

Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n° 1158 del 17 dicembre 1971, modificata dal D.Lgs. n°114 del 24 aprile 2003)

PONTE SULLO STRETTO DI MESSINA

PROGETTO DEFINITIVO

EUROLINK S.C.p.A.

IMPREGILO S.p.A. (MANDATARIA) SOCIETÀ ITALIANA PER CONDOTTE D'ACQUA S.p.A. (MANDANTE) COOPERATIVA MURATORI E CEMENTISTI - C.M.C. DI RAVENNA SOC. COOP. A.R.L. (MANDANTE) SACYR S.A.U. (MANDANTE) ISHIKAWAJIMA - HARIMA HEAVY INDUSTRIES CO. LTD (MANDANTE)

A.C.I. S.C.P.A. - CONSORZIO STABILE (MANDANTE)

IL PROGETTISTA

Dott. Ing. G. Cassani Ordine Ingegneri Milano n° 20997 Dott. Ing. E. Pagani Ordine Ingegneri Milano n° 15408

Eurolin K

IL CONTRAENTE GENERALE

Project Manager (Ing. P.P. Marcheselli) STRETTO DI MESSINA Direttore Generale e **RUP** Validazione (Ing. G. Fiammenghi)

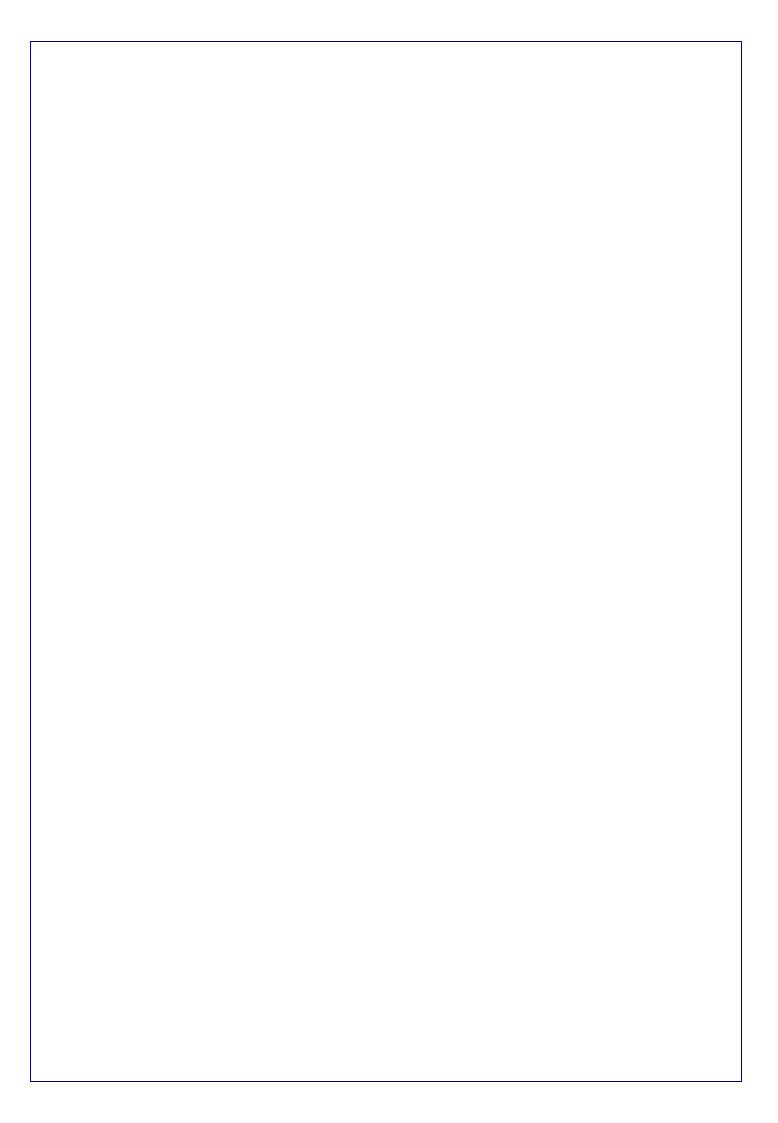
STRETTO DI MESSINA

Amministratore Delegato (Dott. P. Ciucci)

Unità Funzionale **COLLEGAMENTI SICILIA** SS0328_F0

INFRASTRUTTURE STRADALI - OPERE CIVILI

Tipo di sistema


Raggruppamento di opere/attività **ELEMENTI DI CARATTERE GENERALE**

Opera - tratto d'opera - parte d'opera GALLERIA ARTIFICIALE - BALENA - IMBOCCHI LATO RC

> Titolo del documento RELAZIONE TECNICA DELLE OPERE DI IMBOCCO

C G 0 8 0 0 Р R D S С 0 0 G A 0 0 F0 Х S B 2 0 0 0 1 CODICE

REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO
F0	20/06/2011	EMISSIONE FINALE	M.FRANDINO	A.BELLOCCHIO	G.CASSANI

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

INDICE

Iľ	NDICE		3
1	Intro	duzione	8
	1.1	Localizzazione dell'opera	9
2	Norn	ne e Riferimenti	10
	2.1	Criteri di verifica delle opere civili secondo D.M. 14 /01/ 2008	11
	2.1.1	Opere di sostegno (Paratie)	11
	2.1.2	2 Gallerie artificiali	14
3	Softv	vare utilizzati	15
4	Fasi	esecutive delle opere di imbocco	15
	4.1	Premesse	15
	4.2	Paratia di pali di grande diametro	16
	4.3	Esecuzione tiranti	17
	4.4	Esecuzione dei consolidamenti previsti per il concio di attacco	17
	4.5	Ritombamento e sistemazione definitiva del versante	18
5	Inqu	adramento Geologico – Geotecnico	18
	5.1	Descrizione delle litologie presenti sull'area di imbocco	18
	5.2	Campagna di indagini geognostiche 2002-2010	21
	5.3	Caratterizzazione geotecnica di dettaglio	21
	5.3.1	Sabbie e ghiaie di Messina	21
	5.4	Parametri operativi di progetto	26
6	Cara	tteristiche dei materiali	27
7	Verif	iche delle opere provvisionali di imbocco	28
	7.1	Modello di calcolo	28
	7.2	Analisi numeriche	29
	7.3	Criteri di verifica	32
	7.3.1	Stati limite ultimi	32
	7.3.2	Stati limite di esercizio	35
	7.3.3	8 Verifica dei trefoli	35
	7.3.4	Stati limite di progetto	36
	7.4	Definizione dei carichi agenti	37
	7.4.1	Spinta del Terreno	37

8

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

7.4.2	2 Cai	rico accidentale	38
7.4.3	3 Cai	rico sismico	39
7.4.4	4 Cai	rico idraulico	43
7.5	Verific	che strutturali dei pali	43
7.5.1	1 Sta	to limite di esercizio	44
7.	5.1.1	Verifiche a Pressoflessione	44
7.	5.1.2	Analisi degli spostamenti	49
7.5.2	2 Sta	to limite ultimo	51
7.	5.2.1	Verifiche a Pressoflessione	51
7.	5.2.2	Verifiche a taglio	59
7.6	Verific	che strutturali dei tiranti	61
7.6.	1 Ver	ifica dei trefoli	61
7.6.2	2 Ver	ifica dell'ancoraggio	62
7.7	Verific	che strutturali delle travi di ripartizione	65
7.7.	1 Sta	to limite di esercizio	66
7.7.2	2 Sta	to limite ultimo	67
7.8	Verific	che SLU di tipo geotecnico	73
7.8.		ifica collasso per rotazione intorno a un punto dell'opera	
7.8.2	2 Ver	ifica degli ancoraggi allo sfilamento	77
7.8.3	3 Sta	bilità globale del complesso opera terreno	
7.	8.3.1	Analisi dei risultati	80
Verif	fiche st	rutturali della galleria artificiale	82
8.1	Prem	essa	82
8.2	Carat	teristiche dei materiali	83
8.3	Paran	netri geotecnici di calcolo	83
8.4	Sezio	ni di calcolo : tipologia di carichi	84
8.5	Comb	inazione di Carico	87
8.6	Mode	llo di calcolo	88
8.7		i di verifica	
8.8	Verific	che strutturali	90
8.8.	1 Sta	ti limite di esercizio	90
8.	8.1.1	Verifica a Pressoflessione	90
8.	8.1.2	Verifica a fessurazione	97

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

	8.8.2	2 Stat	i limite ultimi	99
	8.8	3.2.1	Verifica a Pressoflessione	99
	8.8	3.2.2	Verifica a taglio	107
	8.8.3	8 Veri	fiche al fuoco	109
	8.8	3.3.1	Premessa	109
	8.8	3.3.2	Metodi di verifica	110
	8.8	3.3.3	Verifica della capacità portante	111
9	Verif	ica dei	muri in c.a	113
	9.1	Preme	ssa	113
	9.2	Criteri	di verifica	114
	9.3	Caratt	eristiche dei materiali	117
	9.4	Param	etri geotecnici di calcolo	117
	9.5	Carich	i agenti	118
	9.6	Verific	he di tipo geotecnico dei muri di sostegno	120
	9.6.1	Geo	metrie del problema	121
	9.6.2	2 Stal	oilità globale del complesso opera terreno	122
	9.6.3	Sco	rrimento sul piano di posa	123
	9.6.4		asso per carico limite dell'insieme fondazione-terreno	
	9.6.5	Riba	altamento	131
	9.7	Verific	he strutturali dei muri di sostegno	133
	9.7.1	Veri	fica a Pressoflessione	134
	9.7.2		fica al taglio	
10) Mo	onitoraç	ggio delle opere di imbocco	142
11			oni	
12		•		
	12.1	•	t paratia H=20m	
	12.1.		OMBINAZIONE E1+E2	
	12.1.		OMBINAZIONE A1+M1	
	12.1.		OMBINAZIONE A2+M2	
	12.2	•	t paratia H=17m	
	12.2.		OMBINAZIONE E1+E2	
	12.2.		OMBINAZIONE A1+M1	
	12.2.	.3 C	OMBINAZIONE A2+M2	298

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

12.3	Output stabilità globale terreno opera : paratia H=20m	. 327
12.4	Output stabilità globale terreno opera : paratia H=17.0m	. 330
12.5	Output verifica galleria artificiale	. 333

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC

Codice documento

Rev F0

Data 20/06/2011

Relazione tecnica delle opere di imbocco SS0328_F0.doc_F0

Eurolink S.C.p.A. Pagina 7 di 445

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0

Data 20/06/2011

1 Introduzione

Nella presente relazione tecnica e di calcolo si analizzano le problematiche progettuali connesse alla realizzazione delle opere di imbocco, lato Reggio Calabria, della Galleria Naturale "Balena", facente parte dei lavori di costruzione dei collegamenti stradali tra il Ponte sullo Stretto e la città di Messina.

Per quanto riguarda le opere di sostegno provvisionali, si è prevista la realizzazione di un'opera costituita da pali trivellati (tipo "Trelicon") a diametro nominale di 1200 mm ed interasse 1,4 m, contrastati mediante tiranti in trefoli, il cui sviluppo planimetrico complessivo è pari a circa 134m. La sistemazione definitiva dell'imbocco prevede, invece, la realizzazione di gallerie artificiali in c.a. policentriche, successivamente ritombate con materiale di risulta degli scavi opportunamente qualificato, con ricoprimenti variabili fino ad un'altezza massima di circa 6.0m: il contenimento dei ritombamenti sarà altresì garantito a mezzo di opportune opere di sostegno (muri in cls) o di vette in cls da realizzarsi in opportune zone della galleria artificiale.

Nei paragrafi che seguono vengono dapprima richiamate le principali caratteristiche (fase conoscitiva) relative al modello geologico—geotecnico dei luoghi rilevate nel corso dei sopralluoghi effettuati in sito e desunte dalle prove disponibili. A seguire, invece, vengono descritte in dettaglio le fasi esecutive previste per la realizzazione delle opere di imbocco provvisionali e definitive, fornendo, altresì, le caratteristiche meccaniche dei materiali impiegati per la realizzazione delle stesse (fase di diagnosi).

Infine, per tutte le opere civili previste, si sono riportati i risultati delle verifiche strutturali svolte in condizioni statiche e sismiche, relativamente alle condizioni più gravose, sia punto di vista geotecnico, che dei carichi agenti (fase di terapia).

Pagina 8 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

1.1 Localizzazione dell'opera

L'opera di imbocco, lato Messina, è ubicata in prossimità della località Marotta (Frazione di Curcuraci) nei pressi della strada comunale Fiumara Larga (vedi fig. 1). La posizione geografica è rintracciabile planimetricamente dalla seguenti coordinate, rappresentative, della zone di imbocco E= 196781 N=535505, mentre dal punto di vista altimetrico risulta compreso tra le quote 110m s.l.m e 128 m s.l.m. L'area di imbocco si imposta su un versante con pendenze variabili tra 28°-33° circa.

Figura 1 - Localizzazione geografica dell'area di imbocco

La posizione delle opere di imbocco è stata scelta in modo avere una copertura minima, pari a circa 5.0m, che consenta la realizzazione delle opere di consolidamento necessarie all'attacco in naturale. In particolare, sulla carreggiata direzione Reggio Calabria, la progressiva di imbocco è prevista alla PK 5+943, mentre, sulla carreggiata direzione Messina, la progressiva di imbocco è prevista alla Pk 6+050.

Eurolink S.C.p.A. Pagina 9 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

Figura 2- Indicazione progressive di imbocco Lato Reggio Calabria

2 Norme e Riferimenti

Nel progetto è stato fatto riferimento alle seguenti Normative ed Istruzioni:

- Circolare 02/02/2009 "Istruzione C.S.LL.PP. per l'applicazione delle Norme Tecniche per le Costruzioni" di cui al D.M. 14 Gennaio 2008
- D.M. 14/01/2008 "Norme Tecniche per le Costruzioni" (pubblicato sulla G.U. n.29 –Suppl. Ordinario n.30 – del 4 febbraio 2008);
- D.M. 14/09/2005 "Norme Tecniche per le Costruzioni" (pubblicato sulla G.U. n.222 del 23 settembre 2005);
- Eurocodice 8 (UNI ENV 1998:5) "Indicazioni progettuali per la resistenza sismica delle strutture Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- EC8_UNI-ENV-1998: "Indicazioni progettuali per la resistenza sismica delle strutture";
- EC7_UNI-ENV-1997: "Progettazione geotecnica";

Pagina 10 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

- EC3 UNI-ENV-1993: "Progettazione delle strutture in acciaio";
- EC2_UNI-ENV-1992: "Progettazione Strutture in c.a.".

2.1 Criteri di verifica delle opere civili secondo D.M. 14 /01/ 2008

Nel presente paragrafo sono illustrate le linee guida utilizzate per il dimensionamento strutturale delle opere di sostegno (paratie di pali tipo "Trelicon") e delle gallerie artificiali policentriche previste nel presente progetto.

In generale la NTC 2008 richiede che le opere siano verificate nei confronti di stati limite di esercizio (SLE) a loro volta distinti in stati limite di operatività (SLO) e stati limite di danno (SLD), e stati limite ultimi (SLU), distinti a loro volta in stati limite di collasso (SLC) e stati limite di salvaguardia della vita umana (SLV). Per le opere in questione si sono svolte verifiche relative agli SLD, per quanto riguarda le condizioni di esercizio, e SLV, per quanto riguarda gli stati limite ultimi: la verifica riferita a questi stati limite comporta che siano implicitamente soddisfatte le verifiche agli SLO e SLC (crf paragrafo 7.1 DM 2008).

2.1.1 Opere di sostegno (Paratie)

Il progetto delle paratie è stato svolto in ottemperanza alla normativa vigente, con riferimento a quanto indicato al paragrafo 6.5.3.1.2. Per il progetto della paratie la NTC 2008 richiede di considerare stati limite ultimi (SLU) di tipo Geotecnico e Strutturale.

Gli SLU di tipo geotecnico (GEO) presi in considerazione nelle verifiche riguardano essenzialmente :

- 1. Collasso per rotazione intorno ad un punto dell'opera (atto di moto rigido)
- 2. Sfilamento di uno o più ancoraggi;
- 3. Instabilità globale dell'insieme terreno-opera.

La verifica al primo punto richiede di considerare tutti i possibili criteri di colloso geotecnico della paratia nel suo insieme; questi possono essere molteplici e, in generale, un moderno programma di calcolo ne tiene già conto quando converge ad una soluzione stabile, in tal modo implicitamente è stato verificato ogni possibile meccanismo di moto rigido.

Eurolink S.C.p.A. Pagina 11 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

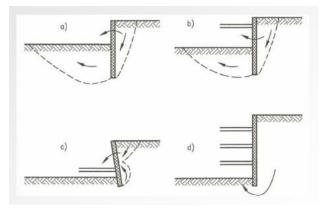


Figura 3- Meccanismi di collasso di una paratia (atto di moto rigido)

Il secondo punto riguarda la classica verifica a sfilamento del bulbo di ancoraggio del tirante, infine il terzo punto riguarda la verifica di stabilità globale terreno-opera ricercando (mediante apposito codice di calcolo) le possibili superfici di scorrimento critiche passanti per il piede della paratia. La normativa prevede anche la verifica di SLU di tipo idraulico (UPL e HYD) che va presa in considerazione qualora le condizioni al contorno, ovvero condizioni idrauliche e caratteristiche di permeabilità dei terreni, permettano l'instaurasi di regimi di filtrazione che inficino la stabilità del fondo scavo.

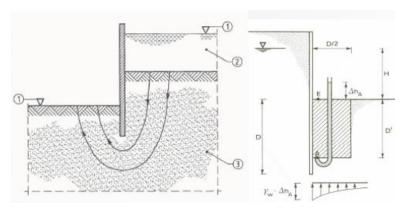


Figura 4- Esempio di verifica a sifonamento del fondo scavo

Gli SLU di tipo strutturale (STR) presi in considerazione hanno riguardano :

- 1. raggiungimento della resistenza in uno o più ancoraggi;
- 2. raggiungimento della resistenza strutturale della paratia.

Per ogni stato limite considerato (GEO e STR) è stata verificata la condizione $E_d \le R_d$, dove Ed è il valore caratteristico dell'azione di progetto ed R_d è la resistenza di progetto.

Pagina 12 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

In particolare la verifica della stabilità globale dell'insieme terreno opera è stata svolta secondo l'approccio 1 e combinazione 2 (A2+M2+R3).

Invece le rimanenti verifiche (sfilamento ancoraggi, verifica strutturale paratia) sono state svolte considerando l'approccio 1 che prevede due tipologie di combinazioni:

- Combinazione 1 : A1+M1+R1

- Combinazione 2: A2+M2+R2

Per quanto concerne invece la verifica strutturale dei tiranti, nonché delle travi di contrasto (vedi NTC al paragrafo 6.6 e circolare 02/02/2009 n° 617 paragrafo C7.11.6.3) è stata svolta con riferimento all'approccio 1 Combinazione 1.

Nelle tabelle riportate di seguito sono stati riportati i coefficienti parziali adottati nelle varie combinazioni richieste dalla norma.

	Coeff. Parzia γ _f		
Azione	A1	A2	
Permanente sfavorevole	1,30	1,00	
Permanente favorevole	1,00	1,00	
Variabile sfavorevole	1,50	1,30	
Variabile favorevole	0,00	0,00	

Tabella 1- Coefficienti Parziale per le azioni o per l'effetto delle azioni

Parametro al quale	applicare	Coeff. Parziale γ _m		
il coefficiente pa	arziale	M1	M2	
Angolo d'attrito	tan φ'	1,00	1,25	
Coesione efficace	C'	1,00	1,25	
Resistenza non drenata	cu	1,00	1,40	
Peso dell'unità di volume	γ	1,00	1,00	

Tabella 2 – Coefficienti Parziali per i parametri geotecnici del terreno

R1	R2	R3 ^(*)
1.0	1.0	1.1

Tabella 3 - Coefficienti Parziali per le resistenze

Eurolink S.C.p.A. Pagina 13 di 445

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

(*) Nella Tabella 3 il fattore R3 corrisponde al fattore R2 previsto dalla NTC al paragrafo 6.5.3.1.1.

Oltre alle verifiche agli stati limite ultimi sono state svolte verifiche in condizioni di esercizio (SLE). Le verifiche agli SLE hanno riguardato essenzialmente l'analisi degli spostamenti dell'opera valutandone la compatibilità con la funzionalità della stessa. Si è altresì verificato che lo stato tensionale dei vari elementi strutturali sia compatibile con il valore ammissibile per i materiali impiegati: poiché le opere in questione in generale rivestono carattere di provvisionalità (si prevede il completo ritombamento in fase definitiva) è stata omessa la verifica a fessurazione.

Infine per quanto riguarda le verifiche sismiche della struttura (SLE e SLU) è stato utilizzato il metodo pesudostatico: l'azione sismica è stata definita mediante un' accelerazione equivalente costante nel tempo e nello spazio. Le componenti dell'accelerazione equivalente orizzontale e verticale sono state ricavate in funzione della proprietà del moto sismico atteso nel volume di terreno significativo per l'opera e della capacità di subire spostamenti senza significative cadute di resistenza. Le azioni sismiche sono state valutate in relazione a un periodo di riferimento (V_R) che dipende dalla vita nominale delle opere e dalla classe d'uso della struttura: in particolare per le opere in questione è stato assunto V_R =35 anni. Per maggiori dettagli si rimanda agli specifici capitoli

2.1.2 Gallerie artificiali

Il progetto delle gallerie artificiali è stato svolto in ottemperanza alla normativa vigente, con riferimento a quanto indicato al capitolo 2 ("Sicurezza delle prestazioni attese").

Le verifiche strutturali agli stati limite ultimi (SLU) sono state svolte con riferimento all'approccio 2, che prevede l'impiego di un'unica combinazione dei gruppi dei coefficienti parziali sia per le azioni , per i materiali e per le resistenze (A1+M1+R3): le verifiche hanno riguardato in particolare il raggiungimento della massima capacità di resistenza della struttura.

Infine le verifiche strutturali agli stati limite di esercizio (SLE) hanno riguardato principalmente la limitazione di danneggiamenti locali che possono ridurre la durabilità e l'efficienza statica della struttura (verifica a fessurazione).

Per quanto riguarda le verifiche sismiche della struttura (SLE e SLU) è stato utilizzato il metodo pseudo-statico: l'azione sismica è stata definita mediante un' accelerazione equivalente costante nel tempo e nello spazio. Le azioni sismiche sono state valutate in relazione a un periodo di

Pagina 14 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

riferimento (V_R) che dipende dalla vita nominale delle opere e dalla classe d'uso della struttura: in particolare per le opere in questione è stato assunto V_R =200 anni. Per maggiori dettagli si rimanda agli specifici capitoli.

3 Software utilizzati

Nella presente relazione di calcolo si fa uso di due codici di calcolo specifici

- PARATIE per Windows, Versione 7.0. Programma per il progetto e la verifica di paratie,
 CEAS:
- SLOPE / W, Versione 10. Programma per l'analisi di stabilità di pendii, prodotto dalla GEOTRU (Reggio Calabria);
- SAP 2000, prodotto dalla COMPUTERS AND STRUCTURES Inc. Berkeley, CA, USA.

4 Fasi esecutive delle opere di imbocco

4.1 Premesse

La realizzazione dell'imbocco in questione prevede l'esecuzione dei seguenti interventi:

- 1. Realizzazione dei pali (tipo "Trelicon") φ1200 interasse 1.40m e della trave di testata;
- 2. Scavo e realizzazione dell'intervento di tirantatura e drenaggio;
- 3. Esecuzione dei consolidamento della sezione di attacco e getto della dima;
- 4. Getto del concio d'attacco e getto di parte della galleria artificiale Lato Reggio Calabria;
- 5. Scavo del primo campo di avanzamento in naturale;
- 6. Avanzamento in naturale secondo la sezione tipo prevista in profilo geomeccanico;
- 7. Realizzazione della galleria artificiale;
- 8. Ritombamento e sistemazione definitiva dell'imbocco.

Ultimata la paratia si potrà procedere all'attacco delle gallerie naturali: in generale si potrà procedere all'inizio degli scavi indifferentemente in carreggiata direzione Messina o Reggio Calabria, purché la successiva distanza tra i fronti di scavo sia maggiore di 40.0m.

In ogni caso, prima di iniziare gli scavi in naturale, dovrà essere getta la dima di attacco, che ha funzione di definire le geometrie di scavo e di costituire un ulteriore elemento di stabilità della

Eurolink S.C.p.A. Pagina 15 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

paratia nella delicata fase di attacco della galleria naturale. Di seguito si riporta una breve descrizione delle fasi realizzative dei principali interventi.

4.2 Paratia di pali di grande diametro

Quale opera di contenimento degli scavi è stata prevista la realizzazione di una paratia di pali, trivellati, di grande diametro (ϕ 1200) posti ad interasse 1.40m, con altezze fuori terra variabili tra 20.0m e 5.0m circa.

Per la realizzazione della paratia si prevedono le seguenti fasi operative:

- 1. Realizzazione dei pali (tipo "Trelicon") ed esecuzione della trave di testata;
- 2. Scavo fino a quota -0.50m dalla quota del primo ordine di tiranti;
- 3. Posa in opera di uno strato di spritz beton dello spessore di 10cm, armato con rete elettrosaldata ϕ 6/ 15 x15cm;
- 4. Realizzazione del primo ordine di tiranti;
- Realizzazione degli ordini di tiranti successivi al primo secondo le modalità descritte nelle fasi 2,3,4;
- 6. scavo fino al raggiungimento della quota prevista per il piazzale.

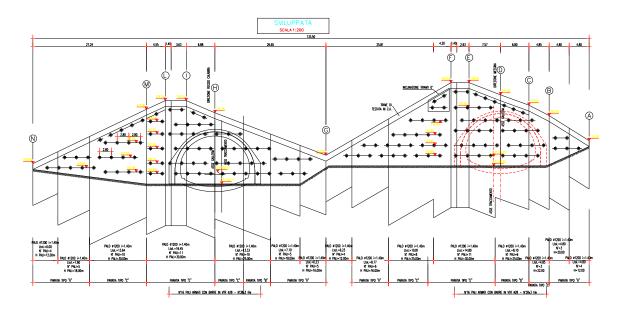


Figura 5- Imbocco Balena lato Reggio Calabria - Sviluppata paratia

Pagina 16 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento \$\$0328_F0.doc_F0 Rev F0

Data 20/06/2011

4.3 Esecuzione tiranti

L'esecuzione dei tiranti provvisori dovrà avvenire secondo le fasi di seguito descritte:

- 1. perforazione secondo la geometria di progetto;
- 2. posa in opera del tirante, dotato di distanziatori e canne per la successiva iniezione del bulbo di ancoraggio;
- 3. iniezione per la formazione la formazione della guaina;
- 4. iniezione per la formazione del bulbo di ancoraggio secondo la lunghezza prevista in progetto:
- 5. iniezione secondaria nella parte libera del tirante, tra guanina liscia e parete del foro;
- 6. tesatura del tirante: prima di procedere al fissaggio della testa sarà necessario attendere la completa maturazione della miscela iniettata per il bulbo di ancoraggio, per un tempo dell'ordine di almeno 72 ore.

L'iniezione dovrà essere eseguita ad alta pressione e ripetuta con l'utilizzo di miscela cementizia C20/25. Eventualmente , in fase di scavo dell'imbocco ed a valle dell'esito delle prove di accettazione, i tiranti potranno essere dotati di sacco otturatore e valvole a manchettes quando la loro inclinazione è diretta verso il basso e quando il bulbo di ancoraggio interessa una formazione di natura prevalentemente litoide.

4.4 Esecuzione dei consolidamenti previsti per il concio di attacco

Completati gli scavi, si procederà all'esecuzione dei trattamenti necessari per l'attacco delle gallerie naturali, sulla base degli interventi previsti nella sezione di attacco (tipo C1), secondo le fasi di seguito indicate:

- 1. Esecuzione preconsolidamento al fronte
- 2. Esecuzione preconsolidamento al contorno e base centina
- 3. Esecuzione dreni in avanzamento (eventuali)
- 4. Esecuzione scavo della sezione d'attacco
- 5. Avanzamenti in sezione corrente secondo le indicazioni del profilo geomeccanico

Eurolink S.C.p.A. Pagina 17 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

Nel corso delle fasi di avanzamento in naturale si procederà al getto del concio di attacco secondo le fasi di seguito indicate:

- Getto di murette ed arco rovescio
- Posa del sistema di drenaggio a tergo della muretta
- Completamento del sistema di drenaggio in Calotta
- getto del rivestimento definitivo di calotta

4.5 Ritombamento e sistemazione definitiva del versante

Le fasi esecutive previste per il getto della galleria artificiale, sono :

- 1. Scavo dell'arco rovescio/soletta di base;
- 2. Getto di uno spessore minimo di 10 cm di calcestruzzo magro di pulizia;
- 3. Posizionamento dell'armatura, della casseratura e getto dell'arco rovescio/soletta di base;
- 4. posizionamento dell'armatura, della casseratura e getto dei piedritti e della calotta;

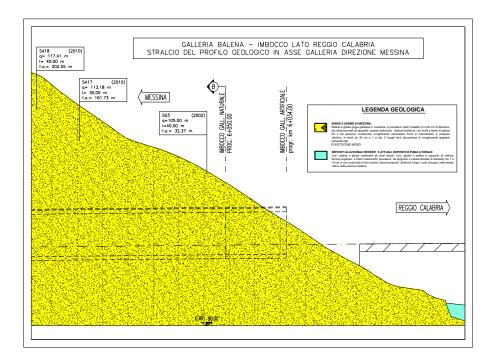
Una volta completato il getto della galleria artificiale e del portale si potrà procedere alle operazioni di ritombamento e della sistemazione definitiva del versante secondo le indicazioni progettuali.

5 Inquadramento Geologico – Geotecnico

Di seguito si riporta un sintetico inquadramento geologico dell'area interessata dall'imbocco della Galleria Balena relativa al tracciato autostradale Sicilia.

5.1 Descrizione delle litologie presenti sull'area di imbocco

La principale litologia rilevate in corrispondenza dell'area di imbocco è ascrivibile alla formazione delle <u>Sabbie e ghiaie di Messina</u>, così come risulta dal modello geologico di riferimento.


Pagina 18 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

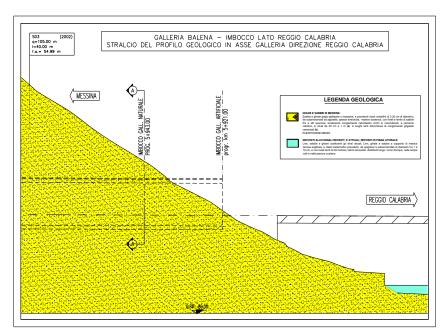


Figura 6- Profili geologici area di imbocco della galleria Balena Lato Reggio Calabria

Le Sabbie e ghiaie di Messina sono granulometricamente descritti come ghiaie e ciottoli da sub arrotondati ad appiattiti con matrice di sabbie grossolane. Si presentano generalmente ben stratificate, come si evidenzia nei rilievi effettuati nelle aree di imbocco della galleria stradale Faro

Eurolink S.C.p.A. Pagina 19 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Superiore e Balena, con un grado di cementazione variabile, da debolmente a fortemente cementata, e molto addensata. Invece i clasti risultano, da sub-arrotondati ad appiattiti, di natura poligenica costituiti da termini cristallino-metamorfici.

Figura 7 - Affioramento di Sabbie e Ghiaie di Messina in cui è ben visibile la pendenza a basso angolo degli strati verso l'asse dello Stretto di Messina.

La giacitura della formazione presenta tipicamente una inclinazione di 25°-30° verso l'asse dello Stretto di Messina ed é spesso ben evidente una stratificazione incrociata con embricatura dei clasti. L'insieme delle caratteristiche sedimentologiche ed i rapporti con gli altri depositi affioranti, indicano per tali depositi un ambiente deposizionale riferibile ad un sistema deltizio fortemente alimentato dalle fiumare.

Di seguito, viene illustrato in dettaglio la parametrizzazione geotecnica delle ghiaie di Messina fornendo, altresì indicazione sui parametri operativi assunti per il dimensionamento delle opere di sostegno previste per le opere di imbocco: per quanto riguarda invece le formulazioni utilizzate per l'interpretazione delle indagini si rimanda alla Relazione Geotecnica Generale (Elab. CG0800PRBDCSBC8G000000001A).

In ultimo, dallo studio idrogeologico di dettaglio si evince che la falda non risulta interferire con le opere in oggetto.

Pagina 20 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

5.2 Campagna di indagini geognostiche 2002-2010

La caratterizzazione geotecnica di dettaglio, delle opere di imbocco, è stata svolta con riferimento ai dati delle campagne di indagini pregresse (2002) è di quelle eseguite per la redazione del Progetto Definitivo (2010).

Data l'esiguità delle prove localmente presenti, si è scelto di tenere conto anche dei sondaggi della tratta che va dal Km 5+400 al Km 5+900 circa.

I sondaggi di riferimento per la presente tratta sono SPPS02 e SPPS03 (campagna del 2002), S414bis, S415, S416, S417 e S418 (campagna del 2010).

Le prove localmente utilizzate nella caratterizzazione sono:

- Prove di laboratorio per la determinazione delle caratteristiche fisiche (sondaggi S414bis, S417)
- Prove granulometriche (sondaggi S414bis, S417, SPPS02 e SPPS03)
- SPT (sondaggi S414bis, S417, S418, SPPS02, SPPS03)
- 1 prova Cross Hole (sondaggio S418)
- 1 prova Down hole (sondaggio SPPS02)
- 8 prove pressiometriche (sondaggi S414bis, S417, S418)
- 6 prove Le Franc (sondaggi S414bis, S417 e S418)

5.3 Caratterizzazione geotecnica di dettaglio

5.3.1 Sabbie e ghiaie di Messina

Con riferimento al fuso medio (19 prove granulometriche) si ha che: d50=0.8mm, d60=2mm e d10=0.015mm. le percentuali medie di ghiaia, sabbia e limo sono rispettivamente di 38%, 47%, 12%.

- Dr: I valori di N_{spt} sono stati corretti con il fattore correttivo C_{sg}=0.75 corrispondente al d50=0.8mm;
- **e**_o: a partire dal d50 stimato si ottiene di e_{max}-e_{min} pari a 0.305, non dissimile dai valori reperibili in letteratura (0.17<e_{max}-e_{min}<0.29). Stimando per e_{max} un valore pari a 0.8 a partire dai valori di Dr è stato possibile determinare i valori di **e**_o in sito;

Eurolink S.C.p.A. Pagina 21 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

- γ_d : in base a tali valori di \mathbf{e}_o e da γ_s si può stimare γ_d , =18-19KN/m3;
- K₀: si considera la relazione di Mesri (1989) per tenere conto degli effetti di "aging".

I primi 15 m sembrerebbero maggiormente addensati soprattutto nella porzione sabbio-ghiaiosa.

z(m)	Dr(%) Sabbie e ghiaie	ф ["] р (pff=0-272KPa) (°)	φ' _{cv} (°)	K _o
0-15	60-80	41-42	33-35	0.4-0.45
>15	50-60	39-40	33-35	0.45

Per i parametri di deformabilità si ha localmente a disposizione la prova sismica S418 in cui si evidenzia una buona correlazione fra le velocità misurate e quelle calcolate con le correlazioni da prove SPT.

L' espressione ottenuta in base alle correlazioni dalle prove SPT della tratta per il modulo G₀:

$$G_0 = 45 z^{0.62}$$

$$E_0 = 108 z^{0.62}$$

$$E_0 = (15-36) z^{0.62}$$

I valori dei moduli ottenuti non si discostano dai valori ottenuti dalla caratterizzazione generale. Le prove pressiometriche (nei sondaggi S414bis, S417 e S418), che forniscono valori del ramo di carico, mostrano i valori più elevati (300-600MPa) tra 10m e 25m.

Nelle figure di seguito vengono riportati i grafici relativi alla elaborazioni delle indagini (di laboratorio e sito) disponibili:

Pagina 22 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

Figura 8- Fuso granulometrico medio (elaborato su 19 prove)

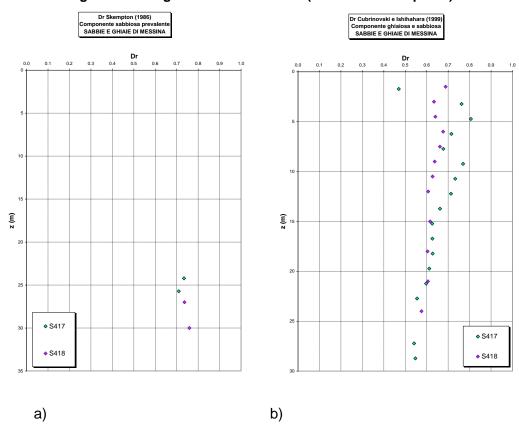


Figura 9- Determinazione della Densità Relativa da SPT : a) Prevalente componente ghiaiosa b)

Componente sabbiosa e ghiaiosa

Eurolink S.C.p.A. Pagina 23 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0

20/06/2011

Data

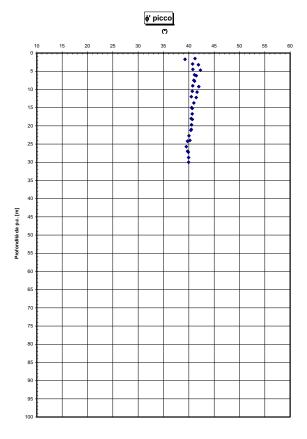


Figura 10- Determinazione dell'angolo d'attrito di picco da SPT

Pagina 24 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

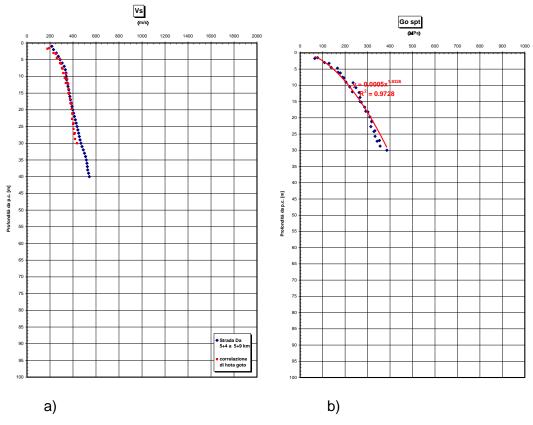


Figura 11- a) Andamento del Vs con la profondità da SPT; b) Andamento modulo Go con la profondità da SPT

Eurolink S.C.p.A. Pagina 25 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

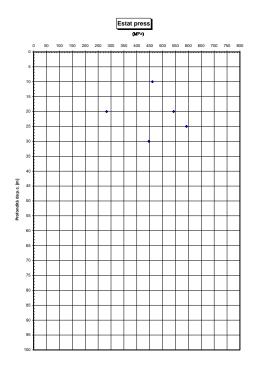


Figura 12: Andamento del modulo Elastico con la profondità da prove pressiometriche

5.4 Parametri operativi di progetto

Le opere di imbocco sono prevalentemente interessate dalla formazione delle ghiaie e sabbie di Messina, così come risulta dal modello geologico di riferimento.

Alla luce dei dati ottenuti dalla interpretazione delle prove localmente disponibili, si ritiene ragionevole assumere il seguente range di "parametri geotecnici operativi" per la progettazione delle opere di imbocco :

Sabbie Ghiaie di Messina

 γ = 18 -19 KN/m³ c' = 0-5 KPa ϕ ' = 38°-40°

E' = 40 MPa - 90 MPa (per 5m < Z < 30m)

Ko = 0.4

Pagina 26 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0

Data 20/06/2011

Al fine di definire l'azione sismica di progetto per le opere di sostegno, è stata valutata la risposta sismica locale facendo riferimento alle indagini dirette eseguite, riferendosi in particolare alle SPT e/o stendimenti sismici a rifrazione.

La categoria di suolo è stata valuta dai risultati delle prove SPT, eseguite sui sondaggi più prossimi all'area d'imbocco ossia S417 e S418: l'interpretazione delle prove fornisce valori di $N_{SPT,30}$ rispettivamente pari ad 59 ed 63 (per maggiori dettagli si rimanda alla "Relazione Geotecnica generale" – cod. CG0800PRBDSSBC8G00000001A).

Alla luce dei risultati ottenuti si può assegnare la categoria suolo B al volume di terreno significativo direttamente interessato dalla realizzazione delle opere di sostegno.

6 Caratteristiche dei materiali

Per la progettazione delle opere di sostegno e della galleria artificiale in oggetto, si sono utilizzati i seguenti materiali:

Calcestruzzo per i pali e travi di testa: C 25/30

Magrone : C 12/15

Spritz – beton: Resistenza media su carote 48h > 15MPa

Resistenza media su carote 28gg > 25 MPa

Acciaio Armature (*) B450C

 F_{yk} = 450 MPa

 $F_{tk} = 540 \text{ MPa}$

Acciaio per profilati/piastre: S 355

 $f_{yk} = 355 \text{ MPa}$ $f_{tk} = 510 \text{ MPa}$

Acciaio armonico per tiranti: trefoli stabilizzati da 0.6"

 $f_{ptk} \ge 1860 \text{ N/mm}^2$ $f_{p(1)k} \ge 1670 \text{ N/mm}^2$

Eurolink S.C.p.A. Pagina 27 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Miscela iniezione tiranti: Resistenza a compressione miscela 28gg > 25 MPa

Cemento 42.5R

Armature in VTR (*)

Φ28mm $f_{fk} = 525 MPa$

 $E_f = 40000 \text{ MPa}$

 $\varepsilon_{fk} = 0.0131$

Φ22mm $f_{fk} = 585 MPa$

 $E_f = 40000 \text{ MPa}$

 $\varepsilon_{fk} = 0.0146$

(*) In alternativa all'acciaio, le armature dei pali della paratia che saranno interessati da successive demolizioni per l'esecuzione degli scavi delle gallerie, potranno essere poste in opera barre di vetroresina al fine di facilitare le operazioni di rimozione delle strutture demolite e di ridurre gli oneri economici derivanti da questa lavorazione. L'impiego delle barre in vetroresina dovrà essere conseguente ad un calcolo di dimensionamento dell'equivalenza statica fra gli elementi d'armatura realizzati con i due diversi materiali.

7 Verifiche delle opere provvisionali di imbocco

7.1 Modello di calcolo

Nella presente relazione di calcolo è stato utilizzato il programma *Paratie* v. 7.0 per il calcolo delle sollecitazioni e delle deformazioni nelle paratie.

Il programma Paratie affronta il problema della simulazione di uno scavo sostenuto da diaframmi flessibili attraverso il metodo degli elementi finiti. La schematizzazione del fenomeno fisico è del tipo "Trave su suolo elastico" detto anche terreno alla Winkler.

I diaframmi vengono rappresentati come elementi trave il cui comportamento flessionale è definito dalla rigidezza flessionale EJ, mentre il terreno viene simulato attraverso elementi elastoplastici monodimensionali (molle) connessi ai nodi delle paratie.

Con questo modello di calcolo la realizzazione dello scavo sostenuto da paratie tirantate viene

Pagina 28 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

seguita in tutte le varie fasi elencate in precedenza. L'analisi con il modello ad elementi finiti è quindi un'analisi "Statica Incrementale": ogni passo coincide con una ben precisa configurazione caratterizzata da una certa quota di scavo, da un certo insieme di tiranti applicati, da una distribuzione di carichi applicati. Poichè il comportamento degli elementi finiti (terreno) è di tipo elastoplastico, ogni step richiede più iterazioni ed ogni configurazione dipende in generale dalle configurazioni precedenti: lo sviluppo di deformazioni plastiche ad un certo step di carico condiziona la risposta della struttura negli step successivi.

I parametri che caratterizzano il modello possono essere distinti in due classi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo K_0 , il coefficiente di spinta attiva K_a e il coefficiente di spinta passiva K_p . I parametri di deformabilità del terreno compaiono nella definizione della rigidezza delle molle.

Le due componenti di sforzo verticale ed orizzontale vengono intese come sforzi principali. Viene definita una funzione di plasticità dipendente da esse, e la funzione anzidetta determina i confini di una regione entro la quale è determinato lo stato tensionale. A seconda dello stato in cui l'elemento si trova, esso reagisce con differenti caratteristiche di rigidezza. Sono possibili tre situazioni:

- Fase elastica: l'elemento si comporta elasticamente; questa fase corrisponde ad una porzione di terreno in fase di scarico-ricarico, sollecitato a livelli di sforzo al di sotto dei massimi livelli precedentemente sperimentati. Questa fase viene identificata con la sigla UL-RL (Unloading-Reloading).
- <u>Fase incrudente</u>: l'elemento viene sollecitato a livelli di tensione mai ancora sperimentati. La fase incrudente è identificata dalla sigla V - C (Virgin Compression).
- Collasso: il terreno è sottoposto ad uno stato di sollecitazione coincidente con i limiti minimo o massimo dettati dalla resistenza del materiale. Questa fase corrisponde a quelle che solitamente vengono chiamate condizioni di spinta attiva o passiva. Il collasso viene identificato attraverso la parola Active o Passive.

7.2 Analisi numeriche

Il dimensionamento della paratia in oggetto è stato svolto con riferimento alla massima altezza fuori terra (vedi figura): in particolare, sono state individuate due sezioni di calcolo, la sezione 1 con altezza fuori terra pari a 20m e la sezione 2 con altezza fuori terra di 17.0m

Eurolink S.C.p.A. Pagina 29 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

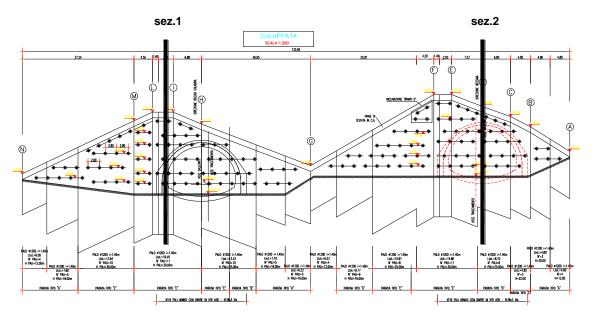


Figura 13 - Indicazione delle sezioni di calcolo

In riferimento ai risultati derivanti dall'inquadramento geologico geomorfologico dell'area in esame si sono dedotti i parametri geotecnici e di spinta : nelle valutazione dei coefficienti di spinta si è ipotizzato , a favore di sicurezza, una pendenza media del terreno a tergo della paratia costante (pendio indefinito) e pari a circa 34°. Di seguito si riassumo i parametri di calcolo adottati.

Formazione	γ	c'	φ'	Ka	Kp	E'
	[KN/m³]	[KN/m²]	[°]	[i=34°]	[i=0°]	[MPa]
Ghiaie di Messina	19	5	38	0.41	4.20	40 -90

Tabella 4 - Parametri geotecnici di calcolo

Nelle analisi numeriche della sezione 1 si è ripercorsa la sequenza costruttiva ipotizzata per l'esecuzione della paratia, attraverso le seguenti fasi operative:

- Fase 1 : Geostatico
- Fase 2: Scavo primo ribasso a quota -2.70 m
- Fase 3: Messa in opera primo ordine di tiranti a -2.20 m
- Fase 4 : Scavo secondo ribasso a quota a -5.50 m
- Fase 5 :Messa in opera secondo ordine di tiranti a 5.0 m

Pagina 30 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0 Data 20/06/2011

- Fase 6 : Scavo terzo ribasso a quota a -8.50 m
- Fase 7: Messa in opera terzo ordine di tiranti a 8.0 m
- Fase 8: Scavo quarto ribasso a quota a -12.0 m
- Fase 9: Messa in opera quarto ordine di tiranti a 11.50 m
- Fase 10: Scavo quinto ribasso a quota a -15.00 m
- Fase 11:Messa in opera quinto ordine di tiranti a 14.50 m
- Fase 12: Scavo sesto ribasso a quota -18.00 m
- Fase 13: Messa in opera sesto tirante a quota -17.50
- Fase 14: Scavo fino al raggiungimento della quota fondo scavo -20.0m
- Fase 15: Applicazione carico sismico

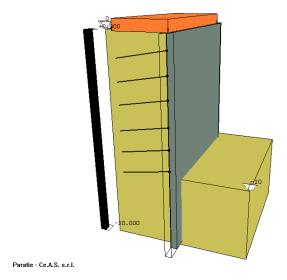


Figura 14 - Modello di calcolo per altezza fuori terra 20.0 m (sezione 1)

Nelle analisi numeriche della sezione 2 si è ripercorsa la sequenza esecutiva ipotizzata per la costruzione della paratia attraverso le sequenti fasi operative:

- Fase 1 : Geostatico
- Fase 2: Scavo primo ribasso a quota -2.70 m
- Fase 3: Messa in opera primo ordine di tiranti a -2.20 m
- Fase 4 : Scavo secondo ribasso a quota a -5.50 m
- Fase 5 :Messa in opera secondo ordine di tiranti a 5.0 m
- Fase 6 : Scavo terzo ribasso a quota a -8.50 m
- Fase 7: Messa in opera terzo ordine di tiranti a 8.0 m
- Fase 8: Scavo quarto ribasso a quota a -12.0 m

Eurolink S.C.p.A. Pagina 31 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

- Fase 9: Messa in opera quarto ordine di tiranti a 11.50 m
- Fase 10: Scavo quinto ribasso a quota a -15.50 m
- Fase 11:Messa in opera quinto ordine di tiranti a 15.0 m
- Fase 12: Scavo fino al raggiungimento della quota scavo a -17.0m
- Fase 13: Applicazione carico sismico

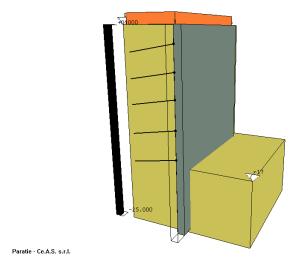


Figura 15 - Modello di calcolo per altezza fuori terra 17.0 m (sezione 2)

7.3 Criteri di verifica

La verifica dell'opera di sostegno è stata effettuata secondo un approccio agli Stati Limite, analizzando sia lo stato limite ultimo, con riferimento a quanto indicato nel Decreto del Ministero delle Infrastrutture 14.01.2008 - Testo Unico "Norme Tecniche per le Costruzioni".

Il D.M. 2008 T.U. segue l'approccio agli Stati Limite degli Eurocodici: la sicurezza e la prestazione di un'opera devono essere valutati in relazione agli stati limite che si possono verificare durante la sua vita nominale, Stati Limite Ultimi (S.L.U.), secondo il metodo semiprobabilistico basato sull'impiego dei "coefficienti parziali di sicurezza".

7.3.1 Stati limite ultimi

Per la sicurezza di opere e sistemi geotecnici i valori dei coefficienti di sicurezza sono riportati ai

Pagina 32 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

capitoli 6.2-7 del Testo Unico 2008. La Normativa impone che sia rispettata la condizione

 $E_d \leq R_d$

dove E_d è il valore di progetto dell'azione, pari all'azione caratteristica moltiplicata per il coefficiente parziale per le azioni γ_f , mentre R_d è il valore di progetto della resistenza del sistema geotecnico, valutato con riferimento ai coefficienti parziali per i parametri geotecnici del terreno γ_m .

Per la verifica delle paratie la condizione $E_d \le R_d$ deve essere rispettata impiegando due combinazioni di gruppi di coefficienti parziali per le azioni e per i parametri geotecnici (A1+M1 e A2+M2). In particolare la combinazione A1+M1 risulta rilevante per stabilire la capacità strutturale delle opere che interagiscono con il terreno, mentre la combinazione A2+M2 determina il dimensionamento geotecnico.

	Coeff. Parzia γ _f		
Azione	A1	A2	
Permanente sfavorevole	1,30	1,00	
Permanente favorevole	1,00	1,00	
Variabile sfavorevole	1,50	1,30	
Variabile favorevole	0,00	0,00	

Tabella 5- Coefficienti Parziale per le azioni o per l'effetto delle azioni

Parametro al quale	applicare	Coeff. Parziale γ_m		
il coefficiente pa	rziale	M1	M2	
Angolo d'attrito	tan φ'	1,00	1,25	
Coesione efficace	c'	1,00	1,25	
Resistenza non drenata	cu	1,00	1,40	
Peso dell'unità di volume	γ	1,00	1,00	

Tabella 6 – Coefficienti Parziali per i parametri geotecnici del terreno

R1	R2	R3
1.0	1.0	1.1

Tabella 7 - Coefficienti Parziali per le resistenze

Eurolink S.C.p.A. Pagina 33 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

In condizioni sismiche le verifiche agli Stati Limite Ultimi vengono condotte impiegando sempre le stesse combinazioni ma ponendo pari all'unità solo i coefficienti parziali sulle azioni (A1=A2=1,0).

Formazione	γ [KN/m³]	c' [KN/m²]	φ' [°]	Ka	Kp [i=0°]	E' [MPa]
Ghiaie di Messina	19	5	38	0.41	4.20	40 -90

Tabella 8 - Parametri di calcolo adottati nella combinazione A1+M1 (STRU) e E1+E2 (Esercizio)

Formazione	γ [KN/m³]	c' [KN/m²]	φ' [°]	Ka	Kp [i=0°]	E' [MPa]
Ghiaie di Messina	19	4	32	0.51	3.20	40 -90

Tabella 9- Parametri di calcolo adottati nella combinazione A2+M2 (GEO)

Per quanto riguarda i tiranti (cap. 6.6 del Testo Unico 2008), ai fini della verifica della fondazione di ancoraggio, la condizione Ed \leq Rd deve essere rispettata confrontando l'azione di progetto (calcolata moltiplicando il tiro massimo del tirante per un coefficiente γ f = 1,3, per la combinazione A1+M1+R3) con una resistenza Rd calcolata come

$$R_d = \frac{R_k}{\gamma_R}$$

dove γ_R è il coefficiente parziale per la resistenza di ancoraggi pretesi

Il valore caratteristico della resistenza allo sfilamento è stato valutato applicando dei coefficienti correttivi ai valori caratteristici della resistenza del terreno. Cautelativamente tale valore riduttivo è stato posto pari ad 1.8, pertanto si ha che:

$$\tau_{\lim,Rd} = \frac{\tau_{\lim}}{\xi_{a3}}$$

Con:

$$\xi_{a3} = 1.8$$

Pagina 34 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

7.3.2 Stati limite di esercizio

La verifica allo stato limite di esercizio è stata condotta ponendo pari all'unità i coefficienti parziali sulle azioni ed impiegando i parametri geotecnici e le resistenze e le resistenze di progetto (vedi tabelle).

	Coeff. Parzia γ _f		
condizione	Permanenti	Temporanei	
E 1	1,0	1,00	

Tabella 10 - Coefficienti parziali per le azioni o per l'effetto delle azioni per gli SLE

		Coeff. Parziale γ _m	
Condizione	tan φ'	C,	cu
E2	1,0	1,0	1,0

Tabella 11 - Coefficienti parziali per i parametri geotecnici del terreno

Le tensioni ricavate dalle sollecitazioni fornite dal programma dovranno essere confrontate con le tensioni di riferimento:

 $\sigma_c < 0.60 f_{ck}$ combinazione rara

 $\sigma_{c} < 0.45 f_{ck}$ combinazione quasi permanente

 $\sigma_{s} < 0.8 f_{vk}$

f_{ck} = Resistenza caratteristica di compressione del calcestruzzo

f_{yk} = Tensione caratteristica d snervamento dell'acciaio

7.3.3 Verifica dei trefoli

La tensione massima di esercizio nel tirante deve essere tale da rispettare la relazione $E_d \leq R_d$, dove E_d è il valore di progetto dell'azione (pari all'azione nominale) mentre R_d è il valore di progetto della resistenza calcolato come:

Eurolink S.C.p.A. Pagina 35 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

$$R_d = n * A_{tr} * \frac{f_{p(1)k}}{\gamma_s}$$

con:

A_{tr} = area nominale del trefolo

n = numero dei trefoli (da 0,6") del tirante

 $f_{p(1)k}$ = tensione caratteristica di snervamento del trefolo

y_s= 1.15 coefficiente parziale per la riduzione della resistenza nominale dell'acciaio

In condizioni sismiche le verifiche sono svolte considerando una resistenza R_{Sd} pari a:

$$R_{sd} = 0.9 * n * A_{tr} * \frac{f_{p(1)k}}{\gamma_s}$$

dove:

γ_s= 1.0 coefficiente parziale per la riduzione della resistenza nominale dell'acciaio

7.3.4 Stati limite di progetto

Di seguito si riassumono gli stati limite considerati nel progetto dell'opera di imbocco:

STATI LIMITE PROGETTO			
SLE	E1+E2		
SLE_SISMA (SLD)	E1+E2+sisma		
SLU_1	A1+M1		
SLU_2	A2+M2		
SLU1_SISMA (SLV)	A1+M1+sisma		
SLU2_SISMA (SLV)	A2+M2+sisma		

Tabella 12 - Stati limite considerati nel progetto

Pagina 36 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0

20/06/2011

Data

7.4 Definizione dei carichi agenti

Le opere di sostegno sono state verificate applicando i carichi indicati nel seguito.

7.4.1 Spinta del Terreno

Il terreno esercita una spinta orizzontale sulla paratia proporzionale al carico verticale cui esso è soggetto. Il fattore di proporzionalità (coefficiente di spinta) dipende dallo stato deformativo del terreno e può variare dal coefficiente di spinta attiva K_a al coefficiente di spinta passiva K_p , i quali a loro volta dipendono dall'angolo d'attrito interno del terreno, dall'attrito paratia – terreno, dall'inclinazione della paratia e dall'inclinazione dal terreno adiacente.

Nelle analisi effettuate tali coefficienti sono stati impiegati sulla base di quanto dedotto come spiegato nel paragrafo precedente.

Nelle analisi effettuate si è ipotizzato un coefficiente d'attrito paratia-terreno pari a 0.5 dell'angolo d'attrito interno del terreno nel calcolo di Ka mentre, cautelativamente, si è considerato nullo il coefficiente di attrito paratia - terreno nel caso di applicazione del carico sismico e nel calcolo di Kp.

Il programma di calcolo utilizzato, come già descritto, applica alla paratia la componente orizzontale della spinta del terreno, calcolata utilizzando un coefficiente di spinta ottenuto iterativamente ad ogni passo dell'analisi in funzione dello stato deformativo puntuale del terreno.

I valori dei coefficienti K_a e K_p utilizzati nelle analisi sono stati calcolati con le formule di seguito riportate.

Spinta attiva

Il coefficiente di spinta attiva è stato valutato come di seguito indicato (teoria di Coulomb):

$$-K_{a} = \frac{\cos^{2}(\varphi' - \beta)}{\cos^{2}\beta \cdot \cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{sen(\delta + \varphi') \cdot sen(\varphi' - i)}{\cos(\beta + \delta) \cdot \cos(\beta - i)}}\right]^{2}}$$

essendo:

β inclinazione della parete

i inclinazione del terreno a monte

Eurolink S.C.p.A. Pagina 37 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

- δ angolo d'attrito fra muro in calcestruzzo e terreno
- φ' angolo d'attrito del terreno

Spinta passiva

Il coefficiente di spinta passiva è stato essere valutato, attraverso l'abaco riportato in figura, con la teoria di Caquot – Kerisel, ipotizzando superfici di rottura curvilinee (*teoria di Caquot – Kerisel*).

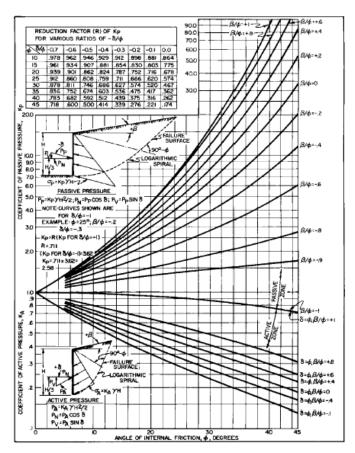


Figura 16: Teoria di Caquot-Kerisel: abaco per il calcolo del coefficiente di spinta passiva

7.4.2 Carico accidentale

In aggiunta alla spinta del terreno si è considerato un carico accidentale di 10 KN/m² agente in superficie a monte della paratia per simulare la possibile presenza di mezzi d'opera durante le fasi di scavo

Pagina 38 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

7.4.3 Carico sismico

Il carico indotto dall'azione sismica è stato applicato secondo le indicazioni contenute nel DM2008. In particolare la normativa consente di valutare l'azione sismica in funzione della posizione geografica dell'opera (per la posizione dell'opera si rimanda allo specifico capitolo). Partendo dalla ubicazione dell'opera è possibile definire, per il sito di interesse, le accelerazioni orizzontali di progetto. Nota l'accelerazione sismica a_g in condizioni di campo libero su sito di riferimento rigido, bisogna fissare la vita nominale V_N dell'opera in esame. Dalla tabella 2.4.I estratta dalle nuove Norme tecniche per le costruzioni 14/01/2008, risulta che le opere provvisionali hanno una vita nominale inferiore a 10 anni:

Tabella 2.4.I - Vita nominale V_N per diversi tipi di opere

	TIPI DI COSTRUZIONE	Vita Nominale V _N (in anni)
1	Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva	≤ 10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50
3	Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100

La vita nominale serve per definire la vita di riferimento V_R sulla quale viene valutata l'azione sismica agente sull'opera in esame:

$$V_R = V_N \cdot C_U$$

dove C_U rappresenta il valore del coefficiente d'uso della costruzione che, nel caso di opere infrastrutturali ricadenti in classe II (NTC 2008 par. 2.4.2), è pari a 1 (NTC 2008 par.2.4.3 tab. 2.4.I).

Nel caso in cui il Periodo di riferimento fosse inferiore a 35 anni, la norma impone di un V_R pari a 35 anni.

In base al periodo di riferimento, le norme definiscono la probabilità di superamento nel periodo di riferimento P_{VR} a cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati (Tab 3.2.I NTC 2008)

Eurolink S.C.p.A. Pagina 39 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco
 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

Tabella 3.2.I – Probabilità di superamento P_{V_R} al variare dello stato limite considerato

Stati Limite		P_{V_R} : Probabilità di superamento nel periodo di riferimento V_R
Stati limite di	SLO	81%
esercizio	SLD	63%
Stati limite	SLV	10%
ultimi	SLC	5%

Per il calcolo dell'azione sismica di Progetto si sono considerati i seguenti parametri:

- Vn = 10 anni (tempo di costruzione per opera provvisionale)
- Classe d'uso = II (opere infrastrutturali)
- Cu= 1 (coefficiente d'uso della struttura)

Essendo V_R <10 anni si assume tale valore pari a 35 anni così come richiesto dalla normativa. La classe di suolo considerata è cautelativamente la classe B (cfr § 5.4).

L'azione sismica di progetto, dunque, è stata definita mediante un'accelerazione equivalente costante nel tempo e nello spazio. La componente orizzontale a_h dell'accelerazione equivalente è stata ricavata in funzione del moto sismico atteso nel volume di terreno significativo e della capacità dell'opera di subire spostamenti senza significative riduzioni di resistenza. L'accelerazione attesa al suolo, nel volume di terreno significativo per l'opera, è:

$$a_h = a_g \cdot \alpha \cdot \beta \cdot S_s \cdot S_T$$

con il seguente significato dei simboli:

a_g = accelerazione massima attesa su sito di riferimento rigido

 α = coefficiente che tiene conto della deformabilità del terreno;

 β = coefficiente che tiene conto degli spostamenti ammissibili per il sistema geotecnico;

 S_s = coefficiente di amplificazione stratigrafica;

S_T.= coefficiente d amplificazione topografica;

Con $\alpha \le 1$ si ammette che l'opera possa subire spostamenti senza cadute di resistenza (si veda figura di seguito):

Pagina 40 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Tabella 13- Diagramma per la valutazione del coefficiente di deformabilità α

Invece con $\beta \le 1$ si ammette che il terreno possa subire spostamenti compatibili con l'opera (vedi figura di seguito), ovvero lo spostamento ammissibile per l'opera deve essere minore di 0.005 H (H = altezza fuori terra paratia).

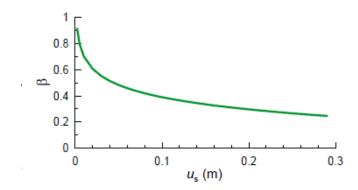


Tabella 14- Diagramma per la valutazione del coefficiente di spostamento β

Il caso in esame è caratterizzato dai seguenti parametri riduttivi:

 $H_s=17m \rightarrow \alpha=0.95; u_s=85mm \rightarrow \beta=0.40$ $H_s=20m \rightarrow \alpha=0.92; u_s=100mm \rightarrow \beta=0.38$

Nella presente fase di progetto si è scelto di ridurre a_{max} utilizzando α e β , in modo da massimizzare l'azione sismica di progetto ($\alpha \cdot \beta = 0.38$): con tale scelta, il progettista ha voluto portare in conto le incertezze legate al modello geologico ed alla definizione delle categorie di suolo.

Eurolink S.C.p.A. Pagina 41 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev 1

Data 20/06/2011

Il valore dell'azione sismica di progetto relativo alle condizioni di stato limite di danno (SLD) è stato calcolato come descritto di seguito.

Posto VR = 35 anni, in corrispondenza delle coordinate Lat. 38,251611, Long. 15,58005, che individuano l'imbocco nel sistema WGS84, si ottiene:

	Valutazione azione simsmica SLD (SLE) P=63%				
amax		0,064	g		
Fo		2,365			
T*c		0,289	S		

Considerato che:

Tipo di sottosuolo	В
Ss*ST	1,44
$\alpha^{\star}\beta$	0,38

Da cui:

Accelerazione orizzo	ontale di Prog	jetto (DM2008)
ah=amax*Ss*ST*α*β	0,035	g (SLV PVr=63%)

Il valore dell'azione sismica di progetto relativo alle condizioni di stato limite di salvaguardia della vita umana (SLV) è stato calcolato come descritto di seguito.

Posto VR = 35 anni si ottiene:

Valutazione azione simsmica SLV (SLU) P=10%				
amax		0,199	g	
Fo		2,394		
T*c		0,353	S	

Considerato che:

Tipo di sottosuolo	В
Ss*ST	1,44
α*β	0.38

da cui:

Accelerazione orizzo	ontale di Proge	tto (DM2008)
ah=amax*Ss*ST*α*β	0,108	g (SLV PVr=10%)

Pagina 42 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Definiti i valori delle accelerazione orizzontale di progetto è stata valutata la spinta sismica del terreno avvalendosi del metodo proposto da Wood:

$$\Delta P_d = \left(\frac{a_g}{g}\right) \cdot \gamma \cdot H^2$$

dove:

 γ = peso dell'unità di volume del terreno

H = altezza fuori terra della paratia

Il carico sismico è stato applicata come un carico uniformante distribuito su tutta l'altezza libera della paratia.

7.4.4 Carico idraulico

Le verifiche della paratia sono state svolte in assenza di spinte idrostatiche ipotizzando un corretto funzionamento dell'intervento di drenaggio previsto. Nel caso in oggetto la posizione della falda non è tale da influenzare l'andamento delle pressioni esercitate dal terreno sul'opera di contenimento, pertanto l'intervento di drenaggio ha lo scopo di raccogliere l'acqua derivante da eventi meteorici.

7.5 Verifiche strutturali dei pali

Nel seguito si riportano i risultai delle verifiche riguardanti le sezioni della paratia esaminate nei calcoli (sezione 1 e 2). La verifica di resistenza dei pali è stata condotta considerando reagenti le armature e i pali di calcestruzzo.

Nella presente fase progettuale le verifiche statiche sono state svolte in corrispondenza della quota del palo per la quale si verifica lo stato di sollecitazione più gravoso, considerando agente uno sforzo assiale N pari al peso della porzione di palo sovrastante la sezione considerata; al fine di ottimizzare l'incidenza dell'acciaio, sono state ipotizzate delle gabbie di armatura differenziate in ragione dello stato di sollecitazione agente sulla struttura, di cui sono fornite indicazioni negli elaborati grafici insieme all'incidenza media.

Nella zona più sollecitata l'armatura prevista per il pali di con altezza fuori terra pari a 20m è pari ad 38φ26, mentre per il pali con altezza fuori terra aventi altezza di 17.0m l'armatura prevista è pari ad 33φ26.

Eurolink S.C.p.A. Pagina 43 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

7.5.1 Stato limite di esercizio

7.5.1.1 Verifiche a Pressoflessione

relativamente alle sezioni di calcolo individuate.

Le verifiche sono state condotte accertando che, in fase di esercizio, le tensioni di esercizio dei materiali siano inferiori a quelle ammissibili per il materiale, ovvero

$$\sigma_c < 0.60 f_{ck} = 14.94 \text{ MPa}$$

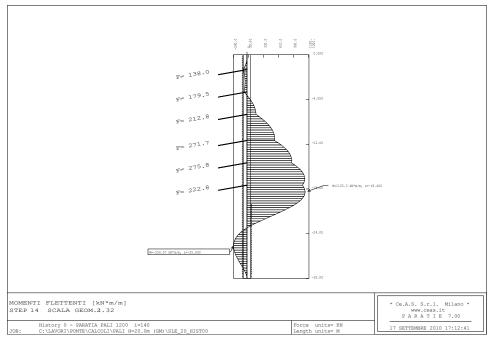
combinazione rara

 $\sigma_c < 0.45 f_{ck}$ = 11.21 MPa $\sigma_s < 0.8 f_{vk}$ = 360 MPa

combinazione quasi permanente

Di seguito si riportano sotto forma di tabelle e di diagrammi le sollecitazioni agenti sul palo

Pagina 44 di 445 Eurolink S.C.p.A.



Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

1. Sezione di calcolo 1 (H_s=20.0m)

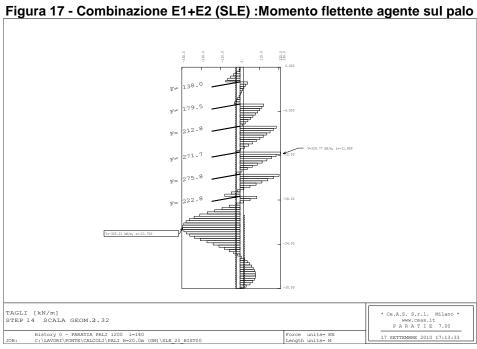


Figura 18 - Combinazione E1+E2 (SLE) Sollecitazioni di taglio agenti sul palo

Eurolink S.C.p.A. Pagina 45 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

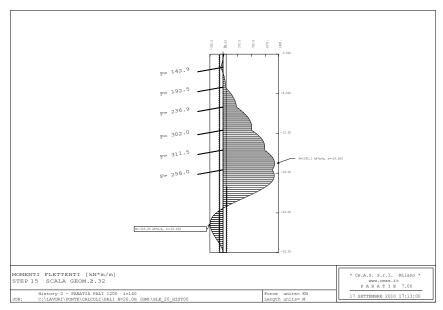


Figura 19 - Combinazione E1+E2 (SLD) : Momento flettente agente sul palo

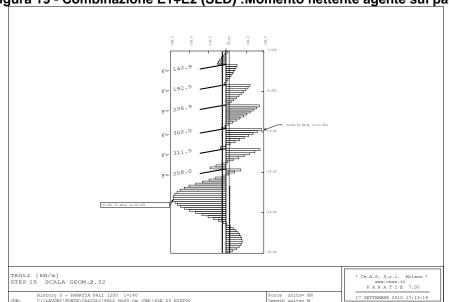


Figura 20 - Combinazione E1+E2 (SLD) Sollecitazioni di taglio agenti sul palo

	М	N	σ cls	σ steel	σ lim cls	σ lim steel
SLE	KNm	KN	MPa	MPa	MPa	MPa
	1574,42	520,00	9,4	222,1	11,21	360
	-		=	-	-	-
	M	N	σ cls	σ steel	σ lim cls	σ lim steel
SLD	KNm	KN	MPa	MPa	MPa	MPa
	1820,00	326,00	11,05	269,5	11,21	360

Tabella 15 - sezione di calcolo 1 : verifica tensionale

Pagina 46 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

2. Sezione di calcolo 2 ($H_s = 17.0 \text{m}$)

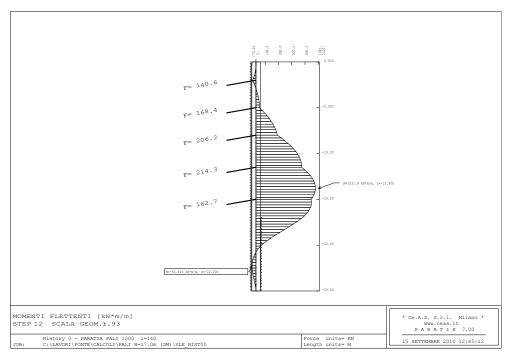


Figura 21 - Combinazione E1+E2 (SLE) : Momento flettente agente sul palo

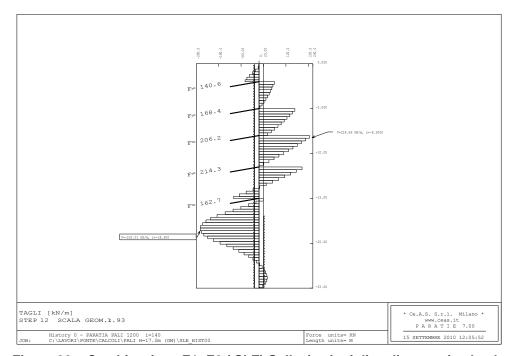


Figura 22 - Combinazione E1+E2 (SLE) Sollecitazioni di taglio agenti sul palo

Eurolink S.C.p.A. Pagina 47 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

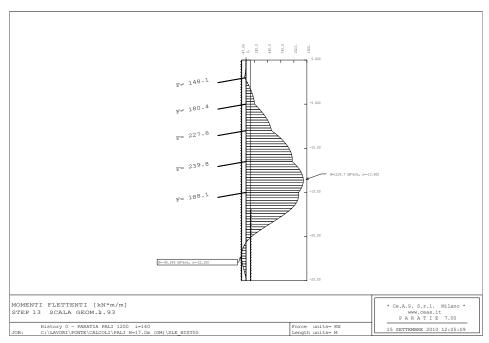


Figura 23 - Combinazione E1+E2 (SLD) : Momento flettente agente sul palo

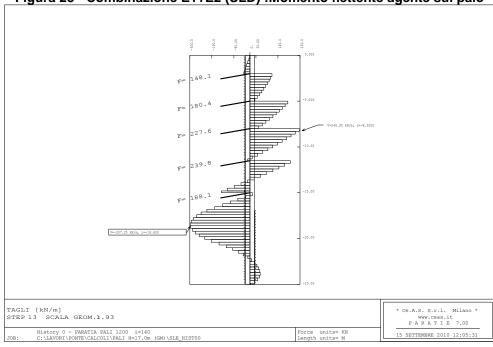


Figura 24 - Combinazione E1+E2 (SLD) Sollecitazioni di taglio agenti sul palo

Pagina 48 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

	М	N	σ cls	σ steel	σ _{lim cls}	σ _{lim steel}
SLE	KNm	KN	MPa	MPa	MPa	MPa
SLE	1444,00	393,00	9.15	233	11,21	360
	М	N	σ cls	σ steel	σ _{lim cls}	σ _{lim steel}
SLD	KNm	KN	MPa	MPa	MPa	MPa

Tabella 16 - Sezione di calcolo 2 : verifica tensionale

Come si evince dalle tabelle, le tensioni dei materiali rientrano entro i limiti previsti dalla normativa di riferimento.

7.5.1.2 Analisi degli spostamenti

Il codice di calcolo ha permesso di valutare il regime deformativo della struttura in corrispondenza di ogni fase di calcolo: di seguito sono stati riassunti in forma tabellare e di diagrammi i massimi valori degli spostamenti risultati dall'analisi numerica, sia in condizioni di esercizio (SLE), che in fase sismica (SLD).

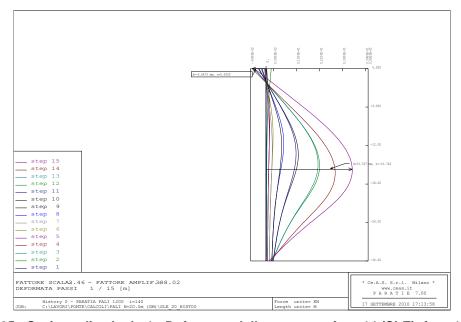


Figura 25 - Sezione di calcolo 1 : Deformata della struttura: fase 14 (SLE), fase 15 (SLD)

Eurolink S.C.p.A. Pagina 49 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

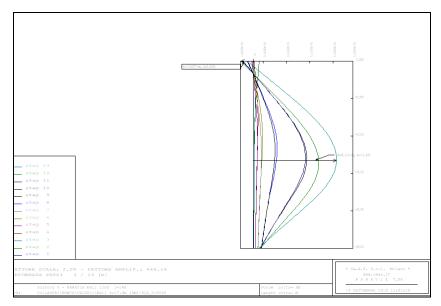


Figura 26 - Sezione di calcolo 2 : Deformata della struttura: fase 13 (SLE), fase 14 (SLD)

	Spostamento max	Spostamento max
Statica	Z=0m	Z=16.0m
(SLE)	mm	Mm
	-5.44	27.09
	Spostamento max	Spostamento max
Sismica	Z=0m	Z=16.0m
(SLD)	mm	mm
	-4.61	33.87

Tabella 17- Sezione di calcolo 1: spostamenti massimi previsti

	Spostamento max	Spostamento max
Statica	Z=0m	Z=13.90m
(SLE)	mm	Mm
	-3.81	+19.70
	Spostamento max	Spostamento max
Sismica	Z=0m	Z=13.90m
(SLD)	mm	mm
	-1.98	+25.12

Tabella 18 - Sezione di calcolo 2: spostamenti massimi previsti

Pagina 50 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

Il campo degli spostamenti ottenuto nelle due analisi risulta in ogni caso compatibile con la tipologia di struttura in oggetto.

7.5.2 Stato limite ultimo

7.5.2.1 Verifiche a Pressoflessione

Le verifiche allo stato limite ultimo sono state condotte accertando che:

 $M_{rd} > M_{sd}$

 $N_{\text{rd}} > N_{\text{sd}}$

dove:

 M_{rd} , N_{rd} = sollecitazioni resistenti di progetto;

 M_{sd} , N_{sd} = sollecitazioni di progetto.

A tal fine, è stato costruito il dominio di resistenza della sezione del palo, verificando che le sollecitazioni di progetto ricadano entro il dominio.

Le ipotesi considerate per la costruzione del dominio di resistenza sono:

- 1. conservazione delle sezioni piane;
- 2. legame costitutivo del calcestruzzo tipo parabola-rettangolo con un range costante di deformazione compreso tra 0,2% e 0,35%;
- 3. legame costitutivo dell'acciaio tipo elastico-perfettamente plastico, con deformazione limite di rottura dello 0,1%;
- 4. perfetta aderenza calcestruzzo-acciaio:
- 5. calcestruzzo non reagente a trazione.

Di seguito vengono riportati i diagrammi delle sollecitazioni agenti sul palo nelle combinazioni A1+M1 ed A2+M2 in fase statica e sismica (SLV) e le relative verifiche strutturali dei pali.

Si ricorda che per il palo lungo 25.0m (sezione di calcolo 2) si è prevista un'armatura pari ad 33φ26, mentre per il palo lungo 30.0m (sezioni di calcolo 1) si è prevista un armatura pari ad 38φ26.

Eurolink S.C.p.A. Pagina 51 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Sezione di calcolo 1 (palo H=30 m)

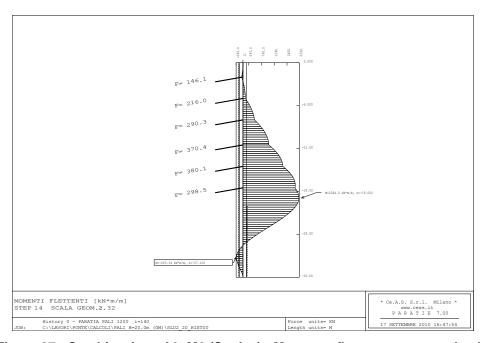


Figura 27 - Combinazione A2+M2 (Statica) : Momento flettente agente sul palo

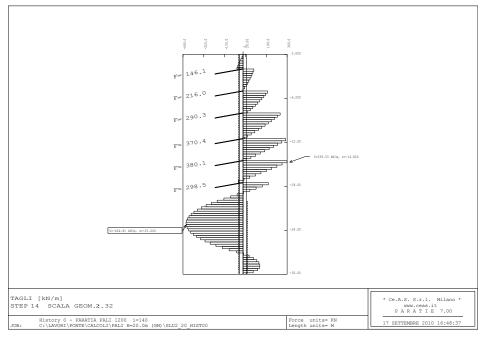
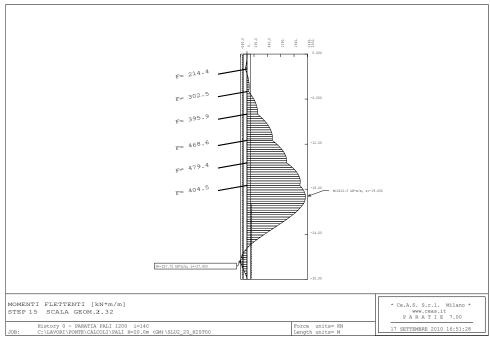


Figura 28 - Combinazione A2+M2 (statica) - Sollecitazioni di taglio agenti sul palo

Pagina 52 di 445 Eurolink S.C.p.A.



Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

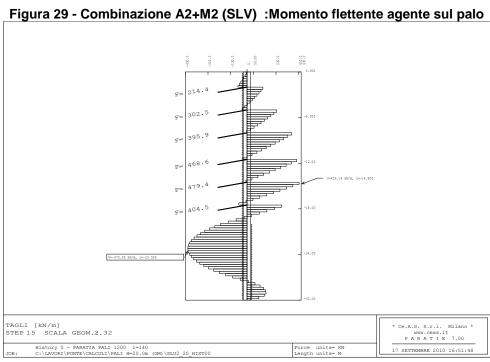
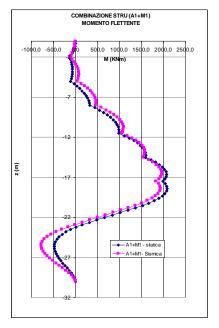


Figura 30 - Combinazione A2+M2 (SLV) - Sollecitazioni di taglio agenti sul palo

Eurolink S.C.p.A. Pagina 53 di 445


Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

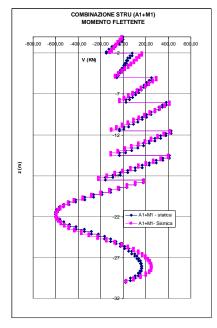


Figura 31 - Sollecitazioni agenti sul palo : combinazione A1+M1 (statica) e A1+M1 (SLV)

Di seguito si riporta il dominio di resistenza del palo armato con 38\(\phi\)26.

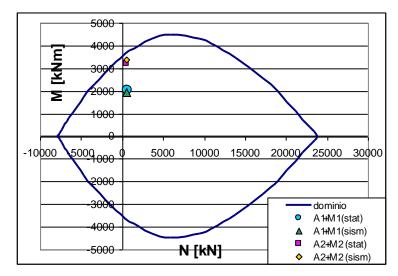


Figura 32 - Verifica a Pressoflessione – Dominio di resistenza palo armato 38φ26

Eurolink S.C.p.A. Pagina 54 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Sezione di calcolo 2 (palo H=25m)

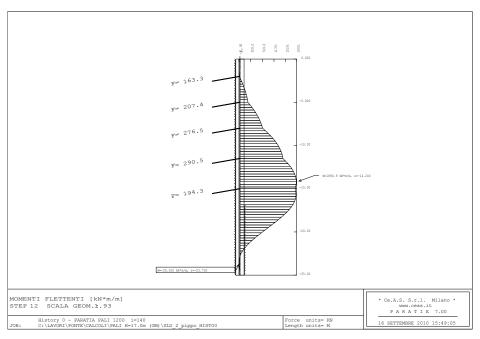


Figura 33 - Combinazione A2+M2 (statica) : Momento flettente agente sul palo

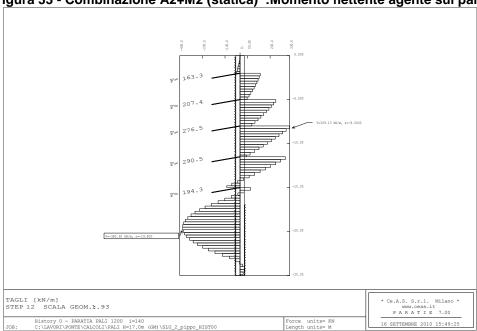
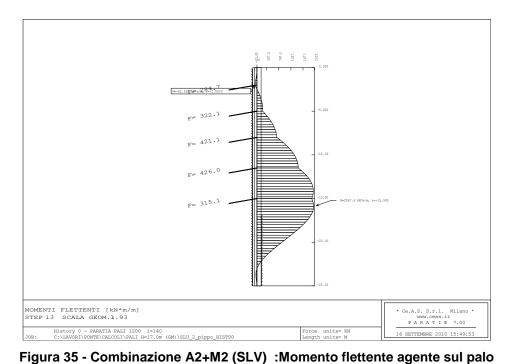


Figura 34 - Combinazione A2+M2 (statica) - Sollecitazioni di taglio agenti sul palo

Eurolink S.C.p.A. Pagina 55 di 445

* Ce.A.S. S.r.l. Milano *
www.ceas.it
PARATIE 7.00

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco


> TAGLI [kN/m] STEP 13 SCALA GEOM.1.93

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

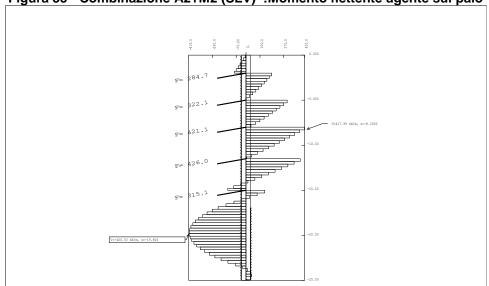


Figura 36 - Combinazione A2+M2 (SLV) - Sollecitazioni di taglio agenti sul palo

Pagina 56 di 445 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

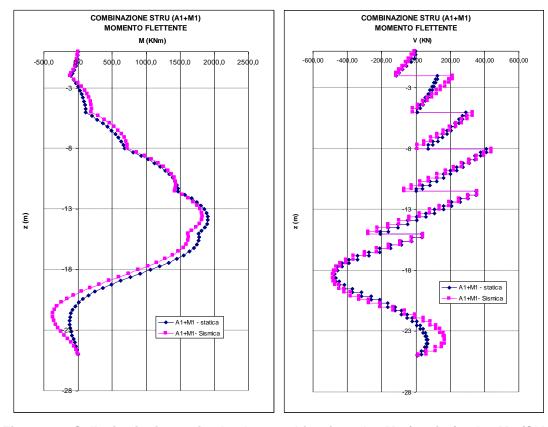


Figura 37 - Sollecitazioni agenti sul palo : combinazione A1+M1 (statica) e A1+M1 (SLV)

Di seguito viene riportato il dominio di resistenza del palo armato con 33\(\phi\)26.

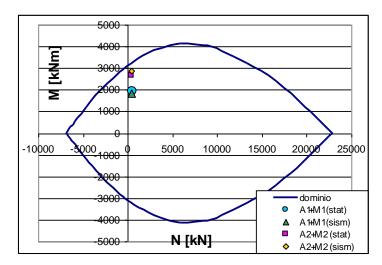


Figura 38 - Verifica a Pressoflessione – Dominio di resistenza palo armato 33φ26

Eurolink S.C.p.A. Pagina 57 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Di seguito si riassumo in forma tabellare le sollecitazioni agenti:

Combinaz.	М	N
A1+M1 (stat)	KNm	KN
AITIVII (Stat)	2048,05	676,32
Combinaz.	М	N
A1+M1 (sism)	KNm	KN
ATTIVIT (SISITI)	1963,99	469,35
Combinaz.	М	N
	KNm	N KN
A2+M2 (stat)		
	KNm	KN
A2+M2 (stat)	KNm 3197,60	KN 537,21

Tabella 19 - Verifica a Pressoflessione - Sollecitazioni di Progetto palo armato 38φ26

Combinaz.	M	N
A1+M1 (stat)	KNm	KN
AITINII (Stat)	1906,78	518,78
Combinaz.	M	N
A1+M1 (sism)	KNm	KN
ATTIVIT (SISIII)	1827,06	393,01
Combinaz.	M	N
	M KNm	N KN
Combinaz. A2+M2 (stat)		
	KNm	KN
A2+M2 (stat)	KNm 2641,66	KN 401,50

Tabella 20 - Verifica a Pressoflessione - Sollecitazioni di Progetto palo armato 33\(\phi 26\)

Come si evince dalle verifiche, per tutte le combinazioni previste dalla normativa di riferimento i valori delle sollecitazioni di progetto rientrano entro il dominio di resistenza della sezione.

Pagina 58 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

7.5.2.2 Verifiche a taglio

Per quanto riguarda la verifica al taglio allo stato limite ultimo, deve essere:

$$V_{rd} \ge V_{sd}$$

dove:

 V_{rd} = azione tagliante resistente di progetto;

 V_{sd} = azione tagliante sollecitante di progetto.

In particolare, la resistenza a taglio V_{rd} è la minore tra la resistenza di calcolo "a taglio trazione" (V_{Rsd}) con riferimento all'armatura trasversale che in questo caso è costituita da una spirale Ø16 con passo 20 cm e la resistenza di calcolo "a taglio compressione" (V_{Rcd}) , con riferimento al calcestruzzo d'anima:

$$V_{Rsd} = 0.9 d \frac{A_{sw}}{s} f_{yd} (ctg \alpha + ctg \theta) \sin \alpha$$

$$V_{Rcd} = 0.9 db_w \alpha_c f'_{cd} \left(ctg \alpha + ctg \theta \right) / \left(1 + ctg^2 \theta \right)$$

dove:

f'cd = resistenza a compressione ridotta del calcestruzzo;

f_{yd} = resistenza a snervamento di progetto;

α = angolo di inclinazione dell'armatura trasversale rispetto all'asse del palo;

θ = angolo di inclinazione dei puntoni compressi nello schema a traliccio;

b_w = larghezza della sezione (ipotizzata quadrata) di area uguale alla sezione del palo;

d = altezza utile della sezione = 0.9*b_w:

A_{sw} = area dell'armatura trasversale;

s = passo dell'armatura trasversale;

 α_c = coefficiente migliorativo.

Di seguito si riportano i risultati delle verifiche condotte. Come si può osservare la verifica è sempre soddisfatta, risultando in ogni caso Vsd < min(VRcd;VRsd):

Eurolink S.C.p.A. Pagina 59 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

V paratie	quota	l N	V	V slu	Coefficiente	Coefficiente
KN/m	m slm	KN	KN	KN	γ S	γ C
325	-22	622,04	455	591,5	1,15	1,5
404,35	-22	622,04	566,09	566,09	α	θ
464,81	-23	650,31	650,734	650,734	٥	٥
470	-23	650,31	658	658	90	45
Spirale ø	Passo	Asw	Copriferro	fyk staffe	fyd staffe	fcd
mm	cm	mm2	cm	Мра	MPa	MPa
16	20	402,12	5	450	391,30	14,11
altezza utile	bw	σср	αC	V Rcd	V Rsd	
d [cm]	cm	MPa	-	KN	KN	
94,19	101,11	0,55	1,04	3141,15	666,92	
		0,55	1,04	3141,15		- '
		0,575	1,04	3146,51		
		0,575	1,04	3146,51		
				_	_"	
			V Rd			
			KN	Verifica		
		A1+M1 stat	666,92	OK		
		A1+M1 sism	666,92	OK		
		A2+M2 stat	666,92	OK		
		A2+M2 sism	666,92	OK		

Tabella 21 - Sezione di calcolo 1 : verifica ala taglio

V paratie	quota	N	V	V slu	Coefficiente	Coefficiente
KN/m	m slm	KN	KN	KN	γ S	γ C
262,01	-18,6	525,90	366,814	484,19	1,15	1,5
329,66	-18,6	525,90	461,524	484,60	α	θ
380,9	-19,8	559,83	533,26	533,26	٥	۰
406,53	-19,8	559,83	569,142	569,14	90	45
Spirale φ	Passo	Asw	Copriferro	fyk staffe	fyd staffe	fcd
mm	cm	mm2	cm	Мра	MPa	MPa
16	20	402,12	5	450	391,30	14,11
altezza utile	bw	σср	αС	V Rcd	V Rsd	
d [cm]	cm	MPa	-	KN	KN	
94,19	101,11	0,465	1,03	3122,94	666,92	
		0,465	1,03	3122,94		-
		0,495	1,04	3129,37		
		0,495	1,04	3129,37		
				_		
			V Rd			
			KN	Verifica		
		A1+M1 stat	666,92	OK		
		A1+M1 sism	666,92	OK		
		A2+M2 stat	666,92	OK		
		A2+M2 sism	666,92	OK		

Tabella 22 - Sezione di calcolo 2 : verifica al taglio

Pagina 60 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

7.6 Verifiche strutturali dei tiranti

Nel seguito si riportano i risultanti delle verifiche riguardanti i tiranti previsti in progetto a sostegno della paratia; le verifiche riguardano sia la resistenza a trazione dei trefoli in acciaio sia la resistenza a sfilamento del bulbo di ancoraggio dal terreno

7.6.1 Verifica dei trefoli

Le verifiche sono state condotte accertando che, nelle fasi statica e sismica, sia rispettata la condizione seguente:

 $E_{\text{d}} \leq R_{\text{d}}$

Con $E_d = T_{max paratie} x$ passo tiranti

Sezione di calcolo 1

Ordine	numero trefoli	passo tiranti	Tiro iniziale	Tiro max paratie	Area trefolo	f _{p(1)k}	γ̃Azioni	R_d	E _d	R _d /E _d
[-]	[-]	[m]	[kN/m]	[kN/m]	[cm2]	[MPa]	[-]	[kN]	[kN]	[-]
1	4	2,8	140	138,0	1,39	1670	1,3	807,41	502,32	1,61
2	5	2,8	160	179,5	1,39	1670	1,3	1009,26	653,38	1,54
3	5	2,8	160	213,0	1,39	1670	1,3	1009,26	775,32	1,30
4	6	2,8	200	272,0	1,39	1670	1,3	1211,11	990,08	1,22
5	6	2,8	200	276,0	1,39	1670	1,3	1211,11	1004,64	1,21
6	6	2,8	180	223,0	1,39	1670	1,3	1211,11	811,72	1,49

Tabella 23 - Sezione di calcolo 1 : verifica trefoli fase statica

Ordine	numero trefoli	passo tiranti	Tiro iniziale	Tiro max paratie	Area trefolo	f _{p(1)k}	γ̃Azioni	Rs _d	Es _d	Rs _d /Es _d
[-]	[-]	[m]	[kN/m]	[kN/m]	[cm2]	[MPa]	[-]	[kN]	[kN]	[-]
1	4	2,8	140	211,1	1,39	1670	1	835,67	591,08	1,41
2	5	2,8	160	277,0	1,39	1670	1	1044,59	775,60	1,35
3	5	2,8	160	330,0	1,39	1670	1	1044,59	924,00	1,13
4	6	2,8	200	390,0	1,39	1670	1	1253,50	1092,00	1,15
5	6	2,8	200	395,0	1,39	1670	1	1253,50	1106,00	1,13
6	6	2,8	180	330.0	1.39	1670	1	1253.50	924.00	1.36

Tabella 24 - Sezione di calcolo 1 : verifica trefolo fase sismica (SLV)

Eurolink S.C.p.A. Pagina 61 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Sezione di calcolo 2

Ordine	numero trefoli	passo tiranti	Tiro iniziale	Tiro max paratie	Area trefolo	f _{p(1)k}	γ̃Azioni	R_d	E _d	R _d /E _d
[-]	[-]	[m]	[kN/m]	[kN/m]	[cm2]	[MPa]	[-]	[kN]	[kN]	[-]
1	4	2,8	140	140,6	1,39	1670	1,3	807,41	511,78	1,58
2	4	2,8	150	168,4	1,39	1670	1,3	807,41	612,98	1,32
3	5	2,8	160	206,2	1,39	1670	1,3	1009,26	750,57	1,34
4	5	2,8	160	214,3	1,39	1670	1,3	1009,26	780,05	1,29
5	5	2,8	140	194,0	1,39	1670	1,3	1009,26	706,16	1,43

Tabella 25 - Sezione di calcolo 2: verifica dei trefoli in fase statica

Ordine	numero trefoli	passo tiranti	Tiro iniziale	Tiro max paratie	Area trefolo	f _{p(1)k}	γ̃Azioni	Rs _d	Es _d	Rs _d /Es _d
[-]	[-]	[m]	[kN/m]	[kN/m]	[cm2]	[MPa]	[-]	[kN]	[kN]	[-]
1	4	2,8	140	238,7	1,39	1670	1	835,67	668,36	1,25
2	4	2,8	150	262,7	1,39	1670	1	835,67	735,56	1,14
3	5	2,8	160	326,2	1,39	1670	1	1044,59	913,36	1,14
4	5	2,8	160	323,0	1,39	1670	1	1044,59	904,40	1,16
5	5	2,8	140	256,2	1,39	1670	1	1044,59	717,36	1,46

Tabella 26 - Sezione di calcolo 2: verifica dei trefoli in fase sismica (SLV)

7.6.2 Verifica dell'ancoraggio

La *lunghezza libera* è definita dall'intersezione del tirante con un piano inclinato di $(45^{\circ} - \phi / 2 \Box \Box)$ sulla verticale, parallelo al piano passante per il piede della paratia e da esso distante 0.20 h. Si ha quindi:

 $L_s=h'+d$

dove:

h'= 0.20h/cos(45 $^{\circ}$ - α - ϕ /2)

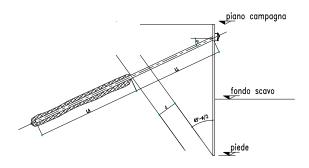


Tabella 27- Schema calcolo lunghezza libera del tirante

Pagina 62 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

con $\alpha = \square$ inclinazione tirante

 $\varphi = \Box$ angolo di attrito del terreno

 $d=(h+t-h_i) \sin(45^\circ-\phi/2) \square \square \square \sin(45^\circ+\alpha+\phi/2\square)$

con h = altezza fuori scavo paratia

t = infissione paratia

h_i= profondità tirante

Si deve inoltre tenere presente che, a causa dell'evento sismico, la potenziale superficie di scorrimento risulta più inclinata sull'orizzontale rispetto a quella relativa al caso statico. Questo comporta un incremento della lunghezza libera:

 $L_{s \text{ sismica}} = L_{s \text{ statica}} (1+1,5 S_s S_T a_g)$

ordine	L. libera [m]	L. libera + sisma [m]	L. libera [m]		
1	16,01	18,85	19,00		
2	14,65	17,24	17,00		
3	13,05	15,36	15,00		
4	11,68	13,75	14,00		
5	10,32	12,14	12,00		
6	8,95	10,53	11,00		

Tabella 28- Sezione di calcolo 1: Lunghezza libera tiranti

ordine	L. libera [m]	L. libera + sisma [m]	L. libera [m]
1	14,02	16,50	17,00
2	12,66	14,89	15,00
3	11,06	13,02	13,00
4	9,46	11,14	11,00
5	8,10	9,53	10,00

Tabella 29- Sezione di calcolo 2:Lunghezza libera tiranti

Per quanto riguarda le fondazioni di ancoraggio le verifiche sono state condotte accertando, sia in fase statica che in fase sismica, che sia rispettata la condizione:

 $E_d \leq R_d$

dove R_{d} è la resistenza a trazione del bulbo di ancoraggio, calcolata come:

Eurolink S.C.p.A. Pagina 63 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

$$R_{d} = \frac{\pi \cdot D \cdot \alpha \cdot L_{a} \cdot \tau_{LIM}}{\gamma_{R}}$$

dove:

D = diametro nominale di perforazione;

α = coefficiente amplificativo funzione delle modalità di iniezione e del tipo di terreno;

L_a = Lunghezza del bulbo di ancoraggio;

 τ_{LIM} = tensione limite di aderenza fra la malta del bulbo ed il terreno;

 γ_R = il coefficiente parziale per la resistenza di ancoraggi pretesi.

L'iniezione dovrà essere eseguita ad alta pressione e ripetuta con l'utilizzo di miscela cementizia avente R_{ck} >25MPa.

La tensione di aderenza malta-terreno può essere considerata, alla luce dei dati disponibili, variabile tra τ_{LIM} = 160-220KPa; come richiesto dalla norma, τ_{LIM} è stato ulteriormente ridotto utilizzando dei coefficienti correttivi.

Cautelativamente tale valore riduttivo è stato posto pari a

$$\xi_{a3}$$
 =1.8

pertanto si ha che

$$\tau_{\lim,Rd} = \frac{\tau_{\lim}}{\xi_{a3}}$$

Nella seguente tabella sono riportati i valori dei parametri su citati adottati nelle verifiche:

	D	α	γ̈́R
	[mm]	[-]	[-]
Tiranti a trefoli (3 - 4 trefoli)	150	1.3	1,1
Tiranti a trefoli (5 - 6 trefoli)	180	1,3	1,1

Tabella 30: Parametri utilizzati nella verifica allo sfilamento dei tiranti

Pagina 64 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Ordine	passo tiranti	Tiro iniziale	Tiro max paratie	Lungh. ancorag.	τ terr- fond.	Diametro perforaz.	α sbulbam.	D*α	γAzioni	γ̃Resist	R_d	E _d	R _d /E _d
[-]	[m]	[kN/m]	[kN/m]	[m]	[kPa]	[cm]	[-]	[cm]	[-]	[-]	[kN]	[kN]	[-]
1	2,8	140	138,0	9,0	122,22	15	1,3	19,5	1,3	1,1	612,30	502,32	1,22
2	2,8	160	179,5	13,0	122,22	15	1,3	19,5	1,3	1,1	884,43	653,38	1,35
3	2,8	160	213,0	14,0	122,22	18	1,3	23,4	1,3	1,1	1142,96	775,32	1,47
4	2,8	200	272,0	16,0	122,22	18	1,3	23,4	1,3	1,1	1306,24	990,08	1,32
5	2,8	200	276,0	16,5	122,22	18	1,3	23,4	1,3	1,1	1347,06	1004,64	1,34
6	2,8	180	223,0	14,0	122,22	19	1,3	24,7	1,3	1,1	1206,46	811,72	1,49

Tabella 31 - Sezione di calcolo 1 : verifica di ancoraggio dei tiranti in fase statica

Ordine	passo tiranti	Tiro iniziale	Tiro max paratie	Lungh. ancorag.	τ terr- fond.	Diametro perforaz.	α sbulbam.	D*α	γ̃Azioni	γResist	Rs _d	Es _d	Rs _d /Es _d
[-]	[m]	[kN/m]	[kN/m]	[m]	[kPa]	[cm]	[-]	[cm]	[-]	[-]	[kN]	[kN]	[-]
1	2,8	140	211,1	9,0	122,22	15	1,3	19,5	1,0	1,1	612,30	591,08	1,04
2	2,8	160	277,0	13,0	122,22	15	1,3	19,5	1,0	1,1	884,43	775,6	1,14
3	2,8	160	337,0	14,0	122,22	18	1,3	23,4	1,0	1,1	1142,96	943,6	1,21
4	2,8	200	390,0	16,0	122,22	18	1,3	23,4	1,0	1,1	1306,24	1092	1,20
5	2,8	200	395,0	16,5	122,22	18	1,3	23,4	1,0	1,1	1347,06	1106	1,22
6	2,8	180	330,0	14,0	122,22	19	1,3	24,7	1,0	1,1	1206,46	924	1,31

Tabella 32 - Sezione di calcolo 1 : verifica di ancoraggio dei tiranti in fase Sismica (SLV)

Ordine	passo tiranti	Tiro iniziale	Tiro max paratie	Lungh. ancorag.	τ terr- fond.	Diametro perforaz.	α sbulbam.	D*α	γAzioni	γ̃Resist	R _d	E _d	R _d /E _d
[-]	[m]	[kN/m]	[kN/m]	[m]	[kPa]	[cm]	[-]	[cm]	[-]	[-]	[kN]	[kN]	[-]
1	2,8	140	140,6	12,0	122,22	15	1,3	19,5	1,3	1,1	816,40	511,78	1,60
2	2,8	150	168,4	14,0	122,22	15	1,3	19,5	1,3	1,1	952,47	612,98	1,55
3	2,8	160	206,2	15,0	122,22	18	1,3	23,4	1,3	1,1	1224,60	750,57	1,63
4	2,8	160	214,3	15,0	122,22	18	1,3	23,4	1,3	1,1	1224,60	780,05	1,57
5	2.8	140	163.0	11.0	122.22	18	1.3	23.4	1.3	1.1	898.04	593.32	1.51

Tabella 33 - Sezione di calcolo 2 : verifica di ancoraggio dei tiranti in fase statica

Ordine	passo tiranti	Tiro iniziale	Tiro max paratie	Lungh. ancorag.	τ terr- fond.	Diametro perforaz.	α sbulbam.	D*α	γ̃Azioni	γ̃Resist	Rs _d	Es _d	Rs _d /Es _d
[-]	[m]	[kN/m]	[kN/m]	[m]	[kPa]	[cm]	[-]	[cm]	[-]	[-]	[kN]	[kN]	[-]
1	2,8	140	238,7	12,0	122,22	15	1,3	19,5	1,0	1,1	816,40	668,36	1,22
2	2,8	150	262,7	14,0	122,22	15	1,3	19,5	1,0	1,1	952,47	735,56	1,29
3	2,8	160	326,2	15,0	122,22	18	1,3	23,4	1,0	1,1	1224,60	913,36	1,34
4	2,8	160	323,0	15,0	122,22	18	1,3	23,4	1,0	1,1	1224,60	904,4	1,35
5	2,8	140	256,2	11,0	122,22	18	1,3	23,4	1,0	1,1	898,04	717,36	1,25

Tabella 34 - Sezione di calcolo 2 : Verifica di ancoraggio dei tiranti in fase Sismica (SLV)

7.7 Verifiche strutturali delle travi di ripartizione

Nella verifica delle travi di ripartizione la struttura è stata schematizzata come una trave continua su più appoggi posti ad interasse pari a quello dei tiranti, su cui grava un carico uniformemente distribuito pari alla massima sollecitazione nel tirante.

Le verifiche sono state condotte considerando come azioni sollecitanti caratteristiche le massime azioni derivanti dalla schematizzazione strutturale sopra ricordata ottenendo che:

Eurolink S.C.p.A. Pagina 65 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

$$M_{\text{max}} = q l^2 / 10$$

$$V_{max} = qI/2$$

7.7.1 Stato limite di esercizio

Le verifiche sono state condotte accertando che , in fase di esercizio, sia rispettata la seguente condizione:

$$\sigma_{id} \leq \sigma_s$$
 = 0.70 x f_{vk} =248.50 MPa

dove

$$\sigma_{id} = \sqrt{\left(\sigma_{\max}^2(\overline{z}) + 3 \cdot \tau^2(\overline{z})\right)}$$

$$\sigma_{\max}(\overline{z}) = \frac{M_{\max}}{W}$$

$$\tau(\overline{z}) = \frac{V_{\text{max}}}{A_{ridotta}}$$

dove W e A sono pari rispettivamente al modulo di resistenza ed all'area della sezione metallica del profilato.

ORDINE	СОМВО	PRIOFILATO	Tparatie [KN/m]	passo [m]	Mmax [KNm/m]	Vmax [KN/m]	σ [MPa]	τ [MPa]	σid [MPa]
	STATICA	2HEB180	138	2,8	108,19	193,2	126,99	71,56	177,44
1	SISMICA	21166160	143	2,0	112,11	200,2	131,59	49,31	156,87
	STATICA	2HEB200	180	2.0	141,12	252	109,23	62,07	153,26
2	SISMICA	ZHEDZUU	193	2,8	151,31	270,2	117,11	66,55	164,33
	STATICA	2HEB200	213	2,8	166,99	298,2	129,25	73,45	181,36
3	SISMICA	ZIIEBZUU	237	2,0	185,81	331,8	143,81	81,72	201,79
	STATICA	2HEB200	272	2,8	213,25	380,8	165,05	93,79	231,59
4	SISMICA	ZIIEBZUU	302	2,0	236,77	422,8	183,26	104,14	247,80
	STATICA	2HEB200	276	2,8	216,38	386,4	167,48	95,17	235,00
5	SISMICA	21166200	311	2,0	243,82	435,4	188,72	107,24	246,80
	STATICA	2HEB200	223	2,8	174,83	312,2	135,32	76,90	189,87
6	SISMICA	ZI ILDZUU	258	۷,0	202,27	361,2	156,56	88,97	219,67

Tabella 35 - Sezione di calcolo 1 : verifica delle travi di correa in fase di esercizio (SLE) ed in fase sismica (SLD)

Pagina 66 di 445 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

ORDINE	СОМВО	PRIOFILATO	Tparatie [KN/m]	passo [m]	Mmax [KNm/m]	Vmax [KN/m]	σ [MPa]	τ [MPa]	σid [MPa]
	STATICA		140,6	2,8	110,23	196,84	129,38	72,90	180,79
1	SISMICA	2HEB180	148,1		116,11	207,34	136,28	67,76	179,85
	STATICA		168,4	2,8	132,03	235,76	110,76	77,05	173,42
2	SISMICA	2HEB200	180,4		141,43	252,56	118,65	82,54	185,78
	STATICA		206,2	2,8	161,66	288,68	135,62	94,34	212,35
3	SISMICA	2HEB200	227,6		178,44	318,64	149,70	104,13	234,39
	STATICA		214,3	2,8	168,01	300,02	140,95	98,05	220,69
4	SISMICA	2HEB200	239,8		188,00	335,72	157,72	109,71	246,95
	STATICA		163	2,8	127,79	228,2	107,21	74,58	167,86
5	SISMICA	2HEB200	188,1		147,47	263,34	123,72	86,06	193,71

Tabella 36 - Sezione di calcolo 2 :verifica delle travi di correa in fase di esercizio (SLE) ed in fase sismica (SLD)

7.7.2 Stato limite ultimo

La verifica combinata momento flettente e taglio è stata condotta verificando che $M_{rd} \ge M_{sd} e V_{rd} \ge V_{sd}$

dove:

 M_{rd} . V_{rd} = sollecitazioni di progetto

M_{sd}, V_{sd} = sollecitazioni resistenti di progetto

I = interasse fra i tiranti;

q = reazione distribuita della paratia lungo la trave di ripartizione supposta uniforme e quindi pari al tiro del tirante diviso per l'interasse.

Le ipotesi che stanno alla base del calcolo a rottura richiedono che si possa formare, in corrispondenza della sezione sollecitata a momento flettente, una cerniera plastica prima che i fenomeni di instabilità locale penalizzino la resistenza della sezione.

La capacità della sezione di sviluppare rotazioni plastiche è assicurata se è rispetta la seguente condizione:

$$\frac{c}{f_f} \le 10\sqrt{\frac{235}{f_y}}$$

dove:

Eurolink S.C.p.A. Pagina 67 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

c = lunghezza di metà profilato ;

f_t = spessore dell'ala del profilato

f_y = tensione di snervamento dell'acciaio

Dalle tabelle allegata è possibile evincere che le verifiche risultano tutte soddisfatte.

Pagina 68 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

A1+M1	Dati da	Paratie		Tipo a	cciaio						Prof	ilato				
AITWII	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO		2.8	S355	355	1.15	308.6957	HEB180	18	1.4	0.85	1.5	12.5	426.0	481.0	65.3	20.3
SISMICO	143	2,0	333	3	1,13	300,0337	2	10	1,4	0,03	1,5	12,3	420,0	401,0	05,5	20,3
		Azioni sollecitanti														
		Az	ioni sollecita	anti			Azioni r	esistenti			Veri	iche		contro	llo classe s	ezione
	M _{sk}	V _{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl rd}$	M _{rd} /	M _{sd}	V _{rd} /	V _{sd}	Х	'	_
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-	-]	[-	-]	C/t _f	9*(235/	fy)^0.5
STATICO	54,1	96,6	1,3	70,3	125,6	131,5	148,5	148,5	361,6	2,11	>1	2,88	>1	6,4	7,	
SISMICO	56,1	100,1	1,0	56,1	100,1	131,5	148,5	148,5	361,6	2,65	> 1	3,61	> 1	OK: X<	Y sez. di c	lasse 1

A1+M1	Dati da	Paratie		Tipo a	acciaio						Prof	filato				
A1+W1	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	Wel	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	180	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	193	2,0	3333	355	1,15	300,0937	2	20	1,5	0,9	1,0	12,5	369,0	642,0	70,0	24,0
					-						-	-	-			
		Az	ioni sollecita	anti			Azioni re	esistenti			Veri	fiche		contro	llo classe s	ezione
	M _{sk}	V _{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M _{rd}	V _{pl rd}	M _{rd}	M _{sd}	V _{rd}	/ V _{sd}	Х	,	′
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	70,6	126,0	1,3	91,7	163,8	175,6	198,2	198,2	441,1	2,16	>1	2,69	>1	6,7	7	,3
SISMICO	75,7	135,1	1,0	75,7	135,1	175,6	198,2	198,2	441,1	2,62	>1	3,27	>1	OK: X<	Y sez. di c	lasse 1

A4 - B44	Dati da	Paratie		Tipo a	acciaio						Prof	ilato				
A1+M1	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	213	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	237	2,0	3333	333	1,13	300,0937	2	20	1,5	0,9	1,0	12,5	309,0	642,0	70,0	24,0
		Az	ioni sollecita	anti			Azioni r	esistenti			Veri	iche		contro	llo classe s	ezione
	M _{sk}	Azioni sollecitanti V _{sk}				M _{el rd}	M _{pl rd}	M rd	V _{pl rd}	M _{rd}	M _{sd}	V _{rd} /	V _{sd}	Х	,	1
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]		-]	[-	-]	C/t _f	9*(235/	fy)^0.5
STATICO	83,5	149,1	1,3	108,5	193,8	175,6	198,2	198,2	441,1	1,83	>1	2,28	>1	6,7	7	,3
SISMICO	92,9	165,9	1,0	92,9	165,9	175,6	198,2	198,2	441,1	2,13	> 1	2,66	> 1	OK: X<	Y sez. di c	lasse 1

A1+M1	Dati da	Paratie		Tipo a	acciaio						Prof	filato				
AITIVII	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	q	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	272	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	302	2,0	3333	333	1,15	300,0937	2	20	1,5	0,9	1,0	12,5	309,0	642,0	70,0	24,0
		Az	ioni sollecita	anti			Azioni r	esistenti			Verit	fiche		contro	llo classe s	ezione
	Msk	V_{sk}			٧	M	14	M rd	V	М.	M _{sd}	V .	V _{sd}	<	,	
	INISK	V sk	YΑ	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	IVI rd	V _{pl rd}	···ra	···sa	· ra	▼sd			<u> </u>
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	ra	-]	[-]	C/t _f	9*(235/	fy)^0.5
CASO STATICO			[-]				_			1,27	-]	1,78	-]		9*(235 /	

A1+M1	Dati da	Paratie		Tipo a	cciaio						Prof	filato				
A1+W1	T _{paratie}	passo	Tipo	f _{yk}	γмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	276	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0,9	1,8	12.5	569.0	642.0	78.0	24.8
SISMICO	311	2,0	333	333	1,13	300,0337	2	20	1,5	0,9	1,0	12,5	303,0	042,0	70,0	24,0
		Az	ioni sollecita	anti			Azioni r	esistenti			Veri	fiche		contro	lo classe s	ezione
	M _{sk}	V_{sk}	γΑ	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl rd}$	M _{rd}	/ M _{sd}	V _{rd}	/ V _{sd}	Х	,	1
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]		-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	108,2	193,2	1,3	140,6	251,2	175,6	198,2	175,6	441,1	1,25	> 1	1,76	> 1	6,7	7	,3
SISMICO	121,9	217,7	1,0	121,9	217,7	175,6	198,2	198,2	441,1	1,63	> 1	2,03	> 1	OK: X<	Y sez. di c	lasse 1

A1+M1	Dati da	Paratie		Tipo a	acciaio						Prof	ilato				
AITIVII	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	223	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	258	2,0	3333	333	1,15	300,0937	2	20	1,5	0,9	1,0	12,5	369,0	642,0	70,0	24,0
				-	-					-						
		Az	ioni sollecita	anti			Azioni re	esistenti			Verit	iche		contro	llo classe s	sezione
	M _{sk}	V_{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M _{rd}	V _{pl rd}	M _{rd}	/ M _{sd}	V _{rd}	V _{sd}	Х	,	Y
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	87,4	156,1	1,3	113,6	202,9	175,6	198,2	198,2	441,1	1,74	> 1	2,17	>1	6,7	7	,3
SISMICO	101,1	180,6	1,0	101,1	180,6	175,6	198,2	198,2	441,1	1,96	>1	2,44	>1	OK: X<	Y sez. di c	lasse 1

Tabella 37 - Sezione di calcolo 1 : verifica travi di correa - combinazione A1+M1

Eurolink S.C.p.A. Pagina 69 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

A2+M2	Dati da	Paratie		Tipo a	acciaio						Prof	filato				
AZTIVIZ	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	146	2.8	S355	355	1.15	308.6957	HEB180	18	1.4	0.85	1,5	12.5	426.0	481.0	65.3	20.3
SISMICO	214	2,0	3333	333	1,13	300,0937	2	10	1,4	0,00	1,5	12,5	420,0	401,0	05,5	20,5
	Azioni sollecitanti						Azioni r	esistenti			Veri	fiche		contro	llo classe s	ezione
	M _{sk}	V _{sk}	YΑ	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl rd}$	M _{rd}	/ M _{sd}	V _{rd}	V _{sd}	Х	,	1
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]		-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	57,2	102,2	1,3	74,4	132,9	131,5	148,5	148,5	361,6	2,00	>1	2,72	>1	6,4	7 Y sez. di c	,3

A2+M2	Dati da	Paratie		Tipo a	acciaio						Prof	filato				
AZ+IVIZ	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	216	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	302,5	2,0	3333	333	1,15	300,0937	2	20	1,5	0,9	1,0	12,5	569,0	042,0	70,0	24,0
					-						-	-				
1 [Az	ioni sollecita	anti			Azioni re	esistenti			Veri	fiche		contro	lo classe s	sezione
l í	M _{sk}	V _{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl rd}$	M _{rd}	M _{sd}	V _{rd}	V _{sd}	Х	,	Y
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]	[-	C/t _f	9*(235/	fy)^0.5
STATICO	84,7	151,2	1,3	110,1	196,6	175,6	198,2	198,2	441,1	1,80	>1	2,24	> 1	6,7	7	,3
SISMICO	118,6	211,8	1,0	118,6	211,8	175,6	198,2	198,2	441,1	1,67	>1	2,08	>1	OK: X<	Y sez. di c	lasse 1

A2.842	Dati da	Paratie		Tipo a	cciaio						Pro	filato				
A2+M2	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	290	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	295,9	2,0	2,0 333 1,13			300,0937	2	20	1,5	0,9	1,0	12,5	309,0	642,0	70,0	24,0
l i		Az	ioni sollecita	anti			Azioni r	esistenti			Veri	fiche		contro	llo classe s	sezione
	M _{sk}	V _{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M rd	$V_{pl rd}$	M _{rd}	/ M _{sd}	V _{rd}	V _{sd}	Х	,	Y
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]		-]	[-]	C/t _f	9*(235	fy)^0.5
STATICO	113,7	203,0	1,3	147,8	263,9	175,6	198,2	175,6	441,1	1,19	>1	1,67	>1	6,7	7	,3
SISMICO	116.0	207.1	1.0	116.0	207.1	175.6	198.2	198.2	441.1	1.71		2,13	•	OV: V	Y sez. di c	lacce 1

A2+M2	Dati da	Paratie		Tipo a	acciaio						Pro	filato				
AZ+IVIZ	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	345	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1,8	12.5	569.0	642.0	78.0	24.8
SISMICO	439	2,0	3333	333	1,13	300,0937	2	20	1,5	0,9	1,0	12,5	309,0	042,0	70,0	24,0
		Az	ioni sollecita	anti			Azioni r	esistenti			Veri	fiche		contro	llo classe s	sezione
	M _{sk}	V _{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M rd	$V_{pl rd}$	M _{rd}	/ M _{sd}	V _{rd}	V _{sd}	Х	,	Y
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]		-]]	-]	C/t _f	9*(235)	fy)^0.5
STATICO	135,2	241,5	1,3	175,8	314,0	175,6	198,2	175,6	441,1	1,00	NO !!!	1,41	>1	6,7	7	,3
SISMICO																

A2+M2	Dati da	Paratie		Tipo a	cciaio						Prof	filato				
AZ+IVIZ	T _{paratie}	passo	Tipo	f _{yk}	γмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	298	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0,9	1,8	12.5	569.0	642.0	78.0	24.8
SISMICO	404	2,0	333	333	1,13	300,0337	2	20	1,5	0,9	1,0	12,5	303,0	042,0	70,0	24,0
											-		-			
	Azioni sollecitanti						Azioni r	esistenti			Veri	fiche		contro	lo classe s	ezione
	M _{sk} V _{sk} γ _A M _{sd} V _{sd}		V_{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl rd}$	M _{rd}	/ M _{sd}	V _{rd}	/ V _{sd}	Х	,	1		
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]		-]]	-]	C/t _f	9*(235/	fy)^0.5
STATICO	116,8	208,6	1,3	151,9	271,2	175,6	198,2	175,6	441,1	1,16	> 1	1,63	>1	6,7	7	,3
SISMICO					282,8	175,6	198,2	175,6	441,1	1,11	> 1	1,56	>1	OK: X<	Y sez. di c	lasse 1

A2+M2	Dati da	Paratie		Tipo a	acciaio						Prof	filato				
AZ+IVIZ	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	298,5	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	404	404			1,15	300,0937	2	20	1,5	0,9	1,0	12,5	369,0	642,0	70,0	24,0
1 [Azioni sollecitanti					Azioni re	esistenti			Veri	fiche		contro	llo classe s	ezione
	M _{sk}	V_{sk}	YΑ	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl rd}$	M _{rd}	/ M _{sd}	V _{rd}	/ V _{sd}	Х	,	′
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	117,0	209,0	1,3	152,1	271,6	175,6	198,2	175,6	441,1	1,15	> 1	1,62	> 1	6,7		,3
SISMICO	158,4	282,8	1,0	158,4	282,8	175,6	198,2	175,6	441,1	1,11	>1	1,56	>1	OK: X<	Y sez. di c	lasse 1

Tabella 38 - Sezione di calcolo 1 : verifica travi di correa - combinazione A2+M2

Pagina 70 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

	5	.	ī	-			ī									
A1+M1	Dati da	Paratie		l ipo a	cciaio						Prot	ilato				
7 (1 1 1 1 1 1 1	T _{paratie}	passo	Tipo	f _{yk}	? мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Αv
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO				1 15	308.6957	HEB180	18	1.4	0.85	1.5	12.5	426.0	481.0	65,3	20,3	
SISMICO	238,7 2,8 5355 355 1,10		1,15	300,0937	2	10	1,4	0,05	1,5	12,5	420,0	401,0	65,3	20,3		
		Az	ioni sollecita	anti			Azioni r	esistenti			Veri	iche		contro	llo classe s	ezione
			V _{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl rd}$	M _{rd} /	/ M _{sd}	V _{rd} /	V _{sd}	Х	,	Y		
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	55,1	98,4	1,3	71,6	127,9	131,5	148,5	148,5	361,6	2,07	>1	2,83	>1	6,4	7	,3
SISMICO				93.6	167.1	131.5	148.5	148.5	361.6	1,59	1	2.16	> 1	OK· X	Y sez. di c	lasse 1

A1+M1	Dati da	Paratie		Tipo a	cciaio						Prof	ilato				
AI+WII	T _{paratie} passo		Tipo	f _{yk}	γмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	168,4	2.0	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	262,7	2,6	3333	333	1,13	300,0937	2	20	1,5	0,9	1,0	12,5	309,0	042,0	76,0	24,0
													-			
	Azioni sollecitanti						Azioni re	esistenti			Veri	fiche		contro	llo classe s	ezione
	M _{sk}	V_{sk}	YΑ	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M rd	$V_{pl\ rd}$	M _{rd} /	/ M _{sd}	V _{rd} /	/ V _{sd}	Х	•	_
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	66,0	117,9	1,3	85,8	153,2	175,6	198,2	198,2	441,1	2,31	> 1	2,88	> 1	6,7	7	,3
SISMICO	103,0	183,9	1,0	103,0	183,9	175,6	198,2	198,2	441,1	1,92 > 1		2,40	> 1	OK: X<	Y sez. di c	lasse 1

A4 - N4	Dati da	Paratie		Tipo a	cciaio						Prof	ilato				
A1+M1	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	206,2	2.8	S355	355	1.15	308,6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	326,2	2,0	3333	333	1,13	300,0937	2	20	1,5	5 0,9 1,6 12,5			309,0	042,0	70,0	24,0
	Azioni sollecitanti						Azioni r	esistenti			Veri	fiche		control	llo classe s	ezione
	M _{sk}	V_{sk}	γΑ	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl rd}$	M _{rd}	/ M _{sd}	V _{rd} /	V _{sd}	Х	,	1
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	80,8	144,3	1,3	105,1	187,6	175,6	198,2	198,2	441,1	1,89	>1	2,35	>1	6,7	7	,3
SISMICO	127,9	228,3	1,0	127,9	228,3	175,6	198,2	175,6	441,1	1,37	> 1	1,93	>1	OK: X<	Y sez. di c	lasse 1

A1+M1	Dati da	Paratie		Tipo a	cciaio						Prof	ilato				
AI+WII	T _{paratie}	passo	Tipo	f _{yk}	У мо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Αv
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	214,3	2.8	S355	355	1.15	308,6957	HEB200	20	4.5	0.9	1,8	12,5	569.0	642.0	78.0	24,8
SISMICO	323	2,0	3333	333	1,15	300,0937	2	20	1,5	0,9	1,0	12,5	569,0	642,0	70,0	24,0
	Azioni sollecitanti						Azioni r	esistenti				fiche		control	llo classe s	sezione
	Msk	V_{sk}	YΑ	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M rd	$V_{pl\ rd}$	M _{rd} /	/ M _{sd}	V _{rd} /	V _{sd}	Х	,	Y
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	84,0	150,0	1,3	109,2	195,0	175,6	198,2	198,2	441,1	1,81	>1	2,26	>1	6,7	7	,3
SISMICO	126.6	226.1	1.0	126.6	226.1	175.6	198.2	175.6	441.1	1,39	>1	1,95	> 1	OK: X<	Y sez. di c	lasse 1

A4 - B44	Dati da	Paratie		Tipo a	cciaio						Prof	ilato				
A1+M1	T _{paratie}	passo	Tipo	f _{yk}	γмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	163	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1,8	12.5	569.0	642.0	78.0	24.8
SISMICO	256	2,6	3333	333	1,13	300,0937	2	20	1,5	0,9	1,0	12,5	309,0	042,0	76,0	24,0
_																
		Azi	ioni sollecita	anti			Azioni r	esistenti			Veri	fiche		contro	llo classe s	ezione
	M _{sk}	V_{sk}	YΑ	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M rd	$V_{pl rd}$	M _{rd}	M _{sd}	V _{rd} /	/ V _{sd}	Х	,	1
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	63,9	114,1	1,3	83,1	148,3	175,6	198,2	198,2	441,1	2,39	>1	2,97	> 1	6,7	7	,3
SISMICO	100.4	179.2	1.0	100.4	179.2	175.6	198.2	198.2	441.1	1.97	> 1	2.46	> 1	OK: X<	Y sez. di c	lasse 1

Tabella 39 - Sezione di calcolo 2 : verifica travi di correa - combinazione A1+M1

Eurolink S.C.p.A. Pagina 71 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

A2+M2	Dati da	Paratie		Tipo a	acciaio						Prof	ilato				
AZTIVIZ	T _{paratie}	passo	Tipo	f _{yk}	γмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	163,3	28 \$355 355 1.19			1 15	308.6957	HEB180	18	1.4	0.85	1.5	12.5	426.0	481.0	65.3	20.3
SISMICO	284,7	2,0	0000	000	1,10	000,0007	2	.0	1,-	0,00	1,0	12,0	420,0	401,0	00,0	20,0
Ι.																
1	Azioni sollecitanti						Azioni re	esistenti			Veri	fiche		contro	llo classe s	ezione
	Msk	V_{sk}	YΑ	M_{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl\ rd}$	M _{rd} /	M _{sd}	V _{rd} /	V _{sd}	Х	١	<i>'</i>
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-	-]	[-	-]	C/t _f	9*(235/	fy)^0.5
STATICO	64,0	114,3	1,3	83,2	148,6	131,5	148,5	148,5	361,6	1,78	>1	2,43	>1	6,4	7.	
SISMICO	111,6	199,3	1,0	111,6	199,3	131,5	148,5	131,5	361,6	1,76 > 1		1,81	> 1	OK: X<	Y sez. di c	lasse 1

A2.M2	Dati da	Paratie		Tipo a	cciaio						Prof	ilato				
A2+M2	T _{paratie}	passo	Tipo	f _{yk}	γмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	207,4	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	322,1	322,1 2,0 333 3,1			300,0937	2	20	1,5	0,9	1,0	12,5	309,0	642,0	70,0	24,0	
	Azioni sollecitanti						Azioni r	esistenti			Veri	fiche		contro	llo classe s	ezione
	M _{sk}	V_{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl\ rd}$	M _{rd}	M _{sd}	V _{rd} /	/ V _{sd}	Х	,	1
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]		-]	[-]	C/t _f	9*(235/	fy)^0.5
STATICO	81,3	145,2	1,3	105,7	188,7	175,6	198,2	198,2	441,1	1,88	>1	2,34	>1	6,7	7	,3
SISMICO	126,3	225,5	1,0	126,3	225,5	175,6	198,2	175,6	441,1	1,39	> 1	1,96	> 1	OK: X<	Y sez. di c	lasse 1

	Dati da	Paratie	Tipo acciaio				Profilato										
A2+M2	T _{paratie}	passo	Tipo	f _{yk}	Υмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	Wel	W _{pl}	Α	Av	
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]	
STATICO	276,5	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1,8	12.5	569.0	642.0	78.0	24.8	
SISMICO	421,1	2,0	5555	333	1,15	300,0337	2	20	1,5	0,5	1,0	12,5	303,0	042,0	70,0	24,0	
l í	Azioni sollecitanti						Azioni re	esistenti			Veri	fiche	controllo classe sezione				
	M _{sk}	V _{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M _{rd}	V _{pl rd}	M _{rd} / M _{sd}		V _{rd} / V _{sd}		Х	Y		
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]		[-]		C/t _f	9*(235/fy)^0.5		
STATICO	108,4	193,6	1,3	140,9	251,6	175,6	198,2	175,6	441,1	1,25 > 1 1,75 > 1		6,7	7,3				
SISMICO	165,1	294,8	1,0	165,1	294,8	175,6	198,2	175,6	441,1	1,06	1,06 > 1 1,50 > 1		OK: X <y 1<="" classe="" di="" sez.="" th=""><th>lasse 1</th></y>		lasse 1		

A2+M2	Dati da	Paratie	Tipo acciaio				Profilato										
	T _{paratie}	passo	Tipo	f _{yk}	γмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av	
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]	
STATICO	290,5	2.8	S355	355	1.15	308.6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8	
SISMICO	426,2	2,0	3333	300	1,15	300,0937	2	20	1,5	0,9	1,0	12,5	569,0	642,0	70,0	24,0	
	Azioni sollecitanti							esistenti		Verifiche				controllo classe sezione			
	M _{sk}	V _{sk}	Y A	M _{sd}	V_{sd}	M _{el rd}	M _{pl rd}	M _{rd}	$V_{pl\ rd}$	M _{rd} / M _{sd}		V _{rd} / V _{sd}		Х	Y		
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]		[-]		C/t _f	9*(235/fy)^0.5		
STATICO	113,9	203,4	1,3	148,0	264,4	175,6	198,2	175,6	441,1	1,19 > 1		1,67 > 1		6,7	7,3		
										1,05 > 1		1.48 > 1			OK: X <y 1<="" classe="" di="" sez.="" th=""></y>		

A2+M2	Dati da Paratie		Tipo acciaio			Profilato										
AZ+IVIZ	T _{paratie}	passo	Tipo	f _{yk}	γмо	f _{yd}	Tipo e	b	t _{flangia}	t _{web}	r	h web	W _{el}	W _{pl}	Α	Av
CASO	[KNm/m]	[m]	acciaio	[MPa]	[-]	[MPa]	numero	[cm]	[cm]	[cm]	[cm]	[cm]	[cm3]	[cm3]	[cm2]	[cm2]
STATICO	194,3	2.8	S355	355	1.15	308,6957	HEB200	20	1.5	0.9	1.8	12.5	569.0	642.0	78.0	24.8
SISMICO	315,1	2,0	3	33	1,13	300,0937	2	20	2,9	0,3	1,0	12,3	303,0	042,0	70,0	24,0
	Azioni sollecitanti						Azioni re	esistenti			Veri	fiche	controllo classe sezione			
	M _{sk}	V _{sk}	YΑ	M _{sd}	V _{sd}	M _{el rd}	M _{pl rd}	M rd	$V_{pl\ rd}$	M _{rd} /M _{sd}		V_{rd}/V_{sd}		Х	Y	
CASO	[kNm]	[kNm]	[-]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kN]	[-]		[-]		C/t _f	9*(235/fy)^0.5	
STATICO	76,2	136,0	1,3	99,0	176,8	175,6	198,2	198,2	441,1	2,00 > 1		2,49 > 1		6,7	7,3	
SISMICO	123,5	220,6	1,0	123,5	220,6	175,6	198,2	175,6	441,1	1,42 > 1		2,00 > 1		OK: X <y 1<="" classe="" di="" sez.="" th=""><th>lasse 1</th></y>		lasse 1

Tabella 40 - Sezione di calcolo 2 : verifica travi di corre - combinazione A2+M2

Pagina 72 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

7.8 Verifiche SLU di tipo geotecnico

Gli SLU di tipo geotecnico presi in considerazione nelle verifiche, come già anticipato, riguardano essenzialmente:

- 1. Collasso per rotazione intorno ad un punto dell'opera (atto di moto rigido)
- 2. Sfilamento di uno o più ancoraggi;
- 3. Instabilità globale dell'insieme terreno-opera.

