilastri - Verifi | che a taglio |
|-----------------------|-------|-------|--------------------|----------------------|--------|---------|-------------------|--------------|
| Livello               | % LLI | CS    | Av                 | t Ed                 | VEd    | VcRd    | PianoVrfc         | Min          |
|                       | [%]   |       | [mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N]    | [N]     |                   |              |
| quarto rompitra       |       |       |                    |                      |        |         |                   |              |
| Pilastro Acciaio      | 0%    | 38.03 | 1,808              | 0.0                  | 7,190  | 273,408 | Piano XX          | 1.0          |
| 2                     |       |       |                    |                      |        |         |                   |              |
|                       | 50%   | 75.88 | 1,808              | 0.0                  | 3,603  | 273,408 | Piano XX          | 1.0          |
|                       | 100%  | NS    | 1,808              | 0.9                  | 162    | 272,764 | Piano XX          | 1.0          |
| Pilastro Acciaio<br>3 | 0%    | 38.15 | 1,808              | 0.1                  | 7,164  | 273,311 | Piano XX          | 1.0          |
|                       | 50%   | 76.39 | 1,808              | 0.1                  | 3,578  | 273,311 | Piano XX          | 1.0          |
|                       | 100%  | NS    | 1,808              | 0.3                  | 188    | 273,183 | Piano XX          | 1.0          |
| Pilastro Acciaio<br>1 | 0%    | 38.15 | 1,808              | 0.1                  | 7,164  | 273,311 | Piano XX          | 1.0          |
|                       | 50%   | 76.39 | 1,808              | 0.1                  | 3,578  | 273,311 | Piano XX          | 1.0          |
|                       | 100%  | NS    | 1,808              | 0.3                  | 188    | 273,183 | Piano XX          | 1.0          |
| terzo rompitrat       | ta    |       |                    |                      |        |         |                   |              |
| Pilastro Acciaio<br>2 | 0%    | 20.14 | 1,808              | 0.0                  | 13,574 | 273,408 | Piano XX          | 1.0          |
|                       | 50%   | 26.32 | 1,808              | 0.0                  | 10,386 | 273,408 | Piano XX          | 1.0          |
|                       | 100%  | 37.98 | 1,808              | 0.0                  | 7,198  | 273,408 | Piano XX          | 1.0          |
| Pilastro Acciaio<br>3 | 0%    | 20.19 | 1,808              | 0.1                  | 13,536 | 273,311 | Piano XX          | 1.0          |
|                       | 50%   | 26.41 | 1,808              | 0.1                  | 10,348 | 273,311 | Piano XX          | 1.0          |
|                       | 100%  | 38.17 | 1,808              | 0.1                  | 7,161  | 273,311 | Piano XX          | 1.0          |
| Pilastro Acciaio      | 0%    | 20.19 | 1,808              | 0.1                  | 13,536 | 273,311 | Piano XX          | 1.0          |
|                       | 50%   | 26.41 | 1,808              | 0.1                  | 10,348 | 273,311 | Piano XX          | 1.0          |
|                       | 100%  | 38.17 | 1,808              | 0.1                  | 7,161  | 273,311 | Piano XX          | 1.0          |
| secondo rompit        | ratta |       |                    |                      |        |         |                   |              |
| Pilastro Acciaio<br>2 | 0%    | 14.04 | 1,808              | 0.0                  | 19,474 | 273,408 | Piano XX          | 1.0          |
|                       | 50%   | 16.54 | 1,808              | 0.0                  | 16,526 | 273,408 | Piano XX          | 1.0          |
|                       | 100%  | 20.14 | 1,808              | 0.0                  | 13,576 | 273,408 | Piano XX          | 1.0          |
| Pilastro Acciaio      | 0%    | 14.07 | 1,808              | 0.1                  | 19,431 | 273,344 | Piano XX          | 1.0          |
| -                     | 50%   | 16.58 | 1,808              | 0.1                  | 16,482 | 273,344 | Piano XX          | 1.0          |
|                       | 100%  | 20.20 | 1,808              | 0.1                  | 13,533 | 273,344 | Piano XX          | 1.0          |
| Pilastro Acciaio      | 0%    | 14.07 | 1,808              | 0.1                  | 19,431 | 273,344 | Piano XX          | 1.0          |

|         |       |       |                    |                      |        |         | Pilastri - Ve | rifiche a taglio |
|---------|-------|-------|--------------------|----------------------|--------|---------|---------------|------------------|
| Livello | % LLI | CS    | Av                 | t Ed                 | VEd    | VcRd    | PianoVrfc     | Min              |
|         | [%]   |       | [mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N]    | [N]     |               |                  |
| 1       |       |       |                    |                      |        |         |               |                  |
|         | 50%   | 16.58 | 1,808              | 0.1                  | 16,482 | 273,344 | Piano XX      | 1.00             |
|         | 100%  | 20.20 | 1,808              | 0.1                  | 13,533 | 273,344 | Piano XX      | 1.00             |

LEGENDA Travi - Verifiche a taglio

Livello Livello del Pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello

% **LLI** considerato.

Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come %

della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR]

= Verifica non richiesta.

Av Area resistente al taglio.

t **Ed** Tensione tangenziale da torsione. **VEd** Taglio di progetto.

VcRd Taglio di progetto.

VcRd PianoVrfc Piano di minore resistenza.

Min Rapporto Minimo Momento Plastico/Momento Progetto travi concorrenti.

# PI LASTRI - VERI FI CHE A PRESSOFLESSI ONE DEVI ATA (Elevazione) allo SLD

|                          |            |       |         |          |       |      |              |                 |            |            |      | Pilas |              |              | -           |             | deviata       |
|--------------------------|------------|-------|---------|----------|-------|------|--------------|-----------------|------------|------------|------|-------|--------------|--------------|-------------|-------------|---------------|
| Livello                  | % LLI      | N     | Mx      | Му       | cs    | Tipo | Мс           |                 |            | Rd         |      |       |              | V            | T           |             | NpIRd         |
|                          | [%]        | [N]   | [N·m]   | [N·m]    |       |      | Mag<br>[N·m] | Min<br>[N·m]    | Mag<br>[N] | Min<br>[N] | Mag  | Min   | Mag<br>[mm²] | Min<br>[mm²] | Mag<br>[mm] | Min<br>[mm] | [N]           |
| quarto re                | ompitratta |       | [IVIII] | [IV III] |       |      | [14 m]       | [IV III]        | [14]       | [14]       |      |       | []           | []           | [11111]     | (mm)        | [14]          |
| Pilastro<br>Acciaio<br>2 | 0%         | 538   | 23      | 42       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| _                        | 50%        | 348   | 37      | 4        | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 100%       | 132   | -1      | -18      | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>3 | 0%         | 449   | 105     | -17      | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 50%        | 259   | 50      | -7       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 100%       | 46    | -2      | -3       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>1 | 0%         | 449   | 105     | 17       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| '                        | 50%        | 259   | 50      | 7        | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 100%       | 46    | -2      | -3       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| terzo ror                | mpitratta  |       |         |          |       |      |              |                 |            |            |      |       |              |              |             |             |               |
| Pilastro<br>Acciaio<br>2 | 0%         | 1,914 | 127     | 222      | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 50%        | 1,745 | 43      | 72       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 100%       | 1,508 | -40     | -77      | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>3 | 0%         | 1,347 | 138     | -257     | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 50%        | 1,173 | 204     | -37      | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 100%       | 936   | -162    | -31      | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>1 | 0%         | 1,347 | 138     | 257      | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| '                        | 50%        | 1,173 | 204     | 37       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 100%       | 936   | -162    | 31       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | rompitrat  |       |         |          | 00:-  |      |              | <b>50</b> · · · |            | 000        |      |       |              |              |             |             |               |
| Pilastro<br>Acciaio<br>2 | 0%         | 3,266 | 283     | 551      | 82.17 | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 50%        | 3,109 | 63      | 133      | NS    | PLS  | 117,727      | 56,418          | .,         | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 100%       | 2,885 | -157    | -284     | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| Pilastro<br>Acciaio<br>3 | 0%         | 2,220 | 292     | 535      | 83.59 | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| 3                        | 50%        | 2,053 | 399     | 46       | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
|                          | 100%       | 1,839 | -167    | -304     | NS    | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8<br>66 |
| Pilastro                 | 0%         | 2,220 | 292     | -535     | 83.59 | PLS  | 117,727      | 56,418          | 273,408    | 682,282    | 0.00 | 0.00  | 1,808        | 4,512        | 6.5         | 20.0        | 1,409,8       |

| Pilaetri - | Verifiche a | pressoflessione | deviata |
|------------|-------------|-----------------|---------|
|            |             |                 |         |

|         |       |       |       |       |    |      |         |        |         |         |      |      |                    |                    | p. 0000. |      | actiata |
|---------|-------|-------|-------|-------|----|------|---------|--------|---------|---------|------|------|--------------------|--------------------|----------|------|---------|
| Livello | % LLI | N     | Mv    | Mar   | cs | Tino | Mc      | Rd     | Vc      | Rd      |      |      | Α                  | v                  | Tv       | N    | NpIRd   |
| Livello | % LLI | N     | Mx    | My    | CS | Tipo | Mag     | Min    | Mag     | Min     | Mag  | Min  | Mag                | Min                | Mag      | Min  | NPING   |
|         | [%]   | [N]   | [N·m] | [N·m] |    |      | [N·m]   | [N·m]  | [N]     | [N]     |      |      | [mm <sup>2</sup> ] | [mm <sup>2</sup> ] | [mm]     | [mm] | [N]     |
| Acciaio |       |       |       |       |    |      |         |        |         |         |      |      |                    |                    |          |      | 66      |
| 1       |       |       |       |       |    |      |         |        |         |         |      |      |                    |                    |          |      |         |
|         | 50%   | 2,053 | 399   | -46   | NS | PLS  | 117,727 | 56,418 | 273,408 | 682,282 | 0.00 | 0.00 | 1,808              | 4,512              | 6.5      | 20.0 | 1,409,8 |
|         |       |       |       |       |    |      |         |        |         |         |      |      |                    |                    |          |      | 66      |
|         | 100%  | 1,839 | -167  | 304   | NS | PLS  | 117,727 | 56,418 | 273,408 | 682,282 | 0.00 | 0.00 | 1,808              | 4,512              | 6.5      | 20.0 | 1,409,8 |
|         |       |       |       |       |    |      |         |        |         |         |      |      |                    |                    |          |      | 66      |

## LEGENDA Pilastri - Verifiche a pressoflessione deviata

Livello % LLI Livello del Pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera

d'inflessione della trave (LLI), a partire dal suo estremo iniziale

Sforzo Normale

Мx Vettore Momento intorno a X. Vettore Momento intorno a Y. Mγ McRd Momento Resistente.\*

NpIRd Resistenza Plastica a Sforzo Normale

Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR] = Verifica non richiesta. CS Tipo

Tipo di Verifica considerata: PLS = con Modulo di resistenza plastico; ELA = con modulo di resistenza elastico; EFF = con modulo di

resistenza efficace.

VcRd Taglio Resistente per il calcolo di \*

Coefficiente riduttivo per presenza di Taglio.\*

Area resistente a Taglio per Riduzione Momento Resistente.\* Tw Spessore Area resistente a Taglio per Riduzione Momento Resistente.\*

Mag indica il valore per la verifica con modulo di resistenza maggiore e Min indica il valore per la verifica con modulo di resistenza

## PI LASTRI - VERI FI CHE A TAGLI O (Elevazione) per pressoflessione deviata allo SLD

|                       |        |    |                    |                      |     |           | Pilastri - Verifi | che a taglio |
|-----------------------|--------|----|--------------------|----------------------|-----|-----------|-------------------|--------------|
| Livello               | % LLI  | CS | Av                 | t Ed                 | VEd | VcRd      | PianoVrfc         | Min          |
|                       | [%]    |    | [mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N] | [N]       |                   |              |
| quarto rompitr        |        |    |                    |                      |     |           |                   |              |
| Pilastro Acciaio      | 0%     | NS | 1,808              | 0.9                  | 82  | 272,764   | Piano XX          | 0.00         |
| 2                     |        |    |                    |                      |     |           |                   |              |
|                       | 50%    | NS | 1,808              | 0.9                  | 82  | 272,764   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 0.9                  | 82  | 272,764   | Piano XX          | 0.00         |
| Pilastro Acciaio      | 0%     | NS | 1,808              | 0.3                  | 111 | 273,183   | Piano XX          | 0.00         |
| 3                     |        |    |                    |                      |     |           |                   |              |
|                       | 50%    | NS | 1,808              | 0.3                  | 111 | 273,183   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 0.3                  | 111 | 273,183   | Piano XX          | 0.00         |
| Pilastro Acciaio      | 0%     | NS | 1,808              | 0.3                  | 111 | 273,183   | Piano XX          | 0.00         |
| 1                     |        |    |                    |                      |     |           |                   |              |
|                       | 50%    | NS | 1,808              | 0.3                  | 111 | 273,183   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 0.3                  | 111 | 273,183   | Piano XX          | 0.00         |
| terzo rompitrat       |        |    |                    |                      |     | .=        |                   |              |
| Pilastro Acciaio      | 0%     | NS | 1,808              | 0.3                  | 360 | 273,183   | Piano XX          | 0.00         |
| 2                     |        |    |                    |                      |     |           |                   |              |
|                       | 50%    | NS | 1,808              | 0.3                  | 360 | 273,183   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 0.3                  | 360 | 273,183   | Piano XX          | 0.00         |
| Pilastro Acciaio<br>3 | 0%     | NS | 1,808              | 1.1                  | 372 | 272,602   | Piano XX          | 0.00         |
|                       | 50%    | NS | 1,808              | 1.1                  | 372 | 272,602   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 1.1                  | 372 | 272,602   | Piano XX          | 0.00         |
| Pilastro Acciaio<br>1 | 0%     | NS | 1,808              | 1.1                  | 372 | 272,602   | Piano XX          | 0.00         |
|                       | 50%    | NS | 1,808              | 1.1                  | 372 | 272,602   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 1.1                  | 372 | 272,602   | Piano XX          | 0.00         |
| secondo rompi         | tratta |    |                    |                      |     |           |                   |              |
| Pilastro Acciaio<br>2 | 0%     | NS | 1,808              | 0.9                  | 573 | 272,732   | Piano XX          | 0.00         |
|                       | 50%    | NS | 1,808              | 0.9                  | 573 | 272,732   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 0.9                  | 573 | 272,732   | Piano XX          | 0.00         |
| Pilastro Acciaio      | 0%     | NS | 1,808              | 2.3                  | 562 | 271,730   | Piano XX          | 0.00         |
| 3                     |        |    | <i>'</i>           |                      |     | ,         |                   |              |
| -                     | 50%    | NS | 1,808              | 2.3                  | 562 | 271,730   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 2.3                  | 562 | 271,730   | Piano XX          | 0.00         |
| Pilastro Acciaio      | 0%     | NS | 1,808              | 2.3                  | 562 | 271,730   | Piano XX          | 0.00         |
| 1                     | 0,0    |    | .,000              | 2.0                  | 332 | =: :,: 00 |                   | 0.00         |
| •                     | 50%    | NS | 1,808              | 2.3                  | 562 | 271,730   | Piano XX          | 0.00         |
|                       | 100%   | NS | 1,808              | 2.3                  | 562 | 271,730   | Piano XX          | 0.00         |

#### LEGENDA Travi - Verifiche a taglio

Livello del Pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello Livello

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come %

della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR]

= Verifica non richiesta. Αv Area resistente al taglio. t Ed Tensione tangenziale da torsione.

VEd Taglio di progetto. VcRd Taglio resistente. PianoVrfc Piano di minore resistenza.

Rapporto Minimo Momento Plastico/Momento Progetto travi concorrenti.

# PI LASTRI - VERI FI CHE I NSTABI LI TA' A PRESSOFLESSI ONE DEVI ATA (Elevazione)

|             |       |         |       |      |     |       |      |      |       |      |       |       |       | Pilas | tri - Ver | rifiche | instab | ilità a | press | oflessi | one deviata |
|-------------|-------|---------|-------|------|-----|-------|------|------|-------|------|-------|-------|-------|-------|-----------|---------|--------|---------|-------|---------|-------------|
| Pilast      |       |         |       |      |     | LL    | Lam  | bda  | Alf   | ia   | F     | ï     | C     | hi    | Bet       | ta      | ŀ      | <       | Chi   | Trs     |             |
| ro          | N     | Mx      | Му    | CS   | LN  | I FIS | x-x  | у-у  | х-х   | у-у  | x-x   | у-у   | x-x   | у-у   | x-x       | у-у     | x-x    | у-у     | х-х   | у-у     | NCritico    |
|             | [N]   | [N·m]   | [N·m] |      | [m] | [m]   |      |      |       |      |       |       |       |       |           |         |        |         |       |         | [N]         |
| quarto      |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         | • •         |
| Pilastr     | 433   | 2,44    | -     | 45.3 | 0.9 | 0.4   | 0.07 | 0.03 | 0.34  | 0.49 | 0.495 | 0.524 | 1.000 | 0.996 | 1.00      | 1.00    | 0.86   | 1.00    | 1.00  | 1.00    | 3.41854E+   |
| 0           |       | 0       |       | 1    | 0   | 5     |      |      |       |      |       |       |       |       |           |         |        |         | 0     | 0       | 07          |
| Acciai      |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| 0 2         |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| Pilastr     | 314   | 2,41    | 4     | 45.8 | 0.9 | 0.4   | 0.07 | 0.04 | 0.34  | 0.49 | 0.495 | 0.524 | 1.000 | 0.996 | 1.00      | 1.00    | 0.77   | 1.00    | 1.00  | 1.00    | 3.41854E+   |
| 0           |       | 0       |       | 9    | 0   | 5     |      |      |       |      |       |       |       |       |           |         |        |         | 0     | 0       | 07          |
| Acciai      |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| o 3         |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| Pilastr     | 314   | 2,41    | 4     | 45.8 | 0.9 | 0.4   | 0.07 | 0.04 | 0.34  | 0.49 | 0.495 | 0.524 | 1.000 | 0.996 | 1.00      | 1.00    | 0.77   | 1.00    | 1.00  | 1.00    | 3.41854E+   |
| 0           |       | 0       |       | 9    | 0   | 5     |      |      |       |      |       |       |       |       |           |         |        |         | 0     | 0       | 07          |
| Acciai      |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| 01          |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| terzo ro    |       |         |       | 0.70 | 0.0 | 0.4   | 0.07 | 0.00 | 0.04  | 0.40 | 0.404 | 0.540 | 4 000 | 4 000 | 4.00      | 4.00    | 0.00   | 4.00    | 4 00  | 4 00    | 4.000505    |
| Pilastr     | 2,35  | 11,2    | -     | 9.79 |     | 0.4   | 0.07 | 0.03 | 0.34  | 0.49 | 0.491 | 0.513 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 1.00    | 1.00  | 1.00    | 4.32659E+   |
| o<br>Acciai | 6     | 61      |       |      | 0   | 0     |      |      |       |      |       |       |       |       |           |         |        |         | U     | 0       | 07          |
| 0 2         |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| Pilastr     | 1,54  | 11,1    | 18    | 9.93 | 0.8 | 0.4   | 0.07 | 0.04 | 0.34  | 0.49 | 0.491 | 0.513 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 0.84    | 1.00  | 1.00    | 4.32659E+   |
| 0           | 0     | 28      | 10    | 3.33 | 0.0 | 0.4   | 0.07 | 0.04 | 0.54  | 0.43 | 0.431 | 0.515 | 1.000 | 1.000 | 1.00      | 1.00    | 0.00   | 0.04    | 0.00  | 0.00    | 4.3203324   |
| Acciai      | Ŭ     |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         | 0,          |
| 0 3         |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| Pilastr     | 1,54  | 11,1    | 18    | 9.93 | 0.8 | 0.4   | 0.07 | 0.04 | 0.34  | 0.49 | 0.491 | 0.513 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 0.84    | 1.00  | 1.00    | 4.32659E+   |
| 0           | 0     | 28      |       | 0.00 | 0.0 | 0.1   | 0.07 | 0.0. | 0.0.  | 00   | 00.   | 0.0.0 | 1.000 |       |           |         | 0.00   | 0.0.    | 0     | 0       | 07          |
| Acciai      |       |         |       |      | •   |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| 0 1         |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| secondo     | o rom | pitratt | а     |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| Pilastr     | 4,26  | 28,0    | -     | 3.96 | 0.7 | 0.3   | 0.07 | 0.02 | 0.34  | 0.49 | 0.489 | 0.508 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 1.00    | 1.00  | 1.00    | 5.05664E+   |
| 0           | 4     | 02      |       |      | 4   | 7     |      |      |       |      |       |       |       |       |           |         |        |         | 0     | 0       | 07          |
| Acciai      |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| 0 2         |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| Pilastr     | 2,74  | 27,8    | 25    | 3.99 | 0.7 | 0.3   | 0.07 | 0.03 | 0.34  | 0.49 | 0.489 | 0.508 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 0.60    | 1.00  | 1.00    | 5.05664E+   |
| 0           | 9     | 01      |       |      | 4   | 7     |      |      |       |      |       |       |       |       |           |         |        |         | 0     | 0       | 07          |
| Acciai      |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| 0 3         |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| Pilastr     | 2,74  | 27,8    | 25    | 3.99 | 0.7 | 0.3   | 0.07 | 0.03 | 0.34  | 0.49 | 0.489 | 0.508 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 0.60    | 1.00  | 1.00    | 5.05664E+   |
| 0           | 9     | 01      |       |      | 4   | 7     |      |      |       |      |       |       |       |       |           |         |        |         | 0     | 0       | 07          |
| Acciai      |       |         |       |      |     |       |      |      |       |      |       |       |       |       |           |         |        |         |       |         |             |
| 0 1         |       |         |       |      |     |       |      |      | proce |      |       |       |       |       |           |         |        |         |       |         |             |

#### LEGENDA Pilastri - Verifiche instabilità a pressoflessione deviata

Pilastro Identificativo del Pilastro.

Ν Sforzo Normale.

Мx Vettore Momento intorno a x-x (può provocare sbandamento, per instabilità flessotorsionale, intorno al piano y-y). Vettore Momento intorno a y-y (Può provocare sbandamento per instabilità flessotorsionale intorno al piano x-x).

My CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR] = Verifica non richiesta.

LN

LLI FIST Luce libera per instabilità flessotorsionale.

Lambda Lambda Coefficiente di Snellezza adimensionale nel piano di possibile sbandamento (ortogonale rispetto a quello di flessione).

Alfa Fattore di imperfezione

Coefficiente Fi (per il calcolo di Chi). Chi Fattore di riduzione per instabilità flessionale. Beta Coefficiente di riduzione della luce libera di inflessione.

**NCritico** Sforzo Normale Critico Euleriano. Kc Coefficiente per il calcolo di ChiTrs.

ChiTrs Coefficiente di riduzione ai fini dell'instabilità flessotorsionale.

# PI LASTRI - VERI FI CHE GERARCHI A DELLE RESI STENZE (Elevazione)

|                     |    |           |        |         |    | Pilastri - Ver | ifiche gerarchia d | elle resistenze |
|---------------------|----|-----------|--------|---------|----|----------------|--------------------|-----------------|
| Doom                |    | Nodo iniz | ziale  |         |    | Nodo f         | inale              |                 |
| Beam                | CS |           | VEd    | VpIRd   | CS |                | VEd                | VpIRd           |
|                     |    |           | [N]    | [N]     |    |                | [N]                | [N]             |
| quarto rompitratta  |    |           |        |         |    |                |                    |                 |
| Pilastro Acciaio 2  | NS | 2,185.72  | 125.00 | 273,215 | NS | 2,185.72       | 125.00             | 273,215         |
| Pilastro Acciaio 3  | NS | 2,847.33  | 96.00  | 273,344 | NS | 2,847.33       | 96.00              | 273,344         |
| Pilastro Acciaio 1  | NS | 2,847.33  | 96.00  | 273,344 | NS | 2,847.33       | 96.00              | 273,344         |
| terzo rompitratta   |    |           |        |         |    |                |                    |                 |
| Pilastro Acciaio 2  | NS | 755.09    | 362.00 | 273,344 | NS | 755.09         | 362.00             | 273,344         |
| Pilastro Acciaio 3  | NS | 658.19    | 415.00 | 273,150 | NS | 658.19         | 415.00             | 273,150         |
| Pilastro Acciaio 1  | NS | 658.19    | 415.00 | 273,150 | NS | 658.19         | 415.00             | 273,150         |
| secondo rompitratta | 1  |           |        |         |    |                |                    |                 |
| Pilastro Acciaio 2  | NS | 365.26    | 748.00 | 273,215 | NS | 365.26         | 748.00             | 273,215         |
| Pilastro Acciaio 3  | NS | 423.09    | 645.00 | 272,893 | NS | 423.09         | 645.00             | 272,893         |
| Pilastro Acciaio 1  | NS | 423.09    | 645.00 | 272,893 | NS | 423.09         | 645.00             | 272,893         |

LEGENDA Pilastri - Verifiche gerarchia delle resistenze

Beam Identificativo del beam nel progetto.

Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR] = Verifica non CS

richiesta

NO

NO

NO

# LEGENDA Pilastri - Verifiche gerarchia delle resistenze

Rapporto Massimo Taglio Plastico / Taglio Progetto.

VEd Taglio di progetto. VpIRd Taglio Plastico Resistente.

REGOLARITÁ DELLA STRUTTURA IN PIANTA

# PI ANI - VERI FI CHE REGOLARI TA' (Elevazione)

La configurazione in pianta è compatta e approssimativamente simmetrica rispetto a due direzioni ortogonali, in relazione alla distribuzione di masse e

|   | rigidezze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140        |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   | Il rapporto tra i lati di un rettangolo in cui l'edificio risulta inscritto è inferiore a 4                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO         |
| L | Almeno una dimensione di eventuali rientri o sporgenze non supera il 25% della dimensione totale dell'edificio nella corrispondente direzione                                                                                                                                                                                                                                                                                                                                                                                                       | NO         |
|   | I solai possono essere considerati infinitamente rigidi nel loro piano rispetto agli elementi verticali e sufficientemente resistenti                                                                                                                                                                                                                                                                                                                                                                                                               | SI         |
|   | La struttura non è regolare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in pianta. |
| ı | REGOLARI TÁ DELLA STRUTTURA IN ALTEZZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| I | Tutti i sistemi resistenti verticali dell'edificio (quali telai e pareti) si estendono per tutta l'altezza dell'edificio                                                                                                                                                                                                                                                                                                                                                                                                                            | NO         |
|   | Massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla cima dell'edificio (le variazioni di massa da un piano all'altro non superano il 25%, la rigidezza non si abbassa da un piano al sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidata almeno il 50% dell'azione sismica alla base | NO         |
| Γ | Il rapporto tra resistenza effettiva e resistenza richiesta dal calcolo nelle strutture intelaiate progettate in Classe di Duttilità Bassa non è significativamente                                                                                                                                                                                                                                                                                                                                                                                 |            |

diverso per piani diversi (il rapporto fra la resistenza effettiva e quella richiesta calcolata ad un generico piano non deve differire più del 20% dall'analogo rapporto determinato per un altro piano); può fare eccezione l'ultimo piano di strutture intelaiate di almeno tre piani Eventuali restringimenti della sezione orizzontale dell'edificio avvengono in modo graduale da un piano al successivo, rispettando i seguenti limiti: ad ogni

piano il rientro non supera il 30% della dimensione corrispondente al primo piano, né il 20% della dimensione corrispondente al piano immediatamente sottostante. Fa eccezione l'ultimo piano di edifici di almeno quattro piani per il quale non sono previste limitazioni di restringimento

|                     |       |         |        |       |        |          |           |           | La stru | ttura non e | è regolare i | n altezza. |
|---------------------|-------|---------|--------|-------|--------|----------|-----------|-----------|---------|-------------|--------------|------------|
|                     |       |         | Piano  | Riduz | Irreg. | Massa    | Rgd       | SLU       | RE      | ff          | RR           | ic         |
| Piano               | Quota | Altezza | rigido | Tamp  | Tamp   | SLU      | x         | Υ         | x       | Y           | x            | Υ          |
|                     | [m]   | [m]     |        |       |        | [N·s²/m] | [N/cm]    | [N/cm]    | [N]     | [N]         | [N]          | [N]        |
| quarto rompitratta  | 3.00  | 1.00    | NO     | NO    | NO     | 86       | 2,708     | 2,213     | 358,212 | 747,477     | 5,331        | 7,303      |
| terzo rompitratta   | 2.00  | 1.00    | NO     | NO    | NO     | 318      | 11,868    | 9,004     | 402,987 | 840,912     | 5,921        | 8,080      |
| secondo rompitratta | 1.00  | 1.00    | NO     | NO    | NO     | 319      | 36,873    | 17,121    | 435,663 | 909,093     | 6,556        | 9,569      |
| primo rompitratta   | 0.00  | 1.00    | NO     | NO    | NO     | 2,829    | 2,147,483 | 2,147,483 | 0       | 0           | 0            | 0          |
|                     |       |         |        |       |        |          | ,647      | ,647      |         |             |              |            |

#### **LEGENDA**

Riduz.Tamp Per i piani con riduzione dei tamponamenti, sono state incrementate le azioni di calcolo per gli elementi verticali (pilastri e pareti) di un fattore 1,4: [S]

Piano con riduzione dei tamponamenti - [N] = Piano senza riduzione dei tamponamenti.

Irreg.Tamp. Per piani con distribuzione dei tamponamenti in pianta fortemente irregolare, l'eccentricità accidentale è stata incrementata di un fattore pari a 2: [S] =

Distribuzione tamponamenti irregolare fortemente - [N] = Distribuzione tamponamenti regolare. [S] = Impalcato infinitamente rigido nel proprio piano - [N] = Impalcato deformabile

Piano rigido Massa SLU RgdSLU

Valori delle Rigidezze di Piano, valutate allo SLU, riferite agli assi X ed Y del riferimento globale.

RĚff Valori delle Resistenze Effettive di Piano, valutate allo SLU, relative al sistema di riferimento globale X, Y, Z. **RRic** Valori delle Resistenze Richieste di Piano, valutate allo SLU, relative al sistema di riferimento globale X, Y, Z.

# PI ANI - VERI FI CHE AGLI SPOSTAMENTI

|                     |           |             |      |      |       |        |            |            | Piani - Verifiche |
|---------------------|-----------|-------------|------|------|-------|--------|------------|------------|-------------------|
| Piano               | Quot<br>a | Altez<br>za | SxD  | SyD  | TpCol | Slim   | Slim - SxD | Slim - SyD | Note              |
|                     | [m]       | [m]         | [cm] | [cm] |       | [cm]   | [cm]       | [cm]       |                   |
| quarto rompitratta  | 3.00      | 1.00        | 0.02 | 0.03 | R     | 0.5000 | 0.4759     | 0.4675     | Verificato        |
| terzo rompitratta   | 2.00      | 1.00        | 0.02 | 0.03 | R     | 0.5000 | 0.4788     | 0.4693     | Verificato        |
| secondo rompitratta | 1.00      | 1.00        | 0.01 | 0.02 | R     | 0.5000 | 0.4893     | 0.4756     | Verificato        |
| primo rompitratta   | 0.00      | 1.00        | 0.00 | 0.00 | R     | 0.5000 | 0.5000     | 0.5000     | Verificato        |

#### LEGENDA Piani - Verifiche allo stato limite di danno/spostamenti

SxD, SyD Componenti dello spostamento differenziale rispetto al piano inferiore (Stato Limite di Danno), relative al sistema di riferimento globale X, Y, Z. Il calcolo

viene condotto per tutte le coppie di punti allineate in verticale; si riportano i valori massimi.

**TpCol** Tipo di collegamento delle tamponature alla struttura: [R] = Rigido - [E] = Elastico. Slim

Valore limite dello spostamento differenziale indicato dalla normativa

Massa del piano allo Stato Limite Ultimo.

# PI ANI - VERI FI CHE ALLO SLO (Elevazione)

|                     |      |       |             |       |      |      |      | Pia      | ini - Verifiche allo SLO |
|---------------------|------|-------|-------------|-------|------|------|------|----------|--------------------------|
| Piano               | Quot | Altez | SpAmmSLO    | SpDif | fSLO | SpI  | Diff | ClgTomp  | Note                     |
| Piallo              | а    | za    | SPAIIIIISLO | X     | Υ    | X    | Y    | Cigronip | Note                     |
|                     | [m]  | [m]   | [cm]        | [cm]  | [cm] | [cm] | [cm] |          |                          |
| quarto rompitratta  | 3.00 | 1.00  | 0.33        | 0.02  | 0.03 | 0.31 | 0.31 | R        | Verificato               |
| terzo rompitratta   | 2.00 | 1.00  | 0.33        | 0.02  | 0.03 | 0.32 | 0.31 | R        | Verificato               |
| secondo rompitratta | 1.00 | 1.00  | 0.33        | 0.01  | 0.02 | 0.32 | 0.31 | R        | Verificato               |
| primo rompitratta   | 0.00 | 1.00  | 0.33        | 0.00  | 0.00 | 0.33 | 0.33 | R        | Verificato               |

# LEGENDA Piani - Verifiche allo SLO

**SpAmmSLO** Spostamento Differenziale rispetto al Piano inferiore Ammissibile. **SpDiffSLO** Spostamento Differenziale rispetto al Piano inferiore. SpDiff Differenza fra SpAmmSLO e SpDiffSLO nelle direzioni X e Y. CigTomp Tipo di Collegamento delle Tamponature alla struttura.

# PI ANI - EFFETTI DEL SECONDO ORDINE (Elevazione)

|       |       |         |      |      |     |     | F   | Piani - Effetti ( | del second | o ordine |
|-------|-------|---------|------|------|-----|-----|-----|-------------------|------------|----------|
| Piano | Quota | Altezza | SxD  | SyD  | Px  | Py  | Tx  | Ty                | х          | у        |
|       | [m]   | [m]     | [cm] | [cm] | [N] | [N] | [N] | [N]               |            |          |

|                     |       |         |        |        |        |        | Pi     | iani - Effetti d | el second | o ordine |
|---------------------|-------|---------|--------|--------|--------|--------|--------|------------------|-----------|----------|
| Piano               | Quota | Altezza | SxD    | SyD    | Px     | Py     | Tx     | Ту               | х         | у        |
|                     | [m]   | [m]     | [cm]   | [cm]   | [N]    | [N]    | [N]    | [N]              |           |          |
| quarto rompitratta  | 3.00  | 1.00    | 0.2747 | 0.3362 | 844    | 844    | 744    | 744              | 0.0031    | 0.0038   |
| terzo rompitratta   | 2.00  | 1.00    | 0.2404 | 0.3170 | 3,130  | 3,130  | 2,853  | 2,854            | 0.0033    | 0.0044   |
| secondo rompitratta | 1.00  | 1.00    | 0.1170 | 0.2520 | 3,130  | 3,130  | 4,313  | 4,315            | 0.0019    | 0.0041   |
| primo rompitratta   | 0.00  | 1.00    | 0.0000 | 0.0000 | 40,566 | 40,566 | 14,825 | 14,833           | 0.0000    | 0.0000   |

# LEGENDA Piani - Effetti del secondo ordine

Nota: le forze sismiche orizzontali agenti sui piani caratterizzati da valori di compresi tra 0.1 e 0.2, sono state incrementate del fattore "1/ (1- )", per portare in conto gli effetti del secondo ordine. [DM 2008 - par. 7.3.1].

Componenti dello spostamento differenziale rispetto al piano inferiore (Stato Limite Ultimo), relative al sistema di riferimento globale X, Y, Z. Il calcolo viene SyD condotto per tutte le coppie di punti allineate in verticale; si riportano i valori massimi.

