

REGIONE BASILICATA PROVINCIA DI MATERA COMUNI DI GROTTOLE **E MIGLIONICO**

AUTORIZZAZIONE UNICA EX D.LGS. 387/2003

Progetto Definitivo Parco eolico "Monte San Vito"

A.1 Relazione generale

CODICE ELABORATO

COMMESSA	FASE	ELABORATO	REV.	
F0307	С	R01	Α	

Riproduzione o consegna a terzi solo dietro specifica autorizzazione

SCALA

febbraio 2020	prima emissione	GMA	GDS	GMA
DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO

PROPONENTE

TITOLO ELABORATO

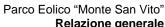
FRI-EL S.p.A. Piazza della Rotonda 2 00186 Roma (RM) fri-elspa@legalmail.it P. Iva 01652230218 Cod. Fisc. 07321020153

PROGETTAZIONE

F4 ingegneria srl

via Di Giura - Centro Direzionale, 85100 Potenza Tel: +39 0971 1 944 797 - Fax: +39 0971 5 54 52 www.f4ingegneria.it - f4ingegneria@pec.it

Il Direttore Tecnico


Società certificata secondo la norma UNI-EN ISO 9001:2015 per l'erogazione di servizi di ingegneria nei settori: civile, idraulica, acustica, energia, ambiente (settore IAF: 34).

Sommario

1 Introduzione	3
1.1 Dati generali proponente	3
1.2 Caratteristiche della fonte utilizzata	3
1.3 Fasi necessarie alla realizzazione, alla gestione ed alla	
dismissione dell'impianto	4
1.3.1 Realizzazione dell'impianto	4
1.3.1 Gestione dell'impianto	8
1.3.2 Dismissione dell'impianto	8
1.4 Analisi delle possibili ricadute sociali, occupazionali ed economiche dell'intervento a livello locale	g
2 Descrizione generale del progetto	11
2.1 Dati generali del progetto	12
2.2 Inquadramento normativo, programmatico ed autorizzativo	13
2.2.1 Normativa di riferimento nazionale e regionale	13
2.2.2 Elenco delle autorizzazioni, nulla osta, pareri comunque denominati e degli Enti competenti per il loro rilascio compresi i soggetti gestori delle reti infrastrutturali	i 19
2.2.3 Normativa tecnica di riferimento	19
3 Descrizione stato di fatto del contesto	21
3.1 Descrizione del sito d'intervento	21
3.2 Elenco dei vincoli di natura ambientale, di tutela del paesage del patrimonio storico artistico	gio e 24
3.3 Documentazione fotografica	24
3.4 Descrizione delle finalità dell'intervento e scelta delle alterna progettuali	ative 27

Relazione gener	ale
-----------------	-----

	3.5	Alternativa "0"	28
	3.6	Alternative di localizzazione	28
	3.7	Alternative dimensionali	29
	3.8	Alternative progettuali	30
	3.9	Quadro di sintesi delle valutazioni sulle alternative	30
4	II p	rogetto	33
	4.1	Descrizione dei criteri utilizzati per la definizione dell'intervento 33	o
	4.2	Descrizione del progetto	37
		tivazione della scelta del collegamento dell'impianto al di consegna dell'energia	48
6	Dis	sponibilità aree ed individuazione interferenze	52
7	Es	ito delle valutazioni sulla sicurezza dell'impianto	54
8	Es	ito delle valutazioni delle criticità ambientali	60
		lagini geologiche, idrogeologiche, idrologiche idraulichecniche, sismiche, ecc.	e, 71
1	0 Cri	teri ed elaborati del progetto esecutivo	72
1	1 Re	lazione sulla fase di cantierizzazione	78
1	2 Ri€	epilogo degli aspetti economici e finanziari del progetto	82
C		Sintesi di forme e fonti di finanziamento per la copertura dei dell'intervento	87
	12.2	Cronoprogramma della producibilità	87

FRI-EL S.p.A.

1 Introduzione

1.1 Dati generali proponente

Il gruppo FRI-EL, attivo nel settore sin dal 2002, si colloca tra i principali produttori italiani di energia da fonte eolica grazie anche alla collaborazione con partner internazionali. Il gruppo dispone attualmente di 34 parchi eolici nel territorio italiano, un parco eolico in Bulgaria ed uno in Spagna, per una capacità complessiva installata di 950 MW. Inoltre, il gruppo FRI-EL opera in diversi settori; infatti, oltre ad essere azienda leader nel settore eolico, si colloca tra i primi produttori in Italia di energia prodotta dalla combustione di biogas di origine agricola. Il gruppo gestisce 21 impianti idroelettrici, un impianto a biomassa solida e una delle centrali termoelettriche a biomassa liquida più grandi d'Europa. Le attività e le principali competenze del gruppo comprendono tutte le fasi di progettazione, costruzione, produzione e vendita di energia elettrica da fonti rinnovabili, includendo l'analisi e la valutazione del paesaggio e il processo di approvazione.

1.2 Caratteristiche della fonte utilizzata

Nell'ambito del processo di progettazione di un impianto eolico e più in generale nelle fasi dello sviluppo del sito è necessario conoscere con una buona affidabilità la consistenza della risorsa eolica disponibile e quindi della sua produzione attesa. Ciò è garantito da idonee rilevazioni in sito delle grandezze di velocità e di direzione del vento per un periodo di alcuni anni. È possibile giungere ad una valutazione utile della risorsa eolica grazie a calcoli e confronti con dati di stazioni anemometriche ritenute storiche perché con un periodo di rilevazione di 10 anni e oltre. Nel caso specifico si è potuto infatti disporre, oltre che della serie di dati di 18 mesi raccolti in sito, anche di una serie di dati misurati tramite serie temporali a lungo termine reperibili da vari fornitori specializzati (es. ERA5, Merra2 etc).

L'analisi e l'elaborazione dei dati della stazione non ha evidenziato particolari carenze o lacune. In fase di validazione la disponibilità del dato è risultata buona sull'intero periodo e ottima per l'anno completo di misurazione utilizzato, non avendo riscontrato malfunzionamenti e/o guasti sulla stazione in detto periodo.

I risultati delle attività, dalla validazione alla elaborazione del dato, indicano che il sito è interessato da un buon regime di venti, tipico della zona di appartenenza, con direzioni prevalenti da WNW (ca. 300°). Inoltre si è stimata una velocità media a lungo termine del vento a 40 m di 5,18 m/s, molto simile alla velocità media data dai 18 mesi di misurazioni (leggermente superiore).

Si può quindi affermare che i risultati delle misurazioni della ventosità, pur considerando le tipiche incertezze di misura proprie delle apparecchiature utilizzate, che sono state opportunamente e cautelativamente stimate, indicano che l'entità della risorsa disponibile rientra tra quelle di interesse per la realizzazione di un impianto eolico.

La produzione annuale netta prevista per il parco eolico di "Monte San Vito" è di ca. 144.4 GWh/a corrispondente ad una producibilità media annua di 3209 ore equivalenti nette.

1.3 Fasi necessarie alla realizzazione, alla gestione ed alla dismissione dell'impianto

1.3.1 Realizzazione dell'impianto

La realizzazione dell'impianto avverrà attraverso le fasi di seguito riportate:

- realizzazione opere provvisionali;
- realizzazione di opere civili di fondazione,
- attività di montaggio;
- realizzazione di opere di viabilità stradale;
- realizzazione di cavidotti e rete elettrica.

Opere provvisionali

Le opere provvisionali riguardano la predisposizione delle aree da utilizzare durante la fase di cantiere come piazzole per i montaggi delle torri e degli aerogeneratori e il conseguente carico e trasporto del materiale di risulta. Tali opere sono di natura provvisoria ossia limitate alla sola fase di cantiere.

Questa fase sarà caratterizzata dalla realizzazione di piazzole a servizio del montaggio di ciascuna torre, di dimensione pari almeno a 61.5~m~x~32~m ed aree per lo stoccaggio temporaneo delle pale di dimensioni pari a 55~x~20~m circa come illustrato negli elaborati di progetto.

Saranno previste inoltre un'area di cantiere ed un'area di trasbordo in prossimità dell'aerogeneratore GRA07. L'area di cantiere di dimensioni in pianta ca. 90x55 m, sarà utilizzata per l'installazione di prefabbricati, adibiti a uffici, magazzini, servizi etc.. L'area sarà altresì utilizzata come deposito mezzi ed eventuale stoccaggio di materiali.

L'area di trasbordo di dimensioni 120x55 m, sarà utilizzata per lo scarico delle pale (lunghezza circa 80 metri) dai comuni convogli di trasporto e carico su mezzi Blade Lifter per consentire l'attraversamento un più agevole all'interno dell'area del parco fino al sito di installazione.

Analogamente alcuni dei componenti dell'aerogeneratore verranno trasbordati dai convogli tradizionali e approvvigionati alle postazioni di montaggio mediante convogli più agili ovvero dotati di rimorchio semovente.

Montate le torri e installate su ciascuna delle loro sommità la navicella con il rotore e le pale, si procederà a smantellare i collegamenti ed i piazzali di servizio (opere provvisionali) in quanto temporanei e strumentali alla esecuzione delle opere, ripristinando così lo status quo ante.

Figura 1 – Trasporto mediante Blade Lifter

Figura 2 - Trasporto con convoglio semovente

Opere civili di fondazione

Si tratta di fondazioni costituite da plinti in calcestruzzo armato di idonee dimensioni su cui ogni singola torre dovrà sorgere, poggianti sopra una serie di pali la cui profondità varierà in funzione delle caratteristiche geotecniche del sito. A tali plinti verrà collegato il concio di fondazione in acciaio delle torri.

Sulla scorta dei valori di sollecitazione che gli aerogeneratori trasmettono alle fondazioni e dei valori medi di portanza dei terreni, sono state previste fondazioni di tipo profondo. Sono state dimensionate per resistere agli sforzi di ribaltamento e slittamento prodotti dalle forze agenti sulla torre. Essendo condizionante l'azione di ribaltamento esse saranno del tipo snello di grande dimensione in pianta ed altezza ridotta. Sui plinti saranno disposte le piastre di ancoraggio alle quali verranno imbullonate le basi delle torri. I plinti saranno in CLS 30/37, di forma tronco-conica con diametro pari a circa 22 m; i pali saranno in CLS 25/30 di diametro pari al 100 cm e lunghezza di 25 m.

Ad ogni buon conto, tutti i calcoli eseguiti e la relativa scelta dei materiali, sezioni e dimensioni andranno verificati in sede di progettazione esecutiva e potranno pertanto subire variazioni anche significative per garantire i necessari livelli di sicurezza.

Attività di montaggio

Ultimate le fondazioni, il lavoro d'installazione delle turbine in cantiere consiste essenzialmente nelle seguenti fasi:

- trasporto e scarico dei materiali relativi agli aerogeneratori;
- controllo delle torri e del loro posizionamento;
- montaggio torre;
- sollevamento della navicella e relativo posizionamento;
- montaggio delle pale sul mozzo;
- sollevamento del rotore e dei cavi in navicella;
- collegamento delle attrezzature elettriche e dei cavi al quadro di controllo a base torre;
- messa in esercizio della macchina.

Le strutture in elevazione sono limitate alla torre che rappresenta il sostegno dell'aerogeneratore, ossia del rotore e della navicella: la torre è costituita da un elemento in acciaio a sezione circolare, finita in superficie con vernici protettive, ha una forma tronco conica cava internamente ed è realizzata in conci assemblati in opera con altezza media dell'asse del mozzo dal piano di campagna pari al massimo a 127,5 m.

La torre è accessibile dall'interno. La stessa è rastremata all'estremità superiore per permettere alle pale, flesse per la spinta del vento, di poter ruotare liberamente. Sempre all'interno della torre, trovano adeguata collocazione i cavi per il convogliamento e trasporto dell'energia prodotta alla cabina di trasformazione posta alla base della stessa, dalla quale è poi convogliata nella rete di interconnessione interna al parco eolico, per essere convogliata tramite elettrodotto interrato alla sottostazione esistente localizzata in prossimità del parco, nel comune di Grottole, e riversata nella rete elettrica del Gestore Nazionale.

Cavidotti e rete elettrica interna al parco

Le opere relative alla rete elettrica interna al parco eolico, oggetto del presente lavoro, possono essere schematicamente suddivise in due sezioni:

- opere elettriche di trasformazione e di collegamento fra aerogeneratori;
- opere di collegamento alla rete del Gestore Nazionale.

L'energia prodotta da ciascun aerogeneratore è trasformata da bassa a media tensione per mezzo del trasformatore installato a bordo dello stesso e quindi trasferita al quadro MT all'interno della struttura di sostegno tubolare.

Viabilità, piazzali di montaggio

Questa categoria di opere civili è costituita dalle strade di accesso e di servizio che si rendono indispensabili per poter raggiungere i punti ove collocare fisicamente gli aerogeneratori a partire dalla viabilità esistente.

I percorsi stradali che saranno realizzati ex novo saranno genericamente realizzati in massicciate tipo macadam (oppure cementata nei tratti in cui le pendenze diventano rilevanti) similmente alle carrarecce esistenti e avranno una larghezza pari a 5 m per uno sviluppo lineare pari a circa 5.140 metri.

La viabilità da adeguare e da realizzare interna al parco consiste in una serie di strade e di piazzole al fine di raggiungere agevolmente tutti i siti in cui saranno installati gli aerogeneratori.

Tale viabilità interna sarà costituita da alcune strade interpoderali già esistenti e da nuove strade da realizzare. Per le strade interpoderali esistenti le opere edili previste consistono nell'adeguamento di alcuni tratti della sede stradale per la circolazione degli automezzi speciali necessari al trasporto degli elementi componenti l'aerogeneratore.

Gli adeguamenti suddetti prevedono dei raccordi agli incroci di strade e nei punti di maggiore deviazione della direzione stradale e ampliamenti della sede stradale nei tratti di minore larghezza.

Tutte le strade saranno, in futuro, solo utilizzate per la manutenzione degli aerogeneratori, chiuse al pubblico passaggio (ad esclusione dei proprietari dei fondi), e saranno realizzate seguendo l'andamento topografico esistente in loco, cercando di ridurre al minimo eventuali movimenti di terra.

Accanto a ogni torre, sarà costruita una piazzola orizzontale a servizio degli aerogeneratori, in cui, in fase di costruzione del parco sarà posizionata la gru necessaria per sollevare gli elementi di assemblaggio degli aerogeneratori. Le piazzole saranno realizzate con materiali selezionati dagli scavi, adeguatamente compattate anche per assicurare la stabilità della gru; saranno di forma rettangolare delle dimensioni minime di m 32x61.5, mentre le aree per lo stoccaggio delle pale avranno dimensioni pari a m 55x20 come illustrato negli elaborati di progetto. Queste ultime piazzole verranno utilizzate solo in fase di montaggio e quindi restituite al precedente uso, dopo aver ripristinato lo stato dei luoghi mantenendo comunque la necessaria viabilità di servizio attorno a ciascuna macchina per l'esercizio e la manutenzione del parco.

Cavidotti di collegamento alla rete elettrica nazionale

I cavidotti di collegamento alla rete elettrica nazionale in MT attraverseranno il territorio comunale di Grottole e Miglionico (MT).

La rete elettrica in MT (di lunghezza totale pari a circa 38,8 Km) sarà realizzata con cavi unipolari o tripolari in alluminio, del tipo ARE4H5E - 18/30 kV o equivalente con conduttore in alluminio e giunti con muffe a colata di resina.

Gli scavi saranno ripristinati, previa formazione di un letto di sabbia (eventuale) in corrispondenza dei due suddetti cavidotti, con riempimento con terreno di scavo opportunamente vagliato e costipato. La rete elettrica interrata sarà protetta, accessibile nei punti di giunzione ed opportunamente segnalata. In considerazione della potenza elettrica nominale di installazione del parco eolico è necessario, per poter effettuare il collegamento in parallelo con la rete RTN, una sezione di trasformazione AT/MT.

La stazione elettrica

Il futuro impianto eolico sarà collegato in antenna a 150 kV sulla stazione elettrica (SE) della RTN a 150 kV denominata "Grottole", mediante gli impianti esistenti della società FRI-EL Grottole Srl in località "C.da Rondinone" nel territorio comunale di Grottole.

In particolare, l'energia prodotta dagli aerogeneratori verrà convogliata, tramite un cavidotto interrato a 30 kV, ad un nuovo impianto di trasformazione MT/AT che verrà realizzato all'interno dell'esistente sottostazione di trasformazione MT/AT, che attualmente accoglie gli impianti di trasformazione dei parchi eolici denominati "Grottole 18MW" (IM S17G1RT) e "Grottole 36MW" (IM S17G2RT), di proprietà della società Fri-El Grottole S.r.l., per venire poi ceduta alla RTN tramite un collegamento in antenna a 150kV all'esistente Stazione Elettrica (SE) 150 kV RTN denominata "Grottole", ubicata nel comune di Grottole (MT)

Maggiori informazioni tecniche sui componenti che costituiscono la sottostazione sono contenute nelle specifiche tecniche dell'impianto elettrico.

1.3.1 Gestione dell'impianto

La fase di gestione dell'impianto prevede interventi di manutenzione ordinaria e straordinaria. Le torri eoliche sono dotate di telecontrollo; durante la fase di esercizio sarà possibile controllare da remoto il funzionamento delle parti meccaniche ed elettriche. In caso di malfunzionamento o di guasto, saranno eseguiti interventi di manutenzione straordinaria.

Gli interventi di manutenzione ordinaria, effettuati con cadenza semestrale, saranno eseguiti sulle parti elettriche e meccaniche all'interno della navicella.

1.3.2 Dismissione dell'impianto

La vita media di un parco eolico è generalmente pari ad almeno 30 anni, trascorsi i quali è comunque possibile, dopo un'attenta revisione di tutti i componenti, prolungare ulteriormente l'attività dell'impianto e conseguentemente la produzione di energia. In ogni caso, una delle caratteristiche dell'energia eolica che contribuisce a caratterizzare questa fonte come effettivamente "sostenibile" è la quasi totale reversibilità degli interventi di modifica del territorio necessari a realizzare gli impianti di produzione. Una volta esaurita la vita utile dell'impianto è cioè possibile programmare lo smantellamento dell'intero impianto e la riqualificazione del sito di progetto, che può essere ricondotto alle condizioni ante operam a costi accettabili.

A grandi linee di seguito si riportano le attività che verranno messe in campo nel caso in cui, alla fine della vita utile, si decidesse di dismettere l'impianto eolico.

Verranno smontate le torri, in opera rimarrà solamente parte del plinto di fondazione, che sarà rinterrato garantendo un franco di almeno un metro dal piano campagna.

Per le piazzole sono previsti i seguenti interventi:

- rimozione di parte del terreno di riporto per le piazzole in rilevato. Il materiale di risulta sarà in parte riutilizzato e la parte in esubero potrà essere recuperata o avviata a smaltimento;
- realizzazione dei tratti in rilevato, prevalentemente, utilizzando terreno proveniente dagli scavi;
- rinverdimento con formazione di un tappeto erboso con preparazione meccanica del terreno erboso, concimazione di fondo, semina manuale o meccanica di specie vegetali autoctone.

Si procederà alla disconnessione del cavidotto, l'operazione di dismissione prevede le seguenti fasi:

- scavo a sezione ristretta lungo la trincea dove sono stati posati i cavi, rimozione in sequenza di nastro segnalatore, tubo corrugato, tegolino protettivo, conduttori;
- rimozione dello strato di sabbia cementato e asfalto ove presente.

Dopo aver rimosso in sequenza i materiali, saranno ripristinati i manti stradali utilizzando quanto più possibile i materiali di risulta dello scavo stesso.

Naturalmente, dove il manto stradale sarà di tipo sterrato sarà ripristinato allo stato originale mediante un'operazione di costipatura del terreno, mentre dove il manto stradale è in materiale asfaltato sarà ripristinato l'asfalto asportato.

Analisi delle possibili ricadute sociali, occupazionali ed economiche dell'intervento a livello locale

Per valutare coerentemente l'inserimento dell'opera nel territorio di sua pertinenza, si è ritenuto opportuno analizzare quello che è il contesto all'interno del quale i Comuni di Grottole e Miglionico ricadono.

Lo scenario demografico italiano vede un leggero incremento della popolazione residente, pari all'1.8% tra il 2012 ed il 2018, mentre in Basilicata ed in provincia di Matera nello stesso periodo si sono registrati valori negativi, rispettivamente pari al -1.8% ed al -0.6% (ISTAT, 2012-2018).

Con riferimento al territorio di Grottole e Miglionico il trend è ancor più in diminuzione e pari rispettivamente al -10.4% e al -3.5%. Trend in diminuzione si rileva, pur con numeri diversi, anche per i comuni limitrofi, eccetto Matera (ISTAT, 2012-2018).

