

Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n° 1158 del 17 dicembre 1971, modificata dal D.Lgs. n°114 del 24 aprile 2003)

PONTE SULLO STRETTO DI MESSINA

PROGETTO DEFINITIVO

EUROLINK S.C.p.A.

IMPREGILO S.p.A. (MANDATARIA) SOCIETÀ ITALIANA PER CONDOTTE D'ACQUA S.p.A. (MANDANTE) COOPERATIVA MURATORI E CEMENTISTI - C.M.C. DI RAVENNA SOC. COOP. A.R.L. (MANDANTE) SACYR S.A.U. (MANDANTE) ISHIKAWAJIMA - HARIMA HEAVY INDUSTRIES CO. LTD (MANDANTE)

A.C.I. S.C.P.A. - CONSORZIO STABILE (MANDANTE)

IL PROGETTISTA Dott. Ing. F. Colla Ordine Ingegneri Milano n° 20355

Dott. Ing. E. Pagani Ordine Ingegneri Milano n° 15408

IL CONTRAENTE GENERALE

Project Manager (Ing. P.P. Marcheselli) STRETTO DI MESSINA Direttore Generale e **RUP** Validazione (Ing. G. Fiammenghi)

STRETTO DI MESSINA

Amministratore Delegato (Dott. P. Ciucci)

SS0690 F0

Unità Funzionale **COLLEGAMENTI SICILIA**

Tipo di sistema INFRASTRUTTURE STRADALI OPERE CIVILI

Raggruppamento di opere/attività SVINCOLO CURCURACI

VIADOTTO - DIREZIONE REGGIO CALABRIA Opera - tratto d'opera - parte d'opera

> Titolo del documento **RELAZIONE GEOTECNICA**

CODICE

G 0 7 0 0 Р R D S S С С 5 0 0 0 0 0 В F0

REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO
F0	20/06/2011 EMISSIONE FINALE		A. CONTARDI	G. SCIUTO	F. COLLA

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

INDICE

ΙN	DICE		
ΡI	REMES	SA	5
1	RIFE	RIMENTI NORMATIVI	5
2	RIFE	RIMENTI BIBLIOGRAFICI	7
3	CARA	TTERISTICHE MATERIALI	9
	3.1	Calcestruzzi (Secondo UNI 11104 - 2004)	9
	3.2	Acciaio per armature (Secondo NTC 2008 – D.M. 14/01/2008)	10
4		CRIZIONE DELLA STRUTTURA	
	4.1	CARATTERISTICHE GEOMETRICHE E UBICAZIONE DELLA STRUTTURA	11
	4.2	CARATTERIZZAZIONE GEOTECNICA DEL LUOGO	13
	4.2.1	Descrizione delle litologie	14
	4.2.2	Indagini previste	15
	4.2.3	Caratterizzazione geotecnica	
	4.2.4	Parametri principali assunti	40
	4.3	CARATTERIZZAZIONE DELLA SISMICITA' DEL LUOGO	41
	4.3.1	Vita nominale	41
	4.3.2	Classe d'uso	
	4.3.3	Periodo di riferimento per l'azione sismica	41
	4.3.4	Parametri di progetto	42
	4.3.5	Classificazione sismica del terreno	
	4.3.6	Spettro di risposta elastico in accelerazione	44
	4.3.7	Spettro di risposta elastico in accelerazione delle componenti orizzontali	44
	4.3.8	Spettro di risposta elastico in accelerazione delle componenti verticali	46
	4.3.9	Spettro di progetto	47
5		ISI DELLE FONDAZIONI	
	5.1	ANALISI DEL SISTEMA FONDAZIONALE DELLA SPALLA A	
	5.1.1	ANALISI DEI CARICHI	
	5.1.2	MODELLO DI CALCOLO	56
	5.1		
	5.1	2.2 VERIFICHE APPROCCIO 1 – COMBINAZIONE 1	
	5.1	2.3 VERIFICHE APPROCCIO 1 – COMBINAZIONE 2	84

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

5	5.1.2.4	VERIFICHE SLE - CEDIMENTI	103
5	5.1.2.5	VALUTAZIONE DEI RISULTATI	128
5.2	ANAL	ISI DEL SISTEMA FONDAZIONALE DELLA SPALLA B	129
5.2	2.1 AN	ALISI DEI CARICHI	131
5.2	2.2 MC	DELLO DI CALCOLO	137
5	5.2.2.1	VERIFICHE APPROCCIO 1 – COMBINAZIONE 1	141
5	5.2.2.2	VERIFICHE APPROCCIO 1 – COMBINAZIONE 2	158
5	5.2.2.3	VERIFICHE SLE - CEDIMENTI	177
5	5.2.2.4	VALUTAZIONE DEI RISULTATI	194
5.3	ANAL	ISI DEL SISTEMA FONDAZIONALE DELLE PILE	195
5.3	3.1 AN	ALISI DEI CARICHI PILA P1	195
5.3	3.2 AN	ALISI DEI CARICHI PILA P2	199
5.3		MBINAZIONI DI CARICO	
5.3	8.4 MC	DELLO DI CALCOLO	205
5	5.3.4.1	VERIFICHE APPROCCIO 1 – COMBINAZIONE 1	209
5	5.3.4.2	VERIFICHE APPROCCIO 1 – COMBINAZIONE 2	222
5	5.3.4.3	VERIFICHE SLE - CEDIMENTI	237
F	5344	VALUTAZIONE DELRISULTATI	255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

PREMESSA

La presente relazione geotecnica tratta delle opere da realizzarsi all'interno dello Svincolo denominato Curcuraci facente parte dei collegamenti lato Sicilia del ponte sullo stretto di Messina; in particolare si analizza il viadotto Curcuraci carreggiata direzione Reggio Calabria nella parte delle fondazioni e dell'interazione fondazioni – strutture.

Tale opera d'arte è necessaria per lo scavalco della Fiumara Curcuraci e della rampa 5 dello svincolo stesso e per evitare la realizzazione di rilevati stradali di altezza troppo elevata nel tratto tra l'Autostrada e la rotonda di svincolo, ed è costituita da un impalcato in acciaio – cemento; il viadotto si suddivide in 2 rami per accogliere un ramo della tratta principale e lo svincolo per la corsia di accelerazione sul secondo ramo; le sottostrutture sono rappresentate da pile e spalle di tipo classico su fondazioni di tipo dirette.

1 RIFERIMENTI NORMATIVI

I calcoli delle strutture sono stati eseguiti in base alle seguenti disposizioni:

- Legge 5/11/1971 n° 1086: "Norme per le discipline delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica".
- Legge 2 febbraio 1974, n. 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. del 14/01/2008 "Norme Tecniche per le Costruzioni 2008"
- Istruzioni per l'applicazione delle norme tecniche per le costruzioni di cui al DM 14/01/2008 Circolare 2 febbraio 2009 n. 617.
- Norma UNI EN 206-1 : 2006 "Calcestruzzo. Parte 1 : specificazione, prestazione, produzione e conformità"
- Norma UNI EN 10025 2005 "Prodotti laminati a caldo di acciai per impieghi strutturali.
- C.N.R. U.N.I. 10016 00: "Travi composte di acciaio e calcestruzzo. Istruzioni per l'impiego nelle costruzioni".
- C.N.R. DT 207/2008: "Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni".
- C.N.R. 10018/99 "Apparecchi d'appoggio per le costruzioni. Istruzioni per l'impiego"
- C.N.R. U.N.I. 10011 97: "Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il

Eurolink S.C.p.A. Pagina 5 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

collaudo e la manutenzione".

 C.N.R. - U.N.I. 10016 - 00: "Travi composte di acciaio e calcestruzzo. Istruzioni per l'impiego nelle costruzioni".

Eurolink S.C.p.A. Pagina 6 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0

20/06/2011

Data

2 RIFERIMENTI BIBLIOGRAFICI

- [1] SEAOC Blue Book "Conceptual Framewirk for Performance-Based Seismic Design", Appendix B (2000).
- [2] Gruppo di Lavoro (2004). Redazione della mappa di pericolosita sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici).
- [3] Priestley M.J.N., Seible F. e Calvi G.M. "Seismic Design and Retrofit of Bridges", J. Wiley & Sons, Inc. (1996).
- [4] Migliacci A. e Mola F., "Progetto agli stati limite delle strutture in c.a.". Parte prima e seconda, Ed. Masson. 1996.
- [5] FEMA 440 "Improvement of Nonlinear Static Seismic Analysis Procedures", prepared by ATC, ATC-55 Project, Redwood City CA, June 2005.
- [6] FEMA 440 "Improvement of Nonlinear Static Seismic Analysis Procedures", prepared by ATC, ATC-55 Project, Redwood City CA, June 2005.
- [7] M. W. O'Neill and L. C. Reese "Drilled shafts: construction procedures and design methods", prepared for U.S. Department of Transportation Federal Highway Administration; printed by ADSC: The International Association of Foundation Drilling, pub. n. ADSC-TL 4, August 1999.
- [8] CALTRANS "Seismic Design Criteria" Version 1.1; California department of transportation, USA, July 1999.
- [9] ATC-32 "Improved Seismic Design Criteria for California Bridges: Provisional Recommendations" Version 1.1; California, USA, June 1996.
- [10] ATC-49 "Recommended LRFD guidelines for the seismic design of highway bridges. Part I: Specifications. Part II: Commentary and Appendices", ATC/MCEER Joint Venture, USA, June 2003.
- [11] Roesset J.M. [1969) "Foundamentals of soil amplification", Conference on Seismic Design for Nuclear Power Plants, MIT, Ed. by Robert J. Hansen, Vol 1, pp. 183-244.
- [12] Mylonakis G. [2001] "Simplified model for seismic pile bending at soil layer interfaces", The Japanese Geotechnical Society, Vol. 41, No. 4(20010815), pp. 47-58.

Eurolink S.C.p.A. Pagina 7 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

[13] Joseph E. Bowles. [1988] "Fondazioni – progetto e analisi", McGraw-Hill.

Eurolink S.C.p.A. Pagina 8 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

3 CARATTERISTICHE MATERIALI

3.1 Calcestruzzi (Secondo UNI 11104 - 2004)

Per sottofondazioni

classe di resistenza C12/15
classe di esposizione XC0

Fondazioni pila e spalle

classe di resistenza		C25/30	
modulo elastico	E _c □=	31.476	N/mm²
massa volumica di riferimento	$\gamma_c =$	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	25,00	N/mm²
resistenza media a compressione cilindrica	$f_{\text{cm}} =$	33,00	N/mm²
resistenza di calcolo a compressione	$f_{cd} =$	14,17	N/mm^2
resistenza a trazione (valore medio)	$f_{ctm} =$	2,56	N/mm²
resistenza caratteristica a trazione	$f_{ctk} =$	1,79	N/mm²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,15	N/mm²
tensione a SLE – combinazione rara	$\sigma_{C} =$	14,94	N/mm²
tensione a SLE – combinazione quasi permanente	$\sigma_{C} =$	11,20	N/mm²
copriferro	C =	40	mm
classe di esposizione		XC2	
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	32	mm
rapporto A/C massimo		0,50	

Eurolink S.C.p.A. Pagina 9 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

3.2 Acciaio per armature (Secondo NTC 2008 – D.M. 14/01/2008)

		B450C	
tensione caratteristica di snervamento	$f_{yk} =$	450	N/mm²
tensione caratteristica di rottura	$f_{tk} =$	540	N/mm ²
resistenza di calcolo a trazione	$f_{yd} =$	391,30	N/mm²
modulo elastico	$E_s =$	206.000	N/mm²
deformazione caratteristica al carico massimo	ϵ_{uk}	7,50	%
deformazione di progetto	$\epsilon_{\sf ud}$	6,75	%
coeff. resistenza a instabilità delle membrature	$\gamma_m =$	1,10	

Eurolink S.C.p.A. Pagina 10 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 **Data** 20/06/2011

4 DESCRIZIONE DELLA STRUTTURA

4.1 CARATTERISTICHE GEOMETRICHE E UBICAZIONE DELLA STRUTTURA

Il viadotto in oggetto è posto all'interno dello Svincolo denominato Curcuraci facente parte dei collegamenti lato Sicilia del ponte sullo stretto di Messina; tale opera d'arte è necessaria per lo scavalco della Fiumara Curcuraci e della rampa 5 dello svincolo stesso e per evitare la realizzazione di rilevati stradali di altezza troppo elevata nel tratto tra l'Autostrada e la rotonda di svincolo.

Il viadotto è costituito da un impalcato a via superiore in struttura mista acciaio-calcestruzzo di 3 campate continue, formate da 4 travi cadauno; l'impalcato poggia su spalle classiche e su pile in calcestruzzo armato basate su fondazioni di tipo diretto.

Le campate sono organizzate in luci con sviluppo in asse di circa 21,00 + 43,00 +21,00 mt in asse appoggi per una lunghezza totale di circa 85,00 mt in asse viadotto; il tracciato in corrispondenza dell'opera presenta un andamento planimetrico rettilineo e una pendenza trasversale costante del 2,50%. La larghezza trasversale totale dell'impalcato è di 17,25 mt comprendenti un cordolo da 80 cm che ospita la barriera di sicurezza e un marciapiede di larghezza 200 cm su cui insiste una barriera e una rete di protezione.

IMPALCATO IN ACCIAIO

Dal punto di vista statico e costruttivo l'impalcato è costituito da 4 travate continue su 4 appoggi, con luci pari a circa 21,00 + 43,00 +21,00 mt in asse appoggi; la struttura metallica è segmentata in 4 diverse tipologie di conci e la sezione trasversale è irrigidita trasversalmente, nel piano verticale da diaframmi composti da profili ad L commerciali posti ad interasse inferiore ai 5,00 mt e nel piano orizzontale dalla soletta in calcestruzzo.

La scelta delle luci risponde a esigenze di carattere statico e di adattabilità della struttura:

- La distribuzione delle campate permette lo scavalco della fiumara ed una suddivisione ottimale delle distanze rimanenti tra essa ed inizio e fine viadotto;
- Il rapporto tra le campate è tale da garantire un certo equilibrio tra i momenti in mezzeria della campata e sugli appoggi e quindi un buon sfruttamento dei materiali per l'assorbimento degli sforzi;
- Lo schema statico di trave continua permette un'altezza dell'impalcato contenuta e quindi un miglior inserimento dell'opera nel contesto plano-altimetrico.

Eurolink S.C.p.A. Pagina 11 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

L'impalcato è realizzato con una sezione mista acciaio-calcestruzzo, ed è costituito da travi metalliche di altezza costante di 2,00 mt

All'estradosso delle travi è solidarizzata la soletta in calcestruzzo per mezzo dei connettori a taglio opportunamente saldati sull'ala superiore della trave. La soletta, dello spessore complessivo di 30 cm, è costituita da predalle tralicciate di 6 cm e da un getto integrativo di 24 cm. Il collegamento tra l'impalcato metallico e la soletta in calcestruzzo è assicurato attraverso i connettori a piolo di tipo Nelson.

SOTTOSTRUTTURE E FONDAZIONI

Le spalle e le pile sono dotate di fondazioni del tipo dirette a platea di forma in pianta rettangolare; l'intradosso delle solette di base si trova a circa 3,00 m al di sotto del piano campagna o a profondità di poco maggiori.

La spalla A è costituita da una ciabatta di fondazione a base quadrata con lati da 21,00 m, di spessore 2,60 m e da un muro frontale di spessore pari a 2,50 m. Sul muro frontale corre un muro paraghiaia caratterizzato da spessore 0,80 m ed altezza massima pari a 3,10 m.

Ai lati della spalla sono presenti due muri andatori paralleli all'asse stradale di lunghezza pari a 15,65 m, spessore variabile da 2,00 a 0,80 m e altezza massima pari a 14,20 m, che poggiano sulla medesima fondazione del muro frontale.

La spalla B è costituita da una ciabatta di fondazione a base rettangolare di dimensioni da 21,00 x 12,00 m, di spessore 2,50 m e da un muro frontale di spessore pari a 2,50 m. Sul muro frontale corre un muro paraghiaia caratterizzato da spessore 0,80 m ed altezza massima pari a 3,10 m.

Ai lati della spalla sono presenti due muri andatori paralleli all'asse stradale di lunghezza pari a 6,55 m, spessore 0,80 m e altezza massima pari a 7,25 m, che poggiano sulla medesima fondazione del muro frontale.

Le pile sono costituite da un plinto di fondazione a pianta rettangolare di dimensioni 16,50 x 7,50 m, di spessore 2,50 m .L'architettura della pila è definita da due fusti poligonali cavi alti 8,50 m. In sommità del fusto è individuabile un pulvino caratterizzato da uno sviluppo verticale di 4,50 m. Il collegamento tra impalcato ed opera di sostegno è affidato integralmente a due appoggi, collocati con un interasse reciproco di 4,42m.

Eurolink S.C.p.A. Pagina 12 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

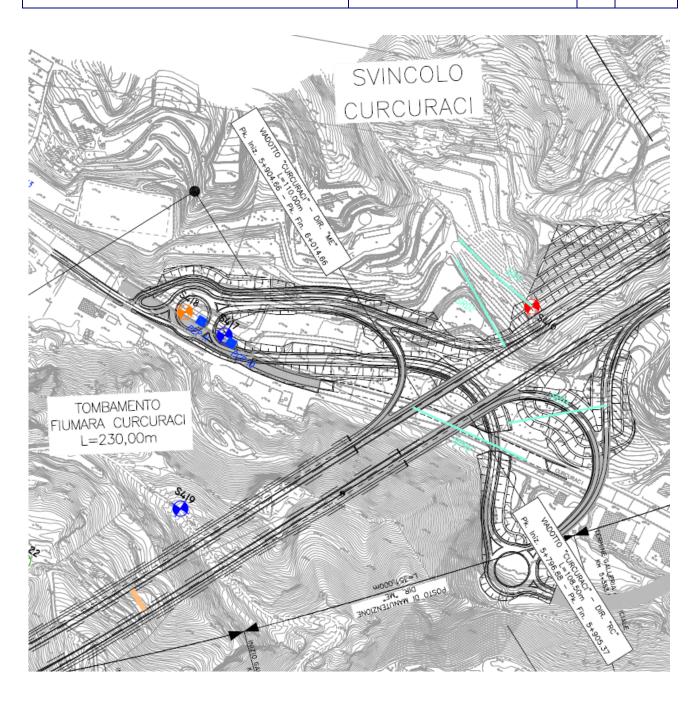
Data

4.2 CARATTERIZZAZIONE GEOTECNICA DEL LUOGO

Per le verifiche geotecniche si fa riferimento al profilo geotecnico presente nell'elaborato grafico denominato CG0800PFZDSSBC8G000000004B di cui si riporta uno stralcio di seguito; si sono per tanto considerati sedimenti fluviali e costieri e ghiaie di Messina.

La falda, analizzando i dati esistenti sui piezometri posizionati nelle vicinanze ed osservando i profili geotecnici, risulta assente.

Eurolink S.C.p.A. Pagina 13 di 255



RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

4.2.1 Descrizione delle litologie

Le litologie presenti sono Sabbie e Ghiaie di Messina e Depositi alluvionali.

La litologia prevalente è costituita dalla formazione delle Sabbie e Ghiaie di Messina.

I materiali in oggetto sono granulometricamente descritti come ghiaie e ciottoli da sub arrotondati ad appiattiti con matrice di sabbie grossolane.

Eurolink S.C.p.A. Pagina 14 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 **Data** 20/06/2011

Si rilevano strati di ghiaie cementate, come si evidenzia nei rilievi effettuati nelle aree di imbocco della galleria stradale Faro Superiore e Balena; in questi rilievi la ghiaia si presenta più o meno debolmente cementata e molto addensata. Lo scheletro si presenta costituito da ghiaie e ciottoli eterometrici arrotondati ed appiattiti.

I <u>Depositi Alluvionali</u> sono costituiti da ghiaie poligeniche ed eterometriche, giallastre o brune a clasti prevalentemente arrotondati di diametro da 2 a 30 cm, clasti sostenuti o a supporto di matrice argilloso-sabbiosa, alternate a rari sottili livelli di sabbie argillose rossastre; sabbie ciottolose a supporto di matrice argilloso-terrosa. L'età dei depositi alluvionali terrazzati è Pleistocene medio-superiore.

I depositi alluvionali recenti sono costituiti da limi e sabbie con livelli di ghiaie a supporto di matrice terroso-argillosa, talora terrazzati, localizzati in aree più elevate rispetto agli alvei fluviali attuali. La componente ruditica è rappresentata da ciottoli poligenici, prevalentemente cristallini, da spigolosi a subarrotondati di diametro tra 1 e 10 cm, mediamente di 4-5 cm. L'età dei depositi alluvionali recenti è l'Olocene.

La falda non risulta interferente con le opere.

4.2.2 Indagini previste

Data l'esiguità delle prove localmente presenti (SPPS03), si è scelto di tenere conto anche dei sondaggi della tratta che va dal Km 5+400 al Km 5+900 circa.

I sondaggi di riferimento per la presente tratta sono SPPS02 e SPPS03 (campagna del 2002), S415, S416, S417 e S418 (campagna del 2010).

Non ci sono localmente indagini per caratterizzare la <u>categoria sismica di suolo</u>; considerando la sismica a rifrazione SRD3, essa risulta pari a **C**.

Eurolink S.C.p.A. Pagina 15 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Le prove localmente utilizzate nella caratterizzazione sono:

- Prove di laboratorio per la determinazione delle caratteristiche fisiche (sondaggio S417)
- Prove granulometriche (sondaggi S417, SPPS02 e SPPS03)
- Prove SPT (sondaggi S415, S416, S417, S418, SPPS02, SPPS03)
- 1 prova Cross Hole (sondaggio S418)
- 1 prova sismica a rifrazione locale (SRD3)
- 5 prove pressiometriche (sondaggi S417, S418)
- 4 prove Le Franc (sondaggi S417 e S418)

4.2.3 Caratterizzazione geotecnica

Sabbie e Ghiaie di Messina

Per i criteri e per gli aspetti generali di caratterizzazione si rimanda a quanto riportato nella relazione Elab. CG0800PRBDCSBC8G00000001B. Per la definizione delle categorie di suolo si rimanda al medesimo elaborato ed alla relazione sismica di riferimento.

Con riferimento al fuso medio (19 prove granulometriche) si ha che: d50=0.8mm, d60=2mm e d10=0.015mm. Le percentuali medie di ghiaia, sabbia e limo sono rispettivamente di 38%, 47%, 12%.

- **Dr**: I valori di N_{spt} sono stati corretti con il fattore correttivo C_{sg}=0.75 corrispondente al d50=0.8mm;
- e_o: a partire dal d50 stimato si ottiene di e_{max}-e_{min} pari a 0.305, non dissimile dai valori reperibili in letteratura (0.17<e_{max}-e_{min}<0.29). Stimando per e_{max} un valore pari a 0.8 a partire dai valori di Dr è stato possibile determinare i valori di e_o in sito;
- γ_d : in base a tali valori di \mathbf{e}_o e da γ_s si può stimare γ_d , =18-19KN/m3;
- K₀: si considera la relazione di Mesri (1989) per tenere conto degli effetti di "aging".

I primi 15 m sembrerebbero maggiormente addensati soprattutto nella porzione sabbio-ghiaiosa.

Eurolink S.C.p.A. Pagina 16 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Per i parametri di resistenza si ha:

z(m)	Dr(%) Sabbie e ghiaie	φ' _{p (pff=0-272KPa)} (°)	φ' _{cv} (°)	K_0
5-15	40-80	39-42	33-35	0.4-0.45
>15	50-60	39-40	33-35	0.45

Come parametri operativi per l'angolo d'attrito si utilizzerà • = 38-40.

Per i <u>parametri di deformabilità</u> si ha localmente a disposizione la prova sismica S418 in cui si evidenzia una buona correlazione fra le velocità misurate e quelle calcolate con le correlazioni da prove SPT.

L' espressione ottenuta in base alle correlazioni dalle prove SPT della tratta per il modulo G₀:

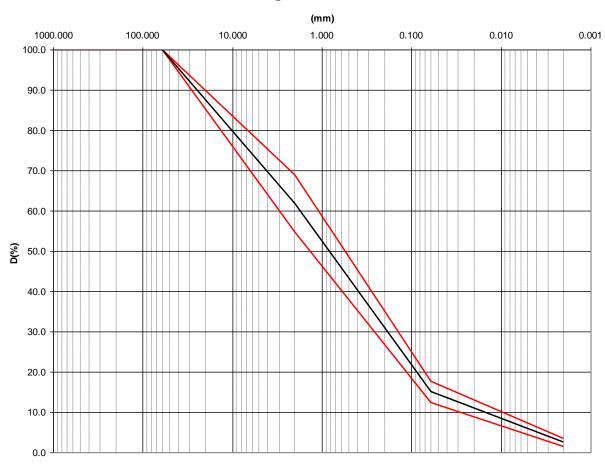
 $G_0 = 45 z^{0.62}$

 $E_0 = 108 z^{0.62}$

 $E' = (15-36) z^{0.62}$

Le prove pressiometriche (nei sondaggi S417 e S418), che forniscono valori del ramo di carico, mostrano i valori più elevati (300-600MPa) tra 10m e 25m.

Eurolink S.C.p.A. Pagina 17 di 255



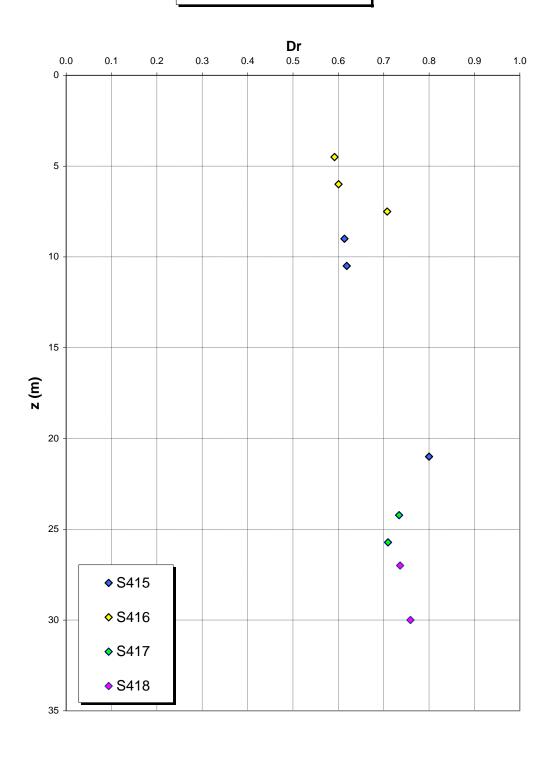
RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Sabbie e ghiaie di Messina

Eurolink S.C.p.A. Pagina 18 di 255



RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Dr Skempton (1986) Componente sabbiosa prevalente SABBIE E GHIAIE DI MESSINA

Eurolink S.C.p.A. Pagina 19 di 255

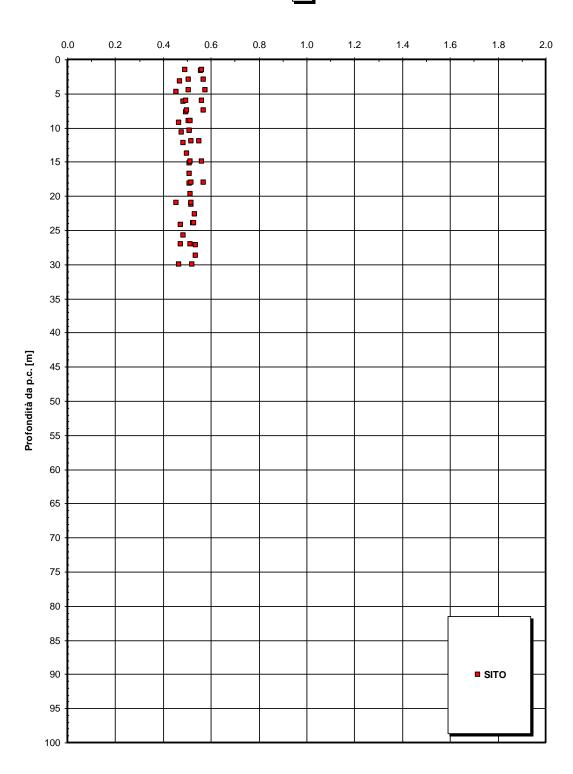
RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Dr Cubrinovski e Ishihahara (1999) Componente ghiaiosa e sabbiosa SABBIE E GHIAIE DI MESSINA

Eurolink S.C.p.A. Pagina 20 di 255



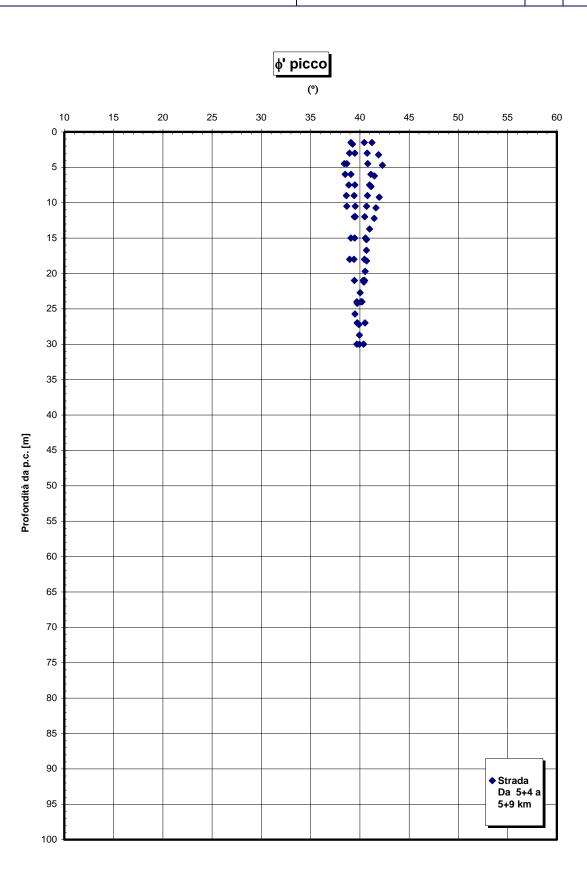
RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

eo

Eurolink S.C.p.A. Pagina 21 di 255


RELAZIONE GEOTECNICA

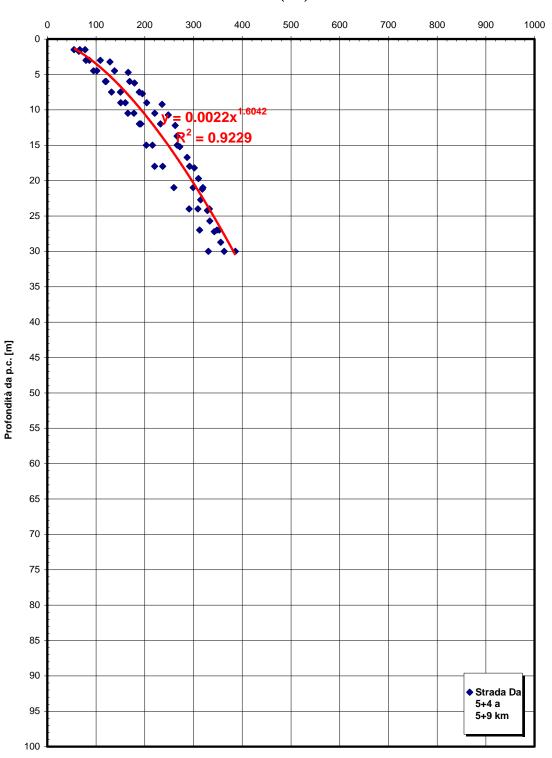
Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

Eurolink S.C.p.A. Pagina 22 di 255

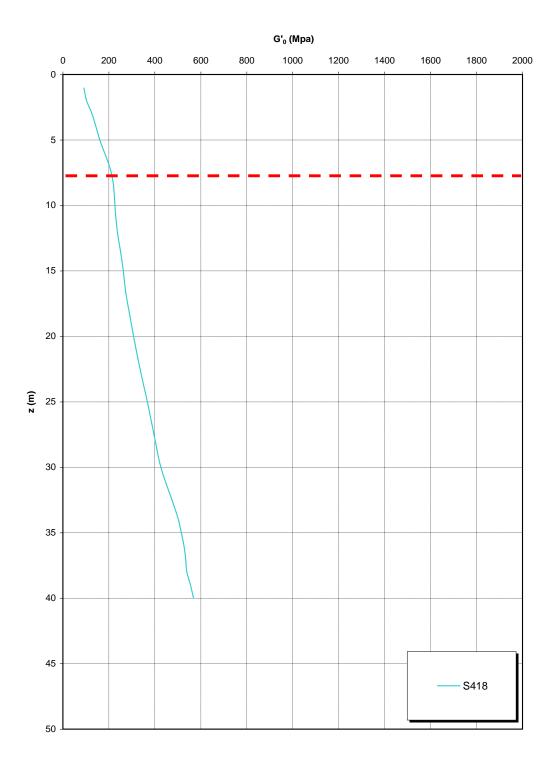


RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Eurolink S.C.p.A. Pagina 23 di 255



RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

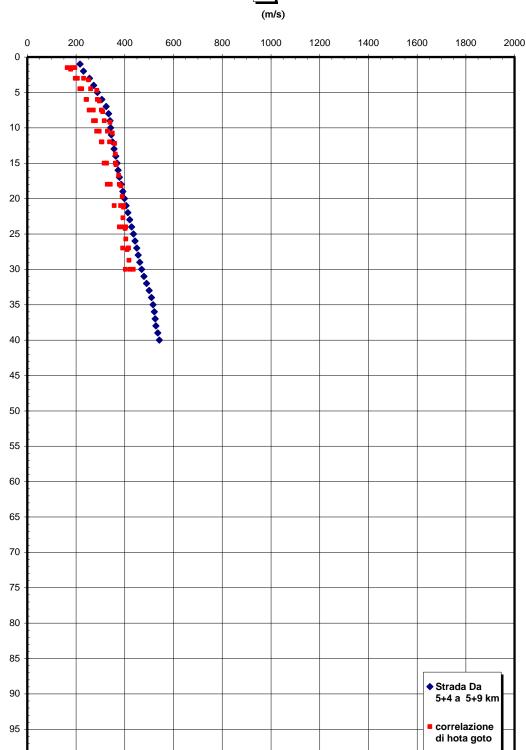
Rev F0 Data 20/06/2011

Prove sismiche SABBIE E GHIAIE DI MESSINA

Eurolink S.C.p.A. Pagina 24 di 255

Profondità da p.c. [m]

100

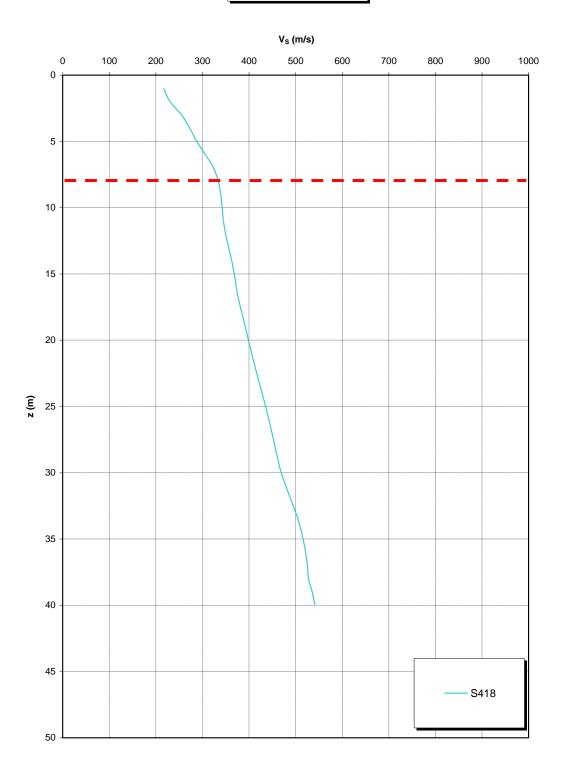

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Eurolink S.C.p.A. Pagina 25 di 255



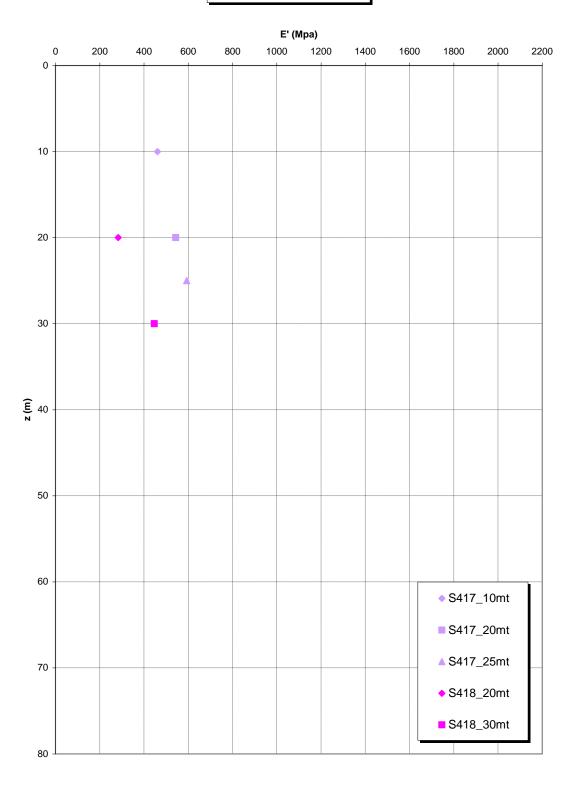
Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

Prove sismiche SABBIE E GHIAIE DI MESSINA

Eurolink S.C.p.A. Pagina 26 di 255



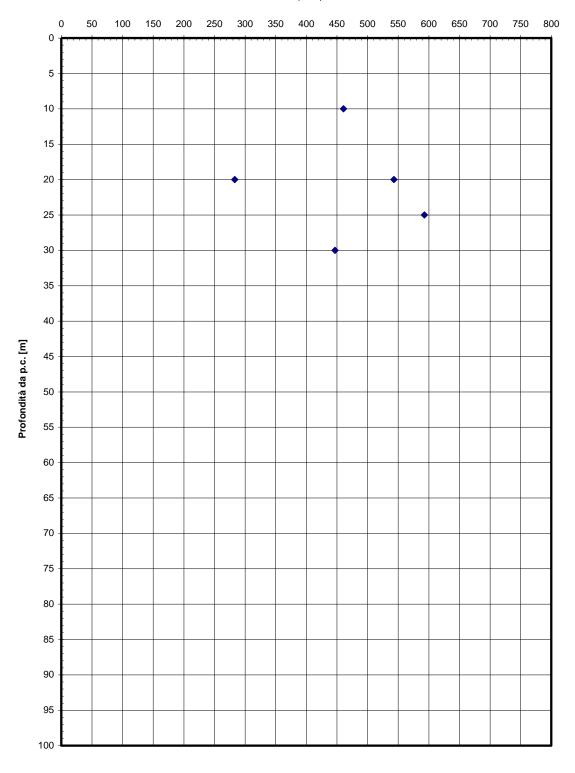
RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Prove pressiometriche SABBIE E GHIAIE DI MESSINA

Eurolink S.C.p.A. Pagina 27 di 255


RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Estat press

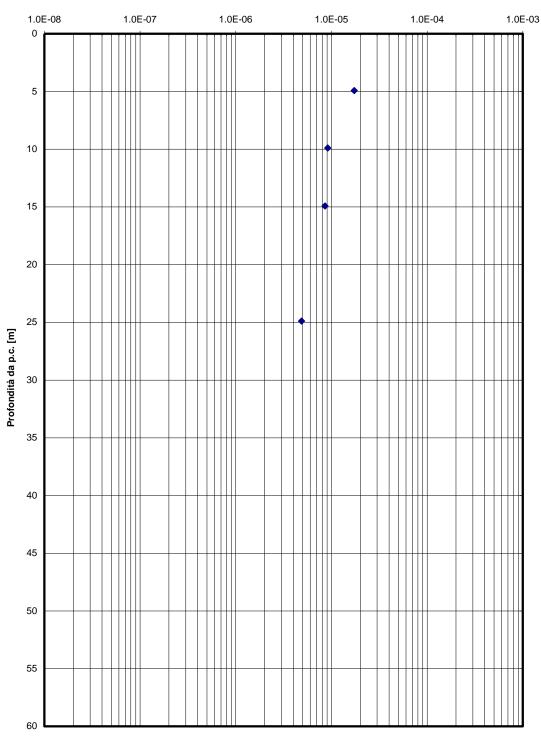
(MPa)

Eurolink S.C.p.A. Pagina 28 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

Eurolink S.C.p.A. Pagina 29 di 255


RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Eurolink S.C.p.A. Pagina 30 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Depositi alluvionali

Per i <u>parametri fisici</u> l'andamento del fuso evidenzia che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 39%), sia di materiali intermedi (sabbie 45%). Il contenuto di fino è mediamente del 14%

Con riferimento al fuso medio:

- Il valore di **D**₅₀ è pari a 0.8mm
- Il valore di D₆₀ è pari a 2 mm
- Il valore di **D**₁₀ è pari a 0.01 mm

Il peso di volume dei grani medio γ_s è risultato pari a circa 26.5 kN/m³.

Non si hanno a disposizione i valori di γ_{dmax} e γ_{dmin} .

Per quanto concerne <u>stato iniziale e parametri di resistenza</u> si ha:

- **Dr**: I valori di N_{spt} sono stati corretti con il fattore correttivo C_{sg} =0.75 corrispondente al d50=0.8mm,
- e_o: a partire dal d50 stimato si ottiene di e_{max}-e_{min} pari a 0.305 stimando per e_{max} un valore pari a 0.7 a partire dai valori di Dr è stato possibile determinare i valori di e_o in sito.
- γd: si ottiene un pari a 17-20 KN/m3.
- K₀: si considera la relazione di Jaky.

0-10	50-80	40-42	33-35	0.4-0.35
z(m)	Sabbie e ghiaie	φ' _{p (pff=0-272KPa)} (°)		K ()
	Dr(%)	h'(°)	φ' _{cv} (°)	K_0

Come parametri operativi per l'angolo d'attrito si utilizzerà 6 = 38-40.

Per i parametri di deformabilità si ha localmente a disposizione la prova sismica S418.

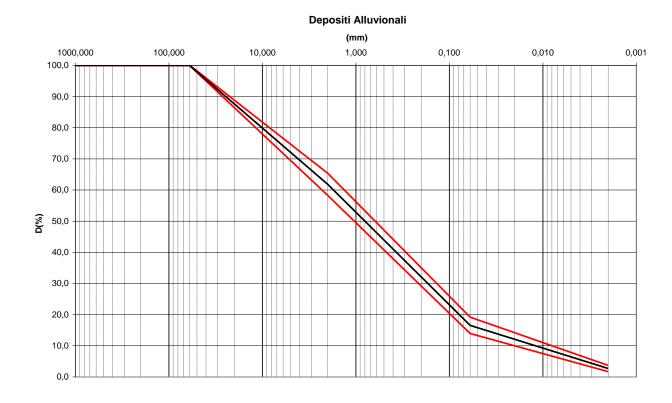
L' espressione ottenuta in base alle correlazioni dalle prove SPT ed alla sismica della tratta per il

Eurolink S.C.p.A. Pagina 31 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011


modulo G₀:

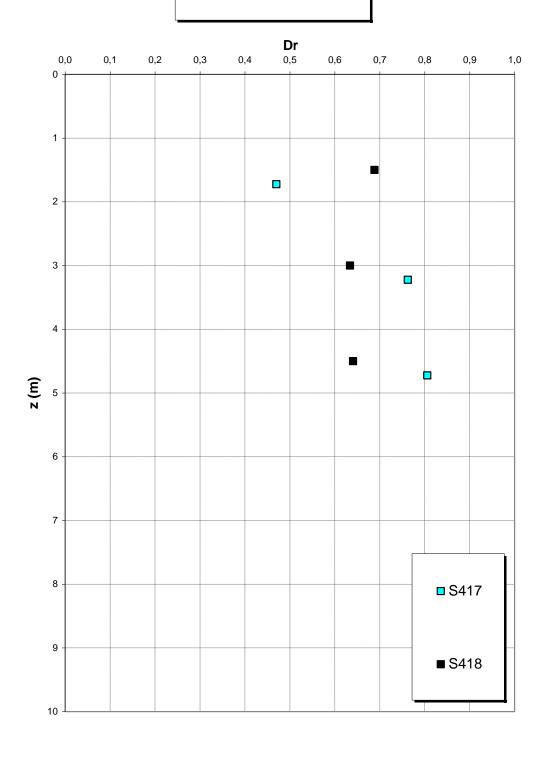
 $G_0 = 80 \div 150 \text{ MPa} \quad (0-10\text{m})$

E₀= 200÷300 MPa

E'= $30 \div 70 / 40 \div 100 \text{ MPa}$ (0-10m)

quest' ultimo range è relativo rispettivamente ad $1/10 \div 1/5$ E_0 ed ad 1/3 E_0 corrispondenti rispettivamente a medie- grandi deformazioni ed a piccole deformazioni.