Px , Py Valori del carico verticale del piano utilizzato per il calcolo di "

Tx, Ty Valori del tagliante di piano utilizzati per il calcolo di " "

Coefficienti " " del piano. x. ν

#### TRAVI - VERI FI CHE PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE ULTI MO (Fondazione)

|             |       |         |       |         | Travi - Verifiche | pressofle          | essione re         | tta allo st | ato limit | e ultimo |
|-------------|-------|---------|-------|---------|-------------------|--------------------|--------------------|-------------|-----------|----------|
| Trave       | % LLI | Ns      | Mxs   | Ni      | Mxi               | Afs                | Afi                | CSs         | CSi       | Intrv    |
|             | [%]   | [N]     | [N·m] | [N]     | [N·m]             | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] |             |           |          |
| Fondazione  |       |         |       |         |                   | Travata:           | Trave1d-           | 2d-3d       |           |          |
| Trave 1d-2d | 0%    | -5,851  | 1,339 | -       | -                 | 6.79               | 6.79               | 89.20       | -         | NO       |
|             | 25%   | -       | -     | -11,767 | 1,622             | 6.79               | 6.79               | -           | 72.85     | NO       |
|             | 50%   | -       | -     | -17,094 | 1,248             | 6.79               | 6.79               | -           | 93.77     | NO       |
|             | 75%   | -       | -     | -16,336 | 1,386             | 6.79               | 6.79               | -           | 84.55     | NO       |
|             | 100%  | -12,291 | 1,758 | -       | -                 | 6.79               | 6.79               | 67.15       | -         | NO       |
| Trave 2d-3d | 0%    | -12,291 | 1,839 | -       | -                 | 6.79               | 6.79               | 64.20       | -         | NO       |
|             | 25%   | -       | -     | -16,336 | 1,364             | 6.79               | 6.79               | -           | 85.91     | NO       |
|             | 50%   | -       | -     | -17,094 | 1,258             | 6.79               | 6.79               | -           | 93.02     | NO       |
|             | 75%   | -       | -     | -11,767 | 1,646             | 6.79               | 6.79               | -           | 71.79     | NO       |
|             | 100%  | -5,851  | 1,244 | -       | · -               | 6.79               | 6.79               | 96.02       | -         | NO       |

# LEGENDA Travi - Verifiche pressoflessione retta allo stato limite ultimo

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato. Trave

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione

della trave (LLI), a partire dal suo estremo iniziale

Ns. Mxs Coppia M-N che dà origine alla massima armatura di trazione superiore. Ni, Mxi Coppia M-N che dà origine alla massima armatura di trazione inferiore.

Afs, Afi Area delle armature esecutive superiori ed inferiori.

Coefficienti di sicurezza relativi rispettivamente, a "Ns", "Mxs", "Afs" e "Ni", "Mxi", "Afi" : [NS] = Non Significativo - Per valori di CS maggiori CSs, CSi

o uguali a 100.

[SI] = nodo con presenza di rinforzo; [NO] = nodo senza rinforzo. Intrv

# TRAVI - VERI FI CHE A TAGLI O PER PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE ULTI MO (Fondazione)

|             |       |              |         |       |         |         |     | Travi - Ve | erifiche a | taglio per | pressofle | essione re            | tta allo s            | tato limite           | e ultimo |
|-------------|-------|--------------|---------|-------|---------|---------|-----|------------|------------|------------|-----------|-----------------------|-----------------------|-----------------------|----------|
| Trave       | % LLI | max/ m<br>in | Ту      | cs    | Vcc     | Vwd     | N   | Vwp        | Vr1        | Vfd        | ctg       | Afte                  | Afpe                  | AfDge                 | Intrv    |
|             | [%]   |              | [N]     |       | [N]     | [N]     | [N] | [N]        | [N]        | [N]        |           | [cm <sup>2</sup> /cm] | [cm <sup>2</sup> /cm] | [cm <sup>2</sup> /cm] |          |
| Fondazione  |       |              |         |       |         |         |     |            | Travata:   | Trave1d-   | 2d-3d     |                       |                       |                       |          |
| Trave 1d-2d | 0%    | +            | 10,892  | 38.35 | 908,416 | 417,728 | 0   | 0          | 0          | 0          | 2.50      | 0.1118                | 0.0000                | 0.0000                | NC       |
|             |       | -            | -       | -     | 908,416 | 417,728 | 0   | 0          | 0          | 0          | 2.50      | 0.1118                | 0.0000                | 0.0000                | NC       |
|             | 25%   | +            | 3,022   | NS    | 908,416 | 435,393 | 0   | 0          | 0          | 0          | 2.50      | 0.1118                | 0.0000                | 0.0000                | NC       |
|             |       | -            |         | -     | 908,416 | 435,393 | 0   | 0          | 0          | 0          | 2.50      | 0.1118                | 0.0000                | 0.0000                | NC       |
|             | 50%   | +            | 1,587   | NS    | 908,416 | 406,226 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
| -           |       | -            |         | -     | 908,416 | 406,226 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             | 75%   | +            | -       | -     | 908,416 | 399,338 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             |       | -            | -2,558  | NS    | 908,416 | 399,338 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             | 100%  | +            | -       | -     | 908,416 | 392,528 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             |       | -            | -9,254  | 42.42 | 908,416 | 392,528 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
| Trave 2d-3d | 0%    | +            | 9,259   | 42.40 | 908,416 | 392,539 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             |       | -            |         | -     | 908,416 | 392,539 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             | 25%   | +            | 2,569   | NS    | 908,416 | 399,349 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             |       | -            |         | -     | 908,416 | 399,349 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             | 50%   | +            | -       | -     | 908,416 | 406,221 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             |       | -            | -1,583  | NS    | 908,416 | 406,221 | 0   | 0          | 0          | 0          | 2.50      | 0.1006                | 0.0000                | 0.0000                | NC       |
|             | 75%   | +            | -       | -     | 908,416 | 435,390 | 0   | 0          | 0          | 0          | 2.50      | 0.1118                | 0.0000                | 0.0000                | NC       |
|             |       | _            | -3,006  | NS    | 908,416 | 435,390 | 0   | 0          | 0          | 0          | 2.50      | 0.1118                | 0.0000                | 0.0000                | NC       |
|             | 100%  | +            | -       | -     | 908,416 | 417.728 | 0   | 0          | 0          | 0          | 2.50      | 0.1118                | 0.0000                | 0.0000                | NC       |
|             |       | _            | -10,873 | 38.42 | ,       | , -     | 0   | 0          | 0          | 0          | 2.50      | 0.1118                | 0.0000                | 0.0000                | NC       |

#### LEGENDA Travi - Verifiche a taglio per pressoflessione retta allo stato limite ultimo

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato. Trave

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

max/ min [+] = sollecitazione massima; [-] = sollecitazione minima.

Ty CS Valori massimo e minimo della sollecitazione di taglio.

Coefficienti di sicurezza relativi alle sollecitazioni "Ty+" e "Ty-": [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100.

Vcc Valori massimo e minimo del taglio ultimo, per conglomerato compresso. Vwd Contributi dell'acciaio al taglio ultimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-".

Ν Sforzo Normale medio nella Sezione di Verifica.

Vwp Contributi dell'acciaio al taglio ultimo dovuti ai ferri piegati, relativi alle sollecitazioni "Ty+" e "Ty-". Taglio Massimo in assenza di ARMATURA incrociata, relativi alle sollecitazioni "Ty+" e "Ty-". Vr1

Vfd Contributo acciaio al Taglio ultimo dovuto al rinforzo in FRP.

|       |       |              |     |    |     |     |     | Travi - V | erifiche a | taglio pe | r pressofl | essione re            | etta allo s           | tato limit            | e ultimo |
|-------|-------|--------------|-----|----|-----|-----|-----|-----------|------------|-----------|------------|-----------------------|-----------------------|-----------------------|----------|
| Trave | % LLI | max/ m<br>in | Ту  | cs | Vcc | Vwd | N   | Vwp       | Vr1        | Vfd       | ctg        | Afte                  | Afpe                  | AfDge                 | Intrv    |
|       | [%]   |              | [N] |    | [N] | [N] | [N] | [N]       | [N]        | [N]       |            | [cm <sup>2</sup> /cm] | [cm <sup>2</sup> /cm] | [cm <sup>2</sup> /cm] |          |

Ctg(Theta) utilizzato nel calcolo di Vcc, Vwd e Vwp, relativi alle sollecitazioni "Ty+" e "Ty-". ctg

Aree di ferro per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-Afte

Aree di ferri piegati per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-". Afpe

AfDge Area di Ferri incrociati nelle zone critiche, relativi alle sollecitazioni "Ty+" e "Ty-". Intrv [SI] = nodo con presenza di rinforzo; [NO] = nodo senza rinforzo.

# TRAVI - VERI FI CHE PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE DI DANNO (Fondazione)

|             |       |        |       | Travi - | Verifiche pressofl | essione ret        | ta allo stat       | o limite d | i danno |
|-------------|-------|--------|-------|---------|--------------------|--------------------|--------------------|------------|---------|
| Trave       | % LLI | Ns     | Mxs   | Ni      | Mxi                | Afs                | Afi                | CSs        | CSi     |
|             | [%]   | [N]    | [N·m] | [N·m]   | [N·m]              | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] |            |         |
| Fondazione  |       |        |       |         |                    | Travata: Tr        | rave1d-2d-         | 3d         |         |
| Trave 1d-2d | 0%    | -1,307 | 1,170 | -       | -                  | 6.79               | 6.79               | NS         | -       |
|             | 12.5% | -      | -     | -1,307  | 1,972              | 6.79               | 6.79               | -          | 71.40   |
|             | 25%   | -      | -     | -6,445  | 1,332              | 6.79               | 6.79               | -          | NS      |
|             | 37.5% | -      | -     | -9,704  | 1,173              | 6.79               | 6.79               | -          | NS      |
|             | 50%   | -      | -     | -12,014 | 1,040              | 6.79               | 6.79               | -          | NS      |
|             | 62.5% | -      | -     | -13,379 | 1,035              | 6.79               | 6.79               | -          | NS      |
|             | 75%   | -      | -     | -13,149 | 1,120              | 6.79               | 6.79               | -          | NS      |
|             | 87.5% | -      | -     | -10,815 | 1,293              | 6.79               | 6.79               | -          | NS      |
|             | 100%  | -7,963 | 1,453 | -       | -                  | 6.79               | 6.79               | 95.91      | -       |
| Trave 2d-3d | 0%    | -7,963 | 1,515 | -       | -                  | 6.79               | 6.79               | 91.99      | -       |
|             | 12.5% | -      | -     | -10,815 | 1,232              | 6.79               | 6.79               | -          | NS      |
|             | 25%   | -      | -     | -13,149 | 1,107              | 6.79               | 6.79               | -          | NS      |
|             | 37.5% | -      | -     | -13,379 | 1,038              | 6.79               | 6.79               | -          | NS      |
|             | 50%   | -      | -     | -12,014 | 1,052              | 6.79               | 6.79               | -          | NS      |
|             | 62.5% | -      | -     | -9,704  | 1,194              | 6.79               | 6.79               | -          | NS      |
|             | 75%   | -      | -     | -6,445  | 1,356              | 6.79               | 6.79               | -          | NS      |
|             | 87.5% | -      | -     | -1,307  | 2,042              | 6.79               | 6.79               | -          | 68.95   |
|             | 100%  | -1,307 | 1,094 | -       | -                  | 6.79               | 6.79               | NS         | -       |

#### LEGENDA Travi - Verifiche pressoflessione retta allo stato limite di danno

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione % LLI

della trave (LLI), a partire dal suo estremo iniziale

Ns, Mxs Coppia M-N che dà origine alla massima armatura di trazione superiore. Ni, Mxi Coppia M-N che dà origine alla massima armatura di trazione inferiore.

Afs, Afi Area delle armature esecutive superiori ed inferiori.

Coefficienti di sicurezza relativi rispettivamente, a "Ns", "Mxs", "Afs" e "Ni", "Mxi", "Afi" : [NS] = Non Significativo - Per valori di CS maggiori CSs, CSi

o uguali a 100.

# TRAVI - VERI FI CHE A TAGLI O PER PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE DI DANNO (Fondazione)

| Trave           | LLI  | max/ min       | Ty     | CS | Vcc       | Vwd     | N             | Vwp        | Vr1 | Vfd | limite di dann<br>Ctg |
|-----------------|------|----------------|--------|----|-----------|---------|---------------|------------|-----|-----|-----------------------|
|                 |      | 1114277 111111 | .,     |    | 100       |         |               |            |     |     |                       |
|                 | [%]  | [%]            | [N]    |    | [N]       | [N]     | [N]           | [N]        | [N] | [N] |                       |
| ondazione       |      |                |        |    |           |         | Travata: Trav | ve1d-2d-3d |     |     |                       |
| Trave 1d-<br>2d | 0%   | +              | 8,756  | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.5                   |
|                 |      | -              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.5                   |
|                 | 25%  | +              | 2,681  | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      | -              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.5                   |
|                 | 50%  | +              | 1,302  | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      | -              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 | 75%  | +              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      | -              | -2,241 | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 | 100% | +              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      | -              | -7,238 | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
| Trave 2d-<br>3d | 0%   | +              | 7,242  | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      | -              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 | 25%  | +              | 2,246  | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      | -              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 | 50%  | +              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      | -              | -1,296 | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 | 75%  | +              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      |                | -2,673 | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 | 100% | +              | -      | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |
|                 |      | -              | -8,743 | NS | 1,359,669 | 419,175 | 0             | 0          | 0   | 0   | 2.                    |

#### LEGENDA Travi - Verifiche a taglio per pressoflessione retta allo stato limite di danno

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato. Trave

LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale

max/ min [+] = sollecitazione massima; [-] = sollecitazione minima.

Valori massimo e minimo della sollecitazione di taglio.

Ty+ , Ty-CS+ , CS-N+ , N-Coefficienti di sicurezza relativi alle sollecitazioni "Ty+" e "Ty-" : [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100.

Sforzo Normale medio nella Sezione di Verifica.

Vwd+. Contributi dell'acciaio al taglio ultimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-". Vwd-

Contributi del calcestruzzo ai tagli ultimi massimo e minimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-". Vcd+.

|       |                                             |     |     |  |     | Travi - \ | erifiche a ta | glio per pres | soflessione | retta allo s | tato limite di danno |  |  |  |  |
|-------|---------------------------------------------|-----|-----|--|-----|-----------|---------------|---------------|-------------|--------------|----------------------|--|--|--|--|
| Trave | LLI max/min Ty CS Vcc Vwd N Vwp Vr1 Vfd Ctg |     |     |  |     |           |               |               |             |              |                      |  |  |  |  |
|       |                                             |     | -   |  |     |           |               |               |             |              |                      |  |  |  |  |
|       | [%]                                         | [%] | [N] |  | [N] | [N]       | [N]           | [N]           | [N]         | [N]          |                      |  |  |  |  |

Vcd-

Vwp+,
Contributi dell'acciaio al taglio ultimo dovuti ai ferri piegati, relativi alle sollecitazioni "Ty+" e "Ty-".

Vwp-Vr1+,

Taglio Massimo in assenza di ARMATURA incrociata, relativi alle sollecitazioni.

Vfd+, Vfd- Cont

Contributo acciaio al Taglio ultimo dovuto al rinforzo in FRP.

Ctg +,

Ctg(Theta) utilizzato nel calcolodi Vcc, Vwd e Vwp, relativi alle sollecitazioni.

# TRAVI - VERI FI CHE A TORSI ONE ALLO STATO LI MI TE ULTI MO (Fondazione)

|             |       |        |         |        |        |        |               | Travi -    | Verifiche a to | rsione allo st        | tato limite u | ıltimo     |
|-------------|-------|--------|---------|--------|--------|--------|---------------|------------|----------------|-----------------------|---------------|------------|
| Trave       | % LLI | Mt     | Mrcd    | Mrsd   | Mrld   | Ctg    | Pe            | Ве         | Hs             | AfSt                  | AfLp          | l ntr<br>v |
|             | [%]   | [N·m]  | [N·m]   | [N·m]  | [N·m]  | [adim] | [mm]          | [mm²]      | [mm]           | [cm <sup>2</sup> /cm] | [cm²]         |            |
| Fondazione  |       |        |         |        |        |        | Travata: Trav | /e1d-2d-3d |                |                       |               |            |
| Trave 1d-2d | 0%    | 29,222 | 167,789 | 71,836 | 36,067 | 2.50   | 1,655         | 168,595    | 136            | 0.0089                | 11.31         | NO         |
|             | 25%   | 14,865 | 167,789 | 71,836 | 36,067 | 2.50   | 1,655         | 168,595    | 136            | 0.0045                | 11.31         | NO         |
|             | 50%   | 1,698  | 167,789 | 34,965 | 14,427 | 2.50   | 1,655         | 168,595    | 136            | 0.0005                | 4.52          | NO         |
|             | 75%   | 7,296  | 167,789 | 34,965 | 14,427 | 2.50   | 1,655         | 168,595    | 136            | 0.0022                | 4.52          | NO         |
|             | 100%  | 12,831 | 167,789 | 34,965 | 14,427 | 2.50   | 1,655         | 168,595    | 136            | 0.0039                | 4.52          | NO         |
| Trave 2d-3d | 0%    | 12,822 | 167,789 | 34,965 | 14,427 | 2.50   | 1,655         | 168,595    | 136            | 0.0039                | 4.52          | NO         |
|             | 25%   | 7,287  | 167,789 | 34,965 | 14,427 | 2.50   | 1,655         | 168,595    | 136            | 0.0022                | 4.52          | NO         |
|             | 50%   | 1,702  | 167,789 | 34,965 | 14,427 | 2.50   | 1,655         | 168,595    | 136            | 0.0005                | 4.52          | NO         |
|             | 75%   | 14,868 | 167,789 | 71,836 | 36,067 | 2.50   | 1,655         | 168,595    | 136            | 0.0045                | 11.31         | NO         |
|             | 100%  | 29,222 | 167,789 | 71,836 | 36,067 | 2.50   | 1,655         | 168,595    | 136            | 0.0089                | 11.31         | NO         |

#### LEGENDA Travi - Verifiche a torsione allo stato limite ultimo

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera

d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

Mt Momento Torcente.

Mrcd Momento resistente del calcestruzzo.
Mrsd Momento resistente delle staffe.

Mrld Momento resistente dell'armatura longitudinale.

Ctg Ctg(Theta) utilizzato nel calcolo di Mrcd, Mrsd e Mrld.

**Pe** Perimetro esterno in asse alle barre.

Be Area racchiusa da Pe.

**Hs** Spessore della sezione convenzionale resistente.

AfSt Area di ferro delle staffe per centimetro, aggiuntive a quanto calcolato per il taglio.

AfLp Area barre longitudinali di parete esecutive.

Intrv [SI] = nodo con presenza di rinforzo; [NO] = nodo senza rinforzo.

# TRAVI - VERI FI CHE PRESSOFLESSI ONE RETTA E DEVI ATA ALLO STATO LI MI TE DI ESERCI ZI O (Fondazione)

|                      |                   |                         |            |       |                                      |          |                 |       |                   |                  |           | Tra   | avi - V     | erifich | e pres             | sofles | sione i           | retta e    | devia     | ta allo | stato       | limite | di ese         | rcizio |
|----------------------|-------------------|-------------------------|------------|-------|--------------------------------------|----------|-----------------|-------|-------------------|------------------|-----------|-------|-------------|---------|--------------------|--------|-------------------|------------|-----------|---------|-------------|--------|----------------|--------|
| % L                  | Trazi             | ione c                  | alcestr    | uzzo  | Traz                                 |          | alcestr<br>orzo | uzzo  |                   | Compre<br>calces |           |       |             |         | ession<br>zo rinf  |        | Tı                | razion     | accia     | aio     | Traz        |        | cciaio<br>orzo | / FRP  |
| LI                   | ct                | N                       | Mx         | Му    | ctr                                  | N        | Mx              | Му    | СС                | N                | Mx        | Му    | ccr         | N       | Mx                 | Му     | at                | N          | Mx        | Му      | atr         | N      | Mx             | Му     |
| [%]                  | [N/m<br>m²]       | [N]                     | [N·m]      | [N·m] | [N/m<br>m²]                          | [N]      | [N·m]           | [N·m] | [N/m<br>m²]       | [N]              | [N·m]     | [N·m] | [N/m<br>m²] | [N]     | [N·m]              | [N·m]  | [N/m<br>m²]       | [N]        | [N·m]     | [N·m]   | [N/m<br>m²] | [N]    | [N·m]          | [N·m]  |
| Fond                 | azione            |                         |            |       |                                      |          |                 |       |                   |                  |           |       | Trava       | ta: Tr  | ave1d              | -2d-3d | 1                 |            |           |         |             |        |                |        |
| Trave<br>Trave<br>2d |                   | FRC<br>= 0.<br>00<br>cm | AA=<br>PCA |       | FRQ<br>0.0 cm <sup>2</sup><br>0.00 m | 2 sm= (  | 00000<br>) mm   |       | CA= C             | QPR :            | sm= 0     | 00000 | ) Ae=(      | ).0 cm  | <sup>2</sup> sm=   | 0 mm   | w k= 0            | ).00 m     | m         |         |             |        |                |        |
| 0%                   | 0.05              | -<br>4,47<br>1          | 1,02<br>7  | -     | -                                    | -        | -               | -     | 0.02              | 4,47<br>1        | 1,02<br>7 | -     | -           | -       | -                  | -      | 0.66<br>4         | 4,47<br>1  | 1,02<br>7 | -       | -           | -      | -              | -      |
| 25%                  | 0.07              | 9,01<br>6               | 1,24<br>4  | -     | -                                    | -        | -               | -     | 0.01<br>5         | 9,01<br>6        | 1,24<br>4 | -     | -           | -       | -                  | -      | 0.97              | 9,01<br>6  | 1,24<br>4 | -       | -           | -      | -              | -      |
| 50%                  | 0.07              | -<br>13,1<br>14         | -958       | -     | -                                    | -        | -               | -     | 0.00              | -                | -         | -     | -           | -       | -                  | -      | 1.03<br>8         | 13,1<br>14 | -958      | -       | -           | -      | -              | -      |
| 75%                  | 0.07              | 12,5<br>01              | 1,06<br>4  | -     | -                                    | -        | -               | -     | 0.00              | -                | -         | -     | -           | -       | -                  | -      | 1.05<br>6         | 12,5<br>01 | 1,06<br>4 | -       | -           | -      | -              | -      |
| 100<br>%             | 0.07              | 9,38<br>9               | 1,34<br>7  | -     | -                                    | -        | -               | -     | 0.01<br>8         | 9,38<br>9        | 1,34<br>7 | -     | -           | -       | -                  | -      | 1.03<br>5         | 9,38<br>9  | 1,34<br>7 | -       | -           | -      | -              | -      |
| Trave<br>Trave<br>3d |                   | FRC<br>= 0.<br>00<br>cm | AA=<br>PCA |       | FRQ<br>0.0 cm <sup>2</sup><br>0.00 m | 2 sm = ( | 00000<br>) mm   |       | CA= C             | QPR :            | sm= 0.    | 00000 | ) Ae=(      | ).0 cm  | 1 <sup>2</sup> sm= | 0 mm   | w k= 0            | ).00 m     | m         |         |             |        |                |        |
| 0%<br>25%            | 0.07<br>9<br>0.07 | 9,38<br>9               | 1,40<br>9  | -     | -                                    | -        | -               | -     | 0.02<br>0<br>0.00 | 9,38<br>9        | 1,40<br>9 | -     | -           | -       | -                  | -      | 1.06<br>3<br>1.04 | 9,38<br>9  | 1,40<br>9 | -       | -           | -      | -              | -      |
|                      | 6                 | 12,5<br>01              | 1,04<br>7  |       |                                      |          |                 |       | 0                 |                  |           |       |             |         |                    |        | 8                 | 12,5<br>01 | 1,04<br>7 |         |             |        |                |        |

|     |             |            |         |       |             |        |       |       |             |      |                  | Tra   | avi - Vo    | erifich | e pres            | sofles | sione r     | etta e     | devia | ta allo | stato       | limite | di ese          | rcizio |
|-----|-------------|------------|---------|-------|-------------|--------|-------|-------|-------------|------|------------------|-------|-------------|---------|-------------------|--------|-------------|------------|-------|---------|-------------|--------|-----------------|--------|
| % L | Trazi       | one ca     | alcestr | uzzo  | Trazi       | one ca |       | uzzo  |             |      | ession<br>truzzo |       |             |         | ession<br>zo rinf |        | Tr          | azione     | accia | io      | Trazi       |        | cciaio/<br>orzo | FRP    |
| LI  | ct          | N          | Mx      | Му    | ctr         | N      | Mx    | Му    | СС          | N    | Mx               | Му    | ccr         | N       | Mx                | Му     | at          | N          | Mx    | Му      | atr         | N      | Mx              | Му     |
| [%] | [N/m<br>m²] | [N]        | [N·m]   | [N·m] | [N/m<br>m²] | [N]    | [N·m] | [N·m] | [N/m<br>m²] | [N]  | [N·m]            | [N·m] | [N/m<br>m²] | [N]     | [N·m]             | [N·m]  | [N/m<br>m²] | [N]        | [N·m] | [N·m]   | [N/m<br>m²] | [N]    | [N·m]           | [N·m]  |
| 50% | 0.07        | -          | -966    | -     | -           | -      | -     | -     | 0.00        | -    | -                | -     | -           | -       | -                 | -      | 1.04        | -          | -966  | -       | -           | -      | -               | -      |
|     | 5           | 13,1<br>14 |         |       |             |        |       |       | 0           |      |                  |       |             |         |                   |        | 1           | 13,1<br>14 |       |         |             |        |                 |        |
| 75% | 0.07        | -          | -       | -     | -           | -      | -     | -     | -           | -    | -                | -     | -           | -       | -                 | -      | 0.98        | -          | -     | -       | -           | -      | -               | -      |
|     | 2           | 9,01       | 1,26    |       |             |        |       |       | 0.01        | 9,01 | 1,26             |       |             |         |                   |        | 0           | 9,01       | 1,26  |         |             |        |                 |        |
|     |             | 6          | 2       |       |             |        |       |       | 6           | 6    | 2                |       |             |         |                   |        |             | 6          | 2     |         |             |        |                 |        |
| 100 | 0.04        | -          | 955     | -     | -           | -      | -     | -     | -           | -    | 955              | -     | -           | -       | -                 | -      | 0.63        | -          | 955   | -       | -           | -      | -               | -      |
| %   | 7           | 4,47       |         |       |             |        |       |       | 0.01        | 4,47 |                  |       |             |         |                   |        | 2           | 4,47       |       |         |             |        |                 |        |
|     |             | 1          |         |       |             |        |       |       | 9           | 1    |                  |       |             |         |                   |        |             | 1          |       |         |             |        |                 |        |

#### LEGENDA Travi - Verifiche pressoflessione retta e deviata allo stato limite di esercizio

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato. Trave

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave

(LLI), a partire dal suo estremo iniziale

FRC Freccia della trave [cm].

Identificativo dell'aggressività dell'ambiente: [PCA] = Poco aggressivo - [MDA] = Moderatamente aggressivo - [MLA] = Molto aggressivo. ΔΔ

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FQR] = Frequente - [RAR] = Rara. CA

sm Deformazione media nel calcestruzzo Δe Area efficace del calcestruzzo teso [mm2] sm Distanza media tra le fessure [mm] wk Apertura massima delle fessure [mm] ct, N, M3,

Valori rispettivamente della tensione massima di trazione nel calcestruzzo e delle componenti della sollecitazione agenti che l'hanno generata. M2

ctr. N. M3 M2

Valori rispettivamente della tensione massima di trazione nel calcestruzzo del rinforzo e delle componenti della sollecitazione agenti che l'hanno generata.

cc, N, M3, M2

Valori rispettivamente della tensione massima di compressione nel calcestruzzo e delle componenti della sollecitazione agenti che l'hanno generata.

ccr, N, M3. M2

Valori rispettivamente della tensione massima di compressione nel calcestruzzo del rinforzo e delle componenti della sollecitazione agenti che l'hanno

at. N. M3.

Valori rispettivamente della tensione massima di trazione nell'acciaio e delle componenti della sollecitazione agenti che l'hanno generata.

M2 atr, N, M3,

M2

Valori rispettivamente della tensione massima di trazione nell'acciaio del rinforzo e delle componenti della sollecitazione agenti che l'hanno generata.

# PALI - VERI FI CHE A CARI CO LI MI TE VERTI CALE E ORI ZZONTALE (Fondazione)

|       |       |         |        |        |        |         |       |        | pali - Ver      | ifiche a ca | rico limite | verticale e orizzontale |
|-------|-------|---------|--------|--------|--------|---------|-------|--------|-----------------|-------------|-------------|-------------------------|
| Palo  | Nodo  | QMaxVrt | QMaxOr | QdVrt  | QdVPnt | QdVLtrl | QdOrz | MMaxOr | Tipo<br>Rottura | Prof        | CS Vert     | CS Oriz                 |
|       |       | [N]     | [N]    | [N]    | [N]    | [N]     | [N]   | [Nm]   | Hottura         | Cern<br>[m] |             |                         |
| PALO1 | 00010 | 27346   | 16544  | 213290 | 155771 | 57519   | 73007 | 119573 | Palo            | 2.25        | 7.80        | 4.41                    |
| FALOT | 00010 | 2/340   | 10344  | 213290 | 133771 | 3/319   | 73007 | 119373 |                 | 2.25        | 7.00        | 4.41                    |
|       |       |         |        |        |        |         |       |        | Lungo           |             |             |                         |
| PALO2 | 00011 | 33003   | 17046  | 213290 | 155771 | 57519   | 78691 | 136051 | Palo            | 2.42        | 6.46        | 4.62                    |
|       |       |         |        |        |        |         |       |        | Lungo           |             |             |                         |
| PALO3 | 00014 | 27346   | 16533  | 213290 | 155771 | 57519   | 73007 | 119573 | Palo            | 2 25        | 7 80        | 4 42                    |

# LEGENDA pali - Verifiche a carico limite verticale e orizzontale

Palo Identificativo del palo.

Nodo Identificativo del nodo all'estremo superiore del palo

QMaxVrt Carico verticale di progetto allo SLU. QMaxOrz Carico orizzontale di progetto allo SLU. QdVrt Resistenza di progetto verticale.

**QdVPnt** Aliquota della resistenza di progetto verticale dovuto alla resistenza alla punta. QdVLtrl Aliquota della resistenza di progetto verticale dovuto alla resistenza laterale.

Resistenza di progetto orizzontale. QdOrz

MMaxOrz Momento massimo lungo il palo per carichi orizzontali.

Tipo Rottura Modalita' di rottura per carico limite orizzontale (Palo Corto, Palo Medio, Palo Lungo).

**Prof Cern** Profondita' della seconda cerniera plastica.

CS Vert Coefficiente di sicurezza per carichi verticali: [NS]= Non significativo. CS Oriz Coefficiente di sicurezza per carichi orizzontali: [NS]= Non significativo.

#### PALI - VERI FI CHE A PRESSOFLESSI ONE DEVI ATA ALLO SLU (Fondazione)

|       |       |        |        |       |      | р         | ali - Verifiche | a pressoflessi | one deviata a | llo SLU |
|-------|-------|--------|--------|-------|------|-----------|-----------------|----------------|---------------|---------|
| Palo  | Nodo  | N      | Mx     | Му    | CS   | N ult     |                 | nf             | St            | Intrv   |
|       |       | [N]    | [N·m]  | [N·m] |      | [N]       | [mm]            |                | [mm]          |         |
| PALO1 | 00010 | 17,625 | 56,072 | -298  | 1.00 | 1,794,302 | 18              | 6              | 8             | NO      |
| PALO2 | 00011 | 21,833 | 58,123 | 0     | 1.06 | 1,893,876 | 18              | 7              | 8             | NO      |
| PALO3 | 00014 | 17,625 | 56,069 | 298   | 1.00 | 1,794,302 | 18              | 6              | 8             | NO      |

#### LEGENDA Pali - Verifiche a pressoflessione deviata allo SLU

Palo Identificativo del palo.

Nodo Identificativo del nodo in testa al palo.

N, Mx, My Valori della terna di sollecitazione cui corrisponde il minimo coefficiente di sicurezza.

CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. (Le sollecitazioni ultime Nu, Mxu, Myu sono date da

N, Mx, My moltiplicate per CS).

N ult Sforzo normale ultimo per compressione semplice.

Diametro delle barre di acciaio nei vertici. Numero delle barre di acciaio nei vertici. nf

Diametro delle staffe.

|      |      |     |       |       |    |       | pali - Verifiche | a pressofless | ione deviata a | llo SLU |
|------|------|-----|-------|-------|----|-------|------------------|---------------|----------------|---------|
| Palo | Nodo | N   | Mx    | My    | CS | N ult |                  | nf            | St             | Intrv   |
|      |      | [N] | [N·m] | [N·m] |    | [N]   | [mm]             |               | [mm]           |         |

Intrv [SI] = nodo con presenza di rinforzo; [NO] = nodo senza rinforzo.

# PALI - VERI FI CHE A TAGLI O (Fondazione)

Pali - Verifiche a Taglio

|       |       |        |      |      |     |      |     |     |     |     |     |                       | raii - | verilliche a | i rayiio |
|-------|-------|--------|------|------|-----|------|-----|-----|-----|-----|-----|-----------------------|--------|--------------|----------|
| Palo  | Nodo  | Tc     | CS   | V    | /cc | V    | wd  | V   | 'cd | V   | wp  | Aft                   | Pst    | St           | Intrv    |
| Faio  | Nouo  | 10     | 03   | X    | Υ   | Х    | Υ   | Х   | Υ   | X   | Υ   | AIL                   | ГЭІ    | 31           | IIILIV   |
|       |       | [N]    |      | [N]  | [N] | [N]  | [N] | [N] | [N] | [N] | [N] | [cm <sup>2</sup> /cm] | [cm]   | [mm]         |          |
| PALO1 | 00010 | 16,544 | 6.96 | 2561 | 0   |      | 0   | 0   | 0   | 0   | 0   | 0.0503                | 20     | 8            | NO       |
|       |       |        |      | 69   |     | 64   |     |     |     |     |     |                       |        |              |          |
| PALO2 | 00011 | 17,046 | 6.75 | 2561 | 0   |      | 0   | 0   | 0   | 0   | 0   | 0.0503                | 20     | 8            | NO       |
|       |       |        |      | 69   |     | 64   |     |     |     |     |     |                       |        |              |          |
| PALO3 | 00014 | 16,533 | 6.96 | 2561 | 0   | 1150 | 0   | 0   | 0   | 0   | 0   | 0.0503                | 20     | 8            | NO       |
|       |       |        |      | 69   |     | 64   |     |     |     |     |     |                       |        |              |          |

# LEGENDA Pali - Verifiche a Taglio

Palo Identificativo del palo.

Nodo Identificativo del nodo in testa al palo.

Tc Valori della massima sollecitazione di taglio composta in funzione di Tx, Ty e dell'asse neutro.

CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100.

Vcc Taglio ultimo per conglomerato compresso. Il valore è calcolato secondo il punto 4.2.2.3.1 del D.M.9/1/1996 per pilastri. Per pilastri Parete come definiti

dall'Ordinanza 3431 il valore e calcolato secondo le indicazioni del punto 5.4.5.2 della citata Ordinanza.

**Vwd** Contributo acciaio al taglio ultimo dovuto alle staffe.

 Vcd
 Contributo del calcestruzzo al taglio ultimo.

 Vwp
 Taglio ultimo dovuto ai ferri piegati.

 Aft
 Area di ferro per il taglio per centimetro.

 Pst
 Passo massimo staffe da Normativa.

St Diametri delle staffe [mm].