La densità di popolazione, nel caso del Comune di Grottole (18.1 ab/km²) e di Miglionico (27.6 ab/ km²), è notevolmente più bassa rispetto alla media nazionale (200.2 ab/km²) e rispetto alla media regionale (56.3 ab/km²) e provinciale (57.2 ab/km²).

2012 2013 2014 **Territorio** Sup. [km²] 2015 2016 2017 2018 59394207 302072.8381 59685227 60795612 60589445 60483973 Italia 60782668 60665551 577562 **Basilicata** 10073.3226 576619 576194 578391 573694 570365 567118 200597 Prov. Matera 3478.8853 200050 200012 201133 199685 201305 198867 117.1528 2228 Grottole 2361 2327 2315 2208 2186 2361 Miglionico 88.8401 2542 2517 2519 2525 2510 2497 2454

Tabella 1 – Popolazione residente nell'area di interesse (Fonte: ISTAT, 2012-2018)

Il quadro emergente dalla distribuzione per classi d'età è caratterizzato da un'età media che si mantiene pressoché identico alla media nazionale, regionale e provinciale così come la quota di over 65 che non è tanto più alta rispetto ai valori di riferimento, considerato che nel 2018 a Grottole l'incidenza di tale classe è del 23.9% contro il 22.6% nazionale e regionale ed il 22.3% provinciale.

Per quanto concerne gli aspetti occupazionali, la forza lavoro in Basilicata è diminuita dell'1,1%, in misura più intensa rispetto al Mezzogiorno (-0,4%), mentre è rimasta stabile in Italia. La riduzione è stata più marcata per gli individui tra i 35 e i 54 anni; per quelli oltre i 55 anni si è invece registrato un incremento. Alla riduzione della forza lavoro si è associata quella del tasso di attività, collocatosi su un livello molto inferiore rispetto a quello medio nazionale.

La partecipazione al mercato del lavoro in Basilicata è inferiore rispetto all'Italia: nel 2018 il tasso di attività in regione era pari al 56,6%, 9,0 punti percentuali in meno rispetto alla media nazionale. La propensione a offrire lavoro in regione è particolarmente bassa tra le donne: nel 2018 il tasso di attività femminile era del 43,2%, contro il 69,9% degli uomini lucani e il 56,2% delle donne italiane.

A livello di ricadute sul territorio, la costruzione di un parco eolico incide sui seguenti aspetti socio-economici:

- incremento delle risorse economiche per le amministrazioni locali;
- beneficio economico per i proprietari delle aree interessate;
- creazione di posti di lavoro;
- incremento dei flussi turistico-didattici.

L'incremento delle risorse economiche per le Amministrazioni Comunali di Grottole e Miglionico comporterà la possibilità di programmare investimenti a medio-lungo termine, con ricadute significative su tutta la comunità.

Nella fase di costruzione, inoltre, si genereranno diversi posti di lavoro che potranno, seppure in modo lieve, disincentivare la popolazione rispetto all'annoso fenomeno migratorio in atto. Infine, il parco potrebbe diventare meta di turismo per gli alunni delle scuole di tutta l'area vasta di riferimento portando nuovi introiti e notorietà.

2 Descrizione generale del progetto

Il progetto cui la presente relazione fa riferimento, riguarda la realizzazione di un impianto di produzione di energia rinnovabile da fonte eolica, che consta di n. 10 aerogeneratori di potenza unitaria pari a 4.5 MW, per una potenza complessiva di 45 MW, il quale interesserà una fascia altimetrica compresa tra i 240 ed i 530 m s.l.m. nel settore meridionale del territorio comunale di Grottole ed in quello nord occidentale di quello di Miglionico, destinata principalmente a colture cerealicole stagionali che conferiscono al paesaggio caratteristiche di antropizzazione tali da non favorire processi di completa rinaturalizzazione.

La soluzione di connessione prevede che il futuro impianto eolico sia collegato in antenna a 150 kV sull'esistente stazione elettrica (SE) della RTN a 150 kV denominata "Grottole", mediante gli impianti esistenti della società FRI-EL Grottole Srl autorizzati nell'ambito di altro procedimento di AU, ai sensi dell'art. 12 del d.lgs 387/2003, per la connessione alla RTN di un parco eolico costituito da 27 aerogeneratori, modello Vestas V90, di potenza unitaria di 2 MW localizzati interamente nel territorio comunale di Grottole (MT).

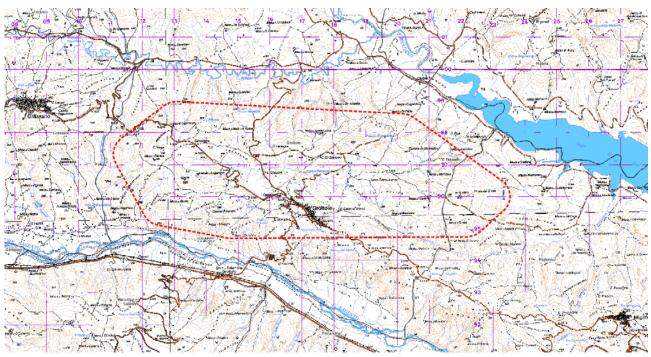


Figura 3: inquadramento territoriale su base IGM 1:50000 con indicazione dell'area di intervento

Dati generali del progetto

Si riportano di seguito le coordinate delle torri eoliche del parco in oggetto.

Tabella 2 - ubicazione planimetrica degli aerogeneratori di progetto

				TM-WGS84 fuso 33	Coordinate GB-R	loma 40 fuso est
Name	D_rotore	H_tot	E	N	E	N
GRA01	162	200	611631	4497136	2631640	4497143
GRA02	162	200	612529	4495483	2632539	4495489
GRA03	162	200	614705	4495087	2634715	4495094
GRA04	162	200	612989	4498172	2632998	4498179
GRA05	162	200	618029	4497659	2638039	4497666
GRA06	162	200	620146	4497897	2640155	4497903
GRA07	162	200	619954	4496756	2639963	4496763
GRA08	162	200	622119	4495129	2642129	4495136
GRA09	162	200	622103	4495777	2642113	4495784
GRA10	162	200	622750	4495755	2642760	4495762

Il progetto prevede l'adeguamento di tratti di strada esistenti, in particolare strade comunali, e la realizzazione di una nuova viabilità a servizio degli aerogeneratori di progetto, ossia di una rete viaria interna al parco che si snoderà seguendo lo sviluppo degli esistenti tratturi non vincolati dalla Soprintendenza.

Nello specifico tali interventi di adeguamento e di realizzazione stradale ricadono nei Comuni di Grottole e Miglionico.

Tale progetto prevede, inoltre, il posizionamento di cavidotti d'interconnessione fra le macchine di progetto e di vettoriamento fino alla Sottostazione Elettrica, esistente e localizzata nel Comune di Grottole. In particolare sia i cavidotti d'interconnessione (cavidotto interni) fra gli aerogeneratori sia il cavidotto di vettoriamento (esterno) seguiranno un tracciato interrato, ricadente nei territori comunali di Grottole e Miglionico.

Nota la producibilità del parco eolico, è possibile valutare la densità volumetrica, così come richiesto dal PIEAR, approvato con Legge Regionale.

Si definisce densità volumetrica il rapporto fra la stima della produzione annua di energia elettrica dell'aerogeneratore espressa in chilowattora anno (kWh/anno), ed il volume del campo visivo occupato dall'aerogeneratore, espresso in metri cubi, e pari al volume del parallelepipedo di lati 3D, 6D e H, dove D è il diametro del rotore ed H è l'altezza complessiva della macchina (altezza del mozzo + lunghezza della pala).

Per il parco in oggetto la densità volumetrica minima stimata risulta pari a 0.151 kWh/anno*m³ (maggiore del limite di 0.15 kWh/anno*m³ riportato nel PIEAR).

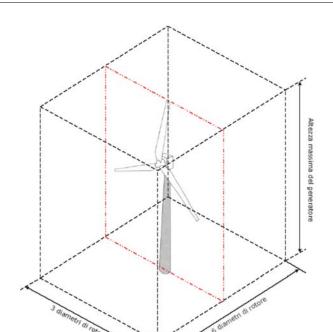


Figura 4: volume del campo visivo occupato da un aerogeneratore

2.2 Inquadramento normativo, programmatico ed autorizzativo

Il progetto in esame è stato elaborato sulla base della normativa europea, nazionale e regionale vigente con particolare riferimento a quella della Regione Basilicata. Si è tenuto conto, inoltre, del PIEAR (Piano di Indirizzo Energetico Ambientale Regionale) della Regione Basilicata.

Nello specifico, dal punto di vista normativo, programmatico ed autorizzativo, il presente progetto si inquadra come di seguito specificato.

2.2.1 Normativa di riferimento nazionale e regionale

Settore energetico:

- D.P.R. 24 maggio 1988, n.203 ("Attuazione delle direttive CEE nn. 80/779, 82/884 e 85/203 concernenti norma in materia di qualità dell'aria, relativamente a specifici agenti inquinanti, e di inquinamento prodotto dagli impianti industriali, ai sensi dell'art. 15 della L. 16 aprile 1987, n. 183");
- legge 9 gennaio 1991 n.9, concernente la parziale liberalizzazione della produzione di energia elettrica;
- legge 9 gennaio 1991 n.10, concernente la promozione del risparmio di energia e dell'impiego di fonti rinnovabili;
- provvedimento CIP n. 6 del 29 aprile 1992, che ha fissato le tariffe incentivanti, definendo l'assimilabilità alle fonti rinnovabili sulla base di un indice di efficienza energetica a cui commisurare l'entità dell'incentivazione;

- delibera CIPE 126/99 del 6 agosto 1999 "Libro bianco per la valorizzazione energetica delle fonti rinnovabili", con il quale il Governo italiano individua gli obiettivi da percorrere per ciascuna fonte;
- Decreto legislativo 16 marzo 1999, n. 79 ("Attuazione della direttiva 96/92/CE recante norme comuni per il mercato interno dell'energia elettrica");
- legge 1 giugno 2001, n.120 "Ratifica ed esecuzione del Protocollo di Kyoto alla Convenzione quadro delle Nazioni Unite sui cambiamenti climatici", tenutosi a Kyoto l'11 dicembre 1997":
- decreto legge 7 febbraio 2002 contenente misure urgenti per garantire la sicurezza del sistema elettrico nazionale. Tale decreto, conosciuto come "Decreto Sblocca centrali", prende avvio dalla constatata necessità di un rapido incremento della capacità nazionale di produzione di energia elettrica;
- decreto legislativo 29 dicembre 2003, n. 387 e s.m.i. "Attuazione della direttiva 2001/77/CE (oggi sostituita e modificata dalla Direttiva 2009/28/CE) relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità";
- legge 24 dicembre 2007 n. 244 (Legge Finanziaria 2008) e Legge 29 novembre 2007 n. 222 (Collegato alla Finanziaria 2008). Individuazione di un nuovo sistema di incentivazione dell'energia prodotta da fonti rinnovabili, che prevede, in alternativa, su richiesta del Produttore: il rilascio di certificati verdi oppure una tariffa onnicomprensiva. Questo quadro di incentivi è stato modificato dal d.m. 18.12.2008, dal d.m. 6.7.2012 e, da ultimo, dal d.m. 23.6.2016. Quest'ultimo decreto, con riferimento agli impianti eolici di grossa taglia e di nuova realizzazione, prevedeva che gli stessi potessero essere incentivati a seguito di aggiudicazione delle procedure competitive di asta al ribasso.
- legge n. 99/2009, conversione del cosiddetto DDL Sviluppo, stabilisce le "Disposizioni per lo sviluppo e l'internazionalizzazione delle imprese, nonché in materia di energia";
- d.lgs. 8 luglio 2010 n. 105 "Misure urgenti in materia di energia" così come modificato dalla I. 13 agosto 2010 n.129 "Conversione in legge, con modificazioni, del decreto legge 8 luglio 2010, n. 105, recante misure urgenti in materia di energia. Proroga di termine per l'esercizio di delega legislativa in materia di riordino del sistema degli incentivi";
- decreto dello Sviluppo Economico 10 settembre 2010 "Linee guida per l'autorizzazione degli impianti alimentati da fonti rinnovabili ", in cui sono definite le linee guida nazionali per lo svolgimento del procedimento unico ex art. 12 del d.lgs. 387/2003 per l'autorizzazione alla costruzione e all'esercizio di impianti di produzione di elettricità da fonti rinnovabili, nonché linee guida per gli impianti stessi.

A livello regionale sono stati considerati i seguenti atti normativi:

- Piano di Indirizzo Energetico Ambientale Regionale (P.I.E.A.R.) pubblicato sul BUR n. 2 del 16 gennaio 2010;
- disciplinare per l'autorizzazione alla costruzione e all'esercizio di impianti di produzione di energia elettrica da fonti rinnovabili. Approvato con Deliberazione della Giunta Regionale n. 2260 del 29 dicembre 2010, modificato con Deliberazione della Giunta Regionale n. 41 del 19 gennaio 2016;

FRI-EL S.p.A.

Piazza della Rotonda 2

00186 Roma (RM)

- I.r. 19 gennaio 2010 n. 1 "Norme in materia di energia e Piano di Indirizzo Energetico Ambientale Regionale d.lgs. 3 aprile 2006, n. 152 - l.r. n. 9/2007";
- I.r. 26 aprile 2012 n. 8 "Disposizioni in materia di produzione di energia elettrica da fonti rinnovabili";
- I.r. 09 agosto 2012 n. 17 "Modifiche alla legge regionale 26 aprile 2012, n. 8";
- d.g.r. 07 luglio 2015 n. 903 "d.m. del 10 settembre 2010. Individuazione delle aree e dei siti non idonei all'installazione degli impianti alimentati da fonti rinnovabili";
- I.r. 30 dicembre 2015 n. 54 "Recepimento dei criteri per il corretto inserimento nel paesaggio e sul territorio degli impianti da fonti di energia rinnovabili ai sensi del d.m. 10 settembre 2010".

Elettrodotti, linee elettriche, sottostazioni e cabine di trasformazione:

- Regio Decreto 11 dicembre 1933, n. 1175 ("Testo unico delle disposizioni di legge sulle acque e impianti elettrici");
- Decreto del Presidente della Repubblica 18 marzo 1965, n. 342 ("Norme integrative della legge 6 dicembre 1962, n. 1643 e norme relative al coordinamento e all'esercizio delle attività elettriche esercitate da enti ed imprese diversi dall'Ente Nazionale per l'Energia Elettrica");
- Legge 28 giugno 1986, n. 339 ("Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne");
- Decreto del Presidente del Consiglio dei Ministri 23 aprile 1992 ("Limiti massimi di esposizione ai campi elettrico e magnetico generati alla frequenza industriale nominale (50 Hz) negli ambienti abitativi e nell'ambiente esterno");
- Decreto legislativo 31 marzo 1998, n. 112 ("Conferimento di funzioni e compiti amministrativi dello Stato alle regioni ed enti locali, in attuazione del capo I della legge 15 marzo 1997, n. 59");
- Legge 22 febbraio 2001, n. 36 ("Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici");
- Decreto del Presidente del Consiglio dei Ministri 8 luglio 2003 ("Fissazione dei limiti di esposizione, dei valori di attenzione e degli obbiettivi di qualità per la protezione della popolazione dalle esposizioni a campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti");
- Norme CEI 11-1, Impianti elettrici con tensione superiore a 1 kV in corrente alternata;
- Norme CEI 11-17, Impianti di produzione, trasmissione, e distribuzione pubblica di energia elettrica - Linee in cavo;
- Norme CEI 11-32, Impianti di produzione di energia elettrica connessi ai sistemi di III categoria;
- Norme CEI 64-8, Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua;
- Norme CEI 103-6, Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di
- CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche";
- DPCM 8 luglio 2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni a campi

- elettrici, magnetici ed elettromagnetici generati a frequenze di rete (50 Hz) generati dagli elettrodotti" - G.U. n. 200 del 29/08/03;
- Legge 22 febbraio 2001, n. 36 "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici" – G.U. n. 55 del 07/03/2001, e relativo regolamento attuativo;
- Decreto Legislativo 19 novembre 2007, n. 257 G.U. n. 9 dell' 11 gennaio 2008
- Delibera Autorità per l'Energia elettrica ed il gas 34/05, Disposizioni in merito alla vendita di energia prodotta da impianti alimentati da fonti rinnovabili;
- Delibera Autorità per l'Energia elettrica ed il gas 281/05, Disposizioni in merito alle modalità di connessioni alle reti con obbligo di connessione di terzi;
- Delibera Autorità per l'Energia elettrica ed il gas 182/06, Modificazioni della delibera 04/05 in merito ai metodi di rilevazione delle misure di energia per i punti di immissione e prelievo;
- DM 21/03/88 "Disciplina per la costruzione delle linee elettriche aeree esterne" e successive modifiche ed integrazioni;
- Circolare Ministero Ambiente e Tutela del Territorio DSA/2004/25291 del 14/11/04 in merito ai criteri per la determinazione della fascia di rispetto;
- DM 29/05/08 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti";
- D.M.LL.PP 21/03/88 n° 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee elettriche aeree esterne";
- D.M.LL.PP 16/01/91 n° 1260 "Aggiornamento delle norme tecniche per la disciplina della costruzione e l'esercizio delle linee elettriche aeree esterne";
- D.M.LL.PP. 05/08/98 "Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche esterne";
- Artt. 95 e 97 del D.Lgs n° 259 del 01/08/03;
- Circola Ministeriale n. DCST/3/2/7900/42285/2940 del 18/02/82 "Protezione delle linee di telecomunicazione per perturbazioni esterne di natura elettrica -Aggiornamento delle Circolare del Mini. P.T. LCI/43505/3200 del 08/01/68;
- Circolare "Prescrizione per gli impianti di telecomunicazione allacciati alla rete pubblica, installati nelle cabine, stazioni e centrali elettriche AT", trasmessa con nota Ministeriale n. LCI/U2/2/71571/SI del 13/03/73;
- CEI 7-6 Norme per il controllo della zincatura a caldo per immersione su elementi di materiale ferroso destinati a linee e impianti elettrici;
- CEI 11-4 Esecuzione delle linee elettriche aeree esterne;
- CEI 11-25 Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata;
- CEI 11-27 Lavori su impianti elettrici;
- CEI EN 50110-1-2 esercizio degli impianti elettrici;
- CEI 33-2 Condensatori di accoppiamento e divisori capacitivi;
- CEI 36-12 Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V;

F4 Ingegneria srl

- CEI 57-2 Bobine di sbarramento per sistemi a corrente alternata;
- CEI 57-3 Dispositivi di accoppiamento per impianti ad onde convogliate;
- CEI 64-2 Impianti elettrici in luoghi con pericolo di esplosione;

- CEI 11-32 V1 Impianti di produzione eolica, telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto;
- CEI 211-6, "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di freguenza 0 Hz - 10 kHz, con riferimento all'esposizione umana", 1° Ed.;
- CEI 106-11, "Guida per la determinazione della fascia di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art.6)", 1a Ed.;
- Delibera AEEG 168/03 Condizioni per l'erogazione del pubblico servizio di dispacciamento dell'energia elettrica sul territorio nazionale l'approvvigionamento delle relative risorse su base di merito economico, ai sensi degli articoli 3 e 5 del decreto legislativo 16 marzo 1999, n. 79;
- Delibera AEEG 05/04 Intimazione alle imprese distributrici ad adempiere alle disposizioni in materia di servizio di misura dell'energia elettrica in corrispondenza dei punti di immissione di cui all'Allegato A alla deliberazione dell'Autorità per l'energia elettrica e il gas 30 gennaio 2004, n. 5/04;
- Delibera AEEG ARG/elt 98/08 Verifca del Codice di trasmissione e di dispacciamento in materia di condizioni per la gestione della produzione di energia elettrica da fonte eolica;
- Delibera AEEG ARG/elt 99/08 Testo integrato delle condizioni tecniche ed economiche per la connessione alle reti elettriche con obbligo di connessione di terzi degli impianti di produzione di energia elettrica (Testo integrato delle connessioni attive - TICA);
- Delibera AEEG ARG/elt 04/10 Procedura per il miglioramento della prevedibilità delle immissioni dell'energia elettrica prodotta da impianti alimentati da fonti rinnovabili non programmabili relativamente alle unità di produzione non rilevanti;
- Delibera AEEG ARG/elt 05/10 "Condizioni per il dispacciamento dell'energia elettrica prodotta da fonti rinnovabili non programmabili";
- Codice di Rete TERNA.

Opere civili e sicurezza: Criteri generali:

- Legge 5 novembre 1971, n. 1086 ("Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica");
- D.M. LL.PP. 9 gennaio 1996 ("Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche");
- D.M. LL.PP. 16 gennaio 1996 ("Norme tecniche relative ai Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi").