Eurolink S.C.p.A. Pagina 32 di 255



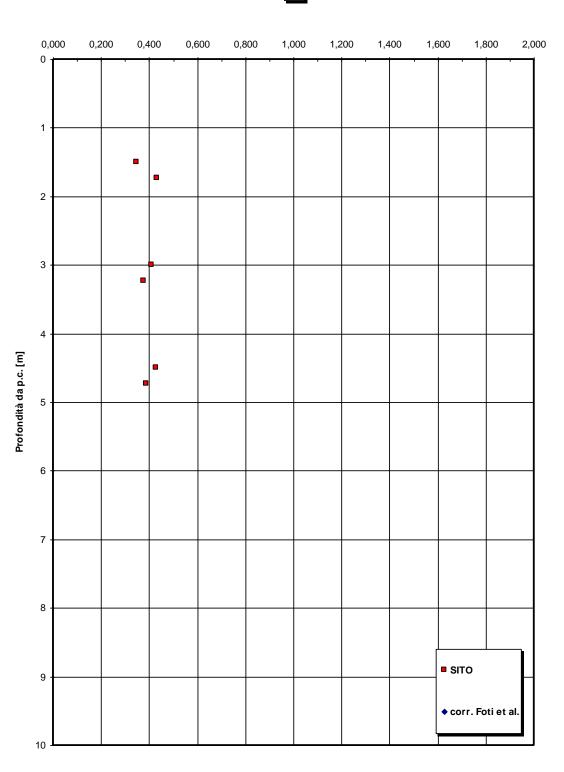
RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Dr Skempton (1986)
Componente sabbiosa prevalente
DEPOSITI ALLUVIONALI

Eurolink S.C.p.A. Pagina 33 di 255



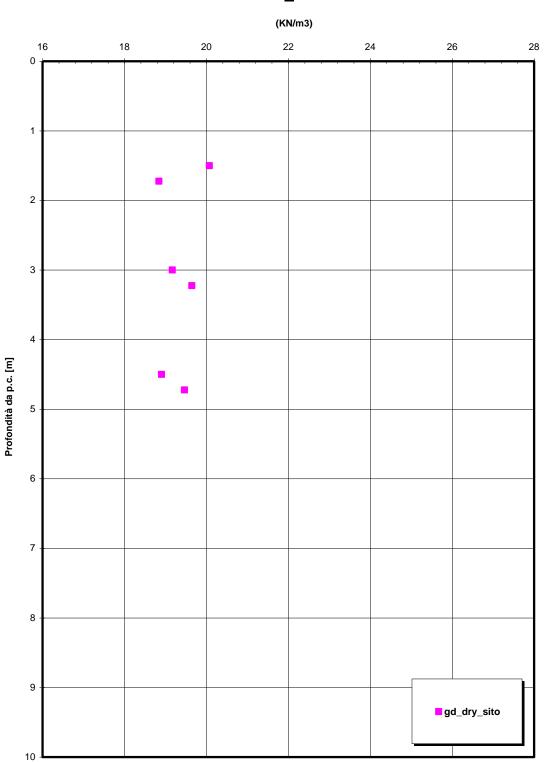
RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

eo

Eurolink S.C.p.A. Pagina 34 di 255

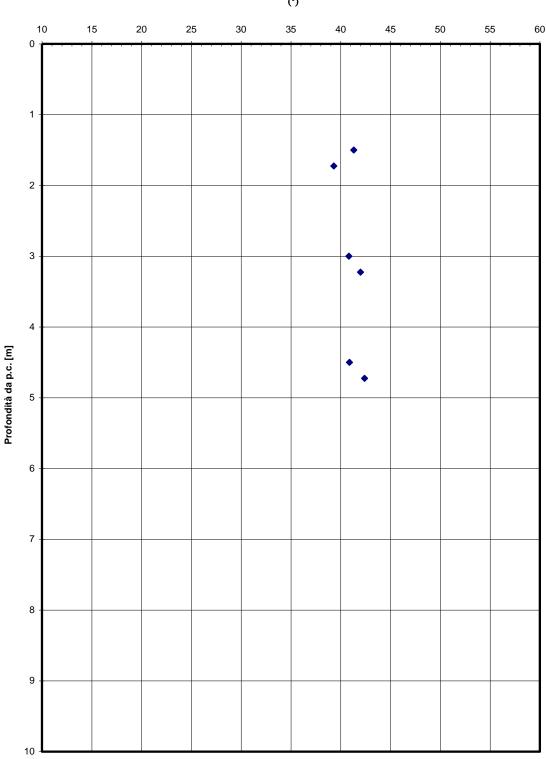


RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Eurolink S.C.p.A. Pagina 35 di 255

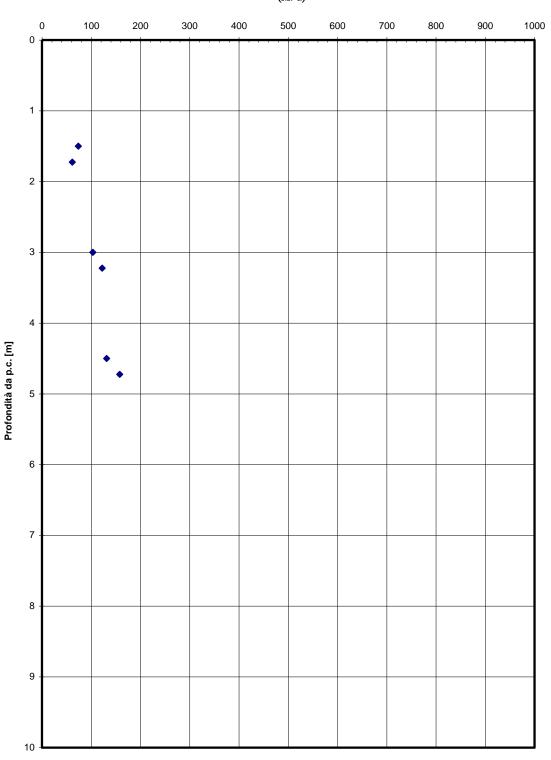


RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Eurolink S.C.p.A. Pagina 36 di 255

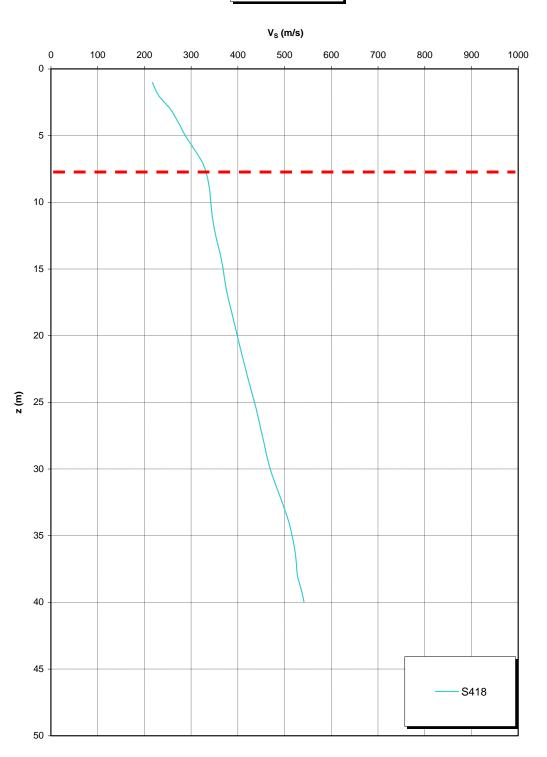


RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Eurolink S.C.p.A. Pagina 37 di 255

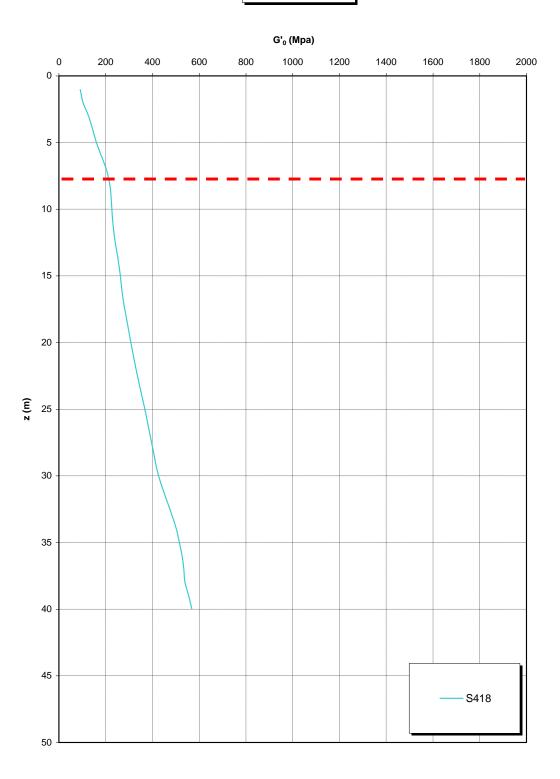


RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

Prove sismiche DEPOSITI ALLUVIONALI

Eurolink S.C.p.A. Pagina 38 di 255



RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Prove sismiche DEPOSITI ALLUVIONALI

Eurolink S.C.p.A. Pagina 39 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

4.2.4 Parametri principali assunti

Parametri principali assunti - GHIAIE DI MESSINA

Peso di volume $\gamma = 19 \text{ kN/m}^3$

Peso di volume saturo $\gamma_S = 23 \text{ kN/m}^3$

Angolo di attrito interno $\phi' = 38^{\circ}$ (prudenziale limite massimo)

Angolo di attrito terreno – fondazione $\phi' = 38^{\circ}$

Modulo deformazione elastico (z=3 m) E' = 50 MPa

Parametri principali assunti – DEPOSITI ALLUVIONALI

Peso di volume $\gamma = 20 \text{ kN/m}^3$

Peso di volume saturo $\gamma_S = 23.5 \text{ kN/m}^3$

Angolo di attrito interno $\phi' = 38^{\circ}$

Angolo di attrito terreno – fondazione $\phi' = 38^{\circ}$

Modulo deformazione elastico (z=3 m) E' = 45 MPa

Eurolink S.C.p.A. Pagina 40 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 **Data** 20/06/2011

4.3 CARATTERIZZAZIONE DELLA SISMICITA' DEL LUOGO

4.3.1 Vita nominale

La vita nominale di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata. Nel caso in oggetto, l'opera ricade all'interno del tipo di costruzione: "Grandi opere ordinarie, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica" (paragrafo 2.4 delle 'Nuove Norme tecniche per le costruzioni – D.M. 14 gennaio 2008").

La vita nominale si assume pertanto pari a $V_N = 100$ anni.

4.3.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un'eventuale collasso, le costruzioni sono suddivise in classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: costruzioni con funzioni pubbliche o strategiche importante, anche con riferimento alla gestione della protezione civile in caso di calamità..... Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico."

Il coefficiente d'uso si assume pertanto pari a $c_U = 2,0$.

4.3.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso CU. Tale coefficiente è funzione della classe d'uso.

 $V_R = V_N x C_U = 100 \text{ anni } x 2 = 200 \text{ anni}$

Le probabilità di superamento P_{VR} nel periodo di riferimento V_R , cui riferirsi per individuare l'azione sismica agente, sono pari al 10% nel caso dello stato limite SLV.

Eurolink S.C.p.A. Pagina 41 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

4.3.4 Parametri di progetto

Le azioni di progetto si ricavano, ai sensi delle NTC, dalle accelerazioni ag e dalle relative forme spettrali.

Le forme spettrali previste dalle NTC sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- a_q accelerazione orizzontale massima del terreno;
- F0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- TC* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno TR considerati dalla pericolosità sismica, i tre parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo ad:

a_q il valore previsto dalla pericolosità sismica;

 F_0 e T_C^* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica.

Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

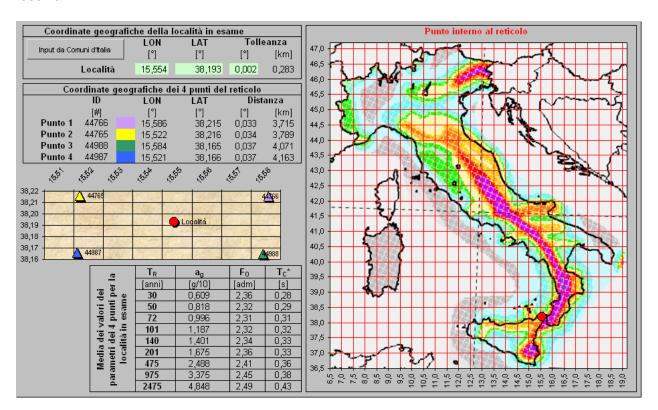
- la vita di riferimento VR della costruzione;
- le probabilità di superamento nella vita di riferimento PVR associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

A tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica TR, espresso in anni. Fissata la vita di riferimento VR, i due parametri TR e PVR sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

Eurolink S.C.p.A. Pagina 42 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc


Rev F0 **Data** 20/06/2011

$$T_R = -\frac{V_R}{ln(1-P_{VR})} = -\frac{200}{ln(1-0.1)} = 1.898$$
 anni

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'accelerazione al sito a_{α} è espressa in g/10; F_0 è adimensionale, T_C^* è espresso in secondi.

Nel seguito si riporta una tabella riassuntiva dei parametri che caratterizzano il Comune di Messina:

4.3.5 Classificazione sismica del terreno

Ai fini della definizione dell'azione sismica di progetto, in accordo con le NTC, si fa riferimento all'approccio semplificato che si basa sulla individuazione di categorie di sottosuolo di riferimento. Dallo studio geotecnico del sito presente nell'elaborato CG0800PRGDSSBC8G000000001B, si evince che non ci sono localmente indagini per caratterizzare la categoria sismica di suolo;

Eurolink S.C.p.A. Pagina 43 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

considerando la sismica a rifrazione SRD3, essa risulta pari a **C**, che include depositi di terreni a grana grossa mediamente addensati o terrreni a grana fina molto consistente.

4.3.6 Spettro di risposta elastico in accelerazione

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore della accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di a_g variano al variare della probabilità di superamento nel periodo di riferimento P_{VR} .

4.3.7 Spettro di risposta elastico in accelerazione delle componenti orizzontali

Lo spettro di risposta elastico della componente orizzontale è definito dalle espressioni sequenti:

$$0 \leq T \leq T_B \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B} \right) \right]$$

$$\boldsymbol{T}_{B} \leq \boldsymbol{T} \leq \boldsymbol{T}_{C} \qquad \boldsymbol{S}_{e}(\boldsymbol{T}) = \boldsymbol{a}_{g} \cdot \boldsymbol{S} \cdot \boldsymbol{\eta} \cdot \boldsymbol{F}_{0}$$

$$T_C \leq T \leq T_D \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C}{T}$$

$$T_D \leq T \qquad \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T^2} \right)$$

nelle quali T ed Se sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale.

Inoltre:

- S: è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente: $S = S_S \cdot S_T$
- essendo S_S il coefficiente di amplificazione stratigrafica e S_T il coefficiente di amplificazione topografica riportati nelle tabelle seguenti;

Eurolink S.C.p.A. Pagina 44 di 255

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011

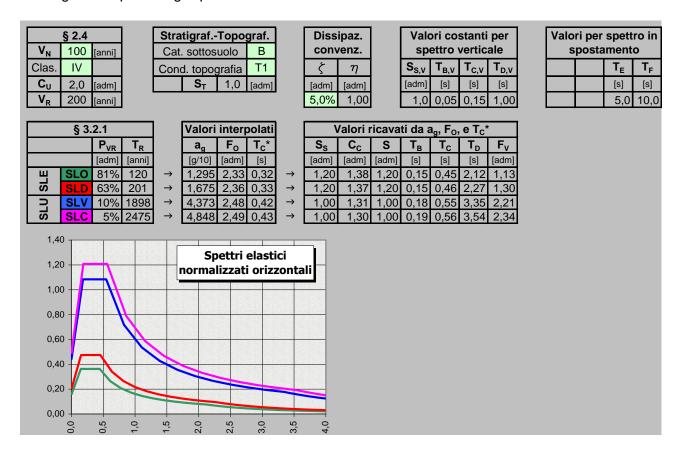
CATEGORIA SOTTOSUOLO	S _S	C _c
А	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_0 \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T * _C) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_0 \cdot \frac{a_g}{g} \le 1,50$	1,05 · (T * _C) ^{-0,33}
D	$0,90 \le 2,40 - 1,50 \cdot F_0 \cdot \frac{a_g}{g} \le 1,80$	1,25 · (T * _C) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_0 \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T * _C) ^{-0,40}

CATEGORIA TOPOGRAFICA	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,00
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,2

- η : è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali x diversi dal 5%, mediante la relazione: $\eta = \sqrt{\frac{10}{(5+\xi)}} \ge 0,55$
- dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione;
- Fo: è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;
- TC: è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da: T_C = C_C · T *_C; dove C_C è un coefficiente funzione della categoria di sottosuolo;
- \bullet TB: è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante; $T_B=T_C/3$

Eurolink S.C.p.A. Pagina 45 di 255

RELAZIONE GEOTECNICA


Codice documento
SS0690 F0.doc

Rev F0

Data 20/06/2011

• TD: è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione: $T_D = 4.0 \cdot \frac{a_g}{g} + 1.6$

Nel seguito si riportano gli spettri elastici orizzontali relativi al sito ed al terreno.

4.3.8 Spettro di risposta elastico in accelerazione delle componenti verticali

Lo spettro di risposta elastico in accelerazione della componente verticale è definito dalle espressioni seguenti:

$$0 \leq T \leq T_B \qquad S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_V \Bigg[\frac{T}{T_B} + \frac{1}{\eta \cdot F_O} \cdot \left(1 - \frac{T}{T_B}\right) \Bigg]$$

$$T_{\text{B}} \leq T \leq T_{\text{C}} \qquad S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{V}}$$

$$T_C \leq T \leq T_D \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_V \cdot \frac{T_C}{T}$$

Eurolink S.C.p.A. Pagina 46 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 **Data** 20/06/2011

$$T_D \leq T \qquad \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_V \cdot \left(\frac{T_C \cdot T_D}{T^2} \right)$$

nelle quali T e S_{ve} sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale verticale e F_v è il fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale, mediante la relazione:

$$F_V = 1.35 \cdot F_O \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

I valori di a_g , Fo, S_T , S, η sono quelli già definiti per le componenti orizzontali; i valori di S_S , T_B , T_C e T_D , sono invece quelli riportati nella tabella seguente.

CATEGORIA SOTTOSUOLO	S _s	T _B	T _c	T _D
A, B, C, D, E	1,00	0,05 s	0,15 s	1,0 s

4.3.9 Spettro di progetto

Per gli stati limite di esercizio lo spettro di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali che per la componente verticale, è lo spettro elastico corrispondente, riferito alla probabilità di superamento nel periodo di riferimento PVR considerata.

Per le verifiche agli stati limite ultimi lo spettro di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo spettro elastico corrispondente riferito alla probabilità di superamento nel periodo di riferimento P_{VR} considerata con le ordinate ridotte sostituendo η con 1/q, dove q è il fattore di struttura, nelle formule precedentemente riportate e comunque: $S_d(T) \ge 0.2 \cdot a_g$.

Il valore del fattore di struttura q da utilizzare per ciascuna direzione della azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato tramite la seguente espressione:

$$q = q_0 \times K_R = 1.0$$

Eurolink S.C.p.A. Pagina 47 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

5 ANALISI DELLE FONDAZIONI

5.1 ANALISI DEL SISTEMA FONDAZIONALE DELLA SPALLA A



Figura 5.1 – Vista laterale Spalla A.

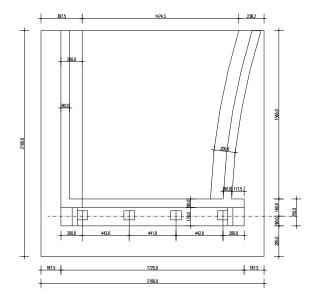


Figura 5.2 – Pianta Spalla A.

Eurolink S.C.p.A. Pagina 48 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

La spalla A, schematizzata nelle figure precedenti, è costituita da una ciabatta di fondazione a base quadrata con lati da 21,00 m, di spessore 2,60 m e da un muro frontale di spessore pari a 2,50 m. Sul muro frontale corre un muro paraghiaia caratterizzato da spessore 0,80 m ed altezza massima pari a 3,10 m.

Ai lati della spalla sono presenti due muri andatori paralleli all'asse stradale di lunghezza pari a 15,65 m, spessore variabile da 2,00 a 0,80 m e altezza massima pari a 14,20 m, che poggiano sulla medesima fondazione del muro frontale.

Eurolink S.C.p.A. Pagina 49 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

5.1.1 ANALISI DEI CARICHI

CARATTERISTICHE GEOMETRICHE DELLA SPALLA

Descrizione		X	Y	Z	n	γ	Peso	dx	bx	M long
		(m)	(m)	(m)		(kN/mc)	(kN)	(m)	(m)	(kNm)
fondazione	1	21,00	21,00	2,60	1	25	28.665	0,00	10,50	300.983
muro frontale	2	2,50	17,25	11,00	1	25	11.859	2,85	4,10	48.623
ringrosso	3	0,00	0,00	0,00	0	25	0	0,00	0,00	0
paraghiaia	4	0,80	17,25	2,85	1	25	983	4,55	4,95	4.867
muri laterali	5	15,65	1,40	14,05	2	25	15.392	5,35	13,18	202.787
terra	6	15,65	13,25	13,85	1	19,0	54.567	5,35	13,18	718.926
			_				111.467			1.276.186

altezza fronte vento ponte scarico (m) altezza fronte vento ponte carico (m) distanza tra asse appoggi e bordo anteriore fondazione (m) distanza tra bordo anteriore fondazione e baricentro dei pali (m) 2,95

5,84 3,75

10,50

1.084

AZIONI TRASMESSE DALL'IMPALCATO

momenti longitudinali rispetto al bordo anteriore

166

(kN) (kN) (kN) (kNm) (kNm) peso strutturale 698 0 0 2.618 35 permanenti 295 0 0 1.106 241 mezzi schema 1 3.947 0 0 14.801 2.117 mezzi schema 2 2.158 0 0 8.093 4.381 folla schema 1 18 0 0 68 146 folla schema 2 0 0 0 0 0 frenamento 0 148 0 -2.013 0 attrito / reazione gommoni ?T 0 77 0 -1.040 0 vento: impalcato scarico 371 0 72 0 -2.151 vento: impalcato carico 313 0 166 0 -3.826 temperatura 0 0 0 0 0 azione centrifuga 0 0 0 0 0		Ν	H long	H trasv	M long	M trasv
permanenti		(kN)	(kN)	(kN)	(kNm)	(kNm)
mezzi schema 1 3.947 0 0 14.801 2.117 mezzi schema 2 2.158 0 0 8.093 4.381 folla schema 1 18 0 0 68 146 folla schema 2 0 0 0 0 0 frenamento 0 148 0 -2.013 0 attrito / reazione gommoni ?T 0 77 0 -1.040 0 vento: impalcato scarico 371 0 72 0 -2.151 vento: impalcato carico 313 0 166 0 -3.826 temperatura 0 0 0 0 0 ritiro 0 0 0 0 400	peso strutturale	698	0	0	2.618	35
mezzi schema 2 2.158 0 0 8.093 4.381 folla schema 1 18 0 0 68 146 folla schema 2 0 0 0 0 0 frenamento 0 148 0 -2.013 0 attrito / reazione gommoni ?T 0 77 0 -1.040 0 vento: impalcato scarico 371 0 72 0 -2.151 vento: impalcato carico 313 0 166 0 -3.826 temperatura 0 0 0 0 0 ritiro 0 0 0 0 400	permanenti	295	0	0	1.106	241
folla schema 1 18 0 0 68 146 folla schema 2 0 0 0 0 0 0 frenamento 0 148 0 -2.013 0 0 attrito / reazione gommoni ?T 0 77 0 -1.040 0 0 0 0 -2.151 vento: impalcato scarico 371 0 72 0 -2.151 vento: impalcato carico 313 0 166 0 -3.826 0	mezzi schema 1	3.947	0	0	14.801	2.117
folla schema 2 0 0 0 0 frenamento 0 148 0 -2.013 0 attrito / reazione gommoni ?T 0 77 0 -1.040 0 vento: impalcato scarico 371 0 72 0 -2.151 vento: impalcato carico 313 0 166 0 -3.826 temperatura 0 0 0 0 0 ritiro 0 0 0 0 400	mezzi schema 2	2.158	0	0	8.093	4.381
frenamento 0 148 0 -2.013 0 attrito / reazione gommoni ?T 0 77 0 -1.040 0 vento: impalcato scarico 371 0 72 0 -2.151 vento: impalcato carico 313 0 166 0 -3.826 temperatura 0 0 0 0 0 ritiro 0 0 0 0 400	folla schema 1	18	0	0	68	146
attrito / reazione gommoni ?T 0 77 0 -1.040 0 vento: impalcato scarico 371 0 72 0 -2.151 vento: impalcato carico 313 0 166 0 -3.826 temperatura 0 0 0 0 0 ritiro 0 0 0 0 400	folla schema 2	0	0	0	0	0
vento: impalcato scarico 371 0 72 0 -2.151 vento: impalcato carico 313 0 166 0 -3.826 temperatura 0 0 0 0 0 ritiro 0 0 0 0 400	frenamento	0	148	0	-2.013	0
vento: impalcato carico 313 0 166 0 -3.826 temperatura 0 0 0 0 0 ritiro 0 0 0 0 400	attrito / reazione gommoni ?T	0	77	0	-1.040	0
temperatura 0 0 0 0 ritiro 0 0 0 0 400	vento: impalcato scarico	371	0	72	0	-2.151
ritiro 0 0 0 0 400	vento: impalcato carico	313	0	166	0	-3.826
	temperatura	0	0	0	0	0
azione centrifuga 0 0 0 0 0	ritiro	0	0	0	0	400
	azione centrifuga	0	0	0	0	0
sisma 1.348 1.154 620 15.694 8.556	sisma	1.348	1.154	620	15.694	8.556

Eccentricità dei carichi verticali (mt) 0,00

Mt H ° rad 148 Obliquità 0,00 0,00 77 1.066 72

Eurolink S.C.p.A. Pagina 50 di 255

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011

PARAMETRI SISMICI			PARAMETRI TERRENO				
accelerazione di picco	αg/g=	0,4373	Peso specifico del terreno:	19,0	kN/m³	γ	
coefficiente orizzontale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno rilevato	0,611	rad	ф	35,00 °
coefficiente verticale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno di base	0,663	rad	ф	38,00 °
	a _{max} =	0,437	Angolo di inclinazione del muro	1,571	rad	Ψ	90,00 °
	βm	0,31					
	Kh=	0,136	Angolo di inclinazione del terreno	0,000	rad	β	0,00 °
Kv=0,5 Kh	Kv=	0,068	Angolo di resistenza terra-muro	0,407	rad	δ	23,33 °
	$\theta_1 =$	0,126	Coefficiente di spinta del terreno	K1=	0,325		
	$\theta_2 =$	0.144		K2=	0.339		

Per le spinte inerziali $\beta m=1$ AZIONI TRASMESSE DAL TERRENO Kx= 0,437 Ky= 0,437 0,219 Kv= H long M long AZIONI INERZIALI SIS. TRASMESSE DALLA SPALLA H long (kN/mq) Ν (kN) (kNm) H trasv M long M trasv Ed= spinta terreno sismica+statica 16.063 -99.172 (kN) (kN) (kN) (kNm) (kNm) 133,28 18.910 -103.688 Sisma + 24.372 48.744 48.744 356.837 356.837 spinta a riposo 84,70 12.017 -65.893 Sisma - -12.441 -24.882 -24.882 -129.548 -129.548 spinta attiva 160,82 spinta passiva plinto (50%) 2.195 1.903 spinta per sovraccarichi 3,84 1.089 -8.957 M long р N vert H long (kN/mg) (kNm) (kN) (kN) Sovraccarico Larghezza pavimentato 14,45 m 2.071 4.974 -40.911 64,46 sommità numero stese piede muro 17,76 angolo diffusione 30,00 0,52

Eurolink S.C.p.A. Pagina 51 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

VERIFICHE DI STABILITA'

VERIFICHE DI STABILITA	Ν	Mrib	M stab	η	и	е	
	(kN)	(kNm)	(kNm)	,,	(m)	(m)	SL
Combinazione 1	128.919	-135.835	1.495.919	11,01	10,55	-0,05	
Combinazione 2	133.468	-146.136	1.512.979	10,35	10,24	0,26	
Combinazione 3	131.400	-146.136	1.505.226	10,30	10,34	0,16	
Combinazione 4	132.323	-145.876	1.508.685	10,34	10,30	0,20	
Combinazione 5	130.780	-145.876	1.502.899	10,30	10,38	0,12	SLU GEO
Combinazione 6	132.323	-142.521	1.512.040	10,61	10,35	0,15)TO
Combinazione 7	130.780	-142.521	1.506.254	10,57	10,43	0,07	0)
Combinazione 8	132.323	-143.561	1.508.685	10,51	10,32	0,18	
Combinazione 9	130.780	-143.561	1.502.899	10,47	10,39	0,11	
Combinazione 10	131.544	-182.883	1.498.300	8,19	10,00	0,50	
Combinazione 11	160.050	-156.937	1.835.883	11,70	10,49	0,01	
Combinazione 12	165.391	-169.029	1.855.910	10,98	10,20	0,30	
Combinazione 13	162.963	-169.029	1.846.807	10,93	10,30	0,20	
Combinazione 14	164.046	-168.724	1.850.869	10,97	10,25	0,25	~
Combinazione 15	162.235	-168.724	1.844.076	10,93	10,33	0,17	SLU STR
Combinazione 16	164.046	-164.602	1.854.991	11,27	10,30	0,20	SLU
Combinazione 17	162.235	-164.602	1.848.198	11,23	10,38	0,12	0,
Combinazione 18	164.046	-166.006	1.850.869	11,15	10,27	0,23	
Combinazione 19	162.235	-166.006	1.844.076	11,11	10,34	0,16	
Combinazione 20	163.127	-212.167	1.838.678	8,67	9,97	0,53	
Comb SLE 1	112.460	-104.729	1.279.909	12,22	10,45	0,05	
Comb SLE 2	116.416	-113.686	1.294.744	11,39	10,15	0,35	
Comb SLE 3	114.618	-113.686	1.288.002	11,33	10,25	0,25	
Comb SLE 4	115.420	-113.460	1.291.010	11,38	10,20	0,30	
Comb SLE 5	114.078	-113.460	1.285.979	11,33	10,28	0,22	SLE
Comb SLE 6	115.420	-110.406	1.294.064	11,72	10,26	0,24	S
Comb SLE 7	114.078	-110.406	1.289.032	11,68	10,33	0,17	
Comb SLE 8	115.420	-111.447	1.291.010	11,58	10,22	0,28	
Comb SLE 9	114.078	-111.447	1.285.979	11,54	10,30	0,20	
Comb SLE 10	114.718	-145.640	1.281.980	8,80	9,91	0,59	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	121.758	-551.032	1.287.746	2,34	6,05	4,45	
perm + sisma X + 0,30 sisma (Y+Z) schema 2	121.039	-551.032	1.285.049	2,33	6,06	4,44	SLV

Eurolink S.C.p.A. Pagina 52 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Si riportano nel seguito i valori delle azioni agenti alla base della fondazione per le varie combinazioni di carico riportate alla pagina successiva. Tali azioni rappresentano i valori assunti per l'analisi del sistema fondazionale in base all'approccio 1 delle NTC 2008.

AZIONI GLOBALI NORME TECNICHE 2008

AZIONI GLOBALI NORME IECNICHE 2006	Ν	M long	M trasv	T long	T trasv	
	(kN)	(kNm)	(kNm)	(kN)	(kN)	
Combinazione 1	128.919	-6.439	3.545	24.659	94	
Combinazione 2	133.468	34.571	6.251	25.912	129	
Combinazione 3	131.400	20.614	8.771	25.912	129	
Combinazione 4	132.323	26.581	5.559	25.769	129	0
Combinazione 5	130.780	16.165	7.511	25.769	129	SLU GEO
Combinazione 6	132.323	19.870	7.511	25.275	129	SLU
Combinazione 7	130.780	9.455	7.511	25.275	129	
Combinazione 8	132.323	24.266	5.559	25.598	129	
Combinazione 9	130.780	13.850	7.511	25.598	129	
Combinazione 10	131.544	65.793	3.733	30.379	129	
Combinazione 11	160.050	1.581	4.116	28.468	108	
Combinazione 12	165.391	49.723	7.289	29.938	149	
Combinazione 13	162.963	33.338	10.247	29.938	149	
Combinazione 14	164.046	40.343	6.476	29.770	149	~
Combinazione 15	162.235	28.116	8.768	29.770	149	STF
Combinazione 16	164.046	32.099	8.768	29.164	149	SLU STR
Combinazione 17	162.235	19.873	8.768	29.164	149	
Combinazione 18	164.046	37.626	6.476	29.571	149	
Combinazione 19	162.235	25.399	8.768	29.571	149	
Combinazione 20	163.127	86.323	4.332	31.263	149	
Comb SLE 1	112.460	5.648	2.827	18.986	72	
Comb SLE 2	116.416	41.308	5.162	20.075	100	
Comb SLE 3	114.618	29.171	7.353	20.075	100	
Comb SLE 4	115.420	34.360	4.560	19.951	100	
Comb SLE 5	114.078	25.303	6.258	19.951	100	SLE
Comb SLE 6	115.420	28.254	6.258	19.502	100	SI
Comb SLE 7	114.078	19.197	6.258	19.502	100	
Comb SLE 8	115.420	32.347	4.560	19.803	100	
Comb SLE 9	114.078	23.291	6.258	19.803	100	
Comb SLE 10	114.718	68.201	2.972	21.057	100	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	121.758	379.957	110.317	63.766	14.809	SLV
perm + sisma X + 0,30 sisma (Y+Z) schema 2	121.039	377.542	110.494	63.766	14.809	SI

Eurolink S.C.p.A. Pagina 53 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Combinazioni statiche

PRINCIPALE	P.p.	Perm.	Attrito	<u>۔</u> ع	Temperatura	atura	Vento		Accic	Accident.	ñ	Folla	Frena	Frenamento	_=	- Ritiro	Gent	Centrifuga
	7G1	7,62	¥.)/G2		, E2,		ģ	4°	ğ	4°	ģ	Ψ°	2	¥°	ģ	4°	ģ
	1,00	1,30	1,0	1,30	09'0	1,00	1,00	1,30							1,00	8		
T	\neg	1,30	1,00	1,30	09'0	1,8	090	1,38	1,00	1,15	05'0	1,15	00'0	1,15	1,00	1,00	00'0	1,15
	1,00	1,30	1,00	1,30	09'0	1,00	09'0	1,30	1,00	1,15	05'0	1,15	00'0	1,15	1,00	1,00	00'0	1,15
Gruppo 2a centr.	1,00	1,30	1,00	1,30	09'0	1,00	09'0	1,30	0,75	1,15	00'0	1,15	1,00	1,15	1,00	1,8	00'0	1,15
Gruppo 2a ecc.	1,00	1,30	1,00	1,30	09'0	1,00	09'0	1,30	0,75	1,15	00'0	1,15	1,00	1,15	1,00	1,00	00'0	1,15
Gruppo 2b centr.	1,00	1,30	1,00	1,30	09'0	1,00	09'0	1,30	0,75	1,15	0,0	1,15	0,00	1,15	1,00	1,0	1,00	1,15
Gruppo 2b ecc.	1,00	1,30	1,00	1,30	09'0	1,00	0,60	1,30	0,75	1,15	00'00	1,15	0,00	1,15	1,00	1,00	1,00	1,15
	1,35	1,50	9	1,50	09'0	1,20	1,00	1,50							1,00	1,20		
Gruppo 1 centr.	_	1,50	1,00	1,50	09'0	1,20	09'0	1,50	1,00	1,35	0,50	1,35	00'0	1,35	1,00	1,20	0,0	1,35
Gruppo 1 ecc.	1,35	1,50	8	1,50	09'0	1,20	0,60	1,50	1,00	1,35	0,50	1,35	8,0	1,35	1,8	1,20	8,0	1,35
Gruppo 2a centr.	1,35	1,50	90,1	1,50	09'0	1,20	0,60	1,50	0,75	1,35	80	1,35	1,00	1,35	1,00	1,20	0,0	1,35
Gruppo 2a ecc.	1,35	1,50	9,1	1,50	09'0	1,20	0,60	1,50	0,75	1,35	80'0	1,35	1,00	1,35	1,00	1,20	0,0	1,35
Gruppo 2b centr.	1,35	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'0	1,35	00'0	1,35	1,00	1,20	1,00	1,35
Gruppo 2b ecc.	1,35	1,50	1,00	1,50	09'0	1,20	0,60	1,50	0,75	1,35	00'00	1,35	0,00	1,35	1,00	1,20	1,00	1,35
	1,10	1,50	9,1	1,50	09'0	1,20	1,00	1,50							1,00	1,20		
Gruppo 1 centr.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	1,00	1,35	05'0	1,35	00'0	1,35	1,00	1,20	00'0	1,35
Gruppo 1 ecc.	1,10	1,50	1,00	1,50	09'0	1,20	0,60	1,50	1,00	1,35	0,50	1,35	0,0	1,35	1,00	1,20	0,0	1,35
Gruppo 2a centr.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'0	1,35	1,00	1,35	1,00	1,20	00'0	1,35
Gruppo 2a ecc.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'0	1,35	1,00	1,35	1,00	1,20	00'0	1,35
Gruppo 2b centr.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'0	1,35	00'0	1,35	1,00	1,20	1,00	1,35
Gruppo 2b ecc.	1,10	1,50	1,00	1,50	09'0	1,20	0,60	1,50	0,75	1,35	00'00	1,35	00'00	1,35	1,00	1,20	1,00	1,35

Eurolink S.C.p.A. Pagina 54 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Combinazioni sismiche

Le combinazioni sismiche assunte per le verifiche delle fondazioni sono quelle con direzione principale coincidente con la direzione longitudinale del viadotto, in quanto più sfavorevoli per le verifiche di scorrimento e di portanza della fondazione stessa.

Combinazione	P.p.	Perm.	Accid.	Sisma	Sisma	Sisma
				Χ	Υ	Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30

Eurolink S.C.p.A. Pagina 55 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 Data 20/06/2011

5.1.2 MODELLO DI CALCOLO

Per il calcolo della capacità portante delle fondazioni profonde si utilizza il software di calcolo Aztec CARL 10.0 versione 10.05.b – carico limite e cedimenti.

5.1.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Progetto: Curcuraci lato Reggio Calabria – spalla SpA

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

Eurolink S.C.p.A. Pagina 56 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 Data 20/06/2011

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$Q_u / R >= \eta_a$$

Le espressioni di Brinch-Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5B' \gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$q_u = c_u N_c s_c d_c i_c b_c g_c + q$$

in cui d_c , d_q , d_γ , sono i fattori di profondità; s_c , s_q , s_γ , sono i fattori di forma; i_c , i_q , i_γ , sono i fattori di inclinazione del carico; b_c , b_q , b_γ , sono i fattori di inclinazione del piano di posa; g_c , g_q , g_γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$N_c = (N_q - 1)ctg\phi$$

Eurolink S.C.p.A. Pagina 57 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$N_{\gamma} = 2.0(N_{q} - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

$$S_q = 1 + 0.1 - C$$
 $S_q = 1 + 0.1 - C$
 $S_q = 1 + 0.1 - C$

Fattori di profondità

Si definisce il parametro k come

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$\begin{array}{ccc} & D & D \\ k = arctg & & se & ---- > 1 \\ & B' & B' \end{array}$$

vari coefficienti si esprimono come

per
$$\phi = 0$$
 $d_c = 1 + 0.4k$

$$\begin{array}{c} 1 - d_q \\ \\ per \, \varphi > 0 \end{array} \qquad d_c = d_q - \begin{array}{c} \\ \\ N_c \, tg \, \varphi \end{array}$$

$$d_q = 1 + 2 tg \phi (1-sin\phi)^2 k$$

$$_{\gamma} = 1$$

Fattori di inclinazione del carico

Indichiamo con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con A_f l'area efficace della fondazione ottenuta come A_f = B'xL' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico e_B , e_L dalle relazioni B' = B-2 e_B L' = L-2 e_L) e con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

$$per \, \varphi > 0 \qquad \quad i_c = i_q - \frac{1 \, \text{-} \, i_q}{N_q \, \text{-} \, 1} \label{eq:perp}$$

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$i_{q} = (1 - \frac{H}{V + A_{f} c_{a} ctg\phi})^{m}$$

$$per \; \eta = 0 \qquad \quad i_{\gamma} = (1 \; - \; \frac{H}{V \; + \; A_f \; c_a \; ctg \varphi})^{m+1} \label{eq:per eta}$$

dove
$$m = \frac{2 + B' / L'}{1 + B' / L'}$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi$$
=0
$$b_c = 1 - \frac{2 \, \eta}{\pi + 2}$$

$$\begin{array}{ccc} & & & & & & \\ & 1 - b_q & & & & \\ & per \; \phi {>} 0 & & b_c = b_q - \frac{}{N_c \; tg \; \phi} \end{array}$$

$$b_q = (1 - \eta tg \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle espressioni seguenti:

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$g_c = \frac{1 - 2\beta}{\pi + 2}$$

$$g_q = g_y = (1 - tg\beta)^2$$

poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < Vtg\delta + A_fc_a$$

$$\beta \ll \phi$$

$$i_q, i_\gamma > 0$$

$$\beta$$
 + η <= 90°

Verifica della portanza per carichi orizzontali (scorrimento)

Per la verifica a scorrimento lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere la fondazione deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere la fondazione F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

Eseguendo il calcolo mediante gli Eurocodici si può impostare η_s >=1.0

$$F_r$$
 $\longrightarrow >= \eta_s$
 F_s

Eurolink S.C.p.A.

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 Data 20/06/2011

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle della fondazione. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

Calcolo delle tensioni indotte

Metodo di Boussinesq

Il metodo di Boussinesq considera il terreno come un mezzo omogeneo elastico ed isotropo. Dato un carico concentrato Q, applicato in superficie, la relazione di Boussinesq fornisce la seguente espressione della tensione verticale indotta in un punto P(x,y,z) posto alla profondità z:

$$q_v = \frac{3Qz^3}{2\pi R^5}$$

dove:
$$R = (x^2 + y^2 + z^2)^{1/2}$$
;

Per ottenere la pressione indotta da un carico distribuito occorre integrare tale espressione su tutta l'area di carico, considerando il carico Q come un carico infinitesimo agente su una areola dA. L'integrazione analitica di questa espressione si presenta estremamente complessa specialmente nel caso di carichi distribuiti in modo non uniforme. Pertanto si ricorre a metodi di soluzione numerica. Dato il carico agente sulla fondazione, si calcola il diagramma delle pressioni indotto sul piano di posa della fondazione. Si divide l'area di carico in un elevato numero di areole rettangolari

Eurolink S.C.p.A. Pagina 62 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

a ciascuna delle quali compete un carico dQ: la tensione indotta in un punto P(x,y,z), posto alla profondità z, si otterrà sommando i contributi di tutte le areole di carico calcolati come nella formula di Boussinesq.

