

Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n° 1158 del 17 dicembre 1971, modificata dal D.Lgs. n°114 del 24 aprile 2003)

PONTE SULLO STRETTO DI MESSINA

PROGETTO DEFINITIVO

EUROLINK S.C.p.A.

IMPREGILO S.p.A. (MANDATARIA) SOCIETÀ ITALIANA PER CONDOTTE D'ACQUA S.p.A. (MANDANTE) COOPERATIVA MURATORI E CEMENTISTI - C.M.C. DI RAVENNA SOC. COOP. A.R.L. (MANDANTE) SACYR S.A.U. (MANDANTE) ISHIKAWAJIMA - HARIMA HEAVY INDUSTRIES CO. LTD (MANDANTE)

A.C.I. S.C.P.A. - CONSORZIO STABILE (MANDANTE)

IL PROGETTISTA Dott. Ing. F. Colla Ordine Ingegneri Milano n° 20355

Dott. Ing. E. Pagani Ordine Ingegneri Milano n° 15408

IL CONTRAENTE GENERALE

Project Manager (Ing. P.P. Marcheselli) STRETTO DI MESSINA Direttore Generale e **RUP** Validazione (Ing. G. Fiammenghi)

STRETTO DI MESSINA

Amministratore Delegato (Dott. P. Ciucci)

> 0 0

SS0669 F0

F0

Unità Funzionale **COLLEGAMENTI SICILIA**

Tipo di sistema INFRASTRUTTURE STRADALI - OPERE CIVILI

Raggruppamento di opere/attività SVINCOLO CURCURACI

Opera - tratto d'opera - parte d'opera VIADOTTO - DIREZIONE MESSINA

> Titolo del documento **RELAZIONE DI CALCOLO**

G 0 7 0 0 D S С С 0 CODICE

REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO
F0	20/06/2011	20/06/2011 EMISSIONE FINALE A. CONTA		G. SCIUTO	F. COLLA

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

INDICE

I١	NDICE		3
Р	REMESSA		10
1	RIFERIMEI	NTI NORMATIVI	10
2	RIFERIMEI	NTI BIBLIOGRAFICI	12
3	CARATTE	RISTICHE MATERIALI	14
		struzzi (Secondo UNI 11104 - 2004)	
	3.2 Acciai	o per armature (Secondo NTC 2008 – D.M. 14/01/2008)	19
	3.3 Acciai	o per la carpenteria metallica di impalcato	19
4	DESCRIZIO	ONE DELLA STRUTTURA	20
	4.1 CARA	TTERISTICHE GEOMETRICHE E UBICAZIONE DELLA STRUTTURA	20
	4.2 CARA	TTERIZZAZIONE GEOTECNICA DEL LUOGO	23
	4.2.1 Des	scrizione delle litologie	24
		agini previste	
	4.2.3 Car	atterizzazione geotecnica	25
		ATTERIZZAZIONE DELLA SISMICITA' DEL LUOGO	
	4.4 CRITE	ERI GENERALI DI PROGETTAZIONE	30
	4.4.1 Ver	ifiche di resistenza	
	4.4.1.1	Verifiche di resistenza agli stati limite ultimi	
	4.4.2 Ver	ifiche agli stati limite di esercizio	
	4.4.2.1	Definizione degli stati limite di fessurazione	30
	4.4.2.2	Condizioni ambientali	31
	4.4.2.3	Sensibilità delle armature alla corrosione	31
	4.4.2.4	Scelta degli stati limite di fessurazione	31
	4.4.2.5	Verifiche allo stato limite di fessurazione	32
	4.4.2.6	Verifiche delle tensioni in esercizio	32
	4.4.3 Azi	oni sismiche	33
	4.4.3.1	Vita nominale	34
	4.4.3.2	Classe d'uso	
	4.4.3.3	Periodo di riferimento per l'azione sismica	34
	4.4.3.4	Parametri di progetto	34
	4.4.3.5	Classificazione sismica del terreno	36

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

	4.4.3.6	Spettro di risposta elastico in accelerazione	37
	4.4.3.7	Spettro di risposta elastico in accelerazione delle componenti orizzontali	37
	4.4.3.8	Spettro di risposta elastico in accelerazione delle componenti verticali	39
	4.4.3.9	Spettro di progetto	40
	4.4.4 CO	MBINAZIONI DI CARICO	42
5	FASI COS	FRUTTIVE	45
6	ELABORA [*]	TI DI RIFERIMENTO	46
7	ANALISI IN	1PALCATO	47
7	.1 ANAL	ISI DEI CARICHI	47
	7.1.1 Imp	palcato metallico	47
	7.1.2 Sol	etta in c.a	47
	7.1.3 Per	manenti	48
	7.1.4 Ca	rico accidentale folla	49
	7.1.5 Ca	rico accidentale mezzi	50
	7.1.6 Ca	rico accidentale mezzi per fatica	51
	7.1.7 Co	ndizioni di carico trasversali	51
	7.1.8 Def	formazione termica	55
	7.1.9 Effe	etti dovuti al ritiro	55
	7.1.9.1	Effetti primari del ritiro	58
	7.1.9.2	Effetti secondari del ritiro	59
	7.1.10 A	Azione di frenamento	59
	7.1.11 A	Azione centrifuga	59
	7.1.12 A	Azione indotta dal vento	59
	7.1.12.1	Definizione	59
	7.1.12.2	CNR-DT 207/2008 V. 1.02 Tipo di opera	61
	7.1.12.3	Azione del vento a ponte scarico	63
	7.1.12.4	Azione del vento a ponte carico	64
	7.1.13	Combinazione di carico	65
	7.1.14 A	Azione indotta dagli appoggi per effetto della deformazione termica	66
7	.2 ESCL	JRSIONE DEI GIUNTI TRASVERSALI	67
7	.3 MODI	ELLO DI CALCOLO	68
	7.3.1 Mo	dellazione a graticcio	71
	7.3.1.1	Rigidezze flessionali	71

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

	7.3.1.2	Z Rigidezze torsionali	
	7.3.2	Caratteristiche delle sezioni	72
	7.3.2.1	Calcolo larghezza soletta collaborante	74
	7.3.2.2	2 Caratteristiche geometriche	80
	7.4 CA	LCOLO DELLE SOLLECITAZIONI	84
	7.5 VE	RIFICA DELLE SEZIONI	85
	7.5.1 \	/ERIFICHE FONDAMENTALI	85
	7.5.1.1	TRAVI PRINCIPALI	85
	7.5.1.2	2 TRAVERSI DI CAMPATA	85
	7.5.1.3	B TRAVERSI DI APPOGGIO	103
	7.5.2 \	/ERIFICHE SISMICHE	120
	7.5.2.1	TRAVI PRINCIPALI	122
	7.5.2.2		
	7.5.2.3	B TRAVERSI DI APPOGGIO	133
	7.5.3	DEFORMAZIONI	143
	7.5.3.1		
	7.5.3.2		
	7.5.3.3	B TERZA CAMPATA – ASSE PRINCIPALE	144
	7.5.3.4		
	7.5.3.5		
	7.5.3.6		
	7.5.4	SOLETTA DI IMPALCATO	
	7.5.4.1		
	7.5.4.2	2 VERIFICA DELLE ARMATURE TRASVERSALI AGLI SLU	150
	7.5.4.3		
	7.5.4.4	VERIFICA A FESSURAZIONE	153
8	ANALISI	SISTEMA DI VINCOLAMENTO	155
	8.1 AZI	ONI VERTICALI	155
		ONI ORIZZONTALI	
	8.2.1 A	Azione longitudinale di frenamento	159
		Azione trasversale del vento	160
	8.2.3 <i>A</i>	Azione di attrito	
	221 I	Irto dei veicoli in svio	162

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

	8.2.5 Azi	oni sismiche	164
9	ANALISI S	OTTOSTRUTTURE	166
ç	.1 ANAL	ISI DELLA SPALLA A-r	166
	9.1.1 AN	ALISI DEI CARICHI	168
	9.1.1.1	Considerazioni sul parametro β _m	169
	9.1.1.2	Combinazioni di carico statiche	173
	9.1.1.3	Combinazioni di carico Sismiche	174
	9.1.2 MO	DELLO DI CALCOLO	174
	9.1.2.1	Descrizione del modello di calcolo	174
	9.1.3 AZI	ONI SISMICHE: CONFRONTO ANALISI DINAMICA – ANALISI	STATICA
	EQUIVALE	NTE	175
	9.1.3.1	ANALISI LINEARE DINAMICA	175
	9.1.4 AN	ALISI STATICA EQUIVALENTE	178
		ONI SISMICHE	
		CURSIONE DEI GIUNTI TRASVERSALI	
	9.1.7 CA	LCOLO DELLE SOLLECITAZIONI	
	9.1.7.1	Sollecitazioni muro frontale	
	9.1.7.2	Sollecitazioni fondazione	
	9.1.7.3	Sollecitazioni paraghiaia	
	9.1.8 VE	RIFICA DELLE SEZIONI	
	9.1.8.1	Muro frontale	
	9.1.8.2	Verifiche fondazione	
	9.1.8.3	Paraghiaia	
		RIFICA DEI MURI ANDATORI PREFABBRICATI	
ξ		ISI DELLA SPALLA A-p	
	9.2.1 AN	ALISI DEI CARICHI	
	9.2.1.1	Considerazioni sul parametro β _m	
	9.2.1.2	Combinazioni di carico statiche	
	9.2.1.3	Combinazioni di carico Sismiche	
	9.2.2 MO	DELLO DI CALCOLO	
	9.2.2.1	Descrizione del modello di calcolo	
		ONI SISMICHE: CONFRONTO ANALISI DINAMICA – ANALISI	
	EQUIVALE	NTE	215

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.2.3.	ANALISI LINEARE DINAMICA	216
9.2.3.2	2 ANALISI STATICA EQUIVALENTE	219
9.2.4 A	AZIONI SISMICHE	219
9.2.5 E	ESCURSIONE DEI GIUNTI TRASVERSALI	220
9.2.6	CALCOLO DELLE SOLLECITAZIONI	223
9.2.6.	1 Sollecitazioni muro frontale	223
9.2.6.2	2 Sollecitazioni fondazione	224
9.2.6.3	3 Sollecitazioni paraghiaia	227
9.2.7	/ERIFICA DELLE SEZIONI	229
9.2.7.	1 Muro frontale	229
9.2.7.2	2 Verifiche fondazione	231
9.2.7.3	3 Paraghiaia	233
9.3 AN	ALISI DELLA SPALLA B	235
9.3.1 A	ANALISI DEI CARICHI	236
9.3.1.	1 Considerazioni sul parametro β _m	237
9.3.1.2	2 Combinazioni di carico statiche	240
9.3.1.3	3 Combinazioni di carico Sismiche	240
9.3.2 N	MODELLO DI CALCOLO	241
9.3.2.	1 Descrizione del modello di calcolo	241
9.3.3 A	AZIONI SISMICHE: CONFRONTO ANALISI DINAMICA – ANALISI	STATICA
EQUIVA	LENTE	241
9.3.3.	1 ANALISI LINEARE DINAMICA	242
9.3.3.2	2 ANALISI STATICA EQUIVALENTE	245
9.3.4 A	AZIONI SISMICHE	245
9.3.5 E	ESCURSIONE DEI GIUNTI TRASVERSALI	246
9.3.6	CALCOLO DELLE SOLLECITAZIONI	250
9.3.6.	1 Sollecitazioni fondazione	250
9.3.6.2	2 Sollecitazioni paraghiaia	253
9.3.7	VERIFICA DELLE SEZIONI	255
9.3.7.	1 Verifiche fondazione	255
9.3.7.2	2 Paraghiaia	256
9.4 AN	ALISI DELLA PILA P1p	258
9.4.1 <i>A</i>	ANALISI DEI CARICHI	260

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

	9.4.1	1.1	Combinazioni di carico statiche	261
	9.4.1	1.2	Combinazioni di carico Sismiche	262
(9.4.2	MOI	DELLO DI CALCOLO	262
	9.4.2	2.1	Descrizione del modello di calcolo	262
(9.4.3	CAL	COLO DELLE SOLLECITAZIONI	263
(9.4.4	VER	RIFICA DELLE SEZIONI	265
	9.4.4	1.1	Plinto di fondazione	265
	9.4.4	1.2	Fusto	266
9.5	5 A	NALI	SI DELLA PILA P2p	280
(9.5.1	ANA	LISI DEI CARICHI	281
	9.5.1	1.1	Combinazioni di carico statiche	282
	9.5.1	1.2	Combinazioni di carico Sismiche	283
(9.5.2	MOI	DELLO DI CALCOLO	283
	9.5.2	2.1	Descrizione del modello di calcolo	283
(9.5.3	CAL	COLO DELLE SOLLECITAZIONI	284
(9.5.4	VER	RIFICA DELLE SEZIONI	286
			Plinto di fondazione	
	9.5.4	1.2	Fusto	287
9.6	6 A	NALI	SI DELLA PILA P3r	302
(9.6.1	ANA	LISI DEI CARICHI	303
	9.6.1	1.1	Combinazioni di carico statiche	304
		1.2	Combinazioni di carico Sismiche	
(9.6.2	MOI	DELLO DI CALCOLO	305
	9.6.2	2.1	Descrizione del modello di calcolo	305
(9.6.3	CAL	COLO DELLE SOLLECITAZIONI	306
(9.6.4	VER	RIFICA DELLE SEZIONI	308
	9.6.4	1.1	Plinto di fondazione	308
	9.6.4	1.2	Fusto	309
9.7	7 A	NALI	SI DELLA PILA P2r	320
(9.7.1	ANA	LISI DEI CARICHI	321
	9.7.1	1.1	Combinazioni di carico statiche	322
	9.7.1	1.2	Combinazioni di carico Sismiche	323
(972	MOI	DELLO DI CALCOLO	323

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

9.7.2.1 Descrizione del modello di calcolo	323
9.7.3 CALCOLO DELLE SOLLECITAZIONI	324
9.7.4 VERIFICA DELLE SEZIONI	326
9.7.4.1 Plinto di fondazione	326
9.7.4.2 Fusto	327
10 ANALISI DELLE FONDAZIONI	337
10.1 ANALISI DEL SISTEMA FONDAZIONALE DELLA SPALLA A-r	337
10.1.1 ANALISI DEI CARICHI	337
10.1.2 MODELLO DI CALCOLO	339
10.1.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO	339
10.3 ANALISI DEL SISTEMA FONDAZIONALE DELLA SPALLA B	365
10.3.1 ANALISI DEI CARICHI	365
10.3.2 MODELLO DI CALCOLO	367
10.3.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO	367
10.4 ANALISI DEL SISTEMA FONDAZIONALE DELLE PILE BASE 16,50x7,50 M	379
10.4.1 ANALISI DEI CARICHI	379
10.4.2 MODELLO DI CALCOLO	380
10.4.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO	380
10.5 ANALISI DEL SISTEMA FONDAZIONALE DELLE PILE BASE 12,00x7,50 M	392
10.5.1 ANALISI DEI CARICHI	392
10.5.2 MODELLO DI CALCOLO	393
10.5.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO	393
11 TABULATI DI CALCOLO	405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

PREMESSA

La presente relazione di calcolo tratta del viadotto Curcuraci carreggiata direzione Messina da realizzarsi all'interno dello Svincolo denominato Curcuraci facente parte dei collegamenti lato Sicilia del ponte sullo stretto di Messina.

Lo svincolo è situato all'interno di tale ambito approssimativamente tra le progressive 5+700 e 6+100 km degli assi principali, rappresentati dalle carreggiate in direzione Messina e Reggio Calabria.

Tale opera d'arte è necessaria per lo scavalco della Fiumara Curcuraci e della rampa 5 dello svincolo stesso e per evitare la realizzazione di rilevati stradali di altezza troppo elevata nel tratto tra l'Autostrada e la rotonda di svincolo, ed è costituita da un impalcato in acciaio – cemento su 3 luci da 21,00 + 43,00 + 21,00 mt in asse appoggi basate su pile e spalle di tipo classico su fondazioni di tipo dirette.

1 RIFERIMENTI NORMATIVI

I calcoli delle strutture sono stati eseguiti in base alle seguenti disposizioni:

- Legge 5/11/1971 n° 1086: "Norme per le discipline delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica".
- Legge 2 febbraio 1974, n. 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. del 14/01/2008 "Norme Tecniche per le Costruzioni 2008"
- Istruzioni per l'applicazione delle norme tecniche per le costruzioni di cui al DM 14/01/2008 Circolare 2 febbraio 2009 n. 617.
- Norma UNI EN 206-1 : 2006 "Calcestruzzo. Parte 1 : specificazione, prestazione, produzione e conformità"
- Norma UNI EN 10025 2005 "Prodotti laminati a caldo di acciai per impieghi strutturali.
- C.N.R. U.N.I. 10016 00: "Travi composte di acciaio e calcestruzzo. Istruzioni per l'impiego nelle costruzioni".
- C.N.R. DT 207/2008: "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni".
- C.N.R. 10018/99 "Apparecchi d'appoggio per le costruzioni. Istruzioni per l'impiego"
- C.N.R. U.N.I. 10011 97: "Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il

Eurolink S.C.p.A. Pagina 10 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

collaudo e la manutenzione".

 C.N.R. - U.N.I. 10016 - 00: "Travi composte di acciaio e calcestruzzo. Istruzioni per l'impiego nelle costruzioni".

Eurolink S.C.p.A. Pagina 11 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

2 RIFERIMENTI BIBLIOGRAFICI

- [1] SEAOC Blue Book "Conceptual Framewirk for Performance-Based Seismic Design", Appendix B (2000).
- [2] Gruppo di Lavoro (2004). Redazione della mappa di pericolosita sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici).
- [3] Priestley M.J.N., Seible F. e Calvi G.M. "Seismic Design and Retrofit of Bridges", J. Wiley & Sons, Inc. (1996).
- [4] Migliacci A. e Mola F., "Progetto agli stati limite delle strutture in c.a.". Parte prima e seconda, Ed. Masson. 1996.
- [5] FEMA 440 "Improvement of Nonlinear Static Seismic Analysis Procedures", prepared by ATC, ATC-55 Project, Redwood City CA, June 2005.
- [6] FEMA 440 "Improvement of Nonlinear Static Seismic Analysis Procedures", prepared by ATC, ATC-55 Project, Redwood City CA, June 2005.
- [7] M. W. O'Neill and L. C. Reese "Drilled shafts: construction procedures and design methods", prepared for U.S. Department of Transportation Federal Highway Administration; printed by ADSC: The International Association of Foundation Drilling, pub. n. ADSC-TL 4, August 1999.
- [8] CALTRANS "Seismic Design Criteria" Version 1.1; California department of transportation, USA, July 1999.
- [9] ATC-32 "Improved Seismic Design Criteria for California Bridges: Provisional Recommendations" Version 1.1; California, USA, June 1996.
- [10] ATC-49 "Recommended LRFD guidelines for the seismic design of highway bridges. Part I: Specifications. Part II: Commentary and Appendices", ATC/MCEER Joint Venture, USA, June 2003.
- [11] Roesset J.M. [1969) "Foundamentals of soil amplification", Conference on Seismic Design for Nuclear Power Plants, MIT, Ed. by Robert J. Hansen, Vol 1, pp. 183-244.
- [12] Mylonakis G. [2001] "Simplified model for seismic pile bending at soil layer interfaces", The Japanese Geotechnical Society, Vol. 41, No. 4(20010815), pp. 47-58.

Eurolink S.C.p.A. Pagina 12 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

[13] Joseph E. Bowles. [1988] "Fondazioni – progetto e analisi", McGraw-Hill.

Eurolink S.C.p.A. Pagina 13 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

3 CARATTERISTICHE MATERIALI

3.1 Calcestruzzi (Secondo UNI 11104 - 2004)

Per sottofondazioni

classe di resistenza classe di esposizione C12/15

XC0

Fondazioni pila e spalle

classe di resistenza		C25/30	
modulo elastico	E _c □=	31.476	N/mm²
massa volumica di riferimento	γ_c =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	25,00	N/mm ²
resistenza media a compressione cilindrica	$f_{cm} =$	33,00	N/mm ²
resistenza di calcolo a compressione	$f_{cd} =$	14,17	N/mm ²
resistenza a trazione (valore medio)	$f_{ctm} =$	2,56	N/mm ²
resistenza caratteristica a trazione	$f_{ctk} =$	1,79	N/mm ²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,15	N/mm ²
tensione a SLE – combinazione rara	$\sigma_{C} =$	14,94	N/mm ²
tensione a SLE – combinazione quasi permanente	$\sigma_{C} =$	11,20	N/mm ²
copriferro	C =	40	mm
classe di esposizione		XC2	
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	32	mm
rapporto A/C massimo		0,50	

Baggioli e ritegni sismici

classe di resistenza		C32/40	
modulo elastico	E _c □=	33.346	N/mm²
massa volumica di riferimento	$\gamma_c =$	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	32,00	N/mm ²
resistenza media a compressione cilindrica	$f_{cm} =$	40,00	N/mm ²

Eurolink S.C.p.A. Pagina 14 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

resistenza di calcolo a compressione	$f_{cd} =$	18,13	N/mm ²
resistenza a trazione (valore medio)	$f_{ctm} =$	3,02	N/mm ²
resistenza caratteristica a trazione	$f_{ctk} =$	2,11	N/mm ²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,65	N/mm ²
tensione a SLE – combinazione rara	σ _C =	19,92	N/mm ²
tensione a SLE – combinazione quasi permanente	$\sigma_{C} =$	14,94	N/mm ²
copriferro	C =	35	mm
classe di esposizione		XS1	XF2
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	20	mm
rapporto A/C massimo		0,50	

Soletta di impalcato

classe di resistenza		C32/40	
modulo elastico	E _c □=	33.346	N/mm ²
massa volumica di riferimento	γ_c =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	32,00	N/mm ²
resistenza media a compressione cilindrica	$f_{cm} =$	40,00	N/mm ²
resistenza di calcolo a compressione	$f_{cd} =$	18,13	N/mm ²
resistenza a trazione (valore medio)	$f_{ctm} =$	3,02	N/mm ²
resistenza caratteristica a trazione	$f_{ctk} =$	2,11	N/mm ²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,65	N/mm ²
tensione a SLE – combinazione rara	σc =	19,92	N/mm ²
tensione a SLE – combinazione quasi permanente	σ _C =	14,94	N/mm ²
copriferro estradosso	C =	35	mm
classe di esposizione		XF4	XS1
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	20	mm
rapporto A/C massimo		0,45	

Cordoli di impalcato

Eurolink S.C.p.A. Pagina 15 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

classe di resistenza		C32/40	
modulo elastico	E _c □=	33.346	N/mm ²
massa volumica di riferimento	γ_c =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	32,00	N/mm ²
resistenza media a compressione cilindrica	$f_{\text{cm}} =$	40,00	N/mm ²
resistenza di calcolo a compressione	$f_{cd} =$	18,13	N/mm ²
resistenza a trazione (valore medio)	$f_{\text{ctm}} =$	3,02	N/mm²
resistenza caratteristica a trazione	$f_{ctk} =$	2,11	N/mm ²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,65	N/mm ²
tensione a SLE – combinazione rara	$\sigma_{C} =$	19,92	N/mm ²
tensione a SLE – combinazione quasi permanente	σ _C =	14,94	N/mm ²
copriferro	C =	35	mm
classe di esposizione		XS1	XF4
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	20	mm
rapporto A/C massimo		0,45	

Elevazioni pila, spalle, muri, paraghiaia

classe di resistenza		C32/40	
modulo elastico	E _c □=	33.346	N/mm²
massa volumica di riferimento	γ_{c} =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	32,00	N/mm²
resistenza media a compressione			
cilindrica	$f_{\text{cm}} =$	40,00	N/mm²
resistenza di calcolo a compressione	$f_{cd} =$	18,13	N/mm²
resistenza a trazione (valore medio)	$f_{ctm} =$	3,02	N/mm²
resistenza caratteristica a trazione	$f_{ctk} =$	2,11	N/mm²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,65	N/mm²
tensione a SLE – combinazione rara	$\sigma_{C} =$	19,92	N/mm²
tensione a SLE – combinazione quasi permanente	$\sigma_{C} =$	14,94	N/mm²
copriferro	C =	40	mm
classe di esposizione	XC4	XS1	XF2

Eurolink S.C.p.A. Pagina 16 di 405

Data

20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev \$\$0669_F0.doc F0

contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	32	mm
rapporto A/C massimo		0,50	

Cordoli testa opere provvisionali

classe di resistenza		C32/40	
modulo elastico	$E_c \square =$	33.346	N/mm²
massa volumica di riferimento	γ_c =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	32,00	N/mm²
resistenza media a compressione cilindrica	$f_{cm} =$	40,00	N/mm²
resistenza di calcolo a compressione	$f_{cd} =$	18,13	N/mm²
resistenza a trazione (valore medio)	$f_{ctm} =$	3,02	N/mm²
resistenza caratteristica a trazione	$f_{ctk} =$	2,11	N/mm²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,65	N/mm²
tensione a SLE – combinazione rara	$\sigma_{C} =$	19,92	N/mm²
tensione a SLE – combinazione quasi permanente	$\sigma_{C} =$	14,94	N/mm²
copriferro	C =	40	mm
classe di esposizione		XC2	
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	32	mm
rapporto A/C massimo		0,50	

Lastre tralicciate impalcato

classe di resistenza		C35/45	
modulo elastico	E _c □=	34.077	N/mm²
massa volumica di riferimento	γ_c =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	35,00	N/mm²
resistenza media a compressione cilindrica	$f_{cm} =$	43,00	N/mm²
resistenza di calcolo a compressione	$f_{cd} =$	19,83	N/mm²
resistenza a trazione (valore medio)	$f_{ctm} =$	3,21	N/mm²
resistenza caratteristica a trazione	$f_{ctk} =$	2,24	N/mm ²

Eurolink S.C.p.A. Pagina 17 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,41	N/mm²
tensione a SLE – combinazione rara	$\sigma_{C} =$	21,00	N/mm²
tensione a SLE – combinazione quasi permanente	$\sigma_{C} =$	15,75	N/mm²
copriferro	C =	20	mm
classe di esposizione		XS1	XF2
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	20	mm
rapporto A/C massimo		0,50	

Eurolink S.C.p.A. Pagina 18 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

Per il calcestruzzo ordinario armato si assume il seguente peso per unità di volume:

$$\rho'_{cls} =$$
 25 kN/m³

3.2 Acciaio per armature (Secondo NTC 2008 – D.M. 14/01/2008)

		B450C	
tensione caratteristica di snervamento	$f_{yk} =$	450	N/mm ²
tensione caratteristica di rottura	$f_{tk} =$	540	N/mm ²
resistenza di calcolo a trazione	$f_{yd} =$	391,30	N/mm ²
modulo elastico	$E_s =$	206.000	N/mm ²
deformazione caratteristica al carico massimo	ϵ_{uk}	7,50	%
deformazione di progetto	$\epsilon_{\sf ud}$	6,75	%
coeff. resistenza a instabilità delle membrature	$\gamma_{m} =$	1,10	

3.3 Acciaio per la carpenteria metallica di impalcato

spessori fino a 40 mm	S355J2	2G3 (e	ex 510 D)
spessori maggiori di 40 mm	S355K2	2G3 (e	x 510 DD)
tensione caratteristica di snervamento < 40 mm	$f_{yk} =$	355	N/mm ²
tensione caratteristica di rottura < 40 mm	$f_{tk} =$	510	N/mm ²
tensione caratteristica di snervamento > 40 mm	$f_{yk} = 335$ N/r		N/mm ²
tensione caratteristica di rottura > 40 mm	$f_{tk} = 470 N/m$		N/mm ²
resistenza di calcolo a trazione < 40 mm	$f_{yd} =$	338	N/mm ²
resistenza di calcolo a trazione > 40 mm	$f_{yd} =$	319	N/mm ²
modulo elastico	Es =	206.00	00 N/mm ²
coeff. resistenza a instabilità delle membrature	γ_{m}	1,10	

Eurolink S.C.p.A. Pagina 19 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

4 DESCRIZIONE DELLA STRUTTURA

4.1 CARATTERISTICHE GEOMETRICHE E UBICAZIONE DELLA STRUTTURA

Il viadotto in oggetto è posto sull'asse principale in prossimità dello Svincolo denominato Curcuraci facente parte dei collegamenti lato Sicilia del ponte sullo stretto di Messina; tale opera d'arte è necessaria per lo scavalco della Fiumara Curcuraci e della Rampa 5 dello svincolo stesso, e per evitare la realizzazione di rilevati stradali di altezza troppo elevata per il tratto autostradale.

Il viadotto è costituito da un impalcato sull'asse principale, a via superiore in struttura mista acciaio-calcestruzzo di 3 campate continue, e un impalcato sulla rampa di svincolo, sempre a via superiore in struttura mista acciaio-calcestruzzo di 4 campate continue. Tali impalcati si uniscono tra loro in prossimità della Spalla B; essi appoggiano su spalle classiche e su pile in calcestruzzo armato basate fondazioni di tipo diretto.

Le campate dell'asse principale sono organizzate in luci con sviluppo in asse di circa 42,00 + 52,00 + 25,00 mt in asse appoggi per una lunghezza totale di circa 119,00 mt; il tracciato in corrispondenza dell'opera presenta un andamento rettilineo e una pendenza trasversale variabile fino ad un massimo del 2,50%. La larghezza trasversale totale dell'impalcato è di 14,00 mt e comprende 11,20 mt di carreggiata utile e due cordoli da 0,80 mt cadauno che ospitano le barriere di sicurezza.

Le campate della rampa di svincolo, denominata Rampa 1, sono organizzate in luci con sviluppo in asse di circa 21,96 + 23,00 + 27,06 + 24,37 mt in asse appoggi per una lunghezza totale di circa 96,39 mt; il tracciato in corrispondenza dell'opera presenta una curva planimetrica di raccordo a raggio variabile e una pendenza trasversale variabile fino ad un massimo del 7,00%. La larghezza trasversale totale dell'impalcato è variabile da un minimo di 8,10 mt ad un massimo di 10,12 mt e comprende la carreggiata utile variabile da 6,50 a 8,52 mt e due cordoli da 0,80 mt cadauno che ospitano le barriere di sicurezza.

IMPALCATO IN ACCIAIO ASSE PRINCIPALE

Dal punto di vista statico e costruttivo l'impalcato è costituito da 3 travate continue su 4 appoggi, con luci pari a circa 42,00 + 52,00 + 25,00 mt in asse appoggi; la struttura metallica è segmentata in 11 diverse tipologie di conci e la sezione trasversale è irrigidita trasversalmente, nel piano verticale da diaframmi composti da profili ad L commerciali posti ad interasse 5,00 – 5,25 mt e nel piano orizzontale dalla soletta in calcestruzzo.

Eurolink S.C.p.A. Pagina 20 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 **Data** 20/06/2011

La scelta delle luci risponde a esigenze di carattere statico e di adattabilità della struttura:

- La distribuzione delle campate permette lo scavalco della fiumara Curcuraci e della Rampa 5 ed una suddivisione ottimale delle distanze rimanenti tra essa ed inizio e fine viadotto;
- Il rapporto tra le campate è tale da garantire un certo equilibrio tra i momenti in mezzeria della campata e sugli appoggi e quindi un buon sfruttamento dei materiali per l'assorbimento degli sforzi;
- Lo schema statico di trave continua permette un'altezza dell'impalcato contenuta e quindi un miglior inserimento dell'opera nel contesto plano-altimetrico.

L'impalcato è realizzato con una sezione mista acciaio-calcestruzzo, ed è costituito da travi metalliche di altezza costante di 2,60 mt

All'estradosso delle travi è solidarizzata la soletta in calcestruzzo per mezzo dei connettori a taglio opportunamente saldati sull'ala superiore della trave. La soletta, dello spessore complessivo di 30 cm, è costituita da predalle tralicciate di 6 cm e da un getto integrativo di 24 cm. Il collegamento tra l'impalcato metallico e la soletta in calcestruzzo è assicurato attraverso i connettori a piolo di tipo Nelson.

IMPALCATO IN ACCIAIO RAMPA 1

Dal punto di vista statico e costruttivo l'impalcato è costituito da 2 travate continue su 5 appoggi, con luci pari a circa 21,96 + 23,00 + 27,06 + 24,37 mt in asse appoggi; la struttura metallica è segmentata in 8 diverse tipologie di conci e la sezione trasversale è irrigidita trasversalmente, nel piano verticale da, per la maggior parte dello sviluppo, diaframmi composti da profili ad L commerciali posti ad interasse 4,50 mt e nel piano orizzontale dalla soletta in calcestruzzo e dai controventi inferiori.

La scelta delle luci risponde a esigenze di carattere statico e di adattabilità della struttura, così come già indicato per il viadotto lungo l'asse principale.

L'impalcato è realizzato con una sezione mista acciaio-calcestruzzo, ed è costituito da travi metalliche di altezza 1,60 mt per le parti corrispondenti ai conci denominati da C1 ad F1; lungo il concio G1, subito dopo l'appoggio sulla pila P1-r, si prevede una rastremazione per portare l'altezza della trave da 1,60 a 1,10 mt, per permettere il sovrappasso della Rampa 5 garantendo il franco minimo richiesto. L'altezza delle travi rimane poi costante a 1,10 mt nei conci terminali denominati H1 ed I1.

All'estradosso delle travi è solidarizzata la soletta in calcestruzzo per mezzo dei connettori a taglio

Eurolink S.C.p.A. Pagina 21 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

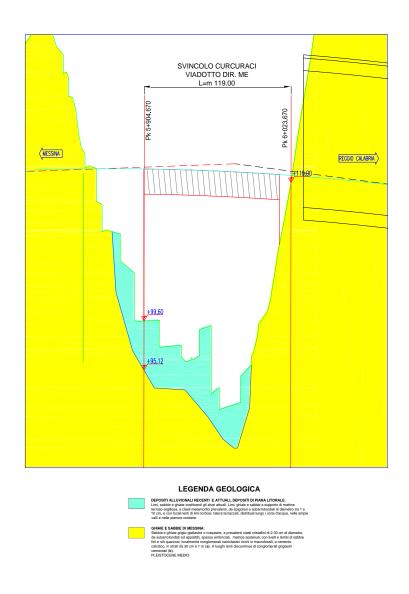
20/06/2011

Data

opportunamente saldati sull'ala superiore della trave. La soletta, dello spessore complessivo di 30 cm, è costituita da predalle tralicciate di 6 cm e da un getto integrativo di 24 cm. Il collegamento tra l'impalcato metallico e la soletta in calcestruzzo è assicurato attraverso i connettori a piolo di tipo Nelson.

Eurolink S.C.p.A. Pagina 22 di 405

RELAZIONE DI CALCOLO


Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

4.2 CARATTERIZZAZIONE GEOTECNICA DEL LUOGO

Per le verifiche geotecniche si fa riferimento al profilo geotecnico presente nell'elaborato grafico denominato CG0800PFZDSSBC8G000000004B di cui si riporta uno stralcio di seguito; si sono per tanto considerati sedimenti fluviali e costieri e ghiaie di Messina.

La falda, analizzando i dati esistenti sui piezometri posizionati nelle vicinanze ed osservando i profili geotecnici, risulta assente.

Eurolink S.C.p.A. Pagina 23 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

4.2.1 Descrizione delle litologie

Le litologie presenti sono Sabbie e Ghiaie di Messina e Depositi alluvionali.

La litologia prevalente è costituita dalla formazione delle Sabbie e Ghiaie di Messina.

I materiali in oggetto sono granulometricamente descritti come ghiaie e ciottoli da sub arrotondati ad appiattiti con matrice di sabbie grossolane.

Si rilevano strati di ghiaie cementate, come si evidenzia nei rilievi effettuati nelle aree di imbocco della galleria stradale Faro Superiore e Balena; in questi rilievi la ghiaia si presenta più o meno debolmente cementata e molto addensata. Lo scheletro si presenta costituito da ghiaie e ciottoli eterometrici arrotondati ed appiattiti.

I <u>Depositi Alluvionali</u> sono costituiti da ghiaie poligeniche ed eterometriche, giallastre o brune a clasti prevalentemente arrotondati di diametro da 2 a 30 cm, clasti sostenuti o a supporto di matrice argilloso-sabbiosa, alternate a rari sottili livelli di sabbie argillose rossastre; sabbie ciottolose a supporto di matrice argilloso-terrosa. L'età dei depositi alluvionali terrazzati è Pleistocene medio-superiore.

I depositi alluvionali recenti sono costituiti da limi e sabbie con livelli di ghiaie a supporto di matrice terroso-argillosa, talora terrazzati, localizzati in aree più elevate rispetto agli alvei fluviali attuali. La componente ruditica è rappresentata da ciottoli poligenici, prevalentemente cristallini, da spigolosi a subarrotondati di diametro tra 1 e 10 cm, mediamente di 4-5 cm. L'età dei depositi alluvionali recenti è l'Olocene.

La falda non risulta interferente con le opere.

4.2.2 Indagini previste

Data l'esiguità delle prove localmente presenti (SPPS03), si è scelto di tenere conto anche dei sondaggi della tratta che va dal Km 5+400 al Km 5+900 circa.

I sondaggi di riferimento per la presente tratta sono SPPS02 e SPPS03 (campagna del 2002), S415, S416, S417 e S418 (campagna del 2010).

Non ci sono localmente indagini per caratterizzare la <u>categoria sismica di suolo</u>; considerando la sismica a rifrazione SRD3, essa risulta pari a **C**.

Le prove localmente utilizzate nella caratterizzazione sono:

Eurolink S.C.p.A. Pagina 24 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

- Prove di laboratorio per la determinazione delle caratteristiche fisiche (sondaggio S417)
- Prove granulometriche (sondaggi S417, SPPS02 e SPPS03)
- Prove SPT (sondaggi S415, S416, S417, S418, SPPS02, SPPS03)
- 1 prova Cross Hole (sondaggio S418)
- 1 prova sismica a rifrazione locale (SRD3)
- 5 prove pressiometriche (sondaggi S417, S418)
- 4 prove Le Franc (sondaggi S417 e S418)

4.2.3 Caratterizzazione geotecnica

Sabbie e Ghiaie di Messina

Per i criteri e per gli aspetti generali di caratterizzazione si rimanda a quanto riportato nella relazione Elab. CG0800PRBDCSBC8G00000001A. Per la definizione delle categorie di suolo si rimanda al medesimo elaborato ed alla relazione sismica di riferimento.

Con riferimento al fuso medio (19 prove granulometriche) si ha che: d50=0.8mm, d60=2mm e d10=0.015mm. Le percentuali medie di ghiaia, sabbia e limo sono rispettivamente di 38%, 47%, 12%.

- Dr: I valori di N_{spt} sono stati corretti con il fattore correttivo C_{sg}=0.75 corrispondente al d50=0.8mm;
- e_o: a partire dal d50 stimato si ottiene di e_{max}-e_{min} pari a 0.305, non dissimile dai valori reperibili in letteratura (0.17<e_{max}-e_{min}<0.29). Stimando per e_{max} un valore pari a 0.8 a partire dai valori di Dr è stato possibile determinare i valori di e_o in sito;
- γ_d : in base a tali valori di \mathbf{e}_o e da γ_s si può stimare γ_d , =18-19KN/m3;
- **K**₀: si considera la relazione di Mesri (1989) per tenere conto degli effetti di "aging".

I primi 15 m sembrerebbero maggiormente addensati soprattutto nella porzione sabbio-ghiaiosa.

Eurolink S.C.p.A. Pagina 25 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Per i parametri di resistenza si ha:

z(m)	Dr(%) Sabbie e ghiaie	φ' _{p (pff=0-272KPa)} (°)	φ' _{cv} (°)	K ₀
5-15	40-80	39-42	33-35	0.4-0.45
>15	50-60	39-40	33-35	0.45

Come parametri operativi per l'angolo d'attrito si utilizzerà • = 38-40.

Per i <u>parametri di deformabilità</u> si ha localmente a disposizione la prova sismica S418 in cui si evidenzia una buona correlazione fra le velocità misurate e quelle calcolate con le correlazioni da prove SPT.

L' espressione ottenuta in base alle correlazioni dalle prove SPT della tratta per il modulo G₀ :

$$G_0 = 45 z^{0.62}$$

$$E_0 = 108 z^{0.62}$$

E'= (15-36)
$$z^{0.62}$$

Le prove pressiometriche (nei sondaggi S417 e S418), che forniscono valori del ramo di carico, mostrano i valori più elevati (300-600MPa) tra 10m e 25m.

Depositi alluvionali

Per i <u>parametri fisici</u> l'andamento del fuso evidenzia che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 39%), sia di materiali intermedi (sabbie 45%). Il contenuto di fino è mediamente del 14%

Con riferimento al fuso medio:

- Il valore di \mathbf{D}_{50} è pari a 0.8 mm
- Il valore di **D**₆₀ è pari a 2 mm
- Il valore di \mathbf{D}_{10} è pari a 0.01 mm

Il peso di volume dei grani medio γ_s è risultato pari a circa 26.5 kN/m³.

Eurolink S.C.p.A. Pagina 26 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Non si hanno a disposizione i valori di γ_{dmax} e γ_{dmin} .

Per quanto concerne stato iniziale e parametri di resistenza si ha:

- Dr: I valori di N_{spt} sono stati corretti con il fattore correttivo C_{sg}=0.75 corrispondente al d50=0.8mm,
- **e**_o: a partire dal d50 stimato si ottiene di e_{max}-e_{min} pari a 0.305 stimando per e_{max} un valore pari a 0.7 a partire dai valori di Dr è stato possibile determinare i valori di **e**_o in sito.
- γd: si ottiene un pari a 17-20 KN/m3.
- K₀: si considera la relazione di Jaky.

z(m)	Dr(%) Sabbie e ghiaie	φ'p (pff=0-272KPa) (°)	φ' _{cv} (°)	K ₀
0-10	50-80	40-42	33-35	0.4-0.35

Come parametri operativi per l'angolo d'attrito si utilizzerà **\(\psi' = 38-40. \)**

Per i <u>parametri di deformabilità</u> si ha localmente a disposizione la prova sismica S418.

L' espressione ottenuta in base alle correlazioni dalle prove SPT ed alla sismica della tratta per il modulo G_0 :

G₀= 80÷150 MPa (0-10m)

E₀= 200÷300 MPa

 $E = 30 \div 70 / 40 \div 100 \text{ MPa}$ (0-10m)

quest' ultimo range è relativo rispettivamente ad $1/10 \div 1/5$ E_0 ed ad 1/3 E_0 corrispondenti rispettivamente a medie- grandi deformazioni ed a piccole deformazioni.

Eurolink S.C.p.A. Pagina 27 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 **Data** 20/06/2011

4.3 CARATTERIZZAZIONE DELLA SISMICITA' DEL LUOGO

Le azioni di progetto si ricavano, ai sensi delle NTC, dalle accelerazioni ag e dalle relative forme spettrali.

Le forme spettrali previste dalle NTC sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- a_q accelerazione orizzontale massima del terreno;
- F0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- TC* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno TR considerati dalla pericolosità sismica, i tre parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo ad:

a_q il valore previsto dalla pericolosità sismica;

F₀ e T_C* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica.

Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento VR della costruzione;
- le probabilità di superamento nella vita di riferimento PVR associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

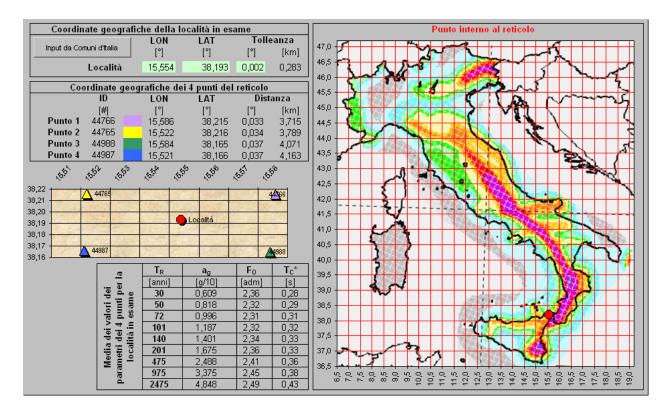
A tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica TR, espresso in anni. Fissata la vita di riferimento VR, i due parametri TR e PVR sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante

Eurolink S.C.p.A. Pagina 28 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011


l'espressione:

$$T_R = -\frac{V_R}{ln(1 - P_{VR})} = -\frac{200}{ln(1 - 0.1)} = 1.898 \text{ anni}$$

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'accelerazione al sito a_g è espressa in g/10; F_0 è adimensionale, T_C^* è espresso in secondi.

Nel seguito si riporta una tabella riassuntiva dei parametri che caratterizzano il Comune di Messina:

Eurolink S.C.p.A. Pagina 29 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

4.4 CRITERI GENERALI DI PROGETTAZIONE

4.4.1 Verifiche di resistenza

Le verifiche delle sezioni più sollecitate sono state condotte seguendo le prescrizioni del D.M.14/01/08 e seguendo le indicazioni della norma UNI EN 1992-2005.

Più specificatamente la verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto della verifica agli stati limite ultimi, e delle verifiche nei riguardi dellla fessurazione e delle tensioni di esercizio.

4.4.1.1 Verifiche di resistenza agli stati limite ultimi

Si è verificato che il valore di progetto degli effetti delle azioni, ovvero delle sollecitazioni flettenti M_d sia minore dei corrispondenti momenti resistenti M_r delle sezioni di progetto.

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle condizioni più gravose che si individuano dall'inviluppo delle sollecitazioni agenti nelle diverse combinazioni di carico.

Le combinazioni e i coefficienti moltiplicativi delle singole azioni vengono definiti in base a quanto indicato nel D.M. 14 gennaio 2008.

Per quanto riguarda le verifiche a taglio ultimo, si è fatto riferimento al paragrafo 4.1.2.1.3 "Resistenza nei confronti di sollecitazioni taglianti" del D.M. 14 gennaio 2008.

4.4.2 Verifiche agli stati limite di esercizio

4.4.2.1 Definizione degli stati limite di fessurazione

In ordine di severità crescente si distinguono i seguenti stati limite:

- a) stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
- b) stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_{t} = \frac{f_{ctm}}{1,2}$$

Eurolink S.C.p.A. Pagina 30 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

c) stato limite di apertura delle fessure nel quale, per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione.

4.4.2.2 Condizioni ambientali

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature metalliche, possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella tabella seguente:

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Nel caso in esame si considera l'opera sottoposta a condizioni aggressive.

4.4.2.3 Sensibilità delle armature alla corrosione

Le armature si distinguono in due gruppi:

- armature sensibili;
- armature poco sensibili.

Appartengono al primo gruppo gli acciai da precompresso. Appartengono al secondo gruppo gli acciai ordinari. Per gli acciai zincati e per quelli inossidabili si può tener conto della loro minor sensibilità alla corrosione.

4.4.2.4 Scelta degli stati limite di fessurazione

Nella tabella sottostante sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

Eurolink S.C.p.A. Pagina 31 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Gruppi di esigenze	Condizioni ambientali	Combinazione di azioni	Armatura			
			Sensibile		Poco sensibile	
			Stato limite	W _d	Stato limite	$\mathbf{w_d}$
a	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	$\leq w_3$
		quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂
		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
c	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

4.4.2.5 Verifiche allo stato limite di fessurazione

Stato limite di decompressione e di formazione delle fessure

Le tensioni sono calcolate in base alle caratteristiche geometriche e meccaniche della sezione omogeneizzata non fessurata.

Stato limite di apertura delle fessure

Il valore caratteristico di calcolo di apertura delle fessure (w_d) non deve superare i valori nominali w_1 , w_2 , w_3 secondo quanto riportato nella Tabella sopra riportata.

Il valore caratteristico di calcolo è dato da:

$$W_d = 1.7 \cdot W_m$$

dove w_m rappresenta l'ampiezza media delle fessure.

L'ampiezza media delle fessure w_m è calcolata come prodotto della deformazione media delle barre d'armatura ε_{sm} per la distanza media tra le fessure Δ_{sm} :

$$W_{m} = \varepsilon_{sm} \cdot \Delta_{sm}$$

Per il calcolo di ε_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica. ε_{sm} può essere calcolato tenendo conto dell'effetto del "tension stiffening" nel rispetto della limitazione:

$$\epsilon_{\text{sm}} \geq 0.6 \cdot \frac{\sigma_{\text{s}}}{E_{\text{s}}}$$

con σ_s tensione nell'acciaio dell'armatura tesa (per sezione fessurata) nelle condizioni di carico considerate ed E_s è il modulo elastico dell'acciaio.

4.4.2.6 Verifiche delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle

Eurolink S.C.p.A. Pagina 32 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo σ_{c} , deve rispettare la limitazione seguente:

 $\sigma_c < 0.6 \cdot f_{ck}$ per la combinazione caratteristica (rara);

 $\sigma_c < 0.45 \cdot f_{ck}$ per la combinazione caratteristica quasi permanente.

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.

Tensione massima dell'acciaio in condizioni di esercizio

Per l'acciaio la tensione massima, σ_s , per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_s < 0.8 \cdot f_{yk}$$

4.4.3 Azioni sismiche

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, che costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale di categoria A, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R .

Nel presente progetto è stata verificata la combinazione di carico sismica con riferimento allo stato limite ultimo di salvaguardia della vita (SLV): a seguito del terremoto la struttura subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; mentre conserva invece una parte della esistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

Eurolink S.C.p.A. Pagina 33 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

4.4.3.1 Vita nominale

La vita nominale di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata. Nel caso in oggetto, l'opera ricade all'interno del tipo di costruzione: "Grandi opere ordinarie, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica" (paragrafo 2.4 delle 'Nuove Norme tecniche per le costruzioni – D.M. 14 gennaio 2008").

La vita nominale si assume pertanto pari a $V_N = 100$ anni.

4.4.3.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un'eventuale collasso, le costruzioni sono suddivise in classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: costruzioni con funzioni pubbliche o strategiche importante, anche con riferimento alla gestione della protezione civile in caso di calamità..... Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico."

Il coefficiente d'uso si assume pertanto pari a $c_U = 2,0$ anni.

4.4.3.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso CU. Tale coefficiente è funzione della classe d'uso.

 $V_R = V_N x C_U = 100 \text{ anni } x 2 = 200 \text{ anni}$

Le probabilità di superamento P_{VR} nel periodo di riferimento V_R , cui riferirsi per individuare l'azione sismica agente, sono pari al 10% nel caso dello stato limite SLV.

4.4.3.4 Parametri di progetto

Le azioni di progetto si ricavano, ai sensi delle NTC, dalle accelerazioni ag e dalle relative forme spettrali.

Eurolink S.C.p.A. Pagina 34 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

Le forme spettrali previste dalle NTC sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- a_q accelerazione orizzontale massima del terreno;
- F0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- TC* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno TR considerati dalla pericolosità sismica, i tre parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo ad:

a_q il valore previsto dalla pericolosità sismica;

 F_0 e T_C^* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica.

Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento VR della costruzione;
- le probabilità di superamento nella vita di riferimento PVR associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

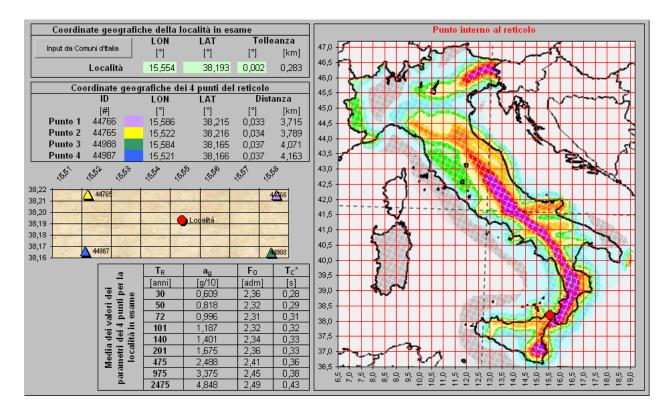
A tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica TR, espresso in anni. Fissata la vita di riferimento VR, i due parametri TR e PVR sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{ln(1 - P_{VR})} = -\frac{200}{ln(1 - 0.1)} = 1.898 \text{ anni}$$

I valori dei parametri a_g , F_0 e T_C^{\star} relativi alla pericolosità sismica su reticolo di riferimento

Eurolink S.C.p.A. Pagina 35 di 405

RELAZIONE DI CALCOLO


Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'accelerazione al sito a_{α} è espressa in g/10; F_0 è adimensionale, T_C^* è espresso in secondi.

Nel seguito si riporta una tabella riassuntiva dei parametri che caratterizzano il Comune di Messina:

4.4.3.5 Classificazione sismica del terreno

Ai fini della definizione dell'azione sismica di progetto, in accordo con le NTC, si fa riferimento all'approccio semplificato che si basa sulla individuazione di categorie di sottosuolo di riferimento. Dallo studio geotecnico del sito presente nell'elaborato CG0800PRGDSSBC8G000000001B, si evince che non ci sono localmente indagini per caratterizzare la categoria sismica di suolo; considerando la sismica a rifrazione SRD3, essa risulta pari a **C**, che include depositi di terreni a grana grossa mediamente addensati o terrreni a grana fina molto consistente.

Eurolink S.C.p.A. Pagina 36 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

4.4.3.6 Spettro di risposta elastico in accelerazione

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore della accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di a_g variano al variare della probabilità di superamento nel periodo di riferimento P_{VR} .

4.4.3.7 Spettro di risposta elastico in accelerazione delle componenti orizzontali

Lo spettro di risposta elastico della componente orizzontale è definito dalle espressioni seguenti:

$$0 \leq T \leq T_B \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \Bigg\lceil \frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B}\right) \Bigg\rceil$$

$$T_B \le T \le T_C$$
 $S_e(T) = a_a \cdot S \cdot \eta \cdot F_0$

$$T_C \le T \le T_D \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C}{T}$$

$$T_D \le T \qquad \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2}\right)$$

nelle quali T ed Se sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale.

Inoltre:

- S: è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente: $S = S_S \cdot S_T$
- essendo S_S il coefficiente di amplificazione stratigrafica e S_T il coefficiente di amplificazione topografica riportati nelle tabelle seguenti;

Eurolink S.C.p.A. Pagina 37 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

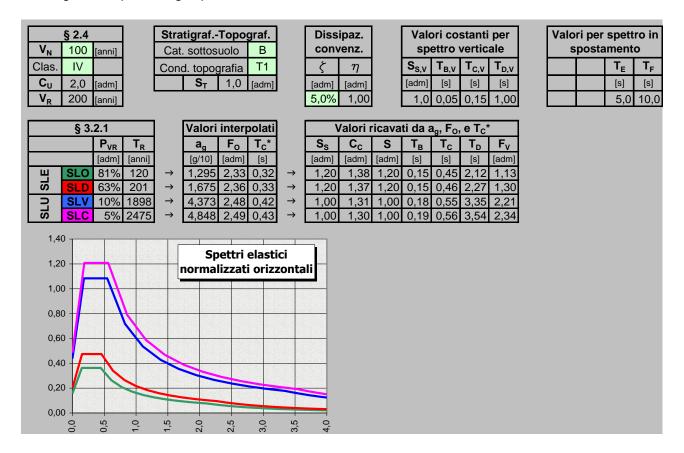
Rev F0 Data 20/06/2011

CATEGORIA SOTTOSUOLO	S _s	Сс
А	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_0 \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T * _C) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_0 \cdot \frac{a_g}{g} \le 1,50$	1,05 · (T * _C) ^{-0,33}
D	$0,90 \le 2,40 - 1,50 \cdot F_0 \cdot \frac{a_g}{g} \le 1,80$	1,25 · (T * _C) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_0 \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T * _C) ^{-0,40}

CATEGORIA TOPOGRAFICA	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,00
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,2

- η : è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali x diversi dal 5%, mediante la relazione: $\eta = \sqrt{\frac{10}{(5+\xi)}} \ge 0,55$
- dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione;
- Fo: è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;
- TC: è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da: $T_C = C_C \cdot T^*_C$; dove C_C è un coefficiente funzione della categoria di sottosuolo;
- \bullet TB: è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante; $T_{B}=T_{C}/3$

Eurolink S.C.p.A. Pagina 38 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

• TD: è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione: $T_D = 4.0 \cdot \frac{a_g}{g} + 1.6$

Nel seguito si riportano gli spettri elastici orizzontali relativi al sito ed al terreno.

4.4.3.8 Spettro di risposta elastico in accelerazione delle componenti verticali

Lo spettro di risposta elastico in accelerazione della componente verticale è definito dalle espressioni seguenti:

$$0 \leq T \leq T_B \qquad S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_V \Bigg[\frac{T}{T_B} + \frac{1}{\eta \cdot F_O} \cdot \left(1 - \frac{T}{T_B}\right) \Bigg]$$

$$T_{\text{B}} \leq T \leq T_{\text{C}} \qquad S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{V}}$$

$$T_C \leq T \leq T_D \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_V \cdot \frac{T_C}{T}$$

Eurolink S.C.p.A. Pagina 39 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

$$T_D \leq T \qquad \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_V \cdot \left(\frac{T_C \cdot T_D}{T^2} \right)$$

nelle quali T e S_{ve} sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale verticale e F_v è il fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale, mediante la relazione:

$$F_V = 1.35 \cdot F_O \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

I valori di a_g , Fo, S_T , S, η sono quelli già definiti per le componenti orizzontali; i valori di S_S , T_B , T_C e T_D , sono invece quelli riportati nella tabella seguente.

CATEGORIA SOTTOSUOLO	S _s	T _B	T _c	T _D
A, B, C, D, E	1,00	0,05 s	0,15 s	1,0 s

4.4.3.9 Spettro di progetto

Per gli stati limite di esercizio lo spettro di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali che per la componente verticale, è lo spettro elastico corrispondente, riferito alla probabilità di superamento nel periodo di riferimento PVR considerata.

Per le verifiche agli stati limite ultimi lo spettro di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo spettro elastico corrispondente riferito alla probabilità di superamento nel periodo di riferimento P_{VR} considerata con le ordinate ridotte sostituendo η con 1/q, dove q è il fattore di struttura, nelle formule precedentemente riportate e comunque: $S_d(T) \ge 0.2 \cdot a_g$.

Il valore del fattore di struttura q da utilizzare per ciascuna direzione della azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale.

In accordo con quanto riportato nelle NTC al paragrafo 7.10.2 per strutture dotate di isolatori si assume un valore del fattore di struttura q per le analisi sismiche dell'impalcato in acciaio-cemento unitario

Eurolink S.C.p.A. Pagina 40 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

Impalcato:
$$q = q_0 = 1,00$$

Per quanto riguarda invece le sottostrutture, in particolare le pile, tale fattore, ancora in accordo con il paragrafo 7.9.2.1 delle NTC alla tabella 7.9.1 per classe CD"B" e con il paragrafo 7.10.6.2.1 per strutture isolate:

Pile:
$$q = q_0 = 1,00$$

Discorso differente viene effettuato per le spalle: si procede considerando l'elemento come un'opera di sostegno; le Norme Tecniche trattano l'argomento al paragrafo 7.11.6.2.1, in cui si esplicita che l'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante metodi pseudostatici, ossia mediante i metodi all'equilibrio limite. Il metodo di calcolo comprende, in accordo con la norma, l'opera di sostegno, il terreno a tergo dell'opera e gli eventuali sovraccarichi.

Nelle verifiche allo stato limite ultimo i valori dei coefficienti sismici orizzontale k_h e verticale k_v sono valutati mediante le espressioni:

$$k_h = \beta_m \cdot S \cdot \frac{a_{max}}{g}$$

$$k_{v} = \pm 0.50 \cdot k_{h}$$

dove:

$$\frac{a_{\text{max}}}{q} = 0,4373$$
 accelerazione orizzontale massima attesa al sito

 $\beta_m = 0.31$ in accordo con la tabella 7.11.II

$$S = S_S \cdot S_T = 1,00 \cdot 1,00 = 1,00$$
 amplificazione per sottosuolo tipo B

Si ottengono quindi i seguenti valori:

$$k_b = 0.136$$
 $k_v = 0.068$

La forza orizzontale sismica inerziale dovuta alla spalla è assunta prudenzialmente considerando la massa della spalla comprensiva del plinto di fondazione e del terreno giacente su di esso.

Eurolink S.C.p.A. Pagina 41 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

4.4.4 COMBINAZIONI DI CARICO

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si dovranno considerare, generalmente, le combinazioni riportate in Tab. 5.1.IV. A causa della natura dell'opera, i gruppi di azioni da prendere in esame risultano esclusivamente i gruppi 1, 2a e 2b.

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali			Carichi orizz	ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q₃	Forza centrifuga q4	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***) (*) Ponti di 3	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

 γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;

 γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

Eurolink S.C.p.A. Pagina 42 di 405

^(***) Da considerare solo se si considerano veicoli speciali

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

 γ_Q coefficiente parziale delle azioni variabili da traffico;

 γ_{Qi} coefficiente parziale delle azioni variabili.

Il coefficiente parziale della precompressione si assume pari a $\gamma_P=1$.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

 $\textbf{Tabella 5.1.V} - Coefficienti \ parziali \ di \ sicurezza \ per \ le \ combinazioni \ di \ carico \ agli \ SLU$

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γQ	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari favore		$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO

Eurolink S.C.p.A. Pagina 43 di 405

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ ₁ (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q ₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0
	Vento a ponte carico	0,6		·
Novo a	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Sono state analizzate le combinazioni di carico agli stati limite ultimi distinguendo lo stato limite di resistenza della struttura (STR), facente riferimento ai coefficienti parziali A1 e lo stato limite di resistenza del terreno (GEO), facente riferimento ai coefficienti parziali A2.

Agli stati limite di esercizio si sono considerate le verifiche per le combinazioni rara e frequente.

SLU: $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot Q_{k2} + \gamma_{Q3} \cdot Q_{k3} + \dots$

SLE RARA: $G_1 + G_2 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + ...$

SLE FREQUENTE: $G_1 + G_2 + P + \Psi_{11} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + ...$

SLE QUASI PERMANENTE: $G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + ...$

SISMICA: $E + G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + ...$

Combinazione utilizzata nell'analisi dell'impalcato:

COEFFICENTI DI COMBINAZIONE PER LE VERIFICHE ALLO SLU STR							
	γ	Ψ	γ*ψ				
Peso proprio acciaio	1,35	1,00	1,35				
Peso proprio soletta	1,35	1,00	1,35				
Permanenti	1,50	1,00	1,50				
Effetti primari del ritiro	1,20	1,00	1,20				
Effetti secondari del ritiro	1,20	1,00	1,20				
Accidentali mezzi	1,35	1,00	1,35				
Vento	1,5	0,60	0,90				
Deformazioni termiche	1,20	0,60	0,72				

Azione base accidentali

Eurolink S.C.p.A. Pagina 44 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

5 FASI COSTRUTTIVE

Le fasi costruttive per l'esecuzione dell'opera in oggetto sono le seguenti:

- Scavo di sbancamento;
- Realizzazione opere provvisionali;
- Scavo di fondazione;
- Costruzione di pile e spalle;
- Messa in opera del sistema di appoggi;
- Varo dell'impalato metallico;
- Posa in opera predalle e armatura;
- Getto della soletta di impalcato;
- Getto dei cordoli in c.a.;
- Realizzazione opere di finitura (pavimentazione, barriere di sicurezza, reti di protezione ecc.).

Eurolink S.C.p.A. Pagina 45 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

6 ELABORATI DI RIFERIMENTO

CG0700	Р	CL	D	S	SC	C5	VI	0V	00	00	01	В
CG0700	Р	CL	D	S	SC	C5	VI	0V	00	00	02	В
CG0700	Ρ	RB	D	S	SC	C5	VI	0V	00	00	02	В
CG0700	Ρ	RG	D	S	SC	C5	VI	0V	00	00	02	В
CG0700	Ρ	SH	D	S	SC	C5	VI	0V	00	00	02	В
CG0700	Ρ	FΖ	D	S	SC	C5	VI	0V	00	00	01	В
CG0700	Ρ	P8	D	S	SC	C5	VI	0V	00	00	01	В
CG0700	Ρ	P8	D	S	SC	C5	VI	0V	00	00	02	В
CG0700	Ρ	Z 9	D	S	SC	C5	VI	0V	00	00	01	В
CG0700	Р	PΑ	D	S	SC	C5	VI	0V	00	00	01	В
CG0700	Р	BA	D	S	SC	C5	VI	0V	00	00	01	В
CG0700	Ρ	BA	D	S	SC	C5	VI	0V	00	00	02	В
CG0700	Ρ	BA	D	S	SC	C5	VI	0V	00	00	03	В
CG0700	Р	BA	D	S	SC	C5	VI	0V	00	00	04	В
CG0700	Р	ΒZ	D	S	SC	C5	VI	0V	00	00	01	В
CG0700	Р	ΒZ	D	S	SC	C5	VI	0V	00	00	02	В
CG0700	Ρ	SA	D	S	SC	C5	VI	0V	00	00	01	В
CG0700	Ρ	SA	D	S	SC	C5	VI	0V	00	00	02	В
CG0700	Р	SA	D	S	SC	C5	VI	0V	00	00	03	В

Eurolink S.C.p.A. Pagina 46 di 405

RELAZIONE DI CALCOLO

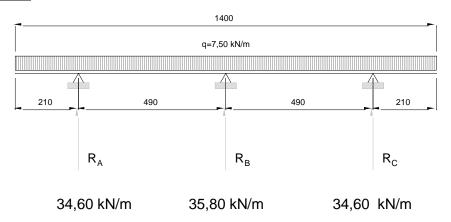
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7 ANALISI IMPALCATO

7.1 ANALISI DEI CARICHI

Si procede ora all'analisi dei carichi agenti sull'impalcato ed alla relativa ripartizione alle travi longitudinali in acciaio.


7.1.1 Impalcato metallico

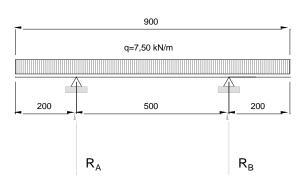
Essendo le travi a sezione variabile, il peso dell'impalcato metallico è stato assegnato ad ogni elemento nella modellazione ad elementi finiti imponendo il peso per unità di volume γ_s =7.850 daN/m³; tali pesi sono poi stati incrementati del 40% per considerare il peso di coprigiunti, saldature, irrigidimenti, piastre, pioli, etc.

7.1.2 Soletta in c.a.

 $q_{\text{soletta}} = 0.30 \cdot 2.500 = 7.50 \text{ kN/m}$ peso proprio soletta c.a.

ASSE PRINCIPALE

Eurolink S.C.p.A. Pagina 47 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

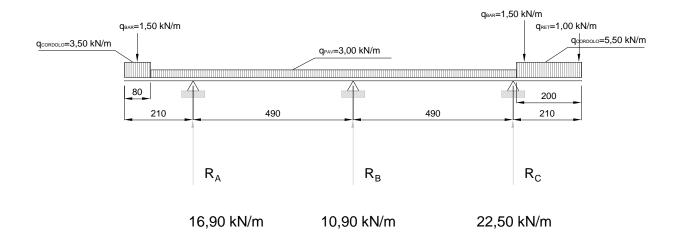
RAMPA 1

33,80 kN/m

33,80 kN/m

7.1.3 Permanenti

 $q_{cordolo1} = 0,14 \cdot 25,00 = 3,50 \text{ kN/m}$ peso proprio cordolo


 $\label{eq:cordolo} q_{cordolo2} = 0,\!22\cdot25,\!00 = 5,\!50 \; kN/m \quad \ \ peso \; proprio \; cordolo$

 $q_{pav} = 3,00 \text{ kN/m}$ peso pavimentazione

 $q_{barriera} = 1,50 \text{ kN/m}$ peso barriera

 $q_{rete} = 1,00 \text{ kN/m}$ peso rete

ASSE PRINCIPALE

Eurolink S.C.p.A. Pagina 48 di 405

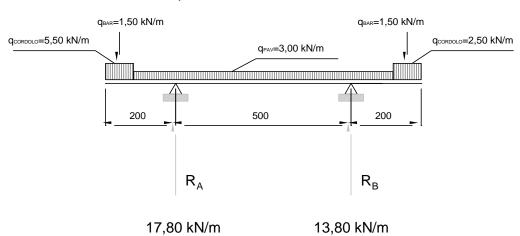
RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

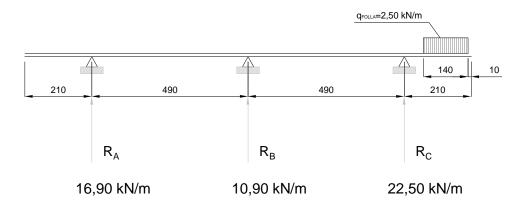
Data


RAMPA 1

 $\label{eq:qcordolor} q_{\text{cordolor}} = 0,\!22\cdot25,\!00 = 5,\!50 \; \text{kN/m} \qquad \text{peso proprio cordolo}$

 $q_{cordolo2} = 0,10 \cdot 25,00 = 2,50 \text{ kN/m}$ peso proprio cordolo

 $q_{pav} = 3,00 \text{ kN/m}$ peso pavimentazione

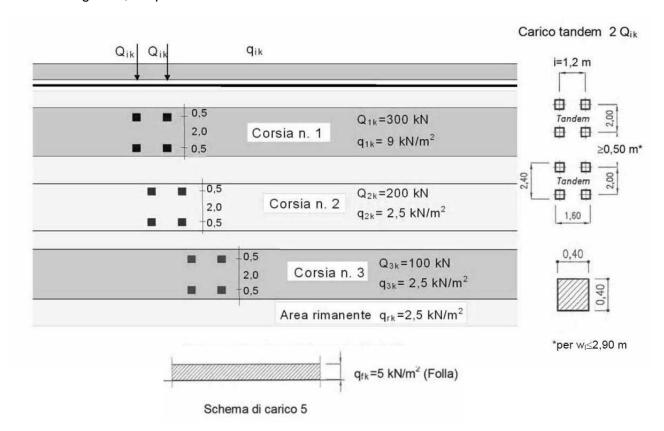

 $q_{barriera} = 1,50 \text{ kN/m}$ peso barriera

7.1.4 Carico accidentale folla

Il D.M. 14 gennaio 2008 per i ponti di 1a categoria prevede quale carico della folla uniformemente ripartito, il valore di 5 kN/mq, secondo lo schema 5 delle norme.

Per l'impalcato lungo l'asse principale la folla è posizionata solo dal lato marciapiede, mentre per l'impalcato rampa 1 i cordoli non consentono il posizionamento della folla in quanto completamente occupati dalla barriera di sicurezza.

Eurolink S.C.p.A. Pagina 49 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

7.1.5 Carico accidentale mezzi

Le azioni variabili del traffico definite nello Schema di Carico 1 sono costituite da carichi concentrati e da carichi uniformemente distribuiti. Tale schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali.

Il numero delle colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata, per i ponti di 1ª Categoria.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9
Corsia Numero 2	200	2,5
Corsia Numero 3	100	2,5
Altre corsie	0,00	2,50

Si precisa che secondo il Nuovo Testo Unico del 14 gennaio 2008, i carichi mobili includono gli effetti dinamici.

Eurolink S.C.p.A. Pagina 50 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

7.1.6 Carico accidentale mezzi per fatica

I carichi previsti dal D.M. 14 gennaio 2008 per i ponti di 1a categoria e relativamente alla statica longitudinale sono i seguenti:

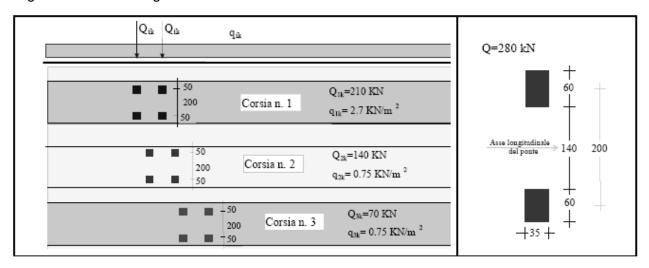


Figura 5.1.4 - Modello di carico di fatica n. 1

Il numero delle colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata, per i ponti di 1a Categoria.

Posizione	Carico Asse Q _{ik} [KN]	q _{ik} [KN/mq]
Corsia numero 1	210	2,7
Corsia numero 2	140	0,75
Corsia numero 3	70	0,75
Altre corsie		0,75

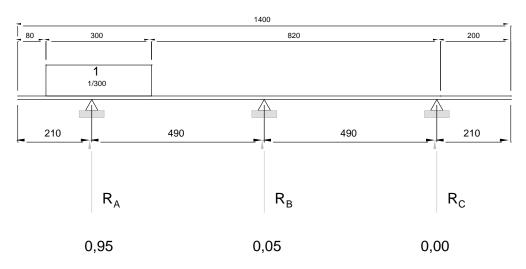
Si precisa che secondo il Nuovo Testo Unico del 14 gennaio 2008, i carichi mobili includono gli effetti dinamici.

7.1.7 Condizioni di carico trasversali

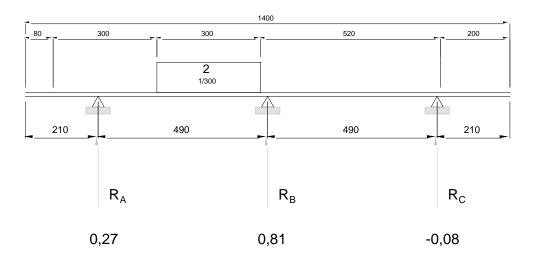
Lo schema di calcolo adottato è quello di trave continua su più appoggi, caricata di volta in volta da carichi distribuiti della larghezza di 3,00 mt, disposti in modo da determinare le condizioni di carico più gravose.

Si assume un ideale carico unitario sulle varie corsie; le reazioni possono quindi essere considerate come coefficienti che definiscono le aliquote di trasmissione dei carichi agenti sull'impalcato alle travi principali. Nel quadro di un accettabile comportamento trasversale della

Eurolink S.C.p.A. Pagina 51 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

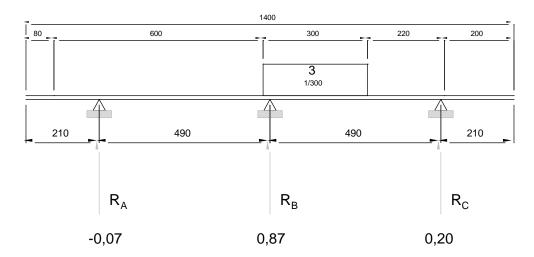

Rev F0 Data 20/06/2011

soletta, tali aliquote valgono sia per i carichi distribuiti che concentrati.

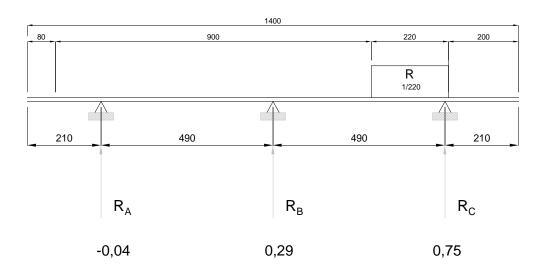
IMPALCATO ASSE PRINCIPALE - 1ª CORSIA DI CARICO

IMPALCATO ASSE PRINCIPALE - 2ª CORSIA DI CARICO

Eurolink S.C.p.A. Pagina 52 di 405



RELAZIONE DI CALCOLO

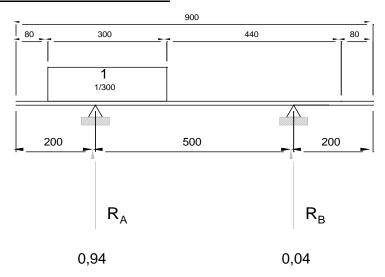

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

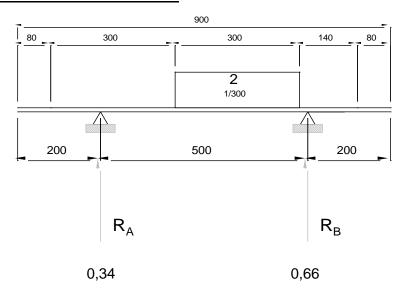
IMPALCATO ASSE PRINCIPALE - 3ª CORSIA DI CARICO

IMPALCATO ASSE PRINCIPALE - CORSIA DI CARICO RIMANANENTE

Eurolink S.C.p.A. Pagina 53 di 405



RELAZIONE DI CALCOLO

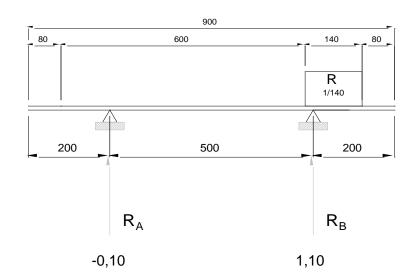

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

IMPALCATO RAMPA 1 - 1ª CORSIA DI CARICO

IMPALCATO RAMPA 1 - 2ª CORSIA DI CARICO

Eurolink S.C.p.A. Pagina 54 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 **Data** 20/06/2011

IMPALCATO RAMPA 1 - CORSIA DI CARICO RIMANENTE

7.1.8 Deformazione termica

Si è considerata una variazione termica differenziale pari a 20°C/m positiva verso l'alto; tale variazione viene considerata come un carico accidentale, e quindi applicata alla struttura mista acciaio-calcestruzzo.

7.1.9 Effetti dovuti al ritiro

IMPALCATO ASSE PRINCIPALE

I parametri relativi alla deformazione assiale per ritiro del calcestruzzo, come indicato dalle D.M. 14-1-2008 al paragrafo 11.2.10.6, possono essere valutati sulla base delle seguenti indicazioni:

CALCOLO DI ϵ_{cs}

$$A_c = 1.400 \cdot 30 = 42.000 \text{ cm}^2$$

Area sezione di conglomerato

$$u = 2 \cdot (30 + 1.400) = 2.860 \text{ cm}$$

Perimetro a contatto con l'atmosfera

$$h_0 = \frac{2 \cdot A_c}{u} = \frac{2 \cdot 42.000}{2.860} = 29,37 \text{ cm} \approx 294 \text{ mm}$$

$$E_c = 22.000 \cdot (f_{cm}/10)^{0.3} = 33.643 \, N/mm^2 = 336.430 \, daN/cm^2$$

Modulo elastico cls

 $E_S = 2.100.000 \text{ daN/cm}^2$

Modulo elastico acciaio

Considerando una umidità relativa del 75% ed un valore di fck pari a 32 N/mm², interpolando linearmente i valori della tabella 11.2.Va fornita dalle NTC 2008 e inserita in seguito, si ottiene:

Eurolink S.C.p.A. Pagina 55 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0

20/06/2011

Data

$$\epsilon_{c0} = \frac{-0.03475 - \left(-0.02750\right)}{40 - 20} \cdot \left(32 - 20\right) + \left(-0.03475\right) = -0.02931 \%$$

Tabella 11.2.Va - Valori di Eco

		Deformazione da ritiro per essiccamento (in ‰)							
ı	$f_{\rm ek}$	Umidità Relativa (in %)							
ı		20	40	60	80	90	100		
ı	20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00		
ı	40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00		
	60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00		
	80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00		

Dalla tabella 11.2.Vb si interpola il valore del coefficiente k_h avendo come dato di input $h_0 = 294$ mm:

$$k_h = \frac{-(0.85 - 0.75)}{300 - 200} \cdot (294 - 200) + 0.85 = 0.755$$

La deformazione a tempo infinito per ritiro da essiccamento vale quindi:

$$\varepsilon_{cd\infty} = k_h \cdot \varepsilon_{c0} = 0,755 \cdot (-0,02931) = -0,02213 \%$$

Lo sviluppo nel tempo può essere valutato moltiplicando il valore della deformazione per il coefficiente seguente:

$$\beta_{ds}(t - t_s) = \frac{(t - t_s)}{[(t - t_s) + 0.04 \cdot h_0^{3/2}]}$$

Prudenzialmente si assume un'età del calcestruzzo t tendente ad infinito, che implica un coefficiente di sviluppo della deformazione unitario. La deformazione per ritiro da essiccamento risulta quindi:

$$\epsilon_{cd} = \beta_{ds} \cdot \epsilon_{cd\infty} = 1,00 \cdot \left(-0.02213\right) = -0.02213 \%$$

Il valore medio a tempo infinito della deformazione per ritiro autogeno è valutato tramite l'espressione:

$$\epsilon_{ca,\infty} = -2,\!50 \cdot \left(f_{ck} - 10\right) \cdot 10^{-6} = -2,\!50 \cdot \left(32 - 10\right) \cdot 10^{-6} = -5,\!50 \cdot 10^{-5} \ \%$$

La deformazione totale da ritiro vale: $\epsilon_{cs} = \epsilon_{cd} + \epsilon_{ca} = -0,\!00022$

Il coefficiente di omogeneizzazione vale: $\varphi_{\infty} = \frac{2,2-1,9}{60-20} \cdot \left(60-29,37\right) + 1,9 = 2,13$

$$n^* = \frac{E_s}{E_s} (1 + \phi_{\infty}) = \frac{2.100.000}{336.430} \cdot (1 + 2,13) = 19,54$$

$$N_{r \; tot} = \epsilon_{r \infty} \cdot \frac{E_s}{n^*} \cdot A_c = 0,00022 \cdot \frac{2.100.000}{19,54} \cdot 42.000 = 993.040 \; daN$$

Eurolink S.C.p.A. Pagina 56 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 **Data** 20/06/2011

IMPALCATO RAMPA 1

I parametri relativi alla deformazione assiale per ritiro del calcestruzzo, come indicato dalle NTC 2008 al paragrafo 10.2.10.6, possono essere valutati sulla base delle seguenti indicazioni:

CALCOLO DI ε_{cs}

$$A_c = 900 \cdot 30 = 27.000 \text{ cm}^2$$

Area sezione di conglomerato

$$u = 2 \cdot (30 + 900) = 1.860 \text{ cm}$$

Perimetro a contatto con l'atmosfera

$$h_0 = \frac{2 \cdot A_c}{u} = \frac{2 \cdot 27.000}{1.860} = 29,03 \text{ cm} \approx 290 \text{ mm}$$

$$E_c = 22.000 \cdot (f_{cm}/10)^{0.3} = 33.643 \, N/mm^2 = 336.430 \, daN/cm^2$$

Modulo elastico cls

$$E_S = 2.100.000 \text{ daN/cm}^2$$

Modulo elastico acciaio

Considerando una umidità relativa del 75% ed un valore di fck pari a 32 N/mm², interpolando linearmente i valori della tabella 11.2.Va fornita dalle NTC 2008 e inserita in seguito, si ottiene:

$$\epsilon_{c0} = \frac{-0,03475 - \left(-0,02750\right)}{40 - 20} \cdot \left(32 - 20\right) + \left(-0,03475\right) = -0,02931 \%$$

Tabella 11.2.Va – Valori di ε_{c0}

	Defo	rmazione	da ritiro	per essico	amento (in ‰)		
f _{ek}	Umidità Relativa (in %)							
	20	40	60	80	90	100		
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00		
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00		
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00		
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00		

Dalla tabella 11.2.Vb si interpola il valore del coefficiente k_h avendo come dato di input $h_0 = 294$ mm:

$$k_h = \frac{-(0.85 - 0.75)}{300 - 200} \cdot (290 - 200) + 0.85 = 0.760$$

La deformazione a tempo infinito per ritiro da essiccamento vale quindi:

$$\epsilon_{cd\infty} = k_h \cdot \epsilon_{c0} = 0,760 \cdot (-0,02931) = -0,02227 \%$$

Lo sviluppo nel tempo può essere valutato moltiplicando il valore della deformazione per il coefficiente seguente:

$$\beta_{ds}(t - t_s) = \frac{(t - t_s)}{[(t - t_s) + 0.04 \cdot h_0^{3/2}]}$$

Prudenzialmente si assume un'età del calcestruzzo t tendente ad infinito, che implica un

Eurolink S.C.p.A. Pagina 57 di 405

RELAZIONE DI CALCOLO

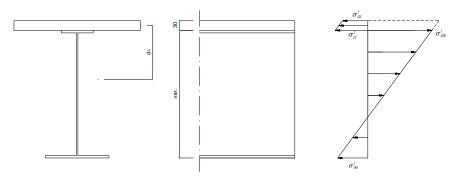
Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

coefficiente di sviluppo della deformazione unitario. La deformazione per ritiro da essiccamento risulta quindi:

$$\varepsilon_{cd} = \beta_{ds} \cdot \varepsilon_{cd\infty} = 1,00 \cdot (-0,02227) = -0,02227 \%$$

Il valore medio a tempo infinito della deformazione per ritiro autogeno è valutato tramite l'espressione:

$$\epsilon_{ca\infty} = -2,50 \cdot \left(f_{ck} - 10\right) \cdot 10^{-6} = -2,50 \cdot \left(32 - 10\right) \cdot 10^{-6} = -5,50 \cdot 10^{-5} \ \%$$


La deformazione totale da ritiro vale: $\epsilon_{cs} = \epsilon_{cd} + \epsilon_{ca} = -0,00022$

II coefficiente di omogeneizzazione vale: $\phi_{\infty} = \frac{2,2-1,9}{60-20} \cdot \left(60-29,03\right) + 1,9 = 2,13$

$$n^* = \frac{E_s}{E_c} (1 + \phi_{\infty}) = \frac{2.100.000}{336.430} \cdot (1 + 2,13) = 19,54$$

$$N_{r \; tot} = \epsilon_{r \infty} \cdot \frac{E_s}{n^*} \cdot A_c = 0,00022 \cdot \frac{2.100.000}{19,54} \cdot 27.000 = 638.382 \; daN$$

7.1.9.1 Effetti primari del ritiro

Il fenomeno del ritiro induce tensioni supplementari nella soletta in c.a. e nelle piattabande in acciaio, valutate secondo le seguenti formule:

$$\sigma_{cs}^{r} = \frac{N_{r}}{A_{c}} - \frac{N_{r}}{n^{*} \cdot A_{tot}} - \frac{N_{r} \cdot d_{c}}{W_{cs}} \quad \text{tensione nel calcestruzzo al lembo superiore}$$

$$\sigma_{\text{sfe}}^{\text{r}} = -\frac{N_{\text{r}}}{A_{\text{tot}}} - \frac{N_{\text{r}} \cdot d_{\text{c}}}{W_{\text{sfe}}} \qquad \qquad \text{tensione nell'acciaio al lembo superiore}$$

$$\sigma_{\text{ife}}^{\text{r}} = -\frac{N_{\text{r}}}{A_{\text{tot}}} - \frac{N_{\text{r}} \cdot d_{\text{c}}}{W_{\text{ife}}}$$
 tensione nell'acciaio al lembo inferiore

Eurolink S.C.p.A. Pagina 58 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

7.1.9.2 Effetti secondari del ritiro

Gli effetti secondari del ritiro vengono assimilati ad una deformazione termica equivalente, calcolata secondo le formule seguenti; i risultati sono stati riportati in precedenza nelle caratteristiche geometriche delle sezioni resistenti:

 α =0,00001 coefficiente di dilatazione lineare dell'acciaio;

 $\chi = \frac{N_r \cdot (H - y)}{F \cdot J}$ distorsione angolare;

 $\frac{\Delta t}{h} = \frac{\chi}{\alpha}$ deformazione termica per unità di lunghezza.