Opere civili e sicurezza: Zone sismiche:

- Legge 2 febbraio 1974, n. 64 ("Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche");
- D.M. LL.PP. 16 gennaio 1996 ("Norme tecniche per le costruzioni in zone sismiche");
- Ordinanza 3431 Presidenza del Consiglio dei Ministri del 03.05.2005 Ulteriori modifiche ed integrazioni all'ordinanza del Presidente del Consiglio dei Ministri n.

3274 del 20 marzo 2003, recante "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".

Opere civili e sicurezza: Terreni e fondazioni:

D.M. LL.PP. 11 marzo 1988 ("Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione" e successive istruzioni).

Opere civili e sicurezza: Norme tecniche:

- Consiglio Nazionale delle Ricerche Norme tecniche n. 78 del 28 luglio 1980, Norme sulle caratteristiche geometriche delle strade extraurbane;
- Consiglio Nazionale delle Ricerche Norme Tecniche n° 90 del 15 aprile 1983;
- D.M. 05/11/2001 Norme funzionali e geometriche per la costruzione delle strade e successive modifiche e integrazioni (D.M. 22/04/2004);
- D.M. 19/04/2006 Norme funzionali e geometriche per la costruzione delle intersezioni stradali;
- Specifiche Tecniche del fornitore degli aerogeneratori in merito alla viabilità e alle piazzole;
- D.M. 17 Gennaio 2018 (Aggiornamento delle "Norme tecniche per le costruzioni").

Il rilascio della autorizzazione unica (art. 12 del D. Lgs. 387/2003) deve avvenire entro il termine di 180 gg. dalla domanda secondo le fasi di seguito riportate:

- A. Istanza di Autorizzazione Unica ex. 387-2003 al dipartimento AA.PP.- Ufficio Energia della Regione Basilicata;
- B. Istanza al Ministero dell'Ambiente che di concerto con il Ministero dei Beni e delle attività Culturali e del Turismo, trattandosi di progetto ricadente al punto 2 dell'elenco di cui all'allegato II alla Parte Seconda del d.lgs. n. 152/2006 e s.m.i., come modificato dal d.lgs. n. 104/2017, "impianti eolici per la produzione di energia elettrica sulla terraferma con potenza complessiva superiore a 30 MW", deve rilasciare il provvedimento di VIA (Valutazione di Impatto Ambientale): complessivamente il termine di legge per l'emissione del provvedimento è fissato in 195 giorni;
- C. la Regione indice conferenza dei servizi (CdS) entro 30 gg. dal ricevimento della domanda, individuazione enti interessati (questioni paesaggistiche, ambientali, storico artistiche ecc.). In attesa degli esiti del Giudizio di VIA la Regione sospende i termini della procedura di A.U. ex 387-2003;
- D. a valle degli esiti della procedura di VIA la Regione riavvia la conferenza dei servizi (CdS) ed acquisisce i pareri degli altri enti interessati dal progetto, chiusura del procedimento entro 180 gg.;
- E. la Giunta Regionale rilascia o nega l'autorizzazione con una delibera.

2.2.2 Elenco delle autorizzazioni, nulla osta, pareri comunque denominati e degli Enti competenti per il loro rilascio compresi i soggetti gestori delle reti infrastrutturali

L'elenco degli Enti competenti preposti a rilasciare il proprio parere di competenza di conformità alla normativa vigente sono:

- Ministero dell'ambiente e della tutela del territorio e del mare
- Ministero dei beni e delle attività culturali e del turismo
- Assessorato Regionale Ambiente ed Energia;
- Soprintendenza per i Beni Architettonici e per il Paesaggio;
- Soprintendenza per i Beni Archeologici;
- Provincia di Matera;
- Comune di Grottole;
- Comune di Miglionico;
- Ministero delle Comunicazioni Ispettorato Territoriale Puglia Basilicata;
- Ministero dello Sviluppo Economico Ufficio Nazionale Minerario per gli Idrocarburi e Georisorse - Divisione IV - Sez. UNMIG Napoli
- Regione Basilicata: Dipartimento infrastrutture;
- Autorità di Bacino dell'Appenino Meridionale AdB Basilicata;
- Terna Rete Italia S.p.a.;
- Ministero dell'Interno Comando dei Vigili del Fuoco;
- Acquedotto Lucano S.p.A.;
- Arpa Basilicata;
- Snam Rete Gas Spa;
- ENAC;
- ENAV;
- Marina Militare Comando Marittimo Sud Taranto;
- Aeronautica Militare Comando III Regione Aerea Bari;
- Comando Militare Esercito "Basilicata" Potenza.

2.2.3 Normativa tecnica di riferimento

Le normative tecniche a cui gli Enti titolari dei procedimenti devono fare riferimento sono:

- Legge 24/07/90 n° 241, "Norme sul procedimento amministrativo in materia di conferenza dei servizi";
- DPCM 08/06/01 n°327 "Testo unico delle disposizioni legislative e regolamentari in materia di Pubblica Utilità";
- D. Lgs n. 42 del 22/01/2004;
- Norme di Attuazione dell'Autorità di Bacino della Basilicata;
- R. D. 25/07/1904 n. 523;
- T.U. n. 1775/33;
- D.P.R. N. 156 DEL 29/03/1973;
- D. Lgs. 01/08/2003 n. 259;

- R.D.L. 30/12/1923 n. 3267;
- D.P.R. 233/2007 e ss.mm.ii.;
- D.P.R. 91/2009;
- D.P.C.M. 14/11/1997;
- D.P.C.M. 08/07/2003;
- D.M. 29/05/2008;
- D. Lgs 152/2006 e ss.mm.ii;
- D. Lgs 387/2003.

I riferimenti sopra citati possono non essere esaustivi. Ulteriori disposizioni di legge, norme vigenti e deliberazioni in materia anche se non espressamente indicate, si considerano applicabili.

3 Descrizione stato di fatto del contesto

3.1 Descrizione del sito d'intervento

Geologia, morfologia e idrogeologia dell'area d'intervento

Nell'area oggetto di studio e nelle zone limitrofe come riportato nella relazione A.2 - Relazione Geologica, la successione stratigrafica dal basso verso l'alto è la seguente:

- Argille Subappennine: costituiscono la gran parte del riempimento dell'Avanfossa Bradanica, esse sono di colore grigio-azzurre, costituite da quasi tutti i minerali argillosi, ricche in microforaminiferi, con rapporto bentos/plancton elevato indicativo di un ambiente di sedimentazione di piattaforma continentale, dove giungevano abbondanti apporti clastici molto fini. L'età è riferibile al Pleistocene Inferiore. Trattasi di argille ed argille marnose, talora siltose contraddistinte da veli e livelli a granulometria per lo più fine.
- Sabbie di Monte Marano: formazione clastica sabbiosa silicatico-calcarea calcareo-silicatica con strutture sedimentarie come lamine incrociate bioturbazioni, lenti di ghiaia indicative di ambiente marino. Sotto il profilo petrografico sono materiali quarzoso feldspatici, in matrice calcarea. La granulometria, salvo variazioni locali, è per lo più media e medio-fine. A luoghi diagenizzate formando areniti,a luoghi incoerenti, comunque si presentano ben addensate. Al loro interno contengono livelli limosi o strati arenitici che evidenziano i caratteri giaciturali della formazione.
- Conglomerato d'Irsina: presenta le caratteristiche di deposito litorale nefritico per gran parte del suo spessore e continentale nella parte più alta. La parte marina è stata evidenziata grazie alla presenza nelle lenti sabbiose di faune marine, oltre che dalla stratificazione incrociata, mentre quella continentale dalla colorazione della matrice che da gialla passa a rossastra (ossidi di ferro). L'origine appenninica del conglomerato è messa in evidenza dal fatto che esso è poligenico. Alcuni dei ciottoli sono addirittura policiclici, di fatti il grado di arrotondamento e alterazione varia. All'interno di tale formazione sono inseriti strati limo argillosi che si rinvengono a più altezze, ed in particolare nei termini più superficiali, nei vari siti investigati.
- Terrazzi fluviali: terreni di colore variabile dal marroncino all'avana. Presentano puntinature ocracee e nerastre. Solitamente contengono piccoli quantitativi di materiali a granulometria medio - fine. Trattasi di ghiaie sabbioso limose. Frequenti le concrezioni calcaree.

L'area oggetto di studio è racchiusa tra la valle del Fiume Basento e quella del Fiume Bradano ed è interessata da molti fossi che con andamento dentritico solcano i versanti argillosi. La parte alta di tali fossi assume la caratteristica forma a ventaglio formata da canali naturali e creste erosive.

Il sito di installazione ricade all'interno di un'area classificata come agricola dalle previsioni degli Strumenti Urbanistici comunali, trattasi dunque di un'area potenzialmente idonea all'installazione del parco eolico proposto.

Inoltre, dall'esame degli strumenti programmatori e della normativa specifica (compatibilità dell'intervento con il PIEAR Regione Basilicata e la dgr 903/2015 inerente all'individuazione delle aree non idonee) riportati nel Quadro di Riferimento Programmatico dello Studio di impatto ambientale, è emerso che: dal punto di vista vincolistico, il territorio in esame non è incluso in alcuna delle seguenti categoria riservate ed in particolare è escluso da:

- vincolo storico-culturale (d.lgs 42/2004);
- vincolo floro-faunistico (aree SIC, ZPS, ZSC) (d.p.r. n. 357/1997, integrato e modificato dal d.p.r. n. 120/2003);
- area parco e/o aree naturali protette (l. n. 394/1991).

Il sito di progetto, inoltre, non risulta:

- in corrispondenza di doline, inghiottitoi o altre forme di carsismo superficiale;
- in aree esondabili o alluvionabili.

È emerso che parte delle aree interessate dall'intervento rientrano all'interno di quelle sottoposte a vincolo idrogeologico ex R.D. 3267/1923; come noto tale condizione <u>non risulta preclusiva della possibilità di trasformazione o di nuova utilizzazione del territorio</u>, ne consegue che, contestualmente alla procedura di Valutazione di impatto ambientale ai sensi del d.lgs. n. 152/2006, il progetto in questione verrà sottoposto all'esame dell'Ufficio regionale competente per il rilascio del giudizio di compatibilità in materia. Oltre a ciò, dall'analisi della "Carta del Rischio" del Piano Stralcio per la difesa del rischio Idrogeologico dell'Autorità di Bacino competente attualmente vigente, risulta che un breve tratto (circa 120 m) di viabilità da adeguare allo scopo di accedere alle macchine GRA_09 e GRA_10 attraversa un'area perimetrata R3 a rischio frana; lo stesso accade per un breve tratto di cavidotto (100 m) a valle della GRA_09 allo scopo di non interessare il tratturo vincolato in agro di Miglionico (MT). Tale condizione richiederà il parere dell'Autorità di Bacino Distrettuale dell'Appennini Meridionale, ex Autorità di Bacino interregionale della Basilicata.

Inoltre, ai fini della tutela ai sensi del d.lgs. 22 gennaio 2004, n. 42 e s.m.i. "Codice dei beni culturali e del paesaggio", si segnala che l'area dell'esistente sottostazione utente, che sarà oggetto di intervento allo scopo di connettere alla RTN il parco in progetto, risulta essere ubicata nella fascia di 150 m dal corso d'acqua "Torrente Acquaviva e Vallone Rivivo" appartenente alla categoria vincolata ai sensi dell'art. 142 c. 1 lett. c), ovvero i fiumi, i torrenti, i corsi d'acqua iscritti negli elenchi previsti dal testo unico delle disposizioni di legge sulle acque ed impianti elettrici, approvato con regio decreto 11 dicembre 1933, n. 1775, e le relative sponde o piedi degli argini per una fascia di 150 metri ciascuna. In merito a tale interferenza sopra riportata si ribadisce che la sottostazione elettrica risulta esistente e che le nuove infrastrutture elettriche (stallo di trasformazione che condividerà alcune apparecchiature elettromeccaniche con quelli già esistenti) si inseriranno in un'area dove sono già presenti numerose infrastrutture elettriche dello stesso tipo; tale scelta progettuale e localizzativa, attigua peraltro ad una esistente stazione TERNA, risulterà, di fatto, in una riduzione del potenziale impatto in quanto determinerà la minimizzazione dello sviluppo lineare dell'infrastruttura elettrica di interconnessione tra l'impianto ed il punto di connessione alla RTN (come richiesto dal PIEAR Basilicata).

Comunque, si sottolinea sin d'ora, che tale interferenza risulterà del tutto priva di un qualsiasi impatto paesaggistico dal momento che gli interventi previsti in sottostazione non andranno a modificare il contesto paesaggistico in cui si collocheranno.

Come riportato nella relativa sezione, nell'ambito delle attività di realizzazione della viabilità di accesso alle postazioni di installazione dei diversi aerogeneratori si eviterà, per quanto possibile, di interessare la vegetazione arborea presente. In particolare, allo scopo di adeguare i raggi di curvatura della viabilità esistente che consentirà l'accesso alla GRA_05 potrebbe essere interessata in maniera marginale una piccola porzione di territorio coperto da vegetazione arborea. Laddove dovesse risultare necessario abbattere qualche pianta si provvederà alla ripiantumazione di un numero sufficiente a compensare la perdita di quelle interferenti con le attività di cantiere. Dal momento che alcune opere connesse alla realizzazione del parco eolico in esame interferiscono con alcune categorie vincolate in materia di paesaggio, sebbene si ritenga che tali interferenze non

Parco Eolico "Monte San Vito"

Relazione generale

comportino alcun impatto significativo di tipo paesaggistico, si provvederà ad attivare, contestualmente al procedimento di VIA, un procedimento finalizzato all'ottenimento del parere paesaggistico.

Per quanto concerne gli aspetti connessi al vincolo archeologico (cfr relazione specialistica), in base al relativo studio specialistico è emerso che, sebbene l'area oggetto della presente proposta progettuale sia una zona capillarmente occupata fin almeno dall'età del Ferro (IX sec. a.C.) nell'area interessata in maniera specifica dalle opere non ricadono vincoli diretti. In merito ai vincoli tratturali, e, nello specifico alla presenza del tratturo "Strada degli stranieri", la società si impegna ad attuare tutte le necessarie azioni tese a preservare e tutelare la rete tratturale esistente anche mediante la redazione di un apposito progetto di tutela e valorizzazione.

Da progetto è previsto solo un passaggio temporaneo funzionale al transito dei mezzi lungo un unico segmento del tratturo "Strada degli stranieri" in agro di Miglionico. Allo scopo di assicurare la tutela del sedime catastale, il segmento interessato verrà ricoperto con geotessile e inerti, che verranno poi rimossi al termine delle attività, con il ripristino completo dello stato dei luoghi.

Il progetto risulta dunque esterno alle aree interessate dai ritrovamenti archeologici, ciò nonostante si preveda una sorveglianza durante l'intera fase di cantiere e survey preliminari atti alla caratterizzazione archeologica delle aree di intervento. La posizione delle macchine, infine, non pregiudica in alcun modo le caratteristiche dei siti archeologici né provoca impatti compromettenti per la natura degli stessi.

In conclusione l'intervento proposto risulta coerente con la pianificazione territoriale vigente di livello regionale, provinciale e comunale, nonché con il quadro definito dalle norme settoriali vigenti ed adottate.

In riferimento alla I.r 54/2015, ed alle interferenze con le categorie individuate dalla medesima legge si ribadisce che tali interferenze non costituiscono un motivo di preclusione a priori alla realizzazione dell'impianto eolico, ma piuttosto andrebbero sottoposte ad eventuali prescrizioni per il corretto inserimento nel territorio della proposta progettuale in esame.

Descrizione delle reti infrastrutturali esistenti

Nell'area di intervento sono presenti le seguenti reti infrastrutturali:

- di tipo viario: in particolare sono da annoverare la SS 407 Basentana a sud e la SP 1 Appia ex SS 7 Appia che attraversa l'area del parco, oltre a diverse strade provinciali, comunali ed interpoderali tra cui la SP in destra Lago S. Giuliano e la strada Cùpolo Ròvivo;
- elettrodotti: le linee che transitano nell'area sono sia in BT che in MT ed AT;
- rete telefonica su palo.

Descrizione della viabilità di accesso all'area

L'accesso all'area parco potrà avvenire dalla S.P. in destra Lago S. Giuliano mediante la Strada Cùpolo Ròvivo adeguando e prolungando alcuni tratti della viabilità esistente.

Descrizione in merito all'idoneità delle reti esterne dei servizi atti a soddisfare le esigenze connesse all'esercizio dell'intervento da realizzare

Durante la fase di esercizio le reti esterne che dovranno essere utilizzate per garantire il soddisfacimento delle esigenze connesse all'esercizio dell'intervento di che trattasi sono:

- la rete infrastrutturale stradale;
- rete telefonica GSM/UMTS.

La rete infrastrutturale stradale esistente risulta essere idonea a soddisfare le esigenze connesse all'esercizio dell'intervento da realizzare.

Sul territorio è presente copertura telefonica/dati.

3.2 Elenco dei vincoli di natura ambientale, di tutela del paesaggio e del patrimonio storico artistico

Il parco eolico in progetto ricade in aree prive di vincoli di natura ambientale e paesaggistica come elencati nel P.I.E.A.R. della Regione Basilicata. Inoltre, nell'area in cui verranno installati gli aerogeneratori non si rileva la presenza di emergenze storico artistiche.

3.3 Documentazione fotografica

Figura 5: ambito territoriale prossimo all'installazione della WTG GRA_01

Figura 6: ambito territoriale prossimo all'installazione della WTG GRA_05

Figura 7: ambito territoriale prossimo all'installazione della WTG GRA_06

Figura 8: ambito territoriale prossimo all'installazione della WTG GRA_07

Figura 9: ambito territoriale prossimo all'installazione della WTG GRA_10

3.4 Descrizione delle finalità dell'intervento e scelta delle alternative progettuali

<u>Descrizione delle alternative progettuali e motivazioni giustificative sulla scelta delle soluzioni progettuali</u>

In fase di progetto preliminare sono state considerate diverse soluzioni alternative soprattutto per quanto riguarda il posizionamento delle vie di servizio e di accesso al parco.

Per quanto riguarda l'esatta posizione degli aerogeneratori, essa è diretta conseguenza dello studio del regime eolico effettuato con l'elaborazione dei dati anemometrici misurati, ottenuti tramite un programma di simulazione.

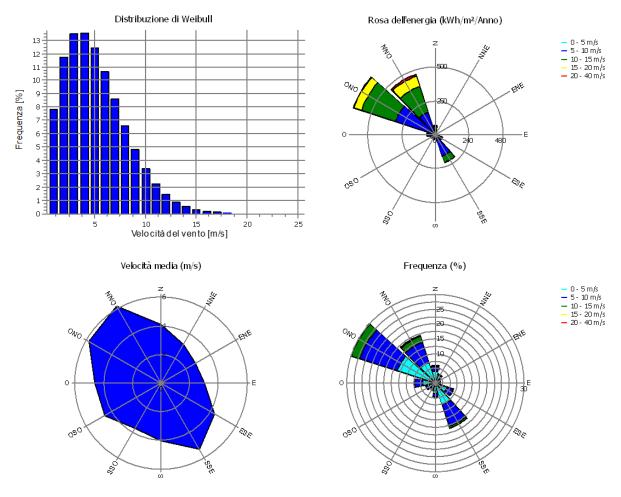


Figura 10: Statistica misurata a 40 m della torre Metmast P, grafici

I risultati sintetici del monitoraggio sono rappresentati nella figura precedente, nella quale vengono riportati le statistiche in merito alla distribuzione del vento e la rosa dei venti. La velocita media del vento a 40 m è risultata essere pari a 5,18 m/s. La rosa dei venti indica come direzione del vento prevalente la direzione WNW (maestrale).

L'elaborazione del modello della distribuzione degli aerogeneratori permette il massimo sfruttamento delle potenzialità energetiche (eoliche) del sito, vincolando la loro distribuzione ad una spaziatura quanto più ampia possibile ed una disposizione (regolare) che abbia il minimo impatto visuale e, più in generale, che l'impianto abbia il massimo del rapporto costi – benefici.

Nel corso delle attività di progettazione sono state studiate diverse alternative:

- 1. Alternativa "0" o del "non fare";
- 2. Alternative di localizzazione;
- 3. Alternative dimensionali;
- 4. Alternative progettuali.

Alternativa "0" 3.5

Su scala locale, la mancata realizzazione dell'impianto comporta certamente l'insussistenza delle azioni di disturbo dovute alle attività di cantiere che, in ogni caso, stante la tipologia di opere previste e la relativa durata temporale, sono state valutate mediamente più che accettabili su tutte le matrici ambientali. Anche per la fase di esercizio non si rileva un'alterazione significativa delle matrici ambientali, incluso l'impatto paesaggistico, per il quale le analisi effettuate in ambiente GIS hanno evidenziato un incremento dell'indice di affollamento poco rilevante.

