

Campi di Annabella e Annalisa Modello Elasto-Plastico di Subsidenza Management Summary

Executive Summary

Il presente rapporto illustra i risultati dello studio geomeccanico relativo ai campi di Annabella e Annalisa, effettuato con lo scopo di valutare quantitativamente la subsidenza indotta dall'attività estrattiva. Parametro chiave per la valutazione della subsidenza è la comprimibilità della roccia che è stata descritta attraverso una correlazione regionale con lo stress efficace *in situ*, derivata da misure di compattazione rilevate attraverso marker radioattivi in campi a gas del bacino nord Adriatico. Lo scenario corrispondente al quantile del 50% di tale correlazione permette di riprodurre con elevata accuratezza i dati GPS disponibili. Per tener conto del grado di incertezza dei dati utilizzati, le simulazioni numeriche sono state effettuate anche per gli scenari di comprimibilità corrispondenti ai quantili dell'84% e del 16%. A fine simulazione cioè 30 anni dopo la fine della produzione, la massima subsidenza prevista è compresa tra 6 e 13 cm, mentre la distanza minima del fenomeno dalla linea di costa risulta superiore a 27 km.

Data 19/12/2018

Indice

1	Intro	oduzione	3
2	Mod	lello geomeccanico agli elementi finiti	5
	2.1	Approccio metodologico	5
	2.2	Geometria del modello	5
	2.3	Proprietà dei materiali	6
	2.3.	1 Densità della roccia	6
	2.3.2	2 Peso specifico dei fluidi saturanti	7
	2.3.3	3 Comprimibilità uniassiale	7
	2.4	Inizializzazione e storia di pressione	.11
	2.4.1	1 Stato tensionale iniziale	.11
	2.4.2	2 Storia di pressione	.11
3	Risu	Itati delle analisi eseguite con il modello elasto-plastico	.12
4	Con	fronto con i dati delle stazioni CGPS	.15
	4.1	Stazione CGPS di Annabella	.15
	4.2	Stazione CGPS di Annalisa	.16
B	ibliogra	fia	.17

1 Introduzione

Il presente rapporto illustra i risultati dello studio geomeccanico relativo ai campi di Annabella ed Annalisa, effettuato con lo scopo di valutare quantitativamente la subsidenza indotta dalla coltivazione dei giacimenti. I campi di Annabella ed Annalisa si trovano nel bacino settentrionale del mare Adriatico e ricadono in due diverse concessioni di coltivazione, la A.C18.AG (scadenza in data 03/09/2027) per Annabella e la A.C32.AG per Annalisa (scadenza in data 30/11/2024), di cui Eni è operatore esclusivo (Figura 1) [1].

Le due piattaforme si trovano in direzione Nord-Est rispetto alla costa di Pesaro ad una distanza di circa 35 km. La profondità del fondale marino è di circa 52 m.

Figura 1 – Ubicazione delle concessioni di coltivazione A.C18.AG ed A.C32.AG, e delle piattaforme Annabella ed Annalisa. La presente mappa è un'elaborazione dell'originale del Ministero dello Sviluppo Economico [1].

La valutazione della subsidenza per i campi in esame è stata effettuata con un modello geomeccanico 3D ad elementi finiti (FE) costruito utilizzando il codice di calcolo Abaqus [2]; in tale modello le informazioni relative alla geometria del giacimento, le proprietà petrofisiche e l'evoluzione della pressione sono state ottenute dallo studio fluido-dinamico di giacimento realizzato con il codice di calcolo alle differenze finite (FD) Eclipse [3]. Tale modello è caratterizzato da mappe strutturali comprendenti entrambi i campi: infatti, in ragione della ridotta distanza tra essi (7 km), del loro assetto strutturale in relazione all'assetto geologico dell'area e della continuità laterale delle *facies* di ognuno di essi (Figura 2), nonché dell'assenza di faglie importanti nell'area, è ragionevole assumere che i due giacimenti siano in comunicazione idraulica attraverso l'acquifero interposto. Di conseguenza, anche il presente studio geomeccanico di subsidenza integra entrambi i campi di Annabella ed Annalisa.