7.1.10 Azione di frenamento

La forza di frenamento o di accelerazione q₃ è funzione del carico verticale totale agente sulla corsia convenzionale n. 1, e per i ponti di 1a categoria è uguale a:

$$180 \text{ kN} < [q_3 = 0.6 \times (2Q_{1k}) + 0.10q_{1k} \times w_1 \times L] < 900 \text{ kN}$$

7.1.11 Azione centrifuga

Nei ponti con asse curvo di raggio R (in metri) l'azione centrifuga corrisponde ad ogni colonna di carico si valuta convenzionalmente come indicato in Tab. 5.1.III, essendo $Q_v = \Sigma_i \ 2 \ x \ Q_{ik}$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte.

In particolare considerando un raggio di curvatura R < 200 mt si ottiene:

Due stese di carico Q_V=1.000 kN
 Q₄=1.000 x 0,20 =200 kN

7.1.12 Azione indotta dal vento

7.1.12.1 Definizione

Per il calcolo delle azioni del vento, le Norme Tecniche per le Costruzioni (D.M. 2008) prendono in esame situazioni progettuali in cui possono nascere particolari fenomeni di interazione vento-struttura. Tra questi vengono segnalati gli effetti torsionali sugli impalcati da ponte, per i quali si rimanda ad analisi specifiche e metodologie di comprovata validità. Si è quindi deciso di

Eurolink S.C.p.A. Pagina 59 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

considerare l'azione del vento così come viene valutata con le nuove "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni" (CNR-DT 207/2008).

Il calcolo prevede l'individuazione di una pressione cinetica di picco del vento qp funzione della Zona di riferimento, categoria di esposizione, classe di rugosità e tempo di ritorno dell'evento.

Questa pressione permette, quindi, la determinazione delle azioni aerodinamiche di picco esercitate dal vento, che possono essere espresse mediante una coppia di forze ortogonali fX e fY e un momento torcente mZ, per unità di lunghezza, applicati lungo l'asse Z di riferimento dell'impalcato. Essi sono forniti dalle relazioni:

$$f_x(z) = q_p(z) \cdot I \cdot c_{fx}$$

$$f_v(z) = q_p(z) \cdot I \cdot c_{fv}$$

$$m_z(z) = q_p(z) \cdot l^2 \cdot c_{mz}$$

dove

cfx ,cfy ,cmZ coefficienti aerodinamici di forza e momento

I è la dimensione di riferimento associata ai coefficienti

I coefficienti aerodinamici per un impalcato isolato sono riportati in Tabella 4.1 in funzione del rapporto geometrico d/htot (vedi figura 4.1)

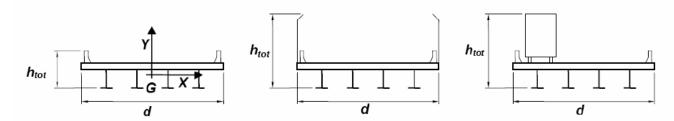


Figura 4.1 - Schema azioni vento ponte

Eurolink S.C.p.A. Pagina 60 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Coefficiente aerodinamico		Indicazioni	Dimensione di riferimento
$ \begin{array}{c} (2,0) \\ 1,65 \cdot \log_{10}(d/h_{tot}) + 3,15 \\ -1,64 \cdot \log_{10}(d/h_{tot}) + 2,15 \end{array} $,	Struttura snella (CNR-DT207 - § G.10.3)	$I = h_{tot}$
$c_{fX} = \begin{cases} \frac{1,85}{d/h_{tot}} - 0,10\\ \frac{1,35}{d/h_{tot}} \end{cases}$	$2 \le d/h_{tot} \le 5$ $d/h_{tot} > 5$	(CNR-DT207 - § G.11.1)	<i>l</i> = d
$c_{fY} = \begin{cases} n_{tot} \end{cases}$	$\leq d/h_{tot} \leq 5$ $h_{tot} > 5$	(CNR-DT207 - § G.11.1)	l = d
$c_{mZ} = \pm 0.2$		(CNR-DT207 - § G.11.1)	l = d

Tabella 4.1 – Coefficienti aerodinamici CNR-DT 207

7.1.12.2 CNR-DT 207/2008 V. 1.02 Tipo di opera

Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.

DATI SITO

Parametro Zona	$V_{b,0} =$	28,0 m/s
Parametro Zona	$a_0 =$	500 m
Parametro Zona	k _a =	0,36
Altezza sito s.l.m.	a _s =	84 m
Coefficiente di altitudine	c _a =	1,00
Velocità base riferimento	$v_b =$	28,0 m/s

Eurolink S.C.p.A. Pagina 61 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Tempo di ritorno	TR =	100 anni
Coefficiente di ritorno	$c_r =$	1,06
Velocità riferim. Progetto	$V_r =$	29,75 m/s
Coefficiente di topografia	$c_t =$	1,00
Esposizione sito	$k_r =$	0,17
Esposizione sito	$z_0 =$	0,01 m
Esposizione sito	$z_{min} =$	2 m
Densità media aria	ρ =1,2	5 daN/m³

Dati geometrici impalcato ASSE PRINCIPALE

altezza trave	2,60	m
spessore soletta	0,30	m
spessore marciapiede	0,22	m
delta per pendenza trasversale	2,50	%
altezza barriera	0,00	m
spessore pavimentazione	0,11	m
Altezza carico stradale	3,00	m
altezza centro impalcato dal suolo	15,00	m
larghezza fuori tutto	14,00	m

Dati geometrici impalcato RAMPA 1

altezza trave	1,60	m
spessore soletta	0,30	m
spessore marciapiede	0,25	m
delta per pendenza trasversale	7,00	%
altezza barriera	0,00	m
spessore pavimentazione	0,11	m
Altezza carico stradale	3,00	m
altezza centro impalcato dal suolo	15,00	m
larghezza fuori tutto	9,00	m

Eurolink S.C.p.A. Pagina 62 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.1.12.3 Azione del vento a ponte scarico

IMPALCATO ASSE PRINCIPALE

Ponte scarico

altezza investita	3,47 m
quota riferimento	16,74 m
rapporto d/h _{tot}	4,03
coefficiente di esposizione	3,09
pressione picco vento	1,71 kN/m ²

coefficiente di forza X trasversale 0,36 coefficiente di forza Y verticale 1,10 coefficiente di momento 0,20

Risultante pressione X 8,59 kN/m
Risultante pressione Y 26,45 kN/m
Momento torcente 67,10 kNm/m

IMPALCATO RAMPA 1

Ponte scarico

altezza investita	2,78 m
quota riferimento	16,39 m
rapporto d/h _{tot}	3,24
coefficiente di esposizione	3,08
pressione picco vento	1,70 kN/m ²
coefficiente di forza X trasversale	0,47
coefficiente di forza Y verticale	1,02
coefficiente di momento	0,20

Risultante pressione X 7,23 kN/m Risultante pressione Y 15,71 kN/m Momento torcente 27,61 kNm/m valori validi per rapporto d/htot>2

valori validi per rapporto d/htot>2

Eurolink S.C.p.A. Pagina 63 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

valori validi per rapporto d/htot>2

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

7.1.12.4 Azione del vento a ponte carico

IMPALCATO ASSE PRINCIPALE

	-
Ponte	Carico
r Ulite	Carico

altezza investita	6,36 m
quota riferimento	18,18 m
rapporto d/h _{tot}	2,20
coefficiente di esposizione	3,15
pressione picco vento	1,74 kN/m ²

coefficiente di forza X trasversale 0,74 coefficiente di forza Y verticale 0,92 coefficiente di momento 0,20

Risultante pressione X 18,05 kN/m
Risultante pressione Y 22,43 kN/m
Momento torcente 68,24 kNm/m

pefficiente di momento 0,20

Le azioni sopra calcolate vengono applicate, nel modello di calcolo a graticcio, alle travi principali come carico uniformemente distribuito, al fine di determinare le azioni globali (momento flettente, taglio, momento torcente) agenti sulle travi stesse.

Azione sulla trave esterna sx: $q_{vento} = \frac{18,05 \cdot 6,36/2}{9,80} + \frac{22,43}{3} + \frac{68,24}{9,80} = 20,29 \text{ kN/m}$

Azione sulla trave centrale: $q_{vento} = \frac{22,43}{3} = 7,48 \text{ kN/m}$

Azione sulla trave esterna dx: $q_{vento} = -\frac{18,05 \cdot 6,36/2}{9,80} + \frac{22,43}{3} - \frac{68,24}{9,80} = -5,34 \text{ kN/m}$

Per la determinazione dell'azione del vento agente sui traversi si ricorre a favore di sicurezza ad un modello di calcolo "locale" descritto in seguito nella fase di verifica dei traversi stessi.

Eurolink S.C.p.A. Pagina 64 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

IMPALCATO RAMPA 1

Ponte carico

altezza investita	5,64 m
quota riferimento	17,82 m
rapporto d/h _{tot}	1,60
coefficiente di esposizione	3,13
pressione picco vento	1,73 kN/m ²
coefficiente di forza X trasversale	0,85
coefficiente di forza Y verticale	0,86
coefficiente di momento	0,20

valori validi per rapporto d/htot>2

Risultante pressione X 13,20 kN/m Risultante pressione Y 13,41 kN/m Momento torcente 28,09 kNm/m

Le azioni sopra calcolate vengono applicate nel modello di calcolo alle travi principali come carico uniformemente distribuito, al fine di determinare le azioni globali (momento flettente, taglio, momento torcente) agenti sulle travi stesse.

Azione sulla trave esterna sx: $q_{vento} = \frac{13,20 \cdot 5,64/2}{5,00} + \frac{13,41}{2} + \frac{28,099}{5,00} = 19,77 \text{ kN/m}$

Azione sulla trave esterna dx: $q_{vento} = -\frac{13,20 \cdot 5,64/2}{5,00} + \frac{13,41}{2} - \frac{28,099}{5,00} = -6,37 \text{ kN/m}$

Per la determinazione dell'azione del vento agente sui traversi si ricorre a favore di sicurezza ad un modello di calcolo "locale" descritto in seguito nella fase di verifica dei traversi stessi.

7.1.13 Combinazione di carico

Combinazione utilizzata nell'analisi dell'impalcato:

COEFFICENTI DI COMBINAZIONE PER LE VERIFICHE ALLO SLU STR			
	γ	Ψ	γ*ψ
Peso proprio acciaio	1,35	1,00	1,35
Peso proprio soletta	1,35	1,00	1,35
Permanenti	1,50	1,00	1,50
Effetti primari del ritiro	1,20	1,00	1,20
Effetti secondari del ritiro	1,20	1,00	1,20
Accidentali mezzi	1,35	1,00	1,35
Vento	1,5	0,60	0,90
Deformazioni termiche	1,20	0,60	0,72

Azione base accidentali

Eurolink S.C.p.A. Pagina 65 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.1.14 Azione indotta dagli appoggi per effetto della deformazione termica

L'azione d'attrito è stata valutata in base alla deformazione longitudinale dell'impalcato causata da una variazione termica ΔT di 30 °C. La forza d'attrito agente su ciascuna sottostruttura è infatti ottenuta come la suddetta deformazione moltiplicata per la rigidezza dell'appoggio.

Nella tabella seguente si riporta l'azione d'attrito relativa a ciascuna sottostruttura e la costante elsatica di calcolo degli isolatori d'appoggio; la forza H_{att} indicata corrisponde alla forza totale sulla sottostruttura, pari alla forza derivante da ogni singolo isolatore per il numero di appoggi presenti.

	$\Delta I_{ m long}$	k h	H _{att}
	mm	kN/mm	kN
SpA-p	18	2,50	135
SpA-r	11	1,23	26
Р1-р	5	2,50	39
Р2-р	10	2,50	78
P1-r	3	1,23	9
P2-r	2	1,23	6
P3-r	10	1,23	24
SpB	18	2,50	180

Prudenzialmente si assume come forza d'attrito il massimo tra le H_{att} descritte nella tabella soprastante ed il 3% dei carichi permanenti.

Eurolink S.C.p.A. Pagina 66 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.2 ESCURSIONE DEI GIUNTI TRASVERSALI

I giunti devono essere in grado di assorbire una deformazione longitudinale dell'impalcato causata da una variazione termica ΔT di ± 30 °C. Tale deformazione risulta nulla in corrispondenza del baricentro dell'impalcato metallico e cresce all'aumentare della distanza dal giunto in questione al baricentro stesso. I giunti devono inoltre garantire lo spostamento dovuto alle azioni sismiche derivanti dalla modellazione. Si espongono nel seguito i valori delle escursioni termiche e degli spostamenti sismici per i giunti presenti nell'opera in oggetto:

	ΔI_{term}	ΔI_{sism}	$\Delta I_{ammesso}$
	mm	mm	mm
SpA-p	±18	±170	±200
SpA-r	±11	±152	±200
SpB	±18	±170	±200

Eurolink S.C.p.A. Pagina 67 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

7.3 MODELLO DI CALCOLO

Il calcolo delle sollecitazioni è stato effettuato attraverso il codice ad elementi finiti "SAP2000NL"; l'intera struttura è stata discretizzata in elementi "beam" costituenti il graticcio di travi.

L'analisi delle sollecitazione è stata svolta in più fasi distinte.

- 1) Analisi delle sollecitazioni per peso proprio acciaio e peso proprio soletta; nel graticcio di travi si è considerata l'inerzia delle sole travi longitudinali e traversi.
- 2) Analisi delle sollecitazioni per carico permanente; nel graticcio di travi si è considerato il contributo dell'inerzia della soletta in c.a. alle travi longitudinali, con coefficiente di omogeneizzazione n=18,72.
- 3) Analisi delle sollecitazioni per carichi accidentali; nel graticcio di travi si è considerato il contributo dell'inerzia della soletta in c.a. alle travi longitudinali, con coefficiente di omogeneizzazione n=6,24.
- 3) Analisi delle sollecitazioni dovute agli effetti secondari del ritiro; nel graticcio di travi si è considerato il contributo dell'inerzia della soletta in c.a. alle travi longitudinali, con coefficiente di omogeneizzazione n=19,54.

I risultati dell'analisi sono contenuti nei tabulati di calcolo riportati al termine del presente capitolo, suddivisi nei seguenti files:

file C 1: analisi per peso proprio acciaio e peso proprio soletta;

file C_2: analisi per carichi permanenti;

file C_3: analisi per temperatura, accidentali folla e vento;

file C 4: analisi per carichi accidentali mezzi asse principale;

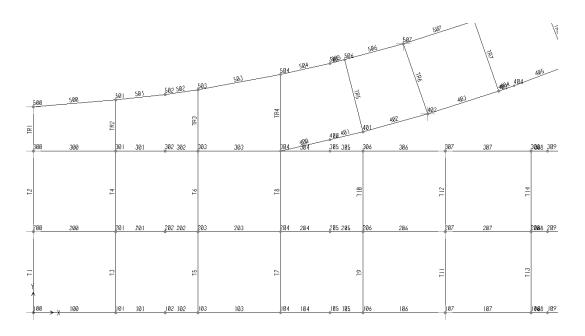
file C_5: analisi per carichi accidentali rampa 1; file

file C_6: analisi per effetti secondari del ritiro.

File C Sisma: analisi per carichi sismici

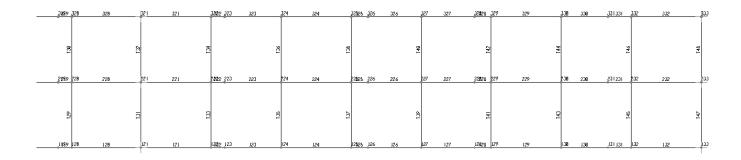
Nella pagine seguenti si evidenzia la modellazione utilizzata:

Eurolink S.C.p.A. Pagina 68 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc


Rev F0 Data 20/06/2011

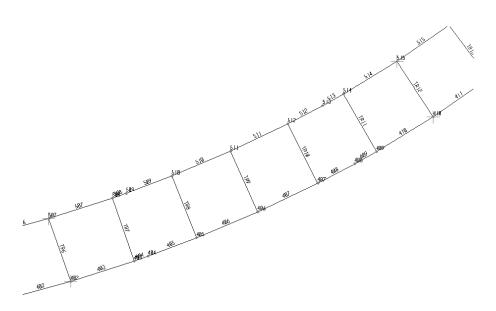
Frame e joint – prima campata asse principale e rampa 1

Frame e joint – seconda campata asse principale

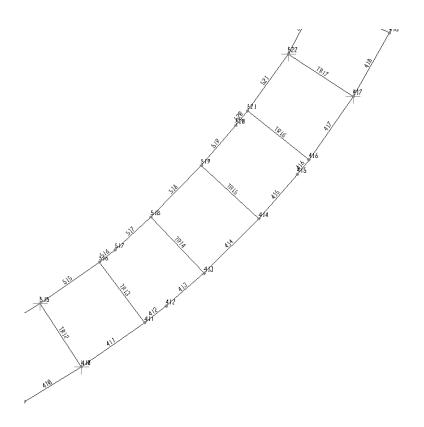
Frame e joint – terza campata asse principale

Eurolink S.C.p.A. Pagina 69 di 405

Progetto di Messina Progetto Definitivo


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc


Rev F0

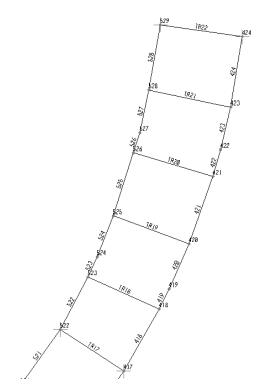
20/06/2011

Data

Frame e joint – seconda campata rampa 1

Frame e joint - terza campata rampa 1

Eurolink S.C.p.A. Pagina 70 di 405



RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0

20/06/2011

Data

Frame e joint - quarta campata rampa 1

7.3.1 Modellazione a graticcio

Il ponte in oggetto viene schematizzato come graticcio di travi in cui si individuano due entità strutturali, quali le travi principali ed i traversi.

Vengono individuate due fasi fondamentali:

<u>1ª Fase</u>: il graticcio è costituito dalle sole travi in acciaio, ed è caricato dal peso proprio di queste e dalla soletta in c.a.:

<u>2ª Fase</u>: la soletta di impalcato di spessore pari a 30 cm, viene considerata collaborante con le travi principali per una lunghezza finita; il graticcio è caricato dai carichi permanenti ed accidentali.

7.3.1.1 Rigidezze flessionali

La schematizzazione a graticcio non permette di valutare la rigidezza ed il collegamento trasversale esercitato fra le travi longitudinali dalla soletta in c.a.; tale rigidezza viene considerata tramite l'analisi della distribuzione dei carichi, sia permanenti che accidentali, fra le varie nervature. Lo schema assunto per tale ridistribuzione è quello di trave continua, ove la trave è rappresentata

Eurolink S.C.p.A. Pagina 71 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

dalla soletta per la profondità di 1 mt e gli appoggi, supposti rigidi, sono rappresentati dalle travi longitudinali; le reazioni agli appoggi vengono assunte come carichi da applicare alle travi longitudinali nella modellazione a graticcio.

7.3.1.2 Rigidezze torsionali

IMPALCATO ASSE PRINCIPALE

Non essendo l'impalcato torsiorigido per la mancanza di controventi inferiori, la rigidezza torsionale dell'impalcato viene valutata assegnando a ciascuna delle travi principali la propria rigidezza torsionale per solo acciaio.

IMPALCATO RAMPA 1

Essendo l'impalcato torsiorigido per la presenza della soletta e dei controventi inferiori, la rigidezza torsionale viene valutata considerando una sezione a cassone equivalente.

In 1^a fase, per peso proprio acciaio e soletta, la sezione a cassone equivalente è definita lateralmente dalle anime delle travi principali, superiormente ed inferiormente da una piastra di spessore equivalente ai controventi posta nel piano delle ali dei traversi.

In 2ª fase, per carichi permanenti ed accidentali, la sezione a cassone equivalente è definita lateralmente dalle anime delle travi principali, inferiormente da una piastra di spessore equivalente ai controventi posta nel piano delle ali dei traversi e superiormente dalla soletta in c.a. che in questa fase costituisce un elemento strutturale. Lo spessore della soletta viene opportunamente ridotto mediante il coefficiente di omogeneizzazione.

L'inerzia così determinata, viene assegnata in parti uguali alle travi longitudinali nella modellazione a graticcio.

Nel calcolo dell'inerzia torsionale si ipotizzano le sezioni dei controventi inferiori; note le sollecitazioni si possono calcolare i controventi necessari, i quali potrebbero risultare diversi da quelli ipotizzati in precedenza. Questo conduce ad una approssimazione che risulta essere accettabile in quanto gli spessori di piastra equivalente risultano in ogni caso molto piccoli ed inoltre, nel calcolo dell'inerzia torsionale è importante il braccio della circuitazione che rimane invariato.

7.3.2 Caratteristiche delle sezioni

La larghezza efficace, beff, di una soletta in calcestruzzo può essere determinata mediante

Eurolink S.C.p.A. Pagina 72 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

l'espressione

$$b_{eff} = b_0 + b_{e1} + b_{e2},$$
 (4.3.2 D.M. 2008)

dove b_0 è la distanza tra gli assi dei connettori e b_{ei} = min ($L_e/8$, b_i) è il valore della larghezza collaborante da ciascun lato della sezione composta (vedi fig. 4.1).

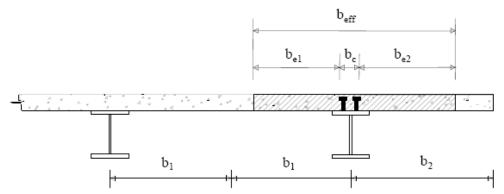


Figura 4.1 – Definizione della larghezza efficace b_{eff} e delle aliquote b_{ei} .

Le nelle travi semplicemente appoggiate è la luce della trave, nelle travi continue è la distanza indicata in fig. 4.2

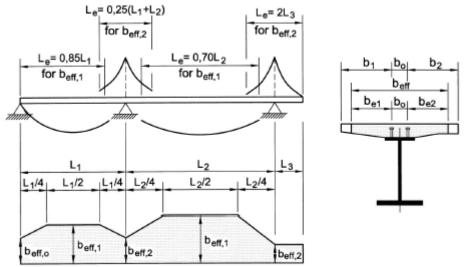


Figura 4.2 – Larghezza efficace beff e luci equivalenti Le per le travi continue.

Per gli appoggi di estremità la formula diviene:

$$b_{\text{eff}} = b_0 + \beta_1 b_{e1} + \beta_2 b_{e2}$$

dove
$$\beta_i = \left(0,55 + 0,025 \cdot \frac{L_e}{b_{ei}}\right) \le 1,0$$

Eurolink S.C.p.A. Pagina 73 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669 F0.doc

Rev F0

Data 20/06/2011

7.3.2.1 Calcolo larghezza soletta collaborante

Campata di estremità L = 25,00 mt - Asse principale

TRAVE ESTERNA

$$L_e = 2.500 \cdot 0.85 = 2.125$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{2.125}{8} = 265 \text{ cm}$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$ $b_1 = \frac{L_e}{8} = \frac{2.125}{8} = 265 \text{ cm}$ $\beta_1 = (0.55 + 0.025 \cdot \frac{2.125}{185}) = 0.84$

$$b_{ef1} = 185 \cdot 0.84 = 155 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{2.125}{8} = 265 \text{ cm}$$

$$b_{ef2}: \ b_2 = \frac{490}{2} - 25 = 220 \ cm \qquad b_2 = \frac{L_e}{8} = \frac{2.125}{8} = 265 \ cm \qquad \beta_2 = (0.55 + 0.025 \cdot \frac{2.125}{220}) = 0.79$$

$$b_{ef2} = 220 \cdot 0.79 = 174 \text{ cm}$$

$$B = 50 + 155 + 174 = 379 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 350 cm.

TRAVE INTERNA

$$L_{e} = 2.500 \cdot 0.85 = 2.125$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$

$$b_1 = \frac{L_e}{s} = \frac{2.125}{s} = 265 \text{ cm}$$

$$b_{ef1}: \ b_1 = 210 - 25 = 185 \ cm \qquad \qquad b_1 = \frac{L_e}{8} = \frac{2.125}{8} = 265 \ cm \qquad \beta_1 = (0.55 + 0.025 \cdot \frac{2.125}{185}) = 0.84$$

$$b_{ef1} = 185 \cdot 0.84 = 155 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{2.125}{8} = 265 \text{ cm}$$

$$b_{ef2}: b_2 = \frac{490}{2} - 25 = 220 \text{ cm} \qquad b_2 = \frac{L_e}{8} = \frac{2.125}{8} = 265 \text{ cm} \qquad \beta_2 = (0,55 + 0,025 \cdot \frac{2.125}{220}) = 0,79$$

$$b_{ef2} = 220 \cdot 0,79 = 174 \text{ cm}$$

$$B = 50 + 174 + 174 = 398 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 350 cm.

Appoggi su pile L = 25,00 + 52,00 mt - Asse principale

TRAVE ESTERNA

$$L_e = (2.500 + 5.200) \cdot 0,25 = 1.925$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{1.925}{8} = 241 \text{ cm}$$

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev FO

Data 20/06/2011

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.925}{8} = 241 \, \text{cm}$$

$$B = 50 + 185 + 220 = 455 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

TRAVE INTERNA

$$L_{e} = (2.500 + 5.200) \cdot 0,25 = 1.925$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{1.925}{8} = 241 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.925}{8} = 241 \, \text{cm}$$

$$B = 50 + 220 + 220 = 490 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

CAMPATA CENTRALE L=52,00 MT - ASSE PRINCIPALE

TRAVE ESTERNA

$$L_e = 5.200 \cdot 0.70 = 3.640$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$ $b_1 = \frac{L_e}{8} = \frac{3.640}{8} = 455 \text{ cm}$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$ $b_2 = \frac{L_e}{8} = \frac{3.640}{8} = 455 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{3.640}{8} = 455 \text{ cm}$$

$$B = 50 + 185 + 220 = 455 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

TRAVE INTERNA

$$L_e = (2.500 + 5.200) \cdot 0.25 = 1.925$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185$ cm

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$ $b_1 = \frac{L_e}{8} = \frac{1.925}{8} = 241 \text{ cm}$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$ $b_2 = \frac{L_e}{8} = \frac{1.925}{8} = 241 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.925}{8} = 241 \text{ cm}$$

$$B = 50 + 220 + 220 = 490 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

Eurolink S.C.p.A.

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev FO

20/06/2011

Data

Appoggi su pile L = 52,00 + 42,00 mt - Asse principale

TRAVE ESTERNA

$$L_e = (5.200 + 4.200) \cdot 0,25 = 2.350$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185$ cm

$$b_1 = \frac{L_e}{8} = \frac{2.350}{8} = 294 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{2.350}{8} = 294 \text{ cm}$$

$$B = 50 + 185 + 220 = 455 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

TRAVE INTERNA

$$L_e = (2.500 + 5.200) \cdot 0,25 = 1.925$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{2.350}{8} = 294 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{2.350}{8} = 294 \text{ cm}$$

$$B = 50 + 220 + 220 = 490 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

Campata di estremità L = 42,00 mt - Asse principale

TRAVE ESTERNA

$$L_e = 4.200 \cdot 0,85 = 3.570$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{3.570}{8} = 446 \text{ cm}$$

$$b_{ef1}: \ b_1 = 210 - 25 = 185 \ cm \qquad \qquad b_1 = \frac{L_e}{8} = \frac{3.570}{8} = 446 \ cm \qquad \beta_1 = (0.55 + 0.025 \cdot \frac{3.570}{185}) = 1.03$$

$$b_{ef1} = 185 \cdot 1,00 = 185 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{3.570}{8} = 446 \text{ cm}$$

$$b_{ef2}: \ b_2 = \frac{490}{2} - 25 = 220 \ cm \qquad \qquad b_2 = \frac{L_e}{8} = \frac{3.570}{8} = 446 \ cm \qquad \beta_2 = (0,55 + 0,025 \cdot \frac{3.570}{220}) = 0,96$$

$$b_{ef2} = 220 \cdot 0,96 = 211 \, cm$$

$$B = 50 + 185 + 211 = 446 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

Eurolink S.C.p.A.

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669 F0.doc

Rev F0

Data 20/06/2011

TRAVE INTERNA

$$L_e = 4.200 \cdot 0,\!85 = 3.570$$

$$b_{ef1}$$
: $b_1 = 210 - 25 = 185$ cm

$$b_1 = \frac{L_e}{8} = \frac{3.570}{8} = 446 \text{ cm}$$

$$b_{ef1}: \ b_1 = 210 - 25 = 185 \ cm \qquad \qquad b_1 = \frac{L_e}{8} = \frac{3.570}{8} = 446 \ cm \qquad \beta_1 = (0,55 + 0,025 \cdot \frac{3.570}{185}) = 1,03$$

$$b_{ef1} = 185 \cdot 1,00 = 185 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{3.570}{8} = 446 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{490}{2} - 25 = 220 \text{ cm}$ $b_2 = \frac{L_e}{8} = \frac{3.570}{8} = 446 \text{ cm}$ $\beta_2 = (0.55 + 0.025 \cdot \frac{3.570}{220}) = 0.96$

$$b_{ef2} = 220 \cdot 0{,}96 = 211\,cm$$

$$B = 50 + 211 + 211 = 472 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

CAMPATA DI ESTREMITÀ L = 21,96 MT - RAMPA 1

$$L_e = 2.196 \cdot 0.85 = 1.866$$

$$b_{ef1}$$
: $b_1 = 200 - 25 = 175 \text{ cm}$

$$b_1 = \frac{L_e}{R} = \frac{1.866}{R} = 233 \text{ cm}$$

$$b_{ef1}: \ b_1 = 200 - 25 = 175 \ cm \qquad \qquad b_1 = \frac{L_e}{8} = \frac{1.866}{8} = 233 \ cm \qquad \beta_1 = (0.55 + 0.025 \cdot \frac{1.866}{175}) = 0.82$$

$$b_{ef1} = 175 \cdot 0.82 = 143 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{500}{2} - 25 = 225 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.866}{8} = 233 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{500}{2} - 25 = 225 \text{ cm}$ $b_2 = \frac{L_e}{8} = \frac{1.866}{8} = 233 \text{ cm}$ $\beta_2 = (0.55 + 0.025 \cdot \frac{1.866}{225}) = 0.76$

$$b_{ef2} = 225 \cdot 0.76 = 171 \, cm$$

$$B = 50 + 143 + 171 = 364$$
 cm

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 350 cm.

Appoggi su pile L = 21,96 + 23,00 mt - Rampa 1

$$L_e = (2.196 + 2.300) \cdot 0,25 = 1.124$$

$$b_{ef1}$$
: $b_1 = 200 - 25 = 175 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{1.124}{8} = 140 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{500}{2} - 25 = 225 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.124}{8} = 144 \text{ cm}$$

$$B = 50 + 140 + 140 = 330 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 300 cm.

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

CAMPATA CENTRALE L=23,00 MT - RAMPA 1

$$L_{\rm p} = 2.300 \cdot 0.70 = 1.610$$

$$b_{ef1}$$
: $b_1 = 200 - 25 = 175 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{1.610}{8} = 201 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{500}{2} - 25 = 225 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.610}{8} = 201 \text{ cm}$$

$$B = 50 + 175 + 201 = 426 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

APPOGGI SU PILE L = 23,00 + 27,06 MT - RAMPA 1

$$L_{e} = (2.300 + 2.706) \cdot 0,25 = 1.251$$

$$b_{ef1}$$
: $b_1 = 200 - 25 = 175 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{1.251}{8} = 156 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{500}{2} - 25 = 225 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.251}{8} = 156 \text{ cm}$$

$$B = 50 + 156 + 156 = 362 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 300 cm.

CAMPATA CENTRALE L=27,06 MT - RAMPA 1

$$L_e = 2.706 \cdot 0.70 = 1.894$$

$$b_{ef1}$$
: $b_1 = 200 - 25 = 175 \text{ cm}$

$$b_1 = \frac{L_e}{g} = \frac{1.894}{g} = 236 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{500}{2} - 25 = 225 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.894}{8} = 236 \text{ cm}$$

$$B = 50 + 175 + 225 = 450 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 400 cm.

Appoggi su pile L = 27,06 + 24,37 mT - Rampa 1

$$L_e = (2.706 + 2.437) \cdot 0.25 = 1.285$$

$$b_{ef1}$$
: $b_1 = 200 - 25 = 175 \text{ cm}$

$$b_1 = \frac{L_e}{g} = \frac{1.285}{g} = 160 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{500}{2} - 25 = 225 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{1.285}{8} = 160 \text{ cm}$$

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

$$B = 50 + 160 + 160 = 370 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 300 cm.

Campata di estremità L = 24,37 mt - Rampa 1

$$L_e = 2.437 \cdot 0,85 = 2.071$$

$$b_{ef1}$$
: $b_1 = 200 - 25 = 175 \text{ cm}$

$$b_1 = \frac{L_e}{8} = \frac{2.071}{8} = 258 \text{ cm}$$

$$b_{ef1}: \ b_1 = 200 - 25 = 175 \ cm \qquad \qquad b_1 = \frac{L_e}{8} = \frac{2.071}{8} = 258 \ cm \qquad \beta_1 = (0.55 + 0.025 \cdot \frac{2.071}{175}) = 0.85$$

$$b_{ef1} = 175 \cdot 0.85 = 149 \text{ cm}$$

$$b_{ef2}$$
: $b_2 = \frac{500}{2} - 25 = 225 \text{ cm}$

$$b_2 = \frac{L_e}{8} = \frac{2.071}{8} = 258 \text{ cm}$$

$$b_{ef2}: \ b_2 = \frac{500}{2} - 25 = 225 \ cm \qquad b_2 = \frac{L_e}{8} = \frac{2.071}{8} = 258 \ cm \qquad \beta_2 = (0.55 + 0.025 \cdot \frac{2.071}{225}) = 0.78$$

$$b_{ef2} = 225 \cdot 0.78 = 175 \text{ cm}$$

$$B = 50 + 149 + 175 = 374 \text{ cm}$$

A favore di sicurezza si assume nei calcoli una larghezza di soletta collaborante pari a 350 cm.

Eurolink S.C.p.A. Pagina 79 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

7.3.2.2 Caratteristiche geometriche

TRAVI PRINCIPALI

IMPALCATO ASSE PRINCIPALE

		Α	В	С	Da	Db	Е	F	G	Н	I	L	M
	H(cm)	260	260	260	260	260	260	260	260	260	260	260	260
ALA	spess	2,0	2,0	4,0	4,0	4,0	3,0	4,0	4,0	4,0	3,0	3,0	2,5
SUPERIORE	largh	60	60	60	60	60	60	60	60	60	60	60	60
RADDOPPIO	spess	0,0	0,0	0,0	0,0	0,0	0,0	0,0	3,0	0,0	0,0	0,0	0,0
SUPERIORE	largh	0	0	0	0	0	0	0	55	0	0	0	0
ALA	spess	2,0	2,0	4,0	4,0	4,0	4,0	4,0	4,0	3,0	3,0	4,0	2,5
INFERIORE	largh	90	90	90	90	90	90	90	90	90	90	90	90
RADDOPPIO	spess	0,0	0,0	0,0	0,0	3,0	3,0	0,0	3,0	3,0	3,0	0,0	0,0
INFERIORE	largh	0	0	0	0	85	85	0	85	85	85	0	0
ANIMA	spess	1,6	1,6	1,8	1,6	1,6	1,6	1,6	1,8	1,8	1,8	1,6	1,8
PREDALLE	spess	6	6	6	6	6	6	6	6	6	6	6	6
SOLETTA	spess	30	30	30	30	30	30	30	30	30	30	30	30
SOLETTA	spess	24	24	24	24	24	24	24	24	24	24	24	24
COLLAB.	largh	350	350	400	400	400	400	400	400	400	400	400	400
SEZIONE	A (cm²)	710	710	1.054	1.003	1.253	1.195	1.003	1.463	1.215	1.157	945	834
METALLICA	y _i (cm)	119	119	115	115	93	85	115	112	101	93	106	118
	J _x (cm ⁴)	7.144.938	7.144.938	12.007.724	11.729.757	14.106.712	12.468.065	11.729.757	18.061.870	13.704.045	12.222.072	10.482.713	8.591.810
	J _y (cm⁴)	157.587	157.587	315.122	315.086	468.616	450.617	315.086	510.245	407.903	389.903	297.086	196.999
	J _{torc} (cm ⁴)	750	750	3.690	3.544	4.305	3.566	3.544	4.938	3.341	2.603	2.805	1.277
SOLETTA	A (cm ²)	1.158	1.158	1.566	1.516	1.766	1.708	1.516	1.976	1.728	1.670	1.458	1.347
COLLAB.	y _i (cm)	181	181	169	170	147	143	170	155	153	150	166	179
18,72	J _x (cm ⁴)	14.107.896	14.107.896	21.149.497	20.805.001	26.594.573	25.866.056	20.805.001	28.569.876	25.052.367	24.412.039	20.349.809	16.703.083
	J _y (cm⁴)	4.738.250	4.738.250	7.152.729	7.152.693	7.306.223	7.288.223	7.152.693	7.347.851	7.245.510	7.227.510	7.134.693	7.034.606
	J _{torc} (cm ⁴)	750	750	3.690	3.544	4.305	3.566	3.544	4.938	3.341	2.603	2.805	1.277
SOLETTA	A (cm ²)	2.056	2.056	2.592	2.542	2.792	2.733	2.542	3.001	2.753	2.695	2.483	2.372
COLLAB.	y _i (cm)	223	223	212	214	195	194	214	197	200	199	213	222
6,24	J _x (cm ⁴)	18.943.018	18.943.018	28.610.464	27.998.842	37.834.496	37.608.287	27.998.842	38.838.211	35.095.058	34.903.951	27.888.526	22.437.778
	J _y (cm⁴)	13.899.575	13.899.575	20.827.943	20.827.907	20.981.437	20.963.437	20.827.907	21.023.065	20.920.723	20.902.724	20.809.907	20.709.819
	J _{torc} (cm ⁴)	750	750	3.690	3.544	4.305	3.566	3.544	4.938	3.341	2.603	2.805	1.277
SOLETTA	A (cm ²)	1.139	1.139	1.545	1.494	1.745	1.686	1.494	1.954	1.706	1.648	1.436	1.325
COLLAB.	y _i (cm)	179	179	167	168	145	141	168	154	152	148	165	178
19,54	J _x (cm ⁴)	13.925.591	13.925.591	20.887.534	20.549.015	26.217.798	25.467.316	20.549.015	28.239.514	24.712.959	24.052.671	20.077.039	16.488.495
	J _v (cm⁴)	4.546.021	4.546.021	6.865.788	6.865.751	7.019.282	7.001.282	6.865.751	7.060.910	6.958.568	6.940.569	6.847.752	6.747.664
	J _{torc} (cm ⁴)	750	750	3.690	3.544	4.305	3.566	3.544	4.938	3.341	2.603	2.805	1.277
2,20E-04	Nr,tot (kg)	1,9112E+05	1,9112E+05	2,1843E+05									
	к	6,7207E-07	6,7207E-07	5,7375E-07	5,7661E-07	5,4809E-07	5,8062E-07	5,7661E-07	4,7608E-07	5,5187E-07	5,8363E-07	6,0946E-07	6,5828E-07
	Δt/h	6,7	6,7	5,7	5,8	5,5	5,8	5,8	4,8	5,5	5,8	6,1	6,6

Eurolink S.C.p.A. Pagina 80 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

IMPALCATO RAMPA 1

		C1	D1	E1	F1	G1	H1	l1
	H(cm)	160	160	160	160	160	110	110
ALA	spess	2,0	2,0	2,0	2,0	2,0	2,0	2,0
SUPERIORE	largh	60	60	60	60	60	60	60
RADDOPPIO	spess	0,0	0,0	0,0	0,0	0,0	0,0	0,0
SUPERIORE	largh	0	0	0	0	0	0	0
ALA	spess	3,0	3,5	2,5	2,0	2,5	3,0	2,0
INFERIORE	largh	90	90	90	90	90	90	90
RADDOPPIO	spess	0,0	0,0	0,0	0,0	0,0	0,0	0,0
INFERIORE	largh	0	0	0	0	0	0	0
ANIMA	spess	1,8	1,6	1,8	1,6	1,8	1,6	1,8
PREDALLE	spess	6	6	6	6	6	6	6
SOLETTA	spess	30	30	30	30	30	30	30
SOLETTA	spess	24	24	24	24	24	24	24
COLLAB.	largh	300	400	300	400	300	350	350
SEZIONE	A (cm ²)	669	682	625	550	625	558	491
METALLICA	y _i (cm)	63	58	67	71	67	41	48
	J _x (cm⁴)	2.771.334	2.840.829	2.601.667	2.337.709	2.601.667	1.166.053	1.032.164
	J _y (cm⁴)	218.325	248.678	187.951	157.553	187.951	218.286	157.552
	J _{torc} (cm ⁴)	1.271	1.657	931	613	931	1.113	606
SOLETTA	A (cm ²)	1.054	1.195	1.010	1.062	1.010	1.007	940
COLLAB.	y _i (cm)	105	110	109	123	109	80	86
18,72	J _x (cm⁴)	6.036.550	7.078.512	5.557.335	5.378.310	5.557.335	3.075.462	2.539.005
	J _v (cm ⁴)	3.102.941	7.086.285	3.072.566	6.995.160	3.072.566	4.798.948	4.738.214
	J _{torc} (cm ⁴)	4.217.996	4.185.655	4.217.996	4.217.996	4.217.996	1.924.260	1.934.433
SOLETTA	A (cm ²)	1.823	2.221	1.779	2.088	1.779	1.904	1.837
COLLAB.	y _i (cm)	136	141	139	150	139	102	107
6,24	J _x (cm⁴)	8.456.647	9.716.300	7.658.027	7.015.220	7.658.027	4.224.995	3.375.773
	J _v (cm⁴)	8.872.171	20.761.498	8.841.797	20.670.374	8.841.797	13.960.273	13.899.539
	J _{torc} (cm ⁴)	4.739.186	4.698.736	4.739.186	4.739.186	4.739.186	2.183.270	2.196.211
SOLETTA	A (cm ²)	1.037	1.173	993	1.041	993	988	921
COLLAB.	y _i (cm)	104	108	108	122	108	79	86
19,54	J _x (cm ⁴)	5.947.917	6.974.697	5.479.021	5.310.450	5.479.021	3.029.808	2.504.874
'	J _v (cm ⁴)	2.981.887	6.799.343	2.951.512	6.708.219	2.951.512	4.606.720	4.545.985
	J _{torc} (cm ⁴)	4.190.284	4.158.359	4.190.284	4.190.284	4.190.284	1.911.103	1.921.140
2,20E-04	Nr,tot (kg)	1,6382E+05	2,1843E+05	1,6382E+05	2,1843E+05	1,6382E+05	1,9112E+05	1,9112E+05
_,	κ	1.0133E-06	1.0807E-06	1.0338E-06	1,1459E-06	1,0338E-06	1,5361E-06	1,6022E-06
	Δt/h	10,1	10,8	10,3	11,5	10,3	15,4	16,0

INERZIE DI CONTINUITÀ

Secondo quanto previsto dalla C.N.R. - U.N.I. 10016 - 97: "Travi composte di acciaio e calcestruzzo. Istruzioni per l'impiego nelle costruzioni" e ripreso dal D.M. 14/01/2008 " Norme tecniche per le costruzioni", nelle zone a momento negativo, per tener conto della fessurazione della soletta in c.a., si deve trascurare il contributo del calcestruzzo alla rigidezza dell'elemento e visto che le campate differiscono tra loro più o meno del 60% si considera una zona fessurata

Eurolink S.C.p.A. Pagina 81 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

all'estremità delle campate in adiacente le pile pari al 15% della luce delle campate; l'unico contributo di cui tener conto in tali zone è quello dato dalle armatura longitudinali della soletta stessa.

Si riportano di seguito le inerzie assunte alla base dei calcoli nelle zone interessate.

		С	G	C1	E1	G1
	H(cm)	260	260	160	160	160
ALA	spess	4,0	4,0	2,0	2,0	2,0
SUPERIORE	largh	60	60	60	60	60
RADDOPPIO	spess	0,0	3,0	0,0	0,0	0,0
SUPERIORE	largh	0	55	0	0	0
ALA	spess	4,0	4,0	3,0	2,5	2,5
INFERIORE	largh	90	90	90	90	90
RADDOPPIO	spess	0,0	3,0	0,0	0,0	0,0
INFERIORE	largh	0	85	0	0	0
ANIMA	spess	1,8	1,8	1,8	1,8	1,8
PREDALLE	spess	5	5	5	5	5
SOLETTA	spess	30	30	30	30	30
SOLETTA	spess	25	25	25	25	25
COLLAB.	largh	400	400	300	300	300
SEZIONE	A (cm ²)	1.054	1.463	669	625	625
METALLICA	y _i (cm)	115	112	63	67	67
	J _x (cm⁴)	12.007.724	18.061.870	2.771.334	2.601.667	2.601.667
	J _y (cm⁴)	315.122	510.245	218.325	187.951	187.951
	J _{torc} (cm ⁴)	3.690	4.938	1.271	931	931
SEZIONE	predalle (cm)	5	5	5	5	5
METALLICA	φ sup (mm)	2,0	2,0	2,0	2,0	2,0
+ FERRI	n° sup	40	40	30	30	30
	φ inf (mm)	1,8	1,8	1,8	1,8	1,8
	n° inf	20	20	15	15	15
	A (cm ²)	1.230	1.639	801	757	757
	y _i (cm)	139	130	82	87	87
	J _x (cm ⁴)	16.163.741	22.579.683	4.327.667	4.032.915	4.032.915

DIAFRAMMI DI CAMPATA

IMPALCATO ASSE PRINCIPALE E RAMPA 1

Il traverso di campata è composto da n° 2 elementi angolari accoppiati 150 x 14 posti superiormente e da n° 2 elementi angolari accoppiati 150 x 14 posti inferiormente, collegati da n° 2+2 elementi angolari 120 x 10 diagonali.

Caratteristiche geometriche del profilato singolo (angolare 150 x 14):

Area: 40,30 cm²

 $J_{x-x} = J_{y-y}$: 845,4 cm⁴

Eurolink S.C.p.A. Pagina 82 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

 $\rho_{x-x} = \rho_{y-y}$: 4,58 cm

 $J_{torc} : \quad \cong \quad \quad 0 \ cm^4$

Caratteristiche geometriche del profilato singolo (angolare 120 x 10):

Area: 23,20 cm²

 $J_{x-x} = J_{y-y}$: 313 cm⁴

 $\rho_{x-x} = \rho_{y-y}$: 3,67 cm

 J_{torc} : \cong 0 cm⁴

TRAVERSI PIENI IMPALCATO RAMPA 1

Il traverso di campata nei tratti in cui l'altezza della trave si riduce a 1,10 mt è caratterizzato da una tipologia a doppio T ad anima piena, che garantisce la collaborazione flessio-torsionale tra le travi per altezze disponibili ridotte.

Caratteristiche geometriche del traverso di campata e di appoggio:

		Tap	Tcamp
	H(cm)	80	80
ALA	spess	2,0	2,0
SUPERIORE	largh	30	30
RADDOPPIO	spess	0,0	0,0
SUPERIORE	largh	0	0
ALA	spess	2,0	2,0
INFERIORE	largh	30	30
RADDOPPIO	spess	0,0	0,0
INFERIORE	largh	0	0
ANIMA	spess	1,6	1,6
SEZIONE	A (cm ²)	242	242
METALLICA	y _i (cm)	40	40
	J _x (cm ⁴)	241.090	241.090
	J _y (cm⁴)	9.026	9.026
	J _{torc} (cm ⁴)	264	264

DIAFRAMMI DI APPOGGIO

IMPALCATO ASSE PRINCIPALE

Il traverso di appoggio è composto da n° 2 elementi angolari accoppiati 200 x 25 posti superiormente e da n° 2 elementi angolari accoppiati 200 x 25 posti inferiormente, collegati da n° 2+2 elementi angolari 130 x 12 diagonali.

Caratteristiche geometriche del profilato singolo (angolare 200 x 25):

Area: 94,10 cm²

Eurolink S.C.p.A. Pagina 83 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

 $J_{x-x} = J_{y-y}$: 3.446 cm⁴

 $\rho_{x-x} = \rho_{y-y}$: 6,05 cm

 J_{torc} : \cong 0 cm⁴

Caratteristiche geometriche del profilato singolo (angolare 130 x 12):

Area: 30,00 cm²

 $J_{x-x} = J_{y-y}$: 472,2 cm⁴

 $\rho_{x-x} = \rho_{y-y}$: 3,97 cm

 J_{torc} : \cong 0 cm⁴

IMPALCATO RAMPA 1

Il traverso di appoggio è composto da n° 2 elementi angolari accoppiati 200 x 18 posti superiormente e da n° 2 elementi angolari accoppiati 200 x 18 posti inferiormente, collegati da n° 2+2 elementi angolari 130 x 12 diagonali.

Caratteristiche geometriche del profilato singolo (angolare 200 x 18):

Area: 69,10 cm²

 $J_{x-x} = J_{y-y}$: 2.600 cm⁴

 $\rho_{x-x} = \rho_{y-y}$: 6,13 cm

 J_{torc} : \cong 0 cm⁴

Caratteristiche geometriche del profilato singolo (angolare 130 x 12):

Area: 30,00 cm²

 $J_{x-x} = J_{y-y}$: 472,2 cm⁴

 $\rho_{x-x} = \rho_{y-y}$: 3,97 cm

 J_{torc} : \cong 0 cm⁴

7.4 CALCOLO DELLE SOLLECITAZIONI

Il calcolo delle sollecitazioni è stato effettuato attraverso il codice ad elementi finiti "SAP2000NL"; l'intera struttura è stata discretizzata in elementi "beam" costituenti il graticcio di travi.

L'analisi delle sollecitazione è stata svolta in più fasi distinte.

- 1) Analisi delle sollecitazioni per peso proprio acciaio e peso proprio soletta; nel graticcio di travi si è considerata l'inerzia delle sole travi longitudinali e traversi.
- 2) Analisi delle sollecitazioni per carico permanente; nel graticcio di travi si è considerato il

Eurolink S.C.p.A. Pagina 84 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 **Data** 20/06/2011

contributo dell'inerzia della soletta in c.a. alle travi longitudinali, con coefficiente di omogeneizzazione n=18,72.

- 3) Analisi delle sollecitazioni per carichi accidentali; nel graticcio di travi si è considerato il contributo dell'inerzia della soletta in c.a. alle travi longitudinali, con coefficiente di omogeneizzazione n=6,24.
- 3) Analisi delle sollecitazioni dovute agli effetti secondari del ritiro; nel graticcio di travi si è considerato il contributo dell'inerzia della soletta in c.a. alle travi longitudinali, con coefficiente di omogeneizzazione n=19,54.

I risultati dell'analisi sono contenuti nei tabulati di calcolo riportati al termine del presente capitolo, suddivisi nei seguenti files:

- file C_1: analisi per peso proprio acciaio e peso proprio soletta;
- file C_2: analisi per carichi permanenti;
- file C_3: analisi per temperatura, accidentali folla e vento;
- file C_4: analisi per carichi accidentali mezzi asse principale;
- file C_5: analisi per carichi accidentali rampa 1;
- file C_6: analisi per effetti secondari del ritiro.

7.5 VERIFICA DELLE SEZIONI

7.5.1 VERIFICHE FONDAMENTALI

7.5.1.1 TRAVI PRINCIPALI

In allegato A e B si riportano le verifiche statiche e sismiche a flessione, taglio e torsione delle travi principali.

7.5.1.2 TRAVERSI DI CAMPATA

IMPALCATO ASSE PRINCIPALE

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso maggiormente sollecitato:

Eurolink S.C.p.A. Pagina 85 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

,	
frame	T17
	M (kNm)
Acciaio	7,00
Soletta	15,60
Permanenti	-
Accidentali mezzi	420,20

frame	T17
	V (kN)
Acciaio	3,70
Soletta	3,20
Permanenti	_
Accidentali mezzi	85,80

Si riportano i valori delle sollecitazioni allo stato Limite Ultimo, con combinazione di carico in cui l'azione accidentale principale è rappresentata dai mezzi:

$$M_{SD} = 1,35 \cdot (0,70 + 1,56) + 1,35 \cdot 42,02 = 597,80 \text{ kNm}$$

$$V_{SD} = 1,\!35 \cdot \! \left(0,\!37 + 0,\!32\right) \! + 1,\!35 \cdot 85,\!80 = 125,\!10 \; kN$$

Eurolink S.C.p.A. Pagina 86 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

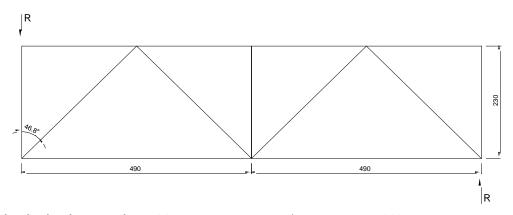
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

L'azione flettente viene assorbita dagli elementi orizzontali (2L 150x14 superiori e inferiori), mentre l'azione di taglio viene assorbita dagli elementi diagonali (2L 120x10).

A tali sollecitazioni si aggiungono gli effetti prodotti dall'azione orizzontale del vento considerata su un'area di influenza pari al passo dei diaframmi; in accordo con le NTC 2008 si considera inoltre un momento torcente distribuito avente la medesima area di influenza.

Tali azioni sono nel seguito riportate:


Ponte carico

altezza investita	6,36 m
quota riferimento	18,18 m
rapporto d/h _{tot}	2,20
coefficiente di esposizione	3,15
pressione picco vento	1,74 kN/m ²
coefficiente di forza X trasversale	0,74
coefficiente di forza Y verticale	0,92
coefficiente di momento	0,20

valori validi per rapporto d/htot>2

Risultante pressione X 18,05 kN/m
Risultante pressione Y 22,43 kN/m
Momento torcente 68,24 kNm/m

$$R_{vento} = \frac{\left(\frac{18,05 \cdot 6,36}{2} + 68,24\right) \cdot 5,25}{9,80} = 67,35 \text{ kN}$$

Sollecitazioni sui correnti: $N_{correnti} = 67,35 \cdot 9,80/2,30 = 286,97 \text{ kN}$

Sollecitazioni sui diagonali: $N_{diagonali} = 67,35 / \cos 47^{\circ} = 98,75 \text{ kN}$

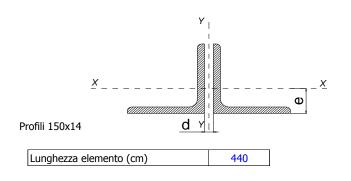
Eurolink S.C.p.A. Pagina 87 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

CORRENTI


$$M_{\text{SD}} = 597,\!80 \; kN\!m$$

$$N_{sup} = N_{inf} = \frac{597,80}{2,30} + 0,90 \cdot 286,97 = 518,19 \text{ kN}$$

VERIFICA CORRENTI

DATI GEOMETRICI

D/111 GEGITETTACE	
Area di 1 profilo (cm2)	40,30
Distanza e (cm)	4,21
Inerzia di un singolo contr. (cm4)	845,40
Distanza profili d (cm)	1,60
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	4,58
Snellezza dir X-X	96
Raggio d'inerzia y-y (cm)	6,79
Raggio d'inerzia min (cm)	2,93
Snellezza dir Y-Y	69

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 88 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

CORRENTE DI CAMPATA

CALCOLO CLASSE DEL PROFILO

	PROFILO L 150x14	Valore	u.d.m.
h	lunghezza ala	150	mm
t	spessore ala	14	mm
	rapporto h/t	10,71	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	96	
λy	snellezza direzione y-y	69	
Α	area lorda di un profilo	4.030	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	221	N/mmq

NEd	Azione normale di progetto	519	kN
γΜ1	Coefficiente di sicurezza instabilità	1,05	
Nb.Rd	Resistenza dell'asta compressa	1.207	kN

Verifica: Ned / Nb,Rd ? 1,00 = 0,430

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{519}{3} = 173 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

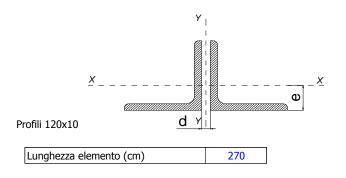
Eurolink S.C.p.A. Pagina 89 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

DIAGONALI


$$V_{SD}=125,\!10\;kN$$

$$N_{\text{diag}} = \frac{125,10}{\cos 47^{\circ}} + 0,9 \cdot 98,75 = 279,56 \text{ kN}$$

VERIFICA DIAGONALI

DATI GEOMETRICI

Area di 1 profilo (cm2)	23,20
Distanza e (cm)	3,31
Inerzia di un singolo profilo (cm4)	312,90
Distanza profilo d (cm)	2,00
Interasse calastrelli (cm)	55,00
Raggio d'inerzia x-x (cm)	3,67
Snellezza dir X-X	74
Raggio d'inerzia y-y (cm)	5,66
Raggio d'inerzia min (cm)	2,35
Snellezza dir Y-Y	53

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 90 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

DIAGONALI DI CAMPATA

CALCOLO CLASSE DEL PROFILO

	PROFILO L 120x10	Valore	u.d.m.
h	lunghezza ala	12	mm
t	spessore ala	10	mm
	rapporto h/t	1,20	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	74	
λy	snellezza direzione y-y	53	
Α	area lorda di un profilo	2.320	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	371	N/mmq

NEd	Azione normale di progetto	280	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb.Rd	Resistenza dell'asta compressa	915	kN

Verifica:

Ned / Nb,Rd ? 1,00 = 0,306

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{280}{3} = 93,33 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 91 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

IMPALCATO RAMPA 1 - TRATTO TRAVI H = 1,60 MT

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso maggiormente sollecitato:

frame	TR14
	M (kNm)
Acciaio	4,40
Soletta	13,50
Permanenti	7,30
Accidentali mezzi	- 380,30

frame	TR14
	V (kN)
Acciaio	3,60
Soletta	5,70
Permanenti	3,70
Accidentali mezzi	- 128,00

Si riportano i valori delle sollecitazioni allo Stato Limite Ultimo, con combinazione di carico in cui l'azione accidentale principale è rappresentata dai mezzi:

$$M_{SD} = -1,\!00 \cdot \left(4,\!40 + 13,\!50 + 7,\!30\right) + 1,\!35 \cdot 380,\!30 = 513,\!41 \, kNm$$

$$V_{SD} = -1,00 \cdot (3,60 + 5,70 + 3,70) + 1,35 \cdot 128,00 = 159,80 \text{ kN}$$

L'azione flettente viene assorbita dagli elementi orizzontali (2L 150x14 superiori e inferiori), mentre l'azione di taglio viene assorbita dagli elementi diagonali (2L 120x10).

A tali sollecitazioni si aggiungono gli effetti prodotti dall'azione orizzontale del vento considerata su un'area di influenza pari al passo dei diaframmi; in accordo con le NTC 2008 si considera inoltre un momento torcente distribuito avente la medesima area di influenza.

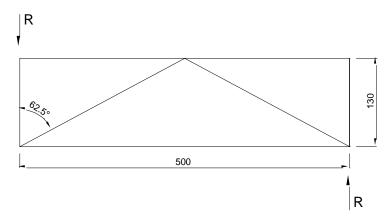
Eurolink S.C.p.A. Pagina 92 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Tali azioni sono nel seguito riportate:


Ponte carico

altezza investita	5,64 m
quota riferimento	17,82 m
rapporto d/h _{tot}	1,60
coefficiente di esposizione	3,13
pressione picco vento	1,73 kN/m ²
coefficiente di forza X trasversale	0,85
coefficiente di forza Y verticale	0,86
coefficiente di momento	0,20

valori validi per rapporto d/htot>2

Risultante pressione X 13,20 kN/m Risultante pressione Y 13,41 kN/m Momento torcente 28,09 kNm/m

$$R_{vento} = \frac{\left(\frac{13,20 \cdot 5,64}{2} + 28,09\right) \cdot 4,59}{5,00} = 60,00 \text{ kN}$$

Sollecitazioni sui correnti: $N_{correnti} = 60,00 \cdot 5,00 / 1,30 = 230,77 \text{ kN}$

Sollecitazioni sui diagonali: $N_{diagonali} = 60,00 / \cos 63^{\circ} = 132,16 \text{ kN}$

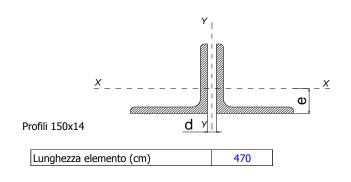
Eurolink S.C.p.A. Pagina 93 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

CORRENTI


$$M_{SD}=513,\!41\,kNm$$

$$N_{sup} = N_{inf} = \frac{513,41}{1,30} + 0,90 \cdot 230,77 = 602,62 \text{ kN}$$

VERIFICA CORRENTI

DATI GEOMETRICI

Area di 1 profilo (cm2)	40,30
Distanza e (cm)	4,21
Inerzia di un singolo contr. (cm4)	845,40
Distanza profili d (cm)	1,60
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	4,58
Snellezza dir X-X	103
Raggio d'inerzia y-y (cm)	6,79
Raggio d'inerzia min (cm)	2,93
Snellezza dir Y-Y	73

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 94 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

CORRENTE DI CAMPATA

CALCOLO CLASSE DEL PROFILO

	PROFILO L 150x14	Valore	u.d.m.
h	lunghezza ala	150	mm
t	spessore ala	14	mm
	rapporto h/t	10,71	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	103	
λy	snellezza direzione y-y	73	
Α	area lorda di un profilo	4.030	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	192	N/mmq

 $\begin{array}{lll} \text{Carico critico elastico} = & \text{Ncr} = 1.547.520 & \text{N} \\ \text{Snellezza adimensionale} & \lambda' = 1,360 \\ \text{Fattore di imperfezione} & \alpha = 0,34 \\ \text{Fattore adimensionale} & \Phi = 1,622 \\ \text{Coefficiente per instabilità} & \chi = 0,399 \\ \end{array}$

NEd	Azione normale di progetto	603	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb,Rd	Resistenza dell'asta compressa	1.038	kN

Verifica:

Ned / Nb,Rd ? 1,00 = 0,581

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{603}{3} = 101 \, kN$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

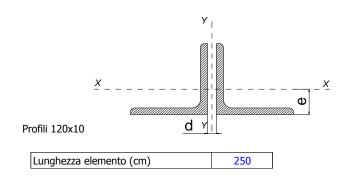
Eurolink S.C.p.A. Pagina 95 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

DIAGONALI


$$V_{\text{SD}} = 159,\!80 \text{ kN}$$

$$N_{\text{diag}} = \frac{159,80}{\cos 63^{\circ}} + 0,9 \cdot 132,16 = 470,93 \text{ kN}$$

VERIFICA DIAGONALI

DATI GEOMETRICI

Area di 1 profilo (cm2)	23,20
Distanza e (cm)	3,31
Inerzia di un singolo profilo (cm4)	312,90
Distanza profilo d (cm)	2,00
Interasse calastrelli (cm)	55,00
Raggio d'inerzia x-x (cm)	3,67
Snellezza dir X-X	68
Raggio d'inerzia y-y (cm)	5,66
Raggio d'inerzia min (cm)	2,35
Snellezza dir Y-Y	50

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 96 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 \$S0669_F0.doc
 F0
 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

DIAGONALI DI CAMPATA

CALCOLO CLASSE DEL PROFILO

	PROFILO L 120x10	Valore	u.d.m.
h	lunghezza ala	12	mm
t	spessore ala	10	mm
	rapporto h/t	1,20	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	68	
λy	snellezza direzione y-y	50	
Α	area lorda di un profilo	2.320	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	440	N/mmq

NEd	Azione normale di progetto	471	kN
γM1	Coefficiente di sicurezza instabilità	1,10	
Nb,Rd	Resistenza dell'asta compressa	992	kN

Verifica: Ned / Nb,Rd ? 1,00 = 0,475

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{471}{3} = 157,00 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \; kN$$

Eurolink S.C.p.A. Pagina 97 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Impalcato rampa 1 – tratto travi H = 1,10 mt

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso pieno a doppio T maggiormente sollecitato:

frame	TR19
	M (kNm)
Acciaio	4,50
Soletta	-20,00
Permanenti	-8,20
Vento	-64,00
Accidentali mezzi	- 299

frame	TR19
	V (kN)
Acciaio	6,00
Soletta	2,00
Permanenti	1,50
Vento	21,00
Accidentali mezzi	- 96

Si riportano nelle pagine seguenti le verifiche del traverso:

Eurolink S.C.p.A. Pagina 98 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

DATI GEOMETRICI

Foglio 1/4

Н1

T19

CONCIO

FRAME

JOINT

	Altezza sezione metallica (cm)	80
	Interasse travi metalliche (cm)	435
	Larghezza ala superiore (cm)	30
g [Spessore ala superiore (cm)	2,0
TRAVE IN ACCIAIO	Larghezza raddoppio superiore (cm)	0
AC	Raddoppio ala superiore (cm)	0,0
Z -	Spessore anima (cm)	1,6
AE	Larghezza raddoppio inferiore (cm)	0
₹ _	Raddoppio ala inferiore (cm)	0,0
	Larghezza ala inferiore (cm)	30
	Spessore ala inferiore (cm)	2,0
	Modulo elasticità acciaio (daN/cm2)	2.100.000
	Passo controventi superiori a (cm)	1
_	Area controventi superiori (cm2)	0,00
F. S.	Posizione baric. controv.sup. rispetto	
NTROVEN: UPERIORI	estradosso trave (cm)	0,0
F F F	Distanza punto schema bar. bulloni (cm)	0,0
CONTROVENT	Numero controventi	1
	Angolo α travi princ. e controventi	90
	Spessore equivalente t*	0,00
	Passo controventi inferiori a (cm)	1
r [Area controventi inferiori (cm2)	0,00
F. I.	Posizione baric. controv.inf. rispetto	
NO F	all'intradosso trave (cm)	1,0
CONTROVENTI	Distanza punto schema bar. bulloni (cm)	1,0
ξ£ L	Numero controventi	1
Ĺ	Angolo α travi princ. e controventi	90
	Spessore equivalente t* (cm)	0,00
L	Classe di resistenza Rck (kg/cm2)	400
< ∟	Spessore totale soletta (cm)	0
SOLETTA	Spessore da togliere per predalle (cm)	0
ğ L	Spessore sol. Collaborante (cm)	0
٥,	Larghezza sol. collaborante (cm)	0
	Larghezza soletta x ritiro (cm)	0
	Coeff. omogeneizz. per perm.	18,72
H:	Coeff. omogeneizz. per acc.	6,24
COEFF.	Coeff. omogeneizz. per ritiro	19,54
~ <u> </u>	Coeff. di contrazione per ritiro ε_r	2,20E-04
	Riduzione per non contemporaneità	0
<u> </u>	Larghezza coprigiunto superiore (cm)	
\vdash	Spessore coprigiunto superiore (cm)	
\vdash	Diametro bulloni (cm)	
Ę H	Numero bulloni in 1 piatto	
COPRIGIUNTI	Larghezza coprigiunto inferiore (cm)	
ž L	Spessore coprigiunto inferiore (cm)	
ä L	Diametro bulloni (cm)	
ĭ	Numero bulloni in 1 piatto	
L	Spessore coprigiunto d'anima (cm)	
L	Diametro bulloni (cm)	
∍ ⊢	Resistenza piolo (daN) a SLE	
PIOU	Numero pioli in linea nº	
	passo pioli (cm)	
쀭	Altezza gola anima sup. (mm)	6
SALDATURE	Altezza gola anima inf. (mm)	6
Ž	Altezza gola raddoppio sup. (mm)	0
	Altezza gola raddoppio inf. (mm)	0

Sol sup.
Fe sup.
Anima sup.
Anima inf.
Fe inf.
Fe ini.

	_
Larghezza gola anima sup. (mm)	8
Larghezza gola anima inf. (mm)	8
Larghezza gola raddoppio sup.(mm)	0
Larghezza gola raddoppio inf. (mm)	0

CARATTERISTICHE GEOMETRICHE

		A (cm ²)	y _i (cm)	J (cm ⁴)	J _{tor} (cm ⁴)	W _{sol} (cm ³)	W _{sfe} (cm ³)	W _{ife} (cm ³)	W _{animsup} (cm ³)	W _{animainf} (cm ³)
Sezione metallica		242	40	241.090	264	0	6.027	6.027	6.344	6.344
Sezione metallica + soletta collaborante	18,72	242	40	241.090	264	0	6.027	6.027	6.344	6.344
Sezione metallica + soletta collaborante	6,24	242	40	241.090	264	0	6.027	6.027	6.344	6.344
Sezione metallica + soletta collaborante	19,54	242	40	241.090	264	0	6.027	6.027	6.344	6.344

Eurolink S.C.p.A. Pagina 99 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

AZIONI TRAVI PRINCIPALI

AZIONI SOLLECITANTI (M max)				1°Nodo	2°Nodo	
	M (Nm)	N (N)	T (N)	Mt (Nm)	Mt (Nm)	valori x104
Peso proprio acciaio	5	0	6	0	0	
Peso proprio soletta	-20	0	2	0	0	
Permanenti	-1	0	1	0	0	
Effetti primari del ritiro	0	0	0	0	0	
Effetti secondari del ritiro	-3	0	1	0	0	
Accidentali mezzi	-30	0	10	0	0	
Vento	-7	0	2	0	0	1
Deformazioni termiche	-6	0	2	0	0	

AZIONI SOLL	AZIONI SOLLECITANTI (Mt max)									
Mt (Nm)	Mt (Nm)	valori x10 ⁴								
0	0]								
0	0									
0	0]								
0	0]								
0	0	Ī								
0	0	Ī								
0	0]								
0	0]								

VERIFICHE DELLE TRAVI PRINCIPALI AGLI STATI LIMITE ULTIMI N.T.2008

VERIFICHE TRAVI PRINCIPALI A PRESSOFLESSIONE

_	PARZIALI (daN/cm2)					TOTALI ALLO SLU STR - Az.base accidentali mezzi- (daN/cm2)				
(positive le compressioni)	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.
Peso proprio acciaio	0	83	79	-79	-83	0	112	106	-106	-112
Peso proprio soletta	0	-332	-315	315	332	0	-336	-319	319	336
Permanenti	0	-17	-16	16	17	0	-361	-343	343	361
Effetti primari del ritiro	0	0	0	0	0	0	-361	-343	343	361
Effetti secondari del ritiro	0	-50	-47	47	50	0	-421	-400	400	421
Accidentali mezzi	0	-498	-473	473	498	0	-1.093	-1.038	1.038	1.093
Vento	0	-116	-110	110	116	0	-1.249	-1.187	1.187	1.249
Deformazioni termiche	0	-100	-95	95	100	0	-1.321	-1.255	1.255	1.321

VERIFICHE TRAVI PRINCIPALI A TAGLIO E TORSIONE

VERTICAL TRAVET FRENCH ALL A TAG									
VERIFICHE A TAGLIO	PARZIALI			TOTALI ALLO SLU STR		VERIFICHE A TORSIONE	PARZIALI	TOTALI	
		(daN/cm2)			(daN/cm2)			(daN/cm2)	(daN/cm2)
	Anima sup	Anima max	Anima inf	Anima sup	Anima max	Anima inf		Anima	Anima
Peso proprio acciaio	36	52	36	49	70	49		0,00	0,00
Peso proprio soletta	12	17	12	66	94	66		0,00	0,00
Permanenti	6	9	6	75	107	75		0,00	0,00
Effetti primari del ritiro	0	0	0	75	107	75		0,00	0,00
Effetti secondari del ritiro	6	9	6	82	117	82		0,00	0,00
Accidentali mezzi	61	87	61	164	234	164		0,00	0,00
Vento	12	17	12	180	258	180		0,00	0,00
Deformazioni termiche	12	17	12	189	270	189		0,00	0,00

VERIFICHE A TAGLIO E TORSIONE	PAF	ZIALI (daN/cm	2)	TOTALI ALLO SLU STR (daN/cm2)		
	Anima sup	Anima max	Anima inf	Anima sup	Anima max	Anima inf
Peso proprio acciaio	36	52	36	49	70	49
Peso proprio soletta	12	17	12	66	94	66
Permanenti	6	9	6	75	107	75
Effetti primari del ritiro	0	0	0	75	107	75
Effetti secondari del ritiro	6	9	6	82	117	82
Accidentali mezzi	61	87	61	164	234	164
Vento	12	17	12	180	258	180
Deformazioni termiche	12	17	12	189	270	189

VERIFICHE TRAVI PRINCIPALI TENSIONI IDEALI

	TOTALI ((daN/cm2)
	Anima sup	Anima inf
Peso proprio acciaio	136	136
Peso proprio soletta	339	339
Permanenti	366	366
Effetti primari del ritiro	366	366
Effetti secondari del ritiro	424	424
Accidentali mezzi	1.076	1.076
Vento	1.227	1.227
Deformazioni termiche	1.297	1.297

Le verifiche sono condotte negli attacchi piattabande - anima

Eurolink S.C.p.A. Pagina 100 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICHE DELLE TRAVI PRINCIPALI AGLI STATI LIMITE D'ESERCIZIO N.T.2008	Foglio 3/4

										5/ 1
VERIFICHE TRAVI PRINCIPALI A PRES	SOFLESSION	IE				-				
		PAI	RZIALI (daN/	cm2)			TOTALI	ALLO SLE (daN/	/cm2)	
(positive le compressioni)	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.
Peso proprio acciaio	0	83	79	-79	-83	0	83	79	-79	-83
Peso proprio soletta	0	-332	-315	315	332	0	-249	-236	236	249
Permanenti	0	-17	-16	16	17	0	-265	-252	252	265
Effetti primari del ritiro	0	0	0	0	0	0	-265	-252	252	265
Effetti secondari del ritiro	0	-50	-47	47	50	0	-315	-299	299	315
Accidentali mezzi	0	-498	-473	473	498	0	-813	-772	772	813
Vento	0	-116	-110	110	116	0	-929	-883	883	929
Deformazioni termiche	0	-100	-95	95	100	0	-1.029	-977	977	1.029

VERIFICHE TRAVI PRINCIPALI A TAGLIO E TORSIONE

VERIFICHE A TAGLIO		PARZIALI		TO	OTALI ALLO SLE		VERIFICHE A TORSIONE	PARZIALI	TOTALI
·		(daN/cm2)			(daN/cm2)			(daN/cm2)	(daN/cm2)
	Anima sup	Anima max	Anima inf	Anima sup	Anima max	Anima inf		Anima	Anima
Peso proprio acciaio	36	52	36	36	52	36		0,00	0,00
Peso proprio soletta	12	17	12	49	69	49		0,00	0,00
Permanenti	6	9	6	55	78	55		0,00	0,00
Effetti primari del ritiro	0	0	0	55	78	55		0,00	0,00
Effetti secondari del ritiro	6	9	6	61	87	61		0,00	0,00
Accidentali mezzi	61	87	61	121	174	121		0,00	0,00
Vento	12	17	12	133	191	133		0,00	0,00
Deformazioni termiche	12	17	12	146	208	146		0,00	0,00

VERIFICHE A TAGLIO E TORSIONE	PAR	ZIALI (daN/cm	2)	TOTALI ALLO SLE (daN/cm2)		
	Anima sup	Anima max	Anima inf	Anima sup	Anima max	Anima inf
Peso proprio acciaio	36	52	36	36	52	36
Peso proprio soletta	12	17	12	49	69	49
Permanenti	6	9	6	55	78	55
Effetti primari del ritiro	0	0	0	55	78	55
Effetti secondari del ritiro	6	9	6	61	87	61
Accidentali mezzi	61	87	61	121	174	121
Vento	12	17	12	133	191	133
Deformazioni termiche	12	17	12	146	208	146

VERIFICHE TRAVI PRINCIPALI TENSIONI IDEALI

	TOTALI	(daN/cm2)
	Anima sup	Anima inf
Peso proprio acciaio	101	101
Peso proprio soletta	251	251
Permanenti	269	269
Effetti primari del ritiro	269	269
Effetti secondari del ritiro	317	317
Accidentali mezzi	800	800
Vento	912	912
Deformazioni termiche	1.009	1.009

Le verifiche sono condotte negli attacchi piattabande - anima

CALCOLO CLASSE DELLA SEZIONE CLASSE DELLA ANIMA Larghezza parte co c 76 cm Spessore parte con t 1,6 cm tipo d'acciaio 355 N/mmq Rapporto c/t 48 CL. 1 CLASSE SEZ 1

Eurolink S.C.p.A. Pagina 101 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data

E0 20/06/2011

VERIFICHE PARTICOLARI	
VERIFICHE PARTICULARI	

VERIFICA SALDATURE	ANIM	A SUP.	ANI	MA INF.	RADDOP	PIO SUP.	RADDOPP	IO INF.
	PARZIALI	TOTALI	PARZIALI	TOTALI	PARZIALI	TOTALI	PARZIALI	TOTALI
	(daN/cm2)							
Peso proprio acciaio	51	51	51	51	0	0	0	0
Peso proprio soletta	17	69	17	69	0	0	0	0
Permanenti	9	77	9	77	0	0	0	0
Effetti primari del ritiro	0	77	0	77	0	0	0	0
Effetti secondari del ritiro	9	86	9	86	0	0	0	0
Accidentali mezzi	86	172	86	172	0	0	0	0
Vento	17	189	17	189	0	0	0	0
Deformazioni termiche	17	206	17	206	0	n	0	n

VERIFICHE A FATICA

 M (Nm)
 N (N)
 T (N)
 Mt (Nm)
 Mt (Nm)

 Accidentali mezzi fatica positivi
 10
 0
 6
 0
 0

 Accidentali mezzi fatica negativi
 -17
 0
 -3
 0
 0

 Delta di sollecitazione
 27
 0
 0
 0

valori x10⁴

SOLLECITAZIONI FLETTENTI

	TOTALI ALLO SLU STR - Az.base accidentali mezzi- (daN/cm2)							
(positive le compressioni)	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.			
Accidentali mezzi	0	448	426	-426	-448			

VERIFICHE A TAGLIO E TORSIONE

	_				
VERIFICHE A TAGLIO		PARZIALI			
		(daN/cm2)			
	Anima sup	Anima max	Anima inf		
Peso proprio acciaio	36	52	36		

VERIFICA A FATICA DEL PARTICOLARE COSTRUTTIVO

71	(particolare irrigidimento)
20	(spessore piattabanda)
71	resistenza a fatica ridotta
2.000.000	n° di cicli relativi a Δσ _i
1	
1,35	
2.000.000	
5.000.000	
52	limite di fatica ad ampiezza costante
45	incremento di tensione
2.421.798	
0,826	< 1 Verifica soddisfatt
	20 71 2.000.000 1 1,35 2.000.000 5.000.000 52 45 2.421.798

Eurolink S.C.p.A. Pagina 102 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.5.1.3 TRAVERSI DI APPOGGIO

IMPALCATO ASSE PRINCIPALE

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso maggiormente sollecitato:

frame	T31
	M (kNm)
Acciaio	3,00
Soletta	-
Permanenti	-
Accidentali mezzi	0,30

frame	T31
	V (kN)
Acciaio	3,10
Soletta	-
Permanenti	-
Accidentali mezzi	0,10

Si riportano i valori delle sollecitazioni allo stato Limite Ultimo; essendo le azioni assai modeste la combinazione di carico adottata prevede come azione accidentale principale quella dovuta al vento:

$$M_{SD} = 1,35 \cdot 3,00 + 1,01 \cdot 0,30 = 4,35 \text{ kNm}$$

$$V_{SD} = 1,\!35 \cdot 3,\!10 + 1,\!01 \cdot 0,\!10 = 4,\!29 \; kN$$

Eurolink S.C.p.A. Pagina 103 di 405

RELAZIONE DI CALCOLO

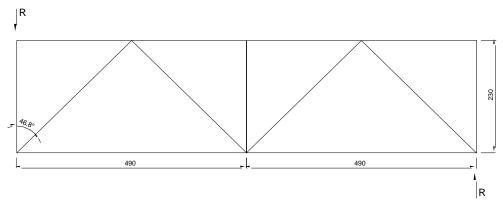
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

L'azione flettente viene assorbita dagli elementi orizzontali (2L 250x21 superiori e inferiori), mentre l'azione di taglio viene assorbita dagli elementi diagonali (2L 140x13).

A tali sollecitazioni si aggiungono gli effetti prodotti dall'azione orizzontale del vento considerata su un'area di influenza pari alla media delle campate; in accordo con le NTC 2008 si considera inoltre un momento torcente distribuito avente la medesima area di influenza.

Tali azioni sono nel seguito riportate:


Ponte carico

altezza investita	6,36 m
quota riferimento	18,18 m
rapporto d/h _{tot}	2,20
coefficiente di esposizione	3,15
pressione picco vento	1,74 kN/m ²
coefficiente di forza X trasversale	0,74
coefficiente di forza Y verticale	0,92
coefficiente di momento	0,20

valori validi per rapporto d/htot>2

Risultante pressione X 18,05 kN/m
Risultante pressione Y 22,43 kN/m
Momento torcente 68,24 kNm/m

$$R_{vento} = \frac{\left(\frac{18,05 \cdot 6,36}{2} + 68,24\right) \cdot \frac{52,00 + 42,00}{2}}{9,80} = 602,55 \text{ kN}$$

Sollecitazioni sui correnti: $N_{correnti} = 602,55 \cdot 9,80 / 2,30 = 2.567,39 \text{ kN}$

Sollecitazioni sui diagonali: $N_{diagonali} = 602,55 / \cos 47^{\circ} = 883,51 \, kN$

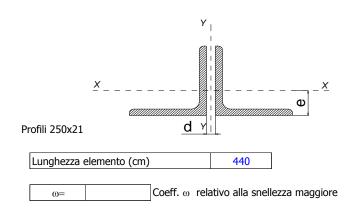
Eurolink S.C.p.A. Pagina 104 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

CORRENTI


$$M_{SD}=4,\!35\;kN\!m$$

$$N_{sup} = N_{inf} = \frac{4,35}{2,30} + 1,50 \cdot 2.567,39 = 3.852,98 \text{ kN}$$

VERIFICA CORRENTE APPOGGI

DATI GEOMETRICI

D/ (11 GEG) IET (11GE	
Area di 1 profilo (cm2)	101,00
Distanza e (cm)	6,97
Inerzia di un singolo profilo (cm4)	5.997,00
Distanza profilo d (cm)	3,00
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	7,71
Snellezza dir X-X	57
Raggio d'inerzia y-y (cm)	11,45
Raggio d'inerzia min (cm)	4,92
Snellezza dir Y-Y	41
55 ()	· '

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 105 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 \$S0669_F0.doc
 F0
 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

CORRENTE DI APPOGGIO

CALCOLO CLASSE DEL PROFILO

	PROFILO L 250x21	Valore	u.d.m.
h	lunghezza ala	250	mm
t	spessore ala	21	mm
	rapporto h/t	11,90	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	57	
λy	snellezza direzione y-y	41	
Α	area lorda di un profilo	10.100	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	638	N/mmq

NEd	Azione normale di progetto	3.853	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
N b,Rd	Resistenza dell'asta compressa	4.936	kN

Verifica: Ned / Nb,Rd ? 1,00 = 0,781

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 11 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{3.853}{11} = 350 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 106 di 405

RELAZIONE DI CALCOLO

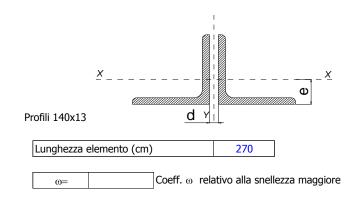
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

DIAGONALI

$$V_{\text{SD}} = 4,\!29 \; kN$$

$$N_{diag} = \frac{4,29}{\cos 47^{\circ}} + 1,50 \cdot 883,51 = 1.331,56 \text{ kN}$$


DATI GEOMETRICI Area di 1 profilo (cm2) 35,00 Distanza e (cm) 3,92 Inerzia di un singolo contr. (cm4) 638,00 Distanza profili d (cm) 2,00 Interasse calastrelli (cm) 60,00 Raggio d'inerzia x-x (cm) 4,27 Snellezza dir X-X 63 Raggio d'inerzia y-y (cm) 6,51

Raggio d'inerzia min (cm)

Snellezza dir Y-Y

2,74

47

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 107 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

DIAGONALI DI APPOGGIO

CALCOLO CLASSE DEL PROFILO

	PROFILO L 140x13	Valore	u.d.m.
h	lunghezza ala	140	mm
t	spessore ala	13	mm
	rapporto h/t	10,77	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	63	
λy	snellezza direzione y-y	47	
Α	area lorda di un profilo	3.500	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	522	N/mmq

NEd	Azione normale di progetto	1.332	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb,Rd	Resistenza dell'asta compressa	1.602	kN

0,831

Verifica: Ned / Nb,Rd ? 1,00 =

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 5 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{1.332}{5} = 267,00 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 108 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

IMPALCATO RAMPA 1 - TRATTO TRAVI H = 1,60 MT

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso maggiormente sollecitato:

frame	TR6
	M (kNm)
Acciaio	24,94
Soletta	95,03
Permanenti	59,57
Accidentali mezzi	314,00

frame	TR6
	V (kN)
Acciaio	12,49
Soletta	38,81
Permanenti	23,72
Accidentali mezzi	132,14

Si riportano i valori delle sollecitazioni allo stato Limite Ultimo; la combinazione di carico adottata precede come azione accidentale principale quella dovuta al vento:

$$M_{SD} = 1,\!35 \cdot \left(24,\!94 + 95,\!03\right) + 1,\!50 \cdot 59,\!57 + 1,\!01 \cdot 314,\!00 = 568,\!45 \text{ kNm}$$

$$V_{\text{SD}} = 1,\!35 \cdot \left(12,\!49 + 38,\!81\right) + 1,\!50 \cdot 23,\!72 + 1,\!01 \cdot 132,\!14 = 238,\!30 \text{ kN}$$

Eurolink S.C.p.A. Pagina 109 di 405

RELAZIONE DI CALCOLO

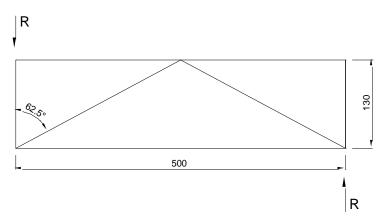
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

L'azione flettente viene assorbita dagli elementi orizzontali (2L 200x18 superiori e inferiori), mentre l'azione di taglio viene assorbita dagli elementi diagonali (2L 150x14).