Geometria della fondazione

Simbologia adottata

Descrizione Destrizione della fondazione

Forma Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

- X Ascissa del baricentro della fondazione espressa in [m]
- Y Ordinata del baricentro della fondazione espressa in [m]
- B Base/Diametro della fondazione espressa in [m]
- L Lunghezza della fondazione espressa in [m]
- D Profondità del piano di posa in [m]
- α Inclinazione del piano di posa espressa in [°]
- ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
Fondazione	(R)	10,50	10,50	21,00	21,00	3,00	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

- γ Peso di volume del terreno espresso in [daN/mc]
- γ_{sat} Peso di volume saturo del terreno espresso in [daN/mc]
- ϕ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi
- c Coesione del terreno espressa in [daN/cmq]
- ca Adesione del terreno espressa in [daN/cmq]

Eurolink S.C.p.A. Pagina 63 di 255

RELAZIONE GEOTECNICA

Codice documento	Rev	Data
SS0690_F0.doc	F0	20/06/2011

Descrizione	γ	γ_{sat}	ф	δ	С	са
Depositi fluviali	2000,0	2350,0	38,00	38,00	0,000	0,000
Ghiaie di messina	1900,0	2300,0	38,00	38,00	0,000	0,000

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = -10.0 [m] Y = 3.0 [m] Punto di sondaggio n° 2: X = 0.0 [m] Y = 0.0 [m] Punto di sondaggio n° 3: X = 10.0 [m] Y = 3.0 [m]

Terreno	Z 3	Z2	Z1	N
Depositi fluviali	-3,5	-3,5	-3,5	1
Ghiaie di messina	-30,0	-30,0	-30,0	2

Normativa

N.T.C. 2008

Calcolo secondo: Approccio 1

Simbologia adottata

 γ_{Gsfav} Coefficiente parziale sfavorevole sulle azioni permanenti

γ_{Gfav} Coefficiente parziale favorevole sulle azioni permanenti

γ_{Qsfav} Coefficiente parziale sfavorevole sulle azioni variabili

 γ_{Qfav} Coefficiente parziale favorevole sulle azioni variabili

 $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato

Eurolink S.C.p.A. Pagina 64 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

- $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione drenata
- γ_{cu} Coefficiente parziale di riduzione della coesione non drenata
- γ_{qu} Coefficiente parziale di riduzione del carico ultimo
- γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{\sf Gfav}$	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,30	1,00
Variabili	Favorevole	$\gamma_{\sf Qfav}$	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,00	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri M1 M2

Eurolink S.C.p.A. Pagina 65 di 255

RELAZIONE GEOTECNICA

Codice documento	Rev	Data
SS0690_F0.doc	F0	20/06/2011

Tangente dell'angolo di attrito	γ _{tanφ'}	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

		R1	R2	R3
Capacità portante	γ_{r}	1,00	1,80	2,30
Scorrimento	γ_{r}	1,00	1,10	1,10

Coeff. di combinazione Ψ_0 = 0,70 Ψ_1 = 0,50 Ψ_2 = 0,20

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione	Nome identificativo della fondazione
N	Sforzo normale totale espressa in [daN]
Mx	Momento in direzione X espressa in [daNm]
My	Momento in direzione Y espresso in [daNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]
T	Forza di taglio espressa in [daN]

5.1.2.2 VERIFICHE APPROCCIO 1 – COMBINAZIONE 1

Condizione n° 1 (Condizione n° 1)

Eurolink S.C.p.A. Pagina 66 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 \$S0690_F0.doc
 F0
 20/06/2011

Fondazione	N	Mx	Му	ex	еу	β	Т		
Fondazione	16005000,0	411600,0	158100,0	0,0	0,0	89,8	2846820,5		
Condizione n° 2 (Condizione n° 2)									
Fondazione	N	Mx	Му	ex	еу	β	Т		
Fondazione	16539100,0	728900,0	4972300,0	0,3	0,0	89,7	2993837,1		
Condizione n	3 (Condizior	<u>ne n° 3)</u>							
Fondazione	N	Mx	Му	ex	ey	β	Т		
Fondazione	16296300,0	1024700,0	3333800,0	0,2	-0,1	89,7	2993837,1		
Condizione n° 4 (Condizione n° 4)									
Fondazione	N	Mx	Му	ex	еу	β	Т		
Fondazione	16404600,0	647600,0	4034300,0	0,2	0,0	89,7	2977037,3		
Condizione n	° 5 (Condizior	<u>ne n° 5)</u>							
Fondazione	N	Mx	Му	ex	ey	β	Т		
Fondazione	16223500,0	876800,0	2811600,0	0,2	-0,1	89,7	2977037,3		
Condizione n° 6 (Condizione n° 6)									
Fondazione	N	Mx	Му	ex	еу	β	Т		
Fondazione	16404600,0	876800,0	3209900,0	0,2	-0,1	89,7	2916438,1		
Condizione n	Condizione n° 7 (Condizione n° 7)								
Fondazione	N	Mx	Му	ex	ey	β	Т		
Fondazione	16223500,0	876800,0	1987300,0	0,1	-0,1	89,7	2916438,1		

Eurolink S.C.p.A. Pagina 67 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Condizione n° 8 (Co	ondizione n° 8)
---------------------	-----------------

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	16404600.0	647600.0	3762600.0	0.2	0.0	89.7	2957137.5

Condizione n° 9 (Condizione n° 9)

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	16223500,0	876800,02539	99000.0	1,6	-0,1	89,7 2957	7137,5

Condizione n° 10 (Condizione n° 10)

Fondazione	N	Mx	My	ex	ey	β	Т
Fondazione	16312700,0	433200,0 86	32300,0	0,5	0,0	89,7 3126	335,5

Descrizione combinazioni di carico

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione nº 1 SLU - Caso A1-M1

	γ	Ψ	С
Condizione n° 1	1.00	1.00	1.00

Combinazione n° 2 SLU - Caso A1-M1

	γ	Ψ	С
Condizione n° 2	1.00	1.00	1.00

Combinazione n° 3 SLU - Caso A1-M1

 γ Ψ C

Eurolink S.C.p.A. Pagina 68 di 255

Condizione n° 3

1.00

1.00

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc

1.00

Rev F0

Data 20/06/2011

Combinazione n° 4 SLU - Ca	aso A1-M1		
	γ	Ψ	С
Condizione n° 4	1.00	1.00	1.00
Combinazione n° 5 SLU - Ca	200 A1 M1		
Combinazione II 5 SEO - Ca		\ - /	_
	γ	Ψ	С
Condizione n° 5	1.00	1.00	1.00
Combinazione n° 6 SLU - Ca	aso A1-M1		
<u></u>	γ	Ψ	С
	·	_	
Condizione n° 6	1.00	1.00	1.00
Combinazione n° 7 SLU - Ca	aso A1-M1		
	γ	Ψ	С
Condizione n° 7	1.00	1.00	1.00
Combinazione nº 8 SLU - Ca	aso A1-M1		
	γ	Ψ	С
Condizione n° 8	1.00	1.00	1.00
0 1: : 000:	0.4.044		
Combinazione n° 9 SLU - Ca	aso A1-M1		
	γ	Ψ	С

1.00

γ

1.00

Analisi in condizioni drenate

Combinazione nº 10 SLU - Caso A1-M1

Condizione nº 9

Condizione n° 10

Eurolink S.C.p.A. Pagina 69 di 255

1.00

Ψ

1.00

1.00

C

1.00

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 Data 20/06/2011

Verifica della portanza per carichi verticali

Il calcolo della portanza è stato eseguito col metodo di Brinch-Hansen La relazione adottata è la seguente:

$$q_u = c \ N_c \ s_c \ i_c \ d_c \ b_c \ g_c + q \ N_q \ s_q \ i_q \ d_q \ b_q \ g_q + 0.5 \ B\gamma \ N_\gamma \ s_\gamma \ i_q \ d_q \ b_\gamma \ g_\gamma$$

Altezza del cuneo di rottura: AUTOMATICA

Il criterio utilizzato per il calcolo del macrostrato equivalente è stato la MEDIA PESATA

Nel calcolo della portanza sono state richieste le seguenti opzioni:

Riduzione sismica: NESSUNA

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1,00

Riduzione per carico eccentrico: MEYERHOF

Riduzione per rottura locale o punzonamento del terreno: VESIC

Meccanismo di punzonamento in presenza di falda.

Fondazione

Combinazione nº 1

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 21,53 [m]

Peso specifico terreno $\gamma = 1902,32$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.22 [daN/cmq]

Eurolink S.C.p.A. Pagina 70 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Base ridotta B' = B - 2 ex = 20,98 [m]Lunghezza ridotta L' = L - 2 ey = 20,95 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_q = 0.75$	$i_{\gamma} = 0.61$
$d_q = 1,03$	$d_{\gamma} = 1,00$
$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_{q} = 1,00$	$g_{\gamma} = 1,00$
	$s_q = 1,00$ $i_q = 0,75$ $d_q = 1,03$ $b_q = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 15.36 + 64.82 = 80.18 [daN/cmq]$$

$$Q_u = 352375816.52 [daN]$$

 $Q_d = 352375816,52 \text{ [daN]}$ V = 16005000,00 [daN]

 $\eta = Q_u / V = 352375816,52 / 16005000,00 = 22,02$

Indici rigidezza

$$I_c = 0.74$$
 $I_{rc} = 172.47$

Combinazione nº 2

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 21,53 [m]

Eurolink S.C.p.A. Pagina 71 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Peso specifico terreno $\gamma = 1902,32$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.22 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,40 [m]Lunghezza ridotta L' = L - 2 ey = 20,91 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.74$	$i_q = 0.74$	$i_{\gamma} = 0,61$
$d_c = 1,03$	$d_{q} = 1.03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 15.27 + 62.42 = 77.69 [daN/cmq]$$

 $Q_u = 331405337,81 [daN]$

 $Q_d = 331405337,81 [daN]$

V = 16539100,00 [daN]

 $\eta = Q_u / V = 331405337,81 / 16539100,00 = 20,04$

Indici rigidezza

 $I_c = 0.74$ $I_{rc} = 172.47$

Combinazione n° 3

Eurolink S.C.p.A. Pagina 72 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 21,53 [m]

Peso specifico terreno $\gamma = 1902,32$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.22 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,59 [m]Lunghezza ridotta L' = L - 2 ey = 20,87 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.73$	$i_q = 0.74$	$i_{\gamma} = 0,60$
$d_c = 1,03$	$d_{q} = 1,03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_q = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 15.19 + 62.49 = 77.68 [daN/cmq]$$

 $Q_u = 333904016,17 [daN]$

 $Q_d = 333904016,17 [daN]$

V = 16296300,00 [daN]

 $\eta = Q_u / V = 333904016,17 / 16296300,00 = 20,49$

Indici rigidezza

Eurolink S.C.p.A. Pagina 73 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$I_c = 0.73$$

$$I_{rc} = 172,47$$

Combinazione nº 4

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 21,53 [m]

Peso specifico terreno $\gamma = 1902,32$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.22 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,51 [m]Lunghezza ridotta L' = L - 2 ey = 20,92 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.74$	$i_q = 0.74$	$i_{\gamma} = 0.61$
$d_c = 1,03$	$d_{q} = 1,03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 15.26 + 62.67 = 77.92 [daN/cmq]$$

 $Q_u = 334333110,83 [daN]$

 $Q_d = 334333110,83 [daN]$

V = 16404600,00 [daN]

Eurolink S.C.p.A. Pagina 74 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

 $\eta = Q_u / V = 334333110,83 / 16404600,00 = 20,38$

Indici rigidezza

 $I_c = 0.74$

 $I_{rc} = 172,47$

Combinazione nº 5

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 21,53 [m]

Peso specifico terreno $\gamma = 1902,32$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.22 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,65 [m]Lunghezza ridotta L' = L - 2 ey = 20,89 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.73$	$i_q = 0.74$	$i_{\gamma} = 0,60$
$d_c = 1,03$	$d_{q} = 1,03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

 $q_u = 0.00 + 15.20 + 62.72 = 77.92 [daN/cmq]$

Eurolink S.C.p.A. Pagina 75 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

 $Q_u = 336220997,34 \text{ [daN]}$

 $Q_d = 336220997,34 [daN]$

V = 16223500,00 [daN]

 $\eta = Q_u / V = 336220997,34 / 16223500,00 = 20,72$

Indici rigidezza

$$I_c = 0.73$$
 $I_{rc} = 172.47$

Combinazione nº 6

Modulo di taglio

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 21,53	[m]
Peso specifico terreno	$\gamma = 1902,32$	[daN/mc]
Angolo di attrito	$\phi = 38,00$	[°]
Coesione	c = 0.00	[daN/cmq]

Base ridotta B' = B - 2 ex = 20,61 [m]Lunghezza ridotta L' = L - 2 ey = 20,89 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

G = 165,22 [daN/cmq]

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.74$	$i_q = 0.75$	$i_{\gamma} = 0,61$
$d_c = 1,03$	$d_{q} = 1,03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Eurolink S.C.p.A. Pagina 76 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 15.36 + 63.69 = 79.05 [daN/cmq]$$

 $Q_u = 340360225,82 \text{ [daN]}$

 $Q_d = 340360225,82 [daN]$

V = 16404600,00 [daN]

$$\eta = Q_u / V = 340360225,82 / 16404600,00 = 20,75$$

Indici rigidezza

$$I_c = 0.74$$
 $I_{rc} = 172.47$

Combinazione n° 7

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 21,53	[m]
-----------------------	-----------	-----

Peso specifico terreno $\gamma = 1902,32$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.22 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,76 [m]Lunghezza ridotta L' = L - 2 ey = 20,89 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 61,35$ $N_q = 48,93$ $N_\gamma = 78,02$ $s_c = 1,00$ $s_\gamma = 1,00$

Eurolink S.C.p.A. Pagina 77 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

$i_c = 0.74$	$i_q = 0.74$	$i_{\gamma} = 0,61$
$d_c = 1,03$	$d_q = 1,03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_q = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 15.30 + 63.75 = 79.06 \text{ [daN/cmq]}$$

$$Q_u = 342802666.85 \text{ [daN]}$$

$$Q_d = 342802666.85 \text{ [daN]}$$

$$V = 16223500.00 \text{ [daN]}$$

$$\eta = Q_u / V = 342802666.85 / 16223500.00 = 21.13$$

Indici rigidezza

$$I_c = 0.74$$
 $I_{rc} = 172.47$

Combinazione nº 8

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 21,53	[m]
Peso specifico terreno	$\gamma = 1902,32$	[daN/mc]
Angolo di attrito	$\phi = 38,00$	[°]
Coesione	c = 0.00	[daN/cmq]
Modulo di taglio	G = 165,22	[daN/cmq]

Base ridotta
$$B' = B - 2 ex = 20,54 [m]$$

Lunghezza ridotta $L' = L - 2 ey = 20,92 [m]$

Eurolink S.C.p.A. Pagina 78 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.74$	$i_q = 0.74$	$i_{\gamma} = 0,61$
$d_c = 1,03$	$d_{q} = 1.03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 15.29 + 63.00 = 78.29 \text{ [daN/cmq]}$$

 $Q_u = 336454442,47 \text{ [daN]}$

 $Q_d = 336454442,47 [daN]$

V = 16404600,00 [daN]

 $\eta = Q_u / V = 336454442,47 / 16404600,00 = 20,51$

Indici rigidezza

$$I_c = 0.74$$
 $I_{rc} = 172.47$

Combinazione nº 9

Modulo di taglio

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 21,53	[m]
Peso specifico terreno	$\gamma = 1902,32$	[daN/mc]
Angolo di attrito	$\phi = 38,00$	[°]
Coesione	c = 0,00	[daN/cmq]

G = 165,22

Eurolink S.C.p.A. Pagina 79 di 255

[daN/cmq]

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Base ridotta B' = B - 2 ex = 17,87 [m]Lunghezza ridotta L' = L - 2 ey = 20,89 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.73$	$i_q = 0.74$	$i_{\gamma} = 0,60$
$d_c = 1,03$	$d_{q} = 1.03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_q = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 15.23 + 54.47 = 69.70 [daN/cmq]$$

 $Q_u = 260212267,92 \text{ [daN]}$ $Q_d = 260212267,92 \text{ [daN]}$ V = 16223500,00 [daN] $\eta = Q_u \ / \ V = 260212267,92 \ / \ 16223500,00 = 16,04$

Indici rigidezza

$$I_c = 0.73$$
 $I_{rc} = 172.47$

Combinazione n° 10

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 21,53 [m]

Peso specifico terreno $\gamma = 1902,32$ [daN/mc]

Eurolink S.C.p.A. Pagina 80 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0,00 [daN/cmq] Modulo di taglio G = 165,22 [daN/cmq]

Base ridotta B' = B - 2 ex = 19,94 [m]Lunghezza ridotta L' = L - 2 ey = 20,95 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.72$	$i_q = 0.73$	$i_{\gamma} = 0,59$
$d_c = 1,03$	$d_{q} = 1,03$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.97 + 59.06 = 74.03 [daN/cmq]$$

 $Q_u = 309247154,99 \text{ [daN]}$ $Q_d = 309247154,99 \text{ [daN]}$ V = 16312700,00 [daN]

 $\eta = Q_u \, / \, V = 309247154,99 \, / \, 16312700,00 = 18,96$

Indici rigidezza

 $I_c = 0.72$ $I_{rc} = 172.47$

Verifica della portanza per carichi orizzontali (scorrimento).

Eurolink S.C.p.A. Pagina 81 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Partecipazione spinta passiva: 50,00 (%)

La relazione adottata è la seguente:

 $\eta = R / H >= \eta_{req}$

 $\eta_{\text{req}}\!\!:$ coefficiente di sicurezza richiesto

Simbologia adottata

Cmb Identificativo della combinazione

H Forza di taglio agente al piano di posa espresso in [daN]

Resistenza offerta dal piano di posa per attrito ed adesione espressa in [daN]

 R_{ult2} Resistenza passiva offerta dall'affondamento del piano di posa espressa in [daN]

R Somma di R_{ult1} e R_{ult2}

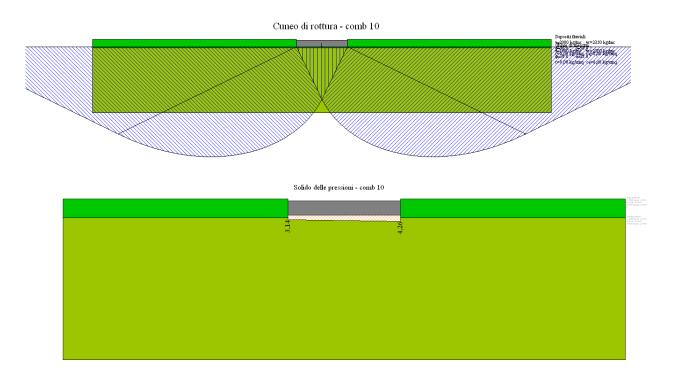
Resistenza ammissibile allo scorrimento espressa in [daN]

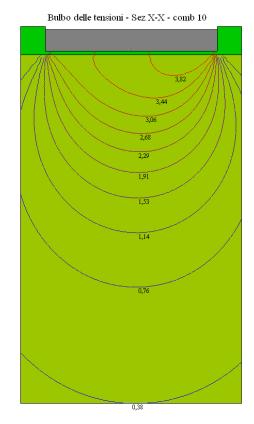
η Coeff. di sicurezza allo scorrimento

Fondazione

Cmb	Н	R _{ult1}	R _{ult2}	R	R _{amm}	η
1	2846800,00	12504476,45	0,00	12504476,45	12504476,45	4,39
2	2993800,00	12921761,11	0,00	12921761,11	12921761,11	4,32
3	2993800,00	12732064,96	0,00	12732064,96	12732064,96	4,25
4	2977000,00	12816678,19	0,00	12816678,19	12816678,19	4,31
5	2977000,00	12675187,36	0,00	12675187,36	12675187,36	4,26
6	2916400,00	12816678,19	0,00	12816678,19	12816678,19	4,39
7	2916400,00	12675187,36	0,00	12675187,36	12675187,36	4,35
8	2957100,00	12816678,19	0,00	12816678,19	12816678,19	4,33
9	2957100,00	12675187,36	0,00	12675187,36	12675187,36	4,29
10	3126300,00	12744878,04	0,00	12744878,04	12744878,04	4,08

Eurolink S.C.p.A. Pagina 82 di 255





RELAZIONE GEOTECNICA

Codice documento Rev \$\$0690_F0.doc F0

Rev Data =0 20/06/2011

Eurolink S.C.p.A. Pagina 83 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

5.1.2.3 VERIFICHE APPROCCIO 1 – COMBINAZIONE 2

Condizione n° 1 (Condizione n° 1)

Fondazione	N	Mx	My	ex	еу	β	T
Fondazione	12891900,0	354500,0	643900,0	0,0	0,0	89,8	2465917,9
Condizione no	° 2 (Condizion	<u>ie n° 2)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	13346800,0	625100,0	3457100,0	0,3	0,0	89,7	2591232,1
Condizione no	° 3 (Condizion	<u>ie n° 3)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	13140000,0	877100,0	2061400,0	0,2	-0,1	89,7	2591232,1
Condizione no	° 4 (Condizion	<u>ie n° 4)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	13232300,0	555900,0	2558100,0	0,2	0,0	89,7	2576932,3
Condizione n	Condizione n° 5 (Condizione n° 5)						
Fondazione	N	Mx	Му	ех	еу	β	т
Fondazione	13078000,0	751100,0	1616500,0	0,1	-0,1	89,7	2576932,3
Condizione no	Condizione n° 6 (Condizione n° 6)						
Fondazione	N	Mx	Му	ex	еу	β	Т

Condizione n° 7 (Condizione n° 7)

Fondazione 13232300,0 751100,0 1987000,0

Eurolink S.C.p.A. Pagina 84 di 255

0,2

-0,1

89,7 2527532,9

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	13078000,0	751100,0	945500,0	0,1	-0,1	89,7	2527532,9
Condizione no	8 (Condizion	<u>ie n° 8)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	13232300,0	555900,0	2426600,0	0,2	0,0	89,7	2559832,5
Condizione n	9 (Condizion	<u>ie n° 9)</u>					
Fondazione	N	Mx	Му	ex	ey	β	т
Fondazione	13078000,0	751100,0	1385000,0	0,1	-0,1	89,7	2559832,5
Condizione no	° 10 (Condizio	ne n° 10)					
Fondazione	N	Mx	Му	ex	ey	β	т
Fondazione	13154400,0	373300,0	6579300,0	0,5	0,0	89,8	3037927,4
Condizione no	° 11 (Condizio	ne n° 11) –	COMBINAZ	ZIONE SISM	<u>ICA</u>		
Fondazione	N	Mx	Му	ex	ey	β	Т
Fondazione	12175800,01	1031700,03	37995700,0	3,1	-0,9	75,6	6546303,7
Condizione n	° 12 (Condizio	ne n° 12) –	COMBINAZ	ZIONE SISM	<u>ICA</u>		
Fondazione	N	Mx	Му	ex	ey	β	т
Fondazione	12103900,01	1049400,03	•	3,1	-0,9	•	6546303,7

Descrizione combinazioni di carico

Simbologia adottata

γ Coefficiente di partecipazione della condizione

Eurolink S.C.p.A. Pagina 85 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione nº 1 SLU - Caso	A2-M2		
	γ	Ψ	С
Condizione n° 1	1.00	1.00	1.00
Combinazione n° 2 SLU - Caso	A2-M2		
	γ	Ψ	С
Condizione n° 2	1.00	1.00	1.00
Combinazione nº 3 SIII Case	A 2 M2		
Combinazione n° 3 SLU - Caso		\ -	•
	γ	Ψ	С
Condizione n° 3	1.00	1.00	1.00
Combinazione n° 4 SLU - Caso	A2-M2		
	γ	Ψ	С
Condizione n° 4	1.00	1.00	1.00
Combinations no F SIII Coss	A 2 M 2		
Combinazione n° 5 SLU - Caso			
	γ	Ψ	С
Condizione n° 5	1.00	1.00	1.00
Combinazione n° 6 SLU - Caso	A2-M2		
	γ	Ψ	С
Condizione n° 6	1.00	1.00	1.00
Combinazione n° 7 SLU - Caso	A2-M2		
	γ	Ψ	С
Condizione n° 7	1.00	1.00	1.00
Combinazione n° 8 SLU - Caso	A2-M2		

Eurolink S.C.p.A. Pagina 86 di 255

C

Ψ

γ

Condizione nº 9

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Condizione n° 8 1.00 1.00 1.00

Combinazione nº 9 SLU - Caso A2-M2

γ Ψ **C** 1.00 1.00 1.00

Combinazione nº 10 SLU - Caso A2-M2

Combinazione nº 11 SLU - COMBINAZIONE SISMICA

Combinazione nº 12 SLU - COMBINAZIONE SISMICA

Analisi in condizioni drenate

Verifica della portanza per carichi verticali

Il calcolo della portanza è stato eseguito col metodo di Brinch-Hansen La relazione adottata è la seguente:

$$q_u = c N_c s_c i_c d_c b_c g_c + q N_q s_q i_q d_q b_q g_q + 0.5 B_\gamma N_\gamma s_\gamma i_g d_g b_\gamma g_\gamma$$

Altezza del cuneo di rottura: AUTOMATICA

Il criterio utilizzato per il calcolo del macrostrato equivalente è stato la MEDIA PESATA Nel calcolo della portanza sono state richieste le seguenti opzioni:

Riduzione sismica: NESSUNA

Coefficiente correttivo su Ny per effetti cinematici (combinazioni sismiche SLU): 1,00

Eurolink S.C.p.A. Pagina 87 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Coefficiente correttivo su Ny per effetti cinematici (combinazioni sismiche SLE): 1,00

Riduzione per carico eccentrico: MEYERHOF

Riduzione per rottura locale o punzonamento del terreno: VESIC

Meccanismo di punzonamento in presenza di falda.

Fondazione

Combinazione nº 1

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 18,94	[m]

Peso specifico terreno
$$\gamma = 1902,64$$
 [daN/mc]

Angolo di attrito
$$\phi = 32,01$$
 [°]

Coesione
$$c = 0.00$$
 [daN/cmq]
Modulo di taglio $G = 165.02$ [daN/cmq]

Base ridotta
$$B' = B - 2 \text{ ex} = 20,90 \text{ [m]}$$

Lunghezza ridotta $L' = L - 2 \text{ ey} = 20,95 \text{ [m]}$

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.73$	$i_{\gamma} = 0,59$
$d_c = 1,04$	$d_{q} = 1,04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.52 + 35.37 = 45.89 [daN/cmq]$$

Eurolink S.C.p.A. Pagina 88 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

 $Q_u = 200883476,51 [daN]$

 $Q_d = 111601931,39 [daN]$

V = 12891900,00 [daN]

 $\eta = Q_u / V = 200883476,51 / 12891900,00 = 15,58$

Indici rigidezza

$$I_c = 0.71$$
 $I_{rc} = 85.55$

Combinazione nº 2

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 18,94 [m]

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0,00 [daN/cmq] Modulo di taglio G = 165,02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,48 [m]Lunghezza ridotta L' = L - 2 ey = 20,91 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.72$	$i_{\gamma} = 0,58$
$d_c = 1,04$	$d_{q} = 1,04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Eurolink S.C.p.A. Pagina 89 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.46 + 34.35 = 44.82 [daN/cmq]$$

 $Q_u = 191918013,25 [daN]$

 $Q_d = 106621118,47 [daN]$

V = 13346800,00 [daN]

 $\eta = Q_u \, / \, V = 191918013,25 \, / \, 13346800,00 = 14,38$

Indici rigidezza

$$I_c = 0.71$$

$$I_{rc} = 85,55$$

Combinazione nº 3

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 18,94 [m]

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq]

Modulo di taglio G = 165,02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,69 [m]

Lunghezza ridotta L' = L - 2 ey = 20,87 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $g_q = 1,00$

$N_c = 35,51$	$N_q = 23,19$
$s_c = 1,00$	$s_q = 1,00$

 $s_q = 1,00$ $s_\gamma = 1,00$

$$i_c = 0.71$$
 $i_q = 0.72$ $d_c = 1.04$ $d_q = 1.04$

$$i_q = 0.72$$
 $i_\gamma = 0.58$ $d_q = 1.04$ $d_\gamma = 1.00$

$$b_c = 1,00$$
 $b_q = 1,00$

$$b_{\gamma} = 1,00$$

 $N_{v} = 30,24$

$$g_c = 1,00$$

$$g_{\gamma} = 1,00$$

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.41 + 34.37 = 44.77 [daN/cmq]$$

 $Q_u = 193269576,77 [daN]$

 $Q_d = 107371987,09 [daN]$

V = 13140000,00 [daN]

$$\eta = Q_u / V = 193269576,77 / 13140000,00 = 14,71$$

Indici rigidezza

$$I_c = 0.71$$

$$I_{rc} = 85,55$$

Combinazione nº 4

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 18,94	[m]
-----------------------	-----------	-----

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,61 [m]Lunghezza ridotta L' = L - 2 ey = 20,92 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.72$	$i_{\gamma} = 0.58$
$d_c = 1.04$	$d_{q} = 1,04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$

Eurolink S.C.p.A. Pagina 91 di 255

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$g_c = 1,00$$

$$g_q = 1,00$$

$$g_{\gamma} = 1,00$$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.45 + 34.51 = 44.96 [daN/cmq]$$

 $Q_u = 193861275,51 [daN]$

 $Q_d = 107700708,61 [daN]$

V = 13232300,00 [daN]

$$\eta = Q_u / V = 193861275,51 / 13232300,00 = 14,65$$

Indici rigidezza

$$I_c = 0.71$$

$$I_{rc} = 85,55$$

Combinazione n° 5

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 18,94	[m]
Opcosore acino strato	11 - 10,5-	[1111]

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,75 [m]Lunghezza ridotta L' = L - 2 ey = 20,89 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.72$	$i_{\gamma} = 0,58$
$d_c = 1,04$	$d_{q} = 1,04$	$d_{\gamma} = 1,00$

Eurolink S.C.p.A.

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$b_c = 1,00$$

$$b_q = 1,00$$

$$b_v = 1,00$$

$$g_c = 1,00$$

$$g_q = 1,00$$

$$g_{\gamma} = 1,00$$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.41 + 34.50 = 44.91 [daN/cmq]$$

$$Q_u = 194630911,73 \text{ [daN]}$$

$$Q_d = 108128284,30 [daN]$$

$$V = 13078000,00 [daN]$$

$$\eta = Q_u / V = 194630911,73 / 13078000,00 = 14,88$$

Indici rigidezza

$$I_c = 0.71$$

$$I_{rc} = 85,55$$

Combinazione nº 6

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 18,94	[m]
-----------------------	-----------	-----

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,70 [m]Lunghezza ridotta L' = L - 2 ey = 20,89 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 35,51$

 $N_a = 23,19$

 $N_v = 30,24$

 $s_c = 1,00$

 $s_q = 1,00$

 $s_{y} = 1,00$

 $i_c = 0.72$

 $i_q = 0.73$

 $i_{v} = 0.59$

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$d_q = 1,04$$

$$d_{v} = 1,00$$

$$b_c = 1,00$$

$$b_0 = 1,00$$

$$b_{y} = 1,00$$

$$g_c = 1,00$$

$$g_q = 1,00$$

$$g_{\gamma} = 1,00$$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.53 + 35.06 = 45.58 [daN/cmq]$$

$$Q_u = 197080536,63 [daN]$$

$$Q_d = 109489187,01 [daN]$$

$$V = 13232300,00 [daN]$$

$$\eta = Q_u / V = 197080536,63 / 13232300,00 = 14,89$$

Indici rigidezza

$$I_c = 0.72$$

$$I_{rc} = 85,55$$

Combinazione nº 7

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 18,94 [m]

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,86 [m]Lunghezza ridotta L' = L - 2 ey = 20,89 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 35,51$

 $N_q = 23,19$

 $N_{v} = 30,24$

 $s_c = 1,00$

 $s_q = 1,00$

 $s_{y} = 1,00$

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$i_c = 0.71$	$i_q = 0.72$	$i_{\gamma} = 0,58$
$d_c = 1.04$	$d_{q} = 1,04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.48 + 35.08 = 45.56 [daN/cmq]$$

 $Q_u = 198438668,31 \text{ [daN]}$ $Q_d = 110243704,62 \text{ [daN]}$ V = 13078000,00 [daN] $\eta = Q_u \ / \ V = 198438668,31 \ / \ 13078000,00 = 15,17$

Indici rigidezza

$$I_c = 0.71$$
 $I_{rc} = 85.55$

Combinazione nº 8

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 18,94 [m] Peso specifico terreno $\gamma = 1902,64$ [daN/mc] Angolo di attrito $\phi = 32,01$ [°] Coesione c = 0,00 [daN/cmq] Modulo di taglio G = 165,02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,63 [m]Lunghezza ridotta L' = L - 2 ey = 20,92 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$$N_c = 35,51$$
 $N_q = 23,19$ $N_{\gamma} = 30,24$

Eurolink S.C.p.A. Pagina 95 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.72$	$i_{\gamma} = 0.58$
$d_c = 1,04$	$d_q = 1.04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.48 + 34.68 = 45.16 \text{ [daN/cmq]}$$

$$Q_u = 194899273.60 \text{ [daN]}$$

 $Q_d = 108277374,22 \text{ [daN]}$ V = 13232300,00 [daN]

 $\eta = Q_u / V = 194899273,60 / 13232300,00 = 14,73$

Indici rigidezza

$$I_c = 0.71$$
 $I_{rc} = 85.55$

Combinazione nº 9

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 18,94 [m]

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0,00 [daN/cmq] Modulo di taglio G = 165,02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,79 [m]Lunghezza ridotta L' = L - 2 ey = 20,89 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

Eurolink S.C.p.A. Pagina 96 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.72$	$i_{\gamma} = 0.58$
$d_c = 1,04$	$d_q = 1,04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_q = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 10.43 + 34.70 = 45.13 [daN/cmq]$$

 $Q_u = 195940378,03 [daN]$

 $Q_d = 108855765,57 [daN]$

V = 13078000,00 [daN]

 $\eta = Q_u / V = 195940378,03 / 13078000,00 = 14,98$

Indici rigidezza

$$I_c = 0.71$$
 $I_{rc} = 85.55$

Combinazione n° 10

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 18,94 [m]

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.02 [daN/cmq]

Base ridotta B' = B - 2 ex = 20,00 [m]Lunghezza ridotta L' = L - 2 ey = 20,94 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

Eurolink S.C.p.A. Pagina 97 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0,66$	$i_q = 0,67$	$i_{\gamma} = 0,52$
$d_c = 1.04$	$d_{q} = 1.04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 9.76 + 29.85 = 39.60 [daN/cmq]$$

 $Q_u = 165878910,76 \text{ [daN]}$ $Q_d = 92154950,42 \text{ [daN]}$ V = 13154400,00 [daN]

 $\eta = Q_u / V = 165878910,76 / 13154400,00 = 12,61$

Indici rigidezza

 $I_c = 0.66$ $I_{rc} = 85.55$

Combinazione nº 11 - COMBINAZIONE SISMICA

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 18,94 [m]

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.02 [daN/cmq]

Base ridotta B' = B - 2 ex = 14,76 [m]Lunghezza ridotta L' = L - 2 ey = 19,19 [m]

Eurolink S.C.p.A. Pagina 98 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.28$	$i_q = 0.31$	$i_{\gamma} = 0,15$
$d_c = 1.04$	$d_{q} = 1,04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 4.55 + 6.17 = 10.72 [daN/cmq]$$

 $Q_u = 30358688,89 [daN]$

 $Q_d = 16865938,27 [daN]$

V = 12175800,00 [daN]

 $\eta = Q_u / V = 30358688,89 / 12175800,00 = 2,49$

Indici rigidezza

$$I_c = 0.28$$
 $I_{rc} = 85.55$

Combinazione nº 12 - COMBINAZIONE SISMICA

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 18,94 [m]

Peso specifico terreno $\gamma = 1902,64$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 165.02 [daN/cmq]

Base ridotta B' = B - 2 ex = 14,76 [m]Lunghezza ridotta L' = L - 2 ey = 19,17 [m]

Eurolink S.C.p.A. Pagina 99 di 255

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.28$	$i_q = 0.31$	$i_{\gamma} = 0,14$
$d_c = 1.04$	$d_{q} = 1,04$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 4.50 + 6.07 = 10.57 [daN/cmq]$$

 $Q_u = 29912855,58 [daN]$

 $Q_d = 16618253,10 [daN]$

V = 12103900,00 [daN]

 $\eta = Q_u / V = 29912855,58 / 12103900,00 = 2,47$

Indici rigidezza

$$I_c = 0.28$$
 $I_{rc} = 85.55$

Verifica della portanza per carichi orizzontali (scorrimento).

Partecipazione spinta passiva: 50,00 (%)

La relazione adottata è la seguente:

$$\eta = R / H >= \eta_{req}$$

 $\eta_{\text{req}}\!\!:$ coefficiente di sicurezza richiesto

Simbologia adottata

Cmb Identificativo della combinazione

H Forza di taglio agente al piano di posa espresso in [daN]

Eurolink S.C.p.A. Pagina 100 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

 R_{ult1} Resistenza offerta dal piano di posa per attrito ed adesione espressa in [daN]

 R_{ult2} Resistenza passiva offerta dall'affondamento del piano di posa espressa in [daN]

R Somma di R_{ult1} e R_{ult2}

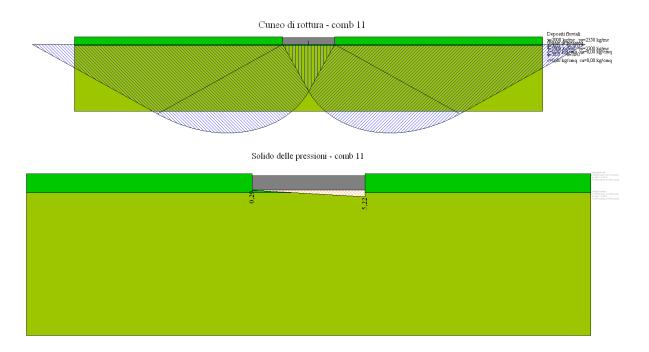
Resistenza ammissibile allo scorrimento espressa in [daN]

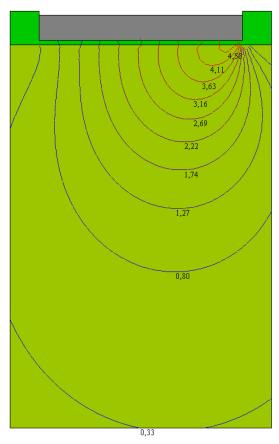
η Coeff. di sicurezza allo scorrimento

Fondazione

Cmb	Н	R _{ult1}	R_{ult2}	R	R_{amm}	η
1	2465900,00	8057804,93	0,00	8057804,93	7325277,21	3,27
2	2591200,00	8342130,40	0,00	8342130,40	7583754,91	3,22
3	2591200,00	8212874,51	0,00	8212874,51	7466249,55	3,17
4	2576900,00	8270564,64	0,00	8270564,64	7518695,12	3,21
5	2576900,00	8174122,74	0,00	8174122,74	7431020,67	3,17
6	2527500,00	8270564,64	0,00	8270564,64	7518695,12	3,27
7	2527500,00	8174122,74	0,00	8174122,74	7431020,67	3,23
8	2559800,00	8270564,64	0,00	8270564,64	7518695,12	3,23
9	2559800,00	8174122,74	0,00	8174122,74	7431020,67	3,19
10	3037900,00	8221874,92	0,00	8221874,92	7474431,74	2,71
11	6376600,00	7610222,02	0,00	7610222,02	6918383,66	1,19
12	6376600,00	7565282,48	0,00	7565282,48	6877529,52	1,19

Eurolink S.C.p.A. Pagina 101 di 255




RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 \$\$50690_F0.doc
 F0
 20/06/2011

Bulbo delle tensioni - Sez X-X - comb 11

Eurolink S.C.p.A. Pagina 102 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 **Data** 20/06/2011

5.1.2.4 VERIFICHE SLE - CEDIMENTI

Cedimenti della fondazione

Metodo Elastico

Il metodo dell'elasticità per il calcolo dei cedimenti, così come implementato, fornisce due valori:

- uno per deformazione laterale impedita (\mathbf{w}_{imp})
- uno in condizioni di deformazione laterale libera (w_{lib})

L'espressione di **w**_{imp} è la seguente:

n
$$\Delta \sigma_i$$
 (1 - ν - 2 ν^2)
 $\Delta H = \Sigma - \Delta Z_i$
 $i=1$ E_i (1 - ν)

dove

 $\Delta \sigma$ è la tensione indotta nel terreno, alla profondità **z**, dalla pressione di contatto della fondazione; **E** è il modulo elastico relativo allo strato **i-esimo**;

 Δz rappresenta lo spessore dello strato **i-esimo** in cui è stato suddiviso lo strato compressibile e per il quale si conosce il modulo elastico;

v è il coefficiente di Poisson.

L'espressione di $\mathbf{w}_{\mathsf{lib}}$ è la seguente:

$$n \quad \Delta \sigma_{i}$$

$$\Delta H = \Sigma \xrightarrow{} \Delta Z_{i}$$

$$i=1 \quad E_{i}$$

dove i termini sono stati già descritti sopra.

Lo spessore dello strato compressibile considerato nell'analisi dei cedimenti è stato determinato in funzione della percentuale della tensione di contatto. I valori del cedimento ottenuti dalle due relazioni rappresentano un valore minimo \mathbf{w}_{imp} e un valore massimo \mathbf{w}_{lib} del cedimento in condizioni elastiche della fondazione analizzata.

Normativa

Eurolink S.C.p.A. Pagina 103 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

N.T.C. 2008

Calcolo secondo: Approccio 1

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti γ_{Gsfav} Coefficiente parziale favorevole sulle azioni permanenti γ_{Gfav} Coefficiente parziale sfavorevole sulle azioni variabili γosfav Coefficiente parziale favorevole sulle azioni variabili γ_{Qfav} Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione della coesione drenata $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione non drenata γ_{cu} Coefficiente parziale di riduzione del carico ultimo γ_{qu} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce γ_{γ}

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,30	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	<i>M</i> 2
Tangente dell'angolo di attrito	γ _{tanφ'}	1,00	1,25
Coesione efficace	$\gamma_{c'}$	1,00	1,25
Resistenza non drenata	γ _{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Eurolink S.C.p.A. Pagina 104 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Coefficienti	narziali ner	le azioni o	per l'effetto	delle azioni:
COCITICICITI	paiziali poi		poi i circito	aciic azioiii.