Figura 2 – Struttura geologica del giacimento Annabella- Annalisa.

La produzione del giacimento Annabella è stata avviata nell'ottobre 1992 e la produzione cumulativa di gas al 28 febbraio 2018 è pari a 3433 MSm³, con *recovery factor* (RF) del 48%, dato un valore di *gas originally in place* (GOIP) dei soli livelli sviluppati pari a 7143 MSm³.

La produzione del giacimento Annalisa, invece, è stata avviata nel marzo 2000 e la produzione cumulativa di gas al 28 febbraio 2018 è pari a 1900 MSm³, con RF del 50%, dato un valore di GOIP dei soli livelli sviluppati pari a 3802 MSm³.

2 Modello geomeccanico agli elementi finiti

2.1 Approccio metodologico

Lo studio geomeccanico di subsidenza è stato condotto utilizzando il codice FE Abaqus. La costruzione del modello è stata basata sulle seguenti informazioni:

- mappe geologiche dei livelli interessati dal giacimento, estese in misura tale da descrivere interamente non solo le zone mineralizzate ma anche gli acquiferi laterali idraulicamente connessi agli strati produttivi;
- descrizione dettagliata di geometria e geologia dei livelli mineralizzati e degli acquiferi ad essi connessi idraulicamente, riprodotti con accuratezza dalla maglia di calcolo numerica;
- distribuzione di pressione nei livelli mineralizzati e negli acquiferi connessi, calcolata con un modello di flusso 3D Eclipse [4]. Lo studio fluido-dinamico di giacimento è stato comunque protratto per 30 anni oltre la fine della produzione, in modo da considerare l'effetto della successiva evoluzione della pressione nelle regioni mineralizzate e in acquifero;
- descrizione della risposta meccanica della roccia con una legge costitutiva del tipo Cam Clay Modificato, che tiene conto non solo della variazione della comprimibilità uniassiale (*c_m*) con lo stress efficace, ma modella accuratamente anche gli eventuali fenomeni di espansione dei sedimenti soggetti a ripressurizzazione;
- calcolo della compattazione dei livelli mineralizzati e degli acquiferi connessi basato sullo spessore *gross* degli stessi e sulla più aggiornata stima della compressibilità uniassiale, ottenuta da misure in situ effettuate nei pozzi equipaggiati con markers nell'offshore adriatico.

Per quanto riguarda il modello fluido-dinamico, tra i 4 scenari di *forecast* considerati dallo studio di giacimento [4], è stato utilizzato per il modello geomeccanico il caso più pessimistico in termini di previsione della subsidenza, ovvero quello corrispondente alla massima produzione grazie allo sviluppo di 3 *sidetrack*. Esso sarà indicato nel seguito come lo scenario di riferimento.

Nello scenario di comprimibilità *middle*, descritto in §2.3.3 e basato sulla correlazione regionale [6], si prevede che la produzione terminerà il 01/02/2027, quando la produzione cumulativa sarà di 3952.8 MSm³ (RF pari al 52%) da Annabella e di 2184 MSm³ (RF pari al 55%) da Annalisa.

2.2 Geometria del modello

Il modello Eclipse [4] è composto da 332x400x254 celle nelle direzioni I, J e K rispettivamente, per un totale di circa 34 milioni di celle, di cui quasi 8 milioni attive.

Considerato che il modello FE deve essere ulteriormente esteso, è stato necessario effettuare un processo di *upscaling* per limitare il numero dei gradi di libertà.

Per la zona del giacimento, nel modello Abaqus sono stati accorpati verticalmente strati adiacenti inattivi e strati attivi a depressurizzazione nulla. Un ulteriore processo di *upscaling* è stato attuato in direzione orizzontale, unendo tra loro un differente numero di celle a seconda del grado di saturazione a gas.