Ampliando il livello di analisi, l'aspetto più rilevante della mancata realizzazione dell'impianto è in ogni caso legato alle modalità con le quali verrebbe soddisfatta la domanda di energia elettrica anche locale, che resterebbe sostanzialmente legata all'attuale mix di produzione, ancora fortemente dipendente dalle fonti fossili, con tutti i risvolti negativi direttamente ed in direttamente connessi. La produzione di energia elettrica mediante combustibili fossili comporta infatti, oltre al consumo di risorse non rinnovabili, anche l'emissione in atmosfera di sostanze inquinanti e di gas serra. Tra questi gas, il più rilevante è l'anidride carbonica o biossido di carbonio, il cui progressivo incremento potrebbe contribuire all'effetto serra e quindi causare drammatici cambiamenti climatici. Oltre alle conseguenze ambientali derivanti dall'utilizzo di combustibili fossili, considerando probabili scenari futuri che prevedono un aumento del prezzo del petrolio, si avrà anche un conseguente aumento del costo dell'energia in termini economici.

In tal caso, al di là degli aspetti specifici legati al progetto, la scelta di non realizzare l'impianto si rivelerebbe in contrasto con gli obiettivi di incremento della quota di consumi soddisfatta da fonti rinnovabili prefissati a livello europeo e nazionale.

Per quanto sopra, l'alternativa "0" non produce gli effetti positivi legati al raggiungimento degli obiettivi di riduzione delle emissioni di gas clima alteranti prefissati.

3.6 Alternative di localizzazione

L'individuazione dell'ubicazione degli aerogeneratori è frutto di una preliminare ed approfondita valutazione sia dal punto di vista geologico ed idrogeologico che dal punto di vista anemologico.

L'area prescelta è il risultato di un'attenta analisi che tiene conto dei seguenti aspetti:

- Coerenza con i vigenti strumenti della pianificazione urbanistica, sia a scala comunale che sovracomunale;
- Ventosità dell'area e, di conseguenza, producibilità dell'impianto (fondamentale per giustificare qualsiasi investimento economico);
- Vicinanza con infrastrutture di rete e disponibilità di allaccio ad una sottostazione elettrica;
- Ottima accessibilità del sito e assenza di ostacoli al trasporto ed all'assemblaggio dei componenti;

F4 Ingegneria srl

- Presenza di una delle seguenti categorie:
 - Aree e siti non idonei (PIEAR e dgr 903/2015),;
 - Aree tutelate per legge ai sensi dell'art. 142 del d.lgs 42/2004;
 - Beni culturali ai sensi degli art. 10 e 45 del d.lgs 42/2004;
 - o Beni paesaggistici ai sensi dell'art. 136 e 142 del d.lgs 42/2004;
 - Aree parco e/o aree naturali protette (l. n. 394/1991);
 - Aree interessate dal vincolo idrogeologico (ex R.D. n. 3267/1923);
 - Aree interessate da vincolo floro-faunistico (aree SIC, ZPS) (d.p.r. n. 357/1997, integrato e modificato dal d.p.r. n. 120/2003).

Bisogna tener presente che la scelta di localizzazione dell'impianto è stata effettuata non solo in considerazione delle caratteristiche del territorio regionale, ma anche della presenza di altri impianti esistenti/autorizzati e come conseguenza di ragionamenti di natura paesaggistica.

Se l'area di studio fosse situata su un territorio "vergine", totalmente privo di impianti già esistenti, il layout di progetto avrebbe un indice di visibilità e percepibilità (VI) pari a 2.79 e un'incidenza sul paesaggio del 100%, contro un VI pari a 2.49 e un'incidenza del 3%, ottenuti considerando la localizzazione su un territorio già contraddistinto dalla presenza di altri aerogeneratori con le medesime caratteristiche e gli stessi PdI selezionati.

Sulla base di quanto esplicitato sopra si può affermare che una localizzazione differente da quella prescelta non sarebbe stata in alcun modo plausibile perché avrebbe comportato il mancato rispetto di almeno una delle condizioni appena descritte e un impatto paesaggistico maggiore.

3.7 Alternative dimensionali

Le alternative possono essere valutate tanto in termini di riduzione quanto di incremento della potenza. A tal proposito, in coerenza con il principio di ottimizzazione dell'occupazione di territorio, una riduzione della potenza attraverso l'utilizzo di aerogeneratori più piccoli non sarebbe ammissibile. Altrettanto vincolata è la scelta della taglia degli aerogeneratori in aumento della potenza, che è funzione delle caratteristiche del sito (inclusa la ventosità).

Resta, pertanto, da valutare una modifica della taglia dell'impianto attraverso una riduzione o un incremento del numero di aerogeneratori.

La riduzione del numero di aerogeneratori potrebbe comportare una riduzione della produzione al di sotto di una soglia di sostenibilità economica dell'investimento. Si potrebbe manifestare, infatti, l'impossibilità di sfruttare quelle economie di scala che, allo stato, rendono competitivi gli impianti di macro-generazione. Dal punto di vista ambientale non risulterebbe apprezzabile una riduzione degli impatti, già di per sé mediamente accettabili.

Di contro, l'incremento del numero di aerogeneratori sarebbe certamente positivo dal punto di vista economico e finanziario, ma si scontrerebbe con la difficoltà di garantire il rispetto di tutte le distanze di sicurezza, con un incremento dei rischi sulla popolazione. Andrebbe comunque rivalutato l'indice di affollamento, che invece oltre un certo numero di aerogeneratori potrebbe comportare un incremento percettibile dell'impatto paesaggistico.

3.8 Alternative progettuali

In relazione alle alternative progettuali, considerando che la tipologia di aereogeneratori previsti in progetto rappresentano la più recente evoluzione tecnologica disponibile (compatibilmente con le caratteristiche dell'area di intervento), ne deriva che l'unica alternativa ammissibile sarebbe l'ipotesi di realizzare un altro tipo di impianto da fonti rinnovabili, coerentemente con gli obiettivi di incremento della produzione di fonti rinnovabili cui si è precedentemente fatto cenno.

Tuttavia quest'ultima ipotesi risulterebbe inaccettabile in quanto meno sostenibile dal punto di vista economico ed ambientale in virtù delle caratteristiche del territorio circostante l'area di intervento, già descritte. In particolare, la realizzazione di un impianto fotovoltaico, a parità di energia elettrica prodotta, richiederebbe un incremento notevole dell'occupazione di suolo a danno delle superfici destinate all'attività agricola. Ciò avrebbe ripercussioni sull'economia locale (e quindi sulla popolazione), oltre che sulle funzioni di presidio del territorio svolte dagli imprenditori agricoli, con tutti i risvolti positivi dal punto di vista del controllo del dissesto idrogeologico, su cui attualmente si fonda una notevole mole di sussidi economici europei e nazionali nell'ambito della PAC.

Anche la possibilità di installare un impianto di pari potenza alimentato da biomasse non appare favorevole perché l'approvvigionamento della materia prima non sarebbe sostenibile dal punto di vista economico, stante la mancanza, entro un raggio compatibile con gli eventuali costi massimi di approvvigionamento, di una sufficiente quantità di boschi. Il ricorso ai soli sottoprodotti dell'attività agricola, di bassa densità. richiederebbe un'estensione d'approvvigionamento tale che i costi di trasporto avrebbero un'incidenza inammissibile. Dal punto di vista ambientale, nell'ambito di un bilancio complessivamente neutro di anidride carbonica, su scala locale l'impianto provocherebbe un incremento delle polveri sottili, con un peggioramento delle condizioni della componente atmosfera e dei rischi per la popolazione. A ciò va aggiunto anche l'incremento dell'inquinamento prodotto dalla grande quantità di automezzi in circolazione nell'area, il notevole consumo di acqua per la pulizia delle apparecchiature ed il notevole effetto distorsivo che alcuni prodotti/sottoprodotti di origine agricola avrebbero sui mercati locali (ad esempio la paglia è utilizzata anche come lettiera per gli allevamenti, pertanto l'impiego in centrale avrebbe come effetto l'incremento dei prezzi di approvvigionamento; il legname derivante dalle utilizzazioni boschive nella peggiore dei casi viene utilizzato come legna da ardere, pertanto l'impiego in centrale comporterebbe un incremento dei prezzi)

3.9 Quadro di sintesi delle valutazioni sulle alternative

Nella tabella che segue si riportano, con segno positivi ("+") gli effetti positivi dell'alternativa rispetto al progetto in esame, mentre con il segno negativo ("-") quelli negativi. L'invarianza, o la sussistenza di variazioni non significative, viene invece indicata con valore nullo ("0").

Parco Eolico "Monte San Vito"

THE PARTY OF THE P	The state of the s					Relazione generale
				Altern.	Altern.	
Matri	ice	Altern.	Altern.	Dimens.	Progett.	Note
·Viati	-	((0))	1 1:			

Matrice	Altern. "0"	Altern.	Dillici				Note
Widthec		Localizz.	Rid.	Incr.	FV	Biom.	11000
Aria e clima	-	N.C.	0	0	0	_ (*)	(*) L'impianto a biomasse, nell'ambito di un bilancio neutro di CO2, comporta comunque una concentrazione di emissioni di polveri sottili ed anidride carbonica in una porzione di territorio limitata.
Acqua	-	N.C.	0	0	0	_ (*)	(*) Nell'ambito di una generale sostenibilità degli impianti a biomassa, il fabbisogno di risorse idriche è notevole per le esigenze di lavaggio degli impianti non è trascurabile.
Suolo	-	_ (*)	0	0	_ (*)	_ (*)	(*) A parità di energia prodotta l'occupazione di suolo dovuta ad un impianto fotovoltaico è significativamente maggiore rispetto ad un impianto eolico. Per quanto riguarda l'impianto a biomasse, nel bacino di approvvigionamento potrebbero instaurarsi fenomeni competitivi con gli attuali ordinamenti produttivi, a scapito della qualità delle produzioni agricole. La realizzazione dell'impianto su un territorio "vergine" e quindi non caratterizzato dalla presenza di impianti già esistenti, comporterebbe sicuramente un impatto sul paesaggio maggiore e invece di avere un'incidenza del progetto minima, come nel caso in esame, si avrebbe un'incidenza del 100%.
Biodiversità	-	_ (*)	0	0	_ (*)	0	(*) Nel caso di specie l'occupazione di suolo avverrebbe a carico delle superfici agricole, con riduzione della biodiversità ad esse associata. La realizzazione dell'impianto su un territorio "vergine" e quindi non caratterizzato dalla presenza di impianti già esistenti, comporterebbe sicuramente un impatto sul paesaggio maggiore e invece di avere un'incidenza del progetto minima, come nel caso in esame, si avrebbe un'incidenza del 100%.
Popolazione e salute umana	-	N.C.	0	_ (*)	_ (*)	_ (*)	(*) L'incremento del numero di aerogeneratori rende più difficoltosa la predisposizione di un layout coerente con i requisiti minimi di sicurezza imposti dalle vigenti norme, incrementando il rischio perla salute dei cittadini. Per quanto riguarda il fotovoltaico, i fabbisogni occupazionali ai fini dell'esercizio di un impianto sono significativamente minori rispetto all'attività agricola e zootecnica, a parità di destinazione d'uso del suolo. Per quanto riguarda le biomasse, l'incremento della domanda di prodotti e sottoprodotti dell'attività agro-silvo-pastorale per la sua alimentazione produce rilevanti effetti distorsivi del mercato locale.
Beni materiali, patr. culturale, paesaggio	-	N.C.	0	_ (*)	_ (*)	_ (*)	(*) Per quanto riguarda l'incremento del numero di aerogeneratori, oltre una certa soglia la variazione dell'indice di affollamento potrebbe risultare sensibile e pertanto comportare un decremento apprezzabile della qualità del paesaggio. Per quanto riguarda il fotovoltaico, a parità di produzione l'occupazione di suolo è significativamente maggiore e tale da impattare maggiormente rispetto ad un impianto eolico, anche in presenza di strutture più basse rispetto agli aerogeneratori in progetto. Per quanto riguarda le biomasse, la presenza di una grande centrale risulterebbe maggiormente in contrasto con il territorio.
Rumore	-	N.C.	0	_ (*)	+(*)	_ (*)	(*) Per quanto riguarda l'incremento del numero di aerogeneratori, la difficoltà di garantire le distanze minime rispetto ad edifici ed abitazioni comporta un incremento del rischio che le emissioni rumorose non si attenuino entro i limiti previsti dalle vigenti norme. Con riferimento al fotovoltaico, le emissioni di rumore sono pressoché nulle e, pertanto, per questa componente ambientale l'alternativa sarebbe favorevole. Per quanto riguarda gli impianti a biomassa, il funzionamento degli impianti produce emissioni rumorose

Matrice	Altern. Altern.		Altern. Dimens.		Altern. Progett.		Note	
	"0"	Localizz.	Rid.	Incr.	FV	Biom.		
							maggiori rispetto agli impianti eolici, compatibili con il clima acustico di aree industriali piuttosto che di aree agricole.	
Giudizio compl.	_(*)	N.C.	0	-	-	-	L'alternativa "0" non produce gli effetti positivi legati al raggiungimento degli obiettivi di riduzione delle emissioni di gas clima alteranti prefissati.	

4 II progetto

4.1 Descrizione dei criteri utilizzati per la definizione dell'intervento

Per le scelte progettuali, gli aspetti dell'inserimento dell'intervento sul territorio, le caratteristiche prestazionali e descrittive dei materiali prescelti, nonché i criteri di progettazione delle strutture e degli impianti, in particolare per quanto riguarda la sicurezza, la funzionalità e l'economia di gestione

I criteri utilizzati per definire le aree interessate dalle opere di progetto sono diversi. In particolare, è stato fatto un lavoro, principalmente, di monitoraggio anemometrico dell'area, di censimento dei vincoli presenti nella zona, di localizzazione della viabilità pubblica presente nell'area, e, subordinatamente, di verifica della disponibilità delle aree da parte dei privati.

Il monitoraggio anemometrico ha portato a individuare alcune aree ritenute idonee alla produzione di energia rinnovabile da fonte eolica, creando un primo filtro che ha portato a escludere alcune aree a discapito di altre giudicate, queste ultime, più esposte al vento.

Il censimento dei vincoli di natura ambientale, di tutela del paesaggio e del patrimonio storico artistico ha portato ad individuare aree che sono state giudicate non idonee per lo scopo di che trattasi, nonostante alcune delle stesse abbiano avuto giudizio positivo a valle del monitoraggio anemometrico di cui al precedente capoverso.

Successivamente è stata fatta una verifica sul campo, andando a verificare la litologia e l'idrografia presente nell'area, privilegiando aree sulle quali affiorano terreni o rocce stabili e sulle quali sussista una scarsa probabilità di inondazione.

Inoltre, è stato fatto un lavoro di verifica del tipo di viabilità presente nell'area, privilegiando aree sulle quali non fossero presenti strade a scorrimento veloce, per evitare che alcune opere di progetto (es. cavidotti) andassero a intaccare tali strade, creando congestioni di traffico durante la fase di cantierizzazione. Infine, è stata fatta una verifica sulla disponibilità delle aree da parte dei privati.

Quest'analisi multicriterio ha portato all'individuazione delle aree da destinare all'ubicazione degli aerogeneratori, risultando, pertanto, quella che, a giudizio della società proponente, ha un impatto sull'ambiente circostante più basso delle atre soluzioni prese in considerazione.

Metodologia utilizzata per l'inserimento del parco eolico sul territorio

Per il posizionamento degli aerogeneratori, selezionati in base alle caratteristiche anemologiche del sito analizzate attentamente grazie alle rilevazioni puntuali eseguite, sono state considerate numerose ipotesi ricercando, anzitutto, il rispetto dei vincoli posti dalla normativa nazionale e dal PIEAR circa i livelli di pressione sonora (impatto acustico) e quindi la soluzione capace di garantire il migliore compromesso tra impatto paesaggistico e produzione energetica.

Il risultato del lavoro, le cui soluzioni tecniche sono esposte nel seguito della presente relazione, ha portato alla definizione di un layout costituito da n. 10 aerogeneratori da 4,5 MW con altezza al mozzo pari al massimo di 127,5 m per complessivi 45 MW di potenza nominale totale.

Il presente paragrafo ha l'obiettivo di illustrare il rispetto dei suddetti criteri d'inserimento. Nello specifico i criteri generali ed i vincoli principali osservati nella definizione del layout

anemologia in proiezione con una velocità media del vento di ca. 6,9 m/s al mozzo;

sono stati i seguenti:

- distanza dai centri abitati: maggiore di 1000 m;
- distanza da fabbricati abitati preesistenti: maggiore di 2.5 volte l'altezza massima degli aerogenartori di progetto (200 m);
- distanza da fabbricati non abitati o in rovina: maggiore di 300 m (gittata massima e tutela dell'effetto di shadow-flickering);
- orografia/morfologia del sito: si sono evitate, per quanto possibile, zone franose attraversando i versanti lungo le linee di massima pendenza;
- idrografia del sito: si sono evitate zone allagabili, posizionando gli aerogeneratori a una opportuna distanza dai compluvi, individuabili sulla cartografia tecnica come linee blu (reticolo idrografico), in modo tale che le aeree di intervento sono in sicurezza idraulica definita, quest'ultima, in termini di tempo ritorno pari a 30, 200 e 500 anni;
- minimizzazione degli interventi sul suolo, individuare siti facilmente ripristinabili alle condizioni morfologiche iniziali;
- sfruttamento di percorsi e/o sentieri esistenti: lunghezze e pendenze delle livellette stradali tali da seguire, per quanto possibile, l'orografia propria del terreno, considerando anche le pendenze superabili dai mezzi di trasporto;
- strade con una larghezza minima di circa 5.0 m;
- si è cercato di evitare, ove possibile, le aree di rispetto delle sorgenti e delle cisterne a cielo aperto;
- si sono evitate zone boscate;
- riduzione della parcellizzazione della proprietà privata e pubblica, attraverso l'utilizzo di corridoi di servitù già costituite da infrastrutture esistenti.

Sulla base dei criteri sopra descritti, attraverso indagini e sopralluoghi in situ, sono state ipotizzate diverse configurazioni dell'impianto raggiungendo, attraverso un esame delle diverse soluzioni progettuali di installazione possibili, una soluzione progettuale che ottimizzasse l'iniziativa.

Per quanto riguarda ipotesi alternative progettuali di collocazione dell'impianto, è doveroso precisare che gli interventi relativi alle stesse sarebbero andate ad incidere su aree naturalisticamente più importanti o su aree troppo prossime ad altri impianti esistenti o, ancora, in vicinanza di strade statali e/o provinciali.

La soluzione proposta per la disposizione dell'impianto deriva dalla scelta fra le alternative più idonee a garantire una buona produttività compatibilmente con l'ambiente circostante.

Dall'esame dei differenti criteri di localizzazione possibili, diversi per disposizione delle macchine e per densità delle stesse, risultano varie tipologie, di seguito riassunte, al fine di meglio giustificare la configurazione prescelta:

- disposizione su reticolo quadrato o romboidale;
- disposizione su una unica fila;
- disposizione su file parallele;
- disposizione su file incrociate (croce di S. Andrea);
- disposizione risultante dalla combinazione e/o sovrapposizione delle precedenti tipologie;
- disposizione apparentemente casuale.

La prima tipologia è caratteristica delle installazioni più vecchie, mentre l'ultima è caratterizzata da disposizioni in pianta secondo linee e figure molto articolate e si presta alle installazioni in ambiente con orografia complessa. Le file possono risultare con un minor numero di elementi in larghezza nella forma detta di "pine-tree array".

Parco Eolico "Monte San Vito"

Relazione generale

L'interdistanza fra gli aerogeneratori può variare da (3÷5)·D a (5÷7)·D, dove D è il diametro massimo del cerchio descritto dalle pale nella loro rotazione, a seconda se si tratti della distanza entro le file parallele alla direzione dominante del vento o tra file poste con angolature diverse. Tale dato, tuttavia, non è vincolante, in quanto l'interdistanza definitiva viene prescelta in base a precise simulazioni puntuali di interferenza.

Il campo eolico in oggetto ha un layout con disposizione lineare, una gestione ottimale delle viste, un'armonizzazione con l'orografia e la minimizzazione dell'impatto sulla fauna.

Dai risultati delle analisi per le diverse soluzioni alternative la scelta presentata è risultata come la più opportuna sotto molteplici aspetti:

- Produttività: le analisi numeriche relative alla ventosità del sito lo propongono come ottimale rispetto ad aree contigue.
- Impatto sull'ambiente e aspetto paesaggistico: l'analisi dei vincoli ha evidenziato che i siti interessati risultano essere le aree migliori del territorio Comunale per la localizzazione di un impianto eolico, sia sotto l'aspetto ambientale che paesaggistico. Inoltre la disposizione delle macchine su fila unica a gruppi risulta di minimo impatto per la fauna locale per via dei corridoi trasversali che si producono.