A tali sollecitazioni si aggiungono gli effetti prodotti dall'azione orizzontale del vento considerata su un'area di influenza pari alla media delle campate; in accordo con le NTC 2008 si considera inoltre un momento torcente distribuito avente la medesima area di influenza.

Tali azioni sono nel seguito riportate:


Ponte carico

altezza investita	5,64 m
quota riferimento	17,82 m
rapporto d/h _{tot}	1,60
coefficiente di esposizione	3,13
pressione picco vento	1,73 kN/m ²
coefficiente di forza X trasversale	0,85
coefficiente di forza Y verticale	0,86
coefficiente di momento	0,20

valori validi per rapporto d/htot>2

Risultante pressione X 13,20 kN/m
Risultante pressione Y 13,41 kN/m
Momento torcente 28,09 kNm/m

$$R_{vento} = \frac{\left(\frac{13,20 \cdot 5,64}{2} + 28,09\right) \cdot \frac{27,06 + 24,37}{2}}{5,00} = 335,91 \, kN$$

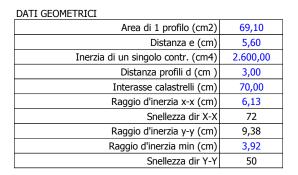
Sollecitazioni sui correnti: $N_{correnti} = 335,91 \cdot 5,00/1,30 = 1.291,96 \text{ kN}$

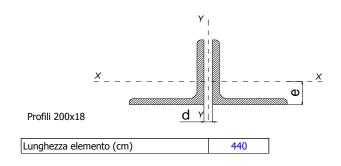
Sollecitazioni sui diagonali: $N_{diagonali} = 335,91/\cos 63^{\circ} = 739,91 \text{ kN}$

Eurolink S.C.p.A. Pagina 110 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc


Rev F0 Data 20/06/2011


CORRENTI

$$M_{SD}=568,\!45\;kN\!m$$

$$N_{sup} = N_{inf} = \frac{568,\!45}{1,\!30} + 1,\!50 \cdot 1.291,\!96 = 2.375,\!21 \, kN$$

VERIFICA CORRENTI

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 111 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

CORRENTE DI APPOGGIO

CALCOLO CLASSE DEL PROFILO

	PROFILO L 200x18	Valore	u.d.m.
h	lunghezza ala	200	mm
t	spessore ala	18	mm
	rapporto h/t	11,11	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	72	
λy	snellezza direzione y-y	50	
Α	area lorda di un profilo	6.910	mmq
Aeff	area efficace di un profilo mmq		mmq
σcr	sforzo critico euleriano	400	N/mmq

Carico critico elastico = $\frac{N_{CT}}{N_{CT}} = 5.528.000$ N Snellezza adimensionale $\frac{\lambda'}{N_{CT}} = 0.942$ Fattore di imperfezione $\frac{\lambda'}{N_{CT}} = 0.34$ Fattore adimensionale $\frac{\lambda'}{N_{CT}} = 0.634$

NEd	Azione normale di progetto	2.375	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb,Rd	Resistenza dell'asta compressa	2.828	kN

0,840

Verifica: Ned / Nb,Rd ? 1,00 =

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 7 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{2.375}{7} = 339 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

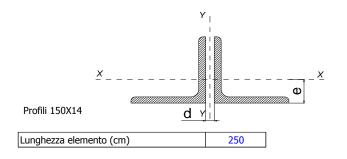
Eurolink S.C.p.A. Pagina 112 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

DIAGONALI


$$V_{\text{SD}} = 238,\!30 \text{ kN}$$

$$N_{\text{diag}} = \frac{238,\!30}{\cos 63^{\circ}} + 1,\!50 \cdot 739,\!91 = 1.733,\!89 \text{ kN}$$

VERIFICA DIAGONALI

DATI GEOMETRICI

Area di 1 profilo (cm2)	40,30
Distanza e (cm)	4,12
Inerzia di un singolo profilo (cm4)	736,90
Distanza profilo d (cm)	2,00
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	4,60
Snellezza dir X-X	54
Raggio d'inerzia y-y (cm)	6,67
Raggio d'inerzia min (cm)	2,94
Snellezza dir Y-Y	44

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 113 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 \$S0669_F0.doc
 F0
 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

DIAGONALI DI APPOGGIO

CALCOLO CLASSE DEL PROFILO

	PROFILO L 150x14	Valore	u.d.m.
h	lunghezza ala	150	mm
t	spessore ala	14	mm
	rapporto h/t	10,71	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	54	
λy	snellezza direzione y-y 44		
Α	area lorda di un profilo	4.030	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	711	N/mmq

NEd	Azione normale di progetto	1.734	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb,Rd	Resistenza dell'asta compressa	2.029	kN

Verifica: Ned / Nb,Rd ? 1,00 = 0,855

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 5 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{1.734}{5} = 347 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 114 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Impalcato rampa 1 - tratto travi H = 1,10 mt

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso a doppio T pieno:

frame	TR22
	M (kNm)
Acciaio	7,70
Soletta	0,00
Permanenti	-28,00
Vento	-89,40
Accidentali mezzi	-392

frame	TR22
	V (kN)
Acciaio	6,10
Soletta	0,00
Permanenti	10,00
Vento	32,70
Accidentali mezzi	143

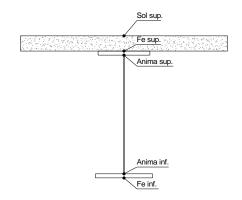
Si riportano nel seguito le verifiche del traverso:

Eurolink S.C.p.A. Pagina 115 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento Rev Data SS0669_F0.doc F0 20/06/2011


DATI GEOMETRICI

	Altezza sezione metallica (cm)	80
ļ	Interasse travi metalliche (cm)	435
	Larghezza ala superiore (cm)	30
TRAVE IN ACCIAIO	Spessore ala superiore (cm)	2,0
ġ	Larghezza raddoppio superiore (cm)	0
Ϋ́	Raddoppio ala superiore (cm)	0,0
Ξ Ŀ	Spessore anima (cm)	1,6
§ .	Larghezza raddoppio inferiore (cm)	0
-	Raddoppio ala inferiore (cm)	0,0
	Larghezza ala inferiore (cm)	30
	Spessore ala inferiore (cm)	2,0
	Modulo elasticità acciaio (daN/cm2)	2.100.000
-	Passo controventi superiori a (cm)	1
≝ _	Area controventi superiori (cm2) Posizione baric. controv.sup. rispetto	0,00
VEN OR:	estradosso trave (cm)	0,0
NTROVENT	Distanza punto schema bar. bulloni (cm)	0,0
SUF	Numero controventi	1
ŏ	Angolo α travi princ. e controventi	90
ļ	Spessore equivalente t*	0,00
	Passo controventi inferiori a (cm)	1
İ	Area controventi inferiori (cm2)	0,00
E ₽	Posizione baric. controv.inf. rispetto	
I I I	all'intradosso trave (cm)	1,0
ONTROVENT INFERIORI	Distanza punto schema bar. bulloni (cm)	1,0
N N	Numero controventi	1
Ŭ	Angolo α travi princ. e controventi	90
	Spessore equivalente t* (cm)	0,00
	Classe di resistenza Rck (kg/cm2)	400
⋖	Spessore totale soletta (cm)	0
SOLETTA	Spessore da togliere per predalle (cm)	0
, j	Spessore sol. Collaborante (cm)	0
٠,	Larghezza sol. collaborante (cm)	0
	Larghezza soletta x ritiro (cm)	0
	Coeff. omogeneizz. per perm.	18,72
COEFF.	Coeff. omogeneizz. per acc.	6,24
Ö H	Coeff. omogeneizz. per ritiro Coeff. di contrazione per ritiro $\epsilon_{\rm r}$	19,54 2,20E-04
Ĭ	Riduzione per non contemporaneità	0
	Larghezza coprigiunto superiore (cm)	U
ŀ	Spessore coprigiunto superiore (cm)	
ŀ	Diametro bulloni (cm)	
	Numero bulloni in 1 piatto	
¥	Larghezza coprigiunto inferiore (cm)	
15	Spessore coprigiunto inferiore (cm)	
COPRIGIUNTI	Diametro bulloni (cm)	
8	Numero bulloni in 1 piatto	
ŀ	Spessore coprigiunto d'anima (cm)	
ŀ	Diametro bulloni (cm)	
П		
PIOLI	Resistenza piolo (daN) a SLE	
<u>9.</u>	Numero pioli in linea nº passo pioli (cm)	
ш	Altezza gola anima sup. (mm)	6
SALDATURE	Altezza gola anima sap. (mm)	6
		0
PΑ	Altezza gola raddoppio sup. (mm)	U

CONCIO	I1
FRAME	T22
JOINT	

Foglio

1/4

Larghezza gola anima sup. (mm) Larghezza gola anima inf. (mm) Larghezza gola raddoppio sup.(mm) Larghezza gola raddoppio inf. (mm)

CARATTERISTICHE GEOMETRICHE

	A (cm²)	y _i (cm)	J (cm.)	J _{tor} (cm ⁻)	W _{sol} (cm ³)	W _{sfe} (cm ³)	W _{ife} (cm ³)	W _{animsup} (cm ³)	W _{animainf} (cm ²)
Sezione metallica	242	40	241.090	264	0	6.027	6.027	6.344	6.344
Sezione metallica + soletta collaborante 18,72	242	40	241.090	264	0	6.027	6.027	6.344	6.344
Sezione metallica + soletta collaborante 6,24	242	40	241.090	264	0	6.027	6.027	6.344	6.344
Sezione metallica + soletta collaborante 19,54	242	40	241.090	264	0	6.027	6.027	6.344	6.344

Eurolink S.C.p.A. Pagina 116 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

AZIONI TRAVI PRINCIPALI	AZIONI TRAVI PRINCIPALI		Foglio 2/4
-------------------------	-------------------------	--	---------------

AZIONI SOLLECITANTI (M max)				1°Nodo	2°Nodo		AZIONI SOLL	ECITANTI (M	t max)
	M (Nm)	N (N)	T (N)	Mt (Nm)	Mt (Nm)	valori x10 ⁴	Mt (Nm)	Mt (Nm)	valori x10 ⁴
Peso proprio acciaio	7	0	6	0	0		0	0	
Peso proprio soletta	0	0	0	0	0		0	0	
Permanenti	-3	0	1	0	0		0	0	
Effetti primari del ritiro	0	0	0	0	0		0	0	
Effetti secondari del ritiro	-1	0	0	0	0]	0	0	
Accidentali mezzi	-39	0	14	0	0		0	0	
Vento	-9	0	3	0	0		0	0	
Deformazioni termiche	-3	0	1	0	0]	0	0	

VERIFICHE DELLE TRAVI PRINCIPALI AGLI STATI LIMITE ULTIMI N.T.2008

VERIFICHE TRAVI PRINCIPALI A PRESSOFLESSIONE

	ĺ	PA	RZIALI (daN/	cm2)		TOTALI ALLO SLU STR - Az.base accidentali mezzi- (daN/cm2)				
(positive le compressioni)	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.
Peso proprio acciaio	0	116	110	-110	-116	0	157	149	-149	-157
Peso proprio soletta	0	0	0	0	0	0	157	149	-149	-157
Permanenti	0	-50	-47	47	50	0	82	78	-78	-82
Effetti primari del ritiro	0	0	0	0	0	0	82	78	-78	-82
Effetti secondari del ritiro	0	-17	-16	16	17	0	62	59	-59	-62
Accidentali mezzi	0	-647	-615	615	647	0	-811	-771	771	811
Vento	0	-149	-142	142	149	0	-1.013	-962	962	1.013
Deformazioni termiche	0	-50	-47	47	50	0	-1.049	-996	996	1.049

VERIFICHE TRAVI PRINCIPALI A TAGLIO E TORSIONE

TERRITORIE TRAVET RETURNED A TAG	-10 L 101010	/14E							
VERIFICHE A TAGLIO		PARZIALI		TOT	ALI ALLO SLU S	TR	VERIFICHE A TORSIONE	PARZIALI	TOTALI
		(daN/cm2)			(daN/cm2)			(daN/cm2)	(daN/cm2)
	Anima sup	Anima max	Anima inf	Anima sup	Anima max	Anima inf		Anima	Anima
Peso proprio acciaio	36	52	36	49	70	49		0,00	0,00
Peso proprio soletta	0	0	0	49	70	49		0,00	0,00
Permanenti	6	9	6	58	83	58		0,00	0,00
Effetti primari del ritiro	0	0	0	58	83	58		0,00	0,00
Effetti secondari del ritiro	0	0	0	58	83	58		0,00	0,00
Accidentali mezzi	85	122	85	173	247	173		0,00	0,00
Vento	18	26	18	197	283	197		0,00	0,00
Deformazioni termiche	6	9	6	202	289	202		0,00	0,00

VERIFICHE A TAGLIO E TORSIONE	PAR	ZIALI (daN/cm	2)	TOTALI ALLO SLU STR (daN/cm2)			
	Anima sup	Anima max	Anima inf	Anima sup	Anima max	Anima inf	
Peso proprio acciaio	36	52	36	49	70	49	
Peso proprio soletta	0	0	0	49	70	49	
Permanenti	6	9	6	58	83	58	
Effetti primari del ritiro	0	0	0	58	83	58	
Effetti secondari del ritiro	0	0	0	58	83	58	
Accidentali mezzi	85	122	85	173	247	173	
Vento	18	26	18	197	283	197	
Deformazioni termiche	6	9	6	202	289	202	

VERIFICHE TRAVI PRINCIPALI TENSIONI IDEALI

	TOTALI	(daN/cm2)
	Anima sup	Anima inf
Peso proprio acciaio	172	172
Peso proprio soletta	172	172
Permanenti	128	128
Effetti primari del ritiro	128	128
Effetti secondari del ritiro	117	117
Accidentali mezzi	827	827
Vento	1.021	1.021
Doformazioni tormicho	1.056	1.056

Le verifiche sono condotte negli attacchi piattabande - anima

Eurolink S.C.p.A. Pagina 117 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICHE DELLE TRAVI PRINCIPALI AGLI STATI LIMITE D'ESERCIZIO N.T.2008	Foglio 3/4
VERIFICHE TRAVI PRINCIPALI A PRESSOFLESSIONE	

VERIFICHE TRAVI PRINCIPALI A PRES	SOFLESSION	IE .				-				
		PARZIALI (daN/cm2)				TOTALI ALLO SLE (daN/cm2)				
(positive le compressioni)	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.
Peso proprio acciaio	0	116	110	-110	-116	0	116	110	-110	-116
Peso proprio soletta	0	0	0	0	0	0	116	110	-110	-116
Permanenti	0	-50	-47	47	50	0	66	63	-63	-66
Effetti primari del ritiro	0	0	0	0	0	0	66	63	-63	-66
Effetti secondari del ritiro	0	-17	-16	16	17	0	50	47	-47	-50
Accidentali mezzi	0	-647	-615	615	647	0	-597	-567	567	597
Vento	0	-149	-142	142	149	0	-747	-709	709	747
Deformazioni termiche	0	-50	-47	47	50	0	-796	-757	757	796

VERIFICHE TRAVI PRINCIPALI A TAGLIO E TORSIONE

VERIFICHE A TAGLIO		PARZIALI			OTALI ALLO SLE		VERIFICHE A TORSIONE	PARZIALI	TOTALI
	(daN/cm2)			(daN/cm2)				(daN/cm2)	(daN/cm2)
	Anima sup	Anima max	Anima inf	Anima sup	Anima max	Anima inf		Anima	Anima
Peso proprio acciaio	36	52	36	36	52	36		0,00	0,00
Peso proprio soletta	0	0	0	36	52	36		0,00	0,00
Permanenti	6	9	6	42	61	42		0,00	0,00
Effetti primari del ritiro	0	0	0	42	61	42		0,00	0,00
Effetti secondari del ritiro	0	0	0	42	61	42		0,00	0,00
Accidentali mezzi	85	122	85	127	182	127		0,00	0,00
Vento	18	26	18	146	208	146		0,00	0,00
Deformazioni termiche	6	9	6	152	217	152		0,00	0,00

VERIFICHE A TAGLIO E TORSIONE	PAR	PARZIALI (daN/cm2)			TOTALI ALLO SLE (daN/cm2)		
	Anima sup	Anima max	Anima inf	Anima sup	Anima max	Anima inf	
Peso proprio acciaio	36	52	36	36	52	36	
Peso proprio soletta	0	0	0	36	52	36	
Permanenti	6	9	6	42	61	42	
Effetti primari del ritiro	0	0	0	42	61	42	
Effetti secondari del ritiro	0	0	0	42	61	42	
Accidentali mezzi	85	122	85	127	182	127	
Vento	18	26	18	146	208	146	
Deformazioni termiche	6	9	6	152	217	152	

VERIFICHE TRAVI PRINCIPALI TENSIONI IDEALI

	TOTALI (daN/cm2)
	Anima sup	Anima inf
Peso proprio acciaio	127	127
Peso proprio soletta	127	127
Permanenti	97	97
Effetti primari del ritiro	97	97
Effetti secondari del ritiro	87	87
Accidentali mezzi	609	609
Vento	753	753
Deformazioni termiche	801	801

Le verifiche sono condotte negli attacchi piattabande - anima

CALCOLO CLASSE DELLA SEZIONE							
CLASSE DELLA ANIMA					_		
Larghezza parte co		С	76	cm			
Spessore parte con		t	1,6	cm			
tipo d'acciaio			355	N/mmq			
·	з		0,81				_
Rapporto c/t			48	CL.	1	CLASSE SEZ 1	

Eurolink S.C.p.A. Pagina 118 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9_F0.doc

VERTETCHE	PARTICOLARI	

4/4

VERIFICA SALDATURE	ANIMA SUP.		ANIMA INF.		RADDOPPIO SUP.		RADDOPPIO INF.	
	PARZIALI	TOTALI	PARZIALI	TOTALI	PARZIALI	TOTALI	PARZIALI	TOTALI
	(daN/cm2)	(daN/cm2)	(daN/cm2)	(daN/cm2)	(daN/cm2)	(daN/cm2)	(daN/cm2)	(daN/cm2)
Peso proprio acciaio	51	51	51	51	0	0	0	0
Peso proprio soletta	0	51	0	51	0	0	0	0
Permanenti	9	60	9	60	0	0	0	0
Effetti primari del ritiro	0	60	0	60	0	0	0	0
Effetti secondari del ritiro	0	60	0	60	0	0	0	0
Accidentali mezzi	120	180	120	180	0	0	0	0
Vento	26	206	26	206	0	0	0	0
Deformazioni termiche	9	214	9	214	0	0	0	0

VERIFICHE A FATICA

 M (Nm)
 N (N)
 T (N)
 Mt (Nm)
 Mt (Nm)

 Accidentali mezzi fatica positivi
 7
 0
 3
 0
 0

 Accidentali mezzi fatica negativi
 -21
 0
 -8
 0
 0

 Delta di sollecitazione
 28
 0
 0

SOLLECITAZIONI FLETTENTI

	TOTALLA	daN/cm2)			
(positive le compressioni)	sup. sol.	sup. fe.	anima sup.	anima inf.	inf. fe.
Accidentali mezzi	0	465	441	-441	-465

VERIFICHE A TAGLIO E TORSIONE

VERIFICHE A TAGLIO		PARZIALI			
		(daN/cm2)			
	Anima sup Anima max Anima inf				
Peso proprio acciaio	18	26	18		

VERIFICA A FATICA DEL PARTICOLARE COSTRUTTIVO

71	(particolare irrigidimento)
20	(spessore piattabanda)
71	resistenza a fatica ridotta
2.000.000	n° di cicli relativi a Δσ _i
1	
1,35	
2.000.000	
5.000.000	
52	limite di fatica ad ampiezza costante
46	incremento di tensione
2.019.141	
0,991	< 1 Verifica soddisfatt
	20 71 2.000.000 1 1,35 2.000.000 5.000.000 52 46 2.019.141

Eurolink S.C.p.A. Pagina 119 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.5.2 VERIFICHE SISMICHE

Lo studio sismico è stato effettuato tramite un'analisi lineare dinamica con l'impiego di accelerogrammi come indicato dalla normativa italiana DM2008 (§ 3.2.3.6).

Si utilizzano accelerogrammi artificiali compatibili con lo spettro elastico di risposta adottato nel capitolo 4 paragrafo 4.3.14.6; in particolare l'analisi è condotta con più di 7 serie temporali e si sono assunti i valori medi ottenuti dal modello come azioni di progetto, inoltre per descrivere il moto sismico si è tenuto in conto di non utilizzare lo stesso accelerogramma simultaneamente lungo le due direzioni orizzontali.

Per ricavare gli accelerogrammi spettro compatibili si è utilizzato i programma **REXEL 3.0 beta**, redatto:

Iervolino, I., Galasso, C., Cosenza, E. (2009).

REXEL: computer aided record selection for code-based seismic structural analysis.

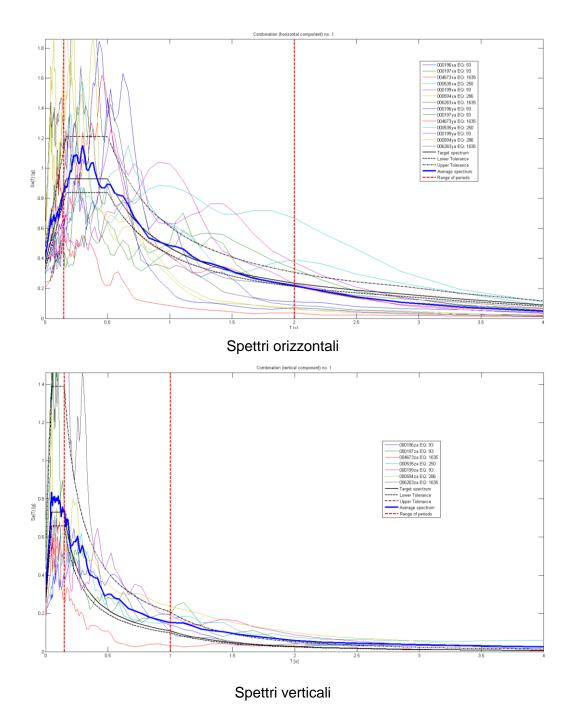
Bulletin of Earthquake Engineering. DOI 10.1007/s10518-009-9146-1

Il programma citato crea degli accelerogrammi spettro-compatibili con gli spettri elastici derivanti, in accordo con le Norme Tecniche 2008, dai parametri di coordinate del sito, categoria di sottosuolo, categoria topografica, vita nominale, classe d'uso e stato limite.

Tale modellazione risulta in accordo con quanto richiesto dalle NTC2008 per strutture isolate al paragrafo 7.10.2, ossia che la sovrastruttura e la sottostruttura devono mantenersi in campo elastico, coincidente con un valore del valore di struttura unitario.

Di seguito si riportano gli spettri estratti:

Eurolink S.C.p.A. Pagina 120 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Le funzioni sono state implementate nel codice di calcolo SAP2000 definendo 7 combinazioni indipendenti.

Viene adottato un sistema di isolamento sismico che è posto tra l'impalcato e le pile/spalle, allo scopo di migliorarne la risposta nei confronti delle azioni sismiche orizzontali. La riduzione della risposta sismica orizzontale qualunque siano la tipologia ed i materiali strutturali del ponte, può

Eurolink S.C.p.A. Pagina 121 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

essere ottenuta mediante un incremento del periodo fondamentale della costruzione per portarlo nel campo delle minori accelerazioni di risposta.

Per l'opera in oggetto della seguente relazione si utilizzano isolatori sismici elastomerici, composti essenzialmente da due piastre, la superiore ancorata alla trave e l'inferiore al pulvino o al fusto, all'interno delle quali viene interposto uno strato di elastomero.

7.5.2.1 TRAVI PRINCIPALI

In allegato B si riportano le verifiche sismiche a flessione, taglio e torsione delle travi principali.

Eurolink S.C.p.A. Pagina 122 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

7.5.2.2 TRAVERSI DI CAMPATA

IMPALCATO ASSE PRINCIPALE

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso maggiormente sollecitato:

frame	T4	
	M (kNm)	
Acciaio	7,00	
Soletta	15,60	
Permanenti	-	
Accidentali mezzi	420,20	x 0,20
Sisma	542,8	
Totale		649

frame	T4	
	T (kN)	
Acciaio	3,10	
Soletta	_	
Permanenti	_	
Accidentali mezzi	0,10	x 0,20
Sisma	94,3	
Totale		97

frame	T4	
	N (kN)	
Sisma	32,9	
Totale		32,9

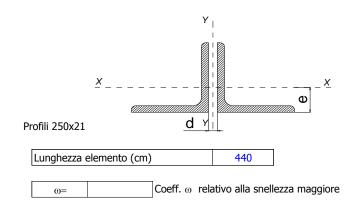
L'azione flettente e l'azione assiale vengono assorbite dagli elementi orizzontali (2L 150x14 superiori e inferiori), mentre l'azione di taglio viene assorbita dagli elementi diagonali (2L 120x10).

Eurolink S.C.p.A. Pagina 123 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011


Sollecitazioni sui correnti: $N_{correnti} = 649/2,30 + 32,9/2 = 299 \text{ kN}$

Sollecitazioni sui diagonali: $N_{diagonali} = 97 / \cos 47^{\circ} = 142 \text{ kN}$

CORRENTI

VERIFICA CORRENTE APPOGGI

DATI GEOMETRICI	
Area di 1 profilo (cm2)	101,00
Distanza e (cm)	6,97
Inerzia di un singolo profilo (cm4)	5.997,00
Distanza profilo d (cm)	3,00
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	7,71
Snellezza dir X-X	57
Raggio d'inerzia y-y (cm)	11,45
Raggio d'inerzia min (cm)	4,92
Snellezza dir Y-Y	41

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 124 di 405

RELAZIONE DI CALCOLO

Codice documento Re SS0669_F0.doc F0

 Rev
 Data

 F0
 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

CORRENTE DI CAMPATA

CALCOLO CLASSE DEL PROFILO

	PROFILO L 150x14		Valore	u.d.m.
h	lunghezza ala		150	mm
t	spessore ala		14	mm
	rapporto h/t		10,71	
	tipo di acciaio	S	355	
fyk	tensione caratteristica		355	N/mmq
ε	coefficiente		0,81	
	classe del profilo		3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	96	
λy	snellezza direzione y-y	69	
Α	area lorda di un profilo	4.030	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	221	N/mmq

NEd	Azione normale di progetto	299	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb.Rd	Resistenza dell'asta compressa	1.152	kN

Verifica: Ned / Nb,Rd ? 1,00 = 0,260

VERIFICA SODDISFATTA

Verifica dei bulloni

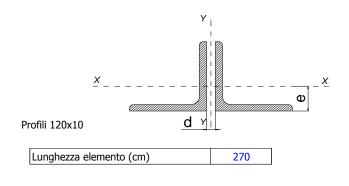
Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{299}{3} = 99,67 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$\text{F}_{\text{v,Rd}} = 0,\!50 \cdot \frac{\text{A}_{\text{res}} \cdot \text{f}_{\text{tb}}}{\gamma_{\text{M2}}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 125 di 405

RELAZIONE DI CALCOLO


Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

DIAGONALI

VERIFICA DIAGONALI

DATI GEOMETRICI	
Area di 1 profilo (cm2)	23,20
Distanza e (cm)	3,31
Inerzia di un singolo profilo (cm4)	312,90
Distanza profilo d (cm)	2,00
Interasse calastrelli (cm)	55,00
Raggio d'inerzia x-x (cm)	3,67
Snellezza dir X-X	74
Raggio d'inerzia y-y (cm)	5,66
Raggio d'inerzia min (cm)	2,35
Snellezza dir Y-Y	53

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 126 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

DIAGONALI DI CAMPATA

CALCOLO CLASSE DEL PROFILO

	PROFILO L 120x10	Valore	u.d.m.
h	lunghezza ala	12	mm
t	spessore ala	10	mm
	rapporto h/t	1,20	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	74	
λy	snellezza direzione y-y	53	
Α	area lorda di un profilo	2.320	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	371	N/mmq

NEd	Azione normale di progetto	142	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
N b,Rd	Resistenza dell'asta compressa	915	kN

Verifica:

Ned / Nb,Rd ? 1,00 = 0,155

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{142}{3} = 47,33 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 127 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

IMPALCATO RAMPA 1

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso maggiormente sollecitato:

frame	TR14	
	M (kNm)	
Acciaio	4,40	
Soletta	13,50	
Permanenti	7,30	
Accidentali mezzi	207,50	x 0,20
Sisma	240,0	
Totale		307

	114
85,7	
74,00	x 0,20
3,70	
5,70	
3,60	
T (kN)	
TR14	
	T (kN) 3,60 5,70 3,70 74,00

frame	TR14	
	N (kN)	
Sisma	118,6	
Totale		118,6

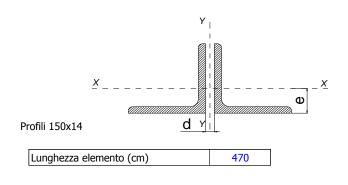
L'azione flettente e l'azione assiale vengono assorbite dagli elementi orizzontali (2L 150x14 superiori e inferiori), mentre l'azione di taglio viene assorbita dagli elementi diagonali (2L 120x10).

Eurolink S.C.p.A. Pagina 128 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011


Sollecitazioni sui correnti: $N_{correnti} = 307/2,30 + 118,6/2 = 193 \text{ kN}$

Sollecitazioni sui diagonali: $N_{diagonali} = 114/\cos 63^{\circ} = 251 \, kN$

CORRENTI

VERIFICA CORRENTI

DATI GEOMETRICI	
Area di 1 profilo (cm2)	40,30
Distanza e (cm)	4,21
Inerzia di un singolo contr. (cm4)	845,40
Distanza profili d (cm)	1,60
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	4,58
Snellezza dir X-X	103
Raggio d'inerzia y-y (cm)	6,79
Raggio d'inerzia min (cm)	2,93
Snellezza dir Y-Y	73

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 129 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

CORRENTE DI CAMPATA

CALCOLO CLASSE DEL PROFILO

	PROFILO L 150x14	Valore	u.d.m.
h	lunghezza ala	150	mm
t	spessore ala	14	mm
	rapporto h/t	10,71	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	103	
λy	snellezza direzione y-y	73	
Α	area lorda di un profilo	4.030	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	192	N/mmq

NEd	Azione normale di progetto	193	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb,Rd	Resistenza dell'asta compressa	1.038	kN

Verifica: Ned / Nb,Rd ? 1,00 = 0,186

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{193}{3} = 64,33 \text{ kN}$

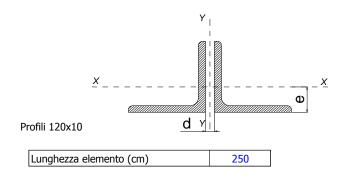
che risulta minore della resistenza a taglio del bullone:

$$\text{F}_{\text{v,Rd}} = 0,\!50 \cdot \frac{\text{A}_{\text{res}} \cdot \text{f}_{\text{tb}}}{\gamma_{\text{M2}}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 130 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc


Rev F0 Data 20/06/2011

DIAGONALI

VERIFICA DIAGONALI

DATI GEOMETRICI

Area di 1 profilo (cm2)	23,20
Distanza e (cm)	3,31
Inerzia di un singolo profilo (cm4)	312,90
Distanza profilo d (cm)	2,00
Interasse calastrelli (cm)	55,00
Raggio d'inerzia x-x (cm)	3,67
Snellezza dir X-X	68
Raggio d'inerzia y-y (cm)	5,66
Raggio d'inerzia min (cm)	2,35
Snellezza dir Y-Y	50

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 131 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

DIAGONALI DI CAMPATA

CALCOLO CLASSE DEL PROFILO

	PROFILO L 120x10	Valore	u.d.m.
h	lunghezza ala	12	mm
t	spessore ala	10	mm
	rapporto h/t	1,20	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
ε	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	68	
λy	snellezza direzione y-y	50	
Α	area lorda di un profilo	2.320	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	440	N/mmq

NEd	Azione normale di progetto	251	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb,Rd	Resistenza dell'asta compressa	992	kN

0,253

Verifica: Ned / Nb,Rd ? 1,00 =

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{251}{3} = 83,66 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 132 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

7.5.2.3 TRAVERSI DI APPOGGIO

IMPALCATO ASSE PRINCIPALE

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso maggiormente sollecitato:

frame	T31	
	M (kNm)	
Acciaio	3,00	
Soletta	-	
Permanenti	-	
Accidentali mezzi	0,30	x 0,20
Sisma	0,31	
Totale		3,37

frame	T31	
	T (kN)	
Acciaio	3,10	
Soletta	_	
Permanenti		
Accidentali mezzi	0,10	x 0,20
Sisma	0,10	
Totale		3,22

Sisma Totale	2,49	2,49
Siomo	2.40	
	N (kN)	
frame	T31	

L'azione flettente e l'azione assiale vengono assorbite dagli elementi orizzontali (2L 250x21 superiori e inferiori), mentre l'azione di taglio viene assorbita dagli elementi diagonali (2L 140x13).

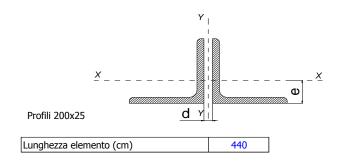
Eurolink S.C.p.A. Pagina 133 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Sollecitazioni sui correnti: $N_{correnti} = 3.37/2.30 + 2.49/2 = 2.7 \text{ kN}$


Sollecitazioni sui diagonali: $N_{diagonali} = 3,22/\cos 47^{\circ} = 4,7 \text{ kN}$

Le azioni sollecitanti sul traverso agli appoggi, in fase sismica sono notevolmente inferiori rispetto alle azioni in fase statica.

CORRENTI

VERIFICA CORRENTI

DATI GEOMETRICI	
Area di 1 profilo (cm2)	94,10
Distanza e (cm)	5,88
Inerzia di un singolo contr. (cm4)	3.446,00
Distanza profili d (cm)	3,00
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	6,05
Snellezza dir X-X	73
Raggio d'inerzia y-y (cm)	9,54
Raggio d'inerzia min (cm)	3,89
Snellezza dir Y-Y	49

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 134 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 \$S0669_F0.doc
 F0
 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

CORRENTE DI APPOGGIO

CALCOLO CLASSE DEL PROFILO

	PROFILO L 250x21		Valore	u.d.m.
h	lunghezza ala		250	mm
t	spessore ala		21	mm
	rapporto h/t		11,90	
	tipo di acciaio	S	355	
fyk	tensione caratteristica		355	N/mmq
3	coefficiente		0,81	
	classe del profilo		3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	57	
λy	snellezza direzione y-y	41	
Α	area lorda di un profilo	10.100	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	638	N/mmq

NEd	Azione normale di progetto	3	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
N b,Rd	Resistenza dell'asta compressa	4.936	kN

Verifica:

Ned / Nb,Rd ? 1,00 = 0,001

VERIFICA SODDISFATTA

Verifica dei bulloni

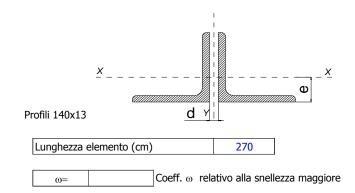
Si dispongono 3 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{2,7}{3} = 0,9kN$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \; kN$$

Eurolink S.C.p.A. Pagina 135 di 405

RELAZIONE DI CALCOLO


Codice documento
SS0669_F0.doc

Rev F0

Data 20/06/2011

DIAGONALI

35,00
3,92
638,00
2,00
60,00
4,27
63
6,51
2,74
47

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 136 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

DIAGONALI DI APPOGGIO

CALCOLO CLASSE DEL PROFILO

	PROFILO L 140x13		Valore	u.d.m.
h	lunghezza ala		140	mm
t	spessore ala		13	mm
	rapporto h/t		10,77	
	tipo di acciaio	S	355	
fyk	tensione caratteristica		355	N/mmq
ε	coefficiente		0,81	
	classe del profilo		3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	63	
λy	snellezza direzione y-y	47	
Α	area lorda di un profilo	3.500	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	522	N/mmq

NEd	Azione normale di progetto	5	kN
γΜ1	Coefficiente di sicurezza instabilità	1,10	
Nb,Rd	Resistenza dell'asta compressa	1.602	kN

0,003

Verifica: Ned / Nb,Rd ? 1,00 =

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 5 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{4,7}{5} = 0,94 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \; kN$$

Eurolink S.C.p.A. Pagina 137 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

IMPALCATO RAMPA 1

Dall'analisi strutturale, si ricavano i seguenti valori di sollecitazione per il traverso maggiormente sollecitato:

frame	TR6	
	M (kNm)	
Acciaio	24,94	
Soletta	95,03	
Permanenti	59,57	
Accidentali mezzi	314,00	x 0,20
Sisma	44,30	
Totale		287

frame	TR6	
	T (kN)	
Acciaio	12,49	
Soletta	38,81	
Permanenti	23,72	
Accidentali mezzi	132,14	x 0,20
Sisma	15,71	
Totale		117

frame	TR6	
	N (kN)	
Sisma	62,86	
Totale		63

Eurolink S.C.p.A. Pagina 138 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

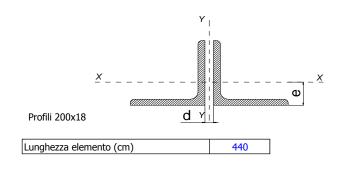
Rev F0

Data 20/06/2011

L'azione flettente e l'azione assiale vengono assorbite dagli elementi orizzontali (2L 200x18 superiori e inferiori), mentre l'azione di taglio viene assorbita dagli elementi diagonali (2L 150x14).

 $N_{correnti} = 287/1,30 + 63/2 = 252 \text{ kN}$ Sollecitazioni sui correnti:

 $N_{diagonali} = 117/cos63^{\circ} = 258 \text{ kN}$ Sollecitazioni sui diagonali:


CORRENTI

VERIFICA CORRENTI

DATI GEOMETRICI

	Area di 1 profilo
	Distanza e

DATI GLOMLTRICI	
Area di 1 profilo (cm2)	69,10
Distanza e (cm)	5,60
Inerzia di un singolo contr. (cm4)	2.600,00
Distanza profili d (cm)	3,00
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	6,13
Snellezza dir X-X	72
Raggio d'inerzia y-y (cm)	9,38
Raggio d'inerzia min (cm)	3,92
Snellezza dir Y-Y	50

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 139 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

CORRENTE DI APPOGGIO

CALCOLO CLASSE DEL PROFILO

	PROFILO L 200x18		Valore	u.d.m.
h	lunghezza ala		200	mm
t	spessore ala		18	mm
	rapporto h/t		11,11	
	tipo di acciaio	S	355	
fyk	tensione caratteristica		355	N/mmq
3	coefficiente		0,81	
	classe del profilo		3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	72	
λy	snellezza direzione y-y	50	
Α	area lorda di un profilo	6.910	mmq
Aeff	area efficace di un profilo		mmq
σcr	sforzo critico euleriano	400	N/mmq

NEd	Azione normale di progetto	252	kN
γΜ1	Coefficiente di sicurezza instabilità	1,05	
Nb.Rd	Resistenza dell'asta compressa	2.963	kN

0,085

Verifica: Ned / Nb,Rd ? 1,00 =

VERIFICA SODDISFATTA

Verifica dei bulloni

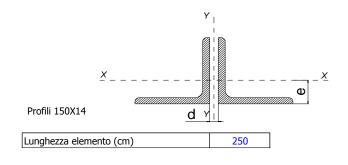
Si dispongono 11 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{252}{11} = 23 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,25} = 367,20 \text{ kN}$$

Eurolink S.C.p.A. Pagina 140 di 405

RELAZIONE DI CALCOLO


Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

DIAGONALI

VERIFICA DIAGONALI

DATI GEOMETRICI	
Area di 1 profilo (cm2)	40,30
Distanza e (cm)	4,12
Inerzia di un singolo profilo (cm4)	736,90
Distanza profilo d (cm)	2,00
Interasse calastrelli (cm)	70,00
Raggio d'inerzia x-x (cm)	4,60
Snellezza dir X-X	54
Raggio d'inerzia y-y (cm)	6,67
Raggio d'inerzia min (cm)	2,94
Snellezza dir Y-Y	44

Si riporta di seguito la verifica del corrente calastrellato in accordo con quanto riportato dalle NTC2008 al paragrafo 4.2.4.1.3.1:

Eurolink S.C.p.A. Pagina 141 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

VERIFICA DIAFRAMMI CALASTRELLATI

DIAGONALI DI APPOGGIO

CALCOLO CLASSE DEL PROFILO

	PROFILO L 150x14	Valore	u.d.m.
h	lunghezza ala	150	mm
t	spessore ala	14	mm
	rapporto h/t	10,71	
	tipo di acciaio S	355	
fyk	tensione caratteristica	355	N/mmq
3	coefficiente	0,81	
	classe del profilo	3	

VERIFICA A STABILITA' PER COMPRESSIONE - par. 4.2.4.1.3.1 NTC2008

	Descrizione	Valore	u.d.m.
λχ	snellezza direzione x-x	54	
λy	snellezza direzione y-y	44	
Α	area lorda di un profilo	4.030	mmq
Aeff	area efficace di un profilo	mmq	
σcr	sforzo critico euleriano	711	N/mmq

NEd	Azione normale di progetto	258	kN
γΜ1	Coefficiente di sicurezza instabilità	1,05	
N b,Rd	Resistenza dell'asta compressa	2.125	kN

Verifica:

Ned / Nb,Rd ? 1,00 = 0,121

VERIFICA SODDISFATTA

Verifica dei bulloni

Si dispongono 5 bulloni M27 classe 10.9 a taglio $N_{Sb} = \frac{258}{5} = 52 \text{ kN}$

che risulta minore della resistenza a taglio del bullone:

$$F_{v,Rd} = 0,\!50 \cdot \frac{A_{res} \cdot f_{tb}}{\gamma_{M2}} = 0,\!50 \cdot \frac{2 \cdot 459 \cdot 1.000}{1,\!25} = 367,\!20 \; kN$$

Eurolink S.C.p.A. Pagina 142 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.5.3 DEFORMAZIONI

Dai tabulati dell'analisi a graticcio, si ottengono i valori delle deformazioni, suddivise per le varie condizioni di carico. I valori sono espressi in mm con deformazioni positive verso il basso.

7.5.3.1 PRIMA CAMPATA – ASSE PRINCIPALE

CAMPATA L=25,00 mt DEFORMAZIONI (mm)				
Peso proprio acciaio	-	-	-	-
Peso proprio soletta	-	-	-	-
Permanenti	-	-	-	-
Vento	-	-	-	-
Accidentali	8	5	4	8

La combinazione che dà gli effetti più sfavorevoli è la seguente:

Deformazione max per carichi permanenti = 0 mm

Deformazione max per carichi accidentali = 8 mm =L/3125 <L/700

Eurolink S.C.p.A. Pagina 143 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.5.3.2 SECONDA CAMPATA – ASSE PRINCIPALE

CAMPATA L=52,00 mt DEFORMAZIONI (mm)			
Peso proprio acciaio	12	12	11
Peso proprio soletta	33	<i>32</i>	31
Permanenti	8	9	11
Vento	±10	<u>+</u> 4	±10
Accidentali	38	22	<i>38</i>

La combinazione che dà gli effetti più sfavorevoli è la seguente:

Deformazione max per carichi permanenti = 53 mm =L/981 < L/150

Deformazione max per carichi accidentali = 48 mm =L/1083 <L/700

7.5.3.3 TERZA CAMPATA – ASSE PRINCIPALE

CAMPATA L=42,00 mt					
DEFORMAZIONI (mm)					
joint 127 227 327					
Peso proprio acciaio	5	5	5		
Peso proprio soletta	19	20	20		
Permanenti	5	5	7		
Vento	±6	±2	±6		
Accidentali	30	17	30		

La combinazione che dà gli effetti più sfavorevoli è la seguente:

Deformazione max per carichi permanenti = 32 mm =L/1312 < L/150

Deformazione max per carichi accidentali = 36 mm =L/1166 <L/700

Eurolink S.C.p.A. Pagina 144 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.5.3.4 PRIMA CAMPATA – ASSE RAMPA 1

CAMPATA L=27,06 mt			
DEFORMAZIONI (mm)			
joint	406	<i>511</i>	
Peso proprio acciaio	2	1	
Peso proprio soletta	5	2	
Permanenti	3	2	
Vento	<u>+2</u>	<u>+2</u>	
Accidentali	14	14	

La combinazione che dà gli effetti più sfavorevoli è la seguente:

Deformazione max per carichi permanenti = 10 mm =L/2706 < L/150

Deformazione max per carichi accidentali = 16 mm =L/1691 <L/700

7.5.3.5 SECONDA CAMPATA – ASSE RAMPA 1

CAMPATA L=23,00 mt			
DEFORMAZIONI (mm)			
joint	413	<i>518</i>	
Peso proprio acciaio	-	-	
Peso proprio soletta	-	-	
Permanenti	-	-	
Vento	<u>±1</u>	± 1	
Accidentali	11	11	

La combinazione che dà gli effetti più sfavorevoli è la seguente:

Deformazione max per carichi permanenti = 0 mm

Deformazione max per carichi accidentali = 12 mm =L/2090 <L/700

Eurolink S.C.p.A. Pagina 145 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

7.5.3.6 TERZA CAMPATA – ASSE RAMPA 1

CAMPATA L=21,96 mt			
DEFORMAZIONI (mm)			
joint	421	<i>526</i>	
Peso proprio acciaio	2	3	
Peso proprio soletta	6	7	
Permanenti	2	2	
Vento	±2	<u>+2</u>	
Accidentali	12	12	

La combinazione che dà gli effetti più sfavorevoli è la seguente:

Deformazione max per carichi permanenti = 10 mm =L/2196 < L/150

Deformazione max per carichi accidentali = 14 mm =L/1569 <L/700

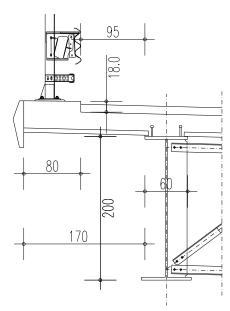
Eurolink S.C.p.A. Pagina 146 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0

20/06/2011


Data

7.5.4 SOLETTA DI IMPALCATO

La soletta in calcestruzzo armato ha larghezza totale pari a 14,00 m, con gli sbalzi laterali pari a 2,05 m dall'asse delle travi esterne.

Si verifica nel seguito la soletta in corrispondenza dello sbalzo che si ritiene la sezione più significativa; per tale verifica si considera un modello a mensola con incastro posizionato in corrispondenza dell'asse dell'ala superiore della trave esterna.

In particolare si procede con la verifica dello sbalzo munito di cordolo di larghezza 80 cm, di cui si riporta il particolare.

7.5.4.1 ANALISI DEI CARICHI

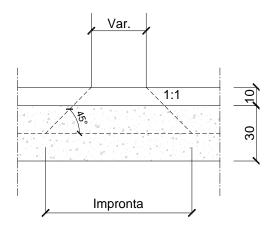
PERMANENTI

Cordolo $0,18 \cdot 25,00 = 4,50 \text{ kN/m}^2$

ACCIDENTALI

Si considera il carico Q_{1k} previsto dal D.M. 14/01/2008 "Norme tecniche perle costruzioni". L'impronta di carico di dimensioni variabili a seconda dello schema considerato viene diffusa a

Eurolink S.C.p.A. Pagina 147 di 405

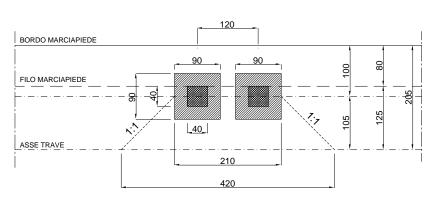


RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

livello dell'asse della soletta superiore; considerato che la soletta è alta 30 cm e che lo spessore medio della pavimentazione è di 10 cm.

Schema 1


Si considerano le impronte del carico tandem da 150 kN con un'impronta di 40 x 40 cm diffusa fino a metà soletta:

$$F_{1k} = \frac{2 \cdot Q_{1k}}{I_i + I_t + I_d} = \frac{2 \cdot 150}{0.90 + 1.20 + 2 \cdot 1.05} = 71.43 \text{ kN dove:}$$

0,90 m = larghezza impronta

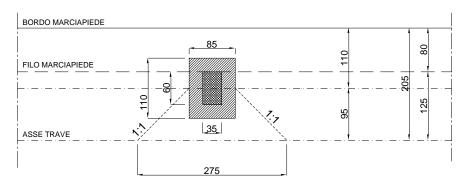
1,20 m = interasse tandem

1,05 m = ripartizione fino ad asse trave

$$M_{1k} = F_{1k} \cdot b = 71{,}43 \cdot 1{,}05 = 75{,}00 \; kNm$$

$$V_{1k} = F_{1k} = 71,43 \text{ kN}$$

Eurolink S.C.p.A. Pagina 148 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

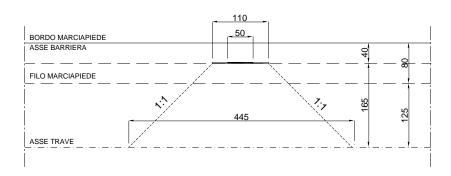
Rev F0 **Data** 20/06/2011

Schema 2

Si considerano le impronte del carico tandem da 200 kN con un'impronta di 35 x 60 cm diffusa fino a metà soletta:

$$F_{ak} = \frac{Q_{ak}}{I_i + I_d} = \frac{200}{0.85 + 2 \cdot 0.95} = 72,73 \text{ kN dove:}$$

0,85 m = larghezza impronta


0,95 m = ripartizione fino ad asse trave

$$M_{ak} = F_{ak} \cdot b = 72,73 \cdot 0,95 = 69,09 \text{ kNm}$$

$$V_{ak} = F_{ak} = 72,73 \text{ kN}$$

Urto di veicoli in svio

Si considera un'azione locale dovuta all'urto di veicoli in svio, pari a 100 kN come previsto dal D.M. 14/01/2008 "Norme tecniche perle costruzioni".; tale forza orizzontale trasversale è applicata a 100 cm dalla quota del piano viario su una linea lunga 50 cm e si diffonde fino a metà soletta:

N = 100/4,45 = 22,47 KN/m

$$M = 22,47 \cdot (1,00 + 0,10 + 0,18) = 28,76 \text{ daNm/m}$$

Eurolink S.C.p.A. Pagina 149 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Folla

Non vi è possibilità di passaggio della folla sul cordolo laterale.

Sollecitazioni flettenti

Nella seguente tabella sono indicate le sollecitazioni flettenti caratteristiche distinte per condizione di carico, riferite uno sviluppo unitario di impalcato.

	Peso proprio	Permanenti	Accidentali	Svio
	(kNm/m)	(kNm/m)	(kNm/m)	(kNm/m)
Sbalzo	-15,76	-13,07	-75,00	-28,76

Sollecitazioni taglianti

Nella seguente tabella sono indicate le sollecitazioni taglianti caratteristiche distinte per condizione di carico, riferite uno sviluppo unitario di impalcato.

	Peso proprio	Permanenti	Accidentali	Svio
	(kN/m)	(kN/m)	(kN/m)	(kN/m)
Sbalzo	15,38	9,35	72,73	-

7.5.4.2 VERIFICA DELLE ARMATURE TRASVERSALI AGLI SLU

Combinazione eccezionale:

Si considera la combinazione eccezionale per lo svio con schema dei carichi accidentali locale, coincidente con lo schema 2 descritto in precedenza:

$$M_{sd} = 1,\!00 \cdot M_{pp} + 1,\!00 \cdot M_{per} + 1,\!00 \cdot (M_{acc} sch2) + 1,\!00 \cdot M_{svio} = -132,\!59 \, kNm \, / \, m = -53,\!04 \, kNm \, / \, 40''$$

$$V_{sd} = 1,\!00 \cdot V_{pp} + 1,\!00 \cdot V_{per} + 1,\!00 \cdot (V_{acc} sch2) = 97,\!46 \text{ kN/m} = 38,\!98 \text{ kN/40''}$$

Combinazione SLU - Principali accidentali:

$$M_{sd} = 1{,}35 \cdot M_{pp} + 1{,}5 \cdot M_{per} + 1{,}35 \cdot (M_{acc}) = -142{,}13 \, kNm \, / \, m = -56{,}85 \, \, kNm \, / \, 40''$$

$$V_{sd} = 1,35 \cdot V_{pp} + 1,5 \cdot V_{per} + 1,35 \cdot (V_{acc}) = 131,20 \text{ kN/m} = 52,49 \text{ kN/40}$$

Verifica a Pressoflessione

SEZIONE base (cm) 40

Eurolink S.C.p.A. Pagina 150 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

altezza (cm) 24+6

ARMATURA compressa 2\phi14 I strato – predalles

2φ16 II strato – in opera

tesa 1\psi 18 I strato - predalles

tesa 2\psi 18+2\psi 20 II strato – in opera

SOLLECITAZIONI Msd = -56,85 kNm

Nsd = 22,47 kN

INDICI DI RESISTENZA Mrd = -123,44 kNm

Nrd = 49,65 kN

IR = 2,17

Verifica a taglio

Vsd = 52,49 kN

VERIFICA S.L.U

Unita' di misura delle forze: kN
Unita' di misura delle lunghezze: cm
Tensioni espresse in: N/mm²
Normativa: NTC-2008
Versione: 14 Gennaio 2008

Tipologia: Altro

Rck: 30.0 fyk: 450.0 Tensione di calcolo a compressione

calcestruzzo per taglio e torsione: -14.1 Tensione di calcolo

a trazione calcestruzzo: 1.2 Tensione di calcolo per l'armatura trasversale per taglio e torsione: 391.3

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (VRd): 44.358
Indice di resistenza: 1.18

Verifica delle bielle compresse

Taglio resistente ultimo (VRcd): 304.776 ctg(Theta): 1.00 Indice di resistenza: 0.17

Verifica con armatura trasversale

Taglio attribuito all'armatura (VRsd): 52.490 Armatura trasversale per unita' di

lunghezza (Asw,cm²/m): 6.21
Staffe a 2 braccia

: ø12/36.4cm

Eurolink S.C.p.A. Pagina 151 di 405

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

7.5.4.3 VERIFICA DELLE ARMATURE TRASVERSALI AGLI SLE

1° fase – getto del calcestruzzo

In questa fase si considera la struttura costituita dalle sole predalle non ancora solidarizzate al getto in opera. Si ipotizza il getto dello sbalzo in una sola fase di getto.

peso proprio soletta: = $0.30 \times 25.00 = 7.50 \text{ kN/m}^2$

peso operatori durante il getto = $1,00 \text{ kN/m}^2$

peso proprio predalle: = $0.06 \times 25.00 = 1.50 \text{ kN/m}^2$

 $M = -(7,50 - 1,50) \cdot \frac{2,05^{2}}{2} - 1,00 \cdot \frac{2,05^{2}}{2} - 1,50 \cdot \frac{2,05^{2}}{2} = -17,86 \text{ kNm/m} = -7,12 \text{ kNm/40}"$

ferri superiori (1 ϕ 18) $\sigma_{\text{sup.fe}}' = \frac{71.200}{18,7} \cdot \frac{1}{1 \cdot 2,54} = 1.498 \text{ daN/cm}^2$

ferri inferiori (2 ϕ 14) $\sigma_{inf.fe} = \frac{71.200}{18.7} \cdot \frac{1}{2 \cdot 1.54} = 1.236 \text{ daN/cm}^2$

Verifica di stabilità dei ferri inferiori compressi

 $i_{\phi \Box 6} = 0.35 \text{ cm}$ $I_0 = 18.5 \text{ cm}$ $\lambda = \frac{18.5}{0.35} = 53$

 $\sigma_{\text{crE}} = \frac{\pi^2 \cdot \text{E}}{\lambda^2} = \frac{\pi^2 \cdot 2.100.000}{53^2} = 2.349 \text{ daN/cm}^2 > 1.5 \sigma_{\text{inf fe}}$

2° fase - in esercizio

Nella seconda fase si considera reagente l'armatura aggiuntiva e il contributo del traliccio.

Combinazione rara – Principali accidentali:

 $M = M_{pp} + M_{per} + M_{acc} = -1.576 - 1.307 - 7.500 = -10.380 \; daNm \, / \, m = -4.153 \; daNm \, / \, 40 \, m \, / \, 40 \,$

Verifica a Pressoflessione

SEZIONE base (cm) 40

altezza (cm) 24+6

ARMATURA compressa 2\psi14 I strato – predalles

2616 II strato – in opera

Eurolink S.C.p.A. Pagina 152 di 405

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

	tesa	1φ18	I strato - pred	dalles
	tesa	2φ18+2φ20	II strato – in o	opera
SOLLECITAZIONI	Ms =	-41,53 kNm		
TENSIONI	cls	σ_c (daN/cm ²) =	63	
	ferro teso	σ_f (daN/cm ²) =	1.075	I strato
		σ_f (daN/cm ²) =	1.331	II strato
	ferro compresso	σ_f (daN/cm ²) =	525	I strato
		σ_f (daN/cm ²) =	436	II strato

3° fase – tensioni totali

Le tensioni totali agenti sulle armature del traliccio risultano:

$$\sigma_{s,sup} = 1.498 + 1.075 = 2.573 \; daN/cm^2$$

$$\sigma_{s,inf} = 1.236 + 525 = 1.761 \, daN/cm^2$$

7.5.4.4 VERIFICA A FESSURAZIONE

Si considerano condizioni ambientali aggressive e la presenza di armature poco sensibili:

COMBINAZIONE FREQUENTE

- combinazione (frequente):

$$F_d=g_1+g_2+\psi_1\big(q_1+q_2\big)$$

$$W_D \leq W_2 = 0.3 \text{ mm}$$

$$M = 1,00 \cdot 15,76 + 1,00 \cdot 13,07 + 0,75 \cdot 75,00 = 85,08 \text{ kNm} = 34,03 \text{ kNm} / 40$$
"

VERIFICA A FESSURAZIONE:

SEZIONE RETTANGOLARE base (cm) 40

altezza (cm) 30

ARMATURA compressa 2\phi14 I strato – predalles

2φ16 II strato – in opera

tesa 1\psi 18 I strato - predalles

2φ18+2φ20 II strato – in opera

SOLLECITAZIONI Msd = -34,03 kNm

TENSIONI cls σ_c (daN/cm²) = 54

Eurolink S.C.p.A. Pagina 153 di 405

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

 $\begin{array}{ll} \text{ferro teso} & \sigma_f \ (\text{daN/cm}^2) = & 1.092 \\ \text{ferro compresso} & \sigma_f \ (\text{daN/cm}^2) = & 430 \end{array}$

ampiezza fess. $w_D = (mm)$ 0,05

VERIFICA SODDISFATTA

COMBINAZIONE QUASI PERMANENTE

- combinazione (quasi permanente):

$$F_{d} = g_{1} + g_{2} + \psi_{2} \big(q_{1} + q_{2} \big)$$

$$W_D \le \cdot W_1 = 0.2 \text{ mm}$$

 $M = 1,\!00 \cdot 15,\!76 + 1,\!00 \cdot 13,\!07 + 0,\!00 \cdot 75,\!00 = 28,\!83 \text{ kNm} = 11,\!53 \text{ kNm} / 40"$

VERIFICA A FESSURAZIONE:

SEZIONE RETTANGOLARE base (cm) 40

altezza (cm) 30

ARMATURA compressa 2\phi14 I strato – predalles

2\psi16 II strato – in opera

tesa 1\phi18 I strato - predalles

2φ18+2φ20 II strato – in opera

SOLLECITAZIONI Msd = 11,53 kNm

TENSIONI cls σ_c (daN/cm²) = 16

ferro teso $\sigma_f (daN/cm^2) = 74$ ferro compresso $\sigma_f (daN/cm^2) = 61$

ampiezza fess. $w_D = (mm)$ 0,00

VERIFICA SODDISFATTA

Eurolink S.C.p.A. Pagina 154 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

8 ANALISI SISTEMA DI VINCOLAMENTO

8.1 AZIONI VERTICALI

Dai tabulati dell'analisi a graticcio, e con riferimento alla modellazione riportata in precedenza si ottengono i valori delle azioni verticali massime trasmesse agli appoggi, suddivisi per le varie condizioni di carico. I valori sono espressi in kN.

	Spalla SpB			
joint	101	201	301	401
-				
Peso Proprio	17	35	65	34
Soletta	169	203	316	170
Permanenti	87	58	163	82
Folla	-3	-4	35	5
Schema 1	1040	782	203	-36
Schema 2	1036	762	167	33
Schema 3	996	546	78	-27
Schema 4	814	184	-41	-19
Vento	±147	±57	±76	±32
Temp	177	196	248	84

Eurolink S.C.p.A. Pagina 155 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

		Pila P2-p	
joint	107	207	307
Peso Proprio	443	469	517
Soletta	1430	1491	1604
Permanenti	616	604	924
Folla	-28	12	188
Schema 1	2073	1436	740
Schema 2	2055	1361	545
Schema 3	1947	1002	-390
Schema 4	1617	481	-320
_			
Vento	±858	±318	±273
Temp	-14	-82	-234

	Pila P1-p		
joint	121	221	321
Peso Proprio	660	669	663
Soletta	1900	1909	1883
Permanenti	797	801	1090
Folla	36	19	199
Schema 1	2302	1547	616
Schema 2	2283	1455	411
Schema 3	2159	1086	256
Schema 4	1003	526	223
Vento	±1079	±398	±282
Temp	-193	-192	-191

Eurolink S.C.p.A. Pagina 156 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

	Spalla SpA-p		
joint	133	233	333
Peso Proprio	135	141	136
Soletta	500	506	504
Permanenti	220	226	385
Folla	-14	10	67
Schema 1	1270	925	323
Schema 2	1261	893	253
Schema 3	1195	657	-148
Schema 4	969	270	-117
Vento	±313	±114	±83
Temp	153	152	153

	Pila P3-r		
joint	402	507	
Peso Proprio	211	261	
Soletta	707	905	
Permanenti	267	429	
Schema 1	1536	592	
Schema 2	1528	545	
Schema 3	1253	151	
Vento	±442	±145	
Temp	155	-330	

Eurolink S.C.p.A. Pagina 157 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

	Pila P2-r		
joint	410	515	
Peso Proprio	275	252	
Soletta	801	732	
Permanenti	347	409	
Schema 1	1452	543	
Schema 2	1451	495	
Schema 3	1230	108	
Vento	±490	±143	
Temp	302	-230	

	Pila P1-r					
joint	417	522				
Peso Proprio	248	298				
Soletta	747	895				
Permanenti	323	391				
Schema 1	1400	533				
Schema 2	1399	489				
Schema 3	1191	112				
Vento	±467	±131				
Temp	217	-423				

Eurolink S.C.p.A. Pagina 158 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

 Rev
 Data

 F0
 20/06/2011

	Spalla SpA-r						
joint	424	529					
Peso Proprio	107	64					
Soletta	312	184					
Permanenti	142	114					
Schema 1	1010	358					
Schema 2	1008	342					
Schema 3	825	-95					
Vento	±190	±72					
Temp	123	56					

8.2 AZIONI ORIZZONTALI

8.2.1 Azione longitudinale di frenamento

La forza di frenamento o di accelerazione q_3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1, e per i ponti di 1a categoria è uguale a:

180 kN < [
$$q_3 = 0.6 \times (2Q_{1k}) + 0.10q_{1k} \times w_1 \times L$$
] < 900 Kn

IMPALCATO PRINCIPALE: $q_3 = 0.6 \cdot (2 \cdot 300) + 0.10 \cdot 9.00 \cdot 3.00 \cdot 119.00 = 681 \text{ kN}$

IMPALCATO RAMPA 1: $q_3 = 0.6 \cdot (2 \cdot 300) + 0.10 \cdot 9.00 \cdot 3.00 \cdot 96.39 = 620 \text{ kN}$

Eurolink S.C.p.A. Pagina 159 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

8.2.2 Azione trasversale del vento

Come riportato nel paragrafo 4.3.10 si ricavano le azioni agli appoggi:

IMPALCATO ASSE PRINCIPALE

Ponte scarico

altezza investita	3,4/ m
quota riferimento	16,74 m
rapporto d/h _{tot}	4,03
coefficiente di esposizione	3,09
pressione picco vento	1,71 kN/m ²

coefficiente di forza X trasversale 0,36 coefficiente di forza Y verticale 1,10 coefficiente di momento 0,20

Risultante pressione X 8,59 kN/m
Risultante pressione Y 26,45 kN/m
Momento torcente 67,10 kNm/m

IMPALCATO RAMPA 1

Ponte scarico

altezza investita	2,78 m
quota riferimento	16,39 m
rapporto d/h _{tot}	3,24
coefficiente di esposizione	3,08
pressione picco vento	1,70 kN/m ²
coefficiente di forza X trasversale	0,47

coefficiente di forza Y verticale 1,02 coefficiente di momento 0,20

Risultante pressione X 7,23 kN/m
Risultante pressione Y 15,71 kN/m
Momento torcente 27,61 kNm/m

valori validi per rapporto d/htot>2

valori validi per rapporto d/htot>2

Eurolink S.C.p.A. Pagina 160 di 405

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

IMPALCATO ASSE PRINCIPALE

Ponte carico

altezza investita	6,36 m
quota riferimento	18,18 m
rapporto d/h _{tot}	2,20
coefficiente di esposizione	3,15

pressione picco vento 1,74 kN/m² coefficiente di forza X trasversale 0,74

coefficiente di forza Y verticale 0,92 coefficiente di momento 0,20

Risultante pressione X 18,05 kN/m
Risultante pressione Y 22,43 kN/m
Momento torcente 68,24 kNm/m

IMPALCATO RAMPA 1

Ponte carico

altezza investita	5,64 m
quota riferimento	17,82 m
rapporto d/h _{tot}	1,60
coefficiente di esposizione	3,13
	1 81/

pressione picco vento 1,73 kN/m² coefficiente di forza X trasversale 0,85

coefficiente di forza X trasversale 0,85 coefficiente di forza Y verticale 0,86 coefficiente di momento 0,20

Risultante pressione X 13,20 kN/m
Risultante pressione Y 13,41 kN/m
Momento torcente 28,09 kNm/m

Spalla SpB $18,05 \cdot 25,00/2 = 225 \text{ kN}$

Pila P2-p $18,05 \cdot \frac{25,00 + 52,00}{2} = 695 \text{ kN}$

Pila P1-p $18,05 \cdot \frac{52,00 + 42,00}{2} = 848 \text{ kN}$

Spalla SpA-p $18,05 \cdot 42,00/2 = 379 \text{ kN}$

Pila P3-r $13,20 \cdot \frac{24,37 + 27,06}{2} = 339 \text{ kN}$

valori validi per rapporto d/htot>2

valori validi per rapporto d/htot>2

Eurolink S.C.p.A.

Pagina 161 di 405

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

Pila P2-r
$$13,20 \cdot \frac{27,06 + 23,00}{2} = 330 \text{ kN}$$

Pila P1-r
$$13,20 \cdot \frac{23,00 + 21,96}{2} = 297 \text{ kN}$$

Spalla SpA-r
$$13,20 \cdot \frac{21,96}{2} = 145 \text{ kN}$$

8.2.3 Azione di attrito

L'azione d'attrito è stata valutata come percentuale del carico derivante dai permanenti, ovvero il 3%:

Spalla SpB $(273 + 296 + 544 + 286) \cdot 0.03 = 42 \text{ kN}$

Pila P2-p $(2.489 + 2.564 + 3.045) \cdot 0,03 = 243 \text{ kN}$

Pila P1-p $(3.357 + 3.379 + 3.636) \cdot 0.03 = 311 \text{ kN}$

Spalla SpA-p $(855 + 873 + 1.025) \cdot 0.03 = 83 \text{ kN}$

Pila P3-r $(1.185 + 1.595) \cdot 0.03 = 83 \text{ kN}$

Pila P2-r $(1.423 + 1.393) \cdot 0.03 = 84 \text{ kN}$

Pila P1-r $(1.318 + 1.587) \cdot 0.03 = 87 \text{ kN}$

Spalla SpA-r $(561+362) \cdot 0.03 = 28 \text{ kN}$

8.2.4 Urto dei veicoli in svio

Le azioni dovute all'urto dei veicoli debbono essere assorbite da una barriera di classe H4, che ammette un livello di Contenimento $L_c \geq 572 kJ$ che può essere ricondotto ad una forza statica equivalente con riferimento al documento CEN/TC 226 N 185 E e CEN/TC 226 N 187 E 30/04/1995.

Per valutare la forza media che si sviluppa durante la collisione, bisogna calcolare l'energia cinetica posseduta dal veicolo prima dell'impatto e bilanciarla col lavoro della forza laterale che agisce sul baricentro del veicolo:

$$T = \frac{M \cdot v_n^2}{2}$$

$$W_n = F_{AV} \cdot s_n$$

Eurolink S.C.p.A. Pagina 162 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

dove:

T è l'energia cinetica laterale del veicolo;

M è la massa del veicolo;

velocità del baricentro del veicolo;

α angolo di impatto del veicolo;

 $v = v_n \cdot sen\alpha$ componente della velocità di baricentro del veicolo ortogonale alla barriera

F_{AV} è la forza media agente sul baricentro del veicolo;

s_n è lo spostamento totale del baricentro del veicolo in direzione perpendicolare alla barriera.

Uguagliando le due espressioni e considerando, come prescritto dalla normativa D.M. 03/06/1998, l'urto di un autocarro della massa di 31,5 ton che impatta a 65 km/h e con un angolo di 20°, ipotizzando uno spostamento di 0,4 m, la forza media risulta:

$$F_{AV} = 242 \text{ kN}.$$

La forza massima agente sugli ancoraggi della barriera può essere valutata con un coefficiente moltiplicativo di 2,5:

$$F_{\text{Max}} = F_{\text{AV}} \cdot 2,5 = 605 \text{ kN}$$

Si può ipotizzare che l'azione si ripartisca su due pile, e che l'urto coinvolga una estesa di barriera all'interno della campata, ottenendo una forza orizzontale in esercizio di:

$$H_s = \frac{605}{2 \cdot 1.5} = 200 \text{ kN}$$
 applicata a 1,0 m dal piano stradale.

Eurolink S.C.p.A. Pagina 163 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0

20/06/2011

Data

8.2.5 Azioni sismiche

Dall'analisi condotta si riportano i valori di sisma per gli appoggi distinti per le tre componenti.

	SPALLA SpB											
	101			201			301			401		
	V	Η	Ht	V	H	Ht	V	HI	Ht	V	H	Ht
Sisma X	0	414	0	0	409	0	0	405	0	0	383	0
Sisma Y	0	0	144	0	0	144	0	0	144	0	0	144
Sisma Z	564	0	0	459	0	0	433	0	0	106	0	0

	PILA P2-p									
	107				207			307		
	V	V HI Ht			Ŧ	Ht	٧	Н	Ht	
Sisma X	0	415	0	0	409	0	0	405	0	
Sisma Y	0	0	248	0	0	248	0	0	248	
Sisma Z	825	0	0	621	0	0	661	0	0	

		PILA P1-p									
		121		221				321			
	V	Н	Ht	V	Ŧ	Ht	V	Ξ	Ht		
Sisma X	0	415	0	0	410	0	0	406	0		
Sisma Y	0	0	375	0	0	375	0	0	375		
Sisma Z	1405	0	0	1357	0	0	1333	0	0		

	SPALLA SpA-p									
		133			233		333			
	٧	HI	Ht	Ht V HI Ht			٧	Ŧ	Ht	
Sisma X	0	415	0	0	410	0	0	406	0	
Sisma Y	0	0	233	0	0	233	0	0	233	
Sisma Z	539	0	0	505	0	0	520	0	0	

Eurolink S.C.p.A. Pagina 164 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

	PILA P3-r									
		402			507					
	V	HI	Ht	V	HI	Ht				
Sisma X	0	260	0	0	253	0				
Sisma Y	0	0	139	0	0	136				
Sisma Z	592	0	0	455	0	0				

	PILA P2-r								
		410		515					
	V	HI	Ht	V	Η	Ht			
Sisma X	0	279	0	0	275	0			
Sisma Y	0	0	160	0	0	152			
Sisma Z	831	0	0	594	0	0			

			PILA	P1-r		
		417			522	
	V	Ξ	Ht	V	Ξ	Ht
Sisma X	0	229	0	0	225	0
Sisma Y	0	0	172	0	0	168
Sisma Z	1149	0	0	660	0	0

		SPALLA SpA-r											
		417 522											
	V	V HI Ht V HI F											
Sisma X	0	138	0	0	137	0							
Sisma Y	0	0	185	0	0	168							
Sisma Z	432	0	0	223	0	0							

Eurolink S.C.p.A. Pagina 165 di 405

9 ANALISI SOTTOSTRUTTURE

9.1 ANALISI DELLA SPALLA A-r

La spalla A-r è costituita da una ciabatta di fondazione a base a parallelogramma di dimensioni 12,00 x 12,00 m, di spessore 2,50 m e da un muro frontale di spessore pari a 2,00 m. Sul muro frontale corre un muro paraghiaia caratterizzato da spessore 0,50 m ed altezza pari a 2,60 m. Ai lati della spalla sono presenti due muri andatori di lunghezza pari a 7,95 m, spessore medio di 1,15 m e altezza media pari a circa 8,45 m, che poggiano sulla medesima fondazione del muro frontale.

La spalla A è rappresentata nella figura seguente:

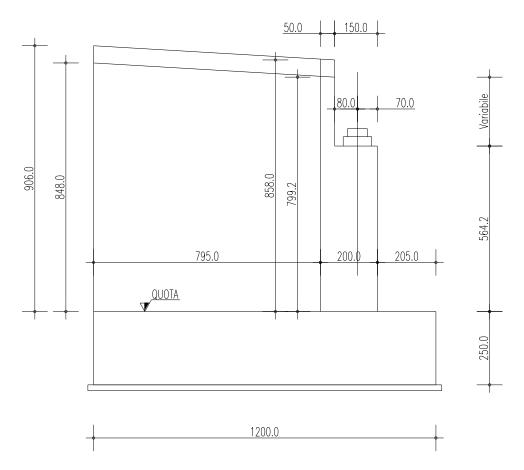


Figura 9.1 – Vista laterale Spalla A-r.

Eurolink S.C.p.A. Pagina 166 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento Rev Data SS0669_F0.doc F0 20/06/2011

Si riporta di seguito un tabulato riassuntivo della geometria delle strutture.

CARATTERISTICHE GEOMETRICHE DELLA SPALLA

Descrizione		X	Υ	Z	n	γ	Peso	dx	bx	M long
		(m)	(m)	(m)		(kN/mc)	(kN)	(m)	(m)	(kNm)
fondazione	1	12,00	12,00	2,50	1	25	9.000	0,00	6,00	54.000
muro frontale	2	2,00	10,12	5,64	1	25	2.854	2,05	3,05	8.704
ringrosso	3	0,00	0,00	0,00	0	25	0	0,00	0,00	0
paraghiaia	4	0,50	10,12	2,60	1	25	329	3,55	3,80	1.250
muri laterali	5	7,95	1,15	8,44	2	25	3.858	4,05	8,03	30.962
terra	6	7,95	8,50	8,24	1	19,0	10.580	4,05	8,03	84.901
							26.620			179.816

altezza fronte vento ponte scarico (m) altezza fronte vento ponte carico (m) distanza tra asse appoggi e bordo anteriore fondazione (m) distanza tra bordo anteriore fondazione e baricentro dei pali (m) 2,78

5,64

2,75 6,00

Eurolink S.C.p.A. Pagina 167 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

rad

0,00

9.1.1 **ANALISI DEI CARICHI**

La spalla è soggetta dalle sollecitazioni derivanti dall'impalcato riportati nei capitoli precedenti e dalle spinte delle terre.

Di seguito si riassumono i carichi globali gravanti:

AZIONI TRASMESSE DALL'IMPALCATO

momenti longitudinali rispetto al bordo anteriore

Н

28

79

144

140 Obliquità 0,00

Mt

301

306

	Ν	H long	H trasv	M long	M trasv
	(kN)	(kN)	(kN)	(kNm)	(kNm)
peso strutturale	680	0	0	1.870	437
permanenti	255	0	0	701	66
mezzi schema 1	1.359	0	0	3.736	681
mezzi schema 2	744	0	0	2.046	2.210
folla schema 1	0	0	0	0	0
folla schema 2	0	0	0	0	0
frenamento	0	140	0	-1.140	0
attrito / reazione gommoni ?T	0	28	0	-228	0
vento: impalcato scarico	171	0	79	0	-1.054
vento: impalcato carico	146	0	144	0	-1.884
temperatura	36	0	0	0	0
ritiro	75	0	0	0	0
azione centrifuga	0	0	0	0	0
sisma	655	275	353	2.239	2.944
For exercising that an electronic continuity (1994)	0.00				

Eccentricità dei carichi verticali (mt) 0,00

PARAMETRI TERRENO

PARAMETRI SISMICI			PARAMETRI TERRENO				_
accelerazione di picco	αg/g=	0,4373	Peso specifico del terreno:	19,0	kN/m³	γ	
coefficiente orizzontale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno rilevato	0,611	rad	φ	35,00 °
coefficiente verticale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno di base	0,663	rad	φ	38,00 °
	a _{max} =	0,437	Angolo di inclinazione del muro	1,571	rad	Ψ	90,00 °
	βm	0,31					
	Kh=	0,136	Angolo di inclinazione del terreno	0,000	rad	β	0,00 °
Kv=0,5 Kh	Kv=	0,068	Angolo di resistenza terra-muro	0,407	rad	δ	23,33 °
	θ_1 =	0,126	Coefficiente di spinta del terreno	K1=	0,325		
	θ 2=	0,144		K2=	0,339		

H long M long

AZIONI TRASMESSE DAL TERRENO

	р	H long	IVI IONG		A
	(kN/mq)	(kN)	(kNm)		
Ed= spinta terreno sismica+statica		4.017	-16.192		
spinta a riposo	87,02	4.729	-16.929		
spinta attiva	55,30	3.005	-10.758		
spinta passiva plinto (50%)	154,63	1.160	966]	
spinta per sovraccarichi	3,84	417	-2.240		_
	р	N vert	H long	M long	
	(kN/mq)	(kN)	(kN)	(kNm)	
Sovraccarico					
sommità	80,54	1.325	2.568	-13.788	
piede muro	30.25				

Per le spinte	inerziali į	3m=1						
Kx=	0,437	Ky=						
AZTONI INEDZIALI CIC TRACME								

Kx=	0,437	Ky=	0,437	Kv=	0,219
AZIONI INE	RZIALI S	IS. TRAS	MESSE DA	LLA SPAL	LA
	Ν	H long	H trasv	M long	M trasv
	(kN)	(kN)	(kN)	(kNm)	(kNm)
Sisma +	5.821	11.641	11.641	54.881	54.881
Sisma -	-3.507	-7.015	-7.015	-24.254	-24.254

opinia por oo	· raccanon	0,0 .		2.2.10		_			
		р	N vert	H long	M long				
		(kN/mq)	(kN)	(kN)	(kNm)				
Sovraccarico						Larghezza pavimentato	8,53	m	
	sommità	80,54	1.325	2.568	-13.788	numero stese	2		
F	oiede muro	30,25				angolo diffusione	30,00	۰	0,52

Eurolink S.C.p.A. Pagina 168 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.1.1.1 Considerazioni sul parametro β_m

All'interno delle "Specifiche tecniche per il progetto definitivo e il progetto esecutivo dei collegamenti stradali e ferroviari" al punto 3.2.3.3.3, viene esplicitato che "...si può ragionevolmente prefigurare il mantenimento delle condizioni di spinta a riposo in presenza di spostamenti attesi inferiori a 5x10⁻⁴H m essendo H l'altezza fuori terra dell'opera". Tale assunzione può essere certamente estesa ai muri frontali delle spalle di tipo classico presenti nelle opere di nostra competenza.

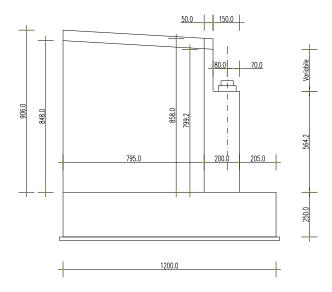
Per quanto riguarda la bibliografia, è possibile individuare il cedimento relativo tra un elemento di sostegno ed il terreno di spinta situato a tergo dello stesso; in particolare al capitolo 11.2 del libro "Fondazioni – progetto e analisi" del giugno 1991 di Joseph E. Bowles edito da McGraw – Hill, si definiscono, a seconda della tipologia del terreno, dei rapporti minimi tra cedimento ed altezza dell'elemento di sostegno per l'instaurarsi della spinta attiva, ovvero l'entità minima della traslazione affinchè lo spostamento sia da considerarsi non trascurabile.

Per terreni incoerenti densi, come nei casi in esame rappresentati dal rilevato lavorato con rulli compattatori, il Bowles definisce tale spostamento pari a 0,001H ÷ 0,002H, dove H rappresenta l'altezza dell'opera di sostegno; in definitiva si può quindi assumere prudenzialmente un valore della traslazione pari allo 0,5% come assunto dalle specifiche tecniche affinchè si sviluppi un tipo di spinta attiva.

Rimandando alla bibliografia citata il significato della teoria alla base di tale assunzione, si effettua il calcolo dello spostamento di un muro frontale di una spalla tipo presente nei viadotti in oggetto di progettazione al fine di giustificare l'assunzione del coefficiente di riduzione sismica $\beta_m = 0.31$ indicato dalle NTC 2008 al punto 7.11.6.2.1.

Si effettua il calcolo dell'entità di tale spostamento per la Spalla A-r in oggetto:

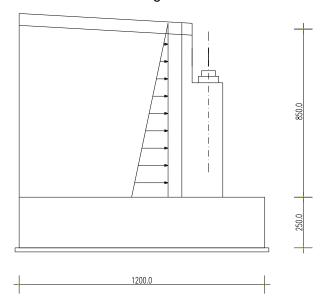
Eurolink S.C.p.A. Pagina 169 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011



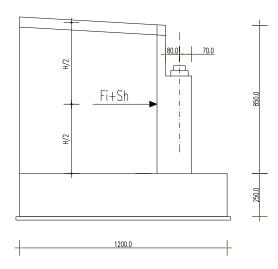
Si effettua il calcolo del cedimento in testa al muro frontale dovuto essenzialmente a 3 contributi:

- 1) Spinta attiva del terreno a tergo del muro con distribuzione triangolare;
- 2) Sovra spinta sismica per Mononobe-Okabe modellata come azione concentrata ad H/2, come stabilito dalla teoria; a tale forza si sommano le forze inerziali dovute a masssa del terreno e del muro frontale ipotizzate con β_m = 0,31, con il medesimo punto di applicazione;
- 3) Forza sismica orizzontale in testa al muro derivante dall'impalcato.