Il modello fluido-dinamico interessa un'area di circa $55x65 \text{ km}^2$ e a partire dalla sua geometria è stata creata una griglia FE che, per non risentire dell'influenza delle condizioni al contorno imposte ai bordi, è stata estesa (*sideburden*) fino a ricoprire un'area di circa $76x76 \text{ km}^2$.

Il modello complessivo (Figura 3) risulta suddiviso in 154 layer, dal fondo mare fino ad una profondità di 6000 m, per un totale di 528736 elementi, 550935 nodi e 1955462 gradi di libertà.

Figura 3 – Estensione del modello geomeccanico (il riquadro rosso indica l'estensione del modello Eclipse).

Le condizioni al contorno assegnate al modello sono di spostamento nullo alla base e spostamento orizzontale impedito ai lati.

2.3 Proprietà dei materiali

2.3.1 Densità della roccia

Per mezzo dei *density logs* registrati in cinque pozzi, tre di Annabella (1R, 2R e 7R) e due di Annalisa (1R e 2R), è stato possibile ricavare la seguente relazione tra la densità ρ del mezzo poroso e la profondità z:

$$\rho(z) = 1.4142 \cdot (z - z_{fm})^{0.0628} \tag{1}$$

con *z* misurata in metri TVDSS (True Vertical Depth Sub Sea) e ρ in g/cm³, mentre la profondità del fondale marino z_{fm} è pari a 52 m. Per la densità dell'acqua marina è stato assunto il valore di 1030.0 kg/m³. La relazione (1) è stata implementata in forma tabulare nel modello numerico ed è stata utilizzata per il calcolo della tensione verticale totale σ_{ν} .

Eni S.p.A. Development, Ca Operations & Ma Technology

2.3.2 Peso specifico dei fluidi saturanti

Viene fornito al modello FE il valore del peso specifico dei fluidi saturanti. Per ogni regione idromeccanica il valore di γ_f (relativo al gas o all'acqua) è stato considerato costante. Esso è stato determinato partendo dalla profondità del contatto gas-acqua e dalla distribuzione iniziale delle pressioni calcolata dai modelli Eclipse.

2.3.3 Comprimibilità uniassiale

Il parametro geomeccanico chiave nelle simulazioni di subsidenza è la compressibilità uniassiale c_m del materiale. E' oggi comunemente accettato [5] che i valori più attendibili di questo parametro, generalmente funzione non lineare dello stress efficace, siano quelli ottenuti dalle misure *in situ* tramite markers.

Si è, quindi, utilizzata per la stima della compressibilità una correlazione regionale ricavata da uno studio statistico basato sui valori di comprimibilità calcolati su campi dell'Adriatico dotati di marker radioattivi. Tale correlazione tra c_m e tensione verticale efficace σ'_v è stata proposta da Hueckel *et al.* [6] ed è riportata in Figura 4 ove sono rappresentate la miglior stima

$$C_m = 0.01367 \cdot \sigma_v^{\,\prime - 1.16434} \tag{2}$$

ed il quantile superiore al 97.5%. Nella relazione (2) σ'_{ν} è la tensione efficace verticale espressa in bar e c_m è espresso in bar⁻¹. Inoltre in Figura 4 la relazione di Hueckel *et al.* [6] è messa a confronto con quella di Baù et al. [5]; si può osservare come le due risultino analoghe.

Figura 4 – Correlazione tra la comprimibilità uniassiale *c*_m e lo stress efficace *in situ*, derivata da misure su marker nei campi a gas del bacino nord Adriatico (da [6]).

Al fine di tener conto del grado di incertezza dei dati utilizzati, le simulazioni numeriche sono state effettuate per tre differenti scenari di comprimibilità: il più probabile (quantile del 50%), chiamato *middle* e descritto dalla relazione (2); lo scenario *upper* (quantile dell'84%) (3); lo scenario *lower* (quantile del 16%) (4).

$$C_m = 10^{0.234} \cdot 0.0136 \cdot \sigma_v^{\prime - 1.16434}$$

$$C_m = 10^{-0.234} \cdot 0.0136 \cdot \sigma_v^{\prime - 1.16434}$$
(3)
(4)

Si sottolinea che i campi di pressione del modello Eclipse sono stati stimati utilizzando compressibilità dei pori coerenti con il modello geomeccanico.