Il parco eolico in progetto risulta:

- compatibile con gli strumenti di pianificazione esistenti, generali e settoriali d'ambito regionale e locale;
- compatibile con le esigenze di fabbisogno energetico e di sviluppo produttivo della
- coerente con le esigenze di diversificazione delle fonti primarie e delle tecnologie produttive;
- concepito con un grado di innovazione tecnologica, con particolare riferimento al rendimento energetico ed al livello di emissioni dell'impianto proposto;
- impiegato le migliori tecnologie ai fini energetici ed ambientali;
- minimizzare i costi di trasporto dell'energia e dell'impatto ambientale delle nuove infrastrutture di collegamento alle reti esistenti;
- concepito dando priorità alla valorizzazione e riqualificazione delle aree territoriali interessate compreso il contributo allo sviluppo ed all'adeguamento della forestazione ovvero tutte le altre misure di compensazione delle criticità ambientali territoriali assunte anche a seguito di eventuali accordi tra il proponente e l'Ente.

Caratteristiche prestazionali e descrittive dei materiali prescelti e i criteri di progettazione delle strutture e degli impianti

Per quanto concerne le caratteristiche prestazionali e descrittive dei materiali utilizzati per la realizzazione degli aerogeneratori si rappresenta quanto segue.

Le fondazioni delle torri saranno costituite da plinti in c.a. di idonee dimensioni poggianti su pali in c.a. trivellati. Essi saranno dimensionati per resistere agli sforzi di ribaltamento e slittamento prodotti dalle forze agenti sulla torre. Essendo condizionante l'azione di ribaltamento essi saranno del tipo snello di grande dimensione in pianta ed altezza ridotta.

Sui plinti saranno disposte le piastre di ancoraggio al quale verranno imbullonate le sezioni delle torri. I plinti saranno in calcestruzzo di forma tronco-conica con diametro pari a circa 22m. A tal proposito si rimanda alla consultazione delle relazioni e delle tavole di progetto.

Ogni aerogeneratore è collocato su una piazzola contenente la struttura di fondazione delle e gli spazi necessari alla movimentazione dei mezzi e delle gru di montaggio.

Le piazzole saranno realizzate con materiali selezionati dagli scavi, adeguatamente compattate anche per assicurare la stabilità della gru. Le piazzole devono contenere un'area sufficiente a consentire sia lo scarico e lo stoccaggio dei vari elementi dai mezzi di trasporto, sia il posizionamento delle gru (principale e secondarie). Esse devono quindi possedere i requisiti dimensionali e plano altimetrici specificatamente forniti dall'azienda installatrice degli aerogeneratori, sia per quanto riguarda lo stoccaggio e il montaggio degli elementi delle turbine stesse, sia per le manovre necessarie al montaggio e al funzionamento delle gru. Nel caso di specie, la scelta delle macchine comporta la necessità di reperire per ogni aerogeneratore un'area libera da ostacoli di dimensioni complessive pari almeno a m 32x61.5 di forma rettangolare.

Attigua alla piazzola precedente, è prevista un'area destinata temporaneamente allo stoccaggio delle pale, di dimensioni 55x20 m, che potrà eventualmente solo essere spianata e livellata, al fine di ospitare i supporti a sostegno delle pale.

Il montaggio del braccio della gru principale sarà effettuato tra la piazzola dove sarà ubicato l'aerogeneratore e parte della viabilità di invito alla medesima mentre saranno realizzate 2 aree limitrofe di dimensioni approssimative 20x5 m che ospiteranno le gru ausiliarie necessarie all'installazione del braccio della gru principale.

La viabilità da adeguare e da realizzare interna al parco consisterà in una serie di strade e di piazzole al fine di raggiungere agevolmente tutti i siti in cui saranno sistemati gli aerogeneratori.

La realizzazione di nuovi tratti stradali sarà contenuta e limitata ai brevi percorsi che vanno dalle strade esistenti all'area di installazione degli aerogeneratori. In particolare saranno realizzate nuove piste per circa 5.14 km corrispondenti ad aree interpoderali già utilizzate dai coltivatori per il passaggio all'interno dei fondi.

Le necessità di trasporto dei componenti di impianto impongono che le strade abbiano larghezza minima di 5 m. Nel caso specifico le inclinazioni laterali saranno trascurabili mentre le pendenze potranno essere significative viste le caratteristiche geomorfologiche dell'area. Nei tratti in curva la larghezza potrà essere aumentata ed i raggi di curvatura dovranno essere ampi (almeno 70 m).

Vista l'orografia dei luoghi gli interventi di adeguamento, così come la viabilità di nuova realizzazione, non comporteranno la necessità di realizzare muri di sostegno o opere d'arte analoghe.

Lo strato di terreno vegetale proveniente dalla decorticazione sarà opportunamente separato dal materiale proveniente dallo sbancamento, per poter essere riutilizzato nei riporti per il modellamento superficiale delle scarpate e delle zone di ripristino dopo le lavorazioni.

Inoltre, per ridurre il fenomeno dell'erosione delle nuove strade causato dalle acque meteoriche, lungo i cigli delle stesse sono previste delle fasce di adeguata larghezza, realizzate con materiale lapideo di idonea pezzatura, che oltre a consentire il drenaggio delle stesse acque meteoriche, saranno di contenimento allo strato di rifinitura delle strade.

Tutte le strade saranno in futuro solo utilizzate per la manutenzione degli aerogeneratori, e saranno realizzate seguendo l'andamento topografico esistente in loco, cercando di ridurre al minimo eventuali movimenti di terra, utilizzando come sottofondo materiale calcareo e rifinendole con una pavimentazione stradale a macadam, oppure cementata nei tratti in cui le pendenze diventano rilevanti.

Le reti principali dell'impianto saranno costituite da cavi unipolari o tripolari per il collegamento degli aerogeneratori alla sottostazione; la rete elettrica in MT sarà realizzata con cavi in alluminio, , del tipo ARE4H5E - 18/30 kV o similari e giunti con muffe a colata di resina.

Parco Eolico "Monte San Vito"

Relazione generale

Gli scavi saranno ripristinati, previa formazione di un letto di sabbia (eventuale) in corrispondenza dei due suddetti cavidotti, con riempimento con terreno di scavo opportunamente vagliato.

La rete elettrica interrata sarà protetta, accessibile nei punti di giunzione ed opportunamente segnalata. In considerazione della potenza elettrica nominale di installazione del parco eolico è necessario, per poter effettuare il collegamento in parallelo con la rete RTN, una sezione di trasformazione AT/MT.

Il futuro impianto eolico sarà collegato in antenna a 150 kV sulla stazione elettrica (SE) della RTN a 150 kV denominata "Grottole", mediante gli impianti esistenti della società FRI-EL Grottole Srl (cfr. elaborati grafici). Tali impianti costituiranno una connessione in condominio di alta tensione, condividendo le sbarre AT e lo stallo AT di consegna alla RTN.

Indicare le eventuali cave, i siti di conferimento per il recupero dei materiali da risulta e le discariche da utilizzare per la realizzazione dell'intervento con la specificazione dell'avvenuta autorizzazione

Tutti i materiali da costruzione necessari alla realizzazione del parco eolico quali pietrame, pietrisco, ghiaia e ghiaietto verranno prelevati da cave autorizzate e/o da impianti di frantumazione e vagliatura per inerti all'uopo autorizzati.

I materiali di risulta provenienti dagli scavi delle platee di fondazione degli aerogeneratori verranno riutilizzati in cantiere per consentire la realizzazione della fondazione delle strade di progetto.

Per quanto riguarda le discariche, delle quali non si prevede utilizzo se non per i rifiuti provenienti dalle attività di cantiere e dalla fresatura di asfalto per la posa dei cavidotti, si farà riferimento all'elenco degli impianti autorizzati presenti nel territorio regionale e censiti nel Piano Regionale per la Gestione dei Rifiuti pubblicato nel Bollettino Ufficiale della Regione Basilicata n. 3 del 16.02.2017. Si rimanda, per i dettagli, al Piano preliminare di utilizzo in sito delle terre e rocce da scavo escluse dalla disciplina dei rifiuti.

Tutto ciò che non verrà inviato a discarica verrà consegnato a gestori autorizzati che provvederanno al conferimento degli stessi presso impianti di recupero dei rifiuti specificati precedentemente.

4.2 Descrizione del progetto

<u>Individuazione dei parametri dimensionali e strutturali completi di descrizione del rapporto</u> dell'intervento (impianto, opere e infrastrutture indispensabili) con l'area circostante

Nel sito in oggetto è prevista l'installazione di 10 aerogeneratori di potenza unitaria pari a 4.5 MW, per una potenza complessiva di 45 MW.

In particolare, i modelli commerciali che attualmente soddisfano questi requisiti tecnico-dimensionali sono i seguenti: SG 145 4.5 HH 127.5, GE 158 4.5 MW HH 120.9, V150 4.2 HH 125, V162 5.6 HH 119 (limitata a 4.5 MW) e N149 4.5 HH 125.

L'impianto, ovvero il poligono che lo racchiude, occuperà un'area approssimativamente di 2727 ha, solo marginalmente occupata dalle macchine, dalle rispettive piazzole e strade annesse, mentre la totalità della superficie potrà continuare ad essere impiegata secondo la destinazione d'uso cui era destinata precedentemente alla realizzazione dell'impianto.

www.f4ingegneria.it - f4ingegneria@pec.it

Le valutazioni di producibilità sono state effettuate con il modello di aerogeneratore Vestas V162 - HH 119 m con potenza massima 4.5 MW; tale aerogeneratore è risultato essere il più sfavorevole dal punto di vista della verifica dei parametri previsti dal punto 1.2.1.3 del PIEAR.

Come meglio riportato nello Studio Anemologico allegata al progetto, in base ai risultati della campagna di misura la società proponente stima di ottenere da questo parco eolico una produzione netta di 144,4 GWh/anno, corrispondente a circa 3209 ore equivalenti nette di operatività alla massima potenza.

Nota la producibilità, è possibile valutare la densità volumetrica, così come richiesto dal Piano di Indirizzo Energetico Ambientale Regionale della Basilicata (PIEAR), approvato con legge regionale del 19 gennaio 2010, n. 1.

Si definisce densità volumetrica il rapporto fra la stima della produzione annua di energia elettrica dell'aerogeneratore espressa in chilowattora anno (kWh/anno), ed il volume del campo visivo occupato dall'aerogeneratore stesso, espresso in metri cubi, e pari al volume del parallelepipedo di lati 3D, 6D e H, dove D è il diametro del rotore ed H è l'altezza complessiva della macchina (altezza del mozzo + lunghezza della pala).

La densità volumetrica di energia annua unitaria è un parametro di prestazione dell'impianto che permette di avere una misura dell'impatto visivo di due diversi aerogeneratori a parità di energia prodotta. Infatti, avere elevati valori di Ev significa produrre maggiore energia a parità di impatto visivo dell'impianto.

Per il parco oggetto di intervento la densità volumetrica media risulta pari a **0.16 kWh/(anno×m³),** quindi compatibile con il valore richiesto dal citato PIEAR (come modificato dall'art 27 della lr n. 7/2014).

Il futuro impianto sarà costituito essenzialmente da:

- 10 aerogeneratori con le caratteristiche indicate nelle sezioni precedenti;
- opere civili, in particolare fondazioni in calcestruzzo armato delle torri (con relativo impianto di messa a terra), piazzole provvisorie per il deposito dei componenti e il successivo montaggio degli aerogeneratori, piazzole definitive per l'esercizio dell'impianto, piste di accesso alle postazioni delle turbine, adeguamento per quanto possibile dei tratti di viabilità già esistenti;
- cavidotti interrati in MT di interconnessione tra le macchine e di connessione dei diversi circuiti al punto di consegna;
- un nuovo stallo produttore in condominio AT con annessi dispositivi di controllo nell'esistente sottostazione di trasformazione MT/AT (30/150 kV) della società FRI-EL Grottole Srl.

La dislocazione degli aerogeneratori sul territorio è scaturita da un'attenta analisi di diversi fattori, tra cui, la morfologia del territorio, l'orografia, le condizioni di accessibilità al sito, le distanze da fabbricati e strade esistenti attraverso una serie di rilievi sul campo; oltre a ciò, sono state fatte considerazioni sulla sicurezza e sul massimo rendimento degli aerogeneratori e del parco nel suo complesso in base sia a studi anemologici che ad una serie di elaborazioni e simulazioni informatizzate finalizzate a:

- minimizzare l'impatto visivo;
- ottemperare alle previsioni della normativa vigente e delle linee guida sia nazionali che regionali;
- ottimizzare il progetto della viabilità di servizio al parco;
- ottimizzare la produzione energetica.

Più in dettaglio i criteri ed i vincoli osservati nella definizione del layout sono stati i seguenti:

- potenziale eolico del sito;
- orografia e morfologia del sito;
- accessibilità e minimizzazione degli interventi sull'ambiente esistente;
- disposizione delle macchine ad una distanza reciproca minima pari ad almeno 4D atta a minimizzare l'effetto scia:
- condizioni di massima sicurezza, sia in fase di installazione che di esercizio.

Il numero complessivo e la posizione reciproca delle torri di un parco eolico è il risultato di complesse elaborazioni che tengono in debito conto la morfologia del territorio, le caratteristiche del vento e la tipologia delle stesse.

Inoltre, la disposizione degli aerogeneratori, risolta nell'ambito della progettazione di un parco eolico, deve conciliare due opposte esigenze:

- il funzionamento e la producibilità dell'impianto;
- la salvaguardia dell'ambiente nel quale si inseriscono riducendo, ovvero eliminando, le interferenze ambientali a carico del paesaggio e/o delle emergenze architettoniche/archeologiche.

La disposizione finale del parco è stata verificata e confermata in seguito a diversi sopralluoghi, durante i quali tutte le posizioni sono state controllate e valutate "tecnicamente fattibili" sia per accessibilità che per la disponibilità di spazio per i lavori di costruzione.

Tale disposizione, scaturita anche dall'analisi delle limitazioni connesse al rispetto dei vincoli gravanti sull'area, è stata interpolata con la valutazione di sicurezza del parco stesso.

La posizione di ciascun aerogeneratore rispetta la distanza massima di gittata prevista (nella fattispecie circa 206 m) per la tipologia di macchina da installare (cfr. Relazione specialistica — Analisi degli effetti della rottura degli organi rotanti).

In base alla soluzione di connessione (soluzione tecnica minima generale STMG - codice pratica del preventivo di connessione 201900782 del 08.10.2019), il futuro impianto eolico sarà collegato in antenna a 150 kV sulla stazione elettrica (SE) della RTN a 150 kV denominata "Grottole", mediante gli impianti esistenti della società FRI-EL Grottole Srl. In particolare, l'energia prodotta dagli aerogeneratori verrà convogliata, tramite un cavidotto interrato a 30 kV, ad un nuovo impianto di trasformazione MT/AT che verrà realizzato all'interno dell'esistente sottostazione di trasformazione MT/AT, che attualmente accoglie gli impianti di trasformazione dei parchi eolici denominati "Grottole 18MW" (IM S17G1RT) e "Grottole 36MW" (IM S17G2RT), di proprietà della società Fri-El Grottole Srl, per venire poi ceduta alla RTN tramite un collegamento in antenna a 150kV all'esistente Stazione Elettrica (SE) 150 kV RTN denominata "Grottole", ubicata nel comune di Grottole (MT).

Il futuro impianto eolico *Monte San Vito* e gli impianti *Grottole 18MW* e *Grottole 36MW* costituiranno una connessione in condominio di alta tensione, condividendo le sbarre AT e lo stallo AT di consegna alla RTN.

La proprietà e la gestione delle aree e degli impianti ad uso comune rimarrà in capo alla Fri-El Grottole S.r.l., mentre ogni produttore rimarrà responsabile per il proprio impianto per quanto concerne ordini di dispacciamento, rispetto del regolamento di esercizio, rispetto del codice di rete, taratura delle proprie protezioni e verifica dei complessi di misura fiscale.

L'impianto utente per la connessione dell'impianto eolico Monte San Vito si comporrà delle seguenti opere ed apparecchiature:

> Stallo AT trasformatore composto da: trasformatore elevatore 30/150 ±12x1,25% kV, scaricatori AT, TA AT ad uso combinato fiscale/misura/protezione, interruttore

tripolare 150kV, TV induttivi AT ad uso combinato fiscale/misura/protezione, sezionatore rotativo con lame di terra 150kV.

- Stallo linea AT composto da: sezionatore rotativo con lame di terra 150kV, TV ad uso fiscale, TA ad uso fiscale e sbarre di collegamento alla SE Grottole.
- Sala quadri MT contenente il quadro di media tensione 30kV isolato in gas SF6 al quale si attestano i cavidotti provenienti dal parco eolico. Il quadro di media tensione si completa di scomparto arrivo trafo e scomparto per il TSA.
- Sala quadri bT contenente i quadri di protezione e controllo, i quadri dei servizi ausiliari in corrente alternata e corrente continua, il quadro batterie ed il quadro raddrizzatore-inverter. In questa sala è inoltre installato il quadro contatori con accesso dall'esterno del locale come evidenziato dagli elaborati grafici allegati.
- Sala SCADA/telecontrollo.
- Palo antenna.
- Locale per il gruppo elettrogeno (GE) di potenza inferiore ai 25kW.
- Locale trasformatore dei servizi ausiliari (TSA) dotato di vasca contenitiva per eventuali fuoriuscite d'olio dal TSA. L'apertura della porta del locale TSA è impedita in caso di TSA sotto tensione (interblocco porta-sezionatore di terra scomparto MT di alimentazione TSA).

L'accorpamento dei trasformatori di tensione per uso fiscale, misura e protezione in un'unica apparecchiatura è stato dettato dalla necessità di contenere gli ingombri e conseguentemente i costi di realizzazione e manutenzione.

Le sale quadri MT e bT, il locale SCADA/telecontrollo ed i locali TSA e GE saranno allestiti in container da 40 e 20 piedi e la loro fondazione risulterà rialzata di 0,3 m dal livello del piazzale.

Lo schema di misura sarà tale da poter distinguere e contabilizzare l'energia prodotta da ciascun impianto connesso in condominio.

I cavidotti interrati, indispensabili per il trasporto dell'energia elettrica da ciascun aerogeneratore alla Stazione Elettrica di Trasformazione (SET) AT/MT per la successiva immissione in rete, percorreranno lo stesso tracciato della viabilità di servizio prevista per i lavori di costruzione e gestione del parco eolico. Nelle aree esterne a quelle interessate dai lavori i tracciati sfrutteranno la viabilità pubblica principalmente al fine di minimizzare gli impatti sul territorio interessato.

Le aree interessate dai lavori per la realizzazione del parco eolico risultano, già allo stato attuale, facilmente accessibili ai mezzi d'opera necessari alla realizzazione dei lavori; infatti, la viabilità esistente presente nell'area, per lo più idonea, in termini di pendenze e raggi di curvatura, si presta al trasporto eccezionale dei componenti degli aerogeneratori, come testimoniato dalla presenza di turbine di grande taglia nella zona. Tale condizione al contorno consentirà di minimizzare la viabilità di nuova costruzione e dunque, soprattutto in fase di cantiere, ridurrà la magnitudo degli impatti.

Nello specifico, l'accesso all'area parco potrà avvenire dalla S.P. in destra Lago S. Giuliano mediante la Strada Cùpolo Ròvivo adeguando e prolungando alcuni tratti della viabilità esistente.

La viabilità interna al campo eolico sarà costituita da una serie di infrastrutture, in parte esistenti da adeguare ed in parte da realizzare ex-novo, che consentiranno di raggiungere agevolmente tutti i siti in cui verranno posizionati gli aerogeneratori.

Nelle zone in cui le strade di progetto percorreranno piste interpoderali esistenti le opere civili previste consisteranno in interventi di adeguamento della sede stradale per la circolazione degli automezzi speciali necessari al trasporto degli elementi componenti l'aerogeneratore. Detti adeguamenti prevedranno dei raccordi agli incroci di strade e nei punti di maggiore deviazione della

Parco Eolico "Monte San Vito"

Relazione generale

direzione stradale oltre ad ampliamenti della sede stradale nei tratti di minore larghezza. Nella fattispecie, la sede stradale sarà portata ad una larghezza minima della carreggiata stradale pari a 5.00 m.

I lavori di adeguamento e realizzazione ex novo della viabilità di progetto sfrutteranno dove possibile, ed essenzialmente nei tratti non previsti in scavo o rilevato, allo scopo di limitare i movimenti materie, la tecnica della stabilizzazione a calce sia per migliorare le caratteristiche di portanza della pavimentazione stradale esistente anche per garantire una adeguata portanza ai sottofondi stradali che verranno realizzati ex-novo.