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ̈Gfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,00	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈́Qsfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	<i>M</i> 2
Tangente dell'angolo di attrito	γ _{tanφ'}	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

		R1	R2	R3
Capacità portante	γ_{r}	1,00	1,80	2,30
Scorrimento	γ_{r}	1,00	1,10	1,10
Coeff. di combinazione	Ψ ₀ = 0,70	Ψ ₁ = 0,50	Ψ ₂ = 0,20	

Condizioni di carico

Simbologia e convenzioni di segno adottate Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione Nome identificativo della fondazione N Sforzo normale totale espressa in [kN]

Eurolink S.C.p.A. Pagina 105 di 255

RELAZIONE GEOTECNICA

Condizione n° 6 (Condizione n° 6)

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Mx My ex	/ Momento in direzione Y espresso in [kNm]						
ey	Eccentricità d		•	= =			
eta	Inclinazione	-		essa in [*]			
1	Forza di tagli	o espressa	in [KN]				
Condizione n	° 1 (Condizion	<u>ne n° 1)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	112460,000	2827,000	5648,000	0,1	0,0	89,8	18986,137
Condizione n	° 2 (Condizion	ne n° 2)					
Fondazione	N	Mx	Му	ex	ey	β	Т
Fondazione	116416,000	5162,000	41308,000	0,4	0,0	89,7	20075,249
Condizione n° 3 (Condizione n° 3)							
Fondazione	N	Mx	Му	ex	ey	β	Т
Fondazione	114618,000	7353,000	29171,000	0,3	-0,1	89,7	20075,249
Condizione n° 4 (Condizione n° 4)							
Fondazione	N	Mx	Му	ex	ey	β	Т
Fondazione	115420,000	4560,000	34360,000	0,3	0,0	89,7	19951,251
Condizione n° 5 (Condizione n° 5)							
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	114078,000	6258,000	25303,000	0,2	-0,1	89,7	19951,251

Eurolink S.C.p.A. Pagina 106 di 255

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 \$\$50690_F0.doc
 F0
 20/06/2011

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	115420,000	6258,000	28254,000	0,2	-0,1	89,7	19502,256
Condizione n	°7 (Condizion	<u>ie n° 7)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	114078,000	6258,000	19197,000	0,2	-0,1	89,7	19502,256
Condizione n	° 8 (Condizion	<u>ne n° 8)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	115420,000	4560,000	32347,000	0,3	0,0	89,7	19803,252
Condizione n° 9 (Condizione n° 9)							
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	114078,000	6258,000	23291,000	0,2	-0,1	89,7	19803,252
Condizione n° 10 (Condizione n° 10)							
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	114718,000	2972,000	68201,000	0,6	0,0		21057,237

Descrizione combinazioni di carico

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione nº 1 SLE

γ Ψ C

Eurolink S.C.p.A. Pagina 107 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

Condizione nº 1	1.00	1.00	1.00
Combinazione n° 2 SLE			
Condizione n° 2	γ 1.00	Ψ 1.00	C 1.00
Combinazione n° 3 SLE			
Condizione n° 3	γ 1.00	Ψ 1.00	C 1.00
Combinazione n° 4 SLE			
Condizione n° 4	γ 1.00	Ψ 1.00	C 1.00
Combinazione n° 5 SLE			
Condizione n° 5	γ 1.00	Ψ 1.00	C 1.00
Combinazione n° 6 SLE			
Condizione n° 6	γ 1.00	Ψ 1.00	C 1.00
Combinazione n° 7 SLE			
Condizione n° 7	γ 1.00	Ψ 1.00	C 1.00
Combinazione n° 8 SLE			
Condinions nº 0	γ	Ψ	C
Condizione n° 8	1.00	1.00	1.00
Combinazione n° 9 SLE		\ - -	
Condizione n° 9	γ 1.00	Ψ 1.00	C 1.00

Eurolink S.C.p.A. Pagina 108 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Combinazione n° 10 SLE

Analisi in condizioni drenate

Cedimenti

Il calcolo dei cedimenti è stato eseguito con il metodo Elastico.

Per il calcolo dei cedimenti, è stata impostata un'altezza dello strato compressibile legato alla percentuale tensionale.

In particolare la percentuale impostata è: 0,05 (%)

E' stato richiesto di tenere in conto della fondazione compensata.

Cedimento complessivo

Simbologia adottata

Comb Identificativo della combinazione

w_i Cedimento elastico espresso in [cm]

w_{imp} Cedimento elastico ad espansione laterale impedita espresso in [cm]

H Spessore strato compressibile espresso in [m]

X coordinata X punto di calcolo cedimento espressa in [m]

Y coordinata Y punto di calcolo cedimento espressa in [m]

Fondazione

Comb	$\mathbf{W_{i}}$	\mathbf{W}_{imp}	Н	X	Υ
1	6,03	6,18	35,60	10,55	10,53
1	5,56	5,78	35,60	0,00	0,00
1	5,57	5,79	35,60	21,00	0,00
1	5,57	5,79	35,60	21,00	21,00

Eurolink S.C.p.A. Pagina 109 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

1	5,56	5,78	35,60	0,00	21,00
2	6,40	6,51	36,10	10,85	10,54
2	5,89	6,09	36,10	0,00	0,00
2	5,96	6,15	36,10	21,00	0,00
2	5,96	6,15	36,10	21,00	21,00
2	5,90	6,10	36,10	0,00	21,00
3	6,23	6,36	35,90	10,75	10,56
3	5,73	5,94	35,90	0,00	0,00
3	5,78	5,99	35,90	21,00	0,00
3	5,79	5,99	35,90	21,00	21,00
3	5,74	5,95	35,90	0,00	21,00
4	6,31	6,43	36,00	10,80	10,54
4	5,80	6,01	36,00	0,00	0,00
4	5,86	6,06	36,00	21,00	0,00
4	5,86	6,06	36,00	21,00	21,00
4	5,81	6,02	36,00	0,00	21,00
5	6,18	6,32	35,80	10,72	10,55
5	5,68	5,90	35,80	0,00	0,00
5	5,73	5,94	35,80	21,00	0,00
5	5,74	5,95	35,80	21,00	21,00
5	5,70	5,91	35,80	0,00	21,00
6	6,30	6,43	36,00	10,74	10,55
6	5,80	6,01	36,00	0,00	0,00
6	5,84	6,05	36,00	21,00	0,00
6	5,85	6,06	36,00	21,00	21,00
6	5,81	6,02	36,00	0,00	21,00
7	6,17	6,31	35,80	10,67	10,55
7	5,68	5,90	35,80	0,00	0,00
7	5,71	5,93	35,80	21,00	0,00
7	5,72	5,94	35,80	21,00	21,00
7	5,69	5,91	35,80	0,00	21,00
8	6,30	6,43	36,00	10,78	10,54
8	5,80	6,01	36,00	0,00	0,00

Eurolink S.C.p.A. Pagina 110 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

5,85	6,05	36,00	21,00	0,00
5,86	6,06	36,00	21,00	21,00
5,81	6,02	36,00	0,00	21,00
6,18	6,31	35,80	10,70	10,55
5,69	5,91	35,80	0,00	0,00
5,72	5,93	35,80	21,00	0,00
5,73	5,94	35,80	21,00	21,00
5,70	5,91	35,80	0,00	21,00
6,34	6,41	35,90	11,09	10,53
5,81	5,96	35,90	0,00	0,00
5,92	6,06	35,90	21,00	0,00
5,92	6,06	35,90	21,00	21,00
5,82	5,97	35,90	0,00	21,00
	5,86 5,81 6,18 5,69 5,72 5,73 5,70 6,34 5,81 5,92 5,92	5,86 6,06 5,81 6,02 6,18 6,31 5,69 5,91 5,72 5,93 5,73 5,94 5,70 5,91 6,34 6,41 5,81 5,96 5,92 6,06 5,92 6,06	5,86 6,06 36,00 5,81 6,02 36,00 6,18 6,31 35,80 5,69 5,91 35,80 5,72 5,93 35,80 5,73 5,94 35,80 5,70 5,91 35,80 6,34 6,41 35,90 5,81 5,96 35,90 5,92 6,06 35,90 5,92 6,06 35,90	5,86 6,06 36,00 21,00 5,81 6,02 36,00 0,00 6,18 6,31 35,80 10,70 5,69 5,91 35,80 0,00 5,72 5,93 35,80 21,00 5,73 5,94 35,80 21,00 5,70 5,91 35,80 0,00 6,34 6,41 35,90 11,09 5,81 5,96 35,90 0,00 5,92 6,06 35,90 21,00 5,92 6,06 35,90 21,00

Cedimento dei singoli strati

Simbologia adottata

Strato Identificativo dello strato

Terreno dello strato

 ΔH Spessore dello strato espresso in [m]

 Δw_i Cedimento elastico espresso in [cm]

 ΔW_{imp} Cedimento elastico ad espansione laterale impedita espresso in [cm]

Fondazione (Combinazione n° 1)

Strato	Terreno	ΔΗ	$\Delta \mathbf{w}_{i}$	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	0,50	-0,0203	0,1963
2	Ghiaie di messina	32,10	6,0536	5,9844
<u>Totale</u>		32,60	6,0333	6,1807

Fondazione (Combinazione n° 2)

Strato Terreno ΔH Δw_i Δw_{imp}

Eurolink S.C.p.A. Pagina 111 di 255

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011

	000000_7 0.000			70 20/00/2
1	Depositi fluviali	0,50	-0,0212	0,2076
2	Ghiaie di messina	32,60	6,4208	6,3051
<u>Totale</u>		33,10	6,3995	6,5127
Fondazione (Combinazione n° 3)				
Strato	Terreno	ΔН	$\Delta \mathbf{w_i}$	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	0,50	-0,0208	0,2028
2	Ghiaie di messina	32,40	6,2550	6,1603
Totale		32,90	6,2342	6,3631
Fondazione (Combinazione n° 4)				
Strato	Terreno	ΔН	Δw_i	Δw_{imp}
1	Depositi fluviali	0,50	-0,0210	0,2049
2	Ghiaie di messina	32,50	6,3275	6,2248
Totale		33,00	6,3065	6,4297
Fondazione (Combinazione n° 5)				
Strato	Terreno	ΔН	$\Delta \mathbf{w}_{i}$	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	0,50	-0,0207	0,2013
2	Ghiaie di messina	32,30	6,2026	6,1147
<u>Totale</u>		32,80	6,1819	6,3160
Fondazione (Combinazione n° 6)				
Strato	Terreno	ΔΗ	$\Delta \mathbf{w}_{i}$	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	0,50	-0,0210	0,2045
2	Ghiaie di messina	32,50	6,3163	6,2213
T.4.1.		00.00	0.0050	0.4050

Fondazione (Combinazione n° 7)

Totale

Eurolink S.C.p.A. Pagina 112 di 255

33,00

6,2953

6,4258

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Strato	Terreno	ΔΗ	$\Delta \boldsymbol{w}_i$	Δw_{imp}
1	Depositi fluviali	0,50	-0,0207	0,2009
2	Ghiaie di messina	32,30	6,1937	6,1120
Totale		32,80	6,1730	6,3129

Fondazione (Combinazione n° 8)

Strato	Terreno	ΔН	Δw_i	Δw_{imp}
1	Depositi fluviali	0,50	-0,0210	0,2047
2	Ghiaie di messina	32,50	6,3234	6,2235
Totale		33.00	6,3023	6,4283

Fondazione (Combinazione n° 9)

Strato	Terreno	ΔΗ	$\Delta \mathbf{w}_{i}$	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	0,50	-0,0207	0,2011
2	Ghiaie di messina	32,30	6,1994	6,1137
<u>Totale</u>		32,80	6,1787	6,3149

Fondazione (Combinazione n° 10)

Strato	Terreno	ΔΗ	Δw_i	Δw_{imp}
1	Depositi fluviali	0,50	-0,0206	0,2056
2	Ghiaie di messina	32,40	6,3654	6,2035
<u>Totale</u>		32,90	6,3448	6,4091

Dettagli sui cedimenti dei singoli strati

Simbologia adottata

n° numero d'ordine dell'i-esimo strato

z quota media dell'i-esimo strato espresso in [m]

△H spessore dello strato i-esimo espresso in [m]

Eurolink S.C.p.A. Pagina 113 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

 $\Delta\sigma_V$ incremento di tensione verticale dell'i-esimo strato espresso in [N/cmq]

E modulo elastico dell'i-esimo strato espresso in [N/cmq]

 Δw cedimento dell'i-esimo strato espresso in [cm]

Fondazione (Combinazione n° 1)

n°	z	ΔН	$\Delta\sigma_{\sf V}$	E	$\Delta \mathbf{w}$
1	-3,01	0,03	19,7	4500,0	-0,0001
2	-3,04	0,03	19,7	4500,0	-0,0002
3	-3,06	0,03	19,7	4500,0	-0,0004
4	-3,09	0,03	19,6	4500,0	-0,0005
5	-3,11	0,03	19,6	4500,0	-0,0007
6	-3,14	0,03	19,6	4500,0	-0,0008
7	-3,16	0,03	19,6	4500,0	-0,0009
8	-3,19	0,03	19,6	4500,0	-0,0010
9	-3,21	0,03	19,6	4500,0	-0,0011
10	-3,24	0,03	19,6	4500,0	-0,0012
11	-3,26	0,03	19,6	4500,0	-0,0013
12	-3,29	0,03	19,6	4500,0	-0,0013
13	-3,31	0,03	19,6	4500,0	-0,0014
14	-3,34	0,03	19,6	4500,0	-0,0014
15	-3,36	0,03	19,6	4500,0	-0,0014
16	-3,39	0,03	19,6	4500,0	-0,0014
17	-3,41	0,03	19,6	4500,0	-0,0014
18	-3,44	0,03	19,6	4500,0	-0,0013
19	-3,46	0,03	19,6	4500,0	-0,0013
20	-3,49	0,03	19,6	4500,0	-0,0012
21	-4,30	1,61	19,6	5000,0	0,2872
22	-5,91	1,61	19,3	5000,0	0,5110
23	-7,51	1,61	18,7	5000,0	0,5264
24	-9,12	1,61	17,6	5000,0	0,5176
25	-10,72	1,61	16,3	5000,0	0,4929
26	-12,33	1,61	14,8	5000,0	0,4584

Eurolink S.C.p.A. Pagina 114 di 255

6,0333

RELAZIONE GEOTECNICA			Codice documento SS0690_F0.doc		Data 20/06/2011		
•							
	27	-13,93	1,61	13,4	5000,0 0,4	1193	
	28	-15,54	1,61	11,9	5000,0 0,3	3796	
	29	-17,14	1,61	10,7	5000,0 0,3	3416	
	30	-18,75	1,61	9,5	5000,0 0,3	3066	
	31	-20,35	1,61	8,5	5000,0 0,2	2750	
	32	-21,96	1,61	7,6	5000,0 0,2	2468	
	33	-23,56	1,61	6,8	5000,0 0,2	2220	
	34	-25,17	1,61	6,1	5000,0 0,2	2001	
	35	-26,77	1,61	5,5	5000,0 0,1	1809	
	36	-28,38	1,61	5,0	5000,0 0,1	1640	
	37	-29,98	1,61	4,5	5000,0 0,1	1492	
	38	-31,59	1,61	4,1	5000,0 0,1	1361	
	39	-33,19	1,61	3,8	5000,0 0,1	1245	
	40	-34,80	1,61	3,5	5000,0 0,1	1143	

Fondazione (Combinazione n° 2)

32,60

Totale

n°	z	ΔН	$\Delta\sigma_{\sf V}$	$\Delta\sigma_{V}$ E	
1	-3,01	0,03	20,8	4500,0	-0,0001
2	-3,04	0,03	20,8	4500,0	-0,0003
3	-3,06	0,03	20,8	4500,0	-0,0004
4	-3,09	0,03	20,8	4500,0	-0,0006
5	-3,11	0,03	20,8	4500,0	-0,0008
6	-3,14	0,03	20,8	4500,0	-0,0009
7	-3,16	0,03	20,8	4500,0	-0,0010
8	-3,19	0,03	20,8	4500,0	-0,0011
9	-3,21	0,03	20,8	4500,0	-0,0012
10	-3,24	0,03	20,8	4500,0	-0,0013
11	-3,26	0,03	20,8	4500,0	-0,0014
12	-3,29	0,03	20,8	4500,0	-0,0014
13	-3,31	0,03	20,7	4500,0	-0,0015
14	-3,34	0,03	20,7	4500,0	-0,0015

Eurolink S.C.p.A. Pagina 115 di 255

AZION	-	\sim TE	\sim Lu \sim A

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

15	-3,36	0,03	20,7	4500,0	-0,0014
16	-3,39	0,03	20,7	4500,0	-0,0014
17	-3,41	0,03	20,7	4500,0	-0,0013
18	-3,44	0,03	20,7	4500,0	-0,0013
19	-3,46	0,03	20,7	4500,0	-0,0012
20	-3,49	0,03	20,7	4500,0	-0,0010
21	-4,32	1,63	20,6	5000,0	0,3472
22	-5,95	1,63	20,3	5000,0	0,5473
23	-7,58	1,63	19,6	5000,0	0,5615
24	-9,21	1,63	18,4	5000,0	0,5507
25	-10,84	1,63	17,0	5000,0	0,5229
26	-12,47	1,63	15,4	5000,0	0,4847
27	-14,10	1,63	13,8	5000,0	0,4421
28	-15,73	1,63	12,4	5000,0	0,3992
29	-17,36	1,63	11,0	5000,0	0,3583
30	-18,99	1,63	9,8	5000,0	0,3209
31	-20,62	1,63	8,7	5000,0	0,2873
32	-22,25	1,63	7,8	5000,0	0,2575
33	-23,88	1,63	7,0	5000,0	0,2312
34	-25,51	1,63	6,2	5000,0	0,2082
35	-27,14	1,63	5,6	5000,0	0,1880
36	-28,77	1,63	5,1	5000,0	0,1703
37	-30,40	1,63	4,6	5000,0	0,1548
38	-32,03	1,63	4,2	5000,0	0,1411
39	-33,66	1,63	3,8	5000,0	0,1291
40	-35,29	1,63	3,5	5000,0	0,1184
<u>Totale</u>		33,10			6,3995

Fondazione (Combinazione n° 3)

n°	Z	ΔΗ	$\Delta\sigma_{\sf V}$	E	Δw
1	-3,01	0,03	20,3	4500,0	-0,0001
2	-3,04	0,03	20,3	4500,0	-0,0002

Eurolink S.C.p.A. Pagina 116 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

-3,06	0,03	20,3	4500,0	-0,0004
-3,09	0,03	20,3	4500,0	-0,0006
-3,11	0,03	20,3	4500,0	-0,0007
-3,14	0,03	20,3	4500,0	-0,0009
-3,16	0,03	20,3	4500,0	-0,0010
-3,19	0,03	20,3	4500,0	-0,0011
-3,21	0,03	20,3	4500,0	-0,0012
-3,24	0,03	20,3	4500,0	-0,0013
-3,26	0,03	20,3	4500,0	-0,0013
-3,29	0,03	20,3	4500,0	-0,0014
-3,31	0,03	20,3	4500,0	-0,0014
-3,34	0,03	20,3	4500,0	-0,0014
-3,36	0,03	20,2	4500,0	-0,0014
-3,39	0,03	20,2	4500,0	-0,0014
-3,41	0,03	20,2	4500,0	-0,0014
-3,44	0,03	20,2	4500,0	-0,0013
-3,46	0,03	20,2	4500,0	-0,0012
-3,49	0,03	20,2	4500,0	-0,0011
-4,31	1,62	20,1	5000,0	0,3201
-5,93	1,62	19,9	5000,0	0,5311
-7,55	1,62	19,2	5000,0	0,5458
-9,17	1,62	18,1	5000,0	0,5359
-10,79	1,62	16,7	5000,0	0,5095
-12,41	1,62	15,1	5000,0	0,4729
-14,03	1,62	13,6	5000,0	0,4319
-15,65	1,62	12,2	5000,0	0,3903
-17,27	1,62	10,8	5000,0	0,3508
-18,89	1,62	9,6	5000,0	0,3144
-20,51	1,62	8,6	5000,0	0,2817
-22,13	1,62	7,7	5000,0	0,2526
-23,75	1,62	6,9	5000,0	0,2270
-25,37	1,62	6,2	5000,0	0,2045
-26,99	1,62	5,6	5000,0	0,1847
	-3,09 -3,11 -3,14 -3,16 -3,19 -3,21 -3,24 -3,26 -3,29 -3,31 -3,34 -3,36 -3,39 -3,41 -3,44 -3,46 -3,49 -4,31 -5,93 -7,55 -9,17 -10,79 -12,41 -14,03 -15,65 -17,27 -18,89 -20,51 -22,13 -23,75 -25,37	-3,09	-3,09	-3,09 0,03 20,3 4500,0 -3,11 0,03 20,3 4500,0 -3,14 0,03 20,3 4500,0 -3,16 0,03 20,3 4500,0 -3,19 0,03 20,3 4500,0 -3,21 0,03 20,3 4500,0 -3,24 0,03 20,3 4500,0 -3,26 0,03 20,3 4500,0 -3,29 0,03 20,3 4500,0 -3,31 0,03 20,3 4500,0 -3,34 0,03 20,3 4500,0 -3,36 0,03 20,2 4500,0 -3,39 0,03 20,2 4500,0 -3,41 0,03 20,2 4500,0 -3,44 0,03 20,2 4500,0 -3,46 0,03 20,2 4500,0 -3,49 0,03 20,2 4500,0 -4,31 1,62 19,9 5000,0 -5,93 1,62 19,9 5000,0 -7,55 1,62 19,2 5000,0

Eurolink S.C.p.A. Pagina 117 di 255

	RELAZIONE GEOTECNICA			Codice documento SS0690_F0.doc			
36	-28,61	1,62	5,0	5000,0	0,1	1674	
37	-30,23	1,62	4,6	5000,0	0,1	1522	
38	-31,85	1,62	4,2	5000,0	0,1	1388	
39	-33,47	1,62	3,8	5000,0	0,1	1270	
40	-35,09	1,62	3,5	5000,0	0,1	1165	
Totale		32,90			6,2	2342	

Fondazione (Combinazione n° 4)

n°	Z	ΔН	$\Delta\sigma_{V}$	E	$\Delta \mathbf{w}$
1	-3,01	0,03	20,5	4500,0	-0,0001
2	-3,04	0,03	20,5	4500,0	-0,0003
3	-3,06	0,03	20,5	4500,0	-0,0004
4	-3,09	0,03	20,5	4500,0	-0,0006
5	-3,11	0,03	20,5	4500,0	-0,0007
6	-3,14	0,03	20,5	4500,0	-0,0009
7	-3,16	0,03	20,5	4500,0	-0,0010
8	-3,19	0,03	20,5	4500,0	-0,0011
9	-3,21	0,03	20,5	4500,0	-0,0012
10	-3,24	0,03	20,5	4500,0	-0,0013
11	-3,26	0,03	20,5	4500,0	-0,0014
12	-3,29	0,03	20,5	4500,0	-0,0014
13	-3,31	0,03	20,5	4500,0	-0,0014
14	-3,34	0,03	20,5	4500,0	-0,0014
15	-3,36	0,03	20,5	4500,0	-0,0014
16	-3,39	0,03	20,5	4500,0	-0,0014
17	-3,41	0,03	20,4	4500,0	-0,0014
18	-3,44	0,03	20,4	4500,0	-0,0013
19	-3,46	0,03	20,4	4500,0	-0,0012
20	-3,49	0,03	20,4	4500,0	-0,0011
21	-4,31	1,63	20,3	5000,0	0,3309
22	-5,94	1,63	20,0	5000,0	0,5384
23	-7,56	1,63	19,3	5000,0	0,5529

Eurolink S.C.p.A. Pagina 118 di 255

RELAZIONE GEOTECNICA			Codice documento SS0690_F0.doc			
					•	
24	-9,19	1,63	18,2	5000,0	,5426	
25	-10,81	1,63	16,8	5000,0	,5155	
26	-12,44	1,63	15,3	5000,0	,4782	
27	-14,06	1,63	13,7	5000,0	,4364	
28	-15,69	1,63	12,2	5000,0	,3943	
29	-17,31	1,63	10,9	5000,0	,3541	
30	-18,94	1,63	9,7	5000,0	,3173	
31	-20,56	1,63	8,6	5000,0	,2841	
32	-22,19	1,63	7,7	5000,0	,2547	
33	-23,81	1,63	6,9	5000,0	,2288	
34	-25,44	1,63	6,2	5000,0	,2061	
35	-27,06	1,63	5,6	5000,0	,1862	
36	-28,69	1,63	5,1	5000,0	,1687	
37	-30,31	1,63	4,6	5000,0	,1533	
38	-31,94	1,63	4,2	5000,0	,1398	
39	-33,56	1,63	3,8	5000,0	,1279	
40	-35,19	1,63	3,5	5000,0	,1173	
<u>Totale</u>		33,00		6	,3065	
	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	24	24 -9,19 1,63 25 -10,81 1,63 26 -12,44 1,63 27 -14,06 1,63 28 -15,69 1,63 29 -17,31 1,63 30 -18,94 1,63 31 -20,56 1,63 32 -22,19 1,63 33 -23,81 1,63 34 -25,44 1,63 35 -27,06 1,63 36 -28,69 1,63 37 -30,31 1,63 38 -31,94 1,63 39 -33,56 1,63 40 -35,19 1,63	24	24	24 -9,19 1,63 18,2 5000,0 0,5426 25 -10,81 1,63 16,8 5000,0 0,5155 26 -12,44 1,63 15,3 5000,0 0,4782 27 -14,06 1,63 13,7 5000,0 0,4364 28 -15,69 1,63 12,2 5000,0 0,3943 29 -17,31 1,63 10,9 5000,0 0,3541 30 -18,94 1,63 9,7 5000,0 0,3173 31 -20,56 1,63 8,6 5000,0 0,2841 32 -22,19 1,63 7,7 5000,0 0,2547 33 -23,81 1,63 6,9 5000,0 0,2288 34 -25,44 1,63 6,2 5000,0 0,2061 35 -27,06 1,63 5,6 5000,0 0,1862 36 -28,69 1,63 5,1 5000,0 0,1533 38

Fondazione (Combinazione n° 5)

n°	z	ΔН	$\Delta\sigma_{V}$	E	Δw
1	-3,01	0,03	20,2	4500,0	-0,0001
2	-3,04	0,03	20,2	4500,0	-0,0002
3	-3,06	0,03	20,2	4500,0	-0,0004
4	-3,09	0,03	20,2	4500,0	-0,0006
5	-3,11	0,03	20,2	4500,0	-0,0007
6	-3,14	0,03	20,2	4500,0	-0,0008
7	-3,16	0,03	20,1	4500,0	-0,0010
8	-3,19	0,03	20,1	4500,0	-0,0011
9	-3,21	0,03	20,1	4500,0	-0,0012
10	-3,24	0,03	20,1	4500,0	-0,0013
11	-3,26	0,03	20,1	4500,0	-0,0013

Eurolink S.C.p.A. Pagina 119 di 255

RELAZIONE GEOTECNICA	Codice documento	Rev	Data
	SS0690_F0.doc	F0	20/06/2011

12	-3,29	0,03	20,1	4500,0	-0,0014
13	-3,31	0,03	20,1	4500,0	-0,0014
14	-3,34	0,03	20,1	4500,0	-0,0014
15	-3,36	0,03	20,1	4500,0	-0,0014
16	-3,39	0,03	20,1	4500,0	-0,0014
17	-3,41	0,03	20,1	4500,0	-0,0014
18	-3,44	0,03	20,1	4500,0	-0,0013
19	-3,46	0,03	20,1	4500,0	-0,0012
20	-3,49	0,03	20,1	4500,0	-0,0011
21	-4,31	1,62	20,0	5000,0	0,3113
22	-5,92	1,62	19,7	5000,0	0,5256
23	-7,54	1,62	19,0	5000,0	0,5405
24	-9,15	1,62	18,0	5000,0	0,5309
25	-10,77	1,62	16,6	5000,0	0,5050
26	-12,38	1,62	15,1	5000,0	0,4691
27	-14,00	1,62	13,6	5000,0	0,4286
28	-15,61	1,62	12,1	5000,0	0,3876
29	-17,23	1,62	10,8	5000,0	0,3485
30	-18,84	1,62	9,6	5000,0	0,3125
31	-20,46	1,62	8,6	5000,0	0,2800
32	-22,07	1,62	7,7	5000,0	0,2512
33	-23,69	1,62	6,9	5000,0	0,2258
34	-25,30	1,62	6,2	5000,0	0,2034
35	-26,92	1,62	5,6	5000,0	0,1838
36	-28,53	1,62	5,0	5000,0	0,1666
37	-30,15	1,62	4,6	5000,0	0,1515
38	-31,76	1,62	4,2	5000,0	0,1382
39	-33,38	1,62	3,8	5000,0	0,1264
40	-34,99	1,62	3,5	5000,0	0,1160
<u>Totale</u>		32,80			<u>6,1819</u>

Fondazione (Combinazione n° 6)

Eurolink S.C.p.A. Pagina 120 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

n°	z	ΔН	$\Delta\sigma_{V}$	E	Δw
1	-3,01	0,03	20,5	4500,0	-0,0001
2	-3,04	0,03	20,5	4500,0	-0,0002
3	-3,06	0,03	20,5	4500,0	-0,0004
4	-3,09	0,03	20,5	4500,0	-0,0006
5	-3,11	0,03	20,5	4500,0	-0,0007
6	-3,14	0,03	20,5	4500,0	-0,0009
7	-3,16	0,03	20,5	4500,0	-0,0010
8	-3,19	0,03	20,5	4500,0	-0,0011
9	-3,21	0,03	20,5	4500,0	-0,0012
10	-3,24	0,03	20,5	4500,0	-0,0013
11	-3,26	0,03	20,4	4500,0	-0,0014
12	-3,29	0,03	20,4	4500,0	-0,0014
13	-3,31	0,03	20,4	4500,0	-0,0014
14	-3,34	0,03	20,4	4500,0	-0,0014
15	-3,36	0,03	20,4	4500,0	-0,0014
16	-3,39	0,03	20,4	4500,0	-0,0014
17	-3,41	0,03	20,4	4500,0	-0,0014
18	-3,44	0,03	20,4	4500,0	-0,0013
19	-3,46	0,03	20,4	4500,0	-0,0012
20	-3,49	0,03	20,4	4500,0	-0,0011
21	-4,31	1,63	20,3	5000,0	0,3231
22	-5,94	1,63	20,0	5000,0	0,5376
23	-7,56	1,63	19,3	5000,0	0,5524
24	-9,19	1,63	18,2	5000,0	0,5421
25	-10,81	1,63	16,8	5000,0	0,5151
26	-12,44	1,63	15,3	5000,0	0,4779
27	-14,06	1,63	13,7	5000,0	0,4362
28	-15,69	1,63	12,2	5000,0	0,3941
29	-17,31	1,63	10,9	5000,0	0,3540
30	-18,94	1,63	9,7	5000,0	0,3172
31	-20,56	1,63	8,6	5000,0	0,2841
32	-22,19	1,63	7,7	5000,0	0,2547

Eurolink S.C.p.A. Pagina 121 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

		Eurolink							
	RELAZIONE GEOTECNICA		Codice documento SS0690_F0.doc			Rev F0	Data 20/06/2011		
33	-23,81	1,63	6,9	5000,0	0,2	2288			
34	-25,44	1,63	6,2	5000,0	0,2	2061			
35	-27,06	1,63	5,6	5000,0	0,	1861			
36	-28,69	1,63	5,1	5000,0	0,	1687			
37	-30,31	1,63	4,6	5000,0	0,	1533			
38	-31,94	1,63	4,2	5000,0	0,	1398			
39	-33,56	1,63	3,8	5000,0	0,	1279			
40	-35,19	1,63	3,5	5000,0	0,	1173			
<u>Totale</u>		33,00			6,2	<u> 2953</u>			

Fondazione (Combinazione n° 7)

n°	z	ΔН	$\Delta\sigma_{V}$	E	Δw
1	-3,01	0,03	20,1	4500,0	-0,0001
2	-3,04	0,03	20,1	4500,0	-0,0002
3	-3,06	0,03	20,1	4500,0	-0,0004
4	-3,09	0,03	20,1	4500,0	-0,0005
5	-3,11	0,03	20,1	4500,0	-0,0007
6	-3,14	0,03	20,1	4500,0	-0,0008
7	-3,16	0,03	20,1	4500,0	-0,0009
8	-3,19	0,03	20,1	4500,0	-0,0011
9	-3,21	0,03	20,1	4500,0	-0,0012
10	-3,24	0,03	20,1	4500,0	-0,0012
11	-3,26	0,03	20,1	4500,0	-0,0013
12	-3,29	0,03	20,1	4500,0	-0,0014
13	-3,31	0,03	20,1	4500,0	-0,0014
14	-3,34	0,03	20,1	4500,0	-0,0014
15	-3,36	0,03	20,1	4500,0	-0,0014
16	-3,39	0,03	20,1	4500,0	-0,0014
17	-3,41	0,03	20,0	4500,0	-0,0014
18	-3,44	0,03	20,0	4500,0	-0,0013
19	-3,46	0,03	20,0	4500,0	-0,0013
20	-3,49	0,03	20,0	4500,0	-0,0012

Eurolink S.C.p.A. Pagina 122 di 255

	RELAZIONE	GEOTECNICA	Codice de			Rev	Data
			SS0690_F0.	doc		=0	20/06/2011
21	-4,31	1,62	20,0	5000,0	0,30	50	
22	-5,92	1,62	19,7	5000,0	0,52	50	
23	-7,54	1,62	19,0	5000,0	0,54	01	
24	-9,15	1,62	17,9	5000,0	0,53	06	
25	-10,77	1,62	16,6	5000,0	0,50	47	
26	-12,38	1,62	15,1	5000,0	0,46	88	
27	-14,00	1,62	13,6	5000,0	0,42	84	
28	-15,61	1,62	12,1	5000,0	0,38	74	
29	-17,23	1,62	10,8	5000,0	0,34	84	
30	-18,84	1,62	9,6	5000,0	0,31	24	
31	-20,46	1,62	8,6	5000,0	0,28	00	
32	-22,07	1,62	7,7	5000,0	0,25	12	
33	-23,69	1,62	6,9	5000,0	0,22	57	
34	-25,30	1,62	6,2	5000,0	0,20	34	
35	-26,92	1,62	5,6	5000,0	0,18	38	
36	-28,53	1,62	5,0	5000,0	0,16	66	
37	-30,15	1,62	4,6	5000,0	0,15	15	
38	-31,76	1,62	4,2	5000,0	0,13	82	
39	-33,38	1,62	3,8	5000,0	0,12	64	
40	-34,99	1,62	3,5	5000,0	0,11	60	
Totale		32,80			6,17	30	

Fondazione (Combinazione n° 8)

n°	z	ΔΗ	$\Delta\sigma_{V}$	E	$\Delta \mathbf{w}$
1	-3,01	0,03	20,5	4500,0	-0,0001
2	-3,04	0,03	20,5	4500,0	-0,0003
3	-3,06	0,03	20,5	4500,0	-0,0004
4	-3,09	0,03	20,5	4500,0	-0,0006
5	-3,11	0,03	20,5	4500,0	-0,0007
6	-3,14	0,03	20,5	4500,0	-0,0009
7	-3,16	0,03	20,5	4500,0	-0,0010
8	-3,19	0,03	20,5	4500,0	-0,0011

Eurolink S.C.p.A. Pagina 123 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

9	-3,21	0,03	20,5	4500,0	-0,0012
10	-3,24	0,03	20,5	4500,0	-0,0013
11	-3,26	0,03	20,5	4500,0	-0,0014
12	-3,29	0,03	20,5	4500,0	-0,0014
13	-3,31	0,03	20,5	4500,0	-0,0014
14	-3,34	0,03	20,5	4500,0	-0,0014
15	-3,36	0,03	20,4	4500,0	-0,0014
16	-3,39	0,03	20,4	4500,0	-0,0014
17	-3,41	0,03	20,4	4500,0	-0,0014
18	-3,44	0,03	20,4	4500,0	-0,0013
19	-3,46	0,03	20,4	4500,0	-0,0012
20	-3,49	0,03	20,4	4500,0	-0,0011
21	-4,31	1,63	20,3	5000,0	0,3280
22	-5,94	1,63	20,0	5000,0	0,5381
23	-7,56	1,63	19,3	5000,0	0,5527
24	-9,19	1,63	18,2	5000,0	0,5424
25	-10,81	1,63	16,8	5000,0	0,5154
26	-12,44	1,63	15,3	5000,0	0,4781
27	-14,06	1,63	13,7	5000,0	0,4363
28	-15,69	1,63	12,2	5000,0	0,3942
29	-17,31	1,63	10,9	5000,0	0,3541
30	-18,94	1,63	9,7	5000,0	0,3172
31	-20,56	1,63	8,6	5000,0	0,2841
32	-22,19	1,63	7,7	5000,0	0,2547
33	-23,81	1,63	6,9	5000,0	0,2288
34	-25,44	1,63	6,2	5000,0	0,2061
35	-27,06	1,63	5,6	5000,0	0,1862
36	-28,69	1,63	5,1	5000,0	0,1687
37	-30,31	1,63	4,6	5000,0	0,1533
38	-31,94	1,63	4,2	5000,0	0,1398
39	-33,56	1,63	3,8	5000,0	0,1279
40	-35,19	1,63	3,5	5000,0	0,1173
<u>Totale</u>		33,00			6,3023

Eurolink S.C.p.A. Pagina 124 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Fondazione (Combinazione nº 9)

n°	z	ΔΗ	$\Delta\sigma_{ m V}$	E	Δw
1	-3,01	0,03	20,2	4500,0	-0,0001
2	-3,04	0,03	20,2	4500,0	-0,0002
3	-3,06	0,03	20,2	4500,0	-0,0004
4	-3,09	0,03	20,2	4500,0	-0,0005
5	-3,11	0,03	20,1	4500,0	-0,0007
6	-3,14	0,03	20,1	4500,0	-0,0008
7	-3,16	0,03	20,1	4500,0	-0,0010
8	-3,19	0,03	20,1	4500,0	-0,0011
9	-3,21	0,03	20,1	4500,0	-0,0012
10	-3,24	0,03	20,1	4500,0	-0,0013
11	-3,26	0,03	20,1	4500,0	-0,0013
12	-3,29	0,03	20,1	4500,0	-0,0014
13	-3,31	0,03	20,1	4500,0	-0,0014
14	-3,34	0,03	20,1	4500,0	-0,0014
15	-3,36	0,03	20,1	4500,0	-0,0014
16	-3,39	0,03	20,1	4500,0	-0,0014
17	-3,41	0,03	20,1	4500,0	-0,0014
18	-3,44	0,03	20,1	4500,0	-0,0013
19	-3,46	0,03	20,1	4500,0	-0,0012
20	-3,49	0,03	20,1	4500,0	-0,0012
21	-4,31	1,62	20,0	5000,0	0,3090
22	-5,92	1,62	19,7	5000,0	0,5254
23	-7,54	1,62	19,0	5000,0	0,5404
24	-9,15	1,62	18,0	5000,0	0,5308
25	-10,77	1,62	16,6	5000,0	0,5049
26	-12,38	1,62	15,1	5000,0	0,4690
27	-14,00	1,62	13,6	5000,0	0,4285
28	-15,61	1,62	12,1	5000,0	0,3875
29	-17,23	1,62	10,8	5000,0	0,3484

Eurolink S.C.p.A. Pagina 125 di 255

	RELAZIONE GEOTECNICA		Codice do		Rev F0	Data 20/06/2011	
30	-18,84	1,62	9,6	5000,0	0,3	3124	
31	-20,46	1,62	8,6	5000,0	0,2	2800	
32	-22,07	1,62	7,7	5000,0	0,2	2512	
33	-23,69	1,62	6,9	5000,0	0,2	2258	
34	-25,30	1,62	6,2	5000,0	0,2	2034	
35	-26,92	1,62	5,6	5000,0	0,1	1838	
36	-28,53	1,62	5,0	5000,0	0,1	1666	
37	-30,15	1,62	4,6	5000,0	0,1	1515	
38	-31,76	1,62	4,2	5000,0	0,1	1382	
39	-33,38	1,62	3,8	5000,0	0,1	1264	
40	-34,99	1,62	3,5	5000,0	0,1	1160	
<u>Totale</u>		32,80			6,′	<u> 1787</u>	

Fondazione (Combinazione n° 10)

n°	z	ΔН	$\Delta\sigma_{ m V}$	E	Δw
1	-3,01	0,03	20,6	4500,0	-0,0001
2	-3,04	0,03	20,6	4500,0	-0,0003
3	-3,06	0,03	20,6	4500,0	-0,0005
4	-3,09	0,03	20,6	4500,0	-0,0007
5	-3,11	0,03	20,6	4500,0	-0,0008
6	-3,14	0,03	20,6	4500,0	-0,0010
7	-3,16	0,03	20,6	4500,0	-0,0011
8	-3,19	0,03	20,6	4500,0	-0,0012
9	-3,21	0,03	20,6	4500,0	-0,0013
10	-3,24	0,03	20,6	4500,0	-0,0014
11	-3,26	0,03	20,6	4500,0	-0,0014
12	-3,29	0,03	20,6	4500,0	-0,0015
13	-3,31	0,03	20,6	4500,0	-0,0015
14	-3,34	0,03	20,5	4500,0	-0,0014
15	-3,36	0,03	20,5	4500,0	-0,0014
16	-3,39	0,03	20,5	4500,0	-0,0013
17	-3,41	0,03	20,5	4500,0	-0,0012

Eurolink S.C.p.A. Pagina 126 di 255

	RELAZIONE	GEOTECNICA	Codice do	ocumento		Rev	Data
	RELAZIONE	OLO I LOI NO A	SS0690_F0.	doc		F0	20/06/2011
			·				
18	-3,44	0,03	20,5	4500,0	-0,0	0010	
19	-3,46	0,03	20,5	4500,0		0009	
20	-3,49	0,03	20,5	4500,0		0007	
21	-4,31	1,62	20,4	5000,0		3884	
22	-5,93	1,62	20,1	5000,0		5393	
23	-7,55	1,62	19,4	5000,0		5519	
24	-9,17	1,62	18,2	5000,0		5413	
25	-10,79	1,62	16,8	5000,0		5140	
26	-12,41	1,62	15,3	5000,0	0,4	1766	
27	-14,03	1,62	13,7	5000,0	0,4	1348	
28	-15,65	1,62	12,2	5000,0	0,3	3927	
29	-17,27	1,62	10,9	5000,0	0,3	3526	
30	-18,89	1,62	9,7	5000,0	0,3	3159	
31	-20,51	1,62	8,6	5000,0	0,2	2828	
32	-22,13	1,62	7,7	5000,0	0,2	2536	
33	-23,75	1,62	6,9	5000,0	0,2	2278	
34	-25,37	1,62	6,2	5000,0	0,2	2051	
35	-26,99	1,62	5,6	5000,0	0,	1853	
36	-28,61	1,62	5,1	5000,0	0,	1679	
37	-30,23	1,62	4,6	5000,0	0,	1526	
38	-31,85	1,62	4,2	5000,0	0,	1391	
39	-33,47	1,62	3,8	5000,0	0,	1272	
40	-35,09	1,62	3,5	5000,0	0,	1167	
Totale		32,90			6,3	<u>3448</u>	

Cedimento di progetto

I cedimenti calcolati con ipotesi di fondazione flessibile possono essere sensatamente ridotti in considerazione del fatto che la fondazione può essere valutata come infinitamente rigida, visto il rapporto tra spessore e lato sempre inferiore a 0,10.

Per fondazioni rettangolari infinitamente rigide si può fare uso delle seguenti relazioni (Poulos e Davis, 1974):

$$\Delta_{\text{W}} \left(\text{fond rigida} \right) = \frac{1}{3} \cdot \left(2 \cdot \Delta_{\text{Wcentro}} + \Delta_{\text{Wspigolo}} \right) \text{fond flessibile}$$

Nel caso in esame, con combinazione peggiore rappresentata dalla comb.2, si ottiene:

Eurolink S.C.p.A. Pagina 127 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$\Delta_{\text{W}} \text{ (fond rigida)} = \frac{1}{3} \cdot (2 \cdot 6,51 + 6,15) = 6,39 \text{ cm}$$

La riduzione risulta comunque di entità contenuta, a causa dell'eccentricità dei carichi piuttosto bassa per tutte le combinazioni di carico SLE.