Intrv [SI] = nodo con presenza di rinforzo; [NO] = nodo senza rinforzo.

| SEZIONI ASTE                                                                                  | pag.             | 2     |
|-----------------------------------------------------------------------------------------------|------------------|-------|
| PROFILATI ACCIAIO                                                                             | pag.             | 2     |
| RIEPILOGO MODI DI VIBRAZIONE                                                                  | pag.             | 3     |
| CARICHI SUI NODI (per condizioni di carico non sismiche).                                     | pag.             | 5     |
| CARICHI SUI NODI IN FONDAZIONE (Fondazione)                                                   | pag.             | 6     |
| CARICHI SULLE TRAVI                                                                           | pag.             | 30    |
| CARICHI SUI PILASTRI                                                                          | pag.             | 31    |
| NODI - REAZIONI VINCOLARI ESTERNE PER CONDIZIONI DI CARICO NON SISMICHE                       | pag.             | 32    |
| NODI - REAZIONI VINCOLARI ESTERNE PER EFFETTO DEL SISMA                                       | pag.             | 32    |
| NODI - REAZIONI VINCOLARI ESTERNE PER ECCENTRICITA' ACCIDENTALE                               | pag.             | 33    |
| EDIFICIO - VERIFICHE DI RIPARTIZIONE DELLE FORZE SISMICHE                                     | pag.             | 33    |
| TRAVI PARETE - VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO (Elevazione)          | pag.             | 33    |
| TRAVI PARETE - VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO (Elevaz  | ione)            | pag.3 |
| TRAVI PARETE - VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO (Elevazione)        | pag.             | 35    |
| TRAVI PARETE - VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO (Elev  | <u>/azione</u> ) | pag.3 |
| TRAVI PARETE - VERIFICHE PRESSOFLESSIONE RETTA E DEVIATA ALLO STATO LIMITE DI ESERCIZIO (Elev | /azione          | pag.3 |
| PILASTRI - VERIFICHE A PRESSOFLESSIONE DEVIATA (Elevazione) allo SLU                          | pag.             | 37    |
| PILASTRI - VERIFICHE A TAGLIO (Elevazione) per pressoflessione deviata allo SLU               | pag.             | 38    |
| PILASTRI - VERIFICHE A PRESSOFLESSIONE DEVIATA (Elevazione) allo SLD                          | pag.             | 39    |
| PILASTRI - VERIFICHE A TAGLIO (Elevazione) per pressoflessione deviata allo SLD               | pag.             | 40    |
| PILASTRI - VERIFICHE INSTABILITA' A PRESSOFLESSIONE DEVIATA (Elevazione).                     | pag.             | 41    |
| PILASTRI - VERIFICHE GERARCHIA DELLE RESISTENZE (Elevazione)                                  | pag.             | 41    |
| PIANI - VERIFICHE REGOLARITA' (Elevazione)                                                    | pag.             | 42    |
| PIANI - VERIFICHE AGLI SPOSTAMENTI                                                            | pag.             | 42    |
| PIANI - VERIFICHE ALLO SLO (Elevazione)                                                       | pag.             | 42    |
| PIANI - EFFETTI DEL SECONDO ORDINE (Elevazione)                                               | pag.             | 43    |
| TRAVI - VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO (Fondazione)                 | pag.             | 43    |
| TRAVI - VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO (Fondazione)    | pag.             | 43    |
| TRAVI - VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO (Fondazione)               | pag.             | 44    |
| TRAVI - VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO (Fondazione)  | pag.             | 44    |
| TRAVI - VERIFICHE A TORSIONE ALLO STATO LIMITE ULTIMO (Fondazione).                           | pag.             | 45    |
| TRAVI - VERIFICHE PRESSOFLESSIONE RETTA E DEVIATA ALLO STATO LIMITE DI ESERCIZIO (Fondazione) | pag.             | 45    |
| PALI - VERIFICHE A CARICO LIMITE VERTICALE E ORIZZONTALE (Fondazione).                        | pag.             | 46    |
| PALI - VERIFICHE A PRESSOFLESSIONE DEVIATA ALLO SLU (Fondazione)                              | pag.             | 46    |
| PALI - VERIFICHE A TAGLIO (Fondazione)                                                        | pag.             | 47    |

# INTERVENTI DI PROTEZIONE ACUSTICA FONDAZIONI - RELAZIONI DI CALCOLO ELABORATI GRAFICI SINTETICI

TABULATI DI CALCOLO- Tomo 1 di 1

Barriera Antirumore h=mt. 5 MIT 09 legno

#### INFORMAZIONI GENERALI

Edificio Cemento Armato

Costruzione Nuova
Situazione Intervento -

Comune di Villapiana

Provincia di

Oggetto barriera antirumore h= mt. 5 MT 09 legno
Parte d'opera barriera antirumore
Normativa di riferimento D.M. 14/01/2008

Zona sismica

Analisi sismica Dinamica Orizzontale e Verticale

#### **MATERIALI**

Caratteristiche generiche

|     |      |                  |        |                     |                          |                      |                      |                      |                      |      |   |   |              |   |   |                  |    | ou.u.c               |                      |                      |       |
|-----|------|------------------|--------|---------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|------|---|---|--------------|---|---|------------------|----|----------------------|----------------------|----------------------|-------|
| N   | Tipo | Descrizione      | Sigla  | k                   | Coeff.<br>Dil.<br>Termic | Modelas              |                      | Rk                   | Rm                   |      | е |   | Cat.<br>Mur. |   | R | po<br>ot.<br>ig. | n  | ft                   | fc                   | R                    | N Act |
|     |      |                  |        |                     | а                        | E                    | G                    |                      |                      |      |   |   |              |   | M | F                |    |                      |                      |                      |       |
|     |      |                  |        | [N/m <sup>3</sup> ] | [1/°C]                   | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] |      |   |   |              |   |   |                  |    | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] |       |
| 001 | CA   | Cls C35/45_B450C |        |                     | 0.00001                  | 34,62                | 14,42                |                      |                      |      |   |   |              |   |   |                  |    |                      |                      |                      |       |
|     |      |                  | C35/45 | 25,000              | 0                        | 5                    | 7                    | 45.00                | -                    | 1.50 | - | - | -            | - | - | -                | 15 | 1.56                 | 4.02                 | 0.45                 | 003   |
| 002 | AcT  | Acciaio B450C    |        |                     | 0.00001                  | 210,0                | 80,76                | 450.0                |                      |      |   |   |              |   |   |                  |    |                      |                      |                      |       |
|     |      |                  | B450C  | 78,500              | 0                        | 00                   | 9                    | 0                    | -                    | 1.15 | - | - | -            | - | - | -                | 1  | -                    | -                    | -                    |       |
| 003 | AcP  | S275             |        |                     | 0.00001                  | 210,0                | 80,76                | 275.0                |                      |      |   |   |              |   |   |                  |    |                      |                      |                      |       |
|     |      |                  | S275   | 78.500              | 2                        | 0.0                  | 9                    | 0                    | -                    | 1.05 | - |   | _            | - | - | _                | 1  | 255.00               | _                    | _                    |       |

#### LEGENDA Materiali

Numero identificativo del materiale.

Tipo Tipologia del materiale: [CA] = Calcestruzzo armato - [AcT] = Acciaio in tondini - [AcP] = Acciaio per profilati - [AcB] = Acciaio per bulloni - [G] = Altri

materiali - [M] = Muratura - [MA] = Muratura armata - [B] = betoncino - [R] = Rinforzo FRP.

Sigla del materiale

Coeff. Dil.
Termica
E Modulo elastico normale.
G Modulo elastico tangenziale.

Resistenza caratteristica del materiale. Il valore riportato è "Rck" per il calcestruzzo, "f yk"per l'acciaio/bulloni, "fmk" per la muratura ed "fk" nel caso di

altro materiale.

Rm Resistenza media cubica per il calcestruzzo. [-] = Non significativo per il materiale.

Coefficiente di sicurezza allo Stato Limite Ultimo del materiale. Il valore riportato è " c" per il calcestruzzo, " f" per l'acciaio, " M2" per i bulloni, " m"

per la muratura e " g" in caso di altro materiale.

e Coefficiente di sicurezza del modello.
ridFmk Percentuale di riduzione di Rcfmk.

Cat.Mur. Categoria muratura(p.11.10 DM 14/01/2008); [1] = Categoria I - [2] = Categoria II.

Coefficiente di attrito.

Tipo Rot. Tag. Tipo rottura a taglio del materiale: 1= per scorrimento 2 = per fessurazione diagonale 3 = per scorrimento e fessurazione. colonna M: Maschi - colonna

F: Fasce.

n Coefficiente di omogeneizzazione.

ft II valore riportato e' la "Resistenza di calcolo a trazione" per il calcestruzzo armato, la "Resistenza caratteristica a trazione" per la muratura, la

"Resistenza caratteristica allo snervamento (t compreso tra 40mm e 80mm)" per l'acciaio, la "Resistenza caratteristica a rottura" per i bulloni.

fc II valore riportato e' la "Resistenza a rottura per flessione" per il calcestruzo armato, la "Resistenza caratteristica a compressione orizzontale" per la

muratura

R II valore riportato e' la "Resistenza tangenziale di calcolo" per il calcestruzzo armato, la "Resistenza caratteristica a taglio in assenza di compressione -

fvk0" per la muratura.

N Act Identificativo, nella tabella materiali, dell'acciaio utilizzato.

k Peso specifico.

#### **TERRENI**

|     |                |      |                     |              |                      |                      |                      |                      |                      |                      |                      | Terreni              |
|-----|----------------|------|---------------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| N   | Descrizione    | Tipo | Peso<br>Unità       | Angolo<br>di | Coesio               | Ed                   |                      | stante<br>ttofond    |                      | t                    | t sLU                | Coes                 |
|     |                |      | Volume              | Attrito      | ne                   |                      | Х                    | Υ                    | Z                    |                      |                      | EII                  |
|     |                |      | [N/m <sup>3</sup> ] | [°ssdc]      | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N/cm <sup>3</sup> ] | [N/cm <sup>3</sup> ] | [N/cm <sup>3</sup> ] | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] |
| 001 | rilevato       | С    | 20,000              | 27           | 0.03                 | 12                   | 20                   | 20                   | 100                  | -                    | -                    | 0.00                 |
| 002 | sabbia sciolta | С    | 19,000              | 33           | 0.00                 | 75                   | 25                   | 25                   | 125                  | -                    | -                    | 0.00                 |

# LEGENDA Terreni

Numero identificativo del terreno.

Tipo

Categoria di appartenenza del suolo di fondazione secondo la classificazione proposta al punto 3.2.2 del DM 14 gennaio 2008: [A] = Ammassi rocciosi affioranti o terreni molto rigidi - [B] = Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti - [C] = Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti - [D] = Depositi di terreni a grana grossa

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti - [D] = Depositi di terreni a grana fina scarsamente addensati o di terreni a grana fina scarsamente consistenti - [E] = Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m - [S1] = Depositi di terreni caratterizzati da valori di Vs,30 inferiori a 100 m/s (ovvero 10 < cu,30 < 20 kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argilla etamente organiche - [S2] = Depositi di terreni suscettibili di livustazione di argilla caratterizzati di articologia di particologia di par

di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Modulo edometrico.

Ed Modulo ed Costante di

sottofondo Valori della costante di sottofondo del terreno nelle direzioni degli assi del riferimento globale X, Y, e Z.

t Tensione di compressione ammissibile per il terreno.
t suu Tensione di compressione consentita per il terreno allo Stato Limite Ultimo.

**SEZIONI ASTE** 

|            |    |               |      |      |      |      |       |        |       |       |       |       |   |                    |                    |                    |                    |                    |         | Sezi               | oni aste |
|------------|----|---------------|------|------|------|------|-------|--------|-------|-------|-------|-------|---|--------------------|--------------------|--------------------|--------------------|--------------------|---------|--------------------|----------|
|            |    |               |      |      |      |      | Dim   | ension | ni    |       |       |       |   |                    | A per              | Taglio             |                    | Ine                | rzia    |                    | Assi     |
| N          | Тр | Label         | В    | н    | S.An | L.An | S.AI0 | L.AI0  | S.Al1 | L.Al1 | L.AI2 | L.AI3 | ٧ | Area               | х                  | Υ                  | х                  | Torsiona<br>le     | Υ       | XY                 | Pr.      |
|            |    |               | [cm] | [cm] | [cm] | [cm] | [cm]  | [cm]   | [cm]  | [cm]  | [cm]  | [cm]  |   | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] | [cm <sup>4</sup> ] | [cm <sup>4</sup> ] | [cm4]   | [cm <sup>4</sup> ] | [°ssdc]  |
| 001        | !  | 40x40         | 40   | 40   | _    | -    | _     | _      | -     | _     | -     | _     | 4 | 1,600.0            | 1,333.33           | 1,333.33           | 213,333            | 359,936            | 213,333 | 0                  | 0.00     |
| 002<br>003 | 8  | Ø30<br>40x100 | 30   | -    | -    | -    | -     | -      | -     | -     | -     | -     | - | 706.86<br>4,000.0  | 636.17             | 636.17             | 39,761             | 79,522             | 39,761  | 0                  | 0.00     |
|            |    |               | 40   | 100  | -    | -    | -     | -      | -     | -     | -     | -     | 4 | 0                  | 3,333.33           | 3,333.33           | 3,333,333          | 1,593,600          | 533,333 | 0                  | 0.00     |

# LEGENDA Sezioni aste

N Tp Numero identificativo della sezione. Identificativo del tipo di sezione.

Identificativo della sezione come indicato nelle carpenterie. Label

В Base/Diametro/Raggio. Н Altezza/Lato/Altezza di colmo.

S.An Spessore Anima. . Lunghezza Anima. L.An S.AI0 Spessore Ala 0. L.AI0 Lunghezza Ala 0. S.AI1 Spessore Ala 1. L.Al1 Lunghezza Ala 1. L.AI2 Lunghezza Ala 2. L.AI3 Lunghezza Ala 3.

Nel caso di sezioni poligonali, indica il numero dei vertici della sezione.

Area Area della sezione.

Coppia di assi baricentrici di tipo ortolevogiro con x in direzione orizzontale. X, Y

Area per Taglio X, Aree della sezione deformabili a Taglio lungo gli assi x e y.

Inerzia: X,

Inerzie della sezione rispetto agli assi Torsionale, Y, XY

Assi Pr. Rotazione degli assi principali d'inerzia rispetto agli assi x, y, espresse in gradi sessadecimali.

#### PROFILATI ACCIAIO

|     |    |                                                                                                                                            |          |          |          |               |               |          |          |          |          |                      |          |                |                |                |                            |                        |                                |                             |                     |             |            |                   |      |          |                                |                    |             |                    |                                |                                 |             |          |          | Pre                    | ofila              | ati a    | асс               | iaio          |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|---------------|---------------|----------|----------|----------|----------|----------------------|----------|----------------|----------------|----------------|----------------------------|------------------------|--------------------------------|-----------------------------|---------------------|-------------|------------|-------------------|------|----------|--------------------------------|--------------------|-------------|--------------------|--------------------------------|---------------------------------|-------------|----------|----------|------------------------|--------------------|----------|-------------------|---------------|
|     |    | Dimensioni  Di Di Di Di Di Pi S. S. S. S. R. R. An H. H. Pe Pe st. st. st. t B1 B2 H Al Al Al Pt An Al / A An ra n. n. Sp Sp of. of. of. l |          |          |          |               |               |          |          |          | za       | ster<br>a            |          |                |                |                |                            |                        |                                | erzia                       |                     |             |            |                   |      |          |                                |                    |             |                    |                                |                                 |             |          |          |                        |                    |          |                   |               |
| N   | Тр | Label                                                                                                                                      | B1       | В2       | Н        | S.<br>Al<br>1 | S.<br>Al<br>2 | S.<br>An | S.<br>Pt | R.<br>An | R.<br>Al | R.<br>An<br>/ A<br>I | H.<br>An | H.<br>ra<br>cc | Pe<br>n.<br>An | Pe<br>n.<br>Al | Di<br>st.<br>Sp<br>.A<br>n | Di<br>st.<br>Sp<br>.Al | Di I<br>st. s<br>Pr I<br>of. c | Di<br>st.<br>Pr<br>of.<br>Y | Ps<br>t.<br>Ab<br>b | C<br>A<br>e | r A<br>a T | х <b>А</b><br>Г Т | yΙ   | n '<br>X | W <sub>el</sub> X <sub>s</sub> | WelXin<br>f        | R.I n.<br>X | I n.Y              | W <sub>el</sub> Y <sub>s</sub> | W <sub>el</sub> Y <sub>in</sub> | R.I n.<br>Y | In<br>.S | In<br>.T | Di<br>ff.<br>Ra<br>cc. | W<br>plX           | W I      | In I<br>.X .<br>Y | Rot.<br>A.I n |
|     | Г  |                                                                                                                                            | [m<br>m] | [m<br>m] | [m<br>m] | [m<br>m]      | [m<br>m]      | [m<br>m] | [m<br>m] | [m<br>m] | [m<br>m] | [m<br>m]             | [m<br>m] | [m<br>m]       | [%]            | [%]            | [m<br>m]                   | [m<br>m]               | [m  <br>m]                     | [m<br>m]                    | [m<br>m]            | [C          | m [c       | m [c              | m [c | cm<br>f] | [cm³]                          | [cm <sup>3</sup> ] | [cm]        | [cm <sup>4</sup> ] | [cm <sup>3</sup> ]             | [cm³]                           | [cm]        | [cm      | [cm      | [m<br>m]               | [cm <sup>3</sup> ] | [cm [    | [cm               | [°ssdc<br>]   |
| 001 | D  | HE<br>260 A                                                                                                                                |          |          | 25<br>0  | 12            |               | Q        |          |          |          | 24                   | 22       |                |                |                |                            |                        |                                |                             |                     | Q           | 7 2        | 9 7               | 4    | · .      | 836.4                          | 836 1              | 11.0        | 3668.              | 282.1                          | 282.1                           | 6.5         |          | 52       | 60                     | - 1                | 43<br>0. | 0.                | 0.0           |

# LEGENDA Sezioni aste

N Tp Numero identificativo del profilato.

Identificativo del tipo di profilato.

Label Identificativo del profilato come indicato nelle carpenterie.

В1 Base

B2 Seconda Base (per profilati composti)

Н Altezza S.AI1 Spessore ala

S.AI2 Spessore seconda ala (per profilati composti)

S.An Spessore Anima

S.Ptt Spessore piatto (per profilati composti)

R.An Raggio anima R.AI Raggio ala R.An/ Al Raggio anima/ala H.An Altezza Anima H.racc Altezza netta raccordi Pen.An Pendenza Anima Pen.Al Pendenza Ala Dist.Sp.An Distanza spessore anima

Dist.Sp.Al Distanza spessore ala Dist.Prof.X Dist.Prof.Y Distanza profilati lungo X (per profilati composti) Distanza profilati lungo Y (per profilati composti) Pst.Abb Passo abbottonatura (per profilati composti) TC

Tipo collegamenti (per profilati composti)

Area Area della sezione.

**AxT** Area resistente a taglio lungo X AyT Area resistente a taglio lungo Y

In.X Inerzia lungo X

Modulo resistenza elastica lungo X superiore  $W_{el}X_{sup}$  $\boldsymbol{W}_{\text{el}}\boldsymbol{X}_{\text{inf}}$ Modulo resistenza elastica lungo X inferiore

R.In.X Raggio inerzia lungo X

Inerzia lungo Y In.Y

 $W_{el}Y_{sup}$ Modulo resistenza elastica lungo Y superiore WelYint Modulo resistenza elastica lungo Y inferiore

Profilati acciaio resisten Dimensioni Inerzia R. R. An H. H. Pe Pe st. st. st. t. An Al / A An ra n. n. Sp Sp Of. of. b l C An Al . Al X Y N Tp Label Dί WelYs WelYin R.In. In In ff. W W In Rot. Ar Ax Ay In WelXs WelXin R.In. .S .T Ra plX plY .X A.I n An ea T T .X X CC. [cm [cm [m [cm [cm [cm [ 6] 4] m] 3] 3] 4] [cm] [cm<sup>4</sup>] R.In.Y

Raggio inerzia lungo Y In.S Inerzia settoriale In.T Inerzia torsionale Diff.Racc. Diffusione raccordo ala  $W_{pl}X$ Modulo resistenza plastica lungo X

 $W_{pl}Y$ Modulo resistenza plastica lungo Y In.XY Inerzia in XY

Rot.A.In. Rotazione assi inerzia

#### CONDIZIONI DI CARICO

|      |                           |     |     |                            |                     |     | Condizioni | di carico |
|------|---------------------------|-----|-----|----------------------------|---------------------|-----|------------|-----------|
| N    | Condizioni Carico Uter    | nte |     | Tipologi                   | ia Carico Accidenta | le  |            |           |
| N    | Descrizione               | AgS | Alt | Descrizione                | Durata              | 0   | 1          | 2         |
| 0001 | Carico Permanente         | SI  | NO  | Carico Permanente          | Permanente          | 1.0 | 1.0        | 1.0       |
| 0002 | Pressione del Vento (+ Y) | NO  | NO  | Pressione del Vento (+ Y)  | Istantanea          | 0.6 | 0.2        | 0.0       |
| 0003 | Carico Verticale          | SI  | NO  | Permanenti NON Strutturali | Lunga               | 1.0 | 1.0        | 1.0       |

#### LEGENDA Condizioni di carico

Ν Numero identificativo della condizione di carico.

Indica se la condizione di carico considerata è Agente con il Sisma.

AgS ΑĬt Indica se la condizione di carico è Alternata (cioè considerata due volte con segno opposto) o meno.

Durata Indica la classe di durata del carico.

NOTA: questo dato è significativo solo per elementi in materiale legnoso.

- 0 Coefficiente riduttivo dei carichi allo SLU e SLE (Carichi rari).
- Coefficiente riduttivo dei carichi allo SLE (Carichi frequenti).
- 2 Coefficiente riduttivo dei carichi allo SLE (Carichi frequenti e quasi permanenti).

#### SLE: COMBINAZIONE DI AZIONI QUASI PERMANENTE - COEFFICIENTI

| COMB. | CC 01<br>Carico Permanente | CC 02<br>Pressione del Vento<br>(+Y) | CC 03<br>Carico<br>Verticale/Permanenti<br>NON Strutturali |
|-------|----------------------------|--------------------------------------|------------------------------------------------------------|
| 01    | 1.00                       | 0.00                                 | 1.00                                                       |

# LEGENDA SLE: Combinazione di azioni Quasi permanente - Coefficienti

сомв. Numero identificativo della Combinazione di Carico.

Condizione di carico considerata. CC 01= Carico Permanente CC 02= Pressione del Vento (+ Y)

CC 03= Carico Verticale/Permanenti NON Strutturali

#### SLE: COMBINAZIONE DI AZIONI FREQUENTE - COEFFICIENTI

| сомв. | <b>CC 01</b><br>Carico Permanente | CC 02<br>Pressione del Vento<br>(+Y) | CC 03<br>Carico<br>Verticale/Permanenti<br>NON Strutturali |
|-------|-----------------------------------|--------------------------------------|------------------------------------------------------------|
| 01    | 1.00                              | 0.20                                 | 1.00                                                       |
| 02    | 1.00                              | 0.00                                 | 1.00                                                       |

## LEGENDA SLE: Combinazione di azioni Frequente - Coefficienti

сомв. Numero identificativo della Combinazione di Carico.

CC Condizione di carico considerata. CC 01= Carico Permanente CC 02= Pressione del Vento (+ Y)

CC 03= Carico Verticale/Permanenti NON Strutturali

#### SLE: COMBINAZIONE DI AZIONI RARA - COEFFICIENTI

| сомв. | CC 01<br>Carico Permanente | CC 02<br>Pressione del Vento<br>(+Y) | CC 03 Carico Verticale/Permanenti NON Strutturali |
|-------|----------------------------|--------------------------------------|---------------------------------------------------|
| 01    | 1.00                       | 0.00                                 | 1.00                                              |
| 02    | 1.00                       | 1.00                                 | 1.00                                              |
| 03    | 1.00                       | 0.60                                 | 1.00                                              |

# LEGENDA SLE: Combinazione di azioni Rara - Coefficienti

COMB. Numero identificativo della Combinazione di Carico. CC

Condizione di carico considerata. CC 01= Carico Permanente CC 02= Pressione del Vento (+ Y)

| сомв. | CC 01<br>Carico Permanente | CC 02<br>Pressione del Vento<br>(+Y) | CC 03<br>Carico<br>Verticale/Permanenti<br>NON Strutturali |
|-------|----------------------------|--------------------------------------|------------------------------------------------------------|
| 01    | 1.00                       | 0.00                                 | 1.00                                                       |

CC 03= Carico Verticale/Permanenti NON Strutturali

#### SLU: COMBINAZIONI DI CARICO IN ASSENZA DI SISMA - COEFFICIENTI

| COMB. | CC 01<br>Carico Permanente | CC 02<br>Pressione del Vento<br>(+Y) | CC 03<br>Carico<br>Verticale/Permanenti<br>NON Strutturali |
|-------|----------------------------|--------------------------------------|------------------------------------------------------------|
| 01    | 1.00                       | 0.00                                 | 0.00                                                       |
| 02    | 1.00                       | 0.00                                 | 1.50                                                       |
| 03    | 1.00                       | 1.50                                 | 0.00                                                       |
| 04    | 1.00                       | 1.50                                 | 1.50                                                       |
| 05    | 1.00                       | 0.90                                 | 0.00                                                       |
| 06    | 1.00                       | 0.90                                 | 1.50                                                       |
| 07    | 1.30                       | 0.00                                 | 0.00                                                       |
| 08    | 1.30                       | 0.00                                 | 1.50                                                       |
| 09    | 1.30                       | 1.50                                 | 0.00                                                       |
| 10    | 1.30                       | 1.50                                 | 1.50                                                       |
| 11    | 1.30                       | 0.90                                 | 0.00                                                       |
| 12    | 1.30                       | 0.90                                 | 1.50                                                       |

# LEGENDA SLU: Combinazioni di carico in assenza di sisma - Coefficienti

COMB. Numero identificativo della Combinazione di Carico.

CC Condizione di carico considerata.

CC 01= Carico Permanente

CC 02= Pressione del Vento (+ Y)

CC 03= Carico Verticale/Permanenti NON Strutturali

#### SLU: COMBINAZIONI DI CARICO IN PRESENZA DI SISMA - COEFFICIENTI

| сомв. | CC 01<br>Carico Permanente | CC 02<br>Pressione del Vento<br>(+Y) | CC 03<br>Carico<br>Verticale/Permanenti<br>NON Strutturali |
|-------|----------------------------|--------------------------------------|------------------------------------------------------------|
| 01    | 1.00                       | 0.00                                 | 1.00                                                       |

# LEGENDA SLU: Combinazioni di carico in presenza di sisma - Coefficienti

COMB. Numero identificativo della Combinazione di Carico.

CC Condizione di carico considerata.
CC 01= Carico Permanente

CC 02= Pressione del Vento (+ Y)

CC 03= Carico Verticale/Permanenti NON Strutturali

D.M. 14-01-2008

Alle combinazioni riportate nella precedente tabella è stato aggiunto l'effetto del sisma secondo la formula (3.2.16) riportata al punto 3.2.4 del D.M. 14-01-2008. L'azione sismica è stata considerata come caratterizzata da tre componenti traslazionali lungo i tre assi globali X, Y e Z; la risposta della struttura è stata calcolata separatamente per i tre effetti e quindi combinata secondo la seguente espressione simbolica:

```
= i+ 0.3 * ii+ 0.3 * i
```

con effetto totale dell'azione sismica, i, ii e iii azioni sismiche nelle tre direzioni. E'stata effettuata una rotazione degli indici e dei segni, per cui le combinazioni totali generate sono le :

(con 'p sollecitazione dovuta alla combinazione delle condizioni statiche e sollecitazione dovuta al sisma; in particolare x, y, z, ex, ey sono rispettivamente le sollecitazioni dovute al sisma agente in direzione x, in direzioni y, in direzione z, per eccentricità accidentale positiva in direzione x e per eccentricità accidentale positiva in direzione y)

1) 'p+( x+ ex)+ 0.3 \* ( y+ ey) +0.3 \* ( z); 2) 'p+( x+ ex)- 0.3 \* ( y+ ey) +0.3 \* ( z); 3) 'p+( x+ ex)+ 0.3 \* ( y+ ey) -0.3 \* ( z); 4) 'p+( x+ ex)- 0.3 \* ( y+ ey) -0.3 \* ( z); 5) 'p+( x+ ex)+ 0.3 \* ( y- ey) +0.3 \* ( z); 6) 'p+( x+ ex)- 0.3 \* ( y- ey) +0.3 \* ( z); 7) 'p+( x+ ex)+ 0.3 \* ( y- ey) +0.3 \* ( z); 7) 'p+( x+ ex)+ 0.3 \* ( y- ey) +0.3 \* ( z); 8) 'p+( x+ ex)- 0.3 \* ( y- ey) -0.3 \* ( z); 9) 'p+( x+ ex)+ 0.3 \* ( y+ ey)+0.3 \* ( z); 10) 'p+( x+ ex)- 0.3 \* ( y+ ey)+0.3 \* ( z); 11) 'p+( x- ex)+ 0.3 \* ( y- ey)+0.3 \* ( z); 12) 'p+( x+ ex)- 0.3 \* ( y+ ey)-0.3 \* ( z); 13) 'p+( x- ex)+ 0.3 \* ( y- ey)+0.3 \* ( z); 14) 'p+( x- ex)+ 0.3 \* ( y- ey)+0.3 \* ( z); 15) 'p+( x- ex)+ 0.3 \* ( y- ey)+0.3 \* ( z); 16) 'p+( x- ex)+ 0.3 \* ( y- ey)+0.3 \* ( z); 17) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 19) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 20) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 20) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 20) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 20) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 21) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 22) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 23) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 27) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 28) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 29) 'p+( y- ey)+0.3 \* ( x- ex)+0.3 \* ( z); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( z); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y- ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey); 30) 'p+( y+ ey)+0.3 \* ( x+ ex)+0.3 \* ( y+ ey)+0.3 \* ( x+ ex

Nel caso di verifiche effettuate con sollecitazioni composte, per tenere conto del fatto che le sollecitazioni sismiche sono state ricavate come CQC delle sollecitazioni derivanti dai modi di vibrazione, dette N, Mx, My, Tx e Ty le sollecitazioni dovute al sisma, per ognuna delle combinazioni precedenti, sono state ricavate 32 combinazioni di carico permutando nel seguente modo i segni delle sollecitazioni derivanti dal sisma:

1) N, Mx, My, Tx e Ty; 2) N, Mx, -My, Tx e Ty; 3) N, -Mx, My, Tx e Ty; 4) N, -Mx, -My, Tx e Ty; 5) -N, Mx, My, Tx e Ty; 6) -N, Mx, -My, Tx e Ty; 7) -N, -Mx, My, Tx e Ty; 8) -N, -Mx, -My, Tx e Ty; 9) N, Mx, My, Tx e -Ty; 10) N, Mx, -My, Tx e -Ty; 11) N, -Mx, My, Tx e -Ty; 12) N, -Mx, -My, Tx e-Ty; 13)-N, Mx, My, Tx e-Ty; 14)-N, Mx, -My, Tx e-Ty; 15)-N, -Mx, My, Tx e-Ty; 16)-N, -Mx, -My, Tx e-Ty; 17) N, Mx, My, -Tx e-Ty; 18) N, Mx, -My, -Tx e Ty; 19) N, -Mx, My, -Tx e Ty; 20) N, -Mx, -My, -Tx e Ty; 21) -N, Mx, My, -Tx e Ty; 22) -N, Mx, -My, -Tx e Ty; 23) -N, -Mx, My, -Tx e Ty; 24) -N, -Mx, -My, -Tx e Ty; 25) N, Mx, My, -Tx e -Ty; 26) N, Mx, -My, -Tx e -Ty; 27) N, -Mx, My, -Tx e -Ty; 28) N, -Mx, -My, -Tx e -Ty; 29) -N, Mx, My, -Tx e -Ty; 30) -N, Mx, -My, -Tx e -Ty; 31) -N, -Mx, My, -Tx e -Ty; 32) -N, -Mx, -My, -Tx e -Ty.

#### DATI GENERALI ANALISI SISMICA

|        |    |    |    |   |     |     |     |     |    | Dati ge | nerali anali | isi sismica |
|--------|----|----|----|---|-----|-----|-----|-----|----|---------|--------------|-------------|
| Ang    | NV | CD | MP | S | Mcm | PAc | EcA | IrT | TP | RP      | RH           | CVE         |
| [ssdc] |    |    |    |   |     |     |     |     |    |         |              |             |
| 0      | 15 | В  | ca | Т | XY  | Α   | S   | N   | С  | NO      | NO           | 5           |

#### Fattori di struttura

|      | Dir. X |      |      | Dir. Y |      | Dir. Z |
|------|--------|------|------|--------|------|--------|
| q    | u/ 1   | Kw   | q    | u/ 1   | Kw   | q      |
| 2.76 | 1.15   | 1.00 | 2.76 | 1.15   | 1.00 | 1.50   |

| Stato  | Tr     | A /    | Amplif. St | ratigrafica | F0     | T°c   | Th    | To    | Tal   |
|--------|--------|--------|------------|-------------|--------|-------|-------|-------|-------|
| Limite | ır     | Ag/ g  | Ss         | Сс          | FU     | 1 0   | Tb    | Тс    | Td    |
|        | [anni] | [adim] | [adim]     | [adim]      | [adim] | [s]   | [s]   | [s]   | [s]   |
| SLO    | 60     | 0.0613 | 1.500      | 1.516       | 2.442  | 0.328 | 0.166 | 0.498 | 1.845 |
| SLD    | 101    | 0.0772 | 1.500      | 1.477       | 2.465  | 0.355 | 0.175 | 0.525 | 1.909 |
| SLV    | 949    | 0.1871 | 1.416      | 1.368       | 2.534  | 0.448 | 0.204 | 0.613 | 2.348 |
| SLC    | 1950   | 0.2380 | 1.331      | 1.354       | 2.585  | 0.462 | 0.209 | 0.626 | 2.552 |

| Classe Edificio | Vita Nominale | Periodo di  | Latitudine | Longitudine | Altitudine  | Ampl. Topog. |              |  |
|-----------------|---------------|-------------|------------|-------------|-------------|--------------|--------------|--|
| Classe Euricio  | vita Nominale | Riferimento | Latituulle | Longitudine | Aititudille | Categoria    | Coefficiente |  |
|                 | [anni]        | [anni]      | [°ssdc]    | [°ssdc]     | [m]         |              |              |  |
| 4               | 50            | 100         | 39.8489    | 16.4543     | 237         | T1           | 1.00         |  |

#### LEGENDA Dati generali analisi sismica

Direzione di una componente dell'azione sismica rispetto all'asse X (sistema di riferimento globale); la seconda componente dell'azione sismica e' assunta con Ang direzione ruotata di 90 gradi rispetto alla prima.

N۷ Nel caso di analisi dinamica, indica il numero di modi di vibrazione considerati.

CD Classe di duttilita': [A] = Alta - [B] = Bassa - [ND] = Non Dissipativa - [-] = Nessuna.

MP Tipo di materiale prevalente nella struttura: [ca] = calcestruzzo armato - [muOld] = muratura esistente - [muNew] = muratura nuova - [muArm] = muratura armata - [ac] = acciaio.

s Tipologia della struttura:

Cemento armato: [T] = Telaio - [P] = Pareti - [2P] = Due pareti per direzione non accoppiate - [DT] = Deformabili torsionalmente - [PI] = Pendolo inverso;

Muratura: [P] = un solo piano - [PP] = più di un piano;

Acciaio: [T] = Telaio - [CT] = controventi concentrici diagonale tesa - [CV] = controventi concentrici a V - [M] = mensola o pendolo invertito - [TT] = telaio

Mcm

Struttura con telai multicampata: [N] = Nessuna direzione - [X] = Solo in direzione X - [Y] = Solo in direzione Y - [XY] = Sia in direzione X che Y.

PAc Presenza nella struttura di pareti accoppiate: [P] = presenti - [A] = Assenti

**EcA** Eccentricita' accidentale: [S] = considerata come condizione di carico statica aggiuntiva - [N] = Considerata come incremento delle sollecitazioni.

IrT Irregolarita' tamponature in pianta: [S] = Tamponature irregolari in pianta - [N] = Tamponature regolari in pianta. TP

Tipo terreno prevalente, categoria di suolo di fondazione come definito al punto 3.2.2 del DM 14 gennaio 2008 'Nuove Norme tecniche per le costruzioni: [A] = Ammassi rocciosi affioranti o terreni molto rigidi - [B] = Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti - [C] = Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti - [D] = Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti - [E] = Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m. RP

Regolarita' in pianta: [S]= Struttura regolare - [N]= Struttura non regolare.

RH Regolarita' in altezza: [S] = Struttura regolare - [N] = Struttura non regolare. CVE Coefficiente viscoso equivalente.

Classe Classe dell'edificio.

Edificio

Categ Categoria topografica. (Vedi NOTE) Topog

Coef Ampl Coefficiente di amplificazione topografica. Topog Tr Periodo di ritorno dell'azione sismica.

Ag/ g Coefficiente di accelerazione al suolo. Ss Coefficienti di Amplificazione Stratigrafica allo SLO / SLD / SLV / SLC. Cc Coefficienti di Amplificazione di Tc allo SLO / SLD / SLV / SLC.

F0 Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale. T c Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Th Periodo di inizio del tratto accelerazione costante dello spettro di progetto. Tc Periodo di inizio del tratto a velocità costante dello spettro di progetto. Td Periodo di inizio del tratto a spostamento costante dello spettro di progetto.