Le verifica indicata nel punto 3 è stata eseguita con riferimento alle analisi numeriche svolte secondo la combinazione A2+M2.

Gli SLU di tipo idraulico (UPL e HYD), nel caso in questione, non sono stati esaminati in quanto la posizione della falda non è tale da influenzare l'andamento delle pressioni esercitate dal terreno sul'opera di contenimento.

7.8.1 Verifica collasso per rotazione intorno a un punto dell'opera

Tale verifica richiede di considerare tutti i possibili criteri di colloso geotecnico della paratia nel suo insieme; questi possono essere molteplici e, in generale, un moderno programma di calcolo ne tiene già conto quando converge ad una soluzione stabile, in tal modo, implicitamente, è stato verificato ogni possibile meccanismo di moto rigido. Sono riportati di seguito i principali output di calcolo, relativamente alle due sezioni di calcolo, che attestano come l'analisi numerica ,in ogni fase di calcolo abbia raggiunto una soluzione stabile.

Eurolink S.C.p.A. Pagina 73 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

Sezione di calcolo 1 :

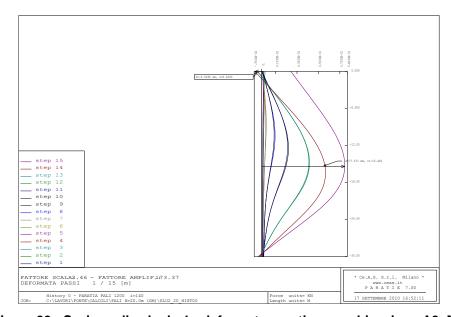


Figura 39 - Sezione di calcolo 1 : deformata paratia - combinazione A2+M2

FASE	Ν.	DI	ITERAZIONI	CONVERGENZA			
1	L		2	SI			
2	2		7	SI			
3	3		5	SI			
4	1		5	SI			
5	5		5	SI			
6	5		7	SI			
7	7		5	SI			
8	3		7	SI			
9)		4	SI			
1	0		7	SI			
1	1		4	SI			
1	2		6	SI			
1	3		4	SI			
1	4		7	SI			
1	5		5	SI			

Tabella 41- Sezione di calcolo 1: Output di sintesi analisi incrementale

Fase Statica (A2+M2)

FASE 14	GRUPPO>	UHLe	DHLe
SPINTA	EFFICACE VERA	4225.8	2550.2
SPINTA	ACQUA	0.	0.
SPINTA	TOTALE VERA	4225.8	2550.2
SPINTA	ATTIVA (POSSIBILE)	4151.2	409.49
SPINTA	PASSIVA (POSSIBILE)	30461.	3369.6
RAPPOR'	TO PASSIVA/VERA	7.2084	1.3214

Pagina 74 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

SPINTA	PASSIVA	MOBILITATA	14.8	76.%
RAPPORT	O VERA	/ATTIVA	1.0180	6.2276

Fase Sismica (A2+M2)

FASE 15	GRUPPO>	UHLe	DHLe
SPINTA	EFFICACE VERA	4071.1	2519.9
SPINTA	ACQUA	0.	0.
SPINTA	TOTALE VERA	4071.1	2519.9
SPINTA	ATTIVA (POSSIBILE)	4023.2	411.28
SPINTA	PASSIVA (POSSIBILE)	27789.	3183.0
RAPPOR	TO PASSIVA/VERA	6.8261	1.2632
SPINTA	PASSIVA MOBILITATA	15.%	79.%
RAPPOR	TO VERA/ATTIVA	1.0119	6.1270

Sezione di calcolo 2

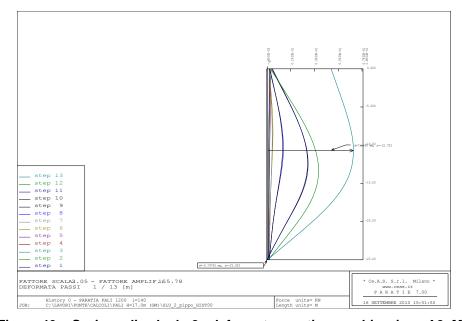


Figura 40 - Sezione di calcolo 2 : deformata paratia - combinazione A2+M2

FASE	Ν.	DI	ITERAZIONI	CONVERGENZA
1			2	SI
2			7	SI
3	;		5	SI
4			5	SI
5	,		5	SI
6			7	SI
7	'		4	SI
8			6	SI
9)		4	SI
1	0		7	SI
1	1		4	SI

Eurolink S.C.p.A. Pagina 75 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 \$S\$0328_F0.doc_F0
 F0
 20/06/2011

12 7 SI 13 4 SI

Tabella 42- Sezione di calcolo 2: output di sintesi analisi incrementale

Fase Statica (A2+M2)

FASE 12	GRUPPO	-> UHLe	DHLe
SPINTA EFFI	CACE VERA	2829.0	1714.1
SPINTA ACQU	IA.	0.	0.
SPINTA TOTA	LE VERA	2829.0	1714.1
SPINTA ATTI	VA (POSSIBILE)	2823.5	255.58
SPINTA PASS	IVA (POSSIBILE)	21264.	2151.9
RAPPORTO P	ASSIVA/VERA	7.5164	1.2554
SPINTA PASS	IVA MOBILITATA	13.%	80.8

Fase Sismica (A2+M2)

RAPPORTO VERA/ATTIVA	1.0020	6.7067
FASE 13 GRUPPO:	> UHLe	DHLe
SPINTA EFFICACE VERA	2870.3	1775.0
SPINTA ACQUA	0.	0.
SPINTA TOTALE VERA	2870.3	1775.0
SPINTA ATTIVA (POSSIBILI	E) 2863.7	271.06
SPINTA PASSIVA (POSSIBILI	E) 19986.	2107.2
RAPPORTO PASSIVA/VERA	6.9631	1.1871
SPINTA PASSIVA MOBILITATA	A 14.%	84.%
RAPPORTO VERA/ATTIVA	1 0023	6 5485

Pagina 76 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

7.8.2 Verifica degli ancoraggi allo sfilamento

In questo paragrafo viene presenta la classica verifica a sfilamento del bulbo di ancoraggio del tirante con riferimento alla combinazione GEO (A2+M2). Per i criteri di verifica adottati si rimanda ai capitoli predenti.

Ordine	passo tiranti	Tiro iniziale	Tiro max paratie	Lungh. ancorag.	τ terr- fond.	Diametro perforaz.	α sbulbam.	D*α	γ̃Azioni	γ̃Resist	R_d	E _d	R _d /E _d
[-]	[m]	[kN/m]	[kN/m]	[m]	[kPa]	[cm]	[-]	[cm]	[-]	[-]	[kN]	[kN]	[-]
1	2,8	140	146,1	9,0	122,22	15	1,3	19,5	1,3	1,1	612,3	531,8	1,15
2	2,8	160	216,0	13,0	122,22	15	1,3	19,5	1,3	1,1	884,4	786,2	1,12
3	2,8	160	290,3	14,0	122,22	18	1,3	23,4	1,3	1,1	1143,0	1056,7	1,08
4	2,8	200	370,4	16,0	122,22	18	1,3	23,4	1,3	1,1	1306,2	1348,3	1,02
5	2,8	200	280,2	16,5	122,22	18	1,3	23,4	1,3	1,1	1347,1	1019,9	1,32
6	2,8	180	298,5	14,0	122,22	18	1,3	23,4	1,3	1,1	1142,96	1086,54	1,05

Tabella 43 - Sezione di calcolo 1 : verifica della lunghezza di ancoraggio - fase statica

Ordine	passo tiranti	Tiro iniziale	Tiro max paratie	Lungh. ancorag.	τ terr- fond.	Diametro perforaz.	α sbulbam.	D*α	γAzioni	γResist	R_d	E _d	R _d /E _d
[-]	[m]	[kN/m]	[kN/m]	[m]	[kPa]	[cm]	[-]	[cm]	[-]	[-]	[kN]	[kN]	[-]
1	2,8	140	214,4	9,0	122,22	15	1,3	19,5	1,0	1,1	612,3	600,32	1,02
2	2,8	160	302,5	13,0	122,22	15	1,3	19,5	1,0	1,1	884,4	847,00	1,04
3	2,8	160	395,9	14,0	122,22	18	1,3	23,4	1,0	1,1	1143,0	1108,52	1,03
4	2,8	200	468,6	16,0	122,22	18	1,3	23,4	1,0	1,1	1306,2	1312,08	1,00
5	2,8	200	479,0	16,5	122,22	18	1,3	23,4	1,0	1,1	1347,1	1341,20	1,00
6	2,8	180	404,5	14,0	122,22	18	1,3	23,4	1,0	1,1	1143,0	1132,60	1,01

Tabella 44 - Sezione di calcolo 1 : verifica della lunghezza di ancoraggio - fase sismica

Ordine	passo tiranti	Tiro iniziale	Tiro max paratie	Lungh. ancorag.	τ terr- fond.	Diametro perforaz.	α sbulbam.	D*α	γ̃Azioni	γ̃Resist	R_d	E _d	R _d /E _d
[-]	[m]	[kN/m]	[kN/m]	[m]	[kPa]	[cm]	[-]	[cm]	[-]	[-]	[kN]	[kN]	[-]
1	2,8	140	163,3	12,0	122,22	15	1,3	19,5	1,3	1,1	816,4	594,4	1,37
2	2,8	150	207,4	14,0	122,22	15	1,3	19,5	1,3	1,1	952,5	754,9	1,26
3	2,8	160	276,5	15,0	122,22	18	1,3	23,4	1,3	1,1	1224,6	1006,5	1,22
4	2,8	160	290,5	15,0	122,22	18	1,3	23,4	1,3	1,1	1224,6	1057,4	1,16
5	2,8	140	194,3	11,0	122,22	18	1,3	23,4	1,3	1,1	898,0	707,3	1,27

Tabella 45 – Sezione di calcolo 2 : verifica della lunghezza di ancoraggio fase statica

Ordine	passo tiranti	Tiro iniziale	Tiro max paratie	Lungh. ancorag.	τ terr- fond.	Diametro perforaz.	α sbulbam.	D*α	γ̈Azioni	γ̃Resist	R _d	E _d	R _d /E _d
[-]	[m]	[kN/m]	[kN/m]	[m]	[kPa]	[cm]	[-]	[cm]	[-]	[-]	[kN]	[kN]	[-]
1	2,8	140	284,7	12,0	122,22	15	1,3	19,5	1,0	1,1	816,4	797,16	1,02
2	2,8	150	322,1	14,0	122,22	15	1,3	19,5	1,0	1,1	952,5	901,88	1,06
3	2,8	160	421,1	15,0	122,22	18	1,3	23,4	1,0	1,1	1224,6	1179,08	1,04
4	2,8	160	426	15,0	122,22	18	1,3	23,4	1,0	1,1	1224,6	1192,80	1,03
5	2,8	140	315	11,0	122,22	18	1,3	23,4	1,0	1,1	898,0	882,00	1,02

Tabella 46 - Sezione di calcolo 2 : verifica della lunghezza di ancoraggio fase sismica

Eurolink S.C.p.A. Pagina 77 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0 Data 20/06/2011

7.8.3 Stabilità globale del complesso opera terreno

L'esame della condizioni di stabilità è stato condotto utilizzando gli usuali metodi dell'equilibrio limite. Le analisi di stabilità sono state eseguite utilizzando il programma di calcolo GEOSLOPE. Il programma si basa sull'applicazione di diversi metodi dell'equilibrio limite in condizioni bidimensionali quali il metodo di Bishop semplificato (1955), quello di Janbu semplificato (1973) e quello di Spencer (1967). I fattori di sicurezza presi in considerazione nel seguito sono stati ottenuti tramite il metodo di Bishop semplificato.

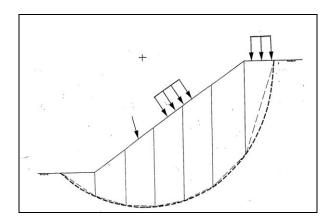


Figura 41 - Blocco di terreno instabile suddivisione in conci

Il metodo valuta le condizioni di stabilità di un pendio naturale o di una scarpata artificiale ricercando per tentativi la superficie di scivolamento "critica", ossia quella a cui compete il coefficiente di sicurezza F_S minimo, e verificando se tale valore risulta maggiore o minore di 1. Il valore di F_S=1 corrisponde ad una situazione di incipiente scivolamento del pendio lungo la superficie di scorrimento considerata.

Il metodo si basa sulla considerazione dell'equilibrio di un blocco (o "cuneo") rigido di terreno rappresentato nella figura che segue.

Il cuneo è soggetto sia all'azione del peso proprio sia a quella di eventuali forze esterne di varia natura (sovraccarichi verticali, azioni dei tiranti, forze di inerzia sismiche, ecc.); inoltre è possibile considerare la presenza della falda all'interno del pendio, trascurando il fenomeno di filtrazione.

Pagina 78 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

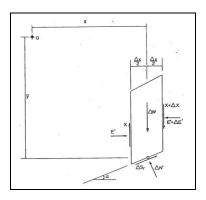


Figura 42 - Forze agenti sui conci

A questo scopo il blocco viene dapprima suddiviso in conci e l'equilibrio globale è analizzato come somma dell'equilibrio di ciascuno di essi facendo delle assunzioni semplificative sulle forze reciproche tra i conci. Il metodo consente di valutare un valore del coefficiente di sicurezza medio della superficie di scivolamento (F_S=1) definito come:

$$F_{s} = \frac{\left(\tau_{ult}\right)_{m}}{\tau_{m}}$$

essendo:

 $\left(au_{ult}
ight)_m$ = resistenza al taglio media del terreno lungo la superficie di scivolamento; au_m = tensione tangenziale media mobilitata lungo la superficie di scivolamento.

Il programma ricerca automaticamente la superficie di scorrimento "critica" con un procedimento iterativo basato sul tracciamento automatico delle superfici circolari e sul successivo calcolo del coefficiente di sicurezza di ciascuna di esse. A questo proposito viene dapprima individuato un settore di passaggio (o un punto) comune a tutte le superfici di scivolamento (ad esempio: un tratto su uno dei contorni del pendio) ed una griglia di punti che vengono utilizzati come centro delle varie possibili superfici di scivolamento. Per ciascuna di esse viene eseguito il calcolo del coefficiente di sicurezza ed il valore più piccolo tra quelli ottenuti è assegnato all'intero pendio. Eventualmente la procedura può essere ripetuta imponendo altri vincoli alle superfici di scivolamento in modo da migliorare l'affidabilità della ricerca.

Eurolink S.C.p.A. Pagina 79 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

7.8.3.1 Analisi dei risultati

L'analisi di stabilità è stata svolta in corrispondenza della sezione più rappresentativa dell'imbocco, nel tratto in cui la paratia di diaframmi ha la massima altezza di scavo. Le analisi sono da intendersi a breve termine, data la natura provvisionale dell'opera e considerato che, a lungo termine, si procederà a ritombare completamente la paratia, aggiungendo quindi un peso al piede del versante.

Il calcolo, come precedentemente descritto, è stato eseguito considerando la combinazione A2+M2+R2, ovvero riducendo i parametri geotecnici del terreno e le resistenze, secondo i coefficienti precedentemente descritti.

L'azione sismica è stata portata in conto secondo il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza. Ai fini della valutazione dell'azione sismica, nelle verifiche agli stati limite ultimi, vengono considerate le seguenti forze statiche equivalenti:

 $F_H = K_h \cdot W$

 $F_V = K_V \cdot W$

essendo:

 ${\sf F}_{\sf H}$ e ${\sf F}_{\sf V}$ rispettivamente le componenti orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;

W: peso del concio;

K_h: Coefficiente sismico orizzontale;

K_v: Coefficiente sismico verticale.

i coefficienti K_H e K_V dipendono di vari fattori:

 $K_h = \beta s \times (a_{max}/g) = 0.0106$

 $K_v = \pm 0.5 \times K_H = 0.0053$

dove:

 β_s = coefficienti di riduzione dell'accelerazione massima attesa al suolo;

a_{max} = accelerazione massima attesa in sito;

Pagina 80 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$a_{max} = S_S S_T a_g$$

Sono state valutate le potenziali superfici di scorrimento passanti sotto il piede della paratia trascurando, a favore di sicurezza, l'azione stabilizzante fornita dai tiranti.

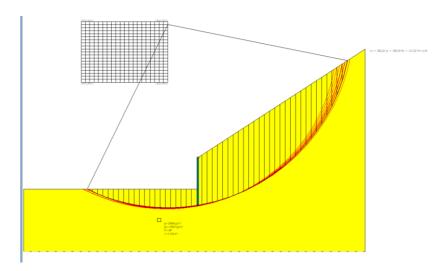


Figura 43 - Sezione di calcolo 1 - superfici di scorrimento critiche, valore minimo 1.14

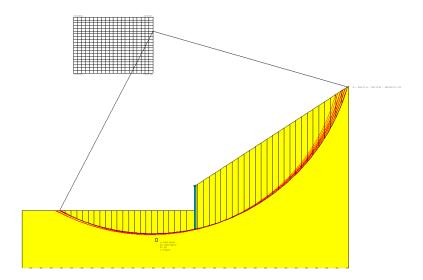


Figura 44 - Sezione calcolo 2- superfici di scorrimento critiche, valore minimo 1.23

Le analisi di stabilità eseguite forniscono fattori di sicurezza superiori ad 1.1, pertanto la verifica risulta soddisfatta.

Eurolink S.C.p.A. Pagina 81 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0 Data 20/06/2011

8 Verifiche strutturali della galleria artificiale

8.1 Premessa

Nel presente capitolo sono presentate le verifiche strutturali (in condizioni statiche e sismiche) relative alle gallerie artificiali policentriche previste per il completamento delle opere di imbocco delle infrastrutture stradali di collegamento al Ponte sullo Stretto di Messina.

In corrispondenza dell'imbocco lato Reggio Calabria, la galleria artificiale ha un raggio interno pari a circa 8.60m in calotta e 16.30 m in arco rovescio. Gli spessori previsti sono 1.0 m in calotta, 1.70m sui piedritti e 1.20m in arco rovescio; per un maggiore dettaglio sulle carpenterie della artificiali si rimanda agli specifici elaborati grafici.

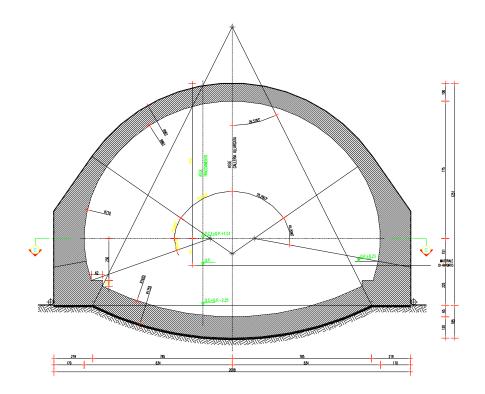


Figura 45 – Carpenteria tipologica galleria artificiale

Le verifiche strutturali della galleria artificiale sono state svolte per la sezione ritenuta più rappresentativa, dal punto di vista dei carichi agenti e del modello geologico- geotecnico, secondo quanto previsto dalla Normativa vigente, ovvero sia agli stati limite ultimi che di esercizio

Alla luce della caratterizzazione geologico-geotecnica condotta a valle dell'analisi dei risultati delle indagini disponibili, si riporta nel seguito una sintesi della parametrizzazione geotecnica utilizzata

Pagina 82 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

per la definizione del quadro geomeccanico che caratterizza le analisi svolte per le gallerie artificiali oggetto della presente relazione.

8.2 Caratteristiche dei materiali

CALCESTRUZZO ARTIFICALE - C25/30

resistenza caratteristica cilindrica	$f_{ck} = 25$	MPa
resistenza caratteristica cubica	$f_{ck(c)} = 30$	MPa

ACCIAIO B450C

Tensione caratteristica di snervamento	$f_{yk} = 450$	MPa
Tensione caratteristica di rottura	$f_{tk} = 540$	MPa

8.3 Parametri geotecnici di calcolo

Per la definizione della stratigrafia di calcolo sono stati individuati due litotipi:

- Materiale di riempimento, proveniente dalla risulta degli scavi della galleria dopo opportuna qualifica, caratterizzato dai seguenti parametri:
- Peso di Volume γ=19 kN/m³
- Coesione c'=0.0 MPa
- Angolo di attrito φ= 33°
- Rigidezza K_h =3600kN/m³, lato monte e K_h =3300kN/m³ , lato valle, relativa al paramento laterale, ricavato in base alla formulazione proposta da Bowles di seguito esplicitata.

$$K_h = E/(b^*(1-v^2)^*I_w$$

dove:

$$I_w = I_{w (L/b)}$$

b= lato minore del paramento

L=lato maggiore del paramento

E=50 MPa

Eurolink S.C.p.A. Pagina 83 di 445

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

- Terreno di fondazione della galleria-caratterizzato dai seguenti parametri:
- Peso di Volume γ =19 kN/m³
- Coesione c'=0.005 MPa
- Angolo di attrito φ= 38°
- Rigidezza $K_v = 8206 \text{ kN/m}^3$ (ricavato in base alla formulazione proposta da Galerkin $K_v = E/(R^*(1+v))$

dove:

R = raggio superficie curvilinea di contatto E=80 MPa.

8.4 Sezioni di calcolo : tipologia di carichi

Le ipotesi di carico applicate considerano sia i carichi verticali, che quelli orizzontali calcolati in funzione dello spessore del terreno di copertura. In particolare, la galleria artificiale è stata verificata considerando una copertura in asse calotta paria circa 7.50m (in modo da considerare i carichi derivanti dalla massimi ricoprimenti previsti sulla struttura) ed un' inclinazione del piano campagna pari a circa 30° (al fine di portare in conto eventuali asimmetrie di carico legate alla diversa morfologia del ritombamento).

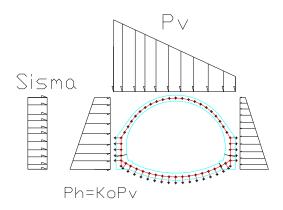


Figura 46 - Schema dei carichi applicati al modello numerico implementato

I carichi applicati al modello di calcolo sono di seguito riassunti.

Pagina 84 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

AZIONI PERMANENTI (G)

- <u>Pesi Propri della struttura in c.a. e del terreno di ritombamento</u>: per il calcestruzzo è stato adottato un peso di volume pari ad 25 KN/m³, mentre per il terreno di ritombamento è stato adottato un peso di volume pari ad 19 KN/m³;
- <u>Spinte del terreno</u>: l'interazione terreno-struttura è tale da consentire che si sviluppi un regime di spinta a riposo (Ko) a seconda delle condizioni di carico; in particolare si è tenuto conto di una eventuale asimmetria delle spinte legata al diverso grado di compattazione del materiale di riporto, adottando, lato monte, un Ko=0.648 e, lato valle, un Ko=0.263.

L'interazione della struttura col terreno è stata modellata anche tramite molle elastiche che trasmettano solo forze di compressione, nei paragrafi seguenti sono stati esplicitati i valori dei moduli di relazione adottati nella modellazione:

AZIONI SISMICHE (E)

Per il calcolo dell'azione sismica di Progetto si sono considerati i seguenti parametri:

- Vn = 100 anni (tempo di costruzione per opera con funzioni pubbliche o strategiche)
- Classe d'uso = IV (opere infrastrutturali)
- Cu= 2 (coefficiente d'uso della struttura)

Pertanto il periodo di riferimento per il calcolo dell'azione sismica è par V_R =200 anni.

Per le condizioni di stato limite di salvaguardia della vita umana (SLV), il valore dell'azione sismica di progetto, cui corrisponde un periodo di ritorno Tr= 1898 anni, è ricavato di seguito.

Valutazione azione sismica SLV (SLU) P=10%				
amax	0,416	g		
Fo	2,475	-		
T*c	0,417	S		

Considerando che:

Tipo di sottosuolo	В
Ss*ST	1,5
α*β	0,75

Eurolink S.C.p.A. Pagina 85 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

Da cui:

Accelerazione o	rizzontale di Proge	tto (DM2008)
ah=amax*Ss*ST*α*β	0,468	g (SLV PVr=10%)

Invece, per le condizioni di stato limite di danno (SLD), il valore dell'azione sismica di progetto, cui corrisponde un periodo di ritorno Tr = 201 anni, è il seguente:

Valutazione azione sismica SLD (SLE) P=63%				
amax	0,156	g		
Fo	2,369	-		
T*c	0,339	S		

Considerando che:

Tipo di sottosuolo	В
Ss*ST	1,5
α*β	0,75

Si ottiene che:

Accelerazione orizzontale di Progetto (DM2008)				
ah=amax*Ss*ST*α*β	0,176	g (SLV PVr=10%)		

Nelle relazioni riportate nelle tabelle che precedono è stato assunto α = 1 e β =0.75: il valore di β corrisponde ad uno spostamento sismico orizzontale ammissibile per l'opera pari a circa 15mm.

Pertanto le azioni sismiche saranno:

- Spinta Sismica Orizzontale del Terreno: calcolata secondo il metodo di Wood

$$\Delta P = \frac{a_g}{g} * S * \gamma * H^2 * B$$

Pagina 86 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

dove:

H= somma dell'altezza della galleria e del ricoprimento al di sopra di essa

B= larghezza adottata nei calcoli in questo caso posta unitaria

Questa spinta, da sommare alla relativa spinta statica, varia in funzione del ricoprimento in esame.

- Azioni Inerziali Strutturali Orizzontali: date dal prodotto del peso proprio della struttura per il coefficiente K_H ($a_g/g^*S_T^*S_S^*$ $\alpha^*\beta$)
- Azioni Inerziali Strutturali Verticali: date dal prodotto del peso proprio della struttura per il coefficiente K_{ν} (0.5 K_H)
- Inerzia Verticale del Terreno: data dal prodotto del peso di ritombamento per il coefficiente sismico K_v.

8.5 Combinazione di Carico

Le ipotesi di carico applicate considerano sia i carichi verticali che quelli orizzontali calcolati in funzione dello spessore del terreno di copertura. In particolare, la galleria artificiale è stata verificata considerando opportune combinazioni di carico che rappresentano le condizioni più gravose ipotizzabili:

	γF			
Carico	SLE	SLD_SIMA	SLU	SLU_SISMA
Peso Prorpio struttura				
- PP	1	1	1,3	1
Carico Verticale				
(Terre) - Pv	1	1	1,3	1
Carico Orizzontale				
(Terre) - PH	1	1	1,3	1
Inerzia orizzontale				
struttura - Fih	-	1	-	1
Inerzia verticale				
struttura - Fiv	-	1	-	1

Eurolink S.C.p.A. Pagina 87 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco
 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

Sisma Orizzontale				
(Terre) - Sis_H	-	1	ı	1
Sisma Verticale (Terre)				
- Sis_V	-	1		1

Tabella 47 - Combinazioni di carico utilizzate per la verifica strutturale della galleria artificiale

8.6 Modello di calcolo

Il calcolo degli spostamenti e delle sollecitazioni viene svolto per via numerica attraverso il metodo degli elementi finiti mediante il programma di calcolo SAP2000.

Si considera una sezione di galleria di larghezza unitaria (B=1 m) e viene quindi definito un modello della struttura schematizzato in elementi beam, in numero totale pari a 77. In funzione della variabilità degli elementi strutturali si sono individuate le seguenti sezioni tipologiche:

- Arco Rovescio (h=1.20 m)
- Calotta (h=1.0 m)
- Piedritto (h=1.70 m)
- Rene (h=1.60 m)

In particolare gli elementi beam da

- n° 17 a n° 32 schematizzano le sezioni di calotta;
- n° 33 a n° 36 e da n° 14 a n° 16 schematizzano le sezioni delle reni
- n° 39 a n° 36 e da n° 10 a n° 13 schematizzano le sezioni di piedritto;
- n° 42 a n° 48 a da n° 1 a n° 7 schematizzano le sezioni di arco rovescio.

Pagina 88 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

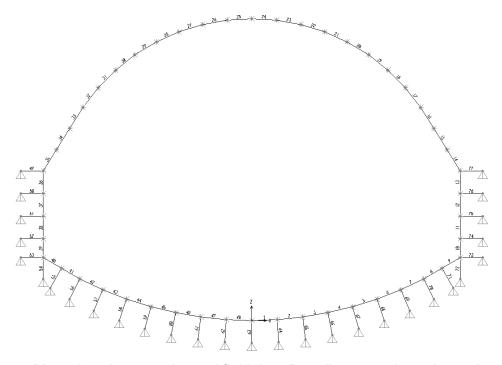


Figura 47 - Discretizzazione per elementi finiti tipo "Beam": numerazione elementi strutturali

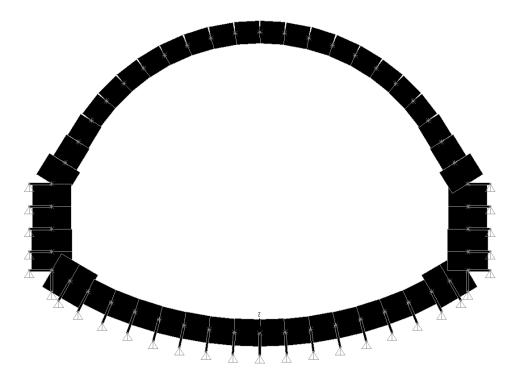


Figura 48 - Modellazione delle sezioni della galleria artificiale

Eurolink S.C.p.A. Pagina 89 di 445

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

8.7 Criteri di verifica

Le verifiche statiche della struttura sono svolte secondo l'approccio agli Stati Limite, analizzando lo stato limite ultimo e lo stato limite di esercizio, con riferimento a quanto indicato nel Decreto Ministero delle Infrastrutture 14.09.2008 - Testo Unico "Norme Tecniche per le Costruzioni".

Il DM 2008 TU segue l'approccio agli Stati Limite degli Eurocodici: la sicurezza e la prestazione di un'opera devono essere valutati in relazione agli stati limite che si possono verificare durante la vita nominale, Stati Limite Ultimi (SLU) e Stati Limite di Esercizio (SLE), secondo il metodo semiprobabilistico basato sull'impiego dei "coefficienti parziali di sicurezza".

8.8 Verifiche strutturali

8.8.1 Stati limite di esercizio

Le verifiche eseguite in condizioni di esercizio hanno riguardato essenzialmente :

- limitazione di danneggiamenti locali (es. fessurazione calcestruzzo) che possono ridurre la durabilità della struttura.
- Spostamenti e deformazioni che possono eventualmente compromettere l'uso della costruzione e la sua efficienza.

Di seguito vengono riportate le sollecitazione agenti sulla struttura, in forma di diagrammi e tabelle, e le relative verifiche strutturali eseguite nelle sezioni più gravose.

8.8.1.1 Verifica a Pressoflessione

La verifica allo stato limite di esercizio TU 2008 viene condotta con riferimento a coefficienti parziali sulle azioni unitari:

Pagina 90 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

	AZIONI GENERICHE		
COEFFICENTI. PARZIALI	Sfavorevoli alla sicurezza	Favorevoli alla sicurezza	
γ_{G} - Azioni permanenti	1,00	1,00	
γ _Q - Azioni variabili	1,00	0,00	

Tabella 48- Coefficienti parziali per le azioni

In particolare la massima tensione di compressione del conglomerato cementizio, ricavata dalle sollecitazioni fornite dal codice di calcolo, dovrà rispettare la limitazione seguente:

 $\sigma_c < 0.60 f_{ck}$ combinazione rara

 $\sigma_{c} < 0.45 f_{ck}$ combinazione quasi permanente

$$\sigma_{s} < 0.8 f_{vk}$$

Le verifiche allo stato limite di esercizio, secondo quanto descritto in precedenza, risulteranno invece soddisfatte quando sarà rispettata la seguente relazione:

 $\sigma_c \le 14.94 \text{ MPa}$ combinazione rara

 $\sigma_c \le 11.21 \text{ MPa}$ combinazione quasi permanente

 $\sigma_s \leq 360.0 \text{ MPa}$

Per ciascuna sezione si sono prese in considerazione le sollecitazioni massime (si sono esclusi i valori che, per la presenza nel modello di punti angolosi, risultano poco significativi) in corrispondenza della varie parti della struttura.

sezione	Spessore calcestruzzo	As	A's
Calotta	100 cm	Ø24/10	Ø24/10
Reni	160 cm	Ø24/20	Ø24/20
Piedritti	170 cm	Ø24/10	Ø24/20
Attacco Muretta Arco r.	120 cm	Ø24/10	Ø24/10
Arco Rovescio	120 cm	Ø24/20	Ø24/20

Eurolink S.C.p.A. Pagina 91 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Tabella 49- Caratteristiche delle sezioni oggetto di verifica

- CONDIZIONI STATICHE (SLE):

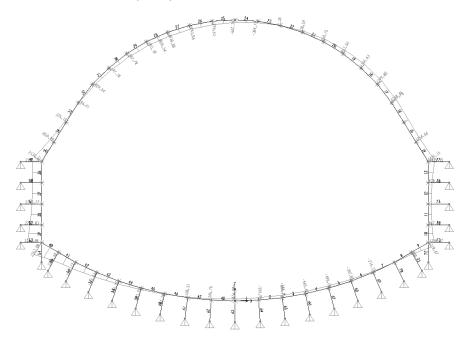


Figura 49 - COMBINAZIONE SLE- Momento flettente

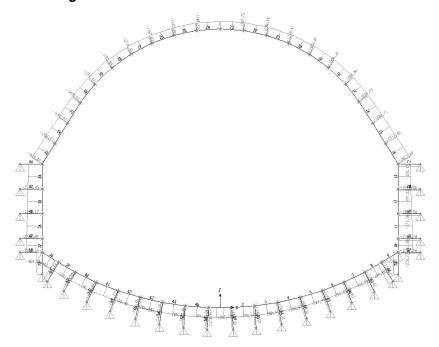


Figura 50 - COMBINAZIONE SLE- Sforzo Assiale

Pagina 92 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

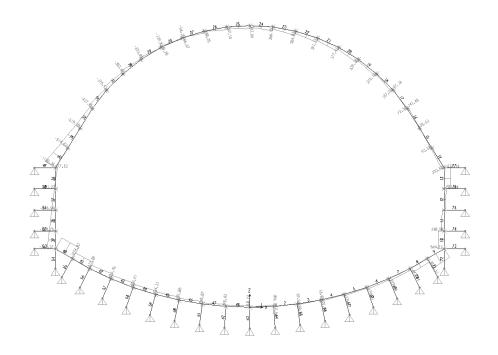


Figura 51 - COMBINAZIONE SLE- Sforzo di Taglio

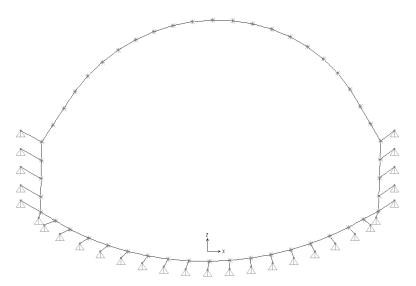


Figura 52 - COMBINAZIONE SLE - Configurazione Deformata

Eurolink S.C.p.A. Pagina 93 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

U1	U3 (m)	R2
(m)		(-)
0.014	-0.037	-0.00031
0.0058	-0.031	0.00073
0.0048	-0.0303	-0.00067
	(m) 0.014 0.0058	(m) 0.014 -0.037 0.0058 -0.031

Tabella 50 - Tabella riassuntiva degli spostamenti significativi

Il significato dei parametri su riportati è il seguente:

U1 = Spostamento massimo orizzontale

U3 = Spostamento massimo verticale

R2 = Rotazione massima attorno all'asse y

VERIFICA SLE									
Serience Flamente H M N Af Af' ocls of o									
Sezione Elemento	Elemento	[cm]	[KNm/m]	[KN/m]			[MPa]	[MPa]	[MPa]
Calotta	28	100	-1010,80	1386,02	10φ24	10φ24	7,36	94,24	-133,27
Calotta	17	100	1312,80	1927,80	10φ24	10φ24	9,59	-163,13	123,53
Reni	35	160	-1627,30	2101,99	5φ24	5φ24	6,56	89,24	-128,14
Piedrittto	37	170	2312,77	2616,70	10φ24	5 φ24	7,37	-117,96	101,89
Attacco Muretta -	37	180	2702.02	2706 40	10101	F104	9.05	140.21	111 10
piedritto	3/	180	2783,02	2706,40	10φ24	5φ24	8,05	-149,31	111,18
Attacco Muretta -	44				40104	10104			
Arco rovescio	41	120	1581,30	1669,95	10φ24	10φ24	9,23	-186,17	120,73
Arco Rovescio	4	120	-566.00	1586.98	5ტ24	5ტ24	4.49	48.64	-14.89

Tabella 51 - Combinazione SLE verifiche tensionali nelle sezioni significative

Come si evince dalle tabelle, le tensioni di materiali risultano compatibili con quelli previsti dalla normativa di riferimento.

Pagina 94 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

- CODIZIONI SISMICHE (SLD):

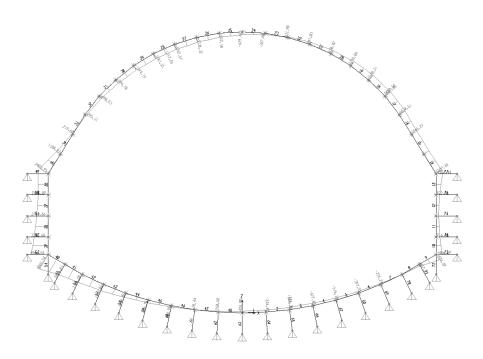


Figura 53 - COMBINAZIONE SLD- Momento flettente

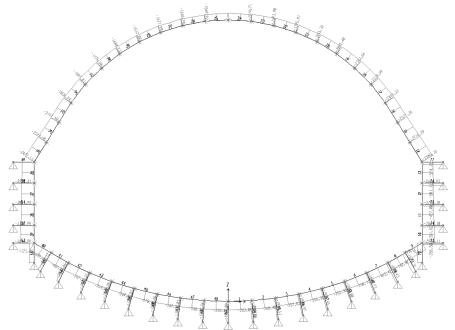


Figura 54 - COMBINAZIONE SLD- Sforzo Assiale

Eurolink S.C.p.A. Pagina 95 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

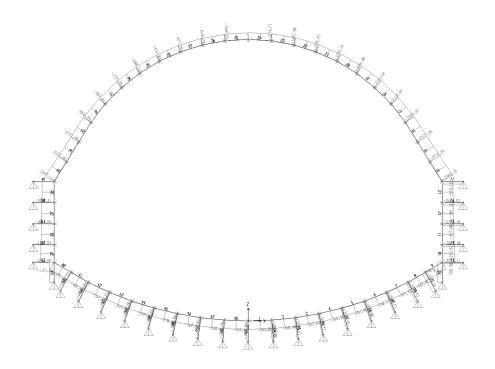


Figura 55 - COMBINAZIONE SLD- Sforzo di taglio

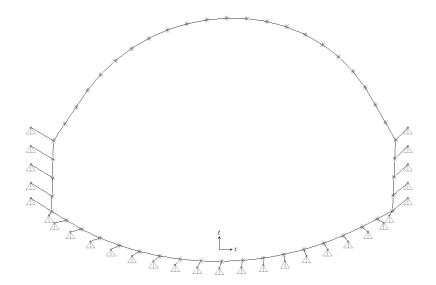


Figura 56 - COMBINAZIONE SLD - CONFIGURAZIONE DEFORMATA

Pagina 96 di 445 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

SEZIONE	U1, _{SLD} (m)	U3, _{SLD} (m)	R2, _{SLD}
Calotta	0.0061	0.0063	0.002
Piedritto	0.003	0.0045	0.00045
Arco Rovescio	0.0003	0.0085	0.0045

Tabella 52 - Tabella riassuntiva degli incrementi di spostamento

Il significato dei parametri su riportati è il seguente:

U1,_{SLD} = Spostamento massimo orizzontale in fase sismica (SLD)

U3, SLD = Spostamento massimo verticale in fase sismica (SLD)

R2, SLD = Rotazione massima attorno all'asse y in fase sismica (SLD)

Si osserva altresì che gli spostamenti indotti in fase sismica (SLD) risultano confrontabili con quelli ammissibili per l'opera.

	VERIFICA SLD									
Sezione	Elemento	Н	M	N	Af	Af'	σcls	of	ਰੀ '	
Sezione	Liemento	[cm]	[KNm/m]	[KN/m]			[MPa]	[MPa]	[MPa]	
Calotta	28	100	-1283,35	1612,10	10φ24	10φ24	9,29	118,24	-181,08	
Calotta	17	100	1652,70	2439,70	10φ24	10φ24	11,10	-199,65	153,99	
Reni	35	160	1671,80	2042,30	5φ24	5φ24	6,83	-146,05	92,38	
Piedrittto	37	170	2733,90	3024,98	10φ24	5 φ24	8,72	-143,70	120,40	
Attacco Muretta - piedritto	37	180	3345,70	3130,50	10φ24	5φ24	9,70	133,58	-187,85	
Attacco Muretta - Arco rovescio	41	120	2128,70	2010,25	10φ24	10φ24	11,15	-260,56	145,87	
Arco Rovescio	4	120	-578,00	1920,00	5φ24	5φ24	4,63	51,22	-5,79	

Tabella 53- Combinazione SLD- Riepilogo verifiche tensionali

Come si evince dalle tabelle, le tensioni di materiali risultano compatibili con quelli previsti dalla normativa di riferimento.

8.8.1.2 Verifica a fessurazione

La verifica delle aperture delle fessure è stata svolta secondo le indicazioni del TU 2008, con

Eurolink S.C.p.A. Pagina 97 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

riferimento a coefficienti parziali sulle azioni unitarie. Per assicurare la funzionalità e la durata delle strutture è necessario:

- Realizzare un sufficiente ricoprimento delle armature con calcestruzzo di buona qualità e compattezza, bassa porosità e bassa permeabilità;
- Non superare uno stato limite di fessurazione adeguato alle condizioni ambientali, alle sollecitazioni ed alla sensibilità delle armature alla corrosione;

Per la struttura in esame, viste le classi di esposizione ordinarie (XC2), la normativa in merito pone, come limite per le aperture delle fessure, valori minori di 0.3 mm per condizioni di carico quasi permanente.

Il valore di calcolo di apertura delle fessure (w_d) è stato valutato mediante la seguente espressione:

$$W_d = 1.7 * W_m = 1.7 * S_{rm} * \varepsilon_{sm}$$

dove:

$$s_{rm} = 2(c+s/10) + k_2 k_3 \Phi/\rho_r$$

 $\varepsilon_{sm} = \sigma_s/E_s (1-\beta_1 \beta_2 (\sigma_{sr}/\sigma_s)^2)$

c = mm copriferro netto armatura tesa

s = mm interasse tra i ferri

 $k_2 = 0.4$ per barre ad aderenza migliorata

 $k_3 = 0.125$ per diagramma delle s triangolare, dovuto a flessione o pressoflessione

 $\Phi = mm$ diametro delle barre

 $\rho_r = A_s/A_{c eff}$

 σ_s = tensione dell'acciaio calcolata nella sezione fessurata per la combinazione di azioni

considerata

 σ_{sr} = tensione dell'acciaio calcolata nella sezione fessurata per la

sollecitazione corrispondente al raggiungimento della resistenza a trazione f_{ctm} nella fibra di calcestruzzo più sollecitata nella sezione interamente reagente.

 $\beta_1 = 1$ per barre ad aderenza migliorata

 $\beta_2 = 0.5$ nel caso di azioni di lunga durata o ripetute.

La verifica si ritiene soddisfatta qualora le resistenza caratteristica dell'apertura delle fessure è inferiore la valore prescritto dalla normativa.

Pagina 98 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

	VERIFICA APERTURA DELLE FESSURAZIONE											
Sezione	С	S < 14 ¢	As tesa	Ac eff.	ρr	ф	S rm	Mcr	σsr	σs	εsm	Wk
	mm	mm	cm2	cm2	As/Ac	mm	mm	kNm	MPa	MPa	x 1000	mm
Calotta	50,0	100,0	45,24	2300,0	0,0197	24	181,0	900,5	107,06	133,27	0,4298	0,13
Callota	50,0	100,0	45,24	2300,0	0,0197	24	181,0	1004,9	92,73	163,13	0,6513	0,20
Reni	50,0	100,0	22,62	2300,0	0,0098	24	242,0	1965,6	212,59	128,14	0,2441	0,10
Piedritto	50,0	100,0	45,24	2300,0	0,0197	24	181,0	2458,9	135,91	117,96	0,2247	0,07
Attaco Muretta -	50.0	400.0	45.04	2222	0.0407	0.4	404.0	0740.7	444.70	440.04	0.0007	0.40
Piedritto	50,0	100,0	45,24	2300,0	0,0197	24	181,0	2718,7	141,72	149,31	0,3907	0,12
Attacco Muretta -	F0.0	100.0	45.04	2200.0	0.0407	24	181.0	1235.3	110.10	106 17	0.7070	0.20
Arco rovescio	50,0	100,0	45,24	2300,0	0,0197	24	101,0	1235,3	118,19	186,17	0,7079	0,20
Arco Rovescio	50,0	100,0	45,24	1570,8	0,0288	24	161,7	1216,5	120,48	14,89	0,0284	0,01

Tabella 54 - Calcolo delle aperture delle fessure

Come si evince dalla tabella, le aperture delle fessure risultano inferiori al limite previsto dalla normativa di riferimento per la classe di esposizione XC2.

8.8.2 Stati limite ultimi

Le verifiche della struttura hanno riguardato essenzialmente la verifica della massima capacità di resistenza delle varie parti d'opera in relazione ai carichi previsti.

8.8.2.1 Verifica a Pressoflessione

Secondo quanto disposto dal TU 2008, la verifica della sicurezza agli stati limite ultimi per costruzioni di conglomerato cementizio si ritiene soddisfatta quando, per ogni elemento strutturale e per ciascuna delle combinazioni delle azioni prese in esame, risulti:

$$E_d \leq R_d$$

dove E_d è il valore di progetto dell'azione pari all'azione nominale moltiplicata per il coefficiente parziale per le azioni γ , mentre R_d è il valore di progetto della resistenza del sistema, valutato con riferimento ai coefficienti parziali per le resistenze, che variano in funzione dei materiali.

	AZIONI GENERICHE					
COEFFICENTI. PARZIALI	Sfavorevoli alla	Favorevoli alla				
	sicurezza	sicurezza				
γ _G - Azioni permanenti	1,30	1,00				
γ _Q - Azioni variabili	1,50	0,00				

Tabella 55 - Coefficienti parziali per le azioni

Le resistenze di calcolo dei materiali (TU 2008), conglomerato cementizio e acciaio, si ottengono

Eurolink S.C.p.A. Pagina 99 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

mediante l'espressione

$$f_{cd} = \frac{f_{ck} * \alpha_{cc}}{\gamma_c}$$

dove

 f_{ck} = resistenza cilindrica caratteristica del materiale

 γ_m = coefficiente parziale per la resistenza.

La tensione di snervamento di calcolo dell'acciaio risulta invece pari a:

$$f_{yd} = \frac{f_{yk}}{\gamma_s}$$

dove

 f_{yk} = tensione caratteristica di snervamento dell'acciaio

Per ciascuna sezione è stato riportato il diagramma di interazione M-N, i cui i bordi rappresentano i limiti della resistenza di calcolo R_d. La verifica risulta soddisfatta quando i punti rappresentativi delle coppie di sollecitazioni sul rivestimento risultano all'interno del diagramma.

Le ipotesi considerate per la costruzione del dominio di resistenza sono:

- 1. conservazione delle sezioni piane;
- 2. legame costitutivo del calcestruzzo tipo parabola-rettangolo con un range costante di deformazione compreso tra 0,2% e 0,35%;
- 3. legame costitutivo dell'acciaio tipo elastico-perfettamente plastico, con deformazione limite di rottura dello 0,1%;
- 4. perfetta aderenza calcestruzzo-acciaio;
- 5. calcestruzzo non reagente a trazione.

I Domini di rottura sono stati costruiti , a seconda della sezione analizzata, secondo lo spessore di calcestruzzo e la quantità di armatura di seguito riportati.

sezione	Spessore calcestruzzo	As	A's
Calotta	100 cm	Ø24/10	Ø24/10
Reni	160 cm	Ø24/20	Ø24/20
Piedritti	170 cm	Ø24/10	Ø24/20
Attacco Muretta-Arco r.	120 cm	Ø24/10	Ø24/10
Arco Rovescio	120 cm	Ø24/20	Ø24/20

Tabella 56- Caratteristiche delle sezioni oggetto di verifica

Pagina 100 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

- CONDIZIONI STATICHE (SLU):

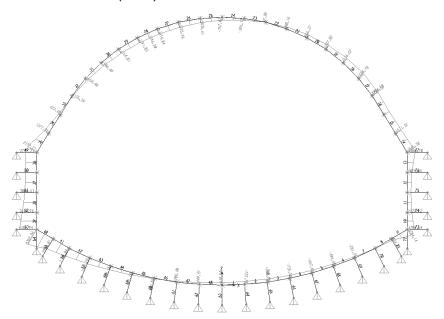


Figura 57 - COMBINAZIONE SLU (statica) Momento flettente

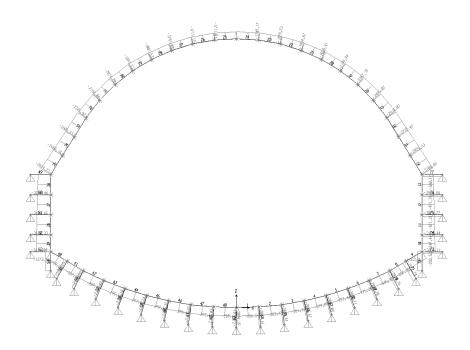


Figura 58 - COMBINAZIONE SLU (statica) Sforzo Assiale

Eurolink S.C.p.A. Pagina 101 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev Data
F0 20/06/2011

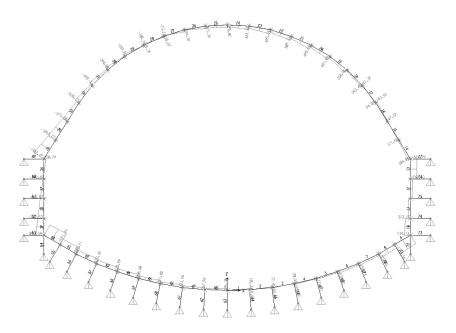


Figura 59 - COMBINAZIONE SLU statica - Sforzo di taglio

VERIFICA SLU									
Comings	Flormonto	Н	Af	Af'	Md	Nd			
Sezione	Elemento	[cm]			[KNm]	[KN]			
Calotta	28	100	10φ24	10φ24	-1341,62	1801,00			
Calotta	17	100	10φ24	10φ24	1688,70	2627,31			
Reni	35	160	5φ24	5φ24	2841,50	2777,20			
Piedrittto	37	170	10φ24	5 φ24	3396,30	3006,51			
Attacco Muretta - piedritto	37	180	10φ24	5φ24	3510,60	3586,04			
Attacco Muretta - Arco rovescio	41	120	10φ24	10φ24	2105,83,	2042,04			
Arco Rovescio	4	120	5φ24	5φ24	-760,77	2066,47			

Tabella 57 - Combinazione SLU : Sollecitazioni di progetto

Pagina 102 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

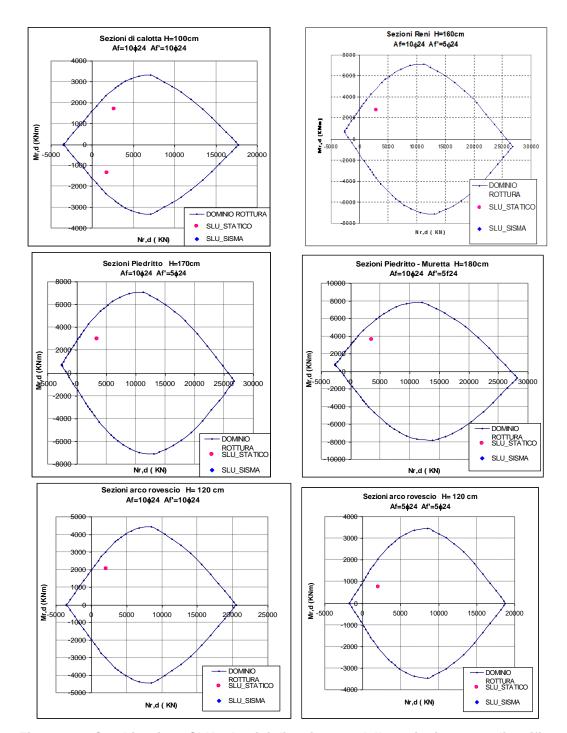


Figura 60 - Combinazione SLU: domini di resistenza delle sezioni oggetto di verifica

Come si evince dalla figure allegate, le sollecitazioni di progetto ricadono sempre all'interno dei domini di resistenza.

Eurolink S.C.p.A. Pagina 103 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

- CONDIZIONI SISMICHE (SLV):

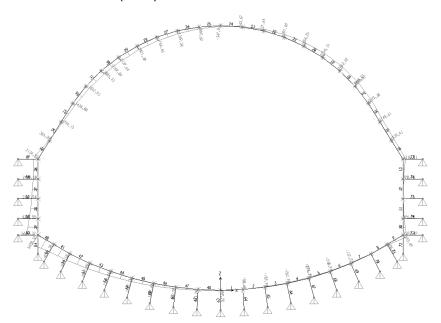


Figura 61 - COMBINAZIONE SLU (SLV)- Momento flettente

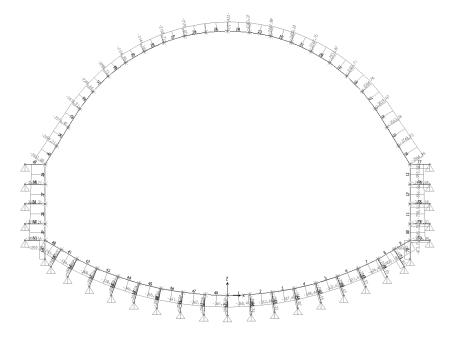


Figura 62 - COMBINAZIONE SLU (SLV) - Sforzo Normale

Pagina 104 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

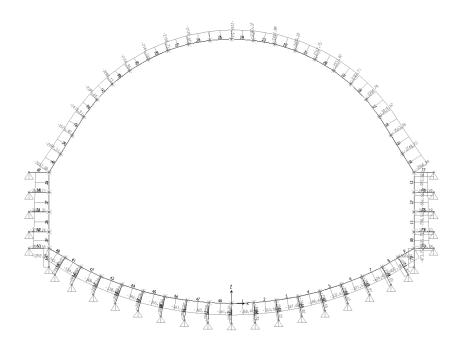


Figura 63 - COMBINAZIONE SLU (SLV) - Sforzo di Taglio

	VERIFICA SLV								
Sezione	Elemento	Н	Af	Af'	Md	Nd			
Sezione	Liemento	[cm]			[KNm]	[KN]			
Calotta	28	100	10φ24	10φ24	-2021,30	2144,14			
Calotta	17	100	10φ24	10φ24	2468,00	3380,32			
Reni	35	160	5φ24	5φ24	2314,93	2699,51			
Piedrittto	37	170	10φ24	5 φ24	3167,94	3658,30			
Attacco Muretta -	37	180	10φ24	5424	3790.23	4235,11			
piedritto	31	100	10φ24	5φ24	3790,23	4233,11			
Attacco Muretta -	41		10φ24	10φ24	2924,51	3398,80			
Arco rovescio	41	120	10φ24	10ψ24	2924,51	3390,00			
Arco Rovescio	4	120	5φ24	5φ24	-1237,00	2927,00			

Tabella 58 - Combinazione SLU (SLV) : Sollecitazioni di progetto

Eurolink S.C.p.A. Pagina 105 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

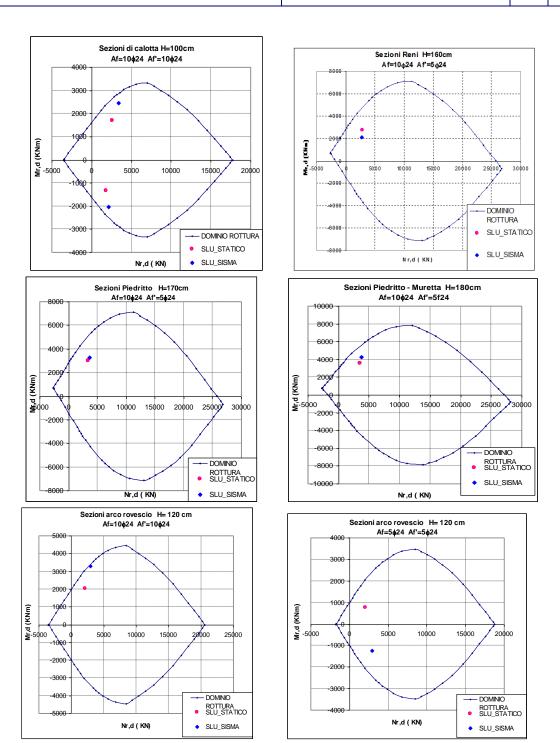


Figura 64 - Combinazione SLU (SLV): domini di resistenza delle sezioni oggetto di verifica Come si evince dalla figure allegate le sollecitazioni di progetto ricadono sempre all'interno dei domini di resistenza.

Pagina 106 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

8.8.2.2 Verifica a taglio

Le verifiche allo stato limite ultimo nei confronti dell'azione tagliante vengono eseguite in accordo con il DM 14-01-2008, di cui si riporta un estratto in quanto segue. Per la valutazione delle resistenze ultime nei confronti delle sollecitazioni taglianti si deve considerare quando segue.

Sezioni senza armature trasversali resistenti a taglio:

la verifica di resistenza agli stati limite ultimi risulta soddisfatta se $V_{Rd} \ge V_{Ed}$, dove V_{Ed} è la sollecitazione caratteristica di taglio agente nella sezione.

Il valore della resistenza al taglio, riferita al elemento fessurato da momento flettente, si valuta con la seguente relazione :

$$\begin{split} V_{Rd} = & \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \quad (4.1.14) \\ con \\ k = 1 + (200/d)^{1/2} \leq 2 \\ v_{min} = 0.035 k^{3/2} f_{ck}^{-1/2} \\ e \ dove \\ d \qquad \qquad \dot{e} \ l'altezza \ utile \ della \ sezione \ (in \ mm); \\ \rho_1 = A_{sl} / (b_w \cdot d) \quad \dot{e} \ il \ rapporto \ geometrico \ di \ armatura \ longitudinale \ (\leq 0.02); \\ \sigma_{cp} = N_{Ed} / A_c \qquad \dot{e} \ la \ tensione \ media \ di \ compressione \ nella \ sezione \ (\leq 0.2 \ f_{cd}); \\ b_w \qquad \qquad \dot{e} \ la \ larghezza \ minima \ della \ sezione \ (in \ mm). \end{split}$$

Sezioni con armature trasversali resistenti a taglio:

La resistenza al taglio di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono sia le armature trasversali che le armature longitudinali.

La verifica di resistenza si considera soddisfatta quando $V_{Rd} \ge V_{Ed}$ è la sollecitazione caratteristica di taglio agente nella sezione. Il valore della resistenza al taglio si valuta con la seguente relazione :

- con riferimento all'armatura trasversale, la resistenza a "taglio trazione" si calcola con la seguente formula:

$$V_{\text{Rsd}} = 0, 9 \cdot d \cdot \frac{A_{\text{sw}}}{s} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin \alpha$$

- con riferimento al calcestruzzo d'anima la resistenza del "taglio compressione " si calcola con le

Eurolink S.C.p.A. Pagina 107 di 445

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

seguente formula:

$$V_{\text{Rcd}} = 0, 9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite

$$V_{Rd}$$
= min (V_{Rsd} , V_{Rcd})

dove d, b_w e σ_{cp} hanno il significato già visto in § 4.1.2.1.3.1. e inoltre si è posto:

area dell'armatura trasversale;

interasse tra due armature trasversali consecutive;

angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave; α

f'cd resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd} = 0.5 \cdot f_{cd}$);

coefficiente maggiorativo pari a α_{c}

per membrature non compresse

 $\begin{array}{lll} 1 + \sigma_{cp}/f_{cd} & & \text{per} & 0 \leq \sigma_{cp} < 0.25 \ f_{c} \\ 1.25 & & \text{per} \ 0.25 \ f_{cd} \leq \sigma_{cp} \leq 0.5 \ f_{cd} \\ 2.5(1 - \sigma_{cp}/f_{cd}) & & \text{per} \ 0.5 \ f_{cd} < \sigma_{cp} < f_{cd} \end{array}$

per $0 \le \sigma_{cp} < 0.25 f_{cd}$

È stata svolta una verifica la taglio relativamente alle sezioni più critiche individuate nel calcolo, prevedendo la posa in opera di staffe a due bracci \(\psi 16 \) passo 20, per il tratto di circa 2.0m in prossimità delle suddette sezioni.

VERIFICA TAGLIO (T.U. 2008) -CONDIZIONI STATICHE									
B H N V slu Coefficiente Coefficiente									
sezione	[cm]	[cm]	KN	KN	γS	γ C			
calotta	100	100	1801,3	140,0	1,15	1,5			
reni	100	160	2841,5	1469,3	α	θ			
piedritto	100	170	3396,3	438,0	٥	0			
piedritto-muretta	100	180	3510,6	739,6	90	45			
muretta - a.r.	100	120	2105,8	522,5					

staffe	Asw	Copriferro	fyk staffe	fyd staffe	fcd	passo
mm	mm2	cm	Мра	MPa	MPa	mm
16	1005,31	4,5	450	391,30	14,11	20
16	1005,31	4,5	450	391,30	14,11	20
16	1005,31	4,5	450	391,30	14,11	20
16	1005,31	4,5	450	391,30	14,11	20
16	1005,31	4,5	450	391,30	14,11	20

altezza utile	σср	ας	V Rcd	V Rsd	V Rd	
d [cm]	MPa	-	KN	KN	KN	Verifica
95,50	1,8862	1,13	3437,18	1690,56	1690,56	OK
155,50	1,8273	1,13	5576,07	2752,69	2752,69	OK
165,50	2,0521	1,15	6018,38	2929,71	2929,71	OK
175,50	2,0003	1,14	6361,57	3106,73	3106,73	OK
115,50	1,8232	1,13	4140,65	2044,60	2044,60	OK

Pagina 108 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

	VERIFIC	A TAGLIO (T.C	J. 2006 J- CON	DIZIONI SISINIC	пЕ	
oo=iono	В	Н	N	V slu	Coefficiente	С
sezione						_

sezione	В	Н	N	V slu	Coefficiente	Coefficiente
Sezione	[cm]	[cm]	KN	KN	γ s	γ C
calotta	100	100	2144,14	270	1,15	1,5
reni	100	160	2699,51	1562,8	α	θ
piedritto	100	170	3658,3	958,7	0	0
piedritto-muretta	100	180	3790,23	1350,2	90	45
muretta - a.r.	100	120	2924,2	583		

Staffe	Asw	Copriferro	fyk staffe	fyd staffe	fcd	passo
mm	mm2	cm	Мра	MPa	MPa	mm
16	1005,31	4,5	450	391,30	14,11	20
16	1005,31	4,5	450	391,30	14,11	20
16	1005,31	4,5	450	391,30	14,11	20
16	1005,31	4,5	450	391,30	14,11	20
16	1005,31	4,5	450	391,30	14,11	20

altezza utile	σср	ας	V Rcd	V Rsd	V Rd	Verifica
d [cm]	MPa	-	KN	KN	KN	
95,50	2,2452	1,16	3514,32	1690,56	1690,56	ОК
155,50	1,7360	1,12	5544,13	2752,69	2752,69	ОК
165,50	2,2105	1,16	6077,33	2929,71	2929,71	ОК
175,50	2,1597	1,15	6424,49	3106,73	3106,73	OK
115,50	2,5318	1,18	4324,78	2044,60	2044,60	OK

Come si osserva dalla tabelle sopra riportate, le verifiche soddisfanno le condizioni richieste dalla normativa di riferimento.

8.8.3 Verifiche al fuoco

8.8.3.1 **Premessa**

Nei paragrafi che seguono viene riportata la verifica della resistenza al fuoco della struttura in oggetto. La resistenza al fuoco, in generale, è una misura dell'attitudine degli elementi costruttivi a conservare la propria funzionalità per un tempo prestabilito e con condizioni di esposizione al fuoco prefissate dalla normativa (UNI ENV 1992-1-2). I requisiti si distinguono in :

- o R: Conservazione della capacità portante;
- o E: Capacità di tenuta;
- o I: Capacità di isolamento;

La conservazione della capacità portante (R) corrisponde al mantenimento della funzione statica degli elementi strutturali, ossia la capacità di resistere per un tempo prestabilito alle azioni combinate dei carichi di esercizio e della temperatura.

Le capacità di tenuta ed isolamento (E ed I) sono requisiti richiesti per garantire la capacità di separazione (compartimentazione), impedendo sia il passaggio di fiamma e gas attraverso le

Eurolink S.C.p.A. Pagina 109 di 445

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

superfici divisorie (tenuta), che il passaggio di calore sulla superficie non esposta direttamente al fuoco (isolamento).

La resistenza al fuoco degli elementi costruttivi può essere valutata sperimentalmente in appositi forni di prova o, in alternativa, per quel che riguarda la capacità portante (R), attraverso uno strumento di calcolo analitico fornito dalla norma UNI ENV 1992-1-2. La verifica al fuoco mediante il metodo analitico si effettua valutando la risposta strutturale nelle condizioni di temperatura previste dall'incendio "standard" e sotto l'azione dei carichi di progetto, per il tempo di resistenza al fuoco corrispondente al tempo d'esposizione in cui viene raggiunto lo stato limite di collasso.

Per le opere in esame, si esegue la verifica della capacità portante (R), della tenuta (E) e dell'isolamento (I) riferendosi ad un tempo di esposizione al fuoco pari a 120 minuti.

8.8.3.2 Metodi di verifica

Secondo quanto indicato nella norma UNI ENV 1992-1-2, la resistenza al fuoco di una struttura di calcestruzzo (armato) viene determinata per mezzo di uno dei seguenti metodi:

- o Analisi della struttura nel suo insieme
- Analisi di parti della struttura
- Analisi dell'elemento strutturale

Per la verifica dei requisiti di resistenza all'incendio normalizzato è sufficiente l'analisi dell'elemento strutturale.

La valutazione della resistenza al fuoco, limitatamente alla capacità portante di elementi strutturali in calcestruzzo armato normale o precompresso sottoposti ad un incendio "normalizzato", viene effettuata mediante:

- o dati tabellari;
- metodo semplificato di calcolo;
- metodi di calcolo generali.

Il metodo tabellare consiste nella semplice individuazione delle dimensioni trasversali della sezione e della distanza dall'asse della barra di armatura. In certi casi possono essere anche richieste semplici individuazioni del livello di carico e di particolarità costruttive addizionali. I valori tabellari possono essere modificati quando lo stato di tensione reale nell'acciaio e la temperatura sono noti con maggiore accuratezza.

Il metodo semplificato di calcolo consiste, in primo luogo, nel determinare la mappatura termica della sezione, nel determinare la sezione trasversale ridotta di conglomerato, nel rivalutare la

Pagina 110 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

resistenza e il modulo elastico a breve termine del calcestruzzo e dell'acciaio e quindi nel calcolare la capacità portante ultima della struttura considerando la sezione ridotta secondo la ENV 1992-1-1, e nel confrontare la capacità con relativa combinazione di azioni.

Nei metodi di calcolo generali, infine, vengono valutati, anche su modelli differenti, lo sviluppo e la distribuzione della temperatura nella membratura strutturale (risposta termica) ed il comportamento meccanico della struttura o di una parte di questa (risposta meccanica).

8.8.3.3 Verifica della capacità portante

Le verifiche di resistenza al fuoco degli elementi strutturali in oggetto sono state svolte adottando il metodo tabellare.

I prospetti contenenti tali dati sono stati realizzati su una base empirica confermata dall'esperienza e dalla valutazione teorica delle prove. Perciò, questi dati sono derivati da assunzioni prudenziali approssimate per gli elementi strutturali più comuni.

Come indicato al punto 4.2.2 della UNI ENV 1992-1-2, i requisiti per la funzione di separazione (criteri "E" ed "I") possono essere considerati soddisfatti quando lo spessore minimo delle pareti o solette è in accordo con i valori tabellari contenuti nel prospetto 4.2.

Nel caso in esame

Resistenza all'incendio	Spessore minimo
standard	<i>(mm</i>)
EI 120	120

Essendo ovunque lo spessore delle strutture maggiore di 120mm, la verifica risulta soddisfatta.

Le tabelle adottate nella verifica degli elementi sono:

Prospetto 4.3 Pareti portanti di calcestruzzo armato

Prospetto 4.9 Solette non nervate di calcestruzzo armato ordinario e precompresso

Il primo prospetto è stato utilizzato per gli elementi presso-inflessi con riferimento ai valori riferiti ad una parete esposta su una sola faccia ed assumendo il parametro µf che tiene conto delle

Eurolink S.C.p.A. Pagina 111 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

combinazioni di carico in caso di incendio per quanto attiene la resistenza a compressione e, per quanto possibile, della flessione, compresi gli effetti del second'ordine, pari a 0.7 (si veda punto 4.2.3 della norma).

Per gli elementi prevalentemente inflessi è stato invece impiegato il secondo prospetto.

Nei casi in esame, si ha

Elementi presso-inflessi

Resistenza all'incendio standard	Spessore minimo (mm)	Distanza nominale a dall'asse della barra (mm)
REI 120	160	35

Elementi inflessi

Resistenza all'incendio standard	Spessore minimo (mm)	Distanza nominale a dall'asse della barra (mm)
REI 120	200	35

Come è possibile dedurre dagli elaborati grafici progettuali per le dimensioni minime degli elementi ed avendo assunto un copriferro nominale maggiore di 4.5cm, le verifiche risultano ovunque soddisfatte.

Pagina 112 di 445 Eurolink S.C.p.A.

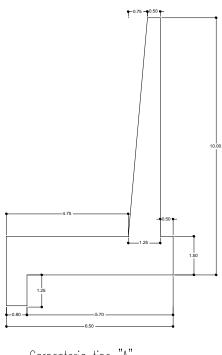
Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011


Verifica dei muri in c.a.

9.1 **Premessa**

Nel presente capitolo si illustrano le verifiche statiche svolte per le opere di sostegno previste per la sistemazione definitiva degli imbocchi. In particolare sono stati previsti dei muri in c.a. la cui funzione è quella di contenere il materiale di ritombamento utilizzato per ricoprire le gallerie artificiali, ricostituendo di fatto lo stato dei luoghi.

Nella presente fase di progetto è stata individuata la seguente tipologia di muro:

a) muri in c.a. con altezze complessive comprese tra 5m ed 10m: carpenteria tipo A

Carpenteria tipo "A"

Figura 65- Tipologie muri in c.a.

I muri previsti hanno la particolarità di avere la ciabatta di fondazione risvolta verso valle, il cui fine è quello di limitare il più possibile, durante la fase di realizzazione, gli eventuali scavi provvisionali necessari per realizzare l'opera.

Nella presente fase di progetto si è scelto di effettuare delle verifiche tipologiche delle strutture, assumendo parametri geotecnici conservativi, al fine di tener conto delle incertezze sul modello

Eurolink S.C.p.A. Pagina 113 di 445

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0 **Data** 20/06/2011

geologico di riferimento e sulla definizione delle categorie di suolo.

Di seguito, dopo avere fornito le indicazioni dei parametri geotecnici di progetto, si riportano le principali verifiche statiche svolte per le due tipologie di carpenterie previste.

9.2 Criteri di verifica

Nel presente paragrafo sono illustrate le linee guida utilizzate per il dimensionamento delle opere dei muri in c.a.: nella presente fase di progetto sono state svolte esclusivamente verifiche agli stati limite ultimi (SLU), sia per le verifiche geotecniche che per quelle strutturali.

Il progetto dei muri di sostegno è stato svolto in ottemperanza alla normativa vigente, con riferimento a quanto indicato al paragrafo 6.5.3.1.1. Per il progetto dei muri la NTC 2008 richiede di considerare stati limite ultimi (SLU) di tipo Geotecnico (GEO), di equilibrio di corpo rigido (EQU) e strutturali (STR).

Gli SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU) presi in considerazione nelle verifiche riguardano:

- 4. stabilità globale del complesso opera di sostegno-terreno;
- scorrimento del piano di posa;
- 6. collasso per carico limite dell'insieme fondazione-terreno;
- 7. ribaltamento.

Il primo punto riguarda la verifica di stabilità globale terreno-opera per rottura a taglio del terreno con conseguente rotazione, svolta ricercando (mediante apposito codice di calcolo) le possibili superfici di scorrimento critiche passanti per la fondazione della paratia.

Il secondo punto riguarda la verifica alla traslazione sul piano di posa della fondazione, svolta valutando il rapporto tra le azioni che si oppongono allo scorrimento e le forze che lo favoriscono, fornendo il coefficiente di sicurezza nei confronti della traslazione.

Il terzo punto riguarda la verifica al carico limite dell'insieme fondazione-terreno, svolta valutando il rapporto tra la capacità portante ed il carico d'esercizio in fondazione, che fornisce il valore del coefficiente di sicurezza rispetto al carico limite.

Il quarto punto riguarda la verifica al ribaltamento ed è svolta mediante valutazione del coefficiente di sicurezza, calcolato come rapporto tra la somma dei momenti delle azioni stabilizzanti e la somma dei momenti delle azioni instabilizzanti rispetto allo spigolo esterno della paratia.

Pagina 114 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

Gli SLU di tipo strutturale (STR) riguardano, invece, il raggiungimento della resistenza negli elementi strutturali nella sezione più critica posta in prossimità del piano scavo.

Per ogni stato limite considerato (GEO, EQU e STR) è stata verificata la condizione $E_d \le R_d$, dove E_d è il valore caratteristico dell'azione di progetto ed R_d è la resistenza di progetto.

In particolare la verifica della stabilità globale dell'insieme terreno-opera è stata svolta secondo l'approccio 1 e combinazione 2 (A2+M2+R3).

Invece le rimanenti verifiche (scorrimento sul piano di posa, collasso per carico limite, ribaltamento, raggiungimento della resistenza strutturale) sono state svolte considerando l'approccio 1 che prevede due tipologie di combinazioni:

Combinazione 1 : A1+M1+R1Combinazione 2: A2+M2+R2

In particolare, per quanto riguarda la verifica al ribaltamento, questo è stato trattato come uno stato limite di equilibrio come corpo rigido, utilizzando i coefficienti parziali sulle azioni relativi allo stato limite ultimo EQU ed adoperando i coefficienti parziali del gruppo M2 per il calcolo delle spinte.

Per quanto concerne invece la verifica strutturale dei tiranti (si veda NTC al paragrafo 6.6 e circolare 02/02/2009 n° 617 paragrafo C7.11.6.3), essa è stata svolta con riferimento all'approccio 1 Combinazione 1.

Nelle tabelle riportate di seguito sono stati riportati i coefficienti parziali adottati nelle varie combinazioni richieste dalla norma.

	Coeff. Parzia γ _f			
Azione	EQU	A1	A2	
Permanente sfavorevole	1,10	1,30	1,00	
Permanente favorevole	0,90	1,00	1,00	
Variabile sfavorevole	1,50	1,50	1,30	
Variabile favorevole	0,00	0,00	0,00	

Tabella 59- Coefficienti parziale per le azioni o per l'effetto delle azioni

Eurolink S.C.p.A. Pagina 115 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

Parametro al quale	applicare	Coeff. Parziale γ _m		
il coefficiente pa	arziale	M1	M2	
Angolo d'attrito	tan φ'	1,00	1,25	
Coesione efficace	C'	1,00	1,25	
Resistenza non drenata	cu	1,00	1,40	
Peso dell'unità di volume	γ	1,00	1,00	

Tabella 60 - Coefficienti parziali per i parametri geotecnici del terreno

R1	R2	R3
1.00	1.00	1.10

Tabella 61 - Coefficienti parziali per le resistenze

Infine per quanto riguarda le verifiche sismiche della struttura (SLU) è stato utilizzato il metodo pseudo-statico.

L'analisi pseudo-statica è stata svolta mediante i metodi dell'equilibrio limite. Il modello di calcolo adottato comprende l'opera di sostegno, il cuneo di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo (se la struttura può spostarsi) e il sovraccarico agente sul cuneo suddetto.

Nell'analisi pseudo-statica, l'azione sismica è stata definita mediante un'accelerazione equivalente costante nel tempo e nello spazio. Le componenti dell'accelerazione equivalente orizzontale e verticale sono state ricavate in funzione della proprietà del moto sismico atteso nel volume di terreno significativo per l'opera e della capacità di subire spostamenti senza significative cadute di resistenza. Le azioni sismiche sono state valutate in relazione a un periodo di riferimento (V_R) che dipende dalla vita nominale delle opere e dalla classe d'uso della struttura: in particolare per le opere in questione è stato assunto V_R =200 anni. Per maggiori dettagli si rimanda agli specifici capitoli

Pagina 116 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

9.3 Caratteristiche dei materiali

CALCESTRUZZO MURO - C25/30

resistenza caratteristica cilindrica $f_{ck} = 25$ MPa resistenza caratteristica cubica $f_{ck(c)} = 30$ MPa

ACCIAIO B450C

Tensione caratteristica di snervamento $f_{yk} = 450$ MPa Tensione caratteristica di rottura $f_{tk} = 540$ MPa

9.4 Parametri geotecnici di calcolo

Per la definizione della stratigrafia di calcolo sono stati individuati due litotipi:

- Materiale di riempimento, proveniente dalla risulta degli scavi della galleria dopo opportuna qualifica, caratterizzato dai seguenti parametri:
- Peso di Volume γ=19 kN/m³
- Coesione c'=0.0 MPa
- Angolo di attrito φ ' = 35°-38° (per le i terreni a tergo delle paratie)

Si fa notare che la maggior parte dei muri risultano una finitura delle paratie di imbocco, pertanto, al fine di massimizzare le azioni di progetto sul muro, nelle verifiche si è considerato il valore dell'angolo di attrito che tende a massimizzare le spinte del terreno.

- Per il terreno di fondazione cautelativamente sono stati previsti i seguenti parametri:
- Peso di Volume γ =19 kN/m³
- Coesione c'=0.005 MPa
- Angolo di attrito φ= 38°

In accordo con quanto indicato nei precedenti paragrafi di seguito si indicano i parametri di calcolo utilizzati nelle verifiche agli SLU: in condizioni sismiche le verifiche agli Stati Limite Ultimi vengono condotte considerando la combinazione più gravosa, ponendo pari all'unità solo i coefficienti parziali sulle azioni (A1=A2=1,0).

Eurolink S.C.p.A. Pagina 117 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento \$\$0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

γ	c'	φ'	Ka	Кр
[KN/m ³]	[KN/m ²]	[°]	[i=10°]	[i=0°]
19	5	38	0.28	4.2

Tabella 62 - Parametri di calcolo adottati nella combinazione A1+M1 (STR)

γ	C'	φ'	Ka	Kp
[KN/m ³]	[KN/m ²]	[°]	[i=10°]	[i=0°]
19	4	32	0.35	3.16

Tabella 63 - Parametri di calcolo adottati nella combinazione A2+M2 (GEO)

9.5 Carichi agenti

I carichi previsti sulla struttura sono di seguito indicati

■ SPINTA DEL TERRENO (G):

Il terreno esercita una spinta orizzontale sul muro proporzionale al carico verticale cui esso è soggetto. Il fattore di proporzionalità (coefficiente di spinta) dipende dallo stato deformativo del terreno e può variare dal coefficiente di spinta attiva K_a al coefficiente di spinta passiva K_p . I valori dei coefficienti Ka e Kp utilizzati nelle analisi sono stati calcolati con le formule di seguito riportate.

Spinta attiva

Il coefficiente di spinta attiva è stato valutato come di seguito indicato:

$$-K_{a} = \frac{\cos^{2}(\varphi' - \beta)}{\cos^{2}\beta \cdot \cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{sen(\delta + \varphi') \cdot sen(\varphi' - i)}{\cos(\beta + \delta) \cdot \cos(\beta - i)}}\right]^{2}}$$

essendo:

β inclinazione della parete

i inclinazione del terreno a monte

δ angolo d'attrito fra muro in calcestruzzo e terreno

φ' angolo d'attrito del terreno

Pagina 118 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

Spinta passiva

Il coefficiente di spinta passiva è stato essere valutato, attraverso l'abaco riportato in figura, con la teoria di Caquot – Kerisel, ipotizzando superfici di rottura curvilinee (*teoria di Caquot – Kerisel*): per maggiore dettagli si rimanda ai paragrafi precedenti.

- AZIONI VARIABILI (Q)
- sovraccarico accidentale: è stato applicato una striscia di carico pari a circa 10 KN/m2.
- AZIONI SISMICHE (E)

Per il calcolo dell'azione sismica di Progetto si sono considerati i seguenti parametri:

- Vn = 100 anni (tempo di costruzione per strategiche)
- Classe d'uso = IV (opere infrastrutturali)
- Cu= 2 (coefficiente d'uso della struttura)

Pertanto il periodo di riferimento per il calcolo dell'azione sismica è par V_R =200 anni.

Per le condizioni di stato limite di salvaguardia della vita umana (SLU), il valore dell'azione sismica di progetto, cui corrisponde un periodo di ritorno Tr= 1898 anni, è ricavato di seguito.

Considerando che:

Valutazione azione sismica SLV (SLU) P=63%		
amax 0,417 g		
F0	F0 2,37	
Tc	0.339	S

Ponendo:

Sottosuolo	С
Ss St	1,2
αβ	0,31

Da cui:

Accellerazione o	orizzontale di Proge	etto (DM2008)
ah=amax*Ss*ST* α * β	0,155	g (SLV PVr=10%)

Nel caso dei muri di sostegno si impone sempre α = 1, mentre il parametro β è funzione della categoria del sottosuolo e della accelerazione sismica di riferimento, come indicato nella tabella seguente.

Eurolink S.C.p.A. Pagina 119 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

	Categoria di suolo		
a/g	А	B,C,D	
0,2 - 0,4	0,31	0,31	
0,1 - 0,2	0,29	0,24	
< 0,1	0,2	0,18	
per muri con spostamento impedito β=1,0			

Definiti i valori dell'accelerazione orizzontale di progetto, è stata valutata la spinta sismica del terreno avvalendosi del metodo proposto da Mononobe-Okabe.

Valutata la spinta sismica S_{aE} , l'incremento di spinta sismica $\Delta S_{a,sism}$ è stato calcolato come differenza tra la spinta sismica secondo Mononobe-Okabe e la spinta attiva S_a :

$$\Delta S_{a.sism} = S_{aE} - S_a$$

ed è stato applicato a metà altezza della paratia.

Pertanto le azioni sismiche saranno, oltre all'incremento di spinta sismico:

- Azioni Inerziali Strutturali Orizzontali: date dal prodotto del peso proprio della struttura per il coefficiente K_H ($a_0/g^*S_T^*S_S^*$ $\alpha^*\beta$)
- Azioni Inerziali Strutturali Verticali: date dal prodotto del peso proprio della struttura per il coefficiente K_{ν} (0.5 K_{H})
- Inerzia Verticale del Terreno: data dal prodotto del peso di ritombamento per il coefficiente sismico K_v.

9.6 Verifiche di tipo geotecnico dei muri di sostegno

Come espressamente prescritto dalle NTC 2008 nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, con particolare riferimento nei riguardi dei cinematismi riconducibili allo scivolamento sul piano di posa della fondazione, al ribaltamento, alla rottura dell'insieme fondazione-terreno, nonché alla stabilità globale.

Le verifiche devono essere svolte accertando che, per ogni stato limite considerato, sia soddisfatta la relazione $E_d \le R_d$.

Pagina 120 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev D

Data 20/06/2011

9.6.1 Geometrie del problema

Con riferimento allo schema indicato nella figura, nelle tabelle di seguito sono stati riassunti i principali dati di input adottati nelle verifiche della struttura in oggetto:

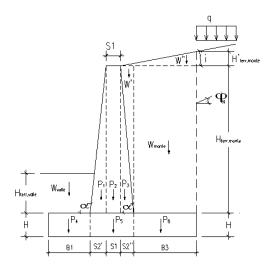


Figura 66- dati di input: schema geometrico del problema

a) Muro "Tipo A"

DATI INPUT: CARPENTIERIA MUTO TIPO A		
H terreno a monte	m	8.5
H terreno a valle	m	1.8*
B1 ciabatta valle	m	4,75
S2'	m	0,75
S1 Sp. sup. paramento	m	0,5
S2"	m	0
B3 ciabatta monte	m	0,5
H ciabatta	m	1,5
Btot	m	6,5
H'terreno_monte	m	0,134
AZIONI PERMAMENTI SUL MURO		

Eurolink S.C.p.A. Pagina 121 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 \$S0328_F0.doc_F0
 F0
 20/06/2011

W terreno monte	KN	80,75
W' terreno monte	KN	0
W" terreno monte	KN	0,636
W terreno valle	KN	19.31
Ptot peso ciabatta	KN	243,75
P1	KN	79,68
P2	KN	106,25
P3	KN	0
P4	KN	178,125
P5	KN	46,875
P6	KN	18,75

Tabella 64- Riassunto dati input per il muro tipo A

(*) La presenza del taglione è stata simulata nel calcolo considerando un'altezza di terreno a valle pari ad 1.80m.

9.6.2 Stabilità globale del complesso opera terreno

Lo studio della condizioni di stabilità è stato svolto utilizzando gli usuali metodi dell'equilibrio limite (metodo di Fellenius). Il calcolo, come precedentemente descritto, è stato eseguito considerando la combinazione A2+M2+R2, ovvero riducendo i parametri geotecnici del terreno e le resistenze, secondo i coefficienti precedentemente descritti. I principali risultati delle analisi sono di seguito riportati: per la tipologia di muro studiata (muro tipo A), cautelativamente, la verifica è stata svolta trascurando la presenza del taglione. Di seguito sono riassunti i risultati delle analisi.

Pagina 122 di 445 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

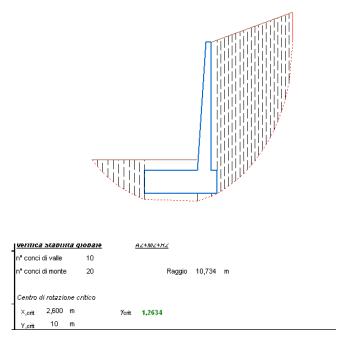


Figura 67 - Superfici di scorrimento critiche - Fs=1.26

Le analisi di stabilità eseguite forniscono fattori di sicurezza superiori ad 1.1, pertanto la verifica risulta soddisfatta.

9.6.3 Scorrimento sul piano di posa

La verifica allo scorrimento sul piano di posa consiste nel controllare che risulti soddisfatta la seguente relazione:

 $H_{Rd (stab)} \ge H_{Sd (scorr)}$

dove:

H_{Sd (scorr)} = Risultanti delle azioni di scorrimento

 $H_{Rd (stab)} = N_{rd} \mu$ Resistenza di progetto offerta alla traslazione

In cui

 $\mu = \tan \delta$

 δ' = angolo d'attrito terreno fondazione (2/3 ϕ')

N_{rd} = Risultate della azioni stabilizzanti

Eurolink S.C.p.A. Pagina 123 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

Le azioni considerate sono quelle dovute al peso proprio del terreno, al sovraccarico e, nella verifica in condizioni sismiche, l'azione sismica rappresentata dalla forza statica equivalente e dalla forza inerziale del muro.

Verifica allo scorrimento: Muro carpenteria tipo A:

Pagina 124 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

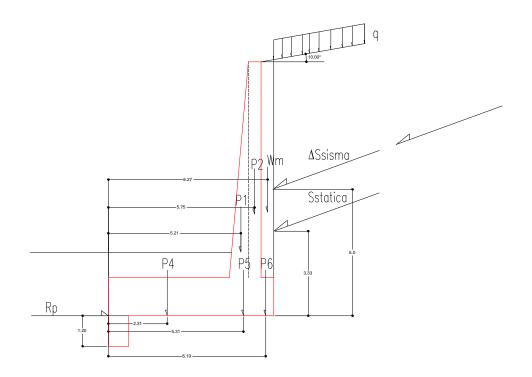


Figura 68- Carpenteria tipo A : Schema delle azioni agenti sul muro

VERIFICA ALLO SCORRI	MENTO (A1+N	M1)
angolo attrito	(°)	38,00
Coeff. spinta attiva Ka	(-)	0,27
Coeff. spinta attiva orizz Kao	(-)	0,21
Coeff. spinta attiva vert Kav	(-)	0,17
Coeff. spinta passiva Kp	(-)	4,20
S1 O, k Spinta statica orizz. Terreno	KN/m	208,22
S2 O, q, k Spinta statica orizz. Sovraccarico	KN/m	21,63
S1 O, E, k Spinta sismica orizz.	KN/m	0,00
S1 V, k Spinta statica vert. Terreno	KN/m	162,68
S2 V, q, k Spinta statica vert. Sovraccarico	KN/m	16,90
S1 V, E, k Spinta sismica vert.	KN/m	0,00
Hsd,tot	KN/m	303,12
μ	(-)	0,47
HRd	KN/m	621,31
Fs		2,05

Tabella 65- Verifica allo scorrimento: combinazione A1+M1

Eurolink S.C.p.A. Pagina 125 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

VERIFICA ALLO SCORR	MENTO (A2+N	M2)
angolo attrito	(°)	32,01
Coeff. spinta attiva Ka	(-)	0,35
Coeff. spinta attiva orizz Kao	(-)	0,29
Coeff. spinta attiva vert Kav	(-)	0,18
Coeff. spinta passiva Kp	(-)	3,26
S1 O, k Spinta statica orizz. Terreno	KN/m	285,87
S2 O, q, k Spinta statica orizz. Sovraccarico	KN/m	29,69
S1 O, E, k Spinta sismica orizz.	KN/m	0,00
S1 V, k Spinta statica vert. Terreno	KN/m	178,68
S2 V, q, k Spinta statica vert. Sovraccarico	KN/m	18,56
S1 V, E, k Spinta sismica vert.	KN/m	0,00
Hsd,tot	KN/m	324,48
μ	(-)	0,47
HRd	KN/m	580,62
Fs		1,79

Tabella 66- Verifica allo scorrimento: combinazione A2+M2

VERIFICA ALLO SCORRIME	ENTO (SISMA +	- M2)
angolo attrito	(°)	32,01
Coeff. spinta attiva Ka	(-)	0,59
Coeff. spinta attiva orizz Kao	(-)	0,50
Coeff. spinta attiva vert Kav	(-)	0,31
Coeff. spinta passiva Kp	(-)	3,26
S1 O, k Spinta statica orizz. Terreno	KN/m	486,42
S2 O, q, k Spinta statica orizz. Sovraccarico	KN/m	50,52
S1 O, E, k Spinta sismica orizz.	KN/m	104,23
S1 V, k Spinta statica vert. Terreno	KN/m	304,02
S2 V, q, k Spinta statica vert. Sovraccarico	KN/m	31,58
S1 V, E, k Spinta sismica vert.	KN/m	-52,11
Hsd,tot	KN/m	620,96
μ	(-)	0,47
HRd	KN/m	621,46
Fs		1,00

Tabella 67- Verifica allo scorrimento: combinazione SISMA

Pagina 126 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

9.6.4 Collasso per carico limite dell'insieme fondazione-terreno

Tale verifica consiste nel controllare che sia soddisfatta la relazione

 $Q_{lim} > N_{sd}$

Dove

 N_{sd} = risultante ortogonale al piano di posa della ciabatta di fondazione di tutte leazioni agenti sul muro;

Q_{lim} = carico limite della fondazione

Il carico limite della fondazione è stato calcolato mediante la formula trinomia del carico limite secondo Terzaghi (1943):

$$q_{ult} = c'N_c s_c d_c + q N_q s_q d_q + 0.5 \gamma N_v s_v d_v$$

in cui:

q carico dovuto al terreno tra piano di posa della fondazione e la superficie

c' coesione

γ peso dell'unità di volume

 $N_c, \ N_q, \ N_{\gamma}$ coefficienti di carico limite $s_c, \ s_q, \ s_{\gamma}$ fattori di forma

 d_c , d_q , d_y fattori di profondità

Preliminarmente alla verifica per carico limite, è stata valutata l'eccentricità del carico in fondazione e, conseguentemente, è stata calcolata la fondazione equivalente con il metodo di Brinch-Hansen (1970), secondo cui la fondazione equivalente da considerare nei calcoli è data da:

$$B_{eq} = B - 2e$$

con

B: base della fondazione

e: eccentricità

La distribuzione delle pressione del terreno agenti al disotto della ciabatta di fondazione è stata

Eurolink S.C.p.A. Pagina 127 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

definita ricorrendo al del trapezio delle pressioni, che considera tutta la superficie della fondazione per valutare le pressioni sul terreno (considerando eventualmente la parzializzazione della sezione di fondazione)

 $e = (Mrib-Mstab) / V \\ \sigma_{max} = V/(B . L) . (1+6e/B) \\ \sigma_{min} = V/(B . L) . (1-6e/B)$

Nel seguito sono presentati i risultati delle analisi svolte, dopo aver esplicitato i valori dei parametri e dei coefficienti utilizzati nei calcoli.

Verifica al carico limite : Muro carpenteria tipo A:

VERIFICA PRESSION	ONE LIMITE (A1+M1	+R1)
Angolo attrito	(°)	38
Azione assiale statica	KN/m	1112,41
Azione assiale sismica	KN/m	0
Mribaltante,statico	KNm/m	1078,74
Mribaltante,sismico (Kh)	KNm/m	0
Mrib,sismico (Kv)	KNm/m	0
Mstabilizzante	KNm/m	1013,12
Azione verticale tot	KN/m	1112,41
Momento reagente fondazione	KNm/m	65,62
Baricentro fondazione Xg	m	3,25
B/6 (metà dimensione nocciolo d'inerzia)	cm	108,33
eccentricità - (interna al terzo medio)	cm	5,90
Fondazioni nastrifori	mi (Paramentri di Ha	insen)
	Nq	48,9
	Nc	61,4
	Ng	56,2
coeff. Correttivi		
	iq	0,75
	ig	0,53
	dq	1,12
	dg	1
Pressione design terreno qlim/γ	Мра	4,37

Pressioni sotto la ciabatta di fondazione			
Pressione min ciabatta di valle Pressione max ciabatta di monte	σt,1 σt,3	MPa MPa	0,17 0,16
Larghezza ridotta della fondazione Pressione media sul terreno Fs	Beff ot,max	m MPa	6,38 0,17 25,07

Tabella 68- Verifica alla portanza della fondazione: combinazione A1+M1

Pagina 128 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

VERIFICA PRESSIONE LIMITE (A2+M2+R2)				
Angolo attrito	(°)	32,0		
Azione assiale statica	KN/m	876,33		
Azione assiale sismica	KN/m	0		
Mribaltante, statico	KNm/m	1161,28		
Mribaltante,sismico (Kh)	KNm/m	0		
Mrib,sismico (Kv)	KNm/m	0		
Mstabilizzante	KNm/m	1107,78		
Azione verticale tot	KN/m	876,33		
Momento reagente fondazione	KNm/m	53,50		
Baricentro fondazione Xg	m	3,25		
B/6 (metà dimensione nocciolo d'inerzia)	cm	108,33		
eccentricità - (interna al terzo medio)	cm	6,11		
Fondazioni nastriformi (Paramentri di Hansen)				
	Nq	23,2		
	Nc	35,5		
	Ng	20,8		
coeff. Correttivi				
	iq	0,66		
	ig	0,41		
	dq	1,14		
	dg .	1		
Pressione design terreno qlim/γ	Mpa	1,62		

Pressioni sotto la ciabatta di fondazione			
Pressione min ciabatta di valle	σt,1	MPa	0,13
Pressione max ciabatta di monte	σt,3	MPa	0,13
Larghezza ridotta della fondazione	Beff	m	6,38
Pressione media sul terreno	σt,max	MPa	0,14
Fs			11,78

Tabella 69- Verifica alla portanza della fondazione: combinazione A2+M2

Eurolink S.C.p.A. Pagina 129 di 445

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

VERIFICA PRESSIONE LIMITE (SISMA + M2)					
Angolo attrito	(°)	32,0			
Azione assiale statica	KN/m	996,50			
Azione assiale sismica	KN/m	-52,11458369			
Mribaltante,statico	KNm/m	1796,72			
Mribaltante,sismico (Kh)	KNm/m	249,1146957			
Mrib,sismico (Kv)	KNm/m	-40,78244604			
Mstabilizzante	KNm/m	1585,73			
Azione verticale tot	KN/m	944,38			
Momento reagente fondazione	KNm/m	419,32			
Baricentro fondazione Xg	m	3,25			
B/6 (metà dimensione nocciolo d'inerzia)	cm	108,33			
eccentricità - (interna al terzo medio)	cm	44,40			
Fondazioni nastriformi (Paramentri di Hanse	en)				
	Nq	23,2			
	Nc	35,5			
	Ng	20,8			
coeff. Correttivi					
	iq	0,66			
	ig	0,41			
	dq	1,14			
dg 1					
Pressione design terreno qlim/γ	Мра	0,93			

Pressioni sotto la ciabatta di fondazione			
Pressione min ciabatta di valle Pressione max ciabatta di monte	σt,1 σt,3	MPa MPa	0,12 0,09
Larghezza ridotta della fondazione Pressione media sul terreno Fs	Beff σt,max	m MPa	5,61 0,17 5,53

Tabella 70- Verifica alla portanza della fondazione: combinazione Sisma + M2

Pagina 130 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

9.6.5 Ribaltamento

Nell'ipotesi che il terreno di fondazione sia sufficientemente resistente da non essere interessato dai fenomeni di rottura, la verifica ala ribaltamento, effettuata rispetto allo spigolo esterno a valle della ciabatta di fondazione, consiste nel verificare la seguente relazione :

 $M_{Rd (stab)} \ge M_{Sd (ribal)}$

Dove:

 $M_{Rd~(stab)}$ = momento risultante delle azioni di calcolo agenti sul muro che danno un contributo stabilizzante, cioè tale da indurre una rotazione diretta da valle verso monte

 $M_{Sd\ (ribal)}$ = momento risultante delle azioni di calcolo agenti sul muro che danno un contributo ribaltante , cioè tale da indurre una rotazione diretta da monte verso valle

Le azioni considerate sono quelle dovute al peso proprio del terreno, al sovraccarico e all'azione sismica, rappresentata dalla forza statica equivalente e dalla forza inerziale del muro.

Eurolink S.C.p.A. Pagina 131 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco
 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

Verifica al ribaltamento : Muro carpenteria tipo A:

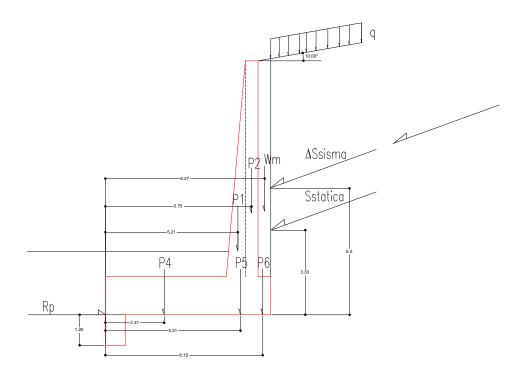


Figura 69- Carpenteria tipo A : Schema delle azioni agenti sul muro

VERIFICA AL RIBALTAMENTO (EQU+M2)			
angolo attrito	(°)	32,01	
Coeff. spinta attiva Ka	(-)	0,35	
Coeff. spinta attiva orizz Kao	(-)	0,29	
Coeff. spinta attiva vert Kav	(-)	0,18	
S1 O, k Spinta statica orizz. Terreno	KN/m	285,87	
S2 O, q, k Spinta statica orizz. Sovraccarico	KN/m	29,69	
S1 V, k Spinta statica vert. Terreno	KN/m	178,68	
S2 V, q ,k Spinta statica vert. Sovraccarico	KN/m	18,56	
S1 O, k E Spinta sismica orizz.	KN/m	0,00	
S1 V, k E Spinta sismica vert.	KN/m	0,00	
Mrib,statico	KNm/m	1287,94	
Mrib,sismico (Kh)	kNm/m	0,00	
Mrib,sismico (±Kv)	kNm/m	0,00	
Mrib,tot	kNm/m	1287,94	
Mstab	kNm/m	2097,18	
Fs		1,63	

Tabella 71- Verifica al ribaltamento : combinazione STATICA

Pagina 132 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

VEDICION AL DIDALTAME		10)
VERIFICA AL RIBALTAME	=NTO (SISMA+M	2)
angolo attrito	(°)	32,01
Coeff. spinta attiva Ka	(-)	0,59
Coeff. spinta attiva orizz Kao	(-)	0,50
Coeff. spinta attiva vert Kav	(-)	0,31
S1 O, k Spinta statica orizz. Terreno	KN/m	486,42
S2 O, q, k Spinta statica orizz. Sovraccarico	KN/m	50,52
S1 V, k Spinta statica vert. Terreno	KN/m	304,02
S2 V, q ,k Spinta statica vert. Sovraccarico	KN/m	31,58
S1 O, k E Spinta sismica orizz.	KN/m	104,23
S1 V, k E Spinta sismica vert.	KN/m	-52,11
Mrib,statico	KNm/m	1796,72
Mrib,sismico (Kh)	kNm/m	243,29
Mrib,sismico (±Kv)	kNm/m	-180,30
Mrib,tot	kNm/m	1859,70
Mstab	kNm/m	2453,36
Fs		1,32

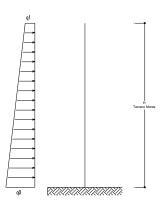
Tabella 72- Verifica al ribaltamento : combinazione SISMA

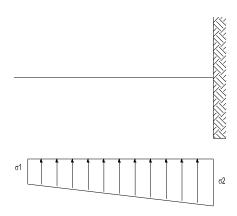
9.7 Verifiche strutturali dei muri di sostegno

Le verifiche della struttura riguardano essenzialmente gli stati limite ultimi (SLU) in particolare sono state svolte verifiche a pressoflessione e verifiche al taglio. Le verifiche sono state svolte relativamente alla sezioni più gravose, ovvero le sezioni del paramento verticale del muro, la sezione della ciabatta della fondazione lato valle e, quando presente, la sezione del taglione.

Nella figura di seguito sono indicati gli schemi statici utilizzati per la valutazione delle sollecitazione.

Eurolink S.C.p.A. Pagina 133 di 445





Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

- a) schema statico per il paramento verticale
- b) schema statico per la ciabatta di fondazione

Figura 70- schemi di carico per la valutazione delle sollecitazioni sul muro

In pratica il paramento verticale è stato schematizzato come una mensola incastrata al piede e sollecitata dalle spinte dovute al terreno, ai sovraccarichi, al sisma. Analogo schema statico è stato adottato per la ciabatta di fondazione: in tal caso il carico agente è rappresentato dalle tensioni indotte nel terreno di fondazione.

9.7.1 Verifica a Pressoflessione

Secondo quanto disposto dal TU 2008, la verifica della sicurezza agli stati limite ultimi per costruzioni di conglomerato cementizio si ritiene soddisfatta quando, per ogni elemento strutturale e per ciascuna delle combinazioni delle azioni prese in esame, risulti:

$$E_d \leq R_d$$

dove E_d è il valore di progetto dell'azione pari all'azione nominale moltiplicata per il coefficiente parziale per le azioni γ , mentre R_d è il valore di progetto della resistenza del sistema, valutato con riferimento ai coefficienti parziali per le resistenze, che variano in funzione dei materiali.: per la trattazione teorica si rimanda ai paragrafi precedenti.

I Domini di rottura sono stati costruiti , a seconda della sezione analizzata, secondo lo spessore di calcestruzzo e la quantità di armatura di seguito riportati.

Pagina 134 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

sezione	Spessore calcestruzzo	As	A's
Paramento verticale	125cm	Ø26/20	Ø26/20
Ciabatta di fondazione	150 cm	Ø26/20+ Ø26/40	Ø26/20+ Ø26/40
Taglione	800 cm	Ø20/20	Ø20/20

Tabella 73-Muro Tipo A: Caratteristiche delle sezioni oggetto di verifica

Eurolink S.C.p.A. Pagina 135 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

Muro Tipo A

VERIFICHE SLU - A1+M1

VERIFICA SEZIONE P	ARAMENTO	VERTICALE	(125 cm)
angolo attrito equivalente		(°)	38,00
angolo attrito terra-muro		(-)	18
Coeff. spinta attiva	Ka	(-)	0,257
Coeff. spinta attiva orizz	Kao	(-)	0,244
Coeff. spinta attiva vert	Kav	(-)	0,079
S1 O Spinta orizz. Terre	no	KN/m	218,12
S2 O, q Spinta orizz. Sovr	accarico	KN/m	31,17
S1 O Spinta sismica ori	ZZ.	KN/m	0,00
Momento flettente sollec	itante (Md)	KNm/m	750,46
Taglio sollecitante (Vd)		KN/m	249,29
Azione assiale sollecitan	te (Nd)	KN/m	185,94

VERIFICHE SLU - A2+M2

VERIFICA SEZIONE PARAM	ENTO VERTICAL	_E (125 cm)
angolo attrito equivalente	(°)	32,01
angolo attrito terra-muro	(-)	18
Coeff. spinta attiva Ka	(-)	0,339
Coeff. spinta attiva orizz Kao	(-)	0,322
Coeff. spinta attiva vert Kav	(-)	0,105
S1 O Spinta orizz. Terreno	KN/m	287,51
S2 O, q Spinta orizz. Sovraccario	o KN/m	41,08
S1 O Spinta sismica orizz.	KN/m	0,00
Momento flettente sollecitante	(Md) KNm/m	n 989,21
Taglio sollecitante (Vd)	KN/m	328,59
Azione assiale sollecitante (Nd)	KN/m	185,94

Pagina 136 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

VERIFICHE SLU - SISMA+M2

VERIFICA SEZIONE PA	ARAMENTO	VERTICALE	(125 cm)
angolo attrito equivalente		(°)	32,01
angolo attrito terra-muro		(-)	18
Coeff. spinta attiva	Ka	(-)	0,339
Coeff. spinta attiva orizz	Kao	(-)	0,322
Coeff. spinta attiva vert	Kav	(-)	0,105
S1 O Spinta orizz. Terre	no	KN/m	287,51
S2 O, q Spinta orizz. Sovr	accarico	KN/m	41,08
S1 O Spinta sismica ori	ZZ.	KN/m	41,37
Momento flettente sollec	itante (Md)	KNm/m	1165,03
Taglio sollecitante (Vd)		KN/m	369,96
Azione assiale sollecitan	te (Nd)	KN/m	185,94

Tabella 74- Verifica sezione paramento verticale: sollecitazioni di Progetto

Figura 71- Verifica sezione paramento verticale: Dominio di resistenza

Eurolink S.C.p.A. Pagina 137 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

VERIFICHE SLU - A1+M1

VERIFICA SEZIONE PARAMENT	O DI VALLE (1	50 cm)
Azione verticale (W terreno valle)	KN/m	-162
Azione verticale (p.p. ciabatta valle)	KN/m	-178
Reazione verticale portanza terreno	KN/m	1072
Momento flettente sollecitante (Md)	KNm/m	1771
Taglio sollecitante (Vd)	KN/m	732

VERIFICHE SLU - A2+M2

VERIFICA SEZIONE PARAMENTO DI VALLE (150 cm)			
Azione verticale (W terreno valle)	KN/m	-162	
Azione verticale (p.p. ciabatta valle)	KN/m	-178	
Reazione verticale portanza terreno	KN/m	845	
Momento flettente sollecitante (Md) KNm/m 1225			
Taglio sollecitante (Vd) KN/m 505			

VERIFICHE SLU - SISMA+M2

VERIFICA SEZIONE PARAMENTO DI VALLE (150 cm)			
Azione verticale (W terreno valle)	KN/m	-162	
Azione verticale (p.p. ciabatta valle)	KN/m	-178	
Reazione verticale portanza terreno	KN/m	996	
Momento flettente sollecitante (Md) KNm/m 1770			
Taglio sollecitante (Vd) KN/m 656			

Tabella 75- Muto tipo A - Verifica sezione Ciabatta di fondazione

Pagina 138 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

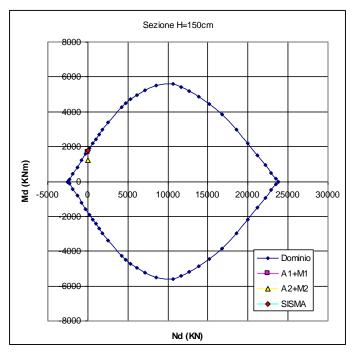


Figura 72- Verifica sezione ciabatta di fondazione : Dominio di resistenza

VERIFICHE SLU - A1+M1

VERIFICA TAGLIONE (80 cm)					
σ1	KN/m	234			
σ2	KN/m	358			
inerzia	KN/m	0			
Momento flettente sollecitante (Md)	KNm/m	198			
Taglio sollecitante (Vd)	KN/m	324			

VERIFICHE SLU - A2+M2

VERIFICA TAGLIONE (80 cm)					
σ1	KN/m	138			
σ1 σ2	KN/m	213			
inerzia	KN/m	0			
Momento flettente sollecitante (Md)	KNm/m	117			
Taglio sollecitante (Vd)	KN/m	173			

Eurolink S.C.p.A. Pagina 139 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

VERIFICHE SLU - SISMA+M2

VERIFICA TAGLIONE (80 cm)					
σ1	KN/m	138			
σ2	KN/m	213			
inerzia	KN/m	3			
Momento flettente sollecitante (Md)	KNm/m	120			
Taglio sollecitante (Vd)	KN/m	176			

Tabella 76- Muto tipo A - Verifica sezione taglione

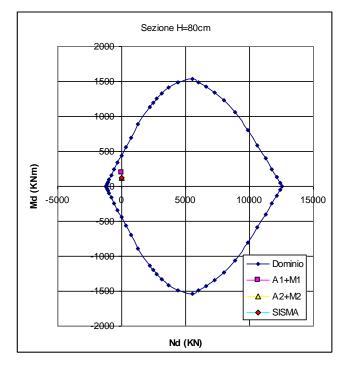


Figura 73- Muro tipo A- Verifica taglione : Dominio di resistenza

Come si evince dai grafici allegati le sollecitazioni di progetto risultano essere sempre interne al dominio di resistenza delle sezioni oggetto di verifica.

Pagina 140 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

9.7.2 Verifica al taglio

La resistenza al taglio di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono sia le armature trasversali, che le armature longitudinali.

La verifica di resistenza si considera soddisfatta quando $V_{Rd} \ge V_{Ed}$ è la sollecitazione caratteristica di taglio agente nella sezione; per la trattazione teorica si rimanda ai precedenti paragrafi.

È stata svolta una verifica la taglio relativamente alle sezioni più critiche individuate nel calcolo,il risultato ottenuto è di seguito riportato.

VERIFCA AL TAGLIO						
	В	Н	l n	V slu	Coefficiente	Coefficiente
COMBINAZIONE	[cm]	[cm]	KN	KN	γs	γ C
SISMA	100	125	185	370	1,15	1,5
A1+M1	100	150	0	732	α	θ
A1+M1	100	80	0	324	٥	٥
					90	45

staffe	Asw	Copriferro	fyk staffe	fyd staffe	fcd	passo
mm	mm2	cm	Мра	MPa	MPa	mm
16	402,12	5	450	391,30	14,11	25
16	402,12	5	450	391,30	14,11	25
16	402,12	5	450	391,30	14,11	25
	0	5	450	391,30	14,11	

altezza utile	σср	ας	V Rcd	V Rsd
d [cm]	MPa	-	KN	KN
120,00	0,1542	1,01	3851,33	679,76
145,00	0,0000	1,00	4603,39	821,38
75.00	0.0000	1.00	2381.06	424.85

Tabella 77- Muro tipo A – Verifica al taglio

Come si evince dalla tabella, essendo Vrsd > Vslu la verifica risulta soddisfatta.

Eurolink S.C.p.A. Pagina 141 di 445

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0

20/06/2011

Data

10 Monitoraggio delle opere di imbocco

L'obiettivo del monitoraggio delle opere di imbocco ha la finalità di verificare nel corso d'opera la rispondenza tra le previsioni progettuali ed il comportamento del terreno interessato e delle strutture realizzate ed in esso inserite. Pertanto nella presente fase progettuale vengono fornite delle indicazioni generali in merito alla tipologia di monitoraggio delle zone di imbocco, da approfondire ed eventualmente adattare nel corso dello sviluppo delle successive fasi di progetto. In generale gli aspetti che ci si prefigge di osservare e valutare per mezzo del monitoraggio riguardano prevalentemente l'interazioni delle strutture con il terreno ed eventualmente con le preesistenze. La strumentazione predisposta è relativa al controllo dei seguenti parametri:

- 1- deformazioni delle paratie;
- 2- tassi di lavoro dei trianti di ancoraggio;
- 3 -deformazioni profonde del versante;
- 4- livello piezometrico della falda;
- 5- deformazioni superficiali del terreno.

A tal fine è stata prevista la messa in opera, in prossimità della zona di imbocco:

- -n° 1 inclinometri (prof. max =30 m)
- targets topografici per la rilevazione degli spostamenti della paratia disposti su ogni ordine di tiranti previsto ad interasse di circa 6.0m :
- N°10 celle di carico toroidali per la rilevazione del tasso di lavoro delle teste dei tiranti;
- n° 1 piezometro (prof. min =35 m) da disporsi eventualmente in presenza di falda;

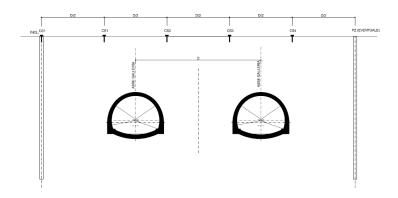


Tabella 78 - Schema tipologico sezione di monitoraggio delle zone di imbocco

Pagina 142 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

L'installazione degli inclinometri e del piezometro e la lettura dei rispettivi dati dovrebbe precedere di almeno sei mesi l'attivazione dei lavori; quelle relative agli altri strumenti procederanno contestualmente alla progressione dei lavori degli imbocchi.

Le frequenze di lettura raccomandate sono settimanali per le fasi di costruzione dell'imbocco, mensili o bimestrali (in funzione della stabilizzazione delle misure) a scavi delle gallerie attivati.

Eurolink S.C.p.A. Pagina 143 di 445

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

11 Conclusioni

Oggetto della presente Relazione tecnica e di calcolo sono state le opere provvisionali e definitive necessarie alla realizzazione delle opere di imbocco lato Reggio Calabria della Galleria Naturale "Balena", facente parte dei lavori di costruzione dei collegamenti stradali tra il Ponte sullo Stretto e la città di Messina.

Dopo aver brevemente richiamato le principali caratteristiche (fase conoscitiva) relative al modello geologico-geotecnico dei luoghi, sono state presentate le fasi esecutive previste per la realizzazione delle opere di imbocco, fornendo altresì le caratteristiche meccaniche dei materiali impiegati (fase di diagnosi).

Infine, per tutte le opere civili previste, sono state svolte le verifiche strutturali, in condizioni statiche e sismiche, relativamente alle condizioni più gravose, sia punto di vista geotecnico, che dei carichi agenti (fase di terapia); le verifiche svolte confermano l'adeguatezza statica delle opere in oggetto.