5.1.2.5 VALUTAZIONE DEI RISULTATI

I fattori di sicurezza ottenuti per verifica di portanza verticale della sottostruttura in oggetto risultano per le combinazioni statiche spesso ampiamente superiori al valore richiesto dalla normativa vigente; tali valori risultano però avvicinarsi notevolmente al limite minimo per le combinazioni sismiche (vedasi comb. 11 e 12). Le dimensioni delle fondazioni sono peraltro giustificate dalle verifiche a scorrimento, caratterizzate per le combinazioni statiche da valori prossimi a 3,00 e per le combinazioni sismiche da valori abbastanza vicini al limite minimo. I fattori di sicurezza sismici vicini ai limiti sono giustificati dall'alto grado di sismicità del sito e dal tempo di ritorno elevato considerato; tali parametri sismici portano infatti ad avere forti azioni orizzontali che, oltre a rendere necessarie le dimensioni della fondazione per verifica a scorrimento, creano un forte angolo di inclinazione della risultante delle azioni andando a penalizzare la portanza verticale.

I cedimenti massimi si attestano attorno al valore di 6 cm, valore non trascurabile; si evidenzia tuttavia che il valore del peso proprio della spalla, costituito sia dagli elementi in calcestruzzo armato che dal terreno del rilevato posto sopra la platea di base, costituiscono anche oltre il 90% dei carichi verticali totali. I cedimenti sopra riportati vengono quindi in grande percentuale assorbiti nelle fasi di costruzione dell'opera, limitando i cedimenti ad opera terminata a valori nell'ordine del centimetro.

Eurolink S.C.p.A. Pagina 128 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

5.2 ANALISI DEL SISTEMA FONDAZIONALE DELLA SPALLA B

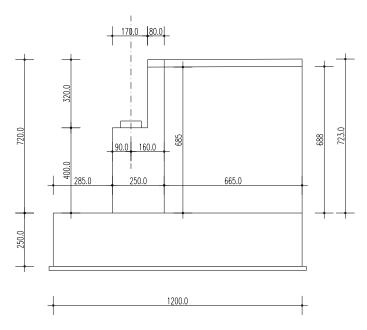


Figura 5.3 – Vista laterale Spalla B.

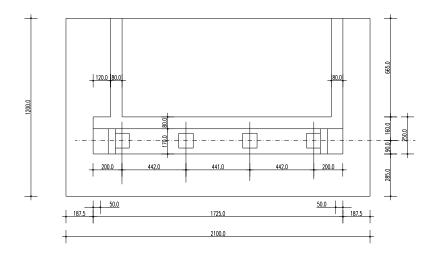


Figura 5.4 – Pianta Spalla B.

Eurolink S.C.p.A. Pagina 129 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

La spalla B, schematizzata nelle figure precedenti, è costituita da una ciabatta di fondazione a base rettangolare di dimensioni da 21,00 x 12,00 m, di spessore 2,50 m e da un muro frontale di spessore pari a 2,50 m. Sul muro frontale corre un muro paraghiaia caratterizzato da spessore 0,80 m ed altezza massima pari a 3,10 m.

Ai lati della spalla sono presenti due muri andatori paralleli all'asse stradale di lunghezza pari a 6,55 m, spessore 0,80 m e altezza massima pari a 7,25 m, che poggiano sulla medesima fondazione del muro frontale.

Eurolink S.C.p.A. Pagina 130 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

5.2.1 ANALISI DEI CARICHI

CARATTERISTICHE GEOMETRICHE DELLA SPALLA

Descrizione		X	Υ	Z	n	γ	Peso	dx	bx	M long
		(m)	(m)	(m)		(kN/mc)	(kN)	(m)	(m)	(kNm)
fondazione	1	12,00	21,00	2,50	1	25	15.750	0,00	6,00	94.500
muro frontale	2	2,50	17,25	4,00	1	25	4.313	2,95	4,20	18.113
ringrosso	3	0,00	0,00	0,00	0	25	0	0,00	0,00	0
paraghiaia	4	0,80	17,25	3,20	1	25	1.104	4,65	5,05	5.575
muri laterali	5	6,55	0,80	7,25	2	25	1.900	5,45	8,73	16.573
terra	6	6,55	14,45	7,20	1	19,0	12.948	5,45	8,73	112.969
							36 014			247 730

altezza fronte vento ponte scarico (m) altezza fronte vento ponte carico (m) distanza tra asse appoggi e bordo anteriore fondazione (m) distanza tra bordo anteriore fondazione e baricentro dei pali (m)

AZIONI TRASMESSE DALL'IMPALCATO

momenti longitudinali rispetto al bordo anteriore

2,85

5,84

3,75

6,00

	Ν	H long	H trasv	M long	M trasv					
	(kN)	(kN)	(kN)	(kNm)	(kNm)					
peso strutturale	698	0	0	2.618	35					
permanenti	295	0	0	1.106	241					
mezzi schema 1	3.947	0	0	14.801	2.117					
mezzi schema 2	2.158	0	0	8.093	4.381					
folla schema 1	18	0	0	68	146					
folla schema 2	0	0	0	0	0	Mt	Н		0	rad
frenamento	0	148	0	-962	0		148	Obliquità	0,00	0,00
attrito / reazione gommoni ?T	0	77	0	-497	0		77			
vento: impalcato scarico	371	0	72	0	-1.637	1.066	72			
vento: impalcato carico	313	0	166	0	-2.648	1.084	166			
temperatura	0	0	0	0	0					
ritiro	0	0	0	0	400					
azione centrifuga	0	0	0	0	0					
sisma	1.348	1.154	620	7.501	4.154					

Eurolink S.C.p.A. Pagina 131 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011

PARAMETRI SISMICI			PARAMETRI TERRENO				
accelerazione di picco	αg/g=	0,4373	Peso specifico del terreno:	19,0	kN/m³	γ	
coefficiente orizzontale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno rilevato	0,611	rad	ф	35,00 °
coefficiente verticale	$=S_s \times S_T =$	1,00	Angolo di attrito terreno di base	0,663	rad	ф	38,00 °
	a _{max} =	0,437	Angolo di inclinazione del muro	1,571	rad	Ψ	90,00 °
	βm	0,31					
	Kh=	0,136	Angolo di inclinazione del terreno	0,000	rad	β	0,00 °
Kv=0,5 Kh	Kv=	0,068	Angolo di resistenza terra-muro	0,407	rad	δ	23,33 °
	$\theta_1 =$	0,126	Coefficiente di spinta del terreno	K1=	0,325		
	$\theta_2 =$	0.144		K2=	0.339		

		0,111				- 1	0,000			
AZIONI TRASMESSE DAL TERRENO					Per le spinte Kx=	inerziali j 0,437	βm=1 Ку=	0,437	Kv=	0,219
	р	H long	M long		AZIONI INE	RZIALI S	IS. TRASI	MESSE DAL	LA SPALL	A
	(kN/mq)	(kN)	(kNm)			Ν	H long	H trasv	M long	M trasv
Ed= spinta terreno sismica+statica		5.585	-20.333			(kN)	(kN)	(kN)	(kNm)	(kNm)
spinta a riposo	78,59	6.575	-21.259		Sisma +	7.874	15.749	15.749	60.633	60.633
spinta attiva	49,94	4.178	-13.510		Sisma -	-5.043	-10.087	-10.087	-26.094	-26.094
spinta passiva plinto (50%)	154,63	2.030	1.691		,					
spinta per sovraccarichi	3,84	642	-3.114		_					
	р	N vert	H long	M long	1					
	(kN/mq)	(kN)	(kN)	(kNm)						
Sovraccarico					Largh	iezza pav	vimentato	14,45	m	
sommità	64,46	1.564	3.233	-15.678		num	ero stese	3		
piede muro	26,16					angolo d	diffusione	30,00	0	0,52

Eurolink S.C.p.A. Pagina 132 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

VERIFICHE DI STABILITA'

VERIFICHE DI STABILITA	N	Mrib	M stab	η	и	е	
	(kN)	(kNm)	(kNm)	,,	(m)	(m)	SL
Combinazione 1	40.980	-28.134	285.677	10,15	6,28	-0,28	
Combinazione 2	45.529	-31.716	302.737	9,55	5,95	0,05	
Combinazione 3	43.461	-31.716	294.983	9,30	6,06	-0,06	
Combinazione 4	44.384	-31.927	298.443	9,35	6,00	0,00	
Combinazione 5	42.841	-31.927	292.656	9,17	6,09	-0,09	SLU GEO
Combinazione 6	44.384	-30.323	300.046	9,89	6,08	-0,08), I
Combinazione 7	42.841	-30.323	294.260	9,70	6,16	-0,16	0)
Combinazione 8	44.384	-30.821	298.443	9,68	6,03	-0,03	
Combinazione 9	42.841	-30.821	292.656	9,50	6,11	-0,11	
Combinazione 10	43.023	-46.164	287.476	6,23	5,61	0,39	
Combinazione 11	51.946	-32.560	356.574	10,95	6,24	-0,24	
Combinazione 12	57.286	-36.765	376.601	10,24	5,93	0,07	
Combinazione 13	54.859	-36.765	367.499	10,00	6,03	-0,03	
Combinazione 14	55.942	-37.012	371.560	10,04	5,98	0,02	
Combinazione 15	54.131	-37.012	364.768	9,86	6,05	-0,05	SLU STR
Combinazione 16	55.942	-35.042	373.530	10,66	6,05	-0,05	SLU
Combinazione 17	54.131	-35.042	366.738	10,47	6,13	-0,13	0)
Combinazione 18	55.942	-35.714	371.560	10,40	6,00	0,00	
Combinazione 19	54.131	-35.714	364.768	10,21	6,08	-0,08	
Combinazione 20	54.339	-53.726	358.686	6,68	5,61	0,39	
Comb SLE 1	37.007	-21.756	251.454	11,56	6,21	-0,21	
Comb SLE 2	40.963	-24.871	266.289	10,71	5,89	0,11	
Comb SLE 3	39.165	-24.871	259.546	10,44	5,99	0,01	
Comb SLE 4	39.967	-25.054	262.555	10,48	5,94	0,06	
Comb SLE 5	38.625	-25.054	257.523	10,28	6,02	-0,02	SLE
Comb SLE 6	39.967	-23.595	264.014	11,19	6,02	-0,02	SI
Comb SLE 7	38.625	-23.595	258.983	10,98	6,09	-0,09	
Comb SLE 8	39.967	-24.092	262.555	10,90	5,97	0,03	
Comb SLE 9	38.625	-24.092	257.523	10,69	6,04	-0,04	
Comb SLE 10	38.759	-37.435	253.018	6,76	5,56	0,44	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	41.356	-104.654	259.079	2,48	3,73	2,27	
perm + sisma X + 0,30 sisma (Y+Z) schema 2	40.637	-104.654	256.382	2,45	3,73	2,27	ΛTS

Eurolink S.C.p.A. Pagina 133 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Si riportano nel seguito i valori delle azioni agenti alla base della fondazione per le varie combinazioni di carico riportate alla pagina successiva. Tali azioni rappresentano i valori assunti per l'analisi del sistema fondazionale in base all'approccio 1 delle NTC 2008.

AZIONI GLOBALI NORME TECNICHE 2008

ALIGHT GLOBALT HORFIE TECHTOTIC 2000	Δ./	A 4 /	1111	T /	T 1	1
	N (kN)	M long (kNm)	M trasv (kNm)	T long (kN)	T trasv (kN)	
Combinazione 1	40.980	-11.665	2.876	8.624	94	
Combinazione 2	45.529	2.153	5.332	9.363	129	1
Combinazione 3	43.461	-2.499	7.852	9.363	129	1
Combinazione 4	44.384	-213	4.639	9.348	129	
Combinazione 5	42.841	-3.684	6.592	9.348	129	GEC
Combinazione 6	44.384	-3.420	6.592	8.855	129	SLU GEO
Combinazione 7	42.841	-6.891	6.592	8.855	129	1 0)
Combinazione 8	44.384	-1.319	4.639	9.178	129	
Combinazione 9	42.841	-4.791	6.592	9.178	129	
Combinazione 10	43.023	16.825	2.814	12.342	129	
Combinazione 11	51.946	-12.341	3.344	9.966	108	
Combinazione 12	57.286	3.880	6.228	10.833	149	
Combinazione 13	54.859	-1.581	9.186	10.833	149	
Combinazione 14	55.942	1.103	5.415	10.816	149	
Combinazione 15	54.131	-2.972	7.707	10.816	149	STE
Combinazione 16	55.942	-2.837	7.707	10.210	149	SLU STR
Combinazione 17	54.131	-6.912	7.707	10.210	149]
Combinazione 18	55.942	-195	5.415	10.616	149	
Combinazione 19	54.131	-4.271	7.707	10.616	149	
Combinazione 20	54.339	21.075	3.272	12.078	149	
Comb SLE 1	37.007	-7.657	2.313	6.652	72	
Comb SLE 2	40.963	4.359	4.455	7.294	100	
Comb SLE 3	39.165	313	6.646	7.294	100	
Comb SLE 4	39.967	2.302	3.852	7.281	100	
Comb SLE 5	38.625	-717	5.550	7.281	100	SLE
Comb SLE 6	39.967	-617	5.550	6.832	100	S
Comb SLE 7	38.625	-3.636	5.550	6.832	100	
Comb SLE 8	39.967	1.340	3.852	7.133	100	
Comb SLE 9	38.625	-1.679	5.550	7.133	100]
Comb SLE 10	38.759	16.970	2.265	8.216	100	
perm + sisma X + 0,30 sisma (Y+Z) schema 1	41.356	61.054	20.135	20.458	4.911	SLV
perm + sisma X + 0,30 sisma (Y+Z) schema 2	40.637	60.249	20.312	20.458	4.911	ဟ

Eurolink S.C.p.A. Pagina 134 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Combinazioni statiche

PRINCIPALE	P.p.	Perm.	Attrito	<u>۔</u> ع	Temperatura	atura	Vento		Accic	Accident.	ñ	Folla	Frena	Frenamento	_=	- Ritiro	Gent	Centrifuga
	7G1	7,62	¥.	7,82		, E2,		ģ	4°	ğ	4°	ģ	Ψ°	2	¥°	ģ	4°	ģ
	1,00	1,30	1,0	1,30	09'0	1,00	1,00	1,30							1,00	8		
T	\neg	1,30	1,00	1,30	09'0	1,8	090	1,38	1,00	1,15	05'0	1,15	00'0	1,15	1,00	1,00	00'0	1,15
	1,00	1,30	1,00	1,30	09'0	1,00	09'0	1,30	1,00	1,15	05'0	1,15	00'0	1,15	1,00	1,00	00'0	1,15
Gruppo 2a centr.	1,00	1,30	1,00	1,30	09'0	1,00	09'0	1,30	0,75	1,15	00'0	1,15	1,00	1,15	1,00	1,8	00'0	1,15
Gruppo 2a ecc.	1,00	1,30	1,00	1,30	09'0	1,00	09'0	1,30	0,75	1,15	00'0	1,15	1,00	1,15	1,00	1,00	00'0	1,15
Gruppo 2b centr.	1,00	1,30	1,00	1,30	09'0	1,00	09'0	1,30	0,75	1,15	0,0	1,15	0,00	1,15	1,00	1,0	1,00	1,15
Gruppo 2b ecc.	1,00	1,30	1,00	1,30	09'0	1,00	0,60	1,30	0,75	1,15	00'00	1,15	0,00	1,15	1,00	1,00	1,00	1,15
	1,35	1,50	9	1,50	09'0	1,20	1,00	1,50							1,00	1,20		
Gruppo 1 centr.	_	1,50	1,00	1,50	09'0	1,20	09'0	1,50	1,00	1,35	0,50	1,35	00'0	1,35	1,00	1,20	0,0	1,35
Gruppo 1 ecc.	1,35	1,50	8	1,50	09'0	1,20	0,60	1,50	1,00	1,35	0,50	1,35	8,0	1,35	1,8	1,20	8,0	1,35
Gruppo 2a centr.	1,35	1,50	1,0	1,50	09'0	1,20	0,60	1,50	0,75	1,35	80	1,35	1,00	1,35	1,00	1,20	0,0	1,35
Gruppo 2a ecc.	1,35	1,50	9,1	1,50	09'0	1,20	0,60	1,50	0,75	1,35	80'0	1,35	1,00	1,35	1,00	1,20	0,0	1,35
Gruppo 2b centr.	1,35	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'0	1,35	00'0	1,35	1,00	1,20	1,00	1,35
Gruppo 2b ecc.	1,35	1,50	1,00	1,50	09'0	1,20	0,60	1,50	0,75	1,35	00'00	1,35	0,00	1,35	1,00	1,20	1,00	1,35
	1,10	1,50	9,1	1,50	09'0	1,20	1,00	1,50							1,00	1,20		
Gruppo 1 centr.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	1,00	1,35	05'0	1,35	00'0	1,35	1,00	1,20	00'0	1,35
Gruppo 1 ecc.	1,10	1,50	1,00	1,50	09'0	1,20	0,60	1,50	1,00	1,35	0,50	1,35	0,0	1,35	1,00	1,20	0,0	1,35
Gruppo 2a centr.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'0	1,35	1,00	1,35	1,00	1,20	00'0	1,35
Gruppo 2a ecc.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'0	1,35	1,00	1,35	1,00	1,20	00'0	1,35
Gruppo 2b centr.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'0	1,35	00'0	1,35	1,00	1,20	1,00	1,35
Gruppo 2b ecc.	1,10	1,50	1,00	1,50	09'0	1,20	09'0	1,50	0,75	1,35	00'00	1,35	00'00	1,35	1,00	1,20	1,00	1,35

Eurolink S.C.p.A. Pagina 135 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Combinazioni sismiche

Le combinazioni sismiche assunte per le verifiche delle fondazioni sono quelle con direzione principale coincidente con la direzione longitudinale del viadotto, in quanto più sfavorevoli per le verifiche di scorrimento e di portanza della fondazione stessa.

Combinazione	P.p.	Perm.	Accid.	Sisma	Sisma	Sisma
				Χ	Υ	Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30

Eurolink S.C.p.A. Pagina 136 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

5.2.2 MODELLO DI CALCOLO

Per il calcolo della capacità portante delle fondazioni profonde si utilizza il software di calcolo Aztec CARL 10.0 versione 10.05.b – carico limite e cedimenti.

Progetto: Curcuraci lato Reggio Calabria – spalla SpB

Geometria della fondazione

Simbologia adottata

Descrizione Destrizione della fondazione

Forma Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

- X Ascissa del baricentro della fondazione espressa in [m]
- Y Ordinata del baricentro della fondazione espressa in [m]
- B Base/Diametro della fondazione espressa in [m]
- L Lunghezza della fondazione espressa in [m]
- D Profondità del piano di posa in [m]
- α Inclinazione del piano di posa espressa in [°]
- ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
Fondazione	(R)	6,00	10.50	12.00	21,00	4.30	0.00	0.00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

- γ Peso di volume del terreno espresso in [daN/mc]
- γ_{sat} Peso di volume saturo del terreno espresso in [daN/mc]
- φ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi

Eurolink S.C.p.A. Pagina 137 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

- c Coesione del terreno espressa in [daN/cmq]
- ca Adesione del terreno espressa in [daN/cmq]

Descrizione	γ	γ_{sat}	ф	δ	С	ca
Depositi fluviali	2000,0	2350,0	38,00	38,00	0,000	0,000
Ghiaie di messina	1900,0	2300,0	38,00	38,00	0,000	0,000

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = -10,0 [m] Y = 3,0 [m] Punto di sondaggio n° 2: X = 0,0 [m] Y = 0,0 [m] Punto di sondaggio n° 3: X = 10,0 [m] Y = 3,0 [m]

N Z1 Z2 Z3 Terreno 1 -30,0 -30,0 Ghiaie di messina

Normativa

N.T.C. 2008

Calcolo secondo: Approccio 1

Simbologia adottata

 γ_{Gsfav} Coefficiente parziale sfavorevole sulle azioni permanenti γ_{Gfav} Coefficiente parziale favorevole sulle azioni permanenti

γ_{Qsfav} Coefficiente parziale sfavorevole sulle azioni variabili

Eurolink S.C.p.A. Pagina 138 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

γ_{Qfav} Coefficiente parziale favorevole sulle azioni variabili

 $\gamma_{tan\phi}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato

γ_{c'} Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

γ_{αu} Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ̈Gfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,30	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γOsfav	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1,00	1,00
Permanenti	Sfavorevole	γ̈Gsfav	1,00	1,00
Variabili	Favorevole	γQfav	0,00	0,00

Eurolink S.C.p.A. Pagina 139 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Variabili	Sfavorevole	γOsfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	$\gamma_{c'}$	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

		R1	R2	R3
Capacità portante	γ_{r}	1,00	1,80	2,30
Scorrimento	γ_{r}	1,00	1,10	1,10

Coeff di combinazione	$\Psi_{0} = 0.70$	$\Psi_4 = 0.50$	$\Psi_{2} = 0.20$

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione	Nome identificativo della fondazione
N	Sforzo normale totale espressa in [daN]
Mx	Momento in direzione X espressa in [daNm]
My	Momento in direzione Y espresso in [daNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]

Eurolink S.C.p.A. Pagina 140 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

T Forza di taglio espressa in [daN]

5.2.2.1 VERIFICHE APPROCCIO 1 – COMBINAZIONE 1

Condizione n° 1 (Condizione n° 1)

Fondazione Fondazione	N 5194600,0	Mx 334400,0	My 1234100,0	ex 0,2	ey -0,1	β 89,4	T 996658,5
Condizione n°	2 (Condizion	<u>ie n° 2)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	5728600,0	622800,0	388000,0	0,1	-0,1	89,2	1083402,5
Condizione n°	3 (Condizion	ne n° 3)					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	5485900,0	918600,0	158100,0	0,0	-0,2	89,2	1083402,5
Condizione n°	4 (Condizion	ne n° 4)					
Fondazione	N	Мх	Му	ex	еу	β	т
Fondazione	5594200,0	541500,0	110300,0	0,0	-0,1	89,2	1081702,6
Condizione n°	5 (Condizion	<u>ie n° 5)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	5413100,0	770700,0	297200,0	0,1	-0,1	89,2	1081702,6
Condizione n° 6 (Condizione n° 6)							
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	5594200,0	770700,0	283700,0	0,1	-0,1	89,2	1021108,7

Eurolink S.C.p.A. Pagina 141 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Condizione n° 7	(Condizione n° 7)
-----------------	-------------------

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	5413100.0	770700.0	691200.0	0.1	-0.1	89.2	1021108.7

Condizione n° 8 (Condizione n° 8)

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	5594200,0	541500,0	19500,0	0,0	-0,1	89,2 1061	704,6

Condizione n° 9 (Condizione n° 9)

Fondazione	N	Mx	My	ex	еу	β	Т
Fondazione	5413100,0	770700,0 427	71000,0	0,8	-0,1	89,2 1031	707,6

Condizione n° 10 (Condizione n° 10)

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	5433900,0	327200,0 210	0,7500	0,4	-0,1	89,3	1207891,9

Descrizione combinazioni di carico

Simbologia adottata

γ Coefficiente di partecipazione della condizione

 Ψ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Combinazione nº 1 SLU - Caso A1-M1

Combinazione n° 2 SLU - Caso A1-M1

Eurolink S.C.p.A. Pagina 142 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

	24	Ψ	С
Condizione n° 2	γ 1.00	1.00	1.00
	1.00	1.00	1.00
Combinazione n° 3 SLU - Caso	o A1-M1		
	γ	Ψ	С
Condizione n° 3	1.00	1.00	1.00
Combinazione n° 4 SLU - Case	o A1-M1		
	γ	Ψ	С
Condizione n° 4	1.00	1.00	1.00
Combinations no F CI II Con	~ A4 N44		
Combinazione n° 5 SLU - Case		Ψ	С
Condizione n° 5	γ 1.00	_	•
Condizione ii 5	1.00	1.00	1.00
Combinazione n° 6 SLU - Case	o A1-M1		
	γ	Ψ	С
Condizione n° 6	1.00	1.00	1.00
Combinazione n° 7 SLU - Case	o A1-M1		
	γ	Ψ	С
Condizione n° 7	1.00	1.00	1.00
0 1: : 000111 0	0.4.044		
Combinazione n° 8 SLU - Caso)T(•
Condizione n° 8	γ	Ψ 1.00	1.00
Condizione n 6	1.00	1.00	1.00
Combinazione n° 9 SLU - Caso	o A1-M1		
<u> </u>	γ	Ψ	С
Condizione n° 9	1.00	1.00	1.00
Combinazione nº 10 SLU - Ca	so A1-M1		
	γ	Ψ	С

Eurolink S.C.p.A. Pagina 143 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

1.00

Rev F0 Data 20/06/2011

Condizione n° 10 1.00

Analisi in condizioni drenate

Verifica della portanza per carichi verticali

Il calcolo della portanza è stato eseguito col metodo di Brinch-Hansen La relazione adottata è la seguente:

$$q_u = c N_c s_c i_c d_c b_c g_c + q N_q s_q i_q d_q b_q g_q + 0.5 By N_y s_y i_q d_q b_y g_y$$

1.00

Altezza del cuneo di rottura: AUTOMATICA

Il criterio utilizzato per il calcolo del macrostrato equivalente è stato la MEDIA PESATA

Nel calcolo della portanza sono state richieste le seguenti opzioni:

Riduzione sismica: NESSUNA

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1,00

Riduzione per carico eccentrico: MEYERHOF

Riduzione per rottura locale o punzonamento del terreno: VESIC

Meccanismo di punzonamento in presenza di falda.

Fondazione

Combinazione n° 1

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 12,30 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Eurolink S.C.p.A. Pagina 144 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Angolo di attrito $\phi = 38,00$ [°]

 $\begin{tabular}{lll} Coesione & $c=0,00$ & [daN/cmq] \\ Modulo di taglio & $G=166,67$ & [daN/cmq] \\ \end{tabular}$

Base ridotta B' = B - 2 ex = 11,52 [m]Lunghezza ridotta L' = L - 2 ey = 20,87 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.70$	$i_q = 0.71$	$i_{\gamma} = 0,57$
$d_c = 1,08$	$d_{q} = 1,08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 19.82 + 31.61 = 51.42 [daN/cmq]$$

 $Q_u = 123688489,73 \text{ [daN]}$ $Q_d = 123688489,73 \text{ [daN]}$ V = 5194600,00 [daN]

 $\eta = Q_u \, / \, V = 123688489,73 \, / \, 5194600,00 = 23,81$

Indici rigidezza

 $I_c = 0.70$ $I_{rc} = 256.12$

Combinazione nº 2

Caratteristiche fisico-meccaniche del terreno equivalente

Eurolink S.C.p.A. Pagina 145 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Spessore dello strato	H = 12.30	[m]

Peso specifico terreno
$$\gamma = 1900,00$$
 [daN/mc]

Angolo di attrito
$$\phi = 38,00$$
 [°]

Coesione
$$c = 0.00$$
 [daN/cmq]
Modulo di taglio $G = 166.67$ [daN/cmq]

Base ridotta
$$B' = B - 2 ex = 11,86 [m]$$

Lunghezza ridotta $L' = L - 2 ey = 20,78 [m]$

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.71$	$i_{\gamma}=0,58$
$d_c = 1.08$	$d_{q} = 1,08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 20.01 + 32.97 = 52.99 [daN/cmq]$$

$$Q_u = 130650761,75 \text{ [daN]}$$

 $Q_d = 130650761,75 \text{ [daN]}$

$$\eta = Q_u / V = 130650761,75 / 5728600,00 = 22,81$$

Indici rigidezza

$$I_c = 0.71$$
 $I_{rc} = 256.12$

Eurolink S.C.p.A. Pagina 146 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Combinazione nº 3

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 12,30 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,94 [m]Lunghezza ridotta L' = L - 2 ey = 20,67 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.70$	$i_q = 0.70$	$i_{\gamma} = 0,56$
$d_c = 1,08$	$d_{q} = 1,08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

 $q_u = 0.00 + 19.68 + 32.30 = 51.99 [daN/cmq]$

 $Q_u = 128294330,71 \text{ [daN]}$

 $Q_d = 128294330,71 [daN]$

V = 5485900,00 [daN]

 $\eta = Q_u / V = 128294330,71 / 5485900,00 = 23,39$

Eurolink S.C.p.A. Pagina 147 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Indici rigidezza

 $I_c = 0.70$

 $I_{rc} = 256,12$

Combinazione nº 4

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 12,30 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,96 [m]Lunghezza ridotta L' = L - 2 ey = 20,81 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.70$	$i_q = 0.71$	$i_{\gamma} = 0,57$
$d_c = 1.08$	$d_{q} = 1,08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_q = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

 $q_u = 0.00 + 19.85 + 32.79 = 52.64 [daN/cmq]$

 $Q_u = 130987279,68 [daN]$

Eurolink S.C.p.A. Pagina 148 di 255

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

 $Q_{d} = 130987279,68 \ [daN]$ $V = 5594200,00 \ [daN]$ $\eta = Q_{u} \ / \ V = 130987279,68 \ / \ 5594200,00 = 23,41$

Indici rigidezza

 $I_c = 0.70$ $I_{rc} = 256.12$

Combinazione n° 5

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 12,30	[m]
Peso specifico terreno	$\gamma = 1900,00$	[daN/mc]
Angolo di attrito	$\phi = 38,00$	[°]
Coesione	c = 0.00	[daN/cmq]
Modulo di taglio	G = 166,67	[daN/cmq]

Base ridotta B' = B - 2 ex = 11,89 [m]Lunghezza ridotta L' = L - 2 ey = 20,72 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0,69$	$i_q = 0.70$	$i_{\gamma} = 0,56$
$d_c = 1,08$	$d_{q} = 1,08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

Eurolink S.C.p.A. Pagina 149 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

 $q_u = 0.00 + 19.59 + 31.92 = 51.51 [daN/cmq]$

 $Q_u = 126872920,63 [daN]$

 $Q_d = 126872920,63 [daN]$

V = 5413100,00 [daN]

 $\eta = Q_u \, / \, V = 126872920,63 \, / \, 5413100,00 = 23,44$

Indici rigidezza

 $I_c = 0.69$ $I_{rc} = 256.12$

Combinazione nº 6

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 12,30 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,90 [m]Lunghezza ridotta L' = L - 2 ey = 20,72 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $\begin{array}{lll} N_c = 61,35 & N_q = 48,93 & N_\gamma = 78,02 \\ s_c = 1,00 & s_q = 1,00 & s_\gamma = 1,00 \\ i_c = 0,72 & i_q = 0,72 & i_\gamma = 0,59 \\ d_c = 1,08 & d_q = 1,08 & d_\gamma = 1,00 \end{array}$

Eurolink S.C.p.A. Pagina 150 di 255

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$b_c = 1,00$$

$$b_q = 1,00$$

$$b_v = 1,00$$

$$g_c = 1,00$$

$$g_q = 1,00$$

$$g_{\gamma} = 1,00$$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 20.31 + 33.83 = 54.14 [daN/cmq]$$

$$Q_u = 133505742,46 [daN]$$

$$Q_d = 133505742,46 [daN]$$

$$V = 5594200,00 [daN]$$

$$\eta = Q_u / V = 133505742,46 / 5594200,00 = 23,87$$

Indici rigidezza

$$I_c = 0.72$$

$$I_{rc} = 256,12$$

Combinazione nº 7

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 12,30 [[m]
-----------------------	-------------	-----

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,74 [m]Lunghezza ridotta L' = L - 2 ey = 20,72 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$$N_c = 61,35$$

$$N_q = 48,93$$

$$N_{\gamma} = 78,02$$

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.72$	$i_{\gamma} = 0.58$
$d_c = 1,08$	$d_{q} = 1,08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_q = 1,00$	$b_{\gamma} = 1,00$
$q_c = 1.00$	$q_0 = 1.00$	$q_v = 1.00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 20.07 + 32.75 = 52.82 [daN/cmq]$$

 $Q_u = 128496574,55 \text{ [daN]}$ $Q_d = 128496574,55 \text{ [daN]}$

V = 5413100,00 [daN]

 $\eta = Q_u \, / \, V = 128496574,55 \, / \, 5413100,00 = 23,74$

Indici rigidezza

$$I_c = 0.71$$
 $I_{rc} = 256.12$

Combinazione nº 8

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 12,30 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,99 [m]Lunghezza ridotta L' = L - 2 ey = 20,81 [m]

Eurolink S.C.p.A. Pagina 152 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.71$	$i_{\gamma} = 0.58$
$d_c = 1,08$	$d_{q} = 1,08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 20.00 + 33.28 = 53.28 \text{ [daN/cmq]}$$

$$Q_u = 132940120,72 \ [daN]$$

$$Q_d = 132940120,72 \ [daN]$$

$$V = 5594200,00 \ [daN]$$

$$\eta = Q_u \ / \ V = 132940120,72 \ / \ 5594200,00 = 23,76$$

Indici rigidezza

$$I_c = 0.71$$
 $I_{rc} = 256.12$

Combinazione nº 9

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 12,30	[m]
Peso specifico terreno	$\gamma = 1900,00$	[daN/mc]
Angolo di attrito	$\phi = 38,00$	[°]
Coesione	c = 0.00	[daN/cmq]
Modulo di taglio	G = 166,67	[daN/cmq]

Eurolink S.C.p.A. Pagina 153 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Base ridotta	B' = B - 2 ex = 10,42 [m]
Lunghezza ridotta	L' = L - 2 ey = 20,72 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.71$	$i_q = 0.71$	$i_{\gamma} = 0.58$
$d_c = 1,08$	$d_{q} = 1.08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_q = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 19.98 + 28.87 = 48.85 [daN/cmq]$$

$$Q_u = 105468519,46 \text{ [daN]}$$

$$Q_d = 105468519,46 \text{ [daN]}$$

$$V = 5413100,00 \text{ [daN]}$$

$$\eta = Q_u \ / \ V = 105468519,46 \ / \ 5413100,00 = 19,48$$

Indici rigidezza

$$I_c = 0.71$$
 $I_{rc} = 256.12$

Combinazione n° 10

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 12,30 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Eurolink S.C.p.A. Pagina 154 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0,00 [daN/cmq] Modulo di taglio G = 166,67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,22 [m]Lunghezza ridotta L' = L - 2 ey = 20,88 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_{\rm q} = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.66$	$i_q = 0.67$	$i_{\gamma} = 0,52$
$d_c = 1.08$	$d_{q} = 1,08$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 18.66 + 27.89 = 46.55 [daN/cmq]$$

 $Q_u = 109088223,43 \text{ [daN]}$ $Q_d = 109088223,43 \text{ [daN]}$ V = 5433900,00 [daN] $\eta = Q_u \ / \ V = 109088223,43 \ / \ 5433900,00 = 20,08$

Indici rigidezza

 $I_c = 0.66$ $I_{rc} = 256.12$

Verifica della portanza per carichi orizzontali (scorrimento).

Eurolink S.C.p.A. Pagina 155 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Partecipazione spinta passiva: 50,00 (%)

La relazione adottata è la seguente:

 $\eta = R / H >= \eta_{rea}$

 $\eta_{\text{req}}\!\!:$ coefficiente di sicurezza richiesto

Simbologia adottata

Cmb Identificativo della combinazione

H Forza di taglio agente al piano di posa espresso in [daN]

Resistenza offerta dal piano di posa per attrito ed adesione espressa in [daN]

 R_{ult2} Resistenza passiva offerta dall'affondamento del piano di posa espressa in [daN]

R Somma di R_{ult1} e R_{ult2}

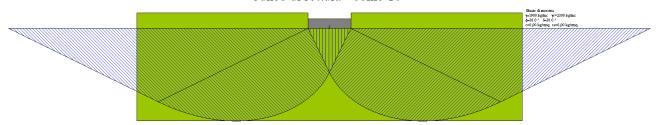
Resistenza ammissibile allo scorrimento espressa in [daN]

η Coeff. di sicurezza allo scorrimento

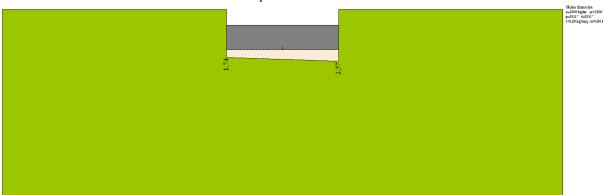
Fondazione

Cmb	Н	R _{ult1}	R_{ult2}	R	R_{amm}	η
1	996600,00	4058466,32	0,00	4058466,32	4058466,32	4,07
2	1083300,00	4475672,84	0,00	4475672,84	4475672,84	4,13
3	1083300,00	4286054,82	0,00	4286054,82	4286054,82	3,96
4	1081600,00	4370668,05	0,00	4370668,05	4370668,05	4,04
5	1081600,00	4229177,22	0,00	4229177,22	4229177,22	3,91
6	1021000,00	4370668,05	0,00	4370668,05	4370668,05	4,28
7	1021000,00	4229177,22	0,00	4229177,22	4229177,22	4,14
8	1061600,00	4370668,05	0,00	4370668,05	4370668,05	4,12
9	1031600,00	4229177,22	0,00	4229177,22	4229177,22	4,10
10	1207800,00	4245427,97	0,00	4245427,97	4245427,97	3,52

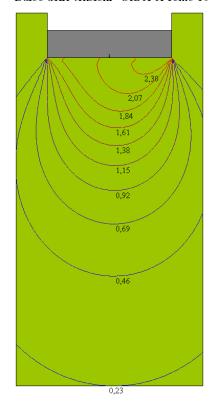
Eurolink S.C.p.A. Pagina 156 di 255


Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA


 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011


Cuneo di rottura - comb 10

Solido delle pressioni - comb 10

Bulbo delle tensioni - Sez X-X comb 10

Eurolink S.C.p.A. Pagina 157 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

5.2.2.2 VERIFICHE APPROCCIO 1 – COMBINAZIONE 2

Condizione n° 1 (Condizione n° 1)

Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	4098000,0	287600,0	1166500,0	0,3	-0,1	89,4	862451,2
Condizione n°	2 (Condizion	ne n° 2)					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4552900,0	533200,0	215300,0	0,0	-0,1	89,2	936388,9
Condizione n°	3 (Condizion	<u>ne n° 3)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4346100,0	785200,0	249900,0	0,1	-0,2	89,2	936388,9
Condizione n°	4 (Condizion	<u>ne n° 4)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	4438400,0	463900,0	21300,0	0,0	-0,1	89,2	934889,0
Condizione n°	5 (Condizion	<u>ne n° 5)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4284100,0	659200,0	368400,0	0,1	-0,2	89,2	934889,0
Condizione n°	6 (Condizion	ne n° 6)					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4438400,0	659200,0	342000,0	0,1	-0,1	89,2	885594,0

Condizione n° 7 (Condizione n° 7)

Eurolink S.C.p.A. Pagina 158 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011

Fondazione Fondazione	N 4284100,0	M x 659200,0	My 689100,0	ex 0,2	ey -0,2	β 89,2	T 885594,0
Condizione n°	8 (Condizion	<u>ie n° 8)</u>					
Fondazione Fondazione	N 4438400,0	Mx 463900,0	My 131900,0	ex 0,0	ey -0,1	β 89,2	T 917890,7
Condizione n°	9 (Condizion	<u>ie n° 9)</u>					
Fondazione Fondazione	N 4284100,0	M x 659200,0	My 479100,0	ex 0,1	ey -0,2	β 89,2	T 917890,7
Condizione n°	10 (Condizio	ne n° 10)					
Fondazione Fondazione	N 4302300,0	M x 284100,0	My 1682500,0	ex 0,4	•	β 89,4	T 1234267,4
Condizione n°	11 (Condizio	ne n° 11) –	COMBINAZ	ZIONE SISM	<u>ICA</u>		
Fondazione Fondazione	N 4135600,0	Mx 2013500,0	My 6105400,0	ex 1,5	•	•	T 2103919,4
Condizione n°	12 (Condizio	ne n° 12) –	COMBINAZ	ZIONE SISM	<u>ICA</u>		
Fondazione Fondazione	N 4063700,0	Mx 2031200,0	My 6024900,0	ex 1,5	ey -0,5	β 71,6	T 2103919,4

Simbologia adottata

Descrizione combinazioni di carico

Eurolink S.C.p.A. Pagina 159 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

γ Coefficiente di partecipazione della cond

- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione nº 1 SLU - Caso A2-M2

	γ	Ψ	С
Condizione n° 1	1.00	1.00	1.00

Combinazione nº 2 SLU - Caso A2-M2

	γ	Ψ	C
Condizione n° 2	1.00	1.00	1.00

Combinazione nº 3 SLU - Caso A2-M2

	γ	Ψ	C
Condizione n° 3	1.00	1.00	1.00

Combinazione nº 4 SLU - Caso A2-M2

	γ	Ψ	C
Condizione n° 4	1.00	1.00	1.00

Combinazione n° 5 SLU - Caso A2-M2

	γ	Ψ	C
Condizione n° 5	1.00	1.00	1.00

Combinazione nº 6 SLU - Caso A2-M2

	γ	Ψ	C
Condizione n° 6	1.00	1.00	1.00

Combinazione n° 7 SLU - Caso A2-M2

	γ	Ψ	С
Condizione n° 7	1.00	1.00	1.00

Combinazione nº 8 SLU - Caso A2-M2

Eurolink S.C.p.A. Pagina 160 di 255

)T(

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

	γ	Ψ	С
Condizione n° 8	1.00	1.00	1.00

Combinazione nº 9 SLU - Caso A2-M2

	γ	Ψ	С
Condizione nº 9	1.00	1.00	1.00

Combinazione nº 10 SLU - Caso A2-M2

	γ	Ψ	С
Condizione n° 10	1.00	1.00	1.00

Combinazione nº 11 SLU - COMBINAZIONE SISMICA

	γ	Ψ	С
Condizione n° 11	1.00	1.00	1.00

Combinazione nº 12 SLU - COMBINAZIONE SISMICA

	γ	Ψ	С
Condizione nº 12	1.00	1.00	1.00

Analisi in condizioni drenate

Verifica della portanza per carichi verticali

Il calcolo della portanza è stato eseguito col metodo di Brinch-Hansen La relazione adottata è la seguente:

$$q_u = c N_c s_c i_c d_c b_c g_c + q N_q s_q i_q d_q b_q g_q + 0.5 By N_y s_y i_q d_q b_y g_y$$

Altezza del cuneo di rottura: AUTOMATICA

Il criterio utilizzato per il calcolo del macrostrato equivalente è stato la MEDIA PESATA

Nel calcolo della portanza sono state richieste le seguenti opzioni:

Riduzione sismica: NESSUNA

Eurolink S.C.p.A. Pagina 161 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1,00

Riduzione per carico eccentrico: MEYERHOF

Riduzione per rottura locale o punzonamento del terreno: VESIC

Meccanismo di punzonamento in presenza di falda.