I valori di tensione verticale efficace necessari per le stime di c_m nelle equazioni (2),(3) e (4) sono stati calcolati tramite:

$$\sigma'_{v} = \sigma_{v} - p \tag{5}$$

dove σ_v è la tensione verticale totale e *p* la pressione dei pori. Quest'ultima è stata estratta dallo studio fluido-dinamico alla profondità di riferimento, mentre σ_v è stata calcolata a partire dalla densità del materiale come riportato nel paragrafo 2.3.1.

In Tabella 1, Tabella 2 e

Tabella 3 sono riportate, per lo scenario di compromibilità middle, le proprietà meccaniche e lo stato tensionale delle 5 regioni di over-burden, delle 5 regioni di under-burden e delle 77 regioni meccaniche in cui è suddiviso il giacimento.

Region	Depth	р	σν	σ'v	Cm	ν	E
#	m		bar		1/bar	-	kPa
OB1	273.9	27.7	45.9	18.2	4.65E-04	0.3	160
OB2	694.8	70.2	131.2	60.9	1.14E-04	0.3	651
OB3	1115.5	112.7	220.2	107.5	5.89E-05	0.3	1260
OB4	1536.5	155.3	311.7	156.4	3.81E-05	0.3	1950
OB5	1957.5	197.8	404.8	207.0	2.75E-05	0.3	2703

Tabella 1 – Proprietà assegnate alle 5 regioni di over-burden, per lo scenario middle.

Tabella 2 – Proprietà assegnate alle 5 regioni di under-burden, per lo scenario middle.

Region	Depth	р	σν	σ'ν	Cm	ν	Е
#	m		bar		1/bar	-	kPa
UB1	3506	354.3	757.1	402.8	1.27E-05	0.3	5867
UB2	4055.5	409.8	884.8	475.0	1.05E-05	0.3	7108
UB3	4605.5	465.4	1013.8	548.4	8.84E-06	0.3	8402
UB4	5155	520.9	1143.6	622.7	7.63E-06	0.3	9742
UB5	5705	576.5	1274.4	698.0	6.68E-06	0.3	11126