Pagina 144 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

12 Allegati

Eurolink S.C.p.A. Pagina 145 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

12.1 Output paratia H=20m

12.1.1 COMBINAZIONE E1+E2

```
PARATIE 7.00
                            Ce.A.S. s.r.l. - Milano
                                                                PAG. 1
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
             **********
             * *
                       P A R A T I E
             * *
                       RELEASE 7.00 VERSIONE WIN
             ** Ce.A.S. s.r.l. - Viale Giustiniano, 10
                                 20129 MILANO
             **********
      JOBNAME C:\LAVORI\PONTE\CALCOLI\PALI H=20.0m (GM)\SLE_20_HIST00
                       16 SETTEMBRE 2010 18:59:39
PARATIE 7.00
                            Ce.A.S. s.r.l. - Milano
                                                                PAG. 2
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
                   ELENCO DEI DATI DI INPUT (PARAGEN)
                    Per il significato dei vari comandi
                    si faccia riferimento al manuale di
                    input PARAGEN, versione 7.00.
 N. comando
  1: * Paratie for Windows version 7.0
  2: * Filename= <c:\lavori\ponte\calcoli\pali h=20.0m
     (gm)\sle 20 hist00.d> Date= 1
  3: * project with "run time" parameters
4: * Force=kN Lenght=m
  5: *
  6: units m kN
  7: title History 0 - PARATIA PALI 1200 i=140
  8: delta 0.3
  9: option param itemax 50
 10: option noprint echo
 11: option noprint displ
 12: option noprint react
 13: option noprint stresses
 14:
         wall LeftWall 0 -30 0
 15: *
 16: soil UHLeft LeftWall -30 0 1 0 17: soil DHLeft LeftWall -30 0 2 180
 18: *
 19: material cls C28 35 3.144E+007
```

Pagina 146 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

```
20: material Acciaio 2.1E+008
  21: *
  22: beam Beam LeftWall -30 0 cls C28 35 0.955541 00 00
  23: *
  24: wire t1 LeftWall -2 Acciaio 1.04511E-005 140 10
 25: wire t2 LeftWall -5 Acciaio 1.46008E-005 150 10 26: wire t3 LeftWall -8 Acciaio 1.65476E-005 160 10
  27: wire t4 LeftWall -11.5 Acciaio 2.12755E-005 190 10
  28: wire t5 LeftWall -14.5 Acciaio 2.48214E-005 180 10 29: wire t6 LeftWall -17.5 Acciaio 2.70779E-005 200 10
  30: *
  31: * Soil Profile
  32: *
  33:
          ldata
                          Soil 0
                       19 9 10
0.384339 0 1
          weight
  34:
  35:
             atrest
  36:
              resistance 5 38 0.383 4.204
             moduli
                         120000 2 0 1 100 0.6
        endlayer
 38:
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                         PAG.
                                                                               3
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
 N. comando
  39: *
  40: step 1 : gostatico
  41: setwall LeftWall
         geom 0 0
  42:
              surcharge 10 0 10 0
  44: endstep
  45: *
  46: step 2 : primo ribasso
  47: setwall LeftWall 48: geom 0 -2.5
              surcharge 10 0 0 0
  49:
  50: endstep
  51: *
  52: step 3: messa in opera 1 tirante
  53: setwall LeftWall
             add t1
  54:
  55: endstep
  56: *
  57: step 4 : scavo secondo ribasso
       setwall LeftWall
  58:
             geom 0 -5.5
  59:
  60: endstep
  61: *
  62: step 5 : messa in opera 2 tirante
       setwall LeftWall
  63:
             add t2
  64:
  65: endstep
  66: *
  67: step 6 : terzo ribasso
  68: setwall LeftWall 69: geom 0 -8.5
           geom 0 -8.5
  70: endstep
  71: *
  72: step 7 : messa in opera 3 tirante
  73: setwall LeftWall 74: add t3
  75: endstep
  76: *
  77: step 8 : quarto ribasso
  78:
        setwall LeftWall
```

Eurolink S.C.p.A. Pagina 147 di 445

79:

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

```
geom 0 -12
 80: endstep
 81: *
 82: step 9: messa in opera 4 tirante
 83: setwall LeftWall
 84:
            add t4
PARATIE 7.00
                            Ce.A.S. s.r.l. - Milano
                                                                PAG. 4
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
 N. comando
 85: endstep
 86: *
 87: step 10 : quinto ribasso
 88: setwall LeftWall
 89:
            geom 0 -15
 90: endstep
 91: *
 92: step 11 : messa in opera 5 tirante
 93: setwall LeftWall
 94:
           add t5
 95: endstep
 96: *
 97: step 12 : sesto ribasso
 98: setwall LeftWall
 99:
         geom 0 -18
100: endstep
101: *
102: step 13: messa in opera 6 tirante
103: setwall LeftWall
104:
         add t6
105: endstep
106: *
107: step 14: settimo ribasso
108: setwall LeftWall
109:
         geom 0 -20
110: endstep
111: *
112: step 15 : Fase sismica
113: change Soil U-KA=0.4
114:
        change Soil U-KP=4
115:
        change Soil D-KA=0.4
       change Soil D-KP=4
116:
       dload constant LeftWall -20 14 0 14
117:
       setwall LeftWall
118:
119:
          surcharge 0 0 0 0
120: endstep
121: *
122: *
PARATIE 7.00
                            Ce.A.S. s.r.l. - Milano
                                                                 PAG. 5
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
```

Pagina 148 di 445 Eurolink S.C.p.A.

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0

20/06/2011

Data

LAYER	Soil					
TAILIN	natura 1=granulare, 2=argilla	=	1.0000			
	quota superiore	=	0.0000	m		
	quota inferiore	=-	0.10000E+31	m		
	peso fuori falda	=	19.000 9.0000	kN/m³		
	peso efficace in falda	=	9.0000	kN/m³		
			10.000			
				kPa	(A	MONTE)
	angolo di attrito	=	38.000			MONTE)
	angolo di attrito coeff. spinta attiva ka	=	0.38300		•	MONTE)
	coeff. spinta passiva kp	=	4.2040		(A	MONTE)
	Konc normal consolidato					
	OCR: grado di sovraconsolidazione		2.0000			
	modello di rigidezza modulo Rvc		0.12000E+06	la Din		
			2.0000	Kra		
			1.0000			
			100.00	kPa		
	esponente n	=	0.60000			
	natura 1=granulare, 2=argilla	=	1.0000		(A	VALLE)
	coesione	=	5.0000	kPa	(A	VALLE)
	angolo di attrito	=	5.0000 38.000	DEG	(A	VALLE)
	coeff. spinta attiva ka				(A	VALLE)
	coeff. spinta passiva kp	=	4.2040		(A	VALLE)
	RIASSUNTO PARAMETRI GEOTECN	ттст	DED IN ENCI	E 2		
	RIASSUNTO PARAMETRI GEOTECN	IICI	PER LA FASI	Ľ Z		
	(SOLO I PARAMETRI CHE	POS	SONO VARIARI	E)		
	NESSUN CAMBIAMENTO RISPETT	:O A	L PASSO PRE	CEDENTE		
	RIASSUNTO PARAMETRI GEOTECN	тст	DER T.A FASI	E 3		
	KINGGONIO IINVALEIKI GEOIDON		1111 111 1110			
	(SOLO I PARAMETRI CHE	POS	SONO VARIARI	Ε)		
	NESSUN CAMBIAMENTO RISPETT	:O A	L PASSO PRE	CEDENTE		
	RIASSUNTO PARAMETRI GEOTECN	IICI	PER LA FASI	E 4		
	(SOLO I PARAMETRI CHE	POS	SONO VARIARI	E)		
	NESSUN CAMBIAMENTO RISPETT	'O A	L PASSO PRE	CEDENTE		

Eurolink S.C.p.A. Pagina 149 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

History 0 - PARATIA PALI 1200 i=140

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 6 16 SETTEMBRE 2010 18:59:39

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 10 (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

(SOLO I PARAMETRI CHE POSSONO VARIARE)

Pagina 150 di 445 Eurolink S.C.p.A.

11

Ce.A.S. s.r.l. - Milano

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328 F0.doc F0

Rev F0

Data 20/06/2011

```
PARATIE 7.00
                                                                     PAG. 7
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
               NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
              RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
               NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
              RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
               NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
              RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                                                              15
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
LAYER Soil
                                       = 0.40000
= 4.0000
= 0.40000
= 4.0000
      coeff. spinta attiva ka
                                                                     (A MONTE)
      coeff. spinta passiva kp
                                                                     (A MONTE)
     coeff. spinta attiva ka
                                                                     (A VALLE)
      coeff. spinta passiva kp
                                                                      (A VALLE)
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                     PAG.
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
              RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                    = 0.0000
                                                                  m
                                                    = 0.0000
           quota piano campagna
                                                                  m
                                                    = 0.0000
           quota del fondo scavo
                                                   =-0.99900E+30 m
           quota della falda
                                                   = 10.000
= 0.0000
                                                                 kPa
           sovraccarico a monte
           quota del sovraccarico a monte
                                                                  m
           depressione falda a valle
                                                   = 0.0000
                                                                  m
                                            = 10.000
= 0.0000
= 0.0000
           sovraccarico a valle
                                                                  kPa
           quota del sovraccarico a valle
                                                                   m
           quota di taglio
           quota di taglio
quota di equil. pressioni dell'acqua = -30.000
'-d'catora comportamento acqua = 0.0000
                                                                  m
                                                                  m
                                                                   (1=REMOVE)
           opzione aggiornamento pressioni acqua = 0.0000
                                                                   (1=NO UPD)
           opzione aggiornamento paracelerazione sismica orizz.
                                                    = 0.0000
                                                                   [g]
           accel. sismica vert. a monte
                                                    = 0.0000
                                                                   [a]
           accel. sismica vert. a valle
                                                    = 0.0000
                                                                   [°]
                                                   = 0.0000
           angolo beta a monte
           delta/phi a monte
                                                    = 0.0000
                                                                   [°]
           angolo beta a valle
                                                    = 0.0000
```

Eurolink S.C.p.A. Pagina 151 di 445

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
delta/phi a valle
                                                       = 0.0000
                                                       = 0.0000
                                                                      (1=pervious)
           opzione dyn. acqua
           rapporto pressioni in eccesso Ru
                                                      = 0.0000
           Wood bottom pressure
                                                      = 0.0000
                                                                      kPa
           Wood top pressure
                                                      = 0.0000
                                                                      m
                                                      = 0.0000
= 0.0000
           Wood bottom pressure elev.
                                                                      kPa
           Wood top pressure elev.
                                                                      m
               RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                       = 0.0000
           quota del fondo scavo
quota della falda
sovraccarico a monte
quota del sovracca
                                                      = 0.0000
= -2.5000
                                                                      m
                                                                      m
                                                      =-0.99900E+30 m
                                                      = 10.000 	 kPa
= 0.0000 	 m
           quota del sovraccarico a monte
depressione falda a valle
sovraccarico a valle
                                                     = 0.0000
                                                     = 0.0000
= 0.0000
                                                                      m
                                                                    kPa
           m
```

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 9
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI RELATIVI ALLA FASE 2

quota di equil. pressioni dell'acqua	=	-30.000	m
indicatore comportamento acqua	=	0.0000	(1=REMOVE)
opzione aggiornamento pressioni acqua	=	0.0000	,
accelerazione sismica orizz.	=	0.0000	[q]
accel. sismica vert. a monte	=	0.0000	[a]
accel. sismica vert. a valle	=	0.0000	[a]
angolo beta a monte	=	0.0000	[•]
delta/phi a monte	=	0.0000	
angolo beta a valle	=	0.0000	[°]
delta/phi a valle	=	0.0000	
opzione dyn. acqua	=	0.0000	(1=pervious)
rapporto pressioni in eccesso Ru	=	0.0000	· •
Wood bottom pressure	=	0.0000	kPa
Wood top pressure	=	0.0000	m
Wood bottom pressure elev.	=	0.0000	kPa
Wood top pressure elev.	=	0.0000	m

RIASSUNTO DATI RELATIVI ALLA FASE 3

WALL LeftWall

= 0.0000	m
= 0.0000	m
= -2.5000	m
=-0.99900E+30	m
= 10.000	kPa
= 0.0000	m
= 0.0000	m
= 0.0000	kPa
= 0.0000	m
= 0.0000	m
= -30.000	m
= 0.0000	(1=REMOVE)
	= 0.0000 = -2.5000 =-0.99900E+30 = 10.000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 30.000

Pagina 152 di 445 Eurolink S.C.p.A.

opzione aggiornamento pressioni acqua = 0.0000

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

(1=NO UPD)

[g]

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

quota del fondo scavo

sovraccarico a monte

quota della falda

Codice documento SS0328_F0.doc_F0

= 0.0000

Rev F0

Data 20/06/2011

```
accelerazione sismica orizz.
                                                       = 0.0000
            accel. sismica vert. a monte
                                                                        [g]
            accel. sismica vert. a valle
                                                       = 0.0000
                                                                        [°]
            angolo beta a monte
                                                       = 0.0000
            delta/phi a monte
                                                       = 0.0000
                                                       = 0.0000
            angolo beta a valle
                                                       = 0.0000
            delta/phi a valle
            opzione dyn. acqua
                                                        = 0.0000
                                                                        (1=pervious)
            opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.000
                                                       = 0.0000
= 0.0000
            Wood bottom pressure
                                                                        kРа
            Wood top pressure
            Wood bottom pressure elev.
                                                      = 0.0000
                                                                        kPa
PARATIE 7.00
                                 Ce.A.S. s.r.l. - Milano
                                                                          PAG. 10
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 3
            Wood top pressure elev.
                                                        = 0.0000
               RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                        = 0.0000
            coordinata y
            quota piano campagna
                                                        = 0.0000
                                                                       m
                                                       = -5.5000
            quota del fondo scavo
                                                                        m
            quota della falda
                                                       =-0.99900E+30 m
           guota del sovraccarico a monte = 0.0000
depressione falda a valle = 0.0000
sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
muota di taglio = 0.0000
            sovraccarico a monte
                                                        = 10.000
                                                                       m
                                                                        m
                                                                        kPa
                                                                       m
                                                                        m
            quota di equil. pressioni dell'acqua = -30.000
            indicatore comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000
                                                                        (1=REMOVE)
                                                                        (1=NO UPD)
            accelerazione sismica orizz. = 0.0000
                                                                        [a]
            accel. sismica vert. a monte = 0.0000 accel. sismica vert. a valle = 0.0000 = 0.0000
                                                                        [g]
                                                                        [g]
            angolo beta a monte
                                                       = 0.0000
            delta/phi a monte
                                                       = 0.0000
            angolo beta a valle
                                                       = 0.0000
                                                       = 0.0000
            delta/phi a valle
            opzione dyn. acqua - 0.0000
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
                                                                        (1=pervious)
            Wood bottom pressure
                                                                        kPa
                                                       = 0.0000
            Wood top pressure
                                                       = 0.0000
= 0.0000
            Wood bottom pressure elev.
                                                                        kPa
            Wood top pressure elev.
               RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                        = 0.0000
                                                                       m
                                                        = 0.0000
            quota piano campagna
                                                                       m
```

Eurolink S.C.p.A. Pagina 153 di 445

= -5.5000

= 10.000

=-0.99900E+30 m

m

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

quota del sovraccarico a monte	=	0.0000	m
depressione falda a valle	=	0.0000	m
sovraccarico a valle	=	0.0000	kPa
quota del sovraccarico a valle	=	0.0000	m

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 11 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140 RIASSUNTO DATI RELATIVI ALLA FASE 5 quota di taglio = 0.0000 quota di equil. pressioni dell'acqua = -30.000 indicatore comportamento acqua = 0.0000(1=REMOVE) opzione aggiornamento pressioni acqua = 0.0000 = 0.0000 = 0.0000 = 0.0000 (1=NO UPD) accelerazione sismica orizz. [q] accel. sismica vert. a monte = 0.0000 [g] accel. sismica vert. a valle = 0.0000 [°] angolo beta a monte = 0.0000 = 0.0000 = 0.0000 delta/phi a monte angolo beta a valle angolo Beck

delta/phi a valle
opzione dyn. acqua
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
0.0000
0.0000 (1=pervious) kPa Wood bottom pressure elev. = 0.0000 kPa = 0.0000 Wood top pressure elev. m

RIASSUNTO DATI RELATIVI ALLA FASE 6

WALL LeftWall

		
coordinata y	= 0.0000	m
quota piano campagna	= 0.0000	m
quota del fondo scavo	= -8.5000	m
quota della falda	=-0.99900E+30	m
sovraccarico a monte	= 10.000	kPa
quota del sovraccarico a monte	= 0.0000	m
depressione falda a valle	= 0.0000	m
sovraccarico a valle	= 0.0000	kPa
quota del sovraccarico a valle	= 0.0000	m
quota di taglio	= 0.0000	m
quota di equil. pressioni dell'acqua	= -30.000	m
indicatore comportamento acqua	= 0.0000	(1=REMOVE)
opzione aggiornamento pressioni acqua	= 0.0000	(1=NO UPD)
accelerazione sismica orizz.	= 0.0000	[g]
accel. sismica vert. a monte	= 0.0000	[g]
accel. sismica vert. a valle	= 0.0000	[g]
angolo beta a monte	= 0.0000	[°]
delta/phi a monte	= 0.0000	
angolo beta a valle	= 0.0000	[°]
delta/phi a valle	= 0.0000	
opzione dyn. acqua	= 0.0000	(1=pervious)
rapporto pressioni in eccesso Ru	= 0.0000	
Wood bottom pressure	= 0.0000	kPa
Wood top pressure	= 0.0000	m

Pagina 154 di 445 Eurolink S.C.p.A.

PARATTE 7.00

16 SETTEMBRE 2010 18:59:39

History 0 - PARATIA PALI 1200 i=140

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                       PAG. 12
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
           Wood bottom pressure elev.
                                                      = 0.0000
                                                                     kPa
           Wood top pressure elev.
                                                     = 0.0000
                                                                     m
              RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                      = 0.0000
                                                                     m
                                                     = 0.0000
           quota piano campagna
                                                                     m
           quota del fondo scavo
                                                     = -8.5000
           sovraccarico a monte quota del -
                                                      =-0.99900E+30 m
                                                     = 10.000
                                                                    kPa
           quota del sovraccarico a monte = 10.000
quota del sovraccarico a monte = 0.0000
depressione falda a valle = 0.0000
sovraccarico a valle = 0.0000
                                                                     m
                                                                     m
                                                                     kPa
           quota del sovraccarico a valle
           quota del sovraccarico a valle - 0.0000 quota di taglio = 0.0000 quota di equil. pressioni dell'acqua = -30.000 - 30.0000 = 0.0000
                                                                     m
                                                                     m
                                                                    m
                                                                     (1=REMOVE)
                                                                    (1=NO UPD)
           opzione aggiornamento pressioni acqua = 0.0000
           accelerazione sismica orizz. = 0.0000
                                                                     [g]
                                                      = 0.0000
           accel. sismica vert. a monte
                                                                      [g]
           accel. sismica vert. a valle
                                                     = 0.0000
                                                                      [g]
                                                     = 0.0000
           angolo beta a monte
           delta/phi a monte
                                                     = 0.0000
                                                     = 0.0000
                                                                     [°]
           angolo beta a valle
                                                      = 0.0000
           delta/phi a valle
           opzione dyn. acqua
                                                      = 0.0000
                                                                     (1=pervious)
           rapporto pressioni in eccesso Ru
                                                     = 0.0000
                                                     = 0.0000
                                                                     kPa
           Wood bottom pressure
                                                     = 0.0000
= 0.0000
           Wood top pressure
                                                                     m
           Wood bottom pressure elev.
                                                                     kPa
           Wood top pressure elev.
                                                     = 0.0000
                                                                     m
              RIASSUNTO DATI RELATIVI ALLA FASE 8
WALL LeftWall
                                                      = 0.0000
           coordinata y
                                                                     m
                                                      = 0.0000
           quota piano campagna
                                                                     m
           quota del fondo scavo
quota della falda
sovraccarico a monte
                                                     = -12.000
                                                      =-0.99900E+30 m
                                                     = 10.000 kPa
                                                 = 0.0000
= 0.0000
           quota del sovraccarico a monte
                                                                     m
           depressione falda a valle
                                                    = 0.0000
           sovraccarico a valle
                                                                     kPa
```

Eurolink S.C.p.A. Pagina 155 di 445

PAG. 13

Ce.A.S. s.r.l. - Milano

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

RIASSUNTO DATI RELATIVI ALLA FASE

Codice documento
SS0328 F0.doc F0

Rev F0 Data 20/06/2011

```
= 0.0000
           quota del sovraccarico a valle
           quota di taglio
                                                  = 0.0000
           quota di equil. pressioni dell'acqua = -30.000
           indicatore comportamento acqua
                                                  = 0.0000
                                                                 (1=REMOVE)
           opzione aggiornamento pressioni acqua = 0.0000
                                                                 (1=NO UPD)
           accelerazione sismica orizz. = 0.0000
                                                                 [g]
           accel. sismica vert. a monte
                                                  = 0.0000
                                                                 [a]
           accel. sismica vert. a valle
                                                 = 0.0000
                                                                 [°]
                                                  = 0.0000
= 0.0000
           angolo beta a monte
           delta/phi a monte
           angolo beta a valle
                                                  = 0.0000
           delta/phi a valle
                                                  = 0.0000
                                                  = 0.0000
           opzione dyn. acqua
                                                                 (1=pervious)
          rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
                                                                 kPa
           Wood top pressure
                                                  = 0.0000
           Wood bottom pressure elev.
                                                  = 0.0000
                                                                 kPa
                                                  = 0.0000
           Wood top pressure elev.
                                                                 m
              RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                   = 0.0000
           quota piano campagna
                                                   = 0.0000
                                                                 m
                                                  = -12.000
           quota del fondo scavo
                                                                 m
           quota della falda
                                                  =-0.99900E+30 m
           sovraccarico a monte
                                                  = 10.000
                                                                 kPa
                                              = 0.0000
           quota del sovraccarico a monte
                                                                 m
                                                  = 0.0000
= 0.0000
           depressione falda a valle
          sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
= 0.0000
                                                                 kPa
                                                                 m
           quota di equil. pressioni dell'acqua = -30.000
                                                  = 0.0000
                                                                 (1=REMOVE)
           indicatore comportamento acqua
          opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000 accel. sismica vert. a monte - 0.0000
                                                                  (1=NO UPD)
                                                                 [g]
                                                  = 0.0000
           accel. sismica vert. a monte
                                                                 [a]
           accel. sismica vert. a valle
                                                 = 0.0000
                                                                  [g]
                                                  = 0.0000
= 0.0000
           angolo beta a monte
           delta/phi a monte
           angolo beta a valle
                                                  = 0.0000
           delta/phi a valle
                                                  = 0.0000
                                                  = 0.0000
           opzione dyn. acqua
                                                                 (1=pervious)
           rapporto pressioni in eccesso Ru = 0.0000
                                                  = 0.0000
           Wood bottom pressure
                                                                 kPa
PARATTE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                   PAG. 14
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
                                    9
           Wood top pressure
                                                  = 0.0000
           Wood bottom pressure elev.
                                                   = 0.0000
                                                                 kPa
                                                 = 0.0000
           Wood top pressure elev.
                                                                 m
```

RIASSUNTO DATI RELATIVI ALLA FASE 10

Pagina 156 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328 F0.doc F0

Rev F0

Data 20/06/2011

```
WALL LeftWall
                                                        = 0.0000
            coordinata y
            quota piano campagna
                                                        = 0.0000
            quota del fondo scavo
                                                        = -15.000
            quota della falda
                                                       =-0.99900E+30 m
                                                                     kPa
            sovraccarico a monte
                                                        = 10.000
            quota del sovraccarico a monte
depressione falda a valle
                                                       = 0.0000
                                                                        m
                                                       = 0.0000
            sovraccarico a valle
                                                        = 0.0000
                                                                        kPa
            quota del sovraccarico a valle = 0.0000
            quota del sovraccarico a valle - 0.0000 quota di taglio = 0.0000 quota di equil. pressioni dell'acqua = -30.000 = -30.000 = 0.0000
                                                                        m
                                                                        m
                                                                        (1=REMOVE)
            opzione aggiornamento pressioni acqua \,=\, 0.0000
                                                                        (1=NO UPD)
            accelerazione sismica orizz.
                                                        = 0.0000
                                                                        [a]
                                                       = 0.0000
= 0.0000
            accel. sismica vert. a monte
                                                                        [q]
            accel. sismica vert. a valle
                                                                        [g]
            angolo beta a monte
                                                       = 0.0000
            delta/phi a monte
                                                        = 0.0000
                                                       = 0.0000
            angolo beta a valle
            delta/phi a valle
                                                        = 0.0000
            opzione dyn. acqua
                                                        = 0.0000
                                                                        (1=pervious)
            opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
                                                       = 0.0000
= 0.0000
                                                                        kPa
            Wood bottom pressure
            Wood top pressure
            Wood bottom pressure elev.
                                                       = 0.0000
                                                                        kPa
            Wood top pressure elev.
                                                        = 0.0000
                                                                        m
               RIASSUNTO DATI RELATIVI ALLA FASE 11
WALL Left.Wall
                                                        = 0.0000
            coordinata y
            quota piano campagna
                                                        = 0.0000
            quota del fondo scavo
                                                       = -15.000
                                                                        m
                                                       =-0.99900E+30 m
            quota della falda
            sovraccarico a monte = 10.000 kPa
quota del sovraccarico a monte = 0.0000 m
depressione falda a valle = 0.0000 m
PARATIE 7.00
                                 Ce.A.S. s.r.l. - Milano
                                                                          PAG. 15
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 11
            sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
= 0.0000
                                                                        kPa
                                                                        m
```

quota di equil. pressioni dell'acqua = -30.000indicatore comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000 accelerazione significa in indicatore comportamento acqua = 0.0000

angolo beta a valle

delta/phi a valle

opzione dyn. acqua

rapporto pressioni in eccesso Ru

= 0.0000

= 0.0000

= 0.0000

accelerazione sismica orizz.

accel. sismica vert. a monte

angolo beta a monte delta/phi a monte

angolo beta a valle

Wood bottom pressure

accel. sismica vert. a valle

Eurolink S.C.p.A. Pagina 157 di 445

= 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000

(1=REMOVE) (1=NO UPD)

(1=pervious)

[g]

[g]

[g]

[°]

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

delta/phi a monte

delta/phi a valle

angolo beta a valle

Codice documento
SS0328_F0.doc_F0

= 0.0000

= 0.0000

= 0.0000

[°]

(1=pervious)

Rev F0 Data 20/06/2011

```
= 0.0000
                                             Wood top pressure
                                                                                                                                                                                                                                                                             m
                                                                                                                                                                                                                  = 0.0000
                                             Wood bottom pressure elev.
                                                                                                                                                                                                                                                                             kPa
                                             Wood top pressure elev.
                                                                                                                                                                                                              = 0.0000
                                                                                                                                                                                                                                                                             m
                                                         RIASSUNTO DATI RELATIVI ALLA FASE 12
WALL LeftWall
                                            coordinata y
                                                                                                                                                                                                                  = 0.0000
                                                                                                                                                                                                                                                                             m
                                                                                                                                                                                                                = 0.0000
                                             quota piano campagna
                                                                                                                                                                                                                                                                            m
                                             quota del fondo scavo
                                                                                                                                                                                                            = -18.000 m = -0.99900E+30 m
                                             quota della falda
                                            depressione falda a valle = 0.0000 covaccarico c
                                                                                                                                                                                                                                                                            m
                                                                                                                                                                                                                                                                            m
                                            quota di taglio quota di carri
                                                                                                                                                                                                                                                                      kPa
                                            quota di equil. pressioni dell'acqua = -30.000 indicatore comportamento acqua = 0.0000
                                                                                                                                                                                                                                                                            m
                                                                                                                                                                                                                                                                             (1=REMOVE)
                                             opzione aggiornamento pressioni acqua = 0.0000
                                                                                                                                                                                                                                                                            (1=NO UPD)
                                            accelerazione sismica orizz. = 0.0000 accel. sismica vert. a monte = 0.0000
                                                                                                                                                                                                                                                                              [a]
                                                                                                                                                                                                                                                                              [a]
                                            accel. sismica vert. a monte accel. sismica vert. a valle
                                                                                                                                                                                                              = 0.0000
= 0.0000
                                                                                                                                                                                                                                                                             [°]
                                             angolo beta a monte
```

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 16 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140 RIASSUNTO DATI RELATIVI ALLA FASE 12 Wood bottom pressure = 0.0000 = 0.0000 kPa Wood top pressure Wood bottom pressure elev. = 0.0000 kPa = 0.0000 Wood top pressure elev. m RIASSUNTO DATI RELATIVI ALLA FASE 13

opzione dyn. acqua = 0.0000 rapporto pressioni in eccesso Ru = 0.0000

WALL LeftWall

coordinata y	=	0.0000	m
quota piano campagna	=	0.0000	m
quota del fondo scavo	= -	-18.000	m
quota della falda	=-(0.99900E+30	m
sovraccarico a monte	=	10.000	kPa
quota del sovraccarico a monte	=	0.0000	m
depressione falda a valle	=	0.0000	m
sovraccarico a valle	=	0.0000	kPa
quota del sovraccarico a valle	=	0.0000	m
quota di taglio	=	0.0000	m
quota di equil. pressioni dell'acqua	= -	-30.000	m
indicatore comportamento acqua	=	0.0000	(1=REMOVE)
opzione aggiornamento pressioni acqua	=	0.0000	(1=NO UPD)
accelerazione sismica orizz.	-	0.0000	[g]
accel. sismica vert. a monte	=	0.0000	[g]
accel. sismica vert. a valle	=	0.0000	[g]

Pagina 158 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

	angolo beta a monte	=	0.0000	[°]
	delta/phi a monte	=	0.0000	
	angolo beta a valle	=	0.0000	[°]
	delta/phi a valle	=	0.0000	
	opzione dyn. acqua		0.0000	(1=pervious)
	rapporto pressioni in eccesso Ru	=	0.0000	
	Wood bottom pressure	=	0.0000	kPa
	Wood top pressure	=	0.0000	m
	Wood bottom pressure elev.	=	0.0000	kPa
	Wood top pressure elev.		0.0000	m
	wood top pressure erev.		0.0000	111
	RIASSUNTO DATI RELATIVI ALLA FASE	14		
WALL LeftW	all			
	coordinata y	=	0.0000	m
	quota piano campagna	=	0.0000	m
	quota del fondo scavo	=	-20.000	m
	quota della falda	=-	0.99900E+30	m
	sovraccarico a monte		10.000	kPa
	quota del sovraccarico a monte		0.0000	m
	quota dei soviaccarico a monte		0.0000	111
		_		
PARATIE 7.		Lano		PAG. 17
	RE 2010 18:59:39			
History 0	- PARATIA PALI 1200 i=140			
RIASSUNTO	DATI RELATIVI ALLA FASE 14			
	denregations folds a stalle	_	0.0000	
	depressione falda a valle			m l-D-
	sovraccarico a valle		0.0000	kPa
	quota del sovraccarico a valle		0.0000	m
	guota di taglio	=	0.0000	m

depressione falda a valle	_	0.0000	m
<u>=</u>			===
sovraccarico a valle		0.0000	
quota del sovraccarico a valle	=	0.0000	
quota di taglio	=	0.0000	m
quota di equil. pressioni dell'acqua	=	-30.000	m
indicatore comportamento acqua	=	0.0000	(1=REMOVE)
opzione aggiornamento pressioni acqua	=	0.0000	(1=NO UPD)
accelerazione sismica orizz.	=	0.0000	[g]
accel. sismica vert. a monte	=	0.0000	[g]
accel. sismica vert. a valle	=	0.0000	[g]
angolo beta a monte	=	0.0000	[°]
delta/phi a monte	=	0.0000	
angolo beta a valle	=	0.0000	[°]
delta/phi a valle	=	0.0000	
opzione dyn. acqua	=	0.0000	(1=pervious)
rapporto pressioni in eccesso Ru	=	0.0000	
Wood bottom pressure	=	0.0000	kPa
Wood top pressure	=	0.0000	m
Wood bottom pressure elev.	=	0.0000	kPa
Wood top pressure elev.	=	0.0000	m

RIASSUNTO DATI RELATIVI ALLA FASE 15

```
WALL LeftWall
            coordinata y
                                                            = 0.0000
                                                                            m
            quota piano campagna
quota del fondo scavo
                                                           = 0.0000
                                                                            m
                                                           = -20.000
            quota della falda
                                                           =-0.99900E+30 m
            quota del sovraccarico a monte = 0.0000 depressione falda a valle = 0.0000 covraccarico a valle
                                                                           kPa
                                                                            m
                                                                            m
                                                                           kPa
            quota del sovraccarico a valle = 0.0000 = 0.0000
                                                                            m
```

Eurolink S.C.p.A. Pagina 159 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

quota di taglio	= 0.0000	m
quota di equil. pressioni dell'acqua	= -30.000	m
indicatore comportamento acqua	= 0.0000	(1=REMOVE)
opzione aggiornamento pressioni acqua	= 0.0000	(1=NO UPD)
accelerazione sismica orizz.	= 0.0000	[g]
accel. sismica vert. a monte	= 0.0000	[g]
accel. sismica vert. a valle	= 0.0000	[g]
angolo beta a monte	= 0.0000	[°]
delta/phi a monte	= 0.0000	
angolo beta a valle	= 0.0000	[°]
delta/phi a valle	= 0.0000	
opzione dyn. acqua	= 0.0000	(1=pervious)

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 18 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI RELATIVI ALLA FASE 15

rapporto pressioni in eccesso Ru = 0.0000 KPa Wood bottom pressure = 0.0000 m Mood bottom pressure elev. = 0.0000 kPa Wood top pressure elev. = 0.0000 m

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 19 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ELEMENTI

+	+	+	+	+	++
			ELEMENTI		
	Wall	Z1		+	Angle
İ	I	m	l m		deg
UHLeft	LeftWall	0.	-30.00	UPHILL	0.
DHLeft	LeftWall	0.	-30.00	DOWNHILL	180.0

++ RIASSUNTO ELEMENTI BEAM ++							
		Z1		Mat	thick		
					m		
Beam	LeftWall	0.	-30.00	 	0.9555		

Pagina 160 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 20 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

	+	+	+	+	+			
RIASSUNTO ELEMENTI WIRE								
Name	Wall	Zeta	Mat	A/L	Pinit	Angle		
		m		 	kN/m	deg		
t1	LeftWall	-2.000	I _	0.1045E-04	140.0	10.00		
t2	LeftWall	-5.000	I _	0.1460E-04	150.0	10.00		
t3	LeftWall	-8.000	_	0.1655E-04	160.0	10.00		
t4	LeftWall	-11.50	_	0.2128E-04	190.0	10.00		
t5	LeftWall	-14.50	I _	0.2482E-04	180.0	10.00		
				0.2708E-04		10.00		

Eurolink S.C.p.A. Pagina 161 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 21 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI VARI

+----+
| MATERIALI |
+----+
| Name | YOUNG MODULUS |
+----+
| kPa |
+----+
| cls_ | 3.144E+007 |
+----+
| Acci | 2.1E+008 |

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 22 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

DISTRIBUTED LOAD SUMMARY

Wall From To Z1 P1 Z2 P2 step step Left 15 15 -20.000 14.000 0.0000 14.000

UNITS FOR Z1 , Z2 =m UNITS FOR P1 , P2 =kPa

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 23 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ANALISI INCREMENTALE

FASE 1 2 3 4 5 6 7	N.	DI	ITERAZIONI 2 4 5 5 4 5 4	CONVERGENZA SI SI SI SI SI SI SI SI SI
-			5	SI
7			4	SI
8 9			4	SI SI
10			7	SI

Pagina 162 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

11	4	SI
12	9	SI
13	4	SI
14	7	SI
15	3	SI

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 24

16 SETTEMBRE 2010 18:59:39

History 0 - PARATIA PALI 1200 i=140

MASSIMI SPOSTAMENTI LATERALI

TUTTI I PASSI

* PARETE LeftWall*
I PASSI NON EQUILIBRATI SONO ESCI

* I PASSI NON EQUILIBRATI SONO ESCLUSI *
 * NOTA: LE QUOTE ESPRESSE IN m
 E GLI SPOSTAMENTI IN m

NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE	LeftWall
1	0.0000	-0.53998E-02	14		
2	-0.30000	-0.45990E-02	14		
3	-0.60000	-0.37982E-02	14		
4	-0.90000	-0.29972E-02	14		
5	-1.2000	-0.21959E-02	14		
6	-1.5000	0.17091E-02	2		
7	-1.8000	0.26514E-02	15		
8	-2.0000	0.33481E-02	15		
9	-2.3000	0.43943E-02	15		
10	-2.6000	0.54410E-02	15		
11	-2.9000	0.64872E-02	15		
12	-3.2000	0.75318E-02	15		
13	-3.5000	0.85742E-02	15		
14	-3.8000	0.96134E-02	15		
15	-4.1000	0.10649E-01	15		
16	-4.4000	0.11680E-01	15		
17	-4.7000	0.12707E-01	15		
18	-5.0000	0.13729E-01	15		
19	-5.3000	0.14746E-01	15		
20	-5.6000	0.15756E-01	15		
21	-5.9000	0.16757E-01	15		
22	-6.2000	0.17748E-01	15		
23	-6.5000	0.18726E-01	15		
24	-6.8000	0.19691E-01	15		
25	-7.1000	0.20642E-01	15		
26	-7.4000	0.21577E-01	15		
27	-7.7000	0.22495E-01	15		
28	-8.0000	0.23397E-01	15		
29	-8.3000	0.24281E-01	15		
30	-8.6000	0.25146E-01	15		
31	-8.9000	0.25988E-01	15		
32	-9.2000	0.26805E-01	15		
33	-9.5000	0.27596E-01	15		
34	-9.8000	0.28359E-01	15		
35	-10.100	0.29092E-01	15		
36	-10.400	0.29795E-01	15		
37	-10.700	0.30466E-01	15		
38	-11.000	0.31105E-01	15		

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 25

Eurolink S.C.p.A. Pagina 163 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE LeftWall
39	-11.300	0.31712E-01	15	
40	-11.500	0.32099E-01	15	
41	-11.800	0.32652E-01	15	
42	-12.100	0.33170E-01	15	
43	-12.400	0.33651E-01	15	
44	-12.700	0.34093E-01	15	
45	-13.000	0.34494E-01	15	
46	-13.300	0.34852E-01	15	
47	-13.600	0.35167E-01	15	
48	-13.900	0.35438E-01	15	
49	-14.200	0.35664E-01	15	
50	-14.500	0.35846E-01	15	
51	-14.800	0.35984E-01	15	
52	-15.100	0.36075E-01	15	
53	-15.400	0.36119E-01	15	
54	-15.700	0.36112E-01	15	
55	-16.000	0.36053E-01	15	
56	-16.300	0.35943E-01	15	
57	-16.600	0.35781E-01	15	
58	-16.900	0.35566E-01	15	
59	-17.200	0.35300E-01	15	
60	-17.500	0.34983E-01	15	
61	-17.800	0.34617E-01	15	
62	-18.100	0.34201E-01	15	
63	-18.400	0.33734E-01	15	
64	-18.700	0.33216E-01	15	
65	-19.000	0.32647E-01	15	
66	-19.300	0.32029E-01	15	
67	-19.600	0.31363E-01	15	
68	-19.900	0.30650E-01	15	
69	-20.200	0.29894E-01	15	
70	-20.500	0.29097E-01	15	
71	-20.800	0.28262E-01	15	
72	-21.100	0.27394E-01	15	
73	-21.400	0.26497E-01	15	
74	-21.700	0.25574E-01	15	
75	-22.000	0.24631E-01	15	
76	-22.300	0.23670E-01	15	
77	-22.600	0.22698E-01	15	
78	-22.900	0.21717E-01	15	
79	-23.200	0.20733E-01	15	
80	-23.500	0.19748E-01	15	
81	-23.800	0.18766E-01	15	
82	-24.100	0.17790E-01	15	
83	-24.400	0.16824E-01	15	
84	-24.700	0.15867E-01	15	

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 26 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE PARETE	LeftWall
85	-25.000	0.14923E-01	15	
86	-25.300	0.13992E-01	15	
87	-25.600	0.13075E-01	15	
88	-25.900	0.12172E-01	15	

Pagina 164 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

-26.200	0.11283E-01	15
-26.500	0.10407E-01	15
-26.800	0.95445E-02	15
-27.100	0.86935E-02	15
-27.400	0.78534E-02	15
-27.700	0.70228E-02	15
-28.000	0.62005E-02	15
-28.300	0.53850E-02	15
-28.600	0.45750E-02	15
-28.900	0.39232E-02	14
-29.200	0.33064E-02	14
-29.500	0.29501E-02	11
-29.800	0.28343E-02	11
-30.000	0.27571E-02	11
	-26.500 -26.800 -27.100 -27.400 -27.700 -28.000 -28.300 -28.600 -28.900 -29.200 -29.500 -29.800	-26.500 0.10407E-01 -26.800 0.95445E-02 -27.100 0.86935E-02 -27.400 0.78534E-02 -27.700 0.70228E-02 -28.000 0.62005E-02 -28.300 0.53850E-02 -28.600 0.45750E-02 -28.900 0.39232E-02 -29.200 0.33064E-02 -29.500 0.29501E-02 -29.800 0.28343E-02

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 27 16 SETTEMBRE 2010 18:59:39

History 0 - PARATIA PALI 1200 i=140

INVILUPPO AZIONI INTERNE NEGLI ELEMENTI DI PARETE (PER UNITA' DI PROFONDITA')

* PARETE LeftWall GRUPPO Beam*

STEP 1 - 15

* I PASSI NON EQUILIBRATI SONO ESCLUSI *

Nella tabella si stampano i seguenti risultati: MOMENTO SX = Momento che tende le fibre sulla faccia sinistra [kN*m/m] MOMENTO DX = Momento che tende le fibre sulla faccia destra [kN*m/m] TAGLIO = forza tagliante (valore assoluto, priva di segno) [kN/m]

BEAM EL.	ESTREM	~		X MOMENTO DX	
1	A	0.		0.1310E-09	2.199
	В	-0.3000	0.6596	0.	2.199
2	A	-0.3000	0.6596	0.	6.338
	В	-0.6000	2.561	0.6821E-10	6.338
3	A	-0.6000	2.561	0.7185E-10	19.67
	В	-0.9000	8.041	0.	19.67
4	A	-0.9000	8.041	0.	35.24
	В	-1.200	18.61	0.	35.24
5	A	-1.200	18.61	0.	50.67
	В	-1.500	33.81	0.	50.67
6	A	-1.500	33.81	0.	65.05
	В	-1.800	53.33	0.	65.05
7	A	-1.800	53.33	0.	75.88
	В	-2.000	68.50	0.	75.88
8	A	-2.000	68.50	0.	97.03
	В	-2.300	53.21	0.	97.03
9	A	-2.300	53.21	0.	89.48
	В	-2.600	40.77	24.99	89.48
10	A	-2.600	40.77	24.99	81.24
	В	-2.900	30.44	47.33	81.24
11	A	-2.900	30.44	47.33	72.31
	В	-3.200	25.83	66.93	72.31
12	A	-3.200	25.83	66.93	62.70
	В	-3.500	31.77	83.86	62.70
13	A	-3.500	31.77	83.86	52.41
	В	-3.800	37.46	98.22	52.41
14	A	-3.800	37.46	98.22	41.43
	В	-4.100	42.74	110.1	41.43
15	A	-4.100	42.74	110.1	31.36
	В	-4.400	47.51	119.5	31.36
16	A	-4.400	47.51	119.5	36.62

Eurolink S.C.p.A. Pagina 165 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data 20/06/2011 F0

	В	-4.700	51.71	126.2	36.62
17	A	-4.700	51.71	126.2	51.48
	B	-5 000	55 32	130 1	51 48

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 28

16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

History U	- PARATIA	A PALI 1200	1=140		
BEAM EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO D	TAGLIO
18	A	-5.000	55.32	130.1	177.0
	В	-5.300	58.32	175.7	177.0
19	A	-5.300	58.32	175.7	162.6
	В	-5.600	60.71	224.5	162.6
20	A	-5.600	60.71	224.5	147.6
	В	-5.900	62.51	268.8	147.6
21	A	-5.900	62.51	268.8	131.8
	В	-6.200	63.70	308.3	131.8
22	A	-6.200	63.70	308.3	115.4
	В	-6.500	64.33	342.9	115.4
23	A	-6.500	64.33	342.9	98.22
	В	-6.800	64.40	372.4	98.22
24	A	-6.800	64.40	372.4	80.40
	В	-7.100	63.98	396.5	80.40
25	A	-7.100	63.98	396.5	61.90
	В	-7.400	63.10	415.1	61.90
26	A	-7.400	63.10	415.1	46.14
	В	-7.700	61.81	427.9	46.14
27	A	-7.700	61.81	427.9	63.74
	В	-8.000	60.15	434.7	63.74
28	A	-8.000	60.15	434.7	232.1
	В	-8.300	58.19	504.3	232.1
29	A	-8.300	58.19	504.3	210.8
	В	-8.600	55.97	567.6	210.8
30	A	-8.600	55.97	567.6	188.9
	В	-8.900	53.53	624.3	188.9
31	A	-8.900	53.53	624.3	166.3
	В	-9.200	50.91	674.2	166.3
32	A	-9.200	50.91	674.2	143.0
	В	-9.500	48.17	717.1	143.0
33	A	-9.500	48.17	717.1	119.0
	В	-9.800	45.34	752.8	119.0
34	A	-9.800	45.34	752.8	94.38
	В	-10.10	42.45	781.1	94.38
35	A	-10.10	42.45	781.1	71.83
	В	-10.40	39.55	801.8	71.83
36	A	-10.40	39.55	801.8	58.07
	В	-10.70	36.65	814.7	58.07
37	A	-10.70	36.65	814.7	85.66
	В	-11.00	33.79	819.6	85.66
38	A	-11.00	33.79	819.6	113.9
	В	-11.30	30.99	816.3	113.9
39	A	-11.30	30.99	816.3	138.0
	В	-11.50	29.17	809.4	138.0
40	A	-11.50	29.17	809.4	240.6

B -11.80 26.52 881.5 240.6

Pagina 166 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

Ce.A.S. s.r.l. - Milano
16 SETTEMBRE 2010 18:59:39
History 0 - Paparata PAG. 29

History 0 - PARATIA PALI 1200 i=140

=					
BEAM EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO
41	A	-11.80	26.52	881.5	211.3
	В	-12.10	23.97	944.9	211.3
42	A	-12.10	23.97	944.9	181.4
	В	-12.40	21.54	999.4	181.4
43	A	-12.40	21.54	999.4	150.9
	В	-12.70	19.24	1045.	150.9
44	A	-12.70	19.24	1045.	133.9
	В	-13.00	17.21	1080.	133.9
45	A	-13.00	17.21	1080.	131.4
	В	-13.30	16.87	1107.	131.4
46	A	-13.30	16.87	1107.	124.6
	В	-13.60	16.41	1123.	124.6
47	A	-13.60	16.41	1123.	117.8
	В	-13.90	15.84	1130.	117.8
48	A	-13.90	15.84	1130.	135.8
	В	-14.20	15.18	1126.	135.8
49	A	-14.20	15.18	1126.	170.8
	В	-14.50	14.45	1112.	170.8
50	A	-14.50	14.45	1112.	214.3
	В	-14.80	13.68	1176.	214.3
51	A	-14.80	13.68	1176.	178.2
31	В	-15.10	12.87	1230.	178.2
52	A	-15.10	12.87	1230.	177.9
32	В	-15.40	13.06	1272.	177.9
53	A	-15.40	13.06	1272.	195.0
	В	-15.70	13.49	1303.	195.0
54	A	-15.70	13.49	1303.	205.7
01	В	-16.00	13.80	1323.	205.7
55	A	-16.00	13.80	1323.	209.8
	В	-16.30	16.71	1331.	209.8
56	A	-16.30	16.71	1331.	207.4
	В	-16.60	19.28	1328.	207.4
57	A	-16.60	19.28	1328.	198.4
0,	В	-16.90	28.45	1312.	198.4
58	A	-16.90	28.45	1312.	194.4
	В	-17.20	43.00	1284.	194.4
59	A	-17.20	43.00	1284.	236.3
	В	-17.50	55.98	1243.	236.3
60	A	-17.50	55.98	1243.	186.4
	В	-17.80	67.46	1274.	186.4
61	A	-17.80	67.46	1274.	224.5
V-	В	-18.10	77.51	1291.	224.5
62	A	-18.10	77.51	1291.	254.8
02	В	-18.40	86.20	1296.	254.8
63	A	-18.40	86.20	1296.	278.5
00	В	-18.70	93.60	1287.	278.5
	_	_ 0 • . 0			

Ce.A.S. s.r.l. - Milano PARATIE 7.00 PAG. 30 16 SETTEMBRE 2010 18:59:39

History 0 - PARATIA PALI 1200 i=140

Eurolink S.C.p.A. Pagina 167 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

BEAM	EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO
	64	A	-18.70	93.60	1287.	295.7
		В	-19.00	99.78	1264.	295.7
	65	A	-19.00	99.78	1264.	306.4
		В	-19.30	104.8	1228.	306.4
	66	A	-19.30	104.8	1228.	310.5
		В	-19.60	108.7	1178.	310.5
	67	A	-19.60	108.7	1178.	308.1
		В	-19.90	125.9	1114.	308.1
	68	A	-19.90	125.9	1114.	299.1
		В	-20.20	144.5	1036.	299.1
	69	A	-20.20	144.5	1036.	293.5
		В	-20.50	160.2	947.9	293.5
	70	A	-20.50	160.2	947.9	321.0
		В	-20.80	173.2	851.6	321.0
	71	A	-20.80	173.2	851.6	342.3
		В	-21.10	183.8	749.0	342.3
	72	A	-21.10	183.8	749.0	357.4
		В	-21.40	192.0	641.7	357.4
	73	A	-21.40	192.0	641.7	366.4
		В	-21.70	198.1	531.8	366.4
	74	A	-21.70	198.1	531.8	369.2
		В	-22.00	202.0	421.1	369.2
	75	A	-22.00	202.0	421.1	365.9
		В	-22.30	226.7	311.3	365.9
	76	A	-22.30	226.7	311.3	356.4
		В	-22.60	257.7	204.4	356.4
	77	A	-22.60	257.7	204.4	340.7
		В	-22.90	282.3	102.2	340.7
	78	A	-22.90	282.3	102.2	318.9
	7.0	В	-23.20	301.0	6.516	318.9
	79	A	-23.20	301.0	6.516	290.9
	80	В	-23.50	314.0	0.	290.9
	80	A B	-23.50 -23.80	314.0 321.9	0.	256.8 256.8
	81	A	-23.80	321.9	0.	216.6
	OI	В	-24.10	325.1	0.	216.6
	82	A	-24.10	325.1	0.	170.1
	02	В	-24.10	323.9	0.	170.1
	83	A	-24.40	323.9	0.	126.1
	03	В	-24.70	318.8	0.	126.1
	84	A	-24.70	318.8	0.	86.10
	0 1	В	-25.00	337.5	0.	86.10
	85	A	-25.00	337.5	0.	49.89
	00	В	-25.30	352.5	0.	49.89
	86	A	-25.30	352.5	0.	48.98
		В	-25.60	357.7	0.	48.98
				-		

PARATIE 7.00 16 SETTEMBRE 2010 18:59:39			Ce.A.S. s.r.l Milano				31
History 0	- PARATI	A PALI 1200	i=140				
BEAM EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO		
87	А	-25.60	357.7	0.	57.26		
	В	-25.90	354.3	0.	57.26		
88	A	-25.90	354.3	0.	64.37		
	В	-26.20	343.3	0.	64.37		
89	A	-26.20	343.3	0.	70.36		
	В	-26.50	325.7	0.	70.36		
90	A	-26.50	325.7	0.	76.86		

Pagina 168 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

91	B A B	-26.80 -26.80 -27.10	302.7 302.7 275.1	0. 0. 0.	76.86 91.95 91.95
92	A B	-27.10 -27.40	275.1 243.9	0.	103.8
93	A B	-27.40 -27.70	243.9	0.	112.5
94	A B	-27.70 -28.00	210.2	0.	118.1 118.1
95	A B	-28.00 -28.30	174.8 138.6	0.	120.6
96	A	-28.30	138.6	0.	119.2
97	B A	-28.60 -28.60	102.8	0.	119.2
98	B A	-28.90 -28.90	69.24 69.24	0.	112.0 97.59
99	B A	-29.20 -29.20	39.96 39.96	0.	97.59 76.35
100	B A	-29.50 -29.50	17.06 17.06	0. 0.	76.35 46.95
101	B A B	-29.80 -29.80 -30.00	2.972 2.972 0.2328E-09	0. 0. 0.1673E-09	46.95 14.86 14.86

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 32 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

FORZE NEGLI ANCORAGGI ATTIVI (PER UNITA' DI PROFONDITA')

TIRANTE	t1	1 PARETE LeftWall QUOTA -2.0000
		FASE 1 inattivo
		FASE 2 inattivo
		FASE 3 FORZA 140.00 kN/m
		FASE 4 FORZA 140.44 kN/m
		FASE 5 FORZA 139.27 kN/m
		FASE 6 FORZA 139.55 kN/m
		FASE 7 FORZA 139.22 kN/m
		FASE 8 FORZA 139.44 kN/m
		FASE 9 FORZA 139.57 kN/m
		FASE 10 FORZA 139.42 kN/m
		FASE 11 FORZA 139.67 kN/m
		FASE 12 FORZA 139.26 kN/m
		FASE 13 FORZA 139.43 kN/m
		FASE 14 FORZA 138.89 kN/m
		FASE 15 FORZA 146.24 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 152.63 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 152.63 kN/m FASE 7 FORZA 151.18 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 152.63 kN/m FASE 7 FORZA 151.18 kN/m FASE 8 FORZA 157.37 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 152.63 kN/m FASE 7 FORZA 151.18 kN/m FASE 8 FORZA 157.37 kN/m FASE 9 FORZA 156.60 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 152.63 kN/m FASE 7 FORZA 151.18 kN/m FASE 8 FORZA 157.37 kN/m FASE 8 FORZA 156.60 kN/m FASE 9 FORZA 162.74 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 152.63 kN/m FASE 7 FORZA 151.18 kN/m FASE 8 FORZA 157.37 kN/m FASE 8 FORZA 156.60 kN/m FASE 9 FORZA 156.60 kN/m FASE 10 FORZA 162.74 kN/m FASE 11 FORZA 162.64 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 152.63 kN/m FASE 7 FORZA 151.18 kN/m FASE 8 FORZA 157.37 kN/m FASE 9 FORZA 156.60 kN/m FASE 10 FORZA 162.74 kN/m FASE 11 FORZA 162.64 kN/m FASE 12 FORZA 169.71 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 152.63 kN/m FASE 7 FORZA 151.18 kN/m FASE 8 FORZA 157.37 kN/m FASE 8 FORZA 156.60 kN/m FASE 9 FORZA 156.60 kN/m FASE 10 FORZA 162.74 kN/m FASE 11 FORZA 162.64 kN/m

Eurolink S.C.p.A. Pagina 169 di 445

FASE 15 FORZA

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

kN/m

189.24

Rev F0 **Data** 20/06/2011

		11100 10 1011011 109.21 111	, 111
TIRANTE	t3	1 PARETE LeftWall QUOTA FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 FORZA 160.00 kN FASE 8 FORZA 173.02 kN FASE 9 FORZA 170.93 kN	/m /m
	00 RE 2010 18:59:39 - PARATIA PALI 1200	Ce.A.S. s.r.l Milano i=140	PAG. 33
		FASE 10 FORZA 185.29 kN FASE 11 FORZA 184.43 kN FASE 12 FORZA 201.47 kN FASE 13 FORZA 201.35 kN FASE 14 FORZA 208.09 kN FASE 15 FORZA 233.31 kN	/m /m /m /m
TIRANTE	t4	1 PARETE LeftWall QUOTA FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 8 inattivo FASE 10 FORZA 190.00 kN FASE 10 FORZA 218.26 kN FASE 11 FORZA 215.55 kN FASE 12 FORZA 251.24 kN FASE 13 FORZA 250.03 kN FASE 14 FORZA 266.69 kN FASE 15 FORZA 303.44 kN	/m /m /m /m /m
TIRANTE	t5	1 PARETE LeftWall QUOTA FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 9 inattivo FASE 10 inattivo FASE 11 FORZA 180.00 kN FASE 12 FORZA 232.92 kN FASE 13 FORZA 229.79 kN FASE 14 FORZA 258.87 kN FASE 15 FORZA 301.25 kN	/m /m /m
TIRANTE	t6	1 PARETE LeftWall QUOTA FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo	-17.500

Pagina 170 di 445 Eurolink S.C.p.A.

-7.700

68.54

51.31

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

FASE 4 inattivo FASE 5 inattivo

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 34 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140 FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 9 inattivo FASE 10 inattivo FASE 11 inattivo FASE 12 inattivo FASE 13 FORZA 200.00 FASE 14 FORZA 241.23 kN/m kN/m FASE 15 FORZA 282.35 kN/m PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 35 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140 INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO * PARETE LeftWall GRUPPO UHLeft* *STEP 1 - 15* * I PASSI NON EQUILIBRATI SONO ESCLUSI * Nella tabella si stampano i seguenti risultati: SIGMA-H = massimo sforzo orizzontale efficace [kPa TAGLIO = massimo sforzo di taglio [kPa [kPa] PR. ACQUA =massima pressione interstiziale [kPa GRAD. MAX =massimo gradiente idraulico SOIL EL. QUOTA SIGMA-H TAGLIO PR. ACQUA GRAD. MAX 12.55 5.00. 7.850 0. 5.000 0. 0. 11.23 2 -0.3000 0. 0. 13.33 3 -0.6000 0. 48.06 0. 4 -0.9000 51.90 12.40 0. 0. 5 -1.200 51.44 13.21 0. 0. 0. 6 -1.500 7 -1.800 47.93 43.49 14.97 16.73 0. 0. 44.38 17.90 0. 8 -2.000 0. 9 -2.300 45.50 19.66 0. 10 -2.600 0. 46.32 21.42 0. 11 -2.900 12 -3.200 46.70 46.74 0. 23.18 Ο. 24.94 0. 0. 46.50 13 -3.500 26.69 0. 0. 14 -3.800 46.08 28.45 0. 0. 15 -4.100 0. 46.62 30.21 0. 16 -4.400 47.95 31.97 0. 0. 17 -4.700 49.52 33.73 0. 0. 18 -5.000 0. 50.98 35.49 19 -5.300 52.34 37.25 0. 0. 20 -5.600 53.62 39.00 0. 0. 21 -5.900 54.94 40.76 0. 0. 22 -6.200 57.15 42.52 0. 0. 0. 59.31 61.74 64 °° 23 -6.500 59.31 44.28 0. 46.04 47.80 49.55 51.31 24 -6.800 46.04 0. 0. 0. 25 -7.100 0. 26 -7.400 66.36 0.

Eurolink S.C.p.A. Pagina 171 di 445

0.

0.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento	
SS0328_F0.doc_F0	

Rev Data
F0 20/06/2011

2.8	-8.000	70.60	53.07	0.	0.
2.9	-8.300	72.55	54.83	0.	
					0.
30	-8.600	75.12	56.59	0.	0.
31	-8.900	77.63	58.35	0.	0.
32	-9.200	80.09	60.11	0.	0.
33	-9.500	82.50	61.86	0.	0.
34	-9.800	84.89	63.62	0.	0.
35	-10.10	87.32	65.38	0.	0.

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 36

16 SETTEMBRE 2010 18:59:39

History 0 - PARATIA PALI 1200 i=140

History 0	- PARATIA P	'ALI 1200 i	=140			
SOIL EL.	QUOTA	SIGMA-H	TAGLIO E	PR. ACQUA	GRAD.	MAX
36	-10.40	89.68	67.14	0.	0.	
37	-10.70	91.96	68.90	0.	0.	
38	-11.00	94.15	70.66	0.	0.	
39	-11.30	96.24	72.41	0.	0.	
40	-11.50	97.57	73.59	0.	0.	
41	-11.80	99.47	75.35	0.	0.	
42	-12.10	101.3	77.10	0.	0.	
43	-12.40	103.5	78.86	0.	0.	
44	-12.70	105.8	80.62	0.	0.	
45	-13.00	108.1	82.38	0.	0.	
46	-13.30	110.3	84.14	0.	0.	
47	-13.60	112.6	85.90	0.	0.	
48	-13.90	114.7	87.65	0.	0.	
49	-14.20	116.8	89.41	0.	0.	
50	-14.50	118.8	91.17	0.	0.	
51	-14.80	121.2	92.93	0.	0.	
52	-15.10	123.7	94.69	0.	0.	
53	-15.40	126.2	96.45	0.	0.	
54	-15.70	128.6	98.20	0.	0.	
55	-16.00	130.9	99.96	0.	0.	
56	-16.30	133.1	101.7	0.	0.	
57 58	-16.60 -16.90	135.3 137.4	103.5	0. 0.	0. 0.	
59	-17.20	139.5	105.2 107.0	0.	0.	
60	-17.50	141.5	108.8	0.	0.	
61	-17.80	143.4	110.5	0.	0.	
62	-18.10	145.1	112.3	0.	0.	
63	-18.40	146.8	114.0	0.	0.	
64	-18.70	148.4	115.8	0.	0.	
65	-19.00	149.9	117.5	0.	0.	
66	-19.30	151.4	119.3	0.	0.	
67	-19.60	152.9	121.1	0.	0.	
68	-19.90	154.4	122.8	0.	0.	
69	-20.20	156.0	124.6	0.	0.	
70	-20.50	157.6	126.3	0.	0.	
71	-20.80	159.2	128.1	0.	0.	
72	-21.10	160.8	129.9	0.	0.	
73	-21.40	162.4	131.6	0.	0.	
74	-21.70	164.0	133.4	0.	0.	
75	-22.00	165.7	135.1	0.	0.	
76	-22.30	167.3	136.9	0.	0.	
77	-22.60	169.0	138.6	0.	0.	
78	-22.90	171.1	140.4	0.	0.	
79	-23.20	173.3	142.2	0.	0.	
80	-23.50	175.5	143.9	0.	0.	
81	-23.80	177.6	145.7	0.	0.	

Pagina 172 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
PARATIE 7.00
                             Ce.A.S. s.r.l. - Milano
                                                                  PAG. 37
16 SETTEMBRE 2010 18:59:39
History 0 - PARATIA PALI 1200 i=140
                                TAGLIO PR. ACQUA GRAD. MAX
SOIL EL. QUOTA
                    SIGMA-H
                  179.8
182 ^
     82 -24.10
                              147.4
149.2
151.0
                                147.4
                                             0.
                                                        0.
     83 -24.40
                                             0.
                                                        0.
     84 -24.70
                   184.2
186.4
188.6
                                             0.
                                                        0.
     85 -25.00
                                152.7
                                             0.
                                                        0.
                              154.5
     86 -25.30
                                             0.
                                                        0.
                  190.8
                                                        0.
     87 -25.60
                                            0.
                              156.2
     88 -25.90
                                158.0
                                             0.
                                                        0.
                   195.2
197.4
199.5
     89 -26.20
                               159.8
                                            0.
                                            0.
     90 -26.50
91 -26.80
                               161.5
163.3
                                                        0.
                                                        0.
                  201.7
                              165.0
166.8
168.5
                                            0.
     92 -27.10
                                                        0.
      93 -27.40
                     203.9
                                             0.
                                                        0.
                                            0.
     94 -27.70
                    206.1
                                                        0.
                              170.3
172.1
173.8
                   208.3
     95 -28.00
                                            0.
                                                        0.
     96 -28.30
                     210.5
                                             0.
                                                        0.
                   212.7
                                            0.
     97 -28.60
                                            0.
0.
     98 -28.90
                     219.2
                                175.6
                                                        0.
                              177.3
     99 -29.20
                    226.7
                                                        0.
    100 -29.50 239.2
101 -29.80 255.7
102 -30.00 266.9
                               179.1
                                            0.
                                                        0.
                                180.9
                                             0.
                                                        0.
                               182.0
```

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 38 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140

INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO

* PARETE LeftWall GRUPPO DHLeft*

STEP 1 - 15

* I PASSI NON EQUILIBRATI SONO ESCLUSI *
Nella tabella si stampano i seguenti risultati:
SIGMA-H = massimo sforzo orizzontale efficace [kPa]
TAGLIO = massimo sforzo di taglio [kPa]
PR. ACQUA =massima pressione interstiziale [kPa]
GRAD. MAX =massimo gradiente idraulico

SOIL EL.	QUOTA	SIGMA-H 3.843	TAGLIO	PR. ACQUA	GRAD. MAX
2	-0.3000	6.034	4.833	0.	0.
3	-0.6000	8.225	6.588	0.	0.
4	-0.9000	10.42	8.342	0.	0.
5	-1.200	12.61	10.10	0.	0.
6	-1.500	14.80	11.85	0.	0.
7	-1.800	16.99	13.61	0.	0.
8	-2.000	18.45	14.78	0.	0.
9	-2.300	20.64	16.53	0.	0.
10	-2.600	22.83	18.29	0.	0.
11	-2.900	25.02	20.04	0.	0.
12	-3.200	27.21	21.79	0.	0.
13	-3.500	29.40	23.55	0.	0.
14	-3.800	31.59	25.30	0.	0.
15	-4.100	33.78	27.06	0.	0.

Eurolink S.C.p.A. Pagina 173 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

16	-4.400	36.03	28.81	0.	0.
17	-4.700	38.45	30.57	0.	0.
18	-5.000	40.75	32.32	0.	0.
19	-5.300	42.96	34.08	0.	0.
20	-5.600	45.09	35.83	0.	0.
21	-5.900	47.15	37.59	0.	0.
22	-6.200	49.17	39.34	0.	0.
23	-6.500	51.31	41.10	0.	0.
24	-6.800	53.50	42.85	0.	0.
25	-7.100	55.69	44.60	0.	0.
26	-7.400	57.88	46.36	0.	0.
27	-7.700	60.07	48.11	0.	0.
28	-8.000	62.26	49.87	0.	0.
29	-8.300	64.45	51.62	0.	0.
30	-8.600	66.64	53.38	0.	0.
31	-8.900	68.84	55.13	0.	0.
32	-9.200	71.03	56.89	0.	0.
33	-9.500	73.22	58.64	0.	0.
34	-9.800	75.41	60.40	0.	0.
35	-10.10	77.60	62.15	0.	0.

PARATIE 7.00 Ce.A.S. s.r.l. - Milano 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200 i=140 PAG. 39

History 0	- PARATIA	PALI 1200	i=140		
SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX
36	-10.40	79.79	63.91	0.	0.
37	-10.70	81.98	65.66	0.	0.
38	-11.00	84.17	67.41	0.	0.
39	-11.30	86.36	69.17	0.	0.
40	-11.50	87.82	70.34	0.	0.
41	-11.80	90.01	72.09	0.	0.
42	-12.10	92.34	73.85	0.	0.
43	-12.40	94.65	75.60	0.	0.
44	-12.70	96.91	77.36	0.	0.
45	-13.00	100.4	79.11	0.	0.
46	-13.30	117.1	80.87	0.	0.
47	-13.60	119.4	82.62	0.	0.
48	-13.90	121.6	84.38	0.	0.
49	-14.20	123.7	86.13	0.	0.
50	-14.50	125.7	87.89	0.	0.
51	-14.80	127.6	89.64	0.	0.
52	-15.10	129.3	91.39	0.	0.
53	-15.40	131.0	93.15	0.	0.
54	-15.70	132.7	94.90	0.	0.
55	-16.00	134.3	96.66	0.	0.
56	-16.30	135.8	98.41	0.	0.
57	-16.60	148.3	100.2	0.	0.
58	-16.90	169.8	101.9	0.	0.
59	-17.20	170.6	103.7	0.	0.
60	-17.50	171.4	105.4	0.	0.
61	-17.80	172.1	107.2	0.	0.
62	-18.10	172.7	108.9	0.	0.
63	-18.40	173.2	110.7	0.	0.
64	-18.70	173.7	112.5	0.	0.
65	-19.00	174.1	114.2	0.	0.
66	-19.30	174.6	116.0	0.	0.
67	-19.60	175.0	117.7	0.	0.
68	-19.90	175.4	119.5	0.	0.
69	-20.20	196.2	121.2	0.	0.
70	-20.50	220.2	123.0	0.	0.

Pagina 174 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0 20/06/2011

71	-20.80	244.2	124.7	0.	0.
72	-21.10	247.8	126.5	0.	0.
73	-21.40	244.8	128.2	0.	0.
74	-21.70	241.9	130.0	0.	0.
75	-22.00	239.1	131.8	0.	0.
76	-22.30	236.3	133.5	0.	0.
77	-22.60	233.5	135.3	0.	0.
78	-22.90	252.1	137.0	0.	0.
79	-23.20	276.1	138.8	0.	0.
80	-23.50	299.2	140.5	0.	0.
81	-23.80	308.8	142.3	0.	0.

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 40

16 SETTEMBRE 2010 18:59:39

History 0 - PARATIA PALI 1200 i=140

	-1					
SOIL	EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX
	82	-24.10	331.6	144.0	0.	0.
	83	-24.40	325.7	145.8	0.	0.
	84	-24.70	314.9	147.5	0.	0.
	85	-25.00	304.4	149.3	0.	0.
	86	-25.30	294.2	151.1	0.	0.
	87	-25.60	284.3	152.8	0.	0.
	88	-25.90	274.7	154.6	0.	0.
	89	-26.20	265.4	156.3	0.	0.
	90	-26.50	256.4	158.1	0.	0.
	91	-26.80	247.7	159.8	0.	0.
	92	-27.10	239.2	161.6	0.	0.
	93	-27.40	230.9	163.3	0.	0.
	94	-27.70	222.8	165.1	0.	0.
	95	-28.00	214.9	166.8	0.	0.
	96	-28.30	210.5	168.6	0.	0.
	97	-28.60	212.7	170.4	0.	0.
	98	-28.90	214.9	172.1	0.	0.
	99	-29.20	217.1	173.9	0.	0.
	100	-29.50	219.3	175.6	0.	0.
	101	-29.80	221.5	177.4	0.	0.
	102	-30.00	222.9	178.5	0.	0.

PAG. 41 PARATIE 7.00 Ce.A.S. s.r.l. - Milano 16 SETTEMBRE 2010 18:59:39

History 0 - PARATIA PALI 1200 i=140

RIASSUNTO SPINTE NEGLI ELEMENTI TERRENO (LE SPINTE SONO CALCOLATE INTEGRANDO GLI SFORZI NEI SINGOLI ELEMENTI MOLLA)

SPINTA EFFICACE VERA = Integrale delle pressioni orizzontali efficaci in tutti gli elementi nel gruppo: unita' di misura kN/m

SPINTA ACQUA = Integrale delle pressioni interstiziali in tutti gli elementi nel gruppo: unita' di misura kN/m

SPINTA TOTALE VERA = Somma della SPINTA EFFICACE e della SPINTA DELL'ACQUA: e' l' azione totale sulla parete:

unita' di misura kN/m

SPINTA ATTIVA POSSIBILE = La minima spinta che puo' essere esercitata da questo gruppo di elementi terreno, in questa fase: unita' di misura kN/m

Eurolink S.C.p.A. Pagina 175 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

SPINTA PASSIVA POSSIBILE	= La massima spinta che puo' essere esercitata d	Э
	questo gruppo di elementi terreno, in questa	

fase: unita' di misura kN/mRAPPORTO PASSIVA/VERA = e' il rapporto tra la massima spinta possibile e

la spinta efficace vera: fornisce un'indicazione

su quanta spinta passiva venga mobilitata;

SPINTA PASSIVA MOBILITATA = e' l'inverso del rapporto precedente, espresso in unita' percentuale: indica quanta parte della massima spinta possibile e' stata mobilitata;

= e' il rapporto tra la spinta efficace vera e la RAPPORTO VERA/ATTIVA minima spinta possibile: fornisce un'indicazione di quanto questa porzione di terreno sia

prossima alla condizione di massimo rilascio.

FASE	1	GRUPPO>	UHLe	DHLe
SPIN	TA EFFIC	CACE VERA	3401.4	3401.4
SPIN	ITA ACQUA	4	0.	0.
SPIN	TA TOTAI	LE VERA	3401.4	3401.4
SPIN	ITA ATTIV	/A (POSSIBILE)	3204.3	3204.3
SPIN	ITA PASSI	VA (POSSIBILE)	37821.	37821.
RAPE	ORTO PA	ASSIVA/VERA	11.119	11.119
SPIN	ITA PASSI	VA MOBILITATA	9.8	9.8
RAPE	ORTO VE	RA/ATTIVA	1.0615	1.0615

PARATIE 7.00 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200		1 Milano	PAG.	42
FASE 2 GRUPPO>		DHLe		
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	3204.3 37821.	2584.1 30769.		
FASE 3 GRUPPO> SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	3323.3 0. 3323.3 3204.3 37821.	3185.4 0. 3185.4 2584.1 30769. 9.6593		
FASE 4 GRUPPO> SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE)	3255.4 0. 3255.4 3204.3	3117.1 0. 3117.1 2035.1		

Pagina 176 di 445 Eurolink S.C.p.A.

Data

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Rev Codice documento SS0328_F0.doc_F0 F0 20/06/2011

PAG. 43

RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	11.618 9.% 1.0159	7.8526 13.% 1.5317
FASE 5 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	3380.8 0. 3380.8 3204.3 37821. 11.187 9.% 1.0551	3095.9 0. 3095.9 2035.1 24477. 7.9062 13.% 1.5213

	Ce.A.S. s.r.	.l Milano
16 SETTEMBRE 2010 18:59:39		
History 0 - PARATIA PALI 1200	i=140	
FASE 6 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA	3284.6	
SPINTA ACQUA	0.	0.
SPINTA TOTALE VERA	0. 3284.6	2996.8
SPINTA ATTIVA (POSSIBILE)	3204.3	1551.6
SPINTA PASSIVA (POSSIBILE)	37821.	18904.
RAPPORTO PASSIVA/VERA	11.514	6.3082
SPINTA PASSIVA MOBILITATA		1 (0
RAPPORTO VERA/ATTIVA	9.% 1.0251	1.9315
FASE 7 GRUPPO>	IIHT.e	DHI.e
THEE / CHOILS /	OHEC	DIIEC
SPINTA EFFICACE VERA	3414.0	2970.4
SPINTA ACOIIA		
SPINTA TOTALE VERA	0. 3414.0	2970.4
SPINTA ATTIVA (POSSIBILE)		
SPINTA PASSIVA (POSSIBILE)		18904.
RAPPORTO PASSIVA/VERA	37821. 11.078	6.3641
	9 9	
RAPPORTO VERA/ATTIVA	9.% 1.0654	16.% 1.9145
MATTORIO VERA/ATTIVA	1.0054	1.7143
FASE 8 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA	3281.5	2818.8
0.0000000000000000000000000000000000000	0.	0.
SPINTA ACQUA SPINTA TOTALE VERA	3281.5	2818.8
SPINTA ATTIVA (POSSIBILE)	3201.3	1070.2
SPINTA PASSIVA (POSSIBILE)	37821	13311.
RAPPORTO PASSIVA/VERA	11.525	4.7222
SPINTA PASSIVA MOBILITATA	9.%	21.%
RAPPORTO VERA/ATTIVA	1.0241	
RAPPORTO VERA/ATTIVA	1.0241	2.0339
FASE 9 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA	3431.8	2784.7
SPINTA ACQUA	0.	0.
SPINTA TOTALE VERA	3431.8	2784.7
SPINTA ATTIVA (POSSIBILE)	3204.3	1070.2

SPINTA PASSIVA (POSSIBILE) 37821. 13311.

Eurolink S.C.p.A. Pagina 177 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

RAPPORTO PASSIVA/VERA 11.021 4.7800 SPINTA PASSIVA MOBILITATA 9.% 21.% RAPPORTO VERA/ATTIVA 1.0710 2.6020

			1 Milano	PAG.	44
History 0 - PARAT	'IA PALI 1200	1=140			
FASE 10	GRUPPO>	UHLe	DHLe		
SPINTA EFFICACE SPINTA ACQUA SPINTA TOTALE V	E VERA VERA	3282.4 0. 3282.4	2587.3 0. 2587.3		
SPINTA EFFICACE SPINTA ACQUA SPINTA TOTALE V SPINTA ATTIVA SPINTA PASSIVA RAPPORTO PASSI SPINTA PASSIVA RAPPORTO VERA/	(POSSIBILE) (POSSIBILE) EVA/VERA	3204.3 37821. 11.522	728.55 9295.4 3.5927		
RAPPORTO VERA/	ATTIVA	1.0244	3.5514		
FASE 11	GRUPPO>	UHLe	DHLe		
SPINTA EFFICACE SPINTA ACQUA	C VERA	3424.1	2555.3		
SPINTA TOTALE V SPINTA ATTIVA SPINTA PASSIVA	/ERA (POSSIBILE) (POSSIBILE)	3424.1 3204.3 37821.	2555.3 728.55 9295.4		
SPINTA EFFICACE SPINTA ACQUA SPINTA TOTALE V SPINTA ATTIVA SPINTA PASSIVA RAPPORTO PASSI SPINTA PASSIVA RAPPORTO VERA/	VA/VERA MOBILITATA	11.045 9.%	3.6378 27.%		
RAPPORTO VERA/	'ATTIVA	1.0686	3.5073		
FASE 12					
SPINTA EFFICACE SPINTA ACQUA	E VERA	3295.8 0.	2316.1		
SPINTA TOTALE V SPINTA ATTIVA SPINTA PASSIVA	/ERA (POSSIBILE) (POSSIBILE)	3295.8 3204.3 37821	2316.1 452.39 5998 9		
SPINTA EFFICACE SPINTA ACQUA SPINTA TOTALE V SPINTA ATTIVA SPINTA PASSIVA RAPPORTO PASSI SPINTA PASSIVA RAPPORTO VERA	TVA/VERA MOBILITATA ATTIVA	11.475 9.% 1.0286	2.5901 39.% 5.1197		
FASE 13					
SPINTA EFFICACE SPINTA ACQUA	E VERA	3445.5			
SPINTA ACQUA SPINTA TOTALE \ SPINTA ATTIVA SPINTA PASSIVA	(POSSIBILE) (POSSIBILE)	3445.5 3204.3 37821.	2273.1 452.39 5998.9		
SPINTA PASSIVA RAPPORTO PASSI SPINTA PASSIVA RAPPORTO VERA/	VA/VERA MOBILITATA	10.977	2.6391 38.% 5.0246		
	=				

Pagina 178 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.00 16 SETTEMBRE 2010 18:59:39 History 0 - PARATIA PALI 1200		s.r.l Milano	PAG. 45	ì
FASE 14 GRUPPO>	UHLe	DHLe		
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	0. 3303.6 3204.3 37821. 11.448 9.8	0. 2037.0 304.64 4198.6 2.0611 49.%		
FASE 15 GRUPPO>	UHLe	DHLe		
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	0. 3268.1 3233.0 34800. 10.648	0. 2114.4 319.42 3999.8 1.8917 53.%		

12.1.2 COMBINAZIONE A1+M1

JOBNAME Y:\ELABORATI\LAVORO\382.01_PONTE SULLO STRETTO\ING\CALCOLI\Faro Ove

12 OTTOBRE 2010 11:26:26

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 2
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140

ELENCO DEI DATI DI INPUT(PARAGEN)

Per il significato dei vari comandi si faccia riferimento al manuale di

Eurolink S.C.p.A. Pagina 179 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

input PARAGEN, versione 7.00.

```
N. comando
   1: * Paratie for Windows version 7.0
   2: * Filename= <c:\lavori\ponte\calcoli\pali h=20.0m
     (gm)\slu1_20_hist00.d> Date=
   3: * project with "run time" parameters
   4: * Force=kN Lenght=m
   5: *
   6: units m kN
   7: title History 0 - PARATIA PALI 1200 i=140
   8: delta 0.3
   9: option param itemax 50
  10: option noprint echo
  11: option noprint displ
  12: option noprint react
  13: option noprint stresses
        wall LeftWall 0 -30 0
  14:
  15: *
  16: soil UHLeft LeftWall -30 0 1 0
  17: soil DHLeft LeftWall -30 0 2 180
  18: *
  19: material cls C28 35 3.144E+007
  20: material Acciaio 2.1E+008
  21: *
  22: beam Beam LeftWall -30 0 cls C28 35 0.955541 00 00
  23: *
 24: wire t1 LeftWall -2 Acciaio 1.04511E-005 140 10
  25: wire t2 LeftWall -5 Acciaio 1.46008E-005 160 10
 26: wire t3 LeftWall -8 Acciaio 1.98571E-005 160 10
  27: wire t4 LeftWall -11.5 Acciaio 2.12755E-005 200 10
 28: wire t5 LeftWall -14.5 Acciaio 2.48214E-005 200 10 29: wire t6 LeftWall -17.5 Acciaio 2.70779E-005 180 10
  30: *
  31: * Soil Profile
  32: *
  33:
         ldata
                         Soil 0
  34:
          weight
                         19 9 10
  35:
                         0.384339 0 1
             atrest
  36:
             resistance 5 38 0.383 4.204
  37:
                         120000 2 0 1 100 0.6
             moduli
        endlayer
 38:
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                      PAG. 3
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
 N. comando
  39: *
  40: step 1 : gostatico
  41: setwall LeftWall
  42:
          geom 0 0
              surcharge 10 0 10 0
  43:
  44: endstep
  45: *
  46: step 2 : primo ribasso
       setwall LeftWall
  47:
        geom 0 -2.5
  48:
  49:
             surcharge 10 0 0 0
  50: endstep
  51: *
  52: step 3: messa in opera 1 tirante
  53: setwall LeftWall
  54:
             add t1
 55: endstep
```

Pagina 180 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
56: *
 57: step 4 : scavo secondo ribasso
 58: setwall LeftWall
59: geom 0 -5.5
           geom 0 -5.5
 60: endstep
 61: *
 62: step 5 : messa in opera 2 tirante
 63: setwall LeftWall
 64:
            add t2
 65: endstep
 66: *
 67: step 6 : terzo ribasso
 68: setwall LeftWall
            geom 0 -8.5
 69:
 70: endstep
 71: *
 72: step 7: messa in opera 3 tirante
 73: setwall LeftWall
 74:
            add t3
 75: endstep
 76: *
 77: step 8 : quarto ribasso
 78: setwall LeftWall
 79:
            geom 0 -12
 80: endstep
 81: *
 82: step 9: messa in opera 4 tirante
 83: setwall LeftWall
 84:
            add t4
PARATIE 7.00
                             Ce.A.S. s.r.l. - Milano
                                                                 PAG.
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
 N. comando
 85: endstep
 86: *
 87: step 10 : quinto ribasso
 88: setwall LeftWall
89: geom 0 -15
         geom 0 -15
 90: endstep
 91: *
 92: step 11: messa in opera 5 tirante
 93: setwall LeftWall 94: add t5
            add t5
 95: endstep
 96: *
 97: step 12 : sesto ribasso
 98: setwall LeftWall
 99.
            geom 0 -18
100: endstep
101: *
102: step 13 : messa in opera 6 tirante
103: setwall LeftWall
            add t6
104:
105: endstep
106: *
107: step 14 : settimo ribasso
108: setwall LeftWall
109:
            geom 0 -20
110: endstep
111: *
112: step 15 : Fase sismica
113: change Soil U-KA=0.4
114:
        change Soil U-KP=4
```

Eurolink S.C.p.A. Pagina 181 di 445

115:

116:

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

change Soil D-KA=0.4

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

```
change Soil D-KP=4
        dload constant LeftWall -20 38.1 0 38.1
117:
       setwall LeftWall
118:
119:
          surcharge 0 0 0 0
120: endstep
121: *
122: *
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                    PAG. 5
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
             RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
LAYER Soil
     natura 1=granulare, 2=argilla
                                        = 1.0000
      quota superiore
                                          = 0.0000
      quota inferiore
                                         =-0.10000E+31 m
                                         = 19.000
     peso fuori falda
                                                        kN/m³
     peso efficace in falda
                                         = 9.0000
                                                        kN/m³
     peso dell'acqua
                                         = 10.000
                                                        kN/m³
                                         = 5.0000
= 38.000
                                                        kPa
                                                                    (A MONTE)
      coesione
      angolo di attrito
                                                        DEG
                                                                    (A MONTE)
                                        = 0.38300
     coeff. spinta attiva ka
                                                                    (A MONTE)
     coeff. spinta passiva kp = 4.2040
                                                                    (A MONTE)
                                         = 0.38434
      Konc normal consolidato
     OCR: grado di sovraconsolidazione = 1.0000 modello di rigidezza = 2.0000
     OCR: grado di college
modello di rigidezza = 2.0000
= 0.12000E+06 kPa
                                         = 2.0000
= 1.0000
     rapporto Rur/Rvc
      coef-h
     pressione di normalizz.
                                         = 100.00
                                         = 0.60000
      esponente n
                                     = 1.0000
= 5.0000
= 38.000
     natura 1=granulare, 2=argilla
                                                                    (A VALLE)
                                                        kPa
      coesione
                                                                    (A VALLE)
      angolo di attrito
                                                        DEG
                                                                    (A VALLE)
                                         = 0.38300
                                                                    (A VALLE)
     coeff. spinta attiva ka
                                                                    (A VALLE)
                                         = 4.2040
      coeff. spinta passiva kp
              RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
               NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
              RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
               NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
              RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
               NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
```

Pagina 182 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 6 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 6

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 7

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 8

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 9

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 10

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 11

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 12

(SOLO I PARAMETRI CHE POSSONO VARIARE)

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 7

12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 13

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

Eurolink S.C.p.A. Pagina 183 di 445

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

sovraccarico a monte

Codice documento
SS0328_F0.doc_F0

14

Rev F0 Data 20/06/2011

```
(SOLO I PARAMETRI CHE POSSONO VARIARE)
                NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
               RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                    (SOLO I PARAMETRI CHE POSSONO VARIARE)
LAYER Soil
                                        = 0.40000
= 4.0000
= 0.40000
= 4.0000
     coeff. spinta attiva ka
                                                                        (A MONTE)
      coeff. spinta passiva kp
coeff. spinta attiva ka
coeff. spinta passiva kp
                                                                         (A MONTE)
                                                                         (A VALLE)
                                                                         (A VALLE)
PARATTE 7.00
                                Ce.A.S. s.r.l. - Milano
                                                                         PAG.
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
               RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                       = 0.0000
           coordinata y
                                                      = 0.0000
= 0.0000
           quota piano campagna
                                                                      m
           quota del fondo scavo
                                                                      m
           quota della falda
                                                      =-0.99900E+30 m
           sovraccarico a monte
                                                      = 10.000
                                                 = 0.0000
           quota del sovraccarico a monte
                                                                      m
           depressione falda a valle = 0.0000
sovraccarico a valle = 10.000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000
                                                                      m
                                                                      kPa
                                                                      m
                                                                      m
           quota di equil. pressioni dell'acqua = -30.000
                                                      = 0.0000
                                                                      (1=REMOVE)
           indicatore comportamento acqua
           opzione aggiornamento pressioni acqua = 0.0000
                                                                      (1=NO UPD)
           accelerazione sismica orizz. = 0.0000
                                                                      [a]
           accel. sismica vert. a monte accel. sismica vert. a valle
                                                      = 0.0000
                                                                      [g]
                                                = 0.0000
                                                                       [ā]
           angolo beta a monte
                                                      = 0.0000
           delta/phi a monte
                                                      = 0.0000
           angolo beta a valle
                                                      = 0.0000
                                                      = 0.0000
           delta/phi a valle
                                                      = 0.0000
           opzione dyn. acqua
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
                                                                      (1=pervious)
                                                                      kPa
                                                      = 0.0000
           Wood top pressure
           Wood bottom pressure elev.
                                                      = 0.0000
                                                                      kPa
                                                      = 0.0000
           Wood top pressure elev.
               RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                       = 0.0000
                                                                      m
                                                       = 0.0000
           quota piano campagna
                                                                      m
                                                      = -2.5000
           quota del fondo scavo
                                                                      m
           quota della falda
                                                      =-0.99900E+30 m
```

Pagina 184 di 445 Eurolink S.C.p.A.

= 10.000

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
quota del sovraccarico a monte
                                                    = 0.0000
                                                                   m
           depressione falda a valle
                                                    = 0.0000
                                                                   m
                                                    = 0.0000
           sovraccarico a valle
                                                                   kPa
           quota del sovraccarico a valle
                                                    = 0.0000
                                                                   m
                                                    = 0.0000
           quota di taglio
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                      PAG.
                                                                           9
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
           quota di equil. pressioni dell'acqua = -30.000 indicatore comportamento acqua = 0.0000
                                                                   (1=REMOVE)
           opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                                   (1=NO UPD)
           accelerazione sismica orizz.
accel. sismica vert. a monte
                                                                   [g]
                                                   = 0.0000
                                                                   [q]
           accel. sismica vert. a valle
                                                   = 0.0000
                                                                   [°]
                                                   = 0.0000
           angolo beta a monte
           delta/phi a monte
                                                   = 0.0000
           angolo beta a valle
                                                    = 0.0000
           delta/phi a valle
                                                   = 0.0000
           opzione dyn. acqua
                                                    = 0.0000
                                                                   (1=pervious)
           rapporto pressioni in eccesso Ru = 0.0000
           Wood bottom pressure
                                                   = 0.0000
                                                                   kPa
                                                    = 0.0000
           Wood top pressure
                                                   = 0.0000
                                                                   kPa
           Wood bottom pressure elev.
                                                   = 0.0000
           Wood top pressure elev.
                                                                   m
              RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                    = 0.0000
                                                                   m
                                                    = 0.0000
           quota piano campagna
                                                                  m
                                                    = -2.5000
           quota del fondo scavo
           quota della falda
                                                    =-0.99900E+30 m
           sovraccarico a monte
                                                    = 10.000
           quota del sovraccarico a monte
                                                   = 0.0000
                                                                  m
           depressione falda a valle
                                                   = 0.0000
                                                                   m
                                                   = 0.0000
= 0.0000
           sovraccarico a valle
                                                                   kPa
           sovraccarico a valle quota del sovraccarico a valle
                                                                   m
           quota di taglio
                                                   = 0.0000
           quota di taglio
quota di equil. pressioni dell'acqua = -30.000
indicatore comportamento acqua = 0.0000
                                                                  m
                                                                  m
                                                                   (1=REMOVE)
           opzione aggiornamento pressioni acqua = 0.0000
                                                                   (1=NO UPD)
           accelerazione sismica orizz.
                                                    = 0.0000
                                                                   [g]
           accel. sismica vert. a monte
                                                   = 0.0000
                                                                   [g]
                                                    = 0.0000
           accel. sismica vert. a valle
                                                   = 0.0000
           angolo beta a monte
           delta/phi a monte
                                                    = 0.0000
                                                    = 0.0000
           angolo beta a valle
                                                   = 0.0000
           delta/phi a valle
                                                   = 0.0000
           opzione dyn. acqua
                                                                   (1=pervious)
           rapporto pressioni in eccesso Ru
                                                   = 0.0000
           Wood bottom pressure
                                                   = 0.0000
                                                                   kPa
                                                    = 0.0000
= 0.0000
           Wood top pressure
           Wood bottom pressure elev.
                                                                   kPa
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                      PAG. 10
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 3
```

Eurolink S.C.p.A. Pagina 185 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

	Wood top pressure elev.	= 0.0000	m
	RIASSUNTO DATI RELATIVI ALLA FASE	4	
WALL LeftW	äll		
	coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure elev. Wood top pressure elev.	= 0.0000 = 0.0000 = -5.5000 = -0.99900E+30 = 10.000 = 0.0000 = 0.0000	m m m m m m kPa m m kPa m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [c] [c] [c] (1=pervious) kPa m kPa m kPa m
	RIASSUNTO DATI RELATIVI ALLA FASE	5	
WALL LeftW	coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle	= 0.0000 = 0.0000 = -5.5000 =-0.99900E+30 = 10.000 = 0.0000 = 0.0000 = 0.0000 = 0.0000	m m m) m kPa m m kPa m
-	2010 11:26:26 - PARATIA PALI 1200 i=140	ano	PAG. 11
RIASSUNTO	Quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle	= 0.0000 = -30.000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000	m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [c] [c] [c]

Pagina 186 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

	delta/phi a valle opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE	= = = =	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(1=pervious) kPa m kPa m
WALL LeftW	coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua		0.0000 0.0000 -8.5000 0.99900E+30 10.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	m m m m kPa m kPa m m kPa m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [c] [c] [c] (1=pervious) kPa m
	00 Ce.A.S. s.r.l Mil 2010 11:26:26 - PARATIA PALI 1200 i=140	ano		PAG. 12
RIASSUNTO	DATI RELATIVI ALLA FASE 6			
	Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE		0.0000	kPa m
WALL LeftW	all			
	coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte	= = = = = = = = = = = = = = = = = = = =	0.0000 0.0000 -8.5000 0.99900E+30 10.000 0.0000 0.0000 0.0000 0.0000 -30.000 0.0000 0.0000 0.0000 0.0000	m m m m kPa m kPa m m (1=REMOVE) (1=NO UPD) [g] [g]

Eurolink S.C.p.A. Pagina 187 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

accel. sismica vert. a valle angolo beta a monte delta/phi a monte	=	0.0000 0.0000 0.0000	[g] [°]
angolo beta a valle delta/phi a valle	=	0.0000	[°]
opzione dyn. acqua rapporto pressioni in eccesso Ru		0.0000	(1=pervious)
Wood bottom pressure	=	0.0000	kPa
Wood top pressure	=	0.0000	m
Wood bottom pressure elev.	=	0.0000	kPa
Wood top pressure elev.	=	0.0000	m

RIASSUNTO DATI RELATIVI ALLA FASE

WALL LeftWall

111			
coordinata y	=	0.0000	m
quota piano campagna	=	0.0000	m
quota del fondo scavo	=	-12.000	m
quota della falda	=-	0.99900E+30	m
sovraccarico a monte	=	10.000	kPa
quota del sovraccarico a monte	=	0.0000	m
depressione falda a valle	=	0.0000	m
sovraccarico a valle	=	0.0000	kPa

Pagina 188 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                          PAG. 13
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
           quota del sovraccarico a valle = 0.0000
           quota di taglio = 0.0000
quota di equil. pressioni dell'acqua = -30.000
indicatore comportamento acqua = 0.0000
                                                                  m
                                                                  (1=REMOVE)
                                                                  (1=NO UPD)
           opzione aggiornamento pressioni acqua \,=\, 0.0000
           accelerazione sismica orizz.
                                                   = 0.0000
                                                                  [a]
                                                   = 0.0000
= 0.0000
           accel. sismica vert. a monte
                                                                  [a]
           accel. sismica vert. a valle
                                                                  [g]
           angolo beta a monte
                                                   = 0.0000
           delta/phi a monte
                                                   = 0.0000
                                                   = 0.0000
           angolo beta a valle
           delta/phi a valle
                                                   = 0.0000
           opzione dyn. acqua
                                                   = 0.0000
                                                                  (1=pervious)
           opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
                                                  = 0.0000
= 0.0000
                                                                  kPa
           Wood bottom pressure
           Wood top pressure
           Wood bottom pressure elev.
                                                   = 0.0000
                                                                  kPa
           Wood top pressure elev.
                                                   = 0.0000
                                                                  m
              RIASSUNTO DATI RELATIVI ALLA FASE
WALL Left.Wall
                                                   = 0.0000
           coordinata y
           quota piano campagna
                                                   = 0.0000
           quota del fondo scavo
                                                   = -12.000
                                                                  m
           quota della falda
                                                   =-0.99900E+30 m
                                                   = 10.000
= 0.0000
                                                               kPa
           sovraccarico a monte
           quota del sovraccarico a monte
                                                                  m
           depressione falda a valle
                                                  = 0.0000
                                                   = 0.0000
           sovraccarico a valle
                                                                  kPa
           quota del sovraccarico a valle = 0.0000
                                                                 m
                                                   = 0.0000
           quota di taglio
                                                                  m
           quota di equil. pressioni dell'acqua = -30.000 indicatore comportamento acqua = 0.0000
                                                                  m
                                                                  (1=REMOVE)
           opzione aggiornamento pressioni acqua = 0.0000 = 0.0000 = 0.0000 = 0.0000
                                                                  (1=NO UPD)
           accelerazione sismica orizz.
                                                                  [g]
           accel. sismica vert. a monte
                                                   = 0.0000
                                                                  [g]
                                                   = 0.0000
           accel. sismica vert. a valle
                                                                  [°]
           angolo beta a monte
                                                   = 0.0000
                                                   = 0.0000
           delta/phi a monte
                                                   = 0.0000
           angolo beta a valle
           delta/phi a valle
                                                   = 0.0000
                                                   = 0.0000
           opzione dyn. acqua
                                                                  (1=pervious)
           rapporto pressioni in eccesso Ru = 0.0000
           Wood bottom pressure
                                                  = 0.0000
                                                                  kPa
                              Ce.A.S. s.r.l. - Milano
                                                                    PAG. 14
PARATIE 7.00
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
                                     9
           Wood top pressure
                                                   = 0.0000
           Wood bottom pressure elev.
                                                   = 0.0000
                                                                  kPa
```

Eurolink S.C.p.A. Pagina 189 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Wood top pressure elev.

Codice documento
SS0328_F0.doc_F0

m

= 0.0000

Rev F0 Data 20/06/2011

Wood cop pic	bbare ciev.	0.0000	111
RIASSUNTO	DATI RELATIVI ALLA FASE	10	
WALL LeftWall			
coordinata y		= 0.0000	m
quota piano		= 0.0000	m
quota del fo	= =	= -15.000	m
quota del 10 quota della		=-0.99900E+30	
sovraccarico		= 10.000	kPa
	vraccarico a monte	= 0.0000	
			m
depressione sovraccarico	falda a valle	= 0.0000	m l-D-
		= 0.0000	kPa
=	vraccarico a valle	= 0.0000	m
quota di tag	il. pressioni dell'acqua	= 0.0000	m
		= -30.000 = 0.0000	m (1—DEMOVE)
	omportamento acqua ornamento pressioni acqua		(1=REMOVE)
	e sismica orizz.	= 0.0000	(1=NO UPD)
	ca vert. a monte	= 0.0000	[g]
	ca vert. a monte	= 0.0000	[g]
			[g]
angolo beta		= 0.0000 = 0.0000	[°]
delta/phi a		= 0.0000	[°]
angolo beta delta/phi a		= 0.0000	[]
opzione dyn.		= 0.0000	(1=pervious)
	ssioni in eccesso Ru		(I=pervious)
Wood bottom		= 0.0000	kPa
Wood top pre	=	= 0.0000	m
	pressure elev.	= 0.0000	kPa
Wood top pre	=	= 0.0000	m
"ood top pic	boule ciev.	0.0000	111
RIASSUNTC	DATI RELATIVI ALLA FASE	11	
WALL LeftWall			
coordinata y		= 0.0000	m
quota piano		= 0.0000	m
quota del fo		= -15.000	m
quota della		=-0.99900E+30	
sovraccarico		= 10.000	kPa
-	vraccarico a monte	= 0.0000	m
depressione	falda a valle	= 0.0000	m
PARATIE 7.00 12 OTTOBRE 2010 11:26	Ce.A.S. s.r.l M:	ilano	PAG. 15
History O - PARATIA PAL	I 1200 i=140		
RIASSUNTO DATI RELATIVI	ALLA FASE 11		
sovraccarico	a valle	= 0.0000	kPa
	vraccarico a valle	= 0.0000	m
quota di tag	lio	= 0.0000	m
quota di equ	il. pressioni dell'acqua	= -30.000	m
indicatore c	omportamento acqua	= 0.0000	(1=REMOVE)
opzione aggi	ornamento pressioni acqua	= 0.0000	(1=NO UPD)
accelerazion	e sismica orizz.	= 0.0000	[g]
	ca vert. a monte	= 0.0000	[g]
	ca vert. a valle	= 0.0000	[g]
angolo beta		= 0.0000	[°]
delta/phi a		= 0.0000	
angolo beta		= 0.0000	[°]
delta/phi a		= 0.0000	
opzione dyn.	acqua	= 0.0000	(1=pervious)

Pagina 190 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

	rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev.	= =	0.0000 0.0000 0.0000 0.0000 0.0000	kPa m kPa m
	RIASSUNTO DATI RELATIVI ALLA FASE	12		
WALL LeftW				
	coordinata y		0.0000	m
	quota piano campagna quota del fondo scavo		0.0000 -18.000	m m
	quota del fondo scavo quota della falda		0.99900E+30	
	sovraccarico a monte		10.000	kPa
	quota del sovraccarico a monte		0.0000	m
	depressione falda a valle	=	0.0000	m
	sovraccarico a valle	=	0.0000	kPa
	quota del sovraccarico a valle	=	0.0000	m
	quota di taglio		0.0000	m
	quota di equil. pressioni dell'acqua		-30.000	m
	indicatore comportamento acqua		0.0000	(1=REMOVE)
	opzione aggiornamento pressioni acqua accelerazione sismica orizz.		0.0000	(1=NO UPD)
	accel. sismica vert. a monte		0.0000	[d] [d]
	accel. sismica vert. a walle		0.0000	[d]
	angolo beta a monte		0.0000	[°]
	delta/phi a monte		0.0000	
	angolo beta a valle	=	0.0000	[°]
	delta/phi a valle		0.0000	
	opzione dyn. acqua		0.0000	(1=pervious)
	rapporto pressioni in eccesso Ru	=	0.0000	
	00 Ce.A.S. s.r.l Mil 2010 11:26:26 - PARATIA PALI 1200 i=140	Lanc)	PAG. 16
12 OTTOBRE History 0	2010 11:26:26	Lanc		PAG. 16
12 OTTOBRE History 0	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12			
12 OTTOBRE History 0	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure	=	0.0000	PAG. 16
12 OTTOBRE History 0	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12	= =		kPa
12 OTTOBRE History 0	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure	= = =	0.0000	kPa m
12 OTTOBRE History 0	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure Wood bottom pressure elev.	= = =	0.0000 0.0000 0.0000	kPa m kPa
12 OTTOBRE History 0	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev.	= = =	0.0000 0.0000 0.0000	kPa m kPa
12 OTTOBRE History 0	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE	= = =	0.0000 0.0000 0.0000	kPa m kPa
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE Wall coordinata y	= = = = = 13	0.0000 0.0000 0.0000 0.0000	kPa m kPa
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE dall coordinata y quota piano campagna	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000	kPa m kPa m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE fall coordinata y quota piano campagna quota del fondo scavo	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000	kPa m kPa m m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE Tall coordinata y quota piano campagna quota del fondo scavo quota della falda	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000	kPa m kPa m m m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE Vall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.99900E+30	kPa m kPa m m m m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE dall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.99900E+30 10.000 0.0000	kPa m kPa m m m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE Vall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.099900E+30 10.000 0.0000 0.0000	kPa m kPa m m m m kPa m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE Mall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.99900E+30 10.000 0.0000 0.0000	kPa m kPa m m m m kPa m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE fall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota di taglio	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.099900E+30 10.000 0.0000 0.0000 0.0000 0.0000	kPa m kPa m m m m kPa m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE fall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	kPa m kPa m m m kPa m kPa m kPa m
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE Tall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.99900E+30 10.000 0.0000 0.0000 0.0000 0.0000 0.0000	kPa m kPa m m m m kPa m m kPa m m (1=REMOVE)
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE Tall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.99900E+30 10.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	kPa m kPa m m m m kPa m m kPa m m (1=REMOVE) (1=NO UPD)
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE fall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz.	= = = = = = = = = = = = = = = = = = =	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	kPa m kPa m m m m kPa m kPa m m (1=REMOVE) (1=NO UPD)
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE Tall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua	13	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	kPa m kPa m m m m kPa m m kPa m m (1=REMOVE) (1=NO UPD) [g] [g]
12 OTTOBRE History 0 RIASSUNTO	2010 11:26:26 - PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 12 Wood bottom pressure Wood top pressure elev. Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE fall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte	13	0.0000 0.0000 0.0000 0.0000 0.0000 -18.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	kPa m kPa m m m m kPa m kPa m m (1=REMOVE) (1=NO UPD)

Eurolink S.C.p.A. Pagina 191 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE	= 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000	[°] (1=pervious) kPa m kPa m
WALL LeftWall		
coordinata y	= 0.0000	m
quota piano campagna	= 0.0000	m
quota del fondo scavo quota della falda	= -20.000 = -0.99900E + 30	m m
sovraccarico a monte	= 10.000	kPa
quota del sovraccarico a monte		m
quota del povidecario a monec	0.000	111
PARATIE 7.00 Ce.A.S. s.r.l 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140	Milano	PAG. 17
RIASSUNTO DATI RELATIVI ALLA FASE 14		
depressione falda a valle	= 0.0000	m
sovraccarico a valle	= 0.0000	kPa
quota del sovraccarico a valle	= 0.0000	m
quota di taglio	= 0.0000	m
quota di equil. pressioni dell'acqua		M (1-DEMOTE)
indicatore comportamento acqua opzione aggiornamento pressioni acqu	= 0.0000 $= 0.0000$	(1=REMOVE)
accelerazione sismica orizz.	= 0.0000	(1=NO UPD) [g]
accel. sismica vert. a monte	= 0.0000	[d]
accel. sismica vert. a walle	= 0.0000	[d]
angolo beta a monte	= 0.0000	[°]
delta/phi a monte	= 0.0000	
angolo beta a valle	= 0.0000	[°]
delta/phi a valle	= 0.0000	
opzione dyn. acqua	= 0.0000	(1=pervious)
rapporto pressioni in eccesso Ru	= 0.0000	
Wood bottom pressure	= 0.0000	kPa
Wood top pressure	= 0.0000	m
Wood bottom pressure elev.	= 0.0000	kPa
Wood top pressure elev.	= 0.0000	m
RIASSUNTO DATI RELATIVI ALLA FASE	15	
WALL LeftWall		
coordinata y	= 0.0000	m
quota piano campagna	= 0.0000	m
quota del fondo scavo	= -20.000	m
quota della falda	=-0.99900E+30	m
sovraccarico a monte	= 0.0000	kPa
quota del sovraccarico a monte	= 0.0000	m
depressione falda a valle	= 0.0000	m
sovraccarico a valle	= 0.0000	kPa
quota del sovraccarico a valle	= 0.0000	m
quota di taglio	= 0.0000	m
quota di equil. pressioni dell'acqua		m
indicatore comportamento acqua	= 0.0000	(1=REMOVE)

Pagina 192 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

opzione aggiornamento pressioni acqua	=	0.0000	(1=NO UPD)
accelerazione sismica orizz.	=	0.0000	[g]
accel. sismica vert. a monte	=	0.0000	[g]
accel. sismica vert. a valle	=	0.0000	[g]
angolo beta a monte	=	0.0000	[°]
delta/phi a monte	=	0.0000	
angolo beta a valle	=	0.0000	[°]
delta/phi a valle	=	0.0000	
opzione dyn. acqua	=	0.0000	(1=pervious)

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 18

12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI RELATIVI ALLA FASE 15

rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000 kP
Wood top pressure = 0.0000 m
Wood bottom pressure elev. = 0.0000 kP
Wood top pressure elev. = 0.0000 m kPa kPa

PARATIE 7.00 PAG. 19 Ce.A.S. s.r.l. - Milano 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ELEMENTI

+	•	UNTO E	ELEMENTI S		++
Name	Wall	Z1	Z2	Flag	
i		m	m		deg
UHLeft	LeftWall	0.	-30.00	UPHILL	0.
DHLeft	•	0.	-30.00	DOWNHILL	180.0

+	+ RIASSUI		LEMENTI BI	'	++
	 Wall 				
			m		
Beam	LeftWall	0.	-30.00		0.9555

Eurolink S.C.p.A. Pagina 193 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 20 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

İ	' +	RIASSUN'		MENTI WIRE		·
Name	Wall	Zeta		A/L	Pinit	Angle
İ	 	m m			kN/m	l deg
t1	•	-2.000		0.1045E-04	140.0	
t2	•	-5.000	_	0.1460E-04	160.0	
t3	•	-8.000	_	0.1986E-04	160.0	10.00
t4	LeftWall	-11.50	I _ I	0.2128E-04	200.0	10.00
t5	LeftWall	-14.50	_	0.2482E-04	200.0	10.00
'	•	•		0.2708E-04	'	

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 21 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI VARI

++ M	ATERIALI
Name	YOUNG MODULUS
·	kPa
cls_	3.144E+007
Acci	2.1E+008

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 22 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

DISTRIBUTED LOAD SUMMARY

Wall From To Z1 P1 Z2 P2 step step Left 15 15 -20.000 40.000 0.0000 40.000

UNITS FOR Z1 , Z2 =m UNITS FOR P1 , P2 =kPa

Pagina 194 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

Ce.A.S. s.r.l. - Milano PARATIE 7.00 PAG. 23 12 OTTOBRE 2010 11:26:26

History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ANALISI INCREMENTALE

FASE	Ν.	DI	ITERAZIONI	CONVERGENZA
1			2	SI
2			4	SI
3			5	SI
4			5	SI
5			4	SI
6			5	SI
7			4	SI
8			6	SI
9			4	SI
10			7	SI
11			4	SI
12			8	SI
13			3	SI
14			7	SI
15			4	SI

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 24

12 OTTOBRE 2010 11:26:26

History 0 - PARATIA PALI 1200 i=140

MASSIMI SPOSTAMENTI LATERALI *TUTTI I PASSI* * PARETE LeftWall* * I PASSI NON EQUILIBRATI SONO ESCLUSI *

* NOTA: LE QUOTE ESPRESSE IN m E GLI SPOSTAMENTI IN m

NODO	~	SPOSTAMENTO MASSIMO		PARETE LeftWall
1	0.0000	0.29366E-01		
2	-0.30000	0.29961E-01		
3	-0.60000	0.30556E-01		
4	-0.90000	0.31151E-01	15	
5	-1.2000	0.31747E-01	15	
6	-1.5000	0.32344E-01	15	
7	-1.8000	0.32943E-01	15	
8	-2.0000	0.33344E-01	15	
9	-2.3000	0.33947E-01	15	
10	-2.6000	0.34552E-01	15	
11	-2.9000	0.35158E-01	15	
12	-3.2000	0.35764E-01	15	
13	-3.5000	0.36369E-01	15	
14	-3.8000	0.36972E-01	15	
15	-4.1000	0.37573E-01	15	
16	-4.4000	0.38172E-01	15	
17	-4.7000	0.38768E-01	15	
18	-5.0000	0.39363E-01	15	
19	-5.3000	0.39957E-01	15	
20	-5.6000	0.40547E-01	15	
21	-5.9000	0.41131E-01	15	
22	-6.2000	0.41707E-01	15	
23	-6.5000	0.42275E-01	15	
24	-6.8000	0.42832E-01	15	
25	-7.1000	0.43377E-01	15	
26	-7.4000	0.43911E-01	15	
27	-7.7000	0.44431E-01		
28	-8.0000	0.44939E-01	15	

Eurolink S.C.p.A. Pagina 195 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

29	-8.3000	0.45435E-01	15
30	-8.6000	0.45914E-01	15
31	-8.9000	0.46375E-01	15
32	-9.2000	0.46814E-01	15
33	-9.5000	0.47230E-01	15
34	-9.8000	0.47620E-01	15
35	-10.100	0.47984E-01	15
36	-10.400	0.48319E-01	15
37	-10.700	0.48625E-01	15
38	-11.000	0.48902E-01	15

PARATIE 7.00 Ce.A.S. s.r.l. - Milano 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140 PAG. 25

History 0	- PARATIA PALI	1200 i=140				
NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE	LeftWall	
39	-11.300	0.49150E-01	15			
40	-11.500	0.49299E-01	15			
41	-11.800	0.49498E-01	15			
42	-12.100	0.49666E-01	15			
43	-12.400	0.49800E-01	15			
44	-12.700	0.49896E-01	15			
45	-13.000	0.49954E-01	15			
46	-13.300	0.49970E-01	15			
47	-13.600	0.49946E-01	15			
48	-13.900	0.49879E-01	15			
49	-14.200	0.49769E-01	15			
50	-14.500	0.49618E-01	15			
51	-14.800	0.49425E-01	15			
52	-15.100	0.49187E-01	15			
53	-15.400	0.48902E-01	15			
54	-15.700	0.48568E-01	15			
55	-16.000	0.48183E-01	15			
56	-16.300	0.47746E-01	15			
57	-16.600	0.47257E-01	15			
58	-16.900	0.46715E-01	15			
59	-17.200	0.46121E-01	15			
60	-17.500	0.45477E-01	15			
61	-17.800	0.44782E-01	15			
62	-18.100	0.44037E-01	15			
63	-18.400	0.43241E-01	15			
64	-18.700	0.42393E-01	15			
65	-19.000	0.41494E-01	15			
66	-19.300	0.40544E-01	15			
67	-19.600	0.39546E-01	15			
68	-19.900	0.38501E-01	15			
69	-20.200	0.37412E-01	15			
70	-20.500	0.36283E-01	15			
71	-20.800	0.35118E-01	15			
72	-21.100	0.33920E-01	15			
73	-21.400	0.32695E-01	15			
74	-21.700	0.31446E-01	15			
75	-22.000	0.30180E-01	15			
76	-22.300	0.28899E-01	15			
77	-22.600	0.27610E-01	15			
78	-22.900	0.26316E-01	15			
79	-23.200	0.25023E-01	15			
80	-23.500	0.23734E-01	15			
81	-23.800	0.22453E-01	15			
82	-24.100	0.21184E-01	15			
83	-24.400	0.19929E-01	15			
84	-24.700	0.18691E-01	15			

Pagina 196 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 26
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140

NODO QUOTA ZETA SPOSTAMENTO MASSIMO FASE PARETE LeftWall

	~		
85	-25.000	0.17472E-01	15
86	-25.300	0.16273E-01	15
87	-25.600	0.15094E-01	15
88	-25.900	0.13936E-01	15
89	-26.200	0.12799E-01	15
90	-26.500	0.11680E-01	15
91	-26.800	0.10581E-01	15
92	-27.100	0.94982E-02	15
93	-27.400	0.84311E-02	15
94	-27.700	0.73776E-02	15
95	-28.000	0.63359E-02	15
96	-28.300	0.53040E-02	15
97	-28.600	0.46132E-02	14
98	-28.900	0.40110E-02	14
99	-29.200	0.34109E-02	14
100	-29.500	0.30151E-02	13
101	-29.800	0.28931E-02	11
102	-30.000	0.28182E-02	11

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 27 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

INVILUPPO AZIONI INTERNE NEGLI ELEMENTI DI PARETE (PER UNITA' DI PROFONDITA')

* PARETE LeftWall GRUPPO Beam*

STEP 1 - 15

* I PASSI NON EQUILIBRATI SONO ESCLUSI *

Nella tabella si stampano i seguenti risultati: MOMENTO SX = Momento che tende le fibre sulla faccia sinistra [kN*m/m]

MOMENTO DX = Momento che tende le fibre sulla faccia destra [kN*m/m]
TAGLIO = forza tagliante (valore assoluto, priva di segno) [kN/m]

BEAM EL.	ESTREMO	OUOTA	MOMENTO S	K MOMENTO DX	TAGLIO
1	A	õ.	0.1091E-09	0.9168E-09	6.015
	В	-0.3000	1.804	0.	6.015
2	A	-0.3000	1.804	0.	18.04
	В	-0.6000	7.218	0.6821E-10	18.04
3	A	-0.6000	7.218	0.7185E-10	30.07
	В	-0.9000	16.24	0.	30.07
4	A	-0.9000	16.24	0.	42.26
	В	-1.200	28.92	0.	42.26
5	A	-1.200	28.92	0.	55.13
	В	-1.500	45.46	0.	55.13
6	A	-1.500	45.46	0.	69.60
	В	-1.800	66.06	0.	69.60
7	A	-1.800	66.06	0.	81.62
	В	-2.000	82.17	0.	81.62
8	A	-2.000	82.17	0.	115.1
	В	-2.300	60.31	0.	115.1
9	A	-2.300	60.31	0.	99.69
	В	-2.600	50.88	24.99	99.69
10	A	-2.600	50.88	24.99	83.63
	В	-2.900	44.23	47.33	83.63
11	A	-2.900	44.23	47.33	66.89

Eurolink S.C.p.A. Pagina 197 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev Data
F0 20/06/2011

	В	-3.200	39.57	66.93	66.89
12	A	-3.200	39.57	66.93	56.45
	В	-3.500	36.79	83.86	56.45
13	A	-3.500	36.79	83.86	47.86
	В	-3.800	37.46	98.22	47.86
14	A	-3.800	37.46	98.22	39.60
	В	-4.100	42.74	110.1	39.60
15	A	-4.100	42.74	110.1	31.36
	В	-4.400	47.51	119.5	31.36
16	A	-4.400	47.51	119.5	40.44
	В	-4.700	51.71	126.2	40.44
17	A	-4.700	51.71	126.2	55.57
	В	-5.000	58.03	130.1	55.57

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 28 12 OTTOBRE 2010 11:26:26

History 0 - PARATIA PALI 1200 i=140

BEAM	EL.	ESTREMO	QUOTA	MOMENTO S	X MOMENTO DX	TAGLIO
	18	A	-5.000	58.03	130.1	203.1
		В	-5.300	58.32	130.9	203.1
	19	A	-5.300	58.32	130.9	180.9
		В	-5.600	60.71	146.0	180.9
	20	A	-5.600	60.71	146.0	158.0
		В	-5.900	62.51	193.4	158.0
	21	A	-5.900	62.51	193.4	134.4
		В	-6.200	63.70	233.7	134.4
	22	A	-6.200	63.70	233.7	110.1
		В	-6.500	64.33	266.8	110.1
	23	A	-6.500	64.33	266.8	85.18
		В	-6.800	64.40	292.3	85.18
	24	A	-6.800	64.40	292.3	69.57
		В	-7.100	63.98	310.2	69.57
	25	A	-7.100	63.98	310.2	54.80
		В	-7.400	63.10	320.2	54.80
	26	A	-7.400	63.10	320.2	40.05
		В	-7.700	61.81	322.0	40.05
	27	A	-7.700	61.81	322.0	60.68
		В	-8.000	60.15	315.6	60.68
	28	A	-8.000	60.15	315.6	281.8
		В	-8.300	58.19	400.1	281.8
	29	A	-8.300	58.19	400.1	252.7
		В	-8.600	55.97	476.0	252.7
	30	A	-8.600	55.97	476.0	223.0
		В	-8.900	53.53	542.9	223.0
	31	A	-8.900	53.53	542.9	192.6
		В	-9.200	50.91	600.6	192.6
	32	A	-9.200	50.91	600.6	161.5
		В	-9.500	48.17	649.1	161.5
	33	A	-9.500	48.17	649.1	129.7
		В	-9.800	45.34	688.0	129.7
	34	A	-9.800	45.34	688.0	97.20
		В	-10.10	42.45	717.1	97.20
	35	A	-10.10	42.45	717.1	70.50
		В	-10.40	39.55	736.4	70.50
	36	A	-10.40	39.55	736.4	58.09
		В	-10.70	36.65	745.4	58.09
	37	A	-10.70	36.65	745.4	85.88
		В	-11.00	33.79	744.1	85.88
	38	A	-11.00	33.79	744.1	114.3
		В	-11.30	30.99	732.3	114.3
	39	A	-11.30	30.99	732.3	138.6
		В	-11.50	29.17	718.4	138.6

Pagina 198 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

-11.50 29.17 -11.80 26.52 40 Α 718.4 284.5 284.5 В 803.7

PAG. 29 PARATIE 7.00 Ce.A.S. s.r.l. - Milano

12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

BEAM	EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO
	41	A	-11.80	26.52	803.7	247.5
		В	-12.10	23.97	878.0	247.5
	42	A	-12.10	23.97	878.0	209.8
		В	-12.40	21.54	940.9	209.8
	43	A	-12.40	21.54	940.9	171.4
	10	В	-12.70	19.24	992.3	171.4
	44	A	-12.70	19.24	992.3	132.3
		В	-13.00	17.21	1032.	132.3
	45	A	-13.00	17.21	1032.	127.8
		В	-13.30	16.87	1060.	127.8
	46	A	-13.30	16.87	1060.	121.3
		В	-13.60	16.41	1075.	121.3
	47	A	-13.60	16.41	1075.	114.8
		В	-13.90	15.84	1079.	114.8
	48	A	-13.90	15.84	1079.	136.1
		В	-14.20	15.18	1069.	136.1
	49	A	-14.20	15.18	1069.	171.6
		В	-14.50	14.45	1047.	171.6
	50	A	-14.50	14.45	1047.	272.6
		В	-14.80	13.68	1129.	272.6
	51	A	-14.80	13.68	1129.	228.7
		В	-15.10	12.87	1198.	228.7
	52	A	-15.10	12.87	1198.	184.1
		В	-15.40	13.06	1253.	184.1
	53	A	-15.40	13.06	1253.	186.9
		В	-15.70	13.49	1295.	186.9
	54	A	-15.70	13.49	1295.	197.6
		В	-16.00	13.80	1323.	197.6
	55	A	-16.00	13.80	1323.	201.7
		В	-16.30	13.99	1336.	201.7
	56	A	-16.30	13.99	1336.	199.3
		В	-16.60	16.46	1336.	199.3
	57	A	-16.60	16.46	1336.	190.3
		В	-16.90	21.49	1321.	190.3
	58	A	-16.90	21.49	1321.	176.5
		В	-17.20	35.96	1292.	176.5
	59	A	-17.20	35.96	1292.	213.4
		В	-17.50	48.90	1248.	213.4
	60	A	-17.50	48.90	1248.	171.8
		В	-17.80	60.39	1286.	171.8
	61	A	-17.80	60.39	1286.	210.0
	60	В	-18.10	70.49	1308.	210.0
	62	A	-18.10	70.49	1308.	240.2
	60	В	-18.40	79.25	1315.	240.2
	63	A	-18.40	79.25	1315.	263.9
		В	-18.70	86.76	1307.	263.9

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 30

12 OTTOBRE 2010 11:26:26

History 0 - PARATIA PALI 1200 i=140

BEAM EL. ESTREMO QUOTA MOMENTO SX MOMENTO DX TAGLIO 64 A -18.70 86.76 1307. 281.1

Eurolink S.C.p.A. Pagina 199 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

	В	-19.00	93.07	1283.	281.1
65	A	-19.00	93.07	1283.	291.8
	В	-19.30	98.24	1242.	291.8
66	A	-19.30	98.24	1242.	295.9
	В	-19.60	102.3	1186.	295.9
67	A	-19.60	102.3	1186.	293.5
	В	-19.90	109.2	1112.	293.5
68	A	-19.90	109.2	1112.	295.1
	В	-20.20	127.5	1024.	295.1
69	A	-20.20	127.5	1024.	328.7
	В	-20.50	143.1	925.3	328.7
70	A	-20.50	143.1	925.3	356.1
	В	-20.80	156.2	818.5	356.1
71	A	-20.80	156.2	818.5	377.4
	В	-21.10	166.9	705.2	377.4
72	A	-21.10	166.9	705.2	392.6
	В	-21.40	175.4	587.5	392.6
73	A	-21.40	175.4	587.5	401.5
	В	-21.70	181.7	467.0	401.5
74	A	-21.70	181.7	467.0	404.4
	В	-22.00	186.1	355.9	404.4
75	A	-22.00	186.1	355.9	401.0
	В	-22.30	193.8	260.4	401.0
76	A	-22.30	193.8	260.4	391.5
	В	-22.60	223.6	169.0	391.5
77	A	-22.60	223.6	169.0	375.9
	В	-22.90	247.4	83.42	375.9
78	A	-22.90	247.4	83.42	354.1
	В	-23.20	265.6	5.793	354.1
79	A	-23.20	265.6	5.793	326.1
	В	-23.50	278.7	0.	326.1
80	A	-23.50	278.7	0.	292.0
	В	-23.80	296.5	0.	292.0
81	A	-23.80	296.5	0.	251.7
	В	-24.10	372.0	0.	251.7
82	A	-24.10	372.0	0.	205.3
	В	-24.40	433.6	0.	205.3
83	A	-24.40	433.6	0.	152.7
	В	-24.70	479.4	0.	152.7
84	A	-24.70	479.4	0.	98.88
	В	-25.00	509.0	0.	98.88
85	A	-25.00	509.0	0.	50.43
	В	-25.30	524.2	0.	50.43
86	A	-25.30	524.2	0.	42.73
	В	-25.60	526.3	0.	42.73

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 31 12 OTTOBRE 2010 11:26:26

History 0 - PARATIA PALI 1200 i=140

MOMENTO SX MOMENTO DX TAGLIO BEAM EL. ESTREMO QUOTA

 526.3
 0.

 517.0
 0.

 517.0
 0.

 497.6
 0.

 497.6
 0.

 469.7
 0.

 434.6
 0.

 393.5
 0.

 393.5
 0.

 347.9
 0.

 298.9
 0.

 -25.60 526.3 0. 50.55 Α -25.90 50.55 В 88 -25.90 64.46 -26.20 64.46 -26.20 93.11 Α 93.11 В -26.50 90 -26.50 117.2 Α В -26.80 117.2 Α -26.80 136.8 -27.10 136.8 В -27.10 92 Α 152.1 152.1 -27.40 В 93 Α -27.40 163.3 -27.70 163.3

Pagina 200 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

94	A	-27.70	298.9	0.	170.3
	В	-28.00	247.8	0.	170.3
95	A	-28.00	247.8	0.	173.2
	В	-28.30	195.8	0.	173.2
96	A	-28.30	195.8	0.	170.6
	В	-28.60	144.7	0.	170.6
97	A	-28.60	144.7	0.	158.9
	В	-28.90	96.97	0.	158.9
98	A	-28.90	96.97	0.	137.6
	В	-29.20	55.68	0.	137.6
99	A	-29.20	55.68	0.	106.9
	В	-29.50	23.62	0.	106.9
100	A	-29.50	23.62	0.	65.09
	В	-29.80	4.092	0.	65.09
101	A	-29.80	4.092	0.	20.46
	В	-30.00	0.2619E-09	0.1307E-10	20.46

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 32 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140 PARATIE 7.00

FORZE NEGLI ANCORAGGI ATTIVI (PER UNITA' DI PROFONDITA')

TIRANTE	t1	1 PARETE LeftWall QUOTA -2.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 FORZA 140.00 kN/m FASE 4 FORZA 140.44 kN/m FASE 5 FORZA 139.17 kN/m FASE 6 FORZA 139.39 kN/m FASE 7 FORZA 139.07 kN/m FASE 8 FORZA 139.13 kN/m
		FASE 9 FORZA 139.27 kN/m FASE 10 FORZA 138.90 kN/m
		FASE 11 FORZA 139.17 kN/m
		FASE 12 FORZA 138.34 kN/m
		FASE 13 FORZA 138.50 kN/m
		FASE 14 FORZA 138.01 kN/m
		FASE 15 FORZA 211.07 kN/m
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000
		FASE 1 inattivo
		FASE 2 inattivo
		FASE 3 inattivo
		FASE 4 inattivo
		FASE 5 FORZA 160.00 kN/m
		FASE 6 FORZA 162.47 kN/m
		FASE 7 FORZA 161.04 kN/m
		FASE 8 FORZA 166.80 kN/m
		FASE 9 FORZA 165.98 kN/m
		FASE 10 FORZA 171.33 kN/m
		FASE 11 FORZA 171.21 kN/m
		FASE 12 FORZA 176.70 kN/m
		FASE 13 FORZA 176.85 kN/m
		FASE 14 FORZA 179.54 kN/m
		FASE 15 FORZA 276.78 kN/m
TIRANTE	t3	1 PARETE LeftWall QUOTA -8.0000
		FASE 1 inattivo
		FASE 2 inattivo
		FASE 3 inattivo
		FASE 4 inattivo
		FASE 5 inattivo

Eurolink S.C.p.A. Pagina 201 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev Data
F0 20/06/2011

		FASE 6 inattivo FASE 7 FORZA 160.00 FASE 8 FORZA 174.88 FASE 9 FORZA 172.23	kN/m
	00 2010 11:26:26 - PARATIA PALI 1200	Ce.A.S. s.r.l Milano i=140	PAG. 33
		FASE 10 FORZA 187.88 FASE 11 FORZA 186.71 FASE 12 FORZA 203.89 FASE 13 FORZA 203.79 FASE 14 FORZA 212.83 FASE 15 FORZA 336.76	kN/m kN/m
TIRANTE	t4	PARETE LeftWall FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 8 inattivo FASE 9 FORZA 200.00 FASE 10 FORZA 226.35 FASE 11 FORZA 223.31 FASE 12 FORZA 254.65 FASE 13 FORZA 271.65 FASE 14 FORZA 390.21	kN/m kN/m kN/m kN/m kN/m kN/m
TIRANTE	t5	PARETE LeftWall FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 8 inattivo FASE 9 inattivo FASE 10 inattivo FASE 11 FORZA 200.00 FASE 12 FORZA 247.73 FASE 13 FORZA 245.02 FASE 14 FORZA 395.20	kN/m kN/m kN/m kN/m
TIRANTE	t6	PARETE LeftWall FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo	QUOTA -17.500
		FASE 4 inattivo FASE 5 inattivo	

Pagina 202 di 445 Eurolink S.C.p.A.