Fondazione

Combinazione nº 1

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 10,82	[m]
opococio dono cirato	11 - 10,02	L···

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,43 [m]Lunghezza ridotta L' = L - 2 ey = 20,86 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.67$	$i_q = 0.68$	$i_{\gamma}=0,54$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

Eurolink S.C.p.A. Pagina 162 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$q_u = 0.00 + 14.17 + 17.64 = 31.81 [daN/cmq]$$

 $Q_u = 75857195,39 [daN]$

 $Q_d = 42142886,33 [daN]$

V = 4098000,00 [daN]

 $\eta = Q_u / V = 75857195,39 / 4098000,00 = 18,51$

Indici rigidezza

$$I_c = 0.67$$

$$I_{rc} = 121,15$$

Combinazione n° 2

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 10,82 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq]

Modulo di taglio G = 166,67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,91 [m]Lunghezza ridotta L' = L - 2 ey = 20,77 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0,68$	$i_q = 0,69$	$i_{\gamma} = 0,55$
$d_c = 1,10$	$d_q = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_q = 1,00$	$b_{\gamma} = 1,00$

$$b_c = 1,00$$
 $b_q = 1,00$ $b_{\gamma} = 1,00$ $g_{\gamma} = 1,00$ $g_{\gamma} = 1,00$

Eurolink S.C.p.A. Pagina 163 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.38 + 18.76 = 33.14 [daN/cmq]$$

 $Q_u = 81930957,74 [daN]$

 $Q_d = 45517198,75 [daN]$

V = 4552900,00 [daN]

 $\eta = Q_u / V = 81930957,74 / 4552900,00 = 18,00$

Indici rigidezza

$$I_c = 0.68$$
 $I_{rc} = 121.15$

Combinazione nº 3

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 10.82	[m]
Opcosore acino strato	11 - 10,02	11111

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq]

Modulo di taglio G = 166,67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,89 [m]

Lunghezza ridotta L' = L - 2 ey = 20,64 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.66$	$i_q = 0.68$	$i_{\gamma} = 0,53$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{y} = 1,00$

Eurolink S.C.p.A. Pagina 164 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.10 + 18.13 = 32.23 [daN/cmq]$$

 $Q_u = 79052582,99 [daN]$

 $Q_d = 43918101,66 [daN]$

V = 4346100,00 [daN]

 $\eta = Q_u / V = 79052582,99 / 4346100,00 = 18,19$

Indici rigidezza

$$I_c = 0.66$$
 $I_{rc} = 121.15$

Combinazione nº 4

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 10.82 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,99 [m]Lunghezza ridotta L' = L - 2 ey = 20,79 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.67$	$i_q = 0,68$	$i_{\gamma} = 0,54$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$

Eurolink S.C.p.A. Pagina 165 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$g_c = 1,00$$

$$g_q = 1,00$$

$$g_{\gamma} = 1,00$$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.24 + 18.59 = 32.82 [daN/cmq]$$

 $Q_u = 81829184,32 [daN]$

 $Q_d = 45460657,96 [daN]$

V = 4438400,00 [daN]

$$\eta = Q_u / V = 81829184,32 / 4438400,00 = 18,44$$

Indici rigidezza

$$I_c = 0.67$$

$$I_{rc} = 121,15$$

Combinazione n° 5

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 10.82	[m]
Spessore dello strato	11 - 10,02	[111

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,83 [m]Lunghezza ridotta L' = L - 2 ey = 20,69 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0,66$	$i_q = 0.67$	$i_{\gamma} = 0,53$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{y} = 1,00$

Eurolink S.C.p.A. Pagina 166 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$b_c = 1,00$$

$$b_q = 1,00$$

$$b_{v} = 1,00$$

$$g_c = 1,00$$

$$g_q = 1,00$$

$$g_{\gamma} = 1,00$$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.02 + 17.88 = 31.90 [daN/cmq]$$

$$Q_u = 78068151,16 [daN]$$

$$Q_d = 43371195,09 [daN]$$

$$V = 4284100,00 [daN]$$

$$\eta = Q_u / V = 78068151,16 / 4284100,00 = 18,22$$

Indici rigidezza

$$I_c = 0.66$$

$$I_{rc} = 121,15$$

Combinazione nº 6

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 10,82	[m]
-----------------------	-----------	-----

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,85 [m]Lunghezza ridotta L' = L - 2 ey = 20,70 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 35,51$

 $N_a = 23,19$

 $N_v = 30,24$

 $s_c = 1,00$

 $s_q = 1,00$

 $s_{y} = 1,00$

 $i_c = 0.69$

 $i_q = 0.70$

 $i_{v} = 0.56$

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

d_{c}	=	1	,	1	0
				_	_

$$d_q = 1,10$$

$$d_{v} = 1,00$$

$$b_c = 1,00$$

$$b_q = 1,00$$

$$b_{y} = 1,00$$

$$g_c = 1,00$$

$$g_q = 1,00$$

$$g_{\gamma} = 1,00$$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.58 + 19.08 = 33.66 [daN/cmq]$$

$$Q_u = 82557724,35 [daN]$$

$$Q_d = 45865402,42 [daN]$$

$$V = 4438400,00 [daN]$$

$$\eta = Q_u / V = 82557724,35 / 4438400,00 = 18,60$$

Indici rigidezza

$$I_c = 0.69$$

$$I_{rc} = 121,15$$

Combinazione nº 7

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dell	o strato	H = 10,82	[m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,68 [m]Lunghezza ridotta L' = L - 2 ey = 20,69 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 35,51$

 $N_q = 23,19$

 $N_{\gamma} = 30,24$

 $s_c = 1,00$

 $s_q = 1,00$

 $s_{y} = 1,00$

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$i_c = 0.68$	$i_{q} = 0.69$	$i_{\gamma} = 0,55$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$q_c = 1.00$	$q_0 = 1,00$	$g_{v} = 1.00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.37 + 18.37 = 32.75 [daN/cmq]$$

 $Q_u = 79136629,60 [daN]$

 $Q_d = 43964794,22 [daN]$

V = 4284100,00 [daN]

$$\eta = Q_u / V = 79136629,60 / 4284100,00 = 18,47$$

Indici rigidezza

$$I_c = 0.68$$
 $I_{rc} = 121.15$

Combinazione nº 8

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 10.82 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,94 [m]Lunghezza ridotta L' = L - 2 ey = 20,79 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 35,51$ $N_q = 23,19$ $N_{\gamma} = 30,24$

Eurolink S.C.p.A. Pagina 169 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_q = 0.69$	$i_{\gamma} = 0,55$
$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_{q} = 1,00$	$g_{\gamma} = 1,00$
	$i_q = 0,69$ $d_q = 1,10$ $b_q = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.35 + 18.76 = 33.11 [daN/cmq]$$

 $Q_u = 82204326,56 [daN]$

 $Q_d = 45669070,31 [daN]$

V = 4438400,00 [daN]

 $\eta = Q_u / V = 82204326,56 / 4438400,00 = 18,52$

Indici rigidezza

$$I_c = 0.68$$
 $I_{rc} = 121.15$

Combinazione nº 9

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 10,82 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,78 [m]Lunghezza ridotta L' = L - 2 ey = 20,69 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

Eurolink S.C.p.A. Pagina 170 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_{q} = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.66$	$i_q = 0.68$	$i_{\gamma}=0,53$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 14.14 + 18.05 = 32.19 [daN/cmq]$$

 $Q_u = 78439258,52 [daN]$

 $Q_d = 43577365,85 [daN]$

V = 4284100,00 [daN]

 $\eta = Q_u / V = 78439258,52 / 4284100,00 = 18,31$

Indici rigidezza

 $I_c = 0.66$ $I_{rc} = 121.15$

Combinazione n° 10

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 10,82 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 11,22 [m]Lunghezza ridotta L' = L - 2 ey = 20,87 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

Eurolink S.C.p.A. Pagina 171 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.56$	$i_q = 0.58$	$i_{\gamma} = 0,41$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 12.00 + 13.24 = 25.24 [daN/cmq]$$

 $Q_u = 59073582,75 [daN]$

 $Q_d = 32818657,08 [daN]$

V = 4302300,00 [daN]

 $\eta = Q_u / V = 59073582,75 / 4302300,00 = 13,73$

Indici rigidezza

$$I_c = 0.56$$
 $I_{rc} = 121.15$

Combinazione nº 11 - COMBINAZIONE SISMICA

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 10,82	[m]
Peso specifico terreno	$\gamma = 1900,00$	[daN/mc]
Angolo di attrito	$\phi = 32,01$	[°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 9,05 [m]Lunghezza ridotta L' = L - 2 ey = 20,03 [m]

Eurolink S.C.p.A. Pagina 172 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.29$	$i_q = 0.33$	$i_{\gamma} = 0,16$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 6.77 + 4.15 = 10.92 [daN/cmq]$$

$$Q_u = 19787604,63 \text{ [daN]}$$

 $Q_d = 10993113,69 \text{ [daN]}$

$$V = 4135600,00 [daN]$$

$$\eta = Q_u / V = 19787604,63 / 4135600,00 = 4,78$$

Indici rigidezza

$$I_c = 0.29$$
 $I_{rc} = 121.15$

Combinazione nº 12 - COMBINAZIONE SISMICA

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 10,82 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 9,03 [m]Lunghezza ridotta L' = L - 2 ey = 20,00 [m]

Eurolink S.C.p.A. Pagina 173 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.28$	$i_q = 0.32$	$i_{\gamma} = 0,15$
$d_c = 1,10$	$d_{q} = 1,10$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 6.57 + 3.95 = 10.53 [daN/cmq]$$

$$Q_u = 19022348,66 \text{ [daN]}$$
 $Q_d = 10567971,48 \text{ [daN]}$
 $V = 4063700,00 \text{ [daN]}$

$$\eta = Q_u / V = 19022348,66 / 4063700,00 = 4,68$$

Indici rigidezza

$$I_c = 0.28$$
 $I_{rc} = 121.15$

Verifica della portanza per carichi orizzontali (scorrimento).

Partecipazione spinta passiva: 50,00 (%)

La relazione adottata è la seguente:

$$\eta = R / H >= \eta_{rea}$$

 $\eta_{\text{req}}\!\!:$ coefficiente di sicurezza richiesto

Simbologia adottata

Cmb Identificativo della combinazione

H Forza di taglio agente al piano di posa espresso in [daN]

Eurolink S.C.p.A. Pagina 174 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

 R_{ult1} Resistenza offerta dal piano di posa per attrito ed adesione espressa in [daN]

 R_{ult2} Resistenza passiva offerta dall'affondamento del piano di posa espressa in [daN]

R Somma di R_{ult1} e R_{ult2}

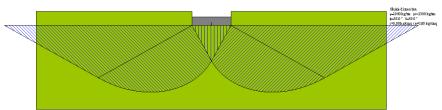
Resistenza ammissibile allo scorrimento espressa in [daN]

η Coeff. di sicurezza allo scorrimento

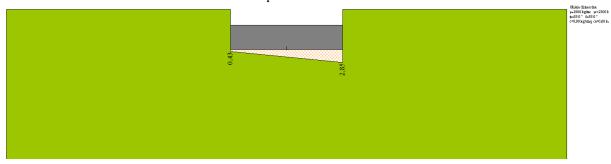
Fondazione

Cmb	Н	R _{ult1}	R_{ult2}	R	R_{amm}	η
1	862400,00	2561366,80	0,00	2561366,80	2328515,27	2,97
2	936300,00	2845692,26	0,00	2845692,26	2586992,97	3,04
3	936300,00	2716436,37	0,00	2716436,37	2469487,61	2,90
4	934800,00	2774126,50	0,00	2774126,50	2521933,18	2,97
5	934800,00	2677684,60	0,00	2677684,60	2434258,73	2,86
6	885500,00	2774126,50	0,00	2774126,50	2521933,18	3,13
7	885500,00	2677684,60	0,00	2677684,60	2434258,73	3,02
8	917800,00	2774126,50	0,00	2774126,50	2521933,18	3,02
9	917800,00	2677684,60	0,00	2677684,60	2434258,73	2,92
10	1234200,00	2689060,12	0,00	2689060,12	2444600,11	2,18
11	2045800,00	2584867,87	0,00	2584867,87	2349879,88	1,26
12	2045800,00	2539928,32	0,00	2539928,32	2309025,75	1,24

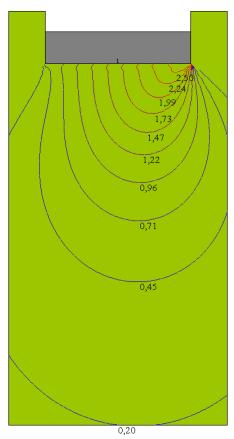
Eurolink S.C.p.A. Pagina 175 di 255



RELAZIONE GEOTECNICA


 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011



Solido delle pressioni comb 11

Bulbo delle tensioni - Sez X-X comb 11

Eurolink S.C.p.A. Pagina 176 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 **Data** 20/06/2011

5.2.2.3 VERIFICHE SLE - CEDIMENTI

Cedimenti della fondazione

Metodo Elastico

Il metodo dell'elasticità per il calcolo dei cedimenti, così come implementato, fornisce due valori:

- uno per deformazione laterale impedita (w_{imp})
- uno in condizioni di deformazione laterale libera (**w**_{lib})

L'espressione di **w**_{imp} è la seguente:

n
$$\Delta \sigma_i (1 - v - 2 v^2)$$

 $\Delta H = \Sigma - \Delta Z_i$
 $i=1 \quad E_i (1 - v)$

dove

 $\Delta \sigma$ è la tensione indotta nel terreno, alla profondità **z**, dalla pressione di contatto della fondazione; **E** è il modulo elastico relativo allo strato **i-esimo**;

Δz rappresenta lo spessore dello strato **i-esimo** in cui è stato suddiviso lo strato compressibile e per il quale si conosce il modulo elastico;

v è il coefficiente di Poisson.

L'espressione di $\mathbf{w}_{\mathsf{lib}}$ è la seguente:

$$n \quad \Delta \sigma_{i}$$

$$\Delta H = \Sigma \xrightarrow{} \Delta Z_{i}$$

$$i=1 \quad E_{i}$$

dove i termini sono stati già descritti sopra.

Lo spessore dello strato compressibile considerato nell'analisi dei cedimenti è stato determinato in funzione della percentuale della tensione di contatto. I valori del cedimento ottenuti dalle due relazioni rappresentano un valore minimo \mathbf{w}_{imp} e un valore massimo \mathbf{w}_{lib} del cedimento in condizioni elastiche della fondazione analizzata.

Condizioni di carico

Eurolink S.C.p.A. Pagina 177 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione	Nome identificativo della fondazione
N	Sforzo normale totale espressa in [kN]
Mx	Momento in direzione X espressa in [kNm]
My	Momento in direzione Y espresso in [kNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]
T	Forza di taglio espressa in [kN]

Condizione n° 1 (Condizione n° 1)

Fondazione

Fondazione	N	Mx	Му	ex	еу	β	T
Fondazione	37007,000	2313,000	7657,000	0,2	-0,1	89,4	6652,390
Condizione n°	2 (Condizion	<u>ie n° 2)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	40963,000	4455,000	4359,000	0,1	-0,1	89,2	7294,685
Condizione n° 3 (Condizione n° 3)							
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	39165,000	6646,000	313,000	0,0	-0,2	89,2	7294,685
Condizione n° 4 (Condizione n° 4)							
Fondazione	N	Mx	Му	ex	еу	β	Т

Eurolink S.C.p.A. Pagina 178 di 255

0,1

-0,1

89,2 7281,687

39967,000 3852,000 2302,000

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Condizione ii 5 (Condizione ii 5)							
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	38625,000	5550,000	717,000	0,0	-0,1	89,2	7281,687
Condizione n° 6 (Condizione n° 6)							
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	39967,000	5550,000	617,000	0,0	-0,1	89,1	6382,783
Condizione n° 7 (Condizione n° 7)							
Fondazione	N	Mx	My	ex	еу	β	Т
Fondazione	38625,000	5550,000	3636,000	0,1	-0,1	89,2	6832,732
Condizione n° 8 (Condizione n° 8)							
Fondazione	N	Mx	My	ex	еу	β	Т
Fondazione	39967,000	3852,000	1340,000	0,0	-0,1	89,2	7133,701
Condizione n° 9 (Condizione n° 9)							
Fondazione	N	Mx	My	ex	еу	β	Т
Fondazione	38625,000	5550,000	1679,000	0,0	-0,1	89,2	7133,701
Condizione n° 10 (Condizione n° 10)							
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	38759,000	2265,000	16970,000	0,4	-0,1	89,3	8216,609

Descrizione combinazioni di carico

Eurolink S.C.p.A. Pagina 179 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione n° 1 SLE

COMBINAZIONO II I CEE			
	γ	Ψ	С
Condizione n° 1	1.00	1.00	1.00
Combinazione n° 2 SLE			
	γ	Ψ	С
Condizione n° 2	1.00	1.00	1.00
Combinazione n° 3 SLE			_
	γ	Ψ	С
Condizione n° 3	1.00	1.00	1.00
Combinations no 4 CL F			
Combinazione n° 4 SLE		Ψ	С
Condizione n° 4	γ		_
Condizione n° 4	1.00	1.00	1.00
Combinazione n° 5 SLE			
OUTBINGZIONE II O OLL	γ	Ψ	С
Condizione n° 5	1.00	1.00	1.00
		1100	
Combinazione n° 6 SLE			
	γ	Ψ	С
Condizione n° 6	1.00	1.00	1.00
Combinazione n° 7 SLE			
	γ	Ψ	С
Condizione n° 7	1.00	1.00	1.00

Eurolink S.C.p.A. Pagina 180 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc

Rev Data F0

20/06/2011

	γ	Ψ	С
Condizione n° 8	1.00	1.00	1.00

Combinazione n° 9 SLE

	γ	Ψ	С
Condizione n° 9	1.00	1.00	1.00

Combinazione n° 10 SLE

	γ	Ψ	C
Condizione nº 10	1.00	1.00	1.00

Analisi in condizioni drenate

Cedimenti

Il calcolo dei cedimenti è stato eseguito con il metodo Elastico.

Per il calcolo dei cedimenti, è stata impostata un'altezza dello strato compressibile legato alla percentuale tensionale.

In particolare la percentuale impostata è: 0,05 (%)

E' stato richiesto di tenere in conto della fondazione compensata.

Cedimento complessivo

Simbologia adottata

Comb Identificativo della combinazione

Wi Cedimento elastico espresso in [cm]

Cedimento elastico ad espansione laterale impedita espresso in [cm] W_{imp}

Н Spessore strato compressibile espresso in [m]

Χ coordinata X punto di calcolo cedimento espressa in [m]

Υ coordinata Y punto di calcolo cedimento espressa in [m]

Eurolink S.C.p.A. Pagina 181 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

Fondazione

Comb	$\mathbf{W_{i}}$	\mathbf{W}_{imp}	н	X	Υ
1	1,25	1,34	21,30	6,21	10,56
1	0,85	0,99	21,30	0,00	0,00
1	0,94	1,06	21,30	12,00	0,00
1	0,96	1,09	21,30	12,00	21,00
1	0,89	1,02	21,30	0,00	21,00
2	1,61	1,72	22,90	6,11	10,61
2	1,25	1,39	22,90	0,00	0,00
2	1,28	1,43	22,90	12,00	0,00
2	1,32	1,46	22,90	12,00	21,00
2	1,29	1,43	22,90	0,00	21,00
3	1,45	1,54	22,20	6,01	10,67
3	1,09	1,22	22,20	0,00	0,00
3	1,09	1,22	22,20	12,00	0,00
3	1,15	1,28	22,20	12,00	21,00
3	1,15	1,28	22,20	0,00	21,00
4	1,51	1,62	22,50	6,06	10,60
4	1,17	1,31	22,50	0,00	0,00
4	1,18	1,32	22,50	12,00	0,00
4	1,21	1,35	22,50	12,00	21,00
4	1,20	1,34	22,50	0,00	21,00
5	1,39	1,49	22,00	6,02	10,64
5	1,03	1,17	22,00	0,00	0,00
5	1,04	1,17	22,00	12,00	0,00
5	1,10	1,22	22,00	12,00	21,00
5	1,09	1,22	22,00	0,00	21,00
6	1,52	1,62	22,50	6,02	10,64
6	1,17	1,31	22,50	0,00	0,00
6	1,17	1,31	22,50	12,00	0,00
6	1,22	1,35	22,50	12,00	21,00
6	1,22	1,35	22,50	0,00	21,00

Eurolink S.C.p.A. Pagina 182 di 255

RELAZIONE GEOTECNICA

Codice documento
\$\$0690_F0.doc

Rev F0 Data 20/06/2011

7	1,40	1,49	22,00	6,09	10,64
7	1,02	1,15	22,00	0,00	0,00
7	1,06	1,19	22,00	12,00	0,00
7	1,10	1,23	22,00	12,00	21,00
7	1,08	1,21	22,00	0,00	21,00
8	1,51	1,62	22,50	6,03	10,60
8	1,17	1,30	22,50	0,00	0,00
8	1,18	1,32	22,50	12,00	0,00
8	1,21	1,35	22,50	12,00	21,00
8	1,20	1,34	22,50	0,00	21,00
9	1,39	1,49	22,00	6,04	10,64
9	1,03	1,16	22,00	0,00	0,00
9	1,05	1,18	22,00	12,00	0,00
9	1,10	1,22	22,00	12,00	21,00
9	1,08	1,21	22,00	0,00	21,00
10	1,43	1,53	22,10	6,44	10,56
10	0,99	1,13	22,10	0,00	0,00
10	1,15	1,28	22,10	12,00	0,00
10	1,17	1,30	22,10	12,00	21,00
10	1,03	1,17	22,10	0,00	21,00

Cedimento dei singoli strati

Simbologia adottata

Strato Identificativo dello strato

Terreno dello strato

△H Spessore dello strato espresso in [m]

 Δw_i Cedimento elastico espresso in [cm]

 ΔW_{imp} Cedimento elastico ad espansione laterale impedita espresso in [cm]

Fondazione (Combinazione n° 1)

Strato Terreno ΔH Δw_i Δw_{imp}

Eurolink S.C.p.A. Pagina 183 di 255

RELAZIONE GEOTECNICA

 Codice documento
 Rev
 Data

 \$S0690_F0.doc
 F0
 20/06/2011

1	Ghiaie di messina	17,00	1,2480	1,3427
Totale		17,00	1,2480	1,3427
Fondazione (Combinazione n° 2)				
Strato	Terreno	ΔΗ	Δw_i	$\Delta \mathbf{w}_{imp}$
1	Ghiaie di messina	18,60	1,6106	1,7185
Totale		18,60	1,6106	1,7185
				_
Fondazione (Combinazione n° 3)				
Strato	Terreno	ΔΗ	Δw_i	$\Delta w_{ m imp}$
1	Ghiaie di messina	17,90	1,4456	1,5442
Totale		17,90	1,4456	1,5442
				_
Fondazione (Combinazione n° 4)				
·				
Strato	Terreno	ΔН	$\Delta \mathbf{w_i}$	$\Delta w_{ m imp}$
1	Ghiaie di messina	18,20	1,5149	1,6198
Totale		18,20	1,5149	1,6198
		•	•	
Fondazione (Combinazione n° 5)				
,				
Strato	Terreno	ΔН	$\Delta \mathbf{w_i}$	$\Delta w_{ m imp}$
1	Ghiaie di messina	17,70	1,3945	1,4924
Totale		17,70	1,3945	1,4924
		,		
Fondazione (Combinazione n° 6)				
(22				
Strato	Terreno	ΔН	$\Delta \mathbf{w_i}$	$\Delta \mathbf{w}_{imp}$
1	Ghiaie di messina	18,20	1,5169	1,6201
Totale	2	18,20	1,5169	1,6201
		,	.,	., 3201

Eurolink S.C.p.A. Pagina 184 di 255

18,20

18,20

1,5145

1,5145

1,6194 **1,6194**

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Fondazione	(Combinazione	n°	7)
-------------------	---------------	----	----

Strato	Terreno	ΔΗ	Δw_i	Δw_{imp}
1	Ghiaie di messina	17,70	1,3959	1,4938
<u>Totale</u>		17,70	1,3959	1,4938
Fondazione (Combinazione n° 8)				
Strato	Terreno	ΔН	Δw_i	$\Delta \mathbf{w}_{imp}$

Ghiaie di messina

Fondazione (Combinazione nº 9)

1

Totale

Strato	Terreno	ΔΗ	Δw_i	Δw_{imp}
1	Ghiaie di messina	17,70	1,3947	1,4927
Totale		17,70	1,3947	1,4927

Fondazione (Combinazione n° 10)

Strato	Terreno	ΔН	Δw_i	$\Delta \mathbf{w}_{imp}$
1	Ghiaie di messina	17,80	1,4333	1,5349
Totale		17,80	1,4333	1,5349

Dettagli sui cedimenti dei singoli strati

Simbologia adottata

n° numero d'ordine dell'i-esimo strato

z quota media dell'i-esimo strato espresso in [m]

△H spessore dello strato i-esimo espresso in [m]

 $\Delta \sigma_V$ incremento di tensione verticale dell'i-esimo strato espresso in [N/cmq]

E modulo elastico dell'i-esimo strato espresso in [N/cmq]

 Δw cedimento dell'i-esimo strato espresso in [cm]

Eurolink S.C.p.A. Pagina 185 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Fondazione (Combinazione n° 1)

n°	z	ΔН	$\Delta\sigma_{\sf V}$	E	$\Delta \mathbf{w}$
1	-4,73	0,85	6,8	5000,0	-0,0107
2	-5,58	0,85	6,7	5000,0	0,0647
3	-6,43	0,85	6,6	5000,0	0,0903
4	-7,28	0,85	6,4	5000,0	0,0945
5	-8,13	0,85	6,2	5000,0	0,0940
6	-8,98	0,85	5,9	5000,0	0,0915
7	-9,83	0,85	5,5	5000,0	0,0877
8	-10,68	0,85	5,1	5000,0	0,0832
9	-11,53	0,85	4,8	5000,0	0,0783
10	-12,38	0,85	4,4	5000,0	0,0733
11	-13,23	0,85	4,1	5000,0	0,0683
12	-14,08	0,85	3,8	5000,0	0,0635
13	-14,93	0,85	3,5	5000,0	0,0590
14	-15,78	0,85	3,2	5000,0	0,0548
15	-16,63	0,85	3,0	5000,0	0,0508
16	-17,48	0,85	2,8	5000,0	0,0472
17	-18,33	0,85	2,5	5000,0	0,0438
18	-19,18	0,85	2,4	5000,0	0,0407
19	-20,03	0,85	2,2	5000,0	0,0379
20	-20,88	0,85	2,0	5000,0	0,0353
<u>Totale</u>		17,00			1,2480

Fondazione (Combinazione n° 2)

n°	z	ΔH	$\Delta\sigma_{V}$	E	Δw
1	-4,77	0,93	8,3	5000,0	-0,0111
2	-5,70	0,93	8,2	5000,0	0,0964
3	-6,63	0,93	8,1	5000,0	0,1239
4	-7,56	0,93	7,8	5000,0	0,1272

Eurolink S.C.p.A. Pagina 186 di 255

	RELAZIONE	GEOTECNICA	Codice do		Re FO	
			<u>'</u>			
5	-8,49	0,93	7,4	5000,0	0,125	2
6	-9,42	0,93	7,0	5000,0	0,120	7
7	-10,35	0,93	6,5	5000,0	0,114	5
8	-11,28	0,93	6,0	5000,0	0,107	5
9	-12,21	0,93	5,5	5000,0	0,100	2
10	-13,14	0,93	5,1	5000,0	0,092	8
11	-14,07	0,93	4,7	5000,0	0,085	8
12	-15,00	0,93	4,3	5000,0	0,079	1
13	-15,93	0,93	3,9	5000,0	0,072	9
14	-16,86	0,93	3,6	5000,0	0,067	2
15	-17,79	0,93	3,3	5000,0	0,062	0
16	-18,72	0,93	3,0	5000,0	0,057	2
17	-19,65	0,93	2,8	5000,0	0,052	8
18	-20,58	0,93	2,6	5000,0	0,048	9
19	-21,51	0,93	2,4	5000,0	0,045	3
20	-22,44	0,93	2,2	5000,0	0,042	0
<u>Totale</u>		18,60			1,610	<u>6</u>

Fondazione (Combinazione n° 3)

n°	z	ΔН	$\Delta\sigma_{\text{V}}$	E	Δw
1	-4,75	0,90	7,6	5000,0	-0,0101
2	-5,64	0,90	7,5	5000,0	0,0831
3	-6,54	0,90	7,4	5000,0	0,1083
4	-7,43	0,90	7,2	5000,0	0,1118
5	-8,33	0,90	6,8	5000,0	0,1105
6	-9,22	0,90	6,5	5000,0	0,1070
7	-10,12	0,90	6,0	5000,0	0,1021
8	-11,01	0,90	5,6	5000,0	0,0963
9	-11,91	0,90	5,2	5000,0	0,0901
10	-12,80	0,90	4,8	5000,0	0,0839
11	-13,70	0,90	4,4	5000,0	0,0778
12	-14,59	0,90	4,1	5000,0	0,0721

Eurolink S.C.p.A. Pagina 187 di 255

			Eurolin K					
RELAZIONE GEOTECNICA		Codice o	documento ^{0.doc}		Rev F0	Data 20/06/2011		
	13	-15,49	0,90	3,7	5000,0	0,0	0666	
	14	-16,38	0,90	3,4	5000,0	0,0	0616	
	15	-17,28	0,90	3,2	5000,0	0,0)569	
	16	-18,17	0,90	2,9	5000,0	0,0)527	
	17	-19,07	0,90	2,7	5000,0	0,0)488	
	18	-19,96	0,90	2,5	5000,0	0,0)452	
	19	-20,86	0,90	2,3	5000,0	0,0)420	
	20	-21,75	0,90	2,1	5000,0	0,0	0390	
	Totale		17,90			1,4	14 <u>56</u>	

Fondazione (Combinazione n° 4)

n°	z	ΔН	$\Delta\sigma_{ m V}$	E	$\Delta \mathbf{w}$
1	-4,76	0,91	7,9	5000,0	-0,0115
2	-5,67	0,91	7,8	5000,0	0,0875
3	-6,58	0,91	7,7	5000,0	0,1148
4	-7,49	0,91	7,4	5000,0	0,1183
5	-8,40	0,91	7,1	5000,0	0,1168
6	-9,31	0,91	6,7	5000,0	0,1129
7	-10,22	0,91	6,2	5000,0	0,1074
8	-11,13	0,91	5,8	5000,0	0,1012
9	-12,04	0,91	5,3	5000,0	0,0945
10	-12,95	0,91	4,9	5000,0	0,0878
11	-13,86	0,91	4,5	5000,0	0,0813
12	-14,77	0,91	4,2	5000,0	0,0752
13	-15,68	0,91	3,8	5000,0	0,0694
14	-16,59	0,91	3,5	5000,0	0,0641
15	-17,50	0,91	3,2	5000,0	0,0592
16	-18,41	0,91	3,0	5000,0	0,0547
17	-19,32	0,91	2,7	5000,0	0,0506
18	-20,23	0,91	2,5	5000,0	0,0469
19	-21,14	0,91	2,3	5000,0	0,0435
20	-22,05	0,91	2,2	5000,0	0,0404

Eurolink S.C.p.A. Pagina 188 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

<u>Totale</u>	18,20	1,5149

Fondazione (Combinazione n° 5)

n°	z	ΔΗ	$\Delta\sigma_{V}$	E	$\Delta \mathbf{w}$
1	-4,74	0,89	7,3	5000,0	-0,0106
2	-5,63	0,89	7,3	5000,0	0,0781
3	-6,51	0,89	7,2	5000,0	0,1036
4	-7,40	0,89	7,0	5000,0	0,1073
5	-8,28	0,89	6,7	5000,0	0,1063
6	-9,17	0,89	6,3	5000,0	0,1030
7	-10,05	0,89	5,9	5000,0	0,0984
8	-10,94	0,89	5,5	5000,0	0,0929
9	-11,82	0,89	5,1	5000,0	0,0871
10	-12,71	0,89	4,7	5000,0	0,0812
11	-13,59	0,89	4,3	5000,0	0,0754
12	-14,48	0,89	4,0	5000,0	0,0699
13	-15,36	0,89	3,7	5000,0	0,0647
14	-16,25	0,89	3,4	5000,0	0,0599
15	-17,13	0,89	3,1	5000,0	0,0554
16	-18,02	0,89	2,9	5000,0	0,0513
17	-18,90	0,89	2,6	5000,0	0,0475
18	-19,79	0,89	2,5	5000,0	0,0441
19	-20,67	0,89	2,3	5000,0	0,0409
20	-21,56	0,89	2,1	5000,0	0,0381
<u>Totale</u>		17,70			1,3945

Fondazione (Combinazione n° 6)

n°	z	ΔH	$\Delta\sigma_{\sf V}$	E	$\Delta \mathbf{w}$
1	-4,76	0,91	7,9	5000,0	-0,0108
2	-5,67	0,91	7,8	5000,0	0,0885
3	-6,58	0,91	7,7	5000,0	0,1149

Eurolink S.C.p.A. Pagina 189 di 255

RELAZIONE GEOTECNICA			Codice do	ocumento		Rev	Data
			SS0690_F0.	SS0690_F0.doc		F0	20/06/2011
4	-7,49	0,91	7,4	5000,0	0,1	1184	
5	-8,40	0,91	7,1	5000,0	0,1	1168	
6	-9,31	0,91	6,7	5000,0	0,1	1129	
7	-10,22	0,91	6,3	5000,0	0,1	1075	
8	-11,13	0,91	5,8	5000,0	0,1	1012	
9	-12,04	0,91	5,3	5000,0	0,0	945	
10	-12,95	0,91	4,9	5000,0	0,0)878	
11	-13,86	0,91	4,5	5000,0	0,0	0814	
12	-14,77	0,91	4,2	5000,0	0,0	752	
13	-15,68	0,91	3,8	5000,0	0,0	0694	
14	-16,59	0,91	3,5	5000,0	0,0	0641	
15	-17,50	0,91	3,2	5000,0	0,0)592	
16	-18,41	0,91	3,0	5000,0	0,0)547	
17	-19,32	0,91	2,7	5000,0	0,0)506	
18	-20,23	0,91	2,5	5000,0	0,0)469	
19	-21,14	0,91	2,3	5000,0	0,0)435	
20	-22,05	0,91	2,2	5000,0	0,0)404	
<u>Totale</u>		18,20			1,	<u>5169</u>	

Fondazione (Combinazione n° 7)

n°	z	ΔН	$\Delta\sigma_{\sf V}$	E	Δw
1	-4,74	0,89	7,4	5000,0	-0,0104
2	-5,63	0,89	7,3	5000,0	0,0783
3	-6,51	0,89	7,2	5000,0	0,1038
4	-7,40	0,89	7,0	5000,0	0,1074
5	-8,28	0,89	6,7	5000,0	0,1064
6	-9,17	0,89	6,3	5000,0	0,1031
7	-10,05	0,89	5,9	5000,0	0,0985
8	-10,94	0,89	5,5	5000,0	0,0930
9	-11,82	0,89	5,1	5000,0	0,0872
10	-12,71	0,89	4,7	5000,0	0,0813
11	-13,59	0,89	4,3	5000,0	0,0755

Eurolink S.C.p.A. Pagina 190 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

		L d l o l l l l l					
	RELAZIONE (GEOTECNICA	Codice de	ocumento .doc		Rev F0	Data 20/06/2011
12	-14,48	0,89	4,0	5000,0	0,0	0699	
13	-15,36	0,89	3,7	5000,0	0,0	0647	
14	-16,25	0,89	3,4	5000,0	0,0)599	
15	-17,13	0,89	3,1	5000,0	0,0)554	
16	-18,02	0,89	2,9	5000,0	0,0)513	
17	-18,90	0,89	2,6	5000,0	0,0)475	
18	-19,79	0,89	2,5	5000,0	0,0)441	
19	-20,67	0,89	2,3	5000,0	0,0	0409	
20	-21,56	0,89	2,1	5000,0	0,0	381	
Totale		17,70			1,3	3959	

Fondazione (Combinazione n° 8)

n°	z	ΔН	$\Delta\sigma_{V}$	E	$\Delta \mathbf{w}$
1	-4,76	0,91	7,9	5000,0	-0,0115
2	-5,67	0,91	7,8	5000,0	0,0874
3	-6,58	0,91	7,7	5000,0	0,1147
4	-7,49	0,91	7,4	5000,0	0,1183
5	-8,40	0,91	7,1	5000,0	0,1168
6	-9,31	0,91	6,7	5000,0	0,1129
7	-10,22	0,91	6,2	5000,0	0,1074
8	-11,13	0,91	5,8	5000,0	0,1011
9	-12,04	0,91	5,3	5000,0	0,0945
10	-12,95	0,91	4,9	5000,0	0,0878
11	-13,86	0,91	4,5	5000,0	0,0813
12	-14,77	0,91	4,2	5000,0	0,0752
13	-15,68	0,91	3,8	5000,0	0,0694
14	-16,59	0,91	3,5	5000,0	0,0641
15	-17,50	0,91	3,2	5000,0	0,0592
16	-18,41	0,91	3,0	5000,0	0,0547
17	-19,32	0,91	2,7	5000,0	0,0506
18	-20,23	0,91	2,5	5000,0	0,0469
19	-21,14	0,91	2,3	5000,0	0,0435

Eurolink S.C.p.A. Pagina 191 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

20	-22,05	0,91	2,2	5000,0	0,0404
Totale		18.20			1.5145

Fondazione (Combinazione n° 9)

n°	z	ΔН	$\Delta\sigma_{\sf V}$	E	$\Delta \mathbf{w}$
1	-4,74	0,89	7,3	5000,0	-0,0105
2	-5,63	0,89	7,3 5000,0		0,0782
3	-6,51	0,89	7,2	5000,0	0,1036
4	-7,40	0,89	7,0	5000,0	0,1073
5	-8,28	0,89	6,7	5000,0	0,1063
6	-9,17	0,89	6,3	5000,0	0,1030
7	-10,05	0,89	5,9	5000,0	0,0984
8	-10,94	0,89	5,5	5000,0	0,0930
9	-11,82	0,89	5,1	5000,0	0,0871
10	-12,71	0,89	4,7	5000,0	0,0812
11	-13,59	0,89	4,3	5000,0	0,0754
12	-14,48	0,89	4,0	5000,0	0,0699
13	-15,36	0,89	3,7	5000,0	0,0647
14	-16,25	0,89	3,4	5000,0	0,0599
15	-17,13	0,89	3,1	5000,0	0,0554
16	-18,02	0,89	2,9	5000,0	0,0513
17	-18,90	0,89	2,6	5000,0	0,0475
18	-19,79	0,89	2,5	5000,0	0,0441
19	-20,67	0,89	2,3	5000,0	0,0409
20	-21,56	0,89	2,1	5000,0	0,0381
<u>Totale</u>		17,70			1,3947

Fondazione (Combinazione n° 10)

n°	Z	ΔΗ	$\Delta\sigma_{\sf V}$	E	$\Delta \mathbf{w}$
1	-4,75	0,89	7,7	5000,0	-0,0102
2	-5,64	0,89	7,6	5000,0	0,0817

Eurolink S.C.p.A. Pagina 192 di 255

	RELAZIONE GEOTECNICA			Codice documento SS0690_F0.doc			
3	-6,53	0,89	7,4	5000,0	0,1	084	
4	-7,42	0,89	7,2	5000,0	0,1	120	
5	-8,31	0,89	6,9	5000,0	0,1	105	
6	-9,20	0,89	6,5	5000,0	0,1	067	
7	-10,09	0,89	6,0	5000,0	0,1	015	
8	-10,98	0,89	5,6	5000,0	0,0	955	
9	-11,87	0,89	5,2	5000,0	0,0	893	
10	-12,76	0,89	4,8	5000,0	0,0	0830	
11	-13,65	0,89	4,4	5000,0	0,0	769	
12	-14,54	0,89	4,0	5000,0	0,0	711	
13	-15,43	0,89	3,7	5000,0	0,0	657	
14	-16,32	0,89	3,4	5000,0	0,0	0607	
15	-17,21	0,89	3,1	5000,0	0,0)561	
16	-18,10	0,89	2,9	5000,0	0,0)519	
17	-18,99	0,89	2,7	5000,0	0,0)481	
18	-19,88	0,89	2,5	5000,0	0,0)445	
19	-20,77	0,89	2,3	5000,0	0,0)413	
20	-21,66	0,89	2,1	5000,0	0,0	384	
<u>Totale</u>		17,80			1,4	<u> 1333</u>	

Cedimento di progetto

I cedimenti calcolati con ipotesi di fondazione flessibile possono essere sensatamente ridotti in considerazione del fatto che la fondazione può essere valutata come infinitamente rigida, visto il rapporto tra spessore e lato sempre inferiore a 0,10.

Per fondazioni rettangolari infinitamente rigide si può fare uso delle seguenti relazioni (Poulos e Davis, 1974):

$$\Delta_{\text{W}} \left(\text{fond rigida} \right) = \frac{1}{3} \cdot \left(2 \cdot \Delta_{\text{Wcentro}} + \Delta_{\text{Wspigolo}} \right) \text{fond flessibile}$$

Nel caso in esame, con combinazione peggiore rappresentata dalla comb.2, si ottiene:

$$\Delta_{W}$$
 (fond rigida) = $\frac{1}{3} \cdot (2 \cdot 1,72 + 1,46) = 1,63$ cm

La riduzione risulta comunque di entità contenuta, a causa dell'eccentricità dei carichi piuttosto bassa per tutte le combinazioni di carico SLE.

Eurolink S.C.p.A. Pagina 193 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 Data 20/06/2011

5.2.2.4 VALUTAZIONE DEI RISULTATI

I fattori di sicurezza ottenuti per verifica di portanza verticale della sottostruttura in oggetto risultano per le combinazioni statiche spesso ampiamente superiori al valore richiesto dalla normativa vigente; tali valori risultano però avvicinarsi notevolmente al limite minimo per le combinazioni sismiche (vedasi comb. 11 e 12). Le dimensioni delle fondazioni sono peraltro giustificate dalle verifiche a scorrimento caratterizzate, per le combinazioni statiche da valori prossimi a 3,00 e per le combinazioni sismiche da valori abbastanza vicini al limite minimo. I fattori di sicurezza sismici vicini ai limiti sono giustificati dall'alto grado di sismicità del sito e dal tempo di ritorno elevato considerato; tali parametri sismici portano infatti ad avere forti azioni orizzontali che, oltre a rendere necessarie le dimensioni della fondazione per verifica a scorrimento, creano un forte angolo di inclinazione della risultante delle azioni andando a penalizzare la portanza verticale.

I cedimenti massimi si attestano su valori di 1,50 – 2,00 cm, valore del tutto accettabile; si evidenzia inoltre che il valore del peso proprio della spalla, costituito sia dagli elementi in calcestruzzo armato che dal terreno del rilevato posto sopra la platea di base, costituiscono anche oltre il 80% dei carichi verticali totali. I cedimenti sopra riportati vengono quindi in grande percentuale assorbiti nelle fasi di costruzione dell'opera, limitando i cedimenti ad opera terminata a valori nell'ordine del centimetro.

Eurolink S.C.p.A. Pagina 194 di 255

5.3 ANALISI DEL SISTEMA FONDAZIONALE DELLE PILE

5.3.1 ANALISI DEI CARICHI PILA P1

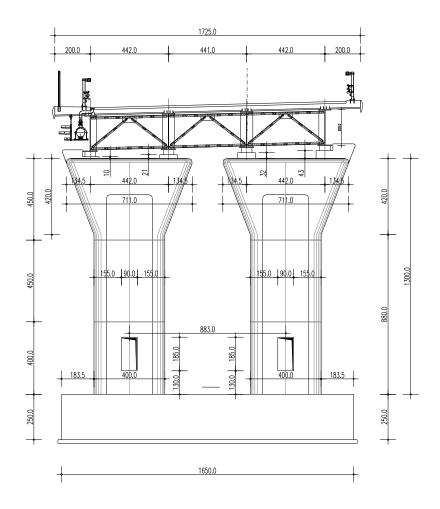


Figura 5.5 – Carpenterie Pila P1.