Latitudine Latitudine geografica del sito (in datum ED50). Longitudi Longitudine geografica del sito (in datum ED50).

Altitudine Altitudine geografica del sito.

| Classe Edificio | Vita Nominale | a Nominale Periodo di<br>Riferimento | Latitudine  | Longitudine | Altitudine  | Ampl. Topog. |              |  |
|-----------------|---------------|--------------------------------------|-------------|-------------|-------------|--------------|--------------|--|
| Classe Lumcio   | vita Nominale |                                      | Latitudille | Longitudine | Aititudille | Categoria    | Coefficiente |  |
|                 | [anni]        | [anni]                               | [°ssdc]     | [°ssdc]     | [m]         |              |              |  |

Fattore di riduzione dello spettro di risposta sismico allo SLU (Fattore di struttura).

q u/ Rapporto di sovraresistenza.

Kw Fattore di riduzione di q0.

#### NOTE

[-] = Parametro non significativo per il tipo di calcolo effettuato Categoria topografica

T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media  $i=15^\circ$  T2: Pendii con inclinazione media  $i>15^\circ$ 

T3: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media  $15^\circ=i=30^\circ$  T4: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media  $i>30^\circ$ 

# RI EPI LOGO MODI DI VI BRAZIONE

Modi di vibrazione considerati: n.15

| Spettro                 | Periodo        | As.O                | As.V                | C.Part            | C.Mod              | P.M.M      | M.Ec     |
|-------------------------|----------------|---------------------|---------------------|-------------------|--------------------|------------|----------|
| M = -l = \/:l===        | [s]            | [m/s <sup>2</sup> ] | [m/s <sup>2</sup> ] |                   |                    | [%]        | [N·s²/m] |
| Modo Vibra              |                |                     |                     |                   |                    |            |          |
| SLU-X                   | 0.017          | 2.580               | 0.000               | -0.0003           | 0.0000             | 0.0        | (        |
| SLU-Y                   | 0.017          | 2.580               | 0.000               | 0.0000            | 0.0000             | 0.0        | (        |
| SLU-Z                   | 0.017          | 0.000               | 1.319               | 103.8629          | 0.0007             | 94.3       | 10,788   |
| SLD-X                   | 0.017          | 1.295               | 0.000               | -0.0003           | 0.0000             | 0.0        | (        |
| SLD-Y                   | 0.017          | 1.295               | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
| SLD-Z                   | 0.017          | 0.000               | 0.424               | 103.8629          | 0.0007             | 94.3       | 10,78    |
|                         | 0.017          |                     |                     | 100.0023          | 0.0007             | 34.0       | 10,70    |
| Elast-X                 | -              | 2.925               | 0.000               | -                 | -                  | -          |          |
| Elast-Y                 | -              | 2.925               | 0.000               | -                 | -                  | -          |          |
| Elast-Z                 | -              | 0.000               | 1.623               | -                 | -                  | -          |          |
| Modo Vibra              | zione n. 2     |                     |                     |                   |                    |            |          |
| SLU-X                   | 0.034          | 2.562               | 0.000               | 95.7538           | 0.0028             | 80.2       | 9,16     |
| SLU-Y                   | 0.034          | 2.562               | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
| SLU-Z                   | 0.034          | 0.000               | 1.574               | 0.0001            | 0.0000             | 0.0        |          |
| SLD-X                   | 0.034          | 1.459               | 0.000               | -95.7538          | -0.0028            | 80.2       | 9,16     |
|                         |                | 1.459               |                     |                   |                    |            |          |
| SLD-Y                   | 0.034          |                     | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
| SLD-Z                   | 0.034          | 0.000               | 0.567               | -0.0001           | 0.0000             | 0.0        |          |
| Elast-X                 | -              | 3.261               | 0.000               | -                 | -                  | -          |          |
| Elast-Y                 | -              | 3.261               | 0.000               | -                 | -                  | -          |          |
| Elast-Z                 | -              | 0.000               | 2.190               | -                 | -                  | -          |          |
| Modo Vibra              | azione n. 3    |                     |                     |                   |                    |            |          |
| SLU-X                   | 0.035          | 2.561               | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
|                         |                |                     |                     |                   |                    |            |          |
| SLU-Y                   | 0.035          | 2.561               | 0.000               | -94.0965          | -0.0030            | 77.4       | 8,85     |
| SLU-Z                   | 0.035          | 0.000               | 1.595               | 0.0000            | 0.0000             | 0.0        |          |
| SLD-X                   | 0.035          | 1.473               | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
| SLD-Y                   | 0.035          | 1.473               | 0.000               | -94.0965          | -0.0030            | 77.4       | 8,85     |
| SLD-Z                   | 0.035          | 0.000               | 0.579               | 0.0000            | 0.0000             | 0.0        |          |
| Elast-X                 | _              | 3.289               | 0.000               | _                 | _                  |            |          |
| Elast-Y                 | _              | 3.289               | 0.000               | _                 | _                  | _          |          |
|                         | -              |                     |                     | -                 | -                  | -          |          |
| Elast-Z                 | • • • •        | 0.000               | 2.237               | -                 | -                  | -          |          |
| Modo Vibra              |                |                     |                     |                   |                    |            |          |
| SLU-X                   | 0.114          | 2.479               | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
| SLU-Y                   | 0.114          | 2.479               | 0.000               | 38.1578           | 0.0127             | 12.7       | 1,45     |
| SLU-Z                   | 0.114          | 0.000               | 1.810               | 0.0000            | 0.0000             | 0.0        |          |
| SLD-X                   | 0.114          | 2.225               | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
| SLD-Y                   | 0.114          | 2.225               | 0.000               | 38.1578           | 0.0127             | 12.7       | 1,45     |
|                         |                |                     |                     |                   |                    |            |          |
| SLD-Z                   | 0.114          | 0.000               | 0.700               | 0.0000            | 0.0000             | 0.0        |          |
| Elast-X                 | -              | 4.829               | 0.000               | -                 | -                  | -          |          |
| Elast-Y                 | -              | 4.829               | 0.000               | -                 | -                  | -          |          |
| Elast-Z                 | -              | 0.000               | 2.716               | -                 | -                  | -          |          |
| Modo Vibra              | azione n. 5    |                     |                     |                   |                    |            |          |
| SLU-X                   | 0.165          | 2.427               | 0.000               | -35.9321          | -0.0247            | 11.3       | 1,29     |
| SLU-Y                   | 0.165          | 2.427               | 0.000               | 0.0000            | 0.0000             | 0.0        | .,20     |
|                         |                |                     |                     |                   |                    |            |          |
| SLU-Z                   | 0.165          | 0.000               | 1.649               | 0.0002            | 0.0000             | 0.0        |          |
| SLD-X                   | 0.165          | 2.703               | 0.000               | -35.9321          | -0.0247            | 11.3       | 1,29     |
| SLD-Y                   | 0.165          | 2.703               | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
| SLD-Z                   | 0.165          | 0.000               | 0.638               | 0.0002            | 0.0000             | 0.0        |          |
| Elast-X                 | _              | 5.809               | 0.000               | -                 | -                  | -          |          |
| Elast-Y                 | _              | 5.809               | 0.000               | _                 | _                  | _          |          |
| Elast-Z                 |                | 0.000               | 2.473               |                   |                    |            |          |
|                         |                | 0.000               | 2.473               | -                 | -                  | -          |          |
| Modo Vibra              |                |                     |                     |                   |                    |            |          |
| SLU-X                   | 0.026          | 2.571               | 0.000               | -31.1042          | -0.0005            | 8.5        | 96       |
| SLU-Y                   | 0.026          | 2.571               | 0.000               | 0.0000            | 0.0000             | 0.0        |          |
| SLU-Z                   | 0.026          | 0.000               | 1.454               | -0.0034           | 0.0000             | 0.0        |          |
| SLD-X                   | 0.026          | 1.382               | 0.000               | -31.1042          | -0.0005            | 8.5        | 96       |
| SLD-Y                   | 0.026          | 1.382               | 0.000               | 0.0000            | 0.0000             | 0.0        | 00       |
|                         |                |                     |                     |                   |                    |            |          |
| SLD-Z                   | 0.026          | 0.000               | 0.500               | -0.0034           | 0.0000             | 0.0        |          |
| Elast-X                 | -              | 3.103               | 0.000               | -                 | -                  | -          |          |
| Elast-Y                 | -              | 3.103               | 0.000               | -                 | -                  | -          |          |
| Elast-Z                 | -              | 0.000               | 1.923               | -                 | -                  | -          |          |
| Modo Vibra              | azione n. 7    |                     |                     |                   |                    |            |          |
| SLU-X                   | 0.011          | 2.586               | 0.000               | -0.0002           | 0.0000             | 0.0        |          |
| SLU-Y                   | 0.011          | 2.586               | 0.000               | 0.0002            | 0.0000             | 0.0        |          |
|                         |                |                     |                     |                   |                    |            |          |
|                         | 0.011          | 0.000               | 1.237               | -25.0710          | -0.0001            | 5.5        | 62       |
| SLU-Z                   |                |                     |                     |                   |                    |            |          |
| SLU-Z<br>SLD-X<br>SLD-Y | 0.011<br>0.011 | 1.242<br>1.242      | 0.000<br>0.000      | -0.0002<br>0.0000 | 0.0000  <br>0.0000 | 0.0<br>0.0 |          |

| Spettro          | Periodo        | As.O                | As.V           | C.Part             | C.Mod             | P.M.M      | M.Ec     |
|------------------|----------------|---------------------|----------------|--------------------|-------------------|------------|----------|
| 0.0.7            | [s]            | [m/s <sup>2</sup> ] | [m/s²]         | 05.0740            | 0.0004            | [%]        | [N·s²/m] |
| SLD-Z<br>Elast-X | 0.011          | 0.000<br>2.816      | 0.377<br>0.000 | -25.0710           | -0.0001           | 5.5        | 629      |
| Elast-Y          | _              | 2.816               | 0.000          | -                  | -                 |            | -        |
| Elast-Z          | -              | 0.000               | 1.439          | -                  | -                 | -          | -        |
| Modo Vibra       | zione n. 8     |                     |                |                    |                   |            |          |
| SLU-X            | 0.023          | 2.574               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLU-Y            | 0.023          | 2.574               | 0.000          | 22.2907            | 0.0003            | 4.3        | 497      |
| SLU-Z            | 0.023          | 0.000               | 1.407          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLD-X<br>SLD-Y   | 0.023<br>0.023 | 1.352<br>1.352      | 0.000<br>0.000 | 0.0000<br>-22.2907 | 0.0000<br>-0.0003 | 0.0<br>4.3 | 0<br>497 |
| SLD-7            | 0.023          | 0.000               | 0.473          | 0.0000             | 0.0000            | 0.0        | 0        |
| Elast-X          | - 0.025        | 3.041               | 0.000          | 0.0000             | 0.0000            | -          | -        |
| Elast-Y          | _              | 3.041               | 0.000          | -                  | _                 | -          | -        |
| Elast-Z          | -              | 0.000               | 1.819          | -                  | -                 | -          | -        |
| Modo Vibra       | zione n. 9     |                     |                |                    |                   |            |          |
| SLU-X            | 0.099          | 2.495               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLU-Y            | 0.099          | 2.495               | 0.000          | -17.9770           | -0.0044           | 2.8        | 323      |
| SLU-Z<br>SLD-X   | 0.099<br>0.099 | 0.000<br>2.075      | 1.810<br>0.000 | 0.0000<br>0.0000   | 0.0000<br>0.0000  | 0.0<br>0.0 | 0        |
| SLD-X<br>SLD-Y   | 0.099          | 2.075               | 0.000          | 17.9770            | 0.0044            | 2.8        | 323      |
| SLD-Z            | 0.099          | 0.000               | 0.700          | 0.0000             | 0.0000            | 0.0        | 0        |
| Elast-X          | - 0.000        | 4.523               | 0.000          | 0.0000             | 0.0000            | -          | -        |
| Elast-Y          | -              | 4.523               | 0.000          | -                  | -                 | -          | -        |
| Elast-Z          | -              | 0.000               | 2.716          | -                  | -                 | -          | -        |
| Modo Vibra       | zione n. 10    |                     |                |                    |                   |            |          |
| SLU-X            | 0.017          | 2.580               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLU-Y            | 0.017          | 2.580               | 0.000          | 11.6158            | 0.0001            | 1.2        | 135      |
| SLU-Z            | 0.017          | 0.000               | 1.316          | 0.0001             | 0.0000            | 0.0        | 0        |
| SLD-X            | 0.017          | 1.293               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLD-Y<br>SLD-Z   | 0.017          | 1.293               | 0.000          | -11.6158           | -0.0001           | 1.2        | 135      |
| Elast-X          | 0.017          | 0.000<br>2.920      | 0.422<br>0.000 | -0.0001            | 0.0000            | 0.0        | 0        |
| Elast-Y          | _              | 2.920               | 0.000          | _                  |                   |            | -        |
| Elast-Z          | _              | 0.000               | 1.616          | _                  | _                 | _          | _        |
| Modo Vibra       | zione n. 11    |                     |                |                    |                   |            |          |
| SLU-X            | 0.019          | 2.578               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLU-Y            | 0.019          | 2.578               | 0.000          | 11.5741            | 0.0001            | 1.2        | 134      |
| SLU-Z            | 0.019          | 0.000               | 1.354          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLD-X            | 0.019          | 1.317               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLD-Y<br>SLD-Z   | 0.019<br>0.019 | 1.317<br>0.000      | 0.000<br>0.443 | -11.5741<br>0.0000 | -0.0001<br>0.0000 | 1.2<br>0.0 | 134      |
| Elast-X          | 0.019          | 2.970               | 0.000          | 0.0000             | 0.0000            | 0.0        | -        |
| Elast-Y          | _              | 2.970               | 0.000          | _                  | _                 | _          | -        |
| Elast-Z          | -              | 0.000               | 1.699          | -                  | -                 | -          | -        |
| Modo Vibra       | zione n. 12    |                     |                |                    |                   |            |          |
| SLU-X            | 0.009          | 2.588               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLU-Y            | 0.009          | 2.588               | 0.000          | 5.6740             | 0.0000            | 0.3        | 32       |
| SLU-Z            | 0.009          | 0.000               | 1.207          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLD-X<br>SLD-Y   | 0.009<br>0.009 | 1.223<br>1.223      | 0.000<br>0.000 | 0.0000<br>5.6740   | 0.0000<br>0.0000  | 0.0<br>0.3 | 0<br>32  |
| SLD-7            | 0.009          | 0.000               | 0.360          | 0.0000             | 0.0000            | 0.0        | 0        |
| Elast-X          | -              | 2.777               | 0.000          | -                  | -                 | -          | -        |
| Elast-Y          | -              | 2.777               | 0.000          | -                  | -                 | -          | -        |
| Elast-Z          | -              | 0.000               | 1.373          | -                  | -                 | -          | -        |
| Modo Vibra       |                |                     |                |                    |                   |            |          |
| SLU-X            | 0.014          | 2.583               | 0.000          | 2.6735             | 0.0000            | 0.1        | 7        |
| SLU-Y            | 0.014          | 2.583               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLU-Z<br>SLD-X   | 0.014<br>0.014 | 0.000<br>1.272      | 1.282<br>0.000 | -0.0291<br>2.6735  | 0.0000<br>0.0000  | 0.0<br>0.1 | 0 7      |
| SLD-X            | 0.014          | 1.272               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLD-Z            | 0.014          | 0.000               | 0.403          | -0.0291            | 0.0000            | 0.0        | 0        |
| Elast-X          | -              | 2.876               | 0.000          | - 0.0201           | -                 | -          | -        |
| Elast-Y          | -              | 2.876               | 0.000          | -                  | -                 | -          | -        |
| Elast-Z          | -              | 0.000               | 1.541          | -                  | -                 | -          | -        |
| Modo Vibra       |                |                     |                |                    |                   |            |          |
| SLU-X            | 0.005          | 2.593               | 0.000          | 0.0008             | 0.0000            | 0.0        | 0        |
| SLU-Y            | 0.005          | 2.593               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLU-Z<br>SLD-X   | 0.005<br>0.005 | 0.000<br>1.182      | 1.143<br>0.000 | -2.1361<br>0.0008  | 0.0000<br>0.0000  | 0.0<br>0.0 | 5 0      |
| SLD-X            | 0.005          | 1.182               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLD-Z            | 0.005          | 0.000               | 0.324          | -2.1362            | 0.0000            | 0.0        | 5        |
| Elast-X          |                | 2.692               | 0.000          |                    | -                 | -          | -        |
| Elast-Y          | -              | 2.692               | 0.000          | -                  | -                 | -          | -        |
| Elast-Z          | -              | 0.000               | 1.231          | -                  | -                 | -          | -        |
| Modo Vibra       |                |                     |                |                    |                   |            |          |
| SLU-X            | 0.007          | 2.590               | 0.000          | 0.0000             | 0.0000            | 0.0        | 0        |
| SLU-Y<br>SLU-Z   | 0.007<br>0.007 | 2.590<br>0.000      | 0.000<br>1.181 | 1.6621<br>0.0000   | 0.0000            | 0.0<br>0.0 | 3 0      |
| SLU-Z<br>SLD-X   | 0.007          | 1.206               | 0.000          | 0.0000             | 0.0000<br>0.0000  | 0.0        | 0        |
| SLD-X            | 0.007          | 1.206               | 0.000          | -1.6621            | 0.0000            | 0.0        | 3        |
| SLD-T            | 0.007          | 0.000               | 0.345          | 0.0000             | 0.0000            | 0.0        | 0        |
| Elast-X          | -              | 2.742               | 0.000          | -                  | -                 | -          | -        |
| Elast-Y          | -              | 2.742               | 0.000          | -                  | -                 | -          | -        |
| Elast-Z          | -              | 0.000               | 1.314          | -                  | -                 | -          | -        |
| LECENID          | Δ Modi di v    | م مرمان             |                |                    |                   |            |          |

LEGENDA Modi di vibrazione

| Spettro | Periodo      | As.O                 | As.V                | C.Part                 | C.Mod             | P.M.M | M.Ec     |
|---------|--------------|----------------------|---------------------|------------------------|-------------------|-------|----------|
|         | [s]          | [m/s <sup>2</sup> ]  | [m/s <sup>2</sup> ] |                        |                   | [%]   | [N·s²/m] |
| Spettro | Spettro di r | isposta considerat   | 0.                  |                        |                   |       |          |
| Periodo | Periodo del  | Modo di vibrazion    | e.                  |                        |                   |       |          |
| As.O    | Valore dell' | Accelerazione Spet   | trale Orizzonta     | le, riferita al corris | pondente periodo. |       |          |
| As.V    | Valore dell' | Accelerazione Spet   | trale Verticale,    | riferita al corrispo   | ndente periodo.   |       |          |
| C.Part  | Coefficiente | di partecipazione    | del Modo di Vi      | brazione.              | ·                 |       |          |
| C.Mod   | Coefficiente | modale del modo      | di vibrazione.      |                        |                   |       |          |
| P.M.M   | Percentuale  | di mobilitazione d   | delle masse nel     | modo di vibrazion      | e.                |       |          |
| M.Ec    | Massa Eccit  | ata nel modo di vi   | brazione.           |                        |                   |       |          |
| SLU-X   | Spettro di p | rogetto allo S.L. U  | Iltimo per sisma    | a in direzione X.      |                   |       |          |
| SLU-Y   | Spettro di p | rogetto allo S.L. U  | Iltimo per sism     | a in direzione Y.      |                   |       |          |
| SLU-Z   | Spettro di p | rogetto allo S.L. U  | Iltimo per sism     | a in direzione Z.      |                   |       |          |
| SLD-X   | Spettro di p | rogetto allo S.L. d  | i Danno per sis     | sma in direzione X.    |                   |       |          |
| SLD-Y   | Spettro di p | rogetto allo S.L. d  | i Danno per sis     | sma in direzione Y.    |                   |       |          |
| SLD-Z   | Spettro di p | rogetto allo S.L. d  | i Danno per sis     | sma in direzione Z.    |                   |       |          |
| Elast-X | Spettro Elas | stico per sisma in o | direzione X.        |                        |                   |       |          |
| Elast-Y | Spettro Elas | stico per sisma in o | direzione Y.        |                        |                   |       |          |
| Elast-Z | Spettro Elas | stico per sisma in o | direzione Z.        |                        |                   |       |          |

# CARI CHI SUI NODI (per condizioni di carico non sismiche)

| T 0: 1:         | 0      |      |   | 05       | -         | E.               | Carichi sui nodi (per condizioni di carico non sism |                     |             |             |
|-----------------|--------|------|---|----------|-----------|------------------|-----------------------------------------------------|---------------------|-------------|-------------|
| T. Carico       | Carico | cc   |   | SR       | Fx<br>[N] | <b>Fy</b><br>[N] | Fz<br>[N]                                           | <b>M x</b><br>[N·m] | My<br>[N·m] | Mz<br>[N·m] |
| Nodo 00001      |        |      |   |          | [N]       | [N]              | [N]                                                 | [N·III]             | [IN·III]    | [IVIII]     |
| C               | CR001  | 002  | - | G        | 0         | 39               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00005      |        | 772  |   | <u> </u> |           |                  |                                                     | -                   | -           | -           |
| С               | CR001  | 002  | - | G        | 0         | 39               | 0                                                   | 0                   | 0           | 0           |
| С               | CR001  | 002  | - | G        | 0         | 40               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00006      |        |      |   |          |           |                  |                                                     |                     |             |             |
| С               | CR001  | 002  | - | G        | 0         | 40               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00034      |        |      |   |          |           |                  |                                                     |                     |             |             |
| С               | CR001  | 002  | - | G        | 0         | 2                | 0                                                   | 0                   | 0           | 0           |
| Nodo 00035      |        |      |   |          |           |                  |                                                     |                     |             |             |
| C               | CR001  | 002  | - | G        | 0         | 56               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00042      | 1      |      |   |          |           |                  |                                                     |                     |             |             |
| С               | CR001  | 002  | - | G        | 0         | 17               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00043      |        |      |   |          |           |                  | - 1                                                 |                     |             |             |
| C               | CR001  | 002  | - | G        | 0         | 41               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00044      | 00001  | 000  |   | _        |           | .=               |                                                     |                     |             |             |
| C               | CR001  | 002  | - | G        | 0         | 87               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00045      | OPOOL  | 000  |   | _        |           | 20               |                                                     |                     |             |             |
| C<br>Nodo 00046 | CR001  | 002  | - | G        | 0         | 63               | 0                                                   | 0                   | 0           | 0           |
|                 | CD001  | 000  |   |          | 0         | 100              | 0                                                   | 0                   | 0           | 0           |
| C<br>Nodo 00047 | CR001  | 002  | - | G        | 0         | 183              | 0                                                   | 0                   | 0           | 0           |
|                 | CD001  | 000  | - | G        | 0         | 100              | 0                                                   | 0                   | 0           | 0           |
| C<br>Nodo 00048 | CR001  | 002  | - | G        | 0         | 183              | 0                                                   | 0                   | 0           | 0           |
| C               | CR001  | 002  | - | G        | 0         | 63               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00049      | Chuui  | 002  |   | G        | U         | 63               | 0                                                   | U                   | U           | 0           |
| C               | CR001  | 002  | - | G        | 0         | 87               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00050      | Ontoon | 002  |   | u        | U         | 07               | 0                                                   | U                   | 0           | 0           |
| C               | CR001  | 002  | - | G        | 0         | 42               | 0                                                   | 0                   | 0           | 0           |
| C               | CR001  | 002  | - | G        | 0         | 55               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00051      |        |      |   | <u> </u> |           |                  |                                                     | -                   | -           |             |
| С               | CR001  | 002  | - | G        | 0         | 18               | 0                                                   | 0                   | 0           | 0           |
| С               | CR001  | 002  | - | G        | 0         | 2                | 0                                                   | 0                   | 0           | 0           |
| Nodo 00058      |        |      |   |          |           |                  |                                                     |                     |             |             |
| С               | CR001  | 002  | - | G        | 0         | 88               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00059      |        |      |   |          |           |                  |                                                     |                     |             |             |
| С               | CR001  | 002  | - | G        | 0         | 67               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00060      |        |      |   |          |           |                  |                                                     |                     |             |             |
| С               | CR001  | 002  | - | G        | 0         | 181              | 0                                                   | 0                   | 0           | 0           |
| Nodo 00061      |        |      |   |          |           |                  |                                                     |                     |             |             |
| С               | CR001  | 002  | - | G        | 0         | 181              | 0                                                   | 0                   | 0           | 0           |
| Nodo 00062      |        |      |   |          |           |                  |                                                     |                     |             |             |
| C               | CR001  | 002  | - | G        | 0         | 67               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00063      | 05     |      |   | _        |           |                  |                                                     |                     |             |             |
| C               | CR001  | 002  | - | G        | 0         | 88               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00064      | 05     | 0.55 |   | _        | _         |                  |                                                     |                     |             |             |
| C               | CR001  | 002  | - | G        | 0         | 24               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00065      | 00001  | 000  |   | _        |           | 225              |                                                     |                     |             |             |
| C               | CR001  | 002  | - | G        | 0         | 205              | 0                                                   | 0                   | 0           | 0           |
| Nodo 00066      | CD001  | 000  |   |          | 0         | 100              | 0                                                   | 0                   | 0           | 0           |
| C<br>Nodo 00067 | CR001  | 002  | - | G        | 0         | 186              | 0                                                   | 0                   | 0           | 0           |
| C               | CR001  | 002  | - | G        | 0         | 62               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00068      | Unuu i | 002  | - | G        | U         | 02               | U                                                   | U                   | U           | U           |
| C               | CR001  | 002  | - | G        | 0         | 50               | 0                                                   | 0                   | 0           | 0           |
| Nodo 00069      | Unuu i | 002  | - | G        | U         | 50               | U                                                   | U                   | U           | U           |
| C               | CR001  | 002  | - | G        | 0         | 322              | 0                                                   | 0                   | 0           | 0           |
| Nodo 00070      | Oriour | 002  | - | u        | 0         | 522              | 0                                                   | U                   | 0           | U           |
| C               | CR001  | 002  | - | G        | 0         | 303              | 0                                                   | 0                   | 0           | 0           |
| U               | UNUUI  | 002  | - | G        | U         | 303              | U                                                   | U                   | U           | U           |

|            |        |     |   |    |     |     | Carichi sui | nodi (per cond | izioni di carico n | on sismiche) |
|------------|--------|-----|---|----|-----|-----|-------------|----------------|--------------------|--------------|
| T. Carico  | Carico | CC  |   | SR | Fx  | Fy  | Fz          | Mx             | My                 | Mz           |
|            |        |     |   |    | [N] | [N] | [N]         | [N·m]          | [N·m]              | [N·m]        |
| Nodo 00071 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 86  | 0           | 0              | 0                  | 0            |
| Nodo 00072 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 305 | 0           | 0              | 0                  | 0            |
| Nodo 00073 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 59  | 0           | 0              | 0                  | 0            |
| Nodo 00074 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 195 | 0           | 0              | 0                  | 0            |
| Nodo 00075 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 201 | 0           | 0              | 0                  | 0            |
| Nodo 00076 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 34  | 0           | 0              | 0                  | 0            |
| Nodo 00077 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 92  | 0           | 0              | 0                  | 0            |
| Nodo 00078 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 310 | 0           | 0              | 0                  | 0            |
| Nodo 00079 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 312 | 0           | 0              | 0                  | 0            |
| Nodo 00080 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 55  | 0           | 0              | 0                  | 0            |
| Nodo 00081 |        |     |   |    |     |     |             |                |                    |              |
| С          | CR001  | 002 | - | G  | 0   | 328 | 0           | 0              | 0                  | 0            |

#### LEGENDA Carichi sui nodi (per condizioni di carico non sismiche)

T.Carico
Descrizione del tipo di carico.
Carico
Descrizione del carico:
CR001= pressione del vento

CC Identificativo della condizione di carico, nella relativa tabella.

Nel caso di effettuazione dei calcoli secondo l'Ordinanza 3274/03 e s.m.i., è il valore del coefficiente di riduzione delle masse

sismiche.

SR Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale

1, 2, 3.

Fx, Fy, Fz
Componenti del vettore Forza riferita agli assi del sistema di riferimento indicato nella colonna "SR".

Mx, My, Mz
Componenti del vettore Momento riferito agli assi del sistema di riferimento indicato nella colonna "SR".

#### CARICHI SUI NODI IN FONDAZIONE (Fondazione)

|        |    |     |     |     |       | Carichi sui no | di in fondazione |
|--------|----|-----|-----|-----|-------|----------------|------------------|
| Carico | CC | Fx  | Fy  | Fz  | Mx    | My             | Mz               |
|        |    | [N] | [N] | [N] | [N·m] | [N·m]          | [N·m]            |

#### LEGENDA Carichi sui nodi in fondazione

Carico CC Descrizione del carico:

Identificativo della condizione di carico, nella relativa tabella.

CR001 = - Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR002 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR003 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR005 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR006 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR016 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy) + 0.3 \* Sz CR026 = + Carico Permanente + (Sx + ECx) + 0.3 \* (Sy + ECy

|        |                        |                     |                   |                     |                    | Carichi sui no       | ai in tondazione  |
|--------|------------------------|---------------------|-------------------|---------------------|--------------------|----------------------|-------------------|
| Carico | cc                     | Fx                  | Fy                | Fz                  | Mx                 | My                   | Mz                |
|        |                        | [N]                 | [N]               | [N]                 | [N·m]              | [N·m]                | [N·m]             |
|        | ECx) + 0.3 * Sz CR07   | '1= + Carico Perm   | nanente + (Sy + E | Cy) + 0.3 * (Sx - E | ECx) - 0.3 * Sz CR | 072= + Carico Pe     | rmanente + (Sy +  |
|        | ECy) - 0.3 * (Sx - ECx | ) - 0.3 * Sz CR07   | 3= + Carico Perm  | anente + (Sy + E    | Cy) + 0.3 * (-Sx + | ECx) + 0.3 * Sz      | CR074= + Carico   |
|        | Permanente + (Sy + E   | ECy) - 0.3 * (-Sx + | ECx) + 0.3 * Sz   | CR075= + Carico     | Permanente + (Sy   | + ECy) $+$ 0.3 * (-3 | Sx + ECx) - 0.3 * |
|        | Sz CD076 - Corioo      | Pormononto : (Sv    | . EO() 02 * / S   | . ECv\ n 2 * 6      | COCIO              | o Pormononto : /     | S/ . EO/\ . 0.2 * |

Sz CR076= + Carico Permanente + (Sy + ECy) - 0.3 \* (-Sx + ECx) - 0.3 \* Sz CR077= + Carico Permanente + (Sy + ECy) + <math>0.3 \* (-Sx - ECx) + 0.3 \* Sz CR079= + Carico Permanente + (Sy + ECy) - <math>0.3 \* (-Sx - ECx) + 0.3 \* Sz CR079= + Carico Permanente + (Sy + ECy) - <math>0.3 \* (-Sx - ECx) + 0.3 \* Sz CR079= + Carico Permanente + (Sy + ECy) - <math>0.3 \* (-Sx - ECx) + 0.3 \* Sz CR079= + Carico Permanente + (Sy + ECy) - <math>0.3 \* (-Sx - ECx) + 0.3 \* Sz CR079= + Carico Permanente + (Sy + ECy) - <math>0.3 \* (-Sx - ECx) + 0.3 \* Sz CR079= + Carico Permanente + (Sy + ECy) - <math>0.3 \* (-Sx - ECx) + 0.3 \* Sz CR079= + Carico Permanente + (Sy + ECy) - <math>0.3 \* (-Sx - ECx) + 0.3 \* Sz CR079= + Carico Permanente + (Sy + ECy) - (Sx - ECx) + (Sx - ECx) +(Sy + ECy) + 0.3 \* (-Sx - ECx) - 0.3 \* Sz CR080= + Carico Permanente + (Sy + ECy) - 0.3 \* (-Sx - ECx) - 0.3 \* Sz CR081= + Carico Permanente + (-Sy + ECy) + 0.3 \* (Sx + ECx) + 0.3 \* Sz CR082= + Carico Permanente + (-Sy + ECy) - 0.3 \* (Sx + ECx) + 0.3 \* Sz CR083= + Carico Permanente + (-Sy + EOy) + 0.3 \* (Sx + EOx) - 0.3 \* Sz CR084= + Carico Permanente + (-Sy + EOy) -0.3 \* (Sx + ECx) - 0.3 \* Sz CR085= + Carico Permanente + (-Sy + ECy) + 0.3 \* (Sx - ECx) + 0.3 \* Sz CR086= + Carico Permanente + (-Sy + ECy) - 0.3 \* (Sx - ECx) + 0.3 \* Sz CR087= + Carico Permanente + (-Sy + ECy) + 0.3 \* (Sx - ECx) - 0.3 \* Sz CR088= + Carico Permanente + (-Sy + ECy) - 0.3 \* (Sx - ECx) - 0.3 \* Sz CR089= + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) - 0.3 \* (-Sx -+ ECx) + 0.3 \* Sz CR090= + Carico Permanente + (-Sy + ECy) - 0.3 \* (-Sx + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + 0.3 \* Sz CR091= + Carico Permanente + (-Sy + ECx) + Sy + ECy) + 0.3 \* (-Sx + ECx) - 0.3 \* Sz CR092= + Carico Permanente + (-Sy + ECy) - 0.3 \* (-Sx + ECx) - 0.3 \* Sz CR093= + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR094 + Carico Permanente + <math>(-Sy + ECy) - 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR095 + Carico Permanente + <math>(-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + <math>(-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR096 + Carico Permanente + (-Sy + ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* (0.3 \* (-Sx - ECx) - 0.3 \* Sz CR097 = + Carico Permanente + (Sy - ECy) + 0.3 \* (Sx + ECx) + 0.3 \* Sz CR098 = + Carico Permanente + (Sy - ECy) + 0.3 \* (Sx + ECx) + 0.3 \* Sz CR098 = + Carico Permanente + (Sy - ECy) + 0.3 \* (Sx + ECx) + 0.3 \*Permanente + (Sy - EOy) - 0.3 \* (Sx + ECx) + 0.3 \* Sz CR099= + Carico Permanente + (Sy - EOy) + 0.3 \* (Sx + ECx) - 0.3 \* Sz CR100= + Carico Permanente + (Sy - ECy) - 0.3 \* (Sx + ECx) - 0.3 \* Sz CR101= + Carico Permanente + (Sy - ECy) + 0.3 \* (Sx -ECx) + 0.3 \* Sz CR102= + Carico Permanente + (Sy - ECy) - 0.3 \* (Sx - ECx) + 0.3 \* Sz CR103= + Carico Permanente + (Sy -E(y) + 0.3\* (Sx - ECx) - 0.3\* Sz CR104 + Carico Permanente + (Sy - ECy) - 0.3\* (Sx - ECx) - 0.3\* Sz CR105 + Carico Permanente + (Sy - ECy) - 0.3\* (Sx - ECx) - 0.3\* Sz CR105 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + Carico Permanente + (Sy - ECy) - 0.3\* (-Sx + ECx) + 0.3\* Sz CR106 + (Sx + ECx) + (Sx + ECCR107= + Carico Permanente + (Sy - ECy) + 0.3 \* (-Sx + ECx) - 0.3 \* Sz CR108= + Carico Permanente + (Sy - ECy) - 0.3 \* (-Sx + ECx) - 0.3 \* Sz CR109= + Carico Permanente + (Sy - ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR110= + Carico Permanente + (Sy -ECy) - 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR111= + Carico Permanente + (Sy - ECy) + 0.3 \* (-Sx - ECx) - 0.3 \* Sz CR112= + Carico Permanente + (Sy - EOy) -  $0.3 \,^{*}$  (Sx - ECx) -  $0.3 \,^{*}$  Sz CR113= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR114= + Carico Permanente + (-Sy - EOy) -  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente + (-Sy - EOy) +  $0.3 \,^{*}$  (Sx + ECx) +  $0.3 \,^{*}$  Sz CR115= + Carico Permanente +  $0.3 \,^{*}$  Sz C + ECx) - 0.3 \* Sz CR116= + Carico Permanente + (-Sy - ECy) - 0.3 \* (Sx + ECx) - 0.3 \* Sz CR117= + Carico Permanente + (-Sy -ECy) + 0.3 \* (Sx - ECx) + 0.3 \* Sz CR118 + Carico Permanente + (-Sy - ECy) - 0.3 \* (Sx - ECx) + 0.3 \* Sz CR119 + Carico Permanente + (-Sy - ECy) - 0.3 \* (Sx - ECx) + 0.3 \* Sz CR120 + Carico Permanente + (-Sy - ECy) - 0.3 \* (Sx - ECx) - 0.3 \* Sz CR121 + Carico Permanente + (-Sy - ECy) - 0.3 \* (Sx - ECx) - 0.3 \* Sz CR121 + Carico Permanente + (-Sy - ECy) - 0.3 \* (-Sx + ECx) + 0.3 \* Sz CR122 + Carico Permanente + (-Sy - ECy) - 0.3 \* (-Sx + ECx) + 0.3 \* Sz CR122 + Carico Permanente + (-Sy - ECy) - 0.3 \* (-Sx + ECx) + 0.3 \* ( Sx + ECx) + 0.3 \* Sz CR123= + Carico Permanente + (-Sy - ECy) + 0.3 \* (-Sx + ECx) - 0.3 \* Sz CR124= + Carico Permanente + (-Sy - ECy) - 0.3 \* (-Sx + ECx) - 0.3 \* Sz CR125= + Carico Permanente + (-Sy - ECy) + 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR126= + Carico Permanente + (-Sy - ECy) - 0.3 \* (-Sx - ECx) + 0.3 \* Sz CR127= + Carico Permanente + (-Sy - ECy) + 0.3 \* (-Sx - ECx) - 0.3 \* Sz CR128= + Carico Permanente + (-Sy - ECy) - 0.3 \* (-Sx - ECx) - 0.3 \* Sz

Fx, Fy, Fz Mx, My, Mz Componenti del vettore Forza riferita agli assi del sistema di riferimento indicato nella colonna "SR". Componenti del vettore Momento riferito agli assi del sistema di riferimento indicato nella colonna "SR".