I calcoli sono riferiti ad un metro di profondità del muro.

1) Il modello per la spinta attiva del terreno a tergo è così schematizzato:

Eurolink S.C.p.A. Pagina 170 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011


$$f_1 = \frac{1}{30} \cdot \frac{p \cdot L^4}{EJ} = \frac{1}{30} \cdot \frac{55,30 \cdot 8,50^4}{3,334 \cdot 10^6 \cdot 0,667} = 0,0037 \ m = 3,7 \ mm$$

2) Il modello per le azioni sismiche da forze inerziali e sovra spinta sismica del terreno è così schematizzato:

$$f_2 = \frac{P \cdot \left(\frac{L}{2}\right)^3}{3 \cdot EJ} = \frac{(391 + 65) \cdot 4,25^3}{3 \cdot 3.334 \cdot 10^6 \cdot 0.667} = 0,0047 \text{ m} = 4,7 \text{ mm}$$

3) Il modello per le azioni sismiche derivanti dall'impalcato è così schematizzato:

Eurolink S.C.p.A. Pagina 171 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$f_2 = \frac{P \cdot L^3}{3 \cdot EJ} = \frac{275 \cdot 6,30^3}{3 \cdot 3,334 \cdot 10^6 \cdot 0,667} = 0,0103 \text{ m} = 10,3 \text{ mm}$$

Il cedimento totale del muro frontale schematizzato come mensola incastrata alla base vale quindi: $f_1 + f_2 + f_3 = 3.7 + 4.7 + 10.3 = 18.7 \text{ mm}$

Tale valore di spostamento in testa al paramento verticale risulta pari a circa 0,22% dell'altezza della spalla e ciò consente di ritenere corretto l'utilizzo del fattore β_m ridotto in quanto il valore limite fissato nell'Eurocodice EC7 (Annesso C) e nella letteratura più conosciuta (Lancellotta – Geotecnica), perché si attivi la spinta attiva, è pari allo 0,05% - 0,10% dell'altezza della spalla

Eurolink S.C.p.A. Pagina 172 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0

20/06/2011

Data

9.1.1.2 Combinazioni di carico statiche

Si considerano le combinazioni di carico statiche allo SLU previste dalla normativa vigente:

SL	PRINCIPALE	P.p.	Perm.	Att	rito	Tempe	eratura	Ve	nto	Acci	dent.	Fo	olla	Frena	mento	Cent	rifuga	Ced. 6	e ritiro
SL	PRINCIPALE			Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1	
	Vento	1,00	1,30	1,00	1,00	0,60	1,00	1,00	1,30									1,00	1,00
	Gruppo 1 centr.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,50	1,15	0,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 1 ecc.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,50	1,15	0,00	1,15	0,00	1,15	1,00	1,00
0	Gruppo 2a centr.+	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	1,00	1,15	0,00	1,15	1,00	1,00
GEO	Gruppo 2a ecc.+	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	1,00	1,15	0,00	1,15	1,00	1,00
SLU	Gruppo 2a centr	1,00	1,30	-1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	-1,00	1,15	0,00	1,15	1,00	1,00
S	Gruppo 2a ecc	1,00	1,30	-1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	-1,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 2b centr.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	0,00	1,15	1,00	1,15	1,00	1,00
	Gruppo 2b ecc.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	0,00	1,15	1,00	1,15	1,00	1,00
	Gruppo 1 rilevato	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,00	0,00	0,00	1,15	0,00	1,15	1,00	1,00
		γ _{G1}	γ _{G2}	Ψ_0	γ _{G2}	Ψ_0	γε3	Ψ_0	γQi	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ
	Vento	1,35	1,50	1,00	1,35	0,60	1,20	1,00	1,50									1,00	1,20
	Gruppo 1 centr.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,50	1,35	0,00	1,35	0,00	1,35	1,00	1,20
	Gruppo 1 ecc.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,50	1,35	0,00	1,35	0,00	1,35	1,00	1,20
œ	Gruppo 2a centr.+	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00	1,20
STR	Gruppo 2a ecc.+	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00	1,20
SLU	Gruppo 2a centr	1,35	1,50	-1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	-1,00	1,35	0,00	1,35	1,00	1,20
0)	Gruppo 2a ecc	1,35	1,50	-1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	-1,00	1,35	0,00	1,35	1,00	1,20
	Gruppo 2b centr.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	0,00	1,35	1,00	1,35	1,00	1,20
	Gruppo 2b ecc.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	0,00	1,35	1,00	1,35	1,00	1,20
	Gruppo 1 rilevato	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,00	0,00	0,00	1,35	0,00	1,35	1,00	1,20
	Vento	1,00	1,00	1,00	1,00	0,60	1,00	1,00	1,00									1,00	1,00
	Gruppo 1 centr.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,50	1,00	0,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 1 ecc.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,50	1,00	0,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 2a centr.+	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00
SLE	Gruppo 2a ecc.+	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00
S	Gruppo 2a centr	1,00	1,00	-1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	-1,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 2a ecc	1,00	1,00	-1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	-1,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 2b centr.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00
	Gruppo 2b ecc.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00
	Gruppo 1 rilevato	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,00	0,00	0,00	1,00	0,00	1,00	1,00	1,00

Eurolink S.C.p.A. Pagina 173 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

9.1.1.3 Combinazioni di carico Sismiche

Secondo le "Norme Tecniche 2008" le verifiche agli stati limite ultimi o di esercizio devono essere effettuate per la seguente combinazione dell'azione sismica con le altre azioni:

$$G1+G2+P+E+\sum_i 0, 2\cdot Q_{kj}$$

dove G1 sono i pesi propri, G2 sono i carichi permanenti, P è la precompressione, E è l'azione sismica e Q_{ki} sono i carichi accidentali.

In particolare si sono considerate le seguenti combinazioni sismiche:

Combinazione	P.p.	Perm.	Accid.	Sisma X	Sisma Y	Sisma Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30
SISMA Z N+	1,00	1,00	0,20	0,30	0,30	1,00
SISMA Y N+	1,00	1,00	0,20	0,30	1,00	0,30

9.1.2 MODELLO DI CALCOLO

9.1.2.1 Descrizione del modello di calcolo

Per quanto concerne l'analisi strutturale condotta sulla spalla, è necessario chiarire preliminarmente quelle che sono le scelte di modellazione adottate.

Da un punto di vista dello schema statico i singoli elementi compositi della spalla, quali il muro frontale e il paraghiaia sono stati schematizzati come mensole incastrate alla base.

La modellazione di tali elementi è stata poi ricondotta a porzioni di struttura di profondità unitaria, ottenendo in questo modo, grazie ad una lecita bi-dimensionalizzazione del problema, un consistente sgravio computazionale.

Nella valutazione delle spinte agenti sulla struttura ad opera del terreno a tergo in condizioni sismiche, ci si è ricondotti alle teorie di comprovata validità di Mononobe-Okabe. Tale scelta supportata dalle prescrizioni della normativa vigente è avvalorata da una riflessione condotta sulla possibile cinematica dell'elemento spalla. Ritenendo infatti erroneo supporre una completa staticità della struttura, si è preferito utilizzare la suddetta teoria rispetto ad altre presenti in letteratura (es. Woods). Per una descrizione dettagliata delle trattazioni teoriche alla base di tali teorie si rimanda

Eurolink S.C.p.A. Pagina 174 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

alla bibliografia citata.

9.1.3 AZIONI SISMICHE: CONFRONTO ANALISI DINAMICA – ANALISI STATICA EQUIVALENTE

Al fine di poter emettere un giudizio motivato sull'accettabilità dei risultati ottenibili con l'utilizzo degli accellerogrammi spettro – compatibili dell'analisi dinamica utlizzata, si è proceduto all'analisi di una spalla tipo, individuata nella spalla SpA del Viadotto Curcuraci direzione Reggio Calabria, confrontando il risultato del calcolo operato con l'utilizzo di detti accellerogrammi con l'analogo calcolo effettuato con il metodo statico equivalente. Alla luce dei risultati, si può affermare, come più oltre analiticamente dimostrato, che gli scostamenti in termini di spostamenti ed azioni agli appoggi sono dell'ordine del 5% in media e del 10% di massimo e comunque sempre in favore di sicurezza. Pertanto l'analisi di cui al presente paragrafo viene estesa, per analogia, anche all'opera in oggetto, la quale presenta caratteristiche geometriche, statiche e di situazione geologico – geotecnica assimilabili a quella effettivamente analizzata.

Si effettua quindi nel seguito un confronto tra i risultati ottenuti dall'analisi dinamica lineare con uso di accellerogrammi spettrocompatibili e dall'analisi lineare statica equivalente con uso di spettri da NTC 2008. Nel seguito si descrivono i due approcci e si confrontano i risultati ottenuti nei parametri di azioni sugli isolatori e spostamenti dei giunti trasversali di impalcato.

9.1.3.1 ANALISI LINEARE DINAMICA

Lo studio sismico è stato effettuato tramite un'analisi lineare dinamica con l'impiego di accelerogrammi come indicato dalla normativa italiana DM2008 (§ 3.2.3.6).

Si utilizzano accelerogrammi artificiali compatibili con lo spettro elastico di risposta adottato nel capitolo 4 paragrafo 4.3.14.6; in particolare l'analisi è condotta con più di 7 serie temporali e si sono assunti i valori medi ottenuti dal modello come azioni di progetto, inoltre per descrivere il moto sismico si è tenuto in conto di non utilizzare lo stesso accelerogramma simultaneamente lungo le due direzioni orizzontali.

Per ricavare gli accelerogrammi spettro compatibili si è utilizzato i programma **REXEL 3.0 beta**, redatto:

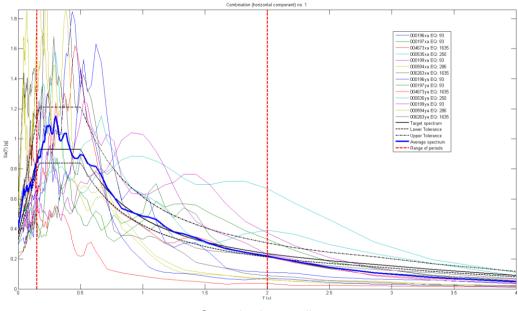
Iervolino, I., Galasso, C., Cosenza, E. (2009).

REXEL: computer aided record selection for code-based seismic structural analysis.

Eurolink S.C.p.A. Pagina 175 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc


Rev F0 Data 20/06/2011

Bulletin of Earthquake Engineering. DOI 10.1007/s10518-009-9146-1

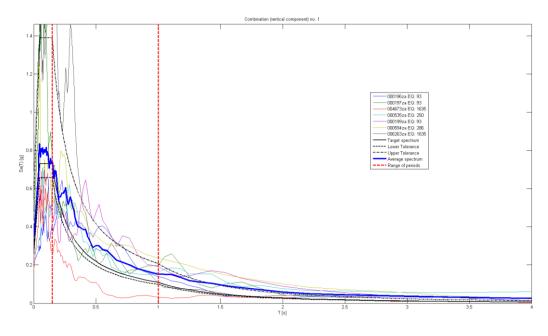
Il programma citato crea degli accelerogrammi spettro-compatibili con gli spettri elastici derivanti, in accordo con le Norme Tecniche 2008, dai parametri di coordinate del sito, categoria di sottosuolo, categoria topografica, vita nominale, classe d'uso e stato limite.

Tale modellazione risulta in accordo con quanto richiesto dalle NTC2008 per strutture isolate al paragrafo 7.10.2, ossia che la sovrastruttura e la sottostruttura devono mantenersi in campo elastico, coincidente con un valore del valore di struttura unitario.

Di seguito si riportano gli spettri estratti:

Spettri orizzontali

Eurolink S.C.p.A. Pagina 176 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Spettri verticali

Le funzioni sono state implementate nel codice di calcolo SAP2000 definendo 7 combinazioni indipendenti.

Viene adottato un sistema di isolamento sismico che è posto tra l'impalcato e le pile/spalle, allo scopo di migliorarne la risposta nei confronti delle azioni sismiche orizzontali. La riduzione della risposta sismica orizzontale qualunque siano la tipologia ed i materiali strutturali del ponte, può essere ottenuta mediante un incremento del periodo fondamentale della costruzione per portarlo nel campo delle minori accelerazioni di risposta.

Per l'opera in oggetto della seguente relazione si utilizzano isolatori sismici elastomerici, composti essenzialmente da due piastre, la superiore ancorata alla trave e l'inferiore al pulvino o al fusto, all'interno delle quali viene interposto uno strato di elastomero.

Eurolink S.C.p.A. Pagina 177 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.1.4 ANALISI STATICA EQUIVALENTE

Lo studio si effettua con l'ausilio di forze statiche sismiche equivalenti; per i parametri utilizzati nell'analisi sismica del graticcio di impalcato si rimanda al capitolo "4.4.3 – Azioni sismiche" dell'elaborato "CG0700PCLDSSCC5VIV0000001A-01 – Relazione di calcolo".

9.1.5 AZIONI SISMICHE

Dall'analisi condotta si riportano i valori di sisma per gli appoggi distinti per le tre componenti.

			SPALLA SpA											
		101	101 201					301			401			
	V	Η	Ht	V	HI	Ht	V	HI	Ht	V	HI	Ht		
Sisma X	0	305	0	0	294	0	0	290	0	0	289	0		
Sisma Y	0	0	228	0	0	228	0	0	228	0	0	228		
Sisma Z	326	0	0	266	0	0	273	0	0	321	0	0		

I tabulati seguenti riportano i valori di reazioni delle molle ottenute con la modellazione e le reazioni verticali agli appoggi stessi.

TABLE: Joint Reactions - Spring Forces					
Joint	OutputCase	CaseType	StepType	U1	U2
Text	Text	Text	Text	KN	KN
101	SPETTROX	LinRespSpec	Max	304,8853	6,2353
101	SPETTROY	LinRespSpec	Max	0,1440	228,1107
101	SPETTROZ	LinRespSpec	Max	0,0000	0,0001
201	SPETTROX	LinRespSpec	Max	294,1113	6,2340
201	SPETTROY	LinRespSpec	Max	0,0014	228,1160
201	SPETTROZ	LinRespSpec	Max	0,0001	0,0000
301	SPETTROX	LinRespSpec	Max	290,1947	6,2287
301	SPETTROY	LinRespSpec	Max	0,0014	228,1127
301	SPETTROZ	LinRespSpec	Max	0,0001	0,0000
401	SPETTROX	LinRespSpec	Max	288,6433	6,2247
401	SPETTROY	LinRespSpec	Max	0,1440	228,0993
401	SPETTROZ	LinRespSpec	Max	0,0000	0,0001

TABLE: Joint Reactions					
Joint	OutputCase	CaseType	StepType	U3	

Eurolink S.C.p.A. Pagina 178 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

Data 20/06/2011

Text	Text	Text	Text	KN
101	SPETTROX	LinRespSpec	Max	0,0000
101	SPETTROY	LinRespSpec	Max	0,0001
101	SPETTROZ	LinRespSpec	Max	423,6865
201	SPETTROX	LinRespSpec	Max	0,0000
201	SPETTROY	LinRespSpec	Max	0,0000
201	SPETTROZ	LinRespSpec	Max	346,1493
301	SPETTROX	LinRespSpec	Max	0,0000
301	SPETTROY	LinRespSpec	Max	0,0001
301	SPETTROZ	LinRespSpec	Max	354,7475
401	SPETTROX	LinRespSpec	Max	0,0000
401	SPETTROY	LinRespSpec	Max	0,0001
401	SPETTROZ	LinRespSpec	Max	417,2913

9.1.6 ESCURSIONE DEI GIUNTI TRASVERSALI

I giunti devono essere in grado di assorbire una deformazione longitudinale dell'impalcato causata da una variazione termica ΔT di ±30 °C. Tale deformazione risulta nulla in corrispondenza del baricentro dell'impalcato metallico e cresce all'aumentare della distanza dal giunto in questione al baricentro stesso. I giunti devono inoltre garantire lo spostamento dovuto alle azioni sismiche derivanti dalla modellazione. Si espongono nel seguito i valori delle escursioni termiche e degli spostamenti sismici per i giunti presenti nell'opera in oggetto:

	$\Delta I_{ m term}$	ΔI_{sism}	$\Delta I_{ m ammesso}$
	mm	mm	mm
SpA-p	±18	±170	±200
SpA-r	±11	±152	±200
SpB	±18	±170	±200

Occorre inoltre verificare che lo spostamento relativo tra le spalle sia compatibile con i giunti in oggetto, secondo le NTC2008, al paragrafo 3.2.5.2 "Spostamento assoluto e relativo del terreno", il valore dello spostamento relativo tra due punti a distanza x si può valutare con l'espressione:

$$d_{dj}(x) = d_{ij0} + \left(d_{ijmax} - d_{ij0}\right) \cdot \left[1 - e^{-1.25 \left(\frac{x}{v_s}\right)^{0.7}}\right] dove:$$

v_s = velocità di propagazione delle onde di taglio in m/s ricavabile dalle indagini sul terreno;

Eurolink S.C.p.A. Pagina 179 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

$$d_{ij0}(x) = 1,25 |d_{gi} - d_{gj}|$$
 spostamento relativo tra 2 punti a piccola distanza;

$$d_{ijmax} = 1,25\sqrt{d^2_{gi} + d^2_{gj}}$$
;

 d_{gi} e d_{gj} = spostamenti massimi del suolo nei punti i e j.

Essendo il terreno omogeneo tra le spalle ed i parametri sismici medesimi, si può calcolare, in accordo con il paragrafo 3.2.3.3 delle NTC2008:

$$d_{gi} = d_{gj} = 0,025 \cdot a_g \cdot S \cdot T_C \cdot T_D = 0,025 \cdot 4,373 \cdot 1,00 \cdot 0,55 \cdot 3,35 = 0,201 \, m$$

Per cui:

$$d_{iimax} = 1,25\sqrt{0,201^2 + 0,201^2} = 0,252 \text{ m}$$

$$d_{ii0} = 1,25 \cdot (0,020 - 0,020) = 0 \text{ m}$$

$$d_{dj}(x) = 0 + \left(0,252 - 0\right) \cdot \left\lceil 1 - e^{-1,25\left(11\frac{9}{2}40\right)^{0,7}} \right\rceil = 0,134 \ m = 134 \ mm$$

Avendo considerato la distanza tra i punti pari a 119,00 m e una velocità media v_s per terreni di classe C come da NTC2008.

Ai giunti è richiesto di garantire lo spostamento massimo relativo fra impalcato e sottostrutture per effetto delle azioni sismiche e termiche.

Le singole componenti di spostamento considerate sono:

- Spostamento dell'impalcato dovuto alla dilatazione termica uniforme (positiva);
- Spostamento dell'impalcato dovuto alla deformazione a taglio massima degli isolatori elastomerici.
- Spostamento relativo fra le spalle mobilitato a livello spiccato fondazioni (scorrimento su piano di posa addizionato a spostamento sismico differenziale del terreno).

In assenza di determinazione specifica dello scorrimento sul piano di posa delle spalle, alla luce dei risultati ottenuti dalle analisi numeriche FEM condotte per il viadotto Curcuraci in direzione Reggio Calabria, si ritiene che considerare il solo spostamento sismico differenziale del terreno, determinato come sopra secondo il 3.2.3.3 delle NTC, per la valutazione dello spostamento relativo delle spalle, sia un approccio sufficientemente conservativo. Dalle analisi FEM svolte è emerso infatti che lo spostamento relativo totale fra le spalle dato dallo scorrimento su piano di posa e dallo spostamento sismico differenziale del suolo di fondazione (calcolati secondo un approccio a favore di sicurezza, come meglio

Eurolink S.C.p.A. Pagina 180 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

descritto nella relazione specifica), è paragonabile allo spostamento differenziale del terreno determinato secondo il 3.2.3.3 delle NTC.

Le componenti sopra citate sono addizionate coerentemente con quanto espresso nelle combinazioni di calcolo SLU – sismiche, considerando il 50% dello spostamento indotto dalla variazione termica in concomitanza all'evento sismico.

Si ipotizza inoltre, conservativamente, che il moto delle spalle e dell'impalcato possa avvenire in opposizione di fase, in considerazione della capacità del sistema di isolamento sismico di disaccoppiare la risposta della sovrastruttura da quella delle spalle.

L'escursione minima del giunto sulla singola spalla dovrà risultare soddisfare la relazione seguente:

escursione...giunto
$$\geq (s_{isolamento} + s_{fondazion})/2 + 0.5 \cdot s_{termico}$$

 $S_{termico} = 18.0 \text{ mm}$

 $S_{isolamento} = 170.0 \text{ mm}$

S _{fondazione} = 134.0 mm

 $S_{\text{totale/2}} = 161.0 \text{ mm}$

L'escursione massima ammessa di 200 mm risulta essere superiore allo spostamento massimo cosi calcolato.

Di seguito si riporta l'output degli spostamenti massimi in corrispondenza dei nodi di spalla.

	TABLE: Joint Displacements									
Joint	OutputCase	CaseType	StepType	U1	U2					
Text	Text	Text	Text	m	m					
101	SPETTROX	LinRespSpec	Max	0,1932608	0,004872					
101	SPETTROY	LinRespSpec	Max	0,0001344	0,1217896					
101	SPETTROZ	LinRespSpec	Max	1,5256E-08	5,3304E-08					
201	SPETTROX	LinRespSpec	Max	0,1822728	0,0048712					
201	SPETTROY	LinRespSpec	Max	1,3008E-06	0,121792					
201	SPETTROZ	LinRespSpec	Max	7,0584E-08	1,4056E-08					

Eurolink S.C.p.A. Pagina 181 di 405

Data

20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev \$\$0669_F0.doc F0

301	SPETTROX	LinRespSpec	Max	0,178492	0,0048664
301	SPETTROY	LinRespSpec	Max	1,3304E-06	0,1217888
301	SPETTROZ	LinRespSpec	Max	5,64E-08	3,108E-08
401	SPETTROX	LinRespSpec	Max	0,17716	0,0048632
401	SPETTROY	LinRespSpec	Max	0,0001344	0,1217776
401	SPETTROZ	LinRespSpec	Max	1,7848E-08	5,52E-08

I risultati ottenuti per mezzo della modellazione statica equivalente mostrano, rispetto alla modellazione dinamica, dei valori di spostamenti e di reazioni orizzontali agli appoggi confrontabili, con discostamenti medi dell'ordine del 5% e massimi dell'ordine del 10%.

Eurolink S.C.p.A. Pagina 182 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

9.1.7 CALCOLO DELLE SOLLECITAZIONI

9.1.7.1 Sollecitazioni muro frontale

MURO FRONTALE: AZIONI GLOBALI

	Ν	М	T	Ν	М	T	
	(kN)	(kNm)	(kN)	(kN/m)	(kNm/m)	(kN)	
Combinazione 11	5.597	20.087	5.481	553	1.985	542	SLU STF
Combinazione 12	7.431	22.957	5.913	734	2.268	584	
Combinazione 13	6.602	22.708	5.913	652	2.244	584	
Combinazione 14	6.973	23.305	5.994	689	2.303	592	
Combinazione 15	6.351	23.119	5.994	628	2.284	592	
Combinazione 20	5.597	31.043	8.140	553	3.068	804	
							_
	Ν	М	T	Ν	М	T	
	(kN)	(kNm)	(kN)	(kN/m)	(kNm/m)	(kN)	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	6.274	17.045	4.292	620	1.684	424	
perm + sisma X + 0,30 sisma (Y+Z) schema 2	6.151	17.008	4.296	608	1.681	425	J
perm + 0,30 sisma (X+Z) + sisma Y schema 1	6.274	11.236		620	1.110		

Eurolink S.C.p.A. Pagina 183 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.1.7.2 Sollecitazioni fondazione

VERIFICHE DI STABILITA'

	N (kN)	Mrib (kNm)	M stab (kNm)	η	и (т)	e (m)	SL
Combinazione 1	30.917	-22.236	208.069	9,36	6,01	-0,01	
Combinazione 2	32.480	-24.812	212.365	8,56	5,77	0,23	•
Combinazione 3	31.773	-24.812	210.421	8,48	5,84	0,16	
Combinazione 4	32.089	-25.479	211.291	8,29	5,79	0,21	_
Combinazione 5	31.559	-25.479	209.833	8,24	5,84	0,16	350
Combinazione 6	32.089	-23.940	212.830	8,89	5,89	0,11	SLU GEO
Combinazione 7	31.559	-23.940	211.372	8,83	5,94	0,06	S
Combinazione 8	32.089	-24.168	211.291	8,74	5,83	0,17	
Combinazione 9	31.559	-24.168	209.833	8,68	5,88	0,12	•
Combinazione 10	32.540	-38.093	209.592	5,50	5,27	0,73	•
				,	,	,	
Combinazione 11	38.959	-25.702	259.064	10,08	5,99	0,01	
Combinazione 12	40.793	-28.726	264.108	9,19	5,77	0,23	
Combinazione 13	39.963	-28.726	261.826	9,11	5,83	0,17	
Combinazione 14	40.334	-29.509	262.847	8,91	5,79	0,21	
Combinazione 15	39.712	-29.509	261.136	8,85	5,83	0,17	STR
Combinazione 16	40.334	-27.662	264.694	9,57	5,88	0,12	SLU STR
Combinazione 17	39.712	-27.662	262.982	9,51	5,93	0,07	0)
Combinazione 18	40.334	-27.970	262.847	9,40	5,82	0,18	
Combinazione 19	39.712	-27.970	261.136	9,34	5,87	0,13	
Combinazione 20	40.861	-44.316	260.852	5,89	5,30	0,70	
Comb SLE 1	27.667	-17.158	182.388	10,63	5,97	0,03	
Comb SLE 2	29.025	-19.398	186.124	9,60	5,74	0,26	
Comb SLE 3	28.411	-19.398	184.434	9,51	5,81	0,19	
Comb SLE 4	28.686	-19.977	185.190	9,27	5,76	0,24	
Comb SLE 5	28.225	-19.977	183.922	9,21	5,81	0,19	Щ
Comb SLE 6	28.686	-18.609	186.558	10,03	5,85	0,15	SLE
Comb SLE 7	28.225	-18.609	185.290	9,96	5,91	0,09	
Comb SLE 8	28.686	-18.838	185.190	9,83	5,80	0,20	
Comb SLE 9	28.225	-18.838	183.922	9,76	5,85	0,15	
Comb SLE 10	29.064	-30.946	183.712	5,94	5,26	0,74	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	30.042	-84.557	184.849	2,19	3,34	2,66	
perm + sisma X + 0,30 sisma (Y+Z) schema 2	29.796	-84.557	184.173	2,18	3,34	2,66	SLV

Eurolink S.C.p.A. Pagina 184 di 405

RELAZIONE DI CALCOLO

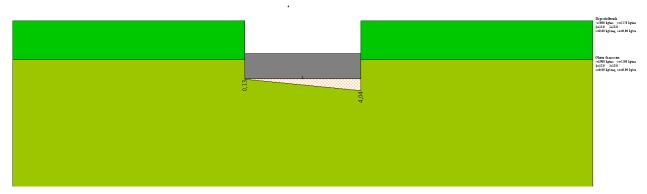
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

AZIONI GLOBALI NORME TECNICHE 2008

AZIONI GLOBALI NORME TECNICHE 2008	N	Mana	M trasv	Tlong	T troov	1
	(kN)	M long (kNm)	(kNm)	T long (kN)	T trasv (kN)	
Combinazione 1	30.917	-329	1.893	6.176	103	
Combinazione 2	32.480	7.325	2.776	6.655	112	1
Combinazione 3	31.773	5.028	4.534	6.655	112	
Combinazione 4	32.089	6.722	2.580	6.696	112	
Combinazione 5	31.559	4.999	3.899	6.696	112	SLU GEO
Combinazione 6	32.089	3.644	3.899	6.318	112	
Combinazione 7	31.559	1.921	3.899	6.318	112	(1)
Combinazione 8	32.089	5.411	2.580	6.535	112	1
Combinazione 9	31.559	3.688	3.899	6.535	112	1
Combinazione 10	32.540	23.740	1.993	9.128	112	
Combinazione 11	38.959	390	2.270	7.131	119	
Combinazione 12	40.793	9.375	3.304	7.694	130	
Combinazione 13	39.963	6.679	5.368	7.694	130	
Combinazione 14	40.334	8.667	3.074	7.742	130	
Combinazione 15	39.712	6.645	4.622	7.742	130	STF
Combinazione 16	40.334	4.974	4.622	7.289	130	SLU STR
Combinazione 17	39.712	2.951	4.622	7.289	130	
Combinazione 18	40.334	7.129	3.074	7.553	130	
Combinazione 19	39.712	5.106	4.622	7.553	130	
Combinazione 20	40.861	28.629	2.385	8.919	130	
Comb SLE 1	27.667	771	1.557	4.757	79	
Comb SLE 2	29.025	7.426	2.315	5.174	86	
Comb SLE 3	28.411	5.429	3.844	5.174	86	
Comb SLE 4	28.686	6.902	2.144	5.210	86	
Comb SLE 5	28.225	5.404	3.291	5.210	86	SLE
Comb SLE 6	28.686	4.166	3.291	4.874	86	S
Comb SLE 7	28.225	2.668	3.291	4.874	86	
Comb SLE 8	28.686	5.762	2.144	5.070	86	
Comb SLE 9	28.225	4.264	3.291	5.070	86	
Comb SLE 10	29.064	21.620	1.634	6.081	86	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	30.042	55.952	17.987	14.773	3.598	SLV
perm + sisma X + 0,30 sisma (Y+Z) schema 2	29.796	55.553	17.790	14.773	3.598	S

Eurolink S.C.p.A. Pagina 185 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Sollecitazione sezione A-A

Il momento flettente e il taglio sono calcolati rispetto al filo anteriore del muro frontale; si considera la situazione più gravosa corrispondente tra le combinazioni GEO, alla combinazione 11 in condizioni sismiche. Si riporta di seguito la pressione sul terreno lungo l'asse longitudinale della spalla:

$$M_{\text{SDA}} = \left[\left(3,\!37 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot \frac{2,\!05^2}{2} + \left(4,\!04 - 3,\!37 \right) \cdot 10 \cdot \frac{2,\!05^2}{3} \right] \cdot 10 = 671 \text{ kNm}$$

$$V_{\text{SDA}} = \left[\left(3,\!37 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot 2,\!05 + \left(4,\!04 - 3,\!37 \right) \cdot 10 \cdot \frac{2,\!05}{2} \right] \cdot 10 = 631 \, kN$$

Sollecitazione sezione B-B

Il momento flettente e il taglio sono calcolati rispetto al filo posteriore del muro frontale; si considera la situazione più gravosa corrispondente tra le combinazioni GEO, corrispondente alla combinazione 11 in condizioni sismiche:

$$\begin{split} &M_{SDB} = \left[\left(1,\!900 \cdot 8,\!24 + 2,\!500 \cdot 2,\!50 \right) \cdot \frac{7,\!95^2}{2} - 0,\!13 \cdot 10 \cdot \frac{7,\!95^2}{2} - \left(2,\!72 - 0,\!13 \right) \cdot 10 \cdot \frac{7,\!95^2}{6} \right] \cdot 10 = 3.783 \text{ kNm} \\ &V_{SDB} = \left[\left(1,\!900 \cdot 8,\!24 + 2,\!500 \cdot 2,\!50 \right) \cdot 7,\!95 - 0,\!13 \cdot 10 \cdot 7,\!95 - \left(2,\!72 - 0,\!13 \right) \cdot 10 \cdot \frac{7,\!95}{2} \right] \cdot 10 = 609 \text{ kN} \end{split}$$

Eurolink S.C.p.A. Pagina 186 di 405

RELAZIONE DI CALCOLO

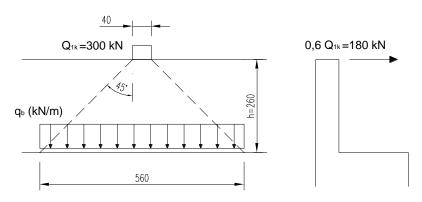
Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

9.1.7.3 Sollecitazioni paraghiaia

La verifica viene effettuata secondo l'approccio SLU di tipo STR indicato al paragrafo 6.5.3.1.1 delle "Norme Tecniche 2008".

La combinazione attinente alla verifica degli elementi strutturali risulta essere la combinazione 1 (A1+M1+R1) dell'approccio previsto dalla norma, in cui i coefficienti sono presi dalle tabelle 5.1.V.


Angolo di attrito del terreno $\phi = 35^{\circ}$

Peso specifico del terreno $\gamma t = 19,00 \text{ kN/m}^3$ Sovraccarico $q = 90,91 \text{ kN/m}^2$

Spinta del terreno alla base $p_1 = k_0 \cdot \sigma_v = 0.43 \cdot 19,00 \cdot 2,60 = 21,24 \text{ kN/m}^2$

Spinta del sovraccarico $p_2 = k_0 \cdot q = 0.43 \cdot 90.91 = 39 \text{ kN/m}^2$

Alla spinta della terra va aggiunto, in accordo con quanto specificato dalle NTC 2008 al punto 5.1.3.3.6 e ripreso dalla circolare n°617 del 2 febbraio 2009 al paragrafo C5.1.3.3.7.2 "Carichi orizzontali da traffico su rilevati e su terrapieni adiacenti al ponte", il carico verticale Q_{1k} ed un'azione orizzontale di frenamento pari a 0.6 Q_{1k} . Tali azioni si ripartiscono a 45° lungo l'altezza del paraghaiaia per arrivare alla pressoflessione di base ogni metro lineare, come descritto nell'immagine sequente.

Larghezza di influenza

 $b = 0.40 + 2 \cdot 2.60 = 5.60 \text{ m}$

Pressione dovuta a Q_{1k}

 $q_b = 300/5,60 = 53,57 \text{ kN/m}$

Approccio 1:

Combinazione 1 → Stato Limite Ultimo STR:

$$M_{\text{sd}} = 21,\!24 \cdot 1,\!35 \cdot \frac{2,\!60^2}{6} + 39 \cdot 1,\!50 \cdot \frac{2,\!60^2}{2} + 180 \cdot 1,\!50 \cdot \frac{2,\!60}{5,\!60} = 355 \text{ kNm}$$

Eurolink S.C.p.A. Pagina 187 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$V_{\text{sd}} = 21,\!24 \cdot 1,\!35 \cdot \frac{2,\!60}{2} + 39 \cdot 1,\!50 \cdot 2,\!60 + 1,\!50 \cdot \frac{180}{5,\!60} = 237 \text{ kN/m}$$

Combinazione sismica:

In accordo con quanto indicato nelle "Norme Tecniche 2008" al paragrafo 7.11.6.2.1, per le verifiche allo SLU si assume il coefficiente di spinta del terreno come segue, considerando la tabella 7.11.II.

$$k_h = \beta_m \cdot S \cdot \frac{a_{max}}{q} = 0,31 \cdot 1,00 \cdot 0,4373 = 0,136$$

Il coefficiente di spinta attiva in condizioni statiche e di sisma vale:

Coefficiente di spinta attiva: $k_a = 0,271$

Coefficiente di spinta statica + sisma: $k_{ah} = 0.339$

Spinta attiva del terreno alla base: $p_3 = k_a \cdot \sigma_v = 0,271 \cdot 19,00 \cdot 2,60 = 13,38 \text{ kN/m}^2$

Spinta attiva + sisma alla base: $p_4 = k_{ab} \cdot \sigma_v = 0.339 \cdot 19,00 \cdot 2,60 = 16,74 \text{ kN/m}^2$

Forze di inerzia: $F_i = k_b \cdot P = 0,4373 \cdot (1,00 \cdot 2,60 \cdot 25) = 28,42 \text{ kN}$

 $M_{sd} = 16,74 \cdot 1,00 \cdot \frac{2,60^2}{4} + 39 \cdot 0,20 \cdot \frac{2,60^2}{2} + 28,42 \cdot 1,00 \cdot \frac{2,60}{2} = 91,60 \text{ kNm / m}$

 $V_{sd} = 16,74 \cdot 1,00 \cdot 2,60 + 0,20 \cdot 39 \cdot 2,60 + 28,42 = 92,22 \text{ kN/m}$

Eurolink S.C.p.A. Pagina 188 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.1.8 VERIFICA DELLE SEZIONI

9.1.8.1 Muro frontale

FLESSIONE ALLA SEZIONE DI BASE

 $M_{\text{sd}} = 3.068 \; kNm$

 $N_{sd} = 553 \text{ kN}$

SEZIONE base (cm) 100

altezza (cm) 200

ARMATURA compressa \$\phi 26/10\$

SOLLECITAZIONI Msd = 3.068 kNm

Nsd = 553 kNm

INDICI DI RESISTENZA Mrd = 4.275 kNm

Nrd = 1.278 kNm

IR = 1,39

TAGLIO:

 $V_{sd} = 778 \text{ kN/m}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (VRd): 56341.523
Indice di resistenza: 0.98

Verifica delle bielle compresse

Taglio resistente ultimo (VRcd): 722226.313 ctg(Theta): 1.00 Indice di resistenza: 0.08

Verifica con armatura trasversale

Taglio attribuito all'armatura (VRsd): 55100.001

Armatura trasversale per unita' di lunghezza (Asw,cm²/m): 7.88

Applicare solo i minimi di norma perchè la

sezione non richiede armatura trasversale a taglio (V \leq -Vrdu1)

Staffe a 2 braccia

Ø8/80.0cm

Eurolink S.C.p.A. Pagina 189 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

VERIFICA TENSIONALE (SLE):

Si procede alla verifica tensionale della sezione di base che risulta essere maggiormente sollecitata.

Comb. Quasi Permanente

	N	M long	M trasv
	(kN)	(kNm)	(kNm)
Comb SLE 4	25.071	2.912	2.003

SEZIONE base (cm) 1012

altezza (cm) 200

ARMATURA compressa \$\phi 26/10\$

TENSIONI cls $\sigma_c = (N/mm^2)1,5 < 0,45 f_{ck} = 0,45x33,20 = 14,94$

ferro $\sigma_f = (N/mm^2)22 < 0.80 \text{ f}_{yk} = 0.80 \text{ x} 450 = 360$

Eurolink S.C.p.A. Pagina 190 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

Verifiche fondazione 9.1.8.2

FLESSIONE ALLA SEZIONE A-A:

 $M_{sd} = 671 \, kNm$

SEZIONE base (cm) 100

> altezza (cm) 250

ARMATURA compressa φ26/10

> tesa φ26/10

SOLLECITAZIONI Msd =671 kNm

INDICI DI RESISTENZA Mrd =5.250 kNm

IR = 7.82

TAGLIO ALLA SEZIONE A-A:

 $V_{sd} = 631 \, kN$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (Vrdu1): 68665.141 Indice di resistenza: 0.92

Armatura trasversale per unita' di

lunghezza (Asw, cm²/m): 9.77

Staffe a 4 braccia (in accordo con i minimi di norma per fondazioni): ø20/30cm

Eurolink S.C.p.A. Pagina 191 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

FLESSIONE ALLA SEZIONE B-B:

 $M_{sd} = 3.783 \text{ kNm}$

SEZIONE base (cm) 100

altezza (cm) 250

ARMATURA compressa \$\phi26/10\$

SOLLECITAZIONI Msd = 3.783 kNm

INDICI DI RESISTENZA Mrd = 5.250 kNm

IR = 1,39

TAGLIO ALLA SEZIONE B-B:

 $V_{sd} = 609 \text{ kN}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (Vrdul): 68665.141 Indice di resistenza: 0.89

Armatura trasversale per unita' di

lunghezza (Asw, cm²/m): 9.77

Staffe a 4 braccia

(in accordo con i minimi di norma per fondazioni): ø20/30cm

Eurolink S.C.p.A. Pagina 192 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.1.8.3 Paraghiaia

Pressoflessione alla sezione di base

 $M_{sd} = 355 \text{ kNm}$

SEZIONE base (cm) 100
altezza (cm) 50
ARMATURA compressa \$\phi 24/20\$

tesa φ24/20

SOLLECITAZIONI Msd = 355 kNmNsd = 54 kN

INDICI DI RESISTENZA Mrd = 381 kNm

IR = 1.08

TAGLIO:

 $V_{sd} = 237 \text{ kN}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (VRd): 18441.330 Indice di resistenza: 1.02

Verifica delle bielle compresse

Taglio resistente ultimo (VRcd): 166667.609 ctg(Theta): 1.00 Indice di resistenza: 0.11

Verifica con armatura trasversale

Taglio attribuito all'armatura (VRsd): 23700.001

Armatura trasversale per unita' di
lunghezza (Asw,cm²/m): 11.72
Staffe a 2 braccia
: Ø10/10cm

FESSURAZIONE (SLE):

Si considerano condizioni ambientali aggressive e la presenza di armature poco sensibili:

COMBINAZIONE FREQUENTE

- combinazione (frequente):

$$F_{d} = g_{1} + g_{2} + \psi_{1} (q_{1} + q_{2})$$

Eurolink S.C.p.A. Pagina 193 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

 $W_D \leq W_2 = 0.3 \text{ mm}$

 $M = 1,00 \times 21,24 \times 2,60^2 / 6 + 1,00 \times 0,75 \times 39 \times 2,60^2 / 2 = 123 \text{ kNm}$

VERIFICA A FESSURAZIONE:

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 50

ARMATURA compressa \$\phi 20/20\$

tesa ϕ 20/20

SOLLECITAZIONI Msd = 123 kNm

TENSIONI cls $\sigma_c = (N/mm^2)$ 3,8

ferro teso $\sigma_f = (N/mm^2)$ 180

ampiezza fess. $W_D = (mm)0,09 < W_3$

VERIFICA SODDISFATTA

COMBINAZIONE QUASI PERMANENTE

- combinazione (quasi permanente):

$$F_d = g_1 + g_2 + \psi_2(q_1 + q_2)$$

$$W_D \le W_1 = 0.2 \text{ mm}$$

 $M = 1,00 \times 21,24 \times 2,60^2 / 6 + 1,00 \times 0,00 \times 39 \times 2,60^2 / 2 = 23,9 \text{ kNm}$

VERIFICA A FESSURAZIONE:

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 50

ARMATURA compressa \$\phi 20/20\$

tesa ϕ 20/20

SOLLECITAZIONI Msd = 23,9 kNm

TENSIONI cls $\sigma_c = (N/mm^2)$ 0,5

ferro teso $\sigma f = (N/mm^2)$ 2,9

ampiezza fess. $w_D = (mm)$ 0,00

VERIFICA SODDISFATTA

Eurolink S.C.p.A. Pagina 194 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.1.9 VERIFICA DEI MURI ANDATORI PREFABBRICATI

Per il sostegno del rilevato stradale nel tratto della Rampa 1 oltre i muri laterali della spalla SpA-r si utilizzano dei muri prefabbricati in c.a. su fondazioni dirette per uno sviluppo lineare totale di 10,00 m + 2,50 m, caratterizzati da un'altezza netta dell'elevazione massima pari a 6,00 m. Si riporta di seguito la verifica dei muri in questione.

CARATTERISTICHE DEI MATERIALI

CALCESTRUZZO

STATE OF THE PARTY			
CALCESTRUZZO PREFABBRICATO PER PANNELLI – C35/45 resistenza caratteristica cilindrica resistenza caratteristica cubica valore medio resistenza caratteristica cilindrica valore medio resistenza a trazione assiale modulo di elasticità secante	fck = fck(c) = fcm = fctm = Ecm=	450 430 32.1	kg/emq kg/emq kg/emq kg/emq kg/emq
CALCESTRUZZO IN OPERA PER SUOLA DI STABILIZZAZIONE - C20.	25		
resistenza caratteristica cilindrica resistenza caratteristica cubica valore medio resistenza caratteristica cilindrica valore medio resistenza a trazione assiale modulo di elasticità secante	fck = fck(c) = fcm = fctm =	250 280 22.1	kg/emq kg/emq kg/emq kg/emq kg/emq
CALCESTRUZZO IN OPERA PER PIANO D'APPOGGIO – C16/20 resistenza caratteristica cilindrica resistenza caratteristica cubica valore medio resistenza caratteristica cilindrica valore medio resistenza a trazione assiale modulo di elasticità secante	$\mathbf{fctm} =$	200 240 19,05	kg/emq kg/emq kg/emq kg/emq kg/emq
ACCIAIO B450C Tensione caratteristica di snervamento Tensione caratteristica di rottura	fyk = ftk =		kg/cmq kg/cmq

Eurolink S.C.p.A. Pagina 195 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

PARAMETRI GEOTECNICI

TERRENO DI RIEMPIMENTO

 $\Phi = 35^{\circ}$ angolo di attrito interno $\gamma = 1800 \text{ daN/mc}$ peso specifico del terreno

c'= 0 daN/cmq coesione

3.2 TERRENO DI FONDAZIONE

$$\begin{split} \Phi &= 38^{\circ} & \text{angolo di attrito interno} \\ \gamma &= 1800 \; \text{daN/mc} & \text{peso specifico del terreno} \end{split}$$

c'= 0 daN/cmq coesione

Al falda si assume a profondità non significative per le verifiche dei muri.

CARATTERIZZAZIONE DELLA STRUTTURA

Secondo quanto prescritto dal D.M. 14/01/2008, ai fini delle verifiche di sicurezza di una struttura devono essere definiti i seguenti parametri:

- VITA NOMINALE : vista l'importanza strategica dell'opera si considera V_N≥100 anni;
- CLASSE D'USO : IV
- PERIODO DI RIFERIMENTO (per l'azione sismica) : 200 anni.

CLASSIFICAZIONE DELLE AZIONI

AZIONI PERMANENTI (G)

- Pesi Propri : prefabbricato, fondazione e terreno sulla fondazione;
- Spinte del terreno: l'interazione terreno-struttura è tale da consentire che si sviluppi un regime di spinta attiva.

AZIONI VARIABILI (Q)

• Sovraccarico accidentale dovuto alla presenza di veicoli di 2000 daN/mq (Q1).

AZIONI SISMICHE (E)

Parametri sismici adottati :

TEMPO DI RITORNO:
 CATEGORIA SOTTOSUOLO:
 CATEGORIA TOPOGRAFICA:
 FATTORE DI AMPLIFICAZIONE TOPOGRAFICA:
 FATTORE DI AMPLIFICAZIONE STRATIGRAFICA:
 ACC. ORIZZ. MASSIMA SU SITO RIGIDO:
 1898 anni
 B
 T1
 1
 4
 4
 5
 6
 7
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 <

COMBINAZIONI DELLE AZIONI

Con riferimento al D.M. 14/01/2008 – par. 2.5.3 e tabella 2.5.I, si riportano i coefficienti di combinazione adottati:

Eurolink S.C.p.A. Pagina 196 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

COMBINAZIONI SLU

COMBINAZIONE	PERMANENTI		ACCID	ACCIDENTALI VENTO SISMA U		UR	URTO			
	γ	Ψ	y	Ψ	γ	Ψ	γ	Ψ	y	Ψ
Comb A1+M1	1.3	1.0	1.5	1.0	1.5	0.6	0.0	0.0	0.0	0.0
Comb A1+M1	1.3	1.0	1.5	0.7	1.5	1.0	0.0	0.0	0.0	0.0
Comb A2+M2	1.0	1.0	1.5	1.0	1.5	0.6	0.0	0.0	0.0	0.0
Comb A2+M2	1.0	1.0	1.5	0.7	1.5	1.0	0.0	0.0	0.0	0.0
Comb EQ	1.1	1.0	1.5	1.0	1.5	0.6	0.0	0.0	0.0	0.0
Comb EQ	1.1	1.0	1.5	0.7	1.5	1.0	0.0	0.0	0.0	0.0
Sisma (ag/g=0.05)	1.0	1.0	1.0	0.3	1.0	0.3	1.0	0.0	0.0	0.0
URTO	1.0	1.0	1.0	0.3	1.0	0.3	0.0	0.0	1.0	0.0

COMBINAZIONI SLE

COMBINAZIONE	PERMANENTI		ACCIDENTALI VENTO SISMA		SISMA		TO			
	γ	Ψ	y	Ψ	γ	¥	γ	Ψ	y	Þ
RARA	1.0	1.0	1.0	1.0	1.0	0.6	0.0	0.0	0.0	0.0
FREQUENTE	1.0	1.0	1.0	0.5	1.0	0.2	0.0	0.0	0.0	0.0
Q. PERMANENTE	1.0	1.0	1.0	0.3	1.0	0.0	0.0	0.0	0.0	0.0

CARATTERISTICHE GEOMETRICHE DEL MURO

MURO DI ALTEZZA FINO A 10.10 m

L'analisi viene condotta prendendo come riferimento un elemento modulare prefabbricato di larghezza 2.50 m, considerando il contributo delle due nervature di irrigidimento a tergo del paramento verticale. Le nervature di irrigidimento di spessore 15/18 cm presentano un primo tratto a sezione costante di altezza h=30 cm ed un secondo ad altezza variabile secondo un'inclinazione del 20% sulla verticale. Il paramento può essere verticale o inclinato fino ad un massimo del 10%, anche se a favore di sicurezza nel dimensionamento si considera sempre verticale. Le due nervature sono collegate fra loro da una soletta di spessore costante s=10 cm.

I bordi presentano un giunto "a sella" maschio-femmina in modo da trattenere i materiali e da permettere il montaggio degli elementi anche seguendo una curva, sia concava che convessa.

Alla base del muro le nervature presentano ciascuna un'apertura trasversale per il passaggio delle armature della trave di collegamento che si realizza fra i pannelli; l'altezza dell'apertura viene determinata in base all'altezza della suola di stabilizzazione, assicurando un adeguato ricoprimento dell'armatura superiore della trave.

I muri in oggetto sono tipo "T" dove il tipo di fondazione è sia a monte che a valle.

VERIFICHE DI STABILITA' E VERIFICHE STRUTTURALI -SLU

Secondo quanto riportato dal D.M. 14/01/2008 :

Eurolink S.C.p.A. Pagina 197 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

$$E_d \leq R_d \tag{6.2.1}$$

dove E_d è il valore di progetto dell'azione o dell'effetto dell'azione

$$E_{d} = E \left[\gamma_{P} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 (6.2.2a)

ovvero

$$\mathbf{E}_{\mathbf{d}} = \gamma_{\mathbf{E}} \cdot \mathbf{E} \left[\mathbf{F}_{\mathbf{k}}; \frac{\mathbf{X}_{\mathbf{k}}}{\gamma_{\mathbf{M}}}; \mathbf{a}_{\mathbf{d}} \right], \tag{6.2.2b}$$

con $\gamma_E = \gamma_F$, e dove R_d è il valore di progetto della resistenza del sistema geotecnico:

$$R_d = \frac{1}{\gamma_R} R \left[\gamma_F F_k; \frac{X_k}{\gamma_M}; a_d \right]. \qquad (6.2.3)$$

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
 - stabilità globale del complesso opera di sostegno-terreno;
 - scorrimento sul piano di posa;
 - collasso per carico limite dell'insieme fondazione-terreno;
 - ribaltamento;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali,

accertando che la condizione (6.2.1) sia soddisfatta per ogni stato limite considerato.

Le verifiche sono condotte secondo l'approccio 1:

- Combinazione 1 : (Al+Ml+R1)
- Combinazione 2 : (A2+M2+R2).

Per la sola verifica a ribaltamento si considera la sola combinazione (EQ+M2+R2).

VERIFICA A CAPACITA' PORTANTE

La valutazione della capacità portante delle fondazioni superficiali viene condotta in accordo all'equazione:

$$q_{lim} = 0.5 \; \gamma_c \; B' \; N_\gamma \; s_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; + \; c' \; N_c \; s_c \; d_c \; i_c \; b_c \; g_c \; + \; q \; N_q \; s_q d_q \; i_q \; b_q \; g_q$$

Le espressioni che forniscono i valori dei fattori di capacità portante (N) e dei fattori correttivi (s, i, b, g) sono riportate nella tabella seguente:

Fattori di capacità portante	Ne Ny N _q	$(Nq-1)cot\phi$ $1.5*(Nq-1)tan\phi$ $e^{\pi tan\phi}tan^2(45+\phi/2)$	Hansen Hansen Hansen
Fattor i corret tivi	forma S _o Sγ	l per fondazioni nastriformi l per fondazioni nastriformi	Hansen Hansen

Eurolink S.C.p.A. Pagina 198 di 405

Data

20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev SS0669_F0.doc F0

S ₀	l per fondazioni nastriformi	Hansen
approfondimento	•	
d _e	1+0,4k	Hansen e Vesic
dγ	1	Hansen e Vesic
d _q	1+2tanφ(1-sinφ)k	Hansen e Vesic
Inclinazione carico		
i _e	iq -(1-iq)/(Nq-1)	Hansen e Vesic
ĺ _v	(1-(0,7*H)/(N+B'*c*cotg\(\phi\))^5	Hansen
ia	(1-(0,5*H)/(N+B**c*cotgf))^5	Hansen
Inclinazione fondazione*		
b _e	1-η/147°	Hansen
b _y	exp(-2,7*ηtanφ)	Hansen
b _q	exp(-2*ηtsnφ)	Hansen
Inclinazione piano campagna**		
g _o	gq-[(1-gq)/(Nc* tanφ)]	Hansen
gy	(1- tanβ)^2	Hansen
gq	gy	Hansen

^{*} η = inclinazione base fondazione

Tabella 1 – Coefficienti per il calcolo della capacità portante in condizioni drenate

Le formule utilizzate si riferiscono alla fondazione efficace equivalente ovvero quella fondazione rispetto alla quale il carico verticale N risulta centrato; la fondazione equivalente è caratterizzata dalle dimensioni B' e L' valutate sulla base dei criteri proposti da Meyerhof.

Il coefficiente di sicurezza a capacità portante è dato da:

 $Fs = \underbrace{q lim - q}_{q a mm - q}$

dove:

q_{lin} = capacità portante limite del terreno

= pressione verticale efficace agente alla quota di imposta della fondazione

qamm = pressione verticale uniforme sulla fondazione di area ridotta (N/Br)

F_S = coefficiente di sicurezza (R1;R2;R3<kp)

COEFFICIENTI SULLE AZIONI 7F

Tabella 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale % (o %)	EQU	(AI) STR	(A2) GEO
Permanenti	Favorevole	1/	0,9	1,0	1,0
	Sfavorevole	YG1	1,1	1,3	1,0
Permanenti non strutturali (l)	Favorevole	1000	0,0	0,0	0,0
r ermanenti non siruttuati	Sfavorevole	γο	1,5	1,5	1,3
Variabili	Favorevole	M	0,0	0,0	0,0
Variaotti	Sfavorevole	YQi	1,5	1,5	1,3

Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potramo adottare gli stessi coefficienti validi per le azioni permanenti.

Eurolink S.C.p.A. Pagina 199 di 405

^{**}β = inclinazione pendio (dipende dall'angolo d'inclinazione del rilevato e dall'altezza del rilevato)

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 \$S0669_F0.doc
 F0
 20/06/2011

COEFFICIENTI SUI MATERIALI YM

Tabella 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	%:		
Tangente dell'angolo di resistenza al taglio	tan Q'⊾	76	1,0	1,25
Coesione efficace	c′k	Ye	1,0	1,25
Resistenza non drenata	c _{tak}	γα	1,0	1,4
Peso dell'unità di volume	У	γ̈́γ	1,0	1,0

COEFFICIENTI SULLE RESISTENZE YR

Tabella 6.5.I - Coefficienti parziali 🎠 per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno.

VERIFICA	COEFFICIENTE PARZIALE (R1)	COEFFICIENTE PARZIALE (R2)	COEFFICIENTE PARZIALE (R3)
Capacità portante della fondazione	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.4$
Scorrimento	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1,1$
Resistenza del terreno a valle	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.4$

VERIFICHE S.L.E.

Due sono le verifiche condotte:

- 1. Verifiche a fessurazione;
- 2. Verifiche delle tensioni di esercizio

VERIFICA A FESSURAZIONE

Secondo le prescrizioni riportate nella norma UNI EN 206-1 il muro Paver può essere soggetto alle condizioni ambientali corrispondenti alle seguenti classi di esposizione : XD1 e XC3 (per le classi XF e XA è necessario fare riferimento ai parametri qualitativi del calcestruzzo.

Per la definizione del limite di apertura delle fessure si assumono i seguenti parametri:

- Condizioni ambientali aggressive
- Armature poco sensibili

quindi

combinazione frequente : wk=1.7*wm<w2=0,3 mm combinazione quasi permanente : wk=1.7*wm<w3=0,2 mm

VERIFICA DELLE TENSIONI DI ESERCIZIO

Secondo quanto riportato dal D.M. 14/01/2008 :

Eurolink S.C.p.A. Pagina 200 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

4.1.2.2.5 Verifica delle tensioni di esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

4.1.2.2.5.1 Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

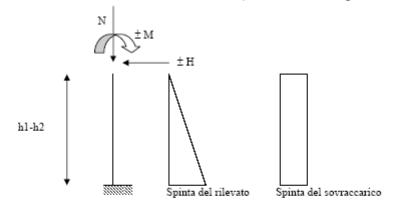
La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

$$\sigma_c \le 0.60 \text{ f}_{ck}$$
 per combinazione caratteristica (rara) (4.1.40

$$\sigma_c \le 0.45 \text{ f}_{cb}$$
 per combinazione quasi permanente. (4.1.41)

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.

4.1.2.2.5.2 Tensione massima dell'acciaio in condizioni di esercizio


Per l'acciaio avente caratteristiche corrispondenti a quanto indicato al Cap. 11, la tensione massima, σ_i , per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_{\rm s} \leq 0.8 \, f_{\rm yk}$$
. (4.1.42)

VERIFICHE PANNELLO PREFABBRICATO

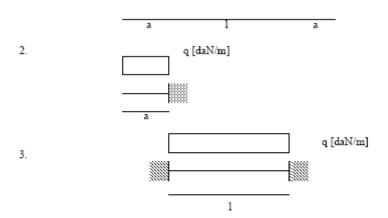
VERIFICA A FLESSIONE NEL PIANO VERTICALE

Si adotta lo schema statico di mensola incastrata nella fondazione, secondo lo schema seguente:

Viene condotta una verifica a presso flessione di un'equivalente sezione a T, con una sola nervatura data dalla somma delle due nervature, a partire dal bordo superiore del paramento prefabbricato, con passo di esplorazione "d"

VERIFICA A FLESSIONE NEL PIANO ORIZZONTALE

Eurolink S.C.p.A. Pagina 201 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

In quanto per le caratteristiche geometriche del pannello è sempre a>1/2 lo schema di carico più gravoso si ha per la condizione 2, per cui nel calcolo si adotta lo schema di mensola incastrata nella nervatura. Viene valutato lo sforzo di flessione a cui sono sottoposti i due sbalzi laterali del pannello, alla sezione d'attacco con le nervature verticali.

VERIFICA A TAGLIO

Secondo quanto riportato dal D.M. 14/01/2008 :

4.1.2.1.3.2 Elementi con armature trasversali resistenti al taglio

La resistenza a taglio $V_{8.4}$ di elementi strutturali dotati di specifica ammatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le \operatorname{ctg} \theta \le 2.5$$
 (4.1.16)

La verifica di resistenza (SLU) si pone con

$$V_{Ed} \ge V_{Ed}$$
 (4.1.17)

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin\alpha$$
 (4.1.18)

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola

Eurolink S.C.p.A. Pagina 202 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento Rev Data SS0669_F0.doc F0 20/06/2011

$$V_{gcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$
(4.1.19)

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = \min \left(V_{Rd}, V_{Rd} \right) \tag{4.1.20}$$

dove d, b_w e σ_{cp} hanno il significato già visto in § 4.1.2.1.3.1. e inoltre si è posto:

area dell'armatura trasversale;

interasse tra due armature trasversali consecutive;

CT. angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;

f'ca resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd} = 0.5 \cdot f_{cd}$);

coefficiente maggiorativo pari a per membrature non compresse $\begin{array}{lll} 1 + \sigma_{ep}/f_{ed} & per & 0 \leq \sigma_{ep} \leq 0.25 \ f_{ed} \\ 1.25 & per \ 0.25 \ f_{ed} \leq \sigma_{ep} \leq 0.5 \ f_{ed} \\ 2.5(1 - \sigma_{ep}/f_{ed}) & per \ 0.5 \ f_{ed} \leq \sigma_{ep} \leq f_{ed} \end{array}$

SOLETTA DI FONDAZIONE

VERIFICA A FLESSIONE

Si verifica la sezione resistente della soletta di fondazione, sollecitata a momento flettente per effetto del carico del terreno insistente su di essa, del sovraccarico e della reazione scambiata all'interfaccia con il terreno d'appoggio.

Si adotta lo schema statico di mensola incastrata nel cordolo armato passante nei fori delle nervature stesse.

Eurolink S.C.p.A. Pagina 203 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

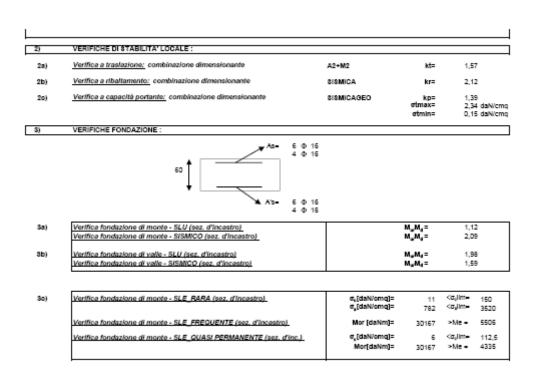
Rev

Data

F0 20/06/2011

AZIO	ONE TECNICA PER MURO DI SOSTEGNO PREFABBRICAT	OH=mt.		
RO T	IPO T			
	DATI DI PROGETTO :			
0	Dati geotecnici			
	angolo di attrito interno in gradi	gradi	(4)	35
	peso specifico	daN/mc	(Y)	1800
	angolo di attrito terra-muro valore prudenziale	gradi	(4)	23
	angolo di inclinazione piano di campagna	gradi	(8)	0
	coesione	daN/cm ²	(0)	0
0	Carichi agenti			
	sovraccarico variabile stradale/ferroviario	daN/mg	(ga)	2000
	sovraccarico permanente	daN/mg	(QD)	
	Forza orizzontale in testa var. (positivo tende lato monte)	daN per pannello	(fv)	0
	Forza orizzontale in testa ecc. (positivo tende lato monte)	daN per pannello	(fe)	0
	sovraccarico sulla fondazione a monte I1	dalN/mg	(q1)	0
	momento in testa var. (positivo tende lato monte)	daNm per pannello	(momv)	0
	momento in testa ecc. (positivo tende lato monte)	daNm per pannello	(mome)	0
	Forza verticale in testa (positivo di compressione)	daN perpannello	N	0
	braccio di N rispetto ai paramento vert (+ verso nervature)	m	bracolo	0
0	Dati sismici		SLV	
	classe d'uso IV		(Cu)	2
	vita nominale	anni	(Vn)	100
	periodo di riferimento	anni	(Vr)	200
	tempo di ritorno	anni	(Tr)	1898
	accelerazione orizzontale massima su un sito rigido	(a)	(ag(g))	0,4373
	fattore di ampificazione spettrale		F0	2,62
	periodo d'inizio	sec	To*	0,33
	categoria sottosuolo			В
	categoria topografica			T1
	fattore di ampificazione stratigrafica fattore di ampificazione topografica		86 St	1,2
9	Morfologia del muro			
"	altezza del muro	mt	(h1)	6.6
	distanza tra il punto di ribaltamento		(11.7)	0,0
	e Il baricentro G dell'elemento prefabbricato	mt	(XG)	1.32
	distanza tra il barcentro G dei pannello e soletta	mt		0.22
	peso elemento prefabbricato	daN	(P)	6550
	angolo di inclinazione parete prefabbricato	gradi		
	rispetto l'orizzontale in gradi		(D)	90
	larghezza elemento prefabbricato	m	(b1)	2,50
	dimensione appoggio muro	m	(appoggio)	1,32
	altezza sezione in sommità (tratto a sez. costante)	m		0,30
	pendenza nervatura	m	(pendenza)	20%
	larghezza nervatura/e	m	(5)	0,36
	spessore soletta	m	(501)	0,1
9	Morfologia della fondazione			
	spessore massimo soletta di fondazione	m	(h2)	0,60
	spessore minimo soletta di fondazione la monte	m	(h3)	0,60
	spessore minimo soletta di fondazione la valle	m	(h4)	0,60
	larghezza fondazione	m	(0)	4,00
	dimensione sbalzo anteriore	m	(sbalzo)	1,10
	larghezza suola fondazione a monte	m	(11)	2,80
	larghezza suola fuori nervatura	m	(fo)	1,70
	larghezza softofondazione	m	(If)	0,00
	altezza sottofondazione sbalzo a valle sottofondazione	m	(ht)	0,00
		m	(sbf)	0,00
ŋ	Dati geotecnici terreno di fondazione angolo di attrito interno in gradi	gradi	(4)	18
	angolo di attrito interno in gradii peso specifico	gradi daN/mc	(4) (Y)	1800
	coesione	daN/cm ²		1800
	COESIGNE	Galvielli	(0)	

Eurolink S.C.p.A. Pagina 204 di 405



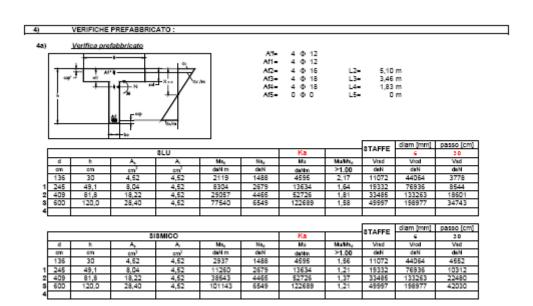
RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

Eurolink S.C.p.A. Pagina 205 di 405

4b)


PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0 Data

20/06/2011

RA	RA		EQUENTE	FF						
σ ₄ <3520	σ _ε <210	wk<0,3				Ka		SLE		
G,	σ_{ϵ}	wk	atm	Me	8m	Mor	A	A,	h	d
daN/cmq	daN/cmq	mm		daMm	mm	daN m	cm ²	cm ²	om	cm
1146	14	Mor>Me	-	948	-	2453	4,52	4,52	30	136
1541	18	Mor>Me	-	4178	-	7110	4,52	8,04	49,1	245
1490	20	Mor>Me	-	16214	-	22620	4,52	18,22	81,8	409
1723	27	Mor>Me	-	46442	-	49183	4,52	28,40	120,0	600
		MANENTE	2UASI PERI							
	σ _ε <157,5	wk<0,2								
	σ,	wk	eam-ecm	Me						
	daN/cmq	mm		daNm						
	7	Mor>Me	-	740						
	11	Mor>Me	-	3502						
		Mcr>Me	-	14336						
	14	DOMEST - PARKET								

Verifica soletta nel plano orizzontale SLU Verifica soletta nel plano orizzontale SISMICO	10 4	Þ	6		M _# M ₄ =	1,48	
Verifica soletta nel piano orizzontale - SLE RARA				σ _ε [daN/omq]= σ _ε [daN/omq]=	51 1887	<σ _e lim= <σ _e lim=	210 3520
Verifica soletta nel plano orizzontale - SLE FREQUENTE				Mor (daNm)=	117	>Me =	88
Verifica soletta nel piano orizzontale - SLE QUASI PERMANE	NTE			σ _ε [daN/omq]= Mor[daNm]=	45 117	<σ _c lim= >Me =	157,5 85

Eurolink S.C.p.A. Pagina 206 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

9.2 ANALISI DELLA SPALLA A-p

La spalla A-p è costituita da una ciabatta di fondazione a base a parallelogramma di dimensioni 16,50 x 21,00 m, di spessore 2,50 m e da un muro frontale di spessore pari a 2,60 m. Sul muro frontale corre un muro paraghiaia caratterizzato da spessore 0,80 m ed altezza pari a 3,40 m. Ai lati della spalla sono presenti due muri andatori di lunghezza pari a 12,40 m, spessore di 1,40 m e altezza pari a 12,62 m, che poggiano sulla medesima fondazione del muro frontale.

La spalla A-p è rappresentata nella figura seguente:

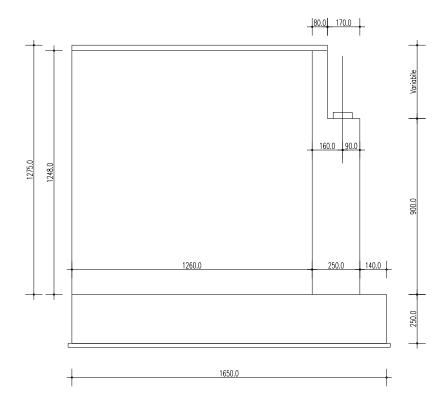


Figura 9.1 – Vista laterale Spalla A-p.

Si riporta di seguito un tabulato riassuntivo della geometria delle strutture.

Eurolink S.C.p.A. Pagina 207 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

CARATTERISTICHE GEOMETRICHE DELLA SPALLA

Descrizione		X	Y	Z	n	γ	Peso	dx	bx	M long
		(m)	(m)	(m)		(kN/mc)	(kN)	(m)	(m)	(kNm)
fondazione	1	16,50	21,00	2,50	1	25	21.656	0,00	8,25	178.664
muro frontale	2	2,60	14,00	9,00	1	25	8.190	1,50	2,80	22.932
ringrosso	3	0,00	0,00	0,00	0	25	0	0,00	0,00	C
paraghiaia	4	0,80	14,00	3,40	1	25	952	3,30	3,70	3.522
muri laterali	5	12,40	1,40	12,62	2	25	10.954	4,10	10,30	112.828
terra	6	12,40	14,45	12,40	1	19,0	42.215	4,10	10,30	434.813
							83 067			752 750

altezza fronte vento ponte scarico (m) 2,78 altezza fronte vento ponte carico (m) 5,64 distanza tra asse appoggi e bordo anteriore fondazione (m) 2,40 distanza tra bordo anteriore fondazione e baricentro dei pali (m) 8,25

Eurolink S.C.p.A. Pagina 208 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

9.2.1 **ANALISI DEI CARICHI**

La spalla è soggetta dalle sollecitazioni derivanti dall'impalcato riportati nel capitolo 8 e dalle spinte delle terre. Di seguito si riassumono i carichi globali gravanti:

AZIONI	TRASMESSE	DALL'IMPA	LCATO
---------------	-----------	-----------	-------

momenti longitudinali rispetto al bordo anteriore

	Ν	H long	H trasv	M long	M trasv					
	(kN)	(kN)	(kN)	(kNm)	(kNm)					
peso strutturale	1.959	0	0	4.702	27					
permanenti	752	0	0	1.805	417					
mezzi schema 1	2.600	0	0	6.240	4.776					
mezzi schema 2	1.750	0	0	4.200	6.756					
folla schema 1	0	0	0	0	0					
folla schema 2	6	0	0	15	408	Mt	Н		٥	rad
frenamento	0	170	0	-1.955	0		170	Obliquità	0,00	0,00
attrito / reazione gommoni ?T	0	135	0	-1.553	0		135			
vento: impalcato scarico	555	0	180	0	-3.729	1.409	180			
vento: impalcato carico	471	0	380	0	-6.875	1.433	380			
temperatura	363	0	0	0	0					
ritiro	100	0	0	0	0					
azione centrifuga	0	0	0	0	0					
sisma	1.564	1.231	699	14.157	8.178					

Eccentricità dei carichi verticali (mt)

PARAMETRI SISMICI

PARAMETRI TERRENO

accelerazione di picco	αg/g=	0,4373	Peso specifico del terreno:	19,0	kN/m³	γ	
coefficiente orizzontale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno rilevato	0,611	rad	ф	35,00
coefficiente verticale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno di base	0,663	rad	ф	38,00
	a _{max} =	0,437	Angolo di inclinazione del muro	1,571	rad	Ψ	90,00
	βm	0,31					
	Kh=	0,136	Angolo di inclinazione del terreno	0,000	rad	β	0,00
Kv=0,5 Kh	Kv=	0,068	Angolo di resistenza terra-muro	0,407	rad	δ	23,33
	$\theta_1 =$	0,126	Coefficiente di spinta del terreno	K1=	0,325		
	θ2=	0,144		K2=	0,339		

AZIONI	TRASMESSE	DAL	TERRENO

				_		-,	,	-,		
	р	H long	M long	1	AZIONI INE	RZIALI S	IS. TRAS	MESSE DA	LLA SPAL	LA
	(kN/mq)	(kN)	(kNm)			N	H long	H trasv	M long	М
Ed= spinta terreno sismica+statica		10.696	-59.812	1		(kN)	(kN)	(kN)	(kNm)	(F
spinta a riposo	120,72	12.591	-62.536		Sisma +	18.359	36.719	36.719	245.212	24
spinta attiva	76,72	8.002	-39.741		Sisma -	-9.129	-18.258	-18.258	-84.606	-8
spinta passiva plinto (50%)	154,63	2.030	1.691							
spinta per sovraccarichi	3,84	801	-5.964		_					
	р	N vert	H long	M long						
	(kN/mq)	(kN)	(kN)	(kNm)						
Sovraccarico					Largh	nezza pav	imentato	11,20	m	
sommità	64,85	1.789	3.751	-27.943	3 numero stese 3		3			
piede muro	19 48					angolo c	liffusione	30.00	0	

Per le spinte	inerziali ,	$\beta m=1$
Kx=	0,437	Ky:

		Ν	H long	H trasv	M long	M trasv	
		(kN)	(kN)	(kN)	(kNm)	(kNm)	
	Sisma +	18.359	36.719	36.719	245.212	245.212	
	Sisma -	-9.129	-18.258	-18.258	-84.606	-84.606	
	_						
ng							
1)							
	Largh	nezza pav	imentato	11,20	m		
43		nume	ero stese	3			
		angolo d	liffusione	30,00	0,52		

Ky= 0,437

Kv=

Eurolink S.C.p.A. Pagina 209 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

9.2.1.1 Considerazioni sul parametro β_m

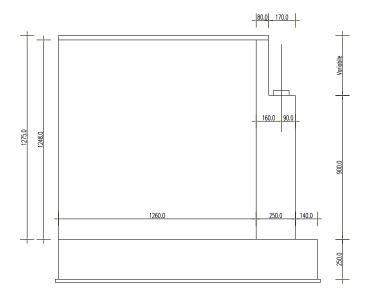
All'interno delle "Specifiche tecniche per il progetto definitivo e il progetto esecutivo dei collegamenti stradali e ferroviari" al punto 3.2.3.3.3, viene esplicitato che "...si può ragionevolmente prefigurare il mantenimento delle condizioni di spinta a riposo in presenza di spostamenti attesi inferiori a 5x10⁻⁴H m essendo H l'altezza fuori terra dell'opera". Tale assunzione può essere certamente estesa ai muri frontali delle spalle di tipo classico presenti nelle opere di nostra competenza.

Per quanto riguarda la bibliografia, è possibile individuare il cedimento relativo tra un elemento di sostegno ed il terreno di spinta situato a tergo dello stesso; in particolare al capitolo 11.2 del libro "Fondazioni – progetto e analisi" del giugno 1991 di Joseph E. Bowles edito da McGraw – Hill, si definiscono, a seconda della tipologia del terreno, dei rapporti minimi tra cedimento ed altezza dell'elemento di sostegno per l'instaurarsi della spinta attiva, ovvero l'entità minima della traslazione affinchè lo spostamento sia da considerarsi non trascurabile.

Per terreni incoerenti densi, come nei casi in esame rappresentati dal rilevato lavorato con rulli compattatori, il Bowles definisce tale spostamento pari a 0,001H ÷ 0,002H, dove H rappresenta l'altezza dell'opera di sostegno; in definitiva si può quindi assumere prudenzialmente un valore della traslazione pari allo 0,5% come assunto dalle specifiche tecniche affinchè si sviluppi un tipo di spinta attiva.

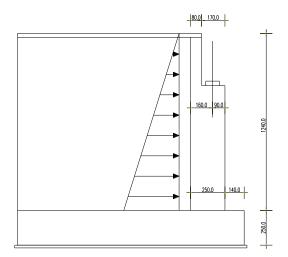
Rimandando alla bibliografia citata il significato della teoria alla base di tale assunzione, si effettua il calcolo dello spostamento di un muro frontale di una spalla tipo presente nei viadotti in oggetto di progettazione al fine di giustificare l'assunzione del coefficiente di riduzione sismica $\Box m = 0,31$ indicato dalle NTC 2008 al punto 7.11.6.2.1.

In particolare si effettua il calcolo dell'entità di tale spostamento per la Spalla A-p:


Eurolink S.C.p.A. Pagina 210 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011



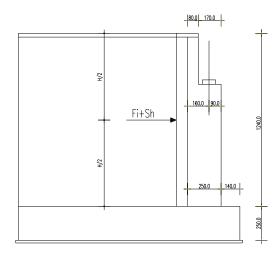
Si effettua il calcolo del cedimento in testa al muro frontale dovuto essenzialmente a 3 contributi:

- 4) Spinta attiva del terreno a tergo del muro con distribuzione triangolare;
- 5) Sovra spinta sismica per Mononobe-Okabe modellata come azione concentrata ad H/2, come stabilito dalla teoria; a tale forza si sommano le forze inerziali dovute a masssa del terreno e del muro frontale ipotizzate con $\beta_m = 0.31$, con il medesimo punto di applicazione;
- 6) Forza sismica orizzontale in testa al muro derivante dall'impalcato.

I calcoli sono riferiti ad un metro di profondità del muro.

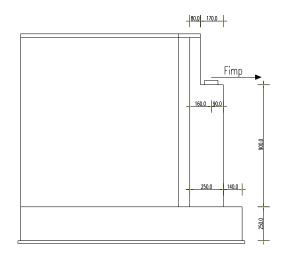
1) Il modello per la spinta attiva del terreno a tergo è così schematizzato:

Eurolink S.C.p.A. Pagina 211 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011


$$f_1 = \frac{1}{30} \cdot \frac{p \cdot L^4}{EJ} = \frac{1}{30} \cdot \frac{70,23 \cdot 12,40^4}{3,334 \cdot 10^6 \cdot 1,302} = 0,0115 \text{ m} = 11,5 \text{ mm}$$

2) Il modello per le azioni sismiche da forze inerziali e sovra spinta sismica del terreno è così schematizzato:

$$f_2 = \frac{P \cdot \left(\frac{L}{2}\right)^3}{3 \cdot EJ} = \frac{\left(663 + 109\right) \cdot 6,20^3}{3 \cdot 3,334 \cdot 10^6 \cdot 1,302} = 0,0312 \text{ m} = 31,2 \text{ mm}$$

3) Il modello per le azioni sismiche derivanti dall'impalcato è così schematizzato:

$$f_2 = \frac{P \cdot L^3}{3 \cdot EJ} = \frac{97 \cdot 9,00^3}{3 \cdot 3,334 \cdot 10^6 \cdot 1,302} = 0,0051 \text{ m} = 5,1 \text{ mm}$$

Eurolink S.C.p.A. Pagina 212 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Il cedimento totale del muro frontale schematizzato come mensola incastrata alla base vale quindi: $f_1 + f_2 + f_3 = 11,5 + 31,2 + 5,1 = 47,8 \text{ mm}$

Tale valore di spostamento in testa al paramento verticale risulta pari a circa 0,38% dell'altezza della spalla e ciò consente di ritenere corretto l'utilizzo del fattore β_m ridotto in quanto il valore limite fissato nell'Eurocodice EC7 (Annesso C) e nella letteratura più conosciuta (Lancellotta – Geotecnica), perché si attivi la spinta attiva, è pari allo 0,05% - 0,10% dell'altezza della spalla

Eurolink S.C.p.A. Pagina 213 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.2.1.2 Combinazioni di carico statiche

Si considerano le combinazioni di carico statiche allo SLU previste dalla normativa vigente:

SL	PRINCIPALE	P.p.	Perm.	Att	rito	Temperatura		Vento		Accident.		Folla		Frenamento		Centrifuga		Ced. e ritiro	
JL.	PRINCIPALE			Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1	
SLU GEO	Vento	1,00	1,30	1,00	1,00	0,60	1,00	1,00	1,30									1,00	1,00
	Gruppo 1 centr.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,50	1,15	0,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 1 ecc.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,50	1,15	0,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 2a centr.+	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	1,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 2a ecc.+	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	1,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 2a centr	1,00	1,30	-1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	-1,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 2a ecc	1,00	1,30	-1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	-1,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 2b centr.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	0,00	1,15	1,00	1,15	1,00	1,00
	Gruppo 2b ecc.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	0,00	1,15	1,00	1,15	1,00	1,00
	Gruppo 1 rilevato	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,00	0,00	0,00	1,15	0,00	1,15	1,00	1,00
		γ _{G1}	γ _{G2}	Ψ_0	γ _{G2}	Ψ_0	γε3	Ψ_0	γQi	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ
	Vento	1,35	1,50	1,00	1,35	0,60	1,20	1,00	1,50									1,00	1,20
	Gruppo 1 centr.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,50	1,35	0,00	1,35	0,00	1,35	1,00	1,20
	Gruppo 1 ecc.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,50	1,35	0,00	1,35	0,00	1,35	1,00	1,20
<u>~</u>	Gruppo 2a centr.+	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00	1,20
STR	Gruppo 2a ecc.+	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00	1,20
SLU	Gruppo 2a centr	1,35	1,50	-1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	-1,00	1,35	0,00	1,35	1,00	1,20
"	Gruppo 2a ecc	1,35	1,50	-1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	-1,00	1,35	0,00	1,35	1,00	1,20
	Gruppo 2b centr.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	0,00	1,35	1,00	1,35	1,00	1,20
	Gruppo 2b ecc.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	0,00	1,35	1,00	1,35	1,00	1,20
	Gruppo 1 rilevato	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,00	0,00	0,00	1,35	0,00	1,35	1,00	1,20
	Vento	1,00	1,00	1,00	1,00	0,60	1,00	1,00	1,00									1,00	1,00
	Gruppo 1 centr.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,50	1,00	0,00	1,00	0,00	1,00	1,00	1,00
SLE	Gruppo 1 ecc.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,50	1,00	0,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 2a centr.+	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 2a ecc.+	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00
S	Gruppo 2a centr	1,00	1,00	-1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	-1,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 2a ecc	1,00	1,00	-1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	-1,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 2b centr.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00
	Gruppo 2b ecc.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00
	Gruppo 1 rilevato	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,00	0,00	0,00	1,00	0,00	1,00	1,00	1,00

9.2.1.3 Combinazioni di carico Sismiche

Secondo le "Norme Tecniche 2008" le verifiche agli stati limite ultimi o di esercizio devono essere effettuate per la seguente combinazione dell'azione sismica con le altre azioni:

$$G1+G2+P+E+\sum_i 0, 2\cdot Q_{kj}$$

dove G1 sono i pesi propri, G2 sono i carichi permanenti, P è la precompressione, E è l'azione sismica e Q_{kj} sono i carichi accidentali.

In particolare si sono considerate le seguenti combinazioni sismiche:

Combinazione	P.p.	Perm.	Accid.	Sisma X	Sisma Y	Sisma Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30
SISMA Z N+	1,00	1,00	0,20	0,30	0,30	1,00
SISMA Y N+	1,00	1,00	0,20	0,30	1,00	0,30

Eurolink S.C.p.A. Pagina 214 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 **Data** 20/06/2011

9.2.2 MODELLO DI CALCOLO

9.2.2.1 Descrizione del modello di calcolo

Per quanto concerne l'analisi strutturale condotta sulla spalla, è necessario chiarire preliminarmente quelle che sono le scelte di modellazione adottate.

Da un punto di vista dello schema statico i singoli elementi compositi della spalla, quali il muro frontale e il paraghiaia sono stati schematizzati come mensole incastrate alla base.

La modellazione di tali elementi è stata poi ricondotta a porzioni di struttura di profondità unitaria, ottenendo in questo modo, grazie ad una lecita bi-dimensionalizzazione del problema, un consistente sgravio computazionale.

Nella valutazione delle spinte agenti sulla struttura ad opera del terreno a tergo in condizioni sismiche, ci si è ricondotti alle teorie di comprovata validità di Mononobe-Okabe. Tale scelta supportata dalle prescrizioni della normativa vigente è avvalorata da una riflessione condotta sulla possibile cinematica dell'elemento spalla. Ritenendo infatti erroneo supporre una completa staticità della struttura, si è preferito utilizzare la suddetta teoria rispetto ad altre presenti in letteratura (es. Woods). Per una descrizione dettagliata delle trattazioni teoriche alla base di tali teorie si rimanda alla bibliografia citata.

9.2.3 AZIONI SISMICHE: CONFRONTO ANALISI DINAMICA – ANALISI STATICA EQUIVALENTE

Al fine di poter emettere un giudizio motivato sull'accettabilità dei risultati ottenibili con l'utilizzo degli accellerogrammi spettro – compatibili dell'analisi dinamica utilizzata, si è proceduto all'analisi di una spalla tipo, individuata nella spalla SpA del Viadotto Curcuraci direzione Reggio Calabria, confrontando il risultato del calcolo operato con l'utilizzo di detti accellerogrammi con l'analogo calcolo effettuato con il metodo statico equivalente. Alla luce dei risultati, si può affermare, come più oltre analiticamente dimostrato, che gli scostamenti in termini di spostamenti ed azioni agli appoggi sono dell'ordine del 5% in media e del 10% di massimo e comunque sempre in favore di sicurezza. Pertanto l'analisi di cui al presente paragrafo viene estesa, per analogia, anche all'opera in oggetto, la quale presenta caratteristiche geometriche, statiche e di situazione geologico – geotecnica assimilabili a quella effettivamente analizzata.