-9.800

12 OTTOBRE 2010 11:26:26

History 0 - PARATIA PALI 1200 i=140

35 -10.10

34

PARATTE 7.00

85.52

87.93

63.62

65.38

FASE 9 inattivo

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
FASE 10 inattivo
                            FASE 11 inattivo
                            FASE 12 inattivo
                            FASE 13 FORZA 180.00
                                                      kN/m
                            FASE 14 FORZA 222./6
                                                      kN/m
                                                      kN/m
PARATIE 7.00
                           Ce.A.S. s.r.l. - Milano
                                                               PAG. 35
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
               INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO
                    * PARETE LeftWall GRUPPO UHLeft*
                          *STEP
                                  1 - 15*
                * I PASSI NON EQUILIBRATI SONO ESCLUSI *
          Nella tabella si stampano i seguenti risultati:
          SIGMA-H = massimo sforzo orizzontale efficace [kPa
          TAGLIO = massimo sforzo di taglio
          PR. ACQUA =massima pressione interstiziale
                                                     [kPa
          GRAD. MAX =massimo gradiente idraulico
SOIL EL.
         QUOTA
                    SIGMA-H
                              TAGLIO PR. ACQUA GRAD. MAX
                                                  0.
           0.
                  13.50
                              5.000
                                       0.
      2 -0.3000
                    12.33
                              7.850
                                          0.
                                                    0.
      3 -0.6000
                   50.81
                            14.71
                                          0.
                                                    Ο.
                   55.12
      4 -0.9000
                            14.01
                                         0.
                                                    0.
      5 -1.200
                   54.77
                              13.21
                                          0.
                                                    0.
      6 -1.500
                  52.22
                             14.97
                                         0.
                   48.06
                                         0.
        -1.800
                              16.73
                                                    0.
      8 -2.000
                                                    0.
                   45.61
                              17.90
                                          0.
      9 -2.300
                   46.43
                             19.66
                                         0.
                                                    0.
     10 -2.600
                   47.25
                                          0.
                              21.42
     11 -2.900
                   47.63
                             23.18
                                         0.
                                                    0.
                              24.94
     12 -3.200
                   47.66
                                         0.
                                                    0.
                                                    0.
     13 -3.500
                   47.42
                              26.69
                                          0.
     14 -3.800
                   46.96
                              28.45
                                         0.
     15
        -4.100
                   47.16
                              30.21
                                          0.
                                                    0.
     16 -4.400
                              31.97
                                         0.
                   48.85
                                                    0.
     17 -4.700
                                         0.
                   50.42
                              33.73
                                                    0.
     18 -5.000
                   51.88
                              35.49
                                          0.
                                                    0.
                              37.25
     19 -5.300
                   53.24
                                         0.
                                                    0.
     20 -5.600
                   54.50
                              39.00
                                          0.
                                                    0.
        -5.900
     21
                   55.71
                              40.76
                                          0.
                                                    0.
     22 -6.200
                  57.49
                              42.52
                                         0.
                                                    0.
     23
        -6.500
                   59.63
                              44.28
                                          0.
     24 -6.800
                   62.03
                              46.04
                                         0.
                                                    0.
     25 -7.100
                              47.80
                   64.37
                                         Ο.
                                                    Ο.
        -7.400
     26
                   66.62
                              49.55
                                          0.
                                                    0.
                                                    0.
     27
        -7.700
                   68.76
                              51.31
                                         0.
     28
        -8.000
                    70.80
                              53.07
                                          0.
                                                    0.
     29 -8.300
                   73.09
                                         0.
                              54.83
                                                    0.
     30 -8.600
                   75.69
                              56.59
                                         0.
                                                    0.
     31
        -8.900
                    78.22
                              58.35
                                          0.
                                                    0.
        -9.200
                              60.11
     32
                   80.71
                                         0.
     33
        -9.500
                   83.14
                              61.86
                                          0.
                                                    0.
```

Eurolink S.C.p.A. Pagina 203 di 445

0.

0.

Ce.A.S. s.r.l. - Milano

0.

0.

PAG. 36

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX
36	-10.40	90.32	67.14	0.	0.
37	-10.70	92.62	68.90	0.	0.
38	-11.00	94.83	70.66	0.	0.
39	-11.30	96.94	72.41	0.	0.
40	-11.50	98.28	73.59	0.	0.
41	-11.80	100.2	75.35	0.	0.
42	-12.10	102.4	77.10	0.	0.
43	-12.40	104.9	78.86	0.	0.
44	-12.70	107.2	80.62	0.	0.
45	-13.00	109.5	82.38	0.	0.
46	-13.30	111.8	84.14	0.	0.
47	-13.60	114.1	85.90	0.	0.
48	-13.90	116.3	87.65	0.	0.
49	-14.20	118.3	89.41	0.	0.
50	-14.50	120.3	91.17	0.	0.
51	-14.80	122.2	92.93	0.	0.
52	-15.10	123.9	94.69	0.	0.
53	-15.40	125.7	96.45	0.	0.
54	-15.70	128.0	98.20	0.	0.
55	-16.00	130.2	99.96	0.	0.
56	-16.30	132.4	101.7	0.	0.
57	-16.60	134.5	103.5	0.	0.
58	-16.90	136.5	105.2	0.	0.
59	-17.20	138.5	107.0	0.	0.
60	-17.50	140.5	108.8	0.	0.
61	-17.80	142.3	110.5	0.	0.
62	-18.10	144.1	112.3	0.	0.
63	-18.40	145.8	114.0	0.	0.
64	-18.70	147.4	115.8	0.	0.
65	-19.00	148.9	117.5	0.	0.
66	-19.30	150.4	119.3	0.	0.
67	-19.60	151.9	121.1	0.	0.
68	-19.90	153.4	122.8	0.	0.
69	-20.20	155.0	124.6	0.	0.
70	-20.50	156.7	126.3	0.	0.
71	-20.80	158.3	128.1	0.	0.
72	-21.10	160.0	129.9	0.	0.
73	-21.40	161.7	131.6	0.	0.
74	-21.70	163.4	133.4	0.	0.
75	-22.00	165.1	135.1	0.	0.
76	-22.30	166.8	136.9	0.	0.
77	-22.60	168.9	138.6	0.	0.
78	-22.90	171.1	140.4	0.	0.
79	-23.20	173.3	142.2	0.	0.
80	-23.50	175.5	143.9	0.	0.
81	-23.80	177.6	145.7	0.	0.

	RE 2010 1			c.l Milano)	PAG.	37
2 -							
SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX		
82	-24.10	179.8	147.4	0.	0.		
83	-24.40	182.0	149.2	0.	0.		
84	-24.70	184.2	151.0	0.	0.		
85	-25.00	186.4	152.7	0.	0.		
86	-25.30	188.6	154.5	0.	0.		
87	-25.60	190.8	156.2	0.	0.		
88	-25.90	193.0	158.0	0.	0.		

Pagina 204 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Rev Codice documento Data SS0328_F0.doc_F0 20/06/2011 F0

```
89 -26.20
                         195.2 159.8

197.4 161.5

199.5 163.3

201.7 165.0

203.9 166.8

206.1 168.5

208.3 170.3

210.5 172.1
                              195.2
                                                   159.8
                                                                           0.
                                                                                              0.
  90 -26.50
                                                                          0.
                                                                                              0.
 91 -26.80
92 -27.10
                                                                         0.
                                                                                              0.
                                                                          0.
                                                                                              0.
  93 -27.40
                                                                         0.
 94 -27.70
95 -28.00
                                                                         0.
                                                                                              0.
                                                                                              0.
  96 -28.30
                                                                        0.
                                                                                            0.
97 -28.60 218.2 173.8

98 -28.90 229.3 175.6

99 -29.20 241.0 177.3

100 -29.50 259.0 179.1

101 -29.80 280.7 180.9

102 -30.00 295.7 182.0
                                                                        0.
                                                                                              0.
                                                                                             0.
                                                                        0.
0.
                                                                                            0.
                                                                                              0.
                                                                        0.
                                                                        0.
                                                                                              0.
```

```
PARATIE 7.00
                            Ce.A.S. s.r.l. - Milano
                                                                PAG. 38
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140
```

INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO * PARETE LeftWall GRUPPO DHLeft* *STEP 1 - 15*

* I PASSI NON EQUILIBRATI SONO ESCLUSI * Nella tabella si stampano i seguenti risultati: SIGMA-H = massimo sforzo orizzontale efficace [kPa TAGLIO = massimo sforzo di taglio [kPa

PR. ACQUA =massima pressione interstiziale GRAD. MAX =massimo gradiente idraulico

SOIL	EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX
	1	0.	3.843	3.078	0.	0.
	2	-0.3000	6.034	4.833	0.	0.
	3	-0.6000	8.225	6.588	0.	0.
	4	-0.9000	10.42	8.342	0.	0.
	5	-1.200	12.61	10.10	0.	0.
	6	-1.500	14.80	11.85	0.	0.
	7	-1.800	16.99	13.61	0.	0.
	8	-2.000	18.45	14.78	0.	0.
	9	-2.300	20.64	16.53	0.	0.
	10	-2.600	22.83	18.29	0.	0.
	11	-2.900	25.02	20.04	0.	0.
	12	-3.200	27.21	21.79	0.	0.
	13	-3.500	29.40	23.55	0.	0.
	14	-3.800	31.59	25.30	0.	0.
	15	-4.100	33.78	27.06	0.	0.
	16	-4.400	36.03	28.81	0.	0.
	17	-4.700	38.45	30.57	0.	0.
	18	-5.000	40.75	32.32	0.	0.
	19	-5.300	42.96	34.08	0.	0.
	20	-5.600	45.09	35.83	0.	0.
	21	-5.900	47.15	37.59	0.	0.
	22	-6.200	49.17	39.34	0.	0.
	23	-6.500	51.31	41.10	0.	0.
	24	-6.800	53.50	42.85	0.	0.
	25	-7.100	55.69	44.60	0.	0.
	26	-7.400	57.88	46.36	0.	0.
	27	-7.700	60.07	48.11	0.	0.
	28	-8.000	62.26	49.87	0.	0.
	29	-8.300	64.45	51.62	0.	0.
	30	-8.600	66.64	53.38	0.	0.
	31	-8.900	68.84	55.13	0.	0.
	32	-9.200	71.03	56.89	0.	0.

Eurolink S.C.p.A. Pagina 205 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

33 -9.500 73.22 58.64 34 -9.800 75.41 60.40 35 -10.10 77.60 62.15 0. 0. 0. 0. 0. 0.

Ce.A.S. s.r.l. - Milano PAG. 39 PARATIE 7.00

12 OTTOBRE 2010 11:26:26

History 0 - PARATIA PALI 1200 i=140

SOIL	EL.	QUOTA	SIGMA-H	TAGLIO	PR.	ACQUA	GRAD.	MAX
	36	-10.40	79.79	63.91		0.	0.	
	37	-10.70	81.98	65.66		0.	0.	
	38	-11.00	84.17	67.41		0.	0.	
	39	-11.30	86.36	69.17		0.	0.	
	40	-11.50	87.82	70.34		0.	0.	
	41	-11.80	90.01	72.09		0.	0.	
	42	-12.10	92.20	73.85		0.	0.	
	43	-12.40	94.39	75.60		0.	0.	
	44	-12.70	96.64	77.36		0.	0.	
	45	-13.00	100.4	79.11		0.	0.	
	46	-13.30	115.9	80.87		0.	0.	
	47	-13.60	118.3	82.62		0.	0.	
	48	-13.90	120.5	84.38		0.	0.	
	49	-14.20	122.7	86.13		0.	0.	
	50	-14.50	124.7	87.89		0.	0.	
	51	-14.80	126.6	89.64		0.	0.	
	52	-15.10	128.5	91.39		0.	0.	
	53	-15.40	130.2	93.15		0.	0.	
	54	-15.70	131.9	94.90		0.	0.	
	55	-16.00	133.6	96.66		0.	0.	
	56	-16.30	135.1	98.41		0.	0.	
	57	-16.60	148.3	100.2		0.	0.	
	58	-16.90	166.7	101.9		0.	0.	
	59	-17.20	167.8	103.7		0.	0.	
	60	-17.50	168.7	105.4		0.	0.	
	61	-17.80	169.5	107.2		0.	0.	
	62	-18.10	170.3	108.9		0.	0.	
	63	-18.40	171.0	110.7		0.	0.	
	64	-18.70	171.6	112.5		0.	0.	
	65	-19.00	172.2	114.2		0.	0.	
	66	-19.30	172.8	116.0		0.	0.	
	67	-19.60	173.3	117.7		0.	0.	
	68	-19.90	173.9	119.5		0.	0.	
	69	-20.20	196.2	121.2		0.	0.	
	70	-20.50	220.2	123.0		0.	0.	
	71	-20.80	242.6	124.7		0.	0.	
	72	-21.10	240.2	126.5		0.	0.	
	73	-21.40	237.8	128.2		0.	0.	
	74	-21.70	235.4	130.0		0.	0.	
	75 76	-22.00	233.0	131.8		0.	0.	
	76 77	-22.30	230.6	133.5		0.	0.	
	77	-22.60	228.3	135.3		0.	0.	
	78 79	-22.90 -23.20	252.1 276.1	137.0 138.8		0.	0.	
	80	-23.20 -23.50	295.8	140.5		0.	0.	
	81	-23.30	308.8	140.3		0.	0.	
	01	23.00	300.0	174.0		٠.	٥.	

Ce.A.S. s.r.l. - Milano PAG. 40 PARATIE 7.00

12 OTTOBRE 2010 11:26:26

History 0 - PARATIA PALI 1200 i=140

SPINTA EFFICACE VERA

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX
82 83	-24.10 -24.40	331.6 354.4	144.0 145.8	0.	0.
84	-24.40	360.8	147.5	0. 0.	0. 0.
85	-25.00	345.2	149.3	0.	0.
86	-25.30	330.2	151.1	0.	0.
87	-25.60	315.7	152.8	0.	0.
88	-25.90	301.7	154.6	0.	0.
89	-26.20	288.3	156.3	0.	0.
90	-26.50	275.3	158.1	0.	0.
91	-26.80	262.8	159.8	0.	0.
92	-27.10	250.7	161.6	0.	0.
93	-27.40	239.0	163.3	0.	0.
94	-27.70	227.6	165.1	0.	0.
95	-28.00	216.5	166.8	0.	0.
96	-28.30	210.5	168.6	0.	0.
97	-28.60	212.7	170.4	0.	0.
98	-28.90	214.9	172.1	0.	0.
99	-29.20	217.1	173.9	0.	0.
100	-29.50	219.3	175.6	0.	0.
101	-29.80	221.5	177.4	0.	0.
102	-30.00	222.9	178.5	0.	0.

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 41 12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO SPINTE NEGLI ELEMENTI TERRENO

(LE SPINTE SONO CALCOLATE INTEGRANDO GLI SFORZI NEI SINGOLI ELEMENTI MOLLA)

= Integrale delle pressioni orizzontali efficaci

in tutti gli elementi nel gruppo: unita' di misura kN/m SPINTA ACQUA = Integrale delle pressioni interstiziali in tutti gli elementi nel gruppo: unita' di misura kN/m SPINTA TOTALE VERA = Somma della SPINTA EFFICACE e della SPINTA DELL'ACQUA: e' l' azione totale sulla parete: unita' di misura kN/m = La minima spinta che puo' essere esercitata da questo gruppo di elementi terreno, in questa SPINTA ATTIVA POSSIBILE fase: unita' di misura kN/m SPINTA PASSIVA POSSIBILE = La massima spinta che puo' essere esercitata da questo gruppo di elementi terreno, in questa fase: unita' di misura kN/m RAPPORTO PASSIVA/VERA = e' il rapporto tra la massima spinta possibile e la spinta efficace vera: fornisce un'indicazione su quanta spinta passiva venga mobilitata; SPINTA PASSIVA MOBILITATA = e' l'inverso del rapporto precedente, espresso in unita' percentuale: indica quanta parte della massima spinta possibile e' stata mobilitata;

RAPPORTO VERA/ATTIVA = e' il rapporto tra la spinta efficace vera e la minima spinta possibile: fornisce un'indicazione di quanto questa porzione di terreno sia prossima alla condizione di massimo rilascio.

FASE	1	GRUPPO>	UHLe	DHLe
	A EFFICACE A ACOUA	VERA	3401.4	3401.4
SPINT	A TOTALE VI	ERA	3401.4	3401.4

Eurolink S.C.p.A. Pagina 207 di 445

Rev

F0

Data

20/06/2011

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

SPINTA ATT	TIVA (POS	SSIBILE)	3204.3	3204.3
SPINTA PAS	SSIVA (POS	SSIBILE)	37821.	37821.
RAPPORTO	PASSIVA/V	/ERA	11.119	11.119
SPINTA PAS	SSIVA MOBI	ILITATA	9.%	9.%
RAPPORTO	VERA/ATTI	IVA	1.0615	1.0615

PARATIE 7.00 12 OTTOBRE 2010 11:26:26		r.l Milano	PAG.	42
History 0 - PARATIA PALI 1200	i=140			
FASE 2 GRUPPO>				
SPINTA EFFICACE VERA	3204.4	3204.3		
SPINTA ACQUA	0.	0.		
SPINTA TOTALE VERA	3204.4	3204.3 258/L1		
SPINTA PASSIVA (POSSIBILE)	37821	30769		
RAPPORTO PASSIVA/VERA	11.803	9.6024		
SPINTA PASSIVA MOBILITATA	8.%	10.%		
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1.0000	1.2400		
FASE 3 GRUPPO>				
SPINTA EFFICACE VERA	3323.3	3185.4		
SPINTA ACQUA	0.	U. 3105 /		
SPINIA IOIALE VERA SPINIA ATTIVA (POSSIBILE)	3223.3	2584 1		
SPINTA PASSIVA (POSSIBILE)	37821.	30769.		
RAPPORTO PASSIVA/VERA	11.380	9.6593		
SPINTA PASSIVA MOBILITATA	9.%	10.%		
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1.0371	1.2327		
FASE 4 GRUPPO>	IIHI A	DHIA		
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA	3255.4	3117.1		
SPINTA ACQUA	0.	0.		
SPINTA TOTALE VERA	3255.4	3117.1		
SPINTA ATTIVA (POSSIBILE)	3204.3	2033.1		
RAPPORTO PASSIVA/VERA	11.618	7.8526		
SPINTA PASSIVA MOBILITATA	9.%	13.%		
SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1.0159	1.5317		
FASE 5 GRUPPO>	UHLe	DHLe		
SPINTA EFFICACE VERA	3388.7	3094.1		
SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE)	0.	0.		
SPINTA TOTALE VERA	3388.7	3094.1		
SPINTA ATTIVA (POSSIBILE)	32U4.3 37821	2035.l 24477		
RAPPORTO PASSIVA (FOSSIBILE)	11.161	7.9109		
SPINTA PASSIVA MOBILITATA	9.%	13.%		
SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1.0576	1.5204		

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 43
12 OTTOBRE 2010 11:26:26
History 0 - PARATIA PALI 1200 i=140

Pagina 208 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

FASE 6 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA	3290.7	2993.4
SPINTA ACQUA	0.	0.
SPINTA TOTALE VERA	3290.7	2993.4
SPINTA ATTIVA (POSSIBILE)		1551.6
SPINTA PASSIVA (POSSIBILE)	37821.	18904.
RAPPORTO PASSIVA/VERA	11.493	6.3153
SPINTA PASSIVA MOBILITATA	9.%	16.%
	1.0270	1.9293
RAPPORTO VERA/ATTIVA	1.02/0	1.9293
FASE 7 GRUPPO>	UHLe	DHLe
	0.100	0065
SPINTA EFFICACE VERA	3420.6	2967.4
SPINTA ACQUA	0.	0.
SPINTA TOTALE VERA	3420.6	2967.4
SPINTA ATTIVA (POSSIBILE)		1551.6
SPINTA PASSIVA (POSSIBILE)	37821.	18904.
RAPPORTO PASSIVA/VERA	11.057	6.3705
SPINTA PASSIVA MOBILITATA	9.%	16.%
RAPPORTO VERA/ATTIVA	1.0675	1.9126
FASE 8 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA	3288.4	2814.8
	0.	2814.8
SPINTA ACQUA	3288.4	
SPINTA TOTALE VERA		2814.8
SPINTA ATTIVA (POSSIBILE)	3204.3	1070.2
SPINTA PASSIVA (POSSIBILE)	37821.	13311.
RAPPORTO PASSIVA/VERA	11.501	4.7288
SPINTA PASSIVA MOBILITATA	9.%	21.%
RAPPORTO VERA/ATTIVA	1.0262	2.6302
FASE 9 GRUPPO>	IIHI.e	DHI.e
THEE 3 CHOILE ,	01120	21120
SPINTA EFFICACE VERA	3445.9	2778.7
SPINTA ACOUA	0.	0.
SPINTA TOTALE VERA	3445.9	2778.7
SPINTA ATTIVA (POSSIBILE)	3204.3	1070.2
SPINTA PASSIVA (POSSIBILE)	37821.	13311.
RAPPORTO PASSIVA/VERA	10.975	4.7903
SPINTA PASSIVA MOBILITATA	9.%	21.%
RAPPORTO VERA/ATTIVA	1.0754	2.5965
TOTAL ONTO ARMAN VITTAN	1.0/07	2.000

Eurolink S.C.p.A. Pagina 209 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0

20/06/2011

Data

PARATIE 7.00 12 OTTOBRE 2010 11:26:26	Ce.A.S. s.	r.l Milano	PAG. 44
History 0 - PARATIA PALI 1200			
FASE 10 GRUPPO>			
SPINTA EFFICACE VERA	3292.3	2578.8	
SPINTA ACQUA	0.	0.	
SPINTA TOTALE VERA	3292.3	2578.8	
SPINTA ATTIVA (POSSIBILE)	3204.3	728.55	
SPINTA PASSIVA (POSSIBILE)	37821.	9295.4	
RAPPORTO PASSIVA/VERA	11.487	3.6046	
SPINTA PASSIVA MOBILITATA	9.%	28.8	
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1.0275	3.5396	
FASE 11 GRUPPO>	UHLe	DHLe	
CDINES FEFTCACE VEDS	2440 1	2542 7	
SPINTA ACOUA	0 0	2342.1 N	
SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE)	3//0 1	25/12 7	
CDINTA TOTALE VENA	3204 3	728 55	
SPINTA PASSIVA (POSSIBILE)	37821	9295 4	
RAPPORTO PASSIVA/VERA	10.965	3.6557	
SPINTA PASSIVA MOBILITATA	9.%	27.%	
RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1.0764	3.4901	
FASE 12 GRUPPO>	UHLe	DHLe	
SPINTA EFFICACE VERA	3305.5	2299.7	
SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE)	0.	0.	
SPINTA TOTALE VERA	3305.5	2299.7	
SPINTA ATTIVA (POSSIBILE)	3204.3	452.39	
SPINTA PASSIVA (POSSIBILE)	37821.	5998.9	
RAPPORTO PASSIVA/VERA	11.442	2.6085	
RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	9.8	38.%	
RAPPORTO VERA/ATTIVA	1.0316	5.0835	
FASE 13 GRUPPO>	UHLe	DHLe	
007,700	2440 4	00.60	
SPINTA EFFICACE VERA	3442.4	2262.8	
SPINTA ACQUA SPINTA TOTALE VERA	3//2 /	2262 9	
SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE)	3204 3	452 39	
SPINTA PASSIVA (POSSIBILE)	37821.	5998.9	
RAPPORTO PASSIVA/VERA	10.987	2.6511	
SPINTA PASSIVA MOBILITATA			
RAPPORTO VERA/ATTIVA	1.0743	5.0019	
DADAGER 7 00	0 - 7 0		53.0
	ce.A.S. s.	r.l Milano	PAG. 45
12 OTTOBRE 2010 11:26:26 History 0 - PARATIA PALI 1200	i=140		
FASE 14 GRUPPO>	UHLe	DHLe	
SPINTA EFFICACE VERA	3315.3	2034.2	
SPINTA ACQUA	0.	0.	
SPINTA TOTALE VERA	3315.3	2034.2	

Pagina 210 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	3204.3 37821. 11.408 9.% 1.0346	304.64 4198.6 2.0640 48.% 6.6775
FASE 15 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA	3283.0	2174.8
SPINTA ACQUA	0.	0.
SPINTA TOTALE VERA	3283.0	2174.8
SPINTA ATTIVA (POSSIBILE)	3233.0	319.42
SPINTA PASSIVA (POSSIBILE)	34800.	3999.8
RAPPORTO PASSIVA/VERA	10.600	1.8391
SPINTA PASSIVA MOBILITATA	9.%	54.%
RAPPORTO VERA/ATTIVA	1.0155	6.8086

12.1.3 COMBINAZIONE A2+M2

```
PARATIE 7.00
                        Ce.A.S. s.r.l. - Milano
                                                          PAG. 1
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
***********
**
        P A R A T I E
* *
       RELEASE 7.00 VERSIONE WIN
** Ce.A.S. s.r.l. - Viale Giustiniano, 10
                 20129 MILANO
***********
JOBNAME C:\LAVORI\PONTE\CALCOLI\PALI H=20.0m (GM)\SLU2_20_HIST00
17 SETTEMBRE 2010 16:45:5
PARATIE 7.00
                         Ce.A.S. s.r.l. - Milano
                                                        PAG. 2
17 SETTEMBRE 2010 16:45:54
History O - PARATIA PALI 1200 i=140
ELENCO DEI DATI DI INPUT(PARAGEN)
Per il significato dei vari comandi
si faccia riferimento al manuale di
input PARAGEN, versione 7.00.
N. comando
1: * Paratie for Windows version 7.0
2: * Filename= <c:\lavori\ponte\calcoli\pali h=20.0m
(gm) \slu2_20_hist00.d> Date=
3: * project with "run time" parameters
```

Eurolink S.C.p.A. Pagina 211 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
4: * Force=kN Lenght=m 5: *
6: units m kN
7: title History 0 - PARATIA PALI 1200 i=140
8: delta 0.3
9: option param itemax 50
10: option noprint echo
11: option noprint displ
12: option noprint react
13: option noprint stresses
14:
15: *
        wall LeftWall 0 -30 0
16: soil UHLeft LeftWall -30 0 1 0
17: soil DHLeft LeftWall -30 0 2 180
18: *
19: material cls_C28_35 3.144E+007
20: material Acciaio 2.1E+008
22: beam Beam LeftWall -30 0 cls C28 35 0.955541 00 00
23: *
24: wire t1 LeftWall -2 Acciaio 1.04511E-005 140 10 25: wire t2 LeftWall -5 Acciaio 1.46008E-005 160 10
26: wire t3 LeftWall -8 Acciaio 1.98571E-005 160 10
27: wire t4 LeftWall -11.5 Acciaio 2.12755E-005 200 10 28: wire t5 LeftWall -14.5 Acciaio 2.48214E-005 200 10
29: wire t6 LeftWall -17.5 Acciaio 3.15909E-005 180 10
30: *
31: * Soil Profile
32: *
33:
        ldata
                        Soil 0
          weight 19 9 10
atrest 0.384339 0 1
35:
36:
            resistance 4 32 0.488 3.392
37:
            moduli
                        120000 2 0 1 100 0.6
        endlayer
38:
PARATIE 7.00
                                Ce.A.S. s.r.l. - Milano
                                                                          PAG. 3
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
N. comando
39: *
40: step 1 : gostatico
41: setwall LeftWall
        geom 0 0
43:
            surcharge 10 0 10 0
44: endstep
45: *
46: step 2 : primo ribasso
47: setwall LeftWall
      geom 0 -2.5
48:
49:
            surcharge 10 0 0 0
50: endstep
51: *
52: step 3: messa in opera 1 tirante
53: setwall LeftWall
54:
           add t1
55: endstep
56: *
57: step 4 : scavo secondo ribasso
58: setwall LeftWall 59: geom 0 -5.5
           geom 0 -5.5
60: endstep
```

Pagina 212 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
61: *
62: step 5 : messa in opera 2 tirante
63: setwall LeftWall 64: add t2
          add t2
65: endstep
66: *
67: step 6 : terzo ribasso
68: setwall LeftWall
          geom 0 -8.5
69:
70: endstep
71: *
72: step 7 : messa in opera 3 tirante
73: setwall LeftWall
74:
           add t3
75: endstep
76: *
77: step 8: quarto ribasso
78: setwall LeftWall
           geom 0 -12
79:
80: endstep
81: *
82: step 9: messa in opera 4 tirante
83: setwall LeftWall
84:
           add t4
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                     PAG.
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
N. comando
85: endstep
86: *
87: step 10 : quinto ribasso
88: setwall LeftWall
89: geom 0 -15
        geom 0 -15
90: endstep
91: *
92: step 11: messa in opera 5 tirante
93: setwall LeftWall 94: add t5
        add t5
95: endstep
96: *
97: step 12 : sesto ribasso
98: setwall LeftWall
99: geom 0 -18
         geom 0 -18
100: endstep
101: *
102: step 13: messa in opera 6 tirante
103: setwall LeftWall
104: add t6
            add t6
105: endstep
106: *
107: step 14 : settimo ribasso
108: setwall LeftWall
109:
            geom 0 -20
110: endstep
111: *
112: step 15 : Fase sismica
113: change Soil U-KA=0.49
        change Soil U-KP=3.2
        change Soil D-KA=0.49
115:
       change Soil D-KP=3.2
dload constant LeftWall -20 38.1 0 38.1
116:
117:
118:
       setwall LeftWall
119:
             surcharge 0 0 0 0
```

Eurolink S.C.p.A. Pagina 213 di 445

120: endstep

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
121: *
122: *
PARATIE 7.00
                                                                       PAG.
                              Ce.A.S. s.r.l. - Milano
                                                                              5
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
LAYER Soil
natura 1=granulare, 2=argilla = 1.0000
                                     = 0.0000
quota superiore
quota inferiore
                                     =-0.10000E+31 m
peso fuori falda
                                     = 19.000
                                    = 9.0000
= 10.000
peso efficace in falda
                                                    kN/m³
peso dell'acqua
                                                    kN/m³
                          = 4.0000
= 33.000
= 0.48800
= 3.3920
= 0.38434
coesione
                                                   kPa
                                                                (A MONTE)
angolo di attrito
                                                    DEG
                                                                (A MONTE)
coeff. spinta attiva ka
                                                                (A MONTE)
coeff. spinta passiva kp
                                                                (A MONTE)
Konc normal consolidato
OCR: grado di sovraconsolidazione = 1.0000
modello di rigidezza = 2.0000
modulo Rvc = 0.12000E+06 kPa
                                    = 2.0000
= 1.0000
rapporto Rur/Rvc
coef-h
                                    = 100.00
pressione di normalizz.
                                    = 0.60000
esponente n
                                    = 1.0000
natura 1=granulare, 2=argilla
                                                                (A VALLE)
                                   = 4.0000
= 33.000
coesione
                                                   kPa
                                                                (A VALLE)
                                                                (A VALLE)
angolo di attrito
                                                   DEG
coeff. spinta attiva ka
                                    = 0.48800
                                                                (A VALLE)
                                                                (A VALLE)
coeff. spinta passiva kp
                                     = 3.3920
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                       PAG.
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
```

(SOLO I PARAMETRI CHE POSSONO VARIARE)

Pagina 214 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

NEGOTA CALIFORNIA NEGOTA DE LA CONTRA DELIGIA DE LA CONTRA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 6
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 7
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 8
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 9
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 10
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 11
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 12
(SOLO I PARAMETRI CHE POSSONO VARIARE)
PARATIE 7.00 Ce.A.S. s.r.l Milano PAG. 7
17 SETTEMBRE 2010 16:45:54 History O - PARATIA PALI 1200 i=140
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 13
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 14
(SOLO I PARAMETRI CHE POSSONO VARIARE)
NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 15
(SOLO I PARAMETRI CHE POSSONO VARIARE)
(bolo I Industric Che l'obbono vintind)

Eurolink S.C.p.A. Pagina 215 di 445

coeff. spinta attiva ka

LAYER Soil

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

(A MONTE)

Rev F0

20/06/2011

Data

```
= 0.49000
coeff. spinta passiva kp
                                    = 3.2000
                                                                (A MONTE)
                                    = 0.49000
coeff. spinta attiva ka
                                                               (A VALLE)
coeff. spinta passiva kp
                                    = 3.2000
                                                                (A VALLE)
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                      PAG.
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                         = 0.0000
coordinata y
                                        = 0.0000
= 0.0000
quota piano campagna
                                                        m
quota del fondo scavo
                                                        m
quota della falda
                                        =-0.99900E+30 m
sovraccarico a monte
                                        = 10.000
                                                        kPa
                                     = 0.0000
= 0.0000
- 10.000
quota del sovraccarico a monte
depressione falda a valle
                                                       m
                                        = 0.0000
= 10.000
sovraccarico a valle
                                                       kPa
quota del sovraccarico a valle = 0.0000
quota di taglio
                                        = 0.0000
                                                       m
quota di tagilo = 0.0000
quota di equil. pressioni dell'acqua = -30.000
indicatore comportamento acqua = 0.0000
opzione aggiornamento pressioni acqua = 0.0000
                                                       m
                                                       (1=REMOVE)
                                                        (1=NO UPD)
accelerazione sismica orizz.
                                        = 0.0000
                                                        [g]
                                        = 0.0000
= 0.0000
accel. sismica vert. a monte
                                                        [g]
accel. sismica vert. a valle
angolo beta a monte
                                       = 0.0000
                                        = 0.0000
delta/phi a monte
                                       = 0.0000
                                                        [°]
angolo beta a valle
                                        = 0.0000
= 0.0000
delta/phi a valle
opzione dyn. acqua
                                                        (1=pervious)
rapporto pressioni in eccesso Ru
                                        = 0.0000
Wood bottom pressure
                                         = 0.0000
                                        = 0.0000
Wood top pressure
                                                        m
                                        = 0.0000
= 0.0000
Wood bottom pressure elev.
                                                        kPa
Wood top pressure elev.
                                                        m
RIASSUNTO DATI RELATIVI ALLA FASE 2
WALL LeftWall
coordinata y
                                        = 0.0000
                                                       m
quota piano campagna
                                         = 0.0000
                                                        m
                                        = -2.5000
quota del fondo scavo
                                                        m
quota della falda
                                        =-0.99900E+30 m
sovraccarico a monte
                                         = 10.000 kPa
                                       = 0.0000
quota del sovraccarico a monte
                                                       m
                                      = 0.0000
depressione falda a valle
sovraccarico a valle
                                         = 0.0000
                                                       kPa
quota del sovraccarico a valle = 0.0000
                                                       m
quota di taglio
                                         = 0.0000
                                                        m
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                      PAG.
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
```

Pagina 216 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
quota di equil. pressioni dell'acqua = -30.000
                                      = 0.0000
                                                     (1=REMOVE)
indicatore comportamento acqua
opzione aggiornamento pressioni acqua = 0.0000
                                                     (1=NO UPD)
accelerazione sismica orizz.
                                      = 0.0000
                                                     [a]
                                      = 0.0000
accel. sismica vert. a monte
                                                     [g]
                                      = 0.0000
accel. sismica vert. a valle
                                                     [g]
                                      = 0.0000
angolo beta a monte
delta/phi a monte
                                      = 0.0000
                                      = 0.0000
                                                     [°]
angolo beta a valle
                                      = 0.0000
delta/phi a valle
                                      = 0.0000
opzione dyn. acqua
                                                     (1=pervious)
                                   = 0.0000
rapporto pressioni in eccesso Ru
                                      = 0.0000
Wood bottom pressure
                                                     kPa
                                      = 0.0000
Wood top pressure
                                      = 0.0000
= 0.0000
Wood bottom pressure elev.
                                                     kPa
Wood top pressure elev.
RIASSUNTO DATI RELATIVI ALLA FASE 3
WALL LeftWall
coordinata y
                                      = 0.0000
                                                    m
quota piano campagna
                                       = 0.0000
                                                    m
quota del fondo scavo
                                      = -2.5000
                                                     m
quota della falda
                                      =-0.99900E+30 m
sovraccarico a monte
                                      = 10.000
                                                     kPa
                                    = 0.0000
= 0.0000
quota del sovraccarico a monte
                                                    m
depressione falda a valle
                                      = 0.0000
                                                    m
                                      = 0.0000
sovraccarico a valle
                                                    kPa
quota del sovraccarico a valle = 0.0000
quota di taglio
                                      = 0.0000
                                                    m
quota di equil. pressioni dell'acqua = -30.000 indicatore comportamento acqua = 0.0000
                                                    m
indicatore comportamento acqua
                                      = 0.0000
                                                    (1=REMOVE)
opzione aggiornamento pressioni acqua \,=\,0.0000
                                                     (1=NO UPD)
                                      = 0.0000
accelerazione sismica orizz.
                                                     [a]
                                      = 0.0000
= 0.0000
accel. sismica vert. a monte
                                                     [g]
                                                     [°]
accel. sismica vert. a valle
angolo beta a monte
                                      = 0.0000
                                      = 0.0000
delta/phi a monte
                                      = 0.0000
                                                     [°]
angolo beta a valle
                                      = 0.0000
delta/phi a valle
                                      = 0.0000
opzione dyn. acqua
                                                     (1=pervious)
                                   = 0.0000
- ^
rapporto pressioni in eccesso Ru
Wood bottom pressure
                                                     kPa
                                      = 0.0000
Wood top pressure
Wood bottom pressure elev.
                                      = 0.0000
                                                     kPa
                             Ce.A.S. s.r.l. - Milano
                                                                  PAG. 10
PARATIE 7.00
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
                                       = 0.0000
Wood top pressure elev.
RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                       = 0.0000
coordinata y
                                                    m
                                      = 0.0000
quota piano campagna
                                                    m
quota del fondo scavo
                                      = -5.5000
quota della falda
                                      =-0.99900E+30 m
```

Eurolink S.C.p.A. Pagina 217 di 445

sovraccarico a monte

= 10.000

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

kPa

Rev F0 Data 20/06/2011

```
= 0.0000
quota del sovraccarico a monte
                                                      m
depressione falda a valle
                                       = 0.0000
sovraccarico a valle
                                       = 0.0000
                                                      kPa
quota del sovraccarico a valle
                                       = 0.0000
quota di taglio
                                       = 0.0000
                                                     m
quota di equil. pressioni dell'acqua = -30.000 indicatore comportamento acqua = 0.0000
                                                     m
                                                     (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                      (1=NO UPD)
                                                      [a]
                                       = 0.0000
= 0.0000
accel. sismica vert. a monte
                                                      [g]
accel. sismica vert. a valle
                                                      [g]
angolo beta a monte
                                      = 0.0000
                                       = 0.0000
delta/phi a monte
                                       = 0.0000
                                                      [°]
angolo beta a valle
                                       = 0.0000
delta/phi a valle
                                       = 0.0000
opzione dyn. acqua
                                                      (1=pervious)
                                    = 0.0000
rapporto pressioni in eccesso Ru
Wood bottom pressure
                                       = 0.0000
                                                      kPa
                                       = 0.0000
Wood top pressure
                                                     m
Wood bottom pressure elev.
                                     = 0.0000
                                                     kPa
Wood top pressure elev.
                                        = 0.0000
                                                      m
RIASSUNTO DATI RELATIVI ALLA FASE 5
WALL LeftWall
                                        = 0.0000
coordinata y
quota piano campagna
                                        = 0.0000
quota del fondo scavo
                                       = -5.5000
quota della falda
                                       =-0.99900E+30 m
                                       = 10.000
sovraccarico a monte
                                                  kPa
quota del sovraccarico a monte
                                       = 0.0000
                                                     m
                                    = 0.0000
depressione falda a valle
                                       = 0.0000
sovraccarico a valle
                                                      kPa
                                  = 0.0000
quota del sovraccarico a valle
                                                     m
                              Ce.A.S. s.r.l. - Milano
PARATIE 7.00
                                                                   PAG. 11
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 5
quota di taglio
                                       = 0.0000
quota di equil. pressioni dell'acqua = -30.000
indicatore comportamento acqua
                                       = 0.0000
                                                      (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000
                                                      (1=NO UPD)
accelerazione sismica orizz. = 0.0000
accel. sismica vert. a monte = 0.0000
                                                      [g]
accel. sismica vert. a monte
                                                      [q]
accel. sismica vert. a valle
                                      = 0.0000
                                                      [°]
angolo beta a monte
                                       = 0.0000
delta/phi a monte
                                                      [°]
                                       = 0.0000
angolo beta a valle
delta/phi a valle
                                       = 0.0000
                                       = 0.0000
opzione dyn. acqua
                                                      (1=pervious)
rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
Wood bottom pressure
                                                      kPa
                                       = 0.0000
Wood top pressure
Wood bottom pressure elev.
                                       = 0.0000
                                                      kPa
                                       = 0.0000
Wood top pressure elev.
                                                      m
RIASSUNTO DATI RELATIVI ALLA FASE
```

Pagina 218 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
WALL LeftWall
                                        = 0.0000
coordinata y
                                       = 0.0000
quota piano campagna
                                                      m
quota del fondo scavo
                                       = -8.5000
quota della falda
                                       =-0.99900E+30 m
                                       = 10.000
sovraccarico a monte
                                                      kPa
                                       = 0.0000
quota del sovraccarico a monte
                                                      m
depressione falda a valle
                                       = 0.0000
sovraccarico a valle
                                       = 0.0000
                                                      kPa
quota del sovraccarico a valle = 0.0000
                                                      m
quota di taglio = 0.0000
quota di equil. pressioni dell'acqua = -30.000
indicatore comportamento acqua = 0.0000
                                                      m
                                                      (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                      (1=NO UPD)
                                                      [q]
                                       = 0.0000
accel. sismica vert. a monte
                                                      [g]
                                       = 0.0000
accel. sismica vert. a valle
                                                      [°]
angolo beta a monte
                                       = 0.0000
delta/phi a monte
                                       = 0.0000
                                       = 0.0000
                                                      [°]
angolo beta a valle
delta/phi a valle
                                       = 0.0000
opzione dyn. acqua
                                       = 0.0000
                                                      (1=pervious)
                                     = 0.0000
rapporto pressioni in eccesso Ru
Wood bottom pressure
                                                      kРа
                                       = 0.0000
                                       = 0.0000
Wood top pressure
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                    PAG. 12
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
                                       = 0.0000
                                                      kPa
Wood bottom pressure elev.
                                        = 0.0000
Wood top pressure elev.
                                                      m
RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                       = 0.0000
= 0.0000
coordinata y
quota piano campagna
                                                      m
                                       = -8.5000
quota del fondo scavo
                                                      m
quota della falda
                                       =-0.99900E+30 m
                                       = 10.000
sovraccarico a monte
                                                     kPa
quota del sovraccarico a monte
                                     = 0.0000
depressione falda a valle
                                       = 0.0000
                                       = 0.0000
sovraccarico a valle
                                                      kPa
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000
                                                      m
quota di taglio
                                                      m
quota di equil. pressioni dell'acqua = -30.000
                                       = 0.0000
indicatore comportamento acqua
                                                      (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000
                                                      (1=NO UPD)
accelerazione sismica orizz. = 0.0000
                                                      [g]
accel. sismica vert. a monte
                                       = 0.0000
                                                      [g]
                                      = 0.0000
accel. sismica vert. a valle
                                                      [g]
angolo beta a monte
                                       = 0.0000
                                       = 0.0000
delta/phi a monte
                                       = 0.0000
angolo beta a valle
                                                      [°]
                                       = 0.0000
delta/phi a valle
opzione dyn. acqua
                                       = 0.0000
                                                      (1=pervious)
opzione dyn. acqua
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
                                                      kPa
Wood top pressure
                                       = 0.0000
Wood bottom pressure elev. = 0.0000
                                                      kPa
```

Eurolink S.C.p.A. Pagina 219 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
= 0.0000
Wood top pressure elev.
                                                     m
RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                       = 0.0000
coordinata y
quota piano campagna
                                       = 0.0000
quota del fondo scavo
                                      = -12.000
                                                    m
quota della falda
                                      =-0.99900E+30 m
                                      = 10.000
= 0.0000
                                                     kPa
sovraccarico a monte
quota del sovraccarico a monte
                                                     m
depressione falda a valle
                                      = 0.0000
sovraccarico a valle
                                      = 0.0000
                                                     kPa
PARATIE 7.00
                             Ce.A.S. s.r.l. - Milano
                                                                  PAG. 13
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
                                   = 0.0000
quota del sovraccarico a valle
                                                    m
quota di taglio
                                      = 0.0000
quota di equil. pressioni dell'acqua = -30.000
indicatore comportamento acqua
                                      = 0.0000
                                                     (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                     (1=NO UPD)
accelerazione sismica orizz.
                                                     [q]
                                      = 0.0000
accel. sismica vert. a monte
                                                     [q]
                                      = 0.0000
accel. sismica vert. a valle
angolo beta a monte
                                      = 0.0000
delta/phi a monte
                                      = 0.0000
                                                     [°]
                                      = 0.0000
angolo beta a valle
delta/phi a valle
                                      = 0.0000
                                      = 0.0000
opzione dyn. acqua
                                                     (1=pervious)
                                 = 0.0000
rapporto pressioni in eccesso Ru
                                      = 0.0000
Wood bottom pressure
                                                     kPa
Wood top pressure
                                      = 0.0000
Wood bottom pressure elev.
                                      = 0.0000
                                                     kPa
                                       = 0.0000
Wood top pressure elev.
                                                     m
RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                      = 0.0000
coordinata y
quota piano campagna
                                      = 0.0000
quota del fondo scavo
                                      = -12.000
                                                     m
quota della falda
                                      =-0.99900E+30 m
sovraccarico a monte
                                      = 10.000
                                                     kPa
                                    = 0.0000
quota del sovraccarico a monte
                                                    m
depressione falda a valle
                                      = 0.0000
                                      = 0.0000
sovraccarico a valle
                                                     kPa
                                     = 0.0000
quota del sovraccarico a valle
                                                    m
quota di taglio
                                      = 0.0000
quota di equil. pressioni dell'acqua
                                      = -30.000
                                      = 0.0000
                                                    (1=REMOVE)
indicatore comportamento acqua
opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                     (1=NO UPD)
                                                     [g]
                                      = 0.0000
accel. sismica vert. a monte
                                                     [g]
                                      = 0.0000
accel. sismica vert. a valle
angolo beta a monte
                                      = 0.0000
delta/phi a monte
                                      = 0.0000
                                                     [°]
                                      = 0.0000
angolo beta a valle
delta/phi a valle
                                      = 0.0000
opzione dyn. acqua
                                      = 0.0000
                                                     (1=pervious)
```

Pagina 220 di 445 Eurolink S.C.p.A.

Wood bottom pressure

= 0.0000 = 0.0000

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

rapporto pressioni in eccesso Ru

RIASSUNTO DATI RELATIVI ALLA FASE 11

Codice documento
SS0328_F0.doc_F0

kPa

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 14 17 SETTEMBRE 2010 16:45:54 History 0 - PARATIA PALI 1200 i=140 RIASSUNTO DATI RELATIVI ALLA FASE = 0.0000 Wood top pressure = 0.0000 Wood bottom pressure elev. kPa = 0.0000 Wood top pressure elev. m RIASSUNTO DATI RELATIVI ALLA FASE WALL LeftWall coordinata y = 0.0000 m = 0.0000 quota piano campagna m = -15.000quota del fondo scavo m quota della falda =-0.99900E+30 msovraccarico a monte = 10.000 quota del sovraccarico a monte = 0.0000 = 0.000 m depressione falda a valle m = 0.0000 sovraccarico a valle kPa sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000 m quota di equil. pressioni dell'acqua = -30.000 indicatore comportamento acqua = 0.0000 (1=REMOVE) indicatore comportamento acqua opzione aggiornamento pressioni acqua $\,=\,$ 0.0000 (1=NO UPD) accelerazione sismica orizz. = 0.0000 accel. sismica vert. a monte = 0.0000 [g] accel. sismica vert. a monte [g] accel. sismica vert. a valle = 0.0000 = 0.0000angolo beta a monte delta/phi a monte = 0.0000 = 0.0000 [°] angolo beta a valle delta/phi a valle = 0.0000 delta/pni a vallo
opzione dyn. acqua = U.0000
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000 (1=pervious) kPa Wood top pressure = 0.0000 = 0.0000 Wood bottom pressure elev. kPa Wood top pressure elev. = 0.0000 RIASSUNTO DATI RELATIVI ALLA FASE 11 WALL LeftWall coordinata y = 0.0000 = 0.0000 quota piano campagna m quota del fondo scavo = -15.000m quota della falda =-0.99900E+30 msovraccarico a monte = 10.000 kPa quota del sovraccarico a monte = 0.0000 m depressione falda a valle = 0.0000 m Ce.A.S. s.r.l. - Milano PAG. 15 PARATIE 7.00 17 SETTEMBRE 2010 16:45:54 History 0 - PARATIA PALI 1200 i=140

Eurolink S.C.p.A. Pagina 221 di 445

sovraccarico a valle

= 0.0000

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

kPa

Rev F0

20/06/2011

Data

```
quota del sovraccarico a valle
                                        = 0.0000
                                                       m
                                        = 0.0000
quota di taglio
quota di equil. pressioni dell'acqua
                                        = -30.000
                                        = 0.0000
                                                       (1=REMOVE)
indicatore comportamento acqua
opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                       (1=NO UPD)
                                                       [g]
                                        = 0.0000
accel. sismica vert. a monte
                                                       [g]
accel. sismica vert. a valle
                                        = 0.0000
                                        = 0.0000
angolo beta a monte
                                        = 0.0000
= 0.0000
delta/phi a monte
angolo beta a valle
                                        = 0.0000
delta/phi a valle
opzione dyn. acqua
                                        = 0.0000
                                                       (1=pervious)
rapporto pressioni in eccesso Ru
                                        = 0.0000
                                        = 0.0000
Wood bottom pressure
                                                       kPa
                                        = 0.0000
Wood top pressure
                                        = 0.0000
Wood bottom pressure elev.
                                                       kPa
                                         = 0.0000
Wood top pressure elev.
                                                       m
RIASSUNTO DATI RELATIVI ALLA FASE 12
WALL LeftWall
coordinata y
                                        = 0.0000
quota piano campagna
                                        = 0.0000
quota del fondo scavo
                                        = -18.000
                                                       m
guota della falda
                                        =-0.99900E+30 m
sovraccarico a monte
                                        = 10.000
                                                       kPa
quota del sovraccarico a monte
                                        = 0.0000
                                                       m
depressione falda a valle
                                        = 0.0000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000
quota di taglio = 0.0000
                                                       kPa
                                                       m
quota di equil. pressioni dell'acqua = -30.000
indicatore comportamento acqua = 0.0000
                                                       m
                                                       (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000 = 0.0000 = 0.0000
                                                       (1=NO UPD)
accelerazione sismica orizz.
                                                        [g]
accel. sismica vert. a monte
                                        = 0.0000
                                                       [q]
                                        = 0.0000
accel. sismica vert. a valle
                                        = 0.0000
angolo beta a monte
                                        = 0.0000
delta/phi a monte
                                        = 0.0000
angolo beta a valle
delta/phi a valle
                                        = 0.0000
                                        = 0.0000
                                                        (1=pervious)
opzione dyn. acqua
                                   = 0.0000
rapporto pressioni in eccesso Ru
                              Ce.A.S. s.r.l. - Milano
                                                                      PAG. 16
PARATTE 7.00
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 12
Wood bottom pressure
                                         = 0.0000
                                                       kPa
                                         = 0.0000
Wood top pressure
                                                       m
                                         = 0.0000
= 0.0000
Wood bottom pressure elev.
                                                       kPa
Wood top pressure elev.
                                                       m
RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
coordinata y
                                         = 0.0000
quota piano campagna
                                         = 0.0000
```

Pagina 222 di 445 Eurolink S.C.p.A.

quota del fondo scavo

= -18.000

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

m

Rev F0 Data 20/06/2011

```
=-0.99900E+30 m
quota della falda
sovraccarico a monte
                                       = 10.000
                                                      kPa
quota del sovraccarico a monte
                                       = 0.0000
depressione falda a valle
                                       = 0.0000
                                       = 0.0000
sovraccarico a valle
                                                     kPa
                                       = 0.0000
quota del sovraccarico a valle
                                                     m
                                       = 0.0000
quota di taglio
quota di equil. pressioni dell'acqua = -30.000
indicatore comportamento acqua = 0.0000
                                                      (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000 = 0.0000 = 0.0000 = 0.0000
                                                      (1=NO UPD)
accelerazione sismica orizz.
                                                      [g]
                                       = 0.0000
accel. sismica vert. a monte
                                                      [g]
                                     = 0.0000
accel. sismica vert. a valle
                                                      [°]
                                       = 0.0000
angolo beta a monte
                                       = 0.0000
= 0.0000
delta/phi a monte
angolo beta a valle
                                       = 0.0000
delta/phi a valle
opzione dyn. acqua
                                       = 0.0000
                                                      (1=pervious)
rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure
                                       = 0.0000
                                                      kPa
Wood top pressure
                                       = 0.0000
                                      = 0.0000
                                                     kPa
Wood bottom pressure elev.
                                       = 0.0000
Wood top pressure elev.
                                                      m
RIASSUNTO DATI RELATIVI ALLA FASE 14
WALL LeftWall
coordinata y
                                       = 0.0000
                                       = 0.0000
quota piano campagna
                                       = -20.000
quota del fondo scavo
                                                      m
quota della falda
                                       =-0.99900E+30 m
sovraccarico a monte
                                       = 10.000
                                       = 0.0000
quota del sovraccarico a monte
PARATIE 7.00
                             Ce.A.S. s.r.l. - Milano
                                                                   PAG. 17
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 14
                                       = 0.0000
depressione falda a valle
                                       = 0.0000
sovraccarico a valle
                                                      kPa
quota del sovraccarico a valle = 0.0000
                                       = 0.0000
quota di taglio
                                                     m
quota di equil. pressioni dell'acqua = -30.000
                                                     m
indicatore comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000
                                                      (1=REMOVE)
                                                      (1=NO UPD)
accelerazione sismica orizz.
                                       = 0.0000
                                                      [g]
                                       = 0.0000
accel. sismica vert. a monte
                                                      [q]
accel. sismica vert. a valle
                                      = 0.0000
                                                      [g]
angolo beta a monte
                                      = 0.0000
delta/phi a monte
                                       = 0.0000
                                       = 0.0000
                                                      [°]
angolo beta a valle
delta/phi a valle
                                       = 0.0000
                                       = 0.0000
                                                      (1=pervious)
opzione dyn. acqua
                                       = 0.0000
rapporto pressioni in eccesso Ru
                                       = 0.0000
                                                      kPa
Wood bottom pressure
Wood top pressure
                                       = 0.0000
                                                     m
                                       = 0.0000
= 0.0000
                                                      kPa
Wood bottom pressure elev.
Wood top pressure elev.
                                                      m
```

RIASSUNTO DATI RELATIVI ALLA FASE 15

Eurolink S.C.p.A. Pagina 223 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

quota del quota del sovraccar quota del depression sovraccar quota di quota di indicator opzione ad acceleraz accel. si angolo be delta/phi	a y no campagna fondo scavo la falda ico a monte sovraccario ne falda a ico a valle sovraccario taglio equil. press e comportame ggiornamento ione sismica smica vert. smica vert. ta a monte ta a valle a valle	co a malle co a sioni ento a presa oria a mon	valle dell'acqua acqua ssioni acc zz. nte	= 0. = 0. = 0. = 0. = 0. = 0. = 0.	0000 .000 9900E+30 0000 0000 0000 0000 0000 0000 000	m m m m kPa m m kPa m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [g] [c] [°] (1=pervious)		
	BRE 2010 16:		4	.S. s.r.l.	- Milano		PAG.	18
History U	- PARATIA H	PALI.	1200 1=1	40				
RIASSUNTO	DATI RELATI	IVI A	LLA FASE	15				
Wood botto Wood top p	pressioni ir om pressure pressure om pressure pressure ele	elev		= 0. = 0. = 0. = 0.	0000 0000 0000	kPa m kPa m		
	.00 BRE 2010 16: - PARATIA H		4	.s. s.r.l.	- Milano		PAG.	19
RIASSUNTO								
=======	======							
+	++		+ELEMENTI		+			
+	+	+	+	+	+	1		
	Wall +							
+	 +	m +			deg +			
'	LeftWall +	•	•					
DHLeft	LeftWall	0.	-30.00	DOWNHILL	180.0	Ī		
++ ++ RIASSUNTO ELEMENTI BEAM								

+----+
| Name | Wall | Z1 | Z2 | Mat | thick |

Pagina 224 di 445 Eurolink S.C.p.A.

PAG. 20

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

+	+	+	++	+
	l m	•		'
Beam Left	Wall 0.	•		

PARATIE 7.00 Ce.A.S. s.r.l. - Milano

17 SETTEMBRE 2010 16:45:54

History 0 - PARATIA PALI 1200 i=140

+	+	+	+	+	+	++		
Ī		RIASSUN	RIASSUNTO ELEMENTI WIRE					
Name	Wall	Zeta	Mat	A/L	Pinit	Angle		
Ī	I	l m			kN/m	deg		
t1	LeftWall	-2.000	_	0.1045E-04	140.0	10.00		
t2	LeftWall	-5.000	_	0.1460E-04	160.0	10.00		
t3	LeftWall	-8.000	_	0.1986E-04	160.0	10.00		
t4	•	-11.50	_	0.2128E-04	200.0			
'	•	•		0.2482E-04	200.0			
t6	LeftWall	-17.50	 	0.3159E-04	'			
								

Ce.A.S. s.r.l. - Milano
17 SETTEMBRE 2010 16:45:54
History 0 - Paparer PAG. 21

History O - PARATIA PALI 1200 i=140

RIASSUNTO DATI VARI ______

	MATERIALI						
Name	YOUNG MODULUS						
' +	kPa						
cls_	3.144E+007						
Acci	2.1E+008						

Ce.A.S. s.r.l. - Milano PARATIE 7.00 PAG. 22

17 SETTEMBRE 2010 16:45:54

History 0 - PARATIA PALI 1200 i=140

DISTRIBUTED LOAD SUMMARY

Wall From To Z1 P1 Z2 P2 step step Left 15 15 -20.000 34.000 0.0000 34.000

UNITS FOR Z1 , Z2 =m UNITS FOR P1 , P2 =kPa

Eurolink S.C.p.A. Pagina 225 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 23 17 SETTEMBRE 2010 16:45:54

History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ANALISI INCREMENTALE

Ν.	DI	ITERAZIONI	CONVERGENZA
		2	SI
		7	SI
		5	SI
		5	SI
		5	SI
		7	SI
		5	SI
		7	SI
		4	SI
		7	SI
		4	SI
		6	SI
		4	SI
		7	SI
		5	SI
	N.	N. DI	2 7 5 5 5 7 5 7 4 7 4 6 4 7

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 24

17 SETTEMBRE 2010 16:45:54

History O - PARATIA PALI 1200 i=140

MASSIMI SPOSTAMENTI LATERALI

- *TUTTI I PASSI*

 * PARETE LeftWall*
- * I PASSI NON EQUILIBRATI SONO ESCLUSI *
- * NOTA: LE QUOTE ESPRESSE IN m
- E GLI SPOSTAMENTI IN m

QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE	LeftWall
0.0000	0.27223E-01	15		
-0.30000	0.28513E-01	15		
-0.60000	0.29803E-01	15		
-0.90000	0.31094E-01	15		
-1.2000	0.32385E-01	15		
-1.5000	0.33677E-01	15		
-1.8000	0.34971E-01	15		
-2.0000	0.35835E-01	15		
-2.3000	0.37133E-01	15		
-2.6000	0.38432E-01	15		
-2.9000	0.39731E-01	15		
-3.2000	0.41029E-01	15		
-3.5000	0.42325E-01	15		
-3.8000	0.43618E-01	15		
-4.1000	0.44908E-01	15		
-4.4000	0.46195E-01	15		
-4.7000	0.47478E-01	15		
-5.0000	0.48758E-01	15		
-5.3000	0.50034E-01	15		
-5.6000	0.51305E-01	15		
-5.9000	0.52568E-01	15		
-6.2000	0.53820E-01	15		
-6.5000	0.55059E-01	15		
-6.8000	0.56285E-01	15		
-7.1000	0.57496E-01	15		
-7.4000	0.58690E-01	15		
-7.7000	0.59867E-01	15		
-8.0000	0.61027E-01	15		
	0.0000 -0.30000 -0.30000 -0.60000 -1.2000 -1.5000 -1.8000 -2.0000 -2.3000 -2.6000 -2.9000 -3.2000 -3.2000 -3.5000 -3.8000 -4.1000 -4.4000 -4.7000 -5.0000 -5.3000 -5.6000 -5.9000 -6.2000 -6.5000 -6.8000 -7.1000 -7.4000 -7.7000	0.0000 0.27223E-01 -0.30000 0.28513E-01 -0.60000 0.29803E-01 -0.90000 0.31094E-01 -1.2000 0.32385E-01 -1.5000 0.34971E-01 -1.8000 0.34971E-01 -2.0000 0.35835E-01 -2.3000 0.37133E-01 -2.9000 0.39731E-01 -3.2000 0.41029E-01 -3.5000 0.42325E-01 -3.8000 0.43618E-01 -4.1000 0.44908E-01 -4.7000 0.47478E-01 -5.3000 0.5034E-01 -5.9000 0.5034E-01 -5.9000 0.55059E-01 -5.9000 0.55059E-01 -6.2000 0.55059E-01 -6.8000 0.55059E-01 -7.1000 0.57496E-01 -7.4000 0.58690E-01 -7.7000 0.59867E-01	0.0000 0.27223E-01 15 -0.30000 0.28513E-01 15 -0.60000 0.29803E-01 15 -0.90000 0.31094E-01 15 -1.2000 0.32385E-01 15 -1.5000 0.34971E-01 15 -1.8000 0.34971E-01 15 -2.0000 0.35835E-01 15 -2.3000 0.37133E-01 15 -2.9000 0.39731E-01 15 -3.2000 0.41029E-01 15 -3.5000 0.43618E-01 15 -3.8000 0.43618E-01 15 -4.1000 0.44908E-01 15 -4.4000 0.46195E-01 15 -5.0000 0.48758E-01 15 -5.0000 0.5034E-01 15 -5.9000 0.51305E-01 15 -6.2000 0.53820E-01 15 -6.5000 0.55059E-01 15 -6.8000 0.57496E-01 15 -7.4000 0.59867E-01 15 <td>0.0000 0.27223E-01 15 -0.30000 0.28513E-01 15 -0.60000 0.29803E-01 15 -0.90000 0.31094E-01 15 -1.2000 0.32385E-01 15 -1.5000 0.33677E-01 15 -1.8000 0.34971E-01 15 -2.0000 0.35835E-01 15 -2.3000 0.37133E-01 15 -2.9000 0.39731E-01 15 -3.2000 0.41029E-01 15 -3.5000 0.42325E-01 15 -4.1000 0.44908E-01 15 -4.1000 0.44908E-01 15 -4.7000 0.47478E-01 15 -5.3000 0.5034E-01 15 -5.9000 0.51305E-01 15 -5.9000 0.55059E-01 15 -6.2000 0.55059E-01 15 -6.8000 0.55059E-01 15 -7.1000 0.57496E-01 15 -7.4000 0.58690E-01 15 -7.7000 0.59867E-01 15</td>	0.0000 0.27223E-01 15 -0.30000 0.28513E-01 15 -0.60000 0.29803E-01 15 -0.90000 0.31094E-01 15 -1.2000 0.32385E-01 15 -1.5000 0.33677E-01 15 -1.8000 0.34971E-01 15 -2.0000 0.35835E-01 15 -2.3000 0.37133E-01 15 -2.9000 0.39731E-01 15 -3.2000 0.41029E-01 15 -3.5000 0.42325E-01 15 -4.1000 0.44908E-01 15 -4.1000 0.44908E-01 15 -4.7000 0.47478E-01 15 -5.3000 0.5034E-01 15 -5.9000 0.51305E-01 15 -5.9000 0.55059E-01 15 -6.2000 0.55059E-01 15 -6.8000 0.55059E-01 15 -7.1000 0.57496E-01 15 -7.4000 0.58690E-01 15 -7.7000 0.59867E-01 15

Eurolink S.C.p.A. Pagina 226 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

29	-8.3000	0.62169E-01	15
30	-8.6000	0.63290E-01	15
31	-8.9000	0.64385E-01	15
32	-9.2000	0.65451E-01	15
33	-9.5000	0.66486E-01	15
34	-9.8000	0.67487E-01	15
35	-10.100	0.68451E-01	15
36	-10.400	0.69376E-01	15
37	-10.700	0.70262E-01	15
38	-11.000	0.71107E-01	15

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 25
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140

History	0 - PARATIA PALI	1200 i=140	
NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE PARETE LeftWall
39	-11.300	0.71911E-01	15
40	-11.500	0.72424E-01	15
41	-11.800	0.73158E-01	15
42	-12.100	0.73847E-01	15
43	-12.400	0.74487E-01	15
44	-12.700	0.75072E-01	15
45	-13.000	0.75602E-01	15
46	-13.300	0.76072E-01	15
47	-13.600	0.76481E-01	15
48	-13.900	0.76826E-01	15
49	-14.200	0.77108E-01	15
50	-14.500	0.77326E-01	15
51	-14.800	0.77478E-01	15
52	-15.100	0.77561E-01	15
53	-15.400	0.77571E-01	15
54	-15.700	0.77503E-01	15
55	-16.000	0.77356E-01	15
56	-16.300	0.77125E-01	15
57	-16.600	0.76810E-01	15
58	-16.900	0.76409E-01	15
59	-17.200	0.75922E-01	15
60	-17.500	0.75349E-01	15
61	-17.800	0.74689E-01	15
62	-18.100	0.73940E-01	15
63	-18.400	0.73101E-01	15
64	-18.700	0.72168E-01	15
65	-19.000	0.71140E-01	15
66	-19.300	0.70018E-01	15
67	-19.600	0.68802E-01	15
68	-19.900	0.67492E-01	15
69	-20.200	0.66090E-01	15
70	-20.500	0.64599E-01	15
71	-20.800	0.63022E-01	15
72	-21.100	0.61362E-01	15
73	-21.400	0.59623E-01	15
74	-21.700	0.57810E-01	15
75	-22.000	0.55927E-01	15
76	-22.300	0.53979E-01	15
77	-22.600	0.51972E-01	15
78	-22.900	0.49911E-01	15
79	-23.200	0.47801E-01	15
80	-23.500	0.45648E-01	15
81	-23.800	0.43457E-01	15
82	-24.100	0.41234E-01	15
83	-24.400	0.38984E-01	15
84	-24.700	0.36713E-01	15
PARATIE	7.00	Ce.A.S. s.r.l.	- Milano PAG. 26
17 SETT	EMBRE 2010 16:45:	54	

Eurolink S.C.p.A. Pagina 227 di 445

14

Α

-3.800

55.14

179.7

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
History 0 - PARATIA PALI 1200 i=140
NODO
       OUOTA ZETA
                     SPOSTAMENTO MASSIMO FASE PARETE LeftWall
         -25.000
                            0.34425E-01
                            0.32126E-01
86
         -25.300
                                          15
87
         -25.600
                           0.29819E-01
                                          1.5
88
         -25.900
                           0.27509E-01
                                          15
89
         -26.200
                            0.25199E-01
                                          15
90
         -26.500
                           0.22893E-01
                                          15
         -26.800
91
                           0.20593E-01
                                          15
92
         -27.100
                            0.18301E-01
                                          15
         -27.400
                           0.16018E-01
93
94
         -27.700
                            0.13745E-01
                                          15
                           0.11483E-01
9.5
         -28.000
                                          1.5
96
         -28.300
                           0.92291E-02
                                         1.5
97
         -28.600
                           0.69835E-02
                                          15
         -28.900
                           0.47444E-02
99
         -29.200
                           0.25100E-02
                                          15
100
          -29.500
                            0.19611E-02
                                          8
101
          -29.800
                            -0.19513E-02
102
          -30.000
                            -0.34377E-02
                                           15
PARATTE 7.00
                           Ce.A.S. s.r.l. - Milano
                                                              PAG. 27
17 SETTEMBRE 2010 16:45:54
History O - PARATIA PALI 1200 i=140
INVILUPPO AZIONI INTERNE NEGLI ELEMENTI DI PARETE
(PER UNITA' DI PROFONDITA')
* PARETE LeftWall GRUPPO Beam*
*STEP 1 - 15*
* I PASSI NON EQUILIBRATI SONO ESCLUSI *
Nella tabella si stampano i seguenti risultati:
MOMENTO SX = Momento che tende le fibre sulla faccia sinistra [kN*m/m]
MOMENTO DX = Momento che tende le fibre sulla faccia destra [kN*m/m]
          = forza tagliante (valore assoluto, priva di segno)[kN/m ]
TAGLIO
                  QUOTA MOMENTO SX MOMENTO DX
0.4366E-10 0.1455E-09 5.113
BEAM EL. ESTREMO
                          MOMENTO SX MOMENTO DX
    A 0. 0.4366E-10 0.1455E-09
-0.3000 1.534 0.1164E-09 5.113
   А
В
    A -0.3000
                    1.534
                            0.1746E-09 15.34
2
                            0.
В
    -0.6000 6.135
                                   15.34
    A -0.6000
3
                    6.135
                                          25.56
    -0.9000
             13.80
                                    25.56
                            0.
В
    A -0.9000 13.80
                                0.
                                          36.66
4
    -1.200 24.80
В
                            0.
                                    36.66
         -1.200
                    24.80
                                          48.61
5
    -1.500 39.39
                            0.
                                    48.61
В
         -1.500
                    39.39
                                 0.
6
    Α
                                          61.42
     -1.800 57.81
                            0.
В
                                    61.42
7
     A -1.800
                     57.81
                                  0.
                                          72.79
     -2.000
                           0.
               72.37
                                    72.79
В
                    72.37
     A -2.000
                                 0.
8
                                          126.5
     -2.300
                         24.51
В
              34.43
                                    126.5
9
     A -2.300
                    34.43
                            24.51
                                          119.2
                                  119.2
     -2.600 24.70
                        60.27
В
                      24.70
10
     A -2.600
                                60.27
                                          112.2
     -2.900 32.95
                                   112.2
В
                       93.92
11
     A -2.900
                      32.95
                                93.92
                                           104.3
     -3.200 40.91
                        125.2
В
                                   104.3
12
     A -3.200
                      40.91
                                125.2
                                           95.63
     -3.500
               48.36
                         153.9
                                   95.63
B
     A -3.500
13
                      48.36
                                153.9
                                           86.10
     -3.800 55.14
                     179.7
В
                                  86.10
```

Pagina 228 di 445 Eurolink S.C.p.A.

75.75

32

В 33

В

34

В

3.5

36

В

В

37

В

38

39

В 40

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

15 B 16	A -4.400 A -4.700	61.18 -4.100 66.45 -4.400 70.93 -4.700 74.64	61.18 221.8 66.45 237.6 70.93	202.5 64.56 221.8 52.53 237.6	52.53			
	,		Ce.A.	S. s.r.l	Milano		PAG.	28
		2010 16:45: ARATIA PALI		0				
півс)	AKAIIA PALI	1200 1-14	U				
BEAM	EL. ES'	TREMO QUO	OTA MOME	NTO SX MOME	NTO DX	TAGLIO		
		-5.000			236.5			
В	-5.300	77.62	315.1	236.5				
19	Α .	-5.300 79.92	77.62	315.1	213.2			
В	-5.600	79.92	376.4	213.2				
	A	-5.600	79.92	376.4	191.2			
В	-5.900	81.55 -5.900	433.1	191.2				
21	A	-5.900	81.55	433.1	175.0			
В	-6.200	82.54	484.9	175.0				
22	Α .	-6.200	82.54	484.9	158.0			
В	-6.500	82.93 -6.500	531.6	158.0	1 40 1			
					140.1			
B 24	-6.800	82.73	3/2.8	140.1	101 4			
	A 100	-6.800 82.01	600 /	121 /	121.4			
25	-7.100	-7.100	82 01	608 4	101.9			
В	-7 400	80 79	637 9	101 9				
26	Α	80.79 -7.400	80.79	637.9	81.48			
В		79.12			01.10			
27		-7.700			75.43			
В	-8.000	77.06	677.5	75.43				
28	A	-8.000	77.06	677.5	355.6			
В	-8.300	74.64	754.3 74.64	355.6				
29	Α .	-8.300	74.64	754.3	323.9			
		71.92	823.8	323.9				
30	A	-8.600	71.92	823.8	291.3			
В	-8.900	68.93	889.2	291.3				
		-8.900			257.9			
B		65.73			000 7			

18 1075. 1121.

A -9.500 62.35 1021. A -9.500 62.35 1021. A -9.500 62.35 1021. -9.800 58.83 1075. 188. A -9.800 58.83 1075. -10.10 55.22 1121. 153.

A -10.10 55.22 1121. -10.40 51.55 1158. 12

A -10.40 51.55 1158. -10.70 47.85 1186. 96. A -10.70 47.85 1186. -11.00 44.14 1205. 111

A -11.00 44.14 1205. -11.30 40.46 1215. 147

A -11.30 40.46 1215. -11.50 38.04 1216. 17 A -11.50 38.04 1216.

1307.

223.7

188.6

153.1

96.46

111.7

147.1

177.3

394.8

125.2

223.7

188.6

153.1

125.2

96.46

111.7

147.1

177.3

394.8

Ce.A.S. s.r.l. - Milano PARATIE 7.00 PAG. 29 17 SETTEMBRE 2010 16:45:54

History O - PARATIA PALI 1200 i=140

-11.80 34.45

Eurolink S.C.p.A. Pagina 229 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

BEAM EI	L. ES	STREMO QU	OTA MOME	NTO SX MOME	NTO DX	TAGLIO		
		-11.80		1307.	353.3			
42	A	30.95 -12.10	30.95	1387.	310.9			
	-12.40 A	27.54 -12.40			267.8			
	-12.70			267.8	223.7			
В -	A -13.00	21.26	1562.	1514. 223.7				
	A -13.30	-13.00 21.61		1562. 229.5	229.5			
	A -13.60	-13.30 21.72	21.61 1621.	1597. 236.7	236.7			
47	A	-13.60	21.72	1621.	239.0			
	-13.90 A	30.37 -13.90		239.0 1635.	236.2			
	-14.20 A	37.94 -14.20		236.2 1641.	228.6			
В -	-14.50	44.45	1636.	228.6				
	A -14.80	-14.50 49.98	44.45 1759.	1636. 414.1	414.1			
	A -15.10	-14.80 54.60	49.98 1868.	1759. 364.3	364.3			
52	A	-15.10	54.60	1868.	313.5			
	-15.40 A	58.39 -15.40		313.5 1963.	276.5			
	-15.70 A	61.42 -15.70	2041. 61.42	276.5 2041.	302.0			
В -	-16.00	84.41	2104.	302.0				
	A -16.30	-16.00 122.6		2104. 322.5	322.5			
	A -16.60	-16.30 156.3	122.6 2182.	2151. 338.1	338.1			
57	A	-16.60	156.3	2182.	348.7			
		185.6 -16.90	2196. 185.6	348.7 2196.	354.3			
	-17.20 A	210.9 -17.20	2193. 210.9	354.3 2193.	355.0			
В -	-17.50	232.3	2174.	355.0				
	A -17.80	-17.50 250.2	232.3 2257.	2174. 350.7	350.7			
	A -18.10	-17.80 264.8	250.2 2322.	2257. 341.5	341.5			
62	A	-18.10	264.8	2322.	327.2			
63		-18.40	276.3	2370.	330.0			
В -	-18.70	285.0	2399.	330.0				
PARATIE	7 00		Ce A	S. s.r.l	Milano		PAG.	30
17 SETT	TEMBRE	2010 16:45:	54		milano		IAG.	50
History	70 – E	PARATIA PALI	1200 i=14	0				
BEAM EI	L. ES	STREMO QU	OTA MOME	NTO SX MOME	NTO DX	TAGLIO		
		-18.70			363.8			
		291.0 -19.00		2410.	392.7			
	-19.30 A	294.6 -19.30	2403. 294.6		416.6			
В -	-19.60	305.9	2378.	416.6	435.6			
В -	-19.90	362.9	2333.	435.6				
68	A	-19.90	362.9	2333.	449.6			

Pagina 230 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

В	-20.20	411.0	2270.	449.6	
69	A	411.0 -20.20	411.0	2270.	458.6
В	-20.50	450.9	2193.	458.6	
70	A	-20.50	450.9	2193.	462.7
В	-20.80	483.1	2103.	462.7	
71	A	-20.80	483.1	2103.	461.7
В	-21.10	508.3	2002.	461.7	
72	A	-21.10	508.3	2002.	455.9
В	-21.40	526.8	1891.	455.9	
73	A	-21.40	526.8	1891.	445.0
В	-21.70	539.3	1772.	445.0	
74	A	-21.70	539.3	1772.	429.2
		546.2	1645.	429.2	
	A			1645.	440.9
			1513.	440.9	
	A				454.8
	-22.60		1377.		
	A				464.5
	-22.90		1237.		
	A	-22.90			469.6
	-23.20		1096.	469.6	
	A	-23.20			470.1
	-23.50		955.4		
	A	-23.50			465.9
	-23.80	541.1			
	A	-23.80			457.1
	-24.10		678.5		
82	A	-24.10	594.9		443.6
	-24.40	632.1		443.6	
83	Α	-24.40	632.1		425.5
	-24.70		417.8	425.5	
84	A		653.9		402.8
		661.9	296.9		
85	A				375.5
		657.5	184.3		242 =
86	A		657.5	184.3	343.5
В	-25.60	642.0	81.23	343.5	

Eurolink S.C.p.A. Pagina 231 di 445

PARATIE 7.00

Ce.A.S. s.r.l. - Milano

PROGETTO DEFINITIVO

PAG. 31

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

17 SETTEMBRE History 0 -	2010 16:45		. s.r.1 Milan	0	PAG.	31
BEAM EL. E	STREMO Ç	UOTA MOMENT	TO SX MOMENTO DX	TAGLIO		
B -25.90 88 A B -26.20 89 A B -26.50 90 A B -26.80 91 A B -27.10 92 A B -27.40 93 A B -27.70 94 A B -28.00 95 A B -28.30 96 A B -28.60 97 A B -28.90 98 A B -29.20 99 A B -29.20 100 A B -29.80	616.8 -25.90 583.3 -26.20 542.7 -26.50 496.2 -26.80 445.1 -27.10 390.4 -27.40 333.4 -27.70 -28.00 216.5 -28.30 165.0 -28.60 120.9 -28.90 75.63 -29.20 34.49 -29.50 6.253 -29.80 0.1164	0. 616.8 0. 583.3 0. 542.7 0. 496.2 0. 445.1 0. 390.4 0. 275.0 0. 216.5 0. 165.0 120.9 0. 75.63 0. 34.49 0. 6.253 E-09 0.1019E-0	0. 265.6	3		
PARATIE 7.00 17 SETTEMBRE			. s.r.l Milan	0	PAG.	32
_		I 1200 i=140		m		
TIRANTE t FASE 1 inat FASE 2 inat FASE 3 FORZ. FASE 4 FORZ. FASE 5 FORZ. FASE 6 FORZ. FASE 7 FORZ. FASE 8 FORZ. FASE 8 FORZ. FASE 10 FORZ. FASE 11 FORZ. FASE 11 FORZ. FASE 12 FORZ. FASE 12 FORZ. FASE 14 FORZ. FASE 15 FORZ. FASE 15 FORZ.	1 tivo tivo A 140.00 A 140.89 A 139.73 A 141.18 A 140.81 A 144.90 A 145.24 A 148.00 A 148.02 A 147.69 A 148.10 A 146.13 A 214.36	1 PARETI kN/m kN/m kN/m kN/m kN/m kN/m kN/m kN/m	ITA' DI PROFONDI E LeftWall E LeftWall		-2.0000 -5.0000	

Pagina 232 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
\$\$0328_F0.doc_F0

Rev F0

20/06/2011

Data

```
FASE 1 inattivo
FASE 2 inattivo
FASE 3 inattivo
FASE 4 inattivo
FASE 5 FORZA 160.00
                              kN/m
                165.57
164.09
FASE 6 FORZA
FASE 7 FORZA
                              kN/m
                              kN/m
FASE 8 FORZA
                179.77
                              kN/m
FASE 9 FORZA
                 179.10
                              kN/m
                195.41
FASE 10 FORZA
                              kN/m
                195.79
FASE 11 FORZA
                              kN/m
FASE 12 FORZA
                 210.01
                              kN/m
FASE 13 FORZA
                210.40
                              kN/m
FASE 14 FORZA
                 216.02
                              kN/m
                302.49
FASE 15 FORZA
                              kN/m
TIRANTE
                               1 PARETE LeftWall
                                                            QUOTA -8.0000
FASE 1 inattivo
FASE 2 inattivo
FASE 3 inattivo
FASE 4 inattivo
FASE 5 inattivo
FASE 6 inattivo
FASE 7 FORZA 160.00
FASE 8 FORZA 192.39
                              kN/m
                              kN/m
FASE 9 FORZA 189.80
                              kN/m
PARATIE 7.00
                                Ce.A.S. s.r.l. - Milano
                                                                          PAG. 33
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
                 228.56
FASE 10 FORZA
                               kN/m
FASE 11 FORZA
                227.64
                               kN/m
FASE 12 FORZA
                 269.55
                               kN/m
FASE 13 FORZA
                269.64
                              kN/m
FASE 14 FORZA
                 290.27
                              kN/m
FASE 15 FORZA
                395.87
                              kN/m
TIRANTE
                               1 PARETE LeftWall
                                                            QUOTA -11.500
           t4
FASE 1 inattivo
FASE 2 inattivo
FASE 3 inattivo
FASE 4 inattivo
FASE 5 inattivo
FASE 6 inattivo
FASE 7 inattivo
FASE 8 inattivo
FASE 9 FORZA 200.00
                              kN/m
FASE 10 FORZA 258.80
FASE 11 FORZA 255.75
                              kN/m
                              kN/m
FASE 12 FORZA
               329.60
                               kN/m
FASE 13 FORZA
                 328.63
                              kN/m
                370.42
FASE 14 FORZA
                              kN/m
FASE 15 FORZA
                468.57
                              kN/m
TIRANTE
                               1 PARETE LeftWall
                                                            QUOTA -14.500
FASE 1 inattivo
FASE 2 inattivo
FASE 3 inattivo
FASE 4 inattivo
FASE 5 inattivo
FASE 6 inattivo
FASE 7 inattivo
FASE 8 inattivo
FASE 9 inattivo
```

Eurolink S.C.p.A. Pagina 233 di 445

FASE 10 inattivo

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

```
FASE 11 FORZA
               200.00
                            kN/m
              311.34
FASE 12 FORZA
                            kN/m
FASE 13 FORZA
                308.63
                            kN/m
FASE 14 FORZA 380.14
                            kN/m
FASE 15 FORZA
               479.37
                            kN/m
TIRANTE t6
                            1 PARETE LeftWall
                                                      OUOTA -17.500
FASE 1 inattivo
FASE 2 inattivo
FASE 3 inattivo
FASE 4 inattivo
FASE 5 inattivo
PARATTE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                    PAG. 34
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
FASE 6 inattivo
FASE 7 inattivo
FASE 8 inattivo
FASE
     9 inattivo
FASE 10 inattivo
FASE 11 inattivo
FASE 12 inattivo
FASE 13 FORZA 180.00
                            kN/m
FASE 14 FORZA 298.49
FASE 15 FORZA 404.51
                            kN/m
                            kN/m
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                     PAG. 35
17 SETTEMBRE 2010 16:45:54
History 0 - PARATIA PALI 1200 i=140
INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO
* PARETE LeftWall GRUPPO UHLeft*
*STEP 1 - 15*
* I PASSI NON EQUILIBRATI SONO ESCLUSI *
Nella tabella si stampano i seguenti risultati:
SIGMA-H = massimo sforzo orizzontale efficace [kPa
TAGLIO = massimo sforzo di taglio
                                                ſkPa
PR. ACQUA =massima pressione interstiziale
GRAD. MAX =massimo gradiente idraulico
              TA SIGMA-H TAGLIO PR. ACQUA 3.843 5.000
SOIL EL. QUOTA
                                                      GRAD. MAX
                                    0.
     0.
2 -0.3000
               28.64
                         6.813
                                       0.
                                                   0.
3 -0.6000
               30.34
                         8.272
                                                   0.
                        9.732
4 -0.9000
               30.21
                                                   0.
                        11.19
12.65
14.11
5 -1.200
               34.24
                                       0.
                                                   Ο.
6 -1.500
               37.40
                                       0.
                                                   0.
  -1.800
              39.87
                                      0.
                                                   0.
8 -2.000
              41.18
                          15.08
                                       0.
                                                   0.
                         16.54
             42.74
9 -2.300
                                                  0.
                                       0.
                          18.29
              44.79
46.68
10 -2.600
                                        0.
                                                   0.
11 -2.900
12 -3.200
             46.68
48.31
50 00
                           20.04
                                        0.
                                                   0.
                          21.79
                                       0.
13 -3.500
                           23.55
                                        0.
                                                   0.
              52.59
14 -3.800
                          25.30
                                       0.
                                                   0.
15 -4.100
              55.06
                          27.06
                                       0.
                                                  0.
                                        0.
   -4.400
               57.43
                           28.81
                                                   0.
17 -4.700
             59.70
                          30.57
                                       0.
                                                   0.
           61.86
63.90
65.84
                                      0.
0.
18 -5.000
                           32.32
                                                   0.
19 -5.300
                           34.08
                                                   0.
20 -5.600
                         35.83
                                      0.
21 -5.900
               68.63
                          37.59
                                       0.
```

Pagina 234 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

22	-6.200	71.46	39.34	0.	0.
23	-6.500	74.24	41.10	0.	0.
24	-6.800	77.02	42.85	0.	0.
25	-7.100	79.75	44.60	0.	0.
26	-7.400	82.41	46.36	0.	0.
27	-7.700	85.12	48.11	0.	0.
28	-8.000	88.00	49.87	0.	0.
29	-8.300	91.29	51.62	0.	0.
30	-8.600	94.52	53.38	0.	0.
31	-8.900	97.69	55.13	0.	0.
32	-9.200	100.8	56.89	0.	0.
33	-9.500	103.9	58.64	0.	0.
34	-9.800	106.9	60.40	0.	0.
35	-10.10	109.8	62.15	0.	0.

Ce.A.S. s.r.l. - Milano
17 SETTEMBRE 2010 16:45:54
History 0 - Dapare PAG. 36

History 0 - PARATIA PALI 1200 i=140

SOI	L EL.	QUOTA	SIGMA-H	TAGLIO PR	R. ACQUA	GRAD.	MAX
36	-10.40	112.7	63.91	0.	0.		
37	-10.70	115.5	65.66	0.	0.		
38	-11.00	118.2	67.41	0.	0.		
39	-11.30	120.8	69.17	0.	0.		
40	-11.50	122.4	70.34	0.	0.		
41	-11.80	125.3	72.09	0.	0.		
42	-12.10	128.5	73.85	0.	0.		
43	-12.40	131.5	75.60	0.	0.		
44	-12.70	134.5	77.36	0.	0.		
45	-13.00	137.5	79.11	0.	0.		
46	-13.30	140.3	80.87	0.	0.		
47	-13.60	143.1	82.62	0.	0.		
48	-13.90	145.8	84.38	0.	0.		
49	-14.20	148.3	86.13	0.	0.		
50	-14.50	150.8	87.89	0.	0.		
51	-14.80	153.2	89.64	0.	0.		
52	-15.10	155.4	91.39	0.	0.		
53	-15.40	158.3	93.15	0.	0.		
54	-15.70	161.2	94.90	0.	0.		
55	-16.00	164.1	96.66	0.	0.		
56	-16.30	166.9	98.41	0.	0.		
57	-16.60	169.6	100.2	0.	0.		
58	-16.90	172.2	101.9	0.	0.		
59	-17.20	174.7	103.7	0.	0.		
60	-17.50	177.2	105.4	0.	0.		
61	-17.80	179.5	107.2	0.	0.		
62	-18.10	181.8	108.9	0.	0.		
63	-18.40	183.9	110.7	0.	0.		
64	-18.70	186.0	112.5	0. 0.	0.		
65 66	-19.00 -19.30	188.0 190.1	114.2 116.0	0.	0.		
67	-19.60	190.1	117.7	0.	0.		
68	-19.80	194.1	119.5	0.	0.		
69	-20.20	196.1	121.2	0.	0.		
70	-20.50	198.0	123.0	0.	0.		
71	-20.80	200.0	124.7	0.	0.		
72	-21.10	202.1	126.5	0.	0.		
73	-21.40	204.1	128.2	0.	0.		
74	-21.70	206.2	130.0	0.	0.		
75	-22.00	208.3	131.8	0.	0.		
76	-22.30	210.4	133.5	0.	0.		
77	-22.60	212.6	135.3	0.	0.		
78	-22.90	214.8	137.0	0.	0.		
79	-23.20	217.1	138.8	0.	0.		

Eurolink S.C.p.A. Pagina 235 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

80 -23.50 81 -23.80		140.5 142.3	0. 0.	0. 0.		
PARATIE 7.00 17 SETTEMBRE 2 History 0 - PA			. s.r.l	Milano	PAG.	37
SOIL EL. QUO	OTA SIG	GMA-H TAG	LIO PR. A	.CQUA GRAD. MAX		
82 -24.10 83 -24.40 84 -24.70 85 -25.00 86 -25.30 87 -25.60 88 -25.90 89 -26.20 90 -26.50 91 -26.80 92 -27.10 93 -27.40 94 -27.70 95 -28.00 96 -28.30 97 -28.60 98 -28.90 99 -29.20 100 -29.50 101 -29.80 102 -30.00	224.3 226.8 229.2 231.8 234.4 237.1 239.9 242.6 245.4 248.2 251.1 254.1 257.2 260.3 263.7 271.0 285.7 304.8 325.3 364.8 402.7	144.0 145.8 147.5 149.3 151.1 152.8 154.6 156.3 158.1 159.8 161.6 163.3 165.1 166.8 168.6 170.4 172.1 173.9 175.6 177.4 178.5				
PARATIE 7.00 17 SETTEMBRE 2 History 0 - PA		54	. s.r.l	Milano	PAG.	38
INVILUPPO RISU * PARETE LeftW *STEP 1 - * I PASSI NON Nella tabella SIGMA-H = mas TAGLIO = mas PR. ACQUA = mas GRAD. MAX = mas	JLTATI NEGLI Nall GRUPPO 15* EQUILIBRATI si stampano ssimo sforzo ssimo sforzo ssima pressi	ELEMENTI TI DHLeft* SONO ESCLUS i seguenti orizzontalo di taglio one interst	SI * risultati: e efficace iziale	[kPa] [kPa]		
SOIL EL. QUO 1	3.843 6.034 8.225 10.42 12.61 14.80 16.99 18.45 20.64 22.83 29.32 34.75 39.07 42.74 45.95 48.82 51.44 53.81		LIO PR. A 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	O. O. O. O. O. O. O. O. O. O. O. O. O. O		

Pagina 236 di 445 Eurolink S.C.p.A.

Data

20/06/2011

F0

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento Rev SS0328_F0.doc_F0

20	-5.600	58.57	35.83	0.	0.
21	-5.900	61.11	37.59	0.	0.
22	-6.200	63.56	39.34	0.	0.
23	-6.500	65.95	41.10	0.	0.
24	-6.800	68.28	42.85	0.	0.
25	-7.100	70.58	44.60	0.	0.
26	-7.400	73.63	46.36	0.	0.
27	-7.700	76.81	48.11	0.	0.
28	-8.000	79.87	49.87	0.	0.
29	-8.300	82.82	51.62	0.	0.
30	-8.600	85.68	53.38	0.	0.
31	-8.900	88.46	55.13	0.	0.
32	-9.200	91.17	56.89	0.	0.
33	-9.500	93.82	58.64	0.	0.
34	-9.800	98.52	60.40	0.	0.
35	-10.10	111.0	62.15	0.	0.

Ce.A.S. s.r.l. - Milano
17 SETTEMBRE 2010 16:45:54
History 0 - Dadamer -PAG. 39

History 0 - PARATIA PALI 1200 i=140

SOI	L EL.	QUOTA	SIGMA-H	TAGLIO P	PR. ACQUA	GRAD.	MAX
36	-10.40	113.9	63.91	0.	0.		
37	-10.70	116.6	65.66	0.	0.		
38 39	-11.00 -11.30	119.3 121.8	67.41 69.17	0. 0.	0.		
40	-11.50	123.4	70.34	0.	0.		
41	-11.80	125.8	72.09	0.	0.		
42	-12.10	128.1	73.85	0.	0.		
43	-12.40	130.3	75.60	0.	0.		
44	-12.70	132.4	77.36	0.	0.		
45	-13.00	134.5	79.11	0.	0.		
46	-13.30	136.6	80.87	0.	0.		
47	-13.60	138.6	82.62	0.	0.		
48	-13.90	140.7	84.38	0.	0.		
49	-14.20	156.5	86.13	0.	0.		
50	-14.50	175.8	87.89	0.	0.		
51 52	-14.80 -15.10	195.2 203.0	89.64 91.39	0.	0.		
53	-15.10	202.8	93.15	0.	0.		
54	-15.70	202.4	94.90	0.	0.		
55	-16.00	202.0	96.66	0.	0.		
56	-16.30	201.5	98.41	0.	0.		
57	-16.60	201.1	100.2	0.	0.		
58	-16.90	201.1	101.9	0.	0.		
59	-17.20	201.1	103.7	0.	0.		
60	-17.50	201.1	105.4	0.	0.		
61	-17.80	201.2	107.2	0.	0.		
62	-18.10	214.5	108.9	0.	0.		
63	-18.40	233.9	110.7	0.	0.		
64 65	-18.70 -19.00	253.2 272.5	112.5 114.2	0.	0.		
66	-19.30	289.8	116.0	0.	0.		
67	-19.60	285.8	117.7	0.	0.		
68	-19.90	281.9	119.5	0.	0.		
69	-20.20	278.1	121.2	0.	0.		
70	-20.50	274.5	123.0	0.	0.		
71	-20.80	271.2	124.7	0.	0.		
72	-21.10	268.0	126.5	0.	0.		
73	-21.40	265.1	128.2	0.	0.		
74	-21.70	262.3	130.0	0.	0.		
75 76	-22.00	272.5	131.8	0.	0.		
76 77	-22.30 -22.60	291.9 311.2	133.5 135.3	0.	0.		
1 1	-22.00	311.2	133.3	0.	0.		

Eurolink S.C.p.A. Pagina 237 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento Rev Data SS0328 F0.doc F0 20/06/2011 F0

78	-22.90	330.5	137.0	0.	0.
79	-23.20	349.9	138.8	0.	0.
80	-23.50	369.2	140.5	0.	0.
81	-23.80	388.5	142.3	0.	0.

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 40

17 SETTEMBRE 2010 16:45:54

History 0 - PARATIA PALI 1200 i=140

SOII	L EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD.	MAX
82	-24.10	407.9	146.0	0.	0.		
83	-24.40	396.2	145.8	0.	0.		
84	-24.70	382.3	147.5	0.	0.		
85	-25.00	369.1	149.3	0.	0.		
86	-25.30	356.4	151.1	0.	0.		
87	-25.60	375.6	152.8	0.	0.		
88	-25.90	395.0	154.6	0.	0.		
89	-26.20	414.3	156.3	0.	0.		
90	-26.50	433.6	158.1	0.	0.		
91	-26.80	453.0	161.9	0.	0.		
92	-27.10	446.0	161.6	0.	0.		
93	-27.40	464.2	163.3	0.	0.		
94	-27.70	430.7	165.1	0.	0.		
95	-28.00		166.8	0.	0.		
	-28.30		168.6		0.		
97	-28.60		170.4		0.		
98	-28.90	277.0	172.1	0.	0.		
99	-29.20				0.		
100	-29.50						
101							
102	-30.00						

PAG. 41 PARATTE 7.00 Ce.A.S. s.r.l. - Milano

17 SETTEMBRE 2010 16:45:54

History 0 - PARATIA PALI 1200 i=140

RIASSUNTO SPINTE NEGLI ELEMENTI TERRENO

(LE SPINTE SONO CALCOLATE INTEGRANDO GLI SFORZI NEI SINGOLI ELEMENTI MOLLA)

= Integrale delle pressioni orizzontali efficaci SPINTA EFFICACE VERA in tutti gli elementi nel gruppo: unita' di

misura kN/m

SPINTA ACQUA = Integrale delle pressioni interstiziali in tutti

gli elementi nel gruppo: unita' di misura kN/m

SPINTA TOTALE VERA = Somma della SPINTA EFFICACE e della SPINTA

DELL'ACQUA: e' l' azione totale sulla parete:

unita' di misura kN/m

SPINTA ATTIVA POSSIBILE = La minima spinta che puo' essere esercitata da

questo gruppo di elementi terreno, in questa

fase: unita' di misura kN/m

SPINTA PASSIVA POSSIBILE = La massima spinta che puo' essere esercitata da questo gruppo di elementi terreno, in questa

fase: unita' di misura kN/m

RAPPORTO PASSIVA/VERA = e' il rapporto tra la massima spinta possibile e la spinta efficace vera: fornisce un'indicazione

su quanta spinta passiva venga mobilitata;

SPINTA PASSIVA MOBILITATA = e' l'inverso del rapporto precedente, espresso

in unita' percentuale: indica quanta parte della

massima spinta possibile e' stata mobilitata;
RAPPORTO VERA/ATTIVA = e' il rapporto tra la spinta efficace vera e la minima spinta possibile: fornisce un'indicazione

di quanto questa porzione di terreno sia

Pagina 238 di 445 Eurolink S.C.p.A.

42

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

prossima alla condizione di massimo rilascio.

FASE	1	GRUPPO>	UHLe	DHLe		
SPINTA SPINTA SPINTA SPINTA SPINTA RAPPORT SPINTA RAPPORT	EFFICACE V ACQUA TOTALE VER ATTIVA (P PASSIVA (P TO PASSIVA PASSIVA MO TO VERA/AT	ERA A OSSIBILE) OSSIBILE) /VERA BILITATA TIVA (3401.4 0. 3401.4 4151.2 30461. 8.9555 11.% 0.81937	3401.4 0. 3401.4 4151.2 30461. 8.9555 11.* 0.81937		
PARATIE 17 SETT History	E 7.00 TEMBRE 2010 7 0 - PARAT	16:45:54 IA PALI 1200	Ce.A.S. i=140	s.r.l M	ilano	PAG.
FASE	2	GRUPPO>	UHLe	DHLe		
SPINTA SPINTA SPINTA SPINTA SPINTA RAPPORT SPINTA RAPPORT	EFFICACE V ACQUA TOTALE VER ATTIVA (P PASSIVA (P TO PASSIVA PASSIVA MO TO VERA/AT	ERA A OSSIBILE) OSSIBILE) /VERA BILITATA TIVA	4152.2 0. 4152.2 4151.2 30461. 7.3362 14.% 1.0002	4152.1 0. 4152.1 3354.1 24776. 5.9670 17.% 1.2379		
FASE	3	GRUPPO>	UHLe	DHLe		
SPINTA SPINTA SPINTA SPINTA SPINTA RAPPORT SPINTA RAPPORT	EFFICACE V ACQUA TOTALE VER ATTIVA (P PASSIVA (P TO PASSIVA PASSIVA MO TO VERA/AT	ERA A OSSIBILE) OSSIBILE) /VERA BILITATA TIVA	4250.3 0. 4250.3 4151.2 30461. 7.1669 14.% 1.0239	4112.4 0. 4112.4 3354.1 24776. 6.0247 17.% 1.2261		
FASE	4	GRUPPO>	UHLe	DHLe		
SPINTA SPINTA SPINTA SPINTA RAPPORT SPINTA	ACQUA TOTALE VER ATTIVA (P PASSIVA (P TO PASSIVA PASSIVA MO	ERA A OSSIBILE) OSSIBILE) /VERA BILITATA TIVA	0. 4178.0 4151.2 30461. 7.2908 14.%	0. 4039.3 2647.6 19705. 4.8783 20.%		
FASE	5	GRUPPO>	UHLe	DHLe		
SPINTA SPINTA SPINTA SPINTA RAPPORT	ACQUA TOTALE VER ATTIVA (P PASSIVA (P O PASSIVA	OSSIBILE) OSSIBILE)	0. 4297.4 4151.2 30461. 7.0883	0. 4002.2 2647.6 19705. 4.9235		

Eurolink S.C.p.A. Pagina 239 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

PARATIE 7.00	Ce.A.S.	s.r.l Milano	PAG. 43
17 SETTEMBRE 2010 16:45:54 History 0 - PARATIA PALI 12			
FASE 6 GRUPPO	> UHLe	DHLe	
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA			
SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE)	4183.8 4151.2	3881.7 2024.6	
SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA	30461. 7.2807	15214. 3.9193	
RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	14.%	26.%	
MATTORIO VERM/ATTIVA	1.0075	1.9173	
FASE 7 GRUPPO	> UHLe	DHLe	
SPINTA EFFICACE VERA	4302.2	3844.3	
SPINTA ACQUA SPINTA TOTALE VERA	4302.2	3844.3	
SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE)	4151.2	2024.6	
SPINTA PASSIVA (POSSIBILE)	30461.	15214.	
RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1.0804	3.95/4	
RAPPORTO VERA/ATTIVA	1 0364	1 8988	
Tull Tokilo VEItil, III I I VII	1.0001	1.0300	
FASE 8 GRUPPO			
SPINTA EFFICACE VERA	4164.3	3654.8	
SPINTA ACQUA SPINTA TOTALE VERA	U. 4164 3	0. 3654.8	
SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE)	4151 2	1403 2	
SPINTA PASSIVA (POSSIBILE)	30461.	10707.	
RAPPORTO PASSIVA/VERA	7.3148	2.9296	
SPINTA PASSIVA MOBILITATA	14.%	34.%	
SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1.0031	2.6046	
FASE 9 GRUPPO	N IIIII O	Duio	
SPINTA EFFICACE VERA SPINTA ACQUA	4309.6 0.	3606.6 0.	
SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE)	4309.6	3606.6	
SPINTA ATTIVA (POSSIBILE)	4151.2	1403.2	
SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA	30461.	10707.	
RAPPORTO PASSIVA/VERA	7.0682	2.9687	
SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	1 0391	2 5702	
NATIONIO VENA/ATTIVA	1.0301	2.3702	
PARATIE 7.00	Ce.A.S.	s.r.l Milano	PAG. 44
17 SETTEMBRE 2010 16:45:54 History 0 - PARATIA PALI 12			
FASE 10 GRUPPO	> UHLe	DHLe	
SPINTA EFFICACE VERA			
CDINTA ACOIIA	0	Λ	
SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE)	4177.9	3359.7	
SPINTA ATTIVA (POSSIBILE)	4151.2	961.05	
SPINTA PASSIVA (POSSIBILE)	JU401.	7472.8	

Pagina 240 di 445 Eurolink S.C.p.A.

SPINTA PASSIVA MOBILITATA

PROGETTO DEFINITIVO

Rev

F0

Data

20/06/2011

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

7.2911 RAPPORTO PASSIVA/VERA 2.2243 SPINTA PASSIVA MOBILITATA 14.8 45.8 3.4959 1.0064 RAPPORTO VERA/ATTIVA GRUPPO --> UHLe FASE 11 DHLe

 SPINTA EFFICACE VERA
 4326.2
 3313.8

 SPINTA ACQUA
 0.
 0.

 SPINTA TOTALE VERA
 4326.2
 3313.8

 SPINTA ATTIVA (POSSIBILE)
 4151.2
 961.05

 SPINTA PASSIVA (POSSIBILE)
 30461.
 7472.8

 RAPPORTO PASSIVA/VERA
 7.0411
 2.2551

 COLNEAR PASSIVA MORTITATA
 14.8
 44.9

 SPINTA PASSIVA MOBILITATA 14.% 44.% 3.4481 1.0421 RAPPORTO VERA/ATTIVA FASE 12 GRUPPO --> UHLe DHLe 2975.6 SPINTA EFFICACE VERA 4224.7
SPINTA ACQUA 0.
SPINTA TOTALE VERA 4224.7
SPINTA ATTIVA (POSSIBILE) 4151.2 0. U.
1224.7 2975.6
1151.2 602.30
30461. 4818.4
7.2102 1.6193
14.% 62.%
1.0177 4.9405 SPINTA PASSIVA (POSSIBILE) 30461. 7.2102 RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA 62.% RAPPORTO VERA/ATTIVA 1.0177 FASE 13 GRUPPO --> UHLe DHLe 4355.2 2932.0 0. 0. 4355.2 2932.0 4151.2 602.30 30461. 4818.4 6.9942 1.6434 SPINTA EFFICACE VERA SPINTA ACQUA 0.
SPINTA TOTALE VERA 4355.2
SPINTA ATTIVA (POSSIBILE) 4151.2
SPINTA PASSIVA (POSSIBILE) 30461. SPINTA ACQUA RAPPORTO PASSIVA/VERA 6.9942 1.6434 4.8680 SPINTA PASSIVA MOBILITATA 14.% 61.8 1.0491 RAPPORTO VERA/ATTIVA PARATTE 7.00 Ce.A.S. s.r.l. - Milano PAG. 45 17 SETTEMBRE 2010 16:45:54 History 0 - PARATIA PALI 1200 i=140 GRUPPO --> UHLe FASE 14 DHT.e ERA 4225.8 0. A 4225.8 OSSIBILE) 4151.2 SPINTA EFFICACE VERA 2550.2 SPINTA ACQUA 0. 2550.2 SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) 409.49 SPINTA PASSIVA (POSSIBILE) 30461. 3369.6 7.2084 RAPPORTO PASSIVA/VERA 1.3214 SPINTA PASSIVA MOBILITATA 14.% 76.8 RAPPORTO VERA/ATTIVA 1.0180 6.2276 FASE 15 GRUPPO --> UHLe DHLe SPINTA EFFICACE VERA 4071.1
SPINTA ACQUA 0.
SPINTA TOTALE VERA 4071.1 2519.9 0. 2519.9 411.28 3183.0 SPINTA ATTIVA (POSSIBILE) 4023.2 SPINTA PASSIVA (POSSIBILE) 27789. 6.8261 RAPPORTO PASSIVA/VERA 1.2632

15.%

Eurolink S.C.p.A. Pagina 241 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

RAPPORTO VERA/ATTIVA 1.0119

6.1270

12.2 Output paratia H=17m

12.2.1 **COMBINAZIONE E1+E2**

```
PARATIE 7.00
                           Ce.A.S. s.r.l. - Milano
                                                               PAG. 1
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
             ************
             * *
             * *
                       P A R A T I E
                       RELEASE 7.00 VERSIONE WIN
             ** Ce.A.S. s.r.l. - Viale Giustiniano, 10
                                20129 MILANO
             **********
 JOBNAME Y:\ELABORATI\LAVORO\382.01 PONTE SULLO STRETTO\ING\CALCOLI\PALI H=1
                       28 SETTEMBRE 2010 17:32:55
PARATTE 7.00
                                                               PAG. 2
                            Ce.A.S. s.r.l. - Milano
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
                   ELENCO DEI DATI DI INPUT (PARAGEN)
                   Per il significato dei vari comandi
                   si faccia riferimento al manuale di
                   input PARAGEN, versione 7.00.
 N. comando
  1: * Paratie for Windows version 7.0
  2: * Filename= <c:\lavori\ponte\calcoli\pali h=17.0m (gm)\sle_hist00.d>
     Date= 15/S
  3: * project with "run time" parameters
  4: * Force=kN Lenght=m
  5: *
  6: units m kN
  7: title History 0 - PARATIA PALI 1200 i=140
  8: delta 0.3
  9: option param itemax 50
  10: option noprint echo
  11: option noprint displ
  12: option noprint react
  13: option noprint stresses
  14:
       wall LeftWall 0 -25 0
 15: *
 16: soil UHLeft LeftWall -25 0 1 0 17: soil DHLeft LeftWall -25 0 2 180
 18: *
```

Pagina 242 di 445 Eurolink S.C.p.A.

57: setwall LeftWall 58: geom 0 -5.5

62: setwall LeftWall

add t2

66: step 6 : terzo ribasso 67: setwall LeftWall

72: setwall LeftWall

add t3

59: endstep 60: *

64: endstep 65: *

69: endstep 70: *

63:

68:

73:

geom 0 -5.5

geom 0 -8.5

71: step 7: messa in opera 3 tirante

61: step 5 : messa in opera 2 tirante

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328 F0.doc F0

Rev F0

Data 20/06/2011

```
19: material cls_C28_35 3.144E+007
20: material Acciaio 2.1E+008
21: *
22: beam Beam LeftWall -25 0 cls C28 35 0.955541 00 00
23: *
24: wire t1 LeftWall -2 Acciaio 1.24107E-005 140 10 25: wire t2 LeftWall -5 Acciaio 1.32381E-005 150 10
26: wire t3 LeftWall -8 Acciaio 1.90934E-005 160 10
27: wire t4 LeftWall -11.5 Acciaio 2.15839E-005 160 10 28: wire t5 LeftWall -15 Acciaio 2.48214E-005 140 10
29: *
30: * Soil Profile
31: *
32:
          ldata
                             Soil 0
                         19 9 10
0.384339 0 1
          weight
33:
34:
             atrest
             resistance 5 38 0.383 4.204 moduli 120000 2 0 1 100 0.6
35:
37:
        endlayer
38: *
```

```
PARATIE 7.00
                            Ce.A.S. s.r.l. - Milano
                                                                PAG.
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
 N. comando
 39: step 1 : gostatico
 40: setwall LeftWall
      geom 0 0
surcharge 10 0 10 0
 41:
 42:
 43: endstep
 44: *
 45: step 2 : primo ribasso
 46: setwall LeftWall
        geom 0 -2.5
 47:
            surcharge 10 0 0 0
 48:
 49: endstep
 50: *
 51: step 3 : messa in opera 1 tirante
 52: setwall LeftWall
 53:
            add t1
 54: endstep
 55: *
 56: step 4 : scavo secondo ribasso
```

Eurolink S.C.p.A. Pagina 243 di 445

74: endstep

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

```
75: *
  76: step 8 : quarto ribasso
  77: setwall LeftWall 78: geom 0 -12
          geom 0 -12
  79: endstep
  80: *
  81: step 9 : messa in opera 4 tirante
  82: setwall LeftWall 83: add t4
  84: endstep
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                     PAG. 4
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
 N. comando
 85: *
  86: step 10 : quinto ribasso
  87: setwall LeftWall
  88:
             geom 0 -15.5
  89: endstep
  90: *
  91: step 11: messa in opera 5 tirante
  92: setwall LeftWall
  93:
             add t5
  94: endstep
  95: *
 96: step 12 : sesto ribasso
97: setwall LeftWall
  98:
             geom 0 -17
  99: endstep
 100: *
 101: step 13 : Fase sismica
       change Soil U-KA=0.4
change Soil U-KP=4
 102:
 103:
        change Soil D-KA=0.4 change Soil D-KP=4
 104:
 105:
        dload constant LeftWall -17 11.3 0 11.3 setwall LeftWall
106:
 107:
 108:
            surcharge 0 0 0 0
 109: endstep
110: *
111: *
PARATIE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                     PAG. 5
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
              RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
LAYER Soil
     natura 1=granulare, 2=argilla = 1.0000
                                          = 0.0000
      quota superiore
                                                         m
                                          =-0.10000E+31 m
      quota inferiore
                                                      kN/m³
      peso fuori falda
                                          = 19.000
      peso efficace in falda
                                          = 9.0000
                                                        kN/m³
```

Pagina 244 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

coeff. spinta attiva ka coeff. spinta passiva kp	= 38.000 DEG = 0.38300 = 4.2040 = 0.38434	(A MONTE) (A MONTE) (A MONTE)
modulo Rvc rapporto Rur/Rvc coef-h	= 0.12000E+06 kPa = 2.0000 = 1.0000	
pressione di normalizz. esponente n		
natura 1=granulare, 2=argilla coesione	= 5.0000 kPa = 38.000 DEG	(A VALLE) (A VALLE) (A VALLE) (A VALLE) (A VALLE)
RIASSUNTO PARAMETRI GEOTECN	IICI PER LA FASE 2	
(SOLO I PARAMETRI CHE	POSSONO VARIARE)	
NESSUN CAMBIAMENTO RISPETT	O AL PASSO PRECEDENTE	
RIASSUNTO PARAMETRI GEOTECN	IICI PER LA FASE 3	
(SOLO I PARAMETRI CHE	POSSONO VARIARE)	
NESSUN CAMBIAMENTO RISPETT	O AL PASSO PRECEDENTE	
RIASSUNTO PARAMETRI GEOTECN	IICI PER LA FASE 4	
(SOLO I PARAMETRI CHE	POSSONO VARIARE)	

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 6
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 6

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 7

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 8

(SOLO I PARAMETRI CHE POSSONO VARIARE)

Eurolink S.C.p.A. Pagina 245 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 9

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 10

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 11

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 12

(SOLO I PARAMETRI GEOTECNICI PER LA FASE 12

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 7 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 13

(SOLO I PARAMETRI CHE POSSONO VARIARE)

LAYER Soil

coeff. spinta attiva ka = 0.40000 (A MONTE)
coeff. spinta passiva kp = 4.0000 (A MONTE)
coeff. spinta attiva ka = 0.40000 (A VALLE)
coeff. spinta passiva kp = 4.0000 (A VALLE)

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 8 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI RELATIVI ALLA FASE 1

WALL LeftWall

coordinata y = 0.0000 m
quota piano campagna = 0.0000 m
quota del fondo scavo = 0.0000 m
quota della falda =-0.99900E+30 m
sovraccarico a monte = 10.000 kPa
quota del sovraccarico a monte = 0.0000 m
depressione falda a valle = 0.0000 m

Pagina 246 di 445 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

	sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure Wood top pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE	= 10.000 = 0.0000 = 0.0000 = -25.000 = 0.0000 = 0.0000	kPa m m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [c] [°] (1=pervious) kPa m kPa m
WALL LeftW	coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio	= 0.0000 = 0.0000 = -2.5000 =-0.99900E+3 = 10.000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000	m m 0 m kPa m kPa m
	00 Ce.A.S. s.r.l Mil RE 2010 17:32:55	ano	PAG. 9
History 0	- PARATIA PALI 1200 i=140		
_	- PARATIA PALI 1200 i=140 DATI RELATIVI ALLA FASE 2		
_		= -25.000 = 0.0000 = 0.0000	m (1=REMOVE) (1=NO UPD) [g] [g] [g] [°] [°] (1=pervious) kPa m kPa m
_	quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure elev. Wood top pressure elev.	= 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000	(1=REMOVE) (1=NO UPD) [g] [g] [g] [°] [°] (1=pervious) kPa m kPa

Eurolink S.C.p.A. Pagina 247 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0

20/06/2011

Data

```
quota della falda
                                     =-0.99900E+30 m
sovraccarico a monte
                                                 kPa
                                     = 10.000
quota del sovraccarico a monte
                                     = 0.0000
                                                  m
depressione falda a valle
                                     = 0.0000
                                     = 0.0000
sovraccarico a valle
                                                   kPa
quota del sovraccarico a valle
                                     = 0.0000
                                                  m
                                     = 0.0000
quota di taglio
                                                  m
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua
                                     = 0.0000
                                                  (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000
                                                  (1=NO UPD)
accelerazione sismica orizz.
                                     = 0.0000
= 0.0000
                                                  [g]
accel. sismica vert. a monte
                                                   [g]
accel. sismica vert. a valle
                                    = 0.0000
angolo beta a monte
                                     = 0.0000
delta/phi a monte
                                     = 0.0000
                                     = 0.0000
angolo beta a valle
                                     = 0.0000
delta/phi a valle
opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
                                                  (1=pervious)
Wood bottom pressure
                                                  kPa
                                    = 0.0000
= 0.0000
Wood top pressure
Wood bottom pressure elev.
                                                   kPa
```

```
Ce.A.S. s.r.l. - Milano
PARATIE 7.00
                                                                     PAG. 10
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
           Wood top pressure elev.
                                                    = 0.0000
              RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                    = 0.0000
           coordinata y
                                                    = 0.0000
           quota piano campagna
                                                                   m
           quota del fondo scavo
                                                    = -5.5000
           quota della falda
                                                    =-0.99900E+30 m
           sovraccarico a monte
                                                   = 10.000
                                               = 0.0000
= 0.0000
           quota del sovraccarico a monte
                                                                   m
           depressione falda a valle sovraccarico a valle
                                                                   m
                                                   = 0.0000
= 0.0000
                                                                   kРа
           quota del sovraccarico a valle
quota di taglio
                                                                   m
                                                   = 0.0000
           quota di taglio
           quota di taglio
quota di equil. pressioni dell'acqua = -25.000
= 0.0000
                                                                   m
                                                                   m
                                                                   (1=REMOVE)
           opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                                   (1=NO UPD)
           accelerazione sismica orizz.
                                                                   [q]
                                                    = 0.0000
           accel. sismica vert. a monte
                                                                   [g]
                                                   = 0.0000
           accel. sismica vert. a valle
                                                                   [°]
           angolo beta a monte
                                                    = 0.0000
           delta/phi a monte
                                                    = 0.0000
           angolo beta a valle
                                                    = 0.0000
                                                                   [°]
                                                    = 0.0000
           delta/phi a valle
           opzione dyn. acqua
                                                    = 0.0000
                                                                   (1=pervious)
           opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
           Wood bottom pressure
                                                    = 0.0000
                                                                   kPa
           Wood top pressure
                                                    = 0.0000
                                              = U.0000
= 0.0000
           Wood bottom pressure elev.
                                                                   kPa
           Wood top pressure elev.
                                                   = 0.0000
```

Pagina 248 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

RIASSUNTO DATI RELATIVI ALLA FASE

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

	- 11			
WALL LeftW			0 0000	
	coordinata y quota piano campagna		0.0000	m m
	quota piano campagna quota del fondo scavo		-5.5000	m
	quota della falda		-0.99900E+30	
	sovraccarico a monte		10.000	kPa
	quota del sovraccarico a monte		0.0000	m
	depressione falda a valle		0.0000	m
	sovraccarico a valle	=	0.0000	kPa
	quota del sovraccarico a valle	=	0.0000	m
PARATIE 7.	00 Ce.A.S. s.r.l Mil	220		PAG. 11
	RE 2010 17:32:55	anc)	rag. II
	- PARATIA PALI 1200 i=140			
11200017 0	111111111111111111111111111111111111111			
RIASSUNTO	DATI RELATIVI ALLA FASE 5			
	quota di taglio	=	0.0000	m
	quota di equil. pressioni dell'acqua		-25.000	m
	indicatore comportamento acqua		0.0000	(1=REMOVE)
	opzione aggiornamento pressioni acqua	=	0.0000	(1=NO UPD)
	accelerazione sismica orizz.	=	0.0000	[g]
	accel. sismica vert. a monte	=	0.0000	[g]
	accel. sismica vert. a valle		0.0000	[ā]
	angolo beta a monte		0.0000	[•]
	delta/phi a monte		0.0000	5.0.3
	angolo beta a valle		0.0000	[°]
	delta/phi a valle		0.0000	(1
	opzione dyn. acqua		0.0000	(1=pervious)
	rapporto pressioni in eccesso Ru Wood bottom pressure		0.0000	kPa
	Wood top pressure		0.0000	m
	Wood bottom pressure elev.		0.0000	kPa
	Wood top pressure elev.		0.0000	m
	RIASSUNTO DATI RELATIVI ALLA FASE	6		
WALL LeftW	Vall			
	coordinata y	=	0.0000	m
	quota piano campagna		0.0000	m
	quota del fondo scavo		-8.5000	m
	quota della falda		-0.99900E+30	
	sovraccarico a monte		10.000	kPa
	quota del sovraccarico a monte		0.0000	m
	depressione falda a valle	=	0.0000	m la Dia
	sovraccarico a valle quota del sovraccarico a valle	=		kPa m
	quota dei soviaccarico a varie quota di taglio	=		m
	quota di equil. pressioni dell'acqua		-25.000	m
	indicatore comportamento acqua		0.0000	(1=REMOVE)
	opzione aggiornamento pressioni acqua		0.0000	(1=NO UPD)
	accelerazione sismica orizz.		0.0000	[g]
	accel. sismica vert. a monte	=		[g]
	accel. sismica vert. a valle		0.0000	[ā]
	angolo beta a monte		0.0000	[°]
	delta/phi a monte		0.0000	. 0 .
	angolo beta a valle		0.0000	[°]
	delta/phi a valle		0.0000	/1
	opzione dyn. acqua rapporto pressioni in eccesso Ru		0.0000	(1=pervious)
	Wood bottom pressure	=	0.0000	kPa
	MOOG DOCCOM blessare	_	0.0000	vr a

Eurolink S.C.p.A. Pagina 249 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Wood top pressure

Codice documento
SS0328_F0.doc_F0

m

= 0.0000

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 12 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140 RIASSUNTO DATI RELATIVI ALLA FASE = 0.0000 Wood bottom pressure elev. kPa = 0.0000 Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE WALL LeftWall = 0.0000 coordinata y quota piano campagna = 0.0000 m = -8.5000 quota del fondo scavo m quota della falda =-0.99900E+30 msovraccarico a monte = 10.000 kPa = 0.0000 quota del sovraccarico a monte m = 0.0000 = 0.0000 depressione falda a valle sovraccarico a valle kPa sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000 m m quota di equil. pressioni dell'acqua = -25.000 m endicatore comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz (1=REMOVE) (1=NO UPD) accelerazione sismica orizz. [g] = 0.0000 = 0.0000 accel. sismica vert. a monte [g] accel. sismica vert. a valle angolo beta a monte = 0.0000 delta/phi a monte = 0.0000 angolo beta a valle = 0.0000 delta/phi a valle = 0.0000 = 0.0000 opzione dyn. acqua (1=pervious) rapporto pressioni in eccesso Ru = 0.0000 Wood bottom pressure = 0.0000 kPa Wood top pressure = 0.0000 = 0.0000 = 0.0000 Wood bottom pressure elev. kPa Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE WALL LeftWall coordinata y = 0.0000 quota piano campagna = 0.0000 m = -12.000 quota del fondo scavo quota della falda =-0.99900E+30 m sovraccarico a monte = 10.000 kPa= 0.0000 = 0.0000 = 0.0000 quota del sovraccarico a monte m depressione falda a valle sovraccarico a valle kPa PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 13 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140 RIASSUNTO DATI RELATIVI ALLA FASE

quota del sovraccarico a valle

Pagina 250 di 445 Eurolink S.C.p.A.