#### **CARICHI SULLE TRAVI**

|              |                                         |     |         |          |                               |                     |                     |                     |                                                    |                    |                    |                            |        |       | Cari              | chi sulle travi |
|--------------|-----------------------------------------|-----|---------|----------|-------------------------------|---------------------|---------------------|---------------------|----------------------------------------------------|--------------------|--------------------|----------------------------|--------|-------|-------------------|-----------------|
| T.Cari<br>co | Carico                                  | СС  |         | SR       | Dis[i]                        | Fx[i]<br>/<br>Qx[i] | Fy[i]<br>/<br>Qy[i] | Fz[i]<br>/<br>Qz[i] | Mx[i] / Mt[i]                                      | My[i]              | Mz[i]              | Dis[f]                     | Qx[f]  | Qy[f] | Qz[f]             | Mt[f]           |
|              |                                         |     |         |          | [m]                           | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N·m] / [N·m/m]                                    | [N·m] /<br>[N·m/m] | [N·m] /<br>[N·m/m] | [m]                        | [N/m]  | [N/m] | [N/m]             | [N·m/m]         |
| sesto r      | ompitratta<br>ompitratta<br>rompitratta |     | Travata | ı: sesto | rompiti<br>rompiti<br>o rompi | ratta               |                     |                     | Trave: Trave L<br>Trave: Trave L<br>Trave: Trave L | egno 4-<br>egno 2- | 6<br>4             | Peso p<br>Peso p<br>Peso p | roprio |       | -35<br>-35<br>-70 |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| quinto       | rompitratta                             |     | Travata | ı: quint | o rompi                       | tratta              |                     |                     | Trave: Trave L                                     | egno 2-            | 4                  | Peso p                     | roprio |       | -70               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| quarto       | rompitratta                             |     | Travata | ı: quart | o rompi                       | tratta              |                     |                     | Trave: Trave L                                     | egno 4-            | 6                  | Peso p                     | roprio |       | -70               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| quarto       | rompitratta                             |     | Travata | ı: quart | o rompi                       | tratta              |                     |                     | Trave: Trave L                                     | egno 2-            | 4                  | Peso p                     | roprio |       | -70               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| terzo re     | ompitratta                              |     | Travata | ı: terzo | rompite                       | ratta               |                     |                     | Trave: Trave L                                     | egno 4-            | 6                  | Peso p                     | roprio |       | -70               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| terzo re     | ompitratta                              |     | Travata | ı: terzo | rompite                       | ratta               |                     |                     | Trave: Trave L                                     | .egno 2-           | 4                  | Peso p                     | roprio |       | -70               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| second       | o rompitratta                           |     | Travata | : secon  | do rom                        | pitratta            |                     |                     | Trave: Trave L                                     | egno 4-            | 6                  | Peso p                     | roprio |       | -70               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| second       | o rompitratta                           |     | Travata | : secon  | do rom                        | pitratta            |                     |                     | Trave: Trave L                                     | egno 2-            | 4                  | Peso p                     | roprio |       | -70               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| primo i      | rompitratta                             |     | Travata | ı: primo | rompit                        | ratta               |                     |                     | Trave: Trave L                                     | egno 3-            | 5                  | Peso p                     | roprio |       | -35               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |
| primo i      | rompitratta                             |     | Travata | ı: primo | rompit                        | ratta               |                     |                     | Trave: Trave L                                     | egno 1-            | 3                  | Peso p                     | roprio |       | -35               |                 |
| L            | CR001                                   | 003 | -       | G        | 0.00                          | 0                   | 0                   | -250                | 0                                                  | -                  | -                  | 0.00                       | 0      | 0     | -250              | 0               |

#### LEGENDA Carichi sulle travi

T.Carico Descrizione del tipo di carico. Carico Descrizione del carico: CR001= peso barriera in legno

CC Identificativo della condizione di carico, nella relativa tabella.

Nel caso di effettuazione dei calcoli secondo l'Ordinanza 3274/03 e s.m.i., è il valore del coefficiente di riduzione delle masse sismiche.

Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3.

Dis[i] Distanza del punto "i" dall'estremo inferiore del pilastro. Il punto "i", in relazione alla descrizione riportata nella colonna "T. Carico' ("Lineare" o

"Concentrato"), indica rispettivamente il punto iniziale del tratto interessato dal carico distribuito o in cui è posizionato il carico concentrato.

Fx[i] / Qx[i],

Fy[i] / Qy[i], Fz[i] / Qz[i] Valore (nel punto "i") della forza concentrata/distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR".

Mx[i] / Mt[i]

Se nella colonna "T.Carico" è riportato "Concentrato", è il valore del vettore momento concentrato collocato nel punto "i", riferito agli assi del sistema di riferimento indicato nella colonna "SR". Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "i", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna

My[i], Mz[i] Valore (nel punto "i") del vettore momento concentrato riferito agli assi del sistema di riferimento indicato nella colonna "SR".

Carichi sulle travi Fz[i] T.Cari Carico CC SR Dis[i] Mx[i] / Mt[i] My[i] Mz[i] Dis[f] Qx[f] Qy[f] Qz[f] Mt[f] СО Qx[i] Qy[i] Qz[i] [N·m] / [N·m/m] [N] / [N/m] [N] / [N/m] [N] / [N/m] [N·m] / [N·m/m] [N·m] / [N·m/m] [N/m] [m] [m] [N/m] [N/m] [N·m/m]

Dis[f] Qx[f], Qy[f], Distanza del punto "f" dall'estremo inferiore del pilastro. Il punto "f" indica il punto finale del tratto interessato dal carico distribuito.

Valore (nel punto "f") della forza distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR"

Qz[f]

Mt[f]

Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "f", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "SR".

T1, T2, T3 Variazione di temperatura rispettivamente lungo gli assi 1, 2 o 3 del sistema Locale.

#### **CARICHI SULLE TRAVI**

|                                                   |                                                                                       |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       | Car   | ichi sulle travi |
|---------------------------------------------------|---------------------------------------------------------------------------------------|----|----|--------|---------------------|---------------------|---------------------|-----------------|--------------------|--------------------|--------|-------|-------|-------|------------------|
| T.Cari<br>co                                      | Carico                                                                                | СС | SR | Dis[i] | Fx[i]<br>/<br>Qx[i] | Fy[i]<br>/<br>Qy[i] | Fz[i]<br>/<br>Qz[i] | Mx[i] / Mt[i]   | My[i]              | Mz[i]              | Dis[f] | Qx[f] | Qy[f] | Qz[f] | Mt[f]            |
|                                                   |                                                                                       |    |    | [m]    | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N] /<br>[N/m]      | [N·m] / [N·m/m] | [N·m] /<br>[N·m/m] | [N·m] /<br>[N·m/m] | [m]    | [N/m] | [N/m] | [N/m] | [N·m/m]          |
| quinto<br>quarto<br>terzo ro<br>second<br>primo r | ompitratta<br>rompitratta<br>rompitratta<br>ompitratta<br>o rompitratta<br>ompitratta |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       |       |                  |
|                                                   | arete 1-3                                                                             |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       |       |                  |
|                                                   | arete 3-5                                                                             |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       |       |                  |
| Fondaz                                            | ione                                                                                  |    |    |        |                     |                     |                     |                 |                    |                    |        |       |       |       |                  |

#### LEGENDA Carichi sulle travi

T.Carico Descrizione del tipo di carico.

Carico Descrizione del carico:

CC Identificativo della condizione di carico, nella relativa tabella.

Nel caso di effettuazione dei calcoli secondo l'Ordinanza 3274/03 e s.m.i., è il valore del coefficiente di riduzione delle masse sismiche.

SR Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3.

Dis[i] Distanza del punto "i" dall'estremo inferiore del pilastro. Il punto "i", in relazione alla descrizione riportata nella colonna "T. Carico' ("Lineare" o "Concentrato"), indica rispettivamente il punto iniziale del tratto interessato dal carico distribuito o in cui è posizionato il carico concentrato.

Fx[i] / Qx[i],

Fy[i] / Qy[i],

Valore (nel punto "i") della forza concentrata/distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR".

Fz[i] / Qz[i] Mx[i] / Mt[i]

Se nella colonna "T.Carico" è riportato "Concentrato", è il valore del vettore momento concentrato collocato nel punto "i", riferito agli assi del sistema di riferimento indicato nella colonna "SR". Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "i", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna

My[i], Mz[i]

Valore (nel punto "i") del vettore momento concentrato riferito agli assi del sistema di riferimento indicato nella colonna "SR" Distanza del punto "f" dall'estremo inferiore del pilastro. Il punto "f" indica il punto finale del tratto interessato dal carico distribuito.

Dis[f] Qx[f], Qy[f],

Qz[f]

Valore (nel punto "f") della forza distribuita riferita agli assi del sistema di riferimento indicato nella colonna "SR".

Mt[f]

Se nella colonna "T.Carico" è riportato "Lineare", è il valore nel punto "f", del vettore momento (torcente) distribuito sempre riferito all'asse 1 (asse del pilastro) del sistema di riferimento locale 1, 2, 3, quale che sia il sistema di riferimento indicato nella colonna "SR"

T1, T2, T3 Variazione di temperatura rispettivamente lungo gli assi 1, 2 o 3 del sistema Locale

### NODI - REAZIONI VINCOLARI ESTERNE PER CONDIZIONI DI CARICO NON SISMICHE

|       |     | 1    | Nodi - Reazio | ni vincolari es | sterne per cond | dizioni di carico | non sismiche |
|-------|-----|------|---------------|-----------------|-----------------|-------------------|--------------|
| N     | CC  | Fx   | Fy            | Fz              | Мх              | My                | Mz           |
|       |     | [N]  | [N]           | [N]             | [N·m]           | [N·m]             | [N·m]        |
| 00018 | 001 | 0    | 0             | 41,330          | 0               | 9                 | 0            |
| 00018 | 002 | 0    | -22,798       | 0               | 73,430          | 0                 | -22          |
| 00018 | 003 | 0    | 0             | 3,219           | 0               | 1                 | 0            |
| 00019 | 001 | 611  | 0             | 31,692          | 0               | -2,086            | 0            |
| 00019 | 002 | 0    | -19,477       | 0               | 63,799          | 0                 | -1,023       |
| 00019 | 003 | 56   | 0             | 2,131           | 0               | -190              | 0            |
| 00020 | 001 | -611 | 0             | 31,698          | 0               | 2,095             | 0            |
| 00020 | 002 | 0    | -19,425       | 0               | 63,982          | 0                 | 962          |
| 00020 | 003 | -56  | 0             | 2,132           | 0               | 191               | 0            |

# LEGENDA Nodi - Reazioni vincolari esterne per condizioni di carico non sismiche

Ν Numero identificativo del nodo.

CC Identificativo della Condizione di Carico nella relativa tabella. Fx. Fv. Fz. Mx. Mv. Mz Reazioni vincolari relative al sistema di riferimento globale X. Y. Z.

#### NODI - REAZIONI VINCOLARI ESTERNE PER EFFETTO DEL SISMA

|       |     |       |        | Nodi - Reazio | oni vincolari es | terne per effet | to del sisma |
|-------|-----|-------|--------|---------------|------------------|-----------------|--------------|
| N     | Dir | Fx    | Fy     | Fz            | Mx               | My              | Mz           |
|       |     | [N]   | [N]    | [N]           | [N·m]            | [N·m]           | [N·m]        |
| 00018 | X   | 9,127 | 0      | 2             | 0                | 521             | (            |
| 00018 | Y   | 0     | 11,087 | 0             | 8,443            | 0               | 3            |
| 00018 | Z   | 0     | 0      | 6,056         | 0                | 1               | (            |
| 00019 | X   | 8,968 | 0      | 2,956         | 0                | 881             | (            |
| 00019 | Y   | 0     | 7,971  | 0             | 6,643            | 0               | 88           |
| 00019 | Z   | 101   | 0      | 4,454         | 0                | 335             | (            |
| 00020 | Χ   | 8,968 | 0      | 2,954         | 0                | 880             | (            |
| 00020 | Υ   | 0     | 7.962  | 0             | 6,651            | 0               | 878          |

|       |     |     |     | Nodi - Rea | zioni vincolari | esterne per eff | etto del sisma |
|-------|-----|-----|-----|------------|-----------------|-----------------|----------------|
| N     | Dir | Fx  | Fy  | Fz         | Mx              | My              | Mz             |
|       |     | [N] | [N] | [N]        | [N·m]           | [N·m]           | [N·m]          |
| 00020 | Z   | 101 | 0   | 4,455      | 0               | 337             | 0              |

# LEGENDA Nodi - Reazioni vincolari esterne per effetto del sisma

Numero identificativo del NODO.

**Dir** Direzione del sisma.

Fx, Fy, Fz, Mx, My, Mz Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

# NODI - REAZIONI VINCOLARI ESTERNE PER ECCENTRICITA' ACCIDENTALE

|       |     |   |     | Nod    | i - Reazioni vi | ncolari esterne | per eccentrici | à accidentale |
|-------|-----|---|-----|--------|-----------------|-----------------|----------------|---------------|
| N     | Dir | е | Fx  | Fy     | Fz              | Mx              | My             | Mz            |
|       |     |   | [N] | [N]    | [N]             | [N·m]           | [N·m]          | [N·m]         |
| 00018 | X   | + | 0   | 0      | 0               | 0               | 0              | 0             |
| 00018 | Х   | - | 0   | 0      | 0               | 0               | 0              | 0             |
| 00018 | Y   | + | 0   | 0      | 0               | -3              | 0              | -177          |
| 00018 | Υ   | - | 0   | 0      | 0               | 3               | 0              | 177           |
| 00019 | Х   | + | 0   | 0      | 0               | 0               | 0              | 0             |
| 00019 | X   | - | 0   | 0      | 0               | 0               | 0              | 0             |
| 00019 | Y   | + | 0   | 1,151  | 0               | -1,797          | 0              | -178          |
| 00019 | Υ   | - | 0   | -1,151 | 0               | 1,797           | 0              | 178           |
| 00020 | Х   | + | 0   | 0      | 0               | 0               | 0              | 0             |
| 00020 | X   | - | 0   | 0      | 0               | 0               | 0              | 0             |
| 00020 | Υ   | + | 0   | -1,150 | 0               | 1,800           | 0              | -180          |
| 00020 | Υ   | - | 0   | 1,150  | 0               | -1,800          | 0              | 180           |

#### LEGENDA Nodi - Reazioni vincolari esterne per eccentricità accidentale

Numero identificativo del nodo.

**Dir** Direzione del sisma.

e Segno dell'eccentricità accidentale.

Fx, Fy, Fz, Mx, My, Mz Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

# EDIFICIO - VERIFICHE DI RIPARTIZIONE DELLE FORZE SISMICHE

|        |        |        |        |        |        |                       |                       | Ec       | dificio - Ve | rifiche di ri | partizione            | delle forze | sismiche |
|--------|--------|--------|--------|--------|--------|-----------------------|-----------------------|----------|--------------|---------------|-----------------------|-------------|----------|
| TgtotX | TgtotY | TgpilX | TgpilY | % pilX | % pilY | Tg <sub>setti</sub> X | Tg <sub>setti</sub> Y | % settiX | % settiY     | TgaltroX      | Tg <sub>altro</sub> Y | % altroX    | % altroY |
| [N]    | [N]    | [N]    | [N]    |        |        | [N]                   | [N]                   |          |              | [N]           | [N]                   |             |          |
| 3,475  | 10,820 | 3,475  | 10,820 | 100.0  | 100.0  | 0                     | 0                     | 0.0      | 0.0          | 0             | 0                     | 0.0         | 0.0      |

#### LEGENDA Edificio - Verifiche di ripartizione delle forze sismiche

Tgtot Taglio totale alla quota Zero Sismico (nella direzione X o Y) [N]

Tgpil Taglio totale alla quota Zero Sismico assorbito dai pilastri (nella direzione X o Y) [N]

% pil Percentuale del Taglio totale alla quota Zero Sismico assorbito dai pilastri (nella direzione X o Y)

Tg<sub>setti</sub> Taglio totale alla quota Zero Sismico assorbito dai setti [N]

% setti Percentuale del Taglio totale alla quota Zero Sismico assorbito dai setti (nella direzione X o Y)

Tgaltro Taglio totale alla quota Zero Sismico NON assorbito dai pilastri e dai setti (nella direzione X o Y)[N]

% altro Percentuale del Taglio totale alla quota Zero Sismico NON assorbito dai pilastri e dai setti (nella direzione X o Y)

# TRAVI PARETE - VERI FI CHE PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE ULTI MO (Elevazione)

|                  |       |       |       | Travi Pare | ete - Verifiche press | oflessione r       | etta allo st       | ato limite | ultimo |
|------------------|-------|-------|-------|------------|-----------------------|--------------------|--------------------|------------|--------|
| Trave            | % LLI | Ns    | Mxs   | Ni         | Mxi                   | Afs                | Afi                | CSs        | CSi    |
|                  | [%]   | [N]   | [N·m] | [N·m]      | [N·m]                 | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] |            |        |
| Trave Parete 1-3 |       | 2,159 | 4,099 | -7,299     | 3,197                 | 12.66              | 12.66              | NS         | NS     |
| Trave Parete 1-3 |       | 3,233 | 1,796 | -2,585     | 6,788                 | 12.66              | 12.66              | NS         | 67.87  |
| Trave Parete 1-3 |       | 0     | 0     | 714        | 8,004                 | 12.66              | 12.66              | -          | 57.75  |
| Trave Parete 1-3 |       | 0     | 0     | -726       | 7,670                 | 12.66              | 12.66              | -          | 60.19  |
| Trave Parete 1-3 |       | 0     | 0     | 76         | 7,388                 | 12.66              | 12.66              | -          | 62.53  |
| Trave Parete 1-3 |       | 0     | 0     | -630       | 7,720                 | 12.66              | 12.66              | -          | 59.80  |
| Trave Parete 1-3 |       | 0     | 0     | -2,122     | 6,546                 | 12.66              | 12.66              | -          | 70.42  |
| Trave Parete 1-3 |       | 0     | 0     | 535        | 4,501                 | 12.66              | 12.66              | -          | NS     |
| Trave Parete 1-3 |       | 4,889 | 370   | 95         | 3,020                 | 12.66              | 12.66              | NS         | NS     |
| Trave Parete 3-5 |       | 0     | 0     | -5,232     | 3,830                 | 12.66              | 12.66              | -          | NS     |
| Trave Parete 3-5 |       | 0     | 0     | 2,392      | 6,266                 | 12.66              | 12.66              | -          | 73.90  |
| Trave Parete 3-5 |       | 0     | 0     | -1,287     | 7,758                 | 12.66              | 12.66              | -          | 59.47  |
| Trave Parete 3-5 |       | 0     | 0     | -622       | 7,436                 | 12.66              | 12.66              | -          | 62.08  |
| Trave Parete 3-5 |       | 0     | 0     | -927       | 7,496                 | 12.66              | 12.66              | -          | 61.57  |
| Trave Parete 3-5 |       | 0     | 0     | -728       | 7,819                 | 12.66              | 12.66              | -          | 59.04  |
| Trave Parete 3-5 |       | 376   | 938   | 1,212      | 7,382                 | 12.66              | 12.66              | NS         | 62.65  |
| Trave Parete 3-5 |       | 659   | 3,055 | -3,461     | 4,765                 | 12.66              | 12.66              | NS         | 96.61  |
| Trave Parete 3-5 |       | 7,175 | 3,516 | -5,253     | 3,176                 | 12.66              | 12.66              | NS         | NS     |

# LEGENDA Travi Parete - Verifiche pressoflessione retta allo stato limite ultimo

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione

della trave (LLI), a partire dal suo estremo iniziale

Ns, Mxs
Coppia M-N che dà origine alla massima armatura di trazione superiore.
Ni, Mxi
Coppia M-N che dà origine alla massima armatura di trazione inferiore.

Afs, Afi Area delle armature esecutive superiori ed inferiori.

CSs, CSi Coefficienti di sicurezza relativi rispettivamente, a "Ns", "Mxs", "Afs" e "Ni", "Mxi", "Afi" : [NS] = Non Significativo - Per valori di CS maggiori

o uguali a 100.

# TRAVI PARETE - VERI FI CHE A TAGLI O PER PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE ULTI MO (Elevazione)

|           |     |             |             |      |      |             |             |            |            |     | ravi P | arete | - Verif | iche a      | taglio      | per pr | essofl | ession                    | e retta      | a allo s     | stato li     | mite u                    | ltimo        |
|-----------|-----|-------------|-------------|------|------|-------------|-------------|------------|------------|-----|--------|-------|---------|-------------|-------------|--------|--------|---------------------------|--------------|--------------|--------------|---------------------------|--------------|
| Tra       | LLI | Ty+         | Ty-         | CS+  | CS-  | Vcc+        | Vcc-        | Vwd        | Vwd-       | N+  | N-     | Vwp   | Vwp     | Vr1         | Vr1-        | ctg    | ctg    | Afte                      | Afte         | Afp          | Afp          | AfD                       | AfD          |
| ve        | LLI | ı y+        | ı y-        | C3+  | C3-  | VCC+        | VCC-        | +          | vwu-       | 14+ | 14-    | +     | -       | +           | VI I-       | +      | -      | +                         | -            | e+           | e-           | ge+                       | ge-          |
|           | [%] | [N]         | [N]         |      |      | [N]         | [N]         | [N]        | [N]        | [N] | [N]    | [N]   | [N]     | [N]         | [N]         | [N]    | [N]    | [cm <sup>2</sup> /c<br>m] | [cm²/c<br>m] | [cm²/c<br>m] | [cm²/c<br>m] | [cm <sup>2</sup> /c<br>m] | [cm²/c<br>m] |
| Trav      |     | 365.        | -           | 2.13 | 2.24 | 12677       | 12677       | 77655      | 77655      | 0   | 0      | 0     | 0       | 633.        | 633.        | 2.50   | 2.50   | 0.09                      | 0.09         | 0.00         | 0.00         | 0.00                      | 0.00         |
| e         |     | 173         | 347,        | 2.10 |      | 11          | 11          | 6          | 6          |     |        |       |         | 067         | 425         | 2.00   | 2.00   | 15                        | 15           | 00           | 00           | 00                        | 00           |
| Pare      |     |             | 270         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              | "            |                           |              |
| te 1-     |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| 3         |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| Trav      |     | 362,        | -           | 2.14 | 2.22 | 12677       | 12677       | 77655      | 77655      | 0   | 0      | 0     | 0       | 625,        | 625,        | 2.50   | 2.50   | 0.09                      | 0.09         | 0.00         | 0.00         | 0.00                      | 0.00         |
| е         |     | 873         | 349,        |      |      | 11          | 11          | 6          | 6          |     |        |       |         | 587         | 946         |        |        | 15                        | 15           | 00           | 00           | 00                        | 00           |
| Pare      |     |             | 577         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| te 1-     |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| 3         |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| Trav      |     | 353,        |             | 1.61 | 1.59 | 12677       | 12677       | 56947      | 56947      | 0   | 0      | 0     | 0       | 610,        | 611,        | 2.50   | 2.50   | 0.06                      | 0.06         | 0.00         | 0.00         | 0.00                      | 0.00         |
| е         |     | 953         | 358,        |      |      | 11          | 11          | 4          | 4          |     |        |       |         | 712         | 064         |        |        | 71                        | 71           | 00           | 00           | 00                        | 00           |
| Pare      |     |             | 249         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| te 1-     |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| Trav      |     | 350.        | _           | 2 22 | 2.15 | 12677       | 12677       | 77655      | 77655      | 0   | 0      | 0     | 0       | 623,        | 623.        | 2.50   | 2.50   | 0.09                      | 0.09         | 0.00         | 0.00         | 0.00                      | 0.00         |
| e         |     | 157         | 361,        | 2.22 | 2.13 | 11          | 11          | 6          | 6          | 0   |        | "     |         | 064         | 414         | 2.50   | 2.50   | 15                        | 15           | 0.00         | 0.00         | 0.00                      | 0.00         |
| Pare      |     |             | 899         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              | "            |                           | "            |
| te 1-     |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| 3         |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| Trav      |     | 351,        | -           | 2.21 | 2.15 | 12677       | 12677       | 77655      | 77655      | 0   | 0      | 0     | 0       | 618,        | 618,        | 2.50   | 2.50   | 0.09                      | 0.09         | 0.00         | 0.00         | 0.00                      | 0.00         |
| е         |     | 527         | 360,        |      |      | 11          | 11          | 6          | 6          |     |        |       |         | 584         | 935         |        |        | 15                        | 15           | 00           | 00           | 00                        | 00           |
| Pare      |     |             | 551         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| te 1-     |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| _3        |     | 201         |             |      |      | 40077       | 40077       | 77055      |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| Trav      |     | 361,        | -           | 2.15 | 2.23 | 12677       | 12677       | 77655      | 77655      | 0   | 0      | 0     | 0       | 625,        | 625,        | 2.50   | 2.50   | 0.09                      | 0.09         | 0.00         | 0.00         | 0.00                      | 0.00         |
| e<br>Pare |     | 924         | 348,<br>665 |      |      | 11          | 11          | 6          | 6          |     |        |       |         | 588         | 943         |        |        | 15                        | 15           | 00           | 00           | 00                        | 00           |
| te 3-     |     |             | 003         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| 5         |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| Trav      |     | 358.        | -           | 2.17 | 2.20 | 12677       | 12677       | 77655      | 77655      | 0   | 0      | 0     | 0       | 613,        | 614,        | 2.50   | 2.50   | 0.09                      | 0.09         | 0.00         | 0.00         | 0.00                      | 0.00         |
| е         |     | 383         | 352,        |      |      | 11          | 11          | 6          | 6          |     | _      |       |         | 854         | 211         |        |        | 15                        | 15           | 00           | 00           | 00                        | 00           |
| Pare      |     |             | 217         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| te 3-     |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| 5         |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| Trav      |     | 350,        | -           | 1.63 | 1.58 |             | 12677       | 56947      | 56947      | 0   | 0      | 0     | 0       | 621,        | 621,        | 2.50   | 2.50   | 0.06                      | 0.06         | 0.00         | 0.00         | 0.00                      | 0.00         |
| е         |     | 169         | 360,        |      |      | 11          | 11          | 4          | 4          |     |        |       |         | 073         | 427         |        |        | 71                        | 71           | 00           | 00           | 00                        | 00           |
| Pare      |     |             | 685         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| te 3-     |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| 5         |     | 0.40        |             | 0.04 | 0.40 | 40077       | 40077       | 77055      | 77055      |     |        |       |         | 000         | 004         | 0.50   | 0.50   | 0.00                      | 0.00         | 0.00         | 0.00         | 0.00                      | 0.00         |
| Trav      |     | 346,<br>365 | 364,        | 2.24 | 2.13 | 12677<br>11 | 12677<br>11 | 77655<br>6 | 77655<br>6 | 0   | 0      | 0     | 0       | 633,<br>664 | 634,<br>017 | 2.50   | 2.50   | 0.09                      | 0.09<br>15   | 0.00         | 0.00         | 0.00                      | 0.00         |
| e<br>Pare |     | 363         | 597         |      |      | 11          | - ' '       | 0          | 0          |     |        |       |         | 004         | 017         |        |        | 15                        | 15           | 00           | 00           | 00                        | 00           |
| te 3-     |     |             | 551         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| 5         |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| Trav      |     | 350,        | -           | 2.22 | 2.16 | 12677       | 12677       | 77655      | 77655      | 0   | 0      | 0     | 0       | 619,        | 619,        | 2.50   | 2.50   | 0.09                      | 0.09         | 0.00         | 0.00         | 0.00                      | 0.00         |
| е         |     | 509         | 359,        |      | _    | 11          | 11          | 6          | 6          |     |        |       | _       | 349         | 704         |        |        | 15                        | 15           | 00           | 00           | 00                        | 00           |
| Pare      |     |             | 977         |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| te 3-     |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |
| 5         |     |             |             |      |      |             |             |            |            |     |        |       |         |             |             |        |        |                           |              |              |              |                           |              |

# LEGENDA Travi Parete - Verifiche a taglio per pressoflessione retta allo stato limite ultimo

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato. Trave

LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

Ty+, Ty-CS+, CS-Valori massimo e minimo della sollecitazione di taglio.

Coefficienti di sicurezza relativi alle sollecitazioni "Ty+" e "Ty-" : [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100.

Vcc+, Valori massimo e minimo del taglio ultimo, per conglomerato compresso. Vcc-

Vwd+, Contributi dell'acciaio al taglio ultimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-". Vwd-

N+ , N-Sforzo Normale medio nella Sezione di Verifica.

Vwp+, Contributi dell'acciaio al taglio ultimo dovuti ai ferri piegati, relativi alle sollecitazioni "Ty+" e "Ty-". Vwp-

Vr1+, Taglio Massimo in assenza di ARMATURA incrociata, relativi alle sollecitazioni "Ty+" e "Ty-". Vr1-

ctg +, Ctg(Theta) utilizzato nel calcolo di Vcc, Vwd e Vwp, relativi alle sollecitazioni "Ty+" e "Ty-".

ctg -Afte+,

Aree di ferro per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-". Afte-

Afpe+, Aree di ferri piegati per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-". Afpe-

AfDge+, Area di Ferri incrociati nelle zone critiche, relativi alle sollecitazioni "Ty+" e "Ty-". AfDge-

# TRAVI PARETE - VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO (Elevazione)

|                  |       |       |       | Travi Pa | rete - Verifiche I | oressofle | ssione ret         | ta allo stat       | o limite d | li danno |
|------------------|-------|-------|-------|----------|--------------------|-----------|--------------------|--------------------|------------|----------|
| Trave            | % LLI | Ns    | Mxs   | Ni       | Mxi                |           | Afs                | Afi                | CSs        | CSi      |
|                  | [%]   | [N]   | [N·m] | [N·m]    | [N·m]              |           | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] |            |          |
| Trave Parete 1-3 |       | 6,321 | 648   |          | 0                  | 0         | 12.66              | 12.66              | NS         | -        |

|                  |       |        |       | Travi Parete | e - Verifiche pressofl | essione ret        | ta allo stat       | o limite d | li danno |
|------------------|-------|--------|-------|--------------|------------------------|--------------------|--------------------|------------|----------|
| Trave            | % LLI | Ns     | Mxs   | Ni           | Mxi                    | Afs                | Afi                | CSs        | CSi      |
|                  | [%]   | [N]    | [N·m] | [N·m]        | [N·m]                  | [cm <sup>2</sup> ] | [cm <sup>2</sup> ] |            |          |
| Trave Parete 1-3 |       | 0      | 0     | 10,675       | 2,876                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 1-3 |       | 0      | 0     | 9,106        | 4,931                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 1-3 |       | 0      | 0     | -5,298       | 5,350                  | 12.66              | 12.66              | -          | 99.18    |
| Trave Parete 1-3 |       | 0      | 0     | -2,894       | 5,696                  | 12.66              | 12.66              | -          | 93.35    |
| Trave Parete 1-3 |       | 0      | 0     | -1,838       | 5,885                  | 12.66              | 12.66              | -          | 90.44    |
| Trave Parete 1-3 |       | 0      | 0     | 1,171        | 4,911                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 1-3 |       | 0      | 0     | 5,292        | 2,879                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 1-3 |       | 0      | 0     | -1,913       | 1,605                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 3-5 |       | 0      | 0     | -7,382       | 2,156                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 3-5 |       | 0      | 0     | 7,837        | 4,512                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 3-5 |       | 0      | 0     | 1,580        | 5,988                  | 12.66              | 12.66              | -          | 89.14    |
| Trave Parete 3-5 |       | 0      | 0     | -1,829       | 5,701                  | 12.66              | 12.66              | -          | 93.36    |
| Trave Parete 3-5 |       | 0      | 0     | -2,892       | 5,476                  | 12.66              | 12.66              | -          | 97.10    |
| Trave Parete 3-5 |       | 0      | 0     | -5,293       | 4,833                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 3-5 |       | 0      | 0     | 9,377        | 3,732                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 3-5 |       | 0      | 0     | 8,297        | 1,290                  | 12.66              | 12.66              | -          | NS       |
| Trave Parete 3-5 |       | 11,224 | 538   | -9,302       | 198                    | 12.66              | 12.66              | NS         | NS       |

# LEGENDA Travi Parete - Verifiche pressoflessione retta allo stato limite di danno

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

Trave % LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione

della trave (LLI), a partire dal suo estremo iniziale

Ns, Mxs Coppia M-N che dà origine alla massima armatura di trazione superiore. Ni, Mxi Coppia M-N che dà origine alla massima armatura di trazione inferiore. Afs, Afi Area delle armature esecutive superiori ed inferiori.

Coefficienti di sicurezza relativi rispettivamente, a "Ns", "Mxs", "Afs" e "Ni", "Mxi", "Afi": [NS] = Non Significativo - Per valori di CS maggiori CSs, CSi

o uguali a 100.