Nello specifico tale tecnica, si esplicita secondo le seguenti modalità:

- scotico terreno vegetale;
- 2. stesa della calce: Si esegue con idonee attrezzature a dosaggio volumetrico o gravimetrico a seconda della tecnologia disponibile;
- 3. miscelazione: La miscelazione della terra con la calce avviene mediante il pulvimixer. La profondità di lavorazione varia da 30cm a 50cm a seconda delle indicazioni del progetto. La velocità di avanzamento del pulvimixer dipende dal tipo di terreno, dal grado di addensamento, dall'umidità e dalla potenza della macchina, e incide in modo determinante sulla produttività
- 4. controllo Umidità.
- 5. compattazione della miscela Terra-Calce mediante rulli vibranti a bassa frequenza e rulli gommati di adeguato peso fino ad ottenere i risultati richiesti. L'operazione di compattazione inizia quando la calce viva si è completamente spenta e si sono conclusi i cosiddetti "effetti di breve termine". Per garantire il completo spegnimento della calce si devono attendere circa 2h dalla fine della miscelazione all'inizio della compattazione. Il peso dei rulli deve essere adeguato allo spessore dello strato da compattare.

Anche l'ubicazione degli aerogeneratori è stata pensata, compatibilmente con l'esposizione ai venti dominanti, in modo da limitare al massimo sia il loro impatto visivo sia i movimenti di terra per la realizzazione delle opere a servizio del parco.

Vengono riportate nella tabella seguente le coordinate planimetriche delle macchine adottando il sistema di riferimento UTM-WGS84, fuso 33 e Gauss Boaga Roma 40 fuso est.

Si precisa, che gli aerogeneratori di progetto non sono ubicati in aree ed in siti definiti dal PIEAR come non idonei, nonché in aree di valore naturalistico, paesaggistico ed ambientale. A tal proposito si rimanda al quadro ambientale del presente Studio ed in particolare alla carta dei vincoli.

Viabilità e piazzole

Questa categoria di opere civili è costituita dalle strade di accesso e di servizio che si rendono indispensabili per poter raggiungere i punti ove collocare fisicamente i generatori eolici a partire dalla viabilità esistente. La viabilità del parco sarà costituita da tratti di nuova realizzazione, ubicati perlopiù in terreni di proprietà privata, caratterizzati, ove possibile, da livellette radenti il terreno in situ in maniera da ridurre le opere di scavo.

L'accesso all'area parco potrà avvenire dalla S.P. in destra Lago S. Giuliano mediante la Strada Cùpolo Ròvivo adeguando e prolungando alcuni tratti della viabilità esistente. Quest'ultima strada conduce nelle immediate vicinanze dell'area di cantiere-trasbordo che avrà posizione baricentrica nel parco; a partire da quest'area, attraverso diversi rami di viabilità da adeguare/realizzare ex novo, verranno raggiunte le aree di installazione delle turbine.

Alcuni tratti di viabilità esistente necessitano di interventi di miglioramento ed adeguamento della sede stradale, al fine di consentire il passaggio di trasporti eccezionali, tuttavia non saranno necessari movimenti terra significativi, per le condizioni generalmente discrete delle strade stesse. Viceversa l'adeguamento di dette strade avrà un impatto positivo per i coltivatori della zona, andando a migliorarne la fruibilità e rimanendo immutata la destinazione d'uso delle stesse, che rimarranno pubbliche.

L' allargamento della sede stradale sarà effettuato da una larghezza media esistente di 3.0 -4.0 m fino ad ottenere la larghezza prevista in progetto pari a m 5.0 nei tratti in rettilineo, oltre alla cunetta di larghezza pari a 0.50 m per il deflusso delle acque meteoriche.

Si precisa che gli allargamenti delle sedi stradali avverranno in sinistra o in destra in funzione dell'esistenza di vegetazione di pregio (aree arborate o colture di pregio); laddove non si riscontrano particolari, legate all'eventuale uso del territorio, l'allargamento indifferentemente in entrambe le direzioni.

Il corpo stradale dei tratti in rilevato sarà realizzato, prevalentemente, utilizzando terreno proveniente dagli scavi.

I percorsi stradali che saranno realizzati ex novo avranno, quindi, una carreggiata di larghezza minima pari a 5 m per uno sviluppo lineare pari a circa 5140 metri.

Tutte le strade realizzate ex novo saranno, in futuro, utilizzate solo per la manutenzione degli aerogeneratori, chiuse al pubblico passaggio (ad esclusione dei proprietari dei fondi interessati), e saranno realizzate seguendo il più possibile l'andamento topografico esistente in loco.

Sulle strade già adeguate sarà infine necessario realizzare area di manovra sugli svincoli con opportuni raggi di curvatura. Le modalità di realizzazioni di tali aree sono le stesse di quella con cui saranno realizzate le nuove strade; inoltre, queste ultime verranno completamente ripristinate allo stato originario al termine delle attività di cantiere.

Tracciati stradali	Adeguamento (m)	Ex novo (m)	Misto stabiliz Ex novo (m)	Misto stabiliz Adeguamento (m)	Misto cement Ex novo (m)	Misto cement Adeguamento (m)	Asfalto Adeguamento (m)
GRA01	0	1335	-	-	1335	-	
GRA02	1900	515	382	750	133	-	1265
GRA03	500	575	650	100	-	325	-
GRA04	0	240	140	-	100	-	-
GRA05	500	285	100	200	100	385	-
GRA06	800	320	-	200	320	600	-
GRA07	0	385	300	-	85	-	-
GRA08	400	450	350	400	100	-	-
GRA09	0	275	-	-	275	-	-
GRA10	0	515	390	-	125	-	-
BYPASS	265	0	-	265	-	-	-
Totali	4145	5140					

FRI-EL S.p.A.

00186 Roma (RM)

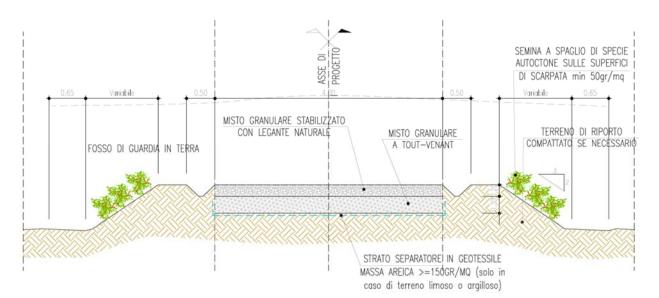


Figura 11: sezione tipo rilevato strada

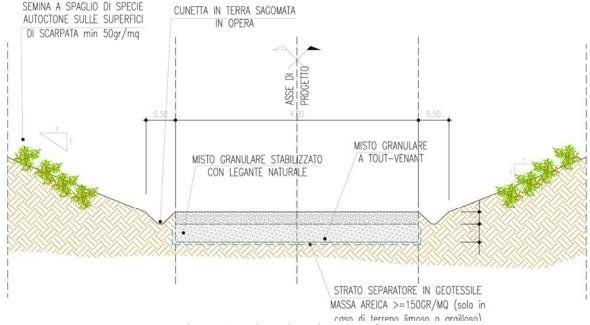


Figura 12: sezione tipo trincea strada

Cavidotti di collegamento alla rete elettrica nazionale

I cavidotti di collegamento alla rete elettrica nazionale in MT attraverseranno il territorio comunale di Grottole e Miglionico (MT).

L'energia prodotta dai singoli aerogeneratori del parco eolico verrà trasportata alla Stazione Utente 30/150 kV, con funzione di trasformazione ed immessa nella RTN tramite il sistema di sbarre presente nella stessa.

F4 Ingegneria srl

Via Di Giura-Centro Direzionale – 85100 Potenza www.f4ingegneria.it - f4ingegneria@pec.it

I collegamenti tra il parco eolico e la Stazione Utente avverranno tramite linee in MT interrate, esercite a 30 kV, ubicate sfruttando la rete stradale esistente ovvero lungo la rete viaria da adeguare/realizzare ex novo nell'ambito del presente progetto.

Ciascun aerogeneratore sarà dotato di un generatore e relativo convertitore. Inoltre, sarà equipaggiato con un trasformatore BT/MT oltre a tutti gli organi di protezione ed interruzione atti a proteggere la macchina e la linea elettrica in partenza dalla stessa.

All'interno del generatore eolico, la tensione BT a 0.720 kV in arrivo dalla macchina verrà elevata a 30 kV tramite un trasformatore elevatore dedicato. Ogni aerogeneratore avrà al suo interno:

- L'arrivo del cavo BT (0.720 kV) proveniente dal generatore-convertitore;
- il trasformatore elevatore BT/MT (0.720/30 kV);
- la cella MT (30 kV) per la partenza verso i quadri di macchina e da lì verso la Stazione di trasformazione.

Gli aerogeneratori del campo saranno suddivisi in 4 circuiti (o sottocampi) così costituiti:

- Sottocampo 1: 4,5 x3 = 13,5 MW (GRA 05, 06, 07)
- Sottocampo 2: 4,5 x3 = 13,5 MW (GRA 08, 09, 10)
- Sottocampo 3: 4,5 x2 = 9 MW (GRA 01, 04)
- Sottocampo 4: 4,5 x2 = 9 MW (GRA 02, 03)

La rete elettrica MT sarà realizzata con posa completamente interrata allo scopo di ridurre l'impatto della rete stessa sull'ambiente, assicurando il massimo dell'affidabilità e della economia di esercizio.

La rete a 30 kV, di lunghezza totale pari a circa 38.8 km, sarà realizzata per mezzo di cavi del tipo ARE4H5E - 18/30 kV o equivalenti con conduttore in alluminio.

La stazione elettrica

In base alla soluzione di connessione (soluzione tecnica minima generale STMG - codice pratica del preventivo di connessione 201900782 del 08.10.2019), il futuro impianto eolico sarà collegato in antenna a 150 kV sulla stazione elettrica (SE) della RTN a 150 kV denominata "Grottole", mediante gli impianti esistenti della società FRI-EL Grottole Srl. In particolare, l'energia prodotta dagli aerogeneratori verrà convogliata, tramite un cavidotto interrato a 30 kV, ad un nuovo impianto di trasformazione MT/AT che verrà realizzato all'interno dell'esistente sottostazione di trasformazione MT/AT, che attualmente accoglie gli impianti di trasformazione dei parchi eolici denominati "Grottole 18MW" (IM_S17G1RT) e "Grottole 36MW" (IM_S17G2RT), di proprietà della società Fri-El Grottole S.r.l., per venire poi ceduta alla RTN tramite un collegamento in antenna a 150kV all'esistente Stazione Elettrica (SE) 150 kV RTN denominata "Grottole", ubicata nel comune di Grottole (MT).

Il futuro impianto eolico *Monte San Vito* e gli impianti *Grottole 18MW* e *Grottole 36MW* costituiranno una connessione in condominio di alta tensione, condividendo le sbarre AT e lo stallo AT di consegna alla RTN.

La proprietà e la gestione delle aree e degli impianti ad uso comune rimarrà in capo alla Fri-El Grottole S.r.l., mentre ogni produttore rimarrà responsabile per il proprio impianto per quanto concerne ordini di dispacciamento, rispetto del regolamento di esercizio, rispetto del codice di rete, taratura delle proprie protezioni e verifica dei complessi di misura fiscale.

Descrizione degli aerogeneratori

Per il Parco eolico in oggetto, il proponente ha optato per un aerogeneratore di grande taglia ad asse orizzontale con rotore tripala le cui caratteristiche principali sono di seguito riportate:

- rotore tripala a passo variabile, di diametro massimo pari a 162 m, posto sopravvento alla torre di sostengo, costituito da 3 pale generalmente in resina epossidica rinforzata con fibra di vetro e da mozzo rigido in acciaio;
- navicella in carpenteria metallica con carenatura in vetroresina e lamiera, in cui sono collocati il generatore elettrico, il moltiplicatore di giri, il convertitore elettronico di potenza, il trasformatore BT/MT e le apparecchiature idrauliche ed elettriche di comando e controllo;
- torre di sostegno tubolare troncoconica in acciaio, avente altezza fino all'asse del rotore pari a massimi 127.5 m;
- altezza complessiva massima fuori terra dell'aerogeneratore pari a 200 m;
- diametro alla base del sostegno tubolare: 4.50 m;
- area spazzata massima: 20611 m².

In particolare, i modelli commerciali che attualmente soddisfano questi requisiti tecnico-dimensionali sono i seguenti: SG 145 4.5 HH 127.5, GE 158 4.5 MW HH 120.9, V150 4.2 HH 125, V162 5.6 HH 119 (limitata a 4.5 MW) e N149 4.5 HH 125.

La spinta del vento, agendo sulla sezione alare delle pale, provoca la rotazione del rotore e la conseguente produzione di energia meccanica, che viene poi trasformata in energia elettrica dal generatore.

Questo schema di funzionamento, molto semplice in principio, viene garantito nella realtà da una serie di componenti elettromeccanici, per la maggior parte contenuti all'interno della navicella, che oggi, grazie alla ricerca e alla sperimentazione maturata negli anni, hanno raggiunto un livello di efficienza tale da rendere l'eolico una delle fonti rinnovabili più competitive sul mercato.

I componenti principali degli aerogeneratori sono costituiti dal rotore, dal sistema di trasmissione, dal generatore, dal sistema di frenatura, dal sistema di orientamento, dalla gondola e dalla torre. L'albero principale trasmette la potenza al generatore tramite un sistema di riduzione. Tale sistema è composto da uno stadio planetario e 2 stadi ad assi paralleli. Da questo la potenza è trasmessa, tramite l'accoppiamento a giunto cardanico, al generatore.

Il sistema di arresto principale è costituito dal blocco totale delle pale mentre quello secondario è un sistema di emergenza a disco attivato idraulicamente e montato sull'albero del sistema di riduzione. In particolare, l'azione congiunta del freno primario aerodinamico e del freno meccanico di emergenza (situato all'uscita dell'asse veloce del moltiplicatore) con sistema di controllo idraulico, permette una frenata controllata che evita danneggiamenti a causa di trasmissione di carichi eccessivi.

Tutte le funzioni dell'aerogeneratore sono costantemente monitorate e controllate da diverse unità a microprocessore. Il sistema di controllo è posizionato nella gondola. La variazione dell'angolo d'attacco delle pale è regolato da un sistema idraulico che permette una rotazione di 95°. Questo sistema fornisce anche pressione al sistema frenante.

Il sistema di imbardata, di tipo attivo per assicurare un ottimo adattamento a terreni complessi, è costituito da motori alimentati elettricamente e controllati dall'apposito sistema di controllo sulla base di informazioni ricevute dalla veletta montata sulla sommità della gondola. I meccanismi di imbardata fanno ruotare i pignoni che si collegano con l'anello a denti larghi montato in cima alla torre.

Il telaio della gondola poggia sulla corona di orientamento e slitta su un alloggiamento di nylon per evitare che gli sforzi trasmessi generino eccessive tensioni sugli ingranaggi del sistema di

orientamento. La copertura della gondola, costituita da poliestere rinforzato con fibra di vetro, protegge tutti i componenti interni dagli agenti atmosferici. L'accesso alla gondola ospita anche un paranco di servizio della portata di 800 kg che può essere incrementata fino a 6400 kg per sollevare i componenti principali.

La torre di sostegno di tipo tubolare avrà una struttura in acciaio, il colore della struttura sarà chiaro, avrà una forma tronco-conica e sarà costituita da quattro o più tronchi aventi altezza complessiva fino all'asse del rotore pari al massimo a 127.5 m. In questo modo è assicurata la possibilità di un più semplice trasporto. Le diverse sezioni sono state ottimizzate per lunghezza, diametro e peso allo scopo di assicurare anche un peso adeguato al trasporto. Il collegamento tra le singole sezioni è realizzato in cantiere tramite flange ad anello a forma di L, che sono bullonate fra loro. Il design dei tubi in acciaio è scelto in modo tale da permettere una combinazione modulare dei segmenti alle altezze al mozzo necessarie.

Il rotore si trova all'estremità dell'albero lento, ed è costituito da tre pale fissate ad un mozzo, corrispondente all'estremo anteriore della navicella. Il rotore è posto sopravento rispetto al sostegno. La navicella può ruotare rispetto al sostegno in modo tale da tenere l'asse della macchina sempre parallela alla direzione del vento (movimento di imbardata).

Nel caso del parco in oggetto, il rotore avrà diametro massimo di 162 m e una velocità di rotazione variabile tra circa 4 e 12 rpm. Combinato con un sistema di regolazione del passo delle pale, fornisce la migliore resa possibile adattandosi nel contempo alle specifiche della rete elettrica (accoppiamento con il generatore) e, nel contempo, minimizzando le emissioni acustiche.

Le pale, a profilo alare, di lunghezza massima pari ad 80 m, composte in fibra di vetro rinforzata con resina epossidica e fibra di carbonio, sono ottimizzate per operare a velocità variabile e saranno protette dalle scariche atmosferiche da un sistema parafulmine integrato. Saranno verniciate con colore chiaro.

L'interfaccia tra il rotore ed il sistema di trasmissione del moto è il mozzo a cui sono incernierate le tre pale. I cuscinetti delle pale sono imbullonati direttamente sul mozzo, che sostiene anche le flange per gli attuatori di passo e le corrispondenti unità di controllo. Il gruppo mozzo è schermato secondo il principio della gabbia di Faraday, in modo da fornire la protezione ottimale ai componenti elettronici installati al suo interno.

Il mozzo è generalmente realizzato in ghisa fusa a forma combinata di stella e sfera, in modo tale da ottenere un flusso di carico ottimale con un peso dei componenti ridotto e con dimensioni esterne contenute.

La navicella è il corpo centrale dell'aerogeneratore, costituita da una struttura portante in carpenteria metallica con carenatura in vetroresina e lamiera; è vincolata alla testa della torre tramite un cuscinetto a strisciamento che le consente di ruotare sul suo asse di imbardata. All'interno della navicella sono contenute le principali apparecchiature elettromeccaniche necessarie alla generazione di energia elettrica; in particolare si distinguono:

- Albero Lento
- Moltiplicatore di giri
- Albero Veloce
- Generatore
- Convertitore
- Trasformatore MT/BT

Tutti i componenti sono assemblati modularmente sul basamento. Ciò consente l'utilizzo di una gru di dimensioni ridotte per l'assemblaggio in sito e semplifica i successivi lavori di

manutenzione e riparazione. La navicella contiene l'albero lento, unito direttamente al mozzo, che trasmette la potenza captata dalle pale al generatore attraverso un moltiplicatore di giri.

47/87

5 Motivazione della scelta del collegamento dell'impianto al punto di consegna dell'energia

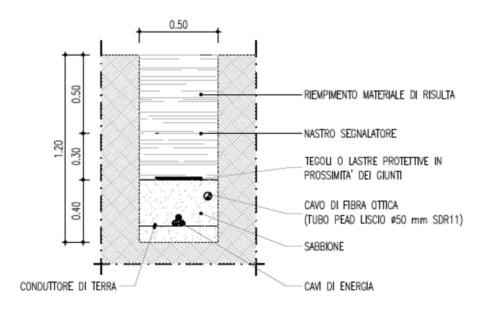
Il tracciato planimetrico della rete, lo schema unifilare dove sono evidenziate la lunghezza e la sezione corrispondente di ciascuna terna di cavo e la modalità e le caratteristiche di posa interrata sono mostrate nelle tavole del progetto allegate. Il parco eolico in progetto risulta avere il vantaggio di poter essere connesso alla Rete di Trasmissione Nazionale per mezzo di una sottostazione esistente, garantendo, in questo modo, il minimo impatto in termini di realizzazione di nuove infrastrutture di rete.

Come sopra accennato, la rete a 30 kV avrà una lunghezza complessiva di circa 38.8 km. Il calcolo delle perdite di tensione nei cavi elettrici è riportato nella tabella seguente.

Caduta di Caduta Caduta Sezione Circuito Tratto Potenza Corrente Lunghezza di di tensione cavo tensione tensione complessiva MW Α mmq % % m 06-07 4.5 86.60 185 3844 72.08 0.24% 0.24% 1 07-05 9.0 173.21 400 2658 49.84 0.17% 0.41% 05-SET 259.81 0.15% 0.55% 13.5 630 2335 43.82 08-10 4.5 86.60 185 1365 25.59 0.09% 0.09% 10-09 2 9 173.21 400 787 14.76 0.05% 0.13% 09-SET 259.81 7403 0.46% 13.5 630 138.92 0.60% 01-04 4.5 86.60 185 3825 71.72 0.24% 0.24% 04-SET 9.0 173.21 400 5681 106.52 0.36% 0.59% 4.5 86.60 02-03 185 3392 63.60 0.21% 0.21% 4 0.68% 03-SET 9.0 173.21 400 7444 139.58 0.47%

Tabella 3: perdite di tensione nei cavi

I cavi verranno posati ad una profondità non inferiore a 120 cm, con una tegolo di protezione in prossimità dei giunti (nei casi in cui non è presente il tubo corrugato) ed un nastro segnalatore.