= 0.0000

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
quota di taglio
                                                       = 0.0000
                                                                       m
            quota di equil. pressioni dell'acqua
                                                       = -25.000
                                                       = 0.0000
                                                                       (1=REMOVE)
            indicatore comportamento acqua
            opzione aggiornamento pressioni acqua = 0.0000
                                                                       (1=NO UPD)
           opzione aggiornamento pri accelerazione sismica orizz.
                                                       = 0.0000
                                                                       [q]
           accel. sismica vert. a monte accel. sismica vert. a valle
                                                       = 0.0000
                                                                       [g]
                                                      = 0.0000
                                                                       [g]
                                                      = 0.0000
            angolo beta a monte
                                                       = 0.0000
            delta/phi a monte
            angolo beta a valle
                                                      = 0.0000
                                                       = 0.0000
            delta/phi a valle
            opzione dyn. acqua
                                                       = 0.0000
                                                                       (1=pervious)
            opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
            Wood bottom pressure
                                                      = 0.0000
                                                      = 0.0000
            Wood top pressure
                                                                       m
                                                      = 0.0000
= 0.0000
            Wood bottom pressure elev.
                                                                       kPa
            Wood top pressure elev.
               RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                       = 0.0000
           coordinata y
                                                       = 0.0000
            quota piano campagna
                                                       = -12.000
            quota del fondo scavo
            quota della falda
                                                      =-0.99900E+30 m
            sovraccarico a monte
                                                       = 10.000
                                                                   kPa
           quota del sovraccarico a monte
depressione falda a valle
                                                      = 0.0000
                                                                      m
                                                      = 0.0000
= 0.0000
                                                                      m
            sovraccarico a valle
                                                                       kРа
           quota del sovraccarico a valle = 0.0000
                                                                      m
           quota di taglio = 0.0000
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua = 0.0000
opzione aggiornamento pressioni acqua = 0.0000
accelerazione sismica orizz. = 0.0000
                                                                      m
                                                                       m
                                                                       (1=REMOVE)
                                                                       (1=NO UPD)
            accelerazione sismica orizz.
                                                                       [a]
            accel. sismica vert. a monte
                                                      = 0.0000
= 0.0000
                                                                       [g]
                                                                       [°]
            accel. sismica vert. a valle
            angolo beta a monte
                                                      = 0.0000
                                                       = 0.0000
            delta/phi a monte
                                                      = 0.0000
            angolo beta a valle
                                                       = 0.0000
            delta/phi a valle
                                                       = 0.0000
            opzione dyn. acqua
                                                                       (1=pervious)
            rapporto pressioni in eccesso Ru
                                                      = 0.0000
            Wood bottom pressure
                                                       = 0.0000
                                                                       kPa
PARATIE 7.00
                                Ce.A.S. s.r.l. - Milano
                                                                         PAG. 14
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
                                                       = 0.0000
            Wood top pressure
                                                       = 0.0000
            Wood bottom pressure elev.
                                                                       kPa
            Wood top pressure elev.
                                                       = 0.0000
               RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                       = 0.0000
                                                       = 0.0000
            quota piano campagna
                                                                      m
                                                       = -15.500
            quota del fondo scavo
                                                                      m
            quota della falda
                                                       =-0.99900E+30 m
            sovraccarico a monte
                                                       = 10.000
```

Eurolink S.C.p.A. Pagina 251 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure elev. Wood top pressure elev.	= 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = -25.000 = 0.0000 = 0.0000	m m kPa m m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [c] [°] (1=pervious) kPa m kPa m
WALL LeftWall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle	= 0.0000 = 0.0000 = -15.500 =-0.99900E+30 = 10.000 = 0.0000 = 0.0000	m m m m kPa m
PARATIE 7.00 Ce.A.S. s.r.l Mi 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140 RIASSUNTO DATI RELATIVI ALLA FASE 11	lano	PAG. 15
sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood bottom pressure Wood top pressure elev. Wood top pressure elev.	= 0.0000 = 0.0000 = 0.0000 = -25.000 = 0.0000 = 0.0000	kPa m m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [c] [°] (1=pervious) kPa m kPa m

WALL LeftWall

RIASSUNTO DATI RELATIVI ALLA FASE 12

Pagina 252 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

coordinata y

Codice documento
SS0328_F0.doc_F0

m

= 0.0000

Rev F0 Data 20/06/2011

```
quota piano campagna
                                                         = 0.0000
                                                                         m
            quota del fondo scavo
                                                         = -17.000
            quota della falda
                                                         =-0.99900E+30 m
            sovraccarico a monte
                                                         = 10.000
            quota del sovraccarico a monte
                                                         = 0.0000
                                                                         m
                                                        = 0.0000
                                                                         m
            depressione falda a valle
            sovraccarico a valle - 0.0000
quota del sovraccarico a valle = 0.0000
= 0.0000
                                                                        kPa
                                                                         m
            quota di taglio
quota di equil. pressioni dell'acqua = -25.000
= 0.0000
                                                                         m
                                                                          (1=REMOVE)
            opzione aggiornamento pressioni acqua = 0.0000
                                                                         (1=NO UPD)
            accelerazione sismica orizz. = 0.0000
                                                                         [a]
                                                         = 0.0000
            accel. sismica vert. a monte
                                                                          [g]
            accel. sismica vert. a valle
                                                         = 0.0000
= 0.0000
            angolo beta a monte
                                                         = 0.0000
            delta/phi a monte
            angolo beta a valle
                                                         = 0.0000
                                                                         [°]
                                                         = 0.0000
            delta/phi a valle
                                                         = 0.0000
= 0.0000
            opzione dyn. acqua
                                                                        (1=pervious)
            rapporto pressioni in eccesso Ru
                                  Ce.A.S. s.r.l. - Milano
PARATIE 7.00
                                                                           PAG. 16
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 12
            Wood bottom pressure
                                                         = 0.0000
                                                         = 0.0000
            Wood top pressure
                                                         = 0.0000
            Wood bottom pressure elev.
                                                                         kPa
            Wood top pressure elev.
                                                         = 0.0000
               RIASSUNTO DATI RELATIVI ALLA FASE 13
WALL LeftWall
                                                         = 0.0000
            coordinata y
                                                                         m
                                                         = 0.0000
            quota piano campagna
                                                                         m
            quota del fondo scavo
                                                         = -17.000
            quota della falda
                                                         =-0.99900E+30 m
            = 0.0000
quota del sovraccarico a monte = 0.0000
depressione falda a valle = 0.0000
sovraccarico a valle = 0.0000
quota del sovraccari
            sovraccarico a monte
                                                        = 0.0000
                                                                         m
                                                                         m
            quota di taglio quota di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emiliare di emi
                                                                         kPa
                                                                         m
            quota di taglio
quota di equil. pressioni dell'acqua = -25.000
= 0.0000
                                                                         m
                                                                         m
                                                                         (1=REMOVE)
            opzione aggiornamento pressioni acqua = 0.0000 = 0.0000 = 0.0000 = 0.0000
                                                                         (1=NO UPD)
            accelerazione sismica orizz.
                                                                         [q]
                                                         = 0.0000
            accel. sismica vert. a monte
                                                                          [g]
                                                        = 0.0000
            accel. sismica vert. a valle
                                                                          [°]
            angolo beta a monte
                                                         = 0.0000
            delta/phi a monte
                                                         = 0.0000
            angolo beta a valle
                                                         = 0.0000
                                                                          [°]
                                                         = 0.0000
            delta/phi a valle
            opzione dyn. acqua
                                                         = 0.0000
                                                                          (1=pervious)
            opzione dyn. acqua = 0.0000 rapporto pressioni in eccesso Ru = 0.0000
            Wood bottom pressure
                                                         = 0.0000
                                                                         kPa
            Wood top pressure
                                                  = 0.0000
= 0.0000
                                                         = 0.0000
                                                                         m
            Wood bottom pressure elev.
                                                                         kPa
            Wood top pressure elev.
                                                        = 0.0000
```

Eurolink S.C.p.A. Pagina 253 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

History 0 - PARATIA PALI 1200 i=140

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 17 28 SETTEMBRE 2010 17:32:55

RIASSUNTO ELEMENTI

+	+	+	+	+	++
			ELEMENTI	SOIL +	
Name	Wall	Z1	Z2	Flag	Angle
İ		m	l m	 +	deg
UHLeft	LeftWall	0.	-25.00	UPHILL	0.
DHLeft	LeftWall	0.	-25.00	DOWNHILL	180.0

++ RIASSUNTO ELEMENTI BEAM ++							
Name	Wall 	Z1	Z2	Mat	thick		
i		l m	m		m		
'	LeftWall		'	•			

İ	•	RIASSUNT	O ELEN	H MENTI WIRE		·
Name	Wall	Zeta	Mat	+ A/L +	Pinit	Angle
	I	l m		 	kN/m	deg
t1	LeftWall	-2.000	_	0.1241E-04	140.0	10.00
t2	LeftWall	-5.000	_	0.1324E-04	150.0	10.00
t3	LeftWall	-8.000	_	0.1909E-04	160.0	10.00
t4	LeftWall	-11.50	_	0.2158E-04	'	10.00
t5	LeftWall	-15.00	i _ i	0.2482E-04	140.0	10.00

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 18 28 SETTEMBRE 2010 17:32:55

History 0 - PARATIA PALI 1200 i=140

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 19 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI VARI

Pagina 254 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

N	MATERIALI
Name	YOUNG MODULUS
	kPa
cls_	3.144E+007
Acci +	2.1E+008

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 20 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140

DISTRIBUTED LOAD SUMMARY

Wall From To Z1 P1 Z2 P2 step step Left 13 13 -17.000 11.300 0.0000 11.300

UNITS FOR Z1 , Z2 =m UNITS FOR P1 , P2 =kPa

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 21 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ANALISI INCREMENTALE

FASE	Ν.	DI	ITERAZIONI	CONVERGENZA
1			2	SI
2			4	SI
3			4	SI
4			4	SI
5			4	SI
6			5	SI
7			4	SI
8			7	SI
9			4	SI
10			7	SI
11			4	SI
12			6	SI
13			4	SI

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 22 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140

MASSIMI SPOSTAMENTI LATERALI

TUTTI I PASSI

* PARETE LeftWall*

* I PASSI NON EQUILIBRATI SONO ESCLUSI *

" I FASSI NON EQUILIBRAII SONO ESCEUSI "

Eurolink S.C.p.A. Pagina 255 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

* NOTA: LE QUOTE ESPRESSE IN m E GLI SPOSTAMENTI IN m

NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE LeftWall
1	0.0000	-0.38107E-02	12	
2	-0.30000	-0.31422E-02	12	
3	-0.60000	-0.24737E-02	12	
4	-0.90000	-0.18051E-02	12	
5	-1.2000	0.15492E-02	2	
6	-1.5000	0.21735E-02	13	
7	-1.8000	0.30071E-02	13	
8	-2.0000	0.35633E-02	13	
9	-2.3000	0.43984E-02	13	
10	-2.6000	0.52333E-02	13	
11	-2.9000	0.60670E-02	13	
12	-3.2000	0.68982E-02	13	
13	-3.5000	0.77260E-02	13	
14	-3.8000	0.85493E-02	13	
15	-4.1000	0.93674E-02	13	
16	-4.4000	0.10180E-01	13	
17	-4.7000	0.10985E-01	13	
18	-5.0000	0.11784E-01	13	
19	-5.3000	0.12575E-01	13	
20	-5.6000	0.13357E-01	13	
21	-5.9000	0.14127E-01	13	
22	-6.2000	0.14883E-01	13	
23	-6.5000	0.15625E-01	13	
24	-6.8000	0.16350E-01	13	
25	-7.1000	0.17056E-01	13	
26	-7.4000	0.17744E-01	13	
27	-7.7000	0.18411E-01	13	
28	-8.0000	0.19057E-01	13	
29	-8.3000	0.19682E-01	13	
30	-8.6000	0.20282E-01	13	
31	-8.9000	0.20855E-01	13	
32	-9.2000	0.21399E-01	13	
33	-9.5000	0.21911E-01	13	
34	-9.8000	0.22390E-01	13	
35	-10.100	0.22833E-01	13	
36	-10.400	0.23240E-01	13	
37	-10.700	0.23610E-01	13	
38	-11.000	0.23941E-01	13	

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 23 28 SETTEMBRE 2010 17:32:55

History 0 - PARATIA PALI 1200 i=140

NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE LeftWall
39	-11.300	0.24234E-01	13	
40	-11.500	0.24407E-01	13	
41	-11.800	0.24635E-01	13	
42	-12.100	0.24821E-01	13	
43	-12.400	0.24964E-01	13	
44	-12.700	0.25062E-01	13	
45	-13.000	0.25114E-01	13	
46	-13.300	0.25118E-01	13	
47	-13.600	0.25075E-01	13	
48	-13.900	0.24983E-01	13	
49	-14.200	0.24844E-01	13	
50	-14.500	0.24657E-01	13	
51	-14.800	0.24423E-01	13	
52	-15.000	0.24242E-01	13	
53	-15.300	0.23934E-01	13	

Pagina 256 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

54	-15.600	0.23581E-01	13
55	-15.900	0.23184E-01	13
56	-16.200	0.22744E-01	13
57	-16.500	0.22262E-01	13
58	-16.800	0.21739E-01	13
59	-17.100	0.21178E-01	13
60	-17.400	0.20581E-01	13
61	-17.700	0.19951E-01	13
62	-18.000	0.19291E-01	13
63	-18.300	0.18605E-01	13
64	-18.600	0.17895E-01	13
65	-18.900	0.17165E-01	13
66	-19.200	0.16420E-01	13
67	-19.500	0.15661E-01	13
68	-19.800	0.14893E-01	13
69	-20.100	0.14119E-01	13
70	-20.400	0.13340E-01	13
71	-20.700	0.12560E-01	13
72	-21.000	0.11780E-01	
73	-21.300	0.11001E-01	13
74	-21.600	0.10225E-01	13
75	-21.900	0.94523E-02	13
76	-22.200	0.86832E-02	13
77	-22.500	0.79178E-02	13
78	-22.800	0.71561E-02	13
79	-23.100	0.63978E-02	13
80	-23.400	0.56425E-02	13
81	-23.700	0.48898E-02	13
82	-24.000	0.41389E-02	13
83	-24.300	0.34931E-02	12
84	-24.600	0.29149E-02	12

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 24 28 SETTEMBRE 2010 17:32:55

History 0 - PARATIA PALI 1200 i=140

NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE PARETE LeftWall
85	-24.900	0.24895E-02	9
86	-25.000	0.24590E-02	9

```
PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 25
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140
```

INVILUPPO AZIONI INTERNE NEGLI ELEMENTI DI PARETE

(PER UNITA' DI PROFONDITA')

* PARETE LeftWall GRUPPO Beam*

STEP 1 - 13

* I PASSI NON EQUILIBRATI SONO ESCLUSI *

Nella tabella si stampano i seguenti risultati: MOMENTO SX = Momento che tende le fibre sulla faccia sinistra [kN*m/m] MOMENTO DX = Momento che tende le fibre sulla faccia destra [kN*m/m]

= forza tagliante (valore assoluto, priva di segno)[kN/m]

BEAM EL.	ESTREMO	QUOTA	MOMENTO S	X MOMENTO DX	TAGLIO
1	A	0.	0.8004E-10	0.7276E-10	1.705
	В -	-0.3000	0.5115	0.	1.705
2	Α -	-0.3000	0.5115	0.9550E-11	5.115

Eurolink S.C.p.A. Pagina 257 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

3 A -0.6000 2.046 0. 16.06 B -0.9000 6.376 0. 16.06 4 A -0.9000 6.376 0. 29.37 B -1.200 15.19 0. 29.37 5 A -1.200 15.19 0. 42.34 B -1.500 27.89 0. 42.34 6 A -1.500 27.89 0. 53.92 6 B -1.800 44.06 0. 62.19 8 -1.800 44.06 0. 62.19 8 A -2.000 56.50 0. 62.19 8 A -2.000 56.50 0. 110.2 9 A -2.300 35.79 2.698 103.4 9 A -2.300 35.79 2.698 103.4 10 A -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 59.97 11 A -2.900			-0 6000	2.046	0.	5.115
B -0.9000 6.376 0. 16.06 4 A -0.9000 6.376 0. 29.37 B -1.200 15.19 0. 29.37 5 A -1.200 15.19 0. 42.34 B -1.500 27.89 0. 42.34 6 A -1.500 27.89 0. 53.92 B -1.800 44.06 0. 53.92 7 A -1.800 44.06 0. 62.19 B -2.000 56.50 0. 62.19 B -2.300 35.79 2.698 110.2 B -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	3					
4 A -0.9000 6.376 0. 29.37 B -1.200 15.19 0. 29.37 5 A -1.200 15.19 0. 42.34 B -1.500 27.89 0. 42.34 6 A -1.500 27.89 0. 53.92 B -1.800 44.06 0. 53.92 7 A -1.800 44.06 0. 62.19 B -2.000 56.50 0. 62.19 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 0 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	J					
B -1.200 15.19 0. 29.37 5 A -1.200 15.19 0. 42.34 B -1.500 27.89 0. 42.34 6 A -1.500 27.89 0. 53.92 B -1.800 44.06 0. 53.92 7 A -1.800 44.06 0. 62.19 B -2.000 56.50 0. 62.19 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 9 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	1					
5 A -1.200 15.19 0. 42.34 B -1.500 27.89 0. 42.34 6 A -1.500 27.89 0. 53.92 B -1.800 44.06 0. 53.92 7 A -1.800 44.06 0. 62.19 B -2.000 56.50 0. 62.19 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 10 A -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 11 A -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85	-1					
B -1.500 27.89 0. 42.34 6 A -1.500 27.89 0. 53.92 B -1.800 44.06 0. 53.92 7 A -1.800 44.06 0. 62.19 B -2.000 56.50 0. 62.19 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	5					
6 A -1.500 27.89 0. 53.92 B -1.800 44.06 0. 53.92 7 A -1.800 44.06 0. 62.19 B -2.000 56.50 0. 110.2 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	J					
B -1.800 44.06 0. 53.92 7 A -1.800 44.06 0. 62.19 B -2.000 56.50 0. 62.19 8 A -2.000 56.50 0. 110.2 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	6					
7 A -1.800 44.06 0. 62.19 B -2.000 56.50 0. 62.19 8 A -2.000 56.50 0. 110.2 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	U					
B -2.000 56.50 0. 62.19 8 A -2.000 56.50 0. 110.2 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	7					
8 A -2.000 56.50 0. 110.2 B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	,					
B -2.300 35.79 2.698 110.2 9 A -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	Q					
9 A -2.300 35.79 2.698 103.4 B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	O					
B -2.600 17.14 33.72 103.4 10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	9					
10 A -2.600 17.14 33.72 95.97 B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	,					
B -2.900 19.81 62.51 95.97 11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	1.0					
11 A -2.900 19.81 62.51 87.85 B -3.200 25.73 88.87 87.85	10					
B -3.200 25.73 88.87 87.85	11					
12 A =3.200 25.73 88.87 79.04	12	A	-3.200	25.73	88.87	79.04
B -3.500 31.55 112.6 79.04						
13 A -3.500 31.55 112.6 69.54	13					
B -3.800 37.07 133.4 69.54						
14 A -3.800 37.07 133.4 59.37	14					
B -4.100 42.12 151.3 59.37						
15 A -4.100 42.12 151.3 48.51	1.5					
B -4.400 46.63 165.8 48.51		В				
16 A -4.400 46.63 165.8 38.01	16					
B -4.700 50.54 176.9 38.01						
17 A -4.700 50.54 176.9 52.79	17					
B -5.000 53.84 184.3 52.79		В				

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 26

28 SETTEMBRE 2010 17:32:55

History 0 - PARATIA PALI 1200 i=140

BEAM	EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO
	18	A	-5.000	53.84	184.3	189.5
		В	-5.300	56.51	241.2	189.5
	19	A	-5.300	56.51	241.2	175.9
		В	-5.600	58.58	293.9	175.9
	20	A	-5.600	58.58	293.9	161.6
		В	-5.900	60.03	342.4	161.6
	21	A	-5.900	60.03	342.4	146.7
		В	-6.200	60.89	386.4	146.7
	22	A	-6.200	60.89	386.4	131.0
		В	-6.500	61.17	425.8	131.0
	23	A	-6.500	61.17	425.8	114.7
		В	-6.800	60.91	460.2	114.7
	24	A	-6.800	60.91	460.2	97.68
		В	-7.100	60.17	489.5	97.68
	25	A	-7.100	60.17	489.5	79.98
		В	-7.400	58.99	513.5	79.98
	26	A	-7.400	58.99	513.5	61.60
		В	-7.700	57.42	531.9	61.60
	27	A	-7.700	57.42	531.9	63.60
		В	-8.000	55.53	544.7	63.60
	28	A	-8.000	55.53	544.7	246.9
		В	-8.300	53.36	618.8	246.9
	29	A B	-8.300 -8.600	53.36 50.96	618.8 686.7	226.5 226.5

Pagina 258 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

30	A	-8.600	50.96	686.7	205.4
	В	-8.900	48.38	748.4	205.4
31	A	-8.900	48.38	748.4	183.6
	В	-9.200	45.66	803.4	183.6
32	A	-9.200	45.66	803.4	161.1
	В	-9.500	42.85	851.8	161.1
33	A	-9.500	42.85	851.8	137.9
	В	-9.800	39.99	893.1	137.9
34	A	-9.800	39.99	893.1	114.1
	В	-10.10	37.12	927.4	114.1
35	A	-10.10	37.12	927.4	89.53
	В	-10.40	34.25	954.2	89.53
36	A	-10.40	34.25	954.2	67.06
	В	-10.70	31.43	973.5	67.06
37	A	-10.70	31.43	973.5	72.88
	В	-11.00	28.68	985.0	72.88
38	A	-11.00	28.68	985.0	100.5
	В	-11.30	26.02	988.6	100.5
39	A	-11.30	26.02	988.6	124.0
	В	-11.50	24.30	986.4	124.0
40	A	-11.50	24.30	986.4	202.1
	В	-11.80	21.82	1047.	202.1

PARATIE 7.00 28 SETTEMBRE 2010 17:32:55

Ce.A.S. s.r.l. - Milano

PAG. 27

History 0 - PARATIA PALI 1200 i=140

BEAM EL.	ESTREMO	QUOTA	MOMENTO	SX MOMENTO	DX TAGLIO
41	A	-11.80	21.82	1047.	173.7
	В	-12.10	19.47	1099.	173.7
42	A	-12.10	19.47	1099.	144.6
	В	-12.40	17.25	1143.	144.6
43	A	-12.40	17.25	1143.	128.3
	В	-12.70	16.02	1177.	128.3
44	A	-12.70	16.02	1177.	132.4
	В	-13.00	15.61	1202.	132.4
45	A	-13.00	15.61	1202.	129.9
	В	-13.30	15.08	1218.	129.9
46	A	-13.30	15.08	1218.	122.9
	В	-13.60	14.45	1225.	122.9
47	A	-13.60	14.45	1225.	115.8
	В	-13.90	13.76	1221.	115.8
48	A	-13.90	13.76	1221.	108.7
	В	-14.20	13.01	1208.	108.7
49	A	-14.20	13.01	1208.	134.3
	В	-14.50	12.22	1185.	134.3
50	A	-14.50	12.22	1185.	169.0
	В	-14.80	11.41	1151.	169.0
51	A	-14.80	11.41	1151.	198.5
	В	-15.00	10.86	1122.	198.5
52	A	-15.00	10.86	1122.	164.1
	В	-15.30	11.23	1126.	164.1
53	A	-15.30	11.23	1126.	196.8
	В	-15.60	11.68	1119.	196.8
54	A	-15.60	11.68	1119.	221.6
	В	-15.90	12.00	1101.	221.6
55	A	-15.90	12.00	1101.	239.8
	В	-16.20	13.84	1072.	239.8
56	A	-16.20	13.84	1072.	251.6
	В	-16.50	16.30	1031.	251.6
57	A	-16.50	16.30	1031.	256.8

Eurolink S.C.p.A. Pagina 259 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

	В	-16.80	18.31	978.4	256.8
58	A	-16.80	18.31	978.4	255.4
	В	-17.10	22.29	913.9	255.4
59	A	-17.10	22.29	913.9	247.6
	В	-17.40	34.07	840.9	247.6
60	A	-17.40	34.07	840.9	266.2
	В	-17.70	44.22	761.0	266.2
61	A	-17.70	44.22	761.0	282.7
	В	-18.00	52.79	676.2	282.7
62	A	-18.00	52.79	676.2	293.1
	В	-18.30	59.87	588.2	293.1
63	A	-18.30	59.87	588.2	297.3
	В	-18.60	65.53	499.1	297.3

PARATIE 7.00 28 SETTEMBRE 2010 17:32:55

Ce.A.S. s.r.l. - Milano

PAG. 28

History 0 - PARATIA PALI 1200 i=140

BEAM	EL.	ESTREMO	QUOTA	MOMENTO	SX	MOMENTO	DX	TAGLIO
	64	A	-18.60	65.53		499.1		295.3
		В	-18.90	69.83		410.5		295.3
	65	A	-18.90	69.83		410.5		287.2
		В	-19.20	72.85		324.3		287.2
	66	A	-19.20	72.85		324.3		272.9
		В	-19.50	74.65		242.5		272.9
	67	A	-19.50	74.65		242.5		252.4
		В	-19.80	75.32		166.7		252.4
	68	A	-19.80	75.32		166.7		225.8
		В	-20.10	90.80		98.99		225.8
	69	A	-20.10	90.80		98.99		193.1
		В	-20.40	103.7		41.06		193.1
	70	A	-20.40	103.7		41.06		154.2
		В	-20.70	112.1		5.951		154.2
	71	A	-20.70	112.1		5.951		118.4
		В	-21.00	116.4		.3147		118.4
	72	A	-21.00	116.4		.3147		86.19
		В	-21.30	117.0		.2608		86.19
	73	A	-21.30	117.0		.2608		57.47
		В	-21.60	114.4		.2097		57.47
	74	A	-21.60	114.4		.2097		32.21
		В	-21.90	109.0		.1627		32.21
	75	A	-21.90	109.0		.1627		26.40
		В	-22.20	101.0		.1210		26.40
	76	A	-22.20	101.0		.1210	_	33.19
		В	-22.50	94.17		.8537E-0		33.19
	77	A	-22.50	94.17		.8537E-0		38.62
		В	-22.80	87.19).5613E-0		38.62
	78	A	-22.80	87.19).5613E-0		42.67
		В	-23.10	76.67		.3339E-0		42.67
	79	A	-23.10	76.67).3339E-0		45.37
	0.0	В	-23.40	63.56).1828E-0		45.37
	80	A	-23.40	63.56).1828E-0		49.11
	0.1	В	-23.70	48.83).1584E-0		49.11
	81	A	-23.70	48.83).1584E-0		51.36
	0.0	В	-24.00	33.42).1141E-0		51.36 48.80
	82	A B	-24.00 -24.30	33.42 18.78).1141E-0).6511E-0		48.80
	83	B A	-24.30 -24.30	18.78).6511E-0).6511E-0		39.06
	0.3	В	-24.60	7.061).0511E-0).2412E-0		39.06
	84	A	-24.60	7.061).2412E-0		21.93
	04	В		0.4818).2412E-0).1599E-0		21.93
		D	-24.50	0.4010	(JJJE-U	13	41.93

Pagina 260 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0 Data 20/06/2011

85 A -24.90 0.4818 0.1599E-03 4.818 B -25.00 0.8440E-09 0.6694E-09 4.818

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 29
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140

FORZE NEGLI ANCORAGGI ATTIVI (PER UNITA' DI PROFONDITA')

TIRANTE 1 PARETE LeftWall QUOTA -2.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 FORZA 140.00 FASE 4 FORZA 140.53 kN/m kN/m FASE 5 FORZA 139.18 FASE 6 FORZA 139.55 kN/m kN/m FASE 7 FORZA 139.16 kN/m FASE 8 FORZA 139.43 kN/m FASE 9 FORZA 139.56 kN/m kN/m FASE 10 FORZA 140.44 FASE 11 FORZA 140.64 kN/m FASE 12 FORZA 140.64 kN/m FASE 13 FORZA 148.11 kN/m TTRANTE t2 1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 FASE 6 FORZA 152.48 FASE 7 FORZA 151.15 kN/m kN/m kN/m kN/m FASE 8 FORZA 156.84 FASE 9 FORZA 156.28 kN/m FASE 10 FORZA 165.63 kN/m FASE 11 FORZA 165.64 kN/m FASE 12 FORZA 168.38 kN/m FASE 13 FORZA 180.44 kN/m TIRANTE t3 1 PARETE LeftWall QUOTA -8.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 FORZA 160.00 kN/m FASE 8 FORZA 175.23 kN/m FASE 9 FORZA 173.28 kN/m 198.52 FASE 10 FORZA kN/m FASE 11 FORZA 198.05 kN/m FASE 12 FORZA 206.23 kN/m FASE 13 FORZA 227.63 kN/m

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 30 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140

Eurolink S.C.p.A. Pagina 261 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 **Data** 20/06/2011

TIRANTE	t4		PARETE LeftW FASE 1 inat FASE 2 inat FASE 3 inat FASE 4 inat FASE 5 inat FASE 7 inat FASE 8 inat FASE 9 FORZ FASE 10 FORZ FASE 11 FORZ FASE 12 FORZ FASE 12 FORZ	tivo tivo tivo tivo tivo tivo tivo A 160.00 A 200.77 A 199.19 A 214.32	kn/ kn/ kn/ kn/	m m m	
TIRANTE	t5		PARETE LeftW FASE 1 inat FASE 2 inat FASE 3 inat FASE 4 inat FASE 5 inat FASE 6 inat FASE 7 inat FASE 9 inat FASE 10 inat FASE 11 FORZ FASE 12 FORZ FASE 13 FORZ	tivo tivo tivo tivo tivo tivo tivo tivo	kn/ kn/	m	
	BRE 2010 1 - PARATIA INT * Nella tal SIGMA-H TAGLIO PR. ACQUI	7:32:55 PALI 1200 VILUPPO RISU * PARETE *S I PASSI NON pella si sta = massimo s = massimo s A = massima p	i=140 LETATI NEGLI LEFTWALL GRU TEP 1 - EQUILLIBRATI mpano i segu forzo orizzo forzo di tag ressione int	ELEMENTI T PPO UHLeft 13* SONO ESCI enti risul ntale effi lio erstiziale	ERRENO * .USI * .tati: .cace [kPa [kPa]	31
3		SIGMA-H 9.227 8.088 40.83 44.36 43.23 42.14 44.06 44.86 46.06 46.71 46.92 46.77 46.34 46.18 46.57 47.77 49.27 50.68 52.00	TAGLIO F 5.000 7.850 9.715 11.45 13.21 14.97 16.73 17.90 19.66 21.42 23.18 24.94 26.69 28.45 30.21 31.97 33.73 35.49 37.25	R. ACQUA 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	GRAD. MA 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	X	

Pagina 262 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0 20/06/2011

20	-5.600	53.25	39.00	0.	0.
21	-5.900	54.77	40.76	0.	0.
22	-6.200	56.97	42.52	0.	0.
23	-6.500	59.32	44.28	0.	0.
24	-6.800	61.75	46.04	0.	0.
25	-7.100	64.11	47.80	0.	0.
26	-7.400	66.39	49.55	0.	0.
27	-7.700	68.56	51.31	0.	0.
28	-8.000	70.62	53.07	0.	0.
29	-8.300	72.57	54.83	0.	0.
30	-8.600	74.41	56.59	0.	0.
31	-8.900	76.16	58.35	0.	0.
32	-9.200	78.39	60.11	0.	0.
33	-9.500	80.71	61.86	0.	0.
34	-9.800	83.00	63.62	0.	0.
35	-10.10	85.35	65.38	0.	0.

PARATIE 7.00 Ce.A.S. s.r.l. - Milano 28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140 PAG. 32

SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR.	ACQUA	GRAD.	MAX
36	-10.40	87.63	67.14		0.	0.	
37	-10.70	89.85	68.90		0.	0.	
38	-11.00	92.00	70.66		0.	0.	
39	-11.30	94.06	72.41		0.	0.	
40	-11.50	95.38	73.59		0.	0.	
41	-11.80	97.29	75.35		0.	0.	
42	-12.10	99.10	77.10		0.	0.	
43	-12.40	100.8	78.86		0.	0.	
44	-12.70	102.5	80.62		0.	0.	
45	-13.00	104.7	82.38		0.	0.	
46	-13.30	107.0	84.14		0.	0.	
47	-13.60	109.3	85.90		0.	0.	
48	-13.90	111.5	87.65		0.	0.	
49	-14.20	113.7	89.41		0.	0.	
50	-14.50	115.8	91.17		0.	0.	
51	-14.80	117.9	92.93		0.	0.	
52	-15.00	119.2	94.10		0.	0.	
53	-15.30	121.1	95.86		0.	0.	
54	-15.60	122.9	97.62		0.	0.	
55	-15.90	124.7	99.38		0.	0.	
56	-16.20	126.4	101.1		0.	0.	
57	-16.50	128.0	102.9		0.	0.	
58	-16.80	129.9	104.7		0.	0.	
59	-17.10	131.7	106.4		0.	0.	
60	-17.40	133.5	108.2		0.	0.	
61	-17.70	135.2	109.9		0.	0.	
62	-18.00	137.0	111.7		0.	0.	
63	-18.30	138.8	113.4		0.	0.	
64	-18.60	140.5	115.2		0.	0.	
65	-18.90	142.3	117.0		0.	0.	
66	-19.20	144.1	118.7		0.	0.	
67	-19.50	146.2	120.5		0.	0.	
68	-19.80	148.4	122.2		0.	0.	
69	-20.10	150.6	124.0		0.	0.	
70	-20.40	152.8	125.8		0.	0.	
71	-20.70	155.0	127.5		0.	0.	
72	-21.00	157.2	129.3		0.	0.	
73	-21.30	159.4	131.0		0.	0.	
74	-21.60	161.6	132.8		0.	0.	
75	-21.90	163.8	134.5		0.	0.	
76	-22.20	166.0	136.3		0.	0.	
77	-22.50	168.1	138.1		0.	0.	
78	-22.80	170.3	139.8		0.	0.	

Eurolink S.C.p.A. Pagina 263 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

0.

Rev Data F0 20/06/2011

```
143.
145.1
           172.5
174.7
176.9
79 -23.10
                                       0.
                                                  0.
80 -23.40
                                      0.
                                                 0.
81 -23.70
                                      0.
                                                 0.
```

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 33 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140 SOIL EL. QUOTA SIGMA-H TAGLIO PR. ACQUA GRAD. MAX
 82
 -24.00
 179.1
 146.9
 0.

 83
 -24.30
 182.7
 148.6
 0.

 84
 -24.60
 191.4
 150.4
 0.

 85
 -24.90
 203.7
 152.1
 0.

 86
 -25.00
 209.5
 152.7
 0.
 0. 0. 0. 0.

PAG. 34 PARATIE 7.00 Ce.A.S. s.r.l. - Milano

28 SETTEMBRE 2010 17:32:55

History 0 - PARATIA PALI 1200 i=140

INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO * PARETE LeftWall GRUPPO DHLeft* *STEP 1 - 13*

* I PASSI NON EQUILIBRATI SONO ESCLUSI * Nella tabella si stampano i seguenti risultati:

SIGMA-H = massimo sforzo orizzontale efficace [kPa]
TAGLIO = massimo sforzo di taglio [kPa] [kPa] le [kPa]] PR. ACQUA =massima pressione interstiziale GRAD. MAX =massimo gradiente idraulico

SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX
1	0.	3.843	3.078	0.	0.
2		6.034	4.833	0.	0.
	-0.6000	8.225	6.588	0.	0.
	-0.9000	10.42	8.342	0.	0.
5	-1.200	12.61	10.10	0.	0.
6	-1.500	14.80	11.85	0.	0.
7	-1.800	16.99	13.61	0.	0.
8	-2.000	18.45	14.78	0.	0.
9	-2.300	20.64	16.53	0.	0.
10	-2.600	22.83	18.29	0.	0.
11	-2.900	25.02	20.04	0.	0.
12	-3.200	27.21	21.79	0.	0.
13	-3.500	29.40	23.55	0.	0.
14	-3.800	31.59	25.30	0.	0.
15	-4.100	33.78	27.06	0.	0.
16	-4.400	36.25	28.81	0.	0.
17	-4.700	38.64	30.57	0.	0.
18	-5.000	40.90	32.32	0.	0.
19	-5.300	43.07	34.08	0.	0.
20	-5.600	45.15	35.83	0.	0.
21	-5.900	47.18	37.59	0.	0.
22		49.16	39.34	0.	0.
23		51.31	41.10	0.	0.
24		53.50	42.85	0.	0.
25		55.69	44.60	0.	0.
26		57.88	46.36	0.	0.
27		60.07	48.11	0.	0.
21	-/./00	00.07	40.11	U .	U .

Pagina 264 di 445 Eurolink S.C.p.A.

Data

20/06/2011

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento	Rev
SS0328_F0.doc_F0	F0

28	-8.000	62.26	49.87	0.	0.
29	-8.300	64.45	51.62	0.	0.
30	-8.600	66.64	53.38	0.	0.
31	-8.900	68.84	55.13	0.	0.
32	-9.200	71.03	56.89	0.	0.
33	-9.500	73.22	58.64	0.	0.
34	-9.800	75.41	60.40	0.	0.
35	-10.10	77.60	62.15	0.	0.

Ce.A.S. s.r.l. - Milano PARATIE 7.00 PAG. 35

28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140

History 0	- PARATIA	PALI 1200	i=140			
SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX	
2.6	10 40	70 70	C2 01	0	0	
36	-10.40	79.79	63.91	0.	0.	
37	-10.70	81.98	65.66	0.	0.	
38	-11.00	84.17	67.41	0.	0.	
39	-11.30	86.36	69.17	0.	0.	
40	-11.50	87.82	70.34	0.	0.	
41	-11.80	90.01	72.09	0.	0.	
42	-12.10	92.32	73.85	0.	0.	
43	-12.40	94.62	75.60	0.	0.	
44	-12.70	96.88	77.36	0.	0.	
45	-13.00	100.4	79.11	0.	0.	
46	-13.30	117.9	80.87	0.	0.	
47	-13.60	120.2	82.62	0.	0.	
48	-13.90	122.5	84.38	0.	0.	
49	-14.20	124.6	86.13	0.	0.	
50	-14.50	126.6	87.89	0.	0.	
51	-14.80	128.5	89.64	0.	0.	
52	-15.00	129.8	90.81	0.	0.	
53	-15.30	131.5	92.56	0.	0.	
54	-15.60	133.2	94.32	0.	0.	
55	-15.90	134.9	96.07	0.	0.	
56	-16.20	136.5	97.83	0.	0.	
57	-16.50	138.0	99.58	0.	0.	
58	-16.80	139.5	101.3	0.	0.	
59	-17.10	148.3	103.1	0.	0.	
60	-17.40	172.3	104.8	0.	0.	
61	-17.70	196.2	106.6	0.	0.	
62	-18.00	214.7	108.4	0.	0.	
63	-18.30	212.6	110.1	0.	0.	
64	-18.60	210.4	111.9	0.	0.	
65	-18.90	208.1	113.6	0.	0.	
66	-19.20	205.7	115.4	0.	0.	
67	-19.50	220.2	117.1	0.	0.	
68	-19.80	244.2	118.9	0.	0.	
69	-20.10	255.6	120.6	0.	0.	
70	-20.40	278.4	122.4	0.	0.	
71	-20.70	270.2	124.1	0.	0.	
72	-21.00	260.7	125.9	0.	0.	
73	-21.30	251.3	127.7	0.	0.	
74	-21.60	242.0	129.4	0.	0.	
75	-21.90	232.9	131.2	0.	0.	
76	-22.20	224.0	132.9	0.	0.	
77	-22.50	215.2	134.7	0.	0.	
78	-22.80	206.4	136.4	0.	0.	
79	-23.10	197.9	138.2	0.	0.	
80	-23.40	189.6	139.9	0.	0.	
81	-23.70	181.3	141.7	0.	0.	

Eurolink S.C.p.A. Pagina 265 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

	IBRE 2010 1			c.l Milan	0	PAG.	36
SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX		
82	-24.00	179.1	143.4	0.	0.		
83	-24.30	181.3	145.2	0.	0.		
84	-24.60	183.5	147.0	0.	0.		
85	-24.90	185.7	148.7	0.	0.		
86	-25.00	186.4	149.3	0.	0.		

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 37 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO SPINTE NEGLI ELEMENTI TERRENO

(LE SPINTE SONO CALCOLATI	E INTEGRANDO GLI SFORZI NEI SINGOLI ELEMENTI MOLLA)
SPINTA EFFICACE VERA	= Integrale delle pressioni orizzontali efficaci in tutti gli elementi nel gruppo: unita' di misura kN/m
SPINTA ACQUA	= Integrale delle pressioni interstiziali in tutti gli elementi nel gruppo: unita' di misura kN/m
SPINTA TOTALE VERA	<pre>= Somma della SPINTA EFFICACE e della SPINTA DELL'ACQUA: e' l' azione totale sulla parete: unita' di misura kN/m</pre>
SPINTA ATTIVA POSSIBILE	= La minima spinta che puo' essere esercitata da questo gruppo di elementi terreno, in questa fase: unita' di misura kN/m
SPINTA PASSIVA POSSIBILE	= La massima spinta che puo' essere esercitata da questo gruppo di elementi terreno, in questa fase: unita' di misura kN/m
RAPPORTO PASSIVA/VERA	<pre>= e' il rapporto tra la massima spinta possibile e la spinta efficace vera: fornisce un'indicazione su quanta spinta passiva venga mobilitata;</pre>
SPINTA PASSIVA MOBILITATA	<pre>= e' l'inverso del rapporto precedente, espresso in unita' percentuale: indica quanta parte della massima spinta possibile e' stata mobilitata;</pre>
RAPPORTO VERA/ATTIVA	e' il rapporto tra la spinta efficace vera e la minima spinta possibile: fornisce un'indicazione di quanto questa porzione di terreno sia prossima alla condizione di massimo rilascio.

FASE	1	GRUPPO>	UHLe	DHLe
SPIN	ITA EFFICACE	E VERA	2378.1	2378.1
SPIN	ITA ACQUA		0.	0.
SPIN	TA TOTALE V	/ERA	2378.1	2378.1
SPIN	ITA ATTIVA	(POSSIBILE)	2215.5	2215.5
SPIN	TA PASSIVA	(POSSIBILE)	26525.	26525.
RAPE	PORTO PASSI	IVA/VERA	11.154	11.154
SPIN	TA PASSIVA	MOBILITATA	9.8	9.%
RAPE	ORTO VERA	/ATTIVA	1.0734	1.0734

Pagina 266 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.00 28 SETTEMBRE 2010 17:32:55	Ce.A.S. s.	r.l Milano	PAG. 38
History 0 - PARATIA PALI 1200	i=140		
FASE 2 GRUPPO>			
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	2215.6	2215.5	
SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE)	2215.6	1705.5	
SPINTA PASSIVA (POSSIBILE)	26525.	20682.	
SPINTA PASSIVA MOBILITATA	8.%	11.%	
RAPPORTO VERA/ATTIVA	1.0001	1.2991	
FASE 3 GRUPPO>			
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	2334.7	2196.8	
SPINTA ACQUA SPINTA TOTALE VERA	2334.7	2196.8	
SPINTA ATTIVA (POSSIBILE)	2215.5	1705.5	
SPINTA PASSIVA (POSSIBILE)	26525.	20682.	
RAPPORTO PASSIVA/VERA	11.361	9.4145 11 %	
RAPPORTO VERA/ATTIVA	1.0538	1.2881	
FASE 4 GRUPPO>	UHLe	DHLe	
SPINTA EFFICACE VERA	2267.8	2129.3	
SPINTA ACQUA	U. 2267 8	U. 2129 3	
SPINTA ATTIVA (POSSIBILE)	2215.5	1265.6	
SPINTA PASSIVA (POSSIBILE)	26525.	15588.	
RAPPORTO PASSIVA/VERA	11.696	7.3209	
SPINTA ACQUA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	9.5 1.0236	1.6824	
1411 1 01110 V 2141, 111 1 1 1 1 1 1	1.0200	1.0021	
FASE 5 GRUPPO>	UHLe	DHLe	
SPINTA EFFICACE VERA	2392.8	2108.0	
SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA	0.	0.	
SPINTA ATTIVA (POSSIBILE)	2215.5	1265.6	
SPINTA PASSIVA (POSSIBILE)	26525.	15588.	
RAPPORTO PASSIVA/VERA	11.085	7.3947	
SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	9.%	14.% 1 6656	
IGHTONIO VERM/ATTIVA	1.0000	1.0000	

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 39
28 SETTEMBRE 2010 17:32:55
History 0 - PARATIA PALI 1200 i=140

FASE 6 GRUPPO --> UHLe DHLe

SPINTA EFFICACE VERA 2295.5 2007.9
SPINTA ACQUA 0. 0.
SPINTA TOTALE VERA 2295.5 2007.9

Eurolink S.C.p.A. Pagina 267 di 445

PAG. 40

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA		11213. 5.5847
FASE 7 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	0. 2424.6 2215.5	0. 1981.1 891.18 11213. 5.6602 18.%
FASE 8 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	2301.0 0. 2301.0 2215.5 26525. 11.527 9.% 1.0386	0. 1836.7 537.17 7017.9 3.8210
FASE 9 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	26525. 10.932 9.%	1806.8 537.17 7017.9 3.8842 26.%

PARATIE 7.00 Ce.A.S. s.r.l. - Milano 28 SETTEMBRE 2010 17:32:55 History 0 - PARATIA PALI 1200 i=140 GRUPPO --> UHLe FASE 10 DHLe

 SPINTA EFFICACE VERA
 2286.2
 1591.5

 SPINTA ACQUA
 0.
 0.

 SPINTA TOTALE VERA
 2286.2
 1591.5

 SPINTA ATTIVA (POSSIBILE)
 2215.5
 272.30

 SPINTA PASSIVA (POSSIBILE)
 26525.
 3801.0

 RAPPORTO PASSIVA/VERA
 11.602
 2.3884

 RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA 5.8446 9.% 42.8 RAPPORTO VERA/ATTIVA 1.0319 GRUPPO --> UHLe FASE 11 DHLe SPINTA EFFICACE VERA 2392.0 1561.3 SPINTA ACQUA 0. 0.

Pagina 268 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 \$S\$0328_F0.doc_F0
 F0
 20/06/2011

SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	26525. 11.089	272.30 3801.0 2.4346
FASE 12 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	26525. 11.630 9.%	186.07 2721.9 1.9415 52.%
FASE 13 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	0. 2234.1 2219.6 24250.	0. 1457.0 195.32 2593.8 1.7802 56.%

12.2.2 COMBINAZIONE A1+M1

JOBNAME Y:\ELABORATI\LAVORO\382.01_PONTE SULLO STRETTO\ING\CALCOLI\Faro Ove

12 OTTOBRE 2010 11:19:06

Eurolink S.C.p.A. Pagina 269 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
Ce.A.S. s.r.l. - Milano
PARATTE 7.00
                                                                        PAG. 2
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
                      ELENCO DEI DATI DI INPUT (PARAGEN)
                      Per il significato dei vari comandi
                      si faccia riferimento al manuale di
                      input PARAGEN, versione 7.00.
  N. comando
   1: * Paratie for Windows version 7.0
   2: * Filename= <c:\lavori\ponte\calcoli\pali h=17.0m (gm)\slu 1 hist00.d>
       Date= 16
   3: * project with "run time" parameters
   4: * Force=kN Lenght=m
   5: *
   6: units m kN
   7: title History 0 - PARATIA PALI 1200 i=140
   8: delta 0.3
   9: option param itemax 50
  10: option noprint echo
  11: option noprint displ
  12: option noprint react
  13: option noprint stresses
  14:
         wall LeftWall 0 -25 0
  15: *
  16: soil UHLeft LeftWall -25 0 1 0
  17: soil DHLeft LeftWall -25 0 2 180
  19: material cls_C28_35 3.144E+007
  20: material Acciaio 2.1E+008
  21: *
  22: beam Beam LeftWall -25 0 cls C28 35 0.955541 00 00
  23: *
  24: wire t1 LeftWall -2 Acciaio 1.24107E-005 140 10 25: wire t2 LeftWall -5 Acciaio 1.32381E-005 150 10
  26: wire t3 LeftWall -8 Acciaio 1.90934E-005 160 10
  27: wire t4 LeftWall -11.5 Acciaio 2.15839E-005 160 10 28: wire t5 LeftWall -15 Acciaio 2.48214E-005 140 10
  29: *
  30: * Soil Profile
  31: *
          ldata
                          Soil 0
  32:
                       19 9 10
0.384339 0 1
  33:
              weight
  34:
              atrest
  35:
              resistance 5 38 0.383 4.204
                         120000 2 0 1 100 0.6
  36:
              moduli
  37:
          endlayer
  38: *
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                        PAG.
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
 N. comando
  39: step 1 : gostatico
  40: setwall LeftWall
  41:
          geom 0 0
              surcharge 10 0 10 0
  42:
  43: endstep
  44: *
  45: step 2 : primo ribasso
  46:
        setwall LeftWall
```

Pagina 270 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

```
47:
            geom 0 -2.5
            surcharge 10 0 0 0
 48:
 49: endstep
 50: *
 51: step 3 : messa in opera 1 tirante
 52: setwall LeftWall
 53:
            add t1
 54: endstep
 55: *
 56: step 4 : scavo secondo ribasso
 57: setwall LeftWall
 58:
            geom 0 -5.5
 59: endstep
 60: *
 61: step 5 : messa in opera 2 tirante
 62: setwall LeftWall
            add t2
 63:
 64: endstep
 65: *
 66: step 6 : terzo ribasso
 67: setwall LeftWall
 68:
           geom 0 -8.5
 69: endstep
 70: *
 71: step 7 : messa in opera 3 tirante
 72: setwall LeftWall
 73:
           add t3
 74: endstep
 75: *
 76: step 8 : quarto ribasso
 77: setwall LeftWall
         geom 0 -12
 78:
 79: endstep
 80: *
 81: step 9: messa in opera 4 tirante
 82: setwall LeftWall
 83:
            add t4
 84: endstep
PARATIE 7.00
                            Ce.A.S. s.r.l. - Milano
                                                                PAG. 4
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
 N. comando
 85: *
 86: step 10 : quinto ribasso
 87: setwall LeftWall
 88:
           geom 0 -15.5
 89: endstep
 90: *
 91: step 11 : messa in opera 5 tirante
 92: setwall LeftWall
 93:
           add t5
 94: endstep
 95: *
 96: step 12 : sesto ribasso
 97: setwall LeftWall
 98:
           geom 0 -17
 99: endstep
100: *
101: step 13 : Fase sismica
102: change Soil U-KA=0.4
103: change Soil U-KP=4
       change Soil D-KA=0.4
104:
```

Eurolink S.C.p.A. Pagina 271 di 445

105:

106:

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

change Soil D-KP=4

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

```
dload constant LeftWall -17 38.1 0 38.1
       setwall LeftWall
107:
108:
            surcharge 0 0 0 0
109: endstep
110: *
111: *
PARATIE 7.00
                             Ce.A.S. s.r.l. - Milano
                                                                  PAG. 5
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
             RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
LAYER Soil
     natura 1=granulare, 2=argilla = 1.0000
quota superiore = 0.0000
                                        =-0.10000E+31 m
     quota inferiore
     peso fuori falda
                                        = 19.000
                                                       kN/m³
     peso efficace in falda
                                        = 9.0000
                                                       kN/m³
     peso dell'acqua
                                        = 10.000
                                                       kN/m³
                                        = 5.0000
                                                                   (A MONTE)
     coesione
                                                       kPa
                                        = 38.000
     angolo di attrito
                                                      DEG
                                                                   (A MONTE)
     coeff. spinta attiva ka
                                        = 0.38300
                                                                   (A MONTE)
     coeff. spinta passiva kp
                                       = 4.2040
                                                                   (A MONTE)
                                         = 0.38434
     Konc normal consolidato
     OCR: grado di sovraconsolidazione = 1.0000
     modello di rigidezza
                                        = 2.0000
     modulo Rvc
                                        = 0.12000E+06 kPa
                                        = 2.0000
     rapporto Rur/Rvc
                                        = 1.0000
= 100.00
     coef-h
     pressione di normalizz.
                                                       kPa
                                        = 0.60000
     esponente n
     natura 1=granulare, 2=argilla
                                        = 1.0000
                                                                   (A VALLE)
                                        = 5.0000 kPa
= 38.000 DEG
= 0.38300
                                                                   (A VALLE)
     coesione
     angolo di attrito
                                                                   (A VALLE)
                                         = 0.38300
     coeff. spinta attiva ka
                                                                   (A VALLE)
                                                                   (A VALLE)
     coeff. spinta passiva kp
                                         = 4.2040
             RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
              NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
             RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
              NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
             RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE
                   (SOLO I PARAMETRI CHE POSSONO VARIARE)
              NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
```

Pagina 272 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 6
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 8 (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 10 (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 11 (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 12

PARATIE 7.00 Ce.A.S. s.r.l. - Milano 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140 PAG. 7

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 13

(SOLO I PARAMETRI CHE POSSONO VARIARE)

(SOLO I PARAMETRI CHE POSSONO VARIARE)

Eurolink S.C.p.A. Pagina 273 di 445

LAYER Soil

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

```
coeff. spinta attiva ka = 0.40000 coeff. spinta passiva kp = 4.0000 coeff. spinta attiva ka = 0.40000 coeff. spinta passiva kp = 4.0000
                                                                                        (A MONTE)
                                                                                        (A MONTE)
                                                                                        (A VALLE)
                                                                                        (A VALLE)
PARATIE 7.00
                                      Ce.A.S. s.r.l. - Milano
                                                                                       PAG.
                                                                                                  8
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
                  RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
             quota piano campagna
quota del fondo scavo
quota della falda
sovraccarico a monte
              coordinata y
                                                                  = 0.0000
                                                                                     m
                                                                 = 0.0000
                                                                                     m
                                                                 = 0.0000 m
=-0.99900E+30 m
              sovraccarico a monte = 10.000 kPa
quota del sovraccarico a monte = 0.0000 m
depressione falda a valle = 0.0000 m
              depressione falda a valle
              depressione falda a valle - 0.0000 sovraccarico a valle = 10.000 quota del sovraccarico a valle = 0.0000 muota di taglio = 0.0000
                                                                                    kPa
                                                                                     m
              quota di taglio
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua = 0.0000
                                                                                     m
                                                                                     (1=REMOVE)
              opzione aggiornamento pressioni acqua = 0.0000
                                                                                     (1=NO UPD)
              accelerazione sismica orizz. = 0.0000 accel. sismica vert. a monte = 0.0000
                                                                                     [g]
                                                                                     [g]
              accel. sismica vert. a valle
                                                                = 0.0000
= 0.0000
                                                                                     [d]
              angolo beta a monte
              delta/phi a monte
                                                                 = 0.0000
                                                                  = 0.0000
              angolo beta a valle
                                                                 = 0.0000
              delta/phi a valle
              delta/phi a valle
opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
0.0000
0.0000
                                                                                     (1=pervious)
                                                                 = 0.0000
              Wood top pressure
              Wood bottom pressure elev.
                                                                = 0.0000
                                                                                     kPa
              Wood top pressure elev.
                                                                 = 0.0000
                  RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                                   = 0.0000
              coordinata y
                                                                                     m
              quota piano campagna
                                                                  = 0.0000
                                                                                    m
              quota del fondo scavo
                                                                 = -2.5000
              quota della falda
                                                                  =-0.99900E+30 m
              sovraccarico a monte
                                                                 = 10.000 kPa
              quota del sovraccarico a monte = 0.0000 depressione falda a valle = 0.0000
                                                                                    m
              depressione falda a valle sovraccarico a valle
                                                                                     m
              sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000
                                                                                   kPa
                                                                                     m
                                                                                     m
```

Pagina 274 di 445 Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0

20/06/2011

Data

```
PARATTE 7.00
                              Ce.A.S. s.r.l. - Milano
                                                                   PAG. 9
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
           quota di equil. pressioni dell'acqua = -25.000
                                                                 (1=REMOVE)
           indicatore comportamento acqua
                                                   = 0.0000
          opzione aggiornamento pressioni acqua = 0.0000
                                                                 (1=NO UPD)
          accelerazione sismica orizz. = 0.0000
accel. sismica vert. a monte = 0.0000
                                                                 [g]
           accel. sismica vert. a monte
                                                                 [g]
           accel. sismica vert. a valle
                                                  = 0.0000
                                                                 [g]
           angolo beta a monte
                                                  = 0.0000
           delta/phi a monte
                                                  = 0.0000
                                                  = 0.0000
= 0.0000
           angolo beta a valle
           delta/phi a valle
          opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
                                                                 (1=pervious)
           Wood bottom pressure
                                                                 kPa
           Wood top pressure
                                                  = 0.0000
           Wood bottom pressure elev.
                                                   = 0.0000
                                                                 kPa
                                                 = 0.0000
           Wood top pressure elev.
              RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                   = 0.0000
           coordinata y
                                                   = 0.0000
           quota piano campagna
                                                                 m
           quota del fondo scavo
                                                  = -2.5000
                                                   =-0.99900E+30 m
           quota della falda
          sovraccarico a monte
                                                  = 10.000
                                                                kPa
                                                                 m
                                                                kPa
                                                  = 0.0000
= 0.0000
           quota del sovraccarico a valle
                                                                 m
           quota di taglio
                                                                 m
           quota di taglio
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua = 0.0000
                                                                 (1=REMOVE)
           opzione aggiornamento pressioni acqua = 0.0000
                                                                 (1=NO UPD)
                                                  = 0.0000
= 0.0000
           accelerazione sismica orizz.
                                                                 [g]
           accel. sismica vert. a monte
                                                                 [g]
           accel. sismica vert. a valle
                                                  = 0.0000
                                                                 [ā]
                                                  = 0.0000
           angolo beta a monte
                                                  = 0.0000
           delta/phi a monte
           angolo beta a valle
                                                  = 0.0000
                                                   = 0.0000
           delta/phi a valle
          delta/pni a vallo
opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
                                                                 (1=pervious)
           Wood bottom pressure
                                                                 kPa
                                                  = 0.0000
= 0.0000
           Wood top pressure
           Wood bottom pressure elev.
                                                                 kPa
                              Ce.A.S. s.r.l. - Milano
                                                                   PAG. 10
PARATIE 7.00
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
           Wood top pressure elev.
                                                  = 0.0000
```

Eurolink S.C.p.A. Pagina 275 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

angolo beta a valle

delta/phi a valle

Codice documento SS0328 F0.doc F0

Rev F0

Data 20/06/2011

RIASSUNTO DATI RELATIVI ALLA FASE WALL LeftWall = 0.0000 coordinata y = 0.0000 quota piano campagna m = -5.5000quota del fondo scavo quota della falda =-0.99900E+30 msovraccarico a monte = 10.000 kPa = 0.0000 quota del sovraccarico a monte m depressione falda a valle = 0.0000 = 0.0000 m sovraccarico a valle kPa quota del sovraccarico a valle = 0.0000 quota di taglio = 0.0000 m quota di equil. pressioni dell'acqua = -25.000 indicatore comportamento acqua m m e -25.000

indicatore comportamento acqua = 0.0000
opzione aggiornamento pressioni acqua = 0.0000
accelerazione sismica orizz. = 0.0000
accel. sismica vert. a monte = 0.0000
accel. sismica vert. (1=REMOVE) (1=NO UPD) [g] [q] accel. sismica vert. a monte accel. sismica vert. a valle = 0.0000 [g] angolo beta a monte = 0.0000 delta/phi a monte = 0.0000 = 0.0000 [°] angolo beta a valle = 0.0000 delta/phi a valle opzione dyn. acqua
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000 (1=pervious) kPa Wood top pressure = 0.0000 = 0.0000 = 0.0000 Wood bottom pressure elev. kPa Wood top pressure elev. m RIASSUNTO DATI RELATIVI ALLA FASE WALL LeftWall coordinata y = 0.0000 = 0.0000 quota piano campagna m = -5.5000quota del fondo scavo m quota della falda =-0.99900E+30 m sovraccarico a monte = 10.000 kPa quota del sovraccarico a monte = 0.0000 depressione falda a valle = 0.0000 m depressione falda a valle = 0.0000 = 0.0000 m sovraccarico a valle kPa quota del sovraccarico a valle = 0.0000 m Ce.A.S. s.r.l. - Milano PARATTE 7.00 PAG. 11 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140 RIASSUNTO DATI RELATIVI ALLA FASE quota di taglio = 0.0000 quota di equil. pressioni dell'acqua = -25.000 indicatore comportamento acqua = 0.0000 (1=REMOVE) opzione aggiornamento pressioni acqua = 0.0000 (1=NO UPD) accelerazione sismica orizz. = 0.0000 [g] accel. sismica vert. a monte = 0.0000 [q] accel. sismica vert. a valle = 0.0000 [°] angolo beta a monte = 0.0000 = 0.0000 delta/phi a monte [°]

Eurolink S.C.p.A. Pagina 276 di 445

= 0.0000 = 0.0000

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

	opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE	= = =	0.0000 0.0000 0.0000 0.0000 0.0000	(1=pervious) kPa m kPa m
WALL LeftV	coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua		0.0000 0.0000 -8.5000 0.99900E+30 10.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	m m m m kPa m kPa m m kPa m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [c] [c] [c] (1=pervious) kPa m
	00 Ce.A.S. s.r.l Mil 2 2010 11:19:06 - PARATIA PALI 1200 i=140	Lano		PAG. 12
RIASSUNTO	DATI RELATIVI ALLA FASE 6			
	Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE		0.0000	kPa m
WALL LeftV	coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle	= = = = = = = = = = = = = = = = = = = =	-8.5000 ·0.99900E+30	m m m m kPa m kPa m m kPa m (1=REMOVE) (1=NO UPD) [g] [g] [g]

Eurolink S.C.p.A. Pagina 277 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

angolo beta a monte	=	0.0000	[°]
delta/phi a monte	=	0.0000	
angolo beta a valle	=	0.0000	[°]
delta/phi a valle	=	0.0000	
opzione dyn. acqua	=	0.0000	(1=pervious)
rapporto pressioni in eccesso Ru	=	0.0000	
Wood bottom pressure	=	0.0000	kPa
Wood top pressure	=	0.0000	m
Wood bottom pressure elev.	=	0.0000	kPa
Wood top pressure elev.	=	0.0000	m

RIASSUNTO DATI RELATIVI ALLA FASE

WALL LeftWall

-	111			
	coordinata y	=	0.0000	m
	quota piano campagna	=	0.0000	m
	quota del fondo scavo	= -	-12.000	m
	quota della falda	=-(.99900E+30	m
	sovraccarico a monte	=	10.000	kPa
	quota del sovraccarico a monte	=	0.0000	m
	depressione falda a valle	=	0.0000	m
	sovraccarico a valle	=	0.0000	kPa

Pagina 278 di 445 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

```
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                       PAG. 13
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
                                             = 0.0000
           quota del sovraccarico a valle
           quota di taglio
                                                    = 0.0000
           quota di taglio
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua = 0.0000
                                                                     m
                                                                     (1=REMOVE)
           indicatore comportamento acqua conzione aggiornamento pressioni acqua = 0.0000 = 0.0000
                                                                     (1=NO UPD)
           accelerazione sismica orizz.
accel. sismica vert. a monte
                                                                     [g]
                                                     = 0.0000
                                                                     [q]
           accel. sismica vert. a valle
                                                     = 0.0000
                                                                     [°]
                                                     = 0.0000
           angolo beta a monte
           delta/phi a monte
                                                     = 0.0000
           angolo beta a valle
                                                     = 0.0000
           delta/phi a valle
                                                     = 0.0000
           opzione dyn. acqua
                                                     = 0.0000
                                                                     (1=pervious)
           rapporto pressioni in eccesso Ru = 0.0000
           Wood bottom pressure
                                                     = 0.0000
                                                                     kPa
           Wood top pressure
                                                     = 0.0000
                                                     = 0.0000
                                                                     kPa
           Wood bottom pressure elev.
                                                     = 0.0000
           Wood top pressure elev.
                                                                     m
              RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
           coordinata y
                                                      = 0.0000
                                                                     m
                                                     = 0.0000
           quota piano campagna
                                                                     m
                                                     = -12.000
           quota del fondo scavo
           quota della falda
                                                     =-0.99900E+30 m
           sovraccarico a monte
                                                     = 10.000 kPa
                                                     = 0.0000
           quota del sovraccarico a monte
                                                                     m
           depressione falda a valle
                                                     = 0.0000
                                                                     m
                                                    = 0.0000
= 0.0000
           sovraccarico a valle
                                                                     kPa
           sovraccarico a valle quota del sovraccarico a valle
                                                                     m
                                                     = 0.0000
           quota di taglio
                                                                     m
           quota di taglio
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua = 0.0000
                                                                     m
                                                                     (1=REMOVE)
           opzione aggiornamento pressioni acqua = 0.0000
                                                                     (1=NO UPD)
           accelerazione sismica orizz.
                                                     = 0.0000
                                                                     [g]
           accel. sismica vert. a monte
                                                     = 0.0000
                                                                     [g]
           accel. sismica vert. a valle
                                                     = 0.0000
                                                     = 0.0000
           angolo beta a monte
           delta/phi a monte
                                                     = 0.0000
                                                     = 0.0000
           angolo beta a valle
                                                     = 0.0000
           delta/phi a valle
           opzione dyn. acqua = 0.0000 rapporto pressioni in eccesso Ru = 0.0000 Wood bottom pressure = 0.0000
                                                                     (1=pervious)
```

Eurolink S.C.p.A. Pagina 279 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l M: 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140	PAG. 14	
RIASSUNTO DATI RELATIVI ALLA FASE 9		
Wood top pressure Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE	= 0.0000 = 0.0000 = 0.0000	m kPa m
WALL LeftWall		
coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle sovraccarico a valle quota del sovraccarico a valle quota di taglio quota di equil. pressioni dell'acqua indicatore comportamento acqua opzione aggiornamento pressioni acqua accelerazione sismica orizz. accel. sismica vert. a monte accel. sismica vert. a valle angolo beta a monte delta/phi a monte angolo beta a valle delta/phi a valle opzione dyn. acqua rapporto pressioni in eccesso Ru Wood bottom pressure Wood top pressure Wood top pressure elev. Wood top pressure elev.	= 0.0000 = 0.0000 = -15.500 =-0.99900E+30 = 10.000 = 0.0000 = 0.0000	m m m m kPa m m kPa m m (1=REMOVE) (1=NO UPD) [g] [g] [g] [c] [°] (1=pervious) kPa m kPa m
WALL LeftWall coordinata y quota piano campagna quota del fondo scavo quota della falda sovraccarico a monte quota del sovraccarico a monte depressione falda a valle	= 0.0000 = 0.0000 = -15.500 =-0.99900E+30 = 10.000 = 0.0000 = 0.0000	m m m kPa m

Pagina 280 di 445 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0

20/06/2011

Data

```
PARATIE 7.00
                                 Ce.A.S. s.r.l. - Milano
                                                                           PAG. 15
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 11
            sovraccarico a valle
                                                         = 0.0000
                                                                         kPa
            quota del sovraccarico a valle = 0.0000
                                                                         m
            quota di equil. pressioni dell'acqua = -25.000 indicatore comportamento acqua
                                                                         m
                                                                         m
            principal comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000 accel. sismica vert. a monte = 0.0000
                                                                         (1=REMOVE)
                                                                         (1=NO UPD)
                                                                         [g]
            accel. sismica vert. a monte accel. sismica vert. a valle
                                                                         [a]
                                                        = 0.0000
                                                                         [g]
            angolo beta a monte
                                                        = 0.0000
            delta/phi a monte
                                                         = 0.0000
                                                        = 0.0000
                                                                         [°]
            angolo beta a valle
                                                        = 0.0000
            delta/phi a valle
            opzione dyn. acqua crapporto pressioni in eccesso Ru = 0.0000 = 0.0000
                                                         = 0.0000
                                                                         (1=pervious)
                                                                         kPa
            Wood top pressure
                                                        = 0.0000
                                                        = 0.0000
= 0.0000
            Wood bottom pressure elev.
                                                                         kPa
            Wood top pressure elev.
               RIASSUNTO DATI RELATIVI ALLA FASE 12
WALL LeftWall
            coordinata y
                                                         = 0.0000
                                                        = 0.0000
            quota piano campagna
                                                                         m
                                                        = -17.000
            quota del fondo scavo
                                                                         m
            quota della falda
                                                        =-0.99900E+30 m
            sovraccarico a monte
                                                         = 10.000
                                                                       kPa
                                                   = 0.0000
            quota del sovraccarico a monte
                                                                         m
                                                        = 0.0000
= 0.0000
            depressione falda a valle
                                                                         m
            sovraccarico a valle
                                                                         kPa
            quota del sovraccarico a valle = 0.0000
                                                                         m
            quota di equil. pressioni dell'acqua = -25.000 indicatore comportamento acqua
                                                                         m
            indicatore comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                                         (1=REMOVE)
                                                                         (1=NO UPD)
            accelerazione sismica orizz.
                                                                         [a]
                                                         = 0.0000
            accel. sismica vert. a monte
                                                                         [g]
                                                        = 0.0000
            accel. sismica vert. a valle
            angolo beta a monte
                                                        = 0.0000
                                                         = 0.0000
            delta/phi a monte
                                                        = 0.0000
                                                                         [°]
            angolo beta a valle
                                                        = 0.0000
            delta/phi a valle
            opzione dyn. acqua
                                                         = 0.0000
                                                                         (1=pervious)
            rapporto pressioni in eccesso Ru = 0.0000
```

Eurolink S.C.p.A. Pagina 281 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l M: 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140	iland	0	PAG. 16
RIASSUNTO DATI RELATIVI ALLA FASE 12			
Wood bottom pressure Wood top pressure Wood bottom pressure elev. Wood top pressure elev. RIASSUNTO DATI RELATIVI ALLA FASE	=	0.0000 0.0000 0.0000 0.0000	kPa m kPa m
WALL LeftWall coordinata y	_	0.0000	m
quota piano campagna	=	0.0000	m m
quota del fondo scavo		-17.000	m
quota della falda		-0.99900E+30	
sovraccarico a monte quota del sovraccarico a monte		0.0000	kPa m
depressione falda a valle		0.0000	m
sovraccarico a valle		0.0000	iii kPa
quota del sovraccarico a valle		0.0000	m
quota dei soviaccarico a varre quota di taglio		0.0000	m
quota di equil. pressioni dell'acqua		-25.000	m
indicatore comportamento acqua		0.0000	(1=REMOVE)
opzione aggiornamento pressioni acqua		0.0000	(1=NO UPD)
accelerazione sismica orizz.		0.0000	[d]
accel. sismica vert. a monte	=	0.0000	[g]
accel. sismica vert. a valle		0.0000	[g]
angolo beta a monte	=	0.0000	[°]
delta/phi a monte	=	0.0000	
angolo beta a valle	=	0.0000	[°]
delta/phi a valle		0.0000	
opzione dyn. acqua		0.0000	(1=pervious)
rapporto pressioni in eccesso Ru		0.0000	
Wood bottom pressure		0.0000	kPa
Wood top pressure		0.0000	m kPa
Wood bottom pressure elev. Wood top pressure elev.	=	0.0000	KPa m
Mood tob biessaie eien.	_	0.0000	111

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 17 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ELEMENTI

+		+	+	+	+	++
		RIASSU	JNTO	ELEMENTI	SOIL	1
+		+	+	+	+	++
-	Name	Wall	Z1	Z2	Flag	Angle
		 	 m 	m	 +	deg

Pagina 282 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

									UPHILL		
İ	DHLeft	ĺ	LeftWall	İ	0.	İ	-25.00	İ	DOWNHILL	İ	180.0

++++++ RIASSUNTO ELEMENTI BEAM ++								
	Wall Wall	Z1			thick			
		m	m		m			
Beam	LeftWall	0.	-25.00	 	0.9555			

+	+						
 +	+			MENTI WIRE	+	 ++	
Name	Wall	Zeta	Mat	A/L	Pinit	Angle	
		l m			kN/m	deg	
t1	LeftWall	-2.000	_	0.1241E-04	140.0	10.00	
t2		-5.000	_	0.1324E-04		10.00	
t3	LeftWall	-8.000	_	0.1909E-04	160.0	10.00	
l t4	LeftWall	-11.50	_	0.2158E-04	160.0	10.00	
	•			0.2482E-04	'	'	

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 18
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 19 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI VARI

++	+
M	ATERIALI
Name	YOUNG MODULUS
	kPa
cls_	3.144E+007
Acci	2.1E+008

Eurolink S.C.p.A. Pagina 283 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 20 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140

DISTRIBUTED LOAD SUMMARY

Wall From To Z1 P1 Z2 P2 step step Left 13 13 -17.000 38.100 0.0000 38.100

UNITS FOR Z1 , Z2 =m UNITS FOR P1 , P2 =kPa

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 21 12 OTTOBRE 2010 11:19:06

History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ANALISI INCREMENTALE

FASE	n.T	DT	THEDARTONI	CONTREDCEMEN
FASE	IN .	ПΤ	ITERAZIONI	CONVERGENZA
1			2	SI
2			4	SI
3			4	SI
4			4	SI
5			4	SI
6			5	SI
7			4	SI
8			7	SI
9			4	SI
10			7	SI
11			4	SI
12			6	SI
13			6	SI

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 22 12 OTTOBRE 2010 11:19:06

History O - PARATIA PALI 1200 i=140

TUTTI I PASSI

* PARETE LeftWall*

* I PASSI NON EQUILIBRATI SONO ESCLUSI *

* NOTA: LE QUOTE ESPRESSE IN m

E GLI SPOSTAMENTI IN m

MASSIMI SPOSTAMENTI LATERALI

NODO QUOTA ZETA SPOSTAMENTO MASSIMO FASE PARETE LeftWall 0.0000 0.36827E-01 13 1 2 -0.30000 0.37128E-01 13 -0.60000 0.37429E-01 13 4 -0.90000 0.37730E-01 13

5 -1.2000 0.38031E-01 -1.5000 0.38334E-01 13 6 -1.8000 0.38639E-01 7 13 8 -2.0000 0.38843E-01 13 9 -2.3000 0.39152E-01 13 10 -2.6000 0.39462E-01 13

Pagina 284 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

1	L1	-2.9000	0.39772E-01	13
1	L2	-3.2000	0.40080E-01	13
1	L3	-3.5000	0.40386E-01	13
1	L4	-3.8000	0.40688E-01	13
1	L5	-4.1000	0.40986E-01	13
1	L6	-4.4000	0.41279E-01	13
1	L7	-4.7000	0.41566E-01	13
1	L8	-5.0000	0.41849E-01	13
1	L9	-5.3000	0.42125E-01	13
2	20	-5.6000	0.42393E-01	13
		-5.9000	0.42651E-01	13
2	22	-6.2000	0.42897E-01	13
	23	-6.5000	0.43128E-01	13
		-6.8000	0.43343E-01	13
		-7.1000	0.43542E-01	13
		-7.4000	0.43721E-01	13
		-7.7000	0.43882E-01	13
		-8.0000	0.44024E-01	13
	29	-8.3000	0.44146E-01	13
	30	-8.6000	0.44244E-01	13
	31	-8.9000	0.44317E-01	13
		-9.2000	0.44361E-01	13
		-9.5000	0.44373E-01	13
	34	-9.8000	0.44351E-01	13
	35	-10.100	0.44294E-01	13
	36	-10.400	0.44201E-01	13
-	37	-10.700	0.44069E-01	13
3	38	-11.000	0.43900E-01	13

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 23

PARATIE 7.00 Ce.A.S.

12 OTTOBRE 2010 11:19:06

History 0 - PARATIA PALI 1200 i=140

NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE LeftWall
39	-11.300	0.43691E-01	13	
40	-11.500	0.43531E-01	13	
41	-11.800	0.43259E-01	13	
42	-12.100	0.42945E-01	13	
43	-12.400	0.42588E-01	13	
44	-12.700	0.42186E-01	13	
45	-13.000	0.41737E-01	13	
46	-13.300	0.41240E-01	13	
47	-13.600	0.40694E-01	13	
48	-13.900	0.40099E-01	13	
49	-14.200	0.39456E-01	13	
50	-14.500	0.38765E-01	13	
51	-14.800	0.38027E-01	13	
52	-15.000	0.37511E-01	13	
53	-15.300	0.36699E-01	13	
54	-15.600	0.35845E-01	13	
55	-15.900	0.34946E-01	13	
56	-16.200	0.34006E-01	13	
57	-16.500	0.33024E-01	13	
58	-16.800	0.32002E-01	13	
59	-17.100	0.30944E-01	13	
60	-17.400	0.29851E-01	13	
61	-17.700	0.28727E-01	13	
62	-18.000	0.27575E-01	13	
63	-18.300	0.26400E-01	13	
64	-18.600	0.25205E-01	13	
65	-18.900	0.23994E-01	13	
66	-19.200	0.22771E-01	13	
67	-19.500	0.21539E-01	13	
68	-19.800	0.20302E-01	13	

Eurolink S.C.p.A. Pagina 285 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

69	-20.100	0.19064E-01	13
70	-20.400	0.17828E-01	13
71	-20.700	0.16595E-01	13
72	-21.000	0.15369E-01	13
73	-21.300	0.14151E-01	13
74	-21.600	0.12943E-01	13
75	-21.900	0.11744E-01	13
76	-22.200	0.10554E-01	13
77	-22.500	0.93742E-02	13
78	-22.800	0.82029E-02	13
79	-23.100	0.70395E-02	13
80	-23.400	0.58826E-02	13
81	-23.700	0.47312E-02	13
82	-24.000	0.40719E-02	12
83	-24.300	0.34931E-02	12
84	-24.600	0.29149E-02	12

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 24

12 OTTOBRE 2010 11:19:06

History 0 - PARATIA PALI 1200 i=140

NODO QUOTA ZETA SPOSTAMENTO MASSIMO FASE PARETE LeftWall

85 -24.900 0.24895E-02 9 86 -25.000 0.24590E-02 9

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 25 12 OTTOBRE 2010 11:19:06

History 0 - PARATIA PALI 1200 i=140

INVILUPPO AZIONI INTERNE NEGLI ELEMENTI DI PARETE

(PER UNITA' DI PROFONDITA')

* PARETE LeftWall GRUPPO Beam*

STEP 1 - 13

* I PASSI NON EQUILIBRATI SONO ESCLUSI *

Nella tabella si stampano i seguenti risultati:

MOMENTO SX = Momento che tende le fibre sulla faccia sinistra [kN*m/m] MOMENTO DX = Momento che tende le fibre sulla faccia destra [kN*m/m] TAGLIO = forza tagliante (valore assoluto, priva di segno) [kN/m]

BEAM EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO
1	A	0.	0.8004E-10	0.7221E-09	5.748
	В	-0.3000	1.725	0.	5.748
2	A	-0.3000	1.725	0.9550E-11	17.25
	В	-0.6000	6.898	0.	17.25
3	A	-0.6000	6.898	0.	28.74
	В	-0.9000	15.52	0.	28.74
4	A	-0.9000	15.52	0.	40.39
	В	-1.200	27.64	0.	40.39
5	A	-1.200	27.64	0.	52.73
	В	-1.500	43.46	0.	52.73
6	A	-1.500	43.46	0.	65.76
	В	-1.800	63.19	0.	65.76
7	A	-1.800	63.19	0.	77.19
	В	-2.000	78.62	0.	77.19
8	A	-2.000	78.62	0.	146.0
	В	-2.300	35.79	0.	146.0
9	A	-2.300	35.79	0.	131.2
	В	-2.600	17.14	23.41	131.2
10	A	-2.600	17.14	23.41	115.7
	В	-2.900	19.81	45.35	115.7
11	A	-2.900	19.81	45.35	99.44
	В	-3.200	25.73	69.07	99.44

Pagina 286 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

12	A	-3.200	25.73	69.07	82.55
	В	-3.500	31.55	93.83	82.55
13	A	-3.500	31.55	93.83	64.97
	В	-3.800	37.07	113.3	64.97
14	A	-3.800	37.07	113.3	46.70
	В	-4.100	42.12	127.3	46.70
15	A	-4.100	42.12	127.3	30.22
	В	-4.400	46.63	135.7	30.22
16	A	-4.400	46.63	135.7	38.01
	В	-4.700	50.54	138.1	38.01
17	A	-4.700	50.54	138.1	52.79
	В	-5.000	53.84	134.4	52.79

Ce.A.S. s.r.l. - Milano PAG. 26 PARATIE 7.00

PARATIE 7.00 Ce.A.S.
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140

BEAM	EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO
	18	A	-5.000	53.84	134.4	225.6
		В	-5.300	56.51	202.1	225.6
	19	A	-5.300	56.51	202.1	203.9
		В	-5.600	58.58	263.3	203.9
	20	A	-5.600	58.58	263.3	181.5
		В	-5.900	60.03	317.7	181.5
	21	A	-5.900	60.03	317.7	158.5
		В	-6.200	60.89	365.3	158.5
	22	A	-6.200	60.89	365.3	134.7
		В	-6.500	61.17	405.7	134.7
	23	A	-6.500	61.17	405.7	110.3
		В	-6.800	60.91	438.8	110.3
	24	A	-6.800	60.91	438.8	85.36
		В	-7.100	60.17	464.3	85.36
	25	A	-7.100	60.17	464.3	70.14
		В	-7.400	58.99	482.2	70.14
	26	A	-7.400	58.99	482.2	54.46
		В	-7.700	57.42	492.1	54.46
	27	A	-7.700	57.42	492.1	63.60
		В	-8.000	55.53	493.8	63.60
	28	A	-8.000	55.53	493.8	299.2
		В	-8.300	53.36	583.6	299.2
	29	A	-8.300	53.36	583.6	270.7
		В	-8.600	50.96	664.8	270.7
	30	A	-8.600	50.96	664.8	241.5
		В	-8.900	48.38	737.2	241.5
	31	A	-8.900	48.38	737.2	211.6
		В	-9.200	45.66	800.7	211.6
	32	A	-9.200	45.66	800.7	181.0
		В	-9.500	42.85	855.0	181.0
	33	A	-9.500	42.85	855.0	149.8
		В	-9.800	39.99	899.9	149.8
	34	A	-9.800	39.99	899.9	117.8
		В	-10.10	37.12	935.3	117.8
	35	A	-10.10	37.12	935.3	89.06
		В	-10.40	34.25	960.8	89.06
	36	A	-10.40	34.25	960.8	67.06
		В	-10.70	31.43	976.4	67.06
	37	A	-10.70	31.43	976.4	72.88
		В	-11.00	28.68	981.7	72.88
	38	A	-11.00	28.68	981.7	100.5
	2.0	В	-11.30	26.02	976.7	100.5
	39	A	-11.30	26.02	976.7	124.0
	4.0	В	-11.50	24.30	967.4	124.0
	40	A B	-11.50	24.30	967.4	244.1
		D	-11.80	21.82	1041.	244.1

Eurolink S.C.p.A. Pagina 287 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

PARATIE 7.		11:19:06	Ce.A.S. s.r	.l Milano)	PAG.	27
		A PALI 1200	i=140				
BEAM EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO		
41	A	-11.80	21.82	1041.	207.6		
	В	-12.10	19.47	1103.	207.6		
42	A	-12.10	19.47	1103.	170.4		
	В	-12.40	17.25	1154.	170.4		
43	A	-12.40	17.25	1154.	132.6		
	В	-12.70	16.02	1194.	132.6		
44	A	-12.70	16.02	1194.	132.4		
	В	-13.00	15.61	1222.	132.4		
45	A	-13.00	15.61	1222.	129.9		
	В	-13.30	15.08	1238.	129.9		
46	A	-13.30	15.08	1238.	122.9		
	В	-13.60	14.45	1243.	122.9		
47	A	-13.60	14.45	1243.	115.8		
	В	-13.90	13.76	1235.	115.8		
48	A	-13.90	13.76	1235.	108.7		
	В	-14.20	13.01	1215.	108.7		
49	A	-14.20	13.01	1215.	134.3		
10	В	-14.50	12.22	1182.	134.3		
50	A	-14.50	12.22	1182.	169.0		
50	В	-14.80	11.41	1137.	169.0		
51	A	-14.80	11.41	1137.			
) I					198.5		
ΕO	В	-15.00	10.86	1099.	198.5		
52	A	-15.00	10.86	1099.	164.1		
	В	-15.30	11.23	1108.	164.1		
53	A	-15.30	11.23	1108.	196.8		
	В	-15.60	11.68	1103.	196.8		
54	A	-15.60	11.68	1103.	221.6		
	В	-15.90	12.00	1084.	221.6		
55	A	-15.90	12.00	1084.	239.8		
	В	-16.20	13.84	1052.	239.8		
56	A	-16.20	13.84	1052.	251.6		
	В	-16.50	16.30	1006.	251.6		
57	A	-16.50	16.30	1006.	256.8		
	В	-16.80	18.31	945.4	256.8		
58	A	-16.80	18.31	945.4	255.4		
	В	-17.10	22.29	871.2	255.4		
59	A	-17.10	22.29	871.2	276.0		
	В	-17.40	34.07	788.4	276.0		
60	A	-17.40	34.07	788.4	298.7		
	В	-17.70	44.22	698.8	298.7		
61	A	-17.70	44.22	698.8	315.2		
	В	-18.00	52.79	604.2	315.2		
62	A	-18.00	52.79	604.2	325.5		
	В	-18.30			325.5		
63		-18.30		506.6	329.7		
00			65.53		329.7		
	Ь	10.00	03.33	410.0	323.1		
PARATIE 7.	0.0		Ce.A.S. s.r	l - Milano		PAG.	28
12 OTTOBRE			00.11.0. 0.1	· · · · · · · · · · · · · · · · · · ·	•	1110.	20
		A PALI 1200	i -1 / 0				
1112 COT A 0	1111/UTT1	. 11111 1200	T T10				
BEAM EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO		
64	A	-18.60	65.53	416.8	327.7		
04							
C.F.	В	-18.90		339.5	327.7		
65	A	-18.90		339.5	319.5		
	В	-19.20	72.85	∠03.0	319.5		

Pagina 288 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

66	A	-19.20	72.85	265.6	305.3
C7	В	-19.50	74.65	197.1	305.3
67	A	-19.50 -19.80	74.65	197.1 135.7	284.8
68	B A	-19.80	75.32 75.32	135.7	284.8 258.2
00	В	-20.10	90.80	83.62	258.2
69	A	-20.10	90.80	83.62	225.5
0,5	В	-20.40	108.6	40.59	225.5
70	A	-20.40	108.6	40.59	186.6
, 0	В	-20.70	164.6	5.951	186.6
71	A	-20.70	164.6	5.951	141.5
, _	В	-21.00	207.1	0.3147	141.5
72	A	-21.00	207.1	0.3147	90.35
	В	-21.30	234.2	0.2608	90.35
73	А	-21.30	234.2	0.2608	45.88
	В	-21.60	247.5	0.2097	45.88
74	A	-21.60	247.5	0.2097	27.40
	В	-21.90	248.8	0.1627	27.40
75	A	-21.90	248.8	0.1627	29.44
	В	-22.20	240.0	0.1210	29.44
76	A	-22.20	240.0	0.1210	57.54
	В	-22.50	222.7	0.8537E-01	57.54
77	A	-22.50	222.7	0.8537E-01	80.01
	В	-22.80	198.7	0.5613E-01	80.01
78	A	-22.80	198.7	0.5613E-01	96.97
	В	-23.10	169.6	0.3339E-01	96.97
79	A	-23.10	169.6	0.3339E-01	108.6
0.0	В	-23.40 -23.40	137.0 137.0	0.1828E-01	108.6
80	A B	-23.40 -23.70	137.0	0.1828E-01 0.1584E-01	114.8 114.8
81	B A	-23.70 -23.70	102.6	0.1584E-01 0.1584E-01	114.8
0.1	В	-24.00	68.28	0.1141E-01	114.4
82	A	-24.00	68.28	0.1141E-01 0.1141E-01	103.0
02	В	-24.30	37.37	0.6511E-02	103.0
83	A	-24.30	37.37	0.6511E-02	78.99
00	В	-24.60	13.68	0.2412E-02	78.99
84	A	-24.60	13.68	0.2412E-02	42.53
	В	-24.90	0.9167	0.1599E-03	42.53
85	A	-24.90	0.9167	0.1599E-03	9.167
	В	-25.00	0.8440E-09	0.6694E-09	9.167

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 29
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140

FORZE NEGLI ANCORAGGI ATTIVI (PER UNITA' DI PROFONDITA')

TIRANTE	t1	1	PARET FASE FASE	1	LeftWall inattiv inattiv	0	QUOTA	-2.0000
							1.37	/
			FASE	3	FORZA	140.00	kN,	
			FASE	4	FORZA	140.53	kN,	/m
			FASE	5	FORZA	139.18	kN,	/m
			FASE	6	FORZA	139.55	kN,	/m
			FASE	7	FORZA	139.16	kN,	/m
			FASE	8	FORZA	139.43	kN,	/m
			FASE	9	FORZA	139.56	kN,	/m
			FASE	10	FORZA	140.44	kN,	/m
			FASE	11	FORZA	140.64	kN,	/m
			FASE	12	FORZA	140.64	kN,	/m
			FASE	13	FORZA	238.66	kN,	/m
TIRANTE	t2	1	PARET FASE	E 1	LeftWall inattiv		QUOTA	-5.0000

Eurolink S.C.p.A. Pagina 289 di 445

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

		FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 FASE 6 FORZA 152.48 FASE 7 FORZA 151.15 FASE 8 FORZA 156.84 FASE 9 FORZA 165.63 FASE 10 FORZA 165.63 FASE 11 FORZA 165.64 FASE 12 FORZA 168.38 FASE 13 FORZA 262.75	kN/m kN/m kN/m kN/m kN/m kN/m kN/m
TIRANTE	t3	PARETE LeftWall FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 6 inattivo FASE 7 FORZA 160.00 FASE 8 FORZA 175.23 FASE 9 FORZA 173.28	kN/m
		FASE 9 FORZA 173.28 FASE 10 FORZA 198.52 FASE 11 FORZA 198.05 FASE 12 FORZA 206.23 FASE 13 FORZA 326.21	kN/m kN/m
	00 2010 11:19:06 - PARATIA PALI 1200	Ce.A.S. s.r.l Milano) i=140	PAG. 30
TIRANTE	t4	1 PARETE LeftWall FASE 1 inattivo FASE 2 inattivo	QUOTA -11.500
		FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 9 FORZA 160.00 FASE 10 FORZA 200.77	kN/m
		FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 9 FORZA 160.00	kN/m kN/m

Pagina 290 di 445 Eurolink S.C.p.A.

PARATTE 7.00

Ce.A.S. s.r.l. - Milano

PROGETTO DEFINITIVO

PAG. 31

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
                   INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO
                         * PARETE LeftWall GRUPPO UHLeft*
                                 *STEP 1 - 13*
                    * I PASSI NON EQUILIBRATI SONO ESCLUSI *
            Nella tabella si stampano i seguenti risultati:
            SIGMA-H = massimo sforzo orizzontale efficace [kPa
            TAGLIO = massimo sforzo di taglio
                                                                   [kPa
                                                                         ]
            PR. ACQUA =massima pressione interstiziale
            GRAD. MAX =massimo gradiente idraulico
                      SIGMA-H
9.227
8.088
40.83
44.36
SOIL EL. QUOTA
                                      TAGLIO PR. ACQUA GRAD. MAX
                                                     0.
                                                             0.
              0.
                                5.000
7.850
                                     5.000
        2 -0.3000
                                                     0.
                                   9.715
11.45
        3 -0.6000
                                                    0.
                                                                 0.
        4 -0.9000
                                                    0.
                                                                 0.
                      43.23 13.21
42.14 14.97
44.06 16.73
44.86 17.90
46.06 19.66
        5 -1.200
                                                    0.
                                                                 0.
        6 -1.500
                                                    0.
                                                    0.
        7 -1.800
                                                                 0.
                                                   0.
0.
        8 -2.000
                                                                 0.
        9 -2.300
                                                                 0.
                      46.71
46.92
46.77
                                                   0.
                                    21.42
      10 -2.600
      11 -2.900
12 -3.200
                                                   0.
0.
                                      23.18
                                                                  0.
                                    24.94
                                                                 Ο.
                                                   0.
0.
      13 -3.500
                        46.34
                                    26.69
                                                                 0.
                        46.18
      14 -3.800
                                     28.45
                                                                 0.
                       46.57
                                                   0.
                                    30.21
      15 -4.100
      16 -4.400
17 -4.700
                       47.77
49.27
                                                   0.
0.
                                      31.97
                                                                 0.
                                                                 0.
                                      33.73
      18 -5.000
                       50.68
                                    35.49
                                                   0.
                                                                 0.
          -5.300
                        52.00
                                      37.25
                                                    0.
      19
                     52.00
53.25
54.77
56.97
59.32
                                    39.00
                                                   0.
      20 -5.600
                                                                 0.
                                                   0.
0.
      21 -5.900
                                     40.76
                                                                 0.
          -6.200
      22
                                     42.52
                                                                 0.
                                   44.28
      23 -6.500
                                                   0.
                       61.75
64.11
                                                   0.
                                                                  0.
      24 -6.800
                                     46.04
                                   47.80
      25 -7.100
                                                                 0.
                                   49.55
      26 -7.400
27 -7.700
                                                   0.
0.
                     66.39
                                                                 0.
                        68.56
                                     51.31
                                                                 0.
                                    53.07
                                                   0.
      28 -8.000
                        70.62
                                                   0.
      29 -8.300
                         72.57
                                     54.83
                                                                 0.
                        74.41
                                    56.59
       30 -8.600
                                                                 0.
                                                                 0.
       31
          -8.900
                        76.16
                                    58.35
                                                   0.
       32
           -9.200
                         78.39
                                      60.11
                                                    0.
                                                    0.
       33
          -9.500
                        80.71
                                     61.86
                                                                 0.
          -9.800
                                     63.62
       34
                        83.00
                                                    Ο.
                                                                  Ο.
          -10.10
       35
                         85.35
                                      65.38
                                                    0.
                                                                  0.
PARATTE 7.00
                                  Ce.A.S. s.r.l. - Milano
                                                                             PAG. 32
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
SOIL EL. OUOTA
                        SIGMA-H
                                      TAGLIO PR. ACOUA GRAD. MAX

    36
    -10.40
    87.63
    67.14

    37
    -10.70
    89.85
    68.90

    38
    -11.00
    92.00
    70.66

    39
    -11.30
    94.06
    72.41

    40
    -11.50
    95.38
    73.59

    41
    -11.80
    97.29
    75.35

    42
    -12.10
    99.10
    77.10

                                                    Ο.
                                                                 0.
                                      68.90 0.
70.66 0.
                                                    0.
                                                              0.
                                     70.66
72.41
73.59
0.
75.35
77.10
                                                   0.
0.
                                                                 Ο.
                                                                 0.
                                                   0.
```

Eurolink S.C.p.A. Pagina 291 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento

\$\$0328_F0.doc_F0

Rev F0 Data 20/06/2011

43	-12.40	100.8	78.86	0.	0.
44	-12.70	102.5	80.62	0.	0.
45	-13.00	104.7	82.38	0.	0.
46	-13.30	107.0	84.14	0.	0.
47	-13.60	109.3	85.90	0.	0.
48	-13.90	111.5	87.65	0.	0.
49	-14.20	113.7	89.41	0.	0.
50	-14.50	115.8	91.17	0.	0.
51	-14.80	117.9	92.93	0.	0.
52	-15.00	119.2	94.10	0.	0.
53	-15.30	121.1	95.86	0.	0.
54	-15.60	122.9	97.62	0.	0.
55	-15.90	124.7	99.38	0.	0.
56	-16.20	126.4	101.1	0.	0.
57	-16.50	128.0	102.9	0.	0.
58	-16.80	129.9	104.7	0.	0.
59	-17.10	131.7	106.4	0.	0.
60	-17.40	133.5	108.2	0.	0.
61	-17.70	135.2	109.9	0.	0.
62	-18.00	137.0	111.7	0.	0.
63	-18.30	138.8	113.4	0.	0.
64	-18.60	140.5	115.2	0.	0.
65	-18.90	142.3	117.0	0.	0.
66	-19.20	144.1	118.7	0.	0.
67	-19.50	146.2	120.5	0.	0.
68	-19.80	148.4	122.2	0.	0.
69	-20.10	150.6	124.0	0.	0.
70	-20.40	152.8	125.8	0.	0.
71	-20.70	155.0	127.5	0.	0.
72	-21.00	157.2	129.3	0.	0.
73	-21.30	159.4	131.0	0.	0.
74	-21.60	161.6	132.8	0.	0.
75	-21.90	163.8	134.5	0.	0.
76	-22.20	166.0	136.3	0.	0.
77	-22.50	168.1	138.1	0.	0.
78	-22.80	170.3	139.8	0.	0.
79	-23.10	172.5	141.6	0.	0.
80	-23.40	174.7	143.3	0.	0.
81	-23.70	178.3	145.1	0.	0.

Pagina 292 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
PARATIE 7.00
                                                             PAG. 34
                           Ce.A.S. s.r.l. - Milano
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
               INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO
                    * PARETE LeftWall GRUPPO DHLeft*
                          *STEP
                                1 - 13*
                * I PASSI NON EQUILIBRATI SONO ESCLUSI *
          Nella tabella si stampano i seguenti risultati:
          SIGMA-H = massimo sforzo orizzontale efficace [kPa
          TAGLIO = massimo sforzo di taglio
                                                     ſkPa
          PR. ACQUA =massima pressione interstiziale
                                                     [kPa
          GRAD. MAX =massimo gradiente idraulico
         QUOTA
                   SIGMA-H
                             TAGLIO PR. ACQUA GRAD. MAX
SOTI EL.
                3.843 3.078
6.034 4.833
8.225 6.588
                                     0.
          0.
                                                  0.
      2 -0.3000
                                          0.
                                                    0.
      3 -0.6000
                                         0.
                                                   0.
                            8.342
                  10.42
12.61
      4 -0.9000
                                         0.
                                                   0.
      5 -1.200
                             10.10
                                         0.
                                                   0.
                 14.80
                            11.85
      6 -1.500
                                        0.
                  16.99
18.45
                                        0.
0.
        -1.800
                              13.61
                                                    0.
                            14.78
      8 -2.000
                                                   Ο.
                  20.64 22.83
                                        0.
      9 -2.300
                            16.53
                                                   0.
     10 -2.600
                             18.29
                                         0.
                                                   0.
                                        0.
                  25.02
     11 -2.900
                            20.04
     12 -3.200
13 -3.500
                  27.21
29.40
                                         0.
                             21.79
                                                    0.
                              23.55
                                         0.
                                                   0.
     14 -3.800
                  31.59
                            25.30
                                        0.
                                                   0.
                  33.78
36.25
     15 -4.100
                              27.06
                                         0.
                                         0.
     16 -4.400
                            28.81
                                                   0.
                  38.64
                                         0.
     17 -4.700
                              30.57
                                                    0.
                                                   0.
     18 -5.000
                   40.90
                              32.32
                                         0.
     19 -5.300
                  43.07
                             34.08
                                        0.
                                                   0.
                                        0.
                                                    0.
     20 -5.600
                   45.15
                              35.83
                             37.59
     21 -5.900
                   47.18
                                                   0.
                   49.16
                             39.34
                                        0.
     22 -6.200
                                                    0.
     23 -6.500
                   51.31
                              41.10
                                         0.
                                                    0.
                                                   0.
     24 -6.800
                   53.50
                            42.85
                                        0.
                                        0.
     25 -7.100
                             44.60
                   55.69
                                                    0.
     26 -7.400
                   57.88
                             46.36
                                                   0.
     27 -7.700
                  60.07
                                        0.
                             48.11
                                                   0.
     28
        -8.000
                   62.26
                              49.87
                                         0.
                                        0.
     29
        -8.300
                  64.45
                             51.62
                                                   0.
                  66.64
                                        0.
     30 -8.600
                             53.38
                                                   Ο.
                            55.13
     31 -8.900
                   68.84
                                         0.
                                                   0.
                  71.03
     32 -9.200
                            56.89
                                        0.
                                                   0.
     33
        -9.500
                   73.22
                              58.64
                                         0.
                                                    0.
     34 -9.800
                   75.41
                             60.40
                                         0.
                                                   0.
     35 -10.10
                  77.60
                              62.15
                                         0.
                                                    0.
                           Ce.A.S. s.r.l. - Milano
                                                             PAG. 35
PARATIE 7.00
12 OTTOBRE 2010 11:19:06
History 0 - PARATIA PALI 1200 i=140
                   STGMA-H
                              TAGLIO PR. ACOUA GRAD. MAX
SOTI EL. OUOTA
                          63.91
65.66
     36 -10.40 79.79
                                                    0.
     37 -10.70
                  81.98
                             65.66
                                        0.
                                                    0.
```

Eurolink S.C.p.A. Pagina 293 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev Data
F0 20/06/2011

38 39 40	-11.00 -11.30 -11.50	84.17 86.36 87.82	67.41 69.17 70.34	0. 0. 0.	0. 0. 0.
41	-11.80	90.01	72.09	0.	0.
42	-12.10	92.32	73.85	0.	0.
43	-12.40	94.62	75.60	0.	0.
44	-12.70	96.88	77.36	0.	0.
45	-13.00	100.4	79.11	0.	0.
46	-13.30	117.9	80.87	0.	0.
47	-13.60	120.2	82.62	0.	0.
48	-13.90	122.5	84.38	0.	0.
49	-14.20	124.6	86.13	0.	0.
50	-14.50	126.6	87.89	0.	0.
51	-14.80	128.5	89.64	0.	0.
52	-15.00	129.8	90.81	0.	0.
53	-15.30	131.5	92.56	0.	0.
54	-15.60	133.2	94.32	0.	0.
55	-15.90	134.9	96.07	0.	0.
56	-16.20	136.5	97.83	0.	0.
57	-16.50	138.0	99.58	0.	0.
58	-16.80	139.5	101.3	0.	0.
59	-17.10	148.3	103.1	0.	0.
60	-17.40	172.3	104.8	0.	0.
61	-17.70	196.2	106.6	0.	0.
62	-18.00	214.7	108.4	0.	0.
63	-18.30	212.6	110.1	0.	0.
64	-18.60	210.4	111.9	0.	0.
65	-18.90	208.1	113.6	0.	0.
66	-19.20	205.7	115.4	0.	0.
67	-19.50	220.2	117.1	0.	0.
68	-19.80	244.2	118.9	0.	0.
69	-20.10	255.6	120.6	0.	0.
70	-20.40	278.4	122.4	0.	0.
71	-20.70	301.2	124.1	0.	0.
72	-21.00	324.0	125.9	0.	0.
73	-21.30	309.0	127.7	0.	0.
74	-21.60	290.8	129.4	0.	0.
75	-21.90	273.2	131.2	0.	0.
76	-22.20	256.1	132.9	0.	0.
77	-22.50	239.7	134.7	0.	0.
78	-22.80	223.6	136.4	0.	0.
79	-23.10	208.2	138.2	0.	0.
80	-23.40	193.0	139.9	0.	0.
81	-23.70	177.6	141.7	0.	0.

Pagina 294 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0 Data 20/06/2011

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 37 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO SPINTE NEGLI ELEMENTI TERRENO (LE SPINTE SONO CALCOLATE INTEGRANDO GLI SFORZI NEI SINGOLI ELEMENTI MOLLA)

SPINTA EFFICACE VERA = Integrale delle pressioni orizzontali efficaci in tutti gli elementi nel gruppo: unita' di

misura kN/m

SPINTA ACQUA = Integrale delle pressioni interstiziali in tutti gli elementi nel gruppo: unita' di misura kN/m

SPINTA TOTALE VERA = Somma della SPINTA EFFICACE e della SPINTA DELL'ACQUA: e' l' azione totale sulla parete:

unita' di misura kN/m

SPINTA ATTIVA POSSIBILE = La minima spinta che puo' essere esercitata da questo gruppo di elementi terreno, in questa

fase: unita' di misura kN/m

SPINTA PASSIVA POSSIBILE = La massima spinta che puo' essere esercitata da questo gruppo di elementi terreno, in questa

fase: unita' di misura kN/m

RAPPORTO PASSIVA/VERA = e' il rapporto tra la massima spinta possibile e la spinta efficace vera: fornisce un'indicazione

su quanta spinta passiva venga mobilitata;

SPINTA PASSIVA MOBILITATA = e' l'inverso del rapporto precedente, espresso in unita' percentuale: indica quanta parte della massima spinta possibile e' stata mobilitata;

RAPPORTO VERA/ATTIVA = e' il rapporto tra la spinta efficace vera e la minima spinta possibile: fornisce un'indicazione

di quanto questa porzione di terreno sia prossima alla condizione di massimo rilascio.

FASE	1	GRUPPO>	UHLe	DHLe
		EFFICACE VERA ACOUA	2378.1	2378.1
SPIN	ITA	TOTALE VERA	2378.1	2378.1
		ATTIVA (POSSIBILE)	2215.5	2215.5
		PASSIVA (POSSIBILE)	26525.	26525.
RAPE	PORT	O PASSIVA/VERA	11.154	11.154
		PASSIVA MOBILITATA	9.%	9.%
RAPE	ORT	O VERA/ATTIVA	1.0734	1.0734

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 38 12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200 i=140 GRUPPO --> FASE UHLe DHLe SPINTA EFFICACE VERA 2215.6 2215.5 SPINTA ACQUA 0. 0. SPINTA TOTALE VERA 2215.6 2215.5 SPINTA ATTIVA (POSSIBILE) 2215.5 1705.5 SPINTA PASSIVA (POSSIBILE) 26525. 20682. RAPPORTO PASSIVA/VERA 11.972 9.3351

Eurolink S.C.p.A. Pagina 295 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	8.% 1.0001	11.% 1.2991
FASE 3 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	26525. 11.361 9.%	9.4145 11.%
FASE 4 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA		1265.6
FASE 5 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	2392.8 0. 2392.8 2215.5 26525. 11.085 9.% 1.0800	2108.0 0. 2108.0 1265.6 15588. 7.3947 14.% 1.6656

PARATIE 7.00	Ce.A.S. s.r	.l Milano	PAG.	39
12 OTTOBRE 2010 11:19:06 History 0 - PARATIA PALI 1200	i=140			
FASE 6 GRUPPO>	UHLe	DHLe		
SPINTA EFFICACE VERA				
SPINTA ACQUA	0.	0.		
SPINTA TOTALE VERA	2295.5	2007.9		
SPINTA ATTIVA (POSSIBILE)	2215.5	891.18		
SPINTA PASSIVA (POSSIBILE)	26525.	11213.		
RAPPORTO PASSIVA/VERA	11.555	5.5847		
SPINTA PASSIVA MOBILITATA	9.%	18.%		
RAPPORTO VERA/ATTIVA				
FASE 7 GRUPPO>	UHLe	DHLe		
SPINTA EFFICACE VERA	2424.6	1981.1		
SPINTA ACQUA	0.	0.		
SPINTA TOTALE VERA	2424.6	1981.1		

Pagina 296 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	26525. 10.940 9.%	11213. 5.6602 18.%
FASE 8 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	0. 2301.0 2215.5 26525. 11.527 9.%	0. 1836.7 537.17 7017.9 3.8210 26.%
FASE 9 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE) RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITATA RAPPORTO VERA/ATTIVA	0. 2426.3 2215.5 26525. 10.932 9.%	0. 1806.8 537.17 7017.9 3.8842 26.%

PARATIE 7.00 12 OTTOBRE 2010 11:19:06		r.l Milano	PAG.	40
History 0 - PARATIA PALI 12				
FASE 10 GRUPPO	> UHLe	DHLe		
SPINTA EFFICACE VERA	2286.2	1591.5		
SPINTA ACQUA				
SPINTA TOTALE VERA	2286.2	1591.5		
SPINTA ATTIVA (POSSIBILE)) 2215.5	272.30		
SPINTA PASSIVA (POSSIBILE)	26525.	3801.0		
RAPPORTO PASSIVA/VERA	11.602	2.3884		
SPINTA PASSIVA MOBILITATA	9.%	42.8		
RAPPORTO VERA/ATTIVA	1.0319	5.8446		
FASE 11 GRUPPO:	> UHLe	DHLe		
SPINTA EFFICACE VERA	2392.0	1561.3		
SPINTA ACQUA				
SPINTA TOTALE VERA	2392.0	1561.3		
SPINTA ATTIVA (POSSIBILE)) 2215.5	272.30		
SPINTA PASSIVA (POSSIBILE)	26525.	3801.0		
RAPPORTO PASSIVA/VERA	11.089	2.4346		
SPINTA PASSIVA MOBILITATA	9.%	41.%		
RAPPORTO VERA/ATTIVA				
FASE 12 GRUPPO:	> UHLe	DHLe		

Eurolink S.C.p.A. Pagina 297 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

SPINTA EFFICACE VERA	2280.6	1402.0
SPINTA ACQUA	0.	0.
SPINTA TOTALE VERA	2280.6	1402.0
SPINTA ATTIVA (POSSIBILE)	2215.5	186.07
SPINTA PASSIVA (POSSIBILE)	26525.	2721.9
RAPPORTO PASSIVA/VERA	11.630	1.9415
SPINTA PASSIVA MOBILITATA	9.%	52.%
RAPPORTO VERA/ATTIVA	1.0294	7.5348
FASE 13 GRUPPO>	UHLe	DHLe
SPINTA EFFICACE VERA	2260.6	1520.5
SPINTA EFFICACE VERA	2260.6	1520.5
SPINTA EFFICACE VERA SPINTA ACQUA	2260.6 0. 2260.6	1520.5
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA	2260.6 0. 2260.6 2219.6	1520.5 0. 1520.5
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE)	2260.6 0. 2260.6 2219.6 24250.	1520.5 0. 1520.5 195.32
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) SPINTA PASSIVA (POSSIBILE)	2260.6 0. 2260.6 2219.6 24250. 10.727	1520.5 0. 1520.5 195.32 2593.8

12.2.3 COMBINAZIONE A2+M2

N. comando

1: * Paratie for Windows version 7.0

```
Ce.A.S. s.r.l. - Milano
                                               PAG. 1
PARATIE 7.00
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
           **********
           * *
           * *
                   P A R A T I E
                   RELEASE 7.00 VERSIONE WIN
           ** Ce.A.S. s.r.l. - Viale Giustiniano, 10
                            20129 MILANO
           **********
   JOBNAME C:\LAVORI\PONTE\CALCOLI\PALI H=17.0m (GM)\SLU_ _HIST00
                    16 SETTEMBRE 2010 15:22:31
PARATIE 7.00
                        Ce.A.S. s.r.l. - Milano
                                                       PAG. 2
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
                 ELENCO DEI DATI DI INPUT (PARAGEN)
                 Per il significato dei vari comandi
                 si faccia riferimento al manuale di
                 input PARAGEN, versione 7.00.
```

Pagina 298 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

2: * Filename= <c:\lavori\ponte\calcoli\pali h=17.0m

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
(gm)\slu_2_pippo_hist00.d> Da
3: * project with "run time" parameters
   4: * Force=kN Lenght=m
   5: *
   6: units m kN
   7: title History 0 - PARATIA PALI 1200 i=140
   8: delta 0.3
   9: option param itemax 50
  10: option noprint echo
  11: option noprint displ
  12: option noprint react
  13: option noprint stresses
  14:
          wall LeftWall 0 -25 0
  15: *
  16: soil UHLeft LeftWall -25 0 1 0 17: soil DHLeft LeftWall -25 0 2 180
  19: material cls_C28_35 3.144E+007
  20: material Acciaio 2.1E+008
  21: *
  22: beam Beam LeftWall -25 0 cls C28 35 0.955541 00 00
  23: *
  24: wire t1 LeftWall -2 Acciaio 1.24107E-005 140 10 25: wire t2 LeftWall -5 Acciaio 1.32381E-005 150 10
  26: wire t3 LeftWall -8 Acciaio 1.90934E-005 160 10
  27: wire t4 LeftWall -11.5 Acciaio 2.15839E-005 160 10 28: wire t5 LeftWall -15 Acciaio 2.48214E-005 140 10
  29: *
  30: * Soil Profile
  31: *
  32:
          ldata
                            Soil 0
                        19 9 10
0.384339 0 1
           weight
  33:
  34:
              atrest
              resistance 3 32 0.473 3.392 moduli 120000 2 0 1 100 0.6
  35:
  36:
  37:
          endlayer
  38: *
PARATIE 7.00
                                  Ce.A.S. s.r.l. - Milano
                                                                             PAG. 3
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
 N. comando
  39: step 1 : gostatico
  40: setwall LeftWall
          geom 0 0
  41:
  42:
               surcharge 10 0 10 0
  43: endstep
  44: *
  45: step 2 : primo ribasso
  46: setwall LeftWall
  47:
            geom 0 -2.5
               surcharge 10 0 0 0
  48:
  49: endstep
  50: *
  51: step 3: messa in opera 1 tirante
  52: setwall LeftWall
  53:
              add t1
  54: endstep
  55: *
```

Eurolink S.C.p.A. Pagina 299 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

56: step 4 : scavo secondo ribasso

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

```
57: setwall LeftWall
           geom 0 -5.5
  58:
  59: endstep
  61: step 5: messa in opera 2 tirante
  62: setwall LeftWall 63: add t2
  64: endstep
  65: *
  66: step 6 : terzo ribasso
  67: setwall LeftWall geom 0 -8.5
  69: endstep
  70: *
  71: step 7: messa in opera 3 tirante
 72: setwall LeftWall 73: add t3
  74: endstep
  75: *
  76: step 8 : quarto ribasso
  77: setwall LeftWall 78: geom 0 -12
           geom 0 -12
  79: endstep
  80: *
  81: step 9: messa in opera 4 tirante
 82: setwall LeftWall 83: add t4
          add t4
 84: endstep
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                        PAG. 4
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
 N. comando
  85: *
  86: step 10 : quinto ribasso
  87: setwall LeftWall
88: geom 0 -15.5
             geom 0 -15.5
  89: endstep
  90: *
  91: step 11 : messa in opera 5 tirante
  92: setwall LeftWall
           add t5
  93:
  94: endstep
  95: *
  96: step 12 : sesto ribasso
  97: setwall LeftWall
  98 .
             geom 0 -17
 99: endstep
 100: *
 101: step 13 : Fase sismica
102: change Soil U-KA=0.5
        change Soil U-KP=3.32
change Soil D-KA=0.5
change Soil D-KP=3.32
dload constant LeftWall -17 38.11 0 38.11
setwall LeftWall
 103:
 104:
 106:
 107:
 108:
             surcharge 0 0 0 0
 109: endstep
 110: *
111: *
PARATIE 7.00
                               Ce.A.S. s.r.l. - Milano
                                                                         PAG. 5
```

Pagina 300 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

16 SETTEMBRE 2010 15:22:31 History 0 - PARATIA PALI 1200 i=140

coeff. spinta passiva kp

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

LAYER Soil = 1.0000 natura 1=granulare, 2=argilla = 0.0000 quota superiore =-0.10000E+31 mquota inferiore peso fuori falda = 19.000 kN/m³ peso efficace in falda = 9.0000 kN/m³ peso dell'acqua = 10.000 kN/m³ = 3.0000 = 33.000 (A MONTE) coesione kPa angolo di attrito DEG (A MONTE) = 0.47300coeff. spinta attiva ka (A MONTE) coeff. spinta passiva kp = 3.3920 (A MONTE) Konc normal consolidato = 0.38434OCR: grado di sovraconsolidazione = 1.0000 modello di rigidezza = 2.0000 modulo Rvc = 0.12000E + 06 kParapporto Rur/Rvc = 2.0000 = 1.0000 coef-h pressione di normalizz. = 100.00 kPa = 0.60000 esponente n natura 1=granulare, 2=argilla = 1.0000 (A VALLE) = 3.0000 kРа (A VALLE) coesione = 33.000 angolo di attrito DEG (A VALLE) coeff. spinta attiva ka = 0.47300(A VALLE) (A VALLE)

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

= 3.3920

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

(SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 6 16 SETTEMBRE 2010 15:22:31 History 0 - PARATIA PALI 1200 i=140

> RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 5

> > (SOLO I PARAMETRI CHE POSSONO VARIARE)

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE

RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

Eurolink S.C.p.A. Pagina 301 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento

\$\$0328_F0.doc_F0

Rev F0 Data 20/06/2011

(SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 10 (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 11 (SOLO I PARAMETRI CHE POSSONO VARIARE) NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 7 16 SETTEMBRE 2010 15:22:31

(SOLO I PARAMETRI CHE POSSONO VARIARE)

History 0 - PARATIA PALI 1200 i=140

NESSUN CAMBIAMENTO RISPETTO AL PASSO PRECEDENTE
RIASSUNTO PARAMETRI GEOTECNICI PER LA FASE 13

(SOLO I PARAMETRI CHE POSSONO VARIARE)

LAYER Soil

coeff. spinta attiva ka = 0.50000 (A MONTE)
coeff. spinta passiva kp = 3.3200 (A MONTE)
coeff. spinta attiva ka = 0.50000 (A VALLE)
coeff. spinta passiva kp = 3.3200 (A VALLE)

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 8

Pagina 302 di 445 Eurolink S.C.p.A.

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

```
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
```

RIASSUNTO DATI RELATIVI ALLA FASE

```
WALL LeftWall
```

```
coordinata y
                                  = 0.0000
                                               m
                                  = 0.0000
quota piano campagna
                                               m
                                  = 0.0000
quota del fondo scavo
quota della falda
                                  =-0.99900E+30 m
sovraccarico a monte
                                  = 10.000
                                = 0.0000
quota del sovraccarico a monte
                                               m
depressione falda a valle
                                  = 0.0000
                                               m
                                 = 10.000
= 0.0000
sovraccarico a valle
                                               kPa
quota del sovraccarico a valle
quota di taglio
                                  = 0.0000
m
                                               (1=REMOVE)
indicatore comportamento acqua
opzione aggiornamento pressioni acqua = 0.0000
                                               (1=NO UPD)
accelerazione sismica orizz.
                                  = 0.0000
                                               [a]
                                  = 0.0000
accel. sismica vert. a monte
                                               [a]
                                  = 0.0000
accel. sismica vert. a valle
                                               [°]
                                  = 0.0000
angolo beta a monte
delta/phi a monte
                                  = 0.0000
angolo beta a valle
                                  = 0.0000
                                               [°]
                                  = 0.0000
delta/phi a valle
                                  = 0.0000
opzione dyn. acqua
                                               (1=pervious)
rapporto pressioni in eccesso Ru
                                  = 0.0000
                                  = 0.0000
                                               kPa
Wood bottom pressure
                                  = 0.0000
Wood top pressure
                                  = 0.0000
Wood bottom pressure elev.
                                               kPa
Wood top pressure elev.
                                  = 0.0000
```

RIASSUNTO DATI RELATIVI ALLA FASE

WALL LeftWall

coordinata y	=	0.0000	m
quota piano campagna	=	0.0000	m
quota del fondo scavo	=	-2.5000	m
quota della falda	=-	0.99900E+30	m
sovraccarico a monte	=	10.000	kPa
quota del sovraccarico a monte	=	0.0000	m
depressione falda a valle	=	0.0000	m
sovraccarico a valle	=	0.0000	kPa
quota del sovraccarico a valle	=	0.0000	m
quota di taglio	=	0.0000	m

```
PARATIE 7.00
                                   Ce.A.S. s.r.l. - Milano
                                                                               PAG. 9
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
            quota di equil. pressioni dell'acqua = -25.000 indicatore comportamento acqua = 0.0000
                                                                            (1=REMOVE)
            opzione aggiornamento pressioni acqua = 0.0000 = 0.0000 = 0.0000 = 0.0000
                                                                            (1=NO UPD)
            accelerazione sismica orizz.
accel. sismica vert. a monte
                                                                            [g]
                                                          = 0.0000
                                                                            [g]
            accel. sismica vert. a valle = 0.0000
                                                                            [g]
```

Eurolink S.C.p.A. Pagina 303 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

angolo beta a monte

quota del fondo scavo

quota del sovraccarico a monte = 0.0000 depressione falda a valle = 0.0000

quota del sovraccarico a valle = 0.0000 = 0.0000

quota della falda

sovraccarico a monte

sovraccarico a valle

delta/phi a monte

Codice documento SS0328_F0.doc_F0

0.0000

= 0.0000

[°]

Rev F0

Data 20/06/2011

```
= 0.0000
            angolo beta a valle
            delta/phi a valle
                                                           = 0.0000
            opzione dyn. acqua
                                                          = 0.0000
                                                                           (1=pervious)
            rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
            Wood bottom pressure
                                                                           kРа
            Wood top pressure
                                                          = 0.0000
            Wood bottom pressure elev.
                                                          = 0.0000
= 0.0000
                                                                           kPa
            Wood top pressure elev.
                                                                           m
                RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                           = 0.0000
            coordinata y
            quota piano campagna
                                                           = 0.0000
            quota del fondo scavo
                                                          = -2.5000
            quota della falda
                                                          =-0.99900E+30 m
                                                          = 10.000
            sovraccarico a monte
                                                                          kPa
                                                     = 0.0000
= 0.0000
            quota del sovraccarico a monte
            depressione falda a valle
                                                                           m
            depressione faida a valle = 0.0000
sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua = 0.0000
                                                                           kPa
                                                                           m
                                                                           m
            indicatore comportamento acqua - 0.0000 opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000 = 0.0000 = 0.0000
                                                                           (1=REMOVE)
                                                                           (1=NO UPD)
                                                                           [g]
                                                                            [g]
            accel. sismica vert. a valle = 0.0000
                                                                            [q]
            angolo beta a monte
                                                          = 0.0000
                                                          = 0.0000
            delta/phi a monte
            angolo beta a valle
                                                          = 0.0000
                                                          = 0.0000
            delta/phi a valle
            opzione dyn. acqua
rapporto pressioni in eccesso Ru = 0.0000
- 3 bettom pressure = 0.0000
                                                                            (1=pervious)
            Wood bottom pressure
                                                                           kPa
                                                          = 0.0000
= 0.0000
            Wood top pressure
            Wood bottom pressure elev.
                                                                            kPa
                                  Ce.A.S. s.r.l. - Milano
PARATTE 7.00
                                                                             PAG. 10
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 3
            Wood top pressure elev.
                                                           = 0.0000
                RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
            coordinata y
                                                           = 0.0000
                                                                           m
            quota piano campagna
```

Pagina 304 di 445 Eurolink S.C.p.A.

= 0.0000

= -5.5000

= 0.0000

=-0.99900E+30 m = 10.000 kPa

m

m m

kPa

m

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

quota di taglio

quota piano campagna

Codice documento
SS0328_F0.doc_F0

= 0.0000

m

Rev F0 Data 20/06/2011

```
quota di equil. pressioni dell'acqua
                                                          = -25.000
            indicatore comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000
                                                                           (1=REMOVE)
                                                                           (1=NO UPD)
            opzione aggiornamento prina
accelerazione sismica orizz.
                                                         = 0.0000
                                                                          [q]
            accel. sismica vert. a monte accel. sismica vert. a valle
                                                         = 0.0000
                                                                          [g]
                                                         = 0.0000
                                                                           [g]
                                                         = 0.0000
            angolo beta a monte
                                                         = 0.0000
            delta/phi a monte
            angolo beta a valle
                                                         = 0.0000
                                                                          [°]
                                                         = 0.0000
            delta/phi a valle
            rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
Wood top pressure
                                                                          (1=pervious)
                                                         = 0.0000
= 0.0000
            Wood bottom pressure elev.
                                                                          kPa
            Wood top pressure elev.
                RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
            coordinata y
                                                          = 0.0000
            quota piano campagna
quota del fondo scavo
quota della falda
                                                          = 0.0000
                                                         = -5.5000
                                                         =-0.99900E+30 m
            sovraccarico a monte
                                                         = 10.000 kPa
            quota del sovraccarico a monte = 10.000
quota del sovraccarico a monte = 0.0000
depressione falda a valle = 0.0000
sovraccarico a valle = 0.0000
                                                                          m
                                                                        m
                                                                          kPa
            quota del sovraccarico a valle = 0.0000
PARATTE 7.00
                                  Ce.A.S. s.r.l. - Milano
                                                                            PAG. 11
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 5
                                                         = 0.0000
            quota di taglio
            quota di equil. pressioni dell'acqua = -25.000
                                                         = 0.0000
                                                                           (1=REMOVE)
            indicatore comportamento acqua
            opzione aggiornamento pressioni acqua = 0.0000
                                                                          (1=NO UPD)
            accelerazione sismica orizz.
                                                         = 0.0000
                                                                          [g]
            accel. sismica vert. a monte accel. sismica vert. a valle
                                                         = 0.0000
                                                                           [g]
                                                         = 0.0000
                                                                           [d]
                                                         = 0.0000
= 0.0000
            angolo beta a monte
            delta/phi a monte
                                                         = 0.0000
= 0.0000
            angolo beta a valle
            delta/phi a valle
            opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000 = 0.0000
                                                                          (1=pervious)
            Wood bottom pressure
                                                                          kPa
                                                         = 0.0000
            Wood top pressure
                                                         = 0.0000
= 0.0000
            Wood bottom pressure elev.
                                                                          kPa
            Wood top pressure elev.
                                                                          m
                RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
            coordinata y
                                                          = 0.0000
```

Eurolink S.C.p.A. Pagina 305 di 445

= 0.0000

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
quota del fondo scavo
                                          = -8.5000
                                          =-0.99900E+30 m
quota della falda
                                         = 10.000
= 0.0000
sovraccarico a monte
                                                         kPa
quota del sovraccarico a monte
depressione falda a valle
                                         = 0.0000
                                                         m
                                         = 0.0000
sovraccarico a valle
                                                         kPa
sovraccarico a valle
quota del sovraccarico a valle
                                         = 0.0000
                                                         m
                                         = 0.0000
quota di taglio
quota di equil. pressioni dell'acqua = -25.000 indicatore comportamento acqua = 0.0000
                                                         m
                                                         (1=REMOVE)
opzione aggiornamento pressioni acqua = 0.0000 = 0.0000 = 0.0000
                                                         (1=NO UPD)
accelerazione sismica orizz.
accel. sismica vert. a monte
                                                         [g]
                                         = 0.0000
                                                         [g]
                                         = 0.0000
accel. sismica vert. a valle
                                                         [°]
angolo beta a monte
                                         = 0.0000
                                         = 0.0000
= 0.0000
delta/phi a monte
angolo beta a valle
delta/phi a valle
                                          = 0.0000
opzione dyn. acqua
                                          = 0.0000
                                                         (1=pervious)
rapporto pressioni in eccesso Ru = 0.0000
                                         = 0.0000
= 0.0000
Wood bottom pressure
                                                         kPa
Wood top pressure
```

```
Ce.A.S. s.r.l. - Milano
PARATIE 7.00
                                                                             PAG. 12
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE
            Wood bottom pressure elev.
                                                          = 0.0000
                                                                         kPa
                                                          = 0.0000
            Wood top pressure elev.
                                                                          m
                RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                          = 0.0000
            coordinata y
                                                          = 0.0000
            quota piano campagna
                                                         = -8.5000
            quota del fondo scavo
            quota della falda
                                                         =-0.99900E+30 m
            quota del sovraccarico a monte = 0.0000 depressione falda a valle = 0.0000 sovraccarico a valle quota del sovraccari
                                                                          kPa
                                                                          m
                                                                          kPa
            quota del sovraccarico a valle = 0.0000

quota del sovraccarico a valle = 0.0000
                                                                          m
            quota di equil. pressioni dell'acqua = -25.000 indicatore comportamento acqua = 0.0000 opzione aggiornamento processioni
                                                                          m
            indicatore comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000
                                                                          (1=REMOVE)
                                                                           (1=NO UPD)
            accelerazione sismica orizz.
                                                                           [g]
                                                         = 0.0000
            accel. sismica vert. a monte
                                                                           [g]
            accel. sismica vert. a valle
                                                         = 0.0000
                                                                           [g]
            angolo beta a monte
                                                         = 0.0000
            delta/phi a monte
                                                          = 0.0000
                                                         = 0.0000
            angolo beta a valle
                                                         = 0.0000
            delta/phi a valle
                                                          = 0.0000
                                                                           (1=pervious)
            opzione dyn. acqua
            rapporto pressioni in eccesso Ru = 0.0000
            Wood bottom pressure
                                                         = 0.0000
                                                                          kPa
                                                         = 0.0000
            Wood top pressure
                                                                          m
                                               = 0.0000
            Wood bottom pressure elev.
                                                                          kPa
                                                         = 0.0000
            Wood top pressure elev.
                                                                          m
```