# TRAVI PARETE - VERI FI CHE A TAGLI O PER PRESSOFLESSI ONE RETTA ALLO STATO LI MI TE DI **DANNO** (Elevazione)

|           |     |            |      |      |      |             |             |            |       | Tra | ıvi Par | ete - V |     | ne a ta      | glio pe      | er pres | sofles | sione                     | retta a      | llo sta      | to lim       | ite di e     | danno        |
|-----------|-----|------------|------|------|------|-------------|-------------|------------|-------|-----|---------|---------|-----|--------------|--------------|---------|--------|---------------------------|--------------|--------------|--------------|--------------|--------------|
| Tra       | LLI | Ty+        | Ty-  | CS+  | CS-  | Vcc+        | Vcc-        | Vwd        | Vwd-  | N+  | N-      | Vwp     | Vwp | Vr1          | Vr1-         | Ctg     | Ctg    | Afte                      | Afte         | Afp          | Afp          | AfD          | AfD          |
| ve        |     | .,.        | ٠,   | •••  |      |             |             | +          |       |     |         | +       | -   | +            | •••          | +       |        | +                         | - 2,         | е+           | е-           | g+           | g-           |
|           | [%] | [N]        | [N]  |      |      | [N]         | [N]         | [N]        | [N]   | [N] | [N]     | [N]     | [N] | [N]          | [N]          |         |        | [cm <sup>2</sup> /c<br>m] | [cm²/c<br>m] | [cm²/c<br>m] | [cm²/c<br>m] | [cm²/c<br>m] | [cm²/c<br>m] |
| Trav      |     | 15,2       | 0    | 58.3 | -    | 19015       | 19015       | 89303      | 89303 | 0   | 0       | 0       | 0   | 1,81         | 1,81         | 2.50    | 2.50   |                           |              |              |              |              |              |
| е         |     | 95         |      | 9    |      | 66          | 66          | 9          | 9     |     |         |         |     | 1,46         | 1,46         |         |        |                           |              |              |              |              |              |
| Pare      |     |            |      |      |      |             |             |            |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 1-     |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| 3         |     | 0.00       | 0    | 96.7 | _    | 19015       | 19015       | 90202      | 89303 | 0   | 0       | 0       | 0   | 1 01         | 1 01         | 2.50    | 2 50   |                           |              |              |              |              |              |
| Trav<br>e |     | 9,23       | U    | 36.7 | -    | 66          | 66          | 89303<br>9 | 9     | 0   | U       | 0       | 0   | 1,81<br>1,46 | 1,81<br>1,46 | 2.50    | 2.50   |                           |              |              |              |              |              |
| Pare      |     |            |      | "    |      | 00          | 00          |            |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 1-     |     |            |      |      |      |             |             |            |       |     |         |         |     | -            |              |         |        |                           |              |              |              |              |              |
| 3         |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| Trav      |     | 0          | -    | -    | NS   | 19015       | 19015       | 65489      | 65489 | 0   | 0       | 0       | 0   | 1,81         | 1,81         | 2.50    | 2.50   |                           |              |              |              |              |              |
| е         |     |            | 4,39 |      |      | 66          | 66          | 5          | 5     |     |         |         |     | 1,46         | 1,46         |         |        |                           |              |              |              |              |              |
| Pare      |     |            | 5    |      |      |             |             |            |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 1-     |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| 3         |     | 0          |      | _    | 98.0 | 19015       | 19015       | 89303      | 89303 | 0   | 0       | 0       | 0   | 1,81         | 1 01         | 2.50    | 2.50   |                           |              |              |              |              |              |
| Trav<br>e |     | U          | 9,11 | _    | 36.0 | 66          | 66          | 9          | 9     | 0   | U       | 0       | U   | 1,46         | 1,81<br>1,46 | 2.50    | 2.50   |                           |              |              |              |              |              |
| Pare      |     |            | 0,11 |      | 3    | 00          | 00          | 3          |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 1-     |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| 3         |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| Trav      |     | 453        | -    | NS   | 87.0 | 19015       | 19015       | 89303      | 89303 | 0   | 0       | 0       | 0   | 1,77         | 1,77         | 2.50    | 2.50   |                           |              |              |              |              |              |
| е         |     |            | 10,2 |      | 8    | 66          | 66          | 9          | 9     |     |         |         |     | 1,45         | 1,45         |         |        |                           |              |              |              |              |              |
| Pare      |     |            | 55   |      |      |             |             |            |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 1-     |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| 3         |     | 10 E       | 0    | 71.1 |      | 10015       | 10015       | 90202      | 90202 | 0   | 0       | 0       | 0   | 1 01         | 1 01         | 2 50    | 2.50   |                           |              |              |              |              |              |
| Trav<br>e |     | 12,5<br>45 | 0    | 71.1 | -    | 19015<br>66 | 19015<br>66 | 89303<br>9 | 89303 | 0   | U       | 0       | U   | 1,81<br>1,46 | 1,81<br>1,46 | 2.50    | 2.50   |                           |              |              |              |              |              |
| Pare      |     | 45         |      | 3    |      | 00          | 00          | 3          |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 3-     |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| 5         |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| Trav      |     | 6,49       | 0    | NS   | -    | 19015       | 19015       | 89303      | 89303 | 0   | 0       | 0       | 0   | 1,81         | 1,81         | 2.50    | 2.50   |                           |              |              |              |              |              |
| е         |     | 0          |      |      |      | 66          | 66          | 9          | 9     |     |         |         |     | 1,46         | 1,46         |         |        |                           |              |              |              |              |              |
| Pare      |     |            |      |      |      |             |             |            |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 3-     |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| 5<br>Trav |     | 0          | _    | _    | NS   | 19015       | 19015       | 65489      | 65489 | 0   | 0       | 0       | 0   | 1,81         | 1,81         | 2.50    | 2.50   |                           |              |              |              |              |              |
| e         |     | U          | 6,17 | _    | INS  | 66          | 66          | 5          | 5     | 0   | U       | 0       | 0   | 1,46         | 1,46         | 2.50    | 2.50   |                           |              |              |              |              |              |
| Pare      |     |            | 7    |      |      | 00          | 00          | ·          |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 3-     |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| 5         |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| Trav      |     | 0          | -    | -    | 74.9 | 19015       | 19015       | 89303      | 89303 | 0   | 0       | 0       | 0   | 1,81         | 1,81         | 2.50    | 2.50   |                           |              |              |              |              |              |
| e         |     |            | 11,9 |      | 7    | 66          | 66          | 9          | 9     |     |         |         |     | 1,46         | 1,46         |         |        |                           |              |              |              |              |              |
| Pare      |     |            | 12   |      |      |             |             |            |       |     |         |         |     | 7            | 7            |         |        |                           |              |              |              |              |              |
| te 3-     |     |            |      |      |      |             |             |            |       |     |         |         |     |              |              |         |        |                           |              |              |              |              |              |
| 5<br>Trav |     | 3,82       | _    | NS   | 79.0 | 19015       | 19015       | 89303      | 89303 | 0   | 0       | 0       | 0   | 1,50         | 1,50         | 2.50    | 2.50   |                           |              |              |              |              |              |
| e         |     | 5,62       | 11,2 | 110  | 6    | 66          | 66          | 9          | 9     |     |         |         |     | 4,74         | 4,74         | 2.50    | 2.50   |                           |              |              |              |              |              |
| Pare      |     |            | 95   |      |      |             | - 50        |            |       |     |         |         |     | 4            | 4            |         |        |                           |              |              |              |              |              |

|       |     |     |      |     |     |       |         |     |        | Tra | ıvi Par | ete - V | erifich | e a ta | glio pe | er pres | sofles | sione        | retta a      | llo sta                   | to limi                   | te di d                   | lanno        |
|-------|-----|-----|------|-----|-----|-------|---------|-----|--------|-----|---------|---------|---------|--------|---------|---------|--------|--------------|--------------|---------------------------|---------------------------|---------------------------|--------------|
| Tra   | 111 | Tv+ | Tv-  | CS+ | CS- | Vcc+  | Vcc-    | Vwd | Vwd-   | N+  | N.      | Vwp     | Vwp     | Vr1    | Vr1-    | Ctg     | Ctg    | Afte         | Afte         | Afp                       | Afp                       | AfD                       | AfD          |
| ve    | LLI | ıy+ | ı y- | C3+ | 03- | V CC+ | V C C - | +   | v w u- | 14+ | 14-     | +       | -       | +      | VI I-   | +       |        | +            | -            | e+                        | e-                        | g+                        | g-           |
|       | [%] | [N] | [N]  |     |     | [N]   | [N]     | [N] | [N]    | [N] | [N]     | [N]     | [N]     | [N]    | [N]     |         |        | [cm²/c<br>m] | [cm²/c<br>m] | [cm <sup>2</sup> /c<br>m] | [cm <sup>2</sup> /c<br>m] | [cm <sup>2</sup> /c<br>m] | [cm²/c<br>m] |
| te 3- |     |     |      |     |     |       |         |     |        |     |         |         |         |        |         |         |        |              |              |                           |                           |                           |              |
| 5     |     |     |      |     |     |       |         |     |        |     |         |         |         |        |         |         |        |              |              |                           |                           |                           |              |

#### LEGENDA Travi Parete - Verifiche a taglio per pressoflessione retta allo stato limite di danno

Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

Valori massimo e minimo della sollecitazione di taglio.

Ty+ , Ty-CS+ , CS-N+ , N-Coefficienti di sicurezza relativi alle sollecitazioni "Ty+" e "Ty-" : [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100.

Sforzo Normale medio nella Sezione di Verifica.

Vwd+, Contributi dell'acciaio al taglio ultimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-". Vwd-

Vcd+, Contributi del calcestruzzo ai tagli ultimi massimo e minimo dovuto alle staffe, relativi alle sollecitazioni "Ty+" e "Ty-". Vcd-

Vwp+, Contributi dell'acciaio al taglio ultimo dovuti ai ferri piegati, relativi alle sollecitazioni "Ty+" e "Ty-". Vwp-

Vr1+,

Vr1-

Taglio Massimo in assenza di ARMATURA incrociata, relativi alle sollecitazioni.

Ctg + Ctg

Ctg(Theta) utilizzato nel calcolodi Vcc, Vwd e Vwp, relativi alle sollecitazioni.

Afte+,

Aree di ferro per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-".

Afte-Afpe+, Afpe-

Aree di ferri piegati per il taglio in un centimetro, relativi alle sollecitazioni "Ty+" e "Ty-".

AfDg+

М2

Area di Ferri incrociati nelle zone critiche, relativi alle sollecitazioni. AfDg-

# TRAVI PARETE - VERI FI CHE PRESSOFLESSI ONE RETTA E DEVI ATA ALLO STATO LI MI TE DI **ESERCI ZI O (Elevazione)**

|         |                      |           |             |           |     |           | Travi Pa   | rete - Verific | he pressof | lessione r           | etta e deviata | allo stato lim             | te di esercizio |
|---------|----------------------|-----------|-------------|-----------|-----|-----------|------------|----------------|------------|----------------------|----------------|----------------------------|-----------------|
| 0/ 111  |                      | Trazione  | calcestruzz | 0         |     | Co        | mpression  | e calcestruzz  | 20         |                      | Trazi          | one acciaio                |                 |
| % LLI   | ct                   | N         | М3          | M2        |     | cc        | N          | М3             | M2         | at                   | N              | М3                         | M2              |
| [%]     | [N/mm <sup>2</sup> ] | [N]       | [N·m]       | [N·m]     | _   | [N/mm²]   | [N]        | [N·m]          | [N·m]      | [N/mm <sup>2</sup> ] | [N]            | [N·m]                      | [N·m]           |
| Trave P | arete 1-3            | FRC= 1.00 | AA= MLA     | CA= FRQ   |     | = 0.00000 | Ae= 0.0 cn | n² sm=0 mm     |            | CA= QPR              | sm= 0.0000     | 00 Ae= 0.0 cm <sup>2</sup> | sm=0 mm         |
| maver   | uicte i-o            | cm        | AA- WEA     | wk=0.00 r | mm  |           |            |                |            | wk = 0.00            | mm             |                            |                 |
|         | 0.011                | -2,570    | 451         |           | 0   | 0.000     | 0          | 0              | 0          | 0.164                | -2,570         | 451                        | 0               |
|         | 0.029                | 324       | -2,496      |           | 0   | -0.031    | 324        | -2,496         | 0          | 0.408                | 324            | -2,496                     | 0               |
|         | 0.055                | 767       | -4,723      |           | 0   | -0.059    | 767        | -4,723         | 0          | 0.766                | 767            | -4,723                     | 0               |
|         | 0.062                | 440       | -5,224      |           | 0   | -0.064    | 440        | -5,224         | 0          | 0.861                | 440            | -5,224                     | 0               |
|         | 0.068                | 57        | -5,620      |           | 0   | -0.068    | 57         | -5,620         | 0          | 0.941                | 57             | -5,620                     | 0               |
|         | 0.072                | -474      | -5,859      |           | 0   | -0.069    | -474       | -5,859         | 0          | 0.999                | -474           | -5,859                     | 0               |
|         | 0.059                | -1,622    | -4,600      |           | 0   | -0.052    | -1,622     | -4,600         | 0          | 0.827                | -1,622         | -4,600                     | 0               |
|         | 0.030                | 780       | -2,599      |           | 0   | -0.033    | 780        | -2,599         | 0          | 0.409                | 780            | -2,599                     | 0               |
|         | 0.010                | 2,492     | -1,325      |           | 0   | -0.022    | 2,492      | -1,325         | 0          | 0.137                | 2,492          | -1,325                     | 0               |
| Trovo D | arete 3-5            | FRC= 1.00 | AA= PCA     | CA= FRQ   | sm: | = 0.00000 | Ae= 0.0 cm | n² sm=0 mm     |            | CA= QPR              | sm= 0.0000     | 00 Ae= 0.0 cm <sup>2</sup> | sm=0 mm         |
| iiave F | arete 3-5            | cm        | AA= PCA     | wk=0.00 r | nm  |           |            |                |            | wk = 0.00            | mm             |                            |                 |
|         | 0.033                | -3,618    | -2,029      |           | 0   | -0.016    | -3,618     | -2,029         | 0          | 0.464                | -3,618         | -2,029                     | 0               |
|         | 0.044                | 3,053     | -4,239      |           | 0   | -0.058    | 3,053      | -4,239         | 0          | 0.607                | 3,053          | -4,239                     | 0               |
|         | 0.073                | -970      | -5,888      |           | 0   | -0.069    | -970       | -5,888         | 0          | 1.021                | -970           | -5,888                     | 0               |
|         | 0.069                | -468      | -5,651      |           | 0   | -0.067    | -468       | -5,651         | 0          | 0.964                | -468           | -5,651                     | 0               |
|         | 0.064                | 58        | -5,351      |           | 0   | -0.065    | 58         | -5,351         | 0          | 0.896                | 58             | -5,351                     | 0               |
|         | 0.056                | 454       | -4,728      |           | 0   | -0.058    | 454        | -4,728         | 0          | 0.778                | 454            | -4,728                     | 0               |
|         | 0.037                | 794       | -3,222      |           | 0   | -0.041    | 794        | -3,222         | 0          | 0.513                | 794            | -3,222                     | 0               |
|         | 0.013                | -1,401    | -855        |           | 0   | -0.007    | -1,401     | -855           | 0          | 0.191                | -1,401         | -855                       | 0               |
|         | 0.000                | 0         | 0           |           | 0   | -0.004    | 961        | 170            | 0          | 0.000                | 0              | 0                          | 0               |

# LEGENDA Travi Parete - Verifiche pressoflessione retta e deviata allo stato limite di esercizio

Trave Identificativo della trave. L'eventuale lettera tra parentesi distingue i diversi tratti della travata al livello considerato.

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale

FRC Freccia della trave [cm].

Identificativo dell'aggressività dell'ambiente: [PCA] = Poco aggressivo - [MDA] = Moderatamente aggressivo - [MLA] = Molto aggressivo. AA

CA Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FQR] = Frequente - [RAR] = Rara.

sm Deformazione media nel calcestruzzo. Area efficace del calcestruzzo teso [mm²] Αe Distanza media tra le fessure [mm] sm Apertura massima delle fessure [mm]. wk

ct. N. M3. Valori rispettivamente della tensione massima di trazione nel calcestruzzo e delle componenti della sollecitazione agenti che l'hanno generata. M2

cc, N, M3. Valori rispettivamente della tensione massima di compressione nel calcestruzzo e delle componenti della sollecitazione agenti che l'hanno generata. **M2** 

at, N, M3, Valori rispettivamente della tensione massima di trazione nell'acciaio e delle componenti della sollecitazione agenti che l'hanno generata.

# PI LASTRI - VERI FI CHE A PRESSOFLESSI ONE DEVI ATA (Elevazione) allo SLU

|          |           |     |       |       |    |      |       |       |     |     |     | Pilas | tri - Ver          | ifiche a           | pressof | lessione | deviata |
|----------|-----------|-----|-------|-------|----|------|-------|-------|-----|-----|-----|-------|--------------------|--------------------|---------|----------|---------|
| Livello  | % LLI     | N   | Mv    | Mar   | CC | Tino | Me    | cRd   | Vo  | Rd  |     |       | Α                  | v                  | Tv      | N        | NpIRd   |
| Livello  | % LLI     | IN  | Mx    | Му    | CS | Tipo | Mag   | Min   | Mag | Min | Mag | Min   | Mag                | Min                | Mag     | Min      | иріна   |
|          | [%]       | [N] | [N·m] | [N·m] |    |      | [N·m] | [N·m] | [N] | [N] |     |       | [mm <sup>2</sup> ] | [mm <sup>2</sup> ] | [mm]    | [mm]     | [N]     |
| sesto ro | mpitratta |     |       |       |    |      |       |       |     |     |     |       |                    |                    |         |          |         |

|                          |                  |                   |                  |       |               |              |                  |                  |                    |                          |      | Pilas |                |                |             |              | deviata                  |
|--------------------------|------------------|-------------------|------------------|-------|---------------|--------------|------------------|------------------|--------------------|--------------------------|------|-------|----------------|----------------|-------------|--------------|--------------------------|
| Livello                  | % LLI            | N                 | Mx               | Му    | cs            | Tipo         | Mag              | Rd<br>Min        | Vc<br>Mag          | Rd<br>Min                | Mag  | Min   | Mag            | v<br>Min       | Mag         | w<br>Min     | NpIRd                    |
| Pilastro                 | [%]              | [N]<br>785        | [N·m]<br>2,319   | [N·m] | NS            | PLS          | [N·m]<br>240,033 | [N·m]<br>113,507 | [N]<br>434,836     | [N]<br>1,112,0           | 0.00 | 0.00  | [mm²]<br>2,876 | [mm²]<br>7,354 | [mm]<br>7.5 | [mm]<br>25.0 | [N]<br>2,273,8           |
| Acciaio<br>4             | 0 76             | 705               | 2,519            | _     | 140           | 110          | 240,033          | 113,307          | 434,030            | 71                       | 0.00 | 0.00  | 2,070          | 7,004          | 7.5         | 23.0         | 42                       |
|                          | 50%              | 478               | 448              | -     | NS            | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 100%             | 155               | -3               | -91   | NS            | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0                  | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Pilastro<br>Acciaio<br>6 | 0%               | 694               | 2,304            | 2     | NS            | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 50%              | 387               | 440              | 2     | NS            | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 100%             | 81                | -5               | -11   | NS            | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
| Pilastro<br>Acciaio<br>2 | 0%               | 694               | 2,304            | -2    | NS            | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 50%              | 387               | 440              | -2    | NS            | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 100%             | 81                | -5               | -11   | NS            | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
| Pilastro<br>Acciaio      | ompitratti<br>0% | 1,650             | 10,418           | -     | 23.04         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
| 4                        | 50%              | 1,377             | 6,374            | -     | 37.66         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0                  | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
|                          | 100%             | 995               | 3,483            | -     | 68.92         | PLS          | 240,033          | 113,507          | 434,836            | 71<br>1,112,0<br>71      | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 42<br>2,273,8<br>42      |
| Pilastro<br>Acciaio<br>6 | 0%               | 1,890             | 10,372           | -12   | 23.09         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
| 0                        | 50%              | 1,535             | 6,336            | -6    | 37.81         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 100%             | 1,360             | 3,453            | -3    | 69.39         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
| Pilastro<br>Acciaio<br>2 | 0%               | 1,890             | 10,372           | 12    | 23.09         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 50%              | 1,535             | 6,336            | 6     | 37.81         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 100%             | 1,360             | 3,453            | 3     | 69.39         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
| quarto re<br>Pilastro    | ompitratt<br>0%  | <b>a</b><br>2,514 | 24,291           | _     | 9.88          | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0                  | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Acciaio<br>4             |                  | ·                 |                  |       |               |              |                  |                  |                    | 71                       |      |       |                |                |             |              | 42                       |
|                          | 50%              | 2,241             | 17,937           | -     | 13.38         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Pilastro                 | 100%             | 1,859<br>3,999    | 12,736<br>24,210 | -41   | 18.85<br>9.88 | PLS<br>PLS   | 240,033          | 113,507          | 434,836<br>434,836 | 1,112,0<br>71<br>1,112,0 | 0.00 | 0.00  | 2,876<br>2,876 | 7,354<br>7,354 | 7.5<br>7.5  | 25.0<br>25.0 | 2,273,8                  |
| Acciaio<br>6             |                  | ŕ                 |                  |       |               |              | ŕ                |                  | ,                  | 71                       |      |       |                |                |             |              | 2,273,8                  |
|                          | 50%              | 3,644             | 17,866           | -30   | 13.39         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0                  | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Dilector                 | 100%             | 3,147             | 12,675           | -20   | 18.87         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0                  | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Pilastro<br>Acciaio<br>2 | 0%               | 3,999             | 24,210           | 41    | 9.88          | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 50%              | 3,644             | 17,866           | 30    | 13.39         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
|                          | 100%             | 3,147             | 12,675           | 20    | 18.87         | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |
| Pilastro                 | npitratta<br>0%  | 3,378             | 43,938           | -     | 5.46          | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0                  | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Acciaio<br>4             |                  | c                 | 05.5=            |       |               | <b>5</b> : - | 040.555          | 440 ===          | 40.4.5==           | 71                       | 2.5- | 0.55  | 0.0==          | <b>3</b> 0- :  |             | 0.5          | 42                       |
|                          | 50%              | 3,105             | 35,276           | -     | 6.80          | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Pilastro                 | 100%             | 2,723<br>3,864    | 27,765<br>43,818 | -8    | 8.65<br>5.48  | PLS<br>PLS   | 240,033          | 113,507          | 434,836<br>434,836 | 1,112,0<br>71            | 0.00 | 0.00  | 2,876<br>2,876 | 7,354<br>7,354 | 7.5<br>7.5  | 25.0<br>25.0 | 2,273,8<br>42<br>2,273,8 |
| Acciaio<br>6             |                  | ·                 |                  |       |               |              |                  |                  |                    | 1,112,0<br>71            |      |       |                |                |             |              | 42                       |
|                          | 50%              | 5,192             | 35,166           | -24   | 6.82          | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0                  | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Di.                      | 100%             | 4,695             | 27,668           | -39   | 8.65          | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0                  | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8                  |
| Pilastro<br>Acciaio<br>2 | 0%               | 3,864             | 43,818           | 8     | 5.48          | PLS          | 240,033          | 113,507          | 434,836            | 1,112,0<br>71            | 0.00 | 0.00  | 2,876          | 7,354          | 7.5         | 25.0         | 2,273,8<br>42            |

|                          |          |       |        |       |      |      |         |         |         |               |      | Pilas | tri - Ver          | ifiche a | pressof | lessione | deviata       |
|--------------------------|----------|-------|--------|-------|------|------|---------|---------|---------|---------------|------|-------|--------------------|----------|---------|----------|---------------|
| Livello                  | % LLI    | N     | Mx     | Mar   | cs   | Tina | Mo      | Rd      | Vc      | Rd            |      |       | Α                  | V        | Tv      | N        | N. ID.        |
| Livello                  | % LLI    | IN    | IVIX   | Му    | CS   | Tipo | Mag     | Min     | Mag     | Min           | Mag  | Min   | Mag                | Min      | Mag     | Min      | NpIRd         |
|                          | [%]      | [N]   | [N·m]  | [N·m] |      |      | [N·m]   | [N·m]   | [N]     | [N]           |      |       | [mm <sup>2</sup> ] | [mm²]    | [mm]    | [mm]     | [N]           |
|                          | 50%      | 5,192 | 35,166 | 24    | 6.82 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
|                          | 100%     | 4,695 | 27,668 | 39    | 8.65 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
| secondo                  | rompitra | tta   |        |       |      |      |         |         |         |               |      |       |                    |          |         |          |               |
| Pilastro<br>Acciaio<br>4 | 0%       | 4,201 | 67,638 | -     | 3.55 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
|                          | 50%      | 3,949 | 57,609 | -     | 4.17 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
|                          | 100%     | 3,587 | 48,568 | -     | 4.94 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
| Pilastro<br>Acciaio<br>6 | 0%       | 7,040 | 67,479 | 280   | 3.53 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
|                          | 50%      | 6,713 | 57,460 | 152   | 4.15 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
|                          | 100%     | 4,000 | 48,430 | 26    | 4.95 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
| Pilastro<br>Acciaio<br>2 | 0%       | 7,040 | 67,479 | -280  | 3.53 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
|                          | 50%      | 6,713 | 57,460 | -152  | 4.15 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |
|                          | 100%     | 4,000 | 48,430 | -26   | 4.95 | PLS  | 240,033 | 113,507 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876              | 7,354    | 7.5     | 25.0     | 2,273,8<br>42 |

# LEGENDA Pilastri - Verifiche a pressoflessione deviata

Livello

Livello del Pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.
Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera % LLI

d'inflessione della trave (LLI), a partire dal suo estremo iniziale

Sforzo Normale.

Мx Vettore Momento intorno a X. My Vettore Momento intorno a Y. McRd Momento Resistente.\*

NpIRd Resistenza Plastica a Sforzo Normale

Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR] = Verifica non richiesta. CS Tipo Tipo di Verifica considerata: PLS = con Modulo di resistenza plastico; ELA = con modulo di resistenza elastico; EFF = con modulo di

resistenza efficace.

VcRd Taglio Resistente per il calcolo di \*

Coefficiente riduttivo per presenza di Taglio.\*

Area resistente a Taglio per Riduzione Momento Resistente.\* Αv Tw Spessore Area resistente a Taglio per Riduzione Momento Resistente.\*

Mag indica il valore per la verifica con modulo di resistenza maggiore e Min indica il valore per la verifica con modulo di resistenza

# PI LASTRI - VERI FI CHE A TAGLI O (Elevazione) per pressoflessione deviata allo SLU

|                       |       |       |       |                      |        |         | Pilastri - Verifi |      |
|-----------------------|-------|-------|-------|----------------------|--------|---------|-------------------|------|
| Livello               | % LLI | CS    | Av    | t Ed                 | VEd    | VcRd    | PianoVrfc         | Min  |
|                       | [%]   |       | [mm²] | [N/mm <sup>2</sup> ] | [N]    | [N]     |                   |      |
| sesto rompitrat       |       |       |       |                      |        |         |                   |      |
| Pilastro Acciaio<br>4 | 0%    | 75.23 | 2,876 | 0.0                  | 5,780  | 434,836 | Piano XX          | 1.00 |
|                       | 50%   | NS    | 2,876 | 0.0                  | 2,534  | 434,836 | Piano XX          | 1.00 |
|                       | 100%  | NS    | 2,876 | 1.6                  | 209    | 432,938 | Piano XX          | 1.00 |
| Pilastro Acciaio<br>6 | 0%    | 75.38 | 2,876 | 0.0                  | 5,768  | 434,785 | Piano XX          | 1.00 |
|                       | 50%   | NS    | 2,876 | 0.0                  | 2,522  | 434,785 | Piano XX          | 1.00 |
|                       | 100%  | NS    | 2,876 | 0.4                  | 316    | 434,381 | Piano XX          | 1.00 |
| Pilastro Acciaio<br>2 | 0%    | 75.38 | 2,876 | 0.0                  | 5,768  | 434,785 | Piano XX          | 1.00 |
|                       | 50%   | NS    | 2.876 | 0.0                  | 2,522  | 434,785 | Piano XX          | 1.00 |
|                       | 100%  | NS    | 2,876 | 0.4                  | 316    | 434,381 | Piano XX          | 1.00 |
| quinto rompitra       |       |       | ,     |                      |        |         |                   |      |
| Pilastro Acciaio      | 0%    | 37.64 | 2,876 | 0.0                  | 11,554 | 434,836 | Piano XX          | 1.00 |
|                       | 50%   | 50.17 | 2,876 | 0.0                  | 8,668  | 434,836 | Piano XX          | 1.00 |
|                       | 100%  | 75.18 | 2,876 | 0.0                  | 5,784  | 434,836 | Piano XX          | 1.00 |
| Pilastro Acciaio<br>6 | 0%    | 37.69 | 2,876 | 0.0                  | 11,535 | 434,785 | Piano XX          | 1.00 |
|                       | 50%   | 50.27 | 2,876 | 0.0                  | 8,649  | 434,785 | Piano XX          | 1.00 |
|                       | 100%  | 75.43 | 2,876 | 0.0                  | 5,764  | 434,785 | Piano XX          | 1.00 |
| Pilastro Acciaio<br>2 | 0%    | 37.69 | 2,876 | 0.0                  | 11,535 | 434,785 | Piano XX          | 1.00 |
|                       | 50%   | 50.27 | 2,876 | 0.0                  | 8,649  | 434,785 | Piano XX          | 1.00 |
|                       | 100%  | 75.43 | 2,876 | 0.0                  | 5,764  | 434,785 | Piano XX          | 1.00 |
| quarto rompitra       | ntta  |       |       |                      | ,      |         |                   |      |
| Pilastro Acciaio<br>4 | 0%    | 25.09 | 2,876 | 0.0                  | 17,328 | 434,836 | Piano XX          | 1.00 |
| •                     | 50%   | 30.11 | 2,876 | 0.0                  | 14,442 | 434,836 | Piano XX          | 1.00 |
|                       | 100%  | 37.62 | 2,876 | 0.0                  | 11,558 | 434,836 | Piano XX          | 1.00 |
| Pilastro Acciaio      | 0%    | 25.13 | 2,876 | 0.0                  | 17,304 | 434,785 | Piano XX          | 1.00 |

|                       |       |       |                    |                      |        |         | Pilastri - Vei | rifiche a taglio |
|-----------------------|-------|-------|--------------------|----------------------|--------|---------|----------------|------------------|
| Livello               | % LLI | CS    | Av                 | t Ed                 | VEd    | VcRd    | PianoVrfc      | Min              |
|                       | [%]   |       | [mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] | [N]    | [N]     |                |                  |
| 6                     |       |       |                    |                      |        |         |                |                  |
|                       | 50%   | 30.16 | 2,876              | 0.0                  | 14,418 | 434,785 | Piano XX       | 1.00             |
|                       | 100%  | 37.70 | 2,876              | 0.0                  | 11,534 | 434,785 | Piano XX       | 1.00             |
| Pilastro Acciaio      | 0%    | 25.13 | 2,876              | 0.0                  | 17,304 | 434,785 | Piano XX       | 1.00             |
| 2                     |       |       |                    |                      |        |         |                |                  |
|                       | 50%   | 30.16 | 2,876              | 0.0                  | 14,418 | 434,785 | Piano XX       | 1.00             |
|                       | 100%  | 37.70 | 2,876              | 0.0                  | 11,534 | 434,785 | Piano XX       | 1.00             |
| terzo rompitrat       |       |       | , , , , ,          |                      | , -    |         |                |                  |
| Pilastro Acciaio      | 0%    | 18.82 | 2,876              | 0.0                  | 23,102 | 434,836 | Piano XX       | 1.00             |
| 4                     |       |       | ,                  |                      | -, -   | ,,,,,,  |                |                  |
|                       | 50%   | 21.51 | 2,876              | 0.0                  | 20,216 | 434,836 | Piano XX       | 1.00             |
|                       | 100%  | 25.09 | 2,876              | 0.0                  | 17,331 | 434,836 | Piano XX       | 1.00             |
| Pilastro Acciaio      | 0%    | 18.84 | 2,876              | 0.1                  | 23,074 | 434,760 | Piano XX       | 1.00             |
| 6                     | 0,0   |       | 2,070              | 0                    | 20,0   | .0.,.00 | 1 14110 751    |                  |
|                       | 50%   | 21.54 | 2,876              | 0.1                  | 20,188 | 434,760 | Piano XX       | 1.00             |
|                       | 100%  | 25.12 | 2,876              | 0.1                  | 17,304 | 434,760 | Piano XX       | 1.00             |
| Pilastro Acciaio      | 0%    | 18.84 | 2,876              | 0.0                  | 23,074 | 434,785 | Piano XX       | 1.00             |
| 2                     | 0 /0  | 10.04 | 2,070              | 0.0                  | 20,074 | 404,703 | 1 10110 700    | 1.00             |
|                       | 50%   | 21.54 | 2,876              | 0.0                  | 20,188 | 434,785 | Piano XX       | 1.00             |
|                       | 100%  | 25.13 | 2,876              | 0.0                  | 17,304 | 434,785 | Piano XX       | 1.00             |
| secondo rompi         |       | 23.13 | 2,070              | 0.0                  | 17,304 | 434,703 | I Idilo XX     | 1.00             |
| Pilastro Acciaio      | 0%    | 15.29 | 2,876              | 0.0                  | 28,440 | 434,836 | Piano XX       | 1.00             |
| 4                     | 0 /8  | 13.23 | 2,070              | 0.0                  | 20,440 | 434,030 | I Idilo XX     | 1.00             |
| 7                     | 50%   | 16.87 | 2,876              | 0.0                  | 25,772 | 434,836 | Piano XX       | 1.00             |
|                       | 100%  | 18.82 | 2,876              | 0.0                  | 23,102 | 434,836 | Piano XX       | 1.00             |
| Dilastra Assisia      | 0%    | 15.30 | 2,876              | 0.0                  | 28,412 | 434,760 | Piano XX       | 1.00             |
| Pilastro Acciaio<br>6 | 0%    | 15.30 | 2,876              | 0.1                  | 28,412 | 434,760 | Plano XX       | 1.00             |
| ь                     | F00/  | 10.00 | 0.070              | 0.4                  | 05.740 | 404 700 | Diama VV       | 1.00             |
|                       | 50%   | 16.89 | 2,876              | 0.1                  | 25,743 | 434,760 | Piano XX       | 1.00             |
| Dila atua Assi i      | 100%  | 18.84 | 2,876              | 0.1                  | 23,073 | 434,760 | Piano XX       | 1.00             |
| Pilastro Acciaio<br>2 | 0%    | 15.30 | 2,876              | 0.1                  | 28,412 | 434,760 | Piano XX       | 1.00             |
|                       | 50%   | 16.89 | 2,876              | 0.1                  | 25,743 | 434,760 | Piano XX       | 1.00             |
|                       | 100%  | 18.84 | 2,876              | 0.1                  | 23,073 | 434,760 | Piano XX       | 1.00             |

# LEGENDA Travi - Verifiche a taglio

Αv

Livello del Pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello

considerato.

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come %

della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR]

Verifica non richiesta.
 Area resistente al taglio.
 Tensione tangenziale da torsione.

t Ed Tensione tangenziale da tol
VEd Taglio di progetto.
VcRd Taglio resistente.
Piano Vrfc Piano di minore resistenza.

Min Rapporto Minimo Momento Plastico/Momento Progetto travi concorrenti.