Eurolink S.C.p.A. Pagina 215 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Si effettua quindi nel seguito un confronto tra i risultati ottenuti dall'analisi dinamica lineare con uso di accellerogrammi spettrocompatibili e dall'analisi lineare statica equivalente con uso di spettri da NTC 2008. Nel seguito si descrivono i due approcci e si confrontano i risultati ottenuti nei parametri di azioni sugli isolatori e spostamenti dei giunti trasversali di impalcato.

9.2.3.1 ANALISI LINEARE DINAMICA

Lo studio sismico è stato effettuato tramite un'analisi lineare dinamica con l'impiego di accelerogrammi come indicato dalla normativa italiana DM2008 (§ 3.2.3.6).

Si utilizzano accelerogrammi artificiali compatibili con lo spettro elastico di risposta adottato nel capitolo 4 paragrafo 4.3.14.6; in particolare l'analisi è condotta con più di 7 serie temporali e si sono assunti i valori medi ottenuti dal modello come azioni di progetto, inoltre per descrivere il moto sismico si è tenuto in conto di non utilizzare lo stesso accelerogramma simultaneamente lungo le due direzioni orizzontali.

Per ricavare gli accelerogrammi spettro compatibili si è utilizzato i programma **REXEL 3.0 beta**, redatto:

Iervolino, I., Galasso, C., Cosenza, E. (2009).

REXEL: computer aided record selection for code-based seismic structural analysis.

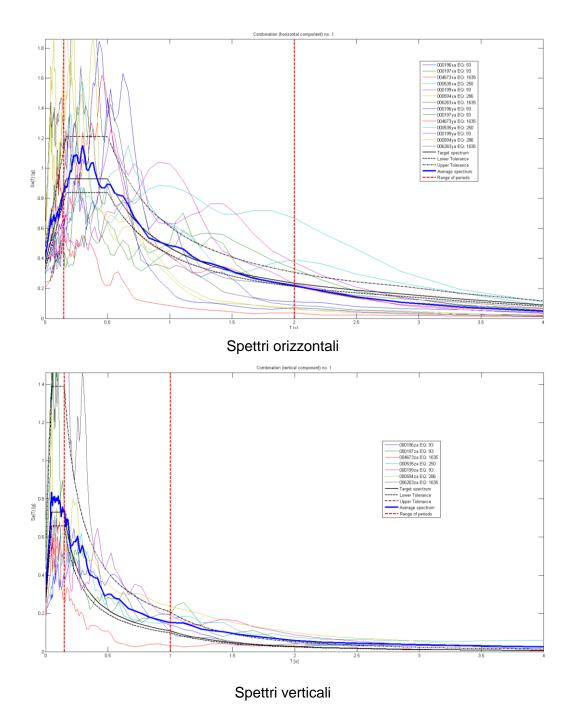
Bulletin of Earthquake Engineering. DOI 10.1007/s10518-009-9146-1

Il programma citato crea degli accelerogrammi spettro-compatibili con gli spettri elastici derivanti, in accordo con le Norme Tecniche 2008, dai parametri di coordinate del sito, categoria di sottosuolo, categoria topografica, vita nominale, classe d'uso e stato limite.

Tale modellazione risulta in accordo con quanto richiesto dalle NTC2008 per strutture isolate al paragrafo 7.10.2, ossia che la sovrastruttura e la sottostruttura devono mantenersi in campo elastico, coincidente con un valore del valore di struttura unitario.

Di seguito si riportano gli spettri estratti:

Eurolink S.C.p.A. Pagina 216 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

Le funzioni sono state implementate nel codice di calcolo SAP2000 definendo 7 combinazioni indipendenti.

Viene adottato un sistema di isolamento sismico che è posto tra l'impalcato e le pile/spalle, allo scopo di migliorarne la risposta nei confronti delle azioni sismiche orizzontali. La riduzione della risposta sismica orizzontale qualunque siano la tipologia ed i materiali strutturali del ponte, può

Eurolink S.C.p.A. Pagina 217 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

essere ottenuta mediante un incremento del periodo fondamentale della costruzione per portarlo nel campo delle minori accelerazioni di risposta.

Per l'opera in oggetto della seguente relazione si utilizzano isolatori sismici elastomerici, composti essenzialmente da due piastre, la superiore ancorata alla trave e l'inferiore al pulvino o al fusto, all'interno delle quali viene interposto uno strato di elastomero.

Eurolink S.C.p.A. Pagina 218 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.2.3.2 ANALISI STATICA EQUIVALENTE

Lo studio si effettua con l'ausilio di forze statiche sismiche equivalenti; per i parametri utilizzati nell'analisi sismica del graticcio di impalcato si rimanda al capitolo "4.4.3 – Azioni sismiche" dell'elaborato "CG0700PCLDSSCC5VIV0000001A-01 – Relazione di calcolo".

9.2.4 AZIONI SISMICHE

Dall'analisi condotta si riportano i valori di sisma per gli appoggi distinti per le tre componenti.

			SPALLA SpA									
		101			201			301			401	
	V	Н	Ht	V	Н	Ht	V	Н	Ht	V	Н	Ht
Sisma X	0	305	0	0	294	0	0	290	0	0	289	0
Sisma Y	0	0	228	0	0	228	0	0	228	0	0	228
Sisma Z	326	0	0	266	0	0	273	0	0	321	0	0

I tabulati seguenti riportano i valori di reazioni delle molle ottenute con la modellazione e le reazioni verticali agli appoggi stessi.

	TABLE: Joint Reactions - Spring Forces									
Joint	OutputCase	CaseType	StepType	U1	U2					
Text	Text	Text	Text	KN	KN					
101	SPETTROX	LinRespSpec	Max	304,8853	6,2353					
101	SPETTROY	LinRespSpec	Max	0,1440	228,1107					
101	SPETTROZ	LinRespSpec	Max	0,0000	0,0001					
201	SPETTROX	LinRespSpec	Max	294,1113	6,2340					
201	SPETTROY	LinRespSpec	Max	0,0014	228,1160					
201	SPETTROZ	LinRespSpec	Max	0,0001	0,0000					
301	SPETTROX	LinRespSpec	Max	290,1947	6,2287					
301	SPETTROY	LinRespSpec	Max	0,0014	228,1127					
301	SPETTROZ	LinRespSpec	Max	0,0001	0,0000					
401	SPETTROX	LinRespSpec	Max	288,6433	6,2247					
401	SPETTROY	LinRespSpec	Max	0,1440	228,0993					
401	SPETTROZ	LinRespSpec	Max	0,0000	0,0001					

	TABLE: Joint Reactions						
Joint	OutputCase	CaseType	StepType	U3			

Eurolink S.C.p.A. Pagina 219 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

 Rev
 Data

 F0
 20/06/2011

Text	Text	Text	Text	KN
101	SPETTROX	LinRespSpec	Max	0,0000
101	SPETTROY	LinRespSpec	Max	0,0001
101	SPETTROZ	LinRespSpec	Max	423,6865
201	SPETTROX	LinRespSpec	Max	0,0000
201	SPETTROY	LinRespSpec	Max	0,0000
201	SPETTROZ	LinRespSpec	Max	346,1493
301	SPETTROX	LinRespSpec	Max	0,0000
301	SPETTROY	LinRespSpec	Max	0,0001
301	SPETTROZ	LinRespSpec	Max	354,7475
401	SPETTROX	LinRespSpec	Max	0,0000
401	SPETTROY	LinRespSpec	Max	0,0001
401	SPETTROZ	LinRespSpec	Max	417,2913

9.2.5 ESCURSIONE DEI GIUNTI TRASVERSALI

I giunti devono essere in grado di assorbire una deformazione longitudinale dell'impalcato causata da una variazione termica ΔT di ± 30 °C. Tale deformazione risulta nulla in corrispondenza del baricentro dell'impalcato metallico e cresce all'aumentare della distanza dal giunto in questione al baricentro stesso. I giunti devono inoltre garantire lo spostamento dovuto alle azioni sismiche derivanti dalla modellazione. Si espongono nel seguito i valori delle escursioni termiche e degli spostamenti sismici per i giunti presenti nell'opera in oggetto:

	$\Delta I_{ m term}$	ΔI_{sism}	$\Delta I_{ m ammesso}$
	mm	mm	mm
SpA	±4	±193	±200

Occorre inoltre verificare che lo spostamento relativo tra le spalle sia compatibile con i giunti in oggetto, secondo le NTC2008, al paragrafo 3.2.5.2 "Spostamento assoluto e relativo del terreno", il valore dello spostamento relativo tra due punti a distanza x si può valutare con l'espressione:

$$d_{dj}(x) = d_{ij0} + \left(d_{ijmax} - d_{ij0}\right) \cdot \left[1 - e^{-1.25 \left(\frac{x}{v_s}\right)^{0.7}}\right] dove:$$

 $v_s = \text{velocit\`a di propagazione delle onde di taglio in m/s ricavabile dalle indagini sul terreno;} \\ d_{ij0}(x) = 1,25 \Big| d_{gi} - d_{gj} \Big| \text{ spostamento relativo tra 2 punti a piccola distanza;} \\$

Eurolink S.C.p.A. Pagina 220 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$d_{iimax} = 1,25\sqrt{d^2_{gi} + d^2_{gj}}$$
;

d_{gi} e d_{gj} = spostamenti massimi del suolo nei punti i e j.

Essendo il terreno omogeneo tra le spalle ed i parametri sismici medesimi, si può calcolare, in accordo con il paragrafo 3.2.3.3 delle NTC2008:

$$d_{gi} = d_{gj} = 0,\!025 \cdot a_g \cdot S \cdot T_C \cdot T_D = 0,\!025 \cdot 4,\!373 \cdot 1,\!00 \cdot 0,\!55 \cdot 3,\!35 = 0,\!201 \, m$$

Per cui:

$$d_{iimax} = 1,25\sqrt{0,201^2 + 0,201^2} = 0,252 \text{ m}$$

$$d_{ii0} = 1,25 \cdot (0,020 - 0,020) = 0 \text{ m}$$

$$d_{dj}(x) = 0 + (0.252 - 0) \cdot \left[1 - e^{-1.25(119/240)^{0.7}}\right] = 0.134 \text{ mm}$$

Avendo considerato la distanza tra i punti pari a 119,00 m e una velocità media v_s per terreni di classe C come da NTC2008.

Ai giunti è richiesto di garantire lo spostamento massimo relativo fra impalcato e sottostrutture per effetto delle azioni sismiche e termiche.

Le singole componenti di spostamento considerate sono:

- Spostamento dell'impalcato dovuto alla dilatazione termica uniforme (positiva);
- Spostamento dell'impalcato dovuto alla deformazione a taglio massima degli isolatori elastomerici.
- Spostamento relativo fra le spalle mobilitato a livello spiccato fondazioni (scorrimento su piano di posa addizionato a spostamento sismico differenziale del terreno).

In assenza di determinazione specifica dello scorrimento sul piano di posa delle spalle, alla luce dei risultati ottenuti dalle analisi numeriche FEM condotte per il viadotto Curcuraci in direzione Reggio Calabria, si ritiene che considerare il solo spostamento sismico differenziale del terreno, determinato come sopra secondo il 3.2.3.3 delle NTC, per la valutazione dello spostamento relativo delle spalle, sia un approccio sufficientemente conservativo. Dalle analisi FEM svolte è emerso infatti che lo spostamento relativo totale fra le spalle dato dallo scorrimento su piano di posa e dallo spostamento sismico differenziale del suolo di fondazione (calcolati secondo un approccio a favore di sicurezza, come meglio descritto nella relazione specifica), è paragonabile allo spostamento differenziale del terreno determinato secondo il 3.2.3.3 delle NTC.

Eurolink S.C.p.A. Pagina 221 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Le componenti sopra citate sono addizionate coerentemente con quanto espresso nelle combinazioni di calcolo SLU – sismiche, considerando il 50% dello spostamento indotto dalla variazione termica in concomitanza all'evento sismico.

Si ipotizza inoltre, conservativamente, che il moto delle spalle e dell'impalcato possa avvenire in opposizione di fase, in considerazione della capacità del sistema di isolamento sismico di disaccoppiare la risposta della sovrastruttura da quella delle spalle.

L'escursione minima del giunto sulla singola spalla dovrà risultare soddisfare la relazione seguente:

escursione...giunto
$$\geq (s_{isolamento} + s_{fondazion})/2 + 0.5 \cdot s_{termico}$$

 $S_{termico} = 4.0 \text{ mm}$

 $S_{isolamento} = 193.0 \text{ mm}$

 $S_{\text{fondazione}} = 134.0 \text{ mm}$

 $S_{\text{totale/2}} = 165.5 \text{ mm}$

L'escursione massima ammessa di 200 mm risulta essere superiore allo spostamento massimo cosi calcolato.

Di seguito si riporta l'output degli spostamenti massimi in corrispondenza dei nodi di spalla.

	TABLE: Joint Displacements								
Joint	OutputCase	CaseType	StepType	U1	U2				
Text	Text	Text	Text	m	m				
101	SPETTROX	LinRespSpec	Max	0,1932608	0,004872				
101	SPETTROY	LinRespSpec	Max	0,0001344	0,1217896				
101	SPETTROZ	LinRespSpec	Max	1,5256E-08	5,3304E-08				
201	SPETTROX	LinRespSpec	Max	0,1822728	0,0048712				
201	SPETTROY	LinRespSpec	Max	1,3008E-06	0,121792				
201	SPETTROZ	LinRespSpec	Max	7,0584E-08	1,4056E-08				
301	SPETTROX	LinRespSpec	Max	0,178492	0,0048664				
301	SPETTROY	LinRespSpec	Max	1,3304E-06	0,1217888				
301	SPETTROZ	LinRespSpec	Max	5,64E-08	3,108E-08				
401	SPETTROX	LinRespSpec	Max	0,17716	0,0048632				

Eurolink S.C.p.A. Pagina 222 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

401	SPETTROY	LinRespSpec	Max	0,0001344	0,1217776
401	SPETTROZ	LinRespSpec	Max	1,7848E-08	5,52E-08

I risultati ottenuti per mezzo della modellazione statica equivalente mostrano, rispetto alla modellazione dinamica, dei valori di spostamenti e di reazioni orizzontali agli appoggi confrontabili, con discostamenti medi dell'ordine del 5% e massimi dell'ordine del 10%.

9.2.6 CALCOLO DELLE SOLLECITAZIONI

9.2.6.1 Sollecitazioni muro frontale

MURO FRONTALE: AZIONI GLOBALI

MONOTRONTALL. AZIONI GLOBALI	Ν	М	Т	N	М	T	1
	(kN)	(kNm)	(kN)	(kN/m)	(kNm/m)	(kN)	
Combinazione 11	16.114	81.214	15.902	1.151	5.801	1.136	SLU STF
Combinazione 12	19.624	89.319	16.803	1.402	6.380	1.200]
Combinazione 13	18.481	88.862	16.803	1.320	6.347	1.200]
Combinazione 14	18.747	89.358	16.808	1.339	6.383	1.201	
Combinazione 15	17.886	89.014	16.808	1.278	6.358	1.201	
Combinazione 20	16.114	107.341	20.117	1.151	7.667	1.437	
							_
	Ν	М	T	Ν	М	T	
	(kN)	(kNm)	(kN)	(kN/m)	(kNm/m)	(kN)	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	17.703	70.532	11.927	1.265	5.038	852	
perm + sisma X + 0,30 sisma (Y+Z) schema 2	17.535	70.465	11.933	1.252	5.033	852	
perm + 0,30 sisma (X+Z) + sisma Y schema 1	17.703	45.129		1.265	3.223		_
perm + 0,30 sisma (X+Z) + sisma Y schema 2	17.535	45.061		1.252	3.219		

Eurolink S.C.p.A. Pagina 223 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.2.6.2 Sollecitazioni fondazione

VERIFICHE DI STABILITA'

	N (kN)	Mrib (kNm)	M stab (kNm)	η	и (m)	e (m)	SL
Combinazione 1	100.031	-82.849	890.250	10,75	8,07	0,18	
Combinazione 2	103.021	-89.708	897.426	10,00	7,84	0,10	
Combinazione 3	102.047	-89.708	895.089	9,98	7,84	0,36	-
Combinazione 4	102.047	-90.242	895.632		· · · · · · · · · · · · · · · · · · ·	0,38	
				9,92	7,87		EO
Combinazione 5	101.541	-90.242	893.873	9,91	7,91	0,34	SLU GEO
Combinazione 6	102.274	-86.441	899.433	10,41	7,95	0,30	S
Combinazione 7	101.541	-86.441	897.674	10,38	7,99	0,26	
Combinazione 8	102.274	-87.994	895.632	10,18	7,90	0,35	
Combinazione 9	101.541	-87.994	893.873	10,16	7,94	0,31	
Combinazione 10	102.311	-114.984	892.308	7,76	7,60	0,65	
Combination 11	104.016	05.000	1 000 501	11.07	0.00	0.00	
Combinazione 11	124.016	-95.900	1.090.501	11,37	8,02	0,23	
Combinazione 12	127.526	-103.952	1.098.925	10,57	7,80	0,45	
Combinazione 13	126.383	-103.952	1.096.181	10,55	7,85	0,40	-
Combinazione 14	126.649	-104.578	1.096.819	10,49	7,83	0,42	뜨
Combinazione 15	125.788	-104.578	1.094.753	10,47	7,87	0,38	SLU STR
Combinazione 16	126.649	-99.843	1.101.554	11,03	7,91	0,34	SL
Combinazione 17	125.788	-99.843	1.099.488	11,01	7,95	0,30	
Combinazione 18	126.649	-101.939	1.096.819	10,76	7,86	0,39	
Combinazione 19	125.788	-101.939	1.094.753	10,74	7,89	0,36	
Combinazione 20	126.681	-133.623	1.092.916	8,18	7,57	0,68	
Comb SLE 1	87.141	-64.089	759.265	11,85	7,98	0,27	
Comb SLE 2	89.741	-70.053	765.505	10,93	7,75	0,50	
Comb SLE 3	88.894	-70.053	763.473	10,90	7,80	0,45	
Comb SLE 4	89.091	-70.517	763.945	10,83	7,78	0,47	
Comb SLE 5	88.454	-70.517	762.415	10,81	7,82	0,43	SLE
Comb SLE 6	89.091	-67.009	767.453	11,45	7,86	0,39	S
Comb SLE 7	88.454	-67.009	765.923	11,43	7,90	0,35	
Comb SLE 8	89.091	-68.562	763.945	11,14	7,81	0,44	
Comb SLE 9	88.454	-68.562	762.415	11,12	7,84	0,41	
Comb SLE 10	89.068	-92.031	761.054	8,27	7,51	0,74	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	93.695	-367.299	763.453	2,08	4,23	4,02	SLV

Eurolink S.C.p.A. Pagina 224 di 405

RELAZIONE DI CALCOLO

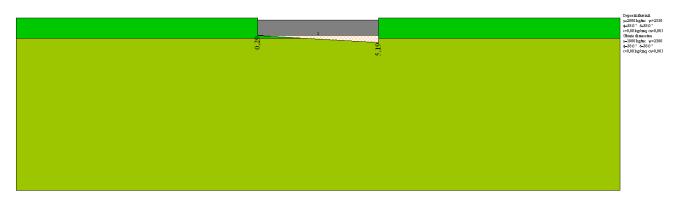
Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

AZIONI GLOBALI NORME TECNICHE 2008

AZIONI GLOBALI NORME TECNICHE 2008	N	M long	M trasv	T long	T trasv	
	(kN)	(kNm)	(kNm)	(kN)	(kN)	
Combinazione 1	100.031	17.857	5.417	16.503	234	
Combinazione 2	103.021	42.207	11.424	17.424	296	
Combinazione 3	102.047	36.510	13.935	17.424	296	
Combinazione 4	102.274	38.368	10.051	17.389	296	0
Combinazione 5	101.541	34.079	11.758	17.389	296	SLU GEO
Combinazione 6	102.274	30.766	11.758	16.728	296	SLU
Combinazione 7	101.541	26.478	11.758	16.728	296	0)
Combinazione 8	102.274	36.120	10.051	17.194	296	
Combinazione 9	101.541	31.831	11.758	17.194	296	
Combinazione 10	102.311	66.740	5.931	20.817	296	
Combinazione 11	124.016	28.533	6.256	19.069	270	
Combinazione 12	127.526	57.118	13.297	20.150	342	
Combinazione 13	126.383	50.431	16.245	20.150	342	
Combinazione 14	126.649	52.611	11.685	20.109	342	~
Combinazione 15	125.788	47.577	13.690	20.109	342	STF
Combinazione 16	126.649	43.141	13.690	19.286	342	SLU STR
Combinazione 17	125.788	38.106	13.690	19.286	342	
Combinazione 18	126.649	49.972	11.685	19.880	342	
Combinazione 19	125.788	44.937	13.690	19.880	342	
Combinazione 20	126.681	85.825	6.849	21.484	342	
Comb SLE 1	87.141	23.738	4.173	12.726	180	
Comb SLE 2	89.741	44.913	9.345	13.527	228	
Comb SLE 3	88.894	39.959	11.529	13.527	228	
Comb SLE 4	89.091	41.574	8.151	13.497	228	
Comb SLE 5	88.454	37.845	9.636	13.497	228	SLE
Comb SLE 6	89.091	34.559	9.636	12.887	228	S
Comb SLE 7	88.454	30.830	9.636	12.887	228	
Comb SLE 8	89.091	39.619	8.151	13.327	228	
Comb SLE 9	88.454	35.890	9.636	13.327	228	
Comb SLE 10	89.068	65.785	4.569	14.515	228	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	93.695	273.095	77.416	46.616	11.225	SLV
perm + sisma X + 0,30 sisma (Y+Z) schema 2	93.357	272.100	77.368	46.616	11.225	S

Eurolink S.C.p.A. Pagina 225 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Sollecitazione sezione A-A

Il momento flettente e il taglio sono calcolati rispetto al filo anteriore del muro frontale; si considera la situazione più gravosa corrispondente tra le combinazioni GEO, alla combinazione 11 in condizioni sismiche. Si riporta di seguito la pressione sul terreno lungo l'asse longitudinale della spalla:

Sollecitazione sezione A-A

$$M_{SDA} = \left\lceil \left(4,\!77\cdot 10 - 2,\!500\cdot 2,\!50\right) \cdot \frac{1,\!40^2}{2} + \left(5,\!19 - 4,\!77\right) \cdot 10 \cdot \frac{1,\!40^2}{3} \right\rceil \cdot 10 = 434 \text{ kNm}$$

$$V_{\text{SDA}} = \left\lceil \left(4,\!77\cdot 10 - 2,\!500\cdot 2,\!50\right) \cdot 1,\!40 + \left(5,\!19 - 4,\!77\right) \cdot 10 \cdot \frac{1,\!40}{2} \right\rceil \cdot 10 = 610 \text{ kN}$$

Sollecitazione sezione B-B

Il momento flettente e il taglio sono calcolati rispetto al filo posteriore del muro frontale; si considera la situazione più gravosa corrispondente tra le combinazioni GEO, corrispondente alla combinazione 11 in condizioni sismiche:

$$\begin{split} M_{SDB} = & \left[\left(1,\!900 \cdot 12,\!40 + 2,\!500 \cdot 2,\!50 \right) \cdot \frac{12,\!60^2}{2} - 0,\!29 \cdot 10 \cdot \frac{12,\!60^2}{2} - \left(4,\!03 - 0,\!29 \right) \cdot 10 \cdot \frac{12,\!60^2}{6} \right] \cdot 10 = 11.465 \text{ kNm} \\ V_{SDB} = & \left[\left(1,\!900 \cdot 12,\!40 + 2,\!500 \cdot 2,\!50 \right) \cdot 12,\!60 - 0,\!29 \cdot 10 \cdot 12,\!60 - \left(4,\!03 - 0,\!29 \right) \cdot 10 \cdot \frac{12,\!60}{2} \right] \cdot 10 = 1.034 \text{ kN} \end{split}$$

Eurolink S.C.p.A. Pagina 226 di 405

RELAZIONE DI CALCOLO

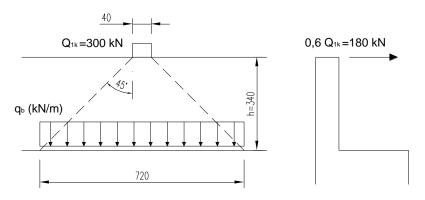
Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

9.2.6.3 Sollecitazioni paraghiaia

La verifica viene effettuata secondo l'approccio SLU di tipo STR indicato al paragrafo 6.5.3.1.1 delle "Norme Tecniche 2008".

La combinazione attinente alla verifica degli elementi strutturali risulta essere la combinazione 1 (A1+M1+R1) dell'approccio previsto dalla norma, in cui i coefficienti sono presi dalle tabelle 5.1.V.


Angolo di attrito del terreno $\phi = 35^{\circ}$

Peso specifico del terreno $\gamma t = 19,00 \text{ kN/m}^3$ Sovraccarico $q = 90,91 \text{ kN/m}^2$

Spinta del terreno alla base $p_1 = k_0 \cdot \sigma_v = 0.43 \cdot 19,00 \cdot 3,40 = 27 \text{ kN/m}^2$

Spinta del sovraccarico $p_2 = k_0 \cdot q = 0.43 \cdot 90.91 = 39 \text{ kN/m}^2$

Alla spinta della terra va aggiunto, in accordo con quanto specificato dalle NTC 2008 al punto 5.1.3.3.6 e ripreso dalla circolare n°617 del 2 febbraio 2009 al paragrafo C5.1.3.3.7.2 "Carichi orizzontali da traffico su rilevati e su terrapieni adiacenti al ponte", il carico verticale Q_{1k} ed un'azione orizzontale di frenamento pari a 0.6 Q_{1k} . Tali azioni si ripartiscono a 45° lungo l'altezza del paraghaiaia per arrivare alla pressoflessione di base ogni metro lineare, come descritto nell'immagine seguente.

Larghezza di influenza

 $b = 0.40 + 2 \cdot 3.40 = 7.20 \text{ m}$

Pressione dovuta a Q_{1k}

 $q_b = 300/7,20 = 41,66 \text{ kN/m}$

Eurolink S.C.p.A. Pagina 227 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 **Data** 20/06/2011

Approccio 1:

Combinazione 1 → Stato Limite Ultimo STR:

$$M_{\text{sd}} = 27 \cdot 1{,}35 \cdot \frac{3{,}40^2}{6} + 39 \cdot 1{,}50 \cdot \frac{3{,}40^2}{2} + 180 \cdot 1{,}50 \cdot \frac{3{,}40}{7{,}20} = 535 \text{ kNm}$$

$$V_{sd} = 27 \cdot 1,35 \cdot \frac{3,40}{2} + 39 \cdot 1,50 \cdot 3,40 + 1,50 \cdot \frac{180}{7,20} = 298 \text{ kN/m}$$

Combinazione sismica:

In accordo con quanto indicato nelle "Norme Tecniche 2008" al paragrafo 7.11.6.2.1, per le verifiche allo SLU si assume il coefficiente di spinta del terreno come segue, considerando la tabella 7.11.II.

$$k_h = \beta_m \cdot S \cdot \frac{a_{max}}{q} = 0,31 \cdot 1,00 \cdot 0,4373 = 0,136$$

Il coefficiente di spinta attiva in condizioni statiche e di sisma vale:

Coefficiente di spinta attiva:

 $k_a = 0.271$

Coefficiente di spinta statica + sisma:

 $k_{ah} = 0.339$

Spinta attiva del terreno alla base:

$$p_3 = k_a \cdot \sigma_v = 0.271 \cdot 19,00 \cdot 3,40 = 17,50 \text{ kN/m}^2$$

Spinta attiva + sisma alla base:

$$p_4 = k_{ab} \cdot \sigma_v = 0.339 \cdot 19.00 \cdot 3.40 = 21.89 \text{ kN/m}^2$$

Forze di inerzia:

$$F_i = k_b \cdot P = 0.4373 \cdot (1.00 \cdot 3.40 \cdot 25) = 37.17 \text{ kN}$$

$$M_{sd} = 21,89 \cdot 1,00 \cdot \frac{3,40^2}{4} + 39 \cdot 0,20 \cdot \frac{3,40^2}{2} + 37,17 \cdot 1,00 \cdot \frac{3,40}{2} = 171 \text{kNm} \text{ / m}$$

$$V_{sd} = 21{,}89 \cdot 1{,}00 \cdot 3{,}40 + 0{,}20 \cdot 39 \cdot 3{,}40 + 37{,}17 = 138 \text{ kN/m}$$

Eurolink S.C.p.A. Pagina 228 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.2.7 VERIFICA DELLE SEZIONI

9.2.7.1 Muro frontale

FLESSIONE ALLA SEZIONE DI BASE

 $M_{sd} = 7.667 \text{ kNm}$ $N_{sd} = 1.151 \text{ kN}$

SEZIONE base (cm) 100 altezza (cm) 200 **ARMATURA** compressa φ26/10 tesa φ28/10 tesa φ26/10 **SOLLECITAZIONI** Msd =7.667 kNm Nsd =1.151 kNm INDICI DI RESISTENZA Mrd =9.641 kNm Nrd = 1.470 kNm IR = 1,26

TAGLIO:

 $V_{sd} = 1418 \, kN/m$

RISULTATI VERIFICA A TAGLIO		
Verifica senza armatura trasversale		
Taglio res. ultimo (VRd):	55158.191	
Indice di resistenza:	2.57	
Verifica delle bielle compresse		
Taglio resistente ultimo (VRcd):	703707.688	
ctg(Theta):	1.00	
Indice di resistenza:	0.20	
Verifica con armatura trasversale		
Taglio attribuito all'armatura (VRsd):	141800.002	
Armatura trasversale per unita' di		
lunghezza (Asw,cm²/m):	20.82	
Staffe a 2 braccia		
: ø8/4.8cm		

Eurolink S.C.p.A. Pagina 229 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

VERIFICA TENSIONALE (SLE):

Si procede alla verifica tensionale della sezione di base che risulta essere maggiormente sollecitata.

Comb. Quasi Permanente

	N	M long	M trasv
	(kN)	(kNm)	(kNm)
Comb SLE 4	89.091	41.574	8.551

SEZIONE base (cm) 1400 altezza (cm) 260 **ARMATURA** compressa φ26/10 φ28/10 tesa tesa φ26/10 $\sigma_c = (N/mm^2)4,6 < 0,45 f_{ck} = 0,45x33,20 = 14,94$ **TENSIONI** cls ferro $\sigma_f = (N/mm^2)67 < 0.80 f_{vk} = 0.80 \times 450 = 360$

Eurolink S.C.p.A. Pagina 230 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.2.7.2 Verifiche fondazione

FLESSIONE ALLA SEZIONE A-A:

 $M_{sd} = 434 \text{ kNm}$

SEZIONE base (cm) 100

altezza (cm) 250

ARMATURA compressa \$\phi 26/10\$

SOLLECITAZIONI Msd = 434 kNm

INDICI DI RESISTENZA Mrd = 5.041 kNm

IR = 11,11

TAGLIO ALLA SEZIONE A-A:

 $V_{sd} = 610 \text{ kN}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (Vrdu1): 67153.563 Indice di resistenza: 0.91

Verifica delle bielle compresse

Taglio res. ultimo (Vrdu2): 777758.625 Indice di resistenza: 0.08

Verifica con armatura trasversale

Componente di taglio attribuita al calcestruzzo (Vrdu3): 0.000 Componente di taglio attribuita

all'armatura (Vwd): 61000.000

Armatura trasversale per unita' di

lunghezza (Asw, cm²/m): 6.95 Vengono applicati solo i minimi di norma perchè la

vengono applicati solo i minimi di norma perche la sezione non richiede armatura trasversale a taglio (V<=Vrdul)

Staffe a 4 braccia

(in accordo con i minimi di norma per fondazioni): ø20/30cm

Eurolink S.C.p.A. Pagina 231 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

FLESSIONE ALLA SEZIONE B-B:

 $M_{sd} = 11.465 \text{ kNm}$

SEZIONE base (cm) 100

altezza (cm) 250

ARMATURA compressa \$\phi 26/10\$

tesa \$\phi 30/10 | I strato

\$\phi 30/10 | II strato

SOLLECITAZIONI Msd = 11.465 kNm

INDICI DI RESISTENZA Mrd = 13.001 kNm

IR = 1,14

TAGLIO ALLA SEZIONE B-B:

 $V_{sd} = 1.034 \text{ kN}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (Vrdul): 92018.141
Indice di resistenza: 1.12

Verifica delle bielle compresse

Taglio res. ultimo (Vrdu2): 761885.938
Indice di resistenza: 0.14

Verifica con armatura trasversale

Componente di taglio attribuita
al calcestruzzo (Vrdu3):

Componente di taglio attribuita
all'armatura (Vwd):

0.000

103399.996

Armatura trasversale per unita' di

lunghezza (Asw,cm²/m): 12.02

Staffe a 4 braccia

(in accordo con i minimi di norma per fondazioni): $\emptyset20/30\text{cm}$

Eurolink S.C.p.A. Pagina 232 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.2.7.3 Paraghiaia

FLESSIONE ALLA SEZIONE DI BASE

 $M_{sd} = 535 \text{ kNm}$

SEZIONE base (cm) 100

altezza (cm) 80

ARMATURA compressa \$\phi 24/20\$

tesa $\phi 24/20$

SOLLECITAZIONI Msd = 535 kNm

Nsd = 42 kN

INDICI DI RESISTENZA Mrd = 634 kNm

IR = 1,18

TAGLIO:

 $V_{sd} = 298 \text{ kN}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (VRd): 26673.961
Indice di resistenza: 0.97

Verifica delle bielle compresse

Taglio resistente ultimo (VRcd): 277779.375 ctg(Theta): 1.00 Indice di resistenza: 0.09

Verifica con armatura trasversale

Taglio attribuito all'armatura (VRsd): 29800.000

Armatura trasversale per unita' di lunghezza (Asw,cm²/m): 9.0

Applicare solo i minimi di norma perchè la

sezione non richiede armatura trasversale a taglio (V<=Vrdu1)

Staffe a 2 braccia : ø10/20cm

FESSURAZIONE (SLE):

Si considerano condizioni ambientali aggressive e la presenza di armature poco sensibili:

COMBINAZIONE FREQUENTE

- combinazione (frequente):

Eurolink S.C.p.A. Pagina 233 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

$$F_d = g_1 + g_2 + \psi_1(q_1 + q_2)$$

$$W_D \leq \cdot W_2 = 0.3 \text{ mm}$$

 $M = 1,00 \times 27,00 \times 3,40^2 / 6 + 1,00 \times 0,75 \times 39 \times 3,40^2 / 2 = 221 \text{ kNm}$

VERIFICA A FESSURAZIONE:

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 80

ARMATURA compressa \$\phi 20/20\$

tesa φ20/20

SOLLECITAZIONI Msd = 221 kNm

TENSIONI cls $\sigma_c = (N/mm^2)$ 1,8

ferro teso $\sigma_f = (N/mm^2)$ 11

ampiezza fess. w_D =(mm) 0

VERIFICA SODDISFATTA

COMBINAZIONE QUASI PERMANENTE

- combinazione (quasi permanente):

$$F_d = g_1 + g_2 + \psi_2(q_1 + q_2)$$

$$W_D \leq \cdot W_1 = 0.2 \text{ mm}$$

 $M = 1,00 \times 27,00 \times 3,40^2 / 6 + 1,00 \times 0,00 \times 39 \times 3,40^2 / 2 = 52 \text{ kNm}$

VERIFICA A FESSURAZIONE:

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 80

ARMATURA compressa \$\phi 20/20\$

SOLLECITAZIONI Msd = 52 kNm

TENSIONI cls $\sigma_c = (N/mm^2)$ 0,4

ferro teso $\sigma f = (N/mm^2)$ 2,6

ampiezza fess. $w_D = (mm)$ 0,00

VERIFICA SODDISFATTA

Eurolink S.C.p.A. Pagina 234 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.3 ANALISI DELLA SPALLA B

La spalla B è costituita da una ciabatta di fondazione a base a parallelogramma di dimensioni 6,00 x 16,40 m, di spessore 2,50 m da cui parte direttamente un muro paraghiaia caratterizzato da spessore 0,50 m ed altezza media pari a circa 3,50 m.

La spalla B è rappresentata nella figura seguente:

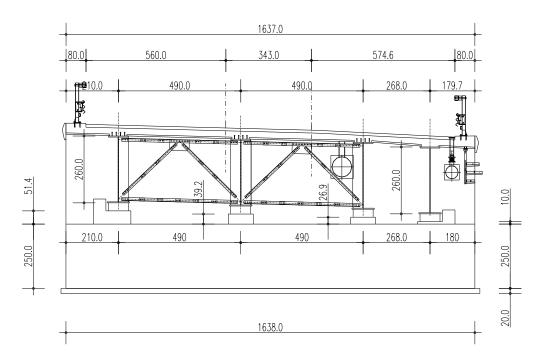


Figura 9.1 – Vista frontale Spalla B.

Si riporta di seguito un tabulato riassuntivo della geometria delle strutture.

CARATTERISTICHE GEOMETRICHE DELLA SPALLA

CARATTERISTICITE GEOFIETRICITE DELEA	SFALLA									
Descrizione		X	Υ	Z	n	γ	Peso	dx	bx	M long
		(m)	(m)	(m)		(kN/mc)	(kN)	(m)	(m)	(kNm)
fondazione	1	6,00	16,38	2,50	1	25	6.143	0,00	3,00	18.428
muro frontale	2	0,00	16,38	0,00	1	25	0	0,00	0,00	0
ringrosso	3	0,00	0,00	0,00	0	25	0	0,00	0,00	0
paraghiaia	4	0,50	16,38	3,60	1	25	737	2,10	2,35	1.732
muri laterali	5	3,40	0,50	3,60	2	25	306	0,00	1,70	520
terra	6	3,40	15,38	3,60	1	19,0	3.577	0,00	1,70	6.081
							10.762			26.760

altezza fronte vento ponte scarico (m) 2,78 altezza fronte vento ponte carico (m) 5,64 distanza tra asse appoggi e bordo anteriore fondazione (m) 1,30 distanza tra bordo anteriore fondazione e baricentro dei pali (m) 3,00

Eurolink S.C.p.A. Pagina 235 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

> rad 0,00

9.3.1 **ANALISI DEI CARICHI**

La spalla è soggetta dalle sollecitazioni derivanti dall'impalcato riportati nel capitolo 8 e dalle spinte delle terre. Di seguito si riassumono i carichi globali gravanti:

		MPALCATO
AZIUNI		

momenti longitudinali rispetto al bordo anteriore

	Ν	H long	H trasv	M long	M trasv	1				
	(kN)	(kN)	(kN)	(kNm)	(kNm)					
peso strutturale	1.009	0	0	1.312	475					
permanenti	390	0	0	507	257					
mezzi schema 1	1.989	0	0	2.586	9.320	1				
mezzi schema 2	938	0	0	1.219	6.674					
folla schema 1	0	0	0	0	0	1				
folla schema 2	0	0	0	0	0	Mt	Н		٥	
frenamento	0	310	0	-775	0	1	310	Obliquità	0,00	
attrito / reazione gommoni ?T	0	180	0	-450	0		180			
vento: impalcato scarico	440	0	107	0	-1.441	1.025	107			
vento: impalcato carico	373	0	226	0	-2.772	1.570	226			
temperatura	440	0	0	0	0					
ritiro	135	0	0	0	0					
azione centrifuga	0	0	0	0	0					
sisma	1.670	1.611	576	4.028	1.555					

Eccentricità dei carichi verticali (mt)

PARAMETRI SISMICI

PARAMETRI SISMICI			PARAMETRI TERRENO				
accelerazione di picco	αg/g=	0,4373	Peso specifico del terreno:	19,0	kN/m³	γ	
coefficiente orizzontale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno rilevato	0,611	rad	ф	35,00 °
coefficiente verticale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno di base	0,663	rad	ф	38,00 °
	a _{max} =	0,437	Angolo di inclinazione del muro	1,571	rad	Ψ	90,00 °
	βm	0,31					
	Kh=	0,136	Angolo di inclinazione del terreno	0,000	rad	β	0,00 °
Kv=0,5 Kh	Kv=	0,068	Angolo di resistenza terra-muro	0,407	rad	δ	23,33 °
	θ_1 =	0,126	Coefficiente di spinta del terreno	K1=	0,325		
	θ2=	0,144		K2=	0,339		

р	H long	M long		AZIONI INE	RZIALI S	IS. TRAS	MESSE DA	LLA SPAL	LA
(kN/mq)	(kN)	(kNm)			Ν	H long	H trasv	M long	М
l	2.097	-4.802			(kN)	(kN)	(kN)	(kNm)	(F
49,42	2.469	-5.020		Sisma +	2.353	4.706	4.706	12.045	1.
31,41	1.569	-3.191		Sisma -	-1.571	-3.142	-3.142	-5.319	-:
154,63	1.583	1.319							
i 3,84	383	-1.170		_					
р	N vert	H long	M long						
(kN/mq)	(kN)	(kN)	(kNm)						
				Largh	nezza pav	rimentato	14,77	m	
64,43	1.392	2.160	-6.587		num	ero stese	3		
36,95					angolo d	diffusione	30,00	۰	-
)	a 49,42 a 31,41) 154,63 i 3,84 p (kN/mq)	(kN/mq) (kN) 2.097 49,42 2.469 31,41 1.569 154,63 1.583 3,84 383 p N vert (kN/mq) (kN)	(kN/mq) (kN) (kNm) a 2.097 -4.802 49,42 2.469 -5.020 a 31,41 1.569 -3.191 154,63 1.583 1.319 i 3,84 383 -1.170 p N vert H long (kN/mq) (kN) (kN) a 64,43 1.392 2.160	(kN/mq) (kN) (kNm) a 2.097 -4.802 49,42 2.469 -5.020 31,41 1.569 -3.191 154,63 1.583 1.319 3,84 383 -1.170 p N vert H long M long (kN/mq) (kN) (kN) (kNm) a 64,43 1.392 2.160 -6.587	(kN/mq) (kN) (kNm) a 2.097 -4.802 b 49,42 2.469 -5.020 a 31,41 1.569 -3.191 b 154,63 1.583 1.319 i 3,84 383 -1.170 p N vert H long M long (kN/mq) (kN) (kN) (kNm) Largh	(kN/mq) (kN) (kNm) a 2.097 -4.802 b 49,42 2.469 -5.020 a 31,41 1.569 -3.191 b 154,63 1.583 1.319 i 3,84 383 -1.170 p N vert H long M long (kN/mq) (kN) (kN) a 64,43 1.392 2.160 -6.587 nume	(kN/mq) (kN) (kNm) a 2.097 -4.802 b 49,42 2.469 -5.020 a 31,41 1.569 -3.191 b 154,63 1.583 1.319 i 3,84 383 -1.170 p N vert H long (kN) (kNm) (kN/mq) (kN) (kN) (kNm) Larghezza pavimentato numero stese	(kN/mq) (kN) (kNm) a 2.097 -4.802 b 49,42 2.469 -5.020 a 31,41 1.569 -3.191 b 154,63 1.583 1.319 i 3,84 383 -1.170 p N vert (kN) (kN) (kNm) (kN/mq) (kN) (kN) (kNm) Larghezza pavimentato 14,77 a 64,43 1.392 2.160 -6.587 numero stese 3	(kN/mq) (kN) (kNm) a 2.097 -4.802 b 49,42 2.469 -5.020 a 31,41 1.569 -3.191 b 154,63 1.583 1.319 i 3,84 383 -1.170 p N vert (kN/mq) (kN) (kN) (kN/mq) (kN) (kN) a 64,43 1.392 2.160 -6.587

Per le spinte	inerziali ,	βm=1
Kx=	0,437	Ку

		Ν	H long	H trasv	M long	M trasv
		(kN)	(kN)	(kN)	(kNm)	(kNm)
	Sisma +	2.353	4.706	4.706	12.045	12.045
	Sisma -	-1.571	-3.142	-3.142	-5.319	-5.319
	-					
g						
1)						
	Largh	nezza pav	imentato	14,77	m	
7		nume	ero stese	3		
		angolo d	liffusione	30.00	0	0.52

Ky= 0,437

Kv=

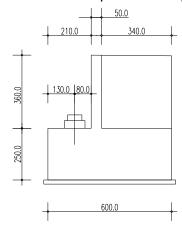
Eurolink S.C.p.A. Pagina 236 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.3.1.1 Considerazioni sul parametro β_m


All'interno delle "Specifiche tecniche per il progetto definitivo e il progetto esecutivo dei collegamenti stradali e ferroviari" al punto 3.2.3.3.3, viene esplicitato che "...si può ragionevolmente prefigurare il mantenimento delle condizioni di spinta a riposo in presenza di spostamenti attesi inferiori a 5x10⁻⁴H m essendo H l'altezza fuori terra dell'opera". Tale assunzione può essere certamente estesa ai muri frontali delle spalle di tipo classico presenti nelle opere di nostra competenza.

Per quanto riguarda la bibliografia, è possibile individuare il cedimento relativo tra un elemento di sostegno ed il terreno di spinta situato a tergo dello stesso; in particolare al capitolo 11.2 del libro "Fondazioni – progetto e analisi" del giugno 1991 di Joseph E. Bowles edito da McGraw – Hill, si definiscono, a seconda della tipologia del terreno, dei rapporti minimi tra cedimento ed altezza dell'elemento di sostegno per l'instaurarsi della spinta attiva, ovvero l'entità minima della traslazione affinchè lo spostamento sia da considerarsi non trascurabile.

Per terreni incoerenti densi, come nei casi in esame rappresentati dal rilevato lavorato con rulli compattatori, il Bowles definisce tale spostamento pari a 0,001H ÷ 0,002H, dove H rappresenta l'altezza dell'opera di sostegno; in definitiva si può quindi assumere prudenzialmente un valore della traslazione pari allo 0,5% come assunto dalle specifiche tecniche affinchè si sviluppi un tipo di spinta attiva.

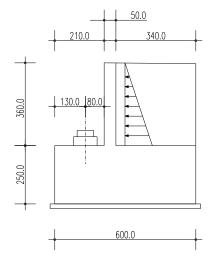
Rimandando alla bibliografia citata il significato della teoria alla base di tale assunzione, si effettua il calcolo dello spostamento di un muro frontale di una spalla tipo presente nei viadotti in oggetto di progettazione al fine di giustificare l'assunzione del coefficiente di riduzione sismica $\beta m = 0.31$ indicato dalle NTC 2008 al punto 7.11.6.2.1.

In particolare si effettua il calcolo dell'entità di tale spostamento per la Spalla B:

Eurolink S.C.p.A. Pagina 237 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc


Rev F0 Data 20/06/2011

Si effettua il calcolo del cedimento in testa al muro frontale dovuto essenzialmente a 3 contributi:

- 7) Spinta attiva del terreno a tergo del muro con distribuzione triangolare;
- 8) Sovra spinta sismica per Mononobe-Okabe modellata come azione concentrata ad H/2, come stabilito dalla teoria; a tale forza si sommano le forze inerziali dovute a masssa del terreno e del muro frontale ipotizzate con $\beta_m = 0.31$, con il medesimo punto di applicazione;
- 9) Forza sismica orizzontale in testa al muro derivante dall'impalcato.

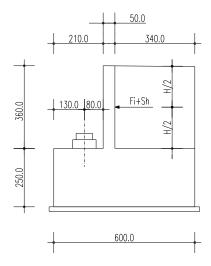
I calcoli sono riferiti ad un metro di profondità del muro.

1) Il modello per la spinta attiva del terreno a tergo è così schematizzato:

$$f_1 = \frac{1}{30} \cdot \frac{p \cdot L^4}{EJ} = \frac{1}{30} \cdot \frac{23,24 \cdot 3,60^4}{3,334 \cdot 10^6 \cdot 0,0104} = 0,0038 \ m = 3,8 \ mm$$

2) Il modello per le azioni sismiche da forze inerziali e sovra spinta sismica del terreno è così schematizzato:

Eurolink S.C.p.A. Pagina 238 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$f_2 = \frac{P \cdot \left(\frac{L}{2}\right)^3}{3 \cdot EJ} = \frac{(58 + 12) \cdot 1,80^3}{3 \cdot 3,334 \cdot 10^6 \cdot 0.0104} = 0,0039 \text{ m} = 3,9 \text{ mm}$$

3) Si trascura il contributo del carico sismico da impalcato, in quanto ha braccio di applicazione molto ridotto.

Il cedimento totale del muro frontale schematizzato come mensola incastrata alla base vale quindi: $f_1 + f_2 + f_3 = 3.8 + 3.9 + 0.0 = 7.7 \text{ mm}$

Tale valore di spostamento in testa al paramento verticale risulta pari a circa 0,27% dell'altezza della spalla e ciò consente di ritenere corretto l'utilizzo del fattore β_m ridotto in quanto il valore limite fissato nell'Eurocodice EC7 (Annesso C) e nella letteratura più conosciuta (Lancellotta – Geotecnica), perché si attivi la spinta attiva, è pari allo 0,05% - 0,10% dell'altezza della spalla

Eurolink S.C.p.A. Pagina 239 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

9.3.1.2 Combinazioni di carico statiche

Si considerano le combinazioni di carico statiche allo SLU previste dalla normativa vigente:

SI	PRINCIPALE	P.p.	Perm.	Att	rito	Tempe	eratura	Ve	nto	Accid	dent.	Fo	lla	Frena	mento	Cent	rifuga	Ced.	e ritiro
OL.	PRINCIPALE			Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1		Ψ_1	
	Vento	1,00	1,30	1,00	1,00	0,60	1,00	1,00	1,30									1,00	1,00
	Gruppo 1 centr.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,50	1,15	0,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 1 ecc.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,50	1,15	0,00	1,15	0,00	1,15	1,00	1,00
0	Gruppo 2a centr.+	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	1,00	1,15	0,00	1,15	1,00	1,00
GEO	Gruppo 2a ecc.+	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	1,00	1,15	0,00	1,15	1,00	1,00
SLU	Gruppo 2a centr	1,00	1,30	-1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	-1,00	1,15	0,00	1,15	1,00	1,00
co.	Gruppo 2a ecc	1,00	1,30	-1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	-1,00	1,15	0,00	1,15	1,00	1,00
	Gruppo 2b centr.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	0,00	1,15	1,00	1,15	1,00	1,00
	Gruppo 2b ecc.	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	0,75	1,15	0,00	1,15	0,00	1,15	1,00	1,15	1,00	1,00
	Gruppo 1 rilevato	1,00	1,30	1,00	1,00	0,60	1,00	0,60	1,30	1,00	1,15	0,00	0,00	0,00	1,15	0,00	1,15	1,00	1,00
		γ _{G1}	γ _{G2}	Ψ_0	γ _{G2}	Ψ_0	γε3	Ψ_0	γQi	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ	Ψ_0	γQ
	Vento	1,35	1,50	1,00	1,35	0,60	1,20	1,00	1,50									1,00	1,20
	Gruppo 1 centr.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,50	1,35	0,00	1,35	0,00	1,35	1,00	1,20
	Gruppo 1 ecc.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,50	1,35	0,00	1,35	0,00	1,35	1,00	1,20
~	Gruppo 2a centr.+	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00	1,20
STR	Gruppo 2a ecc.+	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	1,00	1,35	0,00	1,35	1,00	1,20
SLU	Gruppo 2a centr	1,35	1,50	-1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	-1,00	1,35	0,00	1,35	1,00	1,20
0)	Gruppo 2a ecc	1,35	1,50	-1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	-1,00	1,35	0,00	1,35	1,00	1,20
	Gruppo 2b centr.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	0,00	1,35	1,00	1,35	1,00	1,20
	Gruppo 2b ecc.	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	0,75	1,35	0,00	1,35	0,00	1,35	1,00	1,35	1,00	1,20
	Gruppo 1 rilevato	1,35	1,50	1,00	1,35	0,60	1,20	0,60	1,50	1,00	1,35	0,00	0,00	0,00	1,35	0,00	1,35	1,00	1,20
	Vento	1,00	1,00	1,00	1,00	0,60	1,00	1,00	1,00									1,00	1,00
	Gruppo 1 centr.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,50	1,00	0,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 1 ecc.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,50	1,00	0,00	1,00	0,00	1,00	1,00	1,00
	Gruppo 2a centr.+	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00
SLE	Gruppo 2a ecc.+	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00
S	Gruppo 2a centr	1,00	1,00	-1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	-1,00	1,00	0,00	1,00	1,00	1,00
l	Gruppo 2a ecc	1,00	1,00	-1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	-1,00	1,00	0,00	1,00	1,00	1,00
l	Gruppo 2b centr.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00
l	Gruppo 2b ecc.	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	0,75	1,00	0,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00
$ldsymbol{ld}}}}}}$	Gruppo 1 rilevato	1,00	1,00	1,00	1,00	0,60	1,00	0,60	1,00	1,00	1,00	0,00	0,00	0,00	1,00	0,00	1,00	1,00	1,00

9.3.1.3 Combinazioni di carico Sismiche

Secondo le "Norme Tecniche 2008" le verifiche agli stati limite ultimi o di esercizio devono essere effettuate per la seguente combinazione dell'azione sismica con le altre azioni:

$$G1+G2+P+E+\sum_i 0, 2\cdot Q_{kj}$$

dove G1 sono i pesi propri, G2 sono i carichi permanenti, P è la precompressione, E è l'azione sismica e Q_{ki} sono i carichi accidentali.

In particolare si sono considerate le seguenti combinazioni sismiche:

Combinazione	P.p.	Perm.	Accid.	Sisma X	Sisma Y	Sisma Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30
SISMA Z N+	1,00	1,00	0,20	0,30	0,30	1,00

Eurolink S.C.p.A. Pagina 240 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

SISMA Y N+	1,00	1,00	0,20	0,30	1,00	0,30

9.3.2 MODELLO DI CALCOLO

9.3.2.1 Descrizione del modello di calcolo

Per quanto concerne l'analisi strutturale condotta sulla spalla, è necessario chiarire preliminarmente quelle che sono le scelte di modellazione adottate.

Da un punto di vista dello schema statico i singoli elementi compositi della spalla, quali il muro frontale e il paraghiaia sono stati schematizzati come mensole incastrate alla base.

La modellazione di tali elementi è stata poi ricondotta a porzioni di struttura di profondità unitaria, ottenendo in questo modo, grazie ad una lecita bi-dimensionalizzazione del problema, un consistente sgravio computazionale.

Nella valutazione delle spinte agenti sulla struttura ad opera del terreno a tergo in condizioni sismiche, ci si è ricondotti alle teorie di comprovata validità di Mononobe-Okabe. Tale scelta supportata dalle prescrizioni della normativa vigente è avvalorata da una riflessione condotta sulla possibile cinematica dell'elemento spalla. Ritenendo infatti erroneo supporre una completa staticità della struttura, si è preferito utilizzare la suddetta teoria rispetto ad altre presenti in letteratura (es. Woods). Per una descrizione dettagliata delle trattazioni teoriche alla base di tali teorie si rimanda alla bibliografia citata.

9.3.3 AZIONI SISMICHE: CONFRONTO ANALISI DINAMICA – ANALISI STATICA EQUIVALENTE

Al fine di poter emettere un giudizio motivato sull'accettabilità dei risultati ottenibili con l'utilizzo degli accellerogrammi spettro – compatibili dell'analisi dinamica utlizzata, si è proceduto all'analisi di una spalla tipo, individuata nella spalla SpA del Viadotto Curcuraci direzione Reggio Calabria, confrontando il risultato del calcolo operato con l'utilizzo di detti accellerogrammi con l'analogo calcolo effettuato con il metodo statico equivalente. Alla luce dei risultati, si può affermare, come più oltre analiticamente dimostrato, che gli scostamenti in termini di spostamenti ed azioni agli appoggi sono dell'ordine del 5% in media e del 10% di massimo e comunque sempre in favore di sicurezza. Pertanto l'analisi di cui al presente paragrafo viene estesa, per analogia, anche all'opera in oggetto, la quale presenta caratteristiche geometriche, statiche e di situazione geologico –

Eurolink S.C.p.A. Pagina 241 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

geotecnica assimilabili a quella effettivamente analizzata.

Si effettua quindi nel seguito un confronto tra i risultati ottenuti dall'analisi dinamica lineare con uso di accellerogrammi spettrocompatibili e dall'analisi lineare statica equivalente con uso di spettri da NTC 2008. Nel seguito si descrivono i due approcci e si confrontano i risultati ottenuti nei parametri di azioni sugli isolatori e spostamenti dei giunti trasversali di impalcato.

9.3.3.1 ANALISI LINEARE DINAMICA

Lo studio sismico è stato effettuato tramite un'analisi lineare dinamica con l'impiego di accelerogrammi come indicato dalla normativa italiana DM2008 (§ 3.2.3.6).

Si utilizzano accelerogrammi artificiali compatibili con lo spettro elastico di risposta adottato nel capitolo 4 paragrafo 4.3.14.6; in particolare l'analisi è condotta con più di 7 serie temporali e si sono assunti i valori medi ottenuti dal modello come azioni di progetto, inoltre per descrivere il moto sismico si è tenuto in conto di non utilizzare lo stesso accelerogramma simultaneamente lungo le due direzioni orizzontali.

Per ricavare gli accelerogrammi spettro compatibili si è utilizzato i programma **REXEL 3.0 beta**, redatto:

Iervolino, I., Galasso, C., Cosenza, E. (2009).

REXEL: computer aided record selection for code-based seismic structural analysis.

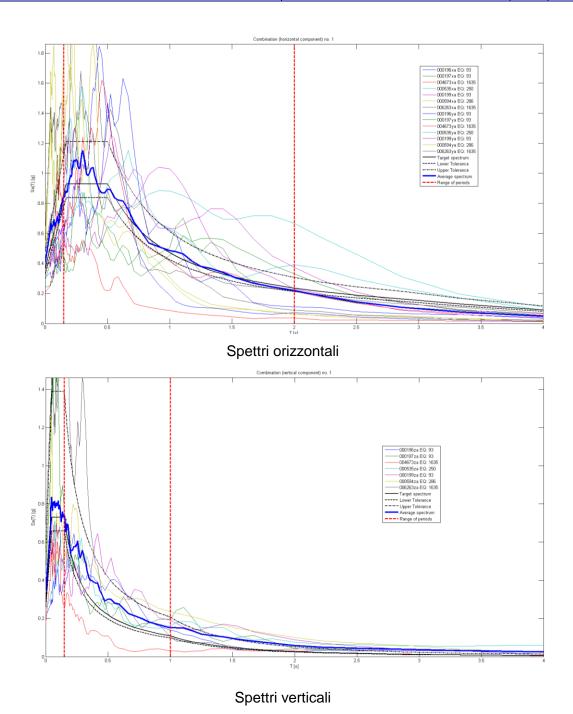
Bulletin of Earthquake Engineering. DOI 10.1007/s10518-009-9146-1

Il programma citato crea degli accelerogrammi spettro-compatibili con gli spettri elastici derivanti, in accordo con le Norme Tecniche 2008, dai parametri di coordinate del sito, categoria di sottosuolo, categoria topografica, vita nominale, classe d'uso e stato limite.

Tale modellazione risulta in accordo con quanto richiesto dalle NTC2008 per strutture isolate al paragrafo 7.10.2, ossia che la sovrastruttura e la sottostruttura devono mantenersi in campo elastico, coincidente con un valore del valore di struttura unitario.

Di seguito si riportano gli spettri estratti:

Eurolink S.C.p.A. Pagina 242 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Le funzioni sono state implementate nel codice di calcolo SAP2000 definendo 7 combinazioni indipendenti.

Viene adottato un sistema di isolamento sismico che è posto tra l'impalcato e le pile/spalle, allo scopo di migliorarne la risposta nei confronti delle azioni sismiche orizzontali. La riduzione della risposta sismica orizzontale qualunque siano la tipologia ed i materiali strutturali del ponte, può

Eurolink S.C.p.A. Pagina 243 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

essere ottenuta mediante un incremento del periodo fondamentale della costruzione per portarlo nel campo delle minori accelerazioni di risposta.

Per l'opera in oggetto della seguente relazione si utilizzano isolatori sismici elastomerici, composti essenzialmente da due piastre, la superiore ancorata alla trave e l'inferiore al pulvino o al fusto, all'interno delle quali viene interposto uno strato di elastomero.

Eurolink S.C.p.A. Pagina 244 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.3.3.2 ANALISI STATICA EQUIVALENTE

Lo studio si effettua con l'ausilio di forze statiche sismiche equivalenti; per i parametri utilizzati nell'analisi sismica del graticcio di impalcato si rimanda al capitolo "4.4.3 – Azioni sismiche" dell'elaborato "CG0700PCLDSSCC5VIV0000001A-01 – Relazione di calcolo".

9.3.4 AZIONI SISMICHE

Dall'analisi condotta si riportano i valori di sisma per gli appoggi distinti per le tre componenti.

						SP	ALLA S	SpA				
		101			201		301			401		
	V	Н	Ht	V	Н	Ht	V	Н	Ht	V	Н	Ht
Sisma X	0	305	0	0	294	0	0	290	0	0	289	0
Sisma Y	0	0	228	0	0	228	0	0	228	0	0	228
Sisma Z	326	0	0	266	0	0	273	0	0	321	0	0

I tabulati seguenti riportano i valori di reazioni delle molle ottenute con la modellazione e le reazioni verticali agli appoggi stessi.

TABLE: Joint Reactions - Spring Forces								
Joint	OutputCase	CaseType	StepType	U1	U2			
Text	Text	Text	Text	KN	KN			
101	SPETTROX	LinRespSpec	Max	304,8853	6,2353			
101	SPETTROY	LinRespSpec	Max	0,1440	228,1107			
101	SPETTROZ	LinRespSpec	Max	0,0000	0,0001			
201	SPETTROX	LinRespSpec	Max	294,1113	6,2340			
201	SPETTROY	LinRespSpec	Max	0,0014	228,1160			
201	SPETTROZ	LinRespSpec	Max	0,0001	0,0000			
301	SPETTROX	LinRespSpec	Max	290,1947	6,2287			
301	SPETTROY	LinRespSpec	Max	0,0014	228,1127			
301	SPETTROZ	LinRespSpec	Max	0,0001	0,0000			
401	SPETTROX	LinRespSpec	Max	288,6433	6,2247			
401	SPETTROY	LinRespSpec	Max	0,1440	228,0993			
401	SPETTROZ	LinRespSpec	Max	0,0000	0,0001			

TABLE: Joint Reactions							
Joint	OutputCase	CaseType	StepType	U3			

Eurolink S.C.p.A. Pagina 245 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

Text	Text	Text	Text	KN
101	SPETTROX	LinRespSpec	Max	0,0000
101	SPETTROY	LinRespSpec	Max	0,0001
101	SPETTROZ	LinRespSpec	Max	423,6865
201	SPETTROX	LinRespSpec	Max	0,0000
201	SPETTROY	LinRespSpec	Max	0,0000
201	SPETTROZ	LinRespSpec	Max	346,1493
301	SPETTROX	LinRespSpec	Max	0,0000
301	SPETTROY	LinRespSpec	Max	0,0001
301	SPETTROZ	LinRespSpec	Max	354,7475
401	SPETTROX	LinRespSpec	Max	0,0000
401	SPETTROY	LinRespSpec	Max	0,0001
401	SPETTROZ	LinRespSpec	Max	417,2913

9.3.5 ESCURSIONE DEI GIUNTI TRASVERSALI

I giunti devono essere in grado di assorbire una deformazione longitudinale dell'impalcato causata da una variazione termica ΔT di ±30 °C. Tale deformazione risulta nulla in corrispondenza del baricentro dell'impalcato metallico e cresce all'aumentare della distanza dal giunto in questione al baricentro stesso. I giunti devono inoltre garantire lo spostamento dovuto alle azioni sismiche derivanti dalla modellazione. Si espongono nel seguito i valori delle escursioni termiche e degli spostamenti sismici per i giunti presenti nell'opera in oggetto:

	$\Delta I_{ m term}$	ΔI_{sism}	$\Delta I_{ m ammesso}$
	mm	mm	mm
SpA	±4	±193	±200

Occorre inoltre verificare che lo spostamento relativo tra le spalle sia compatibile con i giunti in oggetto, secondo le NTC2008, al paragrafo 3.2.5.2 "Spostamento assoluto e relativo del terreno", il valore dello spostamento relativo tra due punti a distanza x si può valutare con l'espressione:

$$d_{dj}(x) = d_{ij0} + \left(d_{ijmax} - d_{ij0}\right) \cdot \left[1 - e^{-1.25 \left(\frac{x}{v_s}\right)^{0.7}}\right] dove:$$

 $v_s = \text{velocit\`a di propagazione delle onde di taglio in m/s ricavabile dalle indagini sul terreno;} \\ d_{ij0}(x) = 1,25 \Big| d_{gi} - d_{gj} \Big| \text{ spostamento relativo tra 2 punti a piccola distanza;} \\$

Eurolink S.C.p.A. Pagina 246 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$d_{iimax} = 1.25\sqrt{d^2_{gi} + d^2_{gj}}$$
;

d_{gi} e d_{gj} = spostamenti massimi del suolo nei punti i e j.

Essendo il terreno omogeneo tra le spalle ed i parametri sismici medesimi, si può calcolare, in accordo con il paragrafo 3.2.3.3 delle NTC2008:

$$d_{\alpha i} = d_{\alpha i} = 0.025 \cdot a_{\alpha} \cdot S \cdot T_{C} \cdot T_{D} = 0.025 \cdot 4.373 \cdot 1.00 \cdot 0.55 \cdot 3.35 = 0.201 \, m$$

Per cui:

$$d_{iimax} = 1,25\sqrt{0,201^2 + 0,201^2} = 0,252 \text{ m}$$

$$d_{ii0} = 1,25 \cdot (0,020 - 0,020) = 0 \text{ m}$$

$$d_{dj}(x) = 0 + \left(0,252 - 0\right) \cdot \left\lceil 1 - e^{-1,25\left(\frac{96,5}{240}\right)^{0,7}} \right\rceil = 0,122 \ m = 122 \ mm$$

Avendo considerato la distanza tra i punti pari a 96,50 m e una velocità media v_s per terreni di classe C come da NTC2008.

Ai giunti è richiesto di garantire lo spostamento massimo relativo fra impalcato e sottostrutture per effetto delle azioni sismiche e termiche.

Le singole componenti di spostamento considerate sono:

- Spostamento dell'impalcato dovuto alla dilatazione termica uniforme (positiva);
- Spostamento dell'impalcato dovuto alla deformazione a taglio massima degli isolatori elastomerici.
- Spostamento relativo fra le spalle mobilitato a livello spiccato fondazioni (scorrimento su piano di posa addizionato a spostamento sismico differenziale del terreno).

In assenza di determinazione specifica dello scorrimento sul piano di posa delle spalle, alla luce dei risultati ottenuti dalle analisi numeriche FEM condotte per il viadotto Curcuraci in direzione Reggio Calabria, si ritiene che considerare il solo spostamento sismico differenziale del terreno, determinato come sopra secondo il 3.2.3.3 delle NTC, per la valutazione dello spostamento relativo delle spalle, sia un approccio sufficientemente conservativo. Dalle analisi FEM svolte è emerso infatti che lo spostamento relativo totale fra le spalle dato dallo scorrimento su piano di posa e dallo spostamento sismico differenziale del suolo di fondazione (calcolati secondo un approccio a favore di sicurezza, come meglio descritto nella relazione specifica), è paragonabile allo spostamento differenziale del terreno determinato secondo il 3.2.3.3 delle NTC.

Eurolink S.C.p.A. Pagina 247 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Le componenti sopra citate sono addizionate coerentemente con quanto espresso nelle combinazioni di calcolo SLU – sismiche, considerando il 50% dello spostamento indotto dalla variazione termica in concomitanza all'evento sismico.

Si ipotizza inoltre, conservativamente, che il moto delle spalle e dell'impalcato possa avvenire in opposizione di fase, in considerazione della capacità del sistema di isolamento sismico di disaccoppiare la risposta della sovrastruttura da quella delle spalle.

L'escursione minima del giunto sulla singola spalla dovrà risultare soddisfare la relazione seguente:

escursione...giunto
$$\geq (s_{isolamento} + s_{fondazion})/2 + 0.5 \cdot s_{termico}$$

 $S_{termico} = 4.0 \text{ mm}$

 $S_{isolamento} = 193.0 \text{ mm}$

S _{fondazione} = 122.0 mm

 $S_{\text{totale/2}} = 159.5 \text{ mm}$

L'escursione massima ammessa di 200 mm risulta essere superiore allo spostamento massimo cosi calcolato.

Di seguito si riporta l'output degli spostamenti massimi in corrispondenza dei nodi di spalla.

	TABLE: Joint Displacements								
Joint	OutputCase	tCase CaseType StepType U1		U2					
Text	Text	Text	Text	m	m				
101	SPETTROX	LinRespSpec	Max	0,1932608	0,004872				
101	SPETTROY	LinRespSpec	Max	0,0001344	0,1217896				
101	SPETTROZ	LinRespSpec	Max	1,5256E-08	5,3304E-08				
201	SPETTROX	LinRespSpec	Max	0,1822728	0,0048712				
201	SPETTROY	LinRespSpec	Max	1,3008E-06	0,121792				
201	SPETTROZ	LinRespSpec	Max	7,0584E-08	1,4056E-08				
301	SPETTROX	LinRespSpec	Max	0,178492	0,0048664				
301	SPETTROY	LinRespSpec	Max	1,3304E-06	0,1217888				

Eurolink S.C.p.A. Pagina 248 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

301	SPETTROZ	LinRespSpec	Max	5,64E-08	3,108E-08
401	SPETTROX	LinRespSpec	Max	0,17716	0,0048632
401	SPETTROY	LinRespSpec	Max	0,0001344	0,1217776
401	SPETTROZ	LinRespSpec	Max	1,7848E-08	5,52E-08

I risultati ottenuti per mezzo della modellazione statica equivalente mostrano, rispetto alla modellazione dinamica, dei valori di spostamenti e di reazioni orizzontali agli appoggi confrontabili, con discostamenti medi dell'ordine del 5% e massimi dell'ordine del 10%.

Eurolink S.C.p.A. Pagina 249 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

9.3.6 CALCOLO DELLE SOLLECITAZIONI

9.3.6.1 Sollecitazioni fondazione

Eurolink S.C.p.A. Pagina 250 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

VERIFICHE DI STABILITA'

VERIFICHE DI STABILITA	Λ./	Mrih	Matah			6	
	N (kN)	Mrib (kNm)	M stab (kNm)	η	и (т)	e (m)	SL
Combinazione 1	13.926	-6.977	30.555	4,38	1,69	1,31	
Combinazione 2	16.214	-8.322	33.529	4,03	1,55	1,45	
Combinazione 3	15.005	-8.322	31.958	3,84	1,58	1,42	
Combinazione 4	15.642	-8.877	32.786	3,69	1,53	1,47	
Combinazione 5	14.735	-8.877	31.607	3,56	1,54	1,46	SLU GEO
Combinazione 6	15.642	-7.535	34.127	4,53	1,70	1,30	3LU
Combinazione 7	14.735	-7.535	32.948	4,37	1,72	1,28	0)
Combinazione 8	15.642	-7.985	32.786	4,11	1,59	1,41	
Combinazione 9	14.735	-7.985	31.607	3,96	1,60	1,40	
Combinazione 10	15.642	-14.552	32.156	2,21	1,13	1,87	
Combinazione 11	17.703	-8.138	39.570	4,86	1,78	1,22	
Combinazione 12	20.388	-9.717	43.061	4,43	1,64	1,36	
Combinazione 13	18.969	-9.717	41.216	4,24	1,66	1,34	
Combinazione 14	19.717	-10.369	42.188	4,07	1,61	1,39	~
Combinazione 15	18.653	-10.369	40.805	3,94	1,63	1,37	SLU STR
Combinazione 16	19.717	-8.715	43.842	5,03	1,78	1,22	SLU
Combinazione 17	18.653	-8.715	42.458	4,87	1,81	1,19	
Combinazione 18	19.717	-9.322	42.188	4,53	1,67	1,33	
Combinazione 19	18.653	-9.322	40.805	4,38	1,69	1,31	
Combinazione 20	19.706	-17.031	41.449	2,43	1,24	1,76	
Comb SLE 1	12.736	-5.470	28.579	5,22	1,81	1,19	
Comb SLE 2	14.725	-6.640	31.165	4,69	1,67	1,33	
Comb SLE 3	13.674	-6.640	29.798	4,49	1,69	1,31	
Comb SLE 4	14.228	-7.123	30.518	4,28	1,64	1,36	
Comb SLE 5	13.440	-7.123	29.494	4,14	1,66	1,34	SLE
Comb SLE 6	14.228	-5.898	31.743	5,38	1,82	1,18	S
Comb SLE 7	13.440	-5.898	30.719	5,21	1,85	1,15	
Comb SLE 8	14.228	-6.348	30.518	4,81	1,70	1,30	
Comb SLE 9	13.440	-6.348	29.494	4,65	1,72	1,28	
Comb SLE 10	14.176	-12.057	29.971	2,49	1,26	1,74	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	14.164	-24.093	30.933	1,28	0,48	2,52	
perm + sisma X + 0,30 sisma (Y+Z) schema 2	13.744	-24.093	30.386	1,26	0,46	2,54	SLV

Eurolink S.C.p.A. Pagina 251 di 405

RELAZIONE DI CALCOLO

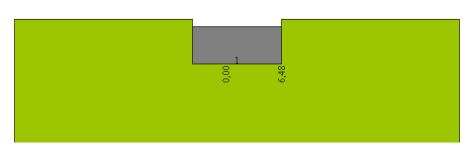
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

AZIONI GLOBALI NORME TECNICHE 2008

AZIONI GLOBALI NORME TECNICHE 2008	N	M long	M trasv	T long	T trasv	1
	(kN)	(kNm)	(kNm)	(kN)	(kN)	
Combinazione 1	13.926	18.201	2.683	3.390	139	
Combinazione 2	16.214	23.434	13.690	3.831	176	
Combinazione 3	15.005	21.379	10.647	3.831	176	
Combinazione 4	15.642	23.017	11.010	4.077	176	
Combinazione 5	14.735	21.476	8.728	4.077	176	SLU GEO
Combinazione 6	15.642	20.334	8.728	3.004	176) J
Combinazione 7	14.735	18.793	8.728	3.004	176	
Combinazione 8	15.642	22.126	11.010	3.721	176	
Combinazione 9	14.735	20.585	8.728	3.721	176	
Combinazione 10	15.642	29.322	2.972	5.873	176	
Combinazione 11	17.703	21.677	3.189	3.947	161	
Combinazione 12	20.388	27.821	16.104	4.464	203	
Combinazione 13	18.969	25.409	12.532	4.464	203	
Combinazione 14	19.717	27.331	12.958	4.753	203	~
Combinazione 15	18.653	25.522	10.279	4.753	203	STF
Combinazione 16	19.717	24.023	10.279	3.430	203	SLU STR
Combinazione 17	18.653	22.214	10.279	3.430	203	
Combinazione 18	19.717	26.285	12.958	4.335	203	
Combinazione 19	18.653	24.476	10.279	4.335	203	
Combinazione 20	19.706	34.701	3.522	5.826	203	
Comb SLE 1	12.736	15.101	2.173	2.649	107	
Comb SLE 2	14.725	19.651	11.715	3.033	136	
Comb SLE 3	13.674	17.865	9.069	3.033	136	
Comb SLE 4	14.228	19.289	9.385	3.247	136	
Comb SLE 5	13.440	17.949	7.401	3.247	136	SLE
Comb SLE 6	14.228	16.839	7.401	2.267	136	S
Comb SLE 7	13.440	15.499	7.401	2.267	136	
Comb SLE 8	14.228	18.514	9.385	2.937	136	
Comb SLE 9	13.440	17.174	7.401	2.937	136	
Comb SLE 10	14.176	24.615	2.395	4.041	136	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	14.164	29.234	6.676	6.832	1.585	SLV
perm + sisma X + 0,30 sisma (Y+Z) schema 2	13.744	28.877	5.415	6.832	1.585	Ω

Eurolink S.C.p.A. Pagina 252 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

Sollecitazione sezione A-A

Il momento flettente e il taglio sono calcolati rispetto al filo posteriore del paraghiaia; si considera la situazione più gravosa corrispondente tra le combinazioni GEO, corrispondente alla combinazione 11 in condizioni sismiche. Si riporta di seguito la pressione sul terreno lungo l'asse longitudinale della spalla:

Ghiaie di messina γ=1900 kg/mc γs=2300 kg/mc φ=38.0 ° δ=38.0 ° c=0,00 kg/cmq ca=0,00 kg/cmq

Sollecitazione sezione A-A

$$\begin{split} M_{SDB} &= 1{,}50 \cdot \left[\left(1{,}900 \cdot 3{,}60 + 2{,}500 \cdot 2{,}50 \right) \cdot \frac{3{,}40^2}{2} \right] \cdot 10 = 1.185 \text{ kNm} \\ V_{SDB} &= 1{,}50 \cdot \left[\left(1{,}900 \cdot 3{,}60 + 2{,}500 \cdot 2{,}50 \right) \cdot 3{,}40 \right] \cdot 10 = 668 \text{ kN} \end{split}$$

9.3.6.2 Sollecitazioni paraghiaia

La verifica viene effettuata secondo l'approccio SLU di tipo STR indicato al paragrafo 6.5.3.1.1 delle "Norme Tecniche 2008".

La combinazione attinente alla verifica degli elementi strutturali risulta essere la combinazione 1 (A1+M1+R1) dell'approccio previsto dalla norma, in cui i coefficienti sono presi dalle tabelle 5.1.V.

Angolo di attrito del terreno $\phi = 35^{\circ}$

Peso specifico del terreno $\gamma t = 19,00 \text{ kN/m}^3$ Sovraccarico $q = 90,91 \text{ kN/m}^2$

Spinta del terreno alla base $p_1 = k_0 \cdot \sigma_v = 0.43 \cdot 19,00 \cdot 3,60 = 29 \text{ kN} / \text{m}^2$

Spinta del sovraccarico $p_2 = k_0 \cdot q = 0.43 \cdot 90.91 = 39 \text{ kN} / \text{m}^2$

Approccio 1:

Combinazione 1 → Stato Limite Ultimo STR:

Eurolink S.C.p.A. Pagina 253 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 **Data** 20/06/2011

$$\begin{aligned} &M_{sd} = 29 \cdot 1{,}35 \cdot \frac{3{,}60^2}{6} + 39 \cdot 1{,}50 \cdot \frac{3{,}60^2}{2} = 463 \text{ kNm} \\ &V_{sd} = 29 \cdot 1{,}35 \cdot \frac{3{,}60}{2} + 39 \cdot 1{,}50 \cdot 3{,}60 = 281 \text{ kN / m} \end{aligned}$$

Combinazione sismica:

In accordo con quanto indicato nelle "Norme Tecniche 2008" al paragrafo 7.11.6.2.1, per le verifiche allo SLU si assume il coefficiente di spinta del terreno come segue, considerando la tabella 7.11.II.

$$k_h = \beta_m \cdot S \cdot \frac{a_{max}}{\alpha} = 0.31 \cdot 1.00 \cdot 0.4373 = 0.136$$

Il coefficiente di spinta attiva in condizioni statiche e di sisma vale:

Coefficiente di spinta attiva: $k_a = 0,271$

Coefficiente di spinta statica + sisma: $k_{ah} = 0.339$

Spinta attiva del terreno alla base: $p_3 = k_a \cdot \sigma_v = 0,271 \cdot 19,00 \cdot 3,60 = 18,5 \text{ kN} / \text{m}^2$

Spinta attiva + sisma alla base: $p_4 = k_{ab} \cdot \sigma_v = 0.339 \cdot 19,00 \cdot 3,60 = 23 \text{ kN} / \text{m}^2$

Forze di inerzia: $F_i = k_h \cdot P = 0,4373 \cdot (1,00 \cdot 3,60 \cdot 25) = 39,3 \text{ kN}$

$$M_{sd} = 23 \cdot 1,00 \cdot \frac{3,60^2}{4} + 39 \cdot 0,20 \cdot \frac{3,60^2}{2} + 39,3 \cdot 1,00 \cdot \frac{3,60}{2} = 195 \text{kNm} \ / \ \text{m}$$

 $V_{sd} = 23 \cdot 1,00 \cdot 3,60 + 0,20 \cdot 39 \cdot 3,60 + 39,3 = 150 \text{ kN/m}$

Eurolink S.C.p.A.

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.3.7 VERIFICA DELLE SEZIONI

9.3.7.1 Verifiche fondazione

FLESSIONE ALLA SEZIONE A-A:

 $M_{sd} = 1.185 \text{ kNm}$

SEZIONE base (cm) 100

altezza (cm) 250

ARMATURA compressa \$\phi 26/10\$

SOLLECITAZIONI Msd = 1.185 kNm

INDICI DI RESISTENZA Mrd = 5.250 kNm

IR = 4,43

TAGLIO ALLA SEZIONE A-A:

 $V_{sd} = 668 \text{ kN}$

RISULTATI VERIFICA A TAGLIO		
Verifica senza armatura trasversale		
Taglio res. ultimo (Vrdu1):	62981.934	
Indice di resistenza:	1.06	
Verifica delle bielle compresse		
Taglio res. ultimo (Vrdu2):	777758.625	
Indice di resistenza:	0.09	
Verifica con armatura trasversale		
Componente di taglio attribuita		
al calcestruzzo (Vrdu3):	0.000	
Componente di taglio attribuita		
all'armatura (Vwd):	71499.996	
Armatura trasversale per unita' di		
lunghezza (Asw,cm²/m):	8.14	
Staffe a 4 braccia		
(in accordo con i minimi di norma pe	r fondazioni): ø20/30cm	

Eurolink S.C.p.A. Pagina 255 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.3.7.2 Paraghiaia

FLESSIONE ALLA SEZIONE DI BASE

 $M_{sd} = 463 \text{ kNm}$

SEZIONE base (cm) 100

altezza (cm) 80

ARMATURA compressa \$\phi26/20\$

SOLLECITAZIONI Msd = 463 kNm

INDICI DI RESISTENZA Mrd = 508 kNm

IR = 1,09

TAGLIO:

 $V_{sd} = 281 \, kN$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (VRd): 18441.330 Indice di resistenza: 1.52

Verifica delle bielle compresse

Taglio resistente ultimo (VRcd): 166667.609 ctg(Theta): 1.00 Indice di resistenza: 0.17

Verifica con armatura trasversale

Taglio attribuito all'armatura (VRsd): 28100.001

Armatura trasversale per unita' di

FESSURAZIONE (SLE):

Si considerano condizioni ambientali aggressive e la presenza di armature poco sensibili:

COMBINAZIONE FREQUENTE

- combinazione (frequente):

$$F_d = g_1 + g_2 + \psi_1(q_1 + q_2)$$

Eurolink S.C.p.A. Pagina 256 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

 $W_D \leq W_2 = 0.3 \text{ mm}$

 $M = 1,00 \times 29,00 \times 3,60^2 / 6 + 1,00 \times 0,75 \times 39 \times 3,60^2 / 2 = 252 \text{ kNm}$

VERIFICA A FESSURAZIONE:

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 80

ARMATURA compressa \$\phi 26/20\$

SOLLECITAZIONI Msd = 252 kNm

TENSIONI cls $\sigma_c = (N/mm^2)$ 2,0

ferro teso $\sigma_f = (N/mm^2)$ 11

ampiezza fess. $w_D = (mm) 0$ VERIFICA SODDISFATTA

COMBINAZIONE QUASI PERMANENTE

- combinazione (quasi permanente):

$$F_d = g_1 + g_2 + \psi_2(q_1 + q_2)$$

$$W_D \leq \cdot W_1 = 0.2 \text{ mm}$$

 $M = 1,00 \times 29,00 \times 3,60^2 / 6 + 1,00 \times 0,00 \times 39 \times 3,60^2 / 2 = 63 \text{ kNm}$

VERIFICA A FESSURAZIONE:

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 80

ARMATURA compressa \$\phi 26/20\$

SOLLECITAZIONI Msd = 63 kNm

TENSIONI cls $\sigma_c = (N/mm^2)$ 0,5

ferro teso $\sigma f = (N/mm^2)$ 2,9

ampiezza fess. $w_D = (mm)$ 0,00

VERIFICA SODDISFATTA

Eurolink S.C.p.A. Pagina 257 di 405

9.4 ANALISI DELLA PILA P1p

La pila P1-p è costituita da un plinto di fondazione a base a parallelogramma di dimensioni 16,50 x 7,50 m, di spessore 2,50 m. L'architettura della pila è definita da un singolo fusto poligonale cava di diametro Ø3,57 m, alto 7,80 m. In sommità del fusto è individuabile un pulvino caratterizzato da uno sviluppo verticale di 4,20 m. Il collegamento tra impalcato ed opera di sostegno è affidato integralmente a tre appoggi, collocati con un interasse reciproco di 4,90m.

Di seguito viene presentata una schematizzazione grafica dell'elemento strutturale appena citato.