Pagina 306 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328 F0.doc F0

Rev F0

Data 20/06/2011

RIASSUNTO DATI RELATIVI ALLA FASE WALL LeftWall coordinata y = 0.0000 m = 0.0000 quota piano campagna quota del fondo scavo = -12.000quota della falda =-0.99900E+30 msovraccarico a monte = 10.000 kPa quota del sovraccarico a monte = 0.0000 depressione falda a valle = 0.0000 sovraccarico a valle = 0.0000 m m kPa PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 13 16 SETTEMBRE 2010 15:22:31 History 0 - PARATIA PALI 1200 i=140 RIASSUNTO DATI RELATIVI ALLA FASE quota del sovraccarico a valle = 0.0000 quota di taglio = 0.0000 quota di equil. pressioni dell'acqua = -25.000 indicatore comportamento acqua = 0.0000 m (1=REMOVE) opzione aggiornamento pressioni acqua = 0.0000 accelerazione sismica orizz. = 0.0000 accel. sismica vert. a monte = 0.0000 (1=NO UPD) [q] [q] = 0.0000 = 0.0000 accel. sismica vert. a valle angolo beta a monte delta/phi a monte = 0.0000 = 0.0000 angolo beta a valle delta/phi a valle = 0.0000 = 0.0000 opzione dyn. acqua (1=pervious) rapporto pressioni in eccesso Ru
Wood bottom pressure = 0.0000 Wood bottom pressure = 0.0000 kPa = 0.0000 Wood top pressure m Wood bottom pressure elev. = 0.0000 kPa = 0.0000 Wood top pressure elev. m RIASSUNTO DATI RELATIVI ALLA FASE WALL LeftWall coordinata y = 0.0000 m quota piano campagna = 0.0000 m quota del fondo scavo = -12.000=-0.99900E+30 mquota della falda = 10.000 = 0.0000 sovraccarico a monte kPa quota del sovraccarico a monte = 0.0000 = 0.0000m depressione falda a valle sovraccarico a valle = 0.0000 quota del sovraccarico a valle = 0.0000 quota di taglio = 0.0000 kPa quota di taglio quota di equil. pressioni dell'acqua = -25.000 '-d'catora comportamento acqua = 0.0000 m m (1=REMOVE) opzione aggiornamento pressioni acqua = 0.0000 (1=NO UPD) accelerazione sismica orizz.
accel. sismica vert. a monte = 0.0000 [g] = 0.0000

accel. sismica vert. a valle

angolo beta a monte

delta/phi a monte

angolo beta a valle

Eurolink S.C.p.A. Pagina 307 di 445

= 0.0000

= 0.0000

= 0.0000 = 0.0000 [q]

[°]

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

(1=pervious)

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

delta/phi a valle

opzione dyn. acqua

Codice documento
SS0328_F0.doc_F0

= 0.0000

= 0.0000

Rev F0 Data 20/06/2011

```
rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
              Wood bottom pressure
                                                                                     kPa
PARATIE 7.00
                                       Ce.A.S. s.r.l. - Milano
                                                                                       PAG. 14
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 9
                                                                  = 0.0000
              Wood top pressure
              Wood bottom pressure elev.
Wood top pressure elev.
                                                                 = 0.0000
                                                                                     kРа
                                                                 = 0.0000
                                                                                    m
                  RIASSUNTO DATI RELATIVI ALLA FASE 10
WALL LeftWall
              coordinata y
                                                                  = 0.0000
                                                                                    m
             quota del fondo scavo
quota della falda
sovraccarico a monte
quota del co-
                                                                 = 0.0000
                                                                                     m
                                                                = -15.500
                                                                 =-0.99900E+30 m
              quota del sovraccarico a monte = 10.000
depressione falda a valle = 0.0000
sovraccarico a valle = 0.0000
                                                                 = 10.000
                                                                                  kPa
                                                                                    m
                                                                                    m
                                                                                  kPa
             sovraccarico a valle - 0.0000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua = 0.0000
                                                                                    m
                                                                                    m
                                                                                     (1=REMOVE)
              opzione aggiornamento pressioni acqua = 0.0000
                                                                                     (1=NO UPD)
              accelerazione sismica orizz. = 0.0000
accel. sismica vert. a monte = 0.0000
                                                                                     [g]
              accel. sismica vert. a monte
                                                                                     [g]
              accel. sismica vert. a valle
                                                                 = 0.0000
                                                                                     [g]
              angolo beta a monte
                                                                 = 0.0000
              delta/phi a monte
                                                                 = 0.0000
                                                                 = 0.0000
                                                                                     [°]
              angolo beta a valle
                                                                 = 0.0000
              delta/phi a valle
              opzione dyn. acqua = 0.0000
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
                                                                                     (1=pervious)
              Wood bottom pressure
                                                                                     kPa
              Wood top pressure
                                                                 = 0.0000
              Wood bottom pressure elev.
                                                                 = 0.0000
                                                                                     kPa
                                                                = 0.0000
              Wood top pressure elev.
                  RIASSUNTO DATE RELATIVE ALLA FASE 11
WALL LeftWall
              coordinata y
                                                                  = 0.0000
             quota piano campagna
quota del fondo scavo
quota della falda
sovraccarico a monte
quota del source
                                                                  = 0.0000
                                                                 = -15.500
                                                                                     m
              quota della falda =-0.99900E+30 m
sovraccarico a monte = 10.000 kPa
quota del sovraccarico a monte = 0.0000 m
depressione falda a valle = 0.0000 m
```

Pagina 308 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC

Relazione tecnica delle opere di imbocco

PROGETTO DEFINITIVO

Codice documento \$\$0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
PARATIE 7.00
                                Ce.A.S. s.r.l. - Milano
                                                                           PAG. 15
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 11
            sovraccarico a valle
                                                        = 0.0000
                                                                        kPa
            quota del sovraccarico a valle = 0.0000
            quota di taglio
                                                       = 0.0000
                                                                        m
            quota di equil. pressioni dell'acqua = -25.000
           opzione aggiornamento acqua = 0.0000
opzione aggiornamento pressioni acqua = 0.0000
accelerazione sismica orizz. = 0.0000
accel. sismica vert. a monte = 0.0000
                                                                        (1=REMOVE)
                                                                        (1=NO UPD)
                                                                        [g]
                                                                        [a]
            accel. sismica vert. a valle
                                                       = 0.0000
                                                                        [°]
                                                       = 0.0000
= 0.0000
            angolo beta a monte
            delta/phi a monte
                                                                        [°]
            angolo beta a valle
                                                       = 0.0000
            delta/phi a valle
                                                       = 0.0000
            opzione dyn. acqua
rapporto pressioni in eccesso Ru = 0.0000
= 0.0000
                                                                        (1=pervious)
            Wood bottom pressure
                                                                        kPa
            Wood top pressure
                                                       = 0.0000
                                                       = 0.0000
= 0.0000
                                                                        kPa
            Wood bottom pressure elev.
            Wood top pressure elev.
                                                                        m
               RIASSUNTO DATI RELATIVI ALLA FASE
WALL LeftWall
                                                        = 0.0000
            coordinata y
                                                       = 0.0000
= -17.000
            quota piano campagna
                                                                       m
            quota del fondo scavo
            quota della falda
                                                       =-0.99900E+30 m
            sovraccarico a monte
                                                        = 10.000  kPa
                                                  = 0.0000
            quota del sovraccarico a monte
                                                                       m
            depressione falda a valle = 0.0000
sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000
                                                                        m
                                                                        kPa
                                                                       m
                                                                       m
            quota di equil. pressioni dell'acqua = -25.000
            indicatore comportamento acqua = 0.0000 opzione aggiornamento pressioni acqua = 0.0000 accelerazione citativi
                                                                        (1=REMOVE)
                                                                        (1=NO UPD)
            accelerazione sismica orizz. = 0.0000
                                                                        [a]
            accel. sismica vert. a monte accel. sismica vert. a valle
                                                        = 0.0000
                                                                        [g]
                                                  = 0.0000
                                                                        [ā]
            angolo beta a monte
                                                       = 0.0000
            delta/phi a monte
                                                        = 0.0000
                                                                        [°]
            angolo beta a valle
                                                       = 0.0000
            delta/phi a valle
                                                       = 0.0000
                                                       = 0.0000
            opzione dyn. acqua
                                                                        (1=pervious)
            rapporto pressioni in eccesso Ru = 0.0000
PARATIE 7.00
                                Ce.A.S. s.r.l. - Milano
                                                                          PAG. 16
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
RIASSUNTO DATI RELATIVI ALLA FASE 12
            Wood bottom pressure
                                                        = 0.0000
                                                                        kPa
            Wood top pressure
                                                       = 0.0000
            Wood bottom pressure elev.
                                                       = 0.0000
                                                                        kPa
```

Eurolink S.C.p.A. Pagina 309 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

= 0.0000

Rev F0

Data 20/06/2011

= 0.0000 Wood top pressure elev. m RIASSUNTO DATI RELATIVI ALLA FASE 1.3 WALL LeftWall coordinata y = 0.0000 quota piano campagna = 0.0000 quota del fondo scavo = -17.000quota della falda =-0.99900E+30 m quota del sovraccarico a monte = 0.0000 quota del sovraccarico a monte = 0.0000 depressione falda a valle = 0.0000 sovraccarico a valle kPa m sovraccarico a valle = 0.0000
quota del sovraccarico a valle = 0.0000
quota di taglio = 0.0000
quota di equil. pressioni dell'acqua = -25.000
indicatore comportamento acqua = 0.0000 kPa m (1=REMOVE) indicatore comportamento acqua conzione aggiornamento pressioni acqua = 0.0000 = 0.0000 (1=NO UPD) accelerazione sismica orizz. [q] accel. sismica vert. a monte = 0.0000 [g] accel. sismica vert. a valle = 0.0000 [°] = 0.0000 angolo beta a monte = 0.0000 delta/phi a monte = 0.0000 angolo beta a valle delta/phi a valle = 0.0000 rapporto pressioni in eccesso Ru = 0.0000
Wood bottom pressure = 0.0000
Wood top pressure opzione dyn. acqua = 0.0000 (1=pervious) = 0.0000 = 0.0000 kPa Wood top pressure = 0.0000 Wood bottom pressure elev. kPa

PARATIE 7.00 Ce.A.S. s.r.l. - Milano 16 SETTEMBRE 2010 15:22:31 History 0 - PARATIA PALI 1200 i=140

Wood top pressure elev.

PAG. 17

m

RIASSUNTO ELEMENTI _____

+				
			Flag	Angle
İ	m	m		deg
eftWall	0.	-25.00	UPHILL	0.
eftWall	0.	-25.00	DOWNHILL	180.0
	 + eftWall + eftWall	m + eftWall 0. + eftWall 0.	m m eftWall 0. -25.00 	eftWall 0. -25.00 UPHILL

++						
Name	Wall	Z1	Z2	Mat	thick	
i i		m	m	i I	m	
	LeftWall					

Pagina 310 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

+----+

+	+	+	+	+	++		
RIASSUNTO ELEMENTI WIRE							
Wall	Zeta	Mat	A/L	Pinit	Angle		
	, m			kN/m	deg		
LeftWall	-2.000	_	0.1241E-04	140.0	10.00		
LeftWall	-5.000	_	0.1324E-04	150.0	10.00		
LeftWall	-8.000	_	0.1909E-04	160.0	10.00		
LeftWall	-11.50	_	0.2158E-04	160.0	10.00		
	•						
	Wall 	RIASSUN' Wall	RIASSUNTO ELEN Wall	RIASSUNTO ELEMENTI WIRE Wall	RIASSUNTO ELEMENTI WIRE Wall		

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 18 16 SETTEMBRE 2010 15:22:31 History 0 - PARATIA PALI 1200 i=140

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 19
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140

RIASSUNTO DATI VARI

+	+					
MATERIALI						
Name	+ YOUNG MODULUS					
	kPa					
cls_	3.144E+007					
Acci	2.1E+008					

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 20 16 SETTEMBRE 2010 15:22:31

History 0 - PARATIA PALI 1200 i=140

Eurolink S.C.p.A. Pagina 311 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

DISTRIBUTED LOAD SUMMARY

Wall From To Z1 P1 Z2 P2 step step 13 13 -17.000 38.110 0.0000 38.110

UNITS FOR Z1 , Z2 =mUNITS FOR P1 , P2 =kPa

Ce.A.S. s.r.l. - Milano PAG. 21 PARATIE 7.00

16 SETTEMBRE 2010 15:22:31

History 0 - PARATIA PALI 1200 i=140

RIASSUNTO ANALISI INCREMENTALE

FASE	Ν.	DI	ITERAZIONI	CONVERGENZA
1			2	SI
2			7	SI
3			5	SI
4			5	SI
5			5	SI
6			7	SI
7			4	SI
8			6	SI
9			4	SI
10			7	SI
11			4	SI
12			7	SI
13			4	SI

PAG. 22 PARATIE 7.00 Ce.A.S. s.r.l. - Milano

16 SETTEMBRE 2010 15:22:31

History 0 - PARATIA PALI 1200 i=140

MASSIMI SPOSTAMENTI LATERALI *TUTTI I PASSI*

* PARETE LeftWall* * I PASSI NON EQUILIBRATI SONO ESCLUSI * * NOTA: LE QUOTE ESPRESSE IN m E GLI SPOSTAMENTI IN m

NODO	OUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE LeftWall
1	0.0000	0.53259E-01	13	
2	-0.30000	0.53930E-01	13	
3	-0.60000	0.54601E-01	13	
4	-0.90000	0.55272E-01	13	
5	-1.2000	0.55944E-01	13	
6	-1.5000	0.56617E-01	13	
7	-1.8000	0.57292E-01	13	
8	-2.0000	0.57743E-01	13	
9	-2.3000	0.58422E-01	13	
10	-2.6000	0.59103E-01	13	
11	-2.9000	0.59782E-01	13	
12	-3.2000	0.60459E-01	13	
13	-3.5000	0.61131E-01	13	
14	-3.8000	0.61799E-01	13	
15	-4.1000	0.62459E-01	13	
16	-4.4000	0.63112E-01	13	
17	-4.7000	0.63757E-01	13	
18	-5.0000	0.64394E-01	13	

Pagina 312 di 445 Eurolink S.C.p.A.

PAG. 23

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

19	-5.3000	0.65022E-01	13
20	-5.6000	0.65638E-01	13
21	-5.9000	0.66239E-01	13
22	-6.2000	0.66822E-01	13
23	-6.5000	0.67385E-01	13
24	-6.8000	0.67925E-01	13
25	-7.1000	0.68441E-01	13
26	-7.4000	0.68930E-01	13
27	-7.7000	0.69393E-01	13
28	-8.0000	0.69827E-01	13
29	-8.3000	0.70232E-01	13
30	-8.6000	0.70603E-01	13
31	-8.9000	0.70937E-01	13
32	-9.2000	0.71228E-01	13
33	-9.5000	0.71474E-01	13
34	-9.8000	0.71671E-01	13
35	-10.100	0.71816E-01	13
36	-10.400	0.71906E-01	13
37	-10.700	0.71940E-01	13
38	-11.000	0.71917E-01	13

PARATIE 7.00 Ce.A.S. s.r.l. - Milano

16 SETTEMBRE 2010 15:22:31

History 0 - PARATIA PALI 1200 i=140

NODO QUOTA ZETA SPOSTAMENTO MASSIMO FASE PARETE LeftWall 39 -11.300 0.71835E-01 13 40 -11.500 0.71747E-01 13 41 -11.800 0.71566E-01 13 -12.100 0.71321E-01 -12.400 4.3 0.71008E-01 13 -12.7000.70624E-01 44 13 45 -13.000 0.70165E-01 13 46 -13.300 0.69630E-01 13 47 -13.600 0.69016E-01 13 -13.900 0.68322E-01 13 48 49 -14.200 0.67547E-01 13 50 -14.500 0.66691E-01 13 0.65754E-01 51 -14.800 13 -15.000 0.65086E-01 52 13 -15.300 0.64017E-01 53 13 54 -15.600 0.62868E-01 13 55 -15.900 0.61638E-01 13 0.60327E-01 56 -16.200 1.3 -16.500 57 0.58935E-01 13 58 -16.800 0.57463E-01 13 59 -17.100 0.55913E-01 60 -17.400 0.54287E-01 13 61 -17.700 0.52588E-01 13 -18.000 62 0.50819E-01 13 63 -18.300 0.48984E-01 13 -18.600 0.47087E-01 64 13 -18.900 65 0.45132E-01 13 66 -19.200 0.43124E-01 13 67 -19.500 0.41067E-01 13 -19.800 0.38966E-01 68 13 69 -20.100 0.36826E-01 13 70 -20.400 0.34652E-01 13 71 -20.700 0.32448E-01 13 72 -21.000 0.30218E-01 73 -21.300 0.27969E-01 13 -21.600 0.25702E-01 74 13 75 -21.900 0.23424E-01 13 76 -22.200 0.21135E-01 13 -22.500 0.18841E-01

Eurolink S.C.p.A. Pagina 313 di 445

Data

20/06/2011

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento Rev SS0328_F0.doc_F0 F0

78	-22.800	0.16544E-01	13
79	-23.100	0.14245E-01	13
80	-23.400	0.11946E-01	13
81	-23.700	0.96485E-02	13
82	-24.000	0.73523E-02	13
83	-24.300	0.50573E-02	13
84	-24.600	0.27632E-02	13

PAG. 24 PARATIE 7.00 Ce.A.S. s.r.l. - Milano 16 SETTEMBRE 2010 15:22:31

History 0 - PARATIA PALI 1200 i=140

NODO	QUOTA ZETA	SPOSTAMENTO MASSIMO	FASE	PARETE LeftWal	1
85	-24.900	0.13394E-02	9		
86	-25.000	0.13103E-02	6		

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 25 16 SETTEMBRE 2010 15:22:31

History 0 - PARATIA PALI 1200 i=140

INVILUPPO AZIONI INTERNE NEGLI ELEMENTI DI PARETE (PER UNITA' DI PROFONDITA') * PARETE LeftWall GRUPPO Beam* *STEP 1 -13*

* I PASSI NON EQUILIBRATI SONO ESCLUSI *

Nella tabella si stampano i seguenti risultati: MOMENTO SX = Momento che tende le fibre sulla faccia sinistra [kN*m/m]MOMENTO DX = Momento che tende le fibre sulla faccia destra [kN*m/m]= forza tagliante (valore assoluto, priva di segno)[kN/m] TAGLIO

BEAM EL.	ESTREMO	QUOTA	MOMENTO SI	X MOMENTO DX	TAGLI
1	A	0.	0.3638E-10	0.2401E-09	5.750
	В	-0.3000	1.725	0.	5.750
2	A	-0.3000	1.725	0.	17.25
	В	-0.6000	6.900	0.	17.25
3	A	-0.6000	6.900	0.	29.19
	В	-0.9000	15.66	0.	29.19
4	A	-0.9000	15.66	0.	41.98
	В	-1.200	28.25	0.	41.98
5	A	-1.200	28.25	0.	55.63
	В	-1.500	44.94	0.	55.63
6	A	-1.500	44.94	0.	70.13
	В	-1.800	65.98	0.	70.13
7	A	-1.800	65.98	0.	82.94
	В	-2.000	82.56	0.	82.94
8	A	-2.000	82.56	0.	184.2
	В	-2.300	28.40	28.67	184.2
9	A	-2.300	28.40	28.67	167.4
	В	-2.600	28.04	68.36	167.4
10	A	-2.600	28.04	68.36	149.7
	В	-2.900	37.13	105.9	149.7
11	A	-2.900	37.13	105.9	131.2
	В	-3.200	45.83	141.0	131.2
12	A	-3.200	45.83	141.0	111.9
	В	-3.500	53.90	173.5	111.9
13	A	-3.500	53.90	173.5	98.68
	В	-3.800	61.18	203.1	98.68
14	A	-3.800	61.18	203.1	88.26
	В	-4.100	67.61	229.6	88.26
15	A	-4.100	67.61	229.6	77.02
	В	-4.400	73.14	252.7	77.02
16	A	-4.400	73.14	252.7	64.98

Pagina 314 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

В -4.700 77.77 272.2 64.98 B -4.700 77.77 272.2 A -4.700 77.77 272.2 B -5.000 81.54 287.8 58.27 58.27 17

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 26

16 SETTEMBRE 2010 15:22:31

History O - PARATIA PALI 1200 i=140

BEAM	EL.	ESTREMO	QUOTA	MOMENTO SX	MOMENTO DX	TAGLIO
	18	A	-5.000	81.54	287.8	295.1
		В	-5.300	84.49	358.6	295.1
	19	A	-5.300	84.49	358.6	269.8
		В	-5.600	86.63	425.0	269.8
	20	A	-5.600	86.63	425.0	243.6
		В	-5.900	87.99	486.8	243.6
	21	A	-5.900	87.99	486.8	216.5
		В	-6.200	88.62	543.7	216.5
	22	A	-6.200	88.62	543.7	188.6
		В	-6.500	88.57	595.7	188.6
	23	A	-6.500	88.57	595.7	159.9
		В	-6.800	87.87	642.3	159.9
	24	A	-6.800	87.87	642.3	138.9
		В	-7.100	86.60	683.3	138.9
	25	A	-7.100	86.60	683.3	119.6
		В	-7.400	84.81	718.6	119.6
	26	A	-7.400	84.81	718.6	99.47
		В	-7.700	82.54	747.8	99.47
	27	A	-7.700	82.54	747.8	78.53
		В	-8.000	79.87	770.7	78.53
	28	A	-8.000	79.87	770.7	418.0
		В	-8.300	76.85	862.6	418.0
	29	A	-8.300	76.85	862.6	384.1
		В	-8.600	73.53	965.7	384.1
	30	A	-8.600	73.53	965.7	349.4
		В	-8.900	69.96	1071.	349.4
	31	A	-8.900	69.96	1071.	313.8
		В	-9.200	66.20	1165.	313.8
	32	A	-9.200	66.20	1165.	277.3
		В	-9.500	62.28	1248.	277.3
	33	A	-9.500	62.28	1248.	240.0
		В	-9.800	58.26	1320.	240.0
	34	A	-9.800	58.26	1320.	201.9
		В	-10.10	54.17	1380.	201.9
	35	A	-10.10	54.17	1380.	162.9
		В	-10.40	50.04	1429.	162.9
	36	A	-10.40	50.04	1429.	126.0
		В	-10.70	45.92	1466.	126.0
	37	A	-10.70	45.92	1466.	96.98
		В	-11.00	41.83	1491.	96.98
	38	A	-11.00	41.83	1491.	128.8
		В	-11.30	37.79	1503.	128.8
	39	A	-11.30	37.79	1503.	157.8
		В	-11.50	35.14	1504.	157.8
	40	A	-11.50	35.14	1504.	389.0
		В	-11.80	31.26	1621.	389.0

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 27

16 SETTEMBRE 2010 15:22:31

History 0 - PARATIA PALI 1200 i=140

BEAM EL. ESTREMO QUOTA MOMENTO SX MOMENTO DX TAGLIO A -11.80 31.26 1621. 345.1

Eurolink S.C.p.A. Pagina 315 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

	В	-12.10	27.50	1724.	345.1
42	A	-12.10	27.50	1724.	300.4
	В	-12.40	23.91	1814.	300.4
43	A	-12.40	23.91	1814.	254.8
	В	-12.70	24.24	1891.	254.8
44	A	-12.70	24.24	1891.	214.7
	В	-13.00	24.56	1953.	214.7
45	A	-13.00	24.56	1953.	227.3
	В	-13.30	24.65	2002.	227.3
46	A	-13.30	24.65	2002.	234.9
	В	-13.60	32.22	2036.	234.9
47	A	-13.60	32.22	2036.	237.5
	В	-13.90	40.88	2055.	237.5
48	A	-13.90	40.88	2055.	235.1
	В	-14.20	48.33	2059.	235.1
49	A	-14.20	48.33	2059.	227.7
	В	-14.50	54.64	2048.	227.7
50	A	-14.50	54.64	2048.	215.3
	В	-14.80	59.87	2022.	215.3
51	A	-14.80	59.87	2022.	207.0
	В	-15.00	62.80	1995.	207.0
52	A	-15.00	62.80	1995.	183.6
	В	-15.30	66.41	2036.	183.6
53	A	-15.30	66.41	2036.	221.3
	В	-15.60	69.12	2060.	221.3
54	A	-15.60	69.12	2060.	258.2
	В	-15.90	71.03	2068.	258.2
55	A	-15.90	71.03	2068.	290.2
	В	-16.20	90.56	2059.	290.2
56	A	-16.20	90.56	2059.	317.3
	В	-16.50	123.0	2033.	317.3
57	A	-16.50	123.0	2033.	339.3
	В	-16.80	150.4	1990.	339.3
58	А	-16.80	150.4	1990.	356.3
	В	-17.10	173.3	1930.	356.3
59	A	-17.10	173.3	1930.	368.3
	В	-17.40	191.8	1857.	368.3
60	A	-17.40	191.8	1857.	375.4
	В	-17.70	206.3	1774.	375.4
61	A	-17.70	206.3	1774.	377.4
	В	-18.00	217.0	1680.	377.4
62	A	-18.00	217.0	1680.	374.5
	В	-18.30	224.3	1578.	374.5
63	A	-18.30	224.3	1578.	366.6
	В	-18.60	228.4	1469.	366.6

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 28 16 SETTEMBRE 2010 15:22:31

History O - PARATIA PALI 1200 i=140

BEAM EL. ESTREMO QUOTA MOMENTO SX MOMENTO DX TAGLIO -18.60 228.4 1469. 380.9 64 1355. 1355. -18.90 В 229.5 380.9 65 -18.90 229.5 394.3 -19.20 1237. В 228.0 394.3 66 Α -19.20 228.0 1237. 402.8 1116. -19.50 224.0 402.8 В 1116. 994.0 67 -19.50 224.0 406.5 В -19.80 217.8 406.5 -19.80 217.8 994.0 405.4 68 Α 872.4 872.4 209.5 -20.10 405.4 В 69 -20.10 399.5 Α -20.40 199.5 752.5 399.5 70 -20.40 199.5 752.5 388.7 Α

Pagina 316 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev Data F0

20/06/2011

	В	-20.70	188.0	635.9	388.7
71	A	-20.70	188.0	635.9	373.2
	В	-21.00	191.6	524.0	373.2
72	A	-21.00	191.6	524.0	352.8
	В	-21.30	214.9	418.1	352.8
73	A	-21.30	214.9	418.1	327.5
	В	-21.60	226.0	319.9	327.5
74	A	-21.60	226.0	319.9	297.5
	В	-21.90	226.7	230.6	297.5
75	A	-21.90	226.7	230.6	262.6
	В	-22.20	218.4	151.8	262.6
76	A	-22.20	218.4	151.8	222.9
	В	-22.50	202.6	84.94	222.9
77	A	-22.50	202.6	84.94	178.4
	В	-22.80	181.0	31.41	178.4
78	A	-22.80	181.0	31.41	129.1
	В	-23.10	154.9	0.4809	129.1
79	A	-23.10	154.9	0.4809	96.99
	В	-23.40	125.8	0.3331	96.99
80	A	-23.40	125.8	0.3331	102.2
	В	-23.70	95.16	0.2137	102.2
81	A	-23.70	95.16	0.2137	102.7
	В	-24.00	64.36	0.1259	102.7
82	A	-24.00	64.36	0.1259	94.81
	В	-24.30	35.92	0.6121E-01	94.81
83	A	-24.30	35.92	0.6121E-01	75.50
	В	-24.60	13.27	0.1972E-01	75.50
84	A	-24.60	13.27	0.1972E-01	41.26
	В	-24.90	0.8885	0.1218E-02	41.26
85	A	-24.90	0.8885	0.1218E-02	8.885
	В	-25.00	0.2037E-09	0.4402E-09	8.885

Ce.A.S. s.r.l. - Milano
16 SETTEMBRE 2010 15:22:31
History 0 - PARAMETE TO PAG. 29 History 0 - PARATIA PALI 1200 i=140

FORZE NEGLI ANCORAGGI ATTIVI (PER UNITA' DI PROFONDITA')

TIRANTE	t1	1 PARETE LeftWall QUOTA -2.0000	
		FASE 1 inattivo	
		FASE 2 inattivo	
		FASE 3 FORZA 140.00 kN/m	
		FASE 4 FORZA 141.19 kN/m	
		FASE 5 FORZA 139.96 kN/m	
		FASE 6 FORZA 142.14 kN/m	
		FASE 7 FORZA 141.68 kN/m	
		FASE 8 FORZA 147.86 kN/m	
		FASE 9 FORZA 148.28 kN/m	
		FASE 10 FORZA 162.08 kN/m	
		FASE 11 FORZA 163.13 kN/m	
		FASE 12 FORZA 163.31 kN/m	
		FASE 13 FORZA 284.70 kN/m	
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000	
TIRANTE	t2	1 PARETE LeftWall QUOTA -5.0000 FASE 1 inattivo	
TIRANTE	t2	~	
TIRANTE	t2	FASE 1 inattivo	
TIRANTE	t2	FASE 1 inattivo FASE 2 inattivo	
TIRANTE	t2	FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo	
TIRANTE	t2	FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo	
TIRANTE	t2	FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m	
TIRANTE	t2	FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 155.73 kN/m	
TIRANTE	t2	FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 155.73 kN/m FASE 7 FORZA 154.37 kN/m	
TIRANTE	t2	FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 FORZA 150.00 kN/m FASE 6 FORZA 155.73 kN/m FASE 7 FORZA 154.37 kN/m FASE 8 FORZA 170.09 kN/m	

Eurolink S.C.p.A. Pagina 317 di 445

FASE 12 FORZA 207.43

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

kN/m

Rev F0 Data 20/06/2011

		FASE 13 FORZA 322.14 kN/m
TIRANTE	t3	1 PARETE LeftWall QUOTA -8.0000 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo
		FASE 7 FORZA 160.00 kN/m FASE 8 FORZA 193.39 kN/m FASE 9 FORZA 191.46 kN/m FASE 10 FORZA 256.34 kN/m FASE 11 FORZA 256.12 kN/m FASE 12 FORZA 276.55 kN/m FASE 13 FORZA 421.08 kN/m
	00 RE 2010 15:22:31 - PARATIA PALI 1200	Ce.A.S. s.r.l Milano PAG. 30
TIRANTE	t4	1 PARETE LeftWall QUOTA -11.500 FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 8 inattivo FASE 9 FORZA 160.00 kN/m FASE 10 FORZA 255.58 kN/m
		FASE 10 FORZA 255.58 kN/m FASE 11 FORZA 253.96 kN/m FASE 12 FORZA 290.52 kN/m FASE 13 FORZA 425.97 kN/m
TIRANTE	t5	PARETE LeftWall FASE 1 inattivo FASE 2 inattivo FASE 3 inattivo FASE 4 inattivo FASE 5 inattivo FASE 6 inattivo FASE 7 inattivo FASE 8 inattivo FASE 9 inattivo FASE 10 inattivo FASE 11 FORZA 140.00 kN/m FASE 12 FORZA 194.28 kN/m FASE 13 FORZA 315.06 kN/m

Pagina 318 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

```
PARATIE 7.00
                           Ce.A.S. s.r.l. - Milano
                                                             PAG. 31
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
               INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO
                   * PARETE LeftWall GRUPPO UHLeft*
                                1 - 13*
                          *STEP
                * I PASSI NON EQUILIBRATI SONO ESCLUSI *
          Nella tabella si stampano i seguenti risultati:
          SIGMA-H = massimo sforzo orizzontale efficace [kPa
          TAGLIO = massimo sforzo di taglio
                                                [kPa
                                                           ]
          PR. ACQUA =massima pressione interstiziale
                                                     [kPa
          GRAD. MAX =massimo gradiente idraulico
SOIL EL.
         QUOTA
                   SIGMA-H
                              TAGLIO PR. ACQUA GRAD. MAX
                 10.07
20.14
26.24
                                      0.
          0.
                            4.698
      2 -0.3000
                            6.20.
7.702
                             6.200
                                          0.
                                                    0.
      3 -0.6000
                                         0.
                                                   0.
      4 -0.9000
                  30.74
                            9.204
                                        0.
                                                   0.
      5 -1.200
                    34.21
                              10.71
                                         0.
                                                    0.
      6 -1.500
                   36.91
                            12.21
                                         0.
                                                   0.
                   39.52
      7 -1.800
                             13.71
                                         0.
                                                    0.
      8 -2.000
                   41.19
                              14.78
                                         0.
                                                    0.
                  43.50
                                        0.
      9 -2.300
                            16.53
                                         0.
0.
     10 -2.600
                   45.44
                              18.29
                                                    0.
     11 -2.900
                   47.08
                             20.04
                                                   Ο.
                            21.79
                                        0.
     12 -3.200
                  48.49
                                                    0.
     13 -3.500
                   49.72
                             23.55
                                         0.
                                                    0.
                  51.75
                                        0.
     14 -3.800
                            25.30
                                         0.
     15 -4.100
16 -4.400
                  54.08
                              27.06
                                                    0.
                   56.31
                              28.81
                                         0.
                                                    0.
     17 -4.700
                  58.46
                             30.57
                                         0.
                                                   0.
     18 -5.000
                   60.52
                              32.32
                                         0.
                  62.47
                                         0.
     19 -5.300
                             34.08
                                                   0.
                  64.98
     20 -5.600
21 -5.900
                                         0.
                              35.83
                                                    0.
                                                    0.
                   67.81
                              37.59
                                         0.
     22 -6.200
                   70.65
                             39.34
                                         0.
                                         0.
     23 -6.500
                   73.45
                             41.10
                                                    0.
                  76.19
                            42.85
     24 -6.800
                                                   0.
                                        0.
     25 -7.100
                   78.87
                             44.60
                                                    0.
     26 -7.400
                   81.48
                             46.36
                                         0.
                                                    0.
     27 -7.700
                  84.02
                            48.11
                                         0.
                                                   0.
                                        0.
0.
                  86.58
89.02
     28 -8.000
                             49.87
                            51.62
                                                    0.
     29 -8.300
                                                    0.
                 91.35
     30 -8.600
                            53.38
                                        0.
                                                   0.
     31
        -8.900
                   94.20
                              55.13
                                         0.
                            55.13
56.89
58.64
                 97.11
99.96
102.8
                                        0.
     32 -9.200
                                                   0.
                                         0.
     33 -9.500
                                                    Ο.
     34 -9.800
                             60.40
                                         0.
                                                    0.
     35 -10.10
                  105.5
                              62.15
                                        0.
                                                    0.
```

```
PARATIE 7.00
                          Ce.A.S. s.r.l. - Milano
                                                            PAG. 32
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
SOIL EL. QUOTA
                  SIGMA-H TAGLIO PR. ACQUA GRAD. MAX
                          63.91
65.66
     36 -10.40
                  108.2
                                        0.
                                                  0.
                110.8
     37 -10.70
                                        0.
     38 -11.00
                   113.4
                             67.41
                                        0.
                                                  0.
```

Eurolink S.C.p.A. Pagina 319 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

39	-11.30	115.9	69.17	0.	0.
40	-11.50	117.5	70.34	0.	0.
41	-11.80	119.9	72.09	0.	0.
42	-12.10	122.3	73.85	0.	0.
43	-12.40	124.6	75.60	0.	0.
	-12.70				
44		127.5	77.36	0.	0.
45	-13.00	130.3	79.11	0.	0.
46	-13.30	133.1	80.87	0.	0.
47	-13.60	135.8	82.62	0.	0.
48	-13.90	138.5	84.38	0.	0.
49	-14.20	141.1	86.13	0.	0.
50	-14.50	143.6	87.89	0.	0.
51	-14.80	146.1	89.64	0.	0.
52	-15.00	147.6	90.81	0.	0.
53	-15.30	149.9	92.56	0.	0.
54	-15.60	152.2	94.32	0.	0.
55	-15.90	154.4	96.07	0.	0.
56	-16.20	156.6	97.83	0.	0.
57	-16.50	158.7	99.58	0.	0.
58	-16.80	160.8	101.3	0.	0.
59	-17.10	163.0	103.1	0.	0.
60	-17.40	165.0	104.8	0.	0.
61	-17.70	167.1	106.6	0.	0.
62	-18.00	169.2	108.4	0.	0.
63	-18.30	171.2	110.1	0.	0.
64	-18.60	173.3	111.9	0.	0.
65	-18.90	175.4	113.6	0.	0.
66	-19.20	178.2	115.4	0.	0.
67	-19.50	181.0	117.1	0.	0.
68	-19.80	183.9	118.9	0.	0.
69	-20.10	186.7	120.6	0.	0.
70	-20.40	189.6	122.4	0.	0.
71	-20.70	192.4	124.1	0.	0.
72	-21.00	195.3	125.9	0.	0.
73	-21.30	198.1	127.7	0.	0.
74	-21.60	201.0	129.4	0.	0.
75	-21.90	203.8	131.2	0.	0.
76	-22.20	206.7	132.9	0.	0.
77	-22.50	209.5	134.7	0.	0.
78	-22.80	212.4	136.4	0.	0.
79	-23.10	215.2	138.2	0.	0.
80	-23.40	218.1	139.9	0.	0.
81	-23.70	220.9	141.7	0.	0.
01	23.70	220.5	T T T • /	•	٠.

PARATIE 7.00 16 SETTEMBRE 2010 15:22:31		Ce.A.S. s.r.l Milano				33	
History 0	- PARATIA	PALI 1200	i=140				
SOIL EL.	QUOTA	SIGMA-H	TAGLIO	PR. ACQUA	GRAD. MAX		
82	-24.00	223.8	143.4	0.	0.		
83	-24.30	229.5	145.2	0.	0.		
84	-24.60	255.1	147.0	0.	0.		
85	-24.90	280.2	148.7	0.	0.		
86	-25.00	288.9	149.3	0.	0.		

PARATIE 7.00 16 SETTEMBRE 2010 15:22:31 Ce.A.S. s.r.l. - Milano

PAG. 34

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328 F0.doc F0

Rev F0

20/06/2011

Data

History 0 - PARATIA PALI 1200 i=140

```
INVILUPPO RISULTATI NEGLI ELEMENTI TERRENO
                    * PARETE LeftWall GRUPPO DHLeft*
                          *STEP 1 - 13*
                * I PASSI NON EQUILIBRATI SONO ESCLUSI *
          Nella tabella si stampano i seguenti risultati:
          SIGMA-H = massimo sforzo orizzontale efficace [kPa
                  = massimo sforzo di taglio
                                                      [kPa
          PR. ACQUA =massima pressione interstiziale
                                                      [kPa
          GRAD. MAX =massimo gradiente idraulico
SOIL EL.
         QUOTA
                   SIGMA-H
                              TAGLIO PR. ACQUA GRAD. MAX
                                                0.
                                     0.
                 6.034
8.225
10.42
                    3.843
                              3.078
           0.
                           4.833
      2 -0.3000
                                          Ο.
                                                    Ο.
      3 -0.6000
                            6.588
8.342
10.10
                                          0.
                                                    0.
      4 -0.9000
                                          0.
                                                    0.
                  12.61
                                         0.
      5 -1.200
      6 -1.500
7 -1.800
                  14.80
16.99
                             11.85
13.61
                                         0.
0.
                                                    0.
                                                    Ο.
                            14.78
16.53
18.29
                                         0.
      8 -2.000
                 18.45
                                                    0.
        -2.300
                   20.64
                                          0.
                                         0.
     10 -2.600
                   22.83
                                                    0.
                             20.04
     11 -2.900
12 -3.200
                   30.94
36.46
                                         0.
                                                    0.
                              21.79
                                          0.
                                                    0.
                 40.75
                                         0.
     13 -3.500
                             23.55
                                         0.
0.
     14 -3.800
                   44.31
                              25.30
                                                     0.
                              27.06
     15 -4.100
                   47.37
                                                    Ο.
                             28.81
                                         0.
                  50.07
52.48
     16 -4.400
                                                    0.
     17 -4.700
                              30.57
                                          0.
                                                    0.
                  54.69
                                         0.
                             32.32
     18 -5.000
                  57.18
                                         0.
     19 -5.300
20 -5.600
                              34.08
                                                    0.
                   59.54
                              35.83
                                          0.
                                                    0.
     21 -5.900
                  61.79
                             37.59
                                         0.
                                                    0.
     22
        -6.200
                   63.96
                              39.34
                                          0.
                  66.08
                                         0.
                             41.10
     23 -6.500
                                                    0.
                                         0.
     24 -6.800
                   68.16
                              42.85
                                                    0.
     25
        -7.100
                    71.18
                              44.60
                                          0.
                                                    0.
     26 -7.400
                   74.19
                            46.36
                                         0.
                                         0.
     27
        -7.700
                   77.08
                                                    0.
                              48.11
                            49.87
                  79.86
     28 -8.000
                                                    0.
                            51.62
                                         0.
0.
     29 -8.300
                  82.54
                                                    0.
     30 -8.600
                   85.14
                              53.38
                                                    0.
                  87.68
                                         0.
                                                    0.
     31
        -8.900
                             55.13
                                         0.
0.
        -9.200
     32
                   90.16
                              56.89
                  90.10
                                                    0.
                             58.64
        -9.500
     33
                                                    0.
                  94.99
     34 -9.800
                              60.40
                                         0.
                                                    0.
     35
        -10.10
                    111.7
                              62.15
                                          0.
                                                     0.
```