# PI LASTRI - VERI FI CHE A PRESSOFLESSI ONE DEVI ATA (Elevazione) allo SLD

|                          |            |       |       |       |    |      |         |         |         |               |      | Pilas | tri - Ver | ifiche a | pressof | essione | deviata       |
|--------------------------|------------|-------|-------|-------|----|------|---------|---------|---------|---------------|------|-------|-----------|----------|---------|---------|---------------|
| Livelle                  | 0/ 111     | N     | Mar   | Mar   | CS | Time | Mc      | :Rd     | Vc      | Rd            |      |       | Α         | v        | T۱      | N       | NalDa         |
| Livello                  | % LLI      | N     | Mx    | Му    | CS | Tipo | Mag     | Min     | Mag     | Min           | Mag  | Min   | Mag       | Min      | Mag     | Min     | NpIRd         |
|                          | [%]        | [N]   | [N·m] | [N·m] |    |      | [N·m]   | [N·m]   | [N]     | [N]           |      |       | [mm²]     | [mm²]    | [mm]    | [mm]    | [N]           |
|                          | mpitratta  |       |       |       |    |      |         |         |         |               |      |       |           |          |         |         |               |
| Pilastro<br>Acciaio<br>4 | 0%         | 790   | 31    | 80    | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
|                          | 50%        | 483   | 49    | 4     | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
|                          | 100%       | 135   | -2    | -54   | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
| Pilastro<br>Acciaio<br>6 | 0%         | 710   | 56    | 96    | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
|                          | 50%        | 403   | 28    | 46    | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
|                          | 100%       | 55    | -3    | -6    | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
| Pilastro<br>Acciaio<br>2 | 0%         | 710   | 56    | -96   | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
|                          | 50%        | 403   | 28    | -46   | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
|                          | 100%       | 55    | -3    | -6    | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
| quinto re                | ompitratta | а     |       |       |    |      |         |         |         |               |      |       |           |          |         |         |               |
| Pilastro<br>Acciaio<br>4 | 0%         | 2,421 | 159   | 474   | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
|                          | 50%        | 2,148 | 53    | 160   | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |
|                          | 100%       | 1,766 | -53   | -154  | NS | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0<br>71 | 0.00 | 0.00  | 2,876     | 7,354    | 7.5     | 25.0    | 2,273,8<br>42 |

| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |       |       |       |        |       |      |         |         |         |         |      | Pilas |       |        |     |      | deviata |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-------|-------|--------|-------|------|---------|---------|---------|---------|------|-------|-------|--------|-----|------|---------|
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Livello             | % LLI | N     | Mx    | Му     | cs    | Tipo |         |         |         |         | Mag  | Min   |       |        |     |      | NpIRd   |
| Paint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |       |       |       |        | NS    | PLS  |         |         | [N]     | 1,112,0 | 0.00 | 0.00  |       |        |     |      | 2,273,8 |
| Note   Note   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000                                                                                                                                                                                                   | 6                   | 50%   | 1,576 | 363   | -53    | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pleating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 100%  | 1,204 | -82   | -161   | NS    | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |
| Solit   Soli                                                                                                                                                                                                  | Acciaio             | 0%    | 1,859 | 227   | 483    | NS    | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |
| Note   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                  | 2                   | 50%   | 1,576 | 364   | 53     | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Plastro   No.   A.051   See   1.061   See   1.061   See   See   See   19.182   See   19.183   See   17.18   See   17.18   See   17.18   See   17.18   See                                                                                                                                                                                                   |                     | 100%  | 1,204 | -82   | 161    | NS    | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |
| Accompage   Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       |       |       |        |       |      |         |         |         |         |      |       |       |        |     |      |         |
| Pliastro   Property                                                                                                                                                                                                   | Acciaio             | 0%    | 4,051 | 368   | 1,061  | 96.50 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pliastro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 50%   | 3,778 | 85    | 237    | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Accisio 6 6 50% 2.724 785 9-96 NS PLS 252.034 119.183 434.836 1.112.0 0.00 0.00 2.876 7.354 7.5 25.0 2.273.8   Plicatro 0.0% 3.010 501 1.101 89.08 PLS 252.034 119.183 434.836 1.112.0 0.00 0.00 2.876 7.354 7.5 25.0 2.273.8   Accisio 2 50% 2.724 786 96 NS PLS 252.034 119.183 434.836 1.112.0 0.00 0.00 2.876 7.354 7.5 25.0 2.273.8   Accisio 2 50% 2.724 786 96 NS PLS 252.034 119.183 434.836 1.112.0 0.00 0.00 2.876 7.354 7.5 25.0 2.273.8   Accisio 2 50% 2.724 786 96 NS PLS 252.034 119.183 434.836 1.112.0 0.00 0.00 2.876 7.354 7.5 25.0 2.273.8   Accisio 2 50% 2.724 786 96 NS PLS 252.034 119.183 434.836 1.112.0 0.00 0.00 2.876 7.354 7.5 25.0 2.273.8   Accisio 2 50% 2.724 786 96 NS PLS 252.034 119.183 434.836 1.112.0 0.00 0.00 2.876 7.354 7.5 25.0 2.273.8   Accisio 4 50% 2.724 786 96 NS PLS 252.034 119.183 434.836 1.112.0 0.00 0.00 2.876 7.354 7.5 25.0 2.273.8   Accisio 2 50% 2.738 4   Acci                                                                                                                                                                                                |                     | 100%  | 3,396 | -197  | -587   | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pliastro   Primate   Pliastro   Primate   Pliastro   Primate   P                                                                                                                                                                                                  | Acciaio             | 0%    | 3,010 | 500   | -1,100 | 89.18 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pliastro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 50%   | 2,724 | 785   | -96    | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Accision   Composition   Com                                                                                                                                                                                                  |                     | 100%  | 2,355 | -275  | -599   | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Second   S                                                                                                                                                                                                  | Acciaio             | 0%    | 3,010 | 501   | 1,101  | 89.08 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pilastro   Compite   Com                                                                                                                                                                                                  | _                   | 50%   | 2,724 | 786   | 96     | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pilastro Acciaio   Accia                                                                                                                                                                                                  |                     | 100%  | 2,355 | -275  | 599    | NS    | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |
| Acciaio 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |       | E 004 | 000   | 4.704  | F0.00 | DI O | 050 004 | 440 400 | 404.000 | 4 440 0 | 0.00 | 0.00  | 0.070 | 7.05.4 | 7.5 | 05.0 | 0.070.0 |
| Pilastro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acciaio             |       | ŕ     | 639   | ,      |       |      | ŕ       | ŕ       | ,       | 71      |      |       | ŕ     |        |     |      | 42      |
| Plastro   Acciaio   Color   Plastro   Plastro   Color   Plastro   Color   Plastro   Plastro   Color   Plastro   Plastr                                                                                                                                                                                                  |                     |       | ,     |       |        |       |      | ,       | ,       | ,       | 71      |      |       | ,     | ,      |     |      | 42      |
| Acciaio 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 100%  | 5,026 | -418  | -1,203 | 85.09 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Hiastro Acciaio Acciaio Bilastro O% A 1,000 A                                                                                                                                                                                                 | Acciaio             | 0%    | 4,158 | 853   | -1,818 | 53.65 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pilastro Acciaio 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 50%   | 3,870 | 1,330 | -108   | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Acciaio 2 50% 3,870 1,331 108 NS PLS 252,034 119,183 434,836 1,112,0 0.00 0.00 2,876 7,354 7.5 25.0 2,273,8 42 100% 3,503 -566 1,243 78.89 PLS 252,034 119,183 434,836 1,112,0 0.00 0.00 2,876 7,354 7.5 25.0 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 2,273,8 42 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 100%  | 3,503 | -566  | -1,243 | 78.89 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Secondo   Tompitratia   Tomp                                                                                                                                                                                                  | Acciaio             | 0%    | 4,158 | 854   | 1,818  | 53.64 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Secondo rompitratia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 50%   | 3,870 | 1,331 | 108    | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pilastro<br>Acciaio<br>4         0%<br>50%         7,270<br>7,018         942<br>120         2,668<br>38.28         38.28<br>PLS         PLS         252,034<br>252,034         119,183<br>119,183         434,836<br>434,836         1,112,0<br>71         0.00<br>0.00         0.00<br>2,876         7,354<br>7,354         7.5         25.0<br>2,273,8<br>42           100%<br>100%         6,656<br>6         -701<br>1,296         -1,967<br>51.85         51.85<br>PLS         PLS         252,034<br>119,183         119,183<br>434,836         1,112,0<br>119,183         0.00<br>434,836         0.00<br>1,112,0<br>100         0.00<br>2,876         7,354<br>7,354         7.5         25.0<br>2,273,8<br>25.0         2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2,273,8<br>2, |                     | 100%  | 3,503 | -566  | 1,243  | 78.89 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Filastro Acciaio 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pilastro<br>Acciaio |       |       | 942   | 2,668  | 38.28 | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pilastro Acciaio 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                   | 50%   | 7,018 | 120   | 350    | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pilastro Acciaio 6         0%         5,266         1,236         2,771         35.52         PLS         252,034         119,183         434,836         1,112,0         0.00         0.00         2,876         7,354         7.5         25.0         2,273,8         42           50%         4,996         1,919         205         NS         PLS         252,034         119,183         434,836         1,112,0         0.00         0.00         2,876         7,354         7.5         25.0         2,273,8         42           100%         4,652         -931         1,990         49.04         PLS         252,034         119,183         434,836         1,112,0         0.00         0.00         2,876         7,354         7.5         25.0         2,273,8         42           Pilastro Acciaio 2         0%         5,266         1,238         -2,773         35.49         PLS         252,034         119,183         434,836         1,112,0         0.00         0.00         2,876         7,354         7.5         25.0         2,273,8         42           50%         4,996         1,920         -205         NS         PLS         252,034         119,183         434,836         1,112,0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 100%  | 6,656 | -701  | -1,967 | 51.85 | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |
| Filastro Acciaio 2 50% 4,996 1,920 -205 NS PLS 252,034 119,183 434,836 1,112,0 0.00 0.00 2,876 7,354 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 42 7.5 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 25.0 2,273,8 2                                                                                                                                                                                                | Acciaio             | 0%    | 5,266 | 1,236 | 2,771  | 35.52 | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |
| Pilastro Acciaio 2 50% 4,996 1,920 -205 NS PLS 252,034 119,183 434,836 1,112,0 0.00 0.00 2,876 7,354 7.5 25.0 2,273,8 42 100% 4,652 -932 -1,990 49.03 PLS 252,034 119,183 434,836 1,112,0 0.00 0.00 2,876 7,354 7.5 25.0 2,273,8 119,183 434,836 1,112,0 0.00 0.00 2,876 7,354 7.5 25.0 2,273,8 42 100% 4,652 -932 -1,990 49.03 PLS 252,034 119,183 434,836 1,112,0 0.00 0.00 2,876 7,354 7.5 25.0 2,273,8 42 100% 4,652 -932 -1,990 49.03 PLS 252,034 119,183 434,836 1,112,0 0.00 0.00 2,876 7,354 7.5 25.0 2,273,8 100% 100% 100% 100% 100% 100% 100% 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                   | 50%   | 4,996 | 1,919 | 205    | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
| Pilastro Acciaio 2         0%         5,266         1,238         -2,773         35.49         PLS         252,034         119,183         434,836         1,112,0         0.00         0.00         2,876         7,354         7.5         25.0         2,273,8         42           50%         4,996         1,920         -205         NS         PLS         252,034         119,183         434,836         1,112,0         0.00         0.00         2,876         7,354         7.5         25.0         2,273,8           100%         4,652         -932         -1,990         49.03         PLS         252,034         119,183         434,836         1,112,0         0.00         0.00         2,876         7,354         7.5         25.0         2,273,8         42           100%         4,652         -932         -1,990         49.03         PLS         252,034         119,183         434,836         1,112,0         0.00         0.00         2,876         7,354         7.5         25.0         2,273,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 100%  | 4,652 | -931  | 1,990  | 49.04 | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |
| 50%   4,996   1,920   -205   NS   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,652   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8   42   100%   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052   4,052                                                                                                                                                                                                   | Acciaio             | 0%    | 5,266 | 1,238 | -2,773 | 35.49 | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |
| 100%   4,652   -932   -1,990   49.03   PLS   252,034   119,183   434,836   1,112,0   0.00   0.00   2,876   7,354   7.5   25.0   2,273,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 50%   | 4,996 | 1,920 | -205   | NS    | PLS  | 252,034 | 119,183 | 434,836 |         | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 100%  | 4,652 | -932  | -1,990 | 49.03 | PLS  | 252,034 | 119,183 | 434,836 | 1,112,0 | 0.00 | 0.00  | 2,876 | 7,354  | 7.5 | 25.0 | 2,273,8 |

LEGENDA Pilastri - Verifiche a pressoflessione deviata
Livello del Pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello considerato.

|         |       |     |       |       |    |      |       |       |     |     |     | Pilas | tri - Ver | ifiche a           | pressof | lessione | e deviata |
|---------|-------|-----|-------|-------|----|------|-------|-------|-----|-----|-----|-------|-----------|--------------------|---------|----------|-----------|
| Livelle | % 111 | N   | Mar   | Mar   | CC | Tipo | Mo    | Rd    | Vcl | Rd  |     |       | Α         | v                  | T.      | w        | NpIRd     |
| Livello | % LLI | IN  | Mx    | My    | CS | Про  | Mag   | Min   | Mag | Min | Mag | Min   | Mag       | Min                | Mag     | Min      | NPIRa     |
|         | [%]   | [N] | [N·m] | [N·m] |    |      | [N·m] | [N·m] | [N] | [N] |     |       | [mm²]     | [mm <sup>2</sup> ] | [mm]    | [mm]     | [N]       |

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come % della lunghezza libera

d'inflessione della trave (LLI), a partire dal suo estremo iniziale

Sforzo Normale.

N Mx Vettore Momento intorno a X. My McRd Vettore Momento intorno a Y. Momento Resistente.\* NpIRd Resistenza Plastica a Sforzo Normale

CS Tipo Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR] = Verifica non richiesta. Tipo di Verifica considerata: PLS = con Modulo di resistenza plastico; ELA = con modulo di resistenza elastico; EFF = con modulo di

resistenza efficace.

VcRd Taglio Resistente per il calcolo di

Coefficiente riduttivo per presenza di Taglio.\*

Area resistente a Taglio per Riduzione Momento Resistente.\* Tw Spessore Area resistente a Taglio per Riduzione Momento Resistente.\*

Mag indica il valore per la verifica con modulo di resistenza maggiore e Min indica il valore per la verifica con modulo di resistenza

# PI LASTRI - VERI FI CHE A TAGLI O (Elevazione) per pressoflessione deviata allo SLD

|                       |             |          |                |            |                                         |                    | Pilastri - Veri      |              |
|-----------------------|-------------|----------|----------------|------------|-----------------------------------------|--------------------|----------------------|--------------|
| Livello               | % LLI       | CS       | Av             | t Ed       | VEd                                     | VcRd               | PianoVrfc            | Min          |
| sesto rompitra        | [%]         |          | [mm²]          | [N/mm²]    | [N]                                     | [N]                |                      |              |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 1.6        | 111                                     | 432,938            | Piano XX             | 0.00         |
| 4                     | 0,0         |          | 2,070          |            | • • • • • • • • • • • • • • • • • • • • | .02,000            |                      | 0.00         |
|                       | 50%         | NS       | 2,876          | 1.6        | 111                                     | 432,938            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 1.6        | 111                                     | 432,938            | Piano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 0.4        | 197                                     | 434,432            | Piano XX             | 0.00         |
| 6                     |             |          |                |            |                                         |                    |                      |              |
|                       | 50%         | NS       | 2,876          | 0.4        | 197                                     | 434,432            | Piano XX             | 0.00         |
| D                     | 100%        | NS       | 2,876          | 0.4        | 197                                     | 434,432            | Piano XX             | 0.00         |
| Pilastro Acciaio<br>2 | 0%          | NS       | 2,876          | 0.4        | 197                                     | 434,432            | Piano XX             | 0.00         |
| 2                     | 50%         | NS       | 2,876          | 0.4        | 197                                     | 434,432            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 0.4        | 197                                     | 434,432            | Piano XX             | 0.00         |
| quinto rompitra       |             | 110      | 2,070          | 0.1        | 107                                     | 101,102            | Tidilo 701           | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 0.1        | 447                                     | 434,684            | Piano XX             | 0.00         |
| 4                     |             |          | ,              |            |                                         | ,,,,               |                      |              |
|                       | 50%         | NS       | 2,876          | 0.1        | 447                                     | 434,684            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 0.1        | 447                                     | 434,684            | Piano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 1.2        | 599                                     | 433,495            | Piano XX             | 0.00         |
| 6                     |             |          |                |            |                                         |                    |                      |              |
|                       | 50%         | NS       | 2,876          | 1.2        | 599                                     | 433,495            | Piano XX             | 0.00         |
| Dilanta Andria        | 100%        | NS       | 2,876          | 1.2        | 599                                     | 433,495            | Piano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 1.2        | 601                                     | 433,495            | Piano XX             | 0.00         |
| 2                     | 50%         | NS       | 2,876          | 1.2        | 601                                     | 433,495            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 1.2        | 601                                     | 433,495            | Piano XX             | 0.00         |
| quarto rompitr        |             | 140      | 2,070          | 1.2        | 001                                     | 400,400            | Tiallo 700           | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 0.6        | 714                                     | 434,179            | Piano XX             | 0.00         |
| 4                     |             |          | ,              |            |                                         | ,                  |                      |              |
|                       | 50%         | NS       | 2,876          | 0.6        | 714                                     | 434,179            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 0.6        | 714                                     | 434,179            | Piano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 1.8        | 939                                     | 432,735            | Piano XX             | 0.00         |
| 6                     |             |          |                |            |                                         |                    |                      |              |
|                       | 50%         | NS       | 2,876          | 1.8        | 939                                     | 432,735            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 1.8        | 939                                     | 432,735            | Piano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 1.8        | 941                                     | 432,735            | Piano XX             | 0.00         |
| 2                     | 50%         | NS       | 2,876          | 1.8        | 941                                     | 432,735            | Piano XX             | 0.00         |
|                       | 100%        | NS NS    | 2,876          | 1.8        | 941                                     | 432,735            | Piano XX             | 0.00         |
| terzo rompitrat       |             | 140      | 2,070          | 1.0        | 541                                     | 402,700            | Tiano 700            | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 0.8        | 931                                     | 433,926            | Piano XX             | 0.00         |
| 4                     |             |          | ,              |            |                                         |                    |                      |              |
|                       | 50%         | NS       | 2,876          | 0.8        | 931                                     | 433,926            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 0.8        | 931                                     | 433,926            | Piano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 2.3        | 1,204                                   | 432,125            | Piano XX             | 0.00         |
| 6                     |             |          |                |            |                                         |                    |                      |              |
|                       | 50%         | NS       | 2,876          | 2.3        | 1,204                                   | 432,125            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 2.3        | 1,204                                   | 432,125            | Piano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 2.3        | 1,206                                   | 432,125            | Piano XX             | 0.00         |
| 2                     | E00/        | NC       | 2 076          | 2.2        | 1 206                                   | 499 19E            | Piono VV             | 0.00         |
|                       | 50%<br>100% | NS<br>NS | 2,876<br>2,876 | 2.3<br>2.3 | 1,206<br>1,206                          | 432,125<br>432,125 | Piano XX<br>Piano XX | 0.00<br>0.00 |
| secondo rompi         |             | INO      | 2,070          | 2.5        | 1,200                                   | 432,123            | Tiano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 1.3        | 1,113                                   | 433,343            | Piano XX             | 0.00         |
| 4                     | 0,0         |          | 2,0.0          |            | .,                                      | .00,0.0            |                      | 3.00         |
|                       | 50%         | NS       | 2,876          | 1.3        | 1,113                                   | 433,343            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 1.3        | 1,113                                   | 433,343            | Piano XX             | 0.00         |
| Pilastro Acciaio      | 0%          | NS       | 2,876          | 3.2        | 1,393                                   | 431,184            | Piano XX             | 0.00         |
| 6                     |             |          |                |            |                                         |                    |                      |              |
|                       | 50%         | NS       | 2,876          | 3.2        | 1,393                                   | 431,184            | Piano XX             | 0.00         |
|                       | 100%        | NS       | 2,876          | 3.2        | 1,393                                   | 431,184            | Piano XX             | 0.00         |

|                  |       |    |       |                      |       |         | Pilastri - Vei | rifiche a taglio |
|------------------|-------|----|-------|----------------------|-------|---------|----------------|------------------|
| Livello          | % LLI | CS | Av    | t Ed                 | VEd   | VcRd    | PianoVrfc      | Min              |
|                  | [%]   |    | [mm²] | [N/mm <sup>2</sup> ] | [N]   | [N]     |                |                  |
| Pilastro Acciaio | 0%    | NS | 2,876 | 3.2                  | 1,394 | 431,184 | Piano XX       | 0.00             |
| 2                |       |    |       |                      |       |         |                |                  |
|                  | 50%   | NS | 2,876 | 3.2                  | 1,394 | 431,184 | Piano XX       | 0.00             |
|                  | 100%  | NS | 2,876 | 3.2                  | 1,394 | 431,184 | Piano XX       | 0.00             |

LEGENDA Travi - Verifiche a taglio

Livello Livello del Pilastro. L'eventuale lettera tra parentesi distingue i diversi tratti della pilastrata al livello

considerato.

% LLI Posizione della sezione per la quale vengono forniti i valori di sollecitazione e armature, valutata come %

della lunghezza libera d'inflessione della trave (LLI), a partire dal suo estremo iniziale.

CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR]

Av Area resistente al taglio.
t Ed Tensione tangenziale da torsione.

VEd Taglio di progetto.
VcRd Taglio resistente.
PianoVrfc Piano di minore resistenza.

Min Rapporto Minimo Momento Plastico/Momento Progetto travi concorrenti.

# PI LASTRI - VERI FI CHE I NSTABI LI TA' A PRESSOFLESSI ONE DEVI ATA (Elevazione)

| Accial o 6 Flastr 2,02 8,73 8 8 26.7 0.8 0.4 0.06 0.03 0.34 0.49 0.484 0.496 1.000 1.000 1.00 1.00 0.86 0.75 1.00 1.00 1.18787E+0 8A 20.00 0 4 1.000 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |           |         |       |      |     |          |      |      |      |      |       |       |       | Pilas | tri - Ver | rifiche | instab | ilità a | press | oflessi | one deviata |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|-------|------|-----|----------|------|------|------|------|-------|-------|-------|-------|-----------|---------|--------|---------|-------|---------|-------------|
| Plast   Sept     | Pilast    |           |         |       |      |     |          | Lam  | bda  | Alt  | fa   | F     | i     | C     | hi    | Bet       | ta      | ŀ      | <       | Ch    | iTrs    |             |
| Section   Sect   |           | N         | Mx      | My    | CS   | LN  | I FIS    | x-x  | у-у  | x-x  | у-у  | x-x   | у-у   | x-x   | у-у   | х-х       | у-у     | х-х    | у-у     | х-х   | у-у     | NCritico    |
| Plastr   Sel   1,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |         | [N·m] |      | [m] | [m]      |      |      |      |      |       |       |       |       |           |         |        |         |       |         | [N]         |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |           |         |       | NC   | 0.0 | 0.4      | 0.00 | 0.00 | 0.04 | 0.40 | 0.407 | 0.500 | 1 000 | 1 000 | 1.00      | 1.00    | 0.00   | 1.00    | 1.00  | 1.00    | 0.005005    |
| Accing a control of the series |           | 594       |         | -     | INO  |     | 1 - 1    | 0.06 | 0.02 | 0.34 | 0.49 | 0.487 | 0.503 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 1.00    |       |         |             |
| Plast   476   1,72   1   NS   0,9   0,4   0,06   0,03   0,34   0,49   0,487   0,503   1,000   1,000   1,00   1,00   1,00   1,00   1,00   1,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,0   |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         | 0.          |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Accide 1 of 8 of 1 of 1 of 1 of 1 of 1 of 1 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 476       |         | 1     | NS   |     |          | 0.06 | 0.03 | 0.34 | 0.49 | 0.487 | 0.503 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 1.00    |       |         |             |
| 0 6   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.  |           |           | 8       |       |      | 0   | 5        |      |      |      |      |       |       |       |       |           |         |        |         | 0     | 0       | 07          |
| Accidate of 2 or 2 country transport state of 1 country transport state of 2 country transport state of 2 country transport state of 3 co                         |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Accidate   Column     | Pilastr   | 476       |         | 1     | NS   |     |          | 0.06 | 0.03 | 0.34 | 0.49 | 0.487 | 0.503 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 1.00    |       |         |             |
| Plastr   202   8.7   8.8   8.7   8.7   8.8   8.7   8.8   8.8   8.7   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8.8   8   |           |           | 8       |       |      | 0   | 5        |      |      |      |      |       |       |       |       |           |         |        |         | 0     | 0       | 07          |
| March   Marc   |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| O ACCIAI O A CACIAI O  |           | rompi     | tratta  |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Accial of Riastr 2.02 8.73 8 26.7 0.8 0.4 0.06 0.03 0.34 0.49 0.484 0.496 1.000 1.000 1.00 1.00 0.86 0.75 1.00 1.00 1.00 1.07 0.86 0.75 1.00 1.00 1.07 0.878754 0.8 0.4 0.06 0.03 0.34 0.49 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.75 1.00 1.00 1.1878754 0.8 0.4 0.06 0.03 0.34 0.49 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.1878754 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           |         | -     |      |     |          | 0.06 | 0.02 | 0.34 | 0.49 | 0.484 | 0.496 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 1.00    |       |         |             |
| 0 A Colai O A Co |           | 2         | 5       |       | 2    | 0   | 0        |      |      |      |      |       |       |       |       |           |         |        |         | 0     | 0       | 08          |
| Plastr   2,02   8,73   8   26,7   0.8   0.4   0.6   0.03   0.34   0.49   0.484   0.496   1.000   1.000   1.00   1.00   0.86   0.75   1.00   1.00   1.18787E-0   0.8   0.75   0.00   0.00   0.18787E-0   0.8   0.8   0.75   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00    |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Acciai o 6 6 6 8 7 0 8 0.0 1.18787E+ O 8 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 2,02      | 8,73    | 8     | 26.7 | 0.8 | 0.4      | 0.06 | 0.03 | 0.34 | 0.49 | 0.484 | 0.496 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 0.75    | 1.00  | 1.00    | 1.18787E+   |
| 0 6 8 8 20.2 8.7 8 8 20.7 0.8 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 6         | 6       |       | 7    | 0   | 0        |      |      |      |      |       |       |       |       |           |         |        |         | 0     | 0       | 08          |
| Plastr   2,02   8,73   8   26.7   0.8   0.4   0.06   0.03   0.34   0.49   0.484   0.496   1.000   1.000   1.00   1.00   1.00   0.86   0.75   1.00   1.00   0.86   0.75   0.00   0.8787E+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Accial 0 2   Variable   Variable  |           | 2,02      | 8,73    | 8     | 26.7 | 0.8 | 0.4      | 0.06 | 0.03 | 0.34 | 0.49 | 0.484 | 0.496 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 0.75    | 1.00  | 1.00    | 1.18787E+   |
| Q Z         Valuation Surplivation         Value (September 1988)         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0         | 6         | 6       |       | 7    | 0   | 0        |      |      |      |      |       |       |       |       |           |         |        |         | 0     | 0       | 08          |
| Pilastr   5,08   23,8   -   9,86   0.8   0.4   0.06   0.02   0.34   0.49   0.484   0.496   1.000   1.000   1.00   1.00   0.86   1.00   1.00   1.00   0.86   1.00   1.00   1.8787E+   0.8   0.8   0.4   0.496   0.484   0.496   0.484   0.496   1.000   1.000   1.00   0.86   0.86   1.00   1.00   0.86   0.86   1.00   1.8787E+   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8   0.8      |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Filastr   Solution     |           | romni     | itratta |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Acciai o 4   Acciai o 4   Acciai o 4   Acciai o 6   Acciai o 7   Acciai o 8   Acciai o 9   Acciai o 9   Acciai o 8   Acciai o 9   Accia | •         |           |         | -     | 9.86 | 0.8 | 0.4      | 0.06 | 0.02 | 0.34 | 0.49 | 0.484 | 0.496 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 1.00    | 1.00  | 1.00    | 1.18787E+   |
| 0 4 Pllastr 0 3.57 23.7 33 9.93 0.8 0.4 0.06 0.03 0.34 0.49 0.484 0.496 1.000 1.00 1.00 1.00 0.86 0.86 1.00 1.00 1.18787E+ 0 8.6 0.4 0.6 0.86 0.86 0.86 0.86 0.86 0.86 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 4         | 17      |       |      | 0   | 0        |      |      |      |      |       |       |       |       |           |         |        |         | 0     | 0       | 08          |
| Plastr o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| O Acciai o 6 Pilastr 3,57 23,7 33 9.93 0.8 0.4 0.06 0.03 0.34 0.49 0.484 0.496 1.000 1.000 1.00 1.00 0.86 0.86 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.86 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.86 1.00 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0 0.484 0.496 1.000 1.000 1.000 1.00 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.18787E+ 0 0.484 0.496 1.000 1.000 1.000 1.00 0.86 0.75 1.00 1.00 1.38831E+ 0 0.484 0.496 0.496 0.484 0.496 1.000 1.000 1.000 1.00 1.00 0.86 0.75 1.00 1.00 1.38831E+ 0 0.484 0.496 0.496 0.492 0.492 1.000 1.000 1.000 1.00 1.00 0.86 0.77 1.00 1.00 1.38831E+ 0 0.484 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0.496 0. |           | 3,57      | 23,7    | 33    | 9.93 | 0.8 | 0.4      | 0.06 | 0.03 | 0.34 | 0.49 | 0.484 | 0.496 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 0.86    | 1.00  | 1.00    | 1.18787E+   |
| 0 6 Pilastr o Acciai o 2 Pilastr o 0 8 8 8 8 8 8 9 9 8 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0         |           |         |       |      | 0   | 0        |      |      |      |      |       |       |       |       |           |         |        |         | 0     | 0       | 08          |
| Pilastr o a state   Pila   |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| o Acciai o 2         3         25           8         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | 3 57      | 23 7    | 33    | 9 93 | 0.8 | 0.4      | 0.06 | 0.03 | 0.34 | 0.49 | 0 484 | 0 496 | 1 000 | 1 000 | 1 00      | 1 00    | 0.86   | 0.86    | 1 00  | 1 00    | 1 18787F+   |
| 0 2         terzo rompitratia           Filastr 7,33   43,9   -   5.37   0.8   0.4   0.06   0.02   0.34   0.49   0.484   0.496   1.000   1.000   1.00   1.00   1.00   0.86   1.00   1.00   1.18787E+ 0   0.8   0.4   0.496   0.484   0.496   1.000   1.000   1.00   1.00   1.00   0.86   0.75   1.00   1.00   1.18787E+ 0   0.8   0.4   0.496   0.484   0.496   0.484   0.496   1.000   1.000   1.00   1.00   0.86   0.75   1.00   1.00   1.18787E+ 0   0.8   0.4   0.496   0.484   0.496   0.484   0.496   1.000   1.000   1.00   1.00   0.86   0.75   1.00   1.00   1.18787E+ 0   0.8   0.4   0.496   0.484   0.496   0.484   0.496   1.000   1.000   1.00   1.00   0.86   0.75   1.00   1.00   0.86   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.75   0.00   0.866   0.00   0.00   0.866   0.00   0.00   0.866   0.00   0.00   0.866   0.00   0.866   0.00   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00   0.866   0.00                                                                                                      |           |           |         |       | 0.00 |     |          | 0.00 | 0.00 | 0.0. | 00   | 00.   | 000   |       |       |           |         | 0.00   | 0.00    |       |         | 08          |
| Priority    |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Filastr 7,33 43,9 - 5.37 0.8 0.4 0.06 0.02 0.34 0.49 0.484 0.496 1.000 1.000 1.00 1.00 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | omniti    | ratta   |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Acciai o 4 Pilastr 5,12 43,8 27 5.40 0.8 0.4 0.06 0.03 0.34 0.49 0.484 0.496 1.000 1.000 1.00 1.00 0.86 0.75 1.00 1.00 1.087 0.88 0.75 0.80 0.88 0.75 0.80 0.88 0.75 0.80 0.88 0.75 0.80 0.88 0.75 0.80 0.88 0.75 0.80 0.88 0.75 0.80 0.88 0.75 0.80 0.88 0.75 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |           |         | -     | 5.37 | 0.8 | 0.4      | 0.06 | 0.02 | 0.34 | 0.49 | 0.484 | 0.496 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 1.00    | 1.00  | 1.00    | 1.18787E+   |
| 0 4 Pilastr 5,12 o 1 Acciai o 6         43,8 18 27 5.40 0.8 0.4 0.06 0.03 0.34 0.49 0.484 0.496 1.000 1.000 1.00 1.00 1.00 0.86 0.75 1.00 1.00 1.00 1.00 0.86 0.75 0.00 1.00 1.00 0.86 0.75 0.00 1.00 0.86 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 0         | 38      |       |      | 0   | 0        |      |      |      |      |       |       |       |       |           |         |        |         | 0     | 0       | 08          |
| Pilastr   State   Pilastr   State      |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| o         1         18         8         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 5.12      | 43.8    | 27    | 5.40 | 0.8 | 0.4      | 0.06 | 0.03 | 0.34 | 0.49 | 0.484 | 0.496 | 1.000 | 1.000 | 1.00      | 1.00    | 0.86   | 0.75    | 1.00  | 1.00    | 1.18787E+   |
| 0 6<br>Pilastr<br>0 1         5,12<br>18         43,8<br>18         27         5.40         0.8         0.4         0.06         0.03         0.34         0.49         0.484         0.496         1.000         1.000         1.00         0.86         0.75         1.00         1.00         1.8787E+<br>0 8         0.8           Pilastr<br>0 4         9,54<br>0 4         67,6<br>8         -         3.50<br>4         0.7         0.3         0.06         0.02         0.34         0.49         0.482         0.492         1.000         1.000         1.00         0.86         0.75         1.00         1.00         1.88831E+<br>0 8         0.06         0.02         0.34         0.49         0.482         0.492         1.000         1.000         1.00         0.86         0.77         1.00         1.00         1.38831E+<br>0 8         0.06         0.03         0.06         0.09         0.482         0.492         1.000         1.000         1.00         0.86         0.77         1.00         1.00         1.38831E+<br>0 8         0.492         0.492         1.000         1.000         1.00         0.86         0.77         1.00         1.00         1.38831E+<br>0 9         0.492         0.492         1.000         1.000         1.00         0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         | 08          |
| Pilastr   S,12   43,8   27   5.40   0.8   0.4   0.06   0.03   0.34   0.49   0.484   0.496   1.000   1.000   1.000   1.000   1.000   0.86   0.75   1.00   1.00   1.08787E+   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.88   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0   |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| o         1         18         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 5 10      | 120     | 27    | 5 40 | 0.0 | 0.4      | 0.06 | 0.03 | 0.24 | 0.40 | 0.494 | 0.406 | 1 000 | 1 000 | 1.00      | 1.00    | 0 06   | 0.75    | 1.00  | 1.00    | 1 107075    |
| o 2   Secondo rompitratta  Pilastr   9,54   67,6   - 3.50   0.7   0.3   0.06   0.02   0.34   0.49   0.482   0.492   1.000   1.000   1.000   1.00   0.86   1.00   1.00   1.00   1.00   1.00   0.86   1.00   1.00   0.8831E+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |         | 21    | 5.40 |     |          | 0.00 | 0.03 | 0.34 | 0.49 | 0.464 | 0.490 | 1.000 | 1.000 | 1.00      | 1.00    | 0.00   | 0.75    |       |         | 08          |
| secondo rompitratta           Pilastr         9,54         67,6         -         3.50         0.7         0.3         0.06         0.02         0.34         0.49         0.482         0.492         1.000         1.000         1.00         0.86         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         0.86         1.00         1.00         1.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acciai    |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
| Pilastr         9,54         67,6         -         3.50         0.7         0.3         0.06         0.02         0.34         0.49         0.482         0.492         1.000         1.000         1.00         0.86         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | la ram    | nitrott | •     |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         | L     |         |             |
| o     8     38     4     7       Acciai o 4     9       Pilastr     6,64     67,4     178     3.50     0.7     0.3     0.06     0.03     0.34     0.49     0.482     0.492     1.000     1.000     1.00     1.00     0.86     0.77     1.00     1.00     1.38831E+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |           | -       |       | 3.50 | 0.7 | 0.3      | 0.06 | 0.02 | 0.34 | 0.49 | 0.482 | 0.492 | 1,000 | 1,000 | 1 00      | 1.00    | 0.86   | 1.00    | 1.00  | 1.00    | 1.38831F±   |
| o 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |         |       | 5.00 |     |          | 0.00 | 3.02 | 0.04 | 5.15 | 0.102 | 3.102 |       |       |           |         | 0.00   |         |       |         | 08          |
| Pilastr 6,64 67,4 178 3.50 0.7 0.3 0.06 0.03 0.34 0.49 0.482 0.492 1.000 1.000 1.00 1.00 0.86 0.77 1.00 1.00 1.38831E+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |           |         |       |      |     |          |      |      |      |      |       |       |       |       |           |         |        |         |       |         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 6.64      | 67.4    | 170   | 3 50 | 0.7 | 0.3      | 0.06 | 0.03 | 0.24 | 0.40 | 0.492 | 0.402 | 1 000 | 1 000 | 1.00      | 1.00    | 0 06   | 0.77    | 1.00  | 1.00    | 1 300315    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o Pilastr | 6,64<br>1 |         | 1/0   | 3.50 | 0.7 | 0.3<br>7 | 0.06 | 0.03 | 0.34 | 0.49 | 0.402 | 0.492 | 1.000 | 1.000 | 1.00      | 1.00    | 0.00   | 0.77    | 1.00  | 1.00    | 1.38831E+   |

|                                                |           |            |       |      |     |       |      |      |      |      |       |       |       | Pilas | tri - Ver | ifiche | instab | ilità a | presso | oflessi | one deviata     |
|------------------------------------------------|-----------|------------|-------|------|-----|-------|------|------|------|------|-------|-------|-------|-------|-----------|--------|--------|---------|--------|---------|-----------------|
| Pilast                                         |           |            |       |      |     | LL    | Lam  | bda  | Alt  | fa   | F     | i     | C     | hi    | Bet       | а      | H      | <       | Chi    | Trs     |                 |
| ro                                             | N         | Mx         | Му    | CS   | LN  | I FIS | х-х  | у-у  | х-х  | у-у  | x-x   | у-у   | х-х   | у-у   | х-х       | у-у    | х-х    | у-у     | x-x    | у-у     | NCritico        |
|                                                | [N]       | [N·m]      | [N·m] |      | [m] | [m]   |      |      |      |      |       |       |       |       |           |        |        |         |        |         | [N]             |
| Acciai<br>o 6<br>Pilastr<br>o<br>Acciai<br>o 2 | 6,64<br>1 | 67,4<br>79 | 178   | 3.50 | 0.7 | 0.3   | 0.06 | 0.03 | 0.34 | 0.49 | 0.482 | 0.492 | 1.000 | 1.000 | 1.00      | 1.00   | 0.86   | 0.77    | 1.00   | 1.00    | 1.38831E+<br>08 |

# LEGENDA Pilastri - Verifiche instabilità a pressoflessione deviata

Pilastro Identificativo del Pilastro.