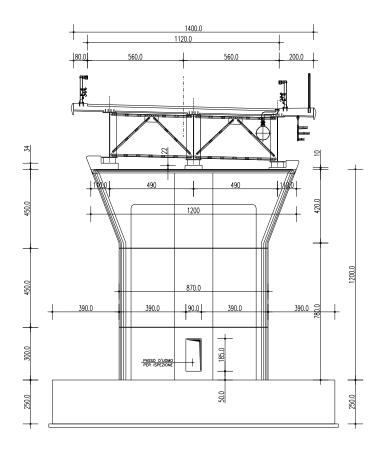


Figura 9.1 – Vista frontale pila.

Si riporta di seguito un tabulato riassuntivo della geometria delle strutture.

Eurolink S.C.p.A. Pagina 258 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

_					
	Altezza impalcato			 2,90	mt
	Larghezza pavimentato			11,20	mt
	Baricentro impalcato			 0,00	mt
	Campata			47,00	mt
	Altezza baggiolo+appoggio			0,50	mt
0	Peso pulvino			2.520,00	kN
FUSTO	Altezza pulvino			4,20	mt
Ŀ	Altezza fusto			7,80	mt
	Altezza totale			12,00	mt
	Numero fusti			1,00	
	Interasse fusti				mt
	Base / Diametro sezione	D)	3,57	mt
	Altezza sezione			-	mt
	Peso fusto + pulvino			4.471,55	kN
	Eccentricità Fusti-Fond-trasversale			0,00	mt
В	Base plinto			16,50	mt
ON	Lunghezza plinto			7,50	mt
Ž	Altezza plinto			2,50	mt
FONDAZIONE	Altezza terreno su plinto			0,80	mt
ON	Peso Terreno su plinto			1.493,77	kN
ŭ	Peso plinto			7.734,38	kN
	Totale plinto + Terreno			9.228,15	kN

Modulo elastico cls	360.000 daN/cm ²
Inerzia longitudinale	8,53 m ⁴
Inerzia trasversale	83,6 m ⁴

Eurolink S.C.p.A. Pagina 259 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

9.4.1 **ANALISI DEI CARICHI**

La pila è soggetta dalle sollecitazioni derivanti dall'impalcato riportati precedentemente. Di seguito si riassumono i carichi globali gravanti:

		N	H long	H trasv	M long	M trasv
٥L		(kN)	(kN)	(kN)	(kN m)	(kN m)
IMPALCATO	Peso strutturale impalcato	7.675	0	0	0	118
ĭ٤	Permanenti	2.688	0	0	0	-1.436
<u>4</u> L	Ritiro	276	0	0	0	20
₽Ĺ	Mezzi schema centrato	4.465	0	0	0	8.261
DALL	Mezzi schema eccentrico	2.106	0	0	0	9.927
2 [Folla schema centrato	0	0	0	0	0
╏	Folla schema eccentrica	0	0	0	0	0
S	Frenamento	0	170	0	0	0
ΣS	Resistenze passive vincolo	0	311	0	0	0
TRASMESSE	Vento: impalcato scarico	1.158	0	404	0	3.861
	Vento: impalcato carico	1.053	0	848	0	5.900
ŽĹ	Cedimento	0	0	0	0	0
AZIONI	Azione centrifuga	0	0	0	0	0
∢ [Svio	0	0	200	0	0
	Sisma	4.095	1.231	1.125	0	353
	Eccentricità dei carichi verticali (mt)	0,01				

0,05

Flong.=

Appoggio 1	Appoggio 2	Appoggio 3
2.560	2.579	2.536
797	801	1.090
94	92	90
2.302	1.547	616
1.803	526	-223
0	0	0
0	0	0

351

0

1.357

-251

0

1.333

REAZIONI IMPALCATO

953

0

1.405

Eccentricità dei carichi verticali (mt) Eccentricità accidentale

Azione inerziale sismica sul fusto

558

1.087

Fvert.=

902

Eurolink S.C.p.A. Pagina 260 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

9.4.1.1 Combinazioni di carico statiche

Si considerano le combinazioni di carico statiche allo SLU previste dalla normativa vigente:

| AZIONI SLU EQU | AZIONI SLU STR | AZIONI SLU GEO |

		ΕU	lG	5LU	VI S	יוטו	AZ J	۱ '	IK	15	5LL	VI S	יוטו	AZ I	'	ŲU) E	SLU	VI 3	יוטו	AZ I	١.
PRINCIPALE		Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.
P.P.)/G1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,10	1,10	1,10	1,10	1,10	1,10	1,10
Perm.)/G2	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Attrito	Ψ,	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
. . 8)/G2	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Temperatura	Ψ,	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60
ratura	ž	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
w Vento	Ψ,	1,00	0,60	0,60	0,60	0,60	0,60	0,60	1,00	0,60	0,60	0,60	0,60	0,60	0,60	1,00	0,60	0,60	0,60	0,60	0,60	0,60
. ē	ð	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Acci	Ψ,		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	0,75
Accident.	ð		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
—— ≝	.₩		0,50	0,50	0,00	0,00	0,08	0,00		0,50	0,50	0,00	0,00	0,00	0,00		0,50	0,50	0,00	0,00	0,00	0,00
 Fo∐a	ŏ		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
	.4.		0,00	0,00	1,00	1,00	0,00	0,00		0,00	0,00	1,00	1,00	0,00	0,00		0,00	0,00	1,00	1,00	0,00	0,00
Frenamento	 8		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
E Ged.	Ψ,	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
- Ritiro	ŏ	1,00	1,08	1,00	1,00	1,00	1,08	1,00	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
Cent	Ψ,		0,00	0,00	0,00	0,00	1,00	1,00		0,00	0,00	0,00	0,00	1,00	1,00		0,00	0,00	0,00	0,00	1,00	1,00
Centrifuga	 ŏ		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35

Eurolink S.C.p.A. Pagina 261 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

9.4.1.2 Combinazioni di carico Sismiche

Secondo le "Norme Tecniche 2008" le verifiche agli stati limite ultimi o di esercizio devono essere effettuate per la seguente combinazione dell'azione sismica con le altre azioni:

$$G1 + G2 + P + E + \sum_{i} 0,2 \cdot Q_{kj}$$

dove G1 sono i pesi propri, G2 sono i carichi permanenti, P è la precompressione, E è l'azione sismica e Q_{ki} sono i carichi accidentali.

In particolare si sono considerate le seguenti combinazioni sismiche:

Combinazione	P.p.	Perm.	Accid.	Sisma X	Sisma Y	Sisma Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30
SISMA Z N+	1,00	1,00	0,20	0,30	0,30	1,00
SISMA Y N+	1,00	1,00	0,20	0,30	1,00	0,30

9.4.2 MODELLO DI CALCOLO

9.4.2.1 Descrizione del modello di calcolo

Alla luce di quanto scaturito da valutazioni preliminari di carattere statico, condotte sulla tipologia strutturale ivi considerata, è stato possibile individuare la modellazione più performante, che meglio simulasse il naturale comportamento in opera delle pile.

Si è quindi scelta una particolare schematizzazione a mensola incastrata alla base, la cui applicabilità è supportata dall'indiscutibile rilevanza che risiede nella valutazione dei momenti sollecitanti alla base del fusto.

Eurolink S.C.p.A. Pagina 262 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

9.4.3 CALCOLO DELLE SOLLECITAZIONI

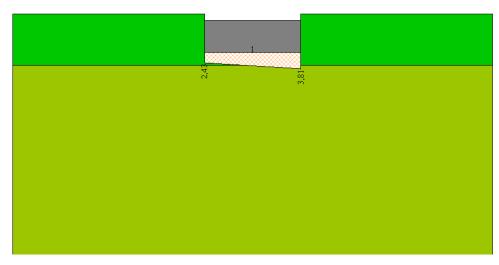
I	AZIONI ALLA BASE						
	Combinazioni		N (kN)	Vlong (kN)	Vtrasv (kN)	Mlong (kNm)	Mtrasv (kNm)
GEO	15	Comb 1	26.706	311,00	525,20	4.777	11.172
	16	Comb 2	31.238	311,00	661,44	4.843	22.299
SEU	17	Comb 3	28.444	311,00	661,44	4.808	24.215
	18	Comb 4	29.873	506,50	661,44	8.343	19.923
AZIONI	19	Comb 5	27.838	506,50	661,44	8.308	21.360
2	20	Comb 6	29.873	311,00	891,44	4.843	24.178
	21	Comb 7	27.838	311,00	891,44	4.808	25.615
		<u> </u>					
STR	22	Comb 8	34.956	419,85	606,00	6.442	12.911
	23	Comb 9	40.289	419,85	763,20	6.532	_ 25.939
SLU	24	Comb 10	37.010	419,85	763,20	6.484	28.188
	25	Comb 11	38.688	649,35	_ 763,20	10.640	_ 23.151
AZIONI	26	Comb 12	36.299	649,35	763,20	10.592	24.838
2	27	Comb 13	38.688	419,85	1.033,20	6.532	28.146
	28	Comb 14	36.299	419,85	1.033,20	6.484	29.833
EQU	29	Comb 15	29.612	342,10	606,00	5.256	12.881
	30	Comb 16	34.945	342,10	_ 763,20	5.347	_ 25.910
SLU	31	Comb 17	31.666	342,10	763,20	5.299	28.159
	32	Comb 18	33.344	571,60	763,20	9.455	23.122
AZIONI	33	Comb 19	30.955	571,60	763,20	9.407	24.808
2	34	Comb 20	33.344	342,10	1.033,20	5.347	28.117
	35	Comb 21	29.312	342,10	1.033,20	5.299	27.220
Γ	Combinazioni		N	Vlong	Vtrasv	Mlong	Mtrasv
			(kN)	(kN)	(kN)	(kNm)	(kNm)
SISMA	36	SISMA long	26.731	2.100,00	663,60	27.873	8.274
୍ଦ 🏲	37	SISMA trasv	26.731	630,00	2.212,00	8.362	26.801

SPOSTAMENTI IN TESTA PILA

SLE	H (kN)	δ (mm)
Frenamento	170	0,319
Resistenze passive vincolo	311	0,583

SLU	H (kN)	δ (mm)
Sisma	1.231	2,309

Eurolink S.C.p.A. Pagina 263 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Il momento flettente e il taglio sono calcolati rispetto al filo del fusto; si considera la situazione più gravosa corrispondente tra le combinazioni STR alla combinazione 4. Si riporta di seguito la pressione sul terreno lungo l'asse longitudinale della pila:

Deposits fluvials
γ=2000 kg/mc γs=2350 kg/mc
φ=38.0 ° δ=38.0 °
c=0,00 kg/cmq ca=0,00 kg/cmq

Ghiaie di messina y=1900 kg/mc ys=2300 kg/mc \$\phi=38.0 \circ\$ \$\delta=38.0 \circ\$ \$c=0,00 kg/cmq ca=0,00 kg/cmq

Le azioni sollecitanti sono calcolate rispetto al filo del fusto:

$$\begin{split} M_{\text{Sd}} = & \left[\left(3,\!35 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot \frac{2,\!475^{\,2}}{2} + \left(3,\!81 - 3,\!35 \right) \cdot 10 \cdot \frac{2,\!475^{\,2}}{3} \right] \cdot 10 = 929 \text{ kNm} \\ V_{\text{Sd}} = & \left[\left(3,\!35 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot 2,\!475 + \left(3,\!81 - 3,\!35 \right) \cdot 10 \cdot \frac{2,\!475}{2} \right] \cdot 10 = 731 \text{ kN} \end{split}$$

Eurolink S.C.p.A. Pagina 264 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.4.4 VERIFICA DELLE SEZIONI

9.4.4.1 Plinto di fondazione

 $M_{Sd} = 929 \text{ kNm}$

VERIFICA A FLESSIONE

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 250

ARMATURA compressa \$\phi26/10\$

SOLLECITAZIONI Msd = 929 kNm

INDICI DI RESISTENZA Mrd = 5.041 kNm

IR = 5,42

VERIFICA A TAGLIO

 $T_{Sd} = 731\,kN$

RISULTATI VERIFICA A TAGLIO		
Verifica senza armatura trasversale		
Taglio res. ultimo (Vrdu1):	67153.563	
Indice di resistenza:	1.09	
Verifica delle bielle compresse		
Taglio res. ultimo (Vrdu2):	777758.625	
Indice di resistenza:	0.09	
Verifica con armatura trasversale		
Componente di taglio attribuita		
al calcestruzzo (Vrdu3):	0.000	
Componente di taglio attribuita		
all'armatura (Vwd):	85800.006	
Armatura trasversale per unita' di		
lunghezza (Asw,cm²/m):	9.77	
Staffe a 4 braccia		
(in accordo con i minimi di norma pe	r fondazioni): ø20/30cm	

Eurolink S.C.p.A. Pagina 265 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev FO

20/06/2011

Data

9.4.4.2 **Fusto**

Con riferimento alle sollecitazioni al piede della pila si considerano le combianazioni allo SLU STR.

Verifica a pressoflessione - Nmax

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd =27.428kN Msd long = 5.478 kNm Msd trasv = 24.247 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

allungamento

-0.99

6.608 1 307

2.098

-0.01

```
Nome archivio di lavoro
 Intestazione del lavoro
Unità misura Forza
                                         Comb 9
 Unità misura Lunghezza
                                         N/mm²
 Diametro armature
                                         mm
                                         mm 2
I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità.
Il primo vertice è quello più in basso, a sinistra.
Parametri di calcolo
Rck = 35 fyk = 440 fykp = 1500
Sollecitazioni agenti
Sforzo normale N = Momento flettente Mz = M
                               -27428.000
5478.000
                              24247.000
Momento flettente My =
Sollecitazioni resistenti di calcolo
Sforzo normale N =
Momento flettente Mz =
Momento flettente My =
                            -58951.450
11775.021
52117.935
Indice di resistenza s.l.u: 0.47
Campo di rottura della sezione: 3
Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al
calcestruzzo
N, min = -156825
inferiore ad N resistente = -58951.5
Asse neutro
   z' y' ang
0.0000 2.5903 341.2
Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -15.43
Deformazioni e tensioni nel calcestruzzo
    z' y'
1.609 -0.056
                          Def(%) Tens
-0.28 -15.43
-0.35 -15.43
                                    -15.43
                0.000
     0.000
    -0.390
               0.231 2.211
                          -0.34
-0.07
                                    -15.43
    -0.391
                                     -8.82
-2.93
               2.211
2.443
2.499
2.499
2.443
2.211
    -0.000
1.609
                           -0.02
0.06
                                     allungamento
     6.309
                            0.28
                                     allungamento
     7.919
                            0.34
                                      allungamento
     8.310
                            0.33
                                      allungamento
                            0.06
     8.310
                0.231
                                      allungamento
     7.919
                0.000
                                     allungamento
     6 309
               -0.056
                           -0.07
                                      -8 68
                                      allungamento
               0.670
1.773
2.098
                          0.09
     7.612
7.612
                                     allungamento
                                      allungamento
```

Eurolink S.C.p.A. Pagina 266 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

0.310	1.777	-0.10	-11.23	
0.310	0.665	-0.25	-15.43	
1.307	0.345	-0.24	-15.43	
1.307	0.343	-0.24	-13.43	
Deformazion	ne massima	a nel calo	cestruzzo	5
z'	У'	Def(%)	Tens	
0.000	0.000	-0.35	-15.43	
0.000	0.000	0.55	13.43	
Legame cost	citutivo d	dell'accia	aio ordi:	nario
Def(),a	Tens,a			
0.00	0.00			
0.19	382.60			
Deformazion	ni e Tens:	ioni nell'	'Acciaio	Ordinario
z '	У'	d	Def(%)	Tens
1.610	-0.006	24.0	-0.28	-382.60
0.014	0.050	24.0	-0.34	-382.60
-0.340	0.259	24.0	-0.33	-382.60
-0.341	2.183	24.0	-0.07	-145.64
1.610	2.449	24.0	0.05	112.90
6.309	2.449	24.0	0.27	382.60
7.904	2.393	24.0	0.34	382.60
8.260	2.183	24.0	0.32	382.60
8.260	0.260	24.0	0.06	132.82
7.904	0.050	24.0	0.02	40.69
6.309	-0.006	24.0	-0.06	-125.73
1.299	0.295	24.0	-0.25	-382.60
0.260	0.629	24.0	-0.25	-382.60
0.260	1.814	24.0	-0.09	-191.53
1.299				
	2.148	24.0	-0.00	-0.28
6.615	2.148	24.0	0.24	382.60
7.662	1.809	24.0	0.25	382.60
7.662	0.633	24.0	0.09	180.30
6.615	0.294	24.0	-0.01	-13.14
1.798	2.449	24.0	0.06	130.68
1.986	2.449	24.0	0.07	148.47
2.174	2.449	24.0	0.08	166.25
	2.449	24.0		
2.362			0.09	184.03
2.550	2.449	24.0	0.10	201.81
2.738	2.449	24.0	0.11	219.59
2.926	2.449	24.0	0.12	237.37
3.114	2.449	24.0	0.12	255.16
3.302	2.449	24.0	0.13	272.94
3.490	2.449	24.0	0.14	290.72
3.678	2.449	24.0	0.15	308.50
3.865	2.449	24.0	0.16	326.28
4.053	2.449	24.0	0.17	344.07
4.241	2.449	24.0	0.18	361.85
4.429	2.449	24.0	0.18	379.63
4.617	2.449	24.0	0.19	382.60
4.805	2.449	24.0	0.20	382.60
4.993	2.449	24.0	0.21	382.60
5.181	2.449	24.0	0.22	382.60
5.369	2.449	24.0	0.23	382.60
5.557	2.449	24.0	0.24	382.60
5.745	2.449	24.0	0.24	382.60
5.933	2.449	24.0	0.25	382.60
6.121	2.449	24.0	0.26	382.60
6.486	2.442	24.0	0.28	382.60
6.663	2.436	24.0	0.29	382.60
6.841	2.430	24.0	0.29	382.60
7.018	2.424	24.0	0.30	382.60
7.195	2.418	24.0	0.31	382.60
7.372	2.412	24.0	0.31	382.60
7.550	2.405	24.0	0.32	382.60
7.727	2.399	24.0	0.33	382.60
1.433	2.444	24.0	0.05	94.77
1.256	2.439	24.0	0.04	76.63
1.079	2.434	24.0	0.03	58.50
0.901	2.429	24.0	0.02	40.36
0.724	2.424	24.0	0.01	22.22
0.547	2.419	24.0	0.00	4.09
0.370	2.414	24.0	-0.01	-14.05
0.192	2.409	24.0	-0.02	-32.18
0.015	2.404	24.0	-0.02	-50.32
7.741	0.046	24.0	0.01	24.14
7.562	0.039	24.0	0.00	5.41
7.383	0.033	24.0	-0.01	-13.33
7.204	0.026	24.0	-0.02	-32.06
7.025	0.020	24.0	-0.02	-50.80
6.846	0.013	24.0	-0.03	-69.53
6.667	0.007	24.0	-0.04	-88.26
6.488	0.001	24.0	-0.05	-107.00
6.120	-0.006	24.0	-0.07	-143.55
5.932	-0.006	24.0	-0.08	-161.38
5.743	-0.006	24.0	-0.09	-179.20
5.555	-0.006			
		24.0	-0.10	-197.03
5.367	-0.006	24.0	-0.10	-214.85
5.178	-0.006	24.0	-0.11	-232.67

Eurolink S.C.p.A. Pagina 267 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

4.990	-0.006	24.0	-0.12	-250.50
4.801	-0.006	24.0	-0.13	-268.32
4.613	-0.006	24.0	-0.14	-286.15
4.425	-0.006	24.0	-0.15	-303.97
4.236	-0.006	24.0	-0.16	-321.79
4.048	-0.006	24.0	-0.16	-339.62
3.859	-0.006	24.0	-0.17	-357.44
3.671 3.482 3.294 3.106	-0.006 -0.006 -0.006	24.0 24.0 24.0 24.0	-0.18 -0.19 -0.20 -0.21	-375.27 -382.60 -382.60 -382.60
2.917 2.729 2.540 2.352	-0.006 -0.006 -0.006	24.0 24.0 24.0 24.0	-0.22 -0.23 -0.23 -0.24	-382.60 -382.60 -382.60 -382.60
2.164	-0.006	24.0	-0.25	-382.60
1.975	-0.006	24.0	-0.26	-382.60
1.787	-0.006	24.0	-0.27	-382.60
1.433	0.000	24.0	-0.28	-382.60
1.256	0.006	24.0	-0.29	-382.60
1.078	0.013	24.0	-0.30	-382.60
0.901	0.019	24.0	-0.31	-382.60
0.724	0.025	24.0	-0.31	-382.60
0.546	0.031	24.0	-0.32	-382.60
0.369	0.037	24.0	-0.33	-382.60
0.192	0.043	24.0	-0.34	-382.60
-0.074	0.102	24.0	-0.34	-382.60
-0.163	0.154	24.0	-0.34	-382.60
-0.252	0.207	24.0	-0.33	-382.60
-0.074	2.349	24.0	-0.04	-74.15
-0.163	2.294	24.0	-0.05	-97.98
-0.252	2.238	24.0	-0.06	-121.81
7.993	2.341	24.0	0.33	382.60
8.082	2.288	24.0	0.33	382.60
8.171	2.235	24.0	0.33	382.60
8.171	0.207	24.0	0.05	109.79
8.082	0.155	24.0	0.04	86.75
7.993	0.102	24.0	0.03	63.72
-0.341	1.991	24.0	-0.10	-199.18
-0.341	1.798	24.0	-0.12	-252.71
-0.341	1.606	24.0	-0.15	-306.25
-0.341	1.414	24.0	-0.17	-359.79
-0.341	1.221	24.0	-0.20	-382.60
-0.340	1.029	24.0	-0.23	-382.60
-0.340	0.836	24.0	-0.25	-382.60
-0.340	0.644	24.0	-0.28	-382.60
-0.340	0.452	24.0	-0.30	-382.60
8.260 8.260 8.260 8.260 8.260	1.991 1.798 1.606 1.414 1.221	24.0 24.0 24.0 24.0 24.0	0.30 0.27 0.25 0.22 0.19	382.60 382.60 382.60 382.60
8.260 8.260 8.260 8.260	1.029 0.837 0.644 0.452	24.0 24.0 24.0 24.0 24.0	0.17 0.14 0.12 0.09	382.60 346.94 293.41 239.88 186.35
0.433 0.606 0.780 0.953	1.880 1.933 1.987 2.040	24.0 24.0 24.0 24.0 24.0	-0.08 -0.06 -0.05 -0.03	-156.77 -125.47 -94.17 -62.88
1.126	2.094	24.0	-0.02	-31.58
0.435	0.575	24.0	-0.25	-382.60
0.611	0.522	24.0	-0.25	-382.60
0.786	0.468	24.0	-0.25	-382.60
0.961	0.415	24.0	-0.25	-382.60
1.137	0.361	24.0	-0.25	-382.60
6.787	2.092	24.0	0.24	382.60
6.959	2.036	24.0	0.24	382.60
7.131	1.980	24.0	0.25	382.60
7.303	1.923	24.0	0.25	382.60
7.475	1.867	24.0	0.25	382.60
6.790	0.351	24.0	0.01	19.10
6.964	0.407	24.0	0.02	51.34
7.139	0.464	24.0	0.04	83.58
7.313	0.520	24.0	0.06	115.82
7.488	0.577	24.0	0.07	148.06
7.662	1.679	24.0	0.23	382.60
7.662	1.548	24.0	0.21	382.60
7.662	1.417	24.0	0.19	382.60
7.662	1.287	24.0	0.18	362.10
7.662	1.156	24.0	0.16	325.74
7.662 7.662 7.662 0.260	1.025 0.895 0.764 1.682	24.0 24.0 24.0 24.0 24.0	0.14 0.12 0.11 -0.11	289.38 253.02 216.66 -228.18
0.260	1.551	24.0	-0.13	-264.84
0.260	1.419	24.0	-0.15	-301.49
0.260	1.287	24.0	-0.16	-338.15
0.260	1.155	24.0	-0.18	-374.80

Eurolink S.C.p.A. Pagina 268 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

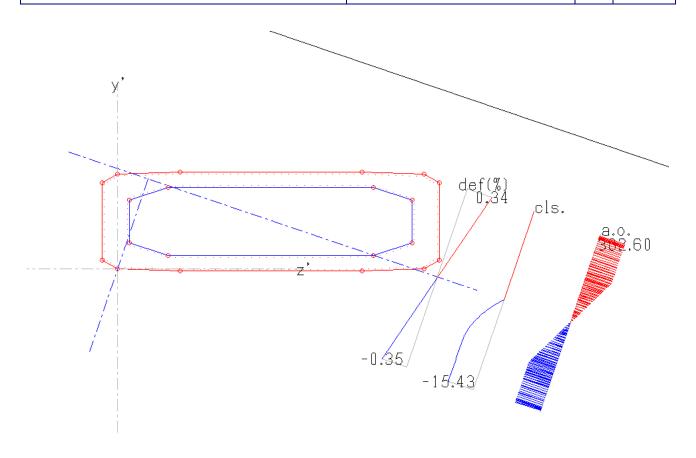
RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev Data F0

20/06/2011

0.260 0.260 0.260 1.496 1.693 1.890 2.086 2.283 2.677 2.873 3.070 3.267 3.464 3.660 3.857 4.054 4.251 4.447 4.644 4.251 4.447 4.644 5.038 5.234 5.628 6.021 6.218 6.415 6.612 1.496 1.693 1.890 2.087 2.284 2.481 2.678 2.875 3.860 3.860 3.860 4.051 4.451	1.024 0.892 0.760 2.148 2.149 2.150 2.151 2.151 2.151 2.152 2.153 2.153 2.153 2.153 2.155 2.156 2.156 2.156 2.156 2.157 2.158 2.158 2.158 2.159 2.160 2.161 2.161 2.161 2.162 0.296 0.296 0.297 0.297 0.298 0.299 0.299 0.300 0.301 0.301 0.302 0.3030 0.304 0.305 0.306 0.307 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.308 0.309 0.310 0.311	24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	-0.20 -0.22 -0.24 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.12 0.13 0.14 0.15 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 -0.21 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.00 -0.00 -0.00	-382.60 -382.60 18.49 37.25 56.01 74.78 93.54 112.31 131.07 149.83 168.60 187.36 206.12 224.89 243.65 262.41 281.18 299.94 318.71 337.47 356.23 375.00 382.60 382.60 382.60 382.60 382.60 382.60 382.60 382.60 382.60 382.60 382.60 -3
6.421	0.311	24.0	-0.01	-26.93 -8.12
rra di acci z' 7.904	iaio ordi y' 2.393	nario d 24.0	più tesa Def(%) 0.34	Tens 382.60


Eurolink S.C.p.A. Pagina 269 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

Verifica a pressoflessione - Nmin

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd = 22.095kN Msd long = 5.388 kNm

Msd trasv = 11.611kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

Nome archivio di lavoro : Sezione2
Intestazione del lavoro : Comb 8
Unità misura Forza : kN
Unità misura Lunghezza : m
Tensioni : N/mm²
Diametro armature : mm
Area : mm²

I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità. Il primo vertice è quello più in basso, a sinistra.

Parametri di calcolo Rck = 35 fyk = 440 fykp = 1500

Sollecitazioni agenti Sforzo normale N = -22095.000

Eurolink S.C.p.A. Pagina 270 di 405

3.678

2.449

24.0

0.15

310.66

PROGETTO DEFINITIVO

Data

20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev SS0669_F0.doc F0

```
Momento flettente Mz =
                                  5388 000
Momento flettente My =
                                11611.000
Sollecitazioni resistenti di calcolo
                             -56411.124
13757.618
Sforzo normale N =
Momento flettente Mz = Momento flettente My =
                                 29649.087
Indice di resistenza s.l.u: 0.39
Campo di rottura della sezione: 3
Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al
calcestruzzo
N.min = -156825
inferiore ad N resistente = -56411.1
Asse neutro
   0.0000 2.6962
                          339.0
Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -15.43
Deformazioni e tensioni nel calcestruzzo
                          ni ne.
Def(%) Tens
- 28 -15.43
     1 609
              -0 056
                           -0.28
-0.35
     0.000
               0.000
    -0.390
               0.231
                           -0.34
                                    -15.43
    -0.000
                           -0.03
                2.443
                                      -4.66
     1.609
               2.499
                            0.05
                                     allungamento
                2.499
2.443
2.211
     6.309
                            0.29
                                      allungamento
                            0.36
     7.919
                                      allungamento
     8.310
                                     allungamento
     8.310
                0.231
                            0.09
                                      allungamento
                                      allungamento
                           -0.04
0.02
0.12
     6.309
               -0.056
                                      -5.97
     6.608
7.612
               0.344
                                      allungamento
                                      allungamento
                1.773
2.098
     7 612
                            0.26
                                      allungamento
     6.608
                                      allungamento
                2.098
1.777
0.665
                                    -1.89
-11.86
     1.307
                           -0.01
                           -0.10
-0.25
     0.310
                                     -15.43
     1 307
                0.345
                           -0.24
                                    -15.43
Deformazione massima nel calcestruzzo
                           Def(%)
                                    Tens
-15.43
               0.000
    0.000
                           -0.35
Legame costitutivo dell'acciaio ordinario
    Def(),a Tens,a
0.00 0.00
      0.19
              382.60
Deformazioni e Tensioni nell'Acciaio Ordinario
                                            Tens
-382.60
-382.60
                          d
24.0
               -0.006
                                    Def(%)
     1.610
                                    -0.27
    0.014
-0.340
               0.050
0.259
                          24.0
24.0
                                    -0.34
-0.33
                                             -172.19
    -0.341
                2.183
                           24.0
                                     -0.08
     1.610
                2.449
                           24.0
                                      0.05
                2.449
2.393
2.183
                                              382.60
     6.309
                           24.0
                                     0.28
     7.904
                           24.0
                                     0.35
                                              382.60
382.60
     8.260
                0.260
                                     0.09
                                              194.94
102.31
     8.260
                           24.0
                                               -76.05
     6.309
               -0.006
                           24.0
                                     -0.04
     1.299
                                     -0.25
-0.26
                                             -382.60
-382.60
                0.629
                           24.0
                                             -209.31
-13.53
     0.260
                1.814
                           24.0
                                     -0.10
                           24.0
     6.615
                2.148
                           24.0
                                      0.26
                                              382.60
     7.662
                0.633
                           24.0
                                      0.11
                                              233.63
               0.633
0.294
2.449
2.449
2.449
     6.615
                           24.0
                                      0.02
                                                35.67
     1.798
                           24.0
                                      0.06
                                              118.06
                                      0.07
                                              137.32
156.58
     1.986
                           24.0
                           24.0
                2.449
                                      0.09
                                              175.84
195.10
214.36
     2.362
                           24.0
     2.550
2.738
                2.449
                           24.0
                                      0.10
     2.926
3.114
                2.449
                           24.0
                                      0.11
                                              233.62
252.88
                2.449
                                     0.13
0.14
                                              272.14
291.40
     3.302
                           24.0
```

Eurolink S.C.p.A. Pagina 271 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

4.053	2.449	24.0	0.17	349.18
4.241	2.449	24.0	0.17	368.44
4.429	2.449	24.0	0.19	382.60
4.617	2.449	24.0	0.20	382.60
4.805 4.993	2.449	24.0 24.0	0.21	382.60 382.60
5.181	2.449	24.0	0.23	382.60
5.369	2.449	24.0	0.23	382.60
5.557	2.449	24.0	0.24	382.60
5.745 5.933	2.449	24.0 24.0	0.25 0.26	382.60 382.60
6.121	2.449	24.0	0.27	382.60
6.486	2.442	24.0	0.29	382.60
6.663 6.841	2.436	24.0	0.30	382.60 382.60
7.018	2.430	24.0 24.0	0.31	382.60
7.195	2.418	24.0	0.32	382.60
7.372	2.412	24.0	0.33	382.60
7.550 7.727	2.405	24.0 24.0	0.34	382.60 382.60
1.433	2.444	24.0	0.04	79.33
1.256	2.439	24.0	0.03	59.85
1.079	2.434	24.0	0.02	40.37
0.901 0.724	2.429	24.0 24.0	0.01	20.90
0.547	2.419	24.0	-0.01	-18.05
0.370	2.414	24.0	-0.02	-37.53
0.192	2.409	24.0 24.0	-0.03 -0.04	-57.00 -76.48
7.741	0.046	24.0	0.04	84.52
7.562	0.039	24.0	0.03	64.45
7.383	0.033	24.0	0.02	44.38
7.204	0.026	24.0 24.0	0.01	24.31 4.23
6.846	0.013	24.0	-0.01	-15.84
6.667	0.007	24.0	-0.02	-35 91
6.488 6.120	0.001	24.0 24.0	-0.03	-55.98
5.932	-0.006 -0.006	24.0	-0.05 -0.06	-95.36 -114.66
5.743	-0.006	24.0	-0.07	-133.97
5.555	-0.006	24.0	-0.07	-153.28
5.367 5.178	-0.006 -0.006	24.0 24.0	-0.08 -0.09	-172.58 -191.89
4.990	-0.006	24.0	-0.10	-211.19
4.801	-0.006	24.0	-0.11	-230.50
4.613 4.425	-0.006 -0.006	24.0 24.0	-0.12	-249.81 -269.11
4.236	-0.006	24.0	-0.13 -0.14	-288.42
4.048	-0.006	24.0	-0.15	-307.72
3.859	-0.006	24.0	-0.16	-327.03
3.671 3.482	-0.006 -0.006	24.0 24.0	-0.17 -0.18	-346.33 -365.64
3.294	-0.006	24.0	-0.19	-382.60
3.106	-0.006	24.0	-0.20	-382.60
2.917 2.729	-0.006 -0.006	24.0 24.0	-0.21 -0.21	-382.60 -382.60
2.540	-0.006	24.0	-0.22	-382.60
2.352	-0.006	24.0	-0.23	-382.60
2.164 1.975	-0.006	24.0	-0.24	-382.60
1.787	-0.006 -0.006	24.0 24.0	-0.25 -0.26	-382.60 -382.60
1.433	0.000	24.0	-0.28	-382.60
1.256	0.006	24.0	-0.29	-382.60
1.078	0.013	24.0 24.0	-0.29 -0.30	-382.60 -382.60
0.724	0.025	24.0	-0.31	-382.60
0.546	0.031	24.0	-0.32	-382.60
0.369	0.037	24.0 24.0	-0.33 -0.33	-382.60
-0.074	0.102	24.0	-0.34	-382.60 -382.60
-0.163	0.154	24.0	-0.34	-382.60
-0.252	0.207	24.0	-0.34	-382.60
-0.074 -0.163	2.349	24.0 24.0	-0.05 -0.06	-100.41 -124.33
-0.252	2.238	24.0	-0.07	-148.26
7.993	2.341	24.0	0.35	382.60
8.082 8.171	2.288	24.0 24.0	0.35	382.60
8.171	2.235 0.207	24.0	0.35	382.60 171.78
8.082	0.155	24.0	0.07	148.62
7.993	0.102	24.0	0.06	125.47
-0.341 -0.341	1.991 1.798	24.0 24.0	-0.11 -0.13	-223.62 -275.05
-0.341	1.606	24.0	-0.16	-326.48
-0.341	1.414	24.0	-0.18	-377.91
-0.341 -0.340	1.221	24.0 24.0	-0.21 -0.23	-382.60 -382.60
-0.340	0.836	24.0	-0.23	-382.60
-0.340	0.644	24.0	-0.28	-382.60

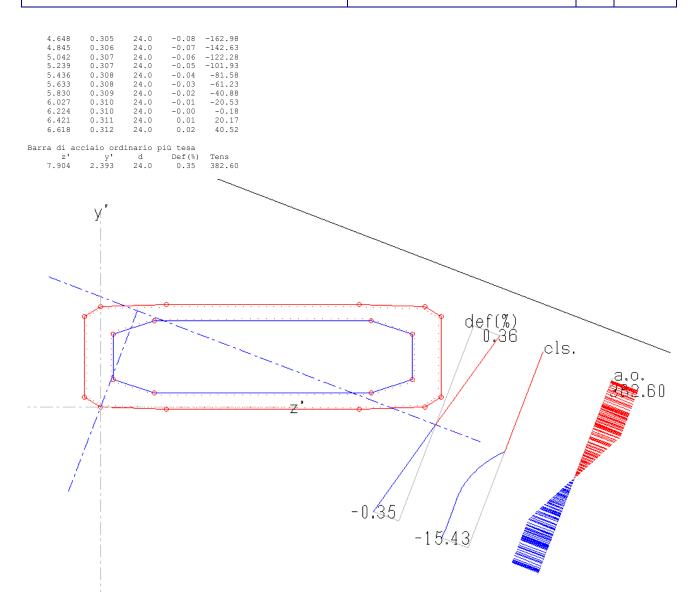
Eurolink S.C.p.A. Pagina 272 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

-0.340 8.260	0.452 1.991	24.0 24.0	-0.31 0.32	-382.60 382.60
8.260	1.798	24.0	0.29	382.60
8.260	1.606	24.0	0.27	382.60
8.260	1.414	24.0	0.24	382.60
8.260	1.221	24.0	0.22	382.60
8.260	1.029	24.0	0.19	382.60
8.260 8.260	0.837 0.644	24.0 24.0	0.17	349.22 297.79
8.260	0.452	24.0	0.12	246.37
0.433	1.880	24.0	-0.08	-173.92
0.606	1.933	24.0	-0.07	-141.84
0.780	1.987	24.0 24.0	-0.05	-109.76
0.953 1.126	2.040	24.0	-0.04 -0.02	-77.69 -45.61
0.435	0.575	24.0	-0.25	-382.60
0.611	0.522	24.0	-0.25	-382.60
0.786	0.468	24.0	-0.25	-382.60
0.961	0.415 0.361	24.0 24.0	-0.25	-382.60 -382.60
1.137 6.787	2.092	24.0	-0.25 0.26	382.60
6.959	2.036	24.0	0.26	382.60
7.131	1.980	24.0	0.26	382.60
7.303	1.923	24.0	0.26	382.60
7.475 6.790	1.867 0.351	24.0 24.0	0.26	382.60 68.67
6.964	0.407	24.0	0.05	101.66
7.139	0.464	24.0	0.07	134.65
7.313	0.520	24.0	0.08	167.64
7.488	0.577	24.0	0.10	200.64 382.60
7.662 7.662	1.679 1.548	24.0 24.0	0.25 0.23	382.60
7.662	1.417	24.0	0.22	382.60
7.662	1.287	24.0	0.20	382.60
7.662	1.156	24.0	0.18	373.36
7.662 7.662	1.025	24.0	0.16	338.43
7.662	0.895 0.764	24.0 24.0	0.15 0.13	303.50 268.56
0.260	1.682	24.0	-0.12	-244.53
0.260	1.551	24.0	-0.14	-279.74
0.260	1.419	24.0	-0.15	-314.96
0.260 0.260	1.287 1.155	24.0 24.0	-0.17 -0.19	-350.17 -382.60
0.260	1.024	24.0	-0.19	-382.60
0.260	0.892	24.0	-0.22	-382.60
0.260	0.760	24.0	-0.24	-382.60
1.496	2.148	24.0	0.00	6.77
1.693 1.890	2.149	24.0 24.0	0.01	27.08 47.38
2.086	2.150	24.0	0.02	67.69
2.283	2.150	24.0	0.04	87.99
2.480	2.151	24.0	0.05	108.30
2.677 2.873	2.151 2.152	24.0 24.0	0.06 0.07	128.60 148.91
3.070	2.152	24.0	0.08	169.21
3.267	2.153	24.0	0.09	189.52
3.464	2.153	24.0	0.10	209.82
3.660	2.154 2.155	24.0	0.11	230.13 250.43
3.857 4.054	2.155	24.0 24.0	0.12	270.74
4.251	2.156	24.0	0.14	291.04
4.447	2.156	24.0	0.15	311.35
4.644	2.157	24.0	0.16	331.65
4.841 5.038	2.157 2.158	24.0 24.0	0.17 0.18	351.96 372.26
5.234	2.158	24.0	0.19	382.60
5.431	2.159	24.0	0.20	382.60
5.628	2.159	24.0	0.21	382.60
5.825 6.021	2.160	24.0	0.22	382.60
6.218	2.160 2.161	24.0 24.0	0.23	382.60 382.60
6.415	2.161	24.0	0.25	382.60
6.612	2.162	24.0	0.26	382.60
1.496	0.296	24.0	-0.24	-382.60
1.693 1.890	0.296 0.297	24.0 24.0	-0.23 -0.22	-382.60 -382.60
2.087	0.297	24.0	-0.22	-382.60
2.284	0.298	24.0	-0.20	-382.60
2.481	0.299	24.0	-0.19	-382.60
2.678	0.299	24.0 24.0	-0.18	-366.47 -346.12
2.875 3.072	0.300	24.0	-0.17 -0.16	-346.12
3.269	0.301	24.0	-0.15	-305.42
3.466	0.302	24.0	-0.14	-285.08
3.663	0.302	24.0	-0.13	-264.73
3.860 4.057	0.303	24.0 24.0	-0.12 -0.11	-244.38 -224.03
4.254	0.304	24.0	-0.10	-203.68
4.451	0.305	24.0	-0.09	-183.33

Eurolink S.C.p.A. Pagina 273 di 405


Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev Data F0

20/06/2011

Verifica a pressoflessione –Mmax

ARMATURA distribuita $\phi 24/20$ **SOLLECITAZIONI** Nsd =23.438kN Msd long = 5.431 kNm Msd trasv = 27.465kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

Nome archivio di lavoro : Sezione2

Eurolink S.C.p.A. Pagina 274 di 405

0.260 1.299

2.148

24.0

-0.01

-14.31 382.60

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento Rev Data SS0669 F0 doc FO 20/06/2011

```
Intestazione del lavoro
                                        Comb 14
 Unità misura Forza
 Unità misura Lunghezza
Tensioni
 Diametro armature
                                        mm
I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità. Il primo vertice è quello più in basso, a sinistra.
Parametri di calcolo
Rck = 35 fyk = 440 fykp = 1500
Sollecitazioni agenti
Sforzo normale N = Momento flettente Mz =
                              -23438.000
5431.000
                             27465.000
Momento flettente My =
Sollecitazioni resistenti di calcolo
Sforzo normale N = Momento flettente Mz =
Momento flettente My =
                               74032.162
Indice di resistenza s.l.u: 0.37
Campo di rottura della sezione: 3
Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al
calcestruzzo
N, min = -156825
inferiore ad N resistente = -63172.7
Asse neutro
   0.0000 2.6194
                        342.1
Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035
con tensione massima di compressione: -15.43
Deformazioni e tensioni nel calcestruzzo
                         Def(%) Tens
-0.29 -15.43
-0.35 -15.43
    z' y'
1.609 -0.056
    0.000
              0.000
              0.231
                          -0.34
-0.07
    -0.391
                                    -9.05
               2.443
                          -0.02
0.05
    -0.000
                                    -3.43
     1.609
                                    allungamento
               2.499
     6.309
                           0.26
                                    allungamento
     7.919
                                    allungamento
     8.310
               2.211
                           0.30
                                    allungamento
     8.310
               0.231
                           0.04
                                    allungamento
               0.000
                          -0.01
     7.919
                                     -1.23
                                   -10.34
-2.76
              -0.056
0.344
                          -0.09
-0.02
     6.309
     6.608
     7.612
               0.670
                           0.07
                                    allungamento
                                    allungamento
               2.098
     6.608
                           0.22
                                    allungamento
     1.307
               2.098
                         -0.01
-0.10
                                   -1.98
-11.50
     0 310
               0 665
                          -0.25
                                   -15.43
-15.43
Deformazione massima nel calcestruzzo
                         Def(%) Tens
-0.35 -15.43
    0.000
              0.000
Legame costitutivo dell'acciaio ordinario
   Def(),a Tens,a
0.00 0.00
Deformazioni e Tensioni nell'Acciaio Ordinario
                                 Def(%) Tens
-0.28 -382.60
    z' y'
1.610 -0.006
                       24.0
                                           -382.60
-382.60
-150.46
     0.014
               0.050
               0.259
                          24.0
    -0.340
                                   -0.33
    -0.341
               2.183
                          24.0
                                   -0.07
               2.449
2.449
2.393
     1.610
                          24.0
                                    0.05
                                              96.18
                          24.0
                                            382.60
382.60
     6.309
                                    0.25
     7.904
                                    0.31
               2.183
                                    0.30
     8.260
                          24.0
                                             382.60
     7.904
               0.050
                                              -4.40
                          24.0
                                   -0.00
                                          -161.58
-382.60
-382.60
-198.61
     6.309
1.299
              -0.006
0.295
                          24.0
                                   -0.08
-0.25
               0.629
1.814
                                   -0.25
-0.10
     0.260
                          24.0
```

Eurolink S.C.p.A. Pagina 275 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

7.662	1.809	24.0	0.22	382.60
7.662 6.615	0.633	24.0 24.0	0.07 -0.03	134.78 -51.65
1.798	2.449	24.0	0.05	112.89
1.986 2.174	2.449	24.0 24.0	0.06 0.07	129.60 146.32
2.362	2.449	24.0	0.07	163.03
2.550	2.449	24.0	0.09	179.74
2.738 2.926	2.449	24.0 24.0	0.10	196.46 213.17
3.114	2.449	24.0	0.10	229.88
3.302	2.449	24.0	0.12	246.60
3.490 3.678	2.449	24.0 24.0	0.13	263.31 280.02
3.865	2.449	24.0	0.14	296.74
4.053	2.449	24.0	0.15	313.45
4.241 4.429	2.449	24.0 24.0	0.16 0.17	330.16 346.88
4.617	2.449	24.0	0.18	363.59
4.805	2.449	24.0	0.18	380.30
4.993 5.181	2.449	24.0 24.0	0.19	382.60 382.60
5.369	2.449	24.0	0.21	382.60
5.557	2.449	24.0	0.22	382.60
5.745 5.933	2.449	24.0 24.0	0.23	382.60 382.60
6.121	2.449	24.0	0.24	382.60
6.486 6.663	2.442	24.0	0.26	382.60
6.841	2.436	24.0 24.0	0.26 0.27	382.60 382.60
7.018	2.424	24.0	0.28	382.60
7.195	2.418	24.0	0.28	382.60
7.372 7.550	2.412	24.0 24.0	0.29	382.60 382.60
7.727	2.399	24.0	0.30	382.60
1.433	2.444	24.0 24.0	0.04	79.06 61.95
1.079	2.439	24.0	0.03	44.84
0.901	2.429	24.0	0.01	27.72
0.724	2.424	24.0 24.0	0.01	10.61 -6.50
0.347	2.419	24.0	-0.00	-23.61
0.192	2.409	24.0	-0.02	-40.73
0.015 7.741	2.404	24.0 24.0	-0.03 -0.01	-57.84 -20.01
7.562	0.039	24.0	-0.02	-37.70
7.383	0.033	24.0	-0.03	-55.40
7.204 7.025	0.026 0.020	24.0 24.0	-0.04 -0.04	-73.10 -90.79
6.846	0.013	24.0	-0.05	-108.49
6.667	0.007	24.0	-0.06	-126.18
6.488 6.120	0.001 -0.006	24.0 24.0	-0.07 -0.09	-143.88 -178.33
5.932	-0.006	24.0	-0.09	-195.08
5.743 5.555	-0.006 -0.006	24.0	-0.10 -0.11	-211.83
5.367	-0.006	24.0 24.0	-0.11	-228.59 -245.34
5.178	-0.006	24.0	-0.13	-262.09
4.990 4.801	-0.006 -0.006	24.0 24.0	-0.14 -0.14	-278.85 -295.60
4.613	-0.006	24.0	-0.15	-312.35
4.425	-0.006	24.0	-0.16	-329.10
4.236	-0.006 -0.006	24.0 24.0	-0.17 -0.18	-345.86 -362.61
3.859	-0.006	24.0	-0.18	-379.36
3.671	-0.006	24.0	-0.19	-382.60
3.482	-0.006 -0.006	24.0	-0.20 -0.21	-382.60 -382.60
3.106	-0.006	24.0	-0.22	-382.60
2.917	-0.006	24.0	-0.22 -0.23	-382.60
2.729	-0.006 -0.006	24.0 24.0	-0.23	-382.60 -382.60
2.352	-0.006	24.0	-0.25	-382.60
2.164 1.975	-0.006	24.0	-0.26 -0.27	-382.60
1.787	-0.006 -0.006	24.0 24.0	-0.27	-382.60 -382.60
1.433	0.000	24.0	-0.29	-382.60
1.256	0.006 0.013	24.0 24.0	-0.29 -0.30	-382.60 -382.60
0.901	0.013	24.0	-0.30	-382.60
0.724	0.025	24.0	-0.32	-382.60
0.546	0.031 0.037	24.0 24.0	-0.32 -0.33	-382.60 -382.60
0.192	0.037	24.0	-0.33	-382.60
-0.074	0.102	24.0	-0.34	-382.60
-0.163 -0.252	0.154	24.0 24.0	-0.34 -0.33	-382.60 -382.60
-0.074	2.349	24.0	-0.04	-80.99
-0.163	2.294	24.0	-0.05	-104.15

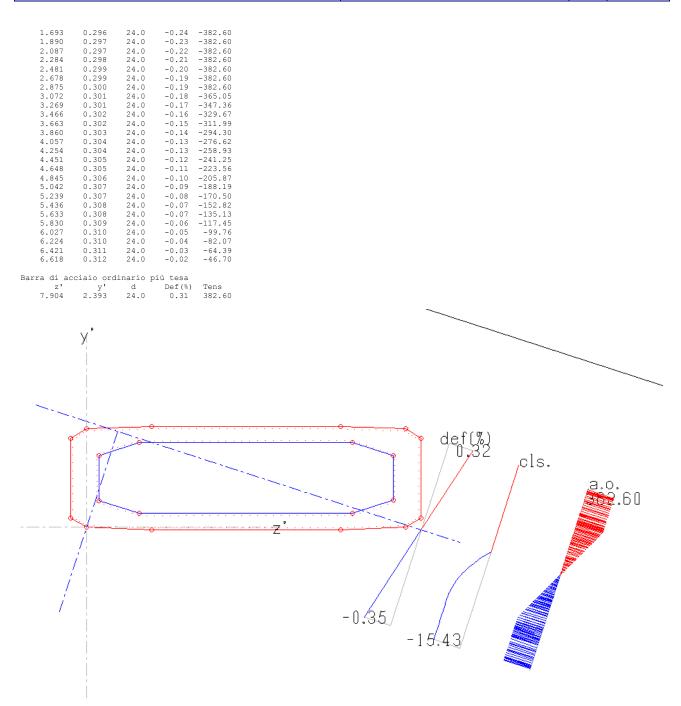
Eurolink S.C.p.A. Pagina 276 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

				405.00
-0.252 7.993	2.238	24.0 24.0	-0.06 0.31	-127.30 382.60
8.082	2.288	24.0	0.30	382.60
8.171	2.235	24.0	0.30	382.60
8.171	0.207	24.0	0.03	62.70
8.082	0.155	24.0	0.02	40.33
7.993	0.102	24.0	0.01	17.97
-0.341 -0.341	1.991 1.798	24.0	-0.10 -0.12	-203.40 -256.34
-0.341	1.606	24.0	-0.15	-309.28
-0.341	1.414	24.0	-0.18	-362.22
-0.341	1.221	24.0	-0.20	-382.60
-0.340	1.029	24.0	-0.23	-382.60
-0.340 -0.340	0.836	24.0 24.0	-0.25 -0.28	-382.60 -382.60
-0.340	0.452	24.0	-0.30	-382.60
8.260	1.991	24.0	0.27	382.60
8.260	1.798	24.0	0.25	382.60
8.260 8.260	1.606 1.414	24.0 24.0	0.22	382.60 382.60
8.260	1.221	24.0	0.17	349.74
8.260	1.029	24.0	0.14	296.81
8.260	0.837	24.0	0.12	243.87
8.260	0.644	24.0	0.09	190.93
8.260 0.433	0.452 1.880	24.0 24.0	0.07 -0.08	138.00 -165.05
0.606	1.933	24.0	-0.07	-134.90
0.780	1.987	24.0	-0.05	-104.75
0.953	2.040	24.0	-0.04	-74.60
1.126	2.094 0.575	24.0 24.0	-0.02 -0.25	-44.45 -382.60
0.435 0.611	0.522	24.0	-0.25	-382.60
0.786	0.468	24.0	-0.25	-382.60
0.961	0.415	24.0	-0.25	-382.60
1.137	0.361	24.0	-0.25	-382.60
6.787 6.959	2.092 2.036	24.0 24.0	0.22	382.60 382.60
7.131	1.980	24.0	0.22	382.60
7.303	1.923	24.0	0.22	382.60
7.475	1.867	24.0	0.22	382.60
6.790	0.351	24.0	-0.01	-20.58
6.964 7.139	0.407	24.0 24.0	0.01	10.49 41.56
7.313	0.520	24.0	0.04	72.64
7.488	0.577	24.0	0.05	103.71
7.662	1.679	24.0	0.21	382.60
7.662 7.662	1.548 1.417	24.0 24.0	0.19	382.60
7.662	1.287	24.0	0.17 0.15	350.52 314.57
7.662	1.156	24.0	0.14	278.61
7.662	1.025	24.0	0.12	242.65
7.662	0.895 0.764	24.0 24.0	0.10	206.69 170.74
7.662 0.260	1.682	24.0	0.08 -0.11	-234.86
0.260	1.551	24.0	-0.13	-271.11
0.260	1.419	24.0	-0.15	-307.36
0.260	1.287	24.0	-0.17	-343.60 -379.85
0.260 0.260	1.155 1.024	24.0 24.0	-0.18 -0.20	-379.83
0.260	0.892	24.0	-0.22	-382.60
0.260	0.760	24.0	-0.24	-382.60
1.496	2.148	24.0	0.00	3.34
1.693 1.890	2.149	24.0 24.0	0.01	20.98 38.63
2.086	2.150	24.0	0.03	56.27
2.283	2.150	24.0	0.04	73.91
2.480	2.151	24.0	0.04	91.56
2.677 2.873	2.151 2.152	24.0 24.0	0.05	109.20 126.84
3.070	2.152	24.0	0.00	144.49
3.267	2.153	24.0	0.08	162.13
3.464	2.153	24.0	0.09	179.77
3.660	2.154	24.0	0.10	197.42
3.857 4.054	2.155 2.155	24.0 24.0	0.10	215.06 232.70
4.251	2.156	24.0	0.11	250.35
4.447	2.156	24.0	0.13	267.99
4.644	2.157	24.0	0.14	285.64
4.841 5.038	2.157 2.158	24.0	0.15 0.16	303.28 320.92
5.234	2.158	24.0	0.16	338.57
5.431	2.159	24.0	0.17	356.21
5.628	2.159	24.0	0.18	373.85
5.825	2.160 2.160	24.0 24.0	0.19	382.60
6.021 6.218	2.160	24.0	0.20	382.60 382.60
6.415	2.161	24.0	0.22	382.60
6.612	2.162	24.0	0.22	382.60
1.496	0.296	24.0	-0.25	-382.60

Eurolink S.C.p.A. Pagina 277 di 405



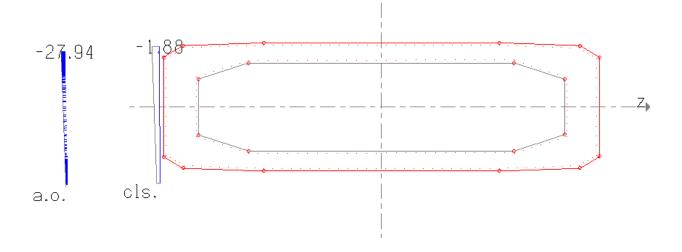
RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

Eurolink S.C.p.A. Pagina 278 di 405

RELAZIONE DI CALCOLO


Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Con riferimento ora alle sollecitazioni al piede della pila si considerano la combinazione allo SLE QUASI PERMANENTE.

ARMATURA distribuita ϕ 24/20 SOLLECITAZIONI Nsd = 14.835 KN

Msd long = 3.991 kNmMsd trasv = -1.318 kNm

TENSIONI cls $\sigma_c = (N/mm^2)1,88 < 0,45 \ f_{ck} = 0,45x33,20 = 14,94$ ferro $\sigma_f = (N/mm^2)27,94 < 0,80 \ f_{yk} = 0,80x450 = 360$

Eurolink S.C.p.A. Pagina 279 di 405

9.5 ANALISI DELLA PILA P2p

La pila P2-p è costituita da un plinto di fondazione a base a parallelogramma di dimensioni 11,10 x 7,50 m, di spessore 2,50 m. L'architettura della pila è definita da un singolo fusto di forma poligonale cava di diametro Ø3,57 m, alto 9,15 m. In sommità del fusto è individuabile un pulvino caratterizzato da uno sviluppo verticale di 4,20 m. Il collegamento tra impalcato ed opera di sostegno è affidato integralmente a tre appoggi, collocati con un interasse reciproco di 4,90m.

Di seguito viene presentata una schematizzazione grafica dell'elemento strutturale appena citato.

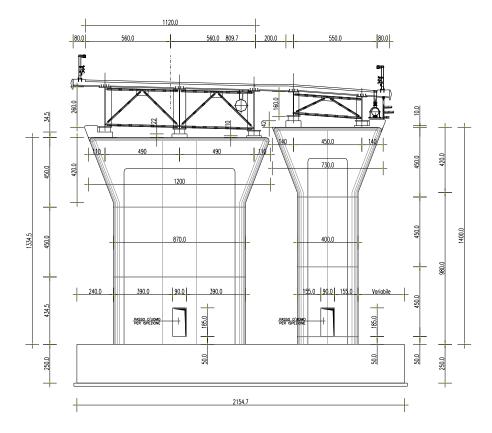


Figura 9.1 – Vista frontale pila.

Si riporta di seguito un tabulato riassuntivo della geometria delle strutture.

Eurolink S.C.p.A. Pagina 280 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento Rev Data SS0669_F0.doc F0 20/06/2011

_					
	Altezza impalcato			2,90	mt
	Larghezza pavimentato			12,50	mt
	Baricentro impalcato			0,00	mt
	Campata			38,50	mt
	Altezza baggiolo+appoggio			0,50	mt
0	Peso pulvino			2.520,00	kN
FUSTO	Altezza pulvino			4,20	mt
교	Altezza fusto			9,15	mt
	Altezza totale			13,35	mt
	Numero fusti			1,00	
	Interasse fusti				mt
	Base / Diametro sezione	D		3,57	mt
	Altezza sezione			-	mt
	Peso fusto + pulvino			4.809,31	kN
	Eccentricità Fusti-Fond-trasversale			0,00	mt
ш	Base plinto			11,00	mt
Z	Lunghezza plinto			7,50	mt
Ĭ	Altezza plinto			2,50	mt
FONDAZIONE	Altezza terreno su plinto			2,80	mt
Z	Peso Terreno su plinto			3.149,20	kN
ŭ	Peso plinto			5.156,25	kN
	Totale plinto + Terreno			8.305,45	kN

Modulo elastico cls	360.000 daN/cm ²
Inerzia longitudinale	8,53 m⁴
Inerzia trasversale	83,6 m ⁴

9.5.1 **ANALISI DEI CARICHI**

La pila è soggetta dalle sollecitazioni derivanti dall'impalcato riportati precedentemente. Di seguito si riassumono i carichi globali gravanti:

	<u>J</u>					
		N	H long	H trasv	M long	M trasv
0		(kN)	(kN)	(kN)	(kN m)	(kN m)
'IMPALCATO	Peso strutturale impalcato	5.952	0	0	0	-1.196
🖫	Permanenti	2.144	0	0	0	-1.509
<u>4</u>	Ritiro	197	0	0	0	-397
<u>1</u>	Mezzi schema centrato	4.249	0	0	0	6.532
DALL	Mezzi schema eccentrico	1.777	0	0	0	9.491
2	Folla schema centrato	0	0	0	0	0
SE	Folla schema eccentrica	0	0	0	0	0
ES	Frenamento	0	170	0	0	0
TRASMESSE	Resistenze passive vincolo	0	243	0	0	0
Z A	Vento: impalcato scarico	1.017	0	331	0	3.165
	Vento: impalcato carico	864	0	695	0	4.831
N	Cedimento	0	0	0	0	0
AZIONI	Azione centrifuga	0	0	0	0	0
¥	Svio	0	0	200	0	0
	Sisma	2.107	1.229	744	0	804

REAZIONI IMPALCATO

П						
	Appoggio 1	Appoggio 2	Appoggio 3			
	1.874	1.960	2.118			
	616	604	924			
	44	28	125			
	2.073	1.436	740			
	1.617	480	-320			
	0	0	0			
	0	0	0			
	662	339	16			
	781	288	-205			
	0	0	0			
	825	621	661			

Eccentricità dei carichi verticali (mt) 0,01 Eccentricità accidentale

Azione inerziale sismica sul fusto

0,05

Flong.=

460

Ftrasv.=

930

Fvert.=

772

Eurolink S.C.p.A. Pagina 281 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

9.5.1.1 Combinazioni di carico statiche

Si considerano le combinazioni di carico statiche allo SLU previste dalla normativa vigente:

| AZIONI SLU EQU | AZIONI SLU STR | AZIONI SLU GEO |

		ΕU	lG	5LU	VI S	יוטו	AZ J	۱ '	IK	15	5LL	VI S	יוטו	AZ I	'	ŲU) E	SLU	VI 3	יוטו	AZ I	١.
PRINCIPALE		Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.
P.P.)/G1	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,10	1,10	1,10	1,10	1,10	1,10	1,10
Perm.)/G2	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Attrito	Ψ,	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
. . 8)/G2	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Temperatura	Ψ,	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60
ratura	ž	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
w Vento	Ψ,	1,00	0,60	0,60	0,60	0,60	0,60	0,60	1,00	0,60	0,60	0,60	0,60	0,60	0,60	1,00	0,60	0,60	0,60	0,60	0,60	0,60
. ē	ð	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Acci	Ψ,		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	0,75
Accident.	ð		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
—— ≝	.₩		0,50	0,50	0,00	0,00	0,08	0,00		0,50	0,50	0,00	0,00	0,00	0,00		0,50	0,50	0,00	0,00	0,00	0,00
 Fo∐a	ŏ		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
	.4.		0,00	0,00	1,00	1,00	0,00	0,00		0,00	0,00	1,00	1,00	0,00	0,00		0,00	0,00	1,00	1,00	0,00	0,00
Frenamento	 8		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
E Ged.	Ψ,	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
- Ritiro	ŏ	1,00	1,08	1,00	1,00	1,00	1,08	1,00	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
Cent	Ψ,		0,00	0,00	0,00	0,00	1,00	1,00		0,00	0,00	0,00	0,00	1,00	1,00		0,00	0,00	0,00	0,00	1,00	1,00
Centrifuga	 ک		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35

Eurolink S.C.p.A. Pagina 282 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

9.5.1.2 Combinazioni di carico Sismiche

Secondo le "Norme Tecniche 2008" le verifiche agli stati limite ultimi o di esercizio devono essere effettuate per la seguente combinazione dell'azione sismica con le altre azioni:

$$G1 + G2 + P + E + \sum_{i} 0.2 \cdot Q_{kj}$$

dove G1 sono i pesi propri, G2 sono i carichi permanenti, P è la precompressione, E è l'azione sismica e Q_{ki} sono i carichi accidentali.

In particolare si sono considerate le seguenti combinazioni sismiche:

Combinazione	P.p.	Perm.	Accid.	Sisma X	Sisma Y	Sisma Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30
SISMA Z N+	1,00	1,00	0,20	0,30	0,30	1,00
SISMA Y N+	1,00	1,00	0,20	0,30	1,00	0,30

9.5.2 MODELLO DI CALCOLO

9.5.2.1 Descrizione del modello di calcolo

Alla luce di quanto scaturito da valutazioni preliminari di carattere statico, condotte sulla tipologia strutturale ivi considerata, è stato possibile individuare la modellazione più performante, che meglio simulasse il naturale comportamento in opera delle pile.

Si è quindi scelta una particolare schematizzazione a mensola incastrata alla base, la cui applicabilità è supportata dall'indiscutibile rilevanza che risiede nella valutazione dei momenti sollecitanti alla base del fusto.

Eurolink S.C.p.A. Pagina 283 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.5.3 CALCOLO DELLE SOLLECITAZIONI

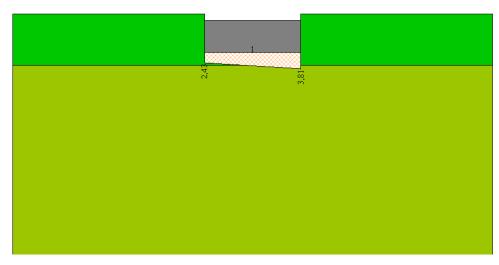
	AZIONI ALLA BASE						
	Combinazioni		N (kN)	Vlong (kN)	Vtrasv (kN)	Mlong (kNm)	Mtrasv (kNm)
GEO	15	Comb 1	23.412	243,00	430,30	4.060	7.517
	16	Comb 2	27.770	243,00	542,10	4.124	16.509
ĴΪ	17	Comb 3	24.808	243,00	542,10	4.087	19.913
AZIONI SLU	18	Comb 4	26.429	438,50	542,10	7.887	14.632
O	19	Comb 5	24.297	438,50	542,10	7.850	17.184
\ZI	20	Comb 6	26.429	243,00	772,10	4.124	19.197
•	21	Comb 7	24.297	243,00	772,10	4.087	21.750
STR	22	Comb 8	30.718	328,05	496,50	5.476	8.512
	23	Comb 9	35.844	328,05	_ 625,50	5.562	_ 19.039
SLU	24	Comb 10	32.369	328,05	625,50	5.512	23.034
Į	25	Comb 11	34.272	557,55	625,50	9.980	16.834
AZIONI	26	Comb 12	31.769	557,55	625,50	9.930	19.831
ΑŽ	27	Comb 13	34.272	328,05	895,50	5.562	22.194
	28	Comb 14	31.769	328,05	895,50	5.512	25.190
EQU	29	Comb 15	25.951	267,30	496,50	4.468	8.811
) E	30	Comb 16	31.077	267,30	625,50	4.554	19.338
SLL	31	Comb 17	27.602	267,30	625,50	4.504	23.333
Į	32	Comb 18	29.506	496,80	625,50	8.972	_ 17.133
AZIONI SLU	33	Comb 19	27.003	496,80	625,50	8.922	20.130
AZ]	34	Comb 20	29.506	267,30	895,50	4.554	22.493
	35	Comb 21	23.539	267,30	895,50	4.504	23.251
	Combinazioni		N (kN)	Vlong (kN)	Vtrasv (kN)	Mlong (kNm)	Mtrasv (kNm)
Μ	36	SISMA long	23.121	1.932,00	502,20	28.288	5.052
SISMA	37	SISMA trasv	23.121	579,60	1.674,00	8.486	20.102

SPOSTAMENTI IN TESTA PILA

SLE	H (kN)	δ (mm)
Frenamento	170	0,439
Resistenze passive vincolo	243	0,628

SLU	H (kN)	δ (mm)
Sisma	1.229	3,174

Eurolink S.C.p.A. Pagina 284 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Il momento flettente e il taglio sono calcolati rispetto al filo del fusto; si considera la situazione più gravosa corrispondente tra le combinazioni STR alla combinazione 4. Si riporta di seguito la pressione sul terreno lungo l'asse longitudinale della pila:

Deposits fluvials
γ=2000 kg/mc γs=2350 kg/mc
φ=38.0 ° δ=38.0 °
c=0,00 kg/cmq ca=0,00 kg/cmq

Ghiaie di messina y=1900 kg/mc ys=2300 kg/mc \$\phi=38.0 \circ\$ \$\delta=38.0 \circ\$ \$c=0,00 kg/cmq ca=0,00 kg/cmq

Le azioni sollecitanti sono calcolate rispetto al filo del fusto:

$$\begin{split} M_{\text{Sd}} = & \left[\left(3,\!35 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot \frac{2,\!475^{\,2}}{2} + \left(3,\!81 - 3,\!35 \right) \cdot 10 \cdot \frac{2,\!475^{\,2}}{3} \right] \cdot 10 = 929 \text{ kNm} \\ V_{\text{Sd}} = & \left[\left(3,\!35 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot 2,\!475 + \left(3,\!81 - 3,\!35 \right) \cdot 10 \cdot \frac{2,\!475}{2} \right] \cdot 10 = 731 \text{ kN} \end{split}$$

Eurolink S.C.p.A. Pagina 285 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.5.4 VERIFICA DELLE SEZIONI

9.5.4.1 Plinto di fondazione

 $M_{Sd} = 929 \text{ kNm}$

VERIFICA A FLESSIONE

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 250

ARMATURA compressa \$\phi26/10\$

SOLLECITAZIONI Msd = 929 kNm

INDICI DI RESISTENZA Mrd = 5.041 kNm

IR = 5,42

VERIFICA A TAGLIO

$T_{\text{Sd}} = 731\,\text{kN}$

RISULTATI VERIFICA A TAGLIO		
Verifica senza armatura trasversale		
Taglio res. ultimo (Vrdu1):	67153.563	
Indice di resistenza:	1.09	
Verifica delle bielle compresse		
Taglio res. ultimo (Vrdu2):	777758.625	
Indice di resistenza:	0.09	
Verifica con armatura trasversale		
Componente di taglio attribuita		
al calcestruzzo (Vrdu3):	0.000	
Componente di taglio attribuita		
all'armatura (Vwd):	85800.006	
Armatura trasversale per unita' di		
lunghezza (Asw,cm²/m):	9.77	
Staffe a 4 braccia		
(in accordo con i minimi di norma per	fondazioni): ø20/30cm	

Eurolink S.C.p.A. Pagina 286 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev FO

20/06/2011

Data

9.5.4.2 **Fusto**

Con riferimento alle sollecitazioni al piede della pila si considerano le combianazioni allo SLU STR.

Verifica a pressoflessione - Nmax

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd =24.310kN Msd long = 4.739 kNm Msd trasv = 17.701 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

allungamento

-0.78

6.608 1 307

2.098

-0.01

```
Nome archivio di lavoro
 Intestazione del lavoro
Unità misura Forza
                                          Comb 9
 Unità misura Lunghezza
                                          N/mm²
 Diametro armature
                                          mm
                                          mm 2
I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità.
Il primo vertice è quello più in basso, a sinistra.
Parametri di calcolo
Rck = 35 fyk = 440 fykp = 1500
Sollecitazioni agenti
Sforzo normale N = Momento flettente Mz = Momento flettente My = \frac{1}{2}
                                -24310.000
4739.000
                              17701.000
Sollecitazioni resistenti di calcolo
Sforzo normale N = -57166.858

Momento flettente Mz = 11145.511

Momento flettente My = 41629.720
Indice di resistenza s.l.u: 0.43
Campo di rottura della sezione: 3
Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al
calcestruzzo
N, min = -156825
inferiore ad N resistente = -57166.9
Asse neutro
   0.0000 2.5957 340.6
Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -15.43
Deformazioni e tensioni nel calcestruzzo
    z' y'
1.609 -0.056
                           Def(%) Tens
-0.28 -15.43
-0.35 -15.43
                                     -15.43
                0.000
     0.000
    -0.390
               0.231 2.211
                           -0.34
-0.07
                                     -15.43
    -0.391
                                      -8.95
-3.02
                2.211
2.443
2.499
2.499
2.443
2.211
    -0.000
1.609
                           -0.02
0.06
                                      allungamento
     6.309
                            0.29
                                      allungamento
     7.919
                            0.36
                                      allungamento
     8.310
                            0.34
                                      allungamento
                            0.08
     8.310
                0.231
                                       allungamento
     7.919
                0.000
                                      allungamento
     6 309
               -0.056
                           -0.06
                                      -7 65
                                      allungamento
               0.670
1.773
2.098
                           0.10
     7.612
7.612
                                      allungamento
                                      allungamento
```

Eurolink S.C.p.A. Pagina 287 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

	4 555			
0.310	1.777	-0.10	-11.23	
0.310	0.665	-0.25	-15.43	
1.307	0.345	-0.24	-15.43	
Deformazio	ne massima	nel cal	cestruzz	0
z'	у'	Def(%)	Tens	
0.000	0.000	-0.35	-15.43	
Legame cos	titutivo d	ell'accia	aio ordi	nario
Def(),a				
0.00	0.00			
0.19	382.60			
0.19	302.00			
D 6 '				0 11 1
Deformazio				
z'	У'	d	Def(%)	Tens
1.610	-0.006	24.0	-0.27	-382.60
0.014	0.050	24.0	-0.34	-382.60
-0.340	0.259	24.0	-0.33	-382.60
-0.341	2.183	24.0	-0.07	-147.98
1.610	2.449	24.0	0.06	116.60
6.309	2.449	24.0	0.28	382.60
7.904	2.393	24.0	0.35	382.60
8.260	2.183	24.0	0.34	382.60
8.260	0.260	24.0	0.08	158.88
7.904	0.050	24.0	0.03	65.74
6.309	-0.006	24.0	-0.05	-105.71
1.299	0.295	24.0	-0.25	-382.60
0.260	0.629	24.0	-0.25	-382.60
0.260	1.814	24.0	-0.09	-191.75
1.299	2.148	24.0	0.00	2.61
6.615	2.148	24.0	0.25	382.60
7.662	1.809	24.0	0.25	382.60
7.662	0.633	24.0	0.10	204.24
6.615	0.294	24.0	0.00	7.68
1.798	2.449	24.0	0.07	134.98
1.986	2.449	24.0	0.07	153.36
2.174	2.449	24.0	0.08	171.74
2.362	2.449	24.0	0.09	190.11
2.550	2.449	24.0	0.10	208.49
2.738	2.449	24.0	0.11	226.87
2.926	2.449	24.0	0.12	245.25
3.114	2.449	24.0	0.13	263.63
3.302	2.449	24.0	0.14	282.00
3.490	2.449	24.0	0.15	300.38
3.678	2.449	24.0	0.15	318.76
3.865	2.449	24.0	0.16	337.14
4.053	2.449	24.0	0.17	355.52
4.241	2.449	24.0	0.18	373.89
4.429	2.449	24.0	0.19	382.60
4.617	2.449	24.0	0.20	382.60
4.805	2.449	24.0	0.21	382.60
4.993	2.449	24.0	0.22	382.60
5.181	2.449	24.0	0.23	382.60
5.369	2.449	24.0	0.24	382.60
5.557	2.449	24.0	0.24	382.60
5.745	2.449	24.0	0.25	382.60
5.933	2.449	24.0	0.26	382.60
6.121	2.449	24.0	0.27	382.60
6.486	2.442	24.0	0.29	382.60
6.663	2.436	24.0	0.29	382.60
6.841	2.430	24.0	0.30	382.60
7.018	2.424	24.0	0.31	382.60
7.195	2.418	24.0	0.32	382.60
7.372	2.412	24.0	0.33	382.60
7.550	2.412	24.0	0.33	382.60
	2.399			
7.727 1.433	2.399	24.0 24.0	0.34	382.60 97.91
		24.0		79.21
1.256	2.439		0.04	
1.079		24.0	0.03	60.52
0.901	2.429	24.0	0.02	41.82
0.724	2.424	24.0	0.01	23.13
0.547	2.419	24.0	0.00	4.43
0.370	2.414	24.0	-0.01	-14.27
0.192	2.409	24.0	-0.02	-32.96
0.015	2.404	24.0	-0.03	-51.66
7.741	0.046	24.0	0.02	48.68
7.562	0.039	24.0	0.01	29.38
7.383	0.033	24.0	0.00	10.08
7.204	0.026	24.0	-0.00	-9.22
7.025	0.020	24.0	-0.01	-28.52
6.846	0.013	24.0	-0.02	-47.82
6.667	0.007	24.0	-0.03	-67.11
6.488	0.001	24.0	-0.04	-86.41
6.120	-0.006	24.0	-0.06	-124.13
5.932	-0.006	24.0	-0.07	-142.55
5.743	-0.006	24.0	-0.08	-160.98
5.555	-0.006	24.0	-0.09	-179.40
5.367	-0.006	24.0	-0.10	-197.82
5.178	-0.006	24.0	-0.10	-216.24

Eurolink S.C.p.A. Pagina 288 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

4.990	-0.006	24.0	-0.11	-234.66
4.801	-0.006	24.0	-0.12	-253.08
4.613	-0.006	24.0	-0.13	-271.51
4.425	-0.006	24.0	-0.14	-289.93
4.236	-0.006	24.0	-0.15	-308.35
4.048 3.859	-0.006 -0.006	24.0 24.0	-0.16 -0.17	-326.77 -345.19
3.671	-0.006	24.0	-0.18	-363.62
3.482	-0.006	24.0	-0.19	-382.04
3.294	-0.006	24.0	-0.19	-382.60
3.106	-0.006	24.0	-0.20	-382.60
2.917	-0.006	24.0	-0.21	-382.60
2.729	-0.006	24.0	-0.22	-382.60
2.540	-0.006	24.0	-0.23	-382.60
2.352	-0.006	24.0	-0.24	-382.60
2.164	-0.006	24.0	-0.25	-382.60
1.975 1.787	-0.006 -0.006	24.0 24.0	-0.26 -0.27	-382.60 -382.60
1.433	0.000	24.0	-0.28	-382.60
1.256	0.006	24.0	-0.29	-382.60
1.078	0.013	24.0	-0.30	-382 60
0.901	0.019	24.0	-0.30	-382.60
0.724	0.025	24.0	-0.31	-382.60
0.546	0.031	24.0	-0.32	-382.60
0.369	0.037	24.0	-0.33	-382.60
0.192	0.043	24.0	-0.34	-382.60
-0.074 -0.163	0.102 0.154	24.0 24.0	-0.34 -0.34	-382.60 -382.60
-0.163	0.134	24.0	-0.34	-382.60
-0.074	2.349	24.0	-0.04	-75.74
-0.163	2.294	24.0	-0.05	-99.82
-0.252	2.238	24.0	-0.06	-123.90
7.993	2.341	24.0	0.35	382.60
8.082	2.288	24.0	0.34	382.60
8.171	2.235	24.0	0.34	382.60
8.171	0.207	24.0	0.07	135.59
8.082 7.993	0.155 0.102	24.0 24.0	0.05	112.31 89.03
-0.341	1.991	24.0	0.04 -0.10	-201.41
-0.341	1.798	24.0	-0.12	-254.83
-0.341	1.606	24.0	-0.15	-308.26
-0.341	1.414	24.0	-0.18	-361.68
-0.341	1.221	24.0	-0.20	-382.60
-0.340	1.029	24.0	-0.23	-382.60
-0.340	0.836	24.0	-0.25	-382.60
-0.340	0.644	24.0	-0.28	-382.60
-0.340	0.452	24.0	-0.31	-382.60
8.260 8.260	1.991 1.798	24.0 24.0	0.31	382.60 382.60
8.260	1.606	24.0	0.26	382.60
8.260	1.414	24.0	0.23	382.60
8.260	1.221	24.0	0.21	382.60
8.260	1.029	24.0	0.18	372.56
8.260	0.837	24.0	0.15	319.14
8.260	0.644	24.0	0.13	265.72
8.260	0.452	24.0	0.10	212.30
0.433	1.880 1.933	24.0 24.0	-0.08 -0.06	-156.48 -124.66
0.780	1.933	24.0	-0.05	-92.85
0.953	2.040	24.0	-0.03	-61.03
1.126	2.094	24.0	-0.01	-29.21
0.435	0.575	24.0	-0.25	-382.60
0.611	0.522	24.0	-0.25	-382.60
0.786	0.468	24.0	-0.25	-382.60
0.961	0.415	24.0	-0.25	-382.60
1.137 6.787	0.361 2.092	24.0 24.0	-0.25 0.25	-382.60 382.60
6.959	2.032	24.0	0.25	382.60
7.131	1.980	24.0	0.26	382.60
7.303	1.923	24.0	0.26	382.60
7.475	1.867	24.0	0.26	382.60
6.790	0.351	24.0	0.02	40.44
6.964	0.407	24.0	0.04	73.20
7.139	0.464	24.0	0.05	105.96
7.313	0.520	24.0	0.07	138.72
7.488 7.662	0.577 1.679	24.0 24.0	0.08	171.48 382.60
7.662	1.548	24.0	0.24	382.60
7.662	1.417	24.0	0.20	382.60
7.662	1.287	24.0	0.19	382.60
7.662	1.156	24.0	0.17	349.39
7.662	1.025	24.0	0.15	313.10
7.662	0.895	24.0	0.13	276.81
7.662	0.764	24.0	0.12	240.53
0.260	1.682	24.0	-0.11	-228.33
0.260	1.551	24.0 24.0	-0.13 -0.15	-264.91 -301.48
0.260 0.260	1.419	24.0	-0.15 -0.16	-301.48 -338.06
0.260	1.155	24.0	-0.18	-374.64

Eurolink S.C.p.A. Pagina 289 di 405

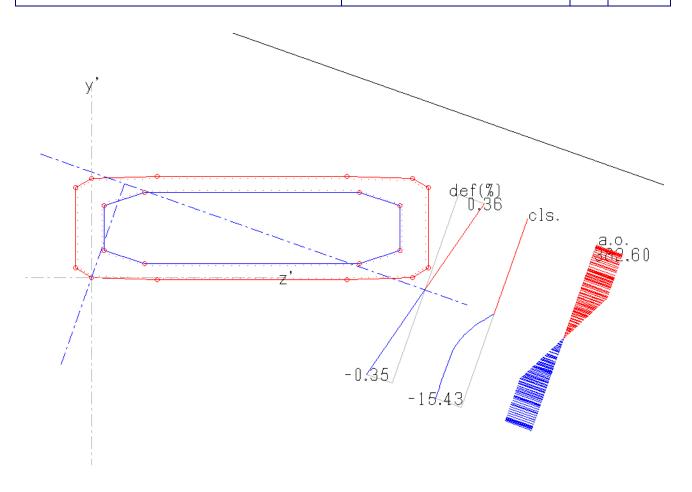
RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

0.260	1.024	24.0	-0.20	-382.60
0.260	0.892	24.0	-0.22	-382.60
0.260	0.760	24.0	-0.24	-382.60
1.496	2.148	24.0	0.01	22.00
1.693	2.149	24.0	0.02	41.38
1.890	2.149	24.0	0.03	60.77
2.086	2.150	24.0	0.04	80.16
2.283	2.150	24.0	0.05	99.55
2.480	2.151	24.0	0.06	118.93
2.677	2.151	24.0	0.07	138.32
2.873	2.152	24.0	0.08	157.71
3.070	2.152	24.0	0.09	177.10
3.267	2.153	24.0	0.10	196.48
3.464	2.153	24.0	0.10	215.87
3.660	2.154	24.0	0.11	235.26
3.857	2.155	24.0	0.12	254.65
4.054	2.155	24.0	0.13	274.03
4.251	2.156	24.0	0.13	293.42
4.447	2.156	24.0	0.15	312.81
4.644	2.157	24.0	0.16	332.20
4.841	2.157	24.0	0.10	351.59
5.038	2.158	24.0	0.17	370.97
5.234	2.158	24.0	0.10	382.60
5.431	2.159	24.0	0.19	
5.628	2.159	24.0	0.20	382.60 382.60
5.825	2.159	24.0		382.60
			0.22	
6.021 6.218	2.160	24.0	0.23	382.60
	2.161	24.0	0.24	382.60
6.415	2.161	24.0	0.25	382.60
6.612	2.162	24.0	0.26	382.60
1.496	0.296	24.0	-0.24	-382.60
1.693	0.296	24.0	-0.23	-382.60
1.890	0.297	24.0	-0.22	-382.60
2.087	0.297	24.0	-0.21	-382.60
2.284	0.298	24.0	-0.20	-382.60
2.481	0.299	24.0	-0.19	-382.60
2.678	0.299	24.0	-0.18	-375.94
2.875	0.300	24.0	-0.17	-356.51
3.072	0.301	24.0	-0.16	-337.08
3.269	0.301	24.0	-0.15	-317.64
3.466	0.302	24.0	-0.14	-298.21
3.663	0.302	24.0	-0.14	-278.78
3.860	0.303	24.0	-0.13	-259.35
4.057	0.304	24.0	-0.12	-239.92
4.254	0.304	24.0	-0.11	-220.48
4.451	0.305	24.0	-0.10	-201.05
4.648	0.305	24.0	-0.09	-181.62
4.845	0.306	24.0	-0.08	-162.19
5.042	0.307	24.0	-0.07	-142.76
5.239	0.307	24.0	-0.06	-123.32
5.436	0.308	24.0	-0.05	-103.89
5.633	0.308	24.0	-0.04	-84.46
5.830	0.309	24.0	-0.03	-65.03
6.027	0.310	24.0	-0.02	-45.60
6.224	0.310	24.0	-0.01	-26.16
6.421	0.311	24.0	-0.00	-6.73
6.618	0.312	24.0	0.01	12.70
Barra di ac	ciaio ord	inario p	iù tesa	
z'	У'	d	Def(%)	Tens
7.904	2.393	24.0	0.35	382.60

Eurolink S.C.p.A. Pagina 290 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Verifica a pressoflessione - Nmin

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd = 19.184 kN Msd long = 4.653 kNm Msd trasv = 7.497 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

Nome archivio di lavoro : Sezione2
Intestazione del lavoro : Comb 8
Unità misura Forza : kN
Unità misura Lunghezza : m
Tensioni : N/mm²
Diametro armature : mm
Area : mm²

I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità. Il primo vertice è quello più in basso, a sinistra.