```
PARATTE 7.00
                                   Ce.A.S. s.r.l. - Milano
                                                                              PAG. 35
16 SETTEMBRE 2010 15:22:31
History 0 - PARATIA PALI 1200 i=140
SOIL EL. QUOTA
                         SIGMA-H
                                      TAGLIO PR. ACOUA GRAD. MAX
                                   63.91
65.66
67.41
                    114.3
116.8
119.2
                                                    0.
      36 -10.40
                                                                  0.
                                                    0.
      37
          -10.70
                                                                  0.
                                                               0.
                                                   0.
       38 -11.00
                                     69.17 0.
70.34 0.
72.09 0.
73.85 0.
      39 -11.30 121.5
40 -11.50 123.0
41 -11.80 125.2
42 -12.10 127.3
                                                   0.
0.
                                                                  Ο.
                                                                  0.
                                                   0.
```

Eurolink S.C.p.A. Pagina 321 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

43	-12.40	129.3	75.60	0.	0.
44	-12.70	131.3	77.36	0.	0.
45	-13.00	133.3	79.11	0.	0.
46	-13.30	135.2	80.87	0.	0.
47	-13.60	137.1	82.62	0.	0.
48	-13.90	139.0	84.38	0.	0.
49	-14.20	152.8	86.13	0.	0.
50	-14.50	172.2	87.89	0.	0.
51	-14.80	191.5	89.64	0.	0.
52	-15.00	204.4	90.81	0.	0.
53	-15.30	206.0	92.56	0.	0.
54	-15.60	205.4	94.32	0.	0.
55	-15.90	204.9	96.07	0.	0.
56	-16.20	204.3	97.83	0.	0.
57	-16.50	203.6	99.58	0.	0.
58	-16.80	203.0	101.3	0.	0.
59	-17.10	202.4	103.1	0.	0.
60	-17.40	201.8	104.8	0.	0.
61	-17.70	201.3	106.6	0.	0.
62	-18.00	200.8	108.4	0.	0.
63	-18.30	200.5	110.1	0.	0.
64	-18.60	210.8	111.9	0.	0.
65	-18.90	230.2	113.6	0.	0.
66	-19.20	249.5	115.4	0.	0.
67	-19.50	268.8	117.1	0.	0.
68	-19.80	288.2	118.9	0.	0.
69	-20.10	307.5	120.6	0.	0.
70	-20.40	326.8	122.4	0.	0.
71	-20.70	346.2	124.1	0.	0.
72	-21.00	342.1	125.9	0.	0.
73	-21.30	326.6	127.7	0.	0.
74	-21.60	311.5	129.4	0.	0.
75	-21.90	326.8	131.2	0.	0.
76	-22.20	346.2	132.9	0.	0.
77	-22.50	365.5	134.7	0.	0.
78	-22.80	376.8	136.4	0.	0.
79	-23.10	395.7	139.9	0.	0.
80	-23.40	390.2	139.9	0.	0.
81	-23.70	341.2	141.7	0.	0.
					- •

PARATIE 7.00 Ce.A.S. s.r.l. - Milano PAG. 37 16 SETTEMBRE 2010 15:22:31 History 0 - PARATIA PALI 1200 i=140

RIASSUNTO SPINTE NEGLI ELEMENTI TERRENO (LE SPINTE SONO CALCOLATE INTEGRANDO GLI SFORZI NEI SINGOLI ELEMENTI MOLLA)

Pagina 322 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

SPINTA EFFICACE VERA	in tutti gli	elle pressioni orizz i elementi nel grupp			
SPINTA ACQUA		misura kN/m = Integrale delle pressioni interstiziali in tut gli elementi nel gruppo: unita' di misura kN/m			
SPINTA TOTALE VERA	= Somma della DELL'ACQUA:	SPINTA EFFICACE e d e' l' azione totale	ella SPINTA		
SPINTA ATTIVA POSSIBILE	questo grupp	isura kN/m pinta che puo' esser po di elementi terre ' di misura kN/m			
SPINTA PASSIVA POSSIBILE	= La massima s questo grupp	spinta che puo' esse po di elementi terre			
RAPPORTO PASSIVA/VERA	= e' il rappor la spinta ef	' di misura kN/m rto tra la massima s Eficace vera: fornis pinta passiva venga	ce un'indicazione		
SPINTA PASSIVA MOBILITATA	= e' l'inverso in unita' pe		dente, espresso uanta parte della		
RAPPORTO VERA/ATTIVA	= e' il rappor minima spint di quanto qu	rto tra la spinta ef ta possibile: fornis desta porzione di te la condizione di mas	ficace vera e la ce un'indicazione rreno sia		
FASE 1 GRUPPO	> UHLe	DHLe			
SPINTA EFFICACE VERA SPINTA ACQUA SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBI: SPINTA PASSIVA (POSSIBI: RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITA' RAPPORTO VERA/ATTIVA	LE) 21264. 8.9417	2378.1 0. 2378.1 2823.5 21264. 8.9417 11.% 0.84225			
PARATIE 7.00 16 SETTEMBRE 2010 15:22:3 History 0 - PARATIA PALI	1	r.l Milano	PAG. 38		
FASE 2 GRUPPO	> UHLe	DHLe			
SPINTA EFFICACE VERA SPINTA ACQUA	2826.0	2825.9			
SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBI	2826.0 LE) 2823.5	2825.9 2183.0			
SPINTA PASSIVA (POSSIBI	LE) 21264.	16563.			
RAPPORTO PASSIVA/VERA SPINTA PASSIVA MOBILITA	7.5246	5.8613			
RAPPORTO VERA/ATTIVA	1.0009	17.% 1.2945			
FASE 3 GRUPPO	> UHLe	DHLe			
SPINTA EFFICACE VERA	2922.5	2784.7			
SPINTA ACQUA SPINTA TOTALE VERA	0.	0.			
SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBI		2784.7 2183.0			
SPINTA PASSIVA (POSSIBI	LE) 21264.	16563.			
RAPPORTO PASSIVA/VERA		5.9479			
SPINTA PASSIVA MOBILITA RAPPORTO VERA/ATTIVA	1.0351				

Eurolink S.C.p.A. Pagina 323 di 445

PAG. 39

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0

Rev F0

Data 20/06/2011

FASE	4	GRUPPO>	UHLe	DHLe
SPINT SPINT SPINT SPINT RAPPO SPINT		RA POSSIBILE) POSSIBILE) A/VERA OBILITATA	2848.8 0. 2848.8 2823.5 21264. 7.4643 13.% 1.0090	0. 2709.9 1629.2 12470. 4.6016 22.%
FASE	5	GRUPPO>	UHLe	DHLe
SPINT SPINT SPINT SPINT RAPPO SPINT		RA POSSIBILE) POSSIBILE) A/VERA OBILITATA		0. 2675.5 1629.2 12470.

Ce.A.S. s.r.l. - Milano PARATIE 7.00 16 SETTEMBRE 2010 15:22:31 History 0 - PARATIA PALI 1200 i=140 GRUPPO --> UHLe DHT.e FASE

 SPINTA EFFICACE VERA
 2849.3
 2555.9

 SPINTA ACQUA
 0.
 0.

 SPINTA TOTALE VERA
 2849.3
 2555.9

 SPINTA ATTIVA (POSSIBILE)
 2823.5
 1156.3

 SPINTA ATTIVA (POSSIBILE) 2823.5 SPINTA PASSIVA (POSSIBILE) 21264. RAPPORTO PASSIVA/VERA 7.4629 1156.3 8956.5 3.5042 13.% 29.9 1.0091 2.2105 SPINTA PASSIVA MOBILITATA 29.% RAPPORTO VERA/ATTIVA FASE 7 GRUPPO --> UHLe DHLe

 SPINTA EFFICACE VERA
 2967.6
 2518.5

 SPINTA ACQUA
 0.
 0.

 SPINTA TOTALE VERA
 2967.6
 2518.5

 SPINTA ATTIVA (POSSIBILE)
 2823.5
 1156.3

 SPINTA PASSIVA (POSSIBILE) 21264. 8956.5 RAPPORTO PASSIVA/VERA 7.1655 3.5562 SPINTA PASSIVA MOBILITATA 14.% 28.% RAPPORTO VERA/ATTIVA 1.0510 2.1781 FASE 8 GRUPPO --> UHLe DHLe SPINTA EFFICACE VERA 2839.3 2335.7 SPINTA ACQUA 0. 0. SPINTA TOTALE VERA 2839.3 2335.7 SPINTA ATTIVA (POSSIBILE) 2823.5 706.77 SPINTA PASSIVA (POSSIBILE) 21264. 5590.7 .4892 13.% 4∠. 3.3047 RAPPORTO PASSIVA/VERA 7.4892 SPINTA PASSIVA MOBILITATA 13.%

RAPPORTO VERA/ATTIVA

Pagina 324 di 445 Eurolink S.C.p.A.

42.8

1.0056

PAG. 40

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328 F0.doc F0

Rev F0

Data 20/06/2011

FASE	9	GRUPPO>	UHLe	DHLe
SPIN	ITA EFFI	CACE VERA	2955.1	2296.1
SPIN	ITA ACQU	ΙA	0.	0.
SPIN	ITA TOTA	LE VERA	2955.1	2296.1
SPIN	ITA ATTI	VA (POSSIBILE)	2823.5	706.77
SPIN	ITA PASS	IVA (POSSIBILE)	21264.	5590.7
RAPE	ORTO F	ASSIVA/VERA	7.1958	2.4349
SPIN	ITA PASS	IVA MOBILITATA	14.%	41.%
RAPE	ORTO V	ERA/ATTIVA	1.0466	3.2487

PARATTE 7.00 Ce.A.S. s.r.l. - Milano 16 SETTEMBRE 2010 15:22:31 History 0 - PARATIA PALI 1200 i=140 UHLe FASE 10 GRIIPPO --> DHT.e SPINTA EFFICACE VERA 2851.5 1990.9 SPINTA ACOUA 0. 0. 2851.5 1990.9 SPINTA TOTALE VERA SPINTA ATTIVA (POSSIBILE) 2823.5 367.35 SPINTA PASSIVA (POSSIBILE) 21264. 3014.4 RAPPORTO PASSIVA/VERA 7.4572 1.5141 SPINTA PASSIVA MOBILITATA 13.% 66.8 5.4197 RAPPORTO VERA/ATTIVA 1.0099 GRUPPO --> FASE 11 UHLe DHT.e SPINTA ATTIVA (POSSIBILE) 2823.5 SPINTA PASSIVA (POSSIBILE) 21264. RAPPORTO PASSIVA/VERA 7.2052 3014.4 1.5435 SPINTA PASSIVA MOBILITATA 14.% 5.3164 65.% 1.0452 RAPPORTO VERA/ATTIVA GRUPPO --> UHLe FASE 12 DHLe

 SPINTA EFFICACE VERA
 2829.0
 1714.1

 SPINTA ACQUA
 0.
 0.

 SPINTA TOTALE VERA
 2829.0
 1714.1

 QDINMTA ATTIVA (POSSIBILE)
 2823.5
 255.58

 SPINTA PASSIVA (POSSIBILE) 21264. 2151.9 RAPPORTO PASSIVA/VERA 7.5164 1.2554 SPINTA PASSIVA MOBILITATA 13.% 80.8 RAPPORTO VERA/ATTIVA 1.0020 6.7067 FASE 13 GRUPPO --> UHLe DHLe 1775.0 0. 1775.0 271.06 2107.2 SPINTA EFFICACE VERA 2870.3 SPINTA ACOUA 0. SPINTA TOTALE VERA 2870.3
SPINTA ATTIVA (POSSIBILE) 2863.7
SPINTA PASSIVA (POSSIBILE) 19986. RAPPORTO PASSIVA/VERA 6.9631 SPINTA PASSIVA MOBILITATA 14.% 1.1871

Eurolink S.C.p.A. Pagina 325 di 445

84.%

6.5485

14.%

1.0023

RAPPORTO VERA/ATTIVA

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

Pagina 326 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

12.3 Output stabilità globale terreno opera : paratia H=20m

Analisi di stabilità dei pendii con JANBU

Normativa NTC 2008
Numero di strati 1,0
Numero dei conci 50,0
Grado di sicurezza ritenuto accettabile 1,1
Coefficiente parziale resistenza 1,1
Analisi Condizione drenata
Superficie di forma circolare

Maglia dei Centri

Ascissa vertice sinistro inferiore xi
Ordinata vertice sinistro inferiore yi
Ascissa vertice destro superiore xs
Ordinata vertice destro superiore xs
Ordinata vertice destro superiore ys
Ordinata vertice destro superiore ys
Passo di ricerca
Numero di celle lungo x
Numero di celle lungo y
20,0

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 1 - Opere provvisorie
Classe d'uso: Classe II
Vita nominale: 35,0 [anni]
Vita di riferimento: 35,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B
Categoria topografica: T2

S.L.	TR	ag	F0	TC*	
Stato limite	Tempo ritorno	[m/s²]	[-]	[sec]	
	[anni]				
S.L.O.	30,0	0,06	2,38	0,28	
S.L.D.	35,0	0,06	2,37	0,59	
S.L.V.	332,0	0,2	2,39	0,35	
S.L.C.	682,0	0,27	2,43	0,37	

Coefficienti sismici orizzontali e verticali

 Opera:
 Paratia

 Altezza paratia:
 20,0 [m]

 Us [Spost. ammissibile]:
 0,1 [m]

S.L.	amax	beta	kh	kv	
Stato limite	Stato limite [m/s²]		[-]	[sec]	
S.L.O.	0,0864	0,385	0,0032	0,0016	
S.L.D.	0,0864	0,385	0,0032	0,0016	
S.L.V.	0,288	0,385	0,0106	0,0053	
S.L.C.	0,3888	0,385	0,0142	0,0071	

Eurolink S.C.p.A. Pagina 327 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

Vertici profilo

N		X	у
		m	m
	1	210,12	214,78
	2	321,15	214,78
	3	321,15	234,78
	4	428,47	304,48

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio 1,25
Coesione efficace 1,25
Coesione non drenata 1,4
Riduzione parametri geotecnici terreno Si

Stratigrafia

c: coesione; cu: coesione non drenata; Fi: Angolo di attrito; G: Peso Specifico; Gs: Peso Specifico Saturo; K: Modulo di Winkler

Widadio ai vv	oddio di Willitio									
Strato	C	cu	Fi	G	Gs	K	Litologia			
	(kN/m²)	(kN/m^2)	(°)	(Kg/m³)	(Kg/m³)	(Kg/cm³)				
1	5		38	1900	1900	0.00				

Pali...

N°	X	У	Diametro	Lunghezza	Inclinazione	Interasse
	m	m	m	m	(°)	m
1	320,9498	234,8417	1,2	30	90	1,4

Risultati analisi pendio [NTC 2008: [A2+M2+R2]]

Fs minimo individuato 1,14
Ascissa centro superficie 302,22 m
Ordinata centro superficie 320,19 m
Raggio superficie 117,22 m

Analisi dei conci. Superficie...xc = 302,217 yc = 320,187 Rc = 117,217 Fs=1,1419

Nr.	В	Alfa	Li	Wi	Kh•Wi	Kv•Wi	С	Fi	Ui	N'i	Ti
	m	(°)	m	(kN)	(kN)	(kN)	(kN/m^2)	(°)	(kN)	(kN)	(kN)
1	3,32	-25,0	3,67	49,09	0,16	0,08	4,0	32,0	0,0	79,3	59,2
2	3,32	-23,3	3,62	141,43	0,45	0,23	4,0	32,0	0,0	205,3	129,9
3	3,32	-21,5	3,57	226,24	0,72	0,36	4,0	32,0	0,0	312,1	188,1
4	3,32	-19,8	3,53	303,8	0,97	0,49	4,0	32,0	0,0	402,7	236,1
5	3,32	-18,1	3,5	374,35	1,2	0,6	4,0	32,0	0,0	479,1	275,5
6	3,32	-16,4	3,46	438,1	1,4	0,7	4,0	32,0	0,0	543,2	307,8
7	3,32	-14,7	3,44	495,23	1,58	0,79	4,0	32,0	0,0	596,5	333,9
8	3,32	-13,0	3,41	545,92	1,75	0,87	4,0	32,0	0,0	640,0	354,8
9	3,32	-11,3	3,39	590,29	1,89	0,94	4,0	32,0	0,0	674,9	371,1
10	3,32	-9,7	3,37	628,47	2,01	1,01	4,0	32,0	0,0	702,0	383,4
11	3,32	-8,0	3,36	660,56	2,11	1,06	4,0	32,0	0,0	721,9	392,1
12	3,32	-6,4	3,35	686,62	2,2	1,1	4,0	32,0	0,0	735,2	397,7
13	3,32	-4,8	3,34	706,73	2,26	1,13	4,0	32,0	0,0	742,4	400,3
14	3,32	-3,1	3,33	720,94	2,31	1,15	4,0	32,0	0,0	743,9	400,3
15	3,32	-1,5	3,33	729,29	2,33	1,17	4,0	32,0	0,0	740,0	397,8
16	3,32	0,1	3,32	731,78	2,34	1,17	4,0	32,0	0,0	731,0	392,9
17	3,32	1,7	3,33	728,44	2,33	1,17	4,0	32,0	0,0	717,0	385,8
18	3,32	3,4	3,33	719,26	2,3	1,15	4,0	32,0	0,0	698,4	376,6

Pagina 328 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco
 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

19	3,32	5,0	3,34	704,19	2,25	1,13	4,0	32,0	0,0	675,1	365,1
20	3,32	6,6	3,35	683,22	2,19	1,09	4,0	32,0	0,0	647,2	351,6
21	3,78	8,4	3,82	743,71	2,38	1,19	4,0	32,0	0,0	696,3	380,5
22	2,87	10,0	2,91	1655,16	5,3	2,65	4,0	32,0	0,0	1537,1	825,2
23	3,32	11,6	3,39	2005,44	6,42	3,21	4,0	32,0	0,0	1847,2	996,4
24	3,32	13,2	3,41	2093,94	6,7	3,35	4,0	32,0	0,0	1913,3	1038,4
25	3,32	14,9	3,44	2176,12	6,96	3,48	4,0	32,0	0,0	1974,3	1079,0
26	3,32	16,6	3,47	2251,8	7,21	3,6	4,0	32,0	0,0	2030,2	1118,6
27	3,32	18,3	3,5	2320,86	7,43	3,71	4,0	32,0	0,0	2081,1	1157,2
28	3,32	20,0	3,54	2383,09	7,63	3,81	4,0	32,0	0,0	2127,2	1195,1
29	3,32	21,8	3,58	2438,28	7,8	3,9	4,0	32,0	0,0	2168,5	1232,4
30	3,32	23,5	3,63	2486,18	7,96	3,98	4,0	32,0	0,0	2204,9	1269,3
31	3,32	25,3	3,68	2526,5	8,08	4,04	4,0	32,0	0,0	2236,5	1305,8
32	3,32	27,1	3,73	2558,93	8,19	4,09	4,0	32,0	0,0	2263,2	1342,2
33	3,32	29,0	3,8	2583,03	8,27	4,13	4,0	32,0	0,0	2284,8	1378,4
34	3,32	30,8	3,87	2598,44	8,31	4,16	4,0	32,0	0,0	2301,0	1414,8
35	3,32	32,7	3,95	2604,61	8,33	4,17	4,0	32,0	0,0	2311,7	1451,4
36	3,32	34,7	4,04	2600,96	8,32	4,16	4,0	32,0	0,0	2316,5	1488,2
37	3,32	36,7	4,15	2586,8	8,28	4,14	4,0	32,0	0,0	2314,8	1525,4
38	3,32	38,8	4,26	2561,29	8,2	4,1	4,0	32,0	0,0	2306,1	1563,0
39	3,32	40,9	4,4	2523,45	8,08	4,04	4,0	32,0	0,0	2289,6	1601,0
40	3,32	43,1	4,55	2472,11	7,91	3,96	4,0	32,0	0,0	2264,2	1639,5
41	3,32	45,3	4,73	2405,73	7,7	3,85	4,0	32,0	0,0	2228,5	1678,2
42	3,32	47,7	4,94	2322,54	7,43	3,72	4,0	32,0	0,0	2180,9	1716,9
43	3,32	50,2	5,19	2220,15	7,1	3,55	4,0	32,0	0,0	2118,6	1754,7
44	3,32	52,8	5,5	2095,47	6,71	3,35	4,0	32,0	0,0	2038,5	1790,7
45	3,32	55,6	5,88	1944,31	6,22	3,11	4,0	32,0	0,0	1935,3	1822,1
46	3,32	58,6	6,37	1760,69	5,63	2,82	4,0	32,0	0,0	1801,5	1844,5
47	3,32	61,8	7,04	1535,62	4,91	2,46	4,0	32,0	0,0	1624,5	1847,5
48	3,32	65,5	8,02	1254,32	4,01	2,01	4,0	32,0	0,0	1382,3	1806,8
49	3,32	69,8	9,64	889,17	2,85	1,42	4,0	32,0	0,0	1028,6	1652,1
50	3,32	75,4	13,21	374,25	1,2	0,6	4,0	32,0	0,0	437,8	1084,0

Eurolink S.C.p.A. Pagina 329 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0

20/06/2011

Data

12.4 Output stabilità globale terreno opera : paratia H=17.0m

Analisi di stabilità dei pendii con JANBU

Normativa NTC 2008
Numero di strati 1,0
Numero dei conci 50,0
Grado di sicurezza ritenuto accettabile 1,1
Coefficiente parziale resistenza 1,1
Analisi Condizione drenata

Superficie di forma circolare

Maglia dei Centri

Ascissa vertice sinistro inferiore xi
Ordinata vertice sinistro inferiore yi
Ascissa vertice destro superiore xs
Ordinata vertice destro superiore xs
Ordinata vertice destro superiore ys
Passo di ricerca
Numero di celle lungo x
Numero di celle lungo y
237,02 m
237,02 m
313,57 m
292,27 m
252,53 m
20,0

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 1 - Opere provvisorie
Classe d'uso: Classe II
Vita nominale: 35,0 [anni]
Vita di riferimento: 35,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B
Categoria topografica: T2

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	30,0	0,06	2,38	0,28
S.L.D.	35,0	0,06	2,37	0,59
S.L.V.	332,0	0,2	2,39	0,35
S.L.C.	682,0	0,27	2,43	0,37

Coefficienti sismici orizzontali e verticali

 Opera:
 Paratia

 Altezza paratia:
 20,0 [m]

 Us [Spost. ammissibile]:
 0,1 [m]

S.L. Stato limite	amax [m/s²]	beta [-]	kh [-]	kv [sec]	
S.L.O.	0,0864	0,385	0,0032	0,0016	
S.L.D.	0,0864	0,385	0,0032	0,0016	
S.L.V.	0,288	0,385	0,0106	0,0053	
S.L.C.	0,3888	0,385	0,0142	0,0071	

Pagina 330 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 SS0328_F0.doc_F0
 F0
 20/06/2011

Vertici profilo

N		X	у
		m	m
	1	201,11	217,78
	2	321,15	217,78
	3	321,15	234,78
	4	428,47	304,48

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio 1,25
Coesione efficace 1,25
Coesione non drenata 1,4
Riduzione parametri geotecnici terreno Si

Stratigrafia

c: coesione: cu: coesione non drenata: Fi: Angolo di attrito: G: Peso Specifico: Gs: Peso Specifico Saturo: K: Modulo di Winkler

Strato	c (kN/m²)	cu (kN/m²)	Fi (°)	G (Kg/m³)	Gs (Kg/m³)	K (Ka/cm³)	Litologia	
1	5	(- ,	38	1900	1900	0.00		

Pali...

23

2,34

N°	Х	у	Diametro	Lunghezza	Inclinazione	Interasse
	m	m	m	m	(°)	m
1	320,9498	234,8417	1,2	30	90	1,4

Risultati analisi pendio [NTC 2008: [A2+M2+R2]]

Fs minimo individuato 1,23

Ascissa centro superficie 292,27 m Ordinata centro superficie 342,79 m Raggio superficie 140,9 m

5,78

2,39

1426,26

1324,36

Analisi dei conci. Superficie...xc = 292,272 yc = 342,787 Rc = 140,904 Fs=1,2341

Nr.	В	Alfa	Li	Wi	Kh•Wi	Kv•Wi	С	Fi	Ui	N'i	Ti
	m	(°)	m	(kN)	(kN)	(kN)	(kN/m²)	(°)	(kN)	(kN)	(kN)
1	4,01	-26,6	4,48	76,4	0,24	0,12	4,0	32,0	0,0	119,5	76,3
2	4,01	-24,8	4,42	220,32	0,71	0,35	4,0	32,0	0,0	315,6	174,3
3	4,01	-23,0	4,36	352,85	1,13	0,56	4,0	32,0	0,0	482,9	255,4
4	4,01	-21,2	4,3	474,46	1,52	0,76	4,0	32,0	0,0	625,7	322,5
5	4,01	-19,5	4,25	585,55	1,87	0,94	4,0	32,0	0,0	747,1	378,0
6	4,01	-17,8	4,21	686,46	2,2	1,1	4,0	32,0	0,0	850,0	423,8
7	4,01	-16,1	4,17	777,49	2,49	1,24	4,0	32,0	0,0	936,6	461,4
8	4,01	-14,4	4,14	858,92	2,75	1,37	4,0	32,0	0,0	1008,6	491,8
9	4,01	-12,7	4,11	930,97	2,98	1,49	4,0	32,0	0,0	1067,6	516,1
10	4,01	-11,0	4,08	993,83	3,18	1,59	4,0	32,0	0,0	1114,7	535,0
11	4,01	-9,4	4,06	1047,69	3,35	1,68	4,0	32,0	0,0	1151,2	549,1
12	4,01	-7,7	4,05	1092,66	3,5	1,75	4,0	32,0	0,0	1177,7	559,0
13	4,01	-6,1	4,03	1128,88	3,61	1,81	4,0	32,0	0,0	1195,0	565,1
14	4,01	-4,4	4,02	1156,42	3,7	1,85	4,0	32,0	0,0	1203,8	567,6
15	4,01	-2,8	4,01	1175,35	3,76	1,88	4,0	32,0	0,0	1204,4	566,9
16	4,01	-1,2	4,01	1185,74	3,79	1,9	4,0	32,0	0,0	1197,5	563,1
17	4,01	0,5	4,01	1187,58	3,8	1,9	4,0	32,0	0,0	1183,1	556,4
18	4,01	2,1	4,01	1180,91	3,78	1,89	4,0	32,0	0,0	1161,7	546,9
19	4,01	3,7	4,02	1165,69	3,73	1,87	4,0	32,0	0,0	1133,4	534,6
20	4,01	5,4	4,03	1141,89	3,65	1,83	4,0	32,0	0,0	1098,3	519,7
21	4,01	7,0	4,04	1109,45	3,55	1,78	4,0	32,0	0,0	1056,6	501,9
22	4,01	8,6	4,06	1068,29	3,42	1,71	4,0	32,0	0,0	1008,2	481,4

Eurolink S.C.p.A. Pagina 331 di 445

4,56

4,24

2,28

2,12

32,0

32,0

1332,7

1230,4

641,5

586,8

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

 Codice documento
 Rev
 Data

 \$S0328_F0.doc_F0
 F0
 20/06/2011

25	4,01	13,6	4,13	2369,82	7,58	3,79	4,0	32,0	0,0	2191,0	1050,2
26	4,01	15,3	4,16	2487,11	7,96	3,98	4,0	32,0	0,0	2287,0	1104,1
27	4,01	17,0	4,19	2594,88	8,3	4,15	4,0	32,0	0,0	2375,3	1156,2
28	4,01	18,7	4,23	2692,91	8,62	4,31	4,0	32,0	0,0	2456,0	1206,8
29	4,01	20,5	4,28	2780,88	8,9	4,45	4,0	32,0	0,0	2529,1	1255,9
30	4,01	22,2	4,33	2858,51	9,15	4,57	4,0	32,0	0,0	2594,8	1303,8
31	4,01	24,0	4,39	2925,39	9,36	4,68	4,0	32,0	0,0	2652,9	1350,6
32	4,01	25,8	4,45	2981,08	9,54	4,77	4,0	32,0	0,0	2703,3	1396,4
33	4,01	27,6	4,52	3025,08	9,68	4,84	4,0	32,0	0,0	2745,9	1441,3
34	4,01	29,5	4,61	3056,83	9,78	4,89	4,0	32,0	0,0	2780,3	1485,4
35	4,01	31,4	4,7	3075,66	9,84	4,92	4,0	32,0	0,0	2806,2	1528,7
36	4,01	33,3	4,8	3080,76	9,86	4,93	4,0	32,0	0,0	2823,1	1571,3
37	4,01	35,3	4,91	3071,31	9,83	4,91	4,0	32,0	0,0	2830,2	1613,0
38	4,01	37,3	5,04	3046,16	9,75	4,87	4,0	32,0	0,0	2826,7	1653,8
39	4,01	39,4	5,19	3004,07	9,61	4,81	4,0	32,0	0,0	2811,5	1693,4
40	4,01	41,5	5,35	2943,51	9,42	4,71	4,0	32,0	0,0	2783,1	1731,5
41	4,01	43,7	5,55	2862,64	9,16	4,58	4,0	32,0	0,0	2739,5	1767,3
42	4,01	46,0	5,77	2759,11	8,83	4,41	4,0	32,0	0,0	2678,4	1800,0
43	4,01	48,4	6,04	2630,12	8,42	4,21	4,0	32,0	0,0	2596,3	1827,7
44	4,01	51,0	6,36	2471,85	7,91	3,95	4,0	32,0	0,0	2488,6	1847,9
45	4,01	53,6	6,76	2279,38	7,29	3,65	4,0	32,0	0,0	2348,6	1856,0
46	4,01	56,5	7,26	2045,89	6,55	3,27	4,0	32,0	0,0	2166,6	1844,0
47	4,01	59,6	7,91	1761,5	5,64	2,82	4,0	32,0	0,0	1927,4	1796,7
48	4,01	63,0	8,82	1411,0	4,52	2,26	4,0	32,0	0,0	1605,2	1682,2
49	4,01	66,8	10,19	968,5	3,1	1,55	4,0	32,0	0,0	1152,1	1423,5
50	4,01	71,5	12,61	382,25	1,22	0,61	4,0	32,0	0,0	460,0	782,7

Pagina 332 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

12.5 Output verifica galleria artificiale

SAP2000 v9.0.3 10/12/10 10.07.45

Table: Element Forces - Frames, Part 1 of 2

Frame	e Station	OutputC	Case Cas	еТуре	Ste	ерТуре		Р	V2	2 V3	Т
Text	m	Text	Text	Text		KN	KN		KN	KN-m	
1	0,00000	SLE	NonStatio	M	ax	-1611,06	66	36,6	48	0,000	0,0000
1	0,56242	SLE	NonStatio	: M	ax	-1609,92	23	70,3	75	0,000	0,0000
1	1,12485	SLE	NonStatio	M	ax	-1608,78	31	104,1	01	0,000	0,0000
1	0,00000	SLE	NonStatio	M	in	-1611,06	6	36,64	18	0,000	0,0000
1	0,56242	SLE	NonStatio	M	in	-1609,92	3	70,37	' 5	0,000	0,0000
1	1,12485	SLE	NonStatio	M	in	-1608,78	1	104,1	01	0,000	0,0000
1	0,00000	SLU	NonStatio	e M	lax	-2094,38	35	47,6	43	0,000	0,0000
1	0,56242	SLU	NonStatio	e M	lax	-2092,90	00	91,4	87	0,000	0,0000
1	1,12485	SLU	NonStatio	e M	lax	-2091,41	15	135,3	331	0,000	0,0000
1	0,00000	SLU	NonStatio	e M	lin	-2094,38	5	47,64	13	0,000	0,0000
1	0,56242	SLU	NonStatio	e M	lin	-2092,90	0	91,48	37	0,000	0,0000
1	1,12485	SLU	NonStatio	e M	lin	-2091,41	5	135,3	31	0,000	0,0000
1	0,00000	SLD	NonStatio	e M	lax	-1955,77	79	56,0	04	0,000	0,0000
1	0,56242	SLD	NonStatio	e M	lax	-1955,79	91	95,5	09	0,000	0,0000
1	1,12485	SLD	NonStatio	e M	lax	-1955,80)4	135,0)14	0,000	0,0000
1	0,00000	SLD	NonStatio	e M	lin	-1955,77	9	56,00)4	0,000	0,0000
1	0,56242	SLD	NonStatio	M	lin	-1955,79	1	95,50	9	0,000	0,0000
1	1,12485	SLD	NonStatio	e M	lin	-1955,80	4	135,0	14	0,000	0,0000
1	0,00000	SLV	NonStatio	: M	ax	-2898,50	8(136,9	954	0,000	0,0000
1	0,56242	SLV	NonStatio	: M	ax	-2900,87	76	186,6	68	0,000	0,0000
1	1,12485	SLV	NonStatio	: M	ax	-2903,24	13	236,3	883	0,000	0,0000
1	0,00000	SLV	NonStatio	: M	lin	-2898,50	8	136,9	54	0,000	0,0000
1	0,56242	SLV	NonStatio	M	in	-2900,87	6	186,6	68	0,000	0,0000
1	1,12485	SLV	NonStatio	: M	in	-2903,24	3 2	236,3	83	0,000	0,0000

Eurolink S.C.p.A. Pagina 333 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

2	0,00000	SLE	NonStatic	Max	-1605,511	-7,564	0,000	0,0000
2	0,56242	SLE	NonStatic	Max	-1602,089	26,007	0,000	0,0000
2	1,12485	SLE	NonStatic	Max	-1598,667	59,578	0,000	0,0000
2	0,00000	SLE	NonStatic	Min	-1605,511	-7,564	0,000	0,0000
2	0,56242	SLE	NonStatic	Min	-1602,089	26,007	0,000	0,0000
2	1,12485	SLE	NonStatic	Min	-1598,667	59,578	0,000	0,0000
2	0,00000	SLU	NonStatic	Max	-2087,164	-9,834	0,000	0,0000
2	0,56242	SLU	NonStatic	Max	-2082,716	33,809	0,000	0,0000
2	1,12485	SLU	NonStatic	Max	-2078,267	77,452	0,000	0,0000
2	0,00000	SLU	NonStatic	Min	-2087,164	-9,834	0,000	0,0000
2	0,56242	SLU	NonStatic	Min	-2082,716	33,809	0,000	0,0000
2	1,12485	SLU	NonStatic	Min	-2078,267	77,452	0,000	0,0000
2	0,00000	SLD	NonStatic	Max	-1951,091	4,119	0,000	0,0000
2	0,56242	SLD	NonStatic	Max	-1948,430	43,534	0,000	0,0000
2	1,12485	SLD	NonStatic	Max	-1945,769	82,950	0,000	0,0000
2	0,00000	SLD	NonStatic	Min	-1951,091	4,119	0,000	0,0000
2	0,56242	SLD	NonStatic	Min	-1948,430	43,534	0,000	0,0000
2	1,12485	SLD	NonStatic	Min	-1945,769	82,950	0,000	0,0000
2	0,00000	SLV	NonStatic	Max	-2892,727	74,064	0,000	0,0000
2	0,56242	SLV	NonStatic	Max	-2891,726	123,825	0,000	0,0000
2	1,12485	SLV	NonStatic	Max	-2890,724	173,586	0,000	0,0000
2	0,00000	SLV	NonStatic	Min	-2892,727	74,064	0,000	0,0000
2	0,56242	SLV	NonStatic	Min	-2891,726	123,825	0,000	0,0000
2	1,12485	SLV	NonStatic	Min	-2890,724	173,586	0,000	0,0000
3	0,00000	SLE	NonStatic	Max	-1598,360	-50,509	0,000	0,0000
3	0,56242	SLE	NonStatic	Max	-1592,674	-17,246	0,000	0,0000
3	1,12485	SLE	NonStatic	Max	-1586,988	16,017	0,000	0,0000
3	0,00000	SLE	NonStatic	Min	-1598,360	-50,509	0,000	0,0000
3	0,56242	SLE	NonStatic	Min	-1592,674	-17,246	0,000	0,0000
3	1,12485	SLE	NonStatic	Min	-1586,988	16,017	0,000	0,0000
3	0,00000	SLU	NonStatic	Max	-2077,868	-65,661	0,000	0,0000
3	0,56242	SLU	NonStatic	Max	-2070,476	-22,419	0,000	0,0000
3	1,12485	SLU	NonStatic	Max	-2063,084	20,823	0,000	0,0000

Pagina 334 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

3	0,00000	SLU	NonStatic	Min	-2077,868	-65,661	0,000	0,0000
3	0,56242	SLU	NonStatic	Min	-2070,476	-22,419	0,000	0,0000
3	1,12485	SLU	NonStatic	Min	-2063,084	20,823	0,000	0,0000
3	0,00000	SLD	NonStatic	Max	-1944,511	-45,824	0,000	0,0000
3	0,56242	SLD	NonStatic	Max	-1939,189	-6,679	0,000	0,0000
3	1,12485	SLD	NonStatic	Max	-1933,868	32,466	0,000	0,0000
3	0,00000	SLD	NonStatic	Min	-1944,511	-45,824	0,000	0,0000
3	0,56242	SLD	NonStatic	Min	-1939,189	-6,679	0,000	0,0000
3	1,12485	SLD	NonStatic	Min	-1933,868	32,466	0,000	0,0000
3	0,00000	SLV	NonStatic	Max	-2884,325	15,322	0,000	0,0000
3	0,56242	SLV	NonStatic	Max	-2879,958	64,901	0,000	0,0000
3	1,12485	SLV	NonStatic	Max	-2875,592	114,480	0,000	0,0000
3	0,00000	SLV	NonStatic	Min	-2884,325	15,322	0,000	0,0000
3	0,56242	SLV	NonStatic	Min	-2879,958	64,901	0,000	0,0000
3	1,12485	SLV	NonStatic	Min	-2875,592	114,480	0,000	0,0000
4	0,00000	SLE	NonStatic	Max	-1589,593	-92,913	0,000	0,0000
4	0,56242	SLE	NonStatic	Max	-1581,669	-60,111	0,000	0,0000
4	1,12485	SLE	NonStatic	Max	-1573,745	-27,309	0,000	0,0000
4	0,00000	SLE	NonStatic	Min	-1589,593	-92,913	0,000	0,0000
4	0,56242	SLE	NonStatic	Min	-1581,669	-60,111	0,000	0,0000
4	1,12485	SLE	NonStatic	Min	-1573,745	-27,309	0,000	0,0000
4	0,00000	SLU	NonStatic	Max	-2066,470	-120,787	0,000	0,0000
4	0,56242	SLU	NonStatic	Max	-2056,170	-78,145	0,000	0,0000
4	1,12485	SLU	NonStatic	Max	-2045,869	-35,502	0,000	0,0000
4	0,00000	SLU	NonStatic	Min	-2066,470	-120,787	0,000	0,0000
4	0,56242	SLU	NonStatic	Min	-2056,170	-78,145	0,000	0,0000
4	1,12485	SLU	NonStatic	Min	-2045,869	-35,502	0,000	0,0000
4	0,00000	SLD	NonStatic	Max	-1935,967	-94,433	0,000	0,0000
4	0,56242	SLD	NonStatic	Max	-1928,008	-55,737	0,000	0,0000
4	1,12485	SLD	NonStatic	Max	-1920,049	-17,042	0,000	0,0000
4	0,00000	SLD	NonStatic	Min	-1935,967	-94,433	0,000	0,0000
4	0,56242	SLD	NonStatic	Min	-1928,008	-55,737	0,000	0,0000
4	1,12485	SLD	NonStatic	Min	-1920,049	-17,042	0,000	0,0000

Eurolink S.C.p.A. Pagina 335 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

4	0,00000	SLV	NonStatic	Max	-2873,024	-38,676	0,000	0,0000
4	0,56242	SLV	NonStatic	Max	-2865,312	10,494	0,000	0,0000
4	1,12485	SLV	NonStatic	Max	-2857,601	59,664	0,000	0,0000
4	0,00000	SLV	NonStatic	Min	-2873,024	-38,676	0,000	0,0000
4	0,56242	SLV	NonStatic	Min	-2865,312	10,494	0,000	0,0000
4	1,12485	SLV	NonStatic	Min	-2857,601	59,664	0,000	0,0000
5	0,00000	SLE	NonStatic	Max	-1579,259	-135,469	0,000	0,0000
5	0,56242	SLE	NonStatic	Max	-1569,134	-103,278	0,000	0,0000
5	1,12485	SLE	NonStatic	Max	-1559,009	-71,087	0,000	0,0000
5	0,00000	SLE	NonStatic	Min	-1579,259	-135,469	0,000	0,0000
5	0,56242	SLE	NonStatic	Min	-1569,134	-103,278	0,000	0,0000
5	1,12485	SLE	NonStatic	Min	-1559,009	-71,087	0,000	0,0000
5	0,00000	SLU	NonStatic	Max	-2053,037	-176,109	0,000	0,0000
5	0,56242	SLU	NonStatic	Max	-2039,874	-134,261	0,000	0,0000
5	1,12485	SLU	NonStatic	Max	-2026,711	-92,414	0,000	0,0000
5	0,00000	SLU	NonStatic	Min	-2053,037	-176,109	0,000	0,0000
5	0,56242	SLU	NonStatic	Min	-2039,874	-134,261	0,000	0,0000
5	1,12485	SLU	NonStatic	Min	-2026,711	-92,414	0,000	0,0000
5	0,00000	SLD	NonStatic	Max	-1925,447	-142,305	0,000	0,0000
5	0,56242	SLD	NonStatic	Max	-1914,888	-104,237	0,000	0,0000
5	1,12485	SLD	NonStatic	Max	-1904,329	-66,169	0,000	0,0000
5	0,00000	SLD	NonStatic	Min	-1925,447	-142,305	0,000	0,0000
5	0,56242	SLD	NonStatic	Min	-1914,888	-104,237	0,000	0,0000
5	1,12485	SLD	NonStatic	Min	-1904,329	-66,169	0,000	0,0000
5	0,00000	SLV	NonStatic	Max	-2858,545	-87,545	0,000	0,0000
5	0,56242	SLV	NonStatic	Max	-2847,524	-39,009	0,000	0,0000
5	1,12485	SLV	NonStatic	Max	-2836,503	9,526	0,000	0,0000
5	0,00000	SLV	NonStatic	Min	-2858,545	-87,545	0,000	0,0000
5	0,56242	SLV	NonStatic	Min	-2847,524	-39,009	0,000	0,0000
5	1,12485	SLV	NonStatic	Min	-2836,503	9,526	0,000	0,0000
6	0,00000	SLE	NonStatic	Max	-1567,470	-178,706	0,000	0,0000
6	0,56242	SLE	NonStatic	Max	-1555,190	-147,274	0,000	0,0000
6	1,12485	SLE	NonStatic	Max	-1542,909	-115,842	0,000	0,0000

Pagina 336 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

6	0,00000	SLE	NonStatic	Min	-1567,470	-178,706	0,000	0,0000
6	0,56242	SLE	NonStatic	Min	-1555,190	-147,274	0,000	0,0000
6	1,12485	SLE	NonStatic	Min	-1542,909	-115,842	0,000	0,0000
6	0,00000	SLU	NonStatic	Max	-2037,711	-232,317	0,000	0,0000
6	0,56242	SLU	NonStatic	Max	-2021,746	-191,456	0,000	0,0000
6	1,12485	SLU	NonStatic	Max	-2005,782	-150,595	0,000	0,0000
6	0,00000	SLU	NonStatic	Min	-2037,711	-232,317	0,000	0,0000
6	0,56242	SLU	NonStatic	Min	-2021,746	-191,456	0,000	0,0000
6	1,12485	SLU	NonStatic	Min	-2005,782	-150,595	0,000	0,0000
6	0,00000	SLD	NonStatic	Max	-1913,003	-189,905	0,000	0,0000
6	0,56242	SLD	NonStatic	Max	-1899,892	-152,638	0,000	0,0000
6	1,12485	SLD	NonStatic	Max	-1886,782	-115,372	0,000	0,0000
6	0,00000	SLD	NonStatic	Min	-1913,003	-189,905	0,000	0,0000
6	0,56242	SLD	NonStatic	Min	-1899,892	-152,638	0,000	0,0000
6	1,12485	SLD	NonStatic	Min	-1886,782	-115,372	0,000	0,0000
6	0,00000	SLV	NonStatic	Max	-2840,616	-130,971	0,000	0,0000
6	0,56242	SLV	NonStatic	Max	-2826,336	-83,293	0,000	0,0000
6	1,12485	SLV	NonStatic	Max	-2812,056	-35,614	0,000	0,0000
6	0,00000	SLV	NonStatic	Min	-2840,616	-130,971	0,000	0,0000
6	0,56242	SLV	NonStatic	Min	-2826,336	-83,293	0,000	0,0000
6	1,12485	SLV	NonStatic	Min	-2812,056	-35,614	0,000	0,0000
7	0,00000	SLE	NonStatic	Max	-1554,383	-222,881	0,000	0,0000
7	0,56242	SLE	NonStatic	Max	-1540,004	-192,352	0,000	0,0000
7	1,12485	SLE	NonStatic	Max	-1525,625	-161,823	0,000	0,0000
7	0,00000	SLE	NonStatic	Min	-1554,383	-222,881	0,000	0,0000
7	0,56242	SLE	NonStatic	Min	-1540,004	-192,352	0,000	0,0000
7	1,12485	SLE	NonStatic	Min	-1525,625	-161,823	0,000	0,0000
7	0,00000	SLU	NonStatic	Max	-2020,698	-289,745	0,000	0,0000
7	0,56242	SLU	NonStatic	Max	-2002,005	-250,058	0,000	0,0000
7	1,12485	SLU	NonStatic	Max	-1983,312	-210,370	0,000	0,0000
7	0,00000	SLU	NonStatic	Min	-2020,698	-289,745	0,000	0,0000
7	0,56242	SLU	NonStatic	Min	-2002,005	-250,058	0,000	0,0000
7	1,12485	SLU	NonStatic	Min	-1983,312	-210,370	0,000	0,0000

Eurolink S.C.p.A. Pagina 337 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

7	0,00000	SLD	NonStatic	Max	-1898,732	-237,422	0,000	0,0000
7	0,56242	SLD	NonStatic	Max	-1883,130	-201,129	0,000	0,0000
7	1,12485	SLD	NonStatic	Max	-1867,527	-164,835	0,000	0,0000
7	0,00000	SLD	NonStatic	Min	-1898,732	-237,422	0,000	0,0000
7	0,56242	SLD	NonStatic	Min	-1883,130	-201,129	0,000	0,0000
7	1,12485	SLD	NonStatic	Min	-1867,527	-164,835	0,000	0,0000
7	0,00000	SLV	NonStatic	Max	-2818,973	-168,588	0,000	0,0000
7	0,56242	SLV	NonStatic	Max	-2801,499	-121,985	0,000	0,0000
7	1,12485	SLV	NonStatic	Max	-2784,025	-75,383	0,000	0,0000
7	0,00000	SLV	NonStatic	Min	-2818,973	-168,588	0,000	0,0000
7	0,56242	SLV	NonStatic	Min	-2801,499	-121,985	0,000	0,0000
7	1,12485	SLV	NonStatic	Min	-2784,025	-75,383	0,000	0,0000
8	0,00000	SLE	NonStatic	Max	-1557,498	-443,041	0,000	0,0000
8	0,46541	SLE	NonStatic	Max	-1537,496	-408,910	0,000	0,0000
8	0,93083	SLE	NonStatic	Max	-1517,493	-374,779	0,000	0,0000
8	0,00000	SLE	NonStatic	Min	-1557,498	-443,041	0,000	0,0000
8	0,46541	SLE	NonStatic	Min	-1537,496	-408,910	0,000	0,0000
8	0,93083	SLE	NonStatic	Min	-1517,493	-374,779	0,000	0,0000
8	0,00000	SLU	NonStatic	Max	-2024,748	-575,953	0,000	0,0000
8	0,46541	SLU	NonStatic	Max	-1998,744	-531,583	0,000	0,0000
8	0,93083	SLU	NonStatic	Max	-1972,741	-487,213	0,000	0,0000
8	0,00000	SLU	NonStatic	Min	-2024,748	-575,953	0,000	0,0000
8	0,46541	SLU	NonStatic	Min	-1998,744	-531,583	0,000	0,0000
8	0,93083	SLU	NonStatic	Min	-1972,741	-487,213	0,000	0,0000
8	0,00000	SLD	NonStatic	Max	-1902,430	-489,119	0,000	0,0000
8	0,46541	SLD	NonStatic	Max	-1880,393	-448,386	0,000	0,0000
8	0,93083	SLD	NonStatic	Max	-1858,355	-407,653	0,000	0,0000
8	0,00000	SLD	NonStatic	Min	-1902,430	-489,119	0,000	0,0000
8	0,46541	SLD	NonStatic	Min	-1880,393	-448,386	0,000	0,0000
8	0,93083	SLD	NonStatic	Min	-1858,355	-407,653	0,000	0,0000
8	0,00000	SLV	NonStatic	Max	-2814,646	-450,546	0,000	0,0000
8	0,46541	SLV	NonStatic	Max	-2789,339	-397,974	0,000	0,0000
8	0,93083	SLV	NonStatic	Max	-2764,031	-345,401	0,000	0,0000

Pagina 338 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

8	0,00000	SLV	NonStatic	Min	-2814,646	-450,546	0,000	0,000
8	0,46541	SLV	NonStatic	Min	-2789,339	-397,974	0,000	0,000
8	0,93083	SLV	NonStatic	Min	-2764,031	-345,401	0,000	0,000
9	0,00000	SLE	NonStatic	Max	-1517,493	-1033,507	0,000	0,0000
9	0,46541	SLE	NonStatic	Max	-1497,491	-999,377	0,000	0,0000
9	0,93083	SLE	NonStatic	Max	-1477,488	-965,246	0,000	0,0000
9	0,00000	SLE	NonStatic	Min	-1517,493	-1033,507	0,000	0,0000
9	0,46541	SLE	NonStatic	Min	-1497,491	-999,377	0,000	0,0000
9	0,93083	SLE	NonStatic	Min	-1477,488	-965,246	0,000	0,0000
9	0,00000	SLU	NonStatic	Max	-1972,741	-1343,560	0,000	0,0000
9	0,46541	SLU	NonStatic	Max	-1946,738	-1299,190	0,000	0,0000
9	0,93083	SLU	NonStatic	Max	-1920,735	-1254,820	0,000	0,0000
9	0,00000	SLU	NonStatic	Min	-1972,741	-1343,560	0,000	0,0000
9	0,46541	SLU	NonStatic	Min	-1946,738	-1299,190	0,000	0,0000
9	0,93083	SLU	NonStatic	Min	-1920,735	-1254,820	0,000	0,0000
9	0,00000	SLD	NonStatic	Max	-1858,355	-1189,725	0,000	0,0000
9	0,46541	SLD	NonStatic	Max	-1836,317	-1148,992	0,000	0,0000
9	0,93083	SLD	NonStatic	Max	-1814,280	-1108,259	0,000	0,0000
9	0,00000	SLD	NonStatic	Min	-1858,355	-1189,725	0,000	0,0000
9	0,46541	SLD	NonStatic	Min	-1836,317	-1148,992	0,000	0,0000
9	0,93083	SLD	NonStatic	Min	-1814,280	-1108,259	0,000	0,0000
9	0,00000	SLV	NonStatic	Max	-2764,031	-1366,498	0,000	0,0000
9	0,46541	SLV	NonStatic	Max	-2738,723	-1313,926	0,000	0,0000
9	0,93083	SLV	NonStatic	Max	-2713,415	-1261,353	0,000	0,0000
9	0,00000	SLV	NonStatic	Min	-2764,031	-1366,498	0,000	0,0000
9	0,46541	SLV	NonStatic	Min	-2738,723	-1313,926	0,000	0,0000
9	0,93083	SLV	NonStatic	Min	-2713,415	-1261,353	0,000	0,0000
10	0,00000	SLE	NonStatic	Max	-2488,547	564,715	-5,910E-14	0,0000
10	0,41312	SLE	NonStatic	Max	-2451,367	537,205	-5,581E-14	0,0000
10	0,82623	SLE	NonStatic	Max	-2414,186	509,696	-5,251E-14	0,0000
10	0,00000	SLE	NonStatic	Min	-2488,547	564,715	-5,910E-14	0,0000
10	0,41312	SLE	NonStatic	Min	-2451,367	537,205	-5,581E-14	0,0000
10	0,82623	SLE	NonStatic	Min	-2414,186	509,696	-5,251E-14	0,0000

Eurolink S.C.p.A. Pagina 339 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

10	0,00000	SLU	NonStatic	Max	-3235,111	734,129 -7,683E-14	0,0000
10	0,41312	SLU	NonStatic	Max	-3186,777	698,367 -7,255E-14	0,0000
10	0,82623	SLU	NonStatic	Max	-3138,442	662,605 -6,827E-14	0,0000
10	0,00000	SLU	NonStatic	Min	-3235,111	734,129 -7,683E-14	0,0000
10	0,41312	SLU	NonStatic	Min	-3186,777	698,367 -7,255E-14	0,0000
10	0,82623	SLU	NonStatic	Min	-3138,442	662,605 -6,827E-14	0,0000
10	0,00000	SLD	NonStatic	Max	-2948,107	716,420 -7,484E-14	0,0000
10	0,41312	SLD	NonStatic	Max	-2904,605	690,398 -7,172E-14	0,0000
10	0,82623	SLD	NonStatic	Max	-2861,104	664,376 -6,861E-14	0,0000
10	0,00000	SLD	NonStatic	Min	-2948,107	716,420 -7,484E-14	0,0000
10	0,41312	SLD	NonStatic	Min	-2904,605	690,398 -7,172E-14	0,0000
10	0,82623	SLD	NonStatic	Min	-2861,104	664,376 -6,861E-14	0,0000
10	0,00000	SLV	NonStatic	Max	-3846,343	1230,002 -1,281E-13	0,0000
10	0,41312	SLV	NonStatic	Max	-3791,688	1206,954 -1,254E-13	0,0000
10	0,82623	SLV	NonStatic	Max	-3737,033	1183,907 -1,226E-13	0,0000
10	0,00000	SLV	NonStatic	Min	-3846,343	1230,002 -1,281E-13	0,0000
10	0,41312	SLV	NonStatic	Min	-3791,688	1206,954 -1,254E-13	0,0000
10	0,82623	SLV	NonStatic	Min	-3737,033	1183,907 -1,226E-13	0,0000
11	0,00000	SLE	NonStatic	Max	-2414,186	240,897 -2,439E-14	0,0000
11	0,49860	SLE	NonStatic	Max	-2369,312	209,964 -2,068E-14	0,0000
11	0,99721	SLE	NonStatic	Max	-2324,437	179,031 -1,698E-14	0,0000
11	0,00000	SLE	NonStatic	Min	-2414,186	240,897 -2,439E-14	0,0000
11	0,49860	SLE	NonStatic	Min	-2369,312	209,964 -2,068E-14	0,0000
11	0,99721	SLE	NonStatic	Min	-2324,437	179,031 -1,698E-14	0,0000
11	0,00000	SLU	NonStatic	Max	-3138,442	313,166 -3,170E-14	0,0000
11	0,49860	SLU	NonStatic	Max	-3080,105	272,953 -2,689E-14	0,0000
11	0,99721	SLU	NonStatic	Max	-3021,769	232,740 -2,207E-14	0,0000
11	0,00000	SLU	NonStatic	Min	-3138,442	313,166 -3,170E-14	0,0000
11	0,49860	SLU	NonStatic	Min	-3080,105	272,953 -2,689E-14	0,0000
11	0,99721	SLU	NonStatic	Min	-3021,769	232,740 -2,207E-14	0,0000
11	0,00000	SLD	NonStatic	Max	-2861,104	312,557 -3,141E-14	0,0000
11	0,49860	SLD	NonStatic	Max	-2808,601	283,418 -2,792E-14	0,0000
11	0,99721	SLD	NonStatic	Max	-2756,098	254,280 -2,443E-14	0,0000

Pagina 340 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

11	0,00000	SLD	NonStatic	Min	-2861,104	312,557	-3,141E-14	0,0000
11	0,49860	SLD	NonStatic	Min	-2808,601	283,418	-2,792E-14	0,0000
11	0,99721	SLD	NonStatic	Min	-2756,098	254,280	-2,443E-14	0,0000
11	0,00000	SLV	NonStatic	Max	-3737,033	598,530	-5,950E-14	0,0000
11	0,49860	SLV	NonStatic	Max	-3671,067	572,982	-5,644E-14	0,0000
11	0,99721	SLV	NonStatic	Max	-3605,102	547,433	-5,338E-14	0,0000
11	0,00000	SLV	NonStatic	Min	-3737,033	598,530	-5,950E-14	0,0000
11	0,49860	SLV	NonStatic	Min	-3671,067	572,982	-5,644E-14	0,0000
11	0,99721	SLV	NonStatic	Min	-3605,102	547,433	-5,338E-14	0,0000
12	0,00000	SLE	NonStatic	Max	-2324,437	-145,053	1,388E-14	0,0000
12	0,49860	SLE	NonStatic	Max	-2282,056	-173,498	1,729E-14	0,0000
12	0,99721	SLE	NonStatic	Max	-2239,675	-201,943	2,070E-14	0,0000
12	0,00000	SLE	NonStatic	Min	-2324,437	-145,053	1,388E-14	0,0000
12	0,49860	SLE	NonStatic	Min	-2282,056	-173,498	1,729E-14	0,0000
12	0,99721	SLE	NonStatic	Min	-2239,675	-201,943	2,070E-14	0,0000
12	0,00000	SLU	NonStatic	Max	-3021,769	-188,568	1,805E-14	0,0000
12	0,49860	SLU	NonStatic	Max	-2966,673	-225,547	2,248E-14	0,0000
12	0,99721	SLU	NonStatic	Max	-2911,577	-262,526	2,690E-14	0,0000
12	0,00000	SLU	NonStatic	Min	-3021,769	-188,568	1,805E-14	0,0000
12	0,49860	SLU	NonStatic	Min	-2966,673	-225,547	2,248E-14	0,0000
12	0,99721	SLU	NonStatic	Min	-2911,577	-262,526	2,690E-14	0,0000
12	0,00000	SLD	NonStatic	Max	-2756,098	-172,725	1,667E-14	0,0000
12	0,49860	SLD	NonStatic	Max	-2706,512	-199,475	1,988E-14	0,0000
12	0,99721	SLD	NonStatic	Max	-2656,926	-226,225	2,308E-14	0,0000
12	0,00000	SLD	NonStatic	Min	-2756,098	-172,725	1,667E-14	0,0000
12	0,49860	SLD	NonStatic	Min	-2706,512	-199,475	1,988E-14	0,0000
12	0,99721	SLD	NonStatic	Min	-2656,926	-226,225	2,308E-14	0,0000
12	0,00000	SLV	NonStatic	Max	-3605,102	-173,074	1,678E-14	0,0000
12	0,49860	SLV	NonStatic	Max	-3542,802	-196,434	1,957E-14	0,0000
12	0,99721	SLV	NonStatic	Max	-3480,501	-219,793	2,237E-14	0,0000
12	0,00000	SLV	NonStatic	Min	-3605,102	-173,074	1,678E-14	0,0000
12	0,49860	SLV	NonStatic	Min	-3542,802	-196,434	1,957E-14	0,0000
12	0,99721	SLV	NonStatic	Min	-3480,501	-219,793	2,237E-14	0,0000

Eurolink S.C.p.A. Pagina 341 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

13	0,00000	SLE NonStatic	Max -2	2239,675	-580,239	5,730E-14	0,0000
13	0,49860	SLE NonStatic	Max -2	2197,294	-606,191	6,041E-14	0,0000
13	0,99721	SLE NonStatic	Max -2	2154,912	-632,144	6,351E-14	0,0000
13	0,00000	SLE NonStatic	Min -2	239,675	-580,239	5,730E-14	0,0000
13	0,49860	SLE NonStatic	Min -2	197,294	-606,191	6,041E-14	0,0000
13	0,99721	SLE NonStatic	Min -2	2154,912	-632,144	6,351E-14	0,0000
13	0,00000	SLU NonStatic	Max -	2911,577	-754,311	7,449E-14	0,0000
13	0,49860	SLU NonStatic	Max -	2856,482	-788,049	7,853E-14	0,0000
13	0,99721	SLU NonStatic	Max -	2801,386	-821,787	8,257E-14	0,0000
13	0,00000	SLU NonStatic	Min -2	2911,577	-754,311	7,449E-14	0,0000
13	0,49860	SLU NonStatic	Min -2	2856,482	-788,049	7,853E-14	0,0000
13	0,99721	SLU NonStatic	Min -2	2801,386	-821,787	8,257E-14	0,0000
13	0,00000	SLD NonStatic	Max -	2656,926	-727,540	7,201E-14	0,0000
13	0,49860	SLD NonStatic	Max -	2607,340	-751,797	7,492E-14	0,0000
13	0,99721	SLD NonStatic	Max -	2557,754	-776,054	7,782E-14	0,0000
13	0,00000	SLD NonStatic	Min -2	2656,926	-727,540	7,201E-14	0,0000
13	0,49860	SLD NonStatic	Min -2	2607,340	-751,797	7,492E-14	0,0000
13	0,99721	SLD NonStatic	Min -2	2557,754	-776,054	7,782E-14	0,0000
13	0,00000	SLV NonStatic	Max -	3480,501	-1076,450	1,068E-13	0,0000
13	0,49860	SLV NonStatic	Max -	3418,201	-1097,317	1,093E-13	0,0000
13	0,99721	SLV NonStatic	Max -	3355,900	-1118,183	1,118E-13	0,0000
13	0,00000	SLV NonStatic	Min -3	3480,501	-1076,450	1,068E-13	0,0000
13	0,49860	SLV NonStatic	Min -3	3418,201	-1097,317	1,093E-13	0,0000
13	0,99721	SLV NonStatic	Min -3	355,900	-1118,183	1,118E-13	0,0000
14	0,00000	SLE NonStatic	Max -2	2391,450	233,879	-2,447E-14	0,0000
14	0,55057	SLE NonStatic	Max -2	2320,929	163,729	-1,607E-14	0,0000
14	1,10113	SLE NonStatic	Max -2	2250,408	93,580	-7,666E-15	0,0000
14	0,00000	SLE NonStatic	Min -2	391,450	233,879	-2,447E-14	0,0000
14	0,55057	SLE NonStatic	Min -2	2320,929	163,729	-1,607E-14	0,0000
14	1,10113	SLE NonStatic	Min -2	250,408	93,580 -	7,666E-15	0,0000
14	0,00000	SLU NonStatic	Max -	3108,886	304,042	-3,181E-14	0,0000
14	0,55057	SLU NonStatic	Max -	3017,208	212,848	-2,089E-14	0,0000
14	1,10113	SLU NonStatic	Max -	2925,530	121,654	-9,966E-15	0,0000

Pagina 342 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

14	0,00000	SLU NonStatic	Min -3108,886	304,042 -3,181E-14	0,0000
14	0,55057	SLU NonStatic	Min -3017,208	212,848 -2,089E-14	0,0000
14	1,10113	SLU NonStatic	Min -2925,530	121,654 -9,966E-15	0,0000
14	0,00000	SLD NonStatic	Max -2885,183	202,453 -2,154E-14	0,0000
14	0,55057	SLD NonStatic	Max -2799,736	125,107 -1,228E-14	0,0000
14	1,10113	SLD NonStatic	Max -2714,289	47,762 -3,015E-15	0,0000
14	0,00000	SLD NonStatic	Min -2885,183	202,453 -2,154E-14	0,0000
14	0,55057	SLD NonStatic	Min -2799,736	125,107 -1,228E-14	0,0000
14	1,10113	SLD NonStatic	Min -2714,289	47,762 -3,015E-15	0,0000
14	0,00000	SLV NonStatic	Max -3964,938	-23,278 3,452E-16	0,0000
14	0,55057	SLV NonStatic	Max -3852,932	-112,971 1,109E-14	0,0000
14	1,10113	SLV NonStatic	Max -3740,926	-202,664 2,183E-14	0,0000
14	0,00000	SLV NonStatic	Min -3964,938	-23,278 3,452E-16	0,0000
14	0,55057	SLV NonStatic	Min -3852,932	-112,971 1,109E-14	0,0000
14	1,10113	SLV NonStatic	Min -3740,926	-202,664 2,183E-14	0,0000
15	0,00000	SLE NonStatic	Max -2250,408	93,580 -1,085E-14	0,0000
15	0,55057	SLE NonStatic	Max -2191,520	32,473 -3,537E-15	0,0000
15	1,10113	SLE NonStatic	Max -2132,633	-28,634 3,781E-15	0,0000
15	0,00000	SLE NonStatic	Min -2250,408	93,580 -1,085E-14	0,0000
15	0,55057	SLE NonStatic	Min -2191,520	32,473 -3,537E-15	0,0000
15	1,10113	SLE NonStatic	Min -2132,633	-28,634 3,781E-15	0,0000
15	0,00000	SLU NonStatic	Max -2925,530	121,654 -1,411E-14	0,0000
15	0,55057	SLU NonStatic	Max -2848,976	42,215 -4,598E-15	0,0000
15	1,10113	SLU NonStatic	Max -2772,423	-37,224 4,915E-15	0,0000
15	0,00000	SLU NonStatic	Min -2925,530	121,654 -1,411E-14	0,0000
15	0,55057	SLU NonStatic	Min -2848,976	42,215 -4,598E-15	0,0000
15	1,10113	SLU NonStatic	Min -2772,423	-37,224 4,915E-15	0,0000
15	0,00000	SLD NonStatic	Max -2714,289	47,762 -5,932E-15	0,0000
15	0,55057	SLD NonStatic	Max -2642,824	-19,601 2,135E-15	0,0000
15	1,10113	SLD NonStatic	Max -2571,360	-86,964 1,020E-14	0,0000
15	0,00000	SLD NonStatic	Min -2714,289	47,762 -5,932E-15	0,0000
15	0,55057	SLD NonStatic	Min -2642,824	-19,601 2,135E-15	0,0000
15	1,10113	SLD NonStatic	Min -2571,360	-86,964 1,020E-14	0,0000

Eurolink S.C.p.A. Pagina 343 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

15	0,00000	SLV NonStatic	Max -	-3740,926	-202,664	2,122E-14	0,0000
15	0,55057	SLV NonStatic	Max -	-3647,102	-280,802	3,058E-14	0,0000
15	1,10113	SLV NonStatic	Max -	-3553,279	-358,941	3,994E-14	0,0000
15	0,00000	SLV NonStatic	Min -	3740,926	-202,664	2,122E-14	0,0000
15	0,55057	SLV NonStatic	Min -	3647,102	-280,802	3,058E-14	0,0000
15	1,10113	SLV NonStatic	Min -	3553,279	-358,941	3,994E-14	0,0000
16	0,00000	SLE NonStatic	Max -	-2132,633	-28,634	2,905E-15	0,0000
16	0,55057	SLE NonStatic	Max -	-2078,364	-85,056	9,662E-15	0,0000
16	1,10113	SLE NonStatic	Max -	-2024,095	-141,477	1,642E-14	0,0000
16	0,00000	SLE NonStatic	Min -	2132,633	-28,634	2,905E-15	0,0000
16	0,55057	SLE NonStatic	Min -	2078,364	-85,056	9,662E-15	0,0000
16	1,10113	SLE NonStatic	Min -	2024,095	-141,477	1,642E-14	0,0000
16	0,00000	SLU NonStatic	Max	-2772,423	-37,224	3,777E-15	0,0000
16	0,55057	SLU NonStatic	Max	-2701,873	-110,572	1,256E-14	0,0000
16	1,10113	SLU NonStatic	Max	-2631,324	-183,920	2,134E-14	0,0000
16	0,00000	SLU NonStatic	Min -	-2772,423	-37,224	3,777E-15	0,0000
16	0,55057	SLU NonStatic	Min -	-2701,873	-110,572	1,256E-14	0,0000
16	1,10113	SLU NonStatic	Min -	-2631,324	-183,920	2,134E-14	0,0000
16	0,00000	SLD NonStatic	Max	-2571,360	-86,964	9,496E-15	0,0000
16	0,55057	SLD NonStatic	Max	-2505,495	-149,162	1,694E-14	0,0000
16	1,10113	SLD NonStatic	Max	-2439,631	-211,359	2,439E-14	0,0000
16	0,00000	SLD NonStatic	Min -	-2571,360	-86,964	9,496E-15	0,0000
16	0,55057	SLD NonStatic	Min -	-2505,495	-149,162	1,694E-14	0,0000
16	1,10113	SLD NonStatic	Min -	-2439,631	-211,359	2,439E-14	0,0000
16	0,00000	SLV NonStatic	Max ·	-3553,279	-358,941	4,033E-14	0,0000
16	0,55057	SLV NonStatic	Max ·	-3466,801	-431,089	4,897E-14	0,0000
16	1,10113	SLV NonStatic	Max	-3380,324	-503,238	5,761E-14	0,0000
16	0,00000	SLV NonStatic	Min -	3553,279	-358,941	4,033E-14	0,0000
16	0,55057	SLV NonStatic	Min -	3466,801	-431,089	4,897E-14	0,0000
16	1,10113	SLV NonStatic	Min -	3380,324	-503,238	5,761E-14	0,0000
17	0,00000	SLE NonStatic	Max -	-2027,743	72,360	-8,665E-15	0,0000
17	0,54674	SLE NonStatic	Max -	-1977,780	12,589	-1,507E-15	0,0000
17	1,09348	SLE NonStatic	Max -	-1927,817	-47,183	5,650E-15	0,0000

Pagina 344 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

17	0,00000	SLE N	onStatic	Min	-2027,743	72,360	-8,665E-15	0,0000
17	0,54674	SLE N	onStatic	Min	-1977,780	12,589	-1,507E-15	0,0000
17	1,09348	SLE N	onStatic	Min	-1927,817	-47,183	5,650E-15	0,0000
17	0,00000	SLU N	onStatic	Max	-2636,066	94,068	-1,126E-14	0,0000
17	0,54674	SLU N	onStatic	Max	-2571,114	16,365	-1,960E-15	0,0000
17	1,09348	SLU N	onStatic	Max	-2506,162	-61,338	7,345E-15	0,0000
17	0,00000	SLU N	onStatic	Min	-2636,066	94,068	-1,126E-14	0,0000
17	0,54674	SLU N	onStatic	Min	-2571,114	16,365	-1,960E-15	0,0000
17	1,09348	SLU N	onStatic	Min	-2506,162	-61,338	7,345E-15	0,0000
17	0,00000	SLD N	onStatic	Max	-2448,326	46,604	-5,581E-15	0,0000
17	0,54674	SLD N	onStatic	Max	-2387,476	-20,252	2,425E-15	0,0000
17	1,09348	SLD N	onStatic	Max	-2326,626	-87,109	1,043E-14	0,0000
17	0,00000	SLD N	onStatic	Min	-2448,326	46,604	-5,581E-15	0,0000
17	0,54674	SLD N	onStatic	Min	-2387,476	-20,252	2,425E-15	0,0000
17	1,09348	SLD N	onStatic	Min	-2326,626	-87,109	1,043E-14	0,0000
17	0,00000	SLV N	onStatic	Max	-3414,516	-144,638	1,732E-14	0,0000
17	0,54674	SLV N	onStatic	Max	-3334,296	-223,795	2,680E-14	0,0000
17	1,09348	SLV N	onStatic	Max	-3254,075	-302,952	3,628E-14	0,0000
17	0,00000	SLV N	onStatic	Min	-3414,516	-144,638	1,732E-14	0,0000
17	0,54674	SLV N	onStatic	Min	-3334,296	-223,795	2,680E-14	0,0000
17	1,09348	SLV N	onStatic	Min	-3254,075	-302,952	3,628E-14	0,0000
18	0,00000	SLE N	onStatic	Max	-1919,284	187,232	-2,242E-14	0,0000
18	0,54674	SLE N	onStatic	Max	-1872,457	121,051	-1,450E-14	0,0000
18	1,09348	SLE N	onStatic	Max	-1825,631	54,870	-6,571E-15	0,0000
18	0,00000	SLE N	onStatic	Min	-1919,284	187,232	-2,242E-14	0,0000
18	0,54674	SLE N	onStatic	Min	-1872,457	121,051	-1,450E-14	0,0000
18	1,09348	SLE N	onStatic	Min	-1825,631	54,870	-6,571E-15	0,0000
18	0,00000	SLU N	onStatic	Max	-2495,069	243,401	-2,915E-14	0,0000
18	0,54674	SLU N	onStatic	Max	-2434,195	157,366	-1,884E-14	0,0000
18	1,09348	SLU N	onStatic	Max	-2373,320	71,331	-8,542E-15	0,0000
18	0,00000	SLU N	onStatic	Min	-2495,069	243,401	-2,915E-14	0,0000
18	0,54674	SLU N	onStatic	Min	-2434,195	157,366	-1,884E-14	0,0000
18	1,09348	SLU N	onStatic	Min	-2373,320	71,331	-8,542E-15	0,0000

Eurolink S.C.p.A. Pagina 345 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

18	0,00000	SLD N	NonStatic	Max	-2319,990	196,022	-2,347E-14	0,0000
18	0,54674	SLD N	NonStatic	Max	-2262,767	121,038	-1,449E-14	0,0000
18	1,09348	SLD N	NonStatic	Max	-2205,544	46,055	-5,515E-15	0,0000
18	0,00000	SLD N	NonStatic	Min	-2319,990	196,022	-2,347E-14	0,0000
18	0,54674	SLD N	NonStatic	Min	-2262,767	121,038	-1,449E-14	0,0000
18	1,09348	SLD N	NonStatic	Min	-2205,544	46,055 -	-5,515E-15	0,0000
18	0,00000	SLV N	NonStatic	Max	-3266,784	94,382	-1,130E-14	0,0000
18	0,54674	SLV N	NonStatic	Max	-3191,033	4,046 -	4,845E-16	0,0000
18	1,09348	SLV N	NonStatic	Max	-3115,283	-86,290	1,033E-14	0,0000
18	0,00000	SLV N	NonStatic	Min	-3266,784	94,382 -	1,130E-14	0,0000
18	0,54674	SLV N	NonStatic	Min	-3191,033	4,046	4,845E-16	0,0000
18	1,09348	SLV N	NonStatic	Min	-3115,283	-86,290	1,033E-14	0,0000
19	0,00000	SLE N	NonStatic	Max	-1805,463	276,122	-3,307E-14	0,0000
19	0,54674	SLE N	NonStatic	Max	-1763,199	203,724	-2,440E-14	0,0000
19	1,09348	SLE N	NonStatic	Max	-1720,936	131,326	-1,573E-14	0,0000
19	0,00000	SLE N	NonStatic	Min	-1805,463	276,122	-3,307E-14	0,0000
19	0,54674	SLE N	NonStatic	Min	-1763,199	203,724	-2,440E-14	0,0000
19	1,09348	SLE N	NonStatic	Min	-1720,936	131,326	-1,573E-14	0,0000
19	0,00000	SLU N	NonStatic	Max	-2347,102	358,959	-4,299E-14	0,0000
19	0,54674	SLU N	NonStatic	Max	-2292,159	264,841	-3,171E-14	0,0000
19	1,09348	SLU N	NonStatic	Max	-2237,217	170,723	-2,044E-14	0,0000
19	0,00000	SLU N	NonStatic	Min	-2347,102	358,959	-4,299E-14	0,0000
19	0,54674	SLU N	NonStatic	Min	-2292,159	264,841	-3,171E-14	0,0000
19	1,09348	SLU N	NonStatic	Min	-2237,217	170,723	-2,044E-14	0,0000
19	0,00000	SLD N	NonStatic	Max	-2183,636	313,500	-3,754E-14	0,0000
19	0,54674	SLD N	NonStatic	Max	-2131,789	230,678	-2,762E-14	0,0000
19	1,09348	SLD N	NonStatic	Max	-2079,943	147,857	-1,771E-14	0,0000
19	0,00000	SLD N	NonStatic	Min	-2183,636	313,500	-3,754E-14	0,0000
19	0,54674	SLD N	NonStatic	Min	-2131,789	230,678	-2,762E-14	0,0000
19	1,09348	SLD N	NonStatic	Min	-2079,943	147,857	-1,771E-14	0,0000
19	0,00000	SLV N	NonStatic	Max	-3102,712	292,590	-3,504E-14	0,0000
19	0,54674	SLV N	NonStatic	Max	-3033,753	191,535	-2,294E-14	0,0000
19	1,09348	SLV N	NonStatic	Max	-2964,793	90,480	-1,083E-14	0,0000

Pagina 346 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

19	0,00000	SLV	NonStatic	Min -31	102,712	292,590	-3,504E-14	0,0000
19	0,54674	SLV	NonStatic	Min -30	033,753	191,535	-2,294E-14	0,0000
19	1,09348	SLV	NonStatic	Min -29	964,793	90,480	-1,083E-14	0,0000
20	0,00000	SLE	NonStatic	Max -1	692,260	339,301	-4,063E-14	0,0000
20	0,54674	SLE	NonStatic	Max -1	655,644	260,745	-3,122E-14	0,0000
20	1,09348	SLE	NonStatic	Max -1	619,028	182,188	-2,182E-14	0,0000
20	0,00000	SLE	NonStatic	Min -16	692,260	339,301	-4,063E-14	0,0000
20	0,54674	SLE	NonStatic	Min -16	655,644	260,745	-3,122E-14	0,0000
20	1,09348	SLE	NonStatic	Min -16	619,028	182,188	-2,182E-14	0,0000
20	0,00000	SLU	NonStatic	Max -2	199,937	441,092	-5,282E-14	0,0000
20	0,54674	SLU	NonStatic	Max -2	152,337	338,968	-4,059E-14	0,0000
20	1,09348	SLU	NonStatic	Max -2	104,737	236,844	-2,836E-14	0,0000
20	0,00000	SLU	NonStatic	Min -21	199,937	441,092	-5,282E-14	0,0000
20	0,54674	SLU	NonStatic	Min -21	152,337	338,968	-4,059E-14	0,0000
20	1,09348	SLU	NonStatic	Min -21	104,737	236,844	-2,836E-14	0,0000
20	0,00000	SLD	NonStatic	Max -2	046,603	399,299	-4,782E-14	0,0000
20	0,54674	SLD	NonStatic	Max -2	001,466	308,779	-3,698E-14	0,0000
20	1,09348	SLD	NonStatic	Max -1	956,328	218,258	-2,614E-14	0,0000
20	0,00000	SLD	NonStatic	Min -20	046,603	399,299	-4,782E-14	0,0000
20	0,54674	SLD	NonStatic	Min -20	001,466	308,779	-3,698E-14	0,0000
20	1,09348	SLD	NonStatic	Min -19	956,328	218,258	-2,614E-14	0,0000
20	0,00000	SLV	NonStatic	Max -2	931,873	449,780	-5,386E-14	0,0000
20	0,54674	SLV	NonStatic	Max -2	871,477	338,280	-4,051E-14	0,0000
20	1,09348	SLV	NonStatic	Max -2	811,081	226,780	-2,716E-14	0,0000
20	0,00000	SLV	NonStatic	Min -29	931,873	449,780	-5,386E-14	0,0000
20	0,54674	SLV	NonStatic	Min -28	371,477	338,280	-4,051E-14	0,0000
20	1,09348	SLV	NonStatic	Min -28	311,081	226,780	-2,716E-14	0,0000
21	0,00000	SLE	NonStatic	Max -1	584,930	377,414	-4,520E-14	0,0000
21	0,54674	SLE	NonStatic	Max -1	554,924	292,791	-3,506E-14	0,0000
21	1,09348	SLE	NonStatic	Max -1	524,917	208,167	-2,493E-14	0,0000
21	0,00000	SLE	NonStatic	Min -15	584,930	377,414	-4,520E-14	0,0000
21	0,54674	SLE	NonStatic	Min -15	554,924	292,791	-3,506E-14	0,0000
21	1,09348	SLE	NonStatic	Min -15	524,917	208,167	-2,493E-14	0,0000

Eurolink S.C.p.A. Pagina 347 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

21	0,00000	SLU	NonStatic	Max -20	60,409 49	90,638	-5,875E-14	0,0000
21	0,54674	SLU	NonStatic	Max -20	21,401 38	80,628	-4,558E-14	0,0000
21	1,09348	SLU	NonStatic	Max -19	82,393 27	70,618	-3,241E-14	0,0000
21	0,00000	SLU	NonStatic	Min -206	60,409 49	0,638	-5,875E-14	0,0000
21	0,54674	SLU	NonStatic	Min -202	21,401 38	80,628	-4,558E-14	0,0000
21	1,09348	SLU	NonStatic	Min -198	32,393 27	0,618	-3,241E-14	0,0000
21	0,00000	SLD	NonStatic	Max -19	15,355 4	54,171	-5,439E-14	0,0000
21	0,54674	SLD	NonStatic	Max -18	78,111 3	56,123	-4,265E-14	0,0000
21	1,09348	SLD	NonStatic	Max -18	40,867 25	58,075	-3,090E-14	0,0000
21	0,00000	SLD	NonStatic	Min -191	5,355 45	54,171	-5,439E-14	0,0000
21	0,54674	SLD	NonStatic	Min -187	78,111 35	6,123	-4,265E-14	0,0000
21	1,09348	SLD	NonStatic	Min -184	10,867 25	8,075	-3,090E-14	0,0000
21	0,00000	SLV	NonStatic	Max -27	62,750 56	66,409	-6,783E-14	0,0000
21	0,54674	SLV	NonStatic	Max -27	12,498 44	44,776	-5,326E-14	0,0000
21	1,09348	SLV	NonStatic	Max -26	62,247 32	23,143	-3,870E-14	0,0000
21	0,00000	SLV	NonStatic	Min -276	2,750 56	6,409	-6,783E-14	0,0000
21	0,54674	SLV	NonStatic	Min -271	2,498 44	4,776	-5,326E-14	0,0000
21	1,09348	SLV	NonStatic	Min -266	62,247 32	3,143	-3,870E-14	0,0000
22	0,00000	SLE	NonStatic	Max -14	88,361 39	91,775	-4,692E-14	0,0000
22	0,54674	SLE	NonStatic	Max -14	65,840 30	01,062	-3,605E-14	0,0000
22	1,09348	SLE	NonStatic	Max -14	43,319 2 ²	10,349	-2,519E-14	0,0000
22	0,00000	SLE	NonStatic	Min -148	88,361 39	1,775	-4,692E-14	0,0000
22	0,54674	SLE	NonStatic	Min -146	5,840 30	1,062	-3,605E-14	0,0000
22	1,09348	SLE	NonStatic	Min -144	3,319 21	0,349	-2,519E-14	0,0000
22	0,00000	SLU	NonStatic	Max -19	34,870 50	09,307	-6,099E-14	0,0000
22	0,54674	SLU	NonStatic	Max -19	05,592 39	91,380	-4,687E-14	0,0000
22	1,09348	SLU	NonStatic	Max -18	76,314 27	73,453	-3,275E-14	0,0000
22	0,00000	SLU	NonStatic	Min -193	34,870 50	9,307	-6,099E-14	0,0000
22	0,54674	SLU	NonStatic	Min -190	5,592 39	1,380	-4,687E-14	0,0000
22	1,09348	SLU	NonStatic	Min -187	76,314 27	3,453	-3,275E-14	0,0000
22	0,00000	SLD	NonStatic	Max -17	95,914 47	79,674	-5,744E-14	0,0000
22	0,54674	SLD	NonStatic	Max -17	67,645 37	74,135	-4,480E-14	0,0000
22	1,09348	SLD	NonStatic	Max -17	39,377 26	68,596	-3,216E-14	0,0000

Pagina 348 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

22	0,00000	SLD	NonStatic	Min	-1795,914	479,674 -5,7	44E-14	0,0000
22	0,54674	SLD	NonStatic	Min	-1767,645	374,135 -4,4	80E-14	0,0000
22	1,09348	SLD	NonStatic	Min	-1739,377	268,596 -3,2	16E-14	0,0000
22	0,00000	SLV	NonStatic	Max	-2603,317	643,988 -7,7	'12E-14	0,0000
22	0,54674	SLV	NonStatic	Max	-2564,661	512,363 -6,1	36E-14	0,0000
22	1,09348	SLV	NonStatic	Max	-2526,004	380,737 -4,5	59E-14	0,0000
22	0,00000	SLV	NonStatic	Min	-2603,317	643,988 -7,7	12E-14	0,0000
22	0,54674	SLV	NonStatic	Min	-2564,661	512,363 -6,1	36E-14	0,0000
22	1,09348	SLV	NonStatic	Min	-2526,004	380,737 -4,5	59E-14	0,0000
23	0,00000	SLE	NonStatic	Max	-1407,101	384,033 -4,5	599E-14	0,0000
23	0,54674	SLE	NonStatic	Max	-1392,970	287,238 -3,4	l40E-14	0,0000
23	1,09348	SLE	NonStatic	Max	-1378,839	190,443 -2,2	281E-14	0,0000
23	0,00000	SLE	NonStatic	Min	-1407,101	384,033 -4,5	99E-14	0,0000
23	0,54674	SLE	NonStatic	Min	-1392,970	287,238 -3,4	40E-14	0,0000
23	1,09348	SLE	NonStatic	Min	-1378,839	190,443 -2,2	81E-14	0,0000
23	0,00000	SLU	NonStatic	Max	-1829,232	499,243 -5,9	978E-14	0,0000
23	0,54674	SLU	NonStatic	Max	-1810,861	373,409 -4,4	172E-14	0,0000
23	1,09348	SLU	NonStatic	Max	-1792,491	247,576 -2,9	965E-14	0,0000
23	0,00000	SLU	NonStatic	Min	-1829,232	499,243 -5,9	78E-14	0,0000
23	0,54674	SLU	NonStatic	Min	-1810,861	373,409 -4,4	72E-14	0,0000
23	1,09348	SLU	NonStatic	Min	-1792,491	247,576 -2,9	65E-14	0,0000
23	0,00000	SLD	NonStatic	Max	-1693,897	477,795 -5,7	⁷ 22E-14	0,0000
23	0,54674	SLD	NonStatic	Max	-1675,726	364,842 -4,3	369E-14	0,0000
23	1,09348	SLD	NonStatic	Max	-1657,556	251,889 -3,0)16E-14	0,0000
23	0,00000	SLD	NonStatic	Min	-1693,897	477,795 -5,7	22E-14	0,0000
23	0,54674	SLD	NonStatic	Min	-1675,726	364,842 -4,3	69E-14	0,0000
23	1,09348	SLD	NonStatic	Min	-1657,556	251,889 -3,0	16E-14	0,0000
23	0,00000	SLV	NonStatic	Max	-2461,089	684,615 -8,1	98E-14	0,0000
23	0,54674	SLV	NonStatic	Max	-2435,537	543,193 -6,5	505E-14	0,0000
23	1,09348	SLV	NonStatic	Max	-2409,984	401,770 -4,8	311E-14	0,0000
23	0,00000	SLV	NonStatic	Min	-2461,089	684,615 -8,1	98E-14	0,0000
23	0,54674	SLV	NonStatic	Min	-2435,537	543,193 -6,5	05E-14	0,0000
23	1,09348	SLV	NonStatic	Min	-2409,984	401,770 -4,8	11E-14	0,0000

Eurolink S.C.p.A. Pagina 349 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

24	0,00000	SLE NonStatic	Max -1345,516	356,445 -4,268E-14	0,0000
24	0,54674	SLE NonStatic	Max -1340,750	253,920 -3,041E-14	0,0000
24	1,09348	SLE NonStatic	Max -1335,985	151,396 -1,813E-14	0,0000
24	0,00000	SLE NonStatic	Min -1345,516	356,445 -4,268E-14	0,0000
24	0,54674	SLE NonStatic	Min -1340,750	253,920 -3,041E-14	0,0000
24	1,09348	SLE NonStatic	Min -1335,985	151,396 -1,813E-14	0,0000
24	0,00000	SLU NonStatic	Max -1749,170	463,379 -5,549E-14	0,0000
24	0,54674	SLU NonStatic	Max -1742,975	330,097 -3,953E-14	0,0000
24	1,09348	SLU NonStatic	Max -1736,780	196,814 -2,357E-14	0,0000
24	0,00000	SLU NonStatic	Min -1749,170	463,379 -5,549E-14	0,0000
24	0,54674	SLU NonStatic	Min -1742,975	330,097 -3,953E-14	0,0000
24	1,09348	SLU NonStatic	Min -1736,780	196,814 -2,357E-14	0,0000
24	0,00000	SLD NonStatic	Max -1614,710	451,277 -5,404E-14	0,0000
24	0,54674	SLD NonStatic	Max -1607,849	331,397 -3,968E-14	0,0000
24	1,09348	SLD NonStatic	Max -1600,988	211,517 -2,533E-14	0,0000
24	0,00000	SLD NonStatic	Min -1614,710	451,277 -5,404E-14	0,0000
24	0,54674	SLD NonStatic	Min -1607,849	331,397 -3,968E-14	0,0000
24	1,09348	SLD NonStatic	Min -1600,988	211,517 -2,533E-14	0,0000
24	0,00000	SLV NonStatic	Max -2343,374	691,406 -8,280E-14	0,0000
24	0,54674	SLV NonStatic	Max -2332,558	540,914 -6,477E-14	0,0000
24	1,09348	SLV NonStatic	Max -2321,743	390,422 -4,675E-14	0,0000
24	0,00000	SLV NonStatic	Min -2343,374	691,406 -8,280E-14	0,0000
24	0,54674	SLV NonStatic	Min -2332,558	540,914 -6,477E-14	0,0000
24	1,09348	SLV NonStatic	Min -2321,743	390,422 -4,675E-14	0,0000
25	0,00000	SLE NonStatic	Max -1309,750	303,860 -3,639E-14	0,0000
25	0,54674	SLE NonStatic	Max -1312,955	195,947 -2,346E-14	0,0000
25	1,09348	SLE NonStatic	Max -1316,161	88,034 -1,054E-14	0,0000
25	0,00000	SLE NonStatic	Min -1309,750	303,860 -3,639E-14	0,0000
25	0,54674	SLE NonStatic	Min -1312,955	195,947 -2,346E-14	0,0000
25	1,09348	SLE NonStatic	Min -1316,161	88,034 -1,054E-14	0,0000
25	0,00000	SLU NonStatic	Max -1702,675	395,018 -4,730E-14	0,0000
25	0,54674	SLU NonStatic	Max -1706,842	254,731 -3,050E-14	0,0000
25	1,09348	SLU NonStatic	Max -1711,009	114,445 -1,370E-14	0,0000

Pagina 350 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

25	0,00000	SLU	NonStatic	Min -	1702,675	395,018 -4,730E-14	0,0000
25	0,54674	SLU	NonStatic	Min -	1706,842	254,731 -3,050E-14	0,0000
25	1,09348	SLU	NonStatic	Min -	1711,009	114,445 -1,370E-14	0,0000
25	0,00000	SLD	NonStatic	Max -	-1566,093	394,024 -4,718E-14	0,0000
25	0,54674	SLD	NonStatic	Max -	-1568,006	267,660 -3,205E-14	0,0000
25	1,09348	SLD	NonStatic	Max -	-1569,919	141,297 -1,692E-14	0,0000
25	0,00000	SLD	NonStatic	Min -	1566,093	394,024 -4,718E-14	0,0000
25	0,54674	SLD	NonStatic	Min -	1568,006	267,660 -3,205E-14	0,0000
25	1,09348	SLD	NonStatic	Min -	1569,919	141,297 -1,692E-14	0,0000
25	0,00000	SLV	NonStatic	Max -	-2261,526	654,539 -7,838E-14	0,0000
25	0,54674	SLV	NonStatic	Max -	-2259,036	495,492 -5,934E-14	0,0000
25	1,09348	SLV	NonStatic	Max -	-2256,546	336,445 -4,029E-14	0,0000
25	0,00000	SLV	NonStatic	Min -2	2261,526	654,539 -7,838E-14	0,0000
25	0,54674	SLV	NonStatic	Min -	2259,036	495,492 -5,934E-14	0,0000
25	1,09348	SLV	NonStatic	Min -	2256,546	336,445 -4,029E-14	0,0000
26	0,00000	SLE	NonStatic	Max -	-1295,735	247,184 -2,960E-14	0,0000
26	0,54674	SLE	NonStatic	Max -	-1306,009	133,901 -1,603E-14	0,0000
26	1,09348	SLE	NonStatic	Max -	-1316,282	20,617 -2,469E-15	0,0000
26	0,00000	SLE	NonStatic	Min -	1295,735	247,184 -2,960E-14	0,0000
26	0,54674	SLE	NonStatic	Min -	1306,009	133,901 -1,603E-14	0,0000
26	1,09348	SLE	NonStatic	Min -	1316,282	20,617 -2,469E-15	0,0000
26	0,00000	SLU	NonStatic	Max -	-1684,455	321,340 -3,848E-14	0,0000
26	0,54674	SLU	NonStatic	Max -	-1697,811	174,071 -2,084E-14	0,0000
26	1,09348	SLU	NonStatic	Max -	-1711,167	26,802 -3,210E-15	0,0000
26	0,00000	SLU	NonStatic	Min -	1684,455	321,340 -3,848E-14	0,0000
26	0,54674	SLU	NonStatic	Min -	1697,811	174,071 -2,084E-14	0,0000
26	1,09348	SLU	NonStatic	Min -	1711,167	26,802 -3,210E-15	0,0000
26	0,00000	SLD	NonStatic	Max -	-1541,149	330,863 -3,962E-14	0,0000
26	0,54674	SLD	NonStatic	Max -	-1549,944	197,736 -2,368E-14	0,0000
26	1,09348	SLD	NonStatic	Max -	-1558,739	64,610 -7,737E-15	0,0000
26	0,00000	SLD	NonStatic	Min -	1541,149	330,863 -3,962E-14	0,0000
26	0,54674	SLD	NonStatic	Min -	1549,944	197,736 -2,368E-14	0,0000
26	1,09348	SLD	NonStatic	Min -	1558,739	64,610 -7,737E-15	0,0000

Eurolink S.C.p.A. Pagina 351 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

26	0,00000	SLV N	NonStatic	Max	-2199,002	607,934	-7,280E-14	0,0000
26	0,54674	SLV N	NonStatic	Max	-2199,235	438,712	-5,254E-14	0,0000
26	1,09348	SLV N	NonStatic	Max	-2199,468	269,491	-3,227E-14	0,0000
26	0,00000	SLV N	NonStatic	Min	-2199,002	607,934	-7,280E-14	0,0000
26	0,54674	SLV N	NonStatic	Min	-2199,235	438,712	-5,254E-14	0,0000
26	1,09348	SLV N	NonStatic	Min	-2199,468	269,491	-3,227E-14	0,0000
27	0,00000	SLE N	NonStatic	Max	-1304,041	180,280	-2,159E-14	0,0000
27	0,54674	SLE N	NonStatic	Max	-1321,635	61,964	-7,420E-15	0,0000
27	1,09348	SLE N	NonStatic	Max	-1339,229	-56,353	6,748E-15	0,0000
27	0,00000	SLE N	NonStatic	Min	-1304,041	180,280	-2,159E-14	0,0000
27	0,54674	SLE N	NonStatic	Min	-1321,635	61,964	-7,420E-15	0,0000
27	1,09348	SLE N	NonStatic	Min	-1339,229	-56,353	6,748E-15	0,0000
27	0,00000	SLU N	NonStatic	Max	-1695,253	234,365	-2,807E-14	0,0000
27	0,54674	SLU N	NonStatic	Max	-1718,126	80,553	-9,646E-15	0,0000
27	1,09348	SLU N	NonStatic	Max	-1740,998	-73,259	8,773E-15	0,0000
27	0,00000	SLU N	NonStatic	Min	-1695,253	234,365	-2,807E-14	0,0000
27	0,54674	SLU N	NonStatic	Min	-1718,126	80,553	-9,646E-15	0,0000
27	1,09348	SLU N	NonStatic	Min	-1740,998	-73,259	8,773E-15	0,0000
27	0,00000	SLD N	NonStatic	Max	-1539,363	253,386	-3,034E-14	0,0000
27	0,54674	SLD N	NonStatic	Max	-1555,678	113,630	-1,361E-14	0,0000
27	1,09348	SLD N	NonStatic	Max	-1571,994	-26,126	3,129E-15	0,0000
27	0,00000	SLD N	NonStatic	Min	-1539,363	253,386	-3,034E-14	0,0000
27	0,54674	SLD N	NonStatic	Min	-1555,678	113,630	-1,361E-14	0,0000
27	1,09348	SLD N	NonStatic	Min	-1571,994	-26,126	3,129E-15	0,0000
27	0,00000	SLV N	NonStatic	Max	-2150,476	534,545	-6,401E-14	0,0000
27	0,54674	SLV N	NonStatic	Max	-2155,093	354,024	-4,239E-14	0,0000
27	1,09348	SLV N	NonStatic	Max	-2159,709	173,503	-2,078E-14	0,0000
27	0,00000	SLV N	NonStatic	Min	-2150,476	534,545	-6,401E-14	0,0000
27	0,54674	SLV N	NonStatic	Min	-2155,093	354,024	-4,239E-14	0,0000
27	1,09348	SLV N	NonStatic	Min	-2159,709	173,503	-2,078E-14	0,0000
28	0,00000	SLE N	NonStatic	Max	-1336,163	106,666	-1,277E-14	0,0000
28	0,54674	SLE N	NonStatic	Max	-1361,093	-16,183	1,938E-15	0,0000
28	1,09348	SLE N	NonStatic	Max	-1386,022	-139,033	1,665E-14	0,0000

Pagina 352 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

28	0,00000	SLE	NonStatic	Min	-1336,163	106,666 -	1,277E-14	0,0000
28	0,54674	SLE	NonStatic	Min	-1361,093	-16,183	1,938E-15	0,0000
28	1,09348	SLE	NonStatic	Min	-1386,022	-139,033	1,665E-14	0,0000
28	0,00000	SLU	NonStatic	Max	-1737,012	138,666	-1,661E-14	0,0000
28	0,54674	SLU	NonStatic	Max	-1769,421	-21,038	2,519E-15	0,0000
28	1,09348	SLU	NonStatic	Max	-1801,829	-180,743	2,164E-14	0,0000
28	0,00000	SLU	NonStatic	Min	-1737,012	138,666 -	-1,661E-14	0,0000
28	0,54674	SLU	NonStatic	Min	-1769,421	-21,038	2,519E-15	0,0000
28	1,09348	SLU	NonStatic	Min	-1801,829	-180,743	2,164E-14	0,0000
28	0,00000	SLD	NonStatic	Max	-1563,536	164,931	-1,975E-14	0,0000
28	0,54674	SLD	NonStatic	Max	-1587,813	18,997 -	-2,275E-15	0,0000
28	1,09348	SLD	NonStatic	Max	-1612,090	-126,937	1,520E-14	0,0000
28	0,00000	SLD	NonStatic	Min	-1563,536	164,931 -	-1,975E-14	0,0000
28	0,54674	SLD	NonStatic	Min	-1587,813	18,997 -2	2,275E-15	0,0000
28	1,09348	SLD	NonStatic	Min	-1612,090	-126,937	1,520E-14	0,0000
28	0,00000	SLV	NonStatic	Max	-2122,665	434,440	-5,202E-14	0,0000
28	0,54674	SLV	NonStatic	Max	-2133,403	242,197	-2,900E-14	0,0000
28	1,09348	SLV	NonStatic	Max	-2144,141	49,954 -	5,982E-15	0,0000
28	0,00000	SLV	NonStatic	Min	-2122,665	434,440 -	5,202E-14	0,0000
28	0,54674	SLV	NonStatic	Min	-2133,403	242,197 -	-2,900E-14	0,0000
28	1,09348	SLV	NonStatic	Min	-2144,141	49,954 -5	5,982E-15	0,0000
29	0,00000	SLE	NonStatic	Max	-1392,649	30,279 -	3,626E-15	0,0000
29	0,54674	SLE	NonStatic	Max	-1424,604	-96,391	1,154E-14	0,0000
29	1,09348	SLE	NonStatic	Max	-1456,559	-223,061	2,671E-14	0,0000
29	0,00000	SLE	NonStatic	Min	-1392,649	30,279 -3	3,626E-15	0,0000
29	0,54674	SLE	NonStatic	Min	-1424,604	-96,391 1	1,154E-14	0,0000
29	1,09348	SLE	NonStatic	Min	-1456,559	-223,061	2,671E-14	0,0000
29	0,00000	SLU	NonStatic	Max	-1810,444	39,363 -	-4,714E-15	0,0000
29	0,54674	SLU	NonStatic	Max	-1851,985	-125,308	1,501E-14	0,0000
29	1,09348	SLU	NonStatic	Max	-1893,527	-289,980	3,473E-14	0,0000
29	0,00000	SLU	NonStatic	Min	-1810,444	39,363 -4	4,714E-15	0,0000
29	0,54674	SLU	NonStatic	Min	-1851,985	-125,308	1,501E-14	0,0000
29	1,09348	SLU	NonStatic	Min	-1893,527	-289,980	3,473E-14	0,0000

Eurolink S.C.p.A. Pagina 353 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

29	0,00000	SLD NonStatic	Max -1615,575	69,733 -8,351E-15	0,0000
29	0,54674	SLD NonStatic	Max -1647,904	-81,534 9,764E-15	0,0000
29	1,09348	SLD NonStatic	Max -1680,232	-232,801 2,788E-14	0,0000
29	0,00000	SLD NonStatic	Min -1615,575	69,733 -8,351E-15	0,0000
29	0,54674	SLD NonStatic	Min -1647,904	-81,534 9,764E-15	0,0000
29	1,09348	SLD NonStatic	Min -1680,232	-232,801 2,788E-14	0,0000
29	0,00000	SLV NonStatic	Max -2122,214	309,915 -3,711E-14	0,0000
29	0,54674	SLV NonStatic	Max -2140,589	106,394 -1,274E-14	0,0000
29	1,09348	SLV NonStatic	Max -2158,964	-97,127 1,163E-14	0,0000
29	0,00000	SLV NonStatic	Min -2122,214	309,915 -3,711E-14	0,0000
29	0,54674	SLV NonStatic	Min -2140,589	106,394 -1,274E-14	0,0000
29	1,09348	SLV NonStatic	Min -2158,964	-97,127 1,163E-14	0,0000
30	0,00000	SLE NonStatic	Max -1472,866	-44,563 5,336E-15	0,0000
30	0,54674	SLE NonStatic	Max -1511,124	-174,128 2,085E-14	0,0000
30	1,09348	SLE NonStatic	Max -1549,382	-303,693 3,637E-14	0,0000
30	0,00000	SLE NonStatic	Min -1472,866	-44,563 5,336E-15	0,0000
30	0,54674	SLE NonStatic	Min -1511,124	-174,128 2,085E-14	0,0000
30	1,09348	SLE NonStatic	Min -1549,382	-303,693 3,637E-14	0,0000
30	0,00000	SLU NonStatic	Max -1914,726	-57,932 6,937E-15	0,0000
30	0,54674	SLU NonStatic	Max -1964,461	-226,366 2,711E-14	0,0000
30	1,09348	SLU NonStatic	Max -2014,196	-394,800 4,728E-14	0,0000
30	0,00000	SLU NonStatic	Min -1914,726	-57,932 6,937E-15	0,0000
30	0,54674	SLU NonStatic	Min -1964,461	-226,366 2,711E-14	0,0000
30	1,09348	SLU NonStatic	Min -2014,196	-394,800 4,728E-14	0,0000
30	0,00000	SLD NonStatic	Max -1696,067	-27,074 3,242E-15	0,0000
30	0,54674	SLD NonStatic	Max -1736,025	-182,440 2,185E-14	0,0000
30	1,09348	SLD NonStatic	Max -1775,982	-337,807 4,045E-14	0,0000
30	0,00000	SLD NonStatic	Min -1696,067	-27,074 3,242E-15	0,0000
30	0,54674	SLD NonStatic	Min -1736,025	-182,440 2,185E-14	0,0000
30	1,09348	SLD NonStatic	Min -1775,982	-337,807 4,045E-14	0,0000
30	0,00000	SLV NonStatic	Max -2154,785	165,722 -1,985E-14	0,0000
30	0,54674	SLV NonStatic	Max -2181,758	-47,740 5,717E-15	0,0000
30	1,09348	SLV NonStatic	Max -2208,731	-261,202 3,128E-14	0,0000

Pagina 354 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

30	0,00000	SLV	NonStatic	Min	-2154,785	165,722	-1,985E-14	0,0000
30	0,54674	SLV	NonStatic	Min	-2181,758	-47,740	5,717E-15	0,0000
30	1,09348	SLV	NonStatic	Min	-2208,731	-261,202	3,128E-14	0,0000
31	0,00000	SLE	NonStatic	Max	-1574,792	-113,328	1,357E-14	0,0000
31	0,54674	SLE	NonStatic	Max	-1618,187	-244,869	2,932E-14	0,0000
31	1,09348	SLE	NonStatic	Max	-1661,583	-376,411	4,508E-14	0,0000
31	0,00000	SLE	NonStatic	Min	-1574,792	-113,328	1,357E-14	0,0000
31	0,54674	SLE	NonStatic	Min	-1618,187	-244,869	2,932E-14	0,0000
31	1,09348	SLE	NonStatic	Min	-1661,583	-376,411	4,508E-14	0,0000
31	0,00000	SLU	NonStatic	Max	-2047,229	-147,326	1,764E-14	0,0000
31	0,54674	SLU	NonStatic	Max	-2103,644	-318,330	3,812E-14	0,0000
31	1,09348	SLU	NonStatic	Max	-2160,058	-489,334	5,860E-14	0,0000
31	0,00000	SLU	NonStatic	Min	-2047,229	-147,326	1,764E-14	0,0000
31	0,54674	SLU	NonStatic	Min	-2103,644	-318,330	3,812E-14	0,0000
31	1,09348	SLU	NonStatic	Min	-2160,058	-489,334	5,860E-14	0,0000
31	0,00000	SLD	NonStatic	Max	-1803,858	-119,677	1,433E-14	0,0000
31	0,54674	SLD	NonStatic	Max	-1850,435	-277,797	3,327E-14	0,0000
31	1,09348	SLD	NonStatic	Max	-1897,012	-435,917	5,220E-14	0,0000
31	0,00000	SLD	NonStatic	Min	-1803,858	-119,677	1,433E-14	0,0000
31	0,54674	SLD	NonStatic	Min	-1850,435	-277,797	3,327E-14	0,0000
31	1,09348	SLD	NonStatic	Min	-1897,012	-435,917	5,220E-14	0,0000
31	0,00000	SLV	NonStatic	Max	-2224,105	8,903	-1,066E-15	0,0000
31	0,54674	SLV	NonStatic	Max	-2259,874	-212,623	2,546E-14	0,0000
31	1,09348	SLV	NonStatic	Max	-2295,643	-434,149	5,199E-14	0,0000
31	0,00000	SLV	NonStatic	Min	-2224,105	8,903 -	1,066E-15	0,0000
31	0,54674	SLV	NonStatic	Min	-2259,874	-212,623	2,546E-14	0,0000
31	1,09348	SLV	NonStatic	Min	-2295,643	-434,149	5,199E-14	0,0000
32	0,00000	SLE	NonStatic	Max	-1694,992	-171,885	2,058E-14	0,0000
32	0,54674	SLE	NonStatic	Max	-1741,889	-304,470	3,646E-14	0,0000
32	1,09348	SLE	NonStatic	Max	-1788,786	-437,054	5,234E-14	0,0000
32	0,00000	SLE	NonStatic	Min	-1694,992	-171,885	2,058E-14	0,0000
32	0,54674	SLE	NonStatic	Min	-1741,889	-304,470	3,646E-14	0,0000
32	1,09348	SLE	NonStatic	Min	-1788,786	-437,054	5,234E-14	0,0000

Eurolink S.C.p.A. Pagina 355 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

32	0,00000	SLU	NonStatic	Max	-2203,490	-223,451	2,676E-14	0,0000
32	0,54674	SLU	NonStatic	Max	-2264,456	-395,811	4,740E-14	0,0000
32	1,09348	SLU	NonStatic	Max	-2325,422	-568,170	6,804E-14	0,0000
32	0,00000	SLU	NonStatic	Min	-2203,490	-223,451	2,676E-14	0,0000
32	0,54674	SLU	NonStatic	Min	-2264,456	-395,811	4,740E-14	0,0000
32	1,09348	SLU	NonStatic	Min	-2325,422	-568,170	6,804E-14	0,0000
32	0,00000	SLD	NonStatic	Max	-1935,904	-202,366	2,423E-14	0,0000
32	0,54674	SLD	NonStatic	Max	-1987,421	-361,800	4,333E-14	0,0000
32	1,09348	SLD	NonStatic	Max	-2038,937	-521,233	6,242E-14	0,0000
32	0,00000	SLD	NonStatic	Min	-1935,904	-202,366	2,423E-14	0,0000
32	0,54674	SLD	NonStatic	Min	-1987,421	-361,800	4,333E-14	0,0000
32	1,09348	SLD	NonStatic	Min	-2038,937	-521,233	6,242E-14	0,0000
32	0,00000	SLV	NonStatic	Max	-2331,372	-152,212	1,823E-14	0,0000
32	0,54674	SLV	NonStatic	Max	-2375,139	-379,463	4,544E-14	0,0000
32	1,09348	SLV	NonStatic	Max	-2418,905	-606,714	7,265E-14	0,0000
32	0,00000	SLV	NonStatic	Min	-2331,372	-152,212	1,823E-14	0,0000
32	0,54674	SLV	NonStatic	Min	-2375,139	-379,463	4,544E-14	0,0000
32	1,09348	SLV	NonStatic	Min	-2418,905	-606,714	7,265E-14	0,0000
33	0,00000	SLE	NonStatic	Max	-1824,853	-246,343	2,714E-14	0,0000
33	0,55057	SLE	NonStatic	Max	-1876,121	-383,018	4,351E-14	0,0000
33	1,10113	SLE	NonStatic	Max	-1927,389	-519,693	5,987E-14	0,0000
33	0,00000	SLE	NonStatic	Min	-1824,853	-246,343	2,714E-14	0,0000
33	0,55057	SLE	NonStatic	Min	-1876,121	-383,018	4,351E-14	0,0000
33	1,10113	SLE	NonStatic	Min	-1927,389	-519,693	5,987E-14	0,0000
33	0,00000	SLU	NonStatic	Max	-2372,309	-320,246	3,528E-14	0,0000
33	0,55057	SLU	NonStatic	Max	-2438,957	-497,923	5,656E-14	0,0000
33	1,10113	SLU	NonStatic	Max	-2505,606	-675,601	7,784E-14	0,0000
33	0,00000	SLU	NonStatic	Min	-2372,309	-320,246	3,528E-14	0,0000
33	0,55057	SLU	NonStatic	Min	-2438,957	-497,923	5,656E-14	0,0000
33	1,10113	SLU	NonStatic	Min	-2505,606	-675,601	7,784E-14	0,0000
33	0,00000	SLD	NonStatic	Max	-2082,475	-303,724	3,349E-14	0,0000
33	0,55057	SLD	NonStatic	Max	-2139,936	-467,694	5,313E-14	0,0000
33	1,10113	SLD	NonStatic	Max	-2197,398	-631,665	7,276E-14	0,0000

Pagina 356 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

33	0,00000	SLD	NonStatic	Min	-2082,475	-303,724	3,349E-14	0,0000
33	0,55057	SLD	NonStatic	Min	-2139,936	-467,694	5,313E-14	0,0000
33	1,10113	SLD	NonStatic	Min	-2197,398	-631,665	7,276E-14	0,0000
33	0,00000	SLV	NonStatic	Max	-2469,329	-348,735	3,816E-14	0,0000
33	0,55057	SLV	NonStatic	Max	-2522,910	-584,721	6,642E-14	0,0000
33	1,10113	SLV	NonStatic	Max	-2576,492	-820,706	9,468E-14	0,0000
33	0,00000	SLV	NonStatic	Min	-2469,329	-348,735	3,816E-14	0,0000
33	0,55057	SLV	NonStatic	Min	-2522,910	-584,721	6,642E-14	0,0000
33	1,10113	SLV	NonStatic	Min	-2576,492	-820,706	9,468E-14	0,0000
34	0,00000	SLE	NonStatic	Max	-1927,389	-519,693	5,500E-14	0,0000
34	0,55057	SLE	NonStatic	Max	-1982,995	-667,259	7,267E-14	0,0000
34	1,10113	SLE	NonStatic	Max	-2038,600	-814,826	9,034E-14	0,0000
34	0,00000	SLE	NonStatic	Min	-1927,389	-519,693	5,500E-14	0,0000
34	0,55057	SLE	NonStatic	Min	-1982,995	-667,259	7,267E-14	0,0000
34	1,10113	SLE	NonStatic	Min	-2038,600	-814,826	9,034E-14	0,0000
34	0,00000	SLU	NonStatic	Max	-2505,606	-675,601	7,150E-14	0,0000
34	0,55057	SLU	NonStatic	Max	-2577,893	-867,437	9,447E-14	0,0000
34	1,10113	SLU	NonStatic	Max	-2650,180	-1059,274	1,174E-13	0,0000
34	0,00000	SLU	NonStatic	Min	-2505,606	-675,601	7,150E-14	0,0000
34	0,55057	SLU	NonStatic	Min	-2577,893	-867,437	9,447E-14	0,0000
34	1,10113	SLU	NonStatic	Min	-2650,180	-1059,274	1,174E-13	0,0000
34	0,00000	SLD	NonStatic	Max	-2197,398	-631,665	6,689E-14	0,0000
34	0,55057	SLD	NonStatic	Max	-2260,501	-807,466	8,794E-14	0,0000
34	1,10113	SLD	NonStatic	Max	-2323,604	-983,267	1,090E-13	0,0000
34	0,00000	SLD	NonStatic	Min	-2197,398	-631,665	6,689E-14	0,0000
34	0,55057	SLD	NonStatic	Min	-2260,501	-807,466	8,794E-14	0,0000
34	1,10113	SLD	NonStatic	Min	-2323,604	-983,267	1,090E-13	0,0000
34	0,00000	SLV	NonStatic	Max	-2576,492	-820,706	8,668E-14	0,0000
34	0,55057	SLV	NonStatic	Max	-2638,001	-1070,202	1,166E-13	0,0000
34	1,10113	SLV	NonStatic	Max	-2699,510	-1319,698	1,464E-13	0,0000
34	0,00000	SLV	NonStatic	Min	-2576,492	-820,706	8,668E-14	0,0000
34	0,55057	SLV	NonStatic	Min	-2638,001	-1070,202	1,166E-13	0,0000
34	1,10113	SLV	NonStatic	Min	-2699,510	-1319,698	1,464E-13	0,0000

Eurolink S.C.p.A. Pagina 357 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

35	0,00000	SLE	NonStatic	Max	-2038,600	-814,826	7,644E-14	0,0000
35	0,55057	SLE	NonStatic	Max	-2105,541	-977,564	9,593E-14	0,0000
35	1,10113	SLE	NonStatic	Max	-2172,482	-1140,303	1,154E-1	3 0,0000
35	0,00000	SLE	NonStatic	Min	-2038,600	-814,826	7,644E-14	0,0000
35	0,55057	SLE	NonStatic	Min	-2105,541	-977,564	9,593E-14	0,0000
35	1,10113	SLE	NonStatic	Min	-2172,482	-1140,303	1,154E-13	3 0,0000
35	0,00000	SLU	NonStatic	Max	-2650,180	-1059,274	9,937E-1	4 0,0000
35	0,55057	SLU	NonStatic	Max	-2737,203	-1270,834	1,247E-1	3 0,0000
35	1,10113	SLU	NonStatic	Max	-2824,226	-1482,394	1,500E-1	3 0,0000
35	0,00000	SLU	NonStatic	Min	-2650,180	-1059,274	9,937E-14	1 0,0000
35	0,55057	SLU	NonStatic	Min	-2737,203	-1270,834	1,247E-13	3 0,0000
35	1,10113	SLU	NonStatic	Min	-2824,226	-1482,394	1,500E-13	3 0,0000
35	0,00000	SLD	NonStatic	Max	-2323,604	-983,267	9,232E-14	1 0,0000
35	0,55057	SLD	NonStatic	Max	-2400,357	-1176,196	1,154E-1	3 0,0000
35	1,10113	SLD	NonStatic	Max	-2477,110	-1369,125	1,385E-1	3 0,0000
35	0,00000	SLD	NonStatic	Min	-2323,604	-983,267	9,232E-14	0,0000
35	0,55057	SLD	NonStatic	Min	-2400,357	-1176,196	1,154E-13	3 0,0000
35	1,10113	SLD	NonStatic	Min	-2477,110	-1369,125	1,385E-13	3 0,0000
35	0,00000	SLV	NonStatic	Max	-2699,510	-1319,698	1,237E-1	3 0,0000
35	0,55057	SLV	NonStatic	Max	-2778,699	-1589,861	1,560E-1	3 0,0000
35	1,10113	SLV	NonStatic	Max	-2857,887	-1860,024	1,884E-1	3 0,0000
35	0,00000	SLV	NonStatic	Min	-2699,510	-1319,698	1,237E-13	3 0,0000
35	0,55057	SLV	NonStatic	Min	-2778,699	-1589,861	1,560E-13	3 0,0000
35	1,10113	SLV	NonStatic	Min	-2857,887	-1860,024	1,884E-13	0,0000
36	0,00000	SLE	NonStatic	Max	-2447,131	177,528	0,000	0,0000
36	0,49860	SLE	NonStatic	Max	-2489,513	43,129	0,000	0,0000
36	0,99721	SLE	NonStatic	Max	-2531,894	-91,269	0,000	0,0000
36	0,00000	SLE	NonStatic	Min	-2447,131	177,528	0,000	0,0000
36	0,49860	SLE	NonStatic	Min	-2489,513	43,129	0,000	0,0000
36	0,99721	SLE	NonStatic	Min	-2531,894	-91,269	0,000	0,0000
36	0,00000	SLU	NonStatic	Max	-3181,271	230,786	0,000	0,0000
36	0,49860	SLU	NonStatic	Max	-3236,367	56,068	0,000	0,0000
36	0,99721	SLU	NonStatic	Max	-3291,462	-118,650	0,000	0,0000

Pagina 358 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

36	0,00000	SLU	NonStatic	Min	-3181,271	230,786	0,000	0,0000
36	0,49860	SLU	NonStatic	Min	-3236,367	56,068	0,000	0,0000
36	0,99721	SLU	NonStatic	Min	-3291,462	-118,650	0,000	0,0000
36	0,00000	SLD	NonStatic	Max	-2826,637	143,868	0,000	0,0000
36	0,49860	SLD	NonStatic	Max	-2876,223	-12,170	0,000	0,0000
36	0,99721	SLD	NonStatic	Max	-2925,809	-168,208	0,000	0,0000
36	0,00000	SLD	NonStatic	Min	-2826,637	143,868	0,000	0,0000
36	0,49860	SLD	NonStatic	Min	-2876,223	-12,170	0,000	0,0000
36	0,99721	SLD	NonStatic	Min	-2925,809	-168,208	0,000	0,0000
36	0,00000	SLV	NonStatic	Max	-3409,104	-72,247	0,000	0,0000
36	0,49860	SLV	NonStatic	Max	-3471,405	-296,494	0,000	0,0000
36	0,99721	SLV	NonStatic	Max	-3533,705	-520,741	0,000	0,0000
36	0,00000	SLV	NonStatic	Min	-3409,104	-72,247	0,000	0,0000
36	0,49860	SLV	NonStatic	Min	-3471,405	-296,494	0,000	0,0000
36	0,99721	SLV	NonStatic	Min	-3533,705	-520,741	0,000	0,0000
37	0,00000	SLE	NonStatic	Max	-2531,894	-91,269	0,000	0,0000
37	0,49860	SLE	NonStatic	Max	-2574,275	-220,083	0,000	0,0000
37	0,99721	SLE	NonStatic	Max	-2616,657	-348,897	0,000	0,0000
37	0,00000	SLE	NonStatic	Min	-2531,894	-91,269	0,000	0,0000
37	0,49860	SLE	NonStatic	Min	-2574,275	-220,083	0,000	0,0000
37	0,99721	SLE	NonStatic	Min	-2616,657	-348,897	0,000	0,0000
37	0,00000	SLU	NonStatic	Max	-3291,462	-118,650	0,000	0,0000
37	0,49860	SLU	NonStatic	Max	-3346,558	-286,108	0,000	0,0000
37	0,99721	SLU	NonStatic	Max	-3401,654	-453,567	0,000	0,0000
37	0,00000	SLU	NonStatic	Min	-3291,462	-118,650	0,000	0,0000
37	0,49860	SLU	NonStatic	Min	-3346,558	-286,108	0,000	0,0000
37	0,99721	SLU	NonStatic	Min	-3401,654	-453,567	0,000	0,0000
37	0,00000	SLD	NonStatic	Max	-2925,809	-168,208	0,000	0,0000
37	0,49860	SLD	NonStatic	Max	-2975,396	-318,661	0,000	0,0000
37	0,99721	SLD	NonStatic	Max	-3024,982	-469,115	0,000	0,0000
37	0,00000	SLD	NonStatic	Min	-2925,809	-168,208	0,000	0,0000
37	0,49860	SLD	NonStatic	Min	-2975,396	-318,661	0,000	0,0000
37	0,99721	SLD	NonStatic	Min	-3024,982	-469,115	0,000	0,0000

Eurolink S.C.p.A. Pagina 359 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

37	0,00000	SLV	NonStatic	Max	-3533,705	-520,740	0,000	0,0000
37	0,49860	SLV	NonStatic	Max	-3596,006	-739,403	0,000	0,0000
37	0,99721	SLV	NonStatic	Max	-3658,306	-958,065	0,000	0,0000
37	0,00000	SLV	NonStatic	Min	-3533,705	-520,740	0,000	0,0000
37	0,49860	SLV	NonStatic	Min	-3596,006	-739,403	0,000	0,0000
37	0,99721	SLV	NonStatic	Min	-3658,306	-958,065	0,000	0,0000
38	0,00000	SLE	NonStatic	Max	-2616,657	-348,897	0,000	0,0000
38	0,49860	SLE	NonStatic	Max	-2661,531	-471,574	0,000	0,0000
38	0,99721	SLE	NonStatic	Max	-2706,405	-594,250	0,000	0,0000
38	0,00000	SLE	NonStatic	Min	-2616,657	-348,897	0,000	0,0000
38	0,49860	SLE	NonStatic	Min	-2661,531	-471,574	0,000	0,0000
38	0,99721	SLE	NonStatic	Min	-2706,405	-594,250	0,000	0,0000
38	0,00000	SLU	NonStatic	Max	-3401,654	-453,566	0,000	0,0000
38	0,49860	SLU	NonStatic	Max	-3459,990	-613,046	0,000	0,0000
38	0,99721	SLU	NonStatic	Max	-3518,327	-772,525	0,000	0,0000
38	0,00000	SLU	NonStatic	Min	-3401,654	-453,566	0,000	0,0000
38	0,49860	SLU	NonStatic	Min	-3459,990	-613,046	0,000	0,0000
38	0,99721	SLU	NonStatic	Min	-3518,327	-772,525	0,000	0,0000
38	0,00000	SLD	NonStatic	Max	-3024,982	-469,115	0,000	0,0000
38	0,49860	SLD	NonStatic	Max	-3077,485	-613,530	0,000	0,0000
38	0,99721	SLD	NonStatic	Max	-3129,988	-757,946	0,000	0,0000
38	0,00000	SLD	NonStatic	Min	-3024,982	-469,115	0,000	0,0000
38	0,49860	SLD	NonStatic	Min	-3077,485	-613,530	0,000	0,0000
38	0,99721	SLD	NonStatic	Min	-3129,988	-757,946	0,000	0,0000
38	0,00000	SLV	NonStatic	Max	-3658,306	-958,065	0,000	0,0000
38	0,49860	SLV	NonStatic	Max	-3724,271	-1170,889	0,000	0,0000
38	0,99721	SLV	NonStatic	Max	-3790,237	-1383,712	0,000	0,0000
38	0,00000	SLV	NonStatic	Min	-3658,306	-958,065	0,000	0,0000
38	0,49860	SLV	NonStatic	Min	-3724,271	-1170,889	0,000	0,0000
38	0,99721	SLV	NonStatic	Min	-3790,237	-1383,712	0,000	0,0000
39	0,00000	SLE	NonStatic	Max	-2706,405	-594,250	0,000	0,0000
39	0,41312	SLE	NonStatic	Max	-2743,586	-690,808	0,000	0,0000
39	0,82623	SLE	NonStatic	Max	-2780,766	-787,365	0,000	0,0000

Pagina 360 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

39	0,00000	SLE	NonStatic	Min	-2706,405	-594,250	0,000	0,0000
39	0,41312	SLE	NonStatic	Min	-2743,586	-690,808	0,000	0,0000
39	0,82623	SLE	NonStatic	Min	-2780,766	-787,365	0,000	0,0000
39	0,00000	SLU	NonStatic	Max	-3518,327	-772,525	0,000	0,0000
39	0,41312	SLU	NonStatic	Max	-3566,662	-898,050	0,000	0,0000
39	0,82623	SLU	NonStatic	Max	-3614,996	-1023,575	0,000	0,0000
39	0,00000	SLU	NonStatic	Min	-3518,327	-772,525	0,000	0,0000
39	0,41312	SLU	NonStatic	Min	-3566,662	-898,050	0,000	0,0000
39	0,82623	SLU	NonStatic	Min	-3614,996	-1023,575	0,000	0,0000
39	0,00000	SLD	NonStatic	Max	-3129,988	-757,945	0,000	0,0000
39	0,41312	SLD	NonStatic	Max	-3173,489	-872,515	0,000	0,0000
39	0,82623	SLD	NonStatic	Max	-3216,990	-987,085	0,000	0,0000
39	0,00000	SLD	NonStatic	Min	-3129,988	-757,945	0,000	0,0000
39	0,41312	SLD	NonStatic	Min	-3173,489	-872,515	0,000	0,0000
39	0,82623	SLD	NonStatic	Min	-3216,990	-987,085	0,000	0,0000
39	0,00000	SLV	NonStatic	Max	-3790,237	-1383,712	0,000	0,0000
39	0,41312	SLV	NonStatic	Max	-3844,892	-1554,961	0,000	0,0000
39	0,82623	SLV	NonStatic	Max	-3899,547	-1726,211	0,000	0,0000
39	0,00000	SLV	NonStatic	Min	-3790,237	-1383,712	0,000	0,0000
39	0,41312	SLV	NonStatic	Min	-3844,892	-1554,961	0,000	0,0000
39	0,82623	SLV	NonStatic	Min	-3899,547	-1726,211	0,000	0,0000
40	0,00000	SLE	NonStatic	Max	-1589,959	1155,770	0,000	0,0000
40	0,46541	SLE	NonStatic	Max	-1609,961	1189,901	0,000	0,0000
40	0,93083	SLE	NonStatic	Max	-1629,964	1224,032	0,000	0,0000
40	0,00000	SLE	NonStatic	Min	-1589,959	1155,770	0,000	0,0000
40	0,46541	SLE	NonStatic	Min	-1609,961	1189,901	0,000	0,0000
40	0,93083	SLE	NonStatic	Min	-1629,964	1224,032	0,000	0,0000
40	0,00000	SLU	NonStatic	Max	-2066,947	1502,501	0,000	0,0000
40	0,46541	SLU	NonStatic	Max	-2092,950	1546,871	0,000	0,0000
40	0,93083	SLU	NonStatic	Max	-2118,953	1591,241	0,000	0,0000
40	0,00000	SLU	NonStatic	Min	-2066,947	1502,501	0,000	0,0000
40	0,46541	SLU	NonStatic	Min	-2092,950	1546,871	0,000	0,0000
40	0,93083	SLU	NonStatic	Min	-2118,953	1591,241	0,000	0,0000

Eurolink S.C.p.A. Pagina 361 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

40	0,00000	SLD	NonStatic	Max	-1911,183	1308,886	0,000	0,0000
40	0,46541	SLD	NonStatic	Max	-1935,951	1348,019	0,000	0,0000
40	0,93083	SLD	NonStatic	Max	-1960,720	1387,152	0,000	0,0000
40	0,00000	SLD	NonStatic	Min	-1911,183	1308,886	0,000	0,0000
40	0,46541	SLD	NonStatic	Min	-1935,951	1348,019	0,000	0,0000
40	0,93083	SLD	NonStatic	Min	-1960,720	1387,152	0,000	0,0000
40	0,00000	SLV	NonStatic	Max	-2807,627	1376,698	0,000	0,0000
40	0,46541	SLV	NonStatic	Max	-2841,127	1424,470	0,000	0,0000
40	0,93083	SLV	NonStatic	Max	-2874,626	1472,242	0,000	0,0000
40	0,00000	SLV	NonStatic	Min	-2807,627	1376,698	0,000	0,0000
40	0,46541	SLV	NonStatic	Min	-2841,127	1424,470	0,000	0,0000
40	0,93083	SLV	NonStatic	Min	-2874,626	1472,242	0,000	0,0000
41	0,00000	SLE	NonStatic	Max	-1629,964	608,823	0,000	0,0000
41	0,46541	SLE	NonStatic	Max	-1649,966	642,954	0,000	0,0000
41	0,93083	SLE	NonStatic	Max	-1669,969	677,085	0,000	0,0000
41	0,00000	SLE	NonStatic	Min	-1629,964	608,823	0,000	0,0000
41	0,46541	SLE	NonStatic	Min	-1649,966	642,954	0,000	0,0000
41	0,93083	SLE	NonStatic	Min	-1669,969	677,085	0,000	0,0000
41	0,00000	SLU	NonStatic	Max	-2118,953	791,470	0,000	0,0000
41	0,46541	SLU	NonStatic	Max	-2144,956	835,840	0,000	0,0000
41	0,93083	SLU	NonStatic	Max	-2170,959	880,211	0,000	0,0000
41	0,00000	SLU	NonStatic	Min	-2118,953	791,470	0,000	0,0000
41	0,46541	SLU	NonStatic	Min	-2144,956	835,840	0,000	0,0000
41	0,93083	SLU	NonStatic	Min	-2170,959	880,211	0,000	0,0000
41	0,00000	SLD	NonStatic	Max	-1960,720	694,742	0,000	0,0000
41	0,46541	SLD	NonStatic	Max	-1985,488	733,875	0,000	0,0000
41	0,93083	SLD	NonStatic	Max	-2010,256	773,007	0,000	0,0000
41	0,00000	SLD	NonStatic	Min	-1960,720	694,742	0,000	0,0000
41	0,46541	SLD	NonStatic	Min	-1985,488	733,875	0,000	0,0000
41	0,93083	SLD	NonStatic	Min	-2010,256	773,007	0,000	0,0000
41	0,00000	SLV	NonStatic	Max	-2874,626	728,826	0,000	0,0000
41	0,46541	SLV	NonStatic	Max	-2908,125	776,598	0,000	0,0000
41	0,93083	SLV	NonStatic	Max	-2941,625	824,370	0,000	0,0000

Pagina 362 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

41	0,00000	SLV	NonStatic	Min	-2874,626	728,826	0,000	0,0000
41	0,46541	SLV	NonStatic	Min	-2908,125	776,598	0,000	0,0000
41	0,93083	SLV	NonStatic	Min	-2941,625	824,370	0,000	0,0000
42	0,00000	SLE	NonStatic	Max	-1616,950	395,392	0,000	0,0000
42	0,56242	SLE	NonStatic	Max	-1631,330	425,921	0,000	0,0000
42	1,12485	SLE	NonStatic	Max	-1645,709	456,449	0,000	0,0000
42	0,00000	SLE	NonStatic	Min	-1616,950	395,392	0,000	0,0000
42	0,56242	SLE	NonStatic	Min	-1631,330	425,921	0,000	0,0000
42	1,12485	SLE	NonStatic	Min	-1645,709	456,449	0,000	0,0000
42	0,00000	SLU	NonStatic	Max	-2102,036	514,010	0,000	0,0000
42	0,56242	SLU	NonStatic	Max	-2120,728	553,697	0,000	0,0000
42	1,12485	SLU	NonStatic	Max	-2139,421	593,384	0,000	0,0000
42	0,00000	SLU	NonStatic	Min	-2102,036	514,010	0,000	0,0000
42	0,56242	SLU	NonStatic	Min	-2120,728	553,697	0,000	0,0000
42	1,12485	SLU	NonStatic	Min	-2139,421	593,384	0,000	0,0000
42	0,00000	SLD	NonStatic	Max	-1949,281	461,486	0,000	0,0000
42	0,56242	SLD	NonStatic	Max	-1967,326	496,629	0,000	0,0000
42	1,12485	SLD	NonStatic	Max	-1985,371	531,772	0,000	0,0000
42	0,00000	SLD	NonStatic	Min	-1949,281	461,486	0,000	0,0000
42	0,56242	SLD	NonStatic	Min	-1967,326	496,629	0,000	0,0000
42	1,12485	SLD	NonStatic	Min	-1985,371	531,772	0,000	0,0000
42	0,00000	SLV	NonStatic	Max	-2874,554	529,014	0,000	0,0000
42	0,56242	SLV	NonStatic	Max	-2899,354	572,165	0,000	0,0000
42	1,12485	SLV	NonStatic	Max	-2924,155	615,317	0,000	0,0000
42	0,00000	SLV	NonStatic	Min	-2874,554	529,014	0,000	0,0000
42	0,56242	SLV	NonStatic	Min	-2899,354	572,165	0,000	0,0000
42	1,12485	SLV	NonStatic	Min	-2924,155	615,317	0,000	0,0000
43	0,00000	SLE	NonStatic	Max	-1618,593	344,051	0,000	0,0000
43	0,56242	SLE	NonStatic	Max	-1630,873	375,483	0,000	0,0000
43	1,12485	SLE	NonStatic	Max	-1643,154	406,915	0,000	0,0000
43	0,00000	SLE	NonStatic	Min	-1618,593	344,051	0,000	0,0000
43	0,56242	SLE	NonStatic	Min	-1630,873	375,483	0,000	0,0000
43	1,12485	SLE	NonStatic	Min	-1643,154	406,915	0,000	0,0000

Eurolink S.C.p.A. Pagina 363 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

43	0,00000	SLU	NonStatic	Max	-2104,171	447,267	0,000	0,0000
43	0,56242	SLU	NonStatic	Max	-2120,136	488,128	0,000	0,0000
43	1,12485	SLU	NonStatic	Max	-2136,100	528,989	0,000	0,0000
43	0,00000	SLU	NonStatic	Min	-2104,171	447,267	0,000	0,0000
43	0,56242	SLU	NonStatic	Min	-2120,136	488,128	0,000	0,0000
43	1,12485	SLU	NonStatic	Min	-2136,100	528,989	0,000	0,0000
43	0,00000	SLD	NonStatic	Max	-1953,543	407,844	0,000	0,0000
43	0,56242	SLD	NonStatic	Max	-1969,168	444,128	0,000	0,0000
43	1,12485	SLD	NonStatic	Max	-1984,794	480,412	0,000	0,0000
43	0,00000	SLD	NonStatic	Min	-1953,543	407,844	0,000	0,0000
43	0,56242	SLD	NonStatic	Min	-1969,168	444,128	0,000	0,0000
43	1,12485	SLD	NonStatic	Min	-1984,794	480,412	0,000	0,0000
43	0,00000	SLV	NonStatic	Max	-2886,264	503,290	0,000	0,0000
43	0,56242	SLV	NonStatic	Max	-2908,088	548,020	0,000	0,0000
43	1,12485	SLV	NonStatic	Max	-2929,912	592,751	0,000	0,0000
43	0,00000	SLV	NonStatic	Min	-2886,264	503,290	0,000	0,0000
43	0,56242	SLV	NonStatic	Min	-2908,088	548,020	0,000	0,0000
43	1,12485	SLV	NonStatic	Min	-2929,912	592,751	0,000	0,0000
44	0,00000	SLE	NonStatic	Max	-1619,549	289,930	0,000	0,0000
44	0,56242	SLE	NonStatic	Max	-1629,675	322,121	0,000	0,0000
44	1,12485	SLE	NonStatic	Max	-1639,800	354,311	0,000	0,0000
44	0,00000	SLE	NonStatic	Min	-1619,549	289,930	0,000	0,0000
44	0,56242	SLE	NonStatic	Min	-1629,675	322,121	0,000	0,0000
44	1,12485	SLE	NonStatic	Min	-1639,800	354,311	0,000	0,0000
44	0,00000	SLU	NonStatic	Max	-2105,414	376,909	0,000	0,0000
44	0,56242	SLU	NonStatic	Max	-2118,577	418,757	0,000	0,0000
44	1,12485	SLU	NonStatic	Max	-2131,740	460,605	0,000	0,0000
44	0,00000	SLU	NonStatic	Min	-2105,414	376,909	0,000	0,0000
44	0,56242	SLU	NonStatic	Min	-2118,577	418,757	0,000	0,0000
44	1,12485	SLU	NonStatic	Min	-2131,740	460,605	0,000	0,0000
44	0,00000	SLD	NonStatic	Max	-1956,706	348,777	0,000	0,0000
44	0,56242	SLD	NonStatic	Max	-1969,840	386,035	0,000	0,0000
44	1,12485	SLD	NonStatic	Max	-1982,975	423,293	0,000	0,0000

Pagina 364 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

44	0,00000	SLD	NonStatic	Min	-1956,706	348,777	0,000	0,0000
44	0,56242	SLD	NonStatic	Min	-1969,840	386,035	0,000	0,0000
44	1,12485	SLD	NonStatic	Min	-1982,975	423,293	0,000	0,0000
44	0,00000	SLV	NonStatic	Max	-2894,287	458,956	0,000	0,0000
44	0,56242	SLV	NonStatic	Max	-2913,034	505,061	0,000	0,0000
44	1,12485	SLV	NonStatic	Max	-2931,781	551,166	0,000	0,0000
44	0,00000	SLV	NonStatic	Min	-2894,287	458,956	0,000	0,0000
44	0,56242	SLV	NonStatic	Min	-2913,034	505,061	0,000	0,0000
44	1,12485	SLV	NonStatic	Min	-2931,781	551,166	0,000	0,0000
45	0,00000	SLE	NonStatic	Max	-1619,822	235,473	0,000	0,0000
45	0,56242	SLE	NonStatic	Max	-1627,746	268,275	0,000	0,0000
45	1,12485	SLE	NonStatic	Max	-1635,669	301,077	0,000	0,0000
45	0,00000	SLE	NonStatic	Min	-1619,822	235,473	0,000	0,0000
45	0,56242	SLE	NonStatic	Min	-1627,746	268,275	0,000	0,0000
45	1,12485	SLE	NonStatic	Min	-1635,669	301,077	0,000	0,0000
45	0,00000	SLU	NonStatic	Max	-2105,769	306,115	0,000	0,0000
45	0,56242	SLU	NonStatic	Max	-2116,069	348,758	0,000	0,0000
45	1,12485	SLU	NonStatic	Max	-2126,370	391,400	0,000	0,0000
45	0,00000	SLU	NonStatic	Min	-2105,769	306,115	0,000	0,0000
45	0,56242	SLU	NonStatic	Min	-2116,069	348,758	0,000	0,0000
45	1,12485	SLU	NonStatic	Min	-2126,370	391,400	0,000	0,0000
45	0,00000	SLD	NonStatic	Max	-1958,895	287,584	0,000	0,0000
45	0,56242	SLD	NonStatic	Max	-1969,478	325,646	0,000	0,0000
45	1,12485	SLD	NonStatic	Max	-1980,061	363,707	0,000	0,0000
45	0,00000	SLD	NonStatic	Min	-1958,895	287,584	0,000	0,0000
45	0,56242	SLD	NonStatic	Min	-1969,478	325,646	0,000	0,0000
45	1,12485	SLD	NonStatic	Min	-1980,061	363,707	0,000	0,0000
45	0,00000	SLV	NonStatic	Max	-2899,486	402,259	0,000	0,0000
45	0,56242	SLV	NonStatic	Max	-2915,070	449,527	0,000	0,0000
45	1,12485	SLV	NonStatic	Max	-2930,654	496,795	0,000	0,0000
45	0,00000	SLV	NonStatic	Min	-2899,486	402,259	0,000	0,0000
45	0,56242	SLV	NonStatic	Min	-2915,070	449,527	0,000	0,0000
45	1,12485	SLV	NonStatic	Min	-2930,654	496,795	0,000	0,0000

Eurolink S.C.p.A. Pagina 365 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

46	0,00000	SLE	NonStatic	Max -1619,296	5 182,291	0,000	0,0000
46	0,56242	SLE	NonStatic	Max -1624,982	2 215,554	0,000	0,0000
46	1,12485	SLE	NonStatic	Max -1630,668	3 248,817	0,000	0,0000
46	0,00000	SLE	NonStatic	Min -1619,296	182,291	0,000	0,0000
46	0,56242	SLE	NonStatic	Min -1624,982	215,554	0,000	0,0000
46	1,12485	SLE	NonStatic	Min -1630,668	248,817	0,000	0,0000
46	0,00000	SLU	NonStatic	Max -2105,08	5 236,979	0,000	0,0000
46	0,56242	SLU	NonStatic	Max -2112,47	7 280,221	0,000	0,0000
46	1,12485	SLU	NonStatic	Max -2119,868	323,463	0,000	0,0000
46	0,00000	SLU	NonStatic	Min -2105,085	236,979	0,000	0,0000
46	0,56242	SLU	NonStatic	Min -2112,477	280,221	0,000	0,0000
46	1,12485	SLU	NonStatic	Min -2119,868	323,463	0,000	0,0000
46	0,00000	SLD	NonStatic	Max -1960,066	226,581	0,000	0,0000
46	0,56242	SLD	NonStatic	Max -1968,049	9 265,271	0,000	0,0000
46	1,12485	SLD	NonStatic	Max -1976,032	2 303,962	0,000	0,0000
46	0,00000	SLD	NonStatic	Min -1960,066	226,581	0,000	0,0000
46	0,56242	SLD	NonStatic	Min -1968,049	265,271	0,000	0,0000
46	1,12485	SLD	NonStatic	Min -1976,032	303,962	0,000	0,0000
46	0,00000	SLV	NonStatic	Max -2902,369	338,242	0,000	0,0000
46	0,56242	SLV	NonStatic	Max -2914,719	386,456	0,000	0,0000
46	1,12485	SLV	NonStatic	Max -2927,068	3 434,670	0,000	0,0000
46	0,00000	SLV	NonStatic	Min -2902,369	338,242	0,000	0,0000
46	0,56242	SLV	NonStatic	Min -2914,719	386,456	0,000	0,0000
46	1,12485	SLV	NonStatic	Min -2927,068	434,670	0,000	0,0000
47	0,00000	SLE	NonStatic	Max -1617,793	3 131,287	0,000	0,0000
47	0,56242	SLE	NonStatic	Max -1621,215	5 164,858	0,000	0,0000
47	1,12485	SLE	NonStatic	Max -1624,637	7 198,430	0,000	0,0000
47	0,00000	SLE	NonStatic	Min -1617,793	131,287	0,000	0,0000
47	0,56242	SLE	NonStatic	Min -1621,215	164,858	0,000	0,0000
47	1,12485	SLE	NonStatic	Min -1624,637	198,430	0,000	0,0000
47	0,00000	SLU	NonStatic	Max -2103,13	1 170,673	0,000	0,0000
47	0,56242	SLU	NonStatic	Max -2107,579	9 214,316	0,000	0,0000
47	1,12485	SLU	NonStatic	Max -2112,028	3 257,958	0,000	0,0000

Pagina 366 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

47	0,00000	SLU	NonStatic	Min	-2103,131	170,673	0,000	0,0000
47	0,56242	SLU	NonStatic	Min	-2107,579	214,316	0,000	0,0000
47	1,12485	SLU	NonStatic	Min	-2112,028	257,958	0,000	0,0000
47	0,00000	SLD	NonStatic	Max	-1960,071	167,234	0,000	0,0000
47	0,56242	SLD	NonStatic	Max	-1965,417	206,376	0,000	0,0000
47	1,12485	SLD	NonStatic	Max	-1970,764	245,518	0,000	0,0000
47	0,00000	SLD	NonStatic	Min	-1960,071	167,234	0,000	0,0000
47	0,56242	SLD	NonStatic	Min	-1965,417	206,376	0,000	0,0000
47	1,12485	SLD	NonStatic	Min	-1970,764	245,518	0,000	0,0000
47	0,00000	SLV	NonStatic	Max	-2903,170	270,846	0,000	0,0000
47	0,56242	SLV	NonStatic	Max	-2912,229	319,785	0,000	0,0000
47	1,12485	SLV	NonStatic	Max	-2921,288	368,725	0,000	0,0000
47	0,00000	SLV	NonStatic	Min	-2903,170	270,846	0,000	0,0000
47	0,56242	SLV	NonStatic	Min	-2912,229	319,785	0,000	0,0000
47	1,12485	SLV	NonStatic	Min	-2921,288	368,725	0,000	0,0000
48	0,00000	SLE	NonStatic	Max	-1615,111	82,782	0,000	0,0000
48	0,56242	SLE	NonStatic	Max	-1616,254	116,508	0,000	0,0000
48	1,12485	SLE	NonStatic	Max	-1617,396	150,234	0,000	0,0000
48	0,00000	SLE	NonStatic	Min	-1615,111	82,782	0,000	0,0000
48	0,56242	SLE	NonStatic	Min	-1616,254	116,508	0,000	0,0000
48	1,12485	SLE	NonStatic	Min	-1617,396	150,234	0,000	0,0000
48	0,00000	SLU	NonStatic	Max	-2099,645	107,616	0,000	0,0000
48	0,56242	SLU	NonStatic	Max	-2101,130	151,460	0,000	0,0000
48	1,12485	SLU	NonStatic	Max	-2102,615	195,304	0,000	0,0000
48	0,00000	SLU	NonStatic	Min	-2099,645	107,616	0,000	0,0000
48	0,56242	SLU	NonStatic	Min	-2101,130	151,460	0,000	0,0000
48	1,12485	SLU	NonStatic	Min	-2102,615	195,304	0,000	0,0000
48	0,00000	SLD	NonStatic	Max	-1958,711	110,307	0,000	0,0000
48	0,56242	SLD	NonStatic	Max	-1961,397	149,721	0,000	0,0000
48	1,12485	SLD	NonStatic	Max	-1964,082	189,134	0,000	0,0000
48	0,00000	SLD	NonStatic	Min	-1958,711	110,307	0,000	0,0000
48	0,56242	SLD	NonStatic	Min	-1961,397	149,721	0,000	0,0000
48	1,12485	SLD	NonStatic	Min	-1964,082	189,134	0,000	0,0000

Eurolink S.C.p.A. Pagina 367 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

48	0,00000	SLV	NonStatic	Max	-2901,921	203,037	0,000	0,0000
48	0,56242	SLV	NonStatic	Max	-2907,647	252,477	0,000	0,0000
48	1,12485	SLV	NonStatic	Max	-2913,374	301,918	0,000	0,0000
48	0,00000	SLV	NonStatic	Min	-2901,921	203,037	0,000	0,0000
48	0,56242	SLV	NonStatic	Min	-2907,647	252,477	0,000	0,0000
48	1,12485	SLV	NonStatic	Min	-2913,374	301,918	0,000	0,0000
49	0,00000	SLE	NonStatic	Max	2,768E-04	-2,842E-14	1,668E-1	4 0,0000
49	0,50000	SLE	NonStatic	Max	2,768E-04	-2,842E-14	1,668E-1	4 0,0000
49	1,00000	SLE	NonStatic	Max	2,768E-04	-2,842E-14	1,668E-1	4 0,0000
49	0,00000	SLE	NonStatic	Min	2,768E-04	-2,842E-14	1,668E-14	0,0000
49	0,50000	SLE	NonStatic	Min	2,768E-04	-2,842E-14	1,668E-14	0,0000
49	1,00000	SLE	NonStatic	Min	2,768E-04	-2,842E-14	1,668E-14	0,0000
49	0,00000	SLU	NonStatic	Max	3,598E-04	-2,842E-14	2,168E-1	4 0,0000
49	0,50000	SLU	NonStatic	Max	3,598E-04	-2,842E-14	2,168E-1	4 0,0000
49	1,00000	SLU	NonStatic	Max	3,598E-04	-2,842E-14	2,168E-1	4 0,0000
49	0,00000	SLU	NonStatic	Min	3,598E-04	-2,842E-14	2,168E-14	0,0000
49	0,50000	SLU	NonStatic	Min	3,598E-04	-2,842E-14	2,168E-14	0,0000
49	1,00000	SLU	NonStatic	Min	3,598E-04	-2,842E-14	2,168E-14	0,0000
49	0,00000	SLD	NonStatic	Max	4,209E-04	0,000	1,890E-14	0,0000
49	0,50000	SLD	NonStatic	Max	4,209E-04	0,000	1,890E-14	0,0000
49	1,00000	SLD	NonStatic	Max	4,209E-04	0,000	1,890E-14	0,0000
49	0,00000	SLD	NonStatic	Min	4,209E-04	0,000 1	,890E-14	0,0000
49	0,50000	SLD	NonStatic	Min	4,209E-04	0,000 1	,890E-14	0,0000
49	1,00000	SLD	NonStatic	Min	4,209E-04	0,000 1	,890E-14	0,0000
49	0,00000	SLV	NonStatic	Max	9,868E-04	-2,842E-14	2,090E-1	4 0,0000
49	0,50000	SLV	NonStatic	Max	9,868E-04	-2,842E-14	2,090E-1	4 0,0000
49	1,00000	SLV	NonStatic	Max	9,868E-04	-2,842E-14	2,090E-1	4 0,0000
49	0,00000	SLV	NonStatic	Min	9,868E-04	-2,842E-14	2,090E-14	0,0000
49	0,50000	SLV	NonStatic	Min	9,868E-04	-2,842E-14	2,090E-14	0,0000
49	1,00000	SLV	NonStatic	Min	9,868E-04	-2,842E-14	2,090E-14	0,0000
50	0,00000	SLE	NonStatic	Max	2,411E-04	-2,842E-14	1,674E-1	4 0,0000
50	0,50000	SLE	NonStatic	Max	2,411E-04	-2,842E-14	1,674E-1	4 0,0000
50	1,00000	SLE	NonStatic	Max	2,411E-04	-2,842E-14	1,674E-1	4 0,0000

Pagina 368 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

50	0,00000	SLE NonStatic	Min 2,411E-04 -2,842E-14 1,674E-14 0,0000
50	0,50000	SLE NonStatic	Min 2,411E-04 -2,842E-14 1,674E-14 0,0000
50	1,00000	SLE NonStatic	Min 2,411E-04 -2,842E-14 1,674E-14 0,0000
50	0,00000	SLU NonStatic	Max 3,134E-04 -2,842E-14 2,176E-14 0,0000
50	0,50000	SLU NonStatic	Max 3,134E-04 -2,842E-14 2,176E-14 0,0000
50	1,00000	SLU NonStatic	Max 3,134E-04 -2,842E-14 2,176E-14 0,0000
50	0,00000	SLU NonStatic	Min 3,134E-04 -2,842E-14 2,176E-14 0,0000
50	0,50000	SLU NonStatic	Min 3,134E-04 -2,842E-14 2,176E-14 0,0000
50	1,00000	SLU NonStatic	Min 3,134E-04 -2,842E-14 2,176E-14 0,0000
50	0,00000	SLD NonStatic	Max 3,673E-04 -2,842E-14 1,897E-14 0,0000
50	0,50000	SLD NonStatic	Max 3,673E-04 -2,842E-14 1,897E-14 0,0000
50	1,00000	SLD NonStatic	Max 3,673E-04 -2,842E-14 1,897E-14 0,0000
50	0,00000	SLD NonStatic	Min 3,673E-04 -2,842E-14 1,897E-14 0,0000
50	0,50000	SLD NonStatic	Min 3,673E-04 -2,842E-14 1,897E-14 0,0000
50	1,00000	SLD NonStatic	Min 3,673E-04 -2,842E-14 1,897E-14 0,0000
50	0,00000	SLV NonStatic	Max 8,644E-04 -2,842E-14 2,096E-14 0,0000
50	0,50000	SLV NonStatic	Max 8,644E-04 -2,842E-14 2,096E-14 0,0000
50	1,00000	SLV NonStatic	Max 8,644E-04 -2,842E-14 2,096E-14 0,0000
50	0,00000	SLV NonStatic	Min 8,644E-04 -2,842E-14 2,096E-14 0,0000
50	0,50000	SLV NonStatic	Min 8,644E-04 -2,842E-14 2,096E-14 0,0000
50	1,00000	SLV NonStatic	Min 8,644E-04 -2,842E-14 2,096E-14 0,0000
51	0,00000	SLE NonStatic	Max 2,109E-04 0,000 1,681E-14 0,0000
51	0,50000	SLE NonStatic	Max 2,109E-04 0,000 1,681E-14 0,0000
51	1,00000	SLE NonStatic	Max 2,109E-04 0,000 1,681E-14 0,0000
51	0,00000	SLE NonStatic	Min 2,109E-04 0,000 1,681E-14 0,0000
51	0,50000	SLE NonStatic	Min 2,109E-04 0,000 1,681E-14 0,0000
51	1,00000	SLE NonStatic	Min 2,109E-04 0,000 1,681E-14 0,0000
51	0,00000	SLU NonStatic	Max 2,742E-04 0,000 2,185E-14 0,0000
51	0,50000	SLU NonStatic	Max 2,742E-04 0,000 2,185E-14 0,0000
51	1,00000	SLU NonStatic	Max 2,742E-04 0,000 2,185E-14 0,0000
51	0,00000	SLU NonStatic	Min 2,742E-04 0,000 2,185E-14 0,0000
51	0,50000	SLU NonStatic	Min 2,742E-04 0,000 2,185E-14 0,0000
51	1,00000	SLU NonStatic	Min 2,742E-04 0,000 2,185E-14 0,0000

Eurolink S.C.p.A. Pagina 369 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

51	0,00000	SLD NonSt	atic Max	3,199E-04	0,000	1,905E-14	0,0000
51	0,50000	SLD NonSt	atic Max	3,199E-04	0,000	1,905E-14	0,0000
51	1,00000	SLD NonSt	atic Max	3,199E-04	0,000	1,905E-14	0,0000
51	0,00000	SLD NonSt	atic Min	3,199E-04	0,000 1	,905E-14	0,0000
51	0,50000	SLD NonSt	atic Min	3,199E-04	0,000 1	,905E-14	0,0000
51	1,00000	SLD NonSta	atic Min	3,199E-04	0,000 1	,905E-14	0,0000
51	0,00000	SLV NonSta	atic Max	7,481E-04	2,842E-14	2,104E-14	0,0000
51	0,50000	SLV NonSta	atic Max	7,481E-04	2,842E-14	2,104E-14	0,0000
51	1,00000	SLV NonSta	atic Max	7,481E-04	2,842E-14	2,104E-14	0,0000
51	0,00000	SLV NonSta	atic Min	7,481E-04	2,842E-14	2,104E-14	0,0000
51	0,50000	SLV NonSta	atic Min	7,481E-04	2,842E-14	2,104E-14	0,0000
51	1,00000	SLV NonSta	atic Min	7,481E-04	2,842E-14	2,104E-14	0,0000
52	0,00000	SLE NonSta	atic Max	1,863E-04	0,000	1,687E-14	0,0000
52	0,50000	SLE NonSta	atic Max	1,863E-04	0,000	1,687E-14	0,0000
52	1,00000	SLE NonSta	atic Max	1,863E-04	0,000	1,687E-14	0,0000
52	0,00000	SLE NonSta	atic Min	1,863E-04	0,000 1	,687E-14	0,0000
52	0,50000	SLE NonSta	atic Min	1,863E-04	0,000 1	,687E-14	0,0000
52	1,00000	SLE NonSta	atic Min	1,863E-04	0,000 1	,687E-14	0,0000
52	0,00000	SLU NonSt	atic Max	2,422E-04	-2,842E-14	2,193E-14	0,0000
52	0,50000	SLU NonSt	atic Max	2,422E-04	-2,842E-14	2,193E-14	0,0000
52	1,00000	SLU NonSt	atic Max	2,422E-04	-2,842E-14	2,193E-14	0,0000
52	0,00000	SLU NonSt	atic Min	2,422E-04	-2,842E-14	2,193E-14	0,0000
52	0,50000	SLU NonSt	atic Min	2,422E-04	-2,842E-14	2,193E-14	0,0000
52	1,00000	SLU NonSt	atic Min	2,422E-04	-2,842E-14	2,193E-14	0,0000
52	0,00000	SLD NonSt	atic Max	2,792E-04	0,000	1,913E-14	0,0000
52	0,50000	SLD NonSt	atic Max	2,792E-04	0,000	1,913E-14	0,0000
52	1,00000	SLD NonSt	atic Max	2,792E-04	0,000	1,913E-14	0,0000
52	0,00000	SLD NonSt	atic Min	2,792E-04	0,000 1	,913E-14	0,0000
52	0,50000	SLD NonSt	atic Min	2,792E-04	0,000 1	,913E-14	0,0000
52	1,00000	SLD NonSta	atic Min	2,792E-04	0,000 1	,913E-14	0,0000
52	0,00000	SLV NonSta	atic Max	6,393E-04	2,842E-14	2,113E-14	0,0000
52	0,50000	SLV NonSta	atic Max	6,393E-04	2,842E-14	2,113E-14	0,0000
52	1,00000	SLV NonSta	atic Max	6,393E-04	2,842E-14	2,113E-14	0,0000

Pagina 370 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

52	0,00000	SLV	NonStatic	Min	6,393E-04	2,842E-14	2,113E-1	0,0000
52	0,50000	SLV	NonStatic	Min	6,393E-04	2,842E-14	2,113E-1	0,0000
52	1,00000	SLV	NonStatic	Min	6,393E-04	2,842E-14	2,113E-1	0,0000
53	0,00000	SLE	NonStatic	Max	1,705E-04	0,000	1,694E-14	0,0000
53	0,50000	SLE	NonStatic	Max	1,705E-04	0,000	1,694E-14	0,0000
53	1,00000	SLE	NonStatic	Max	1,705E-04	0,000	1,694E-14	0,0000
53	0,00000	SLE	NonStatic	Min	1,705E-04	0,000 1	I,694E-14	0,0000
53	0,50000	SLE	NonStatic	Min	1,705E-04	0,000 1	I,694E-14	0,0000
53	1,00000	SLE	NonStatic	Min	1,705E-04	0,000 1	I,694E-14	0,0000
53	0,00000	SLU	NonStatic	Max	2,217E-04	0,000	2,202E-14	0,0000
53	0,50000	SLU	NonStatic	Max	2,217E-04	0,000	2,202E-14	0,0000
53	1,00000	SLU	NonStatic	Max	2,217E-04	0,000	2,202E-14	0,0000
53	0,00000	SLU	NonStatic	Min	2,217E-04	0,000 2	2,202E-14	0,0000
53	0,50000	SLU	NonStatic	Min	2,217E-04	0,000 2	2,202E-14	0,0000
53	1,00000	SLU	NonStatic	Min	2,217E-04	0,000 2	2,202E-14	0,0000
53	0,00000	SLD	NonStatic	Max	2,511E-04	0,000	1,921E-14	0,0000
53	0,50000	SLD	NonStatic	Max	2,511E-04	0,000	1,921E-14	0,0000
53	1,00000	SLD	NonStatic	Max	2,511E-04	0,000	1,921E-14	0,0000
53	0,00000	SLD	NonStatic	Min	2,511E-04	0,000 1	1,921E-14	0,0000
53	0,50000	SLD	NonStatic	Min	2,511E-04	0,000 1	1,921E-14	0,0000
53	1,00000	SLD	NonStatic	Min	2,511E-04	0,000 1	1,921E-14	0,0000
53	0,00000	SLV	NonStatic	Max	5,562E-04	2,842E-14	2,125E-	14 0,0000
53	0,50000	SLV	NonStatic	Max	5,562E-04	2,842E-14	2,125E-	14 0,0000
53	1,00000	SLV	NonStatic	Max	5,562E-04	2,842E-14	2,125E-	14 0,0000
53	0,00000	SLV	NonStatic	Min	5,562E-04	2,842E-14	2,125E-1	0,0000
53	0,50000	SLV	NonStatic	Min	5,562E-04	2,842E-14	2,125E-1	0,0000
53	1,00000	SLV	NonStatic	Min	5,562E-04	2,842E-14	2,125E-1	0,0000
54	0,00000	SLE	NonStatic	Max	-979,703	0,000	0,000	0,0000
54	0,47065	SLE	NonStatic	Max	-979,703	0,000	0,000	0,0000
54	0,94129	SLE	NonStatic	Max	-979,703	0,000	0,000	0,0000
54	0,00000	SLE	NonStatic	Min	-979,703	0,000	0,000	0,000
54	0,47065	SLE	NonStatic	Min	-979,703	0,000	0,000	0,0000
54	0,94129	SLE	NonStatic	Min	-979,703	0,000	0,000	0,0000

Eurolink S.C.p.A. Pagina 371 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

54	0,00000	SLU NonStatic	Max -1273,614 0,000 0,000 0,0000
54	0,47065	SLU NonStatic	Max -1273,614 0,000 0,000 0,0000
54	0,94129	SLU NonStatic	Max -1273,614 0,000 0,000 0,0000
54	0,00000	SLU NonStatic	Min -1273,614 0,000 0,000 0,0000
54	0,47065	SLU NonStatic	Min -1273,614 0,000 0,000 0,0000
54	0,94129	SLU NonStatic	Min -1273,614 0,000 0,000 0,0000
54	0,00000	SLD NonStatic	Max -1121,407 0,000 0,000 0,0000
54	0,47065	SLD NonStatic	Max -1121,407 0,000 0,000 0,0000
54	0,94129	SLD NonStatic	Max -1121,407 0,000 0,000 0,0000
54	0,00000	SLD NonStatic	Min -1121,407 0,000 0,000 0,0000
54	0,47065	SLD NonStatic	Min -1121,407 0,000 0,000 0,0000
54	0,94129	SLD NonStatic	Min -1121,407 0,000 0,000 0,0000
54	0,00000	SLV NonStatic	Max -1292,199 0,000 0,000 0,0000
54	0,47065	SLV NonStatic	Max -1292,199 0,000 0,000 0,0000
54	0,94129	SLV NonStatic	Max -1292,199 0,000 0,000 0,0000
54	0,00000	SLV NonStatic	Min -1292,199 0,000 0,000 0,0000
54	0,47065	SLV NonStatic	Min -1292,199 0,000 0,000 0,0000
54	0,94129	SLV NonStatic	Min -1292,199 0,000 0,000 0,0000
55	0,00000	SLE NonStatic	Max -615,208 1,421E-14 7,266E-15 0,0000
55	0,50000	SLE NonStatic	Max -615,208 1,421E-14 7,266E-15 0,0000
55	1,00000	SLE NonStatic	Max -615,208 1,421E-14 7,266E-15 0,0000
55	0,00000	SLE NonStatic	Min -615,208 1,421E-14 7,266E-15 0,0000
55	0,50000	SLE NonStatic	Min -615,208 1,421E-14 7,266E-15 0,0000
55	1,00000	SLE NonStatic	Min -615,208 1,421E-14 7,266E-15 0,0000
55	0,00000	SLU NonStatic	Max -799,771 0,000 9,446E-15 0,0000
55	0,50000	SLU NonStatic	Max -799,771 0,000 9,446E-15 0,0000
55	1,00000	SLU NonStatic	Max -799,771 0,000 9,446E-15 0,0000
55	0,00000	SLU NonStatic	Min -799,771 0,000 9,446E-15 0,0000
55	0,50000	SLU NonStatic	Min -799,771 0,000 9,446E-15 0,0000
55	1,00000	SLU NonStatic	Min -799,771 0,000 9,446E-15 0,0000
55	0,00000	SLD NonStatic	Max -692,411 2,842E-14 8,690E-15 0,0000
55	0,50000	SLD NonStatic	Max -692,411 2,842E-14 8,690E-15 0,0000
55	1,00000	SLD NonStatic	Max -692,411 2,842E-14 8,690E-15 0,0000

Pagina 372 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

55	0,00000	SLD	NonStatic	Min	-692,411	2,842E-14	8,690E-15	0,0000
55	0,50000	SLD	NonStatic	Min	-692,411	2,842E-14	8,690E-15	0,0000
55	1,00000	SLD	NonStatic	Min	-692,411	2,842E-14	8,690E-15	0,0000
55	0,00000	SLV	NonStatic	Max	-743,416	2,842E-14	1,176E-14	0,0000
55	0,50000	SLV	NonStatic	Max	-743,416	2,842E-14	1,176E-14	0,0000
55	1,00000	SLV	NonStatic	Max	-743,416	2,842E-14	1,176E-14	0,0000
55	0,00000	SLV	NonStatic	Min	-743,416	2,842E-14	1,176E-14	0,0000
55	0,50000	SLV	NonStatic	Min	-743,416	2,842E-14	1,176E-14	0,0000
55	1,00000	SLV	NonStatic	Min	-743,416	2,842E-14	1,176E-14	0,0000
56	0,00000	SLE	NonStatic	Max	-429,162	0,000 4	,519E-15	0,0000
56	0,50000	SLE	NonStatic	Max	-429,162	0,000 4	,519E-15	0,0000
56	1,00000	SLE	NonStatic	Max	-429,162	0,000 4	,519E-15	0,0000