I cavi verranno posati in una trincea scavata a sezione obbligata che sia per una che per due terne avrà una larghezza di 50 cm, mentre per 3 terne si arriverà a 70 cm e per 4 terne la larghezza di scavo sarà 85 cm.

Nella stessa trincea verranno posati i cavi di energia, la fibra ottica necessaria per la comunicazione e la corda di terra.

Dove necessario si dovrà provvedere alla posa indiretta dei cavi in tubi, condotti o cavedi. Le figure seguenti riportano alcune sezioni tipo del cavidotto

SEZIONE TIPO 1A - SU TERRENO IN FREGIO ALLA VIABILITA'

SEZIONE TIPO 1B - SU STRADE ASFALTATE

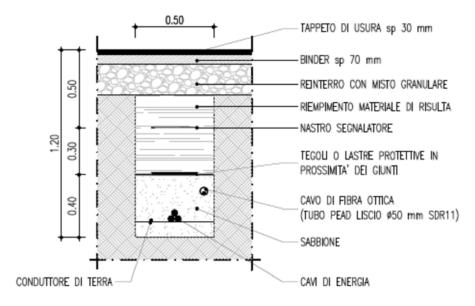
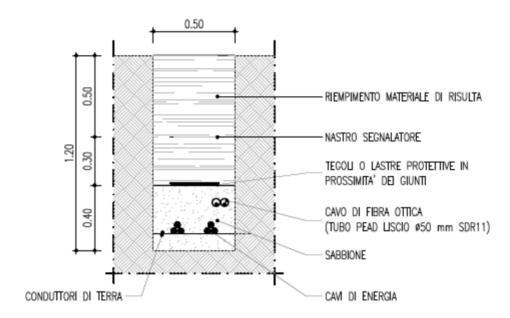



Figura 13: sezioni tipo 1A e 1B cavidotto

SEZIONE TIPO 2A - SU TERRENO IN FREGIO ALLA VIABILITA'

SEZIONE TIPO 2B - SU STRADE ASFALTATE

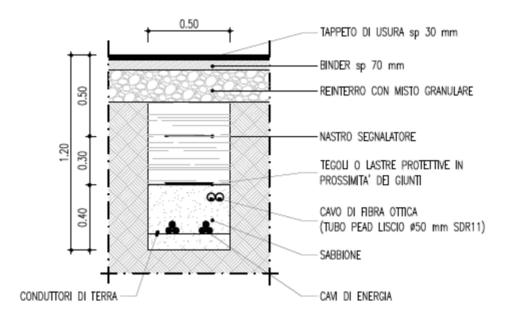



Figura 14: sezioni tipo 2A e 2B cavidotto

SEZIONE TIPO 2D - SU STRADE IN MISTO CEMENTATO

SEZIONE TIPO 2Bc - SU STRADE ASFALTATE

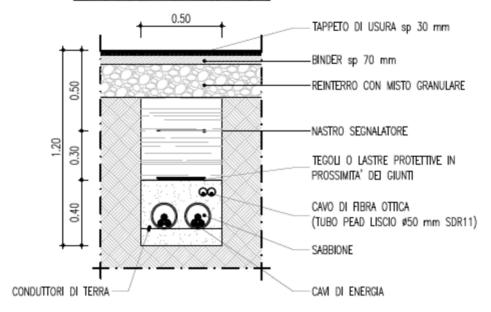


Figura 15: sezioni tipo 2D e 2Bc cavidotto

6 Disponibilità aree ed individuazione interferenze

Accertamento in ordine alla disponibilità delle aree ed immobili interessati dall'intervento

Così come le infrastrutture lineari energetiche, il procedimento autorizzatorio di cui all'art. 12, d.lgs. 387/2003 e gli effetti dell'Autorizzazione Unica ottenuta dopo opportuna conferenza di servizi, comporta la dichiarazione di pubblica utilità degli interventi previsti a progetto, ai sensi degli artt. 52-quater "Disposizioni generali in materia di conformità urbanistica, apposizione del vincolo preordinato all'esproprio e pubblica utilità" e 52-quinquies "Disposizioni particolari per le infrastrutture lineari energetiche facenti parte delle reti energetiche nazionali" d.p.pr. 327/2001. Ne consegue che le aree scelte per la realizzazione dell'impianto risultano disponibili a norma di legge.

Censimento delle interferenze e degli enti gestori

Le reti esistenti nell'area d'intervento che interferiscono con le opere di progetto sono:

- di tipo viario: in particolare sono da annoverare diverse strade comunali ed interpoderali;
- elettrodotti: le linee che transitano nell'area sono in MT e AT;
- reticolo idrografico: le aste fluviali presenti nell'area d'intervento. In questo caso l'Ente è l'Autorità di Bacino dell'Appenino Meridionale – ADB Basilicata.
- rete telefonica su palo.

Accertamento di eventuali interferenze con strutture esistenti

La viabilità all'interno del parco, di tipo comunale, si presenta in condizioni variegate.

In particolare, alcune delle strade comunali risultano essere idonee, in termini di pendenze e di raggi di curvatura, al transito dei mezzi che dovranno trasportare i componenti degli aerogeneratori durante la fase di installazione degli stessi. Altre strade comunali, invece, non risultano esserlo, pertanto la prima interferenza con le strutture esistenti da annoverare è l'inadeguatezza di alcune strade al transito dei mezzi pesanti durante la fase di cantiere.

Inoltre si evidenziano interferenze tra i cavidotti interrati ed il reticolo idrografico in prossimità dei tracciati stradali relativi alle GRA_01, GRA_04, GRA_06, GRA_08, GRA_09 e GRA_10; in tali situazioni è prevista la posa dei cavidotti mediante Trivellazione Orizzontale Controllata (TOC) fino a raggiungere una profondità, in corrispondenza dell'intersezione, non inferiore a 2 m.

In particolare il cavidotto di collegamento dell'aerogeneratore GRA_08, verrà realizzato in TOC allo scopo di risolvere, senza interferenze visibili o dirette rispetto all'area di sedime vincolata, l'intersezione con l'asse del tratturo ivi presente.

Tali interferenze sono meglio rappresentate negli elaborati "Planimetria con individuazione delle interferenze"

Per quanto riguarda l'interferenza tra strade comunali e le fasi di lavoro iniziali di installazione delle torri si rappresenta quanto segue.

Le strade giudicate non idonee al transito dei mezzi saranno oggetto di interventi di adeguamento per allargarne la sede stradale fino a circa 5.0 m, e nell'aumento del raggio di curvatura, il quale in nessun caso sarà inferiore a 70 metri.

La viabilità del parco prevede la progettazione di strade ex-novo, pertanto classificabili come nuovi interventi, che consentiranno l'accesso alle piazzole a servizio degli aerogeneratori.

Delle interferenze individuate, solo 3 necessitano della realizzazione ex novo di un attraversamento idraulico (Tombino) con la posa in opera di una tubazione DN1200 tipo ARMCO (cfr. Relazione idrologica e idraulica).

Esito delle dell'impianto

valutazioni sulla sicurezza

In riferimento agli aspetti riguardanti l'impatto acustico, gli effetti di shadow flickering e la rottura accidentale degli organi rotanti

Livelli di Rumore dell'Aerogeneratore

Gli aerogeneratori considerati nello studio specialistico sono stati schematizzati come sorgenti puntuali senza specifica direttività (omnidirezionali), poste a un'altezza dal p.c. pari all'altezza reale di installazione (altezza mozzo di 119 m).

Per quanto riguarda le emissioni acustiche, nel caso specifico in esame sono disponibili i dati forniti dal costruttore (cfr tabella seguente).

Al fine di determinare l'impatto acustico generato dall'entrata in esercizio dell'Impianto eolico, è stato poi introdotto il contributo sonoro apportato da ciascun aerogeneratore ipotizzando in maniera cautelativa lo scenario di funzionamento più gravoso in termini emissivi ovvero quello relativo alla massima potenza sonora Lw(A) emessa, pari a 106.8 dB(A), emessa dagli aerogeneratori in esame (corrispondente a velocità del vento al mozzo superiori a 9 m/s) senza dispositivi destinati a ridurre le emissioni acustiche. I risultati della presente valutazione sono stati visualizzati graficamente in forma di isofoniche (superfici di isolivello) sovrapposte ad una ripresa aerofotogrammetrica dell'area di studio.

Tabella 4: specifiche aerogeneratore di riferimento

Modello	Vestas V162
Potenza [MW]	4.5
Diametro rotore [m]	162
Altezza mozzo [m]	119
Velocità del vento ad	L _w (A) ¹ [dBA]
altezza hub [m/s]	Mode 0-0S
3	96.3
4	96.5
5	97.1
6	100.1
7	103.0
8	105.7
9	106.8
10	106.8
11	106.8
12	106.8
13	106.8
14	106.8

¹ Livello di potenza sonora, con ponderazione A, dichiarato dal costruttore a quota mozzo (hub). Il dato è riferito al cosiddetto "mode 0-0S" (Power Optimized 0-0S, Blades without serrated trailing edge), ovvero alle condizioni di massima producibilità della macchina, considerando comunque pale con bordo d'uscita non seghettato. Nel caso di bordo d'uscita seghettato, e quindi con una certa riduzione delle emissioni acustiche, si parla di Mode 0 con livello massimo di potenza acustica pari a 104.0 dB.

FRI-EL S.p.A.

15	106.8
16	106.8
17	106.8
18	106.8
19	106.8
20	106.8

In particolare, i dati riportati nella precedente tabella sono relativi alla modalità di settaggio della macchina eolica denominate "Mode 0-05", corrispondente, alla configurazione di massima producibilità, senza l'attivazione di dispositivi finalizzati a ridurre le emissioni acustiche² ed in più con il bordo d'uscita delle pale privo di seghettatura atta a ridurre il livello di rumorosità fino a 104.0 dB(A). In tal modo la simulazione è stata condotta nelle ipotesi più gravose (dal punto di vista dell'eventuale impatto acustico dell'opera in oggetto) per il rispetto dei limiti differenziali, dal momento che il rumore residuo generato dal vento al suolo, seppur presente, non è di intensità tale da coprire o mascherare parzialmente il rumore immesso dalle macchine, come accadrebbe in condizioni tipiche di funzionamento con più alti valori di velocità del vento.

Nell'immagine seguente è riportato uno stralcio della mappa previsionale del rumore ambientale post operam (superfici isofoniche dei livelli sonori di immissione) generato dal solo esercizio dell'impianto eolico in oggetto (cfr Allegato 2 elaborato F0307CR06A - A.6 Valutazione previsionale di impatto acustico) nello scenario analizzato. La mappa è calcolata alla quota di 4 m dal suolo per l'area oggetto di studio.

² Il modello Vestas V162-4.5 MW dispone di ulteriori 5 modalità di funzionamento "Sound Optimized" denominate "mode SO2" (Lw(A)max 102.0 dB), "mode SO3" (Lw(A)max 101.0 dB), "mode SO4" (Lw(A)max 100.0 dB), "mode SO5" (Lw(A)max 99.0 dB) e "mode SO6" (Lw(A)max 98.0 dB) che, a scapito della producibilità, riducono notevolmente le emissioni acustiche associate all'esercizio della macchina.

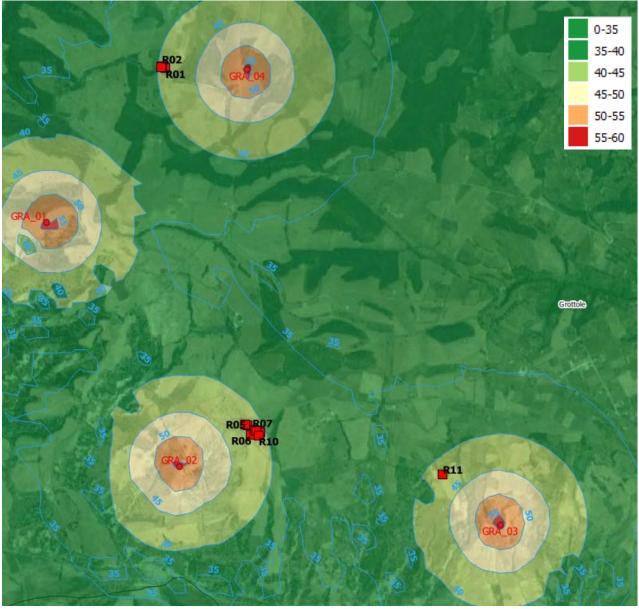


Figura 16: stralcio della mappa previsionale del rumore ambientale post operam (Lw(A) 106.8 dB); Ri: ricettori, GRA_i: aerogeneratori

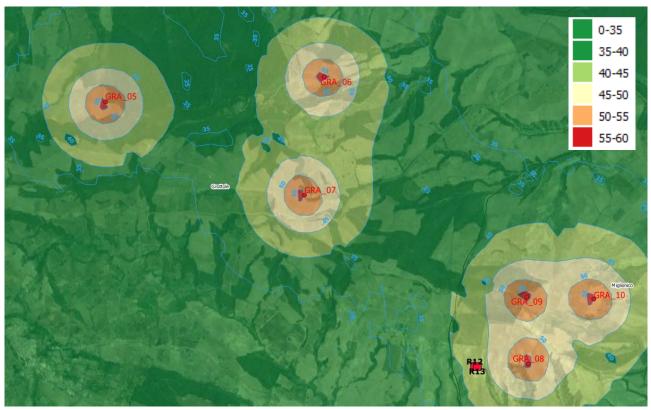


Figura 17: stralcio della mappa previsionale del rumore ambientale post operam (Lw(A) 106.8 dB); Ri: ricettori, GRA i: aerogeneratori

Shadow flickering

L'analisi dell'impatto da shadow flickering prodotto da un parco eolico è realizzata, generalmente, attraverso l'impiego di specifici applicativi che modellano il fenomeno in esame. I pacchetti software impiegati per la progettazione di impianti eolici contengono moduli specifici per il calcolo e l'analisi del fenomeno di flickering.

Nello specifico è stato impiegato il modulo shadow flickering del software WindFarm 4.2.5.3 (ReSoft Limited©). Esso consente di analizzare la posizione del sole nell'arco di un anno allo scopo di identificare i tempi in cui ogni aerogeneratore può proiettare ombre sulle finestre delle abitazioni vicine. In particolare, il modello permette di:

- calcolare il potenziale per le ombre intermittenti alle finestre delle abitazioni;
- mostrare un calendario grafico degli eventi di flickering;
- mostrare un elenco dettagliato di ciascun evento di ombreggiamento (ora di inizio, di fine, durata del fenomeno, aerogeneratore/i coinvolti ecc...);
- creare mappe di impatto potenziale che mostrano le ore d'ombra intermittente per l'intero parco eolico o per le singole macchine (curve di isodurata) nell'arco dell'anno.

www.f4ingegneria.it - f4ingegneria@pec.it

Al di là di una certa distanza, come già osservato, l'ombra smette di essere un problema perché il rapporto tra lo spessore della pala e il diametro apparente del disco solare diventa piccolo. Poiché non vi è un valore generalmente accettato per questa distanza massima, WindFarm permette di specificare il limite in metri o multipli del diametro della turbina o dell'altezza complessiva del generatore eolico.

nel caso in esame non è presente nessun impatto significativo da shadow flickering sui ricettori individuati, infatti i ricettori soggetti per più ore all'anno al fenomeno sono quelli indicati

con i codici R12 ed R13 (cfr. mappa allegata e figure seguenti) per i quali si registrano nell'arco dell'anno, rispettivamente, circa 48 e 55 ore potenziali del fenomeno analizzato (per effetto essenzialmente dell'aerogeneratore GRA_08). Si rappresenta, inoltre, che il valore riscontrato sui suddetti ricettori rappresenta la somma del fenomeno di shadow flickering sulle finestre più esposte allo stesso (direzione nord ed est), quindi, cautelativamente, si può considerare un numero di ore pari a circa la metà di quello sopra indicato per singola finestra.

In definitiva, si tratta di fenomeni:

- limitati nello spazio, in quanto relativi solo a due edifici molto prossimi;
- episodici durante l'anno e localizzati all'alba o al tramonto;
- di breve durata nel corso della giornata, in quanto ciascun edificio è interessato solo per un breve periodo;
- limitati come intensità, dal momento che la luce del sole, in condizioni di alba o tramonto, risulta di intensità modesta e, quindi, è modesta anche la variazione dovuta allo shadow flickering.

Alla luce di quanto sopra esposto, in corrispondenza dei suddetti ricettori, potrà essere prevista, di concerto con i proprietari dell'immobile, come intervento di mitigazione, la piantumazione di barriere sempreverdi (normali siepi di recinzione) al fine di ridurre e/o annullare completamente il fenomeno in oggetto e di eliminare completamente qualunque disturbo indotto.

Le distanze reciproche tra generatori eolici e ricettori, le condizioni orografiche del sito considerato, determinano la pressoché totale assenza del fenomeno in esame. In aggiunta, il fenomeno si manifesta esclusivamente quando il sole presenta un'altezza inferiore ai 14° sull'orizzonte, pertanto può ritenersi trascurabile, per l'elevata intensità della radiazione diffusa rispetto a quella diretta.

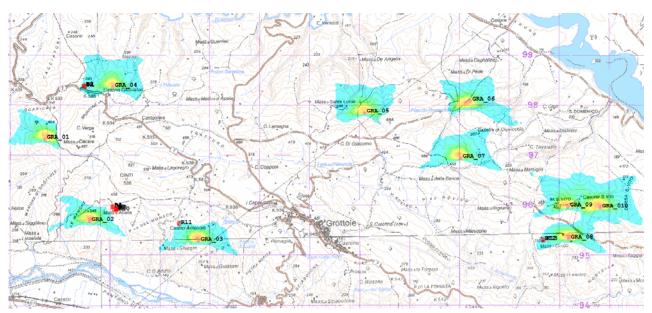


Figura 18: mappa di impatto potenziale (stralcio) da shadow flickering per il campo eolico in esame

Rottura accidentale degli organi rotanti

www.f4ingegneria.it - f4ingegneria@pec.it

La tecnologia costruttiva degli aerogeneratori è alquanto sofisticata e di chiara derivazione aeronautica, per cui, la valutazione della gittata massima degli elementi di un aerogeneratore, in caso di rottura accidentale, comporta lo sviluppo di modelli di calcolo articolati e complessi.

In generale, in fase progettuale si preferisce utilizzare un modello di facile soluzione e che fornisca un risultato maggiorato di circa il 20%, garantendo così un ulteriore margine di sicurezza.

Il calcolo della gittata massima richiede la conoscenza dei valori H (altezza del mozzo), R (distanza dal mozzo del baricentro del frammento staccatosi dal rotore) e V (velocità di distacco del frammento di pala).

Nel caso analizzato, i valori di H ed R sono rispettivamente H=119 m ed R=81 m.

Il massimo numero di giri per minuto che l'aerogeneratore compie è pari 12.1, quindi supponendo che la rottura della pala avvenga vicino al mozzo e considerando R=27 m (lunghezza pala/3), si ottiene una velocità di distacco di 34.19 m/s nel baricentro della pala.

Di seguito si riporta il grafico della gittata in funzione dell'angolo e della velocità di distacco.

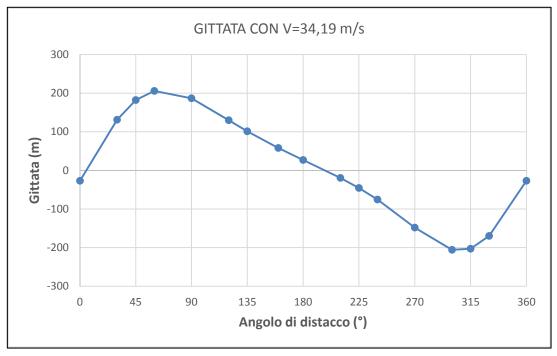


Figura 19: andamento della gittata in funzione dell'angolo e della velocità di distacco

Nel grafico si propone la gittata massima nel caso in cui si distacchi l'intera pala dal mozzo con una velocità di 34.19 m/s, che costituisce la massima velocità raggiunta dal baricentro della pala allorquando il rotore compie 12.1 rivoluzioni per minuto.

La gittata massima calcolata è di circa 206 m.

Il valore ricavato è sicuramente compatibile con quello degli studi forniti dalle ditte produttrici.

8 Esito delle valutazioni delle criticità ambientali

Analisi degli aspetti riguardanti il paesaggio, l'ambiente, gli immobili di interesse storico e sintesi degli interventi di mitigazione e compensazione ambientale

Di seguito si riporta una sintesi delle valutazioni della magnitudo degli impatti del progetto sulle varie componenti ambientali, considerando separatamente la fase di costruzione (cantiere) e quella di esercizio, anche a seguito dell'azione delle eventuali misure di mitigazione previste.

Il livello dell'impatto residuo è in genere "basso" e non supera mai la magnitudo "medio". Nella fase di esercizio si evidenzia che le componenti ambientali "Atmosfera", "Acqua" e "Popolazione e Salute" generano impatti con magnitudo "positiva".