Technology

Geologic	Eclipse	ROCKNUM	Depth	р	σv	σ'ν	ø	Cm	λ	ν	E
# Layer		#	m TVDSS		bar		-	1/bar	-		kPa
PLQ-I1	1 - 2	1	2155	241	449	208	0.26	2.74E-05	7.69E-03	0.3	2713
PLQ-I2	3 - 9	2	2161	242	450	208	0.26	2.73E-05	7.68E-03	0.3	2722
PLQ-J2b	10 - 15	3	2259	255	472	218	0.26	2.59E-05	7.63E-03	0.3	2866
PLQ-L	16 - 17	4	2299	256	481	225	0.26	2.50E-05	7.59E-03	0.3	2977
PL3-A	18 - 21	5	2321	260	486	226	0.26	2.48E-05	7.58E-03	0.3	2993
PL3-A2	22 - 25	6	2330	261	488	228	0.26	2.46E-05	7.57E-03	0.3	3020
PL3-A4	26 - 27	7	2359	264	495	231	0.26	2.42E-05	7.55E-03	0.3	3069
PL3-A5	28 - 33	8	2366	264	497	232	0.26	2.40E-05	7.55E-03	0.3	3090
PL3-B2a	34 - 35	9	2398	268	504	236	0.26	2.36E-05	7.53E-03	0.3	3147
PL3-B2b	36 - 37	10	2403	268	505	236	0.26	2.35E-05	7.52E-03	0.3	3155
PL3-B3	38 - 39	11	2405	268	505	237	0.25	2.35E-05	7.42E-03	0.3	3161
PL3-B4	40 - 41	12	2408	269	506	237	0.25	2.35E-05	7.42E-03	0.3	3165
PL3-B5	42 - 43	13	2411	269	507	237	0.25	2.34E-05	7.42E-03	0.3	3171
PL3-B6a	44 - 45	14	2417	269	508	239	0.25	2.33E-05	7.41E-03	0.3	3190
PL3-B6b	46 - 49	15	2423	270	509	239	0.25	2.33E-05	7.41E-03	0.3	3193
PL3-B7a	50 - 51	16	2430	271	511	240	0.25	2.31E-05	7.41E-03	0.3	3210
PL3-B7b	52 - 53	17	2436	272	512	240	0.23	2.31E-05	7.21E-03	0.3	3215
PL3-B7c	54 - 59	18	2441	272	513	241	0.25	2.30E-05	7.40E-03	0.3	3229
PL3-B8	60 - 63	19	2461	274	518	243	0.23	2.28E-05	7.20E-03	0.3	3263
PL3-B10	64 - 65	20	2484	277	523	246	0.28	2.24E-05	7.68E-03	0.3	3311
PL3-B11	66 - 67	21	2488	277	524	247	0.26	2.24E-05	7.47E-03	0.3	3320
PL3-B12	68 - 72	22	2494	278	525	248	0.28	2.23E-05	7.67E-03	0.3	3329
PL3-C	73 - 76	23	2504	279	528	249	0.26	2.22E-05	7.46E-03	0.3	3347
PL3-C2a	77 - 77	24	2575	287	544	257	0.26	2.14E-05	7.42E-03	0.3	3475
PL3-C2b	78 - 79	25	2579	287	545	258	0.26	2.13E-05	7.42E-03	0.3	3488
PL3-C3	80 - 83	26	2583	286	546	259	0.25	2.12E-05	7.31E-03	0.3	3511
PL3-D	84 - 89	27	2591	288	547	260	0.25	2.11E-05	7.31E-03	0.3	3519
PL3-D3	90 - 91	28	2611	289	552	262	0.25	2.09E-05	7.30E-03	0.3	3562
PL3-D4a	92 - 93	29	2618	290	553	263	0.26	2.08E-05	7.39E-03	0.3	3576
PL3-D4b	94 - 99	30	2621	291	554	263	0.26	2.08E-05	7.39E-03	0.3	3577
PL3-D5c	100 - 101	31	2632	293	557	263	0.33	2.08E-05	8.16E-03	0.3	3578
PL3-E	102 - 107	32	2638	293	558	265	0.26	2.06E-05	7.38E-03	0.3	3604
PL3-E3	108 - 109	33	2687	299	569	270	0.25	2.02E-05	7.26E-03	0.3	3686
PL3-E4	110 - 113	34	2691	298	570	272	0.25	2.00E-05	7.26E-03	0.3	3710
PL3-Fa	114 - 115	35	2706	300	573	273	0.25	1.99E-05	7.25E-03	0.3	3736
PL3-Fb	116 - 117	36	2709	300	574	274	0.25	1.98E-05	7.25E-03	0.3	3744
PL3-F1	118 - 119	37	2711	301	575	274	0.25	1.98E-05	7.25E-03	0.3	3743
PL3-F2	120 - 121	38	2714	300	575	276	0.25	1.97E-05	7.24E-03	0.3	3770
PL3-F3	122 - 123	39	2720	302	577	275	0.21	1.98E-05	6.88E-03	0.3	3757
PL3-F4	124 - 125	40	2722	302	577	275	0.21	1.97E-05	6.87E-03	0.3	3767

Tabella 3 – Proprietà assegnate alle 77 regioni di giacimento, per lo scenario middle.