56	0,00000	SLE	NonStatic	Min	-429,162	0,000 4,	519E-15	0,0000
56	0,50000	SLE	NonStatic	Min	-429,162	0,000 4,	519E-15	0,0000
56	1,00000	SLE	NonStatic	Min	-429,162	0,000 4,	519E-15	0,0000
56	0,00000	SLU	NonStatic	Max	-557,911	0,000 5	,874E-15	0,0000
56	0,50000	SLU	NonStatic	Max	-557,911	0,000 5	,874E-15	0,0000
56	1,00000	SLU	NonStatic	Max	-557,911	0,000 5	,874E-15	0,0000
56	0,00000	SLU	NonStatic	Min	-557,911	0,000 5,	874E-15	0,0000
56	0,50000	SLU	NonStatic	Min	-557,911	0,000 5,	874E-15	0,0000
56	1,00000	SLU	NonStatic	Min	-557,911	0,000 5,	874E-15	0,0000
56	0,00000	SLD	NonStatic	Max	-489,195	7,105E-15	5,427E-15	0,0000
56	0,50000	SLD	NonStatic	Max	-489,195	7,105E-15	5,427E-15	0,0000
56	1,00000	SLD	NonStatic	Max	-489,195	7,105E-15	5,427E-15	0,0000
56	0,00000	SLD	NonStatic	Min	-489,195	7,105E-15	5,427E-15	0,0000
56	0,50000	SLD	NonStatic	Min	-489,195	7,105E-15	5,427E-15	0,0000
56	1,00000	SLD	NonStatic	Min	-489,195	7,105E-15	5,427E-15	0,0000
56	0,00000	SLV	NonStatic	Max	-556,495	0,000 7	,446E-15	0,0000
56	0,50000	SLV	NonStatic	Max	-556,495	0,000 7	,446E-15	0,0000
56	1,00000	SLV	NonStatic	Max	-556,495	0,000 7	,446E-15	0,0000
56	0,00000	SLV	NonStatic	Min	-556,495	0,000 7,	446E-15	0,0000
56	0,50000	SLV	NonStatic	Min	-556,495	0,000 7,	446E-15	0,0000
56	1,00000	SLV	NonStatic	Min	-556,495	0,000 7,	446E-15	0,0000

Eurolink S.C.p.A. Pagina 373 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

57	0,00000	SLE	NonStatic	Max	-222,842	3,553E-15	2,075E-15	0,0000
57	0,50000	SLE	NonStatic	Max	-222,842	3,553E-15	2,075E-15	0,0000
57	1,00000	SLE	NonStatic	Max	-222,842	3,553E-15	2,075E-15	0,0000
57	0,00000	SLE	NonStatic	Min	-222,842	3,553E-15	2,075E-15	0,0000
57	0,50000	SLE	NonStatic	Min	-222,842	3,553E-15	2,075E-15	0,0000
57	1,00000	SLE	NonStatic	Min	-222,842	3,553E-15	2,075E-15	0,0000
57	0,00000	SLU	NonStatic	Max	-289,695	7,105E-15	2,697E-15	0,0000
57	0,50000	SLU	NonStatic	Max	-289,695	7,105E-15	2,697E-15	0,0000
57	1,00000	SLU	NonStatic	Max	-289,695	7,105E-15	2,697E-15	0,0000
57	0,00000	SLU	NonStatic	Min	-289,695	7,105E-15	2,697E-15	0,0000
57	0,50000	SLU	NonStatic	Min	-289,695	7,105E-15	2,697E-15	0,0000
57	1,00000	SLU	NonStatic	Min	-289,695	7,105E-15	2,697E-15	0,0000
57	0,00000	SLD	NonStatic	Max	-257,204	7,105E-15	2,509E-15	0,0000
57	0,50000	SLD	NonStatic	Max	-257,204	7,105E-15	2,509E-15	0,0000
57	1,00000	SLD	NonStatic	Max	-257,204	7,105E-15	2,509E-15	0,0000
57	0,00000	SLD	NonStatic	Min	-257,204	7,105E-15	2,509E-15	0,0000
57	0,50000	SLD	NonStatic	Min	-257,204	7,105E-15	2,509E-15	0,0000
57	1,00000	SLD	NonStatic	Min	-257,204	7,105E-15	2,509E-15	0,0000
57	0,00000	SLV	NonStatic	Max	-308,668	7,105E-15	3,514E-15	0,0000
57	0,50000	SLV	NonStatic	Max	-308,668	7,105E-15	3,514E-15	0,0000
57	1,00000	SLV	NonStatic	Max	-308,668	7,105E-15	3,514E-15	0,0000
57	0,00000	SLV	NonStatic	Min	-308,668	7,105E-15	3,514E-15	0,0000
57	0,50000	SLV	NonStatic	Min	-308,668	7,105E-15	3,514E-15	0,0000
57	1,00000	SLV	NonStatic	Min	-308,668	7,105E-15	3,514E-15	0,0000
58	0,00000	SLE	NonStatic	Max	-227,372	3,553E-15	1,870E-15	0,0000
58	0,50000	SLE	NonStatic	Max	-227,372	3,553E-15	1,870E-15	0,0000
58	1,00000	SLE	NonStatic	Max	-227,372	3,553E-15	1,870E-15	0,0000
58	0,00000	SLE	NonStatic	Min	-227,372	3,553E-15	1,870E-15	0,0000
58	0,50000	SLE	NonStatic	Min	-227,372	3,553E-15	1,870E-15	0,0000
58	1,00000	SLE	NonStatic	Min	-227,372	3,553E-15	1,870E-15	0,0000
58	0,00000	SLU	NonStatic	Max	-295,584	3,553E-15	2,431E-15	0,0000
58	0,50000	SLU	NonStatic	Max	-295,584	3,553E-15	2,431E-15	0,0000
58	1,00000	SLU	NonStatic	Max	-295,584	3,553E-15	2,431E-15	0,0000

Pagina 374 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

58	0,00000	SLU	NonStatic	Min	-295,584 3,553E-15 2,431E-15 0,0000
58	0,50000	SLU	NonStatic	Min	-295,584 3,553E-15 2,431E-15 0,0000
58	1,00000	SLU	NonStatic	Min	-295,584 3,553E-15 2,431E-15 0,0000
58	0,00000	SLD	NonStatic	Max	-264,994 3,553E-15 2,277E-15 0,0000
58	0,50000	SLD	NonStatic	Max	-264,994 3,553E-15 2,277E-15 0,0000
58	1,00000	SLD	NonStatic	Max	-264,994 3,553E-15 2,277E-15 0,0000
58	0,00000	SLD	NonStatic	Min	-264,994 3,553E-15 2,277E-15 0,0000
58	0,50000	SLD	NonStatic	Min	-264,994 3,553E-15 2,277E-15 0,0000
58	1,00000	SLD	NonStatic	Min	-264,994 3,553E-15 2,277E-15 0,0000
58	0,00000	SLV	NonStatic	Max	-330,890 3,553E-15 3,260E-15 0,0000
58	0,50000	SLV	NonStatic	Max	-330,890 3,553E-15 3,260E-15 0,0000
58	1,00000	SLV	NonStatic	Max	-330,890 3,553E-15 3,260E-15 0,0000
58	0,00000	SLV	NonStatic	Min	-330,890 3,553E-15 3,260E-15 0,0000
58	0,50000	SLV	NonStatic	Min	-330,890 3,553E-15 3,260E-15 0,0000
58	1,00000	SLV	NonStatic	Min	-330,890 3,553E-15 3,260E-15 0,0000
59	0,00000	SLE	NonStatic	Max	-229,120 1,776E-15 1,650E-15 0,0000
59	0,50000	SLE	NonStatic	Max	-229,120 1,776E-15 1,650E-15 0,0000
59	1,00000	SLE	NonStatic	Max	-229,120 1,776E-15 1,650E-15 0,0000
59	0,00000	SLE	NonStatic	Min	-229,120 1,776E-15 1,650E-15 0,0000
59	0,50000	SLE	NonStatic	Min	-229,120 1,776E-15 1,650E-15 0,0000
59	1,00000	SLE	NonStatic	Min	-229,120 1,776E-15 1,650E-15 0,0000
59	0,00000	SLU	NonStatic	Max	-297,857 0,000 2,145E-15 0,0000
59	0,50000	SLU	NonStatic	Max	-297,857 0,000 2,145E-15 0,0000
59	1,00000	SLU	NonStatic	Max	-297,857 0,000 2,145E-15 0,0000
59	0,00000	SLU	NonStatic	Min	-297,857 0,000 2,145E-15 0,0000
59	0,50000	SLU	NonStatic	Min	-297,857 0,000 2,145E-15 0,0000
59	1,00000	SLU	NonStatic	Min	-297,857 0,000 2,145E-15 0,0000
59	0,00000	SLD	NonStatic	Max	-269,078 3,553E-15 2,025E-15 0,0000
59	0,50000	SLD	NonStatic	Max	-269,078 3,553E-15 2,025E-15 0,0000
59	1,00000	SLD	NonStatic	Max	-269,078 3,553E-15 2,025E-15 0,0000
59	0,00000	SLD	NonStatic	Min	-269,078 3,553E-15 2,025E-15 0,0000
59	0,50000	SLD	NonStatic	Min	-269,078 3,553E-15 2,025E-15 0,0000
59	1,00000	SLD	NonStatic	Min	-269,078 3,553E-15 2,025E-15 0,0000

Eurolink S.C.p.A. Pagina 375 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

59	0,00000	SLV	NonStatic	Max	-346,232 3,553E-15 2,968E-15 0,0000
59	0,50000	SLV	NonStatic	Max	-346,232 3,553E-15 2,968E-15 0,0000
59	1,00000	SLV	NonStatic	Max	-346,232 3,553E-15 2,968E-15 0,0000
59	0,00000	SLV	NonStatic	Min	-346,232 3,553E-15 2,968E-15 0,0000
59	0,50000	SLV	NonStatic	Min	-346,232 3,553E-15 2,968E-15 0,0000
59	1,00000	SLV	NonStatic	Min	-346,232 3,553E-15 2,968E-15 0,0000
60	0,00000	SLE	NonStatic	Max	-228,911 -3,553E-15 1,419E-15 0,0000
60	0,50000	SLE	NonStatic	Max	-228,911 -3,553E-15 1,419E-15 0,0000
60	1,00000	SLE	NonStatic	Max	-228,911 -3,553E-15 1,419E-15 0,0000
60	0,00000	SLE	NonStatic	Min	-228,911 -3,553E-15 1,419E-15 0,0000
60	0,50000	SLE	NonStatic	Min	-228,911 -3,553E-15 1,419E-15 0,0000
60	1,00000	SLE	NonStatic	Min	-228,911 -3,553E-15 1,419E-15 0,0000
60	0,00000	SLU	NonStatic	Max	-297,584 -7,105E-15 1,845E-15 0,0000
60	0,50000	SLU	NonStatic	Max	-297,584 -7,105E-15 1,845E-15 0,0000
60	1,00000	SLU	NonStatic	Max	-297,584 -7,105E-15 1,845E-15 0,0000
60	0,00000	SLU	NonStatic	Min	-297,584 -7,105E-15 1,845E-15 0,0000
60	0,50000	SLU	NonStatic	Min	-297,584 -7,105E-15 1,845E-15 0,0000
60	1,00000	SLU	NonStatic	Min	-297,584 -7,105E-15 1,845E-15 0,0000
60	0,00000	SLD	NonStatic	Max	-270,435 -3,553E-15 1,759E-15 0,0000
60	0,50000	SLD	NonStatic	Max	-270,435 -3,553E-15 1,759E-15 0,0000
60	1,00000	SLD	NonStatic	Max	-270,435 -3,553E-15 1,759E-15 0,0000
60	0,00000	SLD	NonStatic	Min	-270,435 -3,553E-15 1,759E-15 0,0000
60	0,50000	SLD	NonStatic	Min	-270,435 -3,553E-15 1,759E-15 0,0000
60	1,00000	SLD	NonStatic	Min	-270,435 -3,553E-15 1,759E-15 0,0000
60	0,00000	SLV	NonStatic	Max	-355,932 -3,553E-15 2,647E-15 0,0000
60	0,50000	SLV	NonStatic	Max	-355,932 -3,553E-15 2,647E-15 0,0000
60	1,00000	SLV	NonStatic	Max	-355,932 -3,553E-15 2,647E-15 0,0000
60	0,00000	SLV	NonStatic	Min	-355,932 -3,553E-15 2,647E-15 0,0000
60	0,50000	SLV	NonStatic	Min	-355,932 -3,553E-15 2,647E-15 0,0000
60	1,00000	SLV	NonStatic	Min	-355,932 -3,553E-15 2,647E-15 0,0000
61	0,00000	SLE	NonStatic	Max	-227,436 0,000 1,181E-15 0,0000
61	0,50000	SLE	NonStatic	Max	-227,436 0,000 1,181E-15 0,0000
61	1,00000	SLE	NonStatic	Max	-227,436 0,000 1,181E-15 0,0000

Pagina 376 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

61	0,00000	SLE I	NonStatic	Min	-227,436	0,000	1,181E-15	0,0000
61	0,50000	SLE I	NonStatic	Min	-227,436	0,000	1,181E-15	0,0000
61	1,00000	SLE I	NonStatic	Min	-227,436	0,000	1,181E-15	0,0000
61	0,00000	SLU	NonStatic	Max	-295,667	1,776E-1	5 1,535E-15	0,0000
61	0,50000	SLU	NonStatic	Max	-295,667	1,776E-1	5 1,535E-15	0,0000
61	1,00000	SLU	NonStatic	Max	-295,667	1,776E-1	5 1,535E-15	0,0000
61	0,00000	SLU	NonStatic	Min	-295,667	1,776E-1	5 1,535E-15	0,0000
61	0,50000	SLU	NonStatic	Min	-295,667	1,776E-1	5 1,535E-15	0,0000
61	1,00000	SLU	NonStatic	Min	-295,667	1,776E-1	5 1,535E-15	0,0000
61	0,00000	SLD	NonStatic	Max	-269,901	0,000	1,481E-15	0,0000
61	0,50000	SLD	NonStatic	Max	-269,901	0,000	1,481E-15	0,0000
61	1,00000	SLD	NonStatic	Max	-269,901	0,000	1,481E-15	0,0000
61	0,00000	SLD	NonStatic	Min	-269,901	0,000	1,481E-15	0,0000
61	0,50000	SLD	NonStatic	Min	-269,901	0,000	1,481E-15	0,0000
61	1,00000	SLD	NonStatic	Min	-269,901	0,000	1,481E-15	0,0000
61	0,00000	SLV I	NonStatic	Max	-361,106	0,000	2,304E-15	0,0000
61	0,50000	SLV I	NonStatic	Max	-361,106	0,000	2,304E-15	0,0000
61	1,00000	SLV I	NonStatic	Max	-361,106	0,000	2,304E-15	0,0000
61	0,00000	SLV I	NonStatic	Min	-361,106	0,000	2,304E-15	0,0000
61	0,50000	SLV I	NonStatic	Min	-361,106	0,000	2,304E-15	0,0000
61	1,00000	SLV I	NonStatic	Min	-361,106	0,000	2,304E-15	0,0000
62	0,00000	SLE I	NonStatic	Max	-225,259	0,000	9,377E-16	0,0000
62	0,50000	SLE I	NonStatic	Max	-225,259	0,000	9,377E-16	0,0000
62	1,00000	SLE I	NonStatic	Max	-225,259	0,000	9,377E-16	0,0000
62	0,00000	SLE I	NonStatic	Min	-225,259	0,000	9,377E-16	0,0000
62	0,50000	SLE I	NonStatic	Min	-225,259	0,000	9,377E-16	0,0000
62	1,00000	SLE I	NonStatic	Min	-225,259	0,000	9,377E-16	0,0000
62	0,00000	SLU	NonStatic	Max	-292,837	-1,776E-1	5 1,219E-15	0,0000
62	0,50000	SLU	NonStatic	Max	-292,837	-1,776E-1	5 1,219E-15	0,0000
62	1,00000	SLU	NonStatic	Max	-292,837	-1,776E-1	5 1,219E-15	0,0000
62	0,00000	SLU	NonStatic	Min	-292,837	-1,776E-1	5 1,219E-15	0,0000
62	0,50000	SLU	NonStatic	Min	-292,837	-1,776E-1	5 1,219E-15	0,0000
62	1,00000	SLU	NonStatic	Min	-292,837	-1,776E-1	5 1,219E-15	0,0000

Eurolink S.C.p.A. Pagina 377 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

62	0,00000	SLD	NonStatic	Max	-268,161	0,000	1,197E-15	0,0000
62	0,50000	SLD	NonStatic	Max	-268,161	0,000	1,197E-15	0,0000
62	1,00000	SLD	NonStatic	Max	-268,161	0,000	1,197E-15	0,0000
62	0,00000	SLD	NonStatic	Min	-268,161	0,000	1,197E-15	0,0000
62	0,50000	SLD	NonStatic	Min	-268,161	0,000	1,197E-15	0,0000
62	1,00000	SLD	NonStatic	Min	-268,161	0,000	1,197E-15	0,0000
62	0,00000	SLV	NonStatic	Max	-362,730	0,000	1,946E-15	0,0000
62	0,50000	SLV	NonStatic	Max	-362,730	0,000	1,946E-15	0,0000
62	1,00000	SLV	NonStatic	Max	-362,730	0,000	1,946E-15	0,0000
62	0,00000	SLV	NonStatic	Min	-362,730	0,000	1,946E-15	0,0000
62	0,50000	SLV	NonStatic	Min	-362,730	0,000	1,946E-15	0,0000
62	1,00000	SLV	NonStatic	Min	-362,730	0,000	1,946E-15	0,0000
63	0,00000	SLE	NonStatic	Max	-222,816	0,000	0,000	0,0000
63	0,50000	SLE	NonStatic	Max	-222,816	0,000	0,000	0,0000
63	1,00000	SLE	NonStatic	Max	-222,816	0,000	0,000	0,0000
63	0,00000	SLE	NonStatic	Min	-222,816	0,000	0,000	0,0000
63	0,50000	SLE	NonStatic	Min	-222,816	0,000	0,000	0,0000
63	1,00000	SLE	NonStatic	Min	-222,816	0,000	0,000	0,0000
63	0,00000	SLU	NonStatic	Max	-289,661	0,000	0,000	0,0000
63	0,50000	SLU	NonStatic	Max	-289,661	0,000	0,000	0,0000
63	1,00000	SLU	NonStatic	Max	-289,661	0,000	0,000	0,0000
63	0,00000	SLU	NonStatic	Min	-289,661	0,000	0,000	0,0000
63	0,50000	SLU	NonStatic	Min	-289,661	0,000	0,000	0,0000
63	1,00000	SLU	NonStatic	Min	-289,661	0,000	0,000	0,0000
63	0,00000	SLD	NonStatic	Max	-265,756	0,000	0,000	0,0000
63	0,50000	SLD	NonStatic	Max	-265,756	0,000	0,000	0,0000
63	1,00000	SLD	NonStatic	Max	-265,756	0,000	0,000	0,0000
63	0,00000	SLD	NonStatic	Min	-265,756	0,000	0,000	0,0000
63	0,50000	SLD	NonStatic	Min	-265,756	0,000	0,000	0,0000
63	1,00000	SLD	NonStatic	Min	-265,756	0,000	0,000	0,0000
63	0,00000	SLV	NonStatic	Max	-361,623	0,000	0,000	0,0000
63	0,50000	SLV	NonStatic	Max	-361,623	0,000	0,000	0,0000
63	1,00000	SLV	NonStatic	Max	-361,623	0,000	0,000	0,0000

Pagina 378 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

63	0,00000	SLV	NonStatic	Min	-361,623	0,000	0,000	0,0000
63	0,50000	SLV	NonStatic	Min	-361,623	0,000	0,000	0,0000
63	1,00000	SLV	NonStatic	Min	-361,623	0,000	0,000	0,0000
64	0,00000	SLE	NonStatic	Max	-220,417	0,000	0,000	0,0000
64	0,50000	SLE	NonStatic	Max	-220,417	0,000	0,000	0,0000
64	1,00000	SLE	NonStatic	Max	-220,417	0,000	0,000	0,0000
64	0,00000	SLE	NonStatic	Min	-220,417	0,000	0,000	0,0000
64	0,50000	SLE	NonStatic	Min	-220,417	0,000	0,000	0,0000
64	1,00000	SLE	NonStatic	Min	-220,417	0,000	0,000	0,0000
64	0,00000	SLU	NonStatic	Max	-286,542	-8,882E-16	0,000	0,0000
64	0,50000	SLU	NonStatic	Max	-286,542	-8,882E-16	0,000	0,0000
64	1,00000	SLU	NonStatic	Max	-286,542	-8,882E-16	0,000	0,0000
64	0,00000	SLU	NonStatic	Min	-286,542	-8,882E-16	0,000	0,0000
64	0,50000	SLU	NonStatic	Min	-286,542	-8,882E-16	0,000	0,0000
64	1,00000	SLU	NonStatic	Min	-286,542	-8,882E-16	0,000	0,0000
64	0,00000	SLD	NonStatic	Max	-263,083	0,000	0,000	0,0000
64	0,50000	SLD	NonStatic	Max	-263,083	0,000	0,000	0,0000
64	1,00000	SLD	NonStatic	Max	-263,083	0,000	0,000	0,0000
64	0,00000	SLD	NonStatic	Min	-263,083	0,000	0,000	0,0000
64	0,50000	SLD	NonStatic	Min	-263,083	0,000	0,000	0,0000
64	1,00000	SLD	NonStatic	Min	-263,083	0,000	0,000	0,0000
64	0,00000	SLV	NonStatic	Max	-358,441	1,776E-15	0,000	0,0000
64	0,50000	SLV	NonStatic	Max	-358,441	1,776E-15	0,000	0,0000
64	1,00000	SLV	NonStatic	Max	-358,441	1,776E-15	0,000	0,0000
64	0,00000	SLV	NonStatic	Min	-358,441	1,776E-15	0,000	0,0000
64	0,50000	SLV	NonStatic	Min	-358,441	1,776E-15	0,000	0,0000
64	1,00000	SLV	NonStatic	Min	-358,441	1,776E-15	0,000	0,0000
65	0,00000	SLE	NonStatic	Max	-218,255	4,441E-16	0,000	0,0000
65	0,50000	SLE	NonStatic	Max	-218,255	4,441E-16	0,000	0,0000
65	1,00000	SLE	NonStatic	Max	-218,255	4,441E-16	0,000	0,0000
65	0,00000	SLE	NonStatic	Min	-218,255	4,441E-16	0,000	0,0000
65	0,50000	SLE	NonStatic	Min	-218,255	4,441E-16	0,000	0,0000
65	1,00000	SLE	NonStatic	Min	-218,255	4,441E-16	0,000	0,0000

Eurolink S.C.p.A. Pagina 379 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

65	0,00000	SLU	NonStatic	Max	-283,732	4,441E-16	0,000	0,0000
65	0,50000	SLU	NonStatic	Max	-283,732	4,441E-16	0,000	0,0000
65	1,00000	SLU	NonStatic	Max	-283,732	4,441E-16	0,000	0,0000
65	0,00000	SLU	NonStatic	Min	-283,732	4,441E-16	0,000	0,0000
65	0,50000	SLU	NonStatic	Min	-283,732	4,441E-16	0,000	0,0000
65	1,00000	SLU	NonStatic	Min	-283,732	4,441E-16	0,000	0,0000
65	0,00000	SLD	NonStatic	Max	-260,401	0,000	0,000	0,0000
65	0,50000	SLD	NonStatic	Max	-260,401	0,000	0,000	0,0000
65	1,00000	SLD	NonStatic	Max	-260,401	0,000	0,000	0,0000
65	0,00000	SLD	NonStatic	Min	-260,401	0,000	0,000	0,0000
65	0,50000	SLD	NonStatic	Min	-260,401	0,000	0,000	0,0000
65	1,00000	SLD	NonStatic	Min	-260,401	0,000	0,000	0,0000
65	0,00000	SLV	NonStatic	Max	-353,680	8,882E-16	0,000	0,0000
65	0,50000	SLV	NonStatic	Max	-353,680	8,882E-16	0,000	0,0000
65	1,00000	SLV	NonStatic	Max	-353,680	8,882E-16	0,000	0,0000
65	0,00000	SLV	NonStatic	Min	-353,680	8,882E-16	0,000	0,0000
65	0,50000	SLV	NonStatic	Min	-353,680	8,882E-16	0,000	0,0000
65	1,00000	SLV	NonStatic	Min	-353,680	8,882E-16	0,000	0,0000
66	0,00000	SLE	NonStatic	Max	-216,408	-3,331E-16	0,000	0,0000
66	0,50000	SLE	NonStatic	Max	-216,408	-3,331E-16	0,000	0,0000
66	1,00000	SLE	NonStatic	Max	-216,408	-3,331E-16	0,000	0,0000
66	0,00000	SLE	NonStatic	Min	-216,408	-3,331E-16	0,000	0,0000
66	0,50000	SLE	NonStatic	Min	-216,408	-3,331E-16	0,000	0,0000
66	1,00000	SLE	NonStatic	Min	-216,408	-3,331E-16	0,000	0,0000
66	0,00000	SLU	NonStatic	Max	-281,330	-5,551E-16	0,000	0,0000
66	0,50000	SLU	NonStatic	Max	-281,330	-5,551E-16	0,000	0,0000
66	1,00000	SLU	NonStatic	Max	-281,330	-5,551E-16	0,000	0,0000
66	0,00000	SLU	NonStatic	Min	-281,330	-5,551E-16	0,000	0,0000
66	0,50000	SLU	NonStatic	Min	-281,330	-5,551E-16	0,000	0,0000
66	1,00000	SLU	NonStatic	Min	-281,330	-5,551E-16	0,000	0,0000
66	0,00000	SLD	NonStatic	Max	-257,834	2,776E-17	0,000	0,0000
66	0,50000	SLD	NonStatic	Max	-257,834	2,776E-17	0,000	0,0000
66	1,00000	SLD	NonStatic	Max	-257,834	2,776E-17	0,000	0,0000

Pagina 380 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

66	0,00000	SLD	NonStatic	Min	-257,834 2,776E-17	0,000	0,0000
66	0,50000	SLD	NonStatic	Min	-257,834 2,776E-17	0,000	0,0000
66	1,00000	SLD	NonStatic	Min	-257,834 2,776E-17	0,000	0,0000
66	0,00000	SLV	NonStatic	Max	-347,680 -1,776E-15	0,000	0,0000
66	0,50000	SLV	NonStatic	Max	-347,680 -1,776E-15	0,000	0,0000
66	1,00000	SLV	NonStatic	Max	-347,680 -1,776E-15	0,000	0,0000
66	0,00000	SLV	NonStatic	Min	-347,680 -1,776E-15	0,000	0,0000
66	0,50000	SLV	NonStatic	Min	-347,680 -1,776E-15	0,000	0,0000
66	1,00000	SLV	NonStatic	Min	-347,680 -1,776E-15	0,000	0,0000
67	0,00000	SLE	NonStatic	Max	-214,838 1,332E-15	0,000	0,0000
67	0,50000	SLE	NonStatic	Max	-214,838 1,332E-15	0,000	0,0000
67	1,00000	SLE	NonStatic	Max	-214,838 1,332E-15	0,000	0,0000
67	0,00000	SLE	NonStatic	Min	-214,838 1,332E-15	0,000	0,0000
67	0,50000	SLE	NonStatic	Min	-214,838 1,332E-15	0,000	0,0000
67	1,00000	SLE	NonStatic	Min	-214,838 1,332E-15	0,000	0,0000
67	0,00000	SLU	NonStatic	Max	-279,290 2,220E-15	0,000	0,0000
67	0,50000	SLU	NonStatic	Max	-279,290 2,220E-15	0,000	0,0000
67	1,00000	SLU	NonStatic	Max	-279,290 2,220E-15	0,000	0,0000
67	0,00000	SLU	NonStatic	Min	-279,290 2,220E-15	0,000	0,0000
67	0,50000	SLU	NonStatic	Min	-279,290 2,220E-15	0,000	0,0000
67	1,00000	SLU	NonStatic	Min	-279,290 2,220E-15	0,000	0,0000
67	0,00000	SLD	NonStatic	Max	-255,376 2,220E-15	0,000	0,0000
67	0,50000	SLD	NonStatic	Max	-255,376 2,220E-15	0,000	0,0000
67	1,00000	SLD	NonStatic	Max	-255,376 2,220E-15	0,000	0,0000
67	0,00000	SLD	NonStatic	Min	-255,376 2,220E-15	0,000	0,0000
67	0,50000	SLD	NonStatic	Min	-255,376 2,220E-15	0,000	0,0000
67	1,00000	SLD	NonStatic	Min	-255,376 2,220E-15	0,000	0,0000
67	0,00000	SLV	NonStatic	Max	-340,637 1,291E-15	0,000	0,0000
67	0,50000	SLV	NonStatic	Max	-340,637 1,291E-15	0,000	0,0000
67	1,00000	SLV	NonStatic	Max	-340,637 1,291E-15	0,000	0,0000
67	0,00000	SLV	NonStatic	Min	-340,637 1,291E-15	0,000	0,0000
67	0,50000	SLV	NonStatic	Min	-340,637 1,291E-15	0,000	0,0000
67	1,00000	SLV	NonStatic	Min	-340,637 1,291E-15	0,000	0,0000

Eurolink S.C.p.A. Pagina 381 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

68	0,00000	SLE	NonStatic	Max	-213,399	-1,776E-15	0,000	0,0000
68	0,50000	SLE	NonStatic	Max	-213,399	-1,776E-15	0,000	0,0000
68	1,00000	SLE	NonStatic	Max	-213,399	-1,776E-15	0,000	0,0000
68	0,00000	SLE	NonStatic	Min	-213,399	-1,776E-15	0,000	0,0000
68	0,50000	SLE	NonStatic	Min	-213,399	-1,776E-15	0,000	0,0000
68	1,00000	SLE	NonStatic	Min	-213,399	-1,776E-15	0,000	0,0000
68	0,00000	SLU	NonStatic	Max	-277,419	-8,882E-16	0,000	0,0000
68	0,50000	SLU	NonStatic	Max	-277,419	-8,882E-16	0,000	0,0000
68	1,00000	SLU	NonStatic	Max	-277,419	-8,882E-16	0,000	0,0000
68	0,00000	SLU	NonStatic	Min	-277,419	-8,882E-16	0,000	0,0000
68	0,50000	SLU	NonStatic	Min	-277,419	-8,882E-16	0,000	0,0000
68	1,00000	SLU	NonStatic	Min	-277,419	-8,882E-16	0,000	0,0000
68	0,00000	SLD	NonStatic	Max	-252,895	-8,882E-16	0,000	0,0000
68	0,50000	SLD	NonStatic	Max	-252,895	-8,882E-16	0,000	0,0000
68	1,00000	SLD	NonStatic	Max	-252,895	-8,882E-16	0,000	0,0000
68	0,00000	SLD	NonStatic	Min	-252,895	-8,882E-16	0,000	0,0000
68	0,50000	SLD	NonStatic	Min	-252,895	-8,882E-16	0,000	0,0000
68	1,00000	SLD	NonStatic	Min	-252,895	-8,882E-16	0,000	0,0000
68	0,00000	SLV	NonStatic	Max	-332,608	-1,332E-15	0,000	0,0000
68	0,50000	SLV	NonStatic	Max	-332,608	-1,332E-15	0,000	0,0000
68	1,00000	SLV	NonStatic	Max	-332,608	-1,332E-15	0,000	0,0000
68	0,00000	SLV	NonStatic	Min	-332,608	-1,332E-15	0,000	0,0000
68	0,50000	SLV	NonStatic	Min	-332,608	-1,332E-15	0,000	0,0000
68	1,00000	SLV	NonStatic	Min	-332,608	-1,332E-15	0,000	0,0000
69	0,00000	SLE	NonStatic	Max	-211,832	8,882E-16	0,000	0,0000
69	0,50000	SLE	NonStatic	Max	-211,832	8,882E-16	0,000	0,0000
69	1,00000	SLE	NonStatic	Max	-211,832	8,882E-16	0,000	0,0000
69	0,00000	SLE	NonStatic	Min	-211,832	8,882E-16	0,000	0,0000
69	0,50000	SLE	NonStatic	Min	-211,832	8,882E-16	0,000	0,0000
69	1,00000	SLE	NonStatic	Min	-211,832	8,882E-16	0,000	0,0000
69	0,00000	SLU	NonStatic	Max	-275,382	0,000	0,000	0,0000
69	0,50000	SLU	NonStatic	Max	-275,382	0,000	0,000	0,0000
69	1,00000	SLU	NonStatic	Max	-275,382	0,000	0,000	0,0000

Pagina 382 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

69	0,00000	SLU	NonStatic	Min	-275,382	0,000	0,000	0,0000
69	0,50000	SLU	NonStatic	Min	-275,382	0,000	0,000	0,0000
69	1,00000	SLU	NonStatic	Min	-275,382	0,000	0,000	0,0000
69	0,00000	SLD	NonStatic	Max	-250,134	-1,776E-15	0,000	0,0000
69	0,50000	SLD	NonStatic	Max	-250,134	-1,776E-15	0,000	0,0000
69	1,00000	SLD	NonStatic	Max	-250,134	-1,776E-15	0,000	0,0000
69	0,00000	SLD	NonStatic	Min	-250,134	-1,776E-15	0,000	0,0000
69	0,50000	SLD	NonStatic	Min	-250,134	-1,776E-15	0,000	0,0000
69	1,00000	SLD	NonStatic	Min	-250,134	-1,776E-15	0,000	0,0000
69	0,00000	SLV	NonStatic	Max	-323,529	-8,882E-16	0,000	0,0000
69	0,50000	SLV	NonStatic	Max	-323,529	-8,882E-16	0,000	0,0000
69	1,00000	SLV	NonStatic	Max	-323,529	-8,882E-16	0,000	0,0000
69	0,00000	SLV	NonStatic	Min	-323,529	-8,882E-16	0,000	0,0000
69	0,50000	SLV	NonStatic	Min	-323,529	-8,882E-16	0,000	0,0000
69	1,00000	SLV	NonStatic	Min	-323,529	-8,882E-16	0,000	0,0000
70	0,00000	SLE	NonStatic	Max	-419,527	3,553E-15	0,000	0,0000
70	0,50000	SLE	NonStatic	Max	-419,527	3,553E-15	0,000	0,0000
70	1,00000	SLE	NonStatic	Max	-419,527	3,553E-15	0,000	0,0000
70	0,00000	SLE	NonStatic	Min	-419,527	3,553E-15	0,000	0,0000
70	0,50000	SLE	NonStatic	Min	-419,527	3,553E-15	0,000	0,0000
70	1,00000	SLE	NonStatic	Min	-419,527	3,553E-15	0,000	0,0000
70	0,00000	SLU	NonStatic	Max	-545,386	7,105E-15	0,000	0,0000
70	0,50000	SLU	NonStatic	Max	-545,386	7,105E-15	0,000	0,0000
70	1,00000	SLU	NonStatic	Max	-545,386	7,105E-15	0,000	0,0000
70	0,00000	SLU	NonStatic	Min	-545,386	7,105E-15	0,000	0,0000
70	0,50000	SLU	NonStatic	Min	-545,386	7,105E-15	0,000	0,0000
70	1,00000	SLU	NonStatic	Min	-545,386	7,105E-15	0,000	0,0000
70	0,00000	SLD	NonStatic	Max	-493,424	3,553E-15	0,000	0,0000
70	0,50000	SLD	NonStatic	Max	-493,424	3,553E-15	0,000	0,0000
70	1,00000	SLD	NonStatic	Max	-493,424	3,553E-15	0,000	0,0000
70	0,00000	SLD	NonStatic	Min	-493,424	3,553E-15	0,000	0,0000
70	0,50000	SLD	NonStatic	Min	-493,424	3,553E-15	0,000	0,0000
70	1,00000	SLD	NonStatic	Min	-493,424	3,553E-15	0,000	0,0000

Eurolink S.C.p.A. Pagina 383 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

70	0,00000	SLV	NonStatic	Max	-626,450	3,553E-15	0,000	0,0000
70	0,50000	SLV	NonStatic	Max	-626,450	3,553E-15	0,000	0,0000
70	1,00000	SLV	NonStatic	Max	-626,450	3,553E-15	0,000	0,0000
70	0,00000	SLV	NonStatic	Min	-626,450	3,553E-15	0,000	0,0000
70	0,50000	SLV	NonStatic	Min	-626,450	3,553E-15	0,000	0,0000
70	1,00000	SLV	NonStatic	Min	-626,450	3,553E-15	0,000	0,0000
71	0,00000	SLE	NonStatic	Max	-658,728	0,000	0,000	0,0000
71	0,50000	SLE	NonStatic	Max	-658,728	0,000	0,000	0,0000
71	1,00000	SLE	NonStatic	Max	-658,728	0,000	0,000	0,0000
71	0,00000	SLE	NonStatic	Min	-658,728	0,000	0,000	0,0000
71	0,50000	SLE	NonStatic	Min	-658,728	0,000	0,000	0,0000
71	1,00000	SLE	NonStatic	Min	-658,728	0,000	0,000	0,0000
71	0,00000	SLU	NonStatic	Max	-856,347	7,105E-15	0,000	0,0000
71	0,50000	SLU	NonStatic	Max	-856,347	7,105E-15	0,000	0,0000
71	1,00000	SLU	NonStatic	Max	-856,347	7,105E-15	0,000	0,0000
71	0,00000	SLU	NonStatic	Min	-856,347	7,105E-15	0,000	0,0000
71	0,50000	SLU	NonStatic	Min	-856,347	7,105E-15	0,000	0,0000
71	1,00000	SLU	NonStatic	Min	-856,347	7,105E-15	0,000	0,0000
71	0,00000	SLD	NonStatic	Max	-782,073	-7,105E-15	0,000	0,0000
71	0,50000	SLD	NonStatic	Max	-782,073	-7,105E-15	0,000	0,0000
71	1,00000	SLD	NonStatic	Max	-782,073	-7,105E-15	0,000	0,0000
71	0,00000	SLD	NonStatic	Min	-782,073	-7,105E-15	0,000	0,0000
71	0,50000	SLD	NonStatic	Min	-782,073	-7,105E-15	0,000	0,0000
71	1,00000	SLD	NonStatic	Min	-782,073	-7,105E-15	0,000	0,0000
71	0,00000	SLV	NonStatic	Max	-1021,097	' -7,105E-15	0,000	0,000
71	0,50000	SLV	NonStatic	Max	-1021,097	' -7,105E-15	0,000	0,000
71	1,00000	SLV	NonStatic	Max	-1021,097	' -7,105E-15	0,000	0,000
71	0,00000	SLV	NonStatic	Min	-1021,097	-7,105E-15	0,000	0,0000
71	0,50000	SLV	NonStatic	Min	-1021,097	-7,105E-15	0,000	0,0000
71	1,00000	SLV	NonStatic	Min	-1021,097	-7,105E-15	0,000	0,0000
72	0,00000	SLE	NonStatic	Max	-908,727	3,553E-15	0,000	0,0000
72	0,47065	SLE	NonStatic	Max	-908,727	3,553E-15	0,000	0,0000
72	0,94129	SLE	NonStatic	Max	-908,727	3,553E-15	0,000	0,0000

Pagina 384 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

72	0,00000	SLE	NonStatic	Min	-908,727 3	3,553E-15	0,000	0,0000
72	0,47065	SLE	NonStatic	Min	-908,727 3	3,553E-15	0,000	0,0000
72	0,94129	SLE	NonStatic	Min	-908,727 3	3,553E-15	0,000	0,0000
72	0,00000	SLU	NonStatic	Max	-1181,345	7,105E-15	0,000	0,0000
72	0,47065	SLU	NonStatic	Max	-1181,345	7,105E-15	0,000	0,0000
72	0,94129	SLU	NonStatic	Max	-1181,345	7,105E-15	0,000	0,0000
72	0,00000	SLU	NonStatic	Min	-1181,345	7,105E-15	0,000	0,0000
72	0,47065	SLU	NonStatic	Min	-1181,345	7,105E-15	0,000	0,0000
72	0,94129	SLU	NonStatic	Min	-1181,345	7,105E-15	0,000	0,0000
72	0,00000	SLD	NonStatic	Max	-1074,613	1,421E-14	0,000	0,0000
72	0,47065	SLD	NonStatic	Max	-1074,613	1,421E-14	0,000	0,0000
72	0,94129	SLD	NonStatic	Max	-1074,613	1,421E-14	0,000	0,0000
72	0,00000	SLD	NonStatic	Min	-1074,613	1,421E-14	0,000	0,0000
72	0,47065	SLD	NonStatic	Min	-1074,613	1,421E-14	0,000	0,0000
72	0,94129	SLD	NonStatic	Min	-1074,613	1,421E-14	0,000	0,0000
72	0,00000	SLV	NonStatic	Max	-1386,145	0,000	0,000	0,0000
72	0,47065	SLV	NonStatic	Max	-1386,145	0,000	0,000	0,0000
72	0,94129	SLV	NonStatic	Max	-1386,145	0,000	0,000	0,0000
72	0,00000	SLV	NonStatic	Min	-1386,145	0,000	0,000	0,0000
72	0,47065	SLV	NonStatic	Min	-1386,145	0,000	0,000	0,0000
72	0,94129	SLV	NonStatic	Min	-1386,145	0,000	0,000	0,000
73	0,00000	SLE	NonStatic	Max	-221,949 -2	2,842E-14	0,000	0,0000
73	0,50000	SLE	NonStatic	Max	-221,949 -2	2,842E-14	0,000	0,0000
73	1,00000	SLE	NonStatic	Max	-221,949 -2	2,842E-14	0,000	0,0000
73	0,00000	SLE	NonStatic	Min	-221,949 -2	2,842E-14	0,000	0,0000
73	0,50000	SLE	NonStatic	Min	-221,949 -2	2,842E-14	0,000	0,0000
73	1,00000	SLE	NonStatic	Min	-221,949 -2	2,842E-14	0,000	0,0000
73	0,00000	SLU	NonStatic	Max	-288,533 -	2,842E-14	0,000	0,0000
73	0,50000	SLU	NonStatic	Max	-288,533 -	2,842E-14	0,000	0,0000
73	1,00000	SLU	NonStatic	Max	-288,533 -	2,842E-14	0,000	0,0000
73	0,00000	SLU	NonStatic	Min	-288,533 -2	2,842E-14	0,000	0,0000
73	0,50000	SLU	NonStatic	Min	-288,533 -2	2,842E-14	0,000	0,0000
73	1,00000	SLU	NonStatic	Min	-288,533 -2	2,842E-14	0,000	0,0000

Eurolink S.C.p.A. Pagina 385 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

73	0,00000	SLD	NonStatic	Max	-288,501 -5,684E-14	0,000	0,0000
73	0,50000	SLD	NonStatic	Max	-288,501 -5,684E-14	0,000	0,0000
73	1,00000	SLD	NonStatic	Max	-288,501 -5,684E-14	0,000	0,0000
73	0,00000	SLD	NonStatic	Min	-288,501 -5,684E-14	0,000	0,0000
73	0,50000	SLD	NonStatic	Min	-288,501 -5,684E-14	0,000	0,0000
73	1,00000	SLD	NonStatic	Min	-288,501 -5,684E-14	0,000	0,0000
73	0,00000	SLV	NonStatic	Max	-473,246 -5,684E-14	0,000	0,0000
73	0,50000	SLV	NonStatic	Max	-473,246 -5,684E-14	0,000	0,0000
73	1,00000	SLV	NonStatic	Max	-473,246 -5,684E-14	0,000	0,0000
73	0,00000	SLV	NonStatic	Min	-473,246 -5,684E-14	0,000	0,0000
73	0,50000	SLV	NonStatic	Min	-473,246 -5,684E-14	0,000	0,0000
73	1,00000	SLV	NonStatic	Min	-473,246 -5,684E-14	0,000	0,0000
74	0,00000	SLE	NonStatic	Max	-268,799 -2,842E-14	0,000	0,0000
74	0,50000	SLE	NonStatic	Max	-268,799 -2,842E-14	0,000	0,0000
74	1,00000	SLE	NonStatic	Max	-268,799 -2,842E-14	0,000	0,0000
74	0,00000	SLE	NonStatic	Min	-268,799 -2,842E-14	0,000	0,0000
74	0,50000	SLE	NonStatic	Min	-268,799 -2,842E-14	0,000	0,0000
74	1,00000	SLE	NonStatic	Min	-268,799 -2,842E-14	0,000	0,0000
74	0,00000	SLU	NonStatic	Max	-349,438 -2,842E-14	0,000	0,0000
74	0,50000	SLU	NonStatic	Max	-349,438 -2,842E-14	0,000	0,0000
74	1,00000	SLU	NonStatic	Max	-349,438 -2,842E-14	0,000	0,0000
74	0,00000	SLU	NonStatic	Min	-349,438 -2,842E-14	0,000	0,0000
74	0,50000	SLU	NonStatic	Min	-349,438 -2,842E-14	0,000	0,0000
74	1,00000	SLU	NonStatic	Min	-349,438 -2,842E-14	0,000	0,0000
74	0,00000	SLD	NonStatic	Max	-351,819 -2,842E-14	0,000	0,0000
74	0,50000	SLD	NonStatic	Max	-351,819 -2,842E-14	0,000	0,0000
74	1,00000	SLD	NonStatic	Max	-351,819 -2,842E-14	0,000	0,0000
74	0,00000	SLD	NonStatic	Min	-351,819 -2,842E-14	0,000	0,0000
74	0,50000	SLD	NonStatic	Min	-351,819 -2,842E-14	0,000	0,0000
74	1,00000	SLD	NonStatic	Min	-351,819 -2,842E-14	0,000	0,0000
74	0,00000	SLV	NonStatic	Max	-585,376 -8,527E-14	0,000	0,0000
74	0,50000	SLV	NonStatic	Max	-585,376 -8,527E-14	0,000	0,0000
74	1,00000	SLV	NonStatic	Max	-585,376 -8,527E-14	0,000	0,0000

Pagina 386 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

74	0,00000	SLV	NonStatic	Min	-585,376 -8,527E-14 0,000 0,0000	
74	0,50000	SLV	NonStatic	Min	-585,376 -8,527E-14 0,000 0,0000	
74	1,00000	SLV	NonStatic	Min	-585,376 -8,527E-14 0,000 0,0000	
75	0,00000	SLE	NonStatic	Max	-324,083 2,842E-14 0,000 0,0000	
75	0,50000	SLE	NonStatic	Max	-324,083 2,842E-14 0,000 0,0000	
75	1,00000	SLE	NonStatic	Max	-324,083 2,842E-14 0,000 0,0000	
75	0,00000	SLE	NonStatic	Min	-324,083 2,842E-14 0,000 0,0000	
75	0,50000	SLE	NonStatic	Min	-324,083 2,842E-14 0,000 0,0000	
75	1,00000	SLE	NonStatic	Min	-324,083 2,842E-14 0,000 0,0000	
75	0,00000	SLU	NonStatic	Max	-421,308 2,842E-14 0,000 0,0000	
75	0,50000	SLU	NonStatic	Max	-421,308 2,842E-14 0,000 0,0000	
75	1,00000	SLU	NonStatic	Max	-421,308 2,842E-14 0,000 0,0000	
75	0,00000	SLU	NonStatic	Min	-421,308 2,842E-14 0,000 0,0000	
75	0,50000	SLU	NonStatic	Min	-421,308 2,842E-14 0,000 0,0000	
75	1,00000	SLU	NonStatic	Min	-421,308 2,842E-14 0,000 0,0000	
75	0,00000	SLD	NonStatic	Max	-427,005 0,000 0,000 0,0000	
75	0,50000	SLD	NonStatic	Max	-427,005 0,000 0,000 0,0000	
75	1,00000	SLD	NonStatic	Max	-427,005 0,000 0,000 0,0000	
75	0,00000	SLD	NonStatic	Min	-427,005 0,000 0,000 0,0000	
75	0,50000	SLD	NonStatic	Min	-427,005 0,000 0,000 0,0000	
75	1,00000	SLD	NonStatic	Min	-427,005 0,000 0,000 0,0000	
75	0,00000	SLV	NonStatic	Max	-720,507 2,842E-14 0,000 0,0000	
75	0,50000	SLV	NonStatic	Max	-720,507 2,842E-14 0,000 0,0000	
75	1,00000	SLV	NonStatic	Max	-720,507 2,842E-14 0,000 0,0000	
75	0,00000	SLV	NonStatic	Min	-720,507 2,842E-14 0,000 0,0000	
75	0,50000	SLV	NonStatic	Min	-720,507 2,842E-14 0,000 0,0000	
75	1,00000	SLV	NonStatic	Min	-720,507 2,842E-14 0,000 0,0000	
76	0,00000	SLE	NonStatic	Max	-378,296 -5,684E-14 0,000 0,0000	
76	0,50000	SLE	NonStatic	Max	-378,296 -5,684E-14 0,000 0,0000	
76	1,00000	SLE	NonStatic	Max	-378,296 -5,684E-14 0,000 0,0000	
76	0,00000	SLE	NonStatic	Min	-378,296 -5,684E-14 0,000 0,0000	
76	0,50000	SLE	NonStatic	Min	-378,296 -5,684E-14 0,000 0,0000	
76	1,00000	SLE	NonStatic	Min	-378,296 -5,684E-14 0,000 0,0000	

Eurolink S.C.p.A. Pagina 387 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

76	0,00000	SLU	NonStatic	Max	-491,784	-8,527E-14	0,000	0,0000
76	0,50000	SLU	NonStatic	Max	-491,784	-8,527E-14	0,000	0,0000
76	1,00000	SLU	NonStatic	Max	-491,784	-8,527E-14	0,000	0,0000
76	0,00000	SLU	NonStatic	Min	-491,784	-8,527E-14	0,000	0,0000
76	0,50000	SLU	NonStatic	Min	-491,784	-8,527E-14	0,000	0,0000
76	1,00000	SLU	NonStatic	Min	-491,784	-8,527E-14	0,000	0,0000
76	0,00000	SLD	NonStatic	Max	-501,315	-2,842E-14	0,000	0,0000
76	0,50000	SLD	NonStatic	Max	-501,315	-2,842E-14	0,000	0,0000
76	1,00000	SLD	NonStatic	Max	-501,315	-2,842E-14	0,000	0,0000
76	0,00000	SLD	NonStatic	Min	-501,315	-2,842E-14	0,000	0,0000
76	0,50000	SLD	NonStatic	Min	-501,315	-2,842E-14	0,000	0,0000
76	1,00000	SLD	NonStatic	Min	-501,315	-2,842E-14	0,000	0,0000
76	0,00000	SLV	NonStatic	Max	-856,657	-8,527E-14	0,000	0,0000
76	0,50000	SLV	NonStatic	Max	-856,657	-8,527E-14	0,000	0,0000
76	1,00000	SLV	NonStatic	Max	-856,657	-8,527E-14	0,000	0,0000
76	0,00000	SLV	NonStatic	Min	-856,657	-8,527E-14	0,000	0,0000
76	0,50000	SLV	NonStatic	Min	-856,657	-8,527E-14	0,000	0,0000
76	1,00000	SLV	NonStatic	Min	-856,657	-8,527E-14	0,000	0,0000
77	0,00000	SLE	NonStatic	Max	-430,912	0,000	0,000	0,0000
77	0,50000	SLE	NonStatic	Max	-430,912	0,000	0,000	0,0000
77	1,00000	SLE	NonStatic	Max	-430,912	0,000	0,000	0,0000
77	0,00000	SLE	NonStatic	Min	-430,912	0,000	0,000	0,0000
77	0,50000	SLE	NonStatic	Min	-430,912	0,000	0,000	0,0000
77	1,00000	SLE	NonStatic	Min	-430,912	0,000	0,000	0,0000
77	0,00000	SLU	NonStatic	Max	-560,186	0,000	0,000	0,0000
77	0,50000	SLU	NonStatic	Max	-560,186	0,000	0,000	0,0000
77	1,00000	SLU	NonStatic	Max	-560,186	0,000	0,000	0,0000
77	0,00000	SLU	NonStatic	Min	-560,186	0,000	0,000	0,0000
77	0,50000	SLU	NonStatic	Min	-560,186	0,000	0,000	0,0000
77	1,00000	SLU	NonStatic	Min	-560,186	0,000	0,000	0,0000
77	0,00000	SLD	NonStatic	Max	-574,192	0,000	0,000	0,0000
77	0,50000	SLD	NonStatic	Max	-574,192	0,000	0,000	0,0000
77	1,00000	SLD	NonStatic	Max	-574,192	0,000	0,000	0,0000

Pagina 388 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

77	0,00000	SLD	NonStatic	Min	-574,192	0,000	0,000	0,0000
77	0,50000	SLD	NonStatic	Min	-574,192	0,000	0,000	0,0000
77	1,00000	SLD	NonStatic	Min	-574,192	0,000	0,000	0,0000
77	0,00000	SLV I	NonStatic	Max	-993,500	0,000	0,000	0,0000
77	0,50000	SLV I	NonStatic	Max	-993,500	0,000	0,000	0,0000
77	1,00000	SLV I	NonStatic	Max	-993,500	0,000	0,000	0,0000
77	0,00000	SLV I	NonStatic	Min	-993,500	0,000	0,000	0,0000
77	0,50000	SLV I	NonStatic	Min	-993,500	0,000	0,000	0,0000
77	1,00000	SLV I	NonStatic	Min	-993,500	0.000	0.000	0.0000

Table: Element Forces - Frames, Part 2 of 2

Frame	Station	OutputCa	se Step	Туре	M2	МЗ
Text	m	Text	Text	KN-m	KN-m	
1	0,00000	SLE	Max	0,0000	-476,7999)
1	0,56242	SLE	Max	0,0000	-506,896	I
1	1,12485	SLE	Max	0,0000	-555,9606	3
1	0,00000	SLE	Min	0,0000	-476,7999	ı
1	0,56242	SLE	Min	0,0000	-506,8961	
1	1,12485	SLE	Min	0,0000	-555,9606	1
1	0,00000	SLU	Max	0,0000	-619,839	9
1	0,56242	SLU	Max	0,0000	-658,964	9
1	1,12485	SLU	Max	0,0000	-722,748	3
1	0,00000	SLU	Min	0,0000	-619,8399	1
1	0,56242	SLU	Min	0,0000	-658,9649	1
1	1,12485	SLU	Min	0,0000	-722,7488	i
1	0,00000	SLD	Max	0,0000	-428,9918	3
1	0,56242	SLD	Max	0,0000	-471,599	1
1	1,12485	SLD	Max	0,0000	-536,425	1
1	0,00000	SLD	Min	0,0000	-428,9918	i
1	0,56242	SLD	Min	0,0000	-471,5991	

Eurolink S.C.p.A. Pagina 389 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

1	1,12485	SLD	Min	0,0000	-536,4251
1	0,00000	SLV	Max	0,0000	159,2803
1	0,56242	SLV	Max	0,0000	68,2737
1	1,12485	SLV	Max	0,0000	-50,6934
1	0,00000	SLV	Min	0,0000	159,2803
1	0,56242	SLV	Min	0,0000	68,2737
1	1,12485	SLV	Min	0,0000	-50,6934
2	0,00000	SLE	Max	0,0000	-555,9606
2	0,56242	SLE	Max	0,0000	-561,1469
2	1,12485	SLE	Max	0,0000	-585,2146
2	0,00000	SLE	Min	0,0000	-555,9606
2	0,56242	SLE	Min	0,0000	-561,1469
2	1,12485	SLE	Min	0,0000	-585,2146
2	0,00000	SLU	Max	0,0000	-722,7488
2	0,56242	SLU	Max	0,0000	-729,4910
2	1,12485	SLU	Max	0,0000	-760,7789
2	0,00000	SLU	Min	0,0000	-722,7488
2	0,56242	SLU	Min	0,0000	-729,4910
2	1,12485	SLU	Min	0,0000	-760,7789
2	0,00000	SLD	Max	0,0000	-536,4251
2	0,56242	SLD	Max	0,0000	-549,8258
2	1,12485	SLD	Max	0,0000	-585,3948
2	0,00000	SLD	Min	0,0000	-536,4251
2	0,56242	SLD	Min	0,0000	-549,8258
2	1,12485	SLD	Min	0,0000	-585,3948
2	0,00000	SLV	Max	0,0000	-50,6934
2	0,56242	SLV	Max	0,0000	-106,3423
2	1,12485	SLV	Max	0,0000	-189,9779
2	0,00000	SLV	Min	0,0000	-50,6934
2	0,56242	SLV	Min	0,0000	-106,3423
2	1,12485	SLV	Min	0,0000	-189,9779
3	0,00000	SLE	Max	0,0000	-585,2146
3	0,56242	SLE	Max	0,0000	-566,1613

Pagina 390 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

3	1,12485	SLE	Max	0,0000	-565,8160
3	0,00000	SLE	Min	0,0000	-585,2146
3	0,56242	SLE	Min	0,0000	-566,1613
3	1,12485	SLE	Min	0,0000	-565,8160
3	0,00000	SLU	Max	0,0000	-760,7789
3	0,56242	SLU	Max	0,0000	-736,0097
3	1,12485	SLU	Max	0,0000	-735,5608
3	0,00000	SLU	Min	0,0000	-760,7789
3	0,56242	SLU	Min	0,0000	-736,0097
3	1,12485	SLU	Min	0,0000	-735,5608
3	0,00000	SLD	Max	0,0000	-585,3948
3	0,56242	SLD	Max	0,0000	-570,6301
3	1,12485	SLD	Max	0,0000	-577,8815
3	0,00000	SLD	Min	0,0000	-585,3948
3	0,56242	SLD	Min	0,0000	-570,6301
3	1,12485	SLD	Min	0,0000	-577,8815
3	0,00000	SLV	Max	0,0000	-189,9779
3	0,56242	SLV	Max	0,0000	-212,5378
3	1,12485	SLV	Max	0,0000	-262,9820
3	0,00000	SLV	Min	0,0000	-189,9779
3	0,56242	SLV	Min	0,0000	-212,5378
3	1,12485	SLV	Min	0,0000	-262,9820
4	0,00000	SLE	Max	0,0000	-565,8160
4	0,56242	SLE	Max	0,0000	-522,7835
4	1,12485	SLE	Max	0,0000	-498,1997
4	0,00000	SLE	Min	0,0000	-565,8160
4	0,56242	SLE	Min	0,0000	-522,7835
4	1,12485	SLE	Min	0,0000	-498,1997
4	0,00000	SLU	Max	0,0000	-735,5608
4	0,56242	SLU	Max	0,0000	-679,6186
4	1,12485	SLU	Max	0,0000	-647,6597
4	0,00000	SLU	Min	0,0000	-735,5608
4	0,56242	SLU	Min	0,0000	-679,6186

Eurolink S.C.p.A. Pagina 391 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

4	1,12485	SLU	Min	0,0000 -647,6597
4	0,00000	SLD	Max	0,0000 -577,8815
4	0,56242	SLD	Max	0,0000 -535,6520
4	1,12485	SLD	Max	0,0000 -515,1856
4	0,00000	SLD	Min	0,0000 -577,8815
4	0,56242	SLD	Min	0,0000 -535,6520
4	1,12485	SLD	Min	0,0000 -515,1856
4	0,00000	SLV	Max	0,0000 -262,9820
4	0,56242	SLV	Max	0,0000 -255,0570
4	1,12485	SLV	Max	0,0000 -274,7862
4	0,00000	SLV	Min	0,0000 -262,9820
4	0,56242	SLV	Min	0,0000 -255,0570
4	1,12485	SLV	Min	0,0000 -274,7862
5	0,00000	SLE	Max	0,0000 -498,1997
5	0,56242	SLE	Max	0,0000 -431,0613
5	1,12485	SLE	Max	0,0000 -382,0277
5	0,00000	SLE	Min	0,0000 -498,1997
5	0,56242	SLE	Min	0,0000 -431,0613
5	1,12485	SLE	Min	0,0000 -382,0277
5	0,00000	SLU	Max	0,0000 -647,6597
5	0,56242	SLU	Max	0,0000 -560,3797
5	1,12485	SLU	Max	0,0000 -496,6360
5	0,00000	SLU	Min	0,0000 -647,6597
5	0,56242	SLU	Min	0,0000 -560,3797
5	1,12485	SLU	Min	0,0000 -496,6360
5	0,00000	SLD	Max	0,0000 -515,1856
5	0,56242	SLD	Max	0,0000 -445,8548
5	1,12485	SLD	Max	0,0000 -397,9344
5	0,00000	SLD	Min	0,0000 -515,1856
5	0,56242	SLD	Min	0,0000 -445,8548
5	1,12485	SLD	Min	0,0000 -397,9344
5	0,00000	SLV	Max	0,0000 -274,7862
5	0,56242	SLV	Max	0,0000 -239,1977

Pagina 392 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

5	1,12485	SLV	Max	0,0000 -230,9067
5	0,00000	SLV	Min	0,0000 -274,7862
5	0,56242	SLV	Min	0,0000 -239,1977
5	1,12485	SLV	Min	0,0000 -230,9067
6	0,00000	SLE	Max	0,0000 -382,0277
6	0,56242	SLE	Max	0,0000 -290,3583
6	1,12485	SLE	Max	0,0000 -216,3669
6	0,00000	SLE	Min	0,0000 -382,0277
6	0,56242	SLE	Min	0,0000 -290,3583
6	1,12485	SLE	Min	0,0000 -216,3669
6	0,00000	SLU	Max	0,0000 -496,6360
6	0,56242	SLU	Max	0,0000 -377,4658
6	1,12485	SLU	Max	0,0000 -281,2770
6	0,00000	SLU	Min	0,0000 -496,6360
6	0,56242	SLU	Min	0,0000 -377,4658
6	1,12485	SLU	Min	0,0000 -281,2770
6	0,00000	SLD	Max	0,0000 -397,9344
6	0,56242	SLD	Max	0,0000 -301,6071
6	1,12485	SLD	Max	0,0000 -226,2394
6	0,00000	SLD	Min	0,0000 -397,9344
6	0,56242	SLD	Min	0,0000 -301,6071
6	1,12485	SLD	Min	0,0000 -226,2394
6	0,00000	SLV	Max	0,0000 -230,9067
6	0,56242	SLV	Max	0,0000 -170,6532
6	1,12485	SLV	Max	0,0000 -137,2151
6	0,00000	SLV	Min	0,0000 -230,9067
6	0,56242	SLV	Min	0,0000 -170,6532
6	1,12485	SLV	Min	0,0000 -137,2151
7	0,00000	SLE	Max	0,0000 -216,3669
7	0,56242	SLE	Max	0,0000 -99,5984
7	1,12485	SLE	Max	0,0000 -2,127E-11
7	0,00000	SLE	Min	0,0000 -216,3669
7	0,56242	SLE	Min	0,0000 -99,5984

Eurolink S.C.p.A. Pagina 393 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

7	1,12485	SLE	Min	0,0000 -2,127E-11
7	0,00000	SLU	Max	0,0000 -281,2770
7	0,56242	SLU	Max	0,0000 -129,4780
7	1,12485	SLU	Max	0,0000 -1,782E-11
7	0,00000	SLU	Min	0,0000 -281,2770
7	0,56242	SLU	Min	0,0000 -129,4780
7	1,12485	SLU	Min	0,0000 -1,782E-11
7	0,00000	SLD	Max	0,0000 -226,2394
7	0,56242	SLD	Max	0,0000 -102,9135
7	1,12485	SLD	Max	0,0000 -2,441E-11
7	0,00000	SLD	Min	0,0000 -226,2394
7	0,56242	SLD	Min	0,0000 -102,9135
7	1,12485	SLD	Min	0,0000 -2,441E-11
7	0,00000	SLV	Max	0,0000 -137,2151
7	0,56242	SLV	Max	0,0000 -55,5023
7	1,12485	SLV	Max	0,0000 -2,017E-11
7	0,00000	SLV	Min	0,0000 -137,2151
7	0,56242	SLV	Min	0,0000 -55,5023
7	1,12485	SLV	Min	0,0000 -2,017E-11
8	0,00000	SLE	Max	0,0000 0,0000
8	0,46541	SLE	Max	0,0000 198,2552
8	0,93083	SLE	Max	0,0000 380,6255
8	0,00000	SLE	Min	0,0000 0,0000
8	0,46541	SLE	Min	0,0000 198,2552
8	0,93083	SLE	Min	0,0000 380,6255
8	0,00000	SLU	Max	0,0000 0,0000
8	0,46541	SLU	Max	0,0000 257,7318
8	0,93083	SLU	Max	0,0000 494,8131
8	0,00000	SLU	Min	0,0000 0,0000
8	0,46541	SLU	Min	0,0000 257,7318
8	0,93083	SLU	Min	0,0000 494,8131
8	0,00000	SLD	Max	0,0000 0,0000
8	0,46541	SLD	Max	0,0000 218,1642

Pagina 394 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

8	0,93083	SLD	Max	0,0000	417,3707
8	0,00000	SLD	Min	0,0000	0,0000
8	0,46541	SLD	Min	0,0000	218,1642
8	0,93083	SLD	Min	0,0000	417,3707
8	0,00000	SLV	Max	0,0000	0,0000
8	0,46541	SLV	Max	0,0000	197,4567
8	0,93083	SLV	Max	0,0000	370,4454
8	0,00000	SLV	Min	0,0000	0,0000
8	0,46541	SLV	Min	0,0000	197,4567
8	0,93083	SLV	Min	0,0000	370,4454
9	0,00000	SLE	Max	0,0000	380,6255
9	0,46541	SLE	Max	0,0000	853,6924
9	0,93083	SLE	Max	0,0000	1310,8743
9	0,00000	SLE	Min	0,0000	380,6255
9	0,46541	SLE	Min	0,0000	853,6924
9	0,93083	SLE	Min	0,0000	1310,8743
9	0,00000	SLU	Max	0,0000	494,8131
9	0,46541	SLU	Max	0,0000	1109,8001
9	0,93083	SLU	Max	0,0000	1704,1366
9	0,00000	SLU	Min	0,0000	494,8131
9	0,46541	SLU	Min	0,0000	1109,8001
9	0,93083	SLU	Min	0,0000	1704,1366
9	0,00000	SLD	Max	0,0000	417,3707
9	0,46541	SLD	Max	0,0000	961,6072
9	0,93083	SLD	Max	0,0000	1486,8860
9	0,00000	SLD	Min	0,0000	417,3707
9	0,46541	SLD	Min	0,0000	961,6072
9	0,93083	SLD	Min	0,0000	1486,8860
9	0,00000	SLV	Max	0,0000	370,4454
9	0,46541	SLV	Max	0,0000	994,1995
9	0,93083	SLV	Max	0,0000	1593,4855
9	0,00000	SLV	Min	0,0000	370,4454
9	0,46541	SLV	Min	0,0000	994,1995

Eurolink S.C.p.A. Pagina 395 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

9	0,93083	SLV	Min 0,0000 1593,4855
10	0,00000	SLE	Max -6,362E-14 1310,8743
10	0,41312	SLE	Max -3,988E-14 1083,2632
10	0,82623	SLE	Max -1,751E-14 867,0168
10	0,00000	SLE	Min -6,362E-14 1310,8743
10	0,41312	SLE	Min -3,988E-14 1083,2632
10	0,82623	SLE	Min -1,751E-14 867,0168
10	0,00000	SLU	Max -8,270E-14 1704,1366
10	0,41312	SLU	Max -5,184E-14 1408,2422
10	0,82623	SLU	Max -2,276E-14 1127,1218
10	0,00000	SLU	Min -8,270E-14 1704,1366
10	0,41312	SLU	Min -5,184E-14 1408,2422
10	0,82623	SLU	Min -2,276E-14 1127,1218
10	0,00000	SLD	Max -7,434E-14 1486,8860
10	0,41312	SLD	Max -4,407E-14 1196,2955
10	0,82623	SLD	Max -1,508E-14 916,4554
10	0,00000	SLD	Min -7,434E-14 1486,8860
10	0,41312	SLD	Min -4,407E-14 1196,2955
10	0,82623	SLD	Min -1,508E-14 916,4554
10	0,00000	SLV	Max -9,253E-14 1593,4855
10	0,41312	SLV	Max -4,016E-14 1090,1113
10	0,82623	SLV	Max 1,107E-14 596,2585
10	0,00000	SLV	Min -9,253E-14 1593,4855
10	0,41312	SLV	Min -4,016E-14 1090,1113
10	0,82623	SLV	Min 1,107E-14 596,2585
11	0,00000	SLE	Max -3,891E-14 867,0168
11	0,49860	SLE	Max -2,768E-14 754,6163
11	0,99721	SLE	Max -1,829E-14 657,6394
11	0,00000	SLE	Min -3,891E-14 867,0168
11	0,49860	SLE	Min -2,768E-14 754,6163
11	0,99721	SLE	Min -1,829E-14 657,6394
11	0,00000	SLU	Max -5,059E-14 1127,1218
11	0,49860	SLU	Max -3,598E-14 981,0012

Pagina 396 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

11	0,99721	SLU	Max -2,378E-14 854,9312
11	0,00000	SLU	Min -5,059E-14 1127,1218
11	0,49860	SLU	Min -3,598E-14 981,0012
11	0,99721	SLU	Min -2,378E-14 854,9312
11	0,00000	SLD	Max -4,297E-14 916,4554
11	0,49860	SLD	Max -2,818E-14 767,8778
11	0,99721	SLD	Max -1,513E-14 633,8287
11	0,00000	SLD	Min -4,297E-14 916,4554
11	0,49860	SLD	Min -2,818E-14 767,8778
11	0,99721	SLD	Min -1,513E-14 633,8287
11	0,00000	SLV	Max -3,997E-14 596,2585
11	0,49860	SLV	Max -1,107E-14 304,1986
11	0,99721	SLV	Max 1,631E-14 24,8772
11	0,00000	SLV	Min -3,997E-14 596,2585
11	0,49860	SLV	Min -1,107E-14 304,1986
11	0,99721	SLV	Min 1,631E-14 24,8772
12	0,00000	SLE	Max -2,258E-14 657,6394
12	0,49860	SLE	Max -3,036E-14 737,0545
12	0,99721	SLE	Max -3,983E-14 830,6526
12	0,00000	SLE	Min -2,258E-14 657,6394
12	0,49860	SLE	Min -3,036E-14 737,0545
12	0,99721	SLE	Min -3,983E-14 830,6526
12	0,00000	SLU	Max -2,936E-14 854,9312
12	0,49860	SLU	Max -3,946E-14 958,1709
12	0,99721	SLU	Max -5,177E-14 1079,8484
12	0,00000	SLU	Min -2,936E-14 854,9312
12	0,49860	SLU	Min -3,946E-14 958,1709
12	0,99721	SLU	Min -5,177E-14 1079,8484
12	0,00000	SLD	Max -2,082E-14 633,8287
12	0,49860	SLD	Max -2,993E-14 726,6188
12	0,99721	SLD	Max -4,064E-14 832,7466
12	0,00000	SLD	Min -2,082E-14 633,8287
12	0,49860	SLD	Min -2,993E-14 726,6188

Eurolink S.C.p.A. Pagina 397 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

12	0,99721	SLD	Min -4,064E-14 832,7466
12	0,00000	SLV	Max 4,367E-15 24,8772
12	0,49860	SLV	Max -4,696E-15 116,9962
12	0,99721	SLV	Max -1,515E-14 220,7623
12	0,00000	SLV	Min 4,367E-15 24,8772
12	0,49860	SLV	Min -4,696E-15 116,9962
12	0,99721	SLV	Min -1,515E-14 220,7623
13	0,00000	SLE	Max -1,716E-14 830,6526
13	0,49860	SLE	Max -4,651E-14 1126,4317
13	0,99721	SLE	Max -7,740E-14 1435,1507
13	0,00000	SLE	Min -1,716E-14 830,6526
13	0,49860	SLE	Min -4,651E-14 1126,4317
13	0,99721	SLE	Min -7,740E-14 1435,1507
13	0,00000	SLU	Max -2,231E-14 1079,8484
13	0,49860	SLU	Max -6,046E-14 1464,3612
13	0,99721	SLU	Max -1,006E-13 1865,6959
13	0,00000	SLU	Min -2,231E-14 1079,8484
13	0,49860	SLU	Min -6,046E-14 1464,3612
13	0,99721	SLU	Min -1,006E-13 1865,6959
13	0,00000	SLD	Max -1,300E-14 832,7466
13	0,49860	SLD	Max -4,963E-14 1201,5479
13	0,99721	SLD	Max -8,771E-14 1582,4438
13	0,00000	SLD	Min -1,300E-14 832,7466
13	0,49860	SLD	Min -4,963E-14 1201,5479
13	0,99721	SLD	Min -8,771E-14 1582,4438
13	0,00000	SLV	Max 2,243E-14 220,7623
13	0,49860	SLV	Max -3,147E-14 762,6860
13	0,99721	SLV	Max -8,661E-14 1315,0139
13	0,00000	SLV	Min 2,243E-14 220,7623
13	0,49860	SLV	Min -3,147E-14 762,6860
13	0,99721	SLV	Min -8,661E-14 1315,0139
14	0,00000	SLE	Max -7,270E-14 1435,1507
14	0,55057	SLE	Max -6,154E-14 1325,6960

Pagina 398 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

14	1,10113	SLE	Max -5,501E-14 1254,8633
14	0,00000	SLE	Min -7,270E-14 1435,1507
14	0,55057	SLE	Min -6,154E-14 1325,6960
14	1,10113	SLE	Min -5,501E-14 1254,8633
14	0,00000	SLU	Max -9,451E-14 1865,6959
14	0,55057	SLU	Max -8,001E-14 1723,4048
14	1,10113	SLU	Max -7,151E-14 1631,3222
14	0,00000	SLU	Min -9,451E-14 1865,6959
14	0,55057	SLU	Min -8,001E-14 1723,4048
14	1,10113	SLU	Min -7,151E-14 1631,3222
14	0,00000	SLD	Max -7,860E-14 1582,4438
14	0,55057	SLD	Max -6,929E-14 1492,2720
14	1,10113	SLD	Max -6,508E-14 1444,6840
14	0,00000	SLD	Min -7,860E-14 1582,4438
14	0,55057	SLD	Min -6,929E-14 1492,2720
14	1,10113	SLD	Min -6,508E-14 1444,6840
14	0,00000	SLV	Max -5,952E-14 1315,0139
14	0,55057	SLV	Max -6,267E-14 1352,5209
14	1,10113	SLV	Max -7,173E-14 1439,4097
14	0,00000	SLV	Min -5,952E-14 1315,0139
14	0,55057	SLV	Min -6,267E-14 1352,5209
14	1,10113	SLV	Min -7,173E-14 1439,4097
15	0,00000	SLE	Max -1,052E-13 1254,8633
15	0,55057	SLE	Max -1,013E-13 1220,1631
15	1,10113	SLE	Max -1,013E-13 1219,1064
15	0,00000	SLE	Min -1,052E-13 1254,8633
15	0,55057	SLE	Min -1,013E-13 1220,1631
15	1,10113	SLE	Min -1,013E-13 1219,1064
15	0,00000	SLU	Max -1,368E-13 1631,3222
15	0,55057	SLU	Max -1,316E-13 1586,2121
15	1,10113	SLU	Max -1,317E-13 1584,8383
15	0,00000	SLU	Min -1,368E-13 1631,3222
15	0,55057	SLU	Min -1,316E-13 1586,2121

Eurolink S.C.p.A. Pagina 399 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

15	1,10113	SLU	Min -1,317E-13 1584,8383
15	0,00000	SLD	Max -1,203E-13 1444,6840
15	0,55057	SLD	Max -1,193E-13 1436,9319
15	1,10113	SLD	Max -1,227E-13 1466,2675
15	0,00000	SLD	Min -1,203E-13 1444,6840
15	0,55057	SLD	Min -1,193E-13 1436,9319
15	1,10113	SLD	Min -1,227E-13 1466,2675
15	0,00000	SLV	Max -1,162E-13 1439,4097
15	0,55057	SLV	Max -1,305E-13 1572,4996
15	1,10113	SLV	Max -1,499E-13 1748,6101
15	0,00000	SLV	Min -1,162E-13 1439,4097
15	0,55057	SLV	Min -1,305E-13 1572,4996
15	1,10113	SLV	Min -1,499E-13 1748,6101
16	0,00000	SLE	Max -1,202E-13 1219,1064
16	0,55057	SLE	Max -1,236E-13 1250,4033
16	1,10113	SLE	Max -1,308E-13 1312,7639
16	0,00000	SLE	Min -1,202E-13 1219,1064
16	0,55057	SLE	Min -1,236E-13 1250,4033
16	1,10113	SLE	Min -1,308E-13 1312,7639
16	0,00000	SLU	Max -1,562E-13 1584,8383
16	0,55057	SLU	Max -1,607E-13 1625,5242
16	1,10113	SLU	Max -1,701E-13 1706,5931
16	0,00000	SLU	Min -1,562E-13 1584,8383
16	0,55057	SLU	Min -1,607E-13 1625,5242
16	1,10113	SLU	Min -1,701E-13 1706,5931
16	0,00000	SLD	Max -1,441E-13 1466,2675
16	0,55057	SLD	Max -1,514E-13 1531,2689
16	1,10113	SLD	Max -1,628E-13 1630,5140
16	0,00000	SLD	Min -1,441E-13 1466,2675
16	0,55057	SLD	Min -1,514E-13 1531,2689
16	1,10113	SLD	Min -1,628E-13 1630,5140
16	0,00000	SLV	Max -1,699E-13 1748,6101
16	0,55057	SLV	Max -1,944E-13 1966,0920

Pagina 400 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

16	1,10113	SLV	Max -2,238E-13 2223,2962
16	0,00000	SLV	Min -1,699E-13 1748,6101
16	0,55057	SLV	Min -1,944E-13 1966,0920
16	1,10113	SLV	Min -2,238E-13 2223,2962
17	0,00000	SLE	Max -1,572E-13 1312,7639
17	0,54674	SLE	Max -1,544E-13 1289,5416
17	1,09348	SLE	Max -1,556E-13 1298,9986
17	0,00000	SLE	Min -1,572E-13 1312,7639
17	0,54674	SLE	Min -1,544E-13 1289,5416
17	1,09348	SLE	Min -1,556E-13 1298,9986
17	0,00000	SLU	Max -2,044E-13 1706,5931
17	0,54674	SLU	Max -2,007E-13 1676,4041
17	1,09348	SLU	Max -2,022E-13 1688,6982
17	0,00000	SLU	Min -2,044E-13 1706,5931
17	0,54674	SLU	Min -2,007E-13 1676,4041
17	1,09348	SLU	Min -2,022E-13 1688,6982
17	0,00000	SLD	Max -1,953E-13 1630,5140
17	0,54674	SLD	Max -1,944E-13 1623,3102
17	1,09348	SLD	Max -1,979E-13 1652,6594
17	0,00000	SLD	Min -1,953E-13 1630,5140
17	0,54674	SLD	Min -1,944E-13 1623,3102
17	1,09348	SLD	Min -1,979E-13 1652,6594
17	0,00000	SLV	Max -2,662E-13 2223,2962
17	0,54674	SLV	Max -2,783E-13 2324,0145
17	1,09348	SLV	Max -2,955E-13 2468,0110
17	0,00000	SLV	Min -2,662E-13 2223,2962
17	0,54674	SLV	Min -2,783E-13 2324,0145
17	1,09348	SLV	Min -2,955E-13 2468,0110
18	0,00000	SLE	Max -1,556E-13 1298,9986
18	0,54674	SLE	Max -1,455E-13 1214,7236
18	1,09348	SLE	Max -1,397E-13 1166,6323
18	0,00000	SLE	Min -1,556E-13 1298,9986
18	0,54674	SLE	Min -1,455E-13 1214,7236

Eurolink S.C.p.A. Pagina 401 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

18	1,09348	SLE	Min -1,397E-13 1166,6323
18	0,00000	SLU	Max -2,022E-13 1688,6982
18	0,54674	SLU	Max -1,891E-13 1579,1406
18	1,09348	SLU	Max -1,816E-13 1516,6220
18	0,00000	SLU	Min -2,022E-13 1688,6982
18	0,54674	SLU	Min -1,891E-13 1579,1406
18	1,09348	SLU	Min -1,816E-13 1516,6220
18	0,00000	SLD	Max -1,979E-13 1652,6594
18	0,54674	SLD	Max -1,875E-13 1565,9847
18	1,09348	SLD	Max -1,821E-13 1520,3065
18	0,00000	SLD	Min -1,979E-13 1652,6594
18	0,54674	SLD	Min -1,875E-13 1565,9847
18	1,09348	SLD	Min -1,821E-13 1520,3065
18	0,00000	SLV	Max -2,955E-13 2468,0110
18	0,54674	SLV	Max -2,923E-13 2441,1037
18	1,09348	SLV	Max -2,950E-13 2463,5866
18	0,00000	SLV	Min -2,955E-13 2468,0110
18	0,54674	SLV	Min -2,923E-13 2441,1037
18	1,09348	SLV	Min -2,950E-13 2463,5866
19	0,00000	SLE	Max -1,397E-13 1166,6323
19	0,54674	SLE	Max -1,240E-13 1035,4569
19	1,09348	SLE	Max -1,130E-13 943,8646
19	0,00000	SLE	Min -1,397E-13 1166,6323
19	0,54674	SLE	Min -1,240E-13 1035,4569
19	1,09348	SLE	Min -1,130E-13 943,8646
19	0,00000	SLU	Max -1,816E-13 1516,6220
19	0,54674	SLU	Max -1,612E-13 1346,0940
19	1,09348	SLU	Max -1,469E-13 1227,0239
19	0,00000	SLU	Min -1,816E-13 1516,6220
19	0,54674	SLU	Min -1,612E-13 1346,0940
19	1,09348	SLU	Min -1,469E-13 1227,0239
19	0,00000	SLD	Max -1,821E-13 1520,3065
19	0,54674	SLD	Max -1,642E-13 1371,5449

Pagina 402 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

19	1,09348	SLD	Max -1,519E-13 1268,0647
19	0,00000	SLD	Min -1,821E-13 1520,3065
19	0,54674	SLD	Min -1,642E-13 1371,5449
19	1,09348	SLD	Min -1,519E-13 1268,0647
19	0,00000	SLV	Max -2,950E-13 2463,5866
19	0,54674	SLV	Max -2,792E-13 2331,2417
19	1,09348	SLV	Max -2,699E-13 2254,1475
19	0,00000	SLV	Min -2,950E-13 2463,5866
19	0,54674	SLV	Min -2,792E-13 2331,2417
19	1,09348	SLV	Min -2,699E-13 2254,1475
20	0,00000	SLE	Max -1,130E-13 943,8646
20	0,54674	SLE	Max -9,338E-14 779,8304
20	1,09348	SLE	Max -7,888E-14 658,7462
20	0,00000	SLE	Min -1,130E-13 943,8646
20	0,54674	SLE	Min -9,338E-14 779,8304
20	1,09348	SLE	Min -7,888E-14 658,7462
20	0,00000	SLU	Max -1,469E-13 1227,0239
20	0,54674	SLU	Max -1,214E-13 1013,7795
20	1,09348	SLU	Max -1,026E-13 856,3700
20	0,00000	SLU	Min -1,469E-13 1227,0239
20	0,54674	SLU	Min -1,214E-13 1013,7795
20	1,09348	SLU	Min -1,026E-13 856,3700
20	0,00000	SLD	Max -1,519E-13 1268,0647
20	0,54674	SLD	Max -1,287E-13 1074,4978
20	1,09348	SLD	Max -1,114E-13 930,4219
20	0,00000	SLD	Min -1,519E-13 1268,0647
20	0,54674	SLD	Min -1,287E-13 1074,4978
20	1,09348	SLD	Min -1,114E-13 930,4219
20	0,00000	SLV	Max -2,699E-13 2254,1475
20	0,54674	SLV	Max -2,441E-13 2038,7160
20	1,09348	SLV	Max -2,256E-13 1884,2457
20	0,00000	SLV	Min -2,699E-13 2254,1475
20	0,54674	SLV	Min -2,441E-13 2038,7160

Eurolink S.C.p.A. Pagina 403 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

20	1,09348	SLV	Min -2,256E-13 1884,2457
21	0,00000	SLE	Max -7,888E-14 658,7462
21	0,54674	SLE	Max -5,695E-14 475,5327
21	1,09348	SLE	Max -4,055E-14 338,5861
21	0,00000	SLE	Min -7,888E-14 658,7462
21	0,54674	SLE	Min -5,695E-14 475,5327
21	1,09348	SLE	Min -4,055E-14 338,5861
21	0,00000	SLU	Max -1,026E-13 856,3700
21	0,54674	SLU	Max -7,403E-14 618,1925
21	1,09348	SLU	Max -5,271E-14 440,1619
21	0,00000	SLU	Min -1,026E-13 856,3700
21	0,54674	SLU	Min -7,403E-14 618,1925
21	1,09348	SLU	Min -5,271E-14 440,1619
21	0,00000	SLD	Max -1,114E-13 930,4219
21	0,54674	SLD	Max -8,489E-14 708,9123
21	1,09348	SLD	Max -6,479E-14 541,0095
21	0,00000	SLD	Min -1,114E-13 930,4219
21	0,54674	SLD	Min -8,489E-14 708,9123
21	1,09348	SLD	Min -6,479E-14 541,0095
21	0,00000	SLV	Max -2,256E-13 1884,2457
21	0,54674	SLV	Max -1,925E-13 1607,8184
21	1,09348	SLV	Max -1,674E-13 1397,8929
21	0,00000	SLV	Min -2,256E-13 1884,2457
21	0,54674	SLV	Min -1,925E-13 1607,8184
21	1,09348	SLV	Min -1,674E-13 1397,8929
22	0,00000	SLE	Max -4,055E-14 338,5861
22	0,54674	SLE	Max -1,787E-14 149,1857
22	1,09348	SLE	Max -1,123E-15 9,3817
22	0,00000	SLE	Min -4,055E-14 338,5861
22	0,54674	SLE	Min -1,787E-14 149,1857
22	1,09348	SLE	Min -1,123E-15 9,3817
22	0,00000	SLU	Max -5,271E-14 440,1619
22	0,54674	SLU	Max -2,322E-14 193,9414

Pagina 404 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

22	1,09348	SLU	Max -1,460E-15 12,1962
22	0,00000	SLU	Min -5,271E-14 440,1619
22	0,54674	SLU	Min -2,322E-14 193,9414
22	1,09348	SLU	Min -1,460E-15 12,1962
22	0,00000	SLD	Max -6,479E-14 541,0095
22	0,54674	SLD	Max -3,684E-14 307,6042
22	1,09348	SLD	Max -1,580E-14 131,9010
22	0,00000	SLD	Min -6,479E-14 541,0095
22	0,54674	SLD	Min -3,684E-14 307,6042
22	1,09348	SLD	Min -1,580E-14 131,9010
22	0,00000	SLV	Max -1,674E-13 1397,8929
22	0,54674	SLV	Max -1,295E-13 1081,7818
22	1,09348	SLV	Max -1,003E-13 837,6355
22	0,00000	SLV	Min -1,674E-13 1397,8929
22	0,54674	SLV	Min -1,295E-13 1081,7818
22	1,09348	SLV	Min -1,003E-13 837,6355
23	0,00000	SLE	Max -1,123E-15 9,3817
23	0,54674	SLE	Max 2,085E-14 -174,1232
23	1,09348	SLE	Max 3,649E-14 -304,7065
23	0,00000	SLE	Min -1,123E-15 9,3817
23	0,54674	SLE	Min 2,085E-14 -174,1232
23	1,09348	SLE	Min 3,649E-14 -304,7065
23	0,00000	SLU	Max -1,460E-15 12,1962
23	0,54674	SLU	Max 2,711E-14 -226,3602
23	1,09348	SLU	Max 4,744E-14 -396,1185
23	0,00000	SLU	Min -1,460E-15 12,1962
23	0,54674	SLU	Min 2,711E-14 -226,3602
23	1,09348	SLU	Min 4,744E-14 -396,1185
23	0,00000	SLD	Max -1,580E-14 131,9010
23	0,54674	SLD	Max 1,179E-14 -98,4504
23	1,09348	SLD	Max 3,198E-14 -267,0457
23	0,00000	SLD	Min -1,580E-14 131,9010
23	0,54674	SLD	Min 1,179E-14 -98,4504

Eurolink S.C.p.A. Pagina 405 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

23	1,09348	SLD	Min 3,198E-14 -267,0457
23	0,00000	SLV	Max -1,003E-13 837,6355
23	0,54674	SLV	Max -6,011E-14 501,9904
23	1,09348	SLV	Max -2,918E-14 243,6664
23	0,00000	SLV	Min -1,003E-13 837,6355
23	0,54674	SLV	Min -6,011E-14 501,9904
23	1,09348	SLV	Min -2,918E-14 243,6664
24	0,00000	SLE	Max 3,649E-14 -304,7065
24	0,54674	SLE	Max 5,647E-14 -471,5619
24	1,09348	SLE	Max 6,974E-14 -582,3630
24	0,00000	SLE	Min 3,649E-14 -304,7065
24	0,54674	SLE	Min 5,647E-14 -471,5619
24	1,09348	SLE	Min 6,974E-14 -582,3630
24	0,00000	SLU	Max 4,744E-14 -396,1185
24	0,54674	SLU	Max 7,341E-14 -613,0305
24	1,09348	SLU	Max 9,066E-14 -757,0719
24	0,00000	SLU	Min 4,744E-14 -396,1185
24	0,54674	SLU	Min 7,341E-14 -613,0305
24	1,09348	SLU	Min 9,066E-14 -757,0719
24	0,00000	SLD	Max 3,198E-14 -267,0457
24	0,54674	SLD	Max 5,760E-14 -481,0048
24	1,09348	SLD	Max 7,537E-14 -629,4209
24	0,00000	SLD	Min 3,198E-14 -267,0457
24	0,54674	SLD	Min 5,760E-14 -481,0048
24	1,09348	SLD	Min 7,537E-14 -629,4209
24	0,00000	SLV	Max -2,918E-14 243,6664
24	0,54674	SLV	Max 1,116E-14 -93,2121
24	1,09348	SLV	Max 4,165E-14 -347,8108
24	0,00000	SLV	Min -2,918E-14 243,6664
24	0,54674	SLV	Min 1,116E-14 -93,2121
24	1,09348	SLV	Min 4,165E-14 -347,8108
25	0,00000	SLE	Max 6,974E-14 -582,3630
25	0,54674	SLE	Max 8,610E-14 -718,9949

Pagina 406 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

25	1,09348	SLE	Max 9,540E-14 -796,6267
25	0,00000	SLE	Min 6,974E-14 -582,3630
25	0,54674	SLE	Min 8,610E-14 -718,9949
25	1,09348	SLE	Min 9,540E-14 -796,6267
25	0,00000	SLU	Max 9,066E-14 -757,0719
25	0,54674	SLU	Max 1,119E-13 -934,6933
25	1,09348	SLU	Max 1,240E-13 -1035,6147
25	0,00000	SLU	Min 9,066E-14 -757,0719
25	0,54674	SLU	Min 1,119E-13 -934,6933
25	1,09348	SLU	Min 1,240E-13 -1035,6147
25	0,00000	SLD	Max 7,537E-14 -629,4209
25	0,54674	SLD	Max 9,703E-14 -810,3052
25	1,09348	SLD	Max 1,104E-13 -922,1016
25	0,00000	SLD	Min 7,537E-14 -629,4209
25	0,54674	SLD	Min 9,703E-14 -810,3052
25	1,09348	SLD	Min 1,104E-13 -922,1016
25	0,00000	SLV	Max 4,165E-14 -347,8108
25	0,54674	SLV	Max 7,930E-14 -662,1941
25	1,09348	SLV	Max 1,065E-13 -889,6203
25	0,00000	SLV	Min 4,165E-14 -347,8108
25	0,54674	SLV	Min 7,930E-14 -662,1941
25	1,09348	SLV	Min 1,065E-13 -889,6203
26	0,00000	SLE	Max 9,540E-14 -796,6267
26	0,54674	SLE	Max 1,079E-13 -900,8037
26	1,09348	SLE	Max 1,129E-13 -943,0440
26	0,00000	SLE	Min 9,540E-14 -796,6267
26	0,54674	SLE	Min 1,079E-13 -900,8037
26	1,09348	SLE	Min 1,129E-13 -943,0440
26	0,00000	SLU	Max 1,240E-13 -1035,6147
26	0,54674	SLU	Max 1,402E-13 -1171,0448
26	1,09348	SLU	Max 1,468E-13 -1225,9572
26	0,00000	SLU	Min 1,240E-13 -1035,6147
26	0,54674	SLU	Min 1,402E-13 -1171,0448

Eurolink S.C.p.A. Pagina 407 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

26	1,09348	SLU	Min	1,468E-13 -1225,9572
26	0,00000	SLD	Max	1,104E-13 -922,1016
26	0,54674	SLD	Max	1,277E-13 -1066,6045
26	1,09348	SLD	Max	1,363E-13 -1138,3219
26	0,00000	SLD	Min	1,104E-13 -922,1016
26	0,54674	SLD	Min	1,277E-13 -1066,6045
26	1,09348	SLD	Min	1,363E-13 -1138,3219
26	0,00000	SLV	Max	1,065E-13 -889,6203
26	0,54674	SLV	Max	1,408E-13 -1175,7417
26	1,09348	SLV	Max	1,640E-13 -1369,3428
26	0,00000	SLV	Min	1,065E-13 -889,6203
26	0,54674	SLV	Min	1,408E-13 -1175,7417
26	1,09348	SLV	Min	1,640E-13 -1369,3428
27	0,00000	SLE	Max	1,129E-13 -943,0440
27	0,54674	SLE	Max	1,209E-13 -1009,2661
27	1,09348	SLE	Max	1,210E-13 -1010,8000
27	0,00000	SLE	Min	1,129E-13 -943,0440
27	0,54674	SLE	Min	1,209E-13 -1009,2661
27	1,09348	SLE	Min	1,210E-13 -1010,8000
27	0,00000	SLU	Max	1,468E-13 -1225,9572
27	0,54674	SLU	Max	1,571E-13 -1312,0460
27	1,09348	SLU	Max	1,574E-13 -1314,0400
27	0,00000	SLU	Min	1,468E-13 -1225,9572
27	0,54674	SLU	Min	1,571E-13 -1312,0460
27	1,09348	SLU	Min	1,574E-13 -1314,0400
27	0,00000	SLD	Max	1,363E-13 -1138,3219
27	0,54674	SLD	Max	1,483E-13 -1238,6528
27	1,09348	SLD	Max	1,512E-13 -1262,5738
27	0,00000	SLD	Min	1,363E-13 -1138,3219
27	0,54674	SLD	Min	1,483E-13 -1238,6528
27	1,09348	SLD	Min	1,512E-13 -1262,5738
27	0,00000	SLV	Max	1,640E-13 -1369,3428
27	0,54674	SLV	Max	1,931E-13 -1612,2504

Pagina 408 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

27	1,09348	SLV	Max 2,103E-13 -1756,4601
27	0,00000	SLV	Min 1,640E-13 -1369,3428
27	0,54674	SLV	Min 1,931E-13 -1612,2504
27	1,09348	SLV	Min 2,103E-13 -1756,4601
28	0,00000	SLE	Max 1,210E-13 -1010,8000
28	0,54674	SLE	Max 1,240E-13 -1035,5352
28	1,09348	SLE	Max 1,189E-13 -993,1038
28	0,00000	SLE	Min 1,210E-13 -1010,8000
28	0,54674	SLE	Min 1,240E-13 -1035,5352
28	1,09348	SLE	Min 1,189E-13 -993,1038
28	0,00000	SLU	Max 1,574E-13 -1314,0400
28	0,54674	SLU	Max 1,612E-13 -1346,1958
28	1,09348	SLU	Max 1,546E-13 -1291,0349
28	0,00000	SLU	Min 1,574E-13 -1314,0400
28	0,54674	SLU	Min 1,612E-13 -1346,1958
28	1,09348	SLU	Min 1,546E-13 -1291,0349
28	0,00000	SLD	Max 1,512E-13 -1262,5738
28	0,54674	SLD	Max 1,572E-13 -1312,8539
28	1,09348	SLD	Max 1,537E-13 -1283,3463
28	0,00000	SLD	Min 1,512E-13 -1262,5738
28	0,54674	SLD	Min 1,572E-13 -1312,8539
28	1,09348	SLD	Min 1,537E-13 -1283,3463
28	0,00000	SLV	Max 2,103E-13 -1756,4601
28	0,54674	SLV	Max 2,325E-13 -1941,4320
28	1,09348	SLV	Max 2,421E-13 -2021,2970
28	0,00000	SLV	Min 2,103E-13 -1756,4601
28	0,54674	SLV	Min 2,325E-13 -1941,4320
28	1,09348	SLV	Min 2,421E-13 -2021,2970
29	0,00000	SLE	Max 1,189E-13 -993,1038
29	0,54674	SLE	Max 1,168E-13 -975,0308
29	1,09348	SLE	Max 1,063E-13 -887,7022
29	0,00000	SLE	Min 1,189E-13 -993,1038
29	0,54674	SLE	Min 1,168E-13 -975,0308

Eurolink S.C.p.A. Pagina 409 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

29	1,09348	SLE	Min 1,063E-13 -887,7022
29	0,00000	SLU	Max 1,546E-13 -1291,0349
29	0,54674	SLU	Max 1,518E-13 -1267,5400
29	1,09348	SLU	Max 1,382E-13 -1154,0128
29	0,00000	SLU	Min 1,546E-13 -1291,0349
29	0,54674	SLU	Min 1,518E-13 -1267,5400
29	1,09348	SLU	Min 1,382E-13 -1154,0128
29	0,00000	SLD	Max 1,537E-13 -1283,3463
29	0,54674	SLD	Max 1,533E-13 -1280,1204
29	1,09348	SLD	Max 1,430E-13 -1194,1907
29	0,00000	SLD	Min 1,537E-13 -1283,3463
29	0,54674	SLD	Min 1,533E-13 -1280,1204
29	1,09348	SLD	Min 1,430E-13 -1194,1907
29	0,00000	SLV	Max 2,421E-13 -2021,2970
29	0,54674	SLV	Max 2,557E-13 -2135,1031
29	1,09348	SLV	Max 2,560E-13 -2137,6364
29	0,00000	SLV	Min 2,421E-13 -2021,2970
29	0,54674	SLV	Min 2,557E-13 -2135,1031
29	1,09348	SLV	Min 2,560E-13 -2137,6364
30	0,00000	SLE	Max 1,063E-13 -887,7022
30	0,54674	SLE	Max 9,914E-14 -827,9187
30	1,09348	SLE	Max 8,350E-14 -697,2971
30	0,00000	SLE	Min 1,063E-13 -887,7022
30	0,54674	SLE	Min 9,914E-14 -827,9187
30	1,09348	SLE	Min 8,350E-14 -697,2971
30	0,00000	SLU	Max 1,382E-13 -1154,0128
30	0,54674	SLU	Max 1,289E-13 -1076,2942
30	1,09348	SLU	Max 1,086E-13 -906,4862
30	0,00000	SLU	Min 1,382E-13 -1154,0128
30	0,54674	SLU	Min 1,289E-13 -1076,2942
30	1,09348	SLU	Min 1,086E-13 -906,4862
30	0,00000	SLD	Max 1,430E-13 -1194,1907
30	0,54674	SLD	Max 1,361E-13 -1136,9158

Pagina 410 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

30	1,09348	SLD	Max 1,191E-13 -994,6960
30	0,00000	SLD	Min 1,430E-13 -1194,1907
30	0,54674	SLD	Min 1,361E-13 -1136,9158
30	1,09348	SLD	Min 1,191E-13 -994,6960
30	0,00000	SLV	Max 2,560E-13 -2137,6364
30	0,54674	SLV	Max 2,598E-13 -2169,8891
30	1,09348	SLV	Max 2,497E-13 -2085,4337
30	0,00000	SLV	Min 2,560E-13 -2137,6364
30	0,54674	SLV	Min 2,598E-13 -2169,8891
30	1,09348	SLV	Min 2,497E-13 -2085,4337
3′	0,00000	SLE	Max 8,350E-14 -697,2971
3′	1 0,54674	SLE	Max 7,178E-14 -599,3769
3′	1 1,09348	SLE	Max 5,144E-14 -429,5378
3′	1 0,00000	SLE	Min 8,350E-14 -697,2971
3′	1 0,54674	SLE	Min 7,178E-14 -599,3769
3′	1 1,09348	SLE	Min 5,144E-14 -429,5378
3′	1 0,00000	SLU	Max 1,086E-13 -906,4862
3′	1 0,54674	SLU	Max 9,331E-14 -779,1899
3′	1 1,09348	SLU	Max 6,687E-14 -558,3992
3′	0,00000	SLU	Min 1,086E-13 -906,4862
3′	1 0,54674	SLU	Min 9,331E-14 -779,1899
3′	1 1,09348	SLU	Min 6,687E-14 -558,3992
3′	1 0,00000	SLD	Max 1,191E-13 -994,6960
3′	1 0,54674	SLD	Max 1,061E-13 -886,0387
3′	1 1,09348	SLD	Max 8,274E-14 -690,9312
3′	1 0,00000	SLD	Min 1,191E-13 -994,6960
3′	1 0,54674	SLD	Min 1,061E-13 -886,0387
3′	1 1,09348	SLD	Min 8,274E-14 -690,9312
3′	1 0,00000	SLV	Max 2,497E-13 -2085,4337
3′	1 0,54674	SLV	Max 2,431E-13 -2029,7428
3′	1 1,09348	SLV	Max 2,219E-13 -1852,9350
3′	0,00000	SLV	Min 2,497E-13 -2085,4337
3′	1 0,54674	SLV	Min 2,431E-13 -2029,7428

Eurolink S.C.p.A. Pagina 411 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

31	1,09348	SLV	Min 2,219E-13 -1852,9350
32	0,00000	SLE	Max 5,144E-14 -429,5378
32	0,54674	SLE	Max 3,584E-14 -299,3169
32	1,09348	SLE	Max 1,157E-14 -96,6069
32	0,00000	SLE	Min 5,144E-14 -429,5378
32	0,54674	SLE	Min 3,584E-14 -299,3169
32	1,09348	SLE	Min 1,157E-14 -96,6069
32	0,00000	SLU	Max 6,687E-14 -558,3992
32	0,54674	SLU	Max 4,660E-14 -389,1120
32	1,09348	SLU	Max 1,504E-14 -125,5890
32	0,00000	SLU	Min 6,687E-14 -558,3992
32	0,54674	SLU	Min 4,660E-14 -389,1120
32	1,09348	SLU	Min 1,504E-14 -125,5890
32	0,00000	SLD	Max 8,274E-14 -690,9312
32	0,54674	SLD	Max 6,427E-14 -536,7054
32	1,09348	SLD	Max 3,536E-14 -295,3111
32	0,00000	SLD	Min 8,274E-14 -690,9312
32	0,54674	SLD	Min 6,427E-14 -536,7054
32	1,09348	SLD	Min 3,536E-14 -295,3111
32	0,00000	SLV	Max 2,219E-13 -1852,9350
32	0,54674	SLV	Max 2,045E-13 -1707,5913
32	1,09348	SLV	Max 1,722E-13 -1438,0007
32	0,00000	SLV	Min 2,219E-13 -1852,9350
32	0,54674	SLV	Min 2,045E-13 -1707,5913
32	1,09348	SLV	Min 1,722E-13 -1438,0007
33	0,00000	SLE	Max 1,212E-14 -96,6069
33	0,55057	SLE	Max -7,325E-15 76,6453
33	1,10113	SLE	Max -3,578E-14 325,1461
33	0,00000	SLE	Min 1,212E-14 -96,6069
33	0,55057	SLE	Min -7,325E-15 76,6453
33	1,10113	SLE	Min -3,578E-14 325,1461
33	0,00000	SLU	Max 1,576E-14 -125,5890
33	0,55057	SLU	Max -9,522E-15 99,6389

Pagina 412 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

33	1,10113	SLU	Max -4,652E-14 422,6900
33	0,00000	SLU	Min 1,576E-14 -125,5890
33	0,55057	SLU	Min -9,522E-15 99,6389
33	1,10113	SLU	Min -4,652E-14 422,6900
33	0,00000	SLD	Max 3,237E-14 -295,3111
33	0,55057	SLD	Max 8,522E-15 -82,9527
33	1,10113	SLD	Max -2,613E-14 219,6821
33	0,00000	SLD	Min 3,237E-14 -295,3111
33	0,55057	SLD	Min 8,522E-15 -82,9527
33	1,10113	SLD	Min -2,613E-14 219,6821
33	0,00000	SLV	Max 1,461E-13 -1438,0007
33	0,55057	SLV	Max 1,173E-13 -1181,0362
33	1,10113	SLV	Max 7,299E-14 -794,1465
33	0,00000	SLV	Min 1,461E-13 -1438,0007
33	0,55057	SLV	Min 1,173E-13 -1181,0362
33	1,10113	SLV	Min 7,299E-14 -794,1465
34	0,00000	SLE	Max -1,857E-14 325,1461
34	0,55057	SLE	Max -5,372E-14 651,8937
34	1,10113	SLE	Max -9,859E-14 1059,8864
34	0,00000	SLE	Min -1,857E-14 325,1461
34	0,55057	SLE	Min -5,372E-14 651,8937
34	1,10113	SLE	Min -9,859E-14 1059,8864
34	0,00000	SLU	Max -2,414E-14 422,6900
34	0,55057	SLU	Max -6,983E-14 847,4618
34	1,10113	SLU	Max -1,282E-13 1377,8523
34	0,00000	SLU	Min -2,414E-14 422,6900
34	0,55057	SLU	Min -6,983E-14 847,4618
34	1,10113	SLU	Min -1,282E-13 1377,8523
34	0,00000	SLD	Max -8,002E-15 219,6821
34	0,55057	SLD	Max -5,062E-14 615,8501
34	1,10113	SLD	Max -1,048E-13 1108,8082
34	0,00000	SLD	Min -8,002E-15 219,6821
34	0,55057	SLD	Min -5,062E-14 615,8501

Eurolink S.C.p.A. Pagina 413 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

34	1,10113	SLD	Min -1,048E-13 1108,8082
34	0,00000	SLV	Max 7,954E-14 -794,1465
34	0,55057	SLV	Max 2,359E-14 -273,6120
34	1,10113	SLV	Max -4,880E-14 384,2863
34	0,00000	SLV	Min 7,954E-14 -794,1465
34	0,55057	SLV	Min 2,359E-14 -273,6120
34	1,10113	SLV	Min -4,880E-14 384,2863
35	0,00000	SLE	Max -2,412E-14 1059,8864
35	0,55057	SLE	Max -7,157E-14 1553,3008
35	1,10113	SLE	Max -1,297E-13 2136,3135
35	0,00000	SLE	Min -2,412E-14 1059,8864
35	0,55057	SLE	Min -7,157E-14 1553,3008
35	1,10113	SLE	Min -1,297E-13 2136,3135
35	0,00000	SLU	Max -3,136E-14 1377,8523
35	0,55057	SLU	Max -9,304E-14 2019,2910
35	1,10113	SLU	Max -1,687E-13 2777,2076
35	0,00000	SLU	Min -3,136E-14 1377,8523
35	0,55057	SLU	Min -9,304E-14 2019,2910
35	1,10113	SLU	Min -1,687E-13 2777,2076
35	0,00000	SLD	Max -2,120E-14 1108,8082
35	0,55057	SLD	Max -7,838E-14 1703,2715
35	1,10113	SLD	Max -1,483E-13 2403,9550
35	0,00000	SLD	Min -2,120E-14 1108,8082
35	0,55057	SLD	Min -7,838E-14 1703,2715
35	1,10113	SLD	Min -1,483E-13 2403,9550
35	0,00000	SLV	Max 2,336E-14 384,2863
35	0,55057	SLV	Max -5,363E-14 1185,2381
35	1,10113	SLV	Max -1,484E-13 2134,9325
35	0,00000	SLV	Min 2,336E-14 384,2863
35	0,55057	SLV	Min -5,363E-14 1185,2381
35	1,10113	SLV	Min -1,484E-13 2134,9325
36	0,00000	SLE	Max 0,0000 2136,3135
36	0,49860	SLE	Max 0,0000 2081,3033

Pagina 414 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

36	0,99721	SLE	Max	0,0000 2093,3047
36	0,00000	SLE	Min	0,0000 2136,3135
36	0,49860	SLE	Min	0,0000 2081,3033
36	0,99721	SLE	Min	0,0000 2093,3047
36	0,00000	SLU	Max	0,0000 2777,2076
36	0,49860	SLU	Max	0,0000 2705,6943
36	0,99721	SLU	Max	0,0000 2721,2961
36	0,00000	SLU	Min	0,0000 2777,2076
36	0,49860	SLU	Min	0,0000 2705,6943
36	0,99721	SLU	Min	0,0000 2721,2961
36	0,00000	SLD	Max	0,0000 2403,9550
36	0,49860	SLD	Max	0,0000 2371,1226
36	0,99721	SLD	Max	0,0000 2416,0913
36	0,00000	SLD	Min	0,0000 2403,9550
36	0,49860	SLD	Min	0,0000 2371,1226
36	0,99721	SLD	Min	0,0000 2416,0913
36	0,00000	SLV	Max	0,0000 2134,9325
36	0,49860	SLV	Max	0,0000 2226,8605
36	0,99721	SLV	Max	0,0000 2430,5987
36	0,00000	SLV	Min	0,0000 2134,9325
36	0,49860	SLV	Min	0,0000 2226,8605
36	0,99721	SLV	Min	0,0000 2430,5987
37	0,00000	SLE	Max	0,0000 2093,3047
37	0,49860	SLE	Max	0,0000 2170,9253
37	0,99721	SLE	Max	0,0000 2312,7732
37	0,00000	SLE	Min	0,0000 2093,3047
37	0,49860	SLE	Min	0,0000 2170,9253
37	0,99721	SLE	Min	0,0000 2312,7732
37	0,00000	SLU	Max	0,0000 2721,2961
37	0,49860	SLU	Max	0,0000 2822,2029
37	0,99721	SLU	Max	0,0000 3006,6051
37	0,00000	SLU	Min	0,0000 2721,2961
37	0,49860	SLU	Min	0,0000 2822,2029

Eurolink S.C.p.A. Pagina 415 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

37	0,99721	SLU	Min	0,0000 3006,6051
37	0,00000	SLD	Max	0,0000 2416,0913
37	0,49860	SLD	Max	0,0000 2537,4687
37	0,99721	SLD	Max	0,0000 2733,8627
37	0,00000	SLD	Min	0,0000 2416,0913
37	0,49860	SLD	Min	0,0000 2537,4687
37	0,99721	SLD	Min	0,0000 2733,8627
37	0,00000	SLV	Max	0,0000 2430,5987
37	0,49860	SLV	Max	0,0000 2744,7546
37	0,99721	SLV	Max	0,0000 3167,9364
37	0,00000	SLV	Min	0,0000 2430,5987
37	0,49860	SLV	Min	0,0000 2744,7546
37	0,99721	SLV	Min	0,0000 3167,9364
38	0,00000	SLE	Max	0,0000 2312,7732
38	0,49860	SLE	Max	0,0000 2517,3179
38	0,99721	SLE	Max	0,0000 2783,0296
38	0,00000	SLE	Min	0,0000 2312,7732
38	0,49860	SLE	Min	0,0000 2517,3179
38	0,99721	SLE	Min	0,0000 2783,0296
38	0,00000	SLU	Max	0,0000 3006,6051
38	0,49860	SLU	Max	0,0000 3272,5133
38	0,99721	SLU	Max	0,0000 3617,9384
38	0,00000	SLU	Min	0,0000 3006,6051
38	0,49860	SLU	Min	0,0000 3272,5133
38	0,99721	SLU	Min	0,0000 3617,9384
38	0,00000	SLD	Max	0,0000 2733,8627
38	0,49860	SLD	Max	0,0000 3003,7680
38	0,99721	SLD	Max	0,0000 3345,6793
38	0,00000	SLD	Min	0,0000 2733,8627
38	0,49860	SLD	Min	0,0000 3003,7680
38	0,99721	SLD	Min	0,0000 3345,6793
38	0,00000	SLV	Max	0,0000 3167,9364
38	0,49860	SLV	Max	0,0000 3698,6881

Pagina 416 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

38	0,99721	SLV	Max	0,0000	4335,5545
38	0,00000	SLV	Min	0,0000	3167,9364
38	0,49860	SLV	Min	0,0000	3698,6881
38	0,99721	SLV	Min	0,0000	4335,5545
39	0,00000	SLE	Max	0,0000	2783,0296
39	0,41312	SLE	Max	0,0000	3048,4692
39	0,82623	SLE	Max	0,0000	3353,7985
39	0,00000	SLE	Min	0,0000	2783,0296
39	0,41312	SLE	Min	0,0000	3048,4692
39	0,82623	SLE	Min	0,0000	3353,7985
39	0,00000	SLU	Max	0,0000	3617,9384
39	0,41312	SLU	Max	0,0000	3963,0099
39	0,82623	SLU	Max	0,0000	4359,9380
39	0,00000	SLU	Min	0,0000	3617,9384
39	0,41312	SLU	Min	0,0000	3963,0099
39	0,82623	SLU	Min	0,0000	4359,9380
39	0,00000	SLD	Max	0,0000	3345,6793
39	0,41312	SLD	Max	0,0000	3682,4649
39	0,82623	SLD	Max	0,0000	4066,5813
39	0,00000	SLD	Min	0,0000	3345,6793
39	0,41312	SLD	Min	0,0000	3682,4649
39	0,82623	SLD	Min	0,0000	4066,5813
39	0,00000	SLV	Max	0,0000	4335,5545
39	0,41312	SLV	Max	0,0000	4942,5626
39	0,82623	SLV	Max	0,0000	5620,3167
39	0,00000	SLV	Min	0,0000	4335,5545
39	0,41312	SLV	Min	0,0000	4942,5626
39	0,82623	SLV	Min	0,0000	5620,3167
40	0,00000	SLE	Max	0,0000	3353,7985
40	0,46541	SLE	Max	0,0000	2807,9439
40	0,93083	SLE	Max	0,0000	2246,2043
40	0,00000	SLE	Min	0,0000	3353,7985
40	0,46541	SLE	Min	0,0000	2807,9439

Eurolink S.C.p.A. Pagina 417 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

40	0,93083	SLE	Min	0,0000 2246,2043
40	0,00000	SLU	Max	0,0000 4359,9380
40	0,46541	SLU	Max	0,0000 3650,3270
40	0,93083	SLU	Max	0,0000 2920,0656
40	0,00000	SLU	Min	0,0000 4359,9380
40	0,46541	SLU	Min	0,0000 3650,3270
40	0,93083	SLU	Min	0,0000 2920,0656
40	0,00000	SLD	Max	0,0000 4066,5813
40	0,46541	SLD	Max	0,0000 3448,3000
40	0,93083	SLD	Max	0,0000 2811,8058
40	0,00000	SLD	Min	0,0000 4066,5813
40	0,46541	SLD	Min	0,0000 3448,3000
40	0,93083	SLD	Min	0,0000 2811,8058
40	0,00000	SLV	Max	0,0000 5620,3167
40	0,46541	SLV	Max	0,0000 4968,4646
40	0,93083	SLV	Max	0,0000 4294,3788
40	0,00000	SLV	Min	0,0000 5620,3167
40	0,46541	SLV	Min	0,0000 4968,4646
40	0,93083	SLV	Min	0,0000 4294,3788
41	0,00000	SLE	Max	0,0000 2246,2043
41	0,46541	SLE	Max	0,0000 1954,9066
41	0,93083	SLE	Max	0,0000 1647,7239
41	0,00000	SLE	Min	0,0000 2246,2043
41	0,46541	SLE	Min	0,0000 1954,9066
41	0,93083	SLE	Min	0,0000 1647,7239
41	0,00000	SLU	Max	0,0000 2920,0656
41	0,46541	SLU	Max	0,0000 2541,3785
41	0,93083	SLU	Max	0,0000 2142,0410
41	0,00000	SLU	Min	0,0000 2920,0656
41	0,46541	SLU	Min	0,0000 2541,3785
41	0,93083	SLU	Min	0,0000 2142,0410
41	0,00000	SLD	Max	0,0000 2811,8058
41	0,46541	SLD	Max	0,0000 2479,3565

Pagina 418 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

41	0,93083	SLD	Max	0,0000	2128,6941
41	0,00000	SLD	Min	0,0000	2811,8058
41	0,46541	SLD	Min	0,0000	2479,3565
41	0,93083	SLD	Min	0,0000	2128,6941
41	0,00000	SLV	Max	0,0000	4294,3788
41	0,46541	SLV	Max	0,0000	3944,0558
41	0,93083	SLV	Max	0,0000	3571,4990
41	0,00000	SLV	Min	0,0000	4294,3788
41	0,46541	SLV	Min	0,0000	3944,0558
41	0,93083	SLV	Min	0,0000	3571,4990
42	0,00000	SLE	Max	0,0000	1647,7239
42	0,56242	SLE	Max	0,0000	1416,7607
42	1,12485	SLE	Max	0,0000	1168,6275
42	0,00000	SLE	Min	0,0000	1647,7239
42	0,56242	SLE	Min	0,0000	1416,7607
42	1,12485	SLE	Min	0,0000	1168,6275
42	0,00000	SLU	Max	0,0000	2142,0410
42	0,56242	SLU	Max	0,0000	1841,7889
42	1,12485	SLU	Max	0,0000	1519,2158
42	0,00000	SLU	Min	0,0000	2142,0410
42	0,56242	SLU	Min	0,0000	1841,7889
42	1,12485	SLU	Min	0,0000	1519,2158
42	0,00000	SLD	Max	0,0000	2128,6941
42	0,56242	SLD	Max	0,0000	1859,2607
42	1,12485	SLD	Max	0,0000	1570,0618
42	0,00000	SLD	Min	0,0000	2128,6941
42	0,56242	SLD	Min	0,0000	1859,2607
42	1,12485	SLD	Min	0,0000	1570,0618
42	0,00000	SLV	Max	0,0000	3571,4990
42	0,56242	SLV	Max	0,0000	3261,8342
42	1,12485	SLV	Max	0,0000	2927,8998
42	0,00000	SLV	Min	0,0000	3571,4990
42	0,56242	SLV	Min	0,0000	3261,8342

Eurolink S.C.p.A. Pagina 419 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

42	1,12485	SLV	Min	0,0000 2927,89	998
43	0,00000	SLE	Max	0,0000 1168,6	275
43	0,56242	SLE	Max	0,0000 966,28	357
43	1,12485	SLE	Max	0,0000 746,26	559
43	0,00000	SLE	Min	0,0000 1168,62	275
43	0,56242	SLE	Min	0,0000 966,28	57
43	1,12485	SLE	Min	0,0000 746,26	59
43	0,00000	SLU	Max	0,0000 1519,2	158
43	0,56242	SLU	Max	0,0000 1256,1	714
43	1,12485	SLU	Max	0,0000 970,14	457
43	0,00000	SLU	Min	0,0000 1519,2	158
43	0,56242	SLU	Min	0,0000 1256,1	714
43	1,12485	SLU	Min	0,0000 970,14	57
43	0,00000	SLD	Max	0,0000 1570,0	618
43	0,56242	SLD	Max	0,0000 1330,4	771
43	1,12485	SLD	Max	0,0000 1070,4	855
43	0,00000	SLD	Min	0,0000 1570,00	618
43	0,56242	SLD	Min	0,0000 1330,4	771
43	1,12485	SLD	Min	0,0000 1070,48	855
43	0,00000	SLV	Max	0,0000 2927,8	998
43	0,56242	SLV	Max	0,0000 2632,2	587
43	1,12485	SLV	Max	0,0000 2311,4	599
43	0,00000	SLV	Min	0,0000 2927,89	998
43	0,56242	SLV	Min	0,0000 2632,25	587
43	1,12485	SLV	Min	0,0000 2311,45	599
44	0,00000	SLE	Max	0,0000 746,26	659
44	0,56242	SLE	Max	0,0000 574,14	198
44	1,12485	SLE	Max	0,0000 383,92	289
44	0,00000	SLE	Min	0,0000 746,26	59
44	0,56242	SLE	Min	0,0000 574,14	98
44	1,12485	SLE	Min	0,0000 383,92	89
44	0,00000	SLU	Max	0,0000 970,14	457
44	0,56242	SLU	Max	0,0000 746,39	947

Pagina 420 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

44	1,12485	SLU	Max	0,0000	499,1075
44	0,00000	SLU	Min	0,0000	970,1457
44	0,56242	SLU	Min	0,0000	746,3947
44	1,12485	SLU	Min	0,0000	499,1075
44	0,00000	SLD	Max	0,0000	1070,4855
44	0,56242	SLD	Max	0,0000	863,8475
44	1,12485	SLD	Max	0,0000	636,2548
44	0,00000	SLD	Min	0,0000	1070,4855
44	0,56242	SLD	Min	0,0000	863,8475
44	1,12485	SLD	Min	0,0000	636,2548
44	0,00000	SLV	Max	0,0000	2311,4599
44	0,56242	SLV	Max	0,0000	2040,3668
44	1,12485	SLV	Max	0,0000	1743,3431
44	0,00000	SLV	Min	0,0000	2311,4599
44	0,56242	SLV	Min	0,0000	2040,3668
44	1,12485	SLV	Min	0,0000	1743,3431
45	0,00000	SLE	Max	0,0000	383,9289
45	0,56242	SLE	Max	0,0000	242,2687
45	1,12485	SLE	Max	0,0000	82,1599
45	0,00000	SLE	Min	0,0000	383,9289
45	0,56242	SLE	Min	0,0000	242,2687
45	1,12485	SLE	Min	0,0000	82,1599
45	0,00000	SLU	Max	0,0000	499,1075
45	0,56242	SLU	Max	0,0000	314,9493
45	1,12485	SLU	Max	0,0000	106,8079
45	0,00000	SLU	Min	0,0000	499,1075
45	0,56242	SLU	Min	0,0000	314,9493
45	1,12485	SLU	Min	0,0000	106,8079
45	0,00000	SLD	Max	0,0000	636,2548
45	0,56242	SLD	Max	0,0000	463,8071
45	1,12485	SLD	Max	0,0000	269,9528
45	0,00000	SLD	Min	0,0000	636,2548
45	0,56242	SLD	Min	0,0000	463,8071

Eurolink S.C.p.A. Pagina 421 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

45	1,12485	SLD	Min	0,0000	269,9528
45	0,00000	SLV	Max	0,0000	1743,3431
45	0,56242	SLV	Max	0,0000	1503,8108
45	1,12485	SLV	Max	0,0000	1237,6938
45	0,00000	SLV	Min	0,0000	1743,3431
45	0,56242	SLV	Min	0,0000	1503,8108
45	1,12485	SLV	Min	0,0000	1237,6938
46	0,00000	SLE	Max	0,0000	82,1599
46	0,56242	SLE	Max	0,0000	-29,7191
46	1,12485	SLE	Max	0,0000	-160,3060
46	0,00000	SLE	Min	0,0000	82,1599
46	0,56242	SLE	Min	0,0000	-29,7191
46	1,12485	SLE	Min	0,0000	-160,3060
46	0,00000	SLU	Max	0,0000	106,8079
46	0,56242	SLU	Max	0,0000	-38,6348
46	1,12485	SLU	Max	0,0000	-208,3978
46	0,00000	SLU	Min	0,0000	106,8079
46	0,56242	SLU	Min	0,0000	-38,6348
46	1,12485	SLU	Min	0,0000	-208,3978
46	0,00000	SLD	Max	0,0000	269,9528
46	0,56242	SLD	Max	0,0000	131,6380
46	1,12485	SLD	Max	0,0000	-28,4372
46	0,00000	SLD	Min	0,0000	269,9528
46	0,56242	SLD	Min	0,0000	131,6380
46	1,12485	SLD	Min	0,0000	-28,4372
46	0,00000	SLV	Max	0,0000	1237,6938
46	0,56242	SLV	Max	0,0000	1033,8999
46	1,12485	SLV	Max	0,0000	802,9892
46	0,00000	SLV	Min	0,0000	1237,6938
46	0,56242	SLV	Min	0,0000	1033,8999
46	1,12485	SLV	Min	0,0000	802,9892
47	0,00000	SLE	Max	0,0000	-160,3060
47	0,56242	SLE	Max	0,0000	-243,5855

Pagina 422 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

47	1,12485	SLE	Max	0,0000 -345,7464
47	0,00000	SLE	Min	0,0000 -160,3060
47	0,56242	SLE	Min	0,0000 -243,5855
47	1,12485	SLE	Min	0,0000 -345,7464
47	0,00000	SLU	Max	0,0000 -208,3978
47	0,56242	SLU	Max	0,0000 -316,6611
47	1,12485	SLU	Max	0,0000 -449,4703
47	0,00000	SLU	Min	0,0000 -208,3978
47	0,56242	SLU	Min	0,0000 -316,6611
47	1,12485	SLU	Min	0,0000 -449,4703
47	0,00000	SLD	Max	0,0000 -28,4372
47	0,56242	SLD	Max	0,0000 -133,5009
47	1,12485	SLD	Max	0,0000 -260,5789
47	0,00000	SLD	Min	0,0000 -28,4372
47	0,56242	SLD	Min	0,0000 -133,5009
47	1,12485	SLD	Min	0,0000 -260,5789
47	0,00000	SLV	Max	0,0000 802,9892
47	0,56242	SLV	Max	0,0000 636,8965
47	1,12485	SLV	Max	0,0000 443,2791
47	0,00000	SLV	Min	0,0000 802,9892
47	0,56242	SLV	Min	0,0000 636,8965
47	1,12485	SLV	Min	0,0000 443,2791
48	0,00000	SLE	Max	0,0000 -345,7464
48	0,56242	SLE	Max	0,0000 -401,7890
48	1,12485	SLE	Max	0,0000 -476,7999
48	0,00000	SLE	Min	0,0000 -345,7464
48	0,56242	SLE	Min	0,0000 -401,7890
48	1,12485	SLE	Min	0,0000 -476,7999
48	0,00000	SLU	Max	0,0000 -449,4703
48	0,56242	SLU	Max	0,0000 -522,3257
48	1,12485	SLU	Max	0,0000 -619,8399
48	0,00000	SLU	Min	0,0000 -449,4703
48	0,56242	SLU	Min	0,0000 -522,3257

Eurolink S.C.p.A. Pagina 423 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

48	1,12485	SLU	Min	0,0000 -	619,8399
48	0,00000	SLD	Max	0,0000	-260,5789
48	0,56242	SLD	Max	0,0000	-333,7017
48	1,12485	SLD	Max	0,0000	-428,9918
48	0,00000	SLD	Min	0,0000 -	260,5789
48	0,56242	SLD	Min	0,0000 -	333,7017
48	1,12485	SLD	Min	0,0000 -	428,9918
48	0,00000	SLV	Max	0,0000	443,2791
48	0,56242	SLV	Max	0,0000	315,1829
48	1,12485	SLV	Max	0,0000	159,2803
48	0,00000	SLV	Min	0,0000	443,2791
48	0,56242	SLV	Min	0,0000	315,1829
48	1,12485	SLV	Min	0,0000	159,2803
49	0,00000	SLE	Max	1,946E-14	0,0000
49	0,50000	SLE	Max	1,112E-14	1,421E-14
49	1,00000	SLE	Max	2,780E-15	2,842E-14
49	0,00000	SLE	Min	1,946E-14	0,0000
49	0,50000	SLE	Min	1,112E-14	1,421E-14
49	1,00000	SLE	Min	2,780E-15	2,842E-14
49	0,00000	SLU	Max	2,529E-14	0,0000
49	0,50000	SLU	Max	1,445E-14	1,421E-14
49	1,00000	SLU	Max	3,613E-15	2,842E-14
49	0,00000	SLU	Min	2,529E-14	0,0000
49	0,50000	SLU	Min	1,445E-14	1,421E-14
49	1,00000	SLU	Min	3,613E-15	2,842E-14
49	0,00000	SLD	Max	2,205E-14	0,0000
49	0,50000	SLD	Max	1,260E-14	0,0000
49	1,00000	SLD	Max	3,150E-15	0,0000
49	0,00000	SLD	Min	2,205E-14	0,0000
49	0,50000	SLD	Min	1,260E-14	0,0000
49	1,00000	SLD	Min	3,150E-15	0,0000
49	0,00000	SLV	Max	2,438E-14	0,0000
49	0,50000	SLV	Max	1,393E-14	1,421E-14

Pagina 424 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

49	1,00000	SLV	Max	3,483E-15	2,842E-14
49	0,00000	SLV	Min	2,438E-14	0,0000
49	0,50000	SLV	Min	1,393E-14	1,421E-14
49	1,00000	SLV	Min	3,483E-15	2,842E-14
50	0,00000	SLE	Max	1,953E-14	0,0000
50	0,50000	SLE	Max	1,116E-14	1,421E-14
50	1,00000	SLE	Max	2,790E-15	2,842E-14
50	0,00000	SLE	Min	1,953E-14	0,0000
50	0,50000	SLE	Min	1,116E-14	1,421E-14
50	1,00000	SLE	Min	2,790E-15	2,842E-14
50	0,00000	SLU	Max	2,539E-14	0,0000
50	0,50000	SLU	Max	1,451E-14	1,421E-14
50	1,00000	SLU	Max	3,627E-15	2,842E-14
50	0,00000	SLU	Min	2,539E-14	0,0000
50	0,50000	SLU	Min	1,451E-14	1,421E-14
50	1,00000	SLU	Min	3,627E-15	2,842E-14
50	0,00000	SLD	Max	2,213E-14	0,0000
50	0,50000	SLD	Max	1,265E-14	1,421E-14
50	1,00000	SLD	Max	3,162E-15	2,842E-14
50	0,00000	SLD	Min	2,213E-14	0,0000
50	0,50000	SLD	Min	1,265E-14	1,421E-14
50	1,00000	SLD	Min	3,162E-15	2,842E-14
50	0,00000	SLV	Max	2,445E-14	0,0000
50	0,50000	SLV	Max	1,397E-14	1,421E-14
50	1,00000	SLV	Max	3,493E-15	2,842E-14
50	0,00000	SLV	Min	2,445E-14	0,0000
50	0,50000	SLV	Min	1,397E-14	1,421E-14
50	1,00000	SLV	Min	3,493E-15	2,842E-14
51	0,00000	SLE	Max	1,961E-14	0,0000
51	0,50000	SLE	Max	1,120E-14	0,0000
51	1,00000	SLE	Max	2,801E-15	0,0000
51	0,00000	SLE	Min	1,961E-14	0,0000
51	0,50000	SLE	Min	1,120E-14	0,0000

Eurolink S.C.p.A. Pagina 425 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento
SS0328_F0.doc_F0

Rev F0 Data 20/06/2011

51	1,00000	SLE	Min	2,801E-15	0,0000
51	0,00000	SLU	Max	2,549E-14	0,0000
51	0,50000	SLU	Max	1,457E-14	0,0000
51	1,00000	SLU	Max	3,641E-15	0,0000
51	0,00000	SLU	Min	2,549E-14	0,0000
51	0,50000	SLU	Min	1,457E-14	0,0000
51	1,00000	SLU	Min	3,641E-15	0,0000
51	0,00000	SLD	Max	2,223E-14	0,0000
51	0,50000	SLD	Max	1,270E-14	0,0000
51	1,00000	SLD	Max	3,175E-15	0,0000
51	0,00000	SLD	Min	2,223E-14	0,0000
51	0,50000	SLD	Min	1,270E-14	0,0000
51	1,00000	SLD	Min	3,175E-15	0,0000
51	0,00000	SLV	Max	2,454E-14	0,0000
51	0,50000	SLV	Max	1,402E-14	-1,421E-14
51	1,00000	SLV	Max	3,506E-15	-2,842E-14
51	0,00000	SLV	Min	2,454E-14	0,0000
51	0,50000	SLV	Min	1,402E-14	-1,421E-14
51	1,00000	SLV	Min	3,506E-15	-2,842E-14
52	0,00000	SLE	Max	1,968E-14	0,0000
52	0,50000	SLE	Max	1,125E-14	0,0000
52	1,00000	SLE	Max	2,812E-15	0,0000
52	0,00000	SLE	Min	1,968E-14	0,0000
52	0,50000	SLE	Min	1,125E-14	0,0000
52	1,00000	SLE	Min	2,812E-15	0,0000
52	0,00000	SLU	Max	2,559E-14	0,0000
52	0,50000	SLU	Max	1,462E-14	1,421E-14
52	1,00000	SLU	Max	3,655E-15	2,842E-14
52	0,00000	SLU	Min	2,559E-14	0,0000
52	0,50000	SLU	Min	1,462E-14	1,421E-14
52	1,00000	SLU	Min	3,655E-15	2,842E-14
52	0,00000	SLD	Max	2,232E-14	0,0000
52	0,50000	SLD	Max	1,275E-14	0,0000

Pagina 426 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

52	1,00000	SLD	Max	3,188E-15	0,0000
52	0,00000	SLD	Min	2,232E-14	0,0000
52	0,50000	SLD	Min	1,275E-14	0,0000
52	1,00000	SLD	Min	3,188E-15	0,0000
52	0,00000	SLV	Max	2,465E-14	0,0000
52	0,50000	SLV	Max	1,409E-14	-1,421E-14
52	1,00000	SLV	Max	3,522E-15	-2,842E-14
52	0,00000	SLV	Min	2,465E-14	0,0000
52	0,50000	SLV	Min	1,409E-14	-1,421E-14
52	1,00000	SLV	Min	3,522E-15	-2,842E-14
53	0,00000	SLE	Max	1,976E-14	0,0000
53	0,50000	SLE	Max	1,129E-14	0,0000
53	1,00000	SLE	Max	2,823E-15	0,0000
53	0,00000	SLE	Min	1,976E-14	0,0000
53	0,50000	SLE	Min	1,129E-14	0,0000
53	1,00000	SLE	Min	2,823E-15	0,0000
53	0,00000	SLU	Max	2,569E-14	0,0000
53	0,50000	SLU	Max	1,468E-14	0,0000
53	1,00000	SLU	Max	3,670E-15	0,0000
53	0,00000	SLU	Min	2,569E-14	0,0000
53	0,50000	SLU	Min	1,468E-14	0,0000
53	1,00000	SLU	Min	3,670E-15	0,0000
53	0,00000	SLD	Max	2,241E-14	0,0000
53	0,50000	SLD	Max	1,281E-14	0,0000
53	1,00000	SLD	Max	3,202E-15	0,0000
53	0,00000	SLD	Min	2,241E-14	0,0000
53	0,50000	SLD	Min	1,281E-14	0,0000
53	1,00000	SLD	Min	3,202E-15	0,0000
53	0,00000	SLV	Max	2,479E-14	0,0000
53	0,50000	SLV	Max	1,417E-14	-1,421E-14
53	1,00000	SLV	Max	3,541E-15	-2,842E-14
53	0,00000	SLV	Min	2,479E-14	0,0000
53	0,50000	SLV	Min	1,417E-14	-1,421E-14

Eurolink S.C.p.A. Pagina 427 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

53	1,00000	SLV	Min 3,541E-15 -2,842E-14
54	0,00000	SLE	Max 0,0000 0,0000
54	0,47065	SLE	Max 0,0000 0,0000
54	0,94129	SLE	Max 0,0000 0,0000
54	0,00000	SLE	Min 0,0000 0,0000
54	0,47065	SLE	Min 0,0000 0,0000
54	0,94129	SLE	Min 0,0000 0,0000
54	0,00000	SLU	Max 0,0000 0,0000
54	0,47065	SLU	Max 0,0000 0,0000
54	0,94129	SLU	Max 0,0000 0,0000
54	0,00000	SLU	Min 0,0000 0,0000
54	0,47065	SLU	Min 0,0000 0,0000
54	0,94129	SLU	Min 0,0000 0,0000
54	0,00000	SLD	Max 0,0000 0,0000
54	0,47065	SLD	Max 0,0000 0,0000
54	0,94129	SLD	Max 0,0000 0,0000
54	0,00000	SLD	Min 0,0000 0,0000
54	0,47065	SLD	Min 0,0000 0,0000
54	0,94129	SLD	Min 0,0000 0,0000
54	0,00000	SLV	Max 0,0000 0,0000
54	0,47065	SLV	Max 0,0000 0,0000
54	0,94129	SLV	Max 0,0000 0,0000
54	0,00000	SLV	Min 0,0000 0,0000
54	0,47065	SLV	Min 0,0000 0,0000
54	0,94129	SLV	Min 0,0000 0,0000
55	0,00000	SLE	Max 8,477E-15 0,0000
55	0,50000	SLE	Max 4,844E-15 -7,105E-15
55	1,00000	SLE	Max 1,211E-15 -1,421E-14
55	0,00000	SLE	Min 8,477E-15 0,0000
55	0,50000	SLE	Min 4,844E-15 -7,105E-15
55	1,00000	SLE	Min 1,211E-15 -1,421E-14
55	0,00000	SLU	Max 1,102E-14 0,0000
55	0,50000	SLU	Max 6,297E-15 0,0000

Pagina 428 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

55	1,00000	SLU	Max	1,574E-15	0,0000
55	0,00000	SLU	Min	1,102E-14	0,0000
55	0,50000	SLU	Min	6,297E-15	0,0000
55	1,00000	SLU	Min	1,574E-15	0,0000
55	0,00000	SLD	Max	1,014E-14	0,0000
55	0,50000	SLD	Max	5,793E-15	-1,421E-14
55	1,00000	SLD	Max	1,448E-15	-2,842E-14
55	0,00000	SLD	Min	1,014E-14	0,0000
55	0,50000	SLD	Min	5,793E-15	-1,421E-14
55	1,00000	SLD	Min	1,448E-15	-2,842E-14
55	0,00000	SLV	Max	1,372E-14	0,0000
55	0,50000	SLV	Max	7,842E-15	-1,421E-14
55	1,00000	SLV	Max	1,961E-15	-2,842E-14
55	0,00000	SLV	Min	1,372E-14	0,0000
55	0,50000	SLV	Min	7,842E-15	-1,421E-14
55	1,00000	SLV	Min	1,961E-15	-2,842E-14
56	0,00000	SLE	Max	5,272E-15	0,0000
56	0,50000	SLE	Max	3,012E-15	0,0000
56	1,00000	SLE	Max	7,531E-16	0,0000
56	0,00000	SLE	Min	5,272E-15	0,0000
56	0,50000	SLE	Min	3,012E-15	0,0000
56	1,00000	SLE	Min	7,531E-16	0,0000
56	0,00000	SLU	Max	6,853E-15	0,0000
56	0,50000	SLU	Max	3,916E-15	0,0000
56	1,00000	SLU	Max	9,791E-16	0,0000
56	0,00000	SLU	Min	6,853E-15	0,0000
56	0,50000	SLU	Min	3,916E-15	0,0000
56	1,00000	SLU	Min	9,791E-16	0,0000
56	0,00000	SLD	Max	6,331E-15	0,0000
56	0,50000	SLD	Max	3,618E-15	-3,553E-15
56	1,00000	SLD	Max	9,045E-16	-7,105E-15
56	0,00000	SLD	Min	6,331E-15	0,0000
56	0,50000	SLD	Min	3,618E-15	-3,553E-15

Eurolink S.C.p.A. Pagina 429 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

56	1,00000	SLD	Min 9,045E-16 -7,105E-15
56	0,00000	SLV	Max 8,687E-15 0,0000
56	0,50000	SLV	Max 4,964E-15 0,0000
56	1,00000	SLV	Max 1,241E-15 0,0000
56	0,00000	SLV	Min 8,687E-15 0,0000
56	0,50000	SLV	Min 4,964E-15 0,0000
56	1,00000	SLV	Min 1,241E-15 0,0000
57	0,00000	SLE	Max 2,421E-15 0,0000
57	0,50000	SLE	Max 1,383E-15 -1,776E-15
57	1,00000	SLE	Max 3,458E-16 -3,553E-15
57	0,00000	SLE	Min 2,421E-15 0,0000
57	0,50000	SLE	Min 1,383E-15 -1,776E-15
57	1,00000	SLE	Min 3,458E-16 -3,553E-15
57	0,00000	SLU	Max 3,147E-15 0,0000
57	0,50000	SLU	Max 1,798E-15 -3,553E-15
57	1,00000	SLU	Max 4,495E-16 -7,105E-15
57	0,00000	SLU	Min 3,147E-15 0,0000
57	0,50000	SLU	Min 1,798E-15 -3,553E-15
57	1,00000	SLU	Min 4,495E-16 -7,105E-15
57	0,00000	SLD	Max 2,927E-15 0,0000
57	0,50000	SLD	Max 1,672E-15 -3,553E-15
57	1,00000	SLD	Max 4,181E-16 -7,105E-15
57	0,00000	SLD	Min 2,927E-15 0,0000
57	0,50000	SLD	Min 1,672E-15 -3,553E-15
57	1,00000	SLD	Min 4,181E-16 -7,105E-15
57	0,00000	SLV	Max 4,100E-15 0,0000
57	0,50000	SLV	Max 2,343E-15 -3,553E-15
57	1,00000	SLV	Max 5,857E-16 -7,105E-15
57	0,00000	SLV	Min 4,100E-15 0,0000
57	0,50000	SLV	Min 2,343E-15 -3,553E-15
57	1,00000	SLV	Min 5,857E-16 -7,105E-15
58	0,00000	SLE	Max 2,182E-15 0,0000
58	0,50000	SLE	Max 1,247E-15 -1,776E-15

Pagina 430 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

58	1,00000	SLE	Max 3,117E-16 -3,553E-15
58	0,00000	SLE	Min 2,182E-15 0,0000
58	0,50000	SLE	Min 1,247E-15 -1,776E-15
58	1,00000	SLE	Min 3,117E-16 -3,553E-15
58	0,00000	SLU	Max 2,836E-15 0,0000
58	0,50000	SLU	Max 1,621E-15 -1,776E-15
58	1,00000	SLU	Max 4,052E-16 -3,553E-15
58	0,00000	SLU	Min 2,836E-15 0,0000
58	0,50000	SLU	Min 1,621E-15 -1,776E-15
58	1,00000	SLU	Min 4,052E-16 -3,553E-15
58	0,00000	SLD	Max 2,657E-15 0,0000
58	0,50000	SLD	Max 1,518E-15 -1,776E-15
58	1,00000	SLD	Max 3,795E-16 -3,553E-15
58	0,00000	SLD	Min 2,657E-15 0,0000
58	0,50000	SLD	Min 1,518E-15 -1,776E-15
58	1,00000	SLD	Min 3,795E-16 -3,553E-15
58	0,00000	SLV	Max 3,803E-15 0,0000
58	0,50000	SLV	Max 2,173E-15 -1,776E-15
58	1,00000	SLV	Max 5,433E-16 -3,553E-15
58	0,00000	SLV	Min 3,803E-15 0,0000
58	0,50000	SLV	Min 2,173E-15 -1,776E-15
58	1,00000	SLV	Min 5,433E-16 -3,553E-15
59	0,00000	SLE	Max 1,925E-15 0,0000
59	0,50000	SLE	Max 1,100E-15 -8,882E-16
59	1,00000	SLE	Max 2,750E-16 -1,776E-15
59	0,00000	SLE	Min 1,925E-15 0,0000
59	0,50000	SLE	Min 1,100E-15 -8,882E-16
59	1,00000	SLE	Min 2,750E-16 -1,776E-15
59	0,00000	SLU	Max 2,503E-15 0,0000
59	0,50000	SLU	Max 1,430E-15 0,0000
59	1,00000	SLU	Max 3,575E-16 0,0000
59	0,00000	SLU	Min 2,503E-15 0,0000
59	0,50000	SLU	Min 1,430E-15 0,0000

Eurolink S.C.p.A. Pagina 431 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

59	1,00000	SLU	Min 3,575E-16 0,0000
59	0,00000	SLD	Max 2,363E-15 0,0000
59	0,50000	SLD	Max 1,350E-15 -1,776E-15
59	1,00000	SLD	Max 3,376E-16 -3,553E-15
59	0,00000	SLD	Min 2,363E-15 0,0000
59	0,50000	SLD	Min 1,350E-15 -1,776E-15
59	1,00000	SLD	Min 3,376E-16 -3,553E-15
59	0,00000	SLV	Max 3,462E-15 0,0000
59	0,50000	SLV	Max 1,979E-15 -1,776E-15
59	1,00000	SLV	Max 4,946E-16 -3,553E-15
59	0,00000	SLV	Min 3,462E-15 0,0000
59	0,50000	SLV	Min 1,979E-15 -1,776E-15
59	1,00000	SLV	Min 4,946E-16 -3,553E-15
60	0,00000	SLE	Max 1,656E-15 0,0000
60	0,50000	SLE	Max 9,461E-16 1,776E-15
60	1,00000	SLE	Max 2,365E-16 3,553E-15
60	0,00000	SLE	Min 1,656E-15 0,0000
60	0,50000	SLE	Min 9,461E-16 1,776E-15
60	1,00000	SLE	Min 2,365E-16 3,553E-15
60	0,00000	SLU	Max 2,152E-15 0,0000
60	0,50000	SLU	Max 1,230E-15 3,553E-15
60	1,00000	SLU	Max 3,075E-16 7,105E-15
60	0,00000	SLU	Min 2,152E-15 0,0000
60	0,50000	SLU	Min 1,230E-15 3,553E-15
60	1,00000	SLU	Min 3,075E-16 7,105E-15
60	0,00000	SLD	Max 2,052E-15 0,0000
60	0,50000	SLD	Max 1,172E-15 1,776E-15
60	1,00000	SLD	Max 2,931E-16 3,553E-15
60	0,00000	SLD	Min 2,052E-15 0,0000
60	0,50000	SLD	Min 1,172E-15 1,776E-15
60	1,00000	SLD	Min 2,931E-16 3,553E-15
60	0,00000	SLV	Max 3,088E-15 0,0000
60	0,50000	SLV	Max 1,765E-15 1,776E-15

Pagina 432 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

60	1,00000	SLV	Max 4,411E-16 3,553E-15
60	0,00000	SLV	Min 3,088E-15 0,0000
60	0,50000	SLV	Min 1,765E-15 1,776E-15
60	1,00000	SLV	Min 4,411E-16 3,553E-15
61	0,00000	SLE	Max 1,378E-15 0,0000
61	0,50000	SLE	Max 7,872E-16 0,0000
61	1,00000	SLE	Max 1,968E-16 0,0000
61	0,00000	SLE	Min 1,378E-15 0,0000
61	0,50000	SLE	Min 7,872E-16 0,0000
61	1,00000	SLE	Min 1,968E-16 0,0000
61	0,00000	SLU	Max 1,791E-15 0,0000
61	0,50000	SLU	Max 1,023E-15 -8,882E-16
61	1,00000	SLU	Max 2,558E-16 -1,776E-15
61	0,00000	SLU	Min 1,791E-15 0,0000
61	0,50000	SLU	Min 1,023E-15 -8,882E-16
61	1,00000	SLU	Min 2,558E-16 -1,776E-15
61	0,00000	SLD	Max 1,728E-15 0,0000
61	0,50000	SLD	Max 9,876E-16 0,0000
61	1,00000	SLD	Max 2,469E-16 0,0000
61	0,00000	SLD	Min 1,728E-15 0,0000
61	0,50000	SLD	Min 9,876E-16 0,0000
61	1,00000	SLD	Min 2,469E-16 0,0000
61	0,00000	SLV	Max 2,688E-15 0,0000
61	0,50000	SLV	Max 1,536E-15 0,0000
61	1,00000	SLV	Max 3,840E-16 0,0000
61	0,00000	SLV	Min 2,688E-15 0,0000
61	0,50000	SLV	Min 1,536E-15 0,0000
61	1,00000	SLV	Min 3,840E-16 0,0000
62	0,00000	SLE	Max 1,094E-15 0,0000
62	0,50000	SLE	Max 6,251E-16 0,0000
62	1,00000	SLE	Max 1,563E-16 0,0000
62	0,00000	SLE	Min 1,094E-15 0,0000
62	0,50000	SLE	Min 6,251E-16 0,0000

Eurolink S.C.p.A. Pagina 433 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

62	1,00000	SLE	Min	1,563E-16	0,0000
62	0,00000	SLU	Max	1,422E-15	0,0000
62	0,50000	SLU	Max	8,127E-16	8,882E-16
62	1,00000	SLU	Max	2,032E-16	1,776E-15
62	0,00000	SLU	Min	1,422E-15	0,0000
62	0,50000	SLU	Min	8,127E-16	8,882E-16
62	1,00000	SLU	Min	2,032E-16	1,776E-15
62	0,00000	SLD	Max	1,397E-15	0,0000
62	0,50000	SLD	Max	7,981E-16	0,0000
62	1,00000	SLD	Max	1,995E-16	0,0000
62	0,00000	SLD	Min	1,397E-15	0,0000
62	0,50000	SLD	Min	7,981E-16	0,0000
62	1,00000	SLD	Min	1,995E-16	0,0000
62	0,00000	SLV	Max	2,270E-15	0,0000
62	0,50000	SLV	Max	1,297E-15	0,0000
62	1,00000	SLV	Max	3,243E-16	0,0000
62	0,00000	SLV	Min	2,270E-15	0,0000
62	0,50000	SLV	Min	1,297E-15	0,0000
62	1,00000	SLV	Min	3,243E-16	0,0000
63	0,00000	SLE	Max	0,0000	0,0000
63	0,50000	SLE	Max	0,0000	0,0000
63	1,00000	SLE	Max	0,0000	0,0000
63	0,00000	SLE	Min	0,0000	0,0000
63	0,50000	SLE	Min	0,0000	0,0000
63	1,00000	SLE	Min	0,0000	0,0000
63	0,00000	SLU	Max	0,0000	0,0000
63	0,50000	SLU	Max	0,0000	0,0000
63	1,00000	SLU	Max	0,0000	0,0000
63	0,00000	SLU	Min	0,0000	0,0000
63	0,50000	SLU	Min	0,0000	0,0000
63	1,00000	SLU	Min	0,0000	0,0000
63	0,00000	SLD	Max	0,0000	0,0000
63	0,50000	SLD	Max	0,0000	0,0000

Pagina 434 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

63	1,00000	SLD	Max	0,0000	0,0000
63	0,00000	SLD	Min	0,0000	0,0000
63	0,50000	SLD	Min	0,0000	0,0000
63	1,00000	SLD	Min	0,0000	0,0000
63	0,00000	SLV	Max	0,0000	0,0000
63	0,50000	SLV	Max	0,0000	0,0000
63	1,00000	SLV	Max	0,0000	0,0000
63	0,00000	SLV	Min	0,0000	0,0000
63	0,50000	SLV	Min	0,0000	0,0000
63	1,00000	SLV	Min	0,0000	0,0000
64	0,00000	SLE	Max	0,0000	0,0000
64	0,50000	SLE	Max	0,0000	0,0000
64	1,00000	SLE	Max	0,0000	0,0000
64	0,00000	SLE	Min	0,0000	0,0000
64	0,50000	SLE	Min	0,0000	0,0000
64	1,00000	SLE	Min	0,0000	0,0000
64	0,00000	SLU	Max	0,0000	0,0000
64	0,50000	SLU	Max	0,0000	4,441E-16
64	1,00000	SLU	Max	0,0000	8,882E-16
64	0,00000	SLU	Min	0,0000	0,0000
64	0,50000	SLU	Min	0,0000	4,441E-16
64	1,00000	SLU	Min	0,0000	8,882E-16
64	0,00000	SLD	Max	0,0000	0,0000
64	0,50000	SLD	Max	0,0000	0,0000
64	1,00000	SLD	Max	0,0000	0,0000
64	0,00000	SLD	Min	0,0000	0,0000
64	0,50000	SLD	Min	0,0000	0,0000
64	1,00000	SLD	Min	0,0000	0,0000
64	0,00000	SLV	Max	0,0000	0,0000
64	0,50000	SLV	Max	0,0000	-8,882E-16
64	1,00000	SLV	Max	0,0000	-1,776E-15
64	0,00000	SLV	Min	0,0000	0,0000
64	0,50000	SLV	Min	0,0000	-8,882E-16

Eurolink S.C.p.A. Pagina 435 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

64	1,00000	SLV	Min	0,0000 -1,776E-15
65	0,00000	SLE	Max	0,0000 0,0000
65	0,50000	SLE	Max	0,0000 -2,220E-16
65	1,00000	SLE	Max	0,0000 -4,441E-16
65	0,00000	SLE	Min	0,0000 0,0000
65	0,50000	SLE	Min	0,0000 -2,220E-16
65	1,00000	SLE	Min	0,0000 -4,441E-16
65	0,00000	SLU	Max	0,0000 0,0000
65	0,50000	SLU	Max	0,0000 -2,220E-16
65	1,00000	SLU	Max	0,0000 -4,441E-16
65	0,00000	SLU	Min	0,0000 0,0000
65	0,50000	SLU	Min	0,0000 -2,220E-16
65	1,00000	SLU	Min	0,0000 -4,441E-16
65	0,00000	SLD	Max	0,0000 0,0000
65	0,50000	SLD	Max	0,0000 0,0000
65	1,00000	SLD	Max	0,0000 0,0000
65	0,00000	SLD	Min	0,0000 0,0000
65	0,50000	SLD	Min	0,0000 0,0000
65	1,00000	SLD	Min	0,0000 0,0000
65	0,00000	SLV	Max	0,0000 0,0000
65	0,50000	SLV	Max	0,0000 -4,441E-16
65	1,00000	SLV	Max	0,0000 -8,882E-16
65	0,00000	SLV	Min	0,0000 0,0000
65	0,50000	SLV	Min	0,0000 -4,441E-16
65	1,00000	SLV	Min	0,0000 -8,882E-16
66	0,00000	SLE	Max	0,0000 0,0000
66	0,50000	SLE	Max	0,0000 1,665E-16
66	1,00000	SLE	Max	0,0000 3,331E-16
66	0,00000	SLE	Min	0,0000 0,0000
66	0,50000	SLE	Min	0,0000 1,665E-16
66	1,00000	SLE	Min	0,0000 3,331E-16
66	0,00000	SLU	Max	0,0000 0,0000
66	0,50000	SLU	Max	0,0000 2,776E-16

Pagina 436 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

66	1,00000	SLU	Max	0,0000 5,551E-16
66	0,00000	SLU	Min	0,0000 0,0000
66	0,50000	SLU	Min	0,0000 2,776E-16
66	1,00000	SLU	Min	0,0000 5,551E-16
66	0,00000	SLD	Max	0,0000 0,0000
66	0,50000	SLD	Max	0,0000 -1,388E-17
66	1,00000	SLD	Max	0,0000 -2,776E-17
66	0,00000	SLD	Min	0,0000 0,0000
66	0,50000	SLD	Min	0,0000 -1,388E-17
66	1,00000	SLD	Min	0,0000 -2,776E-17
66	0,00000	SLV	Max	0,0000 0,0000
66	0,50000	SLV	Max	0,0000 8,882E-16
66	1,00000	SLV	Max	0,0000 1,776E-15
66	0,00000	SLV	Min	0,0000 0,0000
66	0,50000	SLV	Min	0,0000 8,882E-16
66	1,00000	SLV	Min	0,0000 1,776E-15
67	0,00000	SLE	Max	0,0000 0,0000
67	0,50000	SLE	Max	0,0000 -6,661E-16
67	1,00000	SLE	Max	0,0000 -1,332E-15
67	0,00000	SLE	Min	0,0000 0,0000
67	0,50000	SLE	Min	0,0000 -6,661E-16
67	1,00000	SLE	Min	0,0000 -1,332E-15
67	0,00000	SLU	Max	0,0000 0,0000
67	0,50000	SLU	Max	0,0000 -1,110E-15
67	1,00000	SLU	Max	0,0000 -2,220E-15
67	0,00000	SLU	Min	0,0000 0,0000
67	0,50000	SLU	Min	0,0000 -1,110E-15
67	1,00000	SLU	Min	0,0000 -2,220E-15
67	0,00000	SLD	Max	0,0000 0,0000
67	0,50000	SLD	Max	0,0000 -1,110E-15
67	1,00000	SLD	Max	0,0000 -2,220E-15
67	0,00000	SLD	Min	0,0000 0,0000
67	0,50000	SLD	Min	0,0000 -1,110E-15

Eurolink S.C.p.A. Pagina 437 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

67	1,00000	SLD	Min	0,0000 -2,220E-15
67	0,00000	SLV	Max	0,0000 0,0000
67	0,50000	SLV	Max	0,0000 -6,453E-16
67	1,00000	SLV	Max	0,0000 -1,291E-15
67	0,00000	SLV	Min	0,0000 0,0000
67	0,50000	SLV	Min	0,0000 -6,453E-16
67	1,00000	SLV	Min	0,0000 -1,291E-15
68	0,00000	SLE	Max	0,0000 0,0000
68	0,50000	SLE	Max	0,0000 8,882E-16
68	1,00000	SLE	Max	0,0000 1,776E-15
68	0,00000	SLE	Min	0,0000 0,0000
68	0,50000	SLE	Min	0,0000 8,882E-16
68	1,00000	SLE	Min	0,0000 1,776E-15
68	0,00000	SLU	Max	0,0000 0,0000
68	0,50000	SLU	Max	0,0000 4,441E-16
68	1,00000	SLU	Max	0,0000 8,882E-16
68	0,00000	SLU	Min	0,0000 0,0000
68	0,50000	SLU	Min	0,0000 4,441E-16
68	1,00000	SLU	Min	0,0000 8,882E-16
68	0,00000	SLD	Max	0,0000 0,0000
68	0,50000	SLD	Max	0,0000 4,441E-16
68	1,00000	SLD	Max	0,0000 8,882E-16
68	0,00000	SLD	Min	0,0000 0,0000
68	0,50000	SLD	Min	0,0000 4,441E-16
68	1,00000	SLD	Min	0,0000 8,882E-16
68	0,00000	SLV	Max	0,0000 0,0000
68	0,50000	SLV	Max	0,0000 6,661E-16
68	1,00000	SLV	Max	0,0000 1,332E-15
68	0,00000	SLV	Min	0,0000 0,0000
68	0,50000	SLV	Min	0,0000 6,661E-16
68	1,00000	SLV	Min	0,0000 1,332E-15
69	0,00000	SLE	Max	0,0000 0,0000
69	0,50000	SLE	Max	0,0000 -4,441E-16

Pagina 438 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

69	1,00000	SLE	Max	0,0000 -8,882E-16
69	0,00000	SLE	Min	0,0000 0,0000
69	0,50000	SLE	Min	0,0000 -4,441E-16
69	1,00000	SLE	Min	0,0000 -8,882E-16
69	0,00000	SLU	Max	0,0000 0,0000
69	0,50000	SLU	Max	0,0000 0,0000
69	1,00000	SLU	Max	0,0000 0,0000
69	0,00000	SLU	Min	0,0000 0,0000
69	0,50000	SLU	Min	0,0000 0,0000
69	1,00000	SLU	Min	0,0000 0,0000
69	0,00000	SLD	Max	0,0000 0,0000
69	0,50000	SLD	Max	0,0000 8,882E-16
69	1,00000	SLD	Max	0,0000 1,776E-15
69	0,00000	SLD	Min	0,0000 0,0000
69	0,50000	SLD	Min	0,0000 8,882E-16
69	1,00000	SLD	Min	0,0000 1,776E-15
69	0,00000	SLV	Max	0,0000 0,0000
69	0,50000	SLV	Max	0,0000 4,441E-16
69	1,00000	SLV	Max	0,0000 8,882E-16
69	0,00000	SLV	Min	0,0000 0,0000
69	0,50000	SLV	Min	0,0000 4,441E-16
69	1,00000	SLV	Min	0,0000 8,882E-16
70	0,00000	SLE	Max	0,0000 0,0000
70	0,50000	SLE	Max	0,0000 -1,776E-15
70	1,00000	SLE	Max	0,0000 -3,553E-15
70	0,00000	SLE	Min	0,0000 0,0000
70	0,50000	SLE	Min	0,0000 -1,776E-15
70	1,00000	SLE	Min	0,0000 -3,553E-15
70	0,00000	SLU	Max	0,0000 0,0000
70	0,50000	SLU	Max	0,0000 -3,553E-15
70	1,00000	SLU	Max	0,0000 -7,105E-15
70	0,00000	SLU	Min	0,0000 0,0000
70	0,50000	SLU	Min	0,0000 -3,553E-15

Eurolink S.C.p.A. Pagina 439 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

70	1,00000	SLU	Min	0,0000 -7,105E-15
70	0,00000	SLD	Max	0,0000 0,0000
70	0,50000	SLD	Max	0,0000 -1,776E-15
70	1,00000	SLD	Max	0,0000 -3,553E-15
70	0,00000	SLD	Min	0,0000 0,0000
70	0,50000	SLD	Min	0,0000 -1,776E-15
70	1,00000	SLD	Min	0,0000 -3,553E-15
70	0,00000	SLV	Max	0,0000 0,0000
70	0,50000	SLV	Max	0,0000 -1,776E-15
70	1,00000	SLV	Max	0,0000 -3,553E-15
70	0,00000	SLV	Min	0,0000 0,0000
70	0,50000	SLV	Min	0,0000 -1,776E-15
70	1,00000	SLV	Min	0,0000 -3,553E-15
71	0,00000	SLE	Max	0,0000 0,0000
71	0,50000	SLE	Max	0,0000 0,0000
71	1,00000	SLE	Max	0,0000 0,0000
71	0,00000	SLE	Min	0,0000 0,0000
71	0,50000	SLE	Min	0,0000 0,0000
71	1,00000	SLE	Min	0,0000 0,0000
71	0,00000	SLU	Max	0,0000 0,0000
71	0,50000	SLU	Max	0,0000 -3,553E-15
71	1,00000	SLU	Max	0,0000 -7,105E-15
71	0,00000	SLU	Min	0,0000 0,0000
71	0,50000	SLU	Min	0,0000 -3,553E-15
71	1,00000	SLU	Min	0,0000 -7,105E-15
71	0,00000	SLD	Max	0,0000 0,0000
71	0,50000	SLD	Max	0,0000 3,553E-15
71	1,00000	SLD	Max	0,0000 7,105E-15
71	0,00000	SLD	Min	0,0000 0,0000
71	0,50000	SLD	Min	0,0000 3,553E-15
71	1,00000	SLD	Min	0,0000 7,105E-15
71	0,00000	SLV	Max	0,0000 0,0000
71	0,50000	SLV	Max	0,0000 3,553E-15

Pagina 440 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

71	1,00000	SLV	Max	0,0000 7,105E-15
71	0,00000	SLV	Min	0,0000 0,0000
71	0,50000	SLV	Min	0,0000 3,553E-15
71	1,00000	SLV	Min	0,0000 7,105E-15
72	0,00000	SLE	Max	0,0000 0,0000
72	0,47065	SLE	Max	0,0000 -1,672E-15
72	0,94129	SLE	Max	0,0000 -3,344E-15
72	0,00000	SLE	Min	0,0000 0,0000
72	0,47065	SLE	Min	0,0000 -1,672E-15
72	0,94129	SLE	Min	0,0000 -3,344E-15
72	0,00000	SLU	Max	0,0000 0,0000
72	0,47065	SLU	Max	0,0000 -3,344E-15
72	0,94129	SLU	Max	0,0000 -6,688E-15
72	0,00000	SLU	Min	0,0000 0,0000
72	0,47065	SLU	Min	0,0000 -3,344E-15
72	0,94129	SLU	Min	0,0000 -6,688E-15
72	0,00000	SLD	Max	0,0000 0,0000
72	0,47065	SLD	Max	0,0000 -6,688E-15
72	0,94129	SLD	Max	0,0000 -1,338E-14
72	0,00000	SLD	Min	0,0000 0,0000
72	0,47065	SLD	Min	0,0000 -6,688E-15
72	0,94129	SLD	Min	0,0000 -1,338E-14
72	0,00000	SLV	Max	0,0000 0,0000
72	0,47065	SLV	Max	0,0000 0,0000
72	0,94129	SLV	Max	0,0000 0,0000
72	0,00000	SLV	Min	0,0000 0,0000
72	0,47065	SLV	Min	0,0000 0,0000
72	0,94129	SLV	Min	0,0000 0,0000
73	0,00000	SLE	Max	0,0000 0,0000
73	0,50000	SLE	Max	0,0000 1,421E-14
73	1,00000	SLE	Max	0,0000 2,842E-14
73	0,00000	SLE	Min	0,0000 0,0000
73	0,50000	SLE	Min	0,0000 1,421E-14

Eurolink S.C.p.A. Pagina 441 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

73	1,00000	SLE	Min	0,0000	2,842E-14
73	0,00000	SLU	Max	0,0000	0,0000
73	0,50000	SLU	Max	0,0000	1,421E-14
73	1,00000	SLU	Max	0,0000	2,842E-14
73	0,00000	SLU	Min	0,0000	0,0000
73	0,50000	SLU	Min	0,0000	1,421E-14
73	1,00000	SLU	Min	0,0000	2,842E-14
73	0,00000	SLD	Max	0,0000	0,0000
73	0,50000	SLD	Max	0,0000	2,842E-14
73	1,00000	SLD	Max	0,0000	5,684E-14
73	0,00000	SLD	Min	0,0000	0,0000
73	0,50000	SLD	Min	0,0000	2,842E-14
73	1,00000	SLD	Min	0,0000	5,684E-14
73	0,00000	SLV	Max	0,0000	0,0000
73	0,50000	SLV	Max	0,0000	2,842E-14
73	1,00000	SLV	Max	0,0000	5,684E-14
73	0,00000	SLV	Min	0,0000	0,0000
73	0,50000	SLV	Min	0,0000	2,842E-14
73	1,00000	SLV	Min	0,0000	5,684E-14
74	0,00000	SLE	Max	0,0000	0,0000
74	0,50000	SLE	Max	0,0000	1,421E-14
74	1,00000	SLE	Max	0,0000	2,842E-14
74	0,00000	SLE	Min	0,0000	0,0000
74	0,50000	SLE	Min	0,0000	1,421E-14
74	1,00000	SLE	Min	0,0000	2,842E-14
74	0,00000	SLU	Max	0,0000	0,0000
74	0,50000	SLU	Max	0,0000	1,421E-14
74	1,00000	SLU	Max	0,0000	2,842E-14
74	0,00000	SLU	Min	0,0000	0,0000
74	0,50000	SLU	Min	0,0000	1,421E-14
74	1,00000	SLU	Min	0,0000	2,842E-14
74	0,00000	SLD	Max	0,0000	0,0000
74	0,50000	SLD	Max	0,0000	1,421E-14

Pagina 442 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

74	1,00000	SLD	Max	0,0000 2,842E-14
74	0,00000	SLD	Min	0,0000 0,0000
74	0,50000	SLD	Min	0,0000 1,421E-14
74	1,00000	SLD	Min	0,0000 2,842E-14
74	0,00000	SLV	Max	0,0000 0,0000
74	0,50000	SLV	Max	0,0000 4,263E-14
74	1,00000	SLV	Max	0,0000 8,527E-14
74	0,00000	SLV	Min	0,0000 0,0000
74	0,50000	SLV	Min	0,0000 4,263E-14
74	1,00000	SLV	Min	0,0000 8,527E-14
75	0,00000	SLE	Max	0,0000 0,0000
75	0,50000	SLE	Max	0,0000 -1,421E-14
75	1,00000	SLE	Max	0,0000 -2,842E-14
75	0,00000	SLE	Min	0,0000 0,0000
75	0,50000	SLE	Min	0,0000 -1,421E-14
75	1,00000	SLE	Min	0,0000 -2,842E-14
75	0,00000	SLU	Max	0,0000 0,0000
75	0,50000	SLU	Max	0,0000 -1,421E-14
75	1,00000	SLU	Max	0,0000 -2,842E-14
75	0,00000	SLU	Min	0,0000 0,0000
75	0,50000	SLU	Min	0,0000 -1,421E-14
75	1,00000	SLU	Min	0,0000 -2,842E-14
75	0,00000	SLD	Max	0,0000 0,0000
75	0,50000	SLD	Max	0,0000 0,0000
75	1,00000	SLD	Max	0,0000 0,0000
75	0,00000	SLD	Min	0,0000 0,0000
75	0,50000	SLD	Min	0,0000 0,0000
75	1,00000	SLD	Min	0,0000 0,0000
75	0,00000	SLV	Max	0,0000 0,0000
75	0,50000	SLV	Max	0,0000 -1,421E-14
75	1,00000	SLV	Max	0,0000 -2,842E-14
75	0,00000	SLV	Min	0,0000 0,0000
75	0,50000	SLV	Min	0,0000 -1,421E-14

Eurolink S.C.p.A. Pagina 443 di 445

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 **Data** 20/06/2011

75	1,00000	SLV	Min	0,0000	-2,842E-14
76	0,00000	SLE	Max	0,0000	0,0000
76	0,50000	SLE	Max	0,0000	2,842E-14
76	1,00000	SLE	Max	0,0000	5,684E-14
76	0,00000	SLE	Min	0,0000	0,0000
76	0,50000	SLE	Min	0,0000	2,842E-14
76	1,00000	SLE	Min	0,0000	5,684E-14
76	0,00000	SLU	Max	0,0000	0,0000
76	0,50000	SLU	Max	0,0000	4,263E-14
76	1,00000	SLU	Max	0,0000	8,527E-14
76	0,00000	SLU	Min	0,0000	0,0000
76	0,50000	SLU	Min	0,0000	4,263E-14
76	1,00000	SLU	Min	0,0000	8,527E-14
76	0,00000	SLD	Max	0,0000	0,0000
76	0,50000	SLD	Max	0,0000	1,421E-14
76	1,00000	SLD	Max	0,0000	2,842E-14
76	0,00000	SLD	Min	0,0000	0,0000
76	0,50000	SLD	Min	0,0000	1,421E-14
76	1,00000	SLD	Min	0,0000	2,842E-14
76	0,00000	SLV	Max	0,0000	0,0000
76	0,50000	SLV	Max	0,0000	4,263E-14
76	1,00000	SLV	Max	0,0000	8,527E-14
76	0,00000	SLV	Min	0,0000	0,0000
76	0,50000	SLV	Min	0,0000	4,263E-14
76	1,00000	SLV	Min	0,0000	8,527E-14
77	0,00000	SLE	Max	0,0000	0,0000
77	0,50000	SLE	Max	0,0000	0,0000
77	1,00000	SLE	Max	0,0000	0,0000
77	0,00000	SLE	Min	0,0000	0,0000
77	0,50000	SLE	Min	0,0000	0,0000
77	1,00000	SLE	Min	0,0000	0,0000
77	0,00000	SLU	Max	0,0000	0,0000
77	0,50000	SLU	Max	0,0000	0,0000

Pagina 444 di 445 Eurolink S.C.p.A.

Galleria artificiale-Balena-imbocchi lato RC Relazione tecnica delle opere di imbocco

Codice documento SS0328_F0.doc_F0 Rev F0 Data 20/06/2011

77	1,00000	SLU	Max	0,0000	0,0000
77	0,00000	SLU	Min	0,0000	0,0000
77	0,50000	SLU	Min	0,0000	0,0000
77	1,00000	SLU	Min	0,0000	0,0000
77	0,00000	SLD	Max	0,0000	0,0000
77	0,50000	SLD	Max	0,0000	0,0000
77	1,00000	SLD	Max	0,0000	0,0000
77	0,00000	SLD	Min	0,0000	0,0000
77	0,50000	SLD	Min	0,0000	0,0000
77	1,00000	SLD	Min	0,0000	0,0000
77	0,00000	SLV	Max	0,0000	0,0000
77	0,50000	SLV	Max	0,0000	0,0000
77	1,00000	SLV	Max	0,0000	0,0000
77	0,00000	SLV	Min	0,0000	0,0000
77	0,50000	SLV	Min	0,0000	0,0000
77	1,00000	SLV	Min	0,0000	0,0000

Eurolink S.C.p.A. Pagina 445 di 445