Eurolink S.C.p.A. Pagina 195 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

	Alterra impalente		2.40	mt
	Altezza impalcato		2,40	mt
	Larghezza pavimentato		14,45	mt
	Baricentro impalcato		0,00	mt
	Campata		32,00	mt
	Altezza baggiolo+appoggio		0,50	mt
	Peso pulvino		1.470,00	kN
FUSTO	Altezza pulvino		4,20	
Ę	Altezza fusto		8,80	
	Altezza fusto +pulvino		13,00	mt
	Numero fusti		2	
	Interasse fusti		8,83	mt
	Base / Diametro sezione	D	2,70	mt
	Altezza sezione		-	mt
	Peso fusto +pulvino		5.458,77	kN
	Eccentricità Fusti-Fond-trasversale		0,01	mt
	Base plinto		7,50	mt
R	Lunghezza plinto		16,50	mt
10	Altezza plinto		2,50	mt
FONDAZIONE	Altezza terreno su plinto		2,60	mt
	Peso Terreno su plinto		5.255,69	kN
Ы	Peso plinto		7.734,38	kN
	Totale plinto + Terreno		12.990,06	kN

Eurolink S.C.p.A. Pagina 196 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc

Rev F0

Data 20/06/2011

		N	H long	H trasv	M long	M trasv
0		kN	kN	kN	kN m	kN m
DALL'IMPALCATO	Peso strutturale impalcato	6.255	0	0	0	58
	Permanenti	2.288	0	0	0	1.716
16/	Ritiro	352	0	0	0	4
۱Į.	Mezzi schema centrato	7.345	0	0	0	2.838
	Mezzi schema eccentrico	4.058	0	0	0	8.464
D	Folla schema centrato	137	0	0	0	1.035
SE	Folla schema eccentrica	0	0	0	0	0
TRASMESSE	Frenamento	0	148	0	0	0
S	Resistenze passive vincolo	0	256	0	0	0
₽	Vento: impalcato scarico	1.132	0	218	0	2.955
	Vento: impalcato carico	956	0	506	0	3.936
	Cedimento	0	0	0	0	0
AZIONI	Azione centrifuga	0	0	0	0	0
ď	Svio	0	0	200	0	0
	Sisma	3.110	1.200	980	0	862

Eccentricità dei carichi verticali (mt)

0,01

Azioni inerziali fusto Vento sul fusto

Flong.= Ftrasv.=

416 Ftrasv.=

90,0

672

Fvert.=

909

REAZIONI IMPALCATO

	Pila	a 1		Pila 2				
N	M trasv	H long	H trasv	N	M trasv	H long	H trasv	
3.127	-25	0	0	3.128	26	0	0	
1.284	495	0	0	1.004	-38	0	0	
176	0	0	0	176	0	0	0	
3.936	-1.541	0	0	3.409	1.979	0	0	
2.869	-330	0	0	1.189	1.336	0	0	
156	238	0	0	-19	23	0	0	
0	0	0	0	0	0	0	0	
0	0	74	0	0	0	74	0	
0	0	132	0	0	0	124	0	
837	263	0	109	295	288	0	109	
839	353	0	253	117	386	0	253	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	100	0	0	0	100	
1.630	254	600	490	1.480	-85	600	490	

Si riportano nel seguito i valori delle azioni agenti alla base della fondazione per le varie

Eurolink S.C.p.A. Pagina 197 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

combinazioni di carico riportate alla pagina successiva. Tali azioni rappresentano i valori assunti per l'analisi del sistema fondazionale in base all'approccio 1 delle NTC 2008.

AZIONI ALLA BASE

	AZIONI ALLA BASE					
	Combinazioni	N	Vlong	Vtrasv	Mlong	Mtrasv
		kN	kN	kN	kN m	kN m
0	Comb 1	29.572	256,00	517,40	4.188	12.775
GEO	Comb 2	37.588	256,00	535,08	4.300	17.397
SLU	Comb 3	33.513	256,00	535,08	4.249	22.675
	Comb 4	35.244	426,20	535,08	7.430	15.866
AZIONI	Comb 5	32.346	426,20	535,08	7.381	20.242
ZI	Comb 6	35.244	256,00	535,08	4.299	15.866
٧	Comb 7	32.346	256,00	535,08	4.249	20.242
2	Comb 8	38.903	345,60	597,00	5.648	14.752
STR	Comb 9	48.324	345,60	617,40	5.799	20.173
SLU	Comb 10	43.543	345,60	617,40	5.731	26.370
IS	Comb 11	45.576	545,40	617,40	9.474	18.377
AZIONI	Comb 12	42.174	545,40	617,40	9.407	23.513
ZI	Comb 13	45.576	345,60	617,40	5.798	18.377
⋖	Comb 14	42.174	345,60	617,40	5.731	23.513
SISMA	SISMA long	33.768	2.288,00	980,00	30.784	2.553
S						
S	SISMA trasv	33.416	1.200,00	2.324,00	19.200	31.187
	Comb SLE 1	28.476	256,00	398,00	4.181	9.841
SLE	Comb SLE 2	35.505	256,00	411,60	4.256	13.843
	Comb SLE 3	31.975	256,00	411,60	4.222	18.433
AZIONI	Comb SLE 4	33.529	404,00	411,60	6.979	12.874
Z	Comb SLE 5	30.961	404,00	411,60	6.945	16.317
¥	Comb SLE 6	33.529	256,00	411,60	4.256	12.874
	Comb SLE 7	30.961	256,00	411,60	4.222	15.558

Eurolink S.C.p.A. Pagina 198 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Rev Data F0 20/06/2011

SS0690_F0.doc

5.3.2 **ANALISI DEI CARICHI PILA P2**

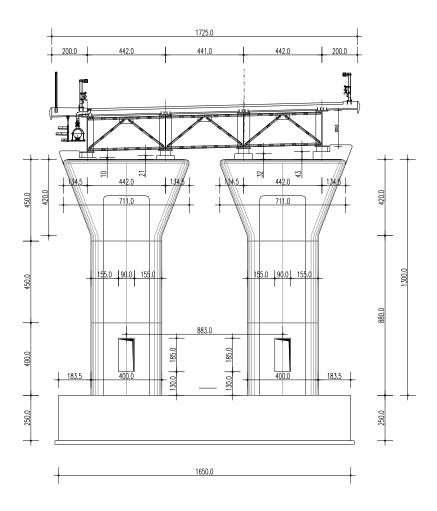


Figura 5.6 – Carpenterie Pila P2.

Eurolink S.C.p.A. Pagina 199 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

ezza impalcato					
szza impaicato				2,40	mt
ghezza pavimentato				14,45	mt
icentro impalcato				0,00	mt
npata				32,00	mt
ezza baggiolo+appoggio				0,50	mt
so pulvino				1.470,00	kN
ezza pulvino				4,20	
ezza fusto				8,80	
ezza fusto +pulvino				13,00	mt
mero fusti				2	
erasse fusti				8,83	mt
se / D iametro sezione	D			2,70	mt
ezza sezione				-	mt
so fusto +pulvino				5.458,77	kN
entricità Fusti-Fond-trasversale				0,01	mt
se plinto				7,50	mt
nghezza plinto				16,50	mt
ezza plinto				2,50	mt
ezza terreno su plinto				2,60	mt
so Terreno su plinto				5.255,69	kN
so plinto				7.734,38	kN
Totale plinto + Terreno				12.990,06	kN
	icentro impalcato inpata izza baggiolo+appoggio o pulvino izza pulvino izza fusto izza fusto +pulvino inero fusti izrasse fusti izrasse fusti izrasse justo izrasse rusti izrasse pulvino izrasse fusti izrasse pulvino izrasse fusti izrasse pulvino izrasse justi izrasse pulvino izrasse justi izrasse pulvino izrassezione izrassezion	icentro impalcato inpata izza baggiolo+appoggio io pulvino izza pulvino izza fusto izza fusto +pulvino inero fusti izrasse fusti izrasse fusti izrasse justo izras sezione io fusto +pulvino inero fusti izrasse justi izrasse pulvino izrasse justi izrasse pulvino izrasse justi izrasse pulvino izrasse justi izrasse pulvino izras sezione io fusto +pulvino izras plinto izra plinto izras plinto izra	icentro impalcato inpata izza baggiolo+appoggio io pulvino izza pulvino izza fusto izza fusto +pulvino inero fusti izrasse fusti izrasse fusti izrassezione io fusto +pulvino inertricità Fusti-Fond-trasversale ie plinto ighezza plinto izza plinto izza terreno su plinto io Terreno su plinto io plinto	icentro impalcato inpata izza baggiolo+appoggio io pulvino izza pulvino izza fusto izza fusto +pulvino inero fusti izrasse fusti izrasse fusti izrasse zezione io fusto +pulvino inertricità Fusti-Fond-trasversale ie plinto ighezza plinto izza plinto izza plinto io Terreno su plinto io plinto io plinto	1,000 1,470,00

Eurolink S.C.p.A. Pagina 200 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

		N	H long	H trasv	M long	M trasv
0		kN	kN	kN	kN m	kN m
IMPALCATO	Peso strutturale impalcato	6.255	0	0	0	58
ľ	Permanenti	2.288	0	0	0	1.716
1P/	Ritiro	352	0	0	0	4
'IP	Mezzi schema centrato	7.345	0	0	0	2.838
	Mezzi schema eccentrico	4.058	0	0	0	8.464
DAL	Folla schema centrato	137	0	0	0	1.035
SE	Folla schema eccentrica	0	0	0	0	0
ES	Frenamento	0	148	0	0	0
TRASMES	Resistenze passive vincolo	0	256	0	0	0
RA	Vento: impalcato scarico	1.132	0	218	0	2.955
_	Vento: impalcato carico	956	0	506	0	3.936
ZIONI	Cedimento	0	0	0	0	0
ZI(Azione centrifuga	0	0	0	0	0
A	Svio	0	0	200	0	0
	Sisma	3.110	1.200	980	0	862

Eccentricità dei carichi verticali (mt) 0,01

Azioni inerziali fusto Flong.=

Vento sul fusto

Flong.= 416 Ftrasv.= 90,0 Ftrasv.= 672

2 Fvert.=

909

REAZIONI IMPALCATO

	Pila	a 1		Pila 2				
N	M trasv	H long	H trasv	N	M trasv	H long	H trasv	
3.127	-25	0	0	3.128	26	0	0	
1.284	495	0	0	1.004	-38	0	0	
176	0	0	0	176	0	0	0	
3.936	-1.541	0	0	3.409	1.979	0	0	
2.869	-330	0	0	1.189	1.336	0	0	
156	238	0	0	-19	23	0	0	
0	0	0	0	0	0	0	0	
0	0	74	0	0	0	74	0	
0	0	132	0	0	0	124	0	
837	263	0	109	295	288	0	109	
839	353	0	253	117	386	0	253	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	100	0	0	0	100	
1.630	254	600	490	1.480	-85	600	490	

Si riportano nel seguito i valori delle azioni agenti alla base della fondazione per le varie

Eurolink S.C.p.A. Pagina 201 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

combinazioni di carico riportate alla pagina successiva. Tali azioni rappresentano i valori assunti per l'analisi del sistema fondazionale in base all'approccio 1 delle NTC 2008.

AZIONI ALLA BASE

	AZIONI ALLA BASL					
	Combinazioni	N	Vlong	Vtrasv	Mlong	Mtrasv
		kN	kN	kN	kN m	kN m
GEO	Comb 1	29.572	256,00	517,40	4.188	12.775
5	Comb 2	37.588	256,00	535,08	4.300	17.397
SLU	Comb 3	33.513	256,00	535,08	4.249	22.675
	Comb 4	35.244	426,20	535,08	7.430	15.866
AZIONI	Comb 5	32.346	426,20	535,08	7.381	20.242
ZI	Comb 6	35.244	256,00	535,08	4.299	15.866
٧	Comb 7	32.346	256,00	535,08	4.249	20.242
~	Comb 8	38.903	345,60	597,00	5.648	14.752
STR	Comb 9	48.324	345,60	617,40	5.799	20.173
SLU	Comb 10	43.543	345,60	617,40	5.731	26.370
IS	Comb 11	45.576	545,40	617,40	9.474	18.377
NO	Comb 12	42.174	545,40	617,40	9.407	23.513
AZIONI	Comb 13	45.576	345,60	617,40	5.798	18.377
A	Comb 14	42.174	345,60	617,40	5.731	23.513
14	SISMA long	33.768	2.288,00	980,00	30.784	2.553
SISMA						
S	SISMA trasv	33.416	1.200,00	2.324,00	19.200	31.187
	Comb SLE 1	28.476	256,00	398,00	4.181	9.841
SLE	Comb SLE 2	35.505	256,00	411,60	4.256	13.843
	Comb SLE 3	31.975	256,00	411,60	4.222	18.433
N	Comb SLE 4	33.529	404,00	411,60	6.979	12.874
AZIONI	Comb SLE 5	30.961	404,00	411,60	6.945	16.317
A	Comb SLE 6	33.529	256,00	411,60	4.256	12.874
	Comb SLE 7	30.961	256,00	411,60	4.222	15.558

Eurolink S.C.p.A. Pagina 202 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

5.3.3 COMBINAZIONI DI CARICO

Combinazioni statiche

Ced Ritiro	₩, %	00′1 00′	00′1 00′	00′1 00′	00′1 00	00′1 00′	00′1 00	00 1,00	1,00 1,20	,00 1,20	02′1 00′	,00 1,20	,00 1,20	1,20		0 1,20	00, 1,20	,00 1,20	00 1,20	,00 1,20	1,20	
	≪	1,(1,15 1,0	1,15 1,0	1,15 1,0	1,15 1,0	1,15 1,00	1,15 1,0	1,(1,35 1,0	1,35 1,(1,35	1,35 1,(1,35 1,00	1,35 1,00	1,00	1,35 1,0	1,35 1,(1,35 1,(1,35 1,(1,35 1,00	1,35 1,00
Frenamento	ů		00'0	00'0	1,00	1,00	00'0	0,00		00'0	00'0	1,00	1,00	00'0	0,00		00'0	00'0	1,00	1,00	00'0	0,0
<u>_0</u>	ģ		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
Folla	Ψ°		0,50	0,50	00'0	00'0	0,00	0,00		0,50	0,50	00'0	0,00	0,00	0,00		0,50	0,50	0,00	0,00	0,00	00'0
Accident.	ģ		1,15	1,15	1,15	1,15	1,15	1,15		1,35	1,35	1,35	1,35	1,35	1,35		1,35	1,35	1,35	1,35	1,35	1,35
Accic	Ψ°		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	0,75		1,00	1,00	0,75	0,75	0,75	0,75
Vento	2	1,38	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
, e	ř	1,00	09'0	09'0	09'0	09'0	09'0	09'0	1,00	09'0	09'0	09'0	09'0	09'0	09'0	1,00	09'0	09'0	09'0	09'0	09'0	09'0
remperatura (Ŗ	1,8	1,8	1,0	1,8	1,8	1 8	1,00	1,28	1,20	1,20	1,20	1,28	1,28	1,20	1,20	1,20	1,20	1,28	1,28	1,28	1,20
Temp	ř	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	09'0	
Attrito	<u>Ş</u>	1,38	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	
ă	ř	1,8	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,8	1,00	1,00	1,00	1,00	1,00	_
Perm.	<u>%</u>	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
q.	ğ	1,8	1,00	1,00	1,00	1,00	1,00	1,00	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,10	1,10	1,10	1,10	1,10	1,10	1,10
PRINCIPALE		Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.	Vento	Gruppo 1 centr.	Gruppo 1 ecc.	Gruppo 2a centr.	Gruppo 2a ecc.	Gruppo 2b centr.	Gruppo 2b ecc.

Eurolink S.C.p.A. Pagina 203 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Combinazioni sismiche

Combinazione	P.p.	Perm.	Accid.	Sisma	Sisma	Sisma
COMBINAZIONE	т.р.	i Cilli.	Acciu.	Х	Υ	Z
SISMA X N+	1,00	1,00	0,20	1,00	0,30	0,30
SISMA Y N+	1,00	1,00	0,20	0,30	1,00	0,30

Eurolink S.C.p.A. Pagina 204 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

5.3.4 MODELLO DI CALCOLO

Per il calcolo della capacità portante delle fondazioni profonde si utilizza il software di calcolo Aztec CARL 10.0 versione 10.05.b – carico limite e cedimenti.

Si procede con la verifica della pila maggiormente sollecitata coincidente, come evidenziato dalle tabelle esposte in precedenza, con la pila P1 (che nel caso in esame risulta identica alla pila P2).

Progetto: Curcuraci lato Reggio Calabria - Pile

Geometria della fondazione

Simbologia adottata

Descrizione Destrizione della fondazione

Forma Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

- X Ascissa del baricentro della fondazione espressa in [m]
- Y Ordinata del baricentro della fondazione espressa in [m]
- B Base/Diametro della fondazione espressa in [m]
- L Lunghezza della fondazione espressa in [m]
- D Profondità del piano di posa in [m]
- α Inclinazione del piano di posa espressa in [°]
- Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	X	Υ	В	L	D	α	ω
Fondazione	(R)	3,75	8,25	7,50	16,50	4,50	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

γ Peso di volume del terreno espresso in [daN/mc]

 γ_{sat} Peso di volume saturo del terreno espresso in [daN/mc]

Eurolink S.C.p.A. Pagina 205 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

- ϕ Angolo di attrito interno del terreno espresso in gradi
- δ Angolo di attrito palo-terreno espresso in gradi
- c Coesione del terreno espressa in [daN/cmq]
- ca Adesione del terreno espressa in [daN/cmq]

Descrizione	γ	γsat	ф	δ	С	ca
Depositi fluviali	2000,0	2350,0	38,00	38,00	0,000	0,000
Ghiaie di messina	1900,0	2300,0	38,00	38,00	0,000	0,000

Caratteristiche di deformabilità

Simbologia adottata

Descr Descrizione terreno

E Modulo di Young espresso in [daN/cmq]

DescrEDepositi fluviali250,00Ghiaie di messina400,00

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = -10.0 [m] Y = 3.0 [m] Punto di sondaggio n° 2: X = 0.0 [m] Y = 0.0 [m] Punto di sondaggio n° 3: X = 10.0 [m] Y = 3.0 [m]

N Z1 Z2 Z3 Terreno

Eurolink S.C.p.A. Pagina 206 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

1	-7,0	-7,0	-7,0	Depositi fluviali
2	-30,0	-30,0	-30,0	Ghiaie di messina

Normativa

N.T.C. 2008

γGsfav

Calcolo secondo: Approccio 1

Simbologia adottata

 $\begin{array}{ll} \gamma_{Gfav} & \text{Coefficiente parziale favorevole sulle azioni permanenti} \\ \gamma_{Qsfav} & \text{Coefficiente parziale sfavorevole sulle azioni variabili} \\ \gamma_{Qfav} & \text{Coefficiente parziale favorevole sulle azioni variabili} \\ \gamma_{tan\phi'} & \text{Coefficiente parziale di riduzione dell'angolo di attrito drenato} \\ \gamma_{c'} & \text{Coefficiente parziale di riduzione della coesione drenata} \\ \gamma_{cu} & \text{Coefficiente parziale di riduzione della coesione non drenata} \\ \end{array}$

Coefficiente parziale sfavorevole sulle azioni permanenti

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,30	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈Qsfav	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25

Eurolink S.C.p.A. Pagina 207 di 255

RELAZIONE GEOTECNICA

Codice documento	Rev	Data
SS0690_F0.doc	F0	20/06/2011

Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γ̈Gfav	1,00	1,00
Permanenti	Sfavorevole	γ_{Gsfav}	1,00	1,00
Variabili	Favorevole	γ̈Qfav	0,00	0,00
Variabili	Sfavorevole	γQsfav	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	<i>M</i> 2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	γ _{c'}	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali γ_R per le verifiche geotecniche.

		R1	R2	R3
Capacità portante	γ_{r}	1,00	1,80	2,30
Scorrimento	γ_{r}	1,00	1,10	1,10
Coeff. di combinazione	Ψ ₀ = 0,70	Ψ ₁ = 0,50	Ψ ₂ = 0,20	

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Eurolink S.C.p.A. Pagina 208 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

N Sforzo normale totale espressa in [daN]	
Mx Momento in direzione X espressa in [dal	lm]
My Momento in direzione Y espresso in [dal	lm]
ex Eccentricità del carico lungo X espressa	in [m]
ey Eccentricità del carico lungo Y espressa	in [m]
β Inclinazione del taglio nel piano espressa	ı in [°]
T Forza di taglio espressa in [daN]	

5.3.4.1 VERIFICHE APPROCCIO 1 – COMBINAZIONE 1

Condizione n° 1 (Condizione n° 1)

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	3890300,0	1475200,0	564800,0	0,1	-0,4	30,1	69001,8
Condizione n°	2 (Condizior	ne n° 2)					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4832400,0	2017300,0	579900,0	0,1	-0,4	29,3	70739,3
Condizione n°	3 (Condizion	<u>ne n° 3)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4354300,0	2637000,0	573100,0	0,1	-0,6	29,3	70739,3
Condizione nº	4 (Condizior	ne n° 4)					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4557600,0	1837700,0	947400,0	0,2	-0,4	41,5	82323,4

Eurolink S.C.p.A. Pagina 209 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Fondazione	N	Mx	My	ex	еу	β	Т
Fondazione	4217400,0 235	1300,0	940700,0	0,2	-0,6	41,5	82323,4

Condizione n° 6 (Condizione n° 6)

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4557600.0	1837700,0	579800,0	0,1	-0.4	29,3	70739,3

Condizione n° 7 (Condizione n° 7)

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	4217400,0 235	51300,0	573100,0	0,1	-0,6	29,3	70739,3

Descrizione combinazioni di carico

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione n° 1 SLU - Caso A1-M1

	γ	Ψ	С
Condizione n° 1	1.00	1.00	1.00

Combinazione n° 2 SLU - Caso A1-M1

	γ	Ψ	С
Condizione n° 2	1.00	1.00	1.00

Combinazione n° 3 SLU - Caso A1-M1

 γ Ψ C

Eurolink S.C.p.A. Pagina 210 di 255

Condizione nº 4

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Condizione n° 3	1.00	1.00	1.00

Combinazione n° 4 SLU - Caso A1-M1

γ	Ψ	С
1.00	1.00	1.00

Combinazione nº 5 SLU - Caso A1-M1

	γ	Ψ	С
Condizione n° 5	1.00	1.00	1.00

Combinazione n° 6 SLU - Caso A1-M1

	γ	Ψ	С
Condizione n° 6	1.00	1.00	1.00

Combinazione n° 7 SLU - Caso A1-M1

	γ	Ψ	С
Condizione n° 7	1.00	1.00	1.00

Analisi in condizioni drenate

Verifica della portanza per carichi verticali

Il calcolo della portanza è stato eseguito col metodo di Brinch-Hansen La relazione adottata è la seguente:

$$q_u = c N_c s_c i_c d_c b_c g_c + q N_q s_q i_q d_q b_q g_q + 0.5 By N_y s_y i_q d_q b_y g_y$$

Altezza del cuneo di rottura: AUTOMATICA

Il criterio utilizzato per il calcolo del macrostrato equivalente è stato la MEDIA PESATA

Nel calcolo della portanza sono state richieste le seguenti opzioni:

Riduzione sismica: NESSUNA

Eurolink S.C.p.A. Pagina 211 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1,00

Riduzione per carico eccentrico: MEYERHOF

Riduzione per rottura locale o punzonamento del terreno: VESIC

Meccanismo di punzonamento in presenza di falda.

Fondazione

Combinazione nº 1

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 7,69	[m]
opossore acine strate	11-7,00	11111

Peso specifico terreno
$$\gamma = 1932,52$$
 [daN/mc]

Angolo di attrito
$$\phi = 38,00$$
 [°]

Coesione
$$c = 0.00$$
 [daN/cmq]
Modulo di taglio $G = 146.34$ [daN/cmq]

Base ridotta
$$B' = B - 2 \text{ ex} = 7,21 \text{ [m]}$$

Lunghezza ridotta $L' = L - 2 \text{ ey} = 15,74 \text{ [m]}$

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_q = 0.97$	$i_{\gamma} = 0.95$
$d_c = 1,14$	$d_q = 1,14$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_q = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_q = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

Eurolink S.C.p.A. Pagina 212 di 255

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$q_u = 0.00 + 28.23 + 30.06 = 58.30 [daN/cmq]$$

 $Q_u = 66162209,79 \text{ [daN]}$

 $Q_d = 66162209,79 [daN]$

V = 3890300,00 [daN]

 $\eta = Q_u / V = 66162209,79 / 3890300,00 = 17,01$

Indici rigidezza

$$I_c = 0.97$$
 $I_{rc} = 285.28$

Combinazione nº 2

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 7,69	[m]
opessore dello strato	TI = T,03	[,,,]

Peso specifico terreno $\gamma = 1932,52$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0,00 [daN/cmq] Modulo di taglio G = 146,34 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,26 [m]Lunghezza ridotta L' = L - 2 ey = 15,67 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.98$	$i_q = 0.98$	$i_{\gamma} = 0.96$
$d_c = 1,14$	$d_{q} = 1,14$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Eurolink S.C.p.A. Pagina 213 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 28.42 + 30.57 = 58.98 [daN/cmq]$$

 $Q_u = 67080985,33 [daN]$

 $Q_d = 67080985,33 [daN]$

V = 4832400,00 [daN]

 $\eta = Q_u / V = 67080985,33 / 4832400,00 = 13,88$

Indici rigidezza

$$I_c = 0.98$$
 $I_{rc} = 285.28$

Combinazione nº 3

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 7,69 [m]

Peso specifico terreno $\gamma = 1932,52$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq]

Modulo di taglio G = 146,34 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,24 [m]

Lunghezza ridotta L' = L - 2 ey = 15,29 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_q = 0.97$	$i_{\gamma} = 0.96$
$d_c = 1,14$	$d_q = 1,14$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$

$$g_c = 1,00$$
 $g_q = 1,00$ $g_{\gamma} = 1,00$

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 28.34 + 30.34 = 58.68 [daN/cmq]$$

 $Q_u = 64929089,12 [daN]$

 $Q_d = 64929089,12 [daN]$

V = 4354300,00 [daN]

 $\eta = Q_u / V = 64929089,12 / 4354300,00 = 14,91$

Indici rigidezza

$$I_c = 0.97$$
 $I_{rc} = 285.28$

Combinazione nº 4

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 7,69	[m]
-----------------------	----------	-----

Peso specifico terreno $\gamma = 1932,52$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 146.34 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,08 [m]Lunghezza ridotta L' = L - 2 ey = 15,69 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_{q} = 0.97$	$i_{\gamma} = 0.96$
$d_c = 1,14$	$d_q = 1,14$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$

Eurolink S.C.p.A. Pagina 215 di 255

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc

Rev F0

Data 20/06/2011

$$g_c = 1,00$$

$$g_q = 1,00$$

$$g_{\gamma} = 1,00$$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 28.33 + 29.64 = 57.97 [daN/cmq]$$

 $Q_u = 64452520,58 \text{ [daN]}$

 $Q_d = 64452520,58 \text{ [daN]}$

V = 4557600,00 [daN]

$$\eta = Q_u / V = 64452520,58 / 4557600,00 = 14,14$$

Indici rigidezza

$$I_c = 0.97$$

$$I_{rc} = 285,28$$

Combinazione n° 5

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 7.69	[m]
Openio aciio atiato	11 – 7,00	11111

Peso specifico terreno $\gamma = 1932,52$ [daN/mc]

 $\phi = 38,00$ Angolo di attrito [°]

Coesione c = 0.00[daN/cmq] G = 146,34Modulo di taglio [daN/cmq]

Base ridotta B' = B - 2 ex = 7,05 [m]Lunghezza ridotta L' = L - 2 ey = 15,38 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 61,35$	$N_q = 48,93$	$N_{\gamma} = 78,02$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_q = 0.97$	$i_{\gamma} = 0.95$
$d_c = 1,14$	$d_{q} = 1,14$	$d_{y} = 1,00$

Eurolink S.C.p.A. Pagina 216 di 255

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

 $b_c = 1,00$

 $b_0 = 1,00$

 $b_v = 1,00$

 $g_c = 1,00$

 $g_{q} = 1,00$

 $g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 28.27 + 29.40 = 57.68 [daN/cmq]$$

 $Q_u = 62595225,99 [daN]$

 $Q_d = 62595225,99 [daN]$

V = 4217400,00 [daN]

$$\eta = Q_u / V = 62595225,99 / 4217400,00 = 14,84$$

Indici rigidezza

$$I_c = 0.97$$

$$I_{rc} = 285,28$$

Combinazione nº 6

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 7,69 [m]

Peso specifico terreno $\gamma = 1932,52$ [daN/mc]

Angolo di attrito $\phi = 38,00$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 146.34 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,25 [m]Lunghezza ridotta L' = L - 2 ey = 15,69 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 61,35$ $N_q = 48,93$

 $s_c = 1,00$ $s_q = 1,00$ $s_{\gamma} = 1,00$ $i_c = 0,98$ $i_{\gamma} = 0,96$

Eurolink S.C.p.A. Pagina 217 di 255

 $N_{v} = 78,02$

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$d_c = 1,14$	$d_{q} = 1,14$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$q_c = 1.00$	$q_0 = 1,00$	$g_v = 1.00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 28.38 + 30.44 = 58.81 [daN/cmq]$$

$$Q_u = 66874414,92 \text{ [daN]}$$

$$Q_d = 66874414,92 \text{ [daN]}$$

$$V = 4557600,00 \text{ [daN]}$$

$$\eta = Q_u \ / \ V = 66874414,92 \ / \ 4557600,00 = 14,67$$

Indici rigidezza

$$I_c = 0.98$$
 $I_{rc} = 285.28$

Combinazione nº 7

Caratteristiche fisico-meccaniche del terreno equivalente

Base ridotta B' = B - 2 ex = 7,23 [m]Lunghezza ridotta L' = L - 2 ey = 15,38 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $\begin{aligned} N_c &= 61{,}35 & N_q &= 48{,}93 & N_\gamma &= 78{,}02 \\ s_c &= 1{,}00 & s_q &= 1{,}00 & s_\gamma &= 1{,}00 \end{aligned}$

Eurolink S.C.p.A. Pagina 218 di 255

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento	
SS0690_F0.doc	

Rev F0 Data 20/06/2011

$i_c = 0.97$	$i_{q} = 0,97$	$i_{\gamma} = 0.96$
$d_c = 1,14$	$d_{q} = 1,14$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$q_2 = 1.00$	$q_{r} = 1.00$	a = 1.00

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 28.32 + 30.26 = 58.58 [daN/cmq]$$

$$Q_u = 65147205,75 \text{ [daN]}$$

$$Q_d = 65147205,75 \text{ [daN]}$$

$$V = 4217400,00 \text{ [daN]}$$

$$\eta = Q_u \ / \ V = 65147205,75 \ / \ 4217400,00 = 15,45$$

Indici rigidezza

$$I_c = 0.97$$
 $I_{rc} = 285.28$

Verifica della portanza per carichi orizzontali (scorrimento).

Partecipazione spinta passiva: 50,00 (%)

La relazione adottata è la seguente:

$$\eta = R / H >= \eta_{rea}$$

η_{req}: coefficiente di sicurezza richiesto

Simbologia adottata

Cmb Identificativo della combinazione

H Forza di taglio agente al piano di posa espresso in [daN]

 R_{ult1} Resistenza offerta dal piano di posa per attrito ed adesione espressa in [daN]

 R_{ult2} Resistenza passiva offerta dall'affondamento del piano di posa espressa in [daN]

R Somma di R_{ult1} e R_{ult2}

Resistenza ammissibile allo scorrimento espressa in [daN]

η Coeff. di sicurezza allo scorrimento

Eurolink S.C.p.A. Pagina 219 di 255

RELAZIONE GEOTECNICA

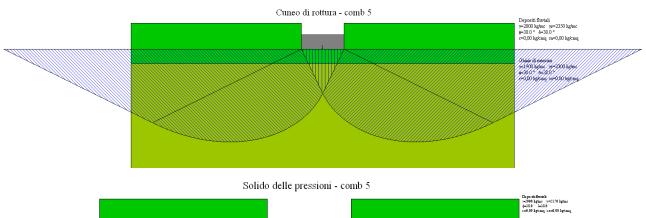
Codice documento
SS0690_F0.doc

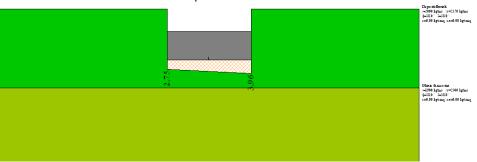
Rev F0 Data 20/06/2011

Fondazione

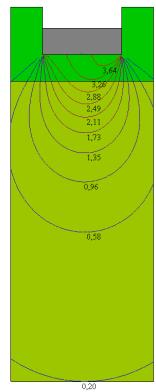
Cmb	Н	R_{ult1}	R_{ult2}	R	R_{amm}	η
1	59700,00	3039435,47	0,00	3039435,47	3039435,47	50,91
2	61700,00	3775484,66	0,00	3775484,66	3775484,66	61,19
3	61700,00	3401952,00	0,00	3401952,00	3401952,00	55,14
4	61700,00	3560787,37	0,00	3560787,37	3560787,37	57,71
5	61700,00	3294994,00	0,00	3294994,00	3294994,00	53,40
6	61700,00	3560787,37	0,00	3560787,37	3560787,37	57,71
7	61700,00	3294994,00	0,00	3294994,00	3294994,00	53,40

Eurolink S.C.p.A. Pagina 220 di 255





RELAZIONE GEOTECNICA


 Codice documento
 Rev
 Data

 SS0690_F0.doc
 F0
 20/06/2011

Bulbo delle tensioni - Sez X-X comb 5

Eurolink S.C.p.A. Pagina 221 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

5.3.4.2 VERIFICHE APPROCCIO 1 – COMBINAZIONE 2

Condizione n° 1 (Condizione n° 1)

Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	2957200,0	1277500,0	418800,0	0,1	-0,4	26,3	57691,0
Condizione n°	2 (Condizion	<u>e n° 2)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	3758800,0	1739700,0	430000,0	0,1	-0,5	25,6	59309,4
Condizione n°	3 (Condizion	<u>e n° 3)</u>					
Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	3351300,0	2267500,0	424900,0	0,1	-0,7	25,6	59309,4
Condizione n°	4 (Condizion	<u>e n° 4)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	3524400,0	1586600,0	743000,0	0,2	-0,5	38,5	68388,7
Condizione n°	5 (Condizion	<u>e n° 5)</u>					
Fondazione	N	Mx	Му	ex	еу	β	т
Fondazione	3234600,0	2024200,0	738100,0	0,2	-0,6	38,5	68388,7
Condizione n°	6 (Condizion	<u>e n° 6)</u>					
Fondazione	N	Mx	Му	ex	ey	β	Т
Fondazione	3524400,0	1586600,0	429900,0	0,1	-0,5	25,6	59309,4

Condizione n° 7 (Condizione n° 7)

Eurolink S.C.p.A. Pagina 222 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

Fondazione	N	Mx	Му	ex	еу	β	T
Fondazione	3234600,0 202	4200,0	424900,0	0,1	-0,6	25,6	59309,4

Condizione n° 8 (Condizione n° 8) – COMBINAZIONE SISMICA

Fondazione	N	Mx	Му	ex	ey	β	Т
Fondazione	3376800.0	255300,0 30	78400.0	0.9	-0.1	66.8	248904,5

Condizione n° 9 (Condizione n° 9) – COMBINAZIONE SISMICA

Fondazione	N	Mx	My	ex	ey	β	Т
Fondazione	3341600,0 31	18700,0 19	20000.0	0.6	-0.9	27,3	261552,6

Descrizione combinazioni di carico

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione nº 1 SLU - Caso A2-M2

	γ	Ψ	С
Condizione n° 1	1.00	1.00	1.00

Combinazione n° 2 SLU - Caso A2-M2

	γ	Ψ	С
Condizione n° 2	1.00	1.00	1.00

Combinazione n° 3 SLU - Caso A2-M2

	γ	Ψ	С
Condizione n° 3	1.00	1.00	1.00

Eurolink S.C.p.A. Pagina 223 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Combinazione n° 4 SLU	- Caso A2-M2
-----------------------	--------------

	γ	Ψ	С
Condizione n° 4	1.00	1.00	1.00

Combinazione n° 5 SLU - Caso A2-M2

	γ	Ψ	С
Condizione n° 5	1.00	1.00	1.00

Combinazione nº 6 SLU - Caso A2-M2

	γ	Ψ	С
Condizione n° 6	1.00	1.00	1.00

Combinazione nº 7 SLU - Caso A2-M2

	γ	Ψ	C
Condizione n° 7	1.00	1.00	1.00

Combinazione n° 8 SLU – COMBINAZIONE SISMICA

	γ	Ψ	С
Condizione n° 8	1.00	1.00	1.00

Combinazione n° 9 SLU – COMBINAZIONE SISMICA

	γ	Ψ	С
Condizione n° 9	1.00	1.00	1.00

Analisi in condizioni drenate

Verifica della portanza per carichi verticali

Il calcolo della portanza è stato eseguito col metodo di Brinch-Hansen La relazione adottata è la seguente:

Eurolink S.C.p.A. Pagina 224 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$q_u = c \; N_c \; s_c \; i_c \; d_c \; b_c \; g_c + q \; N_q \; s_q \; i_q \; d_q \; b_q \; g_q + 0.5 \; B\gamma \; N_\gamma \; s_\gamma \; i_g \; d_g \; b_\gamma \; g_\gamma \; d_q \; d_q$$

Altezza del cuneo di rottura: AUTOMATICA

Il criterio utilizzato per il calcolo del macrostrato equivalente è stato la MEDIA PESATA

Nel calcolo della portanza sono state richieste le seguenti opzioni:

Riduzione sismica: NESSUNA

Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLU): 1,00 Coefficiente correttivo su N γ per effetti cinematici (combinazioni sismiche SLE): 1,00

Riduzione per carico eccentrico: MEYERHOF

Riduzione per rottura locale o punzonamento del terreno: VESIC

Meccanismo di punzonamento in presenza di falda.

Fondazione

Combinazione nº 1

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 6.76 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,22 [m]Lunghezza ridotta L' = L - 2 ey = 15,64 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 35,51$ $N_q = 23,19$ $N_{\gamma} = 30,24$

Eurolink S.C.p.A. Pagina 225 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_q = 0.97$	$i_{\gamma} = 0.95$
$d_c = 1,27$	$d_q = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_q = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{y} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 38.57 + 19.20 = 57.77 [daN/cmq]$$

 $Q_u = 65182900,64 [daN]$

 $Q_d = 36212722,58 [daN]$

V = 2957200,00 [daN]

 $\eta = Q_u \, / \, V = 65182900,64 \, / \, 2957200,00 = 22,04$

Indici rigidezza

$$I_c = 0.97$$
 $I_{rc} = 133.21$

Combinazione nº 2

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 6.76 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,27 [m]Lunghezza ridotta L' = L - 2 ey = 15,57 [m]

Eurolink S.C.p.A. Pagina 226 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.98$	$i_{q} = 0.98$	$i_{\gamma} = 0.96$
$d_c = 1,27$	$d_{q} = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 38.97 + 19.62 = 58.59 [daN/cmq]$$

 $Q_u = 66347833,74 [daN]$

 $Q_d = 36859907,64 [daN]$

V = 3758800,00 [daN]

 $\eta = Q_u / V = 66347833,74 / 3758800,00 = 17,65$

Indici rigidezza

$$I_c = 0.98$$
 $I_{rc} = 133.21$

Combinazione n° 3

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 6.76 [m] Peso specifico terreno $\gamma = 1900,00$ [daN/mc] Angolo di attrito $\phi = 32,01$ [°] Coesione c = 0.00 [daN/cmg

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Eurolink S.C.p.A. Pagina 227 di 255

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0

20/06/2011

Data

Base ridotta B' = B - 2 ex = 7,25 [m]Lunghezza ridotta L' = L - 2 ey = 15,15 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_{q} = 0.98$	$i_{\gamma} = 0.96$
$d_c = 1,27$	$d_{q} = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_q = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 38.86 + 19.46 = 58.33 [daN/cmq]$$

$$Q_u = 64018760,52 \text{ [daN]}$$

$$Q_d = 35565978,06 \text{ [daN]}$$

$$V = 3351300,00 \text{ [daN]}$$

$$\eta = Q_u \ / \ V = 64018760,52 \ / \ 3351300,00 = 19,10$$

Indici rigidezza

$$I_c = 0.97$$
 $I_{rc} = 133.21$

Combinazione nº 4

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 6.76 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Eurolink S.C.p.A. Pagina 228 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,08 [m]Lunghezza ridotta L' = L - 2 ey = 15,60 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_q = 0.97$	$i_{\gamma} = 0.95$
$d_c = 1,27$	$d_q = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 38.67 + 18.88 = 57.55 [daN/cmq]$$

 $Q_u = 63545449,88 \text{ [daN]}$ $Q_d = 35303027,71 \text{ [daN]}$ V = 3524400,00 [daN]

 $\eta = Q_u / V = 63545449,88 / 3524400,00 = 18,03$

Indici rigidezza

 $I_c = 0.97$ $I_{rc} = 133.21$

Combinazione n° 5

Eurolink S.C.p.A. Pagina 229 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Caratteristiche fisico-meccaniche del terreno equivalente

0	11 0 70	F 1
Spessore dello strato	H = 6.76	[m]

Peso specifico terreno
$$\gamma = 1900,00$$
 [daN/mc]

Angolo di attrito
$$\phi = 32,01$$
 [°]

Coesione
$$c = 0.00$$
 [daN/cmq]
Modulo di taglio $G = 166.67$ [daN/cmq]

Base ridotta
$$B' = B - 2 ex = 7,04 [m]$$

Lunghezza ridotta $L' = L - 2 ey = 15,25 [m]$

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_q = 0.97$	$i_{\gamma} = 0.95$
$d_c = 1,27$	$d_q = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_q = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_q = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 38.56 + 18.71 = 57.27 [daN/cmq]$$

$$Q_u = 61508676,51 [daN]$$

$$Q_d = 34171486,95 [daN]$$

$$\eta = Q_u \, / \, V = 61508676,51 \, / \, 3234600,00 = 19,02$$

Indici rigidezza

$$I_c = 0.97$$
 $I_{rc} = 133.21$

Eurolink S.C.p.A. Pagina 230 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Combinazione nº 6

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato	H = 6,76	[m]
-----------------------	----------	-----

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,26 [m]Lunghezza ridotta L' = L - 2 ey = 15,60 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.98$	$i_q = 0.98$	$i_{\gamma} = 0.96$
$d_c = 1,27$	$d_{q} = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 38.91 + 19.53 = 58.44 [daN/cmq]$$

 $Q_u = 66149728,43 \text{ [daN]}$

 $Q_d = 36749849,13 [daN]$

V = 3524400,00 [daN]

 $\eta = Q_u / V = 66149728,43 / 3524400,00 = 18,77$

Eurolink S.C.p.A. Pagina 231 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Indici rigidezza

 $I_c = 0.98$

 $I_{rc} = 133,21$

Combinazione nº 7

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 6.76 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Base ridotta B' = B - 2 ex = 7,24 [m]Lunghezza ridotta L' = L - 2 ey = 15,25 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.97$	$i_{q} = 0.97$	$i_{\gamma} = 0.96$
$d_c = 1,27$	$d_{q} = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

 $q_u = 0.00 + 38.83 + 19.41 = 58.24 [daN/cmq]$

Eurolink S.C.p.A. Pagina 232 di 255

Ponte sullo Stretto di Messina

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

 $Q_u = 64268114,82 [daN]$

 $Q_d = 35704508,23 [daN]$

V = 3234600,00 [daN]

 $\eta = Q_u / V = 64268114,82 / 3234600,00 = 19,87$

Indici rigidezza

 $I_c = 0.97$

 $I_{rc} = 133,21$

Combinazione n° 8 - COMBINAZIONE SISMICA

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 6,76 [m] Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0,00 [daN/cmq] Modulo di taglio G = 166,67 [daN/cmq]

Base ridotta B' = B - 2 ex = 5,68 [m]Lunghezza ridotta L' = L - 2 ey = 16,35 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

$N_c = 35,51$	$N_q = 23,19$	$N_{\gamma} = 30,24$
$s_c = 1,00$	$s_q = 1,00$	$s_{\gamma} = 1,00$
$i_c = 0.89$	$i_{q} = 0.89$	$i_{\gamma} = 0.82$
$d_c = 1,27$	$d_{q} = 1,26$	$d_{\gamma} = 1,00$
$b_c = 1,00$	$b_{q} = 1,00$	$b_{\gamma} = 1,00$
$g_c = 1,00$	$g_{q} = 1,00$	$g_{\gamma} = 1,00$

Il valore della capacità portante è dato da:

Eurolink S.C.p.A. Pagina 233 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

$$q_u = 0.00 + 35.46 + 13.12 = 48.57 [daN/cmq]$$

 $Q_u = 45078772,36 [daN]$

 $Q_d = 25043762,42 [daN]$

V = 3376800,00 [daN]

 $\eta = Q_u \, / \, V = 45078772,36 \, / \, 3376800,00 = 13,35$

Indici rigidezza

$$I_{c} = 0.89$$

$$I_{rc} = 133,21$$

Combinazione nº 9 - COMBINAZIONE SISMICA

Caratteristiche fisico-meccaniche del terreno equivalente

Spessore dello strato H = 6.76 [m]

Peso specifico terreno $\gamma = 1900,00$ [daN/mc]

Angolo di attrito $\phi = 32,01$ [°]

Coesione c = 0.00 [daN/cmq] Modulo di taglio G = 166.67 [daN/cmq]

Modulo di taglio G = 166,67 [daN/cmq]

Base ridotta B' = B - 2 ex = 6,35 [m]

Lunghezza ridotta L' = L - 2 ey = 14,63 [m]

Coefficienti di capacità portante e fattori correttivi del carico limite.