Geologic	Eclipse	ROCKNUM	Depth	р	σν	<u></u> σ' _v	φ	Cm	λ	ν	E
# Layer		#	m TVDSS		bar		-	1/bar	-		kPa
PL3-F5a	126 - 127	41	2742	305	582	277	0.20	1.96E-05	6.78E-03	0.3	3788
PL3-F5b	128 - 129	42	2744	305	582	277	0.20	1.96E-05	6.78E-03	0.3	3792
PL3-F5c	130 - 133	43	2747	305	583	278	0.16	1.95E-05	6.46E-03	0.3	3804
PL3-F7	134 - 135	44	2833	313	602	289	0.24	1.86E-05	7.09E-03	0.3	3992
PL3-F8	136 - 141	45	2838	314	603	290	0.24	1.86E-05	7.09E-03	0.3	3997
PL3-G1	142 - 143	46	2854	316	607	291	0.24	1.85E-05	7.08E-03	0.3	4021
PL3-G2	144 - 145	47	2863	317	609	292	0.24	1.84E-05	7.08E-03	0.3	4035
PL3-G3	146 - 147	48	2867	317	610	293	0.24	1.83E-05	7.07E-03	0.3	4054
PL3-G4	148 - 159	49	2869	316	611	294	0.24	1.83E-05	7.07E-03	0.3	4070
PL3-H1b	160 - 161	50	2980	330	636	306	0.24	1.75E-05	7.02E-03	0.3	4254
PL3-H1c	162 - 163	51	2983	329	637	308	0.24	1.73E-05	7.02E-03	0.3	4284
PL3-H1d	164 - 165	52	2987	329	638	308	0.24	1.73E-05	7.01E-03	0.3	4296
PL3-H1e	166 - 169	53	2990	330	638	309	0.24	1.73E-05	7.01E-03	0.3	4302
PL3-H3	170 - 175	54	3014	330	644	314	0.23	1.69E-05	6.90E-03	0.3	4392
PL3-H6	176 - 179	55	3025	334	646	313	0.23	1.70E-05	6.91E-03	0.3	4367
PL3-H8	180 - 183	56	3078	337	659	322	0.23	1.65E-05	6.87E-03	0.3	4515
PL3-I1	184 - 185	57	3121	344	668	324	0.22	1.63E-05	6.78E-03	0.3	4556
PL3-I2	186 - 187	58	3138	347	672	325	0.22	1.63E-05	6.77E-03	0.3	4569
PL3-I3a	188 - 191	59	3144	348	674	326	0.22	1.62E-05	6.77E-03	0.3	4582
PL3-14	192 - 193	60	3150	349	675	326	0.22	1.62E-05	6.77E-03	0.3	4585
PL3-15	194 - 195	61	3155	349	676	327	0.22	1.62E-05	6.77E-03	0.3	4599
PL3-I6	196 - 199	62	3164	349	678	330	0.22	1.60E-05	6.76E-03	0.3	4645
PL3-18	200 - 201	63	3185	351	683	332	0.22	1.59E-05	6.75E-03	0.3	4681
PL3-J	202 - 203	64	3196	353	686	332	0.21	1.58E-05	6.66E-03	0.3	4687
PL3-J1a	204 - 205	65	3200	354	687	333	0.23	1.58E-05	6.84E-03	0.3	4698
PL3-J1b	206 - 221	66	3202	354	687	333	0.20	1.58E-05	6.58E-03	0.3	4703
PL3-J2a	222 - 223	67	3215	352	690	338	0.21	1.55E-05	6.65E-03	0.3	4786
PL3-J2b	224 - 225	68	3220	352	691	339	0.21	1.55E-05	6.64E-03	0.3	4800
PL3-J3a	226 - 226	69	3226	355	693	338	0.22	1.55E-05	6.73E-03	0.3	4780
PL3-J3b	227 - 228	70	3229	355	693	338	0.22	1.55E-05	6.73E-03	0.3	4786
PL3-J4a	229 - 230	71	3281	362	705	343	0.24	1.53E-05	6.89E-03	0.3	4871
PL3-Ka	231 - 232	72	3298	366	709	344	0.22	1.52E-05	6.71E-03	0.3	4874
PL3-Kb	233 - 234	73	3302	366	710	344	0.24	1.52E-05	6.89E-03	0.3	4882
PL3-Kc	235 - 236	74	3307	367	711	344	0.22	1.52E-05	6.71E-03	0.3	4888
PL3-K2	237 - 238	75	3327	369	716	347	0.23	1.51E-05	6.79E-03	0.3	4933
PL3-K3	239 - 240	76	3334	365	717	353	0.22	1.48E-05	6.68E-03	0.3	5025
PL3-K4	241 - 254	77	3342	370	719	349	0.23	1.50E-05	6.78E-03	0.3	4959