Ν Sforzo Normale

Мx Vettore Momento intorno a x-x (può provocare sbandamento, per instabilità flessotorsionale, intorno al piano y-y). Му Vettore Momento intorno a y-y (Può provocare sbandamento per instabilità flessotorsionale intorno al piano x-x).

CS LN Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR] = Verifica non richiesta.

Luce netta.

LLI FIST Luce libera per instabilità flessotorsionale.

Lambda Lambda Coefficiente di Snellezza adimensionale nel piano di possibile sbandamento (ortogonale rispetto a quello di flessione).

Alfa Fattore di imperfezione.

Coefficiente Fi (per il calcolo di Chi). Chi Fattore di riduzione per instabilità flessionale. Beta Coefficiente di riduzione della luce libera di inflessione.

**NCritico** Sforzo Normale Critico Euleriano. Coefficiente per il calcolo di ChiTrs. Kc

ChiTrs Coefficiente di riduzione ai fini dell'instabilità flessotorsionale.

# PI LASTRI - VERI FI CHE GERARCHI A DELLE RESI STENZE (Elevazione)

|                     |    |           |          |         |    | Pilastri - Verifi | che gerarchia de | elle resistenze |
|---------------------|----|-----------|----------|---------|----|-------------------|------------------|-----------------|
| D                   |    | Nodo iniz | ziale    |         |    | Nodo fina         | ale              |                 |
| Beam                | CS |           | VEd      | VpIRd   | CS |                   | VEd              | VpIRd           |
|                     |    |           | [N]      | [N]     |    |                   | [N]              | [N]             |
| sesto rompitratta   |    |           |          |         |    |                   |                  |                 |
| Pilastro Acciaio 4  | NS | 1,787.16  | 243.00   | 434,280 | NS | 1,787.16          | 243.00           | 434,280         |
| Pilastro Acciaio 6  | NS | 2,542.16  | 171.00   | 434,710 | NS | 2,542.16          | 171.00           | 434,710         |
| Pilastro Acciaio 2  | NS | 2,542.16  | 171.00   | 434,710 | NS | 2,542.16          | 171.00           | 434,710         |
| quinto rompitratta  |    |           |          |         |    |                   |                  |                 |
| Pilastro Acciaio 4  | NS | 658.77    | 660.00   | 434,785 | NS | 658.77            | 660.00           | 434,785         |
| Pilastro Acciaio 6  | NS | 658.23    | 660.00   | 434,432 | NS | 658.23            | 660.00           | 434,432         |
| Pilastro Acciaio 2  | NS | 658.23    | 660.00   | 434,432 | NS | 658.23            | 660.00           | 434,432         |
| quarto rompitratta  |    |           |          |         |    |                   |                  |                 |
| Pilastro Acciaio 4  | NS | 439.02    | 990.00   | 434,634 | NS | 439.02            | 990.00           | 434,634         |
| Pilastro Acciaio 6  | NS | 416.30    | 1,043.00 | 434,204 | NS | 416.30            | 1,043.00         | 434,204         |
| Pilastro Acciaio 2  | NS | 416.30    | 1,043.00 | 434,204 | NS | 416.30            | 1,043.00         | 434,204         |
| terzo rompitratta   |    |           |          |         |    |                   |                  |                 |
| Pilastro Acciaio 4  | NS | 337.13    | 1,289.00 | 434,558 | NS | 337.13            | 1,289.00         | 434,558         |
| Pilastro Acciaio 6  | NS | 322.20    | 1,347.00 | 434,002 | NS | 322.20            | 1,347.00         | 434,002         |
| Pilastro Acciaio 2  | NS | 322.20    | 1,347.00 | 434,002 | NS | 322.20            | 1,347.00         | 434,002         |
| secondo rompitratta |    |           |          |         |    |                   |                  |                 |
| Pilastro Acciaio 4  | NS | 245.97    | 1,766.00 | 434,381 | NS | 245.97            | 1,766.00         | 434,381         |
| Pilastro Acciaio 6  | NS | 247.15    | 1,755.00 | 433,749 | NS | 247.15            | 1,755.00         | 433,749         |
| Pilastro Acciaio 2  | NS | 246.31    | 1,761.00 | 433,749 | NS | 246.31            | 1,761.00         | 433,749         |

# LEGENDA Pilastri - Verifiche gerarchia delle resistenze

Identificativo del beam nel progetto. Beam

CS Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. [VNR] = Verifica non

richiesta.

Rapporto Massimo Taglio Plastico / Taglio Progetto.

VEd Taglio di progetto. VpIRd Taglio Plastico Resistente.

# PI ANI - VERI FI CHE REGOLARI TA' (Elevazione)

| OLARI TÁ DELLA STRUTTURA I N PI ANTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| La configurazione in pianta è compatta e approssimativamente simmetrica rispetto a due direzioni ortogonali, in relazione alla distribuzione di masse e rigidezze                                                                                                                                                                                                                                                                                                                                                                                   | NO      |
| I rapporto tra i lati di un rettangolo in cui l'edificio risulta inscritto è inferiore a 4                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO      |
| Almeno una dimensione di eventuali rientri o sporgenze non supera il 25% della dimensione totale dell'edificio nella corrispondente direzione                                                                                                                                                                                                                                                                                                                                                                                                       | NO      |
| I solai possono essere considerati infinitamente rigidi nel loro piano rispetto agli elementi verticali e sufficientemente resistenti                                                                                                                                                                                                                                                                                                                                                                                                               | SI      |
| La struttura non è regolare i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in piar |
| DLARI TÁ DELLA STRUTTURA I N ALTEZZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Tutti i sistemi resistenti verticali dell'edificio (quali telai e pareti) si estendono per tutta l'altezza dell'edificio                                                                                                                                                                                                                                                                                                                                                                                                                            | NO      |
| Massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla cima dell'edificio (le variazioni di massa da un piano all'altro non superano il 25%, la rigidezza non si abbassa da un piano al sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidata almeno il 50% dell'azione sismica alla base | NO      |
| Il rapporto tra resistenza effettiva e resistenza richiesta dal calcolo nelle strutture intelaiate progettate in Classe di Duttilità Bassa non è significativamente diverso per piani diversi (il rapporto fra la resistenza effettiva e quella richiesta calcolata ad un generico piano non deve differire più del 20% dall'analogo rapporto determinato per un altro piano); può fare eccezione l'ultimo piano di strutture intelaiate di almeno tre piani                                                                                        | NO      |
| Eventuali restringimenti della sezione orizzontale dell'edificio avvengono in modo graduale da un piano al successivo, rispettando i seguenti limiti: ad ogni piano il rientro non supera il 30% della dimensione corrispondente al primo piano, né il 20% della dimensione corrispondente al piano immediatamente sottostante. Fa eccezione l'ultimo piano di edifici di almeno quattro piani per il quale non sono previste limitazioni di restringimento                                                                                         | NO      |

La struttura non è regolare in altezza.

|                     |       |         | Piano  | Riduz | Irreg. | Massa    | Rgd       | SLU     | RI      | Eff       | RRic  |        |  |
|---------------------|-------|---------|--------|-------|--------|----------|-----------|---------|---------|-----------|-------|--------|--|
| Piano               | Quota | Altezza | rigido | Tamp  | Tamp   | SLU      | X         | Υ       | X       | Υ         | X     | Y      |  |
|                     | [m]   | [m]     |        |       |        | [N·s²/m] | [N/cm]    | [N/cm]  | [N]     | [N]       | [N]   | [N]    |  |
| sesto rompitratta   | 5.00  | 1.00    | NO     | NO    | NO     | 125      | 2,328     | 4,391   | 756,717 | 1,600,218 | 4,867 | 7,303  |  |
| quinto rompitratta  | 4.00  | 1.00    | NO     | NO    | NO     | 393      | 8,692     | 16,300  | 851,307 | 1,800,246 | 4,867 | 7,303  |  |
| quarto rompitratta  | 3.00  | 1.00    | NO     | NO    | NO     | 395      | 15,302    | 28,216  | 851,307 | 1,800,246 | 5,331 | 7,303  |  |
| terzo rompitratta   | 2.00  | 1.00    | NO     | NO    | NO     | 395      | 25,867    | 45,663  | 851,307 | 1,800,246 | 6,071 | 8,080  |  |
| secondo rompitratta | 1.00  | 1.00    | NO     | NO    | NO     | 394      | 73,298    | 98,070  | 920,331 | 1,946,211 | 7,841 | 9,569  |  |
| primo rompitratta   | 0.00  | 1.00    | NO     | NO    | NO     | 3,481    | 4,523,173 | 644,487 | 706,846 | 706,846   | 7,036 | 12,333 |  |

LEGENDA

Riduz.Tamp Per i piani con riduzione dei tamponamenti, sono state incrementate le azioni di calcolo per gli elementi verticali (pilastri e pareti) di un fattore 1,4: [S]

= Piano con riduzione dei tamponamenti - [N] = Piano senza riduzione dei tamponamenti.

Irreg.Tamp. Per piani con distribuzione dei tamponamenti in pianta fortemente irregolare, l'eccentricità accidentale è stata incrementata di un fattore pari a 2: [S] =

Distribuzione tamponamenti irregolare fortemente - [N] = Distribuzione tamponamenti regolare.

Piano rigido Massa SLU

ClgTomp

[S] = Impalcato infinitamente rigido nel proprio piano - [N] = Impalcato deformabile. Massa del piano allo Stato Limite Ultimo.

RgdSLU Valori delle Rigidezze di Piano, valutate allo SLU, riferite agli assi X ed Y del riferimento globale. REff Valori delle Resistenze Effettive di Piano, valutate allo SLU, relative al sistema di riferimento globale X, Y, Z. **RRic** Valori delle Resistenze Richieste di Piano, valutate allo SLU, relative al sistema di riferimento globale X, Y, Z.

#### PI ANI - VERI FI CHE AGLI SPOSTAMENTI

|                     |           |          |      |      |       |        |            |            | Piani - Verifiche |
|---------------------|-----------|----------|------|------|-------|--------|------------|------------|-------------------|
| Piano               | Quot<br>a | a za SxD |      | SyD  | TpCol | Slim   | Slim - SxD | Slim - SyD | Note              |
|                     | [m]       | [m]      | [cm] | [cm] |       | [cm]   | [cm]       | [cm]       |                   |
| sesto rompitratta   | 5.00      | 1.00     | 0.08 | 0.04 | R     | 0.5000 | 0.4191     | 0.4576     | Verificato        |
| quinto rompitratta  | 4.00      | 1.00     | 0.08 | 0.04 | R     | 0.5000 | 0.4214     | 0.4586     | Verificato        |
| quarto rompitratta  | 3.00      | 1.00     | 0.07 | 0.04 | R     | 0.5000 | 0.4295     | 0.4622     | Verificato        |
| terzo rompitratta   | 2.00      | 1.00     | 0.05 | 0.03 | R     | 0.5000 | 0.4467     | 0.4699     | Verificato        |
| secondo rompitratta | 1.00      | 1.00     | 0.02 | 0.02 | R     | 0.5000 | 0.4773     | 0.4831     | Verificato        |
| primo rompitratta   | 0.00      | 1.00     | 0.00 | 0.00 | R     | 0.5000 | 0.4985     | 0.4957     | Verificato        |

# LEGENDA Piani - Verifiche allo stato limite di danno/spostamenti

SxD, SyD Componenti dello spostamento differenziale rispetto al piano inferiore (Stato Limite di Danno), relative al sistema di riferimento globale X, Y, Z. Il calcolo

viene condotto per tutte le coppie di punti allineate in verticale; si riportano i valori massimi.

**TpCol** Tipo di collegamento delle tamponature alla struttura: [R] = Rigido - [E] = Elastico. Slim Valore limite dello spostamento differenziale indicato dalla normativa

# PI ANI - VERI FI CHE ALLO SLO (Elevazione)

|                     |      |       |             |       |      |      |      | Pia      | ini - Verifiche allo SLO |
|---------------------|------|-------|-------------|-------|------|------|------|----------|--------------------------|
| Piano               | Quot | Altez | SpAmmSLO    | SpDif | fSLO | Spl  | Diff | ClgTomp  | Note                     |
| Piallo              | а    | za    | Spaililisto | X     | Υ    | X    | Υ    | Cigronip | Note                     |
|                     | [m]  | [m]   | [cm]        | [cm]  | [cm] | [cm] | [cm] |          |                          |
| sesto rompitratta   | 5.00 | 1.00  | 0.33        | 0.07  | 0.04 | 0.27 | 0.30 | R        | Verificato               |
| quinto rompitratta  | 4.00 | 1.00  | 0.33        | 0.06  | 0.04 | 0.27 | 0.30 | R        | Verificato               |
| quarto rompitratta  | 3.00 | 1.00  | 0.33        | 0.06  | 0.03 | 0.28 | 0.30 | R        | Verificato               |
| terzo rompitratta   | 2.00 | 1.00  | 0.33        | 0.04  | 0.03 | 0.29 | 0.31 | R        | Verificato               |
| secondo rompitratta | 1.00 | 1.00  | 0.33        | 0.02  | 0.01 | 0.31 | 0.32 | R        | Verificato               |
| primo rompitratta   | 0.00 | 1.00  | 0.33        | 0.00  | 0.00 | 0.33 | 0.33 | R        | Verificato               |

### LEGENDA Piani - Verifiche allo SLO

SpAmmSLO Spostamento Differenziale rispetto al Piano inferiore Ammissibile. SpDiffSLO Spostamento Differenziale rispetto al Piano inferiore. SpDiff Differenza fra SpAmmSLO e SpDiffSLO nelle direzioni X e Y.

Tipo di Collegamento delle Tamponature alla struttura.

# PI ANI - EFFETTI DEL SECONDO ORDINE (Elevazione)

|                     |       |         |        |        |        |        | Pi     | ani - Effetti de | el second | o ordine |
|---------------------|-------|---------|--------|--------|--------|--------|--------|------------------|-----------|----------|
| Piano               | Quota | Altezza | SxD    | SyD    | Px     | Py     | Tx     | Ту               | х         | у        |
|                     | [m]   | [m]     | [cm]   | [cm]   | [N]    | [N]    | [N]    | [N]              |           |          |
| sesto rompitratta   | 5.00  | 1.00    | 0.6996 | 0.3708 | 1,225  | 1,225  | 1,629  | 1,628            | 0.0053    | 0.0028   |
| quinto rompitratta  | 4.00  | 1.00    | 0.6803 | 0.3625 | 3,865  | 3,865  | 5,913  | 5,909            | 0.0059    | 0.0031   |
| quarto rompitratta  | 3.00  | 1.00    | 0.6116 | 0.3314 | 3,885  | 3,885  | 9,358  | 9,352            | 0.0059    | 0.0032   |
| terzo rompitratta   | 2.00  | 1.00    | 0.4617 | 0.2613 | 3,885  | 3,885  | 11,942 | 11,934           | 0.0050    | 0.0028   |
| secondo rompitratta | 1.00  | 1.00    | 0.1863 | 0.1392 | 3,865  | 3,865  | 13,656 | 13,647           | 0.0023    | 0.0017   |
| primo rompitratta   | 0.00  | 1.00    | 0.0055 | 0.0386 | 50.768 | 50.768 | 24.910 | 24.894           | 0.0001    | 0.0010   |

#### LEGENDA Piani - Effetti del secondo ordine

Nota: le forze sismiche orizzontali agenti sui piani caratterizzati da valori di compresi tra 0.1 e 0.2, sono state incrementate del fattore "1/ (1- )", per portare in conto gli effetti del secondo ordine. [DM 2008 - par. 7.3.1].

SxD, Componenti dello spostamento differenziale rispetto al piano inferiore (Stato Limite Ultimo), relative al sistema di riferimento globale X, Y, Z. Il calcolo viene SyD condotto per tutte le coppie di punti allineate in verticale; si riportano i valori massimi.

Valori del carico verticale del piano utilizzato per il calcolo di " Px, Py

Valori del tagliante di piano utilizzati per il calcolo di "

Coefficienti " " del piano. x, y

#### PLI NTI SU PALI - SOLLECI TAZI ONI E VERI FI CHE ALLO STATO LI MI TE ULTI MO (Fondazione)

|     |     |             |      |     |             |           |             |                    |                    |                    |                    | Р                  | linti su           | ı pali -           | Solled | itazio | ni e ve | rifiche | allo s | tato li | mite u | ltimo |
|-----|-----|-------------|------|-----|-------------|-----------|-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------|--------|---------|---------|--------|---------|--------|-------|
| Pil |     | Dir A       | T.,  | N.  | Dir B       | T.,       | t           | Afs.               | Afs.               | Afi.               | Afi.               | Aft.               | Aft.               | Afp                | CSs.   | CSs.   | CSi.    | CSi.    | CSp    | CSp     | CSt.   | CSt.  |
|     | [N] | Mx<br>[N·m] | [N]  | [N] | Mx<br>[N·m] | Ty<br>[N] | [N/m<br>m²] | [cm <sup>2</sup> ] | A      | Б      | A       | В       | .A     | .Б      | A      | В     |
| 003 | 0   | 69,711      | 139, | 0   | 0           | 0         |             | 3.39               | 0.00               | 6.16               | 0.00               | 0.12               | NAN                | 0.00               |        | 1.60   | -       |         | -      |         | 3.06   | -     |

|      |              |                  |                       |        |        |          |             |                    |                    |                    |                    | ı                  | Plinti sı          | ı pali -           | Solled       | citazio  | ni e ve | rifiche | allo s  | tato li | mite u | ltimo |
|------|--------------|------------------|-----------------------|--------|--------|----------|-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------|----------|---------|---------|---------|---------|--------|-------|
| Pil  |              | Dir A            |                       |        | Dir B  |          | t           | Afs.               | Afs.               | Afi.               | Afi.               | Aft.               | Aft.               | Λfn                | CSs.         | CSs.     | CSi.    | CSi.    | CSp     | CSp     | CSt.   | CSt.  |
| - 11 | N            | Mx               | Ту                    | N      | Mx     | Ту       |             | Α                  | В                  | Α                  | В                  | Α                  | В                  | Αib                | Α            | В        | Α       | В       | .A      | .B      | Α      | В     |
|      | [N]          | [N·m]            | [N]                   | [N]    | [N·m]  | [N]      | [N/m<br>m²] | [cm <sup>2</sup> ] |              |          |         |         |         |         |        |       |
|      |              |                  | 422                   |        |        |          |             |                    |                    |                    |                    |                    |                    |                    |              |          |         |         |         |         |        |       |
|      | Info Palo    |                  | Dia                   | ım. 30 |        | Lung.    | 6           |                    | Tipo               | . Trive            | llato              |                    | Tcnl. in           | opera              |              |          | r. 0.80 |         | C.      | Coes. ( | 0.30   |       |
|      | Car.<br>Lim. | QMaxVr           | t C                   | MaxOrz | QdVı   | rt       | QdVP        | nt                 |                    |                    |                    |                    | MMax               |                    | Tip<br>Rotti | o<br>ura | Prof (  | Cern    | CS V    | ert/    | CS (   | Oriz  |
|      |              | 1425             | 46                    | 17099  | 213    | 290 1557 |             | 771                | 57519              |                    | 73                 | 3007               | 119573             |                    | Palo L       | ungo     |         | 2.25    |         | 1.50    |        | 4.27  |
|      | Pfr.<br>Dev. | N                |                       |        | Mx     |          | Му          |                    | cs                 |                    |                    | ı                  | N ult              |                    |              |          |         | nf      |         |         | St     |       |
|      |              |                  | 20,66                 |        | 55,072 |          |             |                    |                    | 1.03               |                    |                    |                    |                    |              |          |         |         | 6       | 3       |        |       |
|      | Taglio       |                  | Tc CS                 |        |        |          |             | Vwd                | Vwd Vcd            |                    |                    | ,                  | Vwp                |                    | Aft          |          |         | Pst     |         | St      |        |       |
|      |              | 1                | 7,099                 | 0      | 7      |          | 56,169      |                    | 115,0              |                    |                    | 0                  | )                  | 0                  | .00          |          |         |         |         | 00      |        | 8     |
| 005  | 0            |                  | 176                   |        |        |          |             |                    |                    |                    |                    |                    | NAN                |                    |              |          | -       |         | -       | -       | 3.61   | -     |
|      | Info Palo    |                  | Diam. 30              |        | Lung.  | 6        |             | Tipo. Trivellato   |                    |                    |                    | Tcnl. in           | opera              |                    |              | r. 0.80  |         | C.      | Coes. ( | 0.30    |        |       |
|      | Car.<br>Lim. |                  |                       | MaxOrz |        |          |             |                    |                    | QdVLtrl QdOrz      |                    |                    |                    |                    | notti        | o<br>ura |         |         |         |         | CS (   | Oriz  |
|      |              | 1213             | 00                    | 14576  | 213    | 290      | 155         | 771                | 71 57519           |                    |                    | 73007              |                    | 119573             |              | ungo     |         | 2.25    |         | 1.76    |        | 5.01  |
|      | Pfr.<br>Dev. |                  |                       |        |        | Му       |             |                    |                    | cs                 |                    |                    |                    | N ult              |              |          |         |         |         |         | St     |       |
|      |              |                  |                       |        |        |          |             |                    |                    |                    |                    | 1.17 1             |                    |                    |              |          |         |         | 6       |         |        | 8     |
|      | Taglio       |                  |                       | CS     |        |          |             |                    |                    |                    | Vcc                |                    |                    |                    |              |          |         |         | Pst     |         | St     |       |
|      |              | 1.               | 4,576                 |        | 8      | 2        | 56,169      |                    | 115,0              | 64                 |                    | 0                  | 1                  | 0                  | .00          |          | 0.05    |         |         | 00      |        | 8     |
| 001  | 0            |                  | 897                   |        |        |          |             |                    |                    |                    |                    |                    |                    |                    |              |          | -       | -       |         | -       |        | -     |
|      | Info Palo    |                  | Dia                   | m. 30  |        | Lung.    | 6           |                    | Tipo               | . Trive            | llato              |                    | Tcnl. in           | opera              |              |          | r. 0.80 |         | C.      | Coes. ( | 0.30   |       |
|      | Car.<br>Lim. |                  | QMaxVrt QMaxOrz QdVrt |        |        | QdVP     |             |                    |                    |                    |                    | MMax               |                    | HOTTI              | ura          |          |         |         |         | CS (    | Oriz   |       |
|      |              | 121021 14614 213 |                       | 290    | 155    | 771      | 57          | 519                | 73                 | 3007               | 11                 | 9573               | Palo L             | ungo               |              | 2.25     |         | 1.76    |         | 5.00    |        |       |
|      | Pfr.<br>Dev. | N Mx             |                       |        |        |          |             | CS                 |                    | I                  | N ult              |                    |                    |                    |              | nf       | nf      |         | St      |         |        |       |
|      |              |                  |                       | 6      | 47,849 | 9        | -           | 1,043              |                    |                    | 1.17               |                    | 1,794,3            | 302                |              |          | 18      |         |         | 3       |        | 8     |
|      | Taglio       | Tc               |                       | CS     |        | Vc       | C           |                    | Vwd                |                    | Vcd                | 1                  |                    |                    |              | Aft      |         |         | Pst     |         | St     |       |
|      | OFNID A      | 14,614 8 2       |                       |        |        |          |             |                    |                    |                    | 0 0.00             |                    |                    |                    | .00 0.05     |          |         |         | 20.00   |         |        |       |

# LEGENDA Plinti su pali - Sollecitazioni e verifiche allo stato limite ultimo

Identificativo della pilastrata cui il plinto è collegato. Livello Identificativo del livello di appartenenza del plinto.

N, Mx, Ty Componenti della sollecitazione.

Afs.A, Afs.B Armatura superiore esecutiva, rispettivamente nelle direzioni A e B. Afi.A, Afi.B Armatura inferiore esecutiva, rispettivamente nelle direzioni A e B. Afp Armatura a punzonamento esecutiva.

Aft.A, Aft.B Armatura a taglio esecutiva, rispettivamente nelle direzioni A e B.

CSs.A, CSs.B Coefficienti di sicurezza relativi all'armatura superiore, nelle direzioni A e B. [NS] = Non Significativo - Per valori del CS maggiori o uguali a 100. CSi.A, CSi.B Coefficienti di sicurezza relativi all'armatura inferiore, nelle direzioni A e B. [NS] = Non Significativo - Per valori del CS maggiori o uguali a 100. CSp.A, CSp.B Coefficiente di sicurezza relativo all'armatura a punzonamento, nelle direzioni A e B. [NS] = Non Significativo - Per valori del CS maggiori o uguali a 100. CSt.A, CSt.B Coefficienti di sicurezza relativi all'armatura a taglio, nelle direzioni A e B. [NS] = Non Significativo - Per valori del CS maggiori o uguali a 100.

Valore della tensione massima esercitata sul terreno. LEGENDA Verifiche a carico limite verticale e orizzontale

QMaxVrt Carico verticale di progetto allo SLU [N] QMaxOrz Carico orizzontale di progetto allo SLU [N]. OdVrt Resistenza di progetto verticale [N].

QdVPnt Aliquota della resistenza di progetto verticale dovuto alla resistenza alla punta [N]. **QdVLtrl** Aliquota della resistenza di progetto verticale dovuto alla resistenza laterale [N].

OdOrz Resistenza di progetto orizzontale [N].

MMaxOrz Momento massimo lungo il palo per carichi orizzontali [Nm].

Modalita' di rottura per carico limite orizzontale(Palo Corto, Palo Medio, Palo Lungo). Tipo Rottura

**Prof Cern** Profondita' della seconda cerniera plastica [m].

CS Vert Coefficiente di sicurezza per carichi verticali: [NS]= Non significativo. CS Oriz Coefficiente di sicurezza per carichi orizzontali: [NS]= Non significativo.

#### LEGENDA Verifiche a pressoflessione deviata allo SLU

N, Mx, My Valori della terna di sollecitazione cui corrisponde il minimo coefficiente di sicurezza [N].

Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100. (Le sollecitazioni ultime Nu, Mxu, Myu sono date da CS

N, Mx, My moltiplicate per CS).

N ult Sforzo normale ultimo per compressione semplice Diametri delle barre di acciaio nei vertici [mm].

nf Numero delle barre di acciaio. St Diametri delle staffe [mm]. LEGENDA Verifiche a Taglio

Тс Valori della massima sollecitazione di taglio composta in funzione di Tx, Ty e dell'asse neutro [N]. cs Minimo Coefficiente di sicurezza: [NS] = Non Significativo - Per valori di CS maggiori o uguali a 100.

Vcc Taglio ultimo per conglomerato compresso [N]. Il valore è calcolato secondo il punto 4.2.2.3.1 del D.M.9/1/1996 per pilastri. Per pilastri Parete come

definiti dall'Ordinanza 3431 il valore e calcolato secondo le indicazioni del punto 5.4.5.2 della citata Ordinanza.

Vwd Contributo acciaio al taglio ultimo dovuto alle staffe [N]. Vcd Contributo del calcestruzzo al taglio ultimo [N]. Vwp Taglio ultimo dovuto ai ferri piegati [N].

Aft Area di ferro per il taglio per centimetro [cm²/cm].

Passo massimo staffe da Normativa [cm].

Diametri delle staffe [mm].

# PLINTI SU PALI - SOLLECITAZIONI E VERIFICHE ALLO STATO LIMITE DI DANNO (Fondazione)

|     |           |                         |               |       |         |         |                          |                    |                    |                    |                    | Plin               | tisu p             | ali - S            | ollecita | azioni       | e verif | iche a | llo sta | to limi      | te di d | lanno |
|-----|-----------|-------------------------|---------------|-------|---------|---------|--------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|--------------|---------|--------|---------|--------------|---------|-------|
| Pil |           | Dir A                   |               |       | Dir B   |         |                          | Afs.               | Afs.               | Afi.               | Afi.               | Aft.               | Aft.               | Afp                | CSs.     | CSs.         | CSi.    | CSi.   | CSp     | CSp          | CSt.    | CSt.  |
| PII | N         | Mx                      | Ty            | N     | Mx      | Ту      | ,                        | Α                  | В                  | Α                  | В                  | Α                  | В                  | Aip                | Α        | В            | Α       | В      | .A      | .B           | Α       | В     |
|     | [N]       | [N·m]                   | [N]           | [N]   | [N·m]   | [N]     | [N/m<br>m <sup>2</sup> ] | [cm <sup>2</sup> ] |          |              |         |        |         |              |         |       |
| 003 | 0         | 14,639                  | 29,2<br>78    | 0     | 0       | 0       | -                        | 3.39               | 0.00               | 6.16               | 0.00               | 0.12               | NAN                | 0.00               | -        | 1.60         | -       | -      | -       | -            | 3.85    | -     |
|     | Info Palo |                         | Diam. 30 Lung |       |         | Lung. 6 | 6                        |                    | Tipo               | . Trivel           | lato               | T                  | Tcnl. in opera     |                    |          | C.Attr. 0.80 |         |        |         | C.Coes. 0.30 |         |       |
| 005 | 0         | 11,101                  | 22,2<br>02    | 0     | 0       | 0       | -                        | 3.39               | 0.00               | 4.52               | 0.00               | 0.12               | NAN                | 0.00               | -        | 1.40         | -       | -      | -       | -            | 5.08    | -     |
|     | Info Palo |                         | Dia           | m. 30 |         | Lung. 6 | 6                        |                    | Tipo               | . Trivel           | lato               | T                  | Tcnl. in o         |                    |          | C. Att       | r. 0.80 |        | C.      | Coes. C      | 0.30    |       |
| 001 | 0         | 11,099                  | 22,1<br>98    | 0     | 0       | 0       | -                        | 3.39               | 0.00               | 4.52               | 0.00               | 0.12               | NAN                | 0.00               | -        | 1.40         | -       | -      | -       | -            | 5.08    | -     |
|     | Info Palo | Info Palo Diam. 30 Lung |               |       | Lung. 6 | 3       |                          | Tipo               | . Trivel           | lato               | T                  | cnl. in            | opera              |                    | C. Att   | r. 0.80      |         | C.     | Coes. 0 | 0.30         |         |       |

# LEGENDA Plinti su pali - Sollecitazioni e verifiche allo stato limite di danno

Identificativo della pilastrata cui il plinto è collegato. Livello Identificativo del livello di appartenenza del plinto.

Componenti della sollecitazione.

N, Mx, Ty Afs.A, Afs.B Armatura superiore esecutiva, rispettivamente nelle direzioni A e B. Afi.A, Afi.B Armatura inferiore esecutiva, rispettivamente nelle direzioni A e B. Armatura a punzonamento esecutiva.

Afp Aft.A, Aft.B Armatura a taglio esecutiva, rispettivamente nelle direzioni A e B.

CSs.A, CSs.B Coefficienti di sicurezza relativi all'armatura superiore, nelle direzioni A e B. [NS] = Non Significativo - Per valori del CS maggiori o uguali a 100. Coefficienti di sicurezza relativi all'armatura inferiore, nelle direzioni A e B. [NS] = Non Significativo - Per valori del CS maggiori o uguali a 100.

Coefficiente di sicurezza relativo all'armatura a punzonamento, nelle direzioni A e B. [NS] = Non Significativo - Per valori del CS maggiori o uguali a 100. CSi.A, CSi.B CSp.A, CSp.B CSt.A, CSt.B Coefficienti di sicurezza relativi all'armatura a taglio, nelle direzioni A e B. [NS] = Non Significativo - Per valori del CS maggiori o uguali a 100.

Valore della tensione massima esercitata sul terreno.

| INFORMAZIONI GENERALI                                                                        | pag.     | 2      |
|----------------------------------------------------------------------------------------------|----------|--------|
| <u>MATERIALI</u>                                                                             | pag.     | 2      |
| <u>TERRENI</u>                                                                               | pag.     | 3      |
| SEZIONI ASTE                                                                                 | pag.     | 3      |
| PROFILATI ACCIAIO                                                                            | pag.     | 3      |
| CONDIZIONI DI CARICO                                                                         | pag.     | 4      |
| SLE: COMBINAZIONE DI AZIONI QUASI PERMANENTE - COEFFICIENTI                                  | pag.     | 4      |
| SLE: COMBINAZIONE DI AZIONI FREQUENTE - COEFFICIENTI                                         | pag.     | 5      |
| SLE: COMBINAZIONE DI AZIONI RARA - COEFFICIENTI                                              | pag.     | 5      |
| SLU: COMBINAZIONI DI CARICO IN ASSENZA DI SISMA - COEFFICIENTI                               | pag.     | 5      |
| SLU: COMBINAZIONI DI CARICO IN PRESENZA DI SISMA - COEFFICIENTI                              | pag.     | 5      |
| D.M. 14-01-2008                                                                              | pag.     | 5      |
| DATI GENERALI ANALISI SISMICA                                                                | pag.     | 6      |
| RIEPILOGO MODI DI VIBRAZIONE                                                                 | _pag.    | 7      |
| CARICHI SUI NODI (per condizioni di carico non sismiche)                                     | pag.     | 9      |
| CARICHI SUI NODI IN FONDAZIONE (Fondazione)                                                  | pag.     | 10     |
| CARICHI SULLE TRAVI                                                                          | pag.     | 11     |
| NODI - REAZIONI VINCOLARI ESTERNE PER CONDIZIONI DI CARICO NON SISMICHE                      | pag.     | 12     |
| NODI - REAZIONI VINCOLARI ESTERNE PER EFFETTO DEL SISMA                                      | _pag.    | 13     |
| NODI - REAZIONI VINCOLARI ESTERNE PER ECCENTRICITA' ACCIDENTALE                              | pag.     | 13     |
| EDIFICIO - VERIFICHE DI RIPARTIZIONE DELLE FORZE SISMICHE                                    | pag.     | 13     |
| TRAVI PARETE - VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO (Elevazione)         | pag.     | 13     |
| TRAVI PARETE - VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO STATO LIMITE ULTIMO (Eleva: | zione)   | pag. 1 |
| TRAVI PARETE - VERIFICHE PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO (Elevazione)       | pag.     | 15     |
| TRAVI PARETE - VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO STATO LIMITE DI DANNO (Ele  | vazione) | pag. 1 |
| TRAVI PARETE - VERIFICHE PRESSOFLESSIONE RETTA E DEVIATA ALLO STATO LIMITE DI ESERCIZIO (Ele | vazione  | pag. 1 |
| PILASTRI - VERIFICHE A PRESSOFLESSIONE DEVIATA (Elevazione) allo SLU                         | pag.     | 17     |
| PILASTRI - VERIFICHE A TAGLIO (Elevazione) per pressoflessione deviata allo SLU              | pag.     | 18     |
| PILASTRI - VERIFICHE A PRESSOFLESSIONE DEVIATA (Elevazione) allo SLD                         | pag.     | 19     |
| PILASTRI - VERIFICHE A TAGLIO (Elevazione) per pressoflessione deviata allo SLD              | _pag.    | 21     |
| PILASTRI - VERIFICHE INSTABILITA' A PRESSOFLESSIONE DEVIATA (Elevazione)                     | _pag.    | 22     |
| PILASTRI - VERIFICHE GERARCHIA DELLE RESISTENZE (Elevazione)                                 | pag.     | 23     |
| PIANI - VERIFICHE REGOLARITA' (Elevazione)                                                   | pag.     | 24     |
| PIANI - VERIFICHE AGLI SPOSTAMENTI                                                           | pag.     | 24     |
| PIANI - VERIFICHE ALLO SLO (Elevazione)                                                      | pag.     | 24     |
| PIANI - EFFETTI DEL SECONDO ORDINE (Elevazione)                                              | pag.     | 25     |
| PLINTI SU PALI - SOLLECITAZIONI E VERIFICHE ALLO STATO LIMITE ULTIMO (Fondazione)            | pag.     | 25     |
| PLINTI SULPALI - SOLLECITAZIONI E VERIFICHE ALLO STATO LIMITE DI DANNO (Fondazione)          | nad      | 26     |