 $N_c = 35,51$ $N_q = 23,19$ $s_c = 1,00$ $s_q = 1,00$

 $s_q = 1,00$ $s_{\gamma} = 1,00$

 $i_c = 0.87$ $i_q = 0.88$ $i_\gamma = 0.81$

 $d_c = 1,27 \qquad \qquad d_q = 1,26 \qquad \qquad d_\gamma = 1,00$

 $\begin{array}{lll} b_c = 1{,}00 & & b_q = 1{,}00 & & b_\gamma = 1{,}00 \\ g_c = 1{,}00 & & g_q = 1{,}00 & & g_\gamma = 1{,}00 \end{array}$

Eurolink S.C.p.A. Pagina 234 di 255

 $N_{v} = 30,24$

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Il valore della capacità portante è dato da:

$$q_u = 0.00 + 35.06 + 14.44 = 49.50 [daN/cmq]$$

 $Q_u = 46002480,93 [daN]$

 $Q_d = 25556933,85 [daN]$

V = 3341600,00 [daN]

 $\eta = Q_u / V = 46002480,93 / 3341600,00 = 13,77$

Indici rigidezza

$$I_c = 0.87$$
 $I_{rc} = 133.21$

Verifica della portanza per carichi orizzontali (scorrimento).

Partecipazione spinta passiva: 50,00 (%)

La relazione adottata è la seguente:

$$\eta = R / H \gg \eta_{req}$$

 η_{req} : coefficiente di sicurezza richiesto

Simbologia adottata

Cmb Identificativo della combinazione

H Forza di taglio agente al piano di posa espresso in [daN]

 R_{ult1} Resistenza offerta dal piano di posa per attrito ed adesione espressa in [daN]

 R_{ult2} Resistenza passiva offerta dall'affondamento del piano di posa espressa in [daN]

R Somma di R_{ult1} e R_{ult2}

Resistenza ammissibile allo scorrimento espressa in [daN]

η Coeff. di sicurezza allo scorrimento

Fondazione

Eurolink S.C.p.A. Pagina 235 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

Cmb	Н	R _{ult1}	R_{ult2}	R	R_{amm}	η
1	51700,00	1848334,28	0,00	1848334,28	1680303,89	35,75
2	53500,00	2349357,13	0,00	2349357,13	2135779,21	43,91
3	53500,00	2094658,02	0,00	2094658,02	1904234,56	39,15
4	53500,00	2202850,45	0,00	2202850,45	2002591,32	41,17
5	53500,00	2021717,19	0,00	2021717,19	1837924,72	37,79
6	53500,00	2202850,45	0,00	2202850,45	2002591,32	41,17
7	53500,00	2021717,19	0,00	2021717,19	1837924,72	37,79
8	228800,00	2110596,24	0,00	2110596,24	1918723,86	9,22
9	232400,00	2088595,24	0,00	2088595,24	1898722,95	8,99

Eurolink S.C.p.A. Pagina 236 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 Data 20/06/2011

5.3.4.3 VERIFICHE SLE - CEDIMENTI

Cedimenti della fondazione

Metodo Elastico

Il metodo dell'elasticità per il calcolo dei cedimenti, così come implementato, fornisce due valori:

- uno per deformazione laterale impedita (w_{imp})
- uno in condizioni di deformazione laterale libera (w_{lib})

L'espressione di **w**_{imp} è la seguente:

n
$$\Delta \sigma_i$$
 (1 - ν - 2 ν^2)
 $\Delta H = \Sigma \longrightarrow \Delta Z_i$
 $i=1$ E_i (1 - ν)

dove

 $\Delta \sigma$ è la tensione indotta nel terreno, alla profondità **z**, dalla pressione di contatto della fondazione; **E** è il modulo elastico relativo allo strato **i-esimo**;

Δz rappresenta lo spessore dello strato **i-esimo** in cui è stato suddiviso lo strato compressibile e per il quale si conosce il modulo elastico;

v è il coefficiente di Poisson.

L'espressione di $\mathbf{w}_{\mathsf{lib}}$ è la seguente:

$$n \quad \Delta \sigma_{i}$$

$$\Delta H = \Sigma \xrightarrow{} \Delta Z_{i}$$

$$i=1 \quad E_{i}$$

dove i termini sono stati già descritti sopra.

Lo spessore dello strato compressibile considerato nell'analisi dei cedimenti è stato determinato in funzione della percentuale della tensione di contatto. I valori del cedimento ottenuti dalle due relazioni rappresentano un valore minimo \mathbf{w}_{imp} e un valore massimo \mathbf{w}_{lib} del cedimento in condizioni elastiche della fondazione analizzata.

Condizioni di carico

Eurolink S.C.p.A. Pagina 237 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione	Nome identificativo della fondazione
N	Sforzo normale totale espressa in [kN]
Mx	Momento in direzione X espressa in [kNm]
My	Momento in direzione Y espresso in [kNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]
T	Forza di taglio espressa in [kN]

Condizione n° 1 (Condizione n° 1)

Fondazione

Fondazione	N	Мх	Му	0.4	OV	Ω	т
Foliuazione			•	ех	еу	β	'
Fondazione	28476,000	9841,000	4181,000	0,1	-0,3	32,7	473,223
Condizione n°	2 (Condizion	ne n° 2)					
		<u>_</u>					
Fondazione	N	Mx	My	ex	ey	β	т
i Olidazione			iviy	GX	Су	Р	•
Fondazione	35505,000	13843,000	4256,000	0,1	-0,4	31,9	485,057
Condizione n°	3 (Condizion	ne n° 3)					
Fondazione	N	Mx	My	ex	ον.	ρ	т
Folidazione	IN	IVIX	iviy	ех	еу	β	1
Fondazione	31975,000	18433,000	4222,000	0,1	-0,6	31,9	485,057
Condizione n°	4 (Condizion	ne n° 4)					
	•	<u> </u>					
Fondazione	N	Mx	My	ex	OV.	β	т
i Ulluaziulle	IN	IVIX	iviy	EX	еу	р	•

Eurolink S.C.p.A. Pagina 238 di 255

33529,000 12874,000 6979,000

0,2

-0,4

44,4

577,027

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	30961,000	16317,000	6945,000	0,2	-0,5	44,4	577,027

Condizione n° 6 (Condizione n° 6)

Fondazione	N	Mx	Му	ex	еу	β	T
Fondazione	33529,000	12874,000	4256,000	0,1	-0,4	31,9	485,057

Condizione n° 7 (Condizione n° 7)

Fondazione	N	Mx	Му	ex	еу	β	Т
Fondazione	30961,000	15558,000	4222,000	0,1	-0,5	31,9	485,057

Descrizione combinazioni di carico

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Combinazione n° 1 SLE

	γ	Ψ	C
Condizione n° 1	1.00	1.00	1.00

Combinazione n° 2 SLE

	γ	Ψ	C
Condizione n° 2	1.00	1.00	1.00

Combinazione n° 3 SLE

Ψ C

Eurolink S.C.p.A. Pagina 239 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

Condizione n° 3	1.00	1.00	1.00
Combinazione n° 4 SLE			
	γ	Ψ	С
Condizione n° 4	1.00	1.00	1.00
Combinazione n° 5 SLE			
	γ	Ψ	С
Condizione n° 5	1.00	1.00	1.00
Combinazione n° 6 SLE			
	γ	Ψ	С
Condizione n° 6	1.00	1.00	1.00
Combinazione n° 7 SLE			
	γ	Ψ	С
Condizione n° 7	1.00	1.00	1.00

Analisi in condizioni drenate

Cedimenti

Il calcolo dei cedimenti è stato eseguito con il metodo Elastico.

Per il calcolo dei cedimenti, è stata impostata un'altezza dello strato compressibile legato alla percentuale tensionale.

In particolare la percentuale impostata è: 0,05 (%)

E' stato richiesto di tenere in conto della fondazione compensata.

Cedimento complessivo

Simbologia adottata

Comb Identificativo della combinazione

Eurolink S.C.p.A. Pagina 240 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 **Data** 20/06/2011

w_i Cedimento elastico espresso in [cm]

 W_{imp} Cedimento elastico ad espansione laterale impedita espresso in [cm]

H Spessore strato compressibile espresso in [m]

X coordinata X punto di calcolo cedimento espressa in [m]

Y coordinata Y punto di calcolo cedimento espressa in [m]

Fondazione

Comb	$\mathbf{W_{i}}$	\mathbf{W}_{imp}	Н	X	Υ
1	2,29	2,36	22,60	3,90	8,60
1	2,06	2,16	22,60	0,00	0,00
1	2,08	2,18	22,60	7,50	0,00
1	2,14	2,23	22,60	7,50	16,50
1	2,13	2,22	22,60	0,00	16,50
2	3,37	3,42	25,20	3,87	8,64
2	3,16	3,24	25,20	0,00	0,00
2	3,17	3,25	25,20	7,50	0,00
2	3,23	3,29	25,20	7,50	16,50
2	3,22	3,29	25,20	0,00	16,50
3	3,02	2,91	24,00	3,88	8,83
3	2,78	2,70	24,00	0,00	0,00
3	2,80	2,72	24,00	7,50	0,00
3	2,89	2,80	24,00	7,50	16,50
3	2,88	2,79	24,00	0,00	16,50
4	3,09	3,13	24,50	3,96	8,63
4	2,87	2,94	24,50	0,00	0,00
4	2,89	2,96	24,50	7,50	0,00
4	2,95	3,01	24,50	7,50	16,50
4	2,93	3,00	24,50	0,00	16,50
5	2,85	2,77	23,60	3,97	8,78
5	2,61	2,55	23,60	0,00	0,00
5	2,64	2,58	23,60	7,50	0,00
5	2,72	2,65	23,60	7,50	16,50

Eurolink S.C.p.A. Pagina 241 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

5	2,70	2,63	23,60	0,00	16,50
6	3,07	3,12	24,50	3,88	8,63
6	2,85	2,93	24,50	0,00	0,00
6	2,87	2,94	24,50	7,50	0,00
6	2,92	2,99	24,50	7,50	16,50
6	2,92	2,99	24,50	0,00	16,50
7	2,78	2,75	23,60	3,89	8,75
7	2,55	2,54	23,60	0,00	0,00
7	2,56	2,56	23,60	7,50	0,00
7	2,64	2,63	23,60	7,50	16,50
7	2,64	2,62	23,60	0,00	16,50

Cedimento dei singoli strati

Simbologia adottata

Strato Identificativo dello strato

Terreno dello strato

 ΔH Spessore dello strato espresso in [m]

 Δw_i Cedimento elastico espresso in [cm]

 ΔW_{imp} Cedimento elastico ad espansione laterale impedita espresso in [cm]

Fondazione (Combinazione n° 1)

Strato	Terreno	ΔH	Δw_i	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	2,50	0,4882	0,7053
2	Ghiaie di messina	15,60	1,8013	1,6526
<u>Totale</u>		18,10	2,2896	2,3579

Fondazione (Combinazione n° 2)

Strato	Terreno	ΔΗ	Δw_i	Δw_{imp}
1	Depositi fluviali	2,50	0,7099	0,9857
2	Ghiaie di messina	18,20	2,6644	2,4380

Eurolink S.C.p.A. Pagina 242 di 255

Strato

PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 **Data** 20/06/2011

Totale		20,70	3,3743	3,4237
Fondazione (Combinazione n° 3)				
Strato	Terreno	ΔН	Δw_i	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	2,50	0,7733	0,8556
2	Ghiaie di messina	17,00	2,2485	2,0588
Totale		19,50	3,0218	2,9144
Fondazione (Combinazione n° 4)				
Strato	Terreno	ΔН	Δw_i	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	2,50	0,6644	0,9144
2	Ghiaie di messina	17,50	2,4244	2,2194
Totale		20,00	3,0888	3,1338
Fondazione (Combinazione n° 5)				
Strato	Terreno	ΔН	Δw_{i}	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	2,50	0,7301	0,8202
2	Ghiaie di messina	16,60	2,1244	1,9458
Totale		19,10	2,8545	2,7660
Fondazione (Combinazione n° 6)				
Strato	Terreno	ΔΗ	Δw_i	$\Delta \mathbf{w}_{imp}$
1	Depositi fluviali	2,50	0,6501	0,9071
2	Ghiaie di messina	17,50	2,4183	2,2142
Totale		20,00	3,0684	3,1213
Fondazione (Combinazione n° 7)				

Eurolink S.C.p.A. Pagina 243 di 255

Terreno

 ΔH

 Δw_{imp}

 Δw_i

RELAZIONE GEOTECNICA

Codice documento	Rev	Data
SS0690_F0.doc	F0	20/06/2011

Totale		19,10	2,7824	2,7491
2	Ghiaie di messina	16,60	2,1154	1,9381
1	Depositi fluviali	2,50	0,6670	0,8110

Dettagli sui cedimenti dei singoli strati

Simbologia adottata

n° numero d'ordine dell'i-esimo strato

z quota media dell'i-esimo strato espresso in [m]

 ΔH spessore dello strato i-esimo espresso in [m]

 $\Delta\sigma_{V}$ incremento di tensione verticale dell'i-esimo strato espresso in [N/cmq]

E modulo elastico dell'i-esimo strato espresso in [N/cmq]

 Δw cedimento dell'i-esimo strato espresso in [cm]

Fondazione (Combinazione n° 1)

n°	z	ΔΗ	$\Delta\sigma_{\sf V}$	E	Δw
1	-4,56	0,13	14,7	4500,0	-0,0031
2	-4,69	0,13	14,7	4500,0	-0,0044
3	-4,81	0,13	14,6	4500,0	0,0018
4	-4,94	0,13	14,5	4500,0	0,0105
5	-5,06	0,13	14,5	4500,0	0,0179
6	-5,19	0,13	14,4	4500,0	0,0231
7	-5,31	0,13	14,4	4500,0	0,0264
8	-5,44	0,13	14,3	4500,0	0,0286
9	-5,56	0,13	14,3	4500,0	0,0301
10	-5,69	0,13	14,2	4500,0	0,0310
11	-5,81	0,13	14,2	4500,0	0,0317
12	-5,94	0,13	14,1	4500,0	0,0322
13	-6,06	0,13	14,0	4500,0	0,0325
14	-6,19	0,13	13,9	4500,0	0,0327
15	-6,31	0,13	13,8	4500,0	0,0329
16	-6,44	0,13	13,7	4500,0	0,0329

Eurolink S.C.p.A. Pagina 244 di 255

RELAZIONE GEOTECNICA	Codice documento	Rev	Data
	SS0690_F0.doc	F0	20/06/2011

17	-6,56	0,13	13,6	4500,0	0,0330
18	-6,69	0,13	13,5	4500,0	0,0329
19	-6,81	0,13	13,4	4500,0	0,0328
20	-6,94	0,13	13,2	4500,0	0,0327
21	-7,39	0,78	12,7	5000,0	0,1800
22	-8,17	0,78	11,7	5000,0	0,1700
23	-8,95	0,78	10,6	5000,0	0,1576
24	-9,73	0,78	9,6	5000,0	0,1445
25	-10,51	0,78	8,6	5000,0	0,1317
26	-11,29	0,78	7,8	5000,0	0,1197
27	-12,07	0,78	7,0	5000,0	0,1086
28	-12,85	0,78	6,3	5000,0	0,0985
29	-13,63	0,78	5,7	5000,0	0,0895
30	-14,41	0,78	5,2	5000,0	0,0814
31	-15,19	0,78	4,7	5000,0	0,0742
32	-15,97	0,78	4,3	5000,0	0,0677
33	-16,75	0,78	3,9	5000,0	0,0619
34	-17,53	0,78	3,6	5000,0	0,0568
35	-18,31	0,78	3,3	5000,0	0,0522
36	-19,09	0,78	3,0	5000,0	0,0481
37	-19,87	0,78	2,8	5000,0	0,0444
38	-20,65	0,78	2,6	5000,0	0,0411
39	-21,43	0,78	2,4	5000,0	0,0381
40	-22,21	0,78	2,2	5000,0	0,0354
Totale		18,10			2,2896

Fondazione (Combinazione n° 2)

n°	z	ΔΗ	$\Delta\sigma_{V}$	E	$\Delta \mathbf{w}$
1	-4,56	0,13	20,5	4500,0	-0,0048
2	-4,69	0,13	20,4	4500,0	-0,0058
3	-4,81	0,13	20,3	4500,0	0,0053
4	-4,94	0,13	20,3	4500,0	0,0192

Eurolink S.C.p.A. Pagina 245 di 255

RELAZIONE GEOTECNICA

Codice documento
SS0690_F0.doc

Rev F0 Data 20/06/2011

5	-5,06	0,13	20,2	4500,0	0,0298
6	-5,19	0,13	20,2	4500,0	0,0364
7	-5,31	0,13	20,1	4500,0	0,0402
8	-5,44	0,13	20,0	4500,0	0,0424
9	-5,56	0,13	20,0	4500,0	0,0437
10	-5,69	0,13	19,9	4500,0	0,0446
11	-5,81	0,13	19,8	4500,0	0,0451
12	-5,94	0,13	19,7	4500,0	0,0455
13	-6,06	0,13	19,6	4500,0	0,0458
14	-6,19	0,13	19,5	4500,0	0,0460
15	-6,31	0,13	19,3	4500,0	0,0461
16	-6,44	0,13	19,2	4500,0	0,0462
17	-6,56	0,13	19,0	4500,0	0,0461
18	-6,69	0,13	18,9	4500,0	0,0461
19	-6,81	0,13	18,7	4500,0	0,0460
20	-6,94	0,13	18,5	4500,0	0,0458
21	-7,46	0,91	17,6	5000,0	0,2927
22	-8,37	0,91	15,9	5000,0	0,2727
23	-9,28	0,91	14,2	5000,0	0,2485
24	-10,19	0,91	12,6	5000,0	0,2237
25	-11,10	0,91	11,2	5000,0	0,2003
26	-12,01	0,91	9,9	5000,0	0,1789
27	-12,92	0,91	8,8	5000,0	0,1597
28	-13,83	0,91	7,8	5000,0	0,1428
29	-14,74	0,91	6,9	5000,0	0,1279
30	-15,65	0,91	6,2	5000,0	0,1149
31	-16,56	0,91	5,6	5000,0	0,1034
32	-17,47	0,91	5,0	5000,0	0,0935
33	-18,38	0,91	4,5	5000,0	0,0847
34	-19,29	0,91	4,1	5000,0	0,0770
35	-20,20	0,91	3,8	5000,0	0,0702
36	-21,11	0,91	3,4	5000,0	0,0642
37	-22,02	0,91	3,1	5000,0	0,0589

Eurolink S.C.p.A. Pagina 246 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

	RELAZIONE GEOTECNICA			Codice documento SS0690_F0.doc			Data 20/06/2011
38	-22,93	0,91	2,9	5000,0	0,0)542	
39	-23,84	0,91	2,7	5000,0	0,0)500	
40	-24,75	0,91	2,5	5000,0	0,0)463	
Totale		20,70			3.3	3743	

Fondazione (Combinazione n° 3)

z	ΔН	$\Delta\sigma_{ m V}$	Е	$\Delta \mathbf{w}$
-4,56	0,13	17,8	4500,0	-0,0077
-4,69	0,13	17,7	4500,0	0,0055
-4,81	0,13	17,7	4500,0	0,0335
-4,94	0,13	17,6	4500,0	0,0484
-5,06	0,13	17,6	4500,0	0,0522
-5,19	0,13	17,5	4500,0	0,0512
-5,31	0,13	17,5	4500,0	0,0488
-5,44	0,13	17,4	4500,0	0,0464
-5,56	0,13	17,3	4500,0	0,0446
-5,69	0,13	17,3	4500,0	0,0432
-5,81	0,13	17,2	4500,0	0,0422
-5,94	0,13	17,1	4500,0	0,0416
-6,06	0,13	17,0	4500,0	0,0411
-6,19	0,13	16,9	4500,0	0,0409
-6,31	0,13	16,8	4500,0	0,0406
-6,44	0,13	16,7	4500,0	0,0405
-6,56	0,13	16,5	4500,0	0,0403
-6,69	0,13	16,4	4500,0	0,0402
-6,81	0,13	16,2	4500,0	0,0400
-6,94	0,13	16,0	4500,0	0,0398
-7,43	0,85	15,3	5000,0	0,2378
-8,28	0,85	14,0	5000,0	0,2227
-9,13	0,85	12,6	5000,0	0,2045
-9,98	0,85	11,2	5000,0	0,1855
-10,83	0,85	10,0	5000,0	0,1673
	-4,56 -4,69 -4,81 -4,94 -5,06 -5,19 -5,31 -5,44 -5,56 -5,69 -5,81 -5,94 -6,06 -6,19 -6,31 -6,44 -6,56 -6,69 -6,81 -6,94 -7,43 -8,28 -9,13 -9,98	-4,56 0,13 -4,69 0,13 -4,81 0,13 -4,94 0,13 -5,06 0,13 -5,19 0,13 -5,19 0,13 -5,31 0,13 -5,56 0,13 -5,69 0,13 -5,81 0,13 -5,94 0,13 -6,06 0,13 -6,19 0,13 -6,31 0,13 -6,44 0,13 -6,56 0,13 -6,69 0,13 -6,81 0,13 -6,94 0,13 -7,43 0,85 -9,13 0,85 -9,13 0,85 -9,98 0,85	-4,56 0,13 17,8 -4,69 0,13 17,7 -4,81 0,13 17,7 -4,94 0,13 17,6 -5,06 0,13 17,5 -5,19 0,13 17,5 -5,31 0,13 17,4 -5,56 0,13 17,3 -5,69 0,13 17,3 -5,81 0,13 17,1 -6,06 0,13 17,0 -6,19 0,13 16,9 -6,31 0,13 16,8 -6,44 0,13 16,7 -6,56 0,13 16,5 -6,69 0,13 16,4 -6,81 0,13 16,2 -6,94 0,13 16,0 -7,43 0,85 15,3 -8,28 0,85 14,0 -9,13 0,85 12,6 -9,98 0,85 11,2	-4,56 0,13 17,8 4500,0 -4,69 0,13 17,7 4500,0 -4,81 0,13 17,7 4500,0 -4,94 0,13 17,6 4500,0 -5,06 0,13 17,5 4500,0 -5,19 0,13 17,5 4500,0 -5,31 0,13 17,5 4500,0 -5,44 0,13 17,4 4500,0 -5,56 0,13 17,3 4500,0 -5,69 0,13 17,3 4500,0 -5,81 0,13 17,2 4500,0 -6,94 0,13 17,0 4500,0 -6,19 0,13 16,9 4500,0 -6,31 0,13 16,8 4500,0 -6,66 0,13 16,7 4500,0 -6,66 0,13 16,7 4500,0 -6,67 0,13 16,7 4500,0 -6,69 0,13 16,5 4500,0 -6,81 0,13 16,2 4500,0 -6,81 0,13 16,0 4500,0

Eurolink S.C.p.A. Pagina 247 di 255

	RELAZIONE	RELAZIONE GEOTECNICA		Rev F0	Data 20/06/2011	
26	-11,68	0,85	8,9	5000,0	0,1505	
27	-12,53	0,85	8,0	5000,0	0,1352	

26	-11,68	0,85	8,9	5000,0	0,1505
27	-12,53	0,85	8,0	5000,0	0,1352
28	-13,38	0,85	7,1	5000,0	0,1216
29	-14,23	0,85	6,4	5000,0	0,1095
30	-15,08	0,85	5,7	5000,0	0,0989
31	-15,93	0,85	5,2	5000,0	0,0894
32	-16,78	0,85	4,7	5000,0	0,0811
33	-17,63	0,85	4,2	5000,0	0,0738
34	-18,48	0,85	3,9	5000,0	0,0673
35	-19,33	0,85	3,5	5000,0	0,0616
36	-20,18	0,85	3,2	5000,0	0,0565
37	-21,03	0,85	3,0	5000,0	0,0519
38	-21,88	0,85	2,7	5000,0	0,0479
39	-22,73	0,85	2,5	5000,0	0,0443
40	-23,58	0,85	2,3	5000,0	0,0410
<u>Totale</u>		19,50			3,0218

Fondazione (Combinazione n° 4)

n°	z	ΔН	$\Delta\sigma_{\sf V}$	E	Δw
1	-4,56	0,13	19,1	4500,0	-0,0047
2	-4,69	0,13	19,0	4500,0	-0,0046
3	-4,81	0,13	18,9	4500,0	0,0070
4	-4,94	0,13	18,8	4500,0	0,0198
5	-5,06	0,13	18,8	4500,0	0,0288
6	-5,19	0,13	18,7	4500,0	0,0342
7	-5,31	0,13	18,7	4500,0	0,0374
8	-5,44	0,13	18,6	4500,0	0,0393
9	-5,56	0,13	18,5	4500,0	0,0405
10	-5,69	0,13	18,5	4500,0	0,0413
11	-5,81	0,13	18,4	4500,0	0,0418
12	-5,94	0,13	18,3	4500,0	0,0422
13	-6,06	0,13	18,2	4500,0	0,0425

Eurolink S.C.p.A. Pagina 248 di 255

RELAZIONE GEOTECNICA	Codice documento	Rev	Data
	SS0690_F0.doc	F0	20/06/2011

14	-6,19	0,13	18,1	4500,0	0,0427
15	-6,31	0,13	17,9	4500,0	0,0428
16	-6,44	0,13	17,8	4500,0	0,0428
17	-6,56	0,13	17,6	4500,0	0,0428
18	-6,69	0,13	17,5	4500,0	0,0427
19	-6,81	0,13	17,3	4500,0	0,0426
20	-6,94	0,13	17,1	4500,0	0,0424
21	-7,44	0,88	16,3	5000,0	0,2609
22	-8,31	0,88	14,8	5000,0	0,2436
23	-9,19	0,88	13,3	5000,0	0,2227
24	-10,06	0,88	11,8	5000,0	0,2014
25	-10,94	0,88	10,5	5000,0	0,1810
26	-11,81	0,88	9,3	5000,0	0,1623
27	-12,69	0,88	8,3	5000,0	0,1455
28	-13,56	0,88	7,4	5000,0	0,1306
29	-14,44	0,88	6,6	5000,0	0,1173
30	-15,31	0,88	6,0	5000,0	0,1057
31	-16,19	0,88	5,4	5000,0	0,0955
32	-17,06	0,88	4,8	5000,0	0,0865
33	-17,94	0,88	4,4	5000,0	0,0786
34	-18,81	0,88	4,0	5000,0	0,0716
35	-19,69	0,88	3,6	5000,0	0,0654
36	-20,56	0,88	3,3	5000,0	0,0599
37	-21,44	0,88	3,1	5000,0	0,0550
38	-22,31	0,88	2,8	5000,0	0,0507
39	-23,19	0,88	2,6	5000,0	0,0468
40	-24,06	0,88	2,4	5000,0	0,0434
<u>Totale</u>		20,00			3,0888

Fondazione (Combinazione n° 5)

n°	z	ΔН	$\Delta\sigma_{\sf V}$	E	Δw
1	-4 56	0.13	17 1	4500.0	-0 0074

Eurolink S.C.p.A. Pagina 249 di 255

RELAZIONE GEOTECNICA

Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

-4,69	0,13	17,1	4500,0	0,0076
-4,81	0,13	17,0	4500,0	0,0339
-4,94	0,13	16,9	4500,0	0,0455
-5,06	0,13	16,8	4500,0	0,0474
-5,19	0,13	16,8	4500,0	0,0462
-5,31	0,13	16,7	4500,0	0,0443
-5,44	0,13	16,7	4500,0	0,0426
-5,56	0,13	16,6	4500,0	0,0413
-5,69	0,13	16,6	4500,0	0,0404
-5,81	0,13	16,5	4500,0	0,0398
-5,94	0,13	16,4	4500,0	0,0394
-6,06	0,13	16,3	4500,0	0,0391
-6,19	0,13	16,2	4500,0	0,0390
-6,31	0,13	16,1	4500,0	0,0388
-6,44	0,13	15,9	4500,0	0,0387
-6,56	0,13	15,8	4500,0	0,0386
-6,69	0,13	15,7	4500,0	0,0384
-6,81	0,13	15,5	4500,0	0,0383
-6,94	0,13	15,4	4500,0	0,0381
-7,42	0,83	14,7	5000,0	0,2222
-8,25	0,83	13,4	5000,0	0,2082
-9,08	0,83	12,1	5000,0	0,1914
-9,91	0,83	10,8	5000,0	0,1741
-10,74	0,83	9,7	5000,0	0,1573
-11,57	0,83	8,6	5000,0	0,1418
-12,40	0,83	7,7	5000,0	0,1278
-13,23	0,83	6,9	5000,0	0,1152
-14,06	0,83	6,2	5000,0	0,1039
-14,89	0,83	5,6	5000,0	0,0940
-15,72	0,83	5,1	5000,0	0,0852
-16,55	0,83	4,6	5000,0	0,0774
-17,38	0,83	4,2	5000,0	0,0705
-18,21	0,83	3,8	5000,0	0,0644
	-4,81 -4,94 -5,06 -5,19 -5,31 -5,44 -5,56 -5,69 -5,81 -5,94 -6,06 -6,19 -6,31 -6,44 -6,56 -6,69 -6,81 -6,94 -7,42 -8,25 -9,08 -9,91 -10,74 -11,57 -12,40 -13,23 -14,06 -14,89 -15,72 -16,55 -17,38	-4,810,13-4,940,13-5,060,13-5,190,13-5,310,13-5,440,13-5,560,13-5,690,13-5,810,13-5,940,13-6,060,13-6,190,13-6,310,13-6,440,13-6,560,13-6,690,13-6,690,13-6,940,13-7,420,83-8,250,83-9,910,83-10,740,83-11,570,83-12,400,83-13,230,83-14,060,83-14,890,83-15,720,83-15,720,83-17,380,83	-4,81 0,13 17,0 -4,94 0,13 16,9 -5,06 0,13 16,8 -5,19 0,13 16,8 -5,31 0,13 16,7 -5,44 0,13 16,7 -5,56 0,13 16,6 -5,69 0,13 16,6 -5,81 0,13 16,5 -5,94 0,13 16,3 -6,19 0,13 16,2 -6,31 0,13 16,1 -6,44 0,13 15,9 -6,56 0,13 15,8 -6,69 0,13 15,7 -6,81 0,13 15,4 -7,42 0,83 14,7 -8,25 0,83 12,1 -9,91 0,83 12,1 -9,91 0,83 10,8 -10,74 0,83 7,7 -13,23 0,83 6,9 -14,06 0,83 6,2 -14,89 0,83 5,6 -15,72 0,83 5,1 -16,55	-4,81 0,13 17,0 4500,0 -4,94 0,13 16,9 4500,0 -5,06 0,13 16,8 4500,0 -5,19 0,13 16,8 4500,0 -5,31 0,13 16,7 4500,0 -5,34 0,13 16,6 4500,0 -5,56 0,13 16,6 4500,0 -5,69 0,13 16,6 4500,0 -5,81 0,13 16,5 4500,0 -5,94 0,13 16,4 4500,0 -6,06 0,13 16,3 4500,0 -6,19 0,13 16,2 4500,0 -6,31 0,13 16,1 4500,0 -6,44 0,13 15,8 4500,0 -6,56 0,13 15,8 4500,0 -6,69 0,13 15,7 4500,0 -6,81 0,13 15,5 4500,0 -6,81 0,13 15,4 4500,0 -6,94 0,13 15,4 4500,0 -9,08 0,83 12,1 5000,0

Eurolink S.C.p.A. Pagina 250 di 255

RELAZIONE GEOTECNICA Codice documento SS0690_F0.doc Rev F0 Data 20/06/201 35 -19,04 0,83 3,5 5000,0 0,0590 36 -19,87 0,83 3,2 5000,0 0,0542 37 -20,70 0,83 2,9 5000,0 0,0499 38 -21,53 0,83 2,7 5000,0 0,0460 39 -22,36 0,83 2,5 5000,0 0,0426 40 -23,19 0,83 2,3 5000,0 0,0395 Totale 19,10 2,8545								
36 -19,87 0,83 3,2 5000,0 0,0542 37 -20,70 0,83 2,9 5000,0 0,0499 38 -21,53 0,83 2,7 5000,0 0,0460 39 -22,36 0,83 2,5 5000,0 0,0426 40 -23,19 0,83 2,3 5000,0 0,0395		RELAZIONE GEOTECNICA		-	Data 20/06/201			
36 -19,87 0,83 3,2 5000,0 0,0542 37 -20,70 0,83 2,9 5000,0 0,0499 38 -21,53 0,83 2,7 5000,0 0,0460 39 -22,36 0,83 2,5 5000,0 0,0426 40 -23,19 0,83 2,3 5000,0 0,0395								
37 -20,70 0,83 2,9 5000,0 0,0499 38 -21,53 0,83 2,7 5000,0 0,0460 39 -22,36 0,83 2,5 5000,0 0,0426 40 -23,19 0,83 2,3 5000,0 0,0395	35	-19,04	0,83	3,5	5000,0	0,0)590	
38 -21,53 0,83 2,7 5000,0 0,0460 39 -22,36 0,83 2,5 5000,0 0,0426 40 -23,19 0,83 2,3 5000,0 0,0395	36	-19,87	0,83	3,2	5000,0	0,0)542	
39 -22,36 0,83 2,5 5000,0 0,0426 40 -23,19 0,83 2,3 5000,0 0,0395	37	-20,70	0,83	2,9	5000,0	0,0)499	
40 -23,19 0,83 2,3 5000,0 0,0395	38	-21,53	0,83	2,7	5000,0	0,0)460	
	39	-22,36	0,83	2,5	5000,0	0,0)426	
Totale 19,10 2,8545	40	-23,19	0,83	2,3	5000,0	0,0	395	
	<u>Totale</u>		19,10			2,8	<u>3545</u>	

Fondazione (Combinazione n° 6)

n°	z	ΔН	$\Delta\sigma_{V}$	E	$\Delta \mathbf{w}$
1	-4,56	0,13	18,9	4500,0	-0,0044
2	-4,69	0,13	18,8	4500,0	-0,0054
3	-4,81	0,13	18,7	4500,0	0,0046
4	-4,94	0,13	18,7	4500,0	0,0172
5	-5,06	0,13	18,6	4500,0	0,0269
6	-5,19	0,13	18,6	4500,0	0,0330
7	-5,31	0,13	18,5	4500,0	0,0366
8	-5,44	0,13	18,4	4500,0	0,0387
9	-5,56	0,13	18,4	4500,0	0,0400
10	-5,69	0,13	18,3	4500,0	0,0409
11	-5,81	0,13	18,2	4500,0	0,0414
12	-5,94	0,13	18,1	4500,0	0,0418
13	-6,06	0,13	18,0	4500,0	0,0421
14	-6,19	0,13	17,9	4500,0	0,0423
15	-6,31	0,13	17,8	4500,0	0,0424
16	-6,44	0,13	17,7	4500,0	0,0425
17	-6,56	0,13	17,5	4500,0	0,0424
18	-6,69	0,13	17,4	4500,0	0,0424
19	-6,81	0,13	17,2	4500,0	0,0423
20	-6,94	0,13	17,0	4500,0	0,0421
21	-7,44	0,88	16,3	5000,0	0,2592
22	-8,31	0,88	14,8	5000,0	0,2424

Eurolink S.C.p.A. Pagina 251 di 255

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE GEOTECNICA	Codice documento	Rev	Data
	SS0690_F0.doc	F0	20/06/2011

23	-9,19	0,88	13,2	5000,0	0,2219
24	-10,06	0,88	11,8	5000,0	0,2008
25	-10,94	0,88	10,5	5000,0	0,1806
26	-11,81	0,88	9,3	5000,0	0,1620
27	-12,69	0,88	8,3	5000,0	0,1453
28	-13,56	0,88	7,4	5000,0	0,1304
29	-14,44	0,88	6,6	5000,0	0,1172
30	-15,31	0,88	6,0	5000,0	0,1056
31	-16,19	0,88	5,4	5000,0	0,0954
32	-17,06	0,88	4,8	5000,0	0,0864
33	-17,94	0,88	4,4	5000,0	0,0785
34	-18,81	0,88	4,0	5000,0	0,0715
35	-19,69	0,88	3,6	5000,0	0,0653
36	-20,56	0,88	3,3	5000,0	0,0599
37	-21,44	0,88	3,1	5000,0	0,0550
38	-22,31	0,88	2,8	5000,0	0,0507
39	-23,19	0,88	2,6	5000,0	0,0468
40	-24,06	0,88	2,4	5000,0	0,0434
<u>Totale</u>		20,00			3,0684

Fondazione (Combinazione n° 7)

n°	Z	ΔН	$\Delta\sigma_{V}$	E	Δw
1	-4,56	0,13	16,9	4500,0	-0,0057
2	-4,69	0,13	16,8	4500,0	-0,0009
3	-4,81	0,13	16,8	4500,0	0,0178
4	-4,94	0,13	16,7	4500,0	0,0322
5	-5,06	0,13	16,6	4500,0	0,0389
6	-5,19	0,13	16,6	4500,0	0,0410
7	-5,31	0,13	16,5	4500,0	0,0411
8	-5,44	0,13	16,5	4500,0	0,0405
9	-5,56	0,13	16,4	4500,0	0,0399
10	-5,69	0,13	16,4	4500,0	0,0393

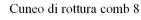
Eurolink S.C.p.A. Pagina 252 di 255

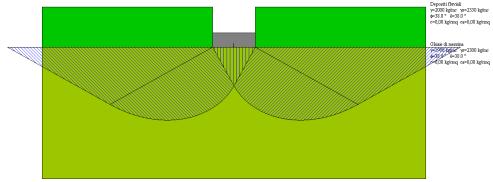
DEL		$F \cap F \cap F$	TECNICA.
RHI	$\Delta / \Pi / \Pi \Pi \Pi$	- (()	I ⊢ U.IXIIU. Δ

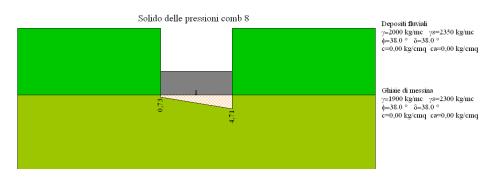
Codice documento SS0690_F0.doc Rev F0 Data 20/06/2011

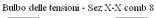
11	-5,81	0,13	16,3	4500,0	0,0390
12	-5,94	0,13	16,2	4500,0	0,0387
13	-6,06	0,13	16,1	4500,0	0,0385
14	-6,19	0,13	16,0	4500,0	0,0384
15	-6,31	0,13	15,9	4500,0	0,0383
16	-6,44	0,13	15,8	4500,0	0,0382
17	-6,56	0,13	15,7	4500,0	0,0381
18	-6,69	0,13	15,5	4500,0	0,0380
19	-6,81	0,13	15,4	4500,0	0,0379
20	-6,94	0,13	15,2	4500,0	0,0377
21	-7,42	0,83	14,6	5000,0	0,2201
22	-8,25	0,83	13,3	5000,0	0,2067
23	-9,08	0,83	12,0	5000,0	0,1902
24	-9,91	0,83	10,7	5000,0	0,1732
25	-10,74	0,83	9,6	5000,0	0,1567
26	-11,57	0,83	8,6	5000,0	0,1413
27	-12,40	0,83	7,7	5000,0	0,1274
28	-13,23	0,83	6,9	5000,0	0,1148
29	-14,06	0,83	6,2	5000,0	0,1037
30	-14,89	0,83	5,6	5000,0	0,0938
31	-15,72	0,83	5,0	5000,0	0,0850
32	-16,55	0,83	4,6	5000,0	0,0773
33	-17,38	0,83	4,2	5000,0	0,0704
34	-18,21	0,83	3,8	5000,0	0,0643
35	-19,04	0,83	3,5	5000,0	0,0589
36	-19,87	0,83	3,2	5000,0	0,0541
37	-20,70	0,83	2,9	5000,0	0,0498
38	-21,53	0,83	2,7	5000,0	0,0460
39	-22,36	0,83	2,5	5000,0	0,0425
40	-23,19	0,83	2,3	5000,0	0,0394
<u>Totale</u>		19,10			2,7824

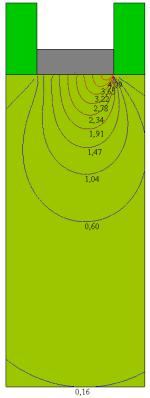
Eurolink S.C.p.A. Pagina 253 di 255


RELAZIONE GEOTECNICA


Codice documento
SS0690_F0.doc


Rev F0


20/06/2011


Data

Eurolink S.C.p.A. Pagina 254 di 255

Progetto di Messina Progetto Definitivo

RELAZIONE GEOTECNICA

Codice documento
SS0690 F0.doc

Rev F0 Data 20/06/2011

Cedimento di progetto

I cedimenti calcolati con ipotesi di fondazione flessibile possono essere sensatamente ridotti in considerazione del fatto che la fondazione può essere valutata come infinitamente rigida, visto il rapporto tra spessore e lato sempre inferiore a 0,10.

Per fondazioni rettangolari infinitamente rigide si può fare uso delle seguenti relazioni (Poulos e Davis, 1974):

$$\Delta_{\text{W}} \left(\text{fond rigida} \right) = \frac{1}{3} \cdot \left(2 \cdot \Delta_{\text{Wcentro}} + \Delta_{\text{Wspigolo}} \right) \text{fond flessibile}$$

Nel caso in esame, con combinazione peggiore rappresentata dalla comb.2, si ottiene:

$$\Delta_{W}$$
 (fond rigida) = $\frac{1}{3} \cdot (2 \cdot 3,42 + 3,29) = 3,38$ cm

La riduzione risulta comunque di entità contenuta, a causa dell'eccentricità dei carichi piuttosto bassa per tutte le combinazioni di carico SLE.

5.3.4.4 VALUTAZIONE DEI RISULTATI

I fattori di sicurezza ottenuti per verifica di portanza verticale della sottostruttura in oggetto risultano per le combinazioni statiche spesso ampiamente superiori al valore richiesto dalla normativa vigente; le dimensioni delle fondazioni sono comunque giustificate dai valori dei cedimenti e da considerazioni geometriche, in quanto la fondazione deve accogliere con giusto agio i fusti cavi delle pile.

Anche le verifiche a scorrimento sono caratterizzate da fattori di sicurezza elevati , che si riducono per le combinazioni sissmiche pur rimanendo alti, visto che le azioni orizzontali statiche e inerziali sismiche risultano contenute per l'assenza della spinta del terreno che invece caratterizza le spalle.

I cedimenti massimi si attestano su valori di poco superiori ai 3 cm, valore accettabile ed in linea con quanto atteso.

Eurolink S.C.p.A. Pagina 255 di 255