Parametri di calcolo Rck = 35 fyk = 440 fykp = 1500

Eurolink S.C.p.A. Pagina 291 di 405

3.114

2.449

24.0

0.13

259.79

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

```
Sollecitazioni agenti
Sforzo normale N = Momento flettente Mz =
                                -19184.000
Momento flettente My =
                                   7497.000
Sollecitazioni resistenti di calcolo
Sforzo normale N = Momento flettente Mz = Momento flettente My =
                                -54989.183
13339.017
                                 21495.054
Indice di resistenza s.l.u: 0.35
Campo di rottura della sezione: 3
Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al
calcestruzzo
N,min = -156825
inferiore ad N resistente = -54989.2
Asse neutro
   0.0000 2.7044
                         338.4
Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -15.43
Deformazioni e tensioni nel calcestruzzo
              y'
-0.056
                           Def(%)
-0.27
                                      Tens
     1.609
                            -0.35
     0.000
                0.000
                                      -15.43
    -0.390
               0.231
                            -0.34
                                     -15.43
    -0.391
                2.211
                            -0.08
                                     -10.22
                2.443
2.499
2.499
2.443
    -0.000
1.609
                           -0.03
0.06
                                       -4.78
                                      allungamento
                             0.30
0.37
                                      allungamento allungamento
     6.309
     8.310
                2.211
                             0.36
                                       allungamento
     8.310
7.919
                             0.10
                0.231
                                       allungamento
                0.000
                                      allungamento
                           -0.03
0.03
     6.309
               -0.056
                                       -4.88
     6.608
                0.344
                                       allungamento
                0.670
1.773
2.098
                                      allungamento allungamento
     7.612
                             0.13
     6.608
                             0.26
                                      allungamento
                2.098
1.777
                           -0.01
-0.10
                                     -1.75
-11.88
     1.307
     0.310
     0.310
1.307
                0.665
0.345
                           -0.25
-0.24
                                     -15.43
-15.43
Legame costitutivo dell'acciaio ordinario
   Def(),a Tens,a
0.00 0.00
      0.19
              382.60
Deformazioni e Tensioni nell'Acciaio Ordinario
                                    Def(%) Tens
-0.27 -382.60
-0.34 -382.60
-0.33 -382.60
               y'
-0.006
                           24.0
     1.610
                0.050
     0.014
                            24.0
    -0.340
    -0.341
                2.183
                           24.0
                                     -0.08
0.05
                                              -174.92
101.42
     1.610
                2.449
                                      0.29
                                               382.60
382.60
     6.309
                            24.0
                2.183
     8.260
                            24.0
                                      0.35
                                                382.60
     8.260
                           24.0
                                               218.30
124.83
                0.050
                                      0.06
      7.904
     6.309
1.299
               -0.006
0.295
                           24.0
                                     -0.03
-0.25
                                              -58.04
-382.60
                                              -382.60
     0.260
                0.629
                            24.0
                                      -0.26
                            24.0
     1.299
                2.148
                                      -0.01
                                                -11.56
     6.615
                2.148
                            24.0
                                       0.27
                                                382.60
     7.662
                1.809
                            24.0
                                       0.28
                                                382.60
                0.633
                           24.0
                                      0.12
     7.662
                                                254.98
                                                 54.32
     6.615
                2.449
2.449
2.449
                                      0.06
                                                121.21
141.01
     1.798
                            24.0
      .986
     2.174
                            24.0
                                       0.08
                                                160.81
     2.362
2.550
                2.449
                           24.0
                                       0.09
                                                180.60
                2.449
                                      0.11
                                               220.19
239.99
     2.738
                            24.0
```

Eurolink S.C.p.A. Pagina 292 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

3.490	2.449	24.0	0.15	299.38
3.678	2.449	24.0	0.15	319.17
3.865	2.449	24.0	0.16	338.97
4.053 4.241	2.449	24.0 24.0	0.17 0.18	358.77 378.56
4.429	2.449	24.0	0.19	382.60
4.617	2.449	24.0	0.20	382.60
4.805 4.993	2.449	24.0 24.0	0.21	382.60 382.60
5.181	2.449	24.0	0.23	382.60
5.369 5.557	2.449	24.0 24.0	0.24	382.60
5.745	2.449	24.0	0.25 0.26	382.60 382.60
5.933	2.449	24.0	0.27	382.60
6.121 6.486	2.449	24.0 24.0	0.28	382.60 382.60
6.663	2.436	24.0	0.30	382.60
6.841	2.430	24.0	0.31	382.60
7.018 7.195	2.424 2.418	24.0 24.0	0.32	382.60 382.60
7.372	2.412	24.0	0.34	382.60
7.550 7.727	2.405	24.0	0.35	382.60
1.433	2.399	24.0 24.0	0.36	382.60 81.44
1.256	2.439	24.0	0.03	61.46
1.079	2.434	24.0	0.02	41.48
0.724	2.429	24.0 24.0	0.01	21.51 1.53
0.547	2.419	24.0	-0.01	-18.45
0.370 0.192	2.414	24.0 24.0	-0.02 -0.03	-38.43
0.132	2.409	24.0	-0.03	-58.40 -78.38
7.741	0.046	24.0	0.05	106.58
7.562 7.383	0.039	24.0 24.0	0.04	86.00 65.42
7.204	0.033	24.0	0.03	44.84
7.025	0.020	24.0	0.01	24.27
6.846 6.667	0.013	24.0 24.0	0.00	3.69 -16.89
6.488	0.001	24.0	-0.02	-37.47
6.120	-0.006	24.0	-0.04	-77.89
5.932 5.743	-0.006 -0.006	24.0 24.0	-0.05 -0.06	-97.73 -117.57
5.555	-0.006	24.0	-0.07	-137.42
5.367 5.178	-0.006	24.0	-0.08	-157.26
4.990	-0.006 -0.006	24.0 24.0	-0.09 -0.10	-177.10 -196.95
4.801	-0.006	24.0	-0.11	-216.79
4.613 4.425	-0.006 -0.006	24.0 24.0	-0.11 -0.12	-236.64 -256.48
4.236	-0.006	24.0	-0.13	-276.32
4.048	-0.006	24.0	-0.14	-296.17
3.859 3.671	-0.006 -0.006	24.0 24.0	-0.15 -0.16	-316.01 -335.85
3.482	-0.006	24.0	-0.17	-355.70
3.294	-0.006	24.0	-0.18	-375.54
3.106 2.917	-0.006 -0.006	24.0 24.0	-0.19 -0.20	-382.60 -382.60
2.729	-0.006	24.0	-0.21	-382.60
2.540 2.352	-0.006 -0.006	24.0 24.0	-0.22 -0.23	-382.60 -382.60
2.164	-0.006	24.0	-0.24	-382.60
1.975	-0.006	24.0	-0.25	-382.60
1.787	-0.006 0.000	24.0 24.0	-0.26 -0.28	-382.60 -382.60
1.256	0.006	24.0	-0.28	-382.60
1.078	0.013	24.0	-0.29	-382.60
0.901 0.724	0.019 0.025	24.0	-0.30 -0.31	-382.60 -382.60
0.546	0.031	24.0	-0.32	-382.60
0.369	0.037	24.0	-0.33	-382.60
0.192 -0.074	0.043	24.0 24.0	-0.33 -0.34	-382.60 -382.60
-0.163	0.154	24.0	-0.34	-382.60
-0.252	0.207	24.0	-0.34	-382.60
-0.074 -0.163	2.349	24.0 24.0	-0.05 -0.06	-102.52 -126.65
-0.252	2.238	24.0	-0.07	-150.79
7.993	2.341	24.0	0.36	382.60
8.082 8.171	2.288	24.0 24.0	0.36 0.36	382.60 382.60
8.171	0.207	24.0	0.09	194.93
8.082	0.155 0.102	24.0	0.08	171.57 148.20
7.993 -0.341	1.991	24.0	-0.11	-226.20
-0.341	1.798	24.0	-0.13	-277.48
-0.341 -0.341	1.606 1.414	24.0 24.0	-0.16 -0.18	-328.75 -380.03
-0.341	1.221	24.0	-0.21	-382.60

Eurolink S.C.p.A. Pagina 293 di 405

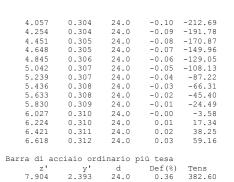
RELAZIONE DI CALCOLO

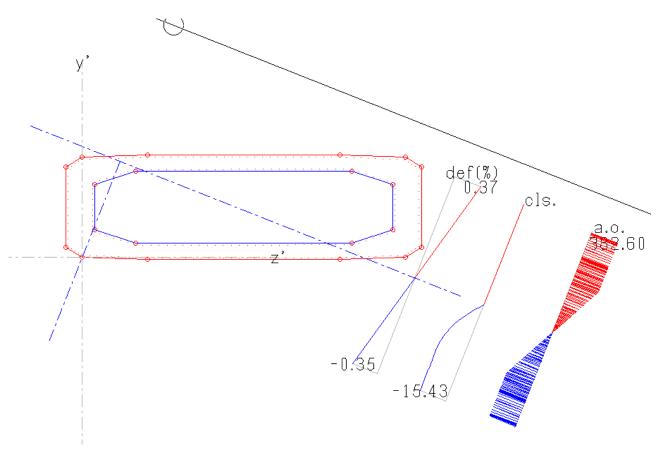
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

-0.340	1.029	24.0	-0.23	-382.60
-0.340	0.836	24.0	-0.26	-382.60
-0.340	0.644	24.0	-0.28	-382.60
-0.340	0.452	24.0	-0.31	-382.60
8.260	1.991	24.0	0.33	382.60
8.260	1.798	24.0	0.31	382.60
8.260	1.606	24.0	0.28	382.60
8.260	1.414	24.0	0.26	382.60
8.260	1.221	24.0	0.23	382.60
8.260	1.029	24.0	0.21	382.60
8.260	0.837	24.0	0.18	372.12
8.260	0.644	24.0	0.16	320.85
8.260	0.452	24.0	0.13	269.57
0.433	1.880	24.0	-0.08	-174.20
0.606	1.933	24.0	-0.07	-141.67
0.780	1.987	24.0	-0.05	-109.14
0.953	2.040	24.0	-0.04	-76.62
1.126	2.094	24.0	-0.02	-44.09
0.435	0.575	24.0	-0.25	-382.60
0.611	0.522	24.0	-0.25	-382.60
0.786	0.468	24.0	-0.25	-382.60
0.961	0.415	24.0	-0.25	-382.60
1.137	0.361	24.0	-0.25	-382.60
6.787	2.092	24.0	0.27	382.60
6.959	2.036	24.0	0.27	382.60
7.131	1.980	24.0	0.27	382.60
7.303	1.923	24.0	0.27	382.60
7.475	1.867	24.0	0.27	382.60
6.790	0.351	24.0	0.04	87.76
6.964	0.407	24.0	0.06	121.20
7.139	0.464	24.0	0.08	154.65
7.313	0.520	24.0	0.09	188.09
7.488	0.577	24.0	0.11	221.54
7.662	1.679	24.0	0.26	382.60
7.662	1.548	24.0	0.24	382.60
7.662	1.417	24.0	0.23	382.60
7.662	1.287	24.0	0.21	382.60
7.662	1.156	24.0	0.19	382.60
7.662	1.025	24.0	0.17	359.47
7.662	0.895	24.0	0.16	324.64
7.662	0.764	24.0	0.14	289.81
0.260	1.682	24.0	-0.12	-245.15
0.260	1.551	24.0	-0.14	-280.26
0.260	1.419	24.0	-0.15	-315.36
0.260	1.287	24.0	-0.17	-350.47
0.260	1.155	24.0	-0.19	-382.60
0.260	1.024	24.0	-0.20	-382.60
0.260	0.892	24.0	-0.22	-382.60
0.260	0.760	24.0	-0.24	-382.60
1.496	2.148	24.0	0.00	9.31
1.693	2.149	24.0	0.01	30.17
1.890	2.149	24.0	0.02	51.04
2.086	2.150	24.0	0.03	71.90
2.283	2.150	24.0	0.05	92.77
2.480	2.151	24.0	0.06	113.64
2.677	2.151	24.0	0.07	134.50
2.873	2.152	24.0	0.08	155.37
3.070	2.152	24.0	0.09	176.24
3.267	2.153	24.0	0.10	197.10
3.464	2.153	24.0	0.11	217.97
3.660	2.154	24.0	0.12	238.83
3.857	2.155	24.0	0.13	259.70
4.054	2.155	24.0	0.14	280.57
4.251	2.156	24.0	0.15	301.43
4.447	2.156	24.0	0.16	322.30
4.644	2.157	24.0	0.17	343.16
4.841	2.157	24.0	0.18	364.03
5.038	2.158	24.0	0.19	382.60
5.234	2.158	24.0	0.20	382.60
5.431	2.159	24.0	0.21	382.60
5.628	2.159	24.0	0.22	382.60
5.825	2.160	24.0	0.23	382.60
6.021	2.160	24.0	0.24	382.60
6.218	2.161	24.0	0.25	382.60
6.415	2.161	24.0	0.26	382.60
6.612 1.496 1.693 1.890 2.087	2.162 0.296 0.296 0.297	24.0 24.0 24.0 24.0 24.0	0.27 -0.24 -0.23 -0.21 -0.20	382.60 -382.60 -382.60 -382.60
2.284 2.481 2.678 2.875	0.297 0.298 0.299 0.299 0.300	24.0 24.0 24.0 24.0 24.0	-0.19 -0.18 -0.17 -0.16	-382.60 -382.60 -379.98 -359.07 -338.16
3.072 3.269 3.466 3.663	0.301 0.301 0.302 0.302	24.0 24.0 24.0 24.0 24.0	-0.16 -0.15 -0.14 -0.13 -0.12	-317.25 -296.34 -275.43 -254.51
3.860	0.303	24.0	-0.11	-233.60

Eurolink S.C.p.A. Pagina 294 di 405





RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

Eurolink S.C.p.A. Pagina 295 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669 F0 doc

Rev FO

20/06/2011

Data

Verifica a pressoflessione –Mmax

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd =20.235 KN Msd long = 4.689 kNm

Msd trasv = 23.178 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

Nome archivio di lavoro Intestazione del lavoro Unità misura Forza Unità misura Lunghezza Comb 14 kN Tensioni N/mm² Diametro armature Area mm²

I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità. Il primo vertice è quello più in basso, a sinistra

Parametri di calcolo

Rck = 35 fyk = 440 fykp = 1500

Sollecitazioni agenti

-20235.000 Sforzo normale N = Momento flettente Mz = Momento flettente My = 4689.000 23178.000

Sollecitazioni resistenti di calcolo

Indice di resistenza s.l.u: 0.32

Campo di rottura della sezione: 3

Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al calcestruzzo

N,min = -156825inferiore ad N resistente = -62868.3

Asse neutro

0.0000 2.6219 342.0

Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -15.43

Deformazioni e tensioni nel calcestruzzo

z' y' Def(%) Tens

1.609 -0.056 -0.29 -15.43

0.000 0.000 -0.35 -15.43 -15.43 -9.09 -3.47 -0.390 -0.391 0.231 2.211 -0.34 -0.07 2.443 2.499 2.499 -0.02 -0.000 1.609 0.05 allungamento allungamento 2.443 2.211 0.231 7.919 0.32 allungamento allungamento 8.310 0.04 8.310 allungamento -0.01 -0.08 -0.92 -10.19 7.919 0.000 6.309 -0.056 0.344 0.670 1.773 2.098 6.608 7.612 -0.02 0.07 -2.52 allungamento 7.612 0.22 allungamento allungamento 2.098 1.777 -1.97 -11.52 1.307 -0.01 -0.10 -0.25 0.310 0.665 0.310 -15.43 -15.43 1.307 0.345 -0.25

Deformazione massima nel calcestruzzo Def(%) Tens -0.35 -15.43 0.000 0.000

Eurolink S.C.p.A. Pagina 296 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Legame costitutivo dell'acciaio ordinario Def(),a Tens,a 0.00 0.00 0.19 382.60

0.19	382.60			
Deformazioni	e Tens:	ioni nell	'Acciaio	Ordinario
z '	у'	d	Def(%)	Tens
1.610	-0.006	24.0	-0.28	-382.60
0.014	0.050	24.0	-0.34	-382.60
-0.340	0.259	24.0	-0.33	-382.60
-0.341	2.183	24.0	-0.07	-151.20
1.610	2.449	24.0	0.05	96.41
6.309	2.449	24.0	0.25	382.60
7.904	2.393	24.0	0.31	382.60
8.260	2.183	24.0 24.0	0.30	382.60
8.260 7.904	0.260	24.0	0.04	89.40 -0.19
6.309	-0.006	24.0	-0.08	-158.20
1.299	0.295	24.0	-0.25	-382.60
0.260	0.629	24.0	-0.25	-382.60
0.260	1.814	24.0	-0.10	-198.94
1.299	2.148	24.0	-0.01	-14.16
6.615	2.148	24.0	0.22	382.60
7.662	1.809	24.0	0.22	382.60
7.662	0.633	24.0	0.07	138.71
6.615	0.294	24.0	-0.02	-48.20
1.798	2.449	24.0	0.05	113.22
1.986	2.449	24.0	0.06	130.03
2.174	2.449	24.0	0.07	146.85
2.362	2.449	24.0	0.08	163.66
2.550 2.738	2.449	24.0 24.0	0.09	180.48
2.736	2.449	24.0	0.10	197.29 214.10
3.114	2.449	24.0	0.11	230.92
3.302	2.449	24.0	0.12	247.73
3.490	2.449	24.0	0.13	264.54
3.678	2.449	24.0	0.14	281.36
3.865	2.449	24.0	0.14	298.17
4.053	2.449	24.0	0.15	314.99
4.241	2.449	24.0	0.16	331.80
4.429	2.449	24.0	0.17	348.61
4.617	2.449	24.0 24.0	0.18	365.43
4.805 4.993	2.449	24.0	0.19 0.19	382.24 382.60
5.181	2.449	24.0	0.20	382.60
5.369	2.449	24.0	0.21	382.60
5.557	2.449	24.0	0.22	382.60
5.745	2.449	24.0	0.23	382.60
5.933	2.449	24.0	0.23	382.60
6.121	2.449	24.0	0.24	382.60
6.486	2.442	24.0	0.26	382.60
6.663	2.436	24.0	0.26	382.60
6.841 7.018	2.430	24.0 24.0	0.27 0.28	382.60 382.60
7.195	2.418	24.0	0.29	382.60
7.372	2.412	24.0	0.29	382.60
7.550	2.405	24.0	0.30	382.60
7.727	2.399	24.0	0.31	382.60
1.433	2.444	24.0	0.04	79.20
1.256	2.439	24.0	0.03	61.99
1.079	2.434	24.0	0.02	44.79
0.901	2.429	24.0	0.01	27.58
0.724	2.424	24.0	0.01	10.37
0.547	2.419	24.0	-0.00	-6.83
0.370 0.192	2.414	24.0 24.0	-0.01 -0.02	-24.04 -41.24
0.015	2.404	24.0	-0.03	-58.45
7.741	0.046	24.0	-0.01	-15.88
7.562	0.039	24.0	-0.02	-33.67
7.383	0.033	24.0	-0.02	-51.46
7.204	0.026	24.0	-0.03	-69.25
7.025	0.020	24.0	-0.04	-87.04
6.846	0.013	24.0	-0.05	-104.83
6.667	0.007	24.0	-0.06	-122.62
6.488	0.001	24.0	-0.07	-140.41
6.120	-0.006	24.0	-0.08	-175.06
5.932 5.743	-0.006 -0.006	24.0 24.0	-0.09 -0.10	-191.91 -208.76
5.555	-0.006	24.0	-0.10	-225.62
5.367	-0.006	24.0	-0.11	-242.47
5.178	-0.006	24.0	-0.13	-259.33
4.990	-0.006	24.0	-0.13	-276.18
4.801	-0.006	24.0	-0.14	-293.03
4.613	-0.006	24.0	-0.15	-309.89
4.425	-0.006	24.0	-0.16	-326.74
4.236	-0.006	24.0	-0.17	-343.59
4.048 3.859	-0.006 -0.006	24.0 24.0	-0.17 -0.18	-360.45 -377.30
5.055	0.000	44.0	0.10	311.30

Eurolink S.C.p.A. Pagina 297 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

3.671	-0.006	24.0	-0.19	-382.60
3.482	-0.006	24.0	-0.20	-382.60
3.294	-0.006	24.0	-0.21	-382.60
3.106	-0.006	24.0	-0.22	-382.60
2.917	-0.006	24.0	-0.22	-382.60
2.729	-0.006	24.0	-0.23	-382.60
2.540	-0.006	24.0	-0.24	-382.60
2.352	-0.006	24.0	-0.25	-382.60
2.164	-0.006	24.0	-0.26	-382.60
1.975	-0.006	24.0	-0.26	-382.60
1.787	-0.006	24.0	-0.27	-382.60
1.433	0.000	24.0	-0.29	-382.60
1.256	0.006	24.0	-0.29	-382.60
1.078	0.013	24.0	-0.30	-382.60
0.901	0.019	24.0	-0.31	-382.60
0.724	0.025	24.0	-0.32	-382.60
0.546	0.031	24.0	-0.32	-382.60
0.369	0.037	24.0	-0.33	-382.60
0.192		24.0	-0.34	-382.60
-0.074	0.102	24.0	-0.34	-382.60
-0.163	0.154	24.0	-0.34	-382.60
-0.252	0.207	24.0	-0.33	-382.60
-0.074	2.349	24.0	-0.04	-81.64
-0.163		24.0	-0.05	-104.83
-0.252	2.238	24.0	-0.06	-128.01
7.993	2.341	24.0	0.31	382.60
8.082	2.288	24.0	0.31	382.60
8.171	2.235	24.0	0.30	382.60
8.171	0.207	24.0	0.03	67.01
8.082	0.155	24.0	0.02	44.61
7.993	0.102	24.0	0.01	22.21
-0.341	1.991	24.0		-204.09
-0.341	1.798	24.0	-0.12	-256.98
-0.341	1.606	24.0	-0.15	-309.87
-0.341	1.414	24.0	-0.18	-362.77
-0.341 -0.340 -0.340	1.221 1.029 0.836	24.0 24.0 24.0	-0.20 -0.23	-382.60 -382.60 -382.60
-0.340 -0.340	0.644	24.0 24.0	-0.25 -0.28 -0.30	-382.60 -382.60
8.260	1.991	24.0	0.27	382.60
8.260	1.798	24.0	0.25	382.60
8.260	1.606	24.0	0.22	382.60
8.260 8.260	1.414 1.221	24.0 24.0 24.0	0.20 0.17 0.15	382.60 353.84
8.260 8.260 8.260	1.029 0.837 0.644	24.0	0.12	300.95 248.07 195.18
8.260	0.452	24.0	0.07	142.29
0.433	1.880	24.0	-0.08	-165.30
0.606	1.933	24.0	-0.07	-135.07
0.780 0.953	1.987	24.0 24.0	-0.05 -0.04	-104.85 -74.62 -44.39
1.126 0.435 0.611	2.094 0.575 0.522	24.0 24.0 24.0	-0.02 -0.25 -0.25	-382.60 -382.60
0.786	0.468	24.0	-0.25	-382.60
0.961	0.415	24.0	-0.25	-382.60
1.137	0.361	24.0	-0.25	-382.60
6.787 6.959	2.092	24.0 24.0	0.22	382.60 382.60
7.131	1.980	24.0	0.22	382.60
7.303	1.923	24.0	0.22	382.60
7.475	1.867	24.0	0.22	382.60
6.790	0.351	24.0	-0.01	-17.05
6.964	0.407	24.0	0.01	14.11
7.139	0.464	24.0	0.02	45.26
7.313	0.520	24.0	0.04	76.41
7.488	0.577	24.0		107.56
7.662	1.679	24.0	0.21	382.60
7.662	1.548	24.0	0.19	382.60
7.662	1.417	24.0	0.17	354.25
7.662	1.287	24.0	0.15	318.33
7.662	1.156	24.0	0.14	282.40
7.662	1.025	24.0	0.12	246.48
7.662	0.895	24.0	0.10	210.56
7.662	0.764	24.0		174.63
0.260	1.682	24.0	-0.11	-235.16
0.260	1.551	24.0	-0.13	-271.37
0.260	1.419	24.0	-0.15	-307.58
0.260	1.287	24.0	-0.17	-343.80
0.260	1.155	24.0	-0.18	-380.01
0.260	1.024	24.0	-0.20	-382.60
0.260	0.892	24.0	-0.22	-382.60
0.260	0.760	24.0	-0.24	-382.60
1.496	2.148	24.0	0.00	3.59
1.693	2.149	24.0	0.01	21.33
1.890	2.149	24.0	0.02	39.08
2.086	2.150	24.0	0.03	56.83

Eurolink S.C.p.A. Pagina 298 di 405

Data

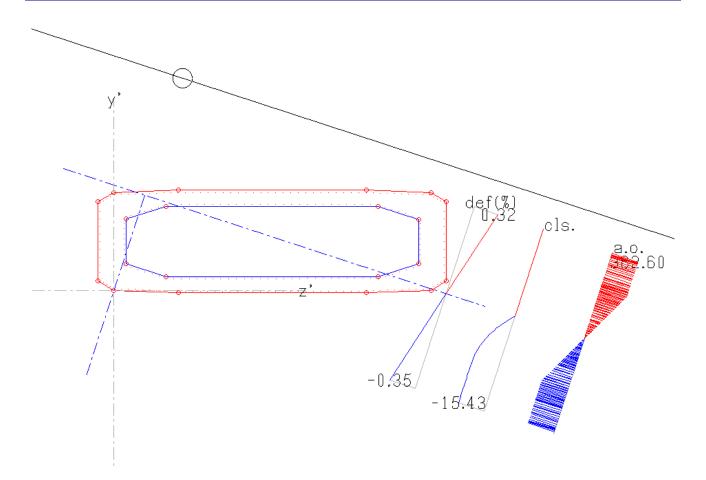
20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev SS0669_F0.doc F0

2.283	2.150	24.0	0.04	74.58
2.480	2.151	24.0	0.04	92.33
2.677	2.151	24.0	0.05	110.08
2.873	2.152	24.0	0.06	127.82
3.070	2.152	24.0	0.07	145.57
3.267	2.153	24.0	0.08	163.32
3.464	2.153	24.0		181.07
			0.09	
3.660	2.154	24.0	0.10	198.82
3.857	2.155	24.0	0.11	216.57
4.054	2.155	24.0	0.11	234.32
4.251	2.156	24.0	0.12	252.06
4.447	2.156	24.0	0.13	269.81
4.644	2.157	24.0	0.14	287.56
4.841	2.157	24.0	0.15	305.31
5.038	2.158	24.0	0.16	323.06
5.234	2.158	24.0	0.17	340.81
5.431	2.159	24.0	0.17	358.55
5.628	2.159	24.0	0.18	376.30
5.825	2.160	24.0	0.19	382.60
6.021	2.160	24.0	0.20	382.60
6.218	2.161	24.0	0.21	382.60
6.415	2.161	24.0	0.22	382.60
6.612	2.162	24.0	0.23	382.60
1.496	0.296	24.0	-0.25	-382.60
1.693	0.296	24.0	-0.24	-382.60
1.890	0.296	24.0	-0.24	-382.60
2.087	0.297	24.0	-0.22	-382.60
2.284	0.298	24.0	-0.21	-382.60
2.481	0.299	24.0	-0.20	-382.60
2.678	0.299	24.0	-0.19	-382.60
2.875	0.300	24.0	-0.19	-381.27
3.072	0.301	24.0	-0.18	-363.48
3.269	0.301	24.0	-0.17	-345.69
3.466	0.302	24.0	-0.16	-327.90
3.663	0.302	24.0	-0.15	-310.11
3.860	0.303	24.0	-0.14	-292.32
4.057	0.304	24.0	-0.13	-274.53
4.254	0.304	24.0	-0.12	-256.74
4.451	0.305	24.0	-0.12	-238.95
4.648	0.305	24.0	-0.11	-221.16
4.845	0.306	24.0	-0.10	-203.37
5.042	0.307	24.0	-0.09	-185.57
5.239	0.307	24.0	-0.08	-167.78
5.436	0.308	24.0	-0.07	-149.99
5.633	0.308	24.0	-0.06	-132.20
5.830	0.309	24.0	-0.06	-114.41
6.027	0.310	24.0	-0.05	-96.62
6.224	0.310	24.0	-0.04	-78.83
6.421	0.311	24.0	-0.03	-61.04
6.618	0.312	24.0	-0.02	-43.25
_ ,.				
	acciaio oro			
z'	У'	d	Def(%)	Tens
7.904	2.393	24.0	0.31	382.60

Eurolink S.C.p.A. Pagina 299 di 405



Data

20/06/2011

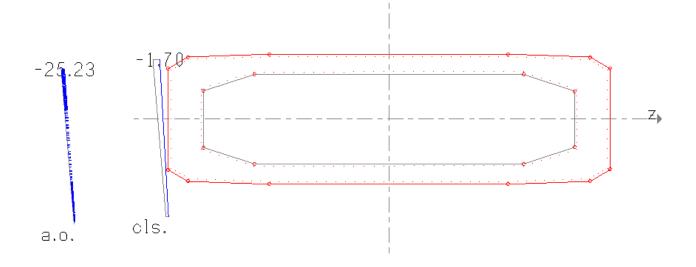
RELAZIONE DI CALCOLO

Codice documento Rev \$\$0669_F0.doc F0

Eurolink S.C.p.A. Pagina 300 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc


Rev F0 Data 20/06/2011

Con riferimento ora alle sollecitazioni al piede della pila si considerano la combinazione allo SLE QUASI PERMANENTE.

ARMATURA distribuita φ24/20

SOLLECITAZIONI Nsd = 12.905 KN

Msd long = 3.447 kNm Msd trasv = -2.705 kNm

TENSIONI cls $\sigma_c = (N/mm^2)1,70 < 0,45 f_{ck} = 0,45x33,20 = 14,94$ ferro $\sigma_f = (N/mm^2)25,23 < 0,80 f_{yk} = 0,80x450 = 360$

Eurolink S.C.p.A. Pagina 301 di 405

9.6 ANALISI DELLA PILA P3r

La pila P3-r è costituita da un plinto di fondazione a base a parallelogramma di dimensioni 10,52 x 7,50 m, di spessore 2,50 m. L'architettura della pila è definita da un singolo fusto di forma poligonale cava di diametro Ø2,7 m, alto 9,80 m. In sommità del fusto è individuabile un pulvino caratterizzato da uno sviluppo verticale di 4,20 m. Il collegamento tra impalcato ed opera di sostegno è affidato integralmente a due appoggi, collocati con un interasse reciproco di 4,50m.

Di seguito viene presentata una schematizzazione grafica dell'elemento strutturale appena citato.

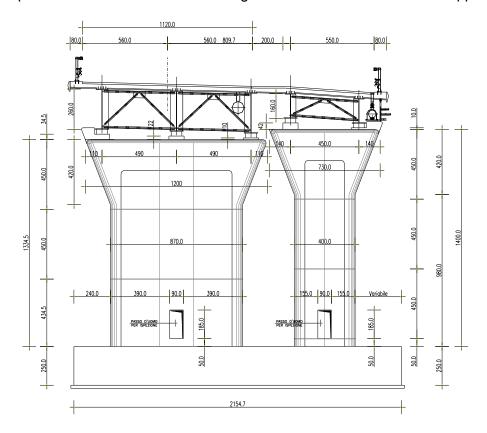


Figura 9.1 – Vista frontale pila.

Si riporta di seguito un tabulato riassuntivo della geometria delle strutture.

Eurolink S.C.p.A. Pagina 302 di 405

RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

	Altezza impalcato			1,90	mt
	Larghezza pavimentato			6,50	mt
	Baricentro impalcato			0,00	mt
	Campata			25,70	mt
	Altezza baggiolo+appoggio			0,50	mt
0	Peso pulvino			1.470,00	kN
FUSTO	Altezza pulvino	4,20	mt		
5	Altezza fusto			9,80	mt
	Altezza totale			14,00	mt
	Numero fusti			1,00	
	Interasse fusti				mt
	Base / Diametro sezione	D		2,70	mt
	Altezza sezione			-	mt
	Peso fusto + pulvino			2.872,50	kN
	Eccentricità Fusti-Fond-trasversale			0,00	mt
	Base plinto			10,50	mt
Ž	Lunghezza plinto			7,50	mt
ĭ	Altezza plinto			2,50	mt
FONDAZIONE	Altezza terreno su plinto			2,80	mt
Ž	Peso Terreno su plinto			3.391,97	kN
ĭ	Peso plinto			4.921,88	kN
	Totale plinto + Terreno			8.313,85	kN

Modulo elastico cls	360.000 daN/cm ²
Inerzia longitudinale	4,09 m ⁴
Inerzia trasversale	10,51 m⁴

9.6.1 ANALISI DEI CARICHI

La pila è soggetta dalle sollecitazioni derivanti dall'impalcato riportati precedentemente. Di seguito si riassumono i carichi globali gravanti:

		N	H long	H trasv	M long	M trasv
2		(kN)	(kN)	(kN)	(kN m)	(kN m)
DALL'IMPALCATO	Peso strutturale impalcato	2.084	0	0	0	-558
AL.	Permanenti	696	0	0	0	-365
₽ A	Ritiro	0	0	0	0	0
5.	Mezzi schema centrato	2.128	0	0	0	2.124
AL	Mezzi schema eccentrico	1.404	0	0	0	2.480
	Folla schema centrato	0	0	0	0	0
SSE	Folla schema eccentrica	0	0	0	0	0
4E	Frenamento	0	125	0	0	0
TRASMESSE	Resistenze passive vincolo	0	84	0	0	0
₽.	Vento: impalcato scarico	404	0	186	0	945
	Vento: impalcato carico	344	0	339	0	1.638
Ō	Cedimento	0	0	0	0	0
AZIONI	Azione centrifuga	0	0	240	0	0
1 [Svio	0	0	200	0	0
	Sisma	1.047	513	513	0	308
	Eccentricità dei carichi verticali (mt)	0.01	•	•		

Eccentricità accidentale 0,05
Azione inerziale sismica sul fusto Flong. = 211

Ftrasv.= 333 Fvert.=

305

Eurolink S.C.p.A. Pagina 303 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.6.1.1 Combinazioni di carico statiche

Si considerano le combinazioni di carico statiche allo SLU previste dalla normativa vigente:

| AZIONI SLU EQU | AZIONI SLU STR | AZIONI SLU GEO |

		EO	J G	3LU	II S	ON	AZI	۱,	ΓR	S	BLU	II S	ON	AZI	١,	QU	ΙE	3LU	II S	ON	AZI	
PRINCIPALE		Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.
P.p.	% 61	1,00	1,00	1,00	1,00	1,8	1,8	1,00	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,10	1,10	1,10	1,10	1,10	1,10	1,10
Perm.) (2)	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Attrito	.₩	1,08	1,00	1,00	1,00	1,00	1,00	1,00	1,8	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,8	1,00	1,8	1,8	1,0
8) (22	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Temperatura	.₩	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60
ratura	द्ध	1,8	1,00	1,00	1,00	1,00	1,00	1,00	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
Vento	.₩	1,00	0,60	0,60	0,60	0,60	0,60	0,60	1,00	0,60	0,60	0,60	0,60	0,60	0,60	1,00	0,60	0,60	0,60	0,60	0,60	0,60
ੱ 	ಶ್	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Acci	æ		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	, 57,0
Accident.	ð		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
_	Ψ°		0,50	0,50	0,00	0,00	0,00	0,00		0,50	0,50	0,00	0,00	0,00	0,00		0,50	0,50	0,00	0,0	0,00	0,0
Folla	ŏ		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
Frer	Ψ,		0,00	0,00	1,00	1,00	0,00	0,00		0,00	0,00	1,00	1,00	0,00	0,00		0,00	0,00	1,00	1,00	0,00	 0, 8
Frenamento	 ಶ್		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
<u></u>	Ψ°	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Ritiro	₩. 	1,00	1,00	1,8	1,00	1,8	1,8	1,00	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
_		-	-	0,00		-	<u> </u>	\vdash		H	-		-	1,00	\vdash		⊢	-	H	0,00	-	1,0
ntṛifuga	₩. X		-	1,15		ļ	ļ	ļ			ļ		ļ	1,35			ļ		ļ	1,35	ļ	1,35

Eurolink S.C.p.A. Pagina 304 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

9.6.1.2 Combinazioni di carico Sismiche

Secondo le "Norme Tecniche 2008" le verifiche agli stati limite ultimi o di esercizio devono essere effettuate per la seguente combinazione dell'azione sismica con le altre azioni:

$$G1 + G2 + P + E + \sum_{i} 0.2 \cdot Q_{kj}$$

dove G1 sono i pesi propri, G2 sono i carichi permanenti, P è la precompressione, E è l'azione sismica e Q_{ki} sono i carichi accidentali.

In particolare si sono considerate le seguenti combinazioni sismiche:

Combinazione	P.p.	Perm.	Accid.	Sisma X	Sisma Y	Sisma Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30
SISMA Z N+	1,00	1,00	0,20	0,30	0,30	1,00
SISMA Y N+	1,00	1,00	0,20	0,30	1,00	0,30

9.6.2 MODELLO DI CALCOLO

9.6.2.1 Descrizione del modello di calcolo

Alla luce di quanto scaturito da valutazioni preliminari di carattere statico, condotte sulla tipologia strutturale ivi considerata, è stato possibile individuare la modellazione più performante, che meglio simulasse il naturale comportamento in opera delle pile.

Si è quindi scelta una particolare schematizzazione a mensola incastrata alla base, la cui applicabilità è supportata dall'indiscutibile rilevanza che risiede nella valutazione dei momenti sollecitanti alla base del fusto.

Eurolink S.C.p.A. Pagina 305 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.6.3 CALCOLO DELLE SOLLECITAZIONI

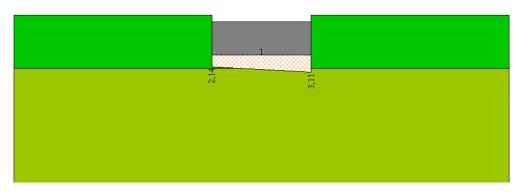
A	ZIONI ALLA BASE						
	Combinazioni		N (kN)	Vlong (kN)	Vtrasv (kN)	Mlong (kNm)	Mtrasv (kNm)
GEO	15	Comb 1	14.700	84,00	241,80	1.458	4.307
	16	Comb 2	16.937	84,00	264,42	1.490	7.184
3,	17	Comb 3	16.058	84,00	264,42	1.479	7.592
AZIONI SLU	18	Comb 4	16.279	227,75	264,42	4.207	6.573
<u>6</u>	19	Comb 5	15.654	227,75	264,42	4.196	6.879
7	20	Comb 6	16.279	84,00	494,42	1.490	11.058
<u> </u>	21	Comb 7	15.654	84,00	494,42	1.479	11.364
STR	22	Comb 8	19.565	113,40	279,00	1.966	4.860
	23	Comb 9	22.195	113,40	_ 305,10	2.009	8.228
፲ [24	Comb 10	21.164	113,40	305,10	1.995	8.708
ijĹ	25	Comb 11	21.423	282,15	_ 305,10	5.199	7.511
AZIONI SLU	26	Comb 12	20.690	282,15	305,10	5.184	7.871
7	27	Comb 13	21.423	113,40	575,10	2.009	12.776
	28	Comb 14	20.690	113,40	575,10	1.995	13.136
쥖[29	Comb 15	16.247	92,40	279,00	1.604	5.000
<u> </u>	30	Comb 16	18.878	92,40	305,10	1.647	8.368
딣[31	Comb 17	17.846	92,40	305,10	1.633	8.848
ijĹ	32	Comb 18	18.106	261,15	305,10	4.837	7.651
AZIONI SLU EQU	33	Comb 19	17.373	261,15	305,10	4.822	8.011
2 [34	Comb 20	18.106	92,40	575,10	1.647	12.916
	35	Comb 21	13.641	92,40	575,10	1.633	11.838
	Combinazioni		N (kN)	Vlong (kN)	Vtrasv (kN)	Mlong (kNm)	Mtrasv (kNm)
¥	36	SISMA long	14.798	808,00	253,80	12.154	3.160
SISMA	37	SISMA trasv	14.798	242,40	846,00	3.646	11.695

SPOSTAMENTI IN TESTA PILA

SLE	H (kN)	δ (mm)
Frenamento	125	0,777
Resistenze passive vincolo	84	0,522

SLU	H (kN)	δ (mm)
Sisma	513	3,187

Eurolink S.C.p.A. Pagina 306 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Il momento flettente e il taglio sono calcolati rispetto al filo del fusto; si considera la situazione più gravosa corrispondente tra le combinazioni STR alla combinazione 4. Si riporta di seguito la pressione sul terreno lungo l'asse longitudinale della pila:

Depositi fluviali $\begin{array}{lll} \text{Depositi fluviali} \\ \text{y=}2000 \text{ kg/mc} & \text{ys=}2350 \text{ kg/mc} \\ \text{\varphi=}38.0 & \text{\delta=}38.0 \\ \text{c=}0,00 \text{ kg/cmq} & \text{ca=}0,00 \text{ kg/cmq} \end{array}$

Ghiaie di messina y=1900 kg/mc ys=2300 kg/mc \$\phi=38.0 \circ\$ \$\delta=38.0 \circ\$ \$c=0,00 kg/cmq ca=0,00 kg/cmq

Le azioni sollecitanti sono calcolate rispetto al filo del fusto:

$$\begin{split} M_{Sd} = & \left[\left(2,\!79 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot \frac{2,\!475^{\,2}}{2} + \left(3,\!11 - 2,\!79 \right) \cdot 10 \cdot \frac{2,\!475^{\,2}}{3} \right] \cdot 10 = 728 \text{ kNm} \\ V_{Sd} = & \left[\left(2,\!79 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot 2,\!475 + \left(3,\!11 - 2,\!79 \right) \cdot 10 \cdot \frac{2,\!475}{2} \right] \cdot 10 = 575 \text{ kN} \end{split}$$

Eurolink S.C.p.A. Pagina 307 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

9.6.4 VERIFICA DELLE SEZIONI

9.6.4.1 Plinto di fondazione

 $M_{Sd} = 728 \text{ kNm}$

VERIFICA A FLESSIONE

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 250

ARMATURA compressa \$\phi 26/10\$

SOLLECITAZIONI Msd = 728 kNm

INDICI DI RESISTENZA Mrd = 5.041 kNm

IR = 6,92

VERIFICA A TAGLIO

 $T_{Sd} = 575 \text{ kN}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (Vrdu1): 67153.563 Indice di resistenza: 0.86

Armatura trasversale per unita' di

lunghezza (Asw, cm²/m): 9.77

Staffe a 4 braccia

(in accordo con i minimi di norma per fondazioni): ø20/30cm

Eurolink S.C.p.A. Pagina 308 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev FO

20/06/2011

Data

9.6.4.2 **Fusto**

-114.4

-107.4 -98.7

-193 8 -200.0 0.03

0.04

allungamento

allungamento allungamento

Con riferimento alle sollecitazioni al piede della pila si considerano le combianazioni allo SLU STR.

Verifica a pressoflessione - Nmax

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd =10.867kN Msd long = 1.725 kNm Msd trasv = 7.520 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

```
Nome archivio di lavoro
Intestazione del lavoro
                                               Sezione1
                                               comb9
 Unità misura Forza
                                               kN
  Unità misura Lunghezza
                                              N/mm
  Tensioni
 Diametro armature
                                              mm
mm²
I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità.
Il primo vertice è quello più in basso, a sinistra.
Parametri di calcolo
Normativa: NTC-2008
Versione: 14 Gennaio 2008
Rck = 300 fyk = 4580 fykp = 16300
Sollecitazioni agenti
                                 -10867.000
172500.000
752000.000
Sforzo normale N = Momento flettente Mz =
Momento flettente My =
Sollecitazioni resistenti di calcolo
Sforzo normale N = -647710.874
Momento flettente Mz = 10285213.360
Momento flettente My = 44819139.387
Indice di resistenza s.l.u: 0.02
Campo di rottura della sezione: 4
Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al
calcestruzzo
N,min = -789735
inferiore ad N resistente = -647711
Asse neutro
                            ang
107.7
   -186.17
                  0.00
Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -141.09
Deformazioni e tensioni nel calcestruzzo
                           Def (%) Tens
-0.16 -134.25
-0.17 -137.29
-0.25 -141.09
-0.20 -141.09
-0.15 -133.70
       z' y'
40.1 -126.4
     40.1
130.2
130.2
                 -84.3
-55.0
                  55.0
87.5
87.5
      30.3
                  55.5
-55.5
                              -0.06
-0.03
    -130.0
                                         -73.81
                                        -41.86
    -130.0
                              -0.10 -103.21
-0.08 -94.26
      -44 9
                  -82.8
     -165.8
                -121.6
-119.2
                              0.02
                                        allungamento
    -176.2
-185.7
                                        allungamento
```

Eurolink S.C.p.A. Pagina 309 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

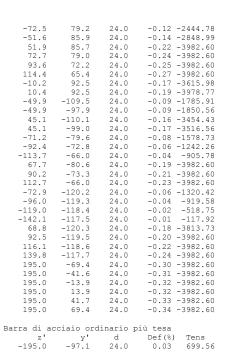
-200.0	98.8	-0.01	-20.06
-194.1	107.1	-0.02	-29.17
-186.6	113.8	-0.03	-39.17
-177.7	118.7	-0.04	-49.39
-167.9	121.4	-0.05	-59.24
-0.0	127.5	-0.19	-140.74
165.8	121.7	-0.33	-141.09
176.2	119.2	-0.34	-141.09
185.7	114.4	-0.34	-141.09
193.8	107.5	-0.35	-141.09
200.0	98.8	-0.35	-141.09
200.0	-98.8	-0.30	-141.09
193.5	-107.8	-0.29	-141.09
185.0	-114.9	-0.28	-141.09
174.9	-119.7	-0.27	-141.09
164.0	-121.8	-0.26	-141.09
0.0	0.0	-0.16	-134.27
0.0	0.0	-0.16	-134.27
0.0	0.0	-0.16	-134.27
0.0	0.0	-0.16	-134.27
eformazione	massima	nel cal	cestruzza

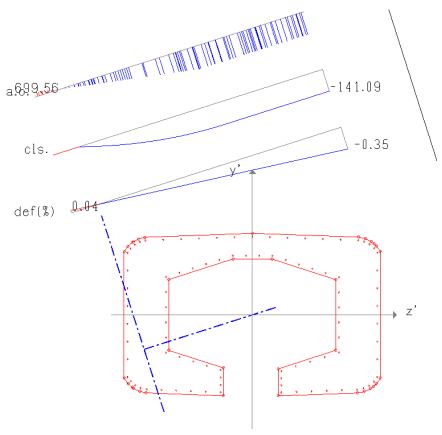
Deformazione massima nel calcestruzzo z' y' Def(%) Tens 200.0 98.8 -0.35 -141.09

Legame costitutivo dell'acciaio ordinario Def(),a Tens,a 0.00 0.00 0.19 3982.60

Deformazioni e Tensioni nell'Acciaio Ordinario Def(%) Tens -0.16 -3392.31 -0.17 -3578.68 -0.25 -3982.60 y' -121.2 -87.9 -58.7 58.7 92.5 z' d 24.0 45.1 45.1 135.2 24.0 -0.25 -3982.60 -0.29 -3982.60 -0.21 -3982.60 -0.15 -3253.20 -0.06 -1232.15 -0.03 -569.30 -0.09 -1915.21 -0.08 -1721.25 135.2 24.0 92.5 59.2 -59.1 -30.8 24.0 24.0 -135.0 -135.0 -86.4 -121.0 -49.9 24.0 -165.1 -116.6 24.0 0.01 282.92 -174.5 -182.9 -114.5 -110.2 24.0 0.02 435.00 559.54 -190.1 -195.0 -104.0 -97.1 24.0 24.0 0.03 651.39 699.56 -195.0 -190.4 -183.7 97.2 103.7 24.0 24.0 -0.02 -0.02 -389.13 -506.58 -658.21 -0.02 -306.36 -0.03 -658.21 -0.04 -821.17 -0.05 -986.75 -0.19 -3962.81 -0.33 -3982.60 109.7 24.0 -175.8 -167.1 114.0 116.4 122.5 116.7 24.0 24.0 -0.0 174.5 114.5 24.0 -0.33 -3982.60 -0.33 -3982.60 -0.34 -3982.60 -0.34 -3982.60 -0.35 -3982.60 -0.29 -3982.60 190.1 104.1 24.0 195.0 195.0 97.2 -97.2 24.0 -0.29 -3982.60 -0.29 -3982.60 -0.28 -3982.60 -0.27 -3982.60 -0.26 -3982.60 -0.07 -1482.76 -0.09 -1978.77 -0.12 -2474.78 189.8 -104.4 24.0 -110.6 173.3 -114.9 24.0 163.5 -116.8 24.0 117.4 118.4 119.5 -139.3 24.0 -111.4 -83.6 24.0 -55.7 -27.9 120.5 -0.14 -2970.79 -0.17 -3466.80 24.0 27.5 -0.21 -3982.60 121.6 24.0 120.6 119.6 24.0 -0.23 -3982.60 -0.26 -3982.60 82.6 110.1 137.6 118.6 117.6 24.0 -0.28 -3982.60 -0.30 -3982.60 -195.0 -69.4 24.0 0.03 544.04 -195.0 -13.8 24.0 0.01 232.98 77.46 -78.07 -195.0 13.9 24.0 0.00 41.7 -0.00 -0.01 -0.03 -195.0 24.0 69.4 -35.5 24.0 -233.60 -701.87 -195.0 -834.44 -967.01 -11.8 11.9 -0.04 -0.05 -135.0 24.0 -0.05 -1099.58 -135.0 35.5 24.0 -0.03 -1099.36 -0.26 -3982.60 -0.27 -3982.60 -0.27 -3982.60 -0.28 -3982.60 -35.2 -11.7 24.0 11.7 35.2 135.2 24.0 -0.08 -1636.36 -114.2 65.9 24.0

Eurolink S.C.p.A. Pagina 310 di 405





RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

Eurolink S.C.p.A. Pagina 311 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669 F0 doc

4.218 kNm

Rev F0

20/06/2011

Data

Verifica a pressoflessione - Nmin

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd =8.237 kN Msd long = 1.682 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

Nome archivio di lavoro Sezione1 Intestazione del lavoro Unità misura Forza Unità misura Lunghezza Tensioni N/mm Diametro armature mm

I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità. Il primo vertice è quello più in basso, a sinistra.

Msd trasv =

Parametri di calcolo Normativa: NTC-2008 Versione: 14 Gennaio 2008 Rck = 300 fyk = 4580

fykp = 16300

Sollecitazioni agenti Sforzo normale N = Momento flettente Mz = Momento flettente My = -8237.000 168200.000 421800.000

Sollecitazioni resistenti di calcolo Sforzo normale N = -701146 388 Momento flettente Mz = -701146.388Momento flettente My = 35899614.233

Indice di resistenza s.l.u: 0.01

Campo di rottura della sezione: 4

Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al calcestruzzo N,min = -789735 inferiore ad N resistente = -701146

Asse neutro

y' ang 0.00 124.2 -225.24

Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -141.09

Deformazioni e tensioni nel calcestruzzo z' y' Def(%) Tens 40.1 -126.4 -0.13 -122.54 40.1 -84.3 -0.15 -131.49 130.2 -55.0 -0.23 -141.09 130.2 55.0 -0.28 -141.09 40.1 130.2 130.2 -0.22 -141.09 -0.18 -139.83 30.3 -30.0 87.5 87.5 55.5 -55.5 -0.09 -101.87 -130.0 -130.0 -44.9 -0.04 -0.09 -51.74 -96.98 -82.8 -44.9 -165.8 -126.2 -121.6 -0.07 0.02 -78.83 allungamento 0.02 0.03 0.03 -119.2 -176.2 allungamento -185.7 -193.8 -114.4 -107.4 allungamento allungamento -200.0 -200.0 -98.7 0.03 allungamento 98.8 -0.07 -84.99 -92.41 -99.33 107.1 -0.07 -0.08 -194.1 -186.6 -177.7 118.7 -0.09 -167.9 -0.10 -105.42 -0.22 -141.09 -0.34 -141.09 -0.0 165.8

Eurolink S.C.p.A. Pagina 312 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

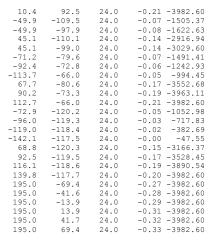
176.2	119.2	-0.34	-141.09
185.7	114.4	-0.35	-141.09
193.8	107.5	-0.35	-141.09
200.0	98.8	-0.35	-141.09
200.0	-98.8	-0.25	-141.09
193.5	-107.8	-0.25	-141.09
185.0	-114.9	-0.24	-141.09
174.9	-119.7	-0.23	-141.09
164.0	-121.8	-0.22	-141.09
0.0	0.0	-0.16	-135.47
0.0	0.0	-0.16	-135.47
0.0	0.0	-0.16	-135.47
0 0	0.0	-0.16	-135 47

Deformazione massima nel calcestruzzo z' y' Def(%) Tens 200.0 98.8 -0.35 -141.09

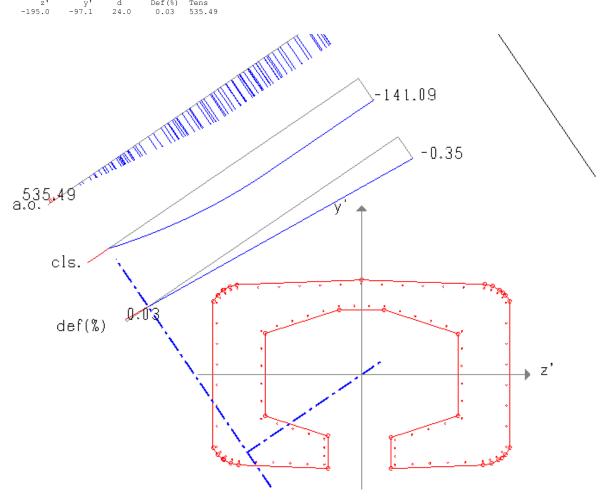
Legame costitutivo dell'acciaio ordinario
Def(),a Tens,a
0.00 0.00
0.19 3982.60

0.19	3982.60		
Deformazio	ni e Tensi	oni nell	'Acciaio Ordinari
z'	y'	d d	Def(%) Tens
45.1	-121.2	24.0	-0.13 -2804.29
45.1	-87.9	24.0	-0.15 -3142.25
135.2	-58.7	24.0	-0.23 -3982.60
135.2	58.7	24.0	-0.28 -3982.60
31.1	92.5	24.0	-0.23 -3982.60
-30.8	92.5	24.0	-0.18 -3842.11
-135.0	59.2	24.0	-0.09 -1947.95
-135.0	-59.1	24.0	-0.04 -745.97
-49.9	-86.4	24.0	-0.08 -1739.89
-49.9	-121.0	24.0	-0.07 -1388.12
-165.1	-116.6	24.0	0.01 287.59
-174.5	-114.5	24.0	0.02 404.77
-182.9	-110.2	24.0	0.02 487.25
-190.1	-104.0	24.0	0.03 531.82
-195.0	-97.1	24.0	0.03 535.49
-195.0	97.2	24.0	-0.07 -1438.68
-190.4	103.7	24.0	-0.07 -1573.47
-183.7	109.7	24.0	-0.08 -1734.36
-175.8	114.0	24.0	-0.09 -1895.82
-167.1	116.4	24.0	-0.10 -2049.23
-0.0	122.5	24.0	-0.22 -3982.60
165.1	116.7	24.0	-0.33 -3982.60
174.5	114.5	24.0	-0.34 -3982.60
182.9	110.2	24.0	-0.34 -3982.60
190.1	104.1	24.0	-0.35 -3982.60
195.0	97.2	24.0	-0.35 -3982.60
195.0	-97.2	24.0	-0.25 -3982.60
189.8	-104.4	24.0	-0.24 -3982.60
182.2	-110.6	24.0	-0.24 -3982.60
173.3	-114.9	24.0	-0.23 -3982.60
163.5 -139.3	-116.8	24.0	-0.22 -3982.60 -0.12 -2475.37
-139.3	117.4 118.4	24.0 24.0	-0.12 -2475.37 -0.14 -2901.51
-83.6	119.5	24.0	-0.14 -2301.31
-55.7	120.5	24.0	-0.18 -3753.78
-27.9	121.5	24.0	-0.20 -3982.60
27.5	121.6	24.0	-0.24 -3982.60
55.0	120.6	24.0	-0.26 -3982.60
82.6	119.6	24.0	-0.28 -3982.60
110.1	118.6	24.0	-0.30 -3982.60
137.6	117.6	24.0	-0.31 -3982.60
-195.0	-69.4	24.0	0.01 253.47
-195.0	-41.6	24.0	-0.00 -28.56
-195.0	-13.8	24.0	-0.01 -310.58
-195.0	13.9	24.0	-0.03 -592.61
-195.0	41.7	24.0	-0.04 -874.63
-195.0	69.4	24.0	-0.06 -1156.66
-135.0	-35.5	24.0	-0.05 -986.37
-135.0	-11.8	24.0	-0.06 -1226.76
-135.0	11.9	24.0	-0.07 -1467.16
-135.0	35.5	24.0	-0.08 -1707.55
135.2	-35.2	24.0	-0.24 -3982.60
135.2	-11.7	24.0	-0.25 -3982.60
135.2	11.7	24.0	-0.26 -3982.60
135.2	35.2	24.0	-0.27 -3982.60
-114.2	65.9	24.0	-0.11 -2326.78
-93.3	72.5	24.0	-0.13 -2705.61
-72.5	79.2	24.0	-0.15 -3084.45
-51.6	85.9	24.0	-0.16 -3463.28
51.9 72.7	85.7	24.0	-0.24 -3982.60
	79.0 72.2	24.0	-0.25 -3982.60
93.6 114.4		24.0 24.0	-0.26 -3982.60 -0.27 -3982.60
-10.2	65.4 92.5	24.0	-0.27 -3982.60
10.2	24.0	44.0	0.20 -3502.00

Eurolink S.C.p.A. Pagina 313 di 405



RELAZIONE DI CALCOLO


Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

Barra di acciaio ordinario più tesa z' y' d Def(% -195.0 -97.1 24.0 0.03 Def(%) Tens 535.49

Eurolink S.C.p.A. Pagina 314 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669 F0 doc

Rev FO

20/06/2011

Data

Verifica a pressoflessione –Mmax

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd =10.095 KN Msd long = 1.725 kNm

Msd trasv = 11.393 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

Nome archivio di lavoro Sezione1 Intestazione del lavoro Unità misura Forza Unità misura Lunghezza cm Tensioni N/mm Diametro armature mm

I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità. Il primo vertice è quello più in basso, a sinistra.

Parametri di calcolo Normativa: NTC-2008 Versione: 14 Gennaio 2008 Rck = 300 fyk = 4580

fykp = 16300

Sollecitazioni agenti Sforzo normale N = -10095.000 Momento flettente Mz = 172500.000 Momento flettente My = 1139300.000

Sollecitazioni resistenti di calcolo Sforzo normale N = -523936.053Momento flettente Mz = 8948005.870Momento flettente My = 59132327.269

Indice di resistenza s.l.u: 0.02

Campo di rottura della sezione: 4

Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al

calcestruzzo N,min = -789735 inferiore ad N resistente = -523936

Asse neutro

ang 0.00 106.6 -115.95

Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -141.09

Deformazioni e tensioni nel calcestruzzo Def(%) Tens
-0.12 -118.58
-0.13 -125.16
-0.23 -141.09
-0.27 -141.09 z' y' 40.1 -126.4 40.1 130.2 130.2 -84.3 -55.0 55.0 30.3 -30.0 87.5 87.5 -0.17 -138.81 -0.11 -114.69 55.5 -55.5 -130.0 -0.00 -3.50 -130.0 -44.9 0.03 -82.8 -58.65 -44.9 -165.8 -126.2 -121.6 -0.03 0.09 -43.91 allungamento -119.2 -176.2 0.10 allungamento -185.7 -193.8 0.11 -114.4 -107.4 allungamento allungamento -200.0 -200.0 0.11 -98.7 allungamento 98.8 allungamento 107.1 0.05 allungamento allungamento -194.1 -186.6 -177.7 allungamento allungamento 118.7 0.03 -167.9 127.5 121.7 -0.16 -134.24 -0.32 -141.09 -0.0 165.8

Eurolink S.C.p.A. Pagina 315 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

176.2	119.2	-0.33	-141.09
185.7	114.4	-0.34	-141.09
193.8	107.5	-0.35	-141.09
200.0	98.8	-0.35	-141.09
200.0	-98.8	-0.29	-141.09
193.5	-107.8	-0.28	-141.09
185.0	-114.9	-0.27	-141.09
174.9	-119.7	-0.26	-141.09
164.0	-121.8	-0.25	-141.09
0.0	0.0	-0.12	-117.10
0.0	0.0	-0.12	-117.10
0.0	0.0	-0.12	-117.10
0.0	0.0	-0.12	-117.10

Deformazione massima nel calcestruzzo z' y' Def(%) Tens 200.0 98.8 -0.35 -141.09

Legame costitutivo dell'acciaio ordinario Def(),a Tens,a 0.00 0.00 0.19 3982.60

Deformazioni e Tensioni nell'Acciaio Ordinario Def(%) Tens -0.13 -2661.78 -0.14 -2872.33 -0.24 -3982.60 y' -121.2 d 24.0 z' 45.1 -87.9 -58.7 58.7 92.5 45.1 135.2 24.0 -0.27 -3982.60 135.2 24.0 -0.18 -3714.53 -0.11 -2398.33 92.5 59.2 24.0 -30.8 -135.0 24.0 0.00 30.96 779.87 0.04 -0.04 -0.03 -135.0 -59.1 24.0 -49.9 -49.9 -86.4 -121.0 24.0 -859.95 -640.81 -165.1 -174.5 -116.6 -114.5 1784.89 24.0 0.08 0.10 0.11 0.11 -182.9 -110.2 24.0 2122.30 -104.0 -97.1 24.0 2236.12 -190.1 -195.0 97.2 103.7 0.05 1067.41 928.27 -195.0 24.0 -190.4 109.7 114.0 0.04 0.03 0.02 -183.7 24.0 747.55 24.0 -167.1 116.4 353.23 122.5 116.7 -0.15 -3243.14 -0.32 -3982.60 -0.0 24.0 165.1 24.0 174.5 182.9 114.5 110.2 24.0 24.0 -0.33 -3982.60 -0.34 -3982.60 -0.34 -3982.60 -0.34 -3982.60 -0.29 -3982.60 104.1 97.2 -97.2 190.1 24.0 195.0 195.0 24.0 189.8 182.2 -104.4 -110.6 24.0 -0.28 -3982.60 -0.27 -3982.60 -0.26 -3982.60 173.3 -114.9 24.0 117.4 118.4 119.5 -0.01 -246.17 -0.04 -845.56 -0.07 -1444.96 139.3 24.0 24.0 -111.4 -83.6 -0.10 -2044.35 -0.13 -2643.74 -0.18 -3822.80 -0.21 -3982.60 -55.7 -27.9 120.5 121.5 24 0 27.5 121.6 24.0 55.0 120.6 -0.24 -3982.60 82.6 119.6 24.0 110.1 137.6 118.6 117.6 24.0 -0.26 -3982.60 -0.29 -3982.60 -69.4 -41.6 -13.8 0.10 -195.0 24.0 2121.72 -195.0 24.0 0.08 1770.28 13.9 24.0 0.08 -195.0 1418.85 69.4 -35.5 24.0 0.06 1243.13 -195.0 -135.0 -135.0 -11.8 24.0 0.02 480.30 24.0 -135.0 35.5 0.01 180.74 135.2 -35.2 24.0 -0.24 -3982.60 0.24 -3982.60 -0.25 -3982.60 -0.26 -3982.60 -0.27 -3982.60 -0.02 -454.90 -0.04 -940.76 -11.7 11.7 35.2 135.2 24.0 24.0 135.2 65.9 72.5 114.2 24.0 -0.07 -1426.61 -72.5 79.2 24.0 -51.6 51.9 85.9 85.7 24.0 -0.09 -1912.47 -0.20 -3982.60 79.0 72.2 -0.22 -3982.60 -0.23 -3982.60 72.7 24.0 114.4 24.0 -0.25 -3982.60

Eurolink S.C.p.A. Pagina 316 di 405

RELAZIONE DI CALCOLO

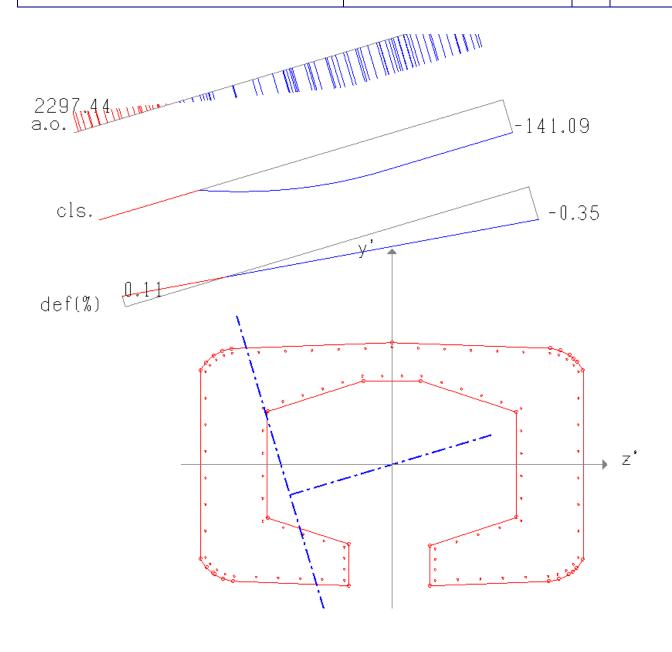
Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

10.4	92.5	24.0	-0.16 -3275.80
-49.9	-109.5	24.0	-0.03 -713.86
-49.9	-97.9	24.0	-0.04 -786.90
45.1	-110.1	24.0	-0.13 -2731.96
45.1	-99.0	24.0	-0.13 -2802.15
-71.2	-79.6	24.0	-0.02 -450.00
-92.4	-72.8	24.0	-0.00 -40.04
-113.7	-66.0	24.0	0.02 369.91
67.7	-80.6	24.0	-0.16 -3397.98
90.2	-73.3	24.0	-0.19 -3923.63
112.7	-66.0	24.0	-0.21 -3982.60
-72.9	-120.2	24.0	-0.01 -155.67
-96.0	-119.3	24.0	0.02 329.47
-119.0	-118.4	24.0	0.04 814.61
-142.1	-117.5	24.0	0.06 1299.75
68.8	-120.3	24.0	-0.15 -3171.03
92.5	-119.5	24.0	-0.18 -3680.28
116.1	-118.6	24.0	-0.20 -3982.60
139.8	-117.7	24.0	-0.22 -3982.60
195.0	-69.4	24.0	-0.29 -3982.60
195.0	-41.6	24.0	-0.30 -3982.60
195.0	-13.9	24.0	-0.31 -3982.60
195.0	13.9	24.0	-0.32 -3982.60
195.0	41.7	24.0	-0.33 -3982.60
195 0	69 4	24 0	-0 34 -3982 60

Barra di acciaio ordinario più tesa z' y' d Def(%) Tens -195.0 -97.1 24.0 0.11 2297.44

Eurolink S.C.p.A. Pagina 317 di 405

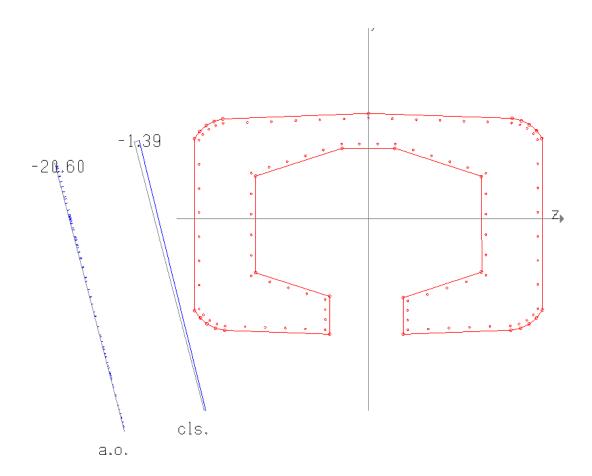


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Eurolink S.C.p.A. Pagina 318 di 405


RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Con riferimento ora alle sollecitazioni al piede della pila si considerano la combinazione allo SLE QUASI PERMANENTE.

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd = 5.652 KN Msd long = 1.246 kNm Msd trasv = -923 kNm

TENSIONI cls $\sigma_c = (N/mm^2)1,39 < 0,45 f_{ck} = 0,45x33,20 = 14,94$ ferro $\sigma_f = (N/mm^2)20,60 < 0,80 f_{yk} = 0,80x450 = 360$

Eurolink S.C.p.A. Pagina 319 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.7 ANALISI DELLA PILA P2r

La pila P2-r è costituita da un plinto di fondazione a base a parallelogramma di dimensioni 12,00 x 7,50 m, di spessore 2,50 m. L'architettura della pila è definita da un singolo fusto di forma poligonale cava di diametro Ø2,7 m, alto 9,80 m. In sommità del fusto è individuabile un pulvino caratterizzato da uno sviluppo verticale di 4,20 m. Il collegamento tra impalcato ed opera di sostegno è affidato integralmente a due appoggi, collocati con un interasse reciproco di 4,50m.

Di seguito viene presentata una schematizzazione grafica dell'elemento strutturale appena citato.

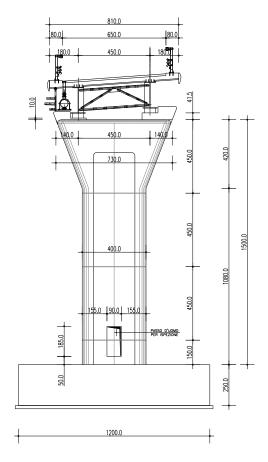


Figura 9.1 – Vista frontale pila.

Si riporta di seguito un tabulato riassuntivo della geometria delle strutture.

Eurolink S.C.p.A. Pagina 320 di 405

RELAZIONE DI CALCOLO

Codice documento Rev Data SS0669_F0.doc 20/06/2011 F0

_					
	Altezza impalcato			1,90	mt
	Larghezza pavimentato			6,50	mt
	Baricentro impalcato			0,00	mt
	Campata			25,00	mt
	Altezza baggiolo+appoggio			0,50	mt
0	Peso pulvino			1.470,00	kN
FUSTO	Altezza pulvino			4,20	mt
E	Altezza fusto			10,80	mt
	Altezza totale			15,00	mt
	Numero fusti			1,00	
	Interasse fusti				mt
	Base / Diametro sezione	D		2,70	mt
	Altezza sezione			-	mt
	Peso fusto + pulvino			3.015,61	kN
	Eccentricità Fusti-Fond-trasversale			0,00	mt
ш	Base plinto			12,00	mt
Ξ	Lunghezza plinto			7,50	mt
Ĭ	Altezza plinto			2,50	mt
ONDAZIONE	Altezza terreno su plinto			3,00	mt
N	Peso Terreno su plinto			4.241,76	kN
ĭ	Peso plinto			5.625,00	kN
	Totale plinto + Terreno			9.866,76	kN

Modulo elastico cls	360.000 daN/cm ²
Inerzia longitudinale	4,09 m ⁴
Inerzia trasversale	10,51 m⁴

REAZIONI IMPALCATO Appoggio 1

1.076

831

9.7.1 **ANALISI DEI CARICHI**

La pila è soggetta dalle sollecitazioni derivanti dall'impalcato riportati precedentemente. Di seguito si riassumono i carichi globali gravanti:

		N	H long	H trasv	M long	M trasv
2		(kN)	(kN)	(kN)	(kN m)	(kN m)
Ϋ́	Peso strutturale impalcato	2.060	0	0	0	207
A L	Permanenti	756	0	0	0	-140
AZIONI TRASMESSE DALL'IMPALCATO	Ritiro	0	0	0	0	0
Ξ	Mezzi schema centrato	1.995	0	0	0	2.045
AL	Mezzi schema eccentrico	1.339	0	0	0	2.522
	Folla schema centrato	0	0	0	0	0
SSE	Folla schema eccentrica	0	0	0	0	0
4 E	Frenamento	0	125	0	0	0
TRASMESSE	Resistenze passive vincolo	0	85	0	0	0
2	Vento: impalcato scarico	392	0	181	0	918
	Vento: impalcato carico	336	0	330	0	1.593
Ō	Cedimento	0	0	0	0	0
AZ	Azione centrifuga	0	0	240	0	0
	Svio	0	0	200	0	0
	Sisma	1.425	554	312	0	533
	Eccentricità dei carichi verticali (mt)	0.01				

193

594

Appoggio 2

984

Appoggio 3

Eccentricità accidentale 0,05 Azione inerziale sismica sul fusto Flong.=

307 Ftrasv.=

Fvert.=

316

Eurolink S.C.p.A. Pagina 321 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.7.1.1 Combinazioni di carico statiche

Si considerano le combinazioni di carico statiche allo SLU previste dalla normativa vigente:

| AZIONI SLU EQU | AZIONI SLU STR | AZIONI SLU GEO |

		EO	J G	3LU	II S	ON	AZI	۱,	ΓR	S	BLU	II S	ON	AZI	١,	QU	ΙE	3LU	II S	ON	AZI	
PRINCIPALE		Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.
P.p.	% 61	1,00	1,00	1,00	1,00	1,8	1,8	1,00	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,10	1,10	1,10	1,10	1,10	1,10	1,10
Perm.) (2)	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Attrito	.₩	1,08	1,00	1,00	1,00	1,00	1,00	1,00	1,8	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,8	1,00	1,8	1,8	1,0
8) (22	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Temperatura	.₩	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60
ratura	द्ध	1,8	1,00	1,00	1,00	1,00	1,00	1,00	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
Vento	.₩	1,00	0,60	0,60	0,60	0,60	0,60	0,60	1,00	0,60	0,60	0,60	0,60	0,60	0,60	1,00	0,60	0,60	0,60	0,60	0,60	0,60
ੱ 	ಶ್	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Acci	æ		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	, 57,0
Accident.	ð		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
_	Ψ°		0,50	0,50	0,00	0,00	0,00	0,00		0,50	0,50	0,00	0,00	0,00	0,00		0,50	0,50	0,00	0,0	0,00	0,0
Folla	ð		1,15	1,15	1,15	1,15	1,15	1,15	······	1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
Frer	Ψ,		0,00	0,00	1,00	1,00	0,00	0,00		0,00	0,00	1,00	1,00	0,00	0,00		0,00	0,00	1,00	1,00	0,00	 0, 8
Frenamento	 ಶ್		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
<u></u>	Ψ°	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Ritiro	₩. 	1,00	1,00	1,8	1,00	1,8	1,8	1,00	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
_		-	-	0,00		-	<u> </u>	\vdash		H	-		-	1,00	\vdash		⊢		H	0,00	-	1,0
ntṛifuga	₩. X		-	1,15		ļ	ļ	ļ			ļ		ļ	1,35			ļ		ļ	1,35	ļ	1,35

Eurolink S.C.p.A. Pagina 322 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

9.7.1.2 Combinazioni di carico Sismiche

Secondo le "Norme Tecniche 2008" le verifiche agli stati limite ultimi o di esercizio devono essere effettuate per la seguente combinazione dell'azione sismica con le altre azioni:

$$G1 + G2 + P + E + \sum_{i} 0.2 \cdot Q_{kj}$$

dove G1 sono i pesi propri, G2 sono i carichi permanenti, P è la precompressione, E è l'azione sismica e Q_{ki} sono i carichi accidentali.

In particolare si sono considerate le seguenti combinazioni sismiche:

Combinazione	P.p.	Perm.	Accid.	Sisma X	Sisma Y	Sisma Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30
SISMA Z N+	1,00	1,00	0,20	0,30	0,30	1,00
SISMA Y N+	1,00	1,00	0,20	0,30	1,00	0,30

9.7.2 MODELLO DI CALCOLO

9.7.2.1 Descrizione del modello di calcolo

Alla luce di quanto scaturito da valutazioni preliminari di carattere statico, condotte sulla tipologia strutturale ivi considerata, è stato possibile individuare la modellazione più performante, che meglio simulasse il naturale comportamento in opera delle pile.

Si è quindi scelta una particolare schematizzazione a mensola incastrata alla base, la cui applicabilità è supportata dall'indiscutibile rilevanza che risiede nella valutazione dei momenti sollecitanti alla base del fusto.

Eurolink S.C.p.A. Pagina 323 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.7.3 CALCOLO DELLE SOLLECITAZIONI

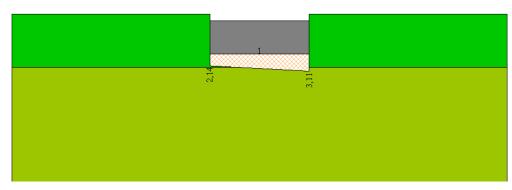
	AZIONI ALLA BASE						
	Combinazioni		N (kN)	Vlong (kN)	Vtrasv (kN)	Mlong (kNm)	Mtrasv (kNm)
SLU GEO	15 16 17	Comb 1 Comb 2 Comb 3	16.435 18.525 17.727	85,00 85,00 85,00	235,30 257,40 257,40	1.560 1.590 1.580	5.454 8.253 8.802
AZIONI	18 19 20 21	Comb 4 Comb 5 Comb 6 Comb 7	17.908 17.342 17.908 17.342	228,75 228,75 85,00 85,00	257,40 257,40 487,40 487,40	4.451 4.441 1.590 1.580	7.665 8.077 12.380 12.792
STR	22	Comb 8	21.894	114,75	271,50	2.105	6.334
SLU	23 24 25	Comb 9 Comb 10 Comb 11	24.352 23.416 23.629	114,75 114,75 283,50	297,00 297,00 297,00	2.145 2.132 5.503	9.611 10.255 8.921
AZIONI	26 27 28	Comb 12 Comb 13 Comb 14	22.964 23.629 22.964	283,50 114,75 114,75	297,00 567,00 567,00	5.490 2.145 2.132	9.404 14.456 14.939
SLU EQU	29 30 31	Comb 15 Comb 16 Comb 17	18.159 20.617 19.681	93,50 93,50 93,50	271,50 297,00 297,00	1.717 1.757 1.744	6.282 9.559 10.203
AZIONI S	32 33 34	Comb 18 Comb 19 Comb 20	19.893 19.229 19.893	262,25 262,25 93,50	297,00 297,00 567,00	5.116 5.102 1.757	8.869 9.352 14.404
	35	Comb 21	14.563	93,50	567,00	1.744	13.469
	Combinazioni		N (kN)	Vlong (kN)	Vtrasv (kN)	Mlong (kNm)	Mtrasv (kNm)
SISMA	36	SISMA long	16.620	832,00	185,70	13.432	3.242
٠,	37	SISMA trasv	16.620	249,60	619,00	4.030	9.696

SPOSTAMENTI IN TESTA PILA

SLE	H (kN)	δ (mm)
Frenamento	125	0,955
Resistenze passive vincolo	85	0,649

SLU	H (kN)	δ (mm)
Sisma	554	4,233

Eurolink S.C.p.A. Pagina 324 di 405



RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Il momento flettente e il taglio sono calcolati rispetto al filo del fusto; si considera la situazione più gravosa corrispondente tra le combinazioni STR alla combinazione 4. Si riporta di seguito la pressione sul terreno lungo l'asse longitudinale della pila:

Depositi fluviali $\begin{array}{lll} \text{Depositi fluviali} \\ \text{y=}2000 \text{ kg/mc} & \text{ys=}2350 \text{ kg/mc} \\ \text{\varphi=}38.0 & \text{\delta=}38.0 \\ \text{c=}0,00 \text{ kg/cmq} & \text{ca=}0,00 \text{ kg/cmq} \end{array}$

Ghiaie di messina y=1900 kg/mc ys=2300 kg/mc \$\phi=38.0 \circ\$ \$\delta=38.0 \circ\$ \$c=0,00 kg/cmq ca=0,00 kg/cmq

Le azioni sollecitanti sono calcolate rispetto al filo del fusto:

$$\begin{split} M_{\text{Sd}} = & \left[\left(2,\!79 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot \frac{2,\!475^2}{2} + \left(3,\!11 - 2,\!79 \right) \cdot 10 \cdot \frac{2,\!475^2}{3} \right] \cdot 10 = 728 \text{ kNm} \\ V_{\text{Sd}} = & \left[\left(2,\!79 \cdot 10 - 2,\!500 \cdot 2,\!50 \right) \cdot 2,\!475 + \left(3,\!11 - 2,\!79 \right) \cdot 10 \cdot \frac{2,\!475}{2} \right] \cdot 10 = 575 \text{ kN} \end{split}$$

Eurolink S.C.p.A. Pagina 325 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

9.7.4 VERIFICA DELLE SEZIONI

9.7.4.1 Plinto di fondazione

 $M_{Sd} = 728 \text{ kNm}$

VERIFICA A FLESSIONE

SEZIONE RETTANGOLARE base (cm) 100

altezza (cm) 250

ARMATURA compressa \$\phi 26/10\$

SOLLECITAZIONI Msd = 728 kNm

INDICI DI RESISTENZA Mrd = 5.041 kNm

IR = 6,92

VERIFICA A TAGLIO

 $T_{Sd} = 575 \text{ kN}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (Vrdu1): 67153.563
Indice di resistenza: 0.86

Armatura trasversale per unita' di

lunghezza (Asw, cm²/m): 9.77

Staffe a 4 braccia (in accordo con i minimi di norma per fondazioni): ø20/30cm

Eurolink S.C.p.A. Pagina 326 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev FO

20/06/2011

Data

9.7.4.2 **Fusto**

-107.4 -98.7

-193 8 -200.0 0.05 0.06

allungamento allungamento

Con riferimento alle sollecitazioni al piede della pila si considerano le combianazioni allo SLU STR.