2.4 Inizializzazione e storia di pressione

2.4.1 Stato tensionale iniziale

Per i campi di Annabella ed Annalisa lo sforzo totale verticale è stato calcolato dal gradiente di overburden definito a partire dai density log come descritto nel paragrafo 2.3.1. Lo sforzo orizzontale σ'_h è stato inizializzato partendo da condizioni di tipo edometrico definite come:

$$\sigma'_h = K_0 \cdot \sigma'_v \tag{6}$$

dove K_0 rappresenta il coefficiente di spinta a riposo che è stato posto pari a 0.54 [7].

2.4.2 Storia di pressione

La distribuzione tridimensionale del campo di pressione e la sua evoluzione temporale, così come calcolata dai modelli fluido-dinamici Eclipse, è stata imposta come condizione forzante nei nodi del modello FE corrispondenti ai livelli dei giacimenti e degli acquiferi connessi. Le pressioni sono state importate in 31 step temporali, selezionati in modo che non si verificassero eccessive variazioni di pressione tra due intervalli successivi.

3 Risultati delle analisi eseguite con il modello elasto-plastico

I risultati delle previsioni di subsidenza per i tre scenari considerati sono riportati in Tabella 4 per alcuni step temporali durante e dopo la vita produttiva dei campi. Gli studi, infatti, sono stati protratti fino al 01/01/2057 (a pozzi chiusi) in modo da considerare l'effetto dell'evoluzione della pressione nelle regioni mineralizzate e in acquifero dopo la fine della produzione.

In particolare, sono riportati i valori di massima subsidenza e l'estensione del fenomeno, calcolata come massima distanza del punto di massima subsidenza dalla linea di iso-subsidenza dei 2 cm.

	1-gen	-2018	1-feb	-2027	1-gen-2057		
Scenario	Max sub (cm)	Max estensione (km)	Max sub (cm)	Max estensione (km)	Max sub (cm)	Max estensione (km)	
Lower	5	11	6	11	6	12	
Middle	7	12	9	13	9	14	
Upper	11	13	13	14	13	14	

Tabella 4 – Risultati finali: massima subsidenza ed estensione del fenomeno per i tre scenari considerati.

L'analisi dei risultati consente di osservare che:

- il valore massimo di subsidenza è previsto che venga raggiunto a fine produzione (01/02/2027), per tutti e tre gli scenari di comprimibilità, in corrispondenza del punto di coordinate 2366492 m E, 4899497 m N e risulta pari a 6 cm per lo scenario *lower*, 9 cm per lo scenario *middle* e 13 cm per lo scenario *upper*. L'evoluzione nel tempo della subsidenza valutata in tale punto per i tre scenari è riportata in Figura 5;
- al termine della produzione (01/02/2027), la massima estensione della linea di iso-subsidenza dei 2 cm risulta pari a: 13 km per lo scenario *middle* (Figura 6), 11 km per lo scenario *lower* e 14 km per lo scenario *upper*. Tale distanza aumenta di circa 1 km a fine simulazione (01/01/2057); le curve di iso-subsidenza per lo scenario *middle* a tale data sono rappresentate in Figura 7;
- il fenomeno si esaurisce a circa 27 km dalla linea di costa per i tre scenari considerati. La distanza dalla costa rimane sempre pressoché inalterata tra il 2027 e il 2057, come mostrato in Figura 8 per lo scenario *middle*.

Figura 5 – Evoluzione temporale della subsidenza (cm) nel punto di massimo.

Figura 6 – Curve di iso-subsidenza dei 2 e 5 cm per lo scenario *middle* a fine produzione (01/01/2027).