Verifica a pressoflessione - Nmax

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd =10.919 kN Msd long = 1.857 kNm Msd trasv = 8.889 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

```
Nome archivio di lavoro
Intestazione del lavoro
                                               Sezione1
                                               comb9
 Unità misura Forza
                                               kN
  Unità misura Lunghezza
                                               N/mm<sup>2</sup>
  Tensioni
 Diametro armature
                                               mm
mm²
I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità.
Il primo vertice è quello più in basso, a sinistra.
Parametri di calcolo
Normativa: NTC-2008
Versione: 14 Gennaio 2008
Rck = 300 fyk = 4580 fykp = 16300
Sollecitazioni agenti
                                 -10919.000
185700.000
888900.000
Sforzo normale N = Momento flettente Mz =
Momento flettente My =
Sollecitazioni resistenti di calcolo
Sforzo normale N = -610034.363
Momento flettente Mz = 10378412.414
Momento flettente My = 49659314.889
Indice di resistenza s.l.u: 0.02
Campo di rottura della sezione: 4
Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al
calcestruzzo
N,min = -789735
inferiore ad N resistente = -610034
Asse neutro
   -167.63
                  0.00
                            108.2
Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -141.09
Deformazioni e tensioni nel calcestruzzo
                            Def (%) Tens
-0.15 -130.54
-0.16 -134.70
-0.24 -141.09
-0.28 -141.09
-0.15 -130.65
       z' y'
40.1 -126.4
     40.1
130.2
130.2
                -84.3
-55.0
                  55.0
87.5
87.5
      30.3
                  55.5
-55.5
                              -0.05
-0.02
                                         -60.57
-22.86
    -130.0
    -130.0
                              -0.08
-0.07
      -44 9
                  -82.8
                                         -93 25
     -165.8
                -121.6
-119.2
                              0.03
0.04
0.05
                                         allungamento
    -176.2
-185.7
                                        allungamento
                 -114.4
                                        allungamento
```

Eurolink S.C.p.A. Pagina 327 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

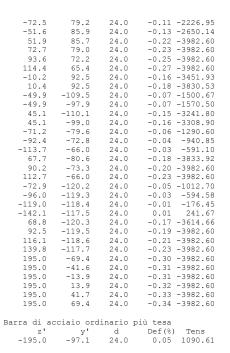
-200.0	98.8	-0.00	-0.21
-194.1	107.1	-0.01	-10.59
-186.6	113.8	-0.02	-21.95
-177.7	118.7	-0.03	-33.55
-167.9	121.4	-0.03	-44.72
-0.0	127.5	-0.18	-140.11
165.8	121.7	-0.33	-141.09
176.2	119.2	-0.34	-141.09
185.7	114.4	-0.34	-141.09
193.8	107.5	-0.35	-141.09
200.0	98.8	-0.35	-141.09
200.0	-98.8	-0.29	-141.09
193.5	-107.8	-0.28	-141.09
185.0	-114.9	-0.28	-141.09
174.9	-119.7	-0.27	-141.09
164.0	-121.8	-0.26	-141.09
0.0	0.0	-0.15	-131.04
0.0	0.0	-0.15	-131.04
0.0	0.0	-0.15	-131.04
0.0	0.0	-0.15	-131.04

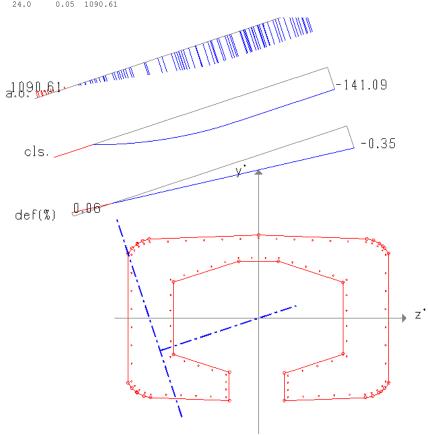
Deformazione massima nel calcestruzzo z' y' Def(%) Tens 200.0 98.8 -0.35 -141.09

Legame costitutivo dell'acciaio ordinario Def(),a Tens,a 0.00 0.00 0.19 3982.60

Deformazioni e Tensioni nell'Acciaio Ordinario y'
-121.2
-87.9
-58.7
58.7 Def(%) Tens -0.15 -3174.70 -0.16 -3376.00 -0.25 -3982.60 z' d 24.0 45.1 45.1 135.2 24.0 -0.25 -3982.60 -0.28 -3982.60 -0.20 -3982.60 -0.15 -3073.34 -0.05 -957.36 -0.01 -241.35 135.2 24.0 92.5 59.2 -59.1 -30.8 24.0 24.0 -135.0 -135.0 -86.4 -121.0 -0.08 -1640.34 -0.07 -1430.83 -49.9 24.0 0.03 -165.1 -116.6 24.0 659.80 -174.5 -182.9 -114.5 -110.2 24.0 818.06 947.16 0.05 -190.1 -195.0 -104.0 -97.1 24.0 24.0 0.05 1041.75 1090.61 -195.0 -190.4 -183.7 97.2 103.7 109.7 24.0 24.0 -0.00 -0.01 -85.38 -368.75 -539.70 -712.99 24.0 -0.02 -0.03 -175.8 -167.1 114.0 -0.03 -712.99 -0.18 -3820.03 -0.32 -3982.60 -0.33 -3982.60 116.4 122.5 116.7 24.0 24.0 -0.0 174.5 114.5 24.0 -0.33 -3982.60 -0.34 -3982.60 -0.34 -3982.60 -0.35 -3982.60 -0.29 -3982.60 190.1 104.1 24.0 195.0 195.0 97.2 -97.2 24.0 -0.29 -3982.60 -0.28 -3982.60 -0.27 -3982.60 -0.27 -3982.60 -0.26 -3982.60 -0.06 -1230.83 -0.08 -1748.67 -0.11 -2266.51 189.8 -104.4 24.0 -110.6 173.3 -114.9 24.0 163.5 -116.8 24.0 117.4 118.4 119.5 -139.3 24.0 -111.4 -83.6 24.0 -55.7 -27.9 120.5 -0.13 -2784.35 -0.16 -3302.19 24.0 27.5 -0.21 -3982.60 121.6 24.0 120.6 119.6 24.0 -0.23 -3982.60 -0.25 -3982.60 82.6 110.1 137.6 118.6 117.6 24.0 -0.28 -3982.60 -0.30 -3982.60 922.61 754.61 -195.0 -69.4 24.0 0.04 -195.0 -13.8 24.0 586.62 0.03 -195.0 13.9 24.0 0.02 418.62 41.7 0.01 0.00 -0.02 -195.0 24.0 250.62 69.4 -35.5 24.0 -195.0 82.62 -384.56 -11.8 11.9 -0.03 -0.03 -527.76 -135.0 24.0 -670.96 -814.16 -0.04 -135.0 35.5 24.0 -35.2 -11.7 24.0 -0.25 -3982.60 -0.26 -3982.60 11.7 35.2 -0.27 -3982.60 -0.28 -3982.60 135.2 24.0 -114.2 65.9 24.0 -0.07 -1380.55

Eurolink S.C.p.A. Pagina 328 di 405





RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

Eurolink S.C.p.A. Pagina 329 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

Verifica a pressoflessione - Nmin

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd = 8.461 kN Msd long = 1.817 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

```
Nome archivio di lavoro : Sezionel
Intestazione del lavoro : comb8
Unità misura Forza : kN
Unità misura Lunghezza : cm
Tensioni : N/mm²
Diametro armature : mm
Brea : mm²
```

I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità. Il primo vertice è quello più in basso, a sinistra.

Msd trasv =

```
Normativa: NTC-2008
Versione: 14 Gennaio 2008
Rck = 300 fyk = 4580 fykp = 16300

Sollecitazioni agenti
Sforzo normale N = -8461.000
Momento flettente Mz = 181700.000
Momento flettente My = 567600.000
```

Sollecitazioni resistenti di calcolo Sforzo normale N = -647881.017 Momento flettente Mz = 13916431.049 Momento flettente My = 43459773.871

Indice di resistenza s.l.u: 0.01

Campo di rottura della sezione: 4

Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al calcestruzzo N,min = -789735

5.676 kNm

N, min = -769733inferiore ad N resistente = -647881

Asse neutro z' y' ang -190.91 0.00 120.0

Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -141.09

D-6------

eformazioni	i e tensi	oni nel c	calcestruzzo	
z '	у'	Def(%)	Tens	
40.1	-126.4	-0.12	-120.41	
40.1	-84.3	-0.14	-129.40	
130.2	-55.0	-0.23	-141.09	
130.2	55.0	-0.28	-141.09	
30.3	87.5	-0.21	-141.09	
-30.0	87.5	-0.17	-136.83	
-130.0	55.5	-0.07	-83.90	
-130.0	-55.5	-0.02	-29.98	
-44.9	-82.8	-0.08	-87.49	
-44.9	-126.2	-0.06	-69.06	
-165.8	-121.6	0.04	allungamento	
-176.2	-119.2	0.04	allungamento	
-185.7	-114.4	0.05	allungamento	
-193.8	-107.4	0.05	allungamento	
-200.0	-98.7	0.05	allungamento	
-200.0	98.8	-0.04	-47.97	
-194.1	107.1	-0.05	-57.25	
-186.6	113.8	-0.05	-66.70	
-177.7	118.7	-0.06	-75.77	
-167.9	121.4	-0.07	-83.99	
-0.0	127.5		-141.09	
165.8	121.7	-0.33	-141.09	
176.2	119.2	-0.34	-141.09	
185.7	114.4	-0.35	-141.09	
193.8	107.5	-0.35	-141.09	
200.0	98.8	-0.35	-141.09	
200.0	-98.8	-0.26	-141.09	

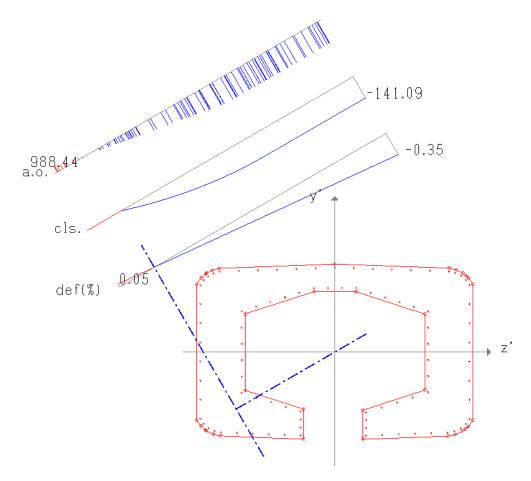
Eurolink S.C.p.A. Pagina 330 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 **Data** 20/06/2011

193.5 185.0 174.9 164.0 0.0 0.0 0.0 0.0 0.0	-107.8 -114.9 -119.7 -121.8 0.0 0.0 0.0 0.0 0.0 me massim y' 98.8	-0.25 -0.24 -0.23 -0.22 -0.15 -0.15 -0.15 a nel cal Def(%) -0.35	-141.09 -141.09 -141.09 -141.09 -131.97 -131.97 -131.97 -131.97 cestruzz Tens -141.09	0
Def(),a 0.00 0.19	Tens,a 0.00 3982.60	dell'acci	aio ordi	nario
Deformazio:	ni e Tens			
2', 45.1 135.2 135.2 135.2 135.3 1.1 -30.8 -135.0 -49.9 -49.9 -49.9 -165.1 -174.5 -182.9 -190.1 -195.0 -195.0 -195.0 165.1 174.5 182.9 190.1 175.8 -167.1 -0.0 165.1 174.5 182.9 190.1 195.0	y' -121.2 -87.9 -58.7 -92.5 -59.1 -86.4 -121.0 -97.1 -104.0 -97.1 -114.5 -110.2 -103.7 -114.5 -110.2 -116.4 -12.5 -110.2 -97.1 -114.5 -110.2 -97.1 -114.5 -110.2 -97.2 -114.5 -110.6 -114.5 -110.6 -114.9 -116.8 -117.4 -118.4 -119.5 -121.5 -12	d 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	Def(%) -0.13 -0.14 -0.23 -0.22 -0.17 -0.07 -0.06 -0.06 -0.05 -0.06 -0.06 -0.06 -0.07 -0.33 -0.34 -0.34 -0.34 -0.35 -0.26 -0.27 -0.02 -0.07 -0.20 -0.33 -0.25 -0.24 -0.23 -0.25 -0.24 -0.23 -0.25 -0.24 -0.23 -0.25 -0.24 -0.23 -0.25 -0.24 -0.23 -0.25 -0.24 -0.23 -0.25 -0.27 -0.09 -0.11 -0.00 -0.00 -0.03	Tens -2723.14 -3038.70 -3982.60 -3982.60 -3982.60 -3504.59 -1478.57 -356.28 -1494.63 -1166.20 -683.17 -815.64 -913.49 -972.85 -988.44 -913.49 -972.85 -988.44 -913.49 -972.85 -988.46 -992.07 -1158.88 -1329.12 -1493.71 -3982.60
10.4 -49.9 -49.9 45.1 45.1	92.5 -109.5 -97.9 -110.1 -99.0	24.0 24.0 24.0 24.0 24.0	-0.06 -0.07 -0.13	-3982.60 -1275.68 -1385.16 -2828.33 -2933.51

Eurolink S.C.p.A. Pagina 331 di 405



RELAZIONE DI CALCOLO

 Codice documento
 Rev
 Data

 SS0669_F0.doc
 F0
 20/06/2011

Eurolink S.C.p.A. Pagina 332 di 405

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669 F0 doc

Rev FO

20/06/2011

Data

Verifica a pressoflessione –Mmax

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd =9.531 KN Msd long = 1.844 kNm

INTESTAZIONE E DATI CARATTERISTICI DEL LAVORO

Nome archivio di lavoro Sezione1 Intestazione del lavoro Unità misura Forza Unità misura Lunghezza cm Tensioni N/mm² Diametro armature mm

I vertici in input sono riportati in senso orario per il contorno esterno e antiorario per le cavità. Il primo vertice è quello più in basso, a sinistra.

Msd trasv = 13.542 kNm

Parametri di calcolo Normativa: NTC-2008 Versione: 14 Gennaio 2008 Rck = 300 fyk = 4580

fykp = 16300Sollecitazioni agenti

Sforzo normale N = -9531.000

| Momento flettente Mz = 184400.000

| Momento flettente My = 1354200.000

Sollecitazioni resistenti di calcolo Sforzo normale N = -450990.311 Momento flettente Mz = 8719436.881 Momento flettente My = 64079041.951

Indice di resistenza s.l.u: 0.02

Campo di rottura della sezione: 3

Valore dello sforzo normale di compressione centrata con incremento del 25% del coefficiente di sicurezza parziale relativo al

calcestruzzo N,min = -789735 inferiore ad N resistente = -450990

Asse neutro

0.00 111.4 -60.45

Legame costitutivo 'parabola-rettangolo': -0.0020 / -0.0035 con tensione massima di compressione: -141.09

Deformazioni e tensioni nel calcestruzzo

Def(%) Tens -0.06 -71.61 -0.08 -89.42 z' y' 40.1 -126.4 40.1 130.2 130.2 -84.3 -55.0 55.0 -0.20 -141.07 -0.25 -141.09 -0.15 -130.91 -0.08 -86.67 30.3 -30.0 87.5 87.5 55.5 -55.5 0.06 -130.0 allungamento -130.0 -44.9 allungamento -82.8 0.02 allungamento -44.9 -165.8 -126.2 -121.6 0.04 allungamento allungamento 0.19 0.20 0.21 -119.2 -176.2 allungamento -185.7 -193.8 -114.4 -107.4 allungamento allungamento -200.0 -200.0 -98.7 0.21 allungamento 98.8 0.12 allungamento 0.12 107.1 allungamento allungamento -194.1 -186.6 -177.7 allungamento allungamento 118.7 0.08 -167.9 0.07 -0.13 -123.42 -0.32 -141.09 -0.0 127.5 121.7 165.8

Eurolink S.C.p.A. Pagina 333 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc

Rev F0

Data 20/06/2011

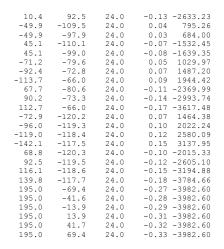
176.2	119.2	-0.33	-141.09
185.7	114.4	-0.34	-141.09
193.8	107.5	-0.35	-141.09
200.0	98.8	-0.35	-141.09
200.0	-98.8	-0.26	-141.09
193.5	-107.8	-0.25	-141.09
185.0	-114.9	-0.23	-141.09
174.9	-119.7	-0.22	-141.09
164.0	-121.8	-0.21	-141.09
0.0	0.0	-0.07	-82.13
0.0	0.0	-0.07	-82.13
0.0	0.0	-0.07	-82.13
0.0	0.0	-0.07	-82.13

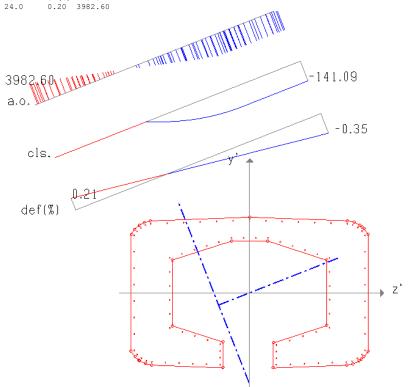
Deformazione massima nel calcestruzzo z' y' Def(%) Tens 200.0 98.8 -0.35 -141.09

Legame costitutivo dell'acciaio ordinario
Def(),a Tens,a
0.00 0.00
0.19 3982.60

0.19	3982.60		
Deformazio	ni e Tensi	oni nell	l'Acciaio Ordinario
z'	у'	d	Def(%) Tens
45.1	-121.2	24.0	-0.07 -1425.55
45.1	-87.9	24.0	-0.08 -1746.25
135.2	-58.7	24.0	-0.20 -3982.60
135.2	58.7	24.0	-0.26 -3982.60
31.1	92.5	24.0	-0.15 -3139.57
-30.8	92.5	24.0	-0.08 -1620.54
-135.0	59.2	24.0	0.06 1261.03
-135.0	-59.1	24.0	0.11 2401.65
-49.9	-86.4	24.0	0.03 572.74
-49.9	-121.0	24.0	0.04 906.52
-165.1	-116.6	24.0	0.18 3695.80
-174.5	-114.5	24.0	0.19 3904.10
-182.9	-110.2	24.0	0.19 3982.60
-190.1	-104.0	24.0	0.20 3982.60
-195.0	-97.1	24.0	0.20 3982.60
-195.0	97.2	24.0	0.11 2368.44
-190.4	103.7	24.0	0.10 2192.67
-183.7	109.7	24.0	0.09 1970.15
-175.8	114.0	24.0	0.08 1734.86
-167.1	116.4	24.0	0.07 1499.38
-0.0	122.5	24.0	-0.13 -2665.59
165.1	116.7	24.0	-0.32 -3982.60
174.5	114.5	24.0	-0.33 -3982.60
182.9	110.2	24.0	-0.34 -3982.60
190.1	104.1	24.0	-0.34 -3982.60
195.0	97.2	24.0	-0.34 -3982.60
195.0 189.8	-97.2 -104.4	24.0 24.0	-0.25 -3982.60 -0.24 -3982.60
182.2	-1104.4	24.0	-0.23 -3982.60
173.3	-114.9	24.0	-0.22 -3982.60
163.5	-114.9	24.0	-0.21 -3982.60
-139.3	117.4	24.0	0.04 805.22
-111.4	118.4	24.0	0.01 111.06
-83.6	119.5	24.0	-0.03 -583.10
-55.7	120.5	24.0	-0.06 -1277.27
-27.9	121.5	24.0	-0.09 -1971.43
27.5	121.6	24.0	-0.16 -3332.31
55.0	120.6	24.0	-0.19 -3982.60
82.6	119.6	24.0	-0.22 -3982.60
110.1	118.6	24.0	-0.25 -3982.60
137.6	117.6	24.0	-0.29 -3982.60
-195.0	-69.4	24.0	0.19 3974.21
-195.0	-41.6	24.0	0.18 3706.58
-195.0	-13.8	24.0	0.16 3438.96
-195.0	13.9	24.0	0.15 3171.33
-195.0	41.7	24.0	0.14 2903.70
-195.0	69.4	24.0	0.13 2636.07
-135.0	-35.5	24.0	0.10 2173.53
-135.0	-11.8	24.0	0.09 1945.40
-135.0	11.9	24.0	0.08 1717.28
-135.0	35.5	24.0	0.07 1489.15
135.2	-35.2	24.0	-0.21 -3982.60
135.2	-11.7	24.0	-0.22 -3982.60
135.2	11.7	24.0	-0.23 -3982.60
135.2	35.2	24.0	-0.25 -3982.60
-114.2	65.9	24.0	0.03 684.72
-93.3	72.5	24.0	0.01 108.40
-72.5	79.2	24.0	-0.02 -467.91
-51.6	85.9	24.0	-0.05 -1044.23
51.9	85.7	24.0	-0.17 -3586.09
72.7	79.0	24.0	-0.19 -3982.60
93.6	72.2	24.0	-0.21 -3982.60
114.4	65.4	24.0	-0.23 -3982.60
-10.2	92.5	24.0	-0.10 -2126.88

Eurolink S.C.p.A. Pagina 334 di 405




RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

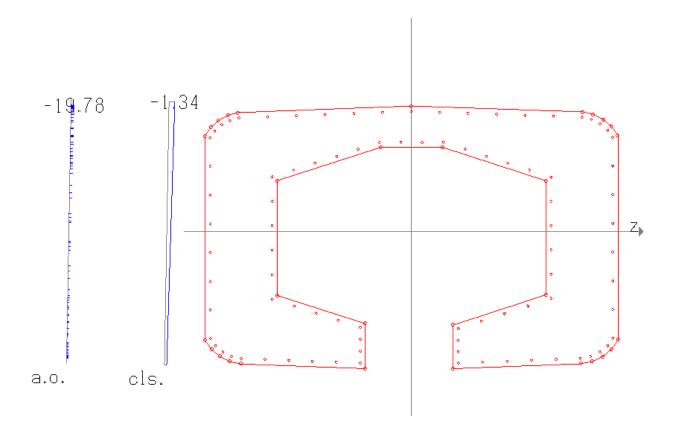
Barra di acciaio ordinario più tesa z' y' d Def(%) Tens -195.0 -97.1 24.0 0.20 3982.60

Eurolink S.C.p.A. Pagina 335 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0


Data 20/06/2011

Con riferimento ora alle sollecitazioni al piede della pila si considerano la combinazione allo SLE QUASI PERMANENTE.

68 kNm

ARMATURA distribuita $\phi 24/20$ SOLLECITAZIONI Nsd = 5.832 KN Msd long = 1.346 kNm

Msd trasv =

TENSIONI cls $\sigma_c = (N/mm^2)1,34<0,45 \ f_{ck}=0,45x33,20 = 14,94$ ferro $\sigma_f = (N/mm^2)19,78<0,80 \ f_{yk}=0,80x450 = 360$

Eurolink S.C.p.A. Pagina 336 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

10 ANALISI DELLE FONDAZIONI

10.1 ANALISI DEL SISTEMA FONDAZIONALE DELLA SPALLA A-r.

10.1.1 ANALISI DEI CARICHI

VERIFICHE DI STABILITA'

	N (kN)	Mrib (kNm)	M stab (kNm)	η	u (m)	e (m)	SL
Combinazione 1	26.671	-13.570	177.921	13,11	6,16	-0,16	
Combinazione 2	28.233	-15.419	182.218	11,82	5,91	0,09	
Combinazione 3	27.527	-15.419	180.274	11,69	5,99	0,01	
Combinazione 4	27.843	-16.003	181.144	11,32	5,93	0,07	
Combinazione 5	27.313	-16.003	179.686	11,23	5,99	0,01	SLU GEO
Combinazione 6	27.843	-14.774	182.372	12,34	6,02	-0,02	33
Combinazione 7	27.313	-14.774	180.915	12,25	6,08	-0,08	0)
Combinazione 8	27.843	-14.957	181.144	12,11	5,97	0,03	
Combinazione 9	27.313	-14.957	179.686	12,01	6,03	-0,03	
Combinazione 10	28.294	-25.365	179.444	7,07	5,45	0,55	
Combinazione 11	33.760	-15.693	222.674	14,19	6,13	-0,13	
Combinazione 12	35.594	-17.864	227.718	12,75	5,90	0,10	
Combinazione 13	34.764	-17.864	225.436	12,62	5,97	0,03	
Combinazione 14	35.135	-18.550	226.457	12,21	5,92	0,08	~
Combinazione 15	34.513	-18.550	224.745	12,12	5,97	0,03	STF
Combinazione 16	35.135	-17.075	227.931	13,35	6,00	0,00	SLU STR
Combinazione 17	34.513	-17.075	226.220	13,25	6,06	-0,06	
Combinazione 18	35.135	-17.321	226.457	13,07	5,95	0,05	
Combinazione 19	34.513	-17.321	224.745	12,98	6,01	-0,01	
Combinazione 20	35.662	-29.540	224.462	7,60	5,47	0,53	
Comb SLE 1	24.052	-10.480	157.310	15,01	6,10	-0,10	
Comb SLE 2	25.411	-12.088	161.046	13,32	5,86	0,14	
Comb SLE 3	24.796	-12.088	159.356	13,18	5,94	0,06	
Comb SLE 4	25.071	-12.596	160.112	12,71	5,88	0,12	
Comb SLE 5	24.610	-12.596	158.844	12,61	5,94	0,06	SLE
Comb SLE 6	25.071	-11.504	161.204	14,01	5,97	0,03	S
Comb SLE 7	24.610	-11.504	159.937	13,90	6,03	-0,03	
Comb SLE 8	25.071	-11.686	160.112	13,70	5,92	0,08]
Comb SLE 9	24.610	-11.686	158.844	13,59	5,98	0,02	
Comb SLE 10	25.450	-20.737	158.634	7,65	5,42	0,58	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	26.163	-61.128	164.104	2,68	3,94	2,06	
perm + sisma X + 0,30 sisma (Y+Z) schema 2	25.918	-61.128	163.428	2,67	3,95	2,05	SLV

Eurolink S.C.p.A. Pagina 337 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

AZIONI GLOBALI NORME TECNICHE 2008

AZIONI GLOBALI NORME TECNICHE 2008	N	M long	M trasv	T long	T trasv	
	(kN)	(kNm)	(kNm)	(kN)	(kN)	
Combinazione 1	100.031	17.857	5.417	16.503	234	
Combinazione 2	103.021	42.207	11.424	17.424	296	
Combinazione 3	102.047	36.510	13.935	17.424	296	
Combinazione 4	102.274	38.368	10.051	17.389	296	0
Combinazione 5	101.541	34.079	11.758	17.389	296	SLU GEO
Combinazione 6	102.274	30.766	11.758	16.728	296	SLU
Combinazione 7	101.541	26.478	11.758	16.728	296	
Combinazione 8	102.274	36.120	10.051	17.194	296	
Combinazione 9	101.541	31.831	11.758	17.194	296	
Combinazione 10	102.311	66.740	5.931	20.817	296	
Combinazione 11	124.016	28.533	6.256	19.069	270	
Combinazione 12	127.526	57.118	13.297	20.150	342	
Combinazione 13	126.383	50.431	16.245	20.150	342	
Combinazione 14	126.649	52.611	11.685	20.109	342	~
Combinazione 15	125.788	47.577	13.690	20.109	342	STF
Combinazione 16	126.649	43.141	13.690	19.286	342	SLU STR
Combinazione 17	125.788	38.106	13.690	19.286	342	
Combinazione 18	126.649	49.972	11.685	19.880	342	
Combinazione 19	125.788	44.937	13.690	19.880	342	
Combinazione 20	126.681	85.825	6.849	21.484	342	
Comb SLE 1	87.141	23.738	4.173	12.726	180	
Comb SLE 2	89.741	44.913	9.345	13.527	228	
Comb SLE 3	88.894	39.959	11.529	13.527	228	
Comb SLE 4	89.091	41.574	8.151	13.497	228	
Comb SLE 5	88.454	37.845	9.636	13.497	228	SLE
Comb SLE 6	89.091	34.559	9.636	12.887	228	S
Comb SLE 7	88.454	30.830	9.636	12.887	228	
Comb SLE 8	89.091	39.619	8.151	13.327	228	
Comb SLE 9	88.454	35.890	9.636	13.327	228	
Comb SLE 10	89.068	65.785	4.569	14.515	228	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	93.695	273.095	77.416	46.616	11.225	SLV
perm + sisma X + 0,30 sisma (Y+Z) schema 2	93.357	272.100	77.368	46.616	11.225	S

Eurolink S.C.p.A. Pagina 338 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

10.1.2 MODELLO DI CALCOLO

Per il calcolo della capacità portante delle fondazioni si utilizza il software di calcolo Aztec CARL 10.0 versione 10.05.b – carico limite e cedimenti.

10.1.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Progetto: Curcuraci lato Messina – spalla SpA-r.

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

Eurolink S.C.p.A. Pagina 339 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento SS0669 F0.doc Rev F0 Data 20/06/2011

Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.
 Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M.
 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_q$$

Le espressioni di Brinch-Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5B' \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$q_u = c_u N_c s_c d_c i_c b_c g_c + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

Eurolink S.C.p.A. Pagina 340 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

$$N_{\gamma} = 2.0(N_{q} - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

$$s_{q} = 1 + 0.1 - \frac{B' (1+sen \phi)}{L' (1+sen \phi)}$$

$$\label{eq:spin} \begin{split} s_{\gamma} = 1 + 0.1 & \xrightarrow{\qquad \qquad } \\ L' & (1 + \text{sen } \phi) \end{split}$$

Fattori di profondità

Si definisce il parametro k come

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$\begin{array}{ccc} & D & D \\ k = arctg & & se & ---- > 1 \\ & B' & B' \end{array}$$

vari coefficienti si esprimono come

per
$$\phi = 0$$
 $d_c = 1 + 0.4k$

$$\begin{array}{c} 1 - d_q \\ \\ per \, \phi {>} 0 \\ \\ d_c = d_q - \cdots \\ \\ N_c \, tg \, \phi \end{array}$$

$$d_q = 1 + 2 tg \phi (1-sin\phi)^2 k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni B' = B-2 e_B L' = L-2 e_L) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$\begin{array}{c} \text{m H} \\ \text{per } \varphi = 0 \\ \text{i}_c = 1 - \cdots \\ \text{A}_f \ c_a \ N_c \end{array}$$

$$per \, \varphi > 0 \qquad \quad i_c = i_q - \frac{1 \, \text{-} \, i_q}{N_q \, \text{-} \, 1} \label{eq:per_potential}$$

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$i_{q} = (1 - \frac{H}{V + A_{f} c_{a} ctg\phi})^{m}$$

$$per \; \eta = 0 \qquad \quad i_{\gamma} = (1 \; - \; \frac{H}{V \; + \; A_f \; c_a \; ctg \varphi})^{m+1} \label{eq:per eta}$$

dove
$$m = \frac{2 + B' / L'}{1 + B' / L'}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
=0
$$b_c = 1 - \frac{2 \, \eta}{\pi + 2}$$

per
$$\phi$$
>0 $b_c = b_q - \frac{1 - b_q}{N_c tg \phi}$

$$b_q = (1 - \eta tg \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$g_c = \frac{1 - 2\beta}{\pi + 2}$$

per
$$\phi$$
>0
$$g_c = g_q - \frac{1 - g_q}{N_c tg \phi}$$

$$g_q = g_\gamma = (1 - tg\beta)^2$$

poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

$$\beta \ll \phi$$

$$i_q, i_\gamma > 0$$

$$\beta + \eta \le 90^{\circ}$$

Verifica della portanza per carichi orizzontali (scorrimento)

Per la verifica a scorrimento lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere la fondazione deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere la fondazione F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s >=1.0

$$F_r$$
 \longrightarrow >= η_s
 F_s

Eurolink S.C.p.A.

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle della fondazione. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Calcolo delle tensioni indotte

Metodo di Boussinesq

Il metodo di Boussinesq considera il terreno come un mezzo omogeneo elastico ed isotropo. Dato un carico concentrato Q, applicato in superficie, la relazione di Boussinesq fornisce la seguente espressione della tensione verticale indotta in un punto P(x,y,z) posto alla profondità z:

$$q_v = \frac{3Qz^3}{2\pi R^5}$$

dove:
$$R = (x^2 + y^2 + z^2)^{1/2}$$
;

Per ottenere la pressione indotta da un carico distribuito occorre integrare tale espressione su tutta l'area di carico, considerando il carico Q come un carico infinitesimo agente su una areola dA. L'integrazione analitica di questa espressione si presenta estremamente complessa specialmente nel caso di carichi distribuiti in modo non uniforme. Pertanto si ricorre a metodi di soluzione numerica. Dato il carico agente sulla fondazione, si calcola il diagramma delle pressioni indotto sul piano di posa della fondazione. Si divide l'area di carico in un elevato numero di areole rettangolari

Eurolink S.C.p.A. Pagina 345 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

a ciascuna delle quali compete un carico dQ: la tensione indotta in un punto P(x,y,z), posto alla profondità z, si otterrà sommando i contributi di tutte le areole di carico calcolati come nella formula di Boussinesq.

Geometria della fondazione

Simbologia adottata

Descrizione Destrizione della fondazione

Forma Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

- X Ascissa del baricentro della fondazione espressa in [m]
- Y Ordinata del baricentro della fondazione espressa in [m]
- B Base/Diametro della fondazione espressa in [m]
- L Lunghezza della fondazione espressa in [m]
- D Profondità del piano di posa in [m]
- α Inclinazione del piano di posa espressa in [°]
- ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
Fondazione	(R)	6,00	6,00	12,00	12,00	6,00	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

- γ Peso di volume del terreno espresso in [daN/mc]
- γ_{sat} Peso di volume saturo del terreno espresso in [daN/mc]
- ϕ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi
- c Coesione del terreno espressa in [daN/cmq]
- ca Adesione del terreno espressa in [daN/cmq]

Eurolink S.C.p.A. Pagina 346 di 405

Data

20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev \$\$0669_F0.doc F0

Descrizione	γ	γsat	ф	δ	С	са
Depositi fluviali	2000,0	2350,0	38,00	38,00	0,000	0,000
Ghiaie di messina	1900,0	2300,0	38,00	38,00	0,000	0,000

Caratteristiche di deformabilità

Simbologia adottata

Descr Descrizione terreno

E Modulo di Young espresso in [daN/cmq]

DescrEDepositi fluviali250,00Ghiaie di messina400,00

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = -10.0 [m] Y = 3.0 [m] Punto di sondaggio n° 2: X = 0.0 [m] Y = 0.0 [m] Punto di sondaggio n° 3: X = 10.0 [m] Y = 3.0 [m]

N	Z 1	Z2	Z 3	Terreno
1	-4,0	-4,0	-4,5	Depositi fluviali
2	-30,0	-30,0	-30,0	Ghiaie di messina

Normativa

Eurolink S.C.p.A. Pagina 347 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

N.T.C. 2008

Calcolo secondo: Approccio 1

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti γ_{Gsfav} Coefficiente parziale favorevole sulle azioni permanenti γ_{Gfav} Coefficiente parziale sfavorevole sulle azioni variabili γ_{Qsfav} Coefficiente parziale favorevole sulle azioni variabili γ_{Ofav} Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione della coesione drenata $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione non drenata γ_{cu} Coefficiente parziale di riduzione del carico ultimo γ_{qu} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce γ_{γ}

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Effetto		A1	A2
Favorevole	γGfav	1,00	1,00
Sfavorevole	γGsfav	1,30	1,00
Favorevole	γQfav	0,00	0,00
Sfavorevole	γ̈Qsfav	1,50	1,30
	Favorevole Sfavorevole Favorevole	$ \begin{array}{ll} \text{Favorevole} & \gamma_{\text{Gfav}} \\ \text{Sfavorevole} & \gamma_{\text{Gsfav}} \\ \text{Favorevole} & \gamma_{\text{Qfav}} \\ \end{array} $	$\begin{array}{lll} \text{Favorevole} & \gamma_{\text{Gfav}} & 1,00 \\ \text{Sfavorevole} & \gamma_{\text{Gsfav}} & 1,30 \\ \text{Favorevole} & \gamma_{\text{Qfav}} & 0,00 \\ \end{array}$

Coefficienti parziali per i parametri geotecnici del terreno:

	M1	M2
γ _{tanφ'}	1,00	1,25
$\gamma_{\mathbf{c}'}$	1,00	1,25
γ_{cu}	1,00	1,40
γ_{qu}	1,00	1,60
γ_{γ}	1,00	1,00
	γc' γcu γqu	$\gamma_{tan\phi'}$ 1,00 $\gamma_{c'}$ 1,00 γ_{cu} 1,00 γ_{qu} 1,00 γ_{qu} 1,00

Eurolink S.C.p.A. Pagina 348 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Coefficienti parziali combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,00	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	<i>M</i> 2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

		R1	R2	R3
Capacità portante	γ_{r}	1,00	1,80	2,30
Scorrimento	γ_{r}	1,00	1,10	1,10
Coeff. di combinazione	$\Psi_0 = 0.70$	Ψ ₁ = 0,50	Ψ ₂ = 0,20	

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione Nome identificativo della fondazione

Eurolink S.C.p.A. Pagina 349 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

N	Sforzo normale totale espressa in [daN]
Mx	Momento in direzione X espressa in [daNm]
My	Momento in direzione Y espresso in [daNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]
_	F 24 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

T Forza di taglio espressa in [daN]

Per le verifiche geotecniche specifiche si rimanda all'elaborato CG0700PRBDSSCC5VI0V000001A-01 "Relazione Geotecnica".

Eurolink S.C.p.A. Pagina 350 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

10.2 ANALISI DEL SISTEMA FONDAZIONALE DELLA SPALLA A-p.

10.2.1 ANALISI DEI CARICHI

VERIFICHE DI STABILITA'

	N (kN)	Mrib (kNm)	M stab (kNm)	η	u (m)	e (m)	SL	
Combinazione 1	100.031	-82.849	890.250	10,75	8,07	0,18		
Combinazione 2	103.021	-89.708	897.426	10,00	7,84	0,41		
Combinazione 3	102.047	-89.708	895.089	9,98	7,89	0,36		
Combinazione 4	102.274	-90.242	895.632	9,92	7,87	0,38	_	
Combinazione 5	101.541	-90.242	893.873	9,91	7,91	0,34	3EC	
Combinazione 6	102.274	-86.441	899.433	10,41	7,95	0,30	SLU GEO	
Combinazione 7	101.541	-86.441	897.674	10,38	7,99	0,26	ဟ	
Combinazione 8	102.274	-87.994	895.632	10,18	7,90	0,35		
Combinazione 9	101.541	-87.994	893.873	10,16	7,94	0,31		
Combinazione 10	102.311	-114.984	892.308	7,76	7,60	0,65	1	
Combinazione 11	124.016	-95.900	1.090.501	11,37	8,02	0,23		
Combinazione 12	127.526	-103.952	1.098.925	10,57	7,80	0,45		
Combinazione 13	126.383	-103.952	1.096.181	10,55	7,85	0,40	1	
Combinazione 14	126.649	-104.578	1.096.819	10,49	7,83	0,42		
Combinazione 15	125.788	-104.578	1.094.753	10,47	7,87	0,38	SLU STR	
Combinazione 16	126.649	-99.843	1.101.554	11,03	7,91	0,34		
Combinazione 17	125.788	-99.843	1.099.488	11,01	7,95	0,30		
Combinazione 18	126.649	-101.939	1.096.819	10,76	7,86	0,39		
Combinazione 19	125.788	-101.939	1.094.753	10,74	7,89	0,36		
Combinazione 20	126.681	-133.623	1.092.916	8,18	7,57	0,68		
Comb SLE 1	87.141	-64.089	759.265	11,85	7,98	0,27		
Comb SLE 2	89.741	-70.053	765.505	10,93	7,75	0,50	1	
Comb SLE 3	88.894	-70.053	763.473	10,90	7,80	0,45		
Comb SLE 4	89.091	-70.517	763.945	10,83	7,78	0,47		
Comb SLE 5	88.454	-70.517	762.415	10,81	7,82	0,43	SLE	
Comb SLE 6	89.091	-67.009	767.453	11,45	7,86	0,39	S	
Comb SLE 7	88.454	-67.009	765.923	11,43	7,90	0,35	1	
Comb SLE 8	89.091	-68.562	763.945	11,14	7,81	0,44		
Comb SLE 9	88.454	-68.562	762.415	11,12	7,84	0,41		
Comb SLE 10	89.068	-92.031	761.054	8,27	7,51	0,74		
perm + sisma X + 0,30 sisma (Y+Z) schema 1	93.695	-367.299	770.730	2,10	4,31	3,94		
perm + sisma X + 0,30 sisma (Y+Z) schema 2	93.357	-367.299	769.917	2,10	4,31	3,94	SLV	

Eurolink S.C.p.A. Pagina 351 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

AZIONI GLOBALI NORME TECNICHE 2008

AZIONI GLOBALI NORME TECNICHE 2008	N	Mana	M trasv	Tlong	T troov	1		
	(kN)	M long (kNm)	(kNm)	T long (kN)	T trasv (kN)			
Combinazione 1	30.917	-329	1.893	6.176	103			
Combinazione 2	32.480	7.325	2.776	6.655	112			
Combinazione 3	31.773	5.028	4.534	6.655	112			
Combinazione 4	32.089	6.722	2.580	6.696	112			
Combinazione 5	31.559	4.999	3.899	6.696	112	SLU GEO		
Combinazione 6	32.089	3.644	3.899	6.318	112			
Combinazione 7	31.559	1.921	3.899	6.318	112	0)		
Combinazione 8	32.089	5.411	2.580	6.535	112	1		
Combinazione 9	31.559	3.688	3.899	6.535	112			
Combinazione 10	32.540	23.740	1.993	9.128	112			
Combinazione 11	38.959	390	2.270	7.131	119			
Combinazione 12	40.793	9.375	3.304	7.694	130			
Combinazione 13	39.963	6.679	5.368	7.694	130	SLU STR		
Combinazione 14	40.334	8.667	3.074	7.742	130			
Combinazione 15	39.712	6.645	4.622	7.742	130			
Combinazione 16	40.334	4.974	4.622	7.289	130	SLU		
Combinazione 17	39.712	2.951	4.622	7.289	130			
Combinazione 18	40.334	7.129	3.074	7.553	130			
Combinazione 19	39.712	5.106	4.622	7.553	130			
Combinazione 20	40.861	28.629	2.385	8.919	130			
Comb SLE 1	27.667	771	1.557	4.757	79			
Comb SLE 2	29.025	7.426	2.315	5.174	86			
Comb SLE 3	28.411	5.429	3.844	5.174	86			
Comb SLE 4	28.686	6.902	2.144	5.210	86			
Comb SLE 5	28.225	5.404	3.291	5.210	86	SLE		
Comb SLE 6	28.686	4.166	3.291	4.874	86	S		
Comb SLE 7	28.225	2.668	3.291	4.874	86			
Comb SLE 8	28.686	5.762	2.144	5.070	86			
Comb SLE 9	28.225	4.264	3.291	5.070	86			
Comb SLE 10	29.064	21.620	1.634	6.081	86			
perm + sisma X + 0,30 sisma (Y+Z) schema 1	30.042	55.952	17.987	14.773	3.598	SLV		
perm + sisma X + 0,30 sisma (Y+Z) schema 2	29.796	55.553	17.790	14.773	3.598	S		

Eurolink S.C.p.A. Pagina 352 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

10.2.2 MODELLO DI CALCOLO

Per il calcolo della capacità portante delle fondazioni si utilizza il software di calcolo Aztec CARL 10.0 versione 10.05.b – carico limite e cedimenti.

10.2.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Progetto: Curcuraci lato Messina – spalla SpA-p

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

Eurolink S.C.p.A. Pagina 353 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_a$$

Le espressioni di Brinch-Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5B' \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$q_u = c_u N_c s_c d_c i_c b_c g_c + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

Eurolink S.C.p.A. Pagina 354 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$N_{\gamma} = 2.0(N_{q} - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

$$S_q = 1 + 0.1 - C$$

$$E' (1+sen \phi)$$

$$L' (1+sen \phi)$$

$$\label{eq:spin} \begin{aligned} S_{\gamma} = 1 + 0.1 & \xrightarrow{\qquad} & \\ L' & (1 + \text{sen } \phi) \end{aligned}$$

Fattori di profondità

Si definisce il parametro k come

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$\begin{array}{ccc} & D & D \\ k = arctg & & se & ---- > 1 \\ & B' & B' \end{array}$$

vari coefficienti si esprimono come

per
$$\phi = 0$$
 $d_c = 1 + 0.4k$

$$\begin{array}{c} 1 - d_q \\ \\ per \, \phi {>} 0 \\ \\ d_c = d_q - \cdots \\ \\ N_c \, tg \, \phi \end{array}$$

$$d_q = 1 + 2 tg \phi (1-sin\phi)^2 k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni B' = B-2 e_B L' = L-2 e_L) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$\begin{array}{c} \text{m H} \\ \text{per } \varphi = 0 \\ \text{i}_c = 1 - \cdots \\ \text{A}_f \ c_a \ N_c \end{array}$$

$$per \, \varphi > 0 \qquad \quad i_c = i_q - \frac{1 \, \text{-} \, i_q}{N_q \, \text{-} \, 1} \label{eq:per_potential}$$

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$i_{q} = (1 - \frac{H}{V + A_{f} c_{a} ctg\phi})^{m}$$

$$per \; \eta = 0 \qquad \quad i_{\gamma} = (1 \; - \; \frac{H}{V \; + \; A_f \; c_a \; ctg \varphi})^{m+1} \label{eq:eta}$$

dove
$$m = \frac{2 + B' / L'}{1 + B' / L'}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
=0
$$b_c = 1 - \frac{2 \, \eta}{\pi + 2}$$

$$\begin{array}{ccc} & & & & & & \\ & 1 - b_q & & & & \\ & per \; \phi {>} 0 & & b_c = b_q - \frac{}{N_c \; tg \; \phi} \end{array}$$

$$b_q = (1 - \eta tg \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$g_c = \frac{1 - 2\beta}{\pi + 2}$$

$$g_q = g_y = (1 - tg\beta)^2$$

poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

$$\beta \ll \phi$$

$$i_q, i_\gamma > 0$$

$$\beta + \eta \le 90^{\circ}$$

Verifica della portanza per carichi orizzontali (scorrimento)

Per la verifica a scorrimento lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere la fondazione deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere la fondazione F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s >=1.0

Eurolink S.C.p.A.

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle della fondazione. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Calcolo delle tensioni indotte

Metodo di Boussinesq

Il metodo di Boussinesq considera il terreno come un mezzo omogeneo elastico ed isotropo. Dato un carico concentrato Q, applicato in superficie, la relazione di Boussinesq fornisce la seguente espressione della tensione verticale indotta in un punto P(x,y,z) posto alla profondità z:

$$q_v = \frac{3Qz^3}{2\pi R^5}$$

dove:
$$R = (x^2 + y^2 + z^2)^{1/2}$$
;

Per ottenere la pressione indotta da un carico distribuito occorre integrare tale espressione su tutta l'area di carico, considerando il carico Q come un carico infinitesimo agente su una areola dA. L'integrazione analitica di questa espressione si presenta estremamente complessa specialmente nel caso di carichi distribuiti in modo non uniforme. Pertanto si ricorre a metodi di soluzione numerica. Dato il carico agente sulla fondazione, si calcola il diagramma delle pressioni indotto sul piano di posa della fondazione. Si divide l'area di carico in un elevato numero di areole rettangolari

Eurolink S.C.p.A. Pagina 359 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

a ciascuna delle quali compete un carico dQ: la tensione indotta in un punto P(x,y,z), posto alla profondità z, si otterrà sommando i contributi di tutte le areole di carico calcolati come nella formula di Boussinesq.

Geometria della fondazione

Simbologia adottata

Descrizione Destrizione della fondazione

Forma Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

- X Ascissa del baricentro della fondazione espressa in [m]
- Y Ordinata del baricentro della fondazione espressa in [m]
- B Base/Diametro della fondazione espressa in [m]
- L Lunghezza della fondazione espressa in [m]
- D Profondità del piano di posa in [m]
- α Inclinazione del piano di posa espressa in [°]
- ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
Fondazione	(R)	8,25	10,50	16,50	21,00	3,00	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

- γ Peso di volume del terreno espresso in [daN/mc]
- γ_{sat} Peso di volume saturo del terreno espresso in [daN/mc]
- ϕ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi
- c Coesione del terreno espressa in [daN/cmq]
- ca Adesione del terreno espressa in [daN/cmq]

Eurolink S.C.p.A. Pagina 360 di 405

Data

20/06/2011

RELAZIONE DI CALCOLO

Codice documento Rev SS0669_F0.doc F0

Descrizione	γ	γ_{sat}	ф	δ	С	ca
Depositi fluviali	2000,0	2350,0	38,00	38,00	0,000	0,000
Ghiaie di messina	1900,0	2300,0	38,00	38,00	0,000	0,000

Caratteristiche di deformabilità

Simbologia adottata

Descr Descrizione terreno

E Modulo di Young espresso in [daN/cmq]

DescrEDepositi fluviali250,00Ghiaie di messina400,00

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = -10.0 [m] Y = 3.0 [m] Punto di sondaggio n° 2: X = 0.0 [m] Y = 0.0 [m] Punto di sondaggio n° 3: X = 10.0 [m] Y = 3.0 [m]

N	Z 1	Z2	Z 3	Terreno
1	-4,5	-4,5	-4,5	Depositi fluviali
2	-30,0	-30,0	-30,0	Ghiaie di messina

Normativa

Eurolink S.C.p.A. Pagina 361 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

N.T.C. 2008

Calcolo secondo: Approccio 1

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti γ_{Gsfav} Coefficiente parziale favorevole sulle azioni permanenti γ_{Gfav} Coefficiente parziale sfavorevole sulle azioni variabili γosfav Coefficiente parziale favorevole sulle azioni variabili γ_{Qfav} Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione della coesione drenata $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione non drenata γ_{cu} Coefficiente parziale di riduzione del carico ultimo γ_{qu} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce γ_{γ}

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,30	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	γ _{tanφ'}	1,00	1,25
Coesione efficace	$\gamma_{c'}$	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Eurolink S.C.p.A. Pagina 362 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ̈Gfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,00	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈́Qsfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	γ _{tanφ'}	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

		R1	R2	R3
Capacità portante	γ_{r}	1,00	1,80	2,30
Scorrimento	γ_{r}	1,00	1,10	1,10
Coeff. di combinazione	$\Psi_0 = 0.70$	$\Psi_1 = 0,50$	Ψ ₂ = 0,20	

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione Nome identificativo della fondazione

N Sforzo normale totale espressa in [daN]

Eurolink S.C.p.A. Pagina 363 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

Mx	Momento in direzione X espressa in [daNm]
My	Momento in direzione Y espresso in [daNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]

T Forza di taglio espressa in [daN]

Per le verifiche geotecniche specifiche si rimanda all'elaborato CG0700PRBDSSCC5VI0V000001A-01 "Relazione Geotecnica".

Eurolink S.C.p.A. Pagina 364 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

10.3 ANALISI DEL SISTEMA FONDAZIONALE DELLA SPALLA B.

10.3.1 ANALISI DEI CARICHI

l	Ν	Mrib	M stab	η	и	e	~:
	(kN)	(kNm)	(kNm)	,,	(m)	(m)	SL
Combinazione 1	13.926	-6.977	30.555	4,38	1,69	1,31	
Combinazione 2	16.214	-8.322	33.529	4,03	1,55	1,45	
Combinazione 3	15.005	-8.322	31.958	3,84	1,58	1,42	
Combinazione 4	15.642	-8.877	32.786	3,69	1,53	1,47	
Combinazione 5	14.735	-8.877	31.607	3,56	1,54	1,46	SLU GEO
Combinazione 6	15.642	-7.535	34.127	4,53	1,70	1,30	SLU
Combinazione 7	14.735	-7.535	32.948	4,37	1,72	1,28	0)
Combinazione 8	15.642	-7.985	32.786	4,11	1,59	1,41	
Combinazione 9	14.735	-7.985	31.607	3,96	1,60	1,40	
Combinazione 10	15.642	-14.552	32.156	2,21	1,13	1,87	
Combinazione 11	17.703	-8.138	39.570	4,86	1,78	1,22	
Combinazione 12	20.388	-9.717	43.061	4,43	1,64	1,36	
Combinazione 13	18.969	-9.717	41.216	4,24	1,66	1,34	
Combinazione 14	19.717	-10.369	42.188	4,07	1,61	1,39	
Combinazione 15	18.653	-10.369	40.805	3,94	1,63	1,37	STR
Combinazione 16	19.717	-8.715	43.842	5,03	1,78	1,22	SLU STR
Combinazione 17	18.653	-8.715	42.458	4,87	1,81	1,19	0,
Combinazione 18	19.717	-9.322	42.188	4,53	1,67	1,33	
Combinazione 19	18.653	-9.322	40.805	4,38	1,69	1,31	
Combinazione 20	19.706	-17.031	41.449	2,43	1,24	1,76	
Comb SLE 1	12.736	-5.470	28.579	5,22	1,81	1,19	
Comb SLE 2	14.725	-6.640	31.165	4,69	1,67	1,33	
Comb SLE 3	13.674	-6.640	29.798	4,49	1,69	1,31	
Comb SLE 4	14.228	-7.123	30.518	4,28	1,64	1,36	
Comb SLE 5	13.440	-7.123	29.494	4,14	1,66	1,34	Щ
Comb SLE 6	14.228	-5.898	31.743	5,38	1,82	1,18	SLE
Comb SLE 7	13.440	-5.898	30.719	5,21	1,85	1,15	
Comb SLE 8	14.228	-6.348	30.518	4,81	1,70	1,30	
Comb SLE 9	13.440	-6.348	29.494	4,65	1,72	1,28	
Comb SLE 10	14.176	-12.057	29.971	2,49	1,26	1,74	
				,	,	,	
perm +sisma X +0,30 sisma (Y+Z) schema 1	14.164	-24.093	36.699	1,52	0,89	2,11	SLV

Eurolink S.C.p.A. Pagina 365 di 405

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

AZIONI GLOBALI NORME TECNICHE 2008

AZIONI GLOBALI NORME TECNICHE 2008	N	M long	M trasv	T long	T trasv	
	(kN)	(kNm)	(kNm)	(kN)	(kN)	
Combinazione 1	13.926	18.201	2.683	3.390	139	
Combinazione 2	16.214	23.434	13.690	3.831	176	
Combinazione 3	15.005	21.379	10.647	3.831	176	
Combinazione 4	15.642	23.017	11.010	4.077	176	0
Combinazione 5	14.735	21.476	8.728	4.077	176	SLU GEO
Combinazione 6	15.642	20.334	8.728	3.004	176	SLU
Combinazione 7	14.735	18.793	8.728	3.004	176	"
Combinazione 8	15.642	22.126	11.010	3.721	176	
Combinazione 9	14.735	20.585	8.728	3.721	176	
Combinazione 10	15.642	29.322	2.972	5.873	176	
Combinazione 11	17.703	21.677	3.189	3.947	161	
Combinazione 12	20.388	27.821	16.104	4.464	203	
Combinazione 13	18.969	25.409	12.532	4.464	203	
Combinazione 14	19.717	27.331	12.958	4.753	203	
Combinazione 15	18.653	25.522	10.279	4.753	203	SLU STR
Combinazione 16	19.717	24.023	10.279	3.430	203	SLU
Combinazione 17	18.653	22.214	10.279	3.430	203	
Combinazione 18	19.717	26.285	12.958	4.335	203	
Combinazione 19	18.653	24.476	10.279	4.335	203	
Combinazione 20	19.706	34.701	3.522	5.826	203	
Comb SLE 1	12.736	15.101	2.173	2.649	107	
Comb SLE 2	14.725	19.651	11.715	3.033	136	
Comb SLE 3	13.674	17.865	9.069	3.033	136	
Comb SLE 4	14.228	19.289	9.385	3.247	136	
Comb SLE 5	13.440	17.949	7.401	3.247	136	SLE
Comb SLE 6	14.228	16.839	7.401	2.267	136	S
Comb SLE 7	13.440	15.499	7.401	2.267	136	
Comb SLE 8	14.228	18.514	9.385	2.937	136	
Comb SLE 9	13.440	17.174	7.401	2.937	136	
Comb SLE 10	14.176	24.615	2.395	4.041	136	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	14.164	29.234	6.676	6.832	1.585	>
perm + sisma X + 0,30 sisma (Y+Z) schema 2	13.744	28.877	5.415	6.832	1.585	SLV

Eurolink S.C.p.A. Pagina 366 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

10.3.2 MODELLO DI CALCOLO

Per il calcolo della capacità portante delle fondazioni si utilizza il software di calcolo Aztec CARL 10.0 versione 10.05.b – carico limite e cedimenti.

10.3.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Progetto: Curcuraci lato Messina – spalla SpB

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

Eurolink S.C.p.A. Pagina 367 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento SS0669 F0.doc Rev F0 Data 20/06/2011

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_a$$

Le espressioni di Brinch-Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5B' \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$q_u = c_u N_c s_c d_c i_c b_c g_c + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

Eurolink S.C.p.A. Pagina 368 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$N_{\gamma} = 2.0(N_{q} - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

$$S_q = 1 + 0.1 - C$$

$$E' (1+sen \phi)$$

$$L' (1+sen \phi)$$

$$\label{eq:spin} \begin{split} s_{\gamma} = 1 + 0.1 & \xrightarrow{\qquad \qquad } \\ L' & (1 + \text{sen } \phi) \end{split}$$

Fattori di profondità

Si definisce il parametro k come

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$\begin{array}{ccc} & D & D \\ k = arctg & & se & ---- > 1 \\ & B' & B' \end{array}$$

vari coefficienti si esprimono come

per
$$\phi$$
=0 $d_c = 1 + 0.4k$

$$\begin{array}{c} 1 - d_q \\ \\ per \, \phi {>} 0 \\ \\ d_c = d_q - \cdots \\ \\ N_c \, tg \, \phi \end{array}$$

$$d_q = 1 + 2 tg \phi (1-sin\phi)^2 k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni B' = B-2 e_B L' = L-2 e_L) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$\begin{array}{c} \text{m H} \\ \text{per } \varphi = 0 \\ \text{i}_c = 1 - \cdots \\ \text{A}_f \ c_a \ N_c \end{array}$$

$$per \, \varphi > 0 \qquad \quad i_c = i_q - \frac{1 \, \text{-} \, i_q}{N_q \, \text{-} \, 1}$$

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$i_{q} = (1 - \frac{H}{V + A_{f} c_{a} ctg\phi})^{m}$$

$$per \; \eta = 0 \qquad \quad i_{\gamma} = (1 \; - \; \frac{H}{V \; + \; A_f \; c_a \; ctg \varphi})^{m+1} \label{eq:eta}$$

dove
$$m = \frac{2 + B' / L'}{1 + B' / L'}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
>0 $b_c = b_q - \frac{1 - b_q}{N_c tg \phi}$

$$b_q = (1 - \eta tg \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$g_c = \frac{1 - 2\beta}{\pi + 2}$$

$$g_q = g_\gamma = (1 - tg\beta)^2$$

poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

$$\beta \ll \phi$$

$$i_q, i_\gamma > 0$$

$$\beta + \eta \le 90^{\circ}$$

Verifica della portanza per carichi orizzontali (scorrimento)

Per la verifica a scorrimento lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere la fondazione deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere la fondazione F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s>=1.0

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle della fondazione. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Calcolo delle tensioni indotte

Metodo di Boussinesq

Il metodo di Boussinesq considera il terreno come un mezzo omogeneo elastico ed isotropo. Dato un carico concentrato Q, applicato in superficie, la relazione di Boussinesq fornisce la seguente espressione della tensione verticale indotta in un punto P(x,y,z) posto alla profondità z:

$$q_v = \frac{3Qz^3}{2\pi R^5}$$

dove:
$$R = (x^2 + y^2 + z^2)^{1/2}$$
;

Per ottenere la pressione indotta da un carico distribuito occorre integrare tale espressione su tutta l'area di carico, considerando il carico Q come un carico infinitesimo agente su una areola dA. L'integrazione analitica di questa espressione si presenta estremamente complessa specialmente nel caso di carichi distribuiti in modo non uniforme. Pertanto si ricorre a metodi di soluzione numerica. Dato il carico agente sulla fondazione, si calcola il diagramma delle pressioni indotto sul piano di posa della fondazione. Si divide l'area di carico in un elevato numero di areole rettangolari

Eurolink S.C.p.A. Pagina 373 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

a ciascuna delle quali compete un carico dQ: la tensione indotta in un punto P(x,y,z), posto alla profondità z, si otterrà sommando i contributi di tutte le areole di carico calcolati come nella formula di Boussinesq.

Geometria della fondazione

Simbologia adottata

Descrizione Destrizione della fondazione

Forma Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

- X Ascissa del baricentro della fondazione espressa in [m]
- Y Ordinata del baricentro della fondazione espressa in [m]
- B Base/Diametro della fondazione espressa in [m]
- L Lunghezza della fondazione espressa in [m]
- D Profondità del piano di posa in [m]
- α Inclinazione del piano di posa espressa in [°]
- ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
Fondazione	(R)	3,00	8,19	6,00	16,38	3,00	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

- γ Peso di volume del terreno espresso in [daN/mc]
- γ_{sat} Peso di volume saturo del terreno espresso in [daN/mc]
- ϕ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi
- c Coesione del terreno espressa in [daN/cmq]
- ca Adesione del terreno espressa in [daN/cmq]

Eurolink S.C.p.A. Pagina 374 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

 Rev
 Data

 F0
 20/06/2

20/06/2011

Descrizione	γ	γsat	ф	δ	С	ca
Depositi fluviali	2000,0	2350,0	38,00	38,00	0,000	0,000
Ghiaie di messina	1900,0	2300,0	38,00	38,00	0,000	0,000

Caratteristiche di deformabilità

Simbologia adottata

Descr Descrizione terreno

E Modulo di Young espresso in [daN/cmq]

DescrEDepositi fluviali250,00Ghiaie di messina400,00

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = -10.0 [m] Y = 3.0 [m] Punto di sondaggio n° 2: X = 0.0 [m] Y = 0.0 [m] Punto di sondaggio n° 3: X = 10.0 [m] Y = 3.0 [m]

N Z1 Z2 Z3 Terreno1 -30,0 -30,0 Ghiaie di messina

Normativa

N.T.C. 2008

Eurolink S.C.p.A. Pagina 375 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

20/06/2011

Data

Calcolo secondo: Approccio 1

Simbologia adottata

 γ_{Gsfav} Coefficiente parziale sfavorevole sulle azioni permanenti

 γ_{Gfav} Coefficiente parziale favorevole sulle azioni permanenti

 γ_{Qsfav} Coefficiente parziale sfavorevole sulle azioni variabili

 γ_{Qfav} Coefficiente parziale favorevole sulle azioni variabili

 $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato

 $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ̈Gfav	1,00	1,00
Permanenti	Sfavorevole	γ Gsfav	1,30	1,00
Variabili	Favorevole	γ̈Qfav	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	$\gamma_{c'}$	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Eurolink S.C.p.A. Pagina 376 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ̈Gfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,00	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈Osfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	<i>M</i> 2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

		R1	R2	R3
Capacità portante	γ_{r}	1,00	1,80	2,30
Scorrimento	γr	1,00	1,10	1,10
Coeff. di combinazione	$\Psi_0 = 0.70$	Ψ ₁ = 0,50	Ψ ₂ = 0,20	

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione Nome identificativo della fondazione
 N Sforzo normale totale espressa in [daN]
 Mx Momento in direzione X espressa in [daNm]

Eurolink S.C.p.A. Pagina 377 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

My	Momento in direzione Y espresso in [daNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]

T Forza di taglio espressa in [daN]

Per le verifiche geotecniche specifiche si rimanda all'elaborato CG0700PRBDSSCC5VI0V000001A-01 "Relazione Geotecnica".

Eurolink S.C.p.A. Pagina 378 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

10.4 ANALISI DEL SISTEMA FONDAZIONALE DELLE PILE BASE 16,50x7,50 M

Si procede andando a dimensionare la fondazione per le sola pila più sollecitate, individuabile nella Pila P1-p con fondazione rettangolare $16,50 \times 7,50 \text{ m}$.

10.4.1 ANALISI DEI CARICHI

AZIONI ALLA BASE

			1	Ī			1
	Combinazioni		N	Vlong	Vtrasv	Mlong	Mtrasv
_			(kN)	(kN)	(kN)	(kNm)	(kNm)
0	15	Comb 1	26.706	311,00	525,20	4.777	11.172
ច	16	Comb 2	31.238	311,00	661,44	4.843	22.299
בו	17	Comb 3	28.444	311,00	661,44	4.808	24.215
AZIONI SLU GEO	18	Comb 4	29.873	506,50	661,44	8.343	19.923
NO	19	Comb 5	27.838	506,50	661,44	8.308	21.360
Z	20	Comb 6	29.873	311,00	891,44	4.843	24.178
⋖	21	Comb 7	27.838	311,00	891,44	4.808	25.615
				7			
≃	22	Comb 8	34.956	419,85	606,00	6.442	12.911
S	23	Comb 9	40.289	419,85	763,20	6.532	25.939
בו	24	Comb 10	37.010	419,85	763,20	6.484	28.188
IS	25	Comb 11	38.688	649,35	763,20	10.640	23.151
NO	26	Comb 12	36.299	649,35	763,20	10.592	24.838
AZIONI SLU STR	27	Comb 13	38.688	419,85	1.033,20	6.532	28.146
⋖	28	Comb 14	36.299	419,85	1.033,20	6.484	29.833
ايرا	29	Comb 15	29.612	342,10	606,00	5.256	12.881
E	30	Comb 16	34.945	342,10	763,20	5.347	25.910
AZIONI SLU EQU	31	Comb 17	31.666	342,10	763,20	5.299	28.159
IS	32	Comb 18	33.344	571,60	763,20	9.455	23.122
N	33	Comb 19	30.955	571,60	763,20	9.407	24.808
Z	34	Comb 20	33.344	342,10	1.033,20	5.347	28.117
⋖	35	Comb 21	29.312	342,10	1.033,20	5.299	27.220
₹	36	SISMA long	26.731	2.100,00	663,60	27.873	8.274
SISMA							
S	37	SISMA trasv	26.731	630,00	2.212,00	8.362	26.801
	38	Comb SLE 1	25.497	311,00	404,00	4.769	8.623
	39	Comb SLE 2	29.498	311,00	508,80	4.813	18.135
[]	40	Comb SLE 3	27.076	311,00	508,80	4.790	19.801
SLE	41	Comb SLE 4	29.014	481,00	169,60	7.856	10.687
	42	Comb SLE 5	26.655	481,00	169,60	7.833	12.353
	43	Comb SLE 6	29.014	311,00	369,60	4.813	14.387
	44	Comb SLE 7	26.655	311,00	369,60	4.790	15.129

Eurolink S.C.p.A. Pagina 379 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

10.4.2 MODELLO DI CALCOLO

Per il calcolo della capacità portante delle fondazioni si utilizza il software di calcolo Aztec CARL 10.0 versione 10.05.b – carico limite e cedimenti.

10.4.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Progetto: Curcuraci lato Messina – Pila P1-p

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

Eurolink S.C.p.A. Pagina 380 di 405

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento SS0669 F0.doc Rev F0

Data 20/06/2011

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_a$$

Le espressioni di Brinch-Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5B' \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$q_u = c_u N_c s_c d_c i_c b_c g_c + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

Eurolink S.C.p.A. Pagina 381 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

$$N_{\gamma} = 2.0(N_{q} - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

$$s_{q} = 1 + 0.1 - \frac{B' (1+sen \phi)}{L' (1+sen \phi)}$$

$$\label{eq:spin} \begin{split} s_{\gamma} = 1 + 0.1 & \xrightarrow{\qquad \qquad } \\ L' & (1 + \text{sen } \phi) \end{split}$$

Fattori di profondità

Si definisce il parametro k come

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$\begin{array}{ccc} & D & D \\ k = arctg & & se & ---- > 1 \\ & B' & B' \end{array}$$

vari coefficienti si esprimono come

per
$$\phi$$
=0 $d_c = 1 + 0.4k$

$$\begin{array}{c} 1 - d_q \\ \\ per \, \phi {>} 0 \\ \\ d_c = d_q - \cdots \\ \\ N_c \, tg \, \phi \end{array}$$

$$d_q = 1 + 2 tg \phi (1-sin\phi)^2 k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni B' = B-2 e_B L' = L-2 e_L) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$\begin{array}{c} \text{m H} \\ \text{per } \varphi = 0 \\ \text{i}_c = 1 - \cdots \\ \text{A}_f \ c_a \ N_c \end{array}$$

$$per \, \varphi > 0 \qquad \quad i_c = i_q - \frac{1 \, \text{-} \, i_q}{N_q \, \text{-} \, 1}$$

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$i_{q} = (1 - \frac{H}{V + A_{f} c_{a} ctg\phi})^{m}$$

$$per \; \eta = 0 \qquad \quad i_{\gamma} = (1 \; - \; \frac{H}{V \; + \; A_f \; c_a \; ctg \varphi})^{m+1} \label{eq:per eta}$$

dove
$$m = \frac{2 + B' / L'}{1 + B' / L'}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
=0
$$b_c = 1 - \frac{2 \, \eta}{\pi + 2}$$

$$\begin{array}{ccc} & & & & & & \\ & & & & \\ per \; \varphi > 0 & & & b_c = b_q \; - \; & & \\ & & & & \\ & & & N_c \; tg \; \varphi & & \end{array}$$

$$b_q = (1 - \eta tg \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

per
$$\phi$$
=0 $g_c = \frac{1 - 2\beta}{\pi + 2}$

$$g_q = g_\gamma = (1 - tg\beta)^2$$

poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

$$\beta \ll \phi$$

$$i_q, i_\gamma > 0$$

$$\beta + \eta \le 90^{\circ}$$

Verifica della portanza per carichi orizzontali (scorrimento)

Per la verifica a scorrimento lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere la fondazione deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere la fondazione F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare $\eta_s >= 1.0$

$$F_r$$
 \longrightarrow >= η_s
 F_s

Eurolink S.C.p.A.

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle della fondazione. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Calcolo delle tensioni indotte

Metodo di Boussinesq

Il metodo di Boussinesq considera il terreno come un mezzo omogeneo elastico ed isotropo. Dato un carico concentrato Q, applicato in superficie, la relazione di Boussinesq fornisce la seguente espressione della tensione verticale indotta in un punto P(x,y,z) posto alla profondità z:

$$q_v = \frac{3Qz^3}{2\pi R^5}$$

dove:
$$R = (x^2 + y^2 + z^2)^{1/2}$$
;

Per ottenere la pressione indotta da un carico distribuito occorre integrare tale espressione su tutta l'area di carico, considerando il carico Q come un carico infinitesimo agente su una areola dA. L'integrazione analitica di questa espressione si presenta estremamente complessa specialmente nel caso di carichi distribuiti in modo non uniforme. Pertanto si ricorre a metodi di soluzione numerica. Dato il carico agente sulla fondazione, si calcola il diagramma delle pressioni indotto sul piano di posa della fondazione. Si divide l'area di carico in un elevato numero di areole rettangolari

Eurolink S.C.p.A. Pagina 386 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

a ciascuna delle quali compete un carico dQ: la tensione indotta in un punto P(x,y,z), posto alla profondità z, si otterrà sommando i contributi di tutte le areole di carico calcolati come nella formula di Boussinesq.

Geometria della fondazione

Simbologia adottata

Descrizione Destrizione della fondazione

Forma Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

- X Ascissa del baricentro della fondazione espressa in [m]
- Y Ordinata del baricentro della fondazione espressa in [m]
- B Base/Diametro della fondazione espressa in [m]
- L Lunghezza della fondazione espressa in [m]
- D Profondità del piano di posa in [m]
- α Inclinazione del piano di posa espressa in [°]
- ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
Fondazione	(R)	3,75	8,25	7,50	16,50	3,00	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

- γ Peso di volume del terreno espresso in [daN/mc]
- γ_{sat} Peso di volume saturo del terreno espresso in [daN/mc]
- φ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi
- c Coesione del terreno espressa in [daN/cmq]
- ca Adesione del terreno espressa in [daN/cmq]

Eurolink S.C.p.A. Pagina 387 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0

Data 20/06/2011

Descrizione	γ	γsat	ф	δ	С	ca
Depositi fluviali	2000,0	2350,0	38,00	38,00	0,000	0,000
Ghiaie di messina	1900,0	2300,0	38,00	38,00	0,000	0,000

Caratteristiche di deformabilità

Simbologia adottata

Descr Descrizione terreno

E Modulo di Young espresso in [daN/cmq]

DescrEDepositi fluviali250,00Ghiaie di messina400,00

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = -10.0 [m] Y = 3.0 [m] Punto di sondaggio n° 2: X = 0.0 [m] Y = 0.0 [m] Punto di sondaggio n° 3: X = 10.0 [m] Y = 3.0 [m]

Terreno	Z 3	Z2	Z 1	N
Depositi fluviali	-4,0	-4,0	-4,0	1
Ghiaie di messina	-30,0	-30,0	-30,0	2

Eurolink S.C.p.A. Pagina 388 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

Normativa

N.T.C. 2008

Calcolo secondo: Approccio 1

Simbologia adottata

 γ_{Gsfav} Coefficiente parziale sfavorevole sulle azioni permanenti γ_{Gfav} Coefficiente parziale favorevole sulle azioni permanenti

γ_{Gfav} Coefficiente parziale favorevole sulle azioni permanent

 γ_{Qsfav} Coefficiente parziale sfavorevole sulle azioni variabili γ_{Qfav} Coefficiente parziale favorevole sulle azioni variabili

 γ_{tanb} Coefficiente parziale di riduzione dell'angolo di attrito drenato

 $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ̈Gfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,30	1,00
Variabili	Favorevole	γ̈Qfav	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	γ _{tanφ'}	1,00	1,25
Coesione efficace	γ c'	1,00	1,25

Eurolink S.C.p.A. Pagina 389 di 405

RELAZIONE DI CALCOLO

Codice documento	Rev	Data
SS0669_F0.doc	F0	20/06/2011

Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{\sim}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{\sf Gfav}$	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,00	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	<i>M</i> 2
Tangente dell'angolo di attrito	γ _{tanφ'}	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

		R1	R2	R3
Capacità portante	γ_{r}	1,00	1,80	2,30
Scorrimento	γ_{r}	1,00	1,10	1,10
Coeff. di combinazione	$\Psi_0 = 0.70$	$\Psi_1 = 0.50$	$\Psi_2 = 0.20$	

Eurolink S.C.p.A. Pagina 390 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Condizioni di carico

Simbologia e convenzioni di segno adottate Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

Fondazione	Nome identificativo della fondazione
N	Sforzo normale totale espressa in [daN]
Mx	Momento in direzione X espressa in [daNm]
My	Momento in direzione Y espresso in [daNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]
T	Forza di taglio espressa in [daN]

Per le verifiche geotecniche specifiche si rimanda all'elaborato CG0700PRBDSSCC5VI0V000001A-01 "Relazione Geotecnica".

Eurolink S.C.p.A. Pagina 391 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

10.5 ANALISI DEL SISTEMA FONDAZIONALE DELLE PILE BASE 12,00x7,50 M

Si procede andando a dimensionare la fondazione per le sola pila più sollecitate, individuabile nella Pila P2-r con fondazione rettangolare $12,00 \times 7,50 \text{ m}$.

10.5.1 ANALISI DEI CARICHI

AZIONI ALLA BASE

	Combinazioni		N (kN)	Vlong (kN)	Vtrasv (kN)	Mlong (kNm)	Mtrasv (kNm)
0	15	Comb 1	16.435	85,00	235,30	1.560	5.454
AZIONI SLU GEO	16	Comb 2	18.525	85,00	257,40	1.590	8.253
ı,	17	Comb 3	17.727	85,00	257,40	1.580	8.802
S	18	Comb 4	17.908	228,75	257,40	4.451	7.665
Z	19	Comb 5	17.342	228,75	257,40	4.441	8.077
110	20	Comb 6	17.908	85,00	487,40	1.590	12.380
Ą	21	Comb 7	17.342	85,00	487,40	1.580	12.792
ĸ	22	Comb 8	21.894	114,75	271,50	2.105	6.334
STR	23	Comb 9	24.352	114,75	297,00	2.145	9.611
13	24	Comb 10	23.416	114,75	297,00	2.132	10.255
IS	25	Comb 11	23.629	283,50	297,00	5.503	8.921
Z	26	Comb 12	22.964	283,50	297,00	5.490	9.404
AZIONI SLU	27	Comb 13	23.629	114,75	567,00	2.145	14.456
٧	28	Comb 14	22.964	114,75	567,00	2.132	14.939
ı ⊇i	29	Comb 15	18.159	93,50	271,50	1.717	6.282
AZIONI SLU EQU	30	Comb 16	20.617	93,50	297,00	1.757	9.559
13	31	Comb 17	19.681	93,50	297,00	1.744	10.203
IS	32	Comb 18	19.893	262,25	297,00	5.116	8.869
Z	33	Comb 19	19.229	262,25	297,00	5.102	9.352
Ž	34	Comb 20	19.893	93,50	567,00	1.757	14.404
⋖	35	Comb 21	14.563	93,50	567,00	1.744	13.469
		T	Ī				
SISMA	36	SISMA long	16.620	832,00	185,70	13.432	3.242
ISI							
S	37	SISMA trasv	16.620	249,60	619,00	4.030	9.696
		T					
	38	Comb SLE 1	16.090	85,00	181,00	1.558	4.244
	39	Comb SLE 2	17.929	85,00	198,00	1.578	6.633
SLE	40	Comb SLE 3	17.239	85,00	198,00	1.572	7.110
S	41	Comb SLE 4	17.761	210,00	66,00	4.066	3.619
	42	Comb SLE 5	17.105	210,00	66,00	4.059	4.096
	43	Comb SLE 6	17.761	85,00	506,00	1.578	12.735
	44	Comb SLE 7	17.105	85,00	506,00	1.572	11.947

Eurolink S.C.p.A. Pagina 392 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

10.5.2 MODELLO DI CALCOLO

Per il calcolo della capacità portante delle fondazioni si utilizza il software di calcolo Aztec CARL 10.0 versione 10.05.b – carico limite e cedimenti.

10.5.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Progetto: Curcuraci lato Messina – Pila P2-r

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

Eurolink S.C.p.A. Pagina 393 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.
 Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M.
- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Verifica al carico limite

16 Gennaio 1996

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_q$$

Le espressioni di Brinch-Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5B' \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$q_u = c_u N_c s_c d_c i_c b_c g_c + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

Eurolink S.C.p.A. Pagina 394 di 405

RELAZIONE DI CALCOLO

Codice documento SS0669_F0.doc Rev F0 Data 20/06/2011

$$N_{\gamma} = 2.0(N_{q} - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

$$s_{q} = 1 + 0.1 - \frac{B' (1+sen \phi)}{L' (1+sen \phi)}$$

$$\label{eq:spin} \begin{split} s_{\gamma} = 1 + 0.1 & \xrightarrow{\qquad \qquad } \\ L' & (1 + \text{sen } \phi) \end{split}$$

Fattori di profondità

Si definisce il parametro k come

Progetto di Messina Progetto Definitivo

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$\begin{array}{ccc} & D & D \\ k = arctg & & se & \longrightarrow > 1 \\ & B' & & B' \end{array}$$

vari coefficienti si esprimono come

per
$$\phi = 0$$
 $d_c = 1 + 0.4k$

$$\begin{array}{c} 1 - d_q \\ \\ per \, \phi {>} 0 \\ \\ d_c = d_q - \cdots \\ \\ N_c \, tg \, \phi \end{array}$$

$$d_q = 1 + 2 tg \phi (1-sin\phi)^2 k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni B' = B-2 e_B L' = L-2 e_L) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$\begin{array}{c} \text{m H} \\ \text{per } \varphi = 0 \\ \text{i}_c = 1 - \cdots \\ \text{A}_f \ c_a \ N_c \end{array}$$

$$per \, \varphi > 0 \qquad \quad i_c = i_q - \frac{1 \, \text{-} \, i_q}{N_q \, \text{-} \, 1}$$

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$i_{q} = (1 - \frac{H}{V + A_{f} c_{a} ctg\phi})^{m}$$

$$per \; \eta = 0 \qquad \quad i_{\gamma} = (1 \; - \; \frac{H}{V \; + \; A_f \; c_a \; ctg \varphi})^{m+1} \label{eq:per eta}$$

dove
$$m = \frac{2 + B' / L'}{1 + B' / L'}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
=0
$$b_c = 1 - \frac{2 \, \eta}{\pi + 2}$$

$$\begin{array}{ccc} & & & & & & \\ & 1 - b_q & & & & \\ & per \; \phi {>} 0 & & b_c = b_q - \frac{}{N_c \; tg \; \phi} \end{array}$$

$$b_q = (1 - \eta tg \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

$$g_c = \frac{1 - 2\beta}{\pi + 2}$$

$$g_q = g_y = (1 - tg\beta)^2$$

poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

$$\beta \ll \phi$$

$$i_q, i_\gamma > 0$$

$$\beta + \eta \le 90^{\circ}$$

Verifica della portanza per carichi orizzontali (scorrimento)

Per la verifica a scorrimento lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere la fondazione deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere la fondazione F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s >=1.0

$$F_r$$
 $\longrightarrow >= \eta_s$
 F_s

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle della fondazione. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Calcolo delle tensioni indotte

Metodo di Boussinesq

Il metodo di Boussinesq considera il terreno come un mezzo omogeneo elastico ed isotropo. Dato un carico concentrato Q, applicato in superficie, la relazione di Boussinesq fornisce la seguente espressione della tensione verticale indotta in un punto P(x,y,z) posto alla profondità z:

$$q_v = \frac{3Qz^3}{2\pi R^5}$$

dove:
$$R = (x^2 + y^2 + z^2)^{1/2}$$
;

Per ottenere la pressione indotta da un carico distribuito occorre integrare tale espressione su tutta l'area di carico, considerando il carico Q come un carico infinitesimo agente su una areola dA. L'integrazione analitica di questa espressione si presenta estremamente complessa specialmente nel caso di carichi distribuiti in modo non uniforme. Pertanto si ricorre a metodi di soluzione numerica. Dato il carico agente sulla fondazione, si calcola il diagramma delle pressioni indotto sul piano di posa della fondazione. Si divide l'area di carico in un elevato numero di areole rettangolari

Eurolink S.C.p.A. Pagina 399 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669 F0.doc

Rev F0 Data 20/06/2011

a ciascuna delle quali compete un carico dQ: la tensione indotta in un punto P(x,y,z), posto alla profondità z, si otterrà sommando i contributi di tutte le areole di carico calcolati come nella formula di Boussinesq.

Geometria della fondazione

Simbologia adottata

Descrizione Destrizione della fondazione

Forma Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

- X Ascissa del baricentro della fondazione espressa in [m]
- Y Ordinata del baricentro della fondazione espressa in [m]
- B Base/Diametro della fondazione espressa in [m]
- L Lunghezza della fondazione espressa in [m]
- D Profondità del piano di posa in [m]
- α Inclinazione del piano di posa espressa in [°]
- ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
Fondazione	(R)	3,75	6,00	7,50	12,00	3,00	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

- γ Peso di volume del terreno espresso in [daN/mc]
- γ_{sat} Peso di volume saturo del terreno espresso in [daN/mc]
- ϕ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi
- c Coesione del terreno espressa in [daN/cmq]
- ca Adesione del terreno espressa in [daN/cmq]

Eurolink S.C.p.A. Pagina 400 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

 Rev
 Data

 F0
 20/06/2

20/06/2011

Descrizione	γ	γ_{sat}	ф	δ	С	са
Depositi fluviali	2000,0	2350,0	38,00	38,00	0,000	0,000
Ghiaie di messina	1900,0	2300,0	38,00	38,00	0,000	0,000

Caratteristiche di deformabilità

Simbologia adottata

Descr Descrizione terreno

E Modulo di Young espresso in [daN/cmq]

DescrEDepositi fluviali250,00Ghiaie di messina400,00

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = -10.0 [m] Y = 3.0 [m] Punto di sondaggio n° 2: X = 0.0 [m] Y = 0.0 [m] Punto di sondaggio n° 3: X = 10.0 [m] Y = 3.0 [m]

Terreno	Z 3	Z2	Z 1	N
Depositi fluviali	-4,0	-4,0	-4,0	1
Ghiaie di messina	-30,0	-30,0	-30,0	2

Eurolink S.C.p.A. Pagina 401 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Normativa

N.T.C. 2008

Calcolo secondo: Approccio 1

Simbologia adottata

 γ_{Gsfav} Coefficiente parziale sfavorevole sulle azioni permanenti

 γ_{Gfav} Coefficiente parziale favorevole sulle azioni permanenti

γ_{Qsfav} Coefficiente parziale sfavorevole sulle azioni variabili

γ_{Qfav} Coefficiente parziale favorevole sulle azioni variabili

 $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato

γ_{c'} Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Effetto		A1	A2
Favorevole	$\gamma_{\sf Gfav}$	1,00	1,00
Sfavorevole	γGsfav	1,30	1,00
Favorevole	γQfav	0,00	0,00
Sfavorevole	γ̈Qsfav	1,50	1,30
	Favorevole Sfavorevole Favorevole	Favorevole γ_{Gfav} Sfavorevole γ_{Gsfav} Favorevole γ_{Qfav}	Favorevole γ_{Gfav} 1,00 Sfavorevole γ_{Gsfav} 1,30 Favorevole γ_{Qfav} 0,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan_{\phi'}}$	1,00	1,25
Coesione efficace	γ _{с'}	1,00	1,25
Resistenza non drenata	γ _{cu}	1,00	1,40

Eurolink S.C.p.A. Pagina 402 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ̈Gfav	1,00	1,00
Permanenti	Sfavorevole	γ_{Gsfav}	1,00	1,00
Variabili	Favorevole	γ̈Qfav	0,00	0,00
Variabili	Sfavorevole	γQsfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	γ _{tanφ'}	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

IXI	R2	R3
1,00	1,80	2,30
1,00	1,10	1,10
· 0.70		
	1,00	1,00 1,80 1,00 1,10

Condizioni di carico

Eurolink S.C.p.A. Pagina 403 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 Data 20/06/2011

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione	Nome identificativo della fondazione
Ν	Sforzo normale totale espressa in [daN]
Mx	Momento in direzione X espressa in [daNm]
My	Momento in direzione Y espresso in [daNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]
T	Forza di taglio espressa in [daN]

Per le verifiche geotecniche specifiche si rimanda all'elaborato CG0700PRBDSSCC5VI0V000001B-01 "Relazione Geotecnica".

Eurolink S.C.p.A. Pagina 404 di 405

RELAZIONE DI CALCOLO

Codice documento
SS0669_F0.doc

Rev F0 **Data** 20/06/2011

11 TABULATI DI CALCOLO

Si veda il CD allegato, contenente i seguenti dati:

11.1 ANALISI DELL'IMPALCATO: PESO PROPRIO ACCIAIO E SOLETTA
11.1.1 DATI DI INPUT
11.1.2 DATI DI OUTPUT
11.2 ANALISI DELL'IMPALCATO: CARICHI PERMANENTI
11.2.1 DATI DI INPUT
11.2.2 DATI DI OUTPUT
11.3 ANALISI DELL'IMPALCATO: TEMPERATURA, ACCIDENTALI FOLLA E VENTO
11.3.1 DATI DI INPUT
11.3.2 DATI DI OUTPUT
11.4 ANALISI DELL'IMPALCATO: CARICHI ACCIDENTALI MEZZI ASSE PRINCIPALE
11.4.1 DATI DI INPUT
11.4.2 DATI DI OUTPUT
11.5 ANALISI DELL'IMPALCATO: CARICHI ACCIDENTALI RAMPA
11.5.1 DATI DI INPUT
11.5.2 DATI DI OUTPUT
11.6 ANALISI DELL'IMPALCATO: EFFETTI SECONDARI E RITIRO
11.6.1 DATI DI INPUT
11.6.2 DATI DI OUTPUT
11.7 ANALISI DELL'IMPALCATO: CARICHI SISMICI
11.7.1 DATI DI INPUT
11.7.2 DATI DI OUTPUT
ALLEGATO A
ALLEGATO B

Eurolink S.C.p.A. Pagina 405 di 405