East [m]

Figura 8 – Evoluzione temporale dell'estensione della linea di iso-subsidenza dei 2 cm per lo scenario middle.

4 Confronto con i dati delle stazioni CGPS

I valori di subsidenza calcolati dal modello numerico sono stati confrontati con quelli misurati dalle stazioni CGPS installate sulle piattaforme di produzione di Annabella e Annalisa.

4.1 Stazione CGPS di Annabella

La stazione CGPS è installata sulla piattaforma di produzione di Annabella in corrispondenza delle coordinate 2366570 m E, 4899010 m N. Il periodo di osservazione in cui sono stati analizzati i dati va dall'8 agosto 2007 al 7 luglio 2018 (Figura 9).

Figura 9 – Dati di spostamento verticale registrati dalla stazione CGPS di Annabella, aggiornati al 07/07/2018.

Il periodo di osservazione copre un intervallo temporale di quasi 11 anni e fornisce un valore di velocità di subsidenza medio di 3.58 mm/anno. Il confronto tra i risultati ottenuti con i 3 scenari del modello geomeccanico e la serie storica misurata con il CGPS è mostrato in Figura 10. Si può osservare come lo scenario *middle* riproduca con precisione gli spostamenti registrati.

Figura 10 – Spostamento verticale misurato e calcolato (cm) alla stazione CGPS di Annabella.

4.2 Stazione CGPS di Annalisa

La stazione CGPS è installata sulla piattaforma di produzione di Annalisa in corrispondenza delle coordinate 2369199 m E, 4892608 m N. Il periodo di osservazione in cui sono stati analizzati i dati va dal 4 ottobre 2007 al 7 luglio 2018 (Figura 11).

Figura 11 – Dati di spostamento verticale registrati dalla stazione CGPS di Annalisa, aggiornati al 07/07/2018.

Il periodo di osservazione copre un intervallo temporale di quasi 11 anni e fornisce un valore di velocità di subsidenza medio pari a 3.97 mm/anno.

Il confronto tra i risultati ottenuti con i tre scenari del modello geomeccanico e la serie storica misurata con il CGPS è mostrato in Figura 12. Si può osservare come, anche per Annalisa, lo scenario *middle* riproduca in maniera accurata la subsidenza rilevata dalla stazione CGPS.

Figura 12 - Spostamento verticale misurato e calcolato (cm) alla stazione CGPS di Annalisa.

In conclusione, il confronto tra i valori predetti dalle simulazioni e i dati da CGPS mostra come lo scenario *middle* riproduca in modo accurato i dati misurati e può essere considerato come scenario di riferimento, mentre lo scenario *upper* sia da considerarsi come una stima pessimistica della subsidenza indotta dalla coltivazione dei giacimenti.

Bibliografia

Eni S.p.A.

Technology

- 1. Ministero dello Sviluppo Economico, Direzione Generale per le Risorse Minerarie ed Energetiche (DGRME): *Elenco delle piattaforme marine e strutture assimilabili* (Dati al 31/12/2012, aggiornamento del 31/08/ 2013).
- 2. AbaqusTM, Simulia, versione 2016hf4.
- 3. EclipseTM, Schlumberger, versione 2017.2.
- 4. Campi di Annabella Annalisa. Aggiornamento modello dinamico 2016. Scheda riassuntiva. EORG IPET-E5149F94-0. Novembre 2018.
- 5. D. Baù, M. Ferronato, G. Gambolati and P. Teatini: *Basin-scale compressibility of the northern Adriatic by the radioactive marker technique*. Géotechnique 52, No. 8, 605–616, 2002.
- 6. T. Hueckel, G. Cassiani, J.H. Prévost and D.A. Walters: *Field Derived Compressibility of Deep Sediments of the Northern Adriatic. Land Subsidence*, Special Volume, Proc. 7th Int. Symp. on Land Subsidence, Shanghai, 2005.
- 7. F.J. Santarelli, M. Brignoli, A. Pellegrino: La scelta del coefficiente di Poisson per formazioni a grande scala 04/1996.