Fase	Fattori di perturbazione	Impatti potenziali	01 Atm.	02 Acqua	03 Suolo e Sott.	04 Biodiv.	06 Paes.	05 Pop. e Salute	07 Rum.
	Emissioni rumorose	Disturbo sulla popolazione residente							Basso
	Fabbisogni civili e bagnatura superfici	Consumo di risorsa idrica		Basso					
	Incremento della pressione antropica nell'area	Disturbo alla fauna				Basso			
	Transito e manovra dei mezzi/attrezzature di cantiere	Emissioni di gas serra da traffico veicolare	Basso						
	Transito di mezzi pesanti	Disturbo alla viabilità						Basso	
	Movimentazione mezzi e materiali	Emissioni di polvere per movimenti terra e traffico veicolare	Medio						
	Sversamenti e trafilamenti accidentali dai mezzi e dai materiali	Alterazione della qualità delle acque superficiali e sotterranee		Basso					
RE	Modifica della morfologia del terreno attraverso scavi e riporti	Rischio instabilità dei profili delle opere e dei rilevati			Basso				
CANTIERE	Realizzazione delle opere in progetto	Sottrazione di habitat per occupazione di suolo				Basso			
	Immissione nell'ambiente di sostanze inquinanti	Alterazione di habitat nei dintorni dell'area di interesse				Basso			
	Esecuzione dei lavori in progetto	Impatto sull'occupazione						Posit.	
	Esecuzione dei lavori in progetto	Effetti sulla salute pubblica						Basso	
	Sversamenti e trafilamenti accidentali dai mezzi e dai materiali temporaneamente stoccati in cantiere	Alterazione della qualità dei suoli			Basso				
	Logistica di cantiere	Alterazione morfologica e percettiva del paesaggio					Basso		
	Occupazione di suolo con manufatti di cantiere	Limitazione/perdita d'uso del suolo			Basso				
	Realizzazione cavidotto	Rendina				Basso			
ES ER	Emissioni rumorose	Disturbo sulla popolazione residente							Basso

Incremento della pressione antropica nell'area	Disturbo alla fauna				Basso			
Presenza ed esercizio delle opere in progetto			Basso					
Occupazione di suolo con i nuovi manufatti	Limitazione/perdita d'uso del suolo			Basso				
Realizzazione delle opere in progetto	Sottrazione di habitat per occupazione di suolo				Basso			
Presenza dell'impianto eolico	Alterazione morfologica e percettiva del paesaggio					Medio		
Esercizio dell'impianto	Emissioni di gas serra	Pos.						
Esercizio dell'impianto	Impatto sull'occupazione						Pos.	
Esercizio dell'impianto	Effetti sulla salute pubblica						Basso	
Esercizio dell'impianto	Consumo di risorsa idrica ed alterazione della qualità delle acque		Pos.					
Esercizio dell'impianto	Incremento della mortalità dell'avifauna per collisione con gli aerogeneratori				Basso			
Esercizio dell'impianto	Incremento della mortalità dei chirotteri per collisione con gli aerogeneratori				Basso			

Impatto visivo e paesaggistico

L'installazione di un parco eolico all'interno di una zona naturale più o meno antropizzata, richiede analisi sulla qualità e soprattutto, sulla vulnerabilità degli elementi che costituiscono il paesaggio di fronte all'attuazione del progetto.

L'analisi dell'impatto visivo del futuro parco costituisce un aspetto di particolare importanza all'interno dello studio paesaggistico a partire dalla qualità dell'ambiente e dalla fragilità intrinseca del paesaggio.

Allo stesso modo, l'analisi dell'impatto visivo del progetto ha tenuto conto dell'equilibrio proprio del paesaggio in cui si colloca il parco eolico e delle possibili alterazioni del panorama in relazione ai diversi ambiti visivi.

Una ulteriore fonte di informazioni per la corretta definizione delle caratteristiche paesaggistiche è la Carta della Naturalità che rappresenta aree che per il carattere intrinseco della naturalità risultano omogenee indipendentemente dal fatto che le biocenosi, l'assetto dei sistemi territoriale, l'uso del suolo siano differenti.

L'attribuzione ai vari livelli di naturalità dei vari contesti territoriali e degli habitat in essi presenti è stata effettuata valutando le alterazioni esistenti in termini floristici e strutturali della vegetazione attuale rispetto a quella potenziale.

L'impatto sulla componente paesaggio durante la fase di esercizio è senza dubbio un elemento di notevole contrasto nell'ambito di una valutazione tra il giudizio positivo e quello negativo: l'argomento è tuttora dibattuto dall'opinione pubblica interessata dalla presenza di wind farms e pare non realistico trovare una soluzione condivisa da tutti circa l'accettabilità della modificazione paesaggistica legata alla presenza di un parco eolico.

In letteratura esistono molte organizzazioni planimetriche che hanno il potenziale per ridurre gli impatti sul paesaggio. Gipe (2002) suggerisce che una collocazione corrispondente alle caratteristiche del paesaggio esistente – per esempio, a riflettere le linee di crinale in un ambiente collinare, o a scacchiera in un territorio piano – contribuisce alla "leggibilità" degli impianti, con impatti più positivi ed accettabili.

Secondo Stanton (1996), collocare le apparecchiature eoliche lontano dai crinali non ne riduce l'impatto, e compromette la correlazione fra paesaggio e funzioni delle stesse: "è un problema di onestà, rappresentare una forma in correlazione diretta alla sua funzione e alla nostra cultura".

Al fine di procedere ad una stima corretta dell'impatto visivo del parco eolico in progetto sono stati effettuati dei fotoinserimenti. In tal modo è possibile comprendere come il paesaggio possa modificarsi all'interno di uno scenario naturale essenzialmente costituito da campi coltivati a seminativi, intercalati da piccole zone in cui è presente vegetazione arborea ed arbustiva.

Di seguito, a titolo esemplificativo, si riportano alcuni i fotoinserimenti citati.

Figura 20: Stato dei luoghi post operam

Figura 21: Stato dei luoghi post operam

Figura 22: Stato dei luoghi post operam

Figura 23 - Stato dei luoghi post operam

Figura 24 - Stato dei luoghi post operam

Figura 25 - Stato dei luoghi post operam

I colori tenui con i quali verranno realizzate le macchine, sullo sfondo del cielo, tendono a sfumarne l'esile sagoma.

L'analisi della visibilità a larga scala è stata effettuata attraverso l'utilizzo delle mappe di intervisibilità che, sulla base dell'orografia, caratterizzano il territorio limitrofo al parco classificandolo in base al numero di aerogeneratori visibili da ciascun punto del territorio stesso. La mappa è stata generata considerando anche la parziale visibilità delle torri.

Immobili di interesse storico ed artistico

Per quanto riguarda le aree sottoposte a tutela del paesaggio, del patrimonio storico, artistico ed architettonico (Punto 1 dell'allegato alla d.g.r. n.903/2015), si rileva la vicinanza con il convento di San Francesco a Grottole (bene posto al di fuori del centro abitato e vincolato ai sensi del d.lgs. n.42/2004), sebbene non vi sia interferenza diretta, è necessario tener conto di un buffer di 3 km all'interno del quale rientrano gli aerogeneratori "GRA 03" e "GRA 05". Inoltre l'aerogeneratore "GRA 05", alcuni tratti del cavidotto e la sottostazione esistente rientrano in area di interesse archeologico del territorio di Irsina.

Nei pressi dell'aerogeneratore "GRA _09" parte del cavidotto di collegamento interseca una porzione del Comune di Miglionico individuata come area di notevole interesse pubblico, è da tenere presente che viene sfruttata la pista di servizio esistente e che l'opera realizzata è del tutto interrata e quindi non altera in alcun modo il contesto paesaggistico esistente.

Per quanto riguarda i corsi d'acqua iscritti negli elenchi delle acque pubbliche, si osserva la presenza della sottostazione e, con molta probabilità, di parte del cavidotto di collegamento, in area ricadente all'interno del buffer di 150 m dal torrente Acquaviva – Valle Rovivo, rientrante negli elenchi delle acque a valenza pubblica e vincolato ai sensi del d.lgs. n.42/2004. Si deve precisare che le opere sono previste all'interno del perimetro di una SET esistente e che in ogni caso si prevede l'attivazione di un procedimento finalizzato all'ottenimento del nulla osta di competenza.

In relazione al Regio tratturo Monte San Vito Tre Confini che risulta vincolato in territorio di Miglionico, il rischio di interferenze è stato annullato prevedendo l'innesto del cavidotto di collegamento di GRA 09 in territorio di Grottole e una TOC per il cavidotto tra GRA 08 e GRA 09. La TOC interessa il buffer di 200 metri dal tratturo, ma essendo interrata non va ad alterare assolutamente il paesaggio esistente.

Prendendo in considerazione i buffer dai centri abitati e dai centri storici limitrofi, si costata la presenza degli aerogeneratori "GRA 03-05-07", all'interno del buffer di 3 km dal limite d'ambito urbano del Comune di Grottole e all'interno del buffer di 5 km dal perimetro del centro storico degli aerogeneratori "GRA03-02-03-04-05-06-07-08-09". In merito ai suddetti buffer si rappresenta che gli stessi sono relativi a quanto stabilito dalla l.r. Basilicata n. 54/2015 che rappresenta il "Recepimento dei criteri per il corretto inserimento nel paesaggio e sul territorio degli impianti da fonti di energia rinnovabili ai sensi del D.M. 10.09.2010"; si ribadisce, come già ampiamente riportato all'interno della documentazione dello Studio di impatto ambientale, che le precedenti categorie non costituiscono un motivo di preclusione a priori alla realizzazione dell'impianto in

<u>esame</u>, <u>ma piuttosto</u>, <u>se necessario</u>, <u>possono essere sottoposte ad eventuali prescrizioni ai fini del</u> corretto inserimento nel territorio della proposta progettuale in esame.

Per maggiori dettagli sui vincoli paesaggistici e storico-architettonici, si rimanda alle tavole vincolistiche.

Esito delle valutazioni e descrizione degli interventi di mitigazione in riferimento alle emissioni sonore, vibrazioni, gestione dei reflui e dei rifiuti ed emissioni in atmosfera: matrici sinottiche

Emissioni sonore

In base alle valutazioni effettuate nello studio previsionale di impatto acustico, ipotizzando lo scenario di funzionamento più gravoso dal punto di vista delle emissioni di rumore del parco eolico "Monte San Vito" (livello di potenza sonora L_{WA} pari a 106.8 dB) si evince che i limiti assoluti di immissione di cui all'art. 6 dpcm 1.03.1991, validi per "Tutto il territorio nazionale", risultano sempre ampiamente rispettati, sia per il periodo di riferimento diurno che per quello notturno.

Relativamente ai limiti differenziali, di cui all'art. 2, comma 2 del citato dpcm, che in genere costituiscono la principale criticità per la compatibilità acustica di impianti di questo tipo, si riscontra anche per essi, il rispetto sia per il periodo di riferimento diurno che per quello di riferimento notturno per tutti i ricettori potenzialmente sensibili considerati nell'analisi.

Per quanto concerne in particolare il limite differenziale è opportuno comunque effettuare le seguenti precisazioni:

- la caratterizzazione del clima acustico notturno ante operam è stata effettuata con una velocità del vento sempre inferiore a 3 m/s (la normativa prevede che, al fine di ottenere delle misure rappresentative, i rilievi debbano essere effettuati ad una velocità del vento inferiore ai 5 m/s), registrando livelli di rumore di fondo inferiori rispetto a quelli che si otterrebbero durante le condizioni di esercizio ipotizzate per l'impianto eolico in oggetto (velocità del vento al mozzo superiori a 9 m/s). Pertanto, i risultati che si sono ottenuti tutelano i ricettori sensibili anche alla luce di numerosi studi in materia, che evidenziano come all'aumentare della velocità del vento il rumore di fondo tende a mascherare completamente il livello di pressione sonora generato dal parco eolico;
- In normativa impone la verifica del rispetto dei limiti differenziali negli ambienti abitativi interni ma, tuttavia, per ragioni di accessibilità ai singoli edifici, i rilievi fonometrici sono stati condotti in prossimità dei ricettori sensibili, presso postazioni ritenute rappresentative del clima acustico dei singoli ricettori individuati. Pertanto, la verifica del criterio differenziale è stata effettuata utilizzando quale contributo sonoro dei soli aerogeneratori il valore restituito dal modello numerico di simulazione in prossimità della facciata degli edifici, ritenuto rappresentativo del valore misurato all'interno dell'edificio a finestre aperte. Tale approccio nell'applicazione del criterio differenziale è cautelativo per i ricettori sensibili, in quanto è plausibile ritenere che i valori così ottenuti siano sensibilmente più alti di quelli che si misurerebbero all'interno delle abitazioni a finestre aperte.
- le caratteristiche tecniche degli aerogeneratori da impiegarsi nel parco eolico in esame consentono agli stessi di adeguare i livelli di pressione sonora emessi (a scapito di un decremento dell'efficienza e quindi della producibilità) nel caso di scenari di funzionamento critici (in corrispondenza di velocità del vento ad altezza mozzo maggiori di 9 m/s) riducendone così, anche sensibilmente, l'impatto acustico.

Alla luce delle suddette considerazioni, è possibile concludere che, in fase di esercizio, anche nello scenario emissivo più gravoso, il parco eolico oggetto del presente studio sarà compatibile con il clima acustico dell'area interessata.

In ogni caso, al fine di tutelare ulteriormente i ricettori individuati e di convalidare i risultati stimati dalla presente valutazione di impatto acustico, si ritiene opportuno prevedere, in fase di avvio del parco eolico, un monitoraggio post operam dei livelli di rumore generati dall'impianto stesso in condizioni di reale operatività. Qualora, in fase di collaudo, le previsioni si rivelassero non corrispondenti alle ipotesi di progetto e quindi i limiti normativi non fossero rispettati, si provvederà ad attenuare i livelli sonori prodotti mediante opportune soluzioni di bonifica acustica al fine di rientrare nei limiti imposti.

Per ulteriori dettagli si rimanda all'elaborato "Valutazione previsionale impatto acustico".

Vibrazioni

Non si rilevano impatti significativi legati alla componente vibrazioni.

Gestione dei reflui

La maggior parte della viabilità di servizio e le piazzole su cui sorgeranno le turbine verranno realizzate senza ricorrere a pavimentazioni impermeabili, questo consentirà di non provocare variazioni sensibili al coefficiente di infiltrazione delle precipitazioni, non perturbando le dinamiche di ricarica delle falde acquifere.

Come detto in precedenza, il futuro impianto eolico sarà collegato sulla stazione elettrica (SE) della RTN esistente denominata "Grottole", mediante gli impianti esistenti della società FRI-EL Grottole Srl; pertanto si farà riferimento alla gestione dei servizi igienici secondo le modalità già presenti in sito.

I reflui prodotti in fase di cantiere per servizi igienici sono trattati con l'ausilio di autospurgo, in conformità alle vigenti norme, rendendo pressoché nulla la possibilità che si verifichino sversamenti nell'ambiente circostante.

Gli impatti sulla componente suolo sono essenzialmente legati alle operazioni di movimento materie per la realizzazione delle strade di servizio, delle piazzole e dei cavidotti per la connessione alla rete A.T. In base a quanto emerge dagli elaborati progettuali, nell'ambito delle lavorazioni in esame, non si realizzano scavi o riporti tali da compromettere la componente suolo e sottosuolo.

Il volume di terreno da movimentare per la realizzazione del progetto nelle varie fasi di lavoro è riportato nella seguente tabella:

Tabella 5 - Movimento materie interventi sulla viabilità e piazzole di stoccaggio e montaggio

Tracciati	Intervento di adeguamento (m)	Ex novo (m)	Scavo (m³)	Riporto (m³)
GRA01	0	1335	16170	1727
GRA02	1900	515	19109	3534
GRA03	500	575	11503	1598
GRA04	0	235	11392	612
GRA05	280	500	8638	2011
GRA06	800	320	8504	8020
GRA07	0	385	12080	1374

GRA08	400	450	4701	662
GRA09	0	275	14030	5084
GRA10	0	550	3556	3716
BYPASS	265	0	1537	182
Allargamenti adeguamenti vari	700	0	4487	770
Totali	4845	5140	115706	29290

Il materiale proveniente dagli scavi sarà accantonato temporaneamente nei pressi degli stessi siti di scavo (ad esempio nelle piazzole dei singoli aerogeneratori) e riutilizzato all'interno dello stesso sito o trasportato in altro sito all'interno del cantiere-impianto eolico, laddove all'occorrenza. I volumi di terreno suddetti saranno pari a ca. 68.000 m³.

Gestione dei rifiuti

Nell'area di cantiere è prevista la predisposizione di zone destinate alla raccolta differenziata delle differenti tipologie di rifiuti prodotti. Tutti i rifiuti prodotti durante la fase di costruzione saranno in ogni caso gestiti in conformità alla normativa vigente, favorendo le attività di recupero, ove possibile, in luogo dello smaltimento.

In considerazione della tipologia dei rifiuti prodotti, delle modalità controllate di gestione degli stessi e della temporaneità delle attività di cantiere, non si prevedono effetti negativi rilevanti sulla componente in esame. Durante la fase di esercizio potranno essere prodotti rifiuti esclusivamente in concomitanza di attività manutentive sia ordinarie che straordinarie. Anche in questo caso essi saranno gestiti dalla ditta responsabile della manutenzione in conformità alla normativa vigente.

Emissioni in atmosfera

La componente atmosfera manifesta delle interferenze con il progetto che sono sostanzialmente molto diverse tra la fase di cantiere e quella di esercizio.

Nella fase di cantiere tale componente è oggetto di interazioni (negative) legate alle emissioni di polveri e gas serra: durante le operazioni di movimento materia legate essenzialmente alle attività di realizzazione della viabilità di servizio e dei cavidotti; mentre nella fase di esercizio le interazioni divengono positive e legate alla produzione di energia elettrica senza alcuna emissione di gas serra.

La valutazione della componente atmosfera in termini qualitativi non può attuarsi in maniera puntuale, in quanto mancano dati di rilevazione dei parametri di riferimento; nell'area in esame non è presente un sistema di monitoraggio della qualità dell'aria.

Per giungere ad una definizione dello stato attuale dell'atmosfera si è proceduto puntando preliminarmente alla descrizione e alla ricerca delle principali sostanze inquinanti e delle loro fonti di emissione. Esse sono in gran parte prodotte dall'attività umana (attività industriale, centrali termoelettriche, riscaldamento domestico, trasporti) e, in misura minore, sono di origine naturale (pulviscolo, eruzioni vulcaniche, decomposizione di materiali organici, incendi).

Gli indicatori relativi all'ambiente atmosferico sono le emissioni, la cui quantificazione, distribuzione ed evoluzione temporale derivano da processi di stima, mentre la qualità dell'aria è basata su indicatori di stato. Le sostanze emesse nell'ambiente atmosferico contribuiscono alle seguenti fenomenologie: i cambiamenti climatici, la diminuzione dell'ozono atmosferico,

Parco Eolico "Monte San Vito"

Relazione generale

l'acidificazione, lo smog fotochimico, il deterioramento della qualità dell'aria. Le sostanze lesive per l'ozono stratosferico sono CFC e HCFC, mentre i gas serra responsabili dei cambiamenti climatici sono CO₂, CH₄, N₂O, HFC, PFC, SF₆; le sostanze acidificanti sono SO_X, NO_X.

Gli indicatori relativi alla qualità dell'aria e ritenuti più significativi, anche in relazione alla normativa vigente, sono: ossidi di azoto NO₂ e NO_X, la cui fonte è rappresentata principalmente da impianti di riscaldamento civile ed industriale, da traffico autoveicolare, dalle centrali di produzione di energia e da attività derivanti da processi industriali vari, quali produzione di vetro, calce cemento, ecc. Gli ossidi di azoto contribuiscono ai fenomeni di eutrofizzazione, smog fotochimico e piogge acide. L'ozono troposferico è di origine sia antropica sia naturale ed è un inquinante secondario, cioè non viene emesso direttamente da una o più sorgenti, ma si produce per effetto della radiazione solare in presenza di inquinanti primari quali ossidi di azoto NO_X e composti organici volatili (COV), prodotti in larga parte dai motori a combustione e dall'uso di solventi organici.

Le principali sorgenti di PM_{10} si possono dividere in due categorie sorgenti naturali (erosione dei suoli e degli edifici da parte degli agenti meteorologici) e antropiche (principalmente traffico autoveicolare, gli impianti di riscaldamento e alcuni processi industriali). Il particolato fine è monitorato principalmente per i suoi effetti sanitari e tossicologici.

Le principali sorgenti di benzene C₆H₆ sono gli autoveicoli alimentati a benzina (gas di scarico e vapori), i processi di combustione che usano combustibili derivati dal petrolio e l'uso di solventi contenenti benzene.

Si fa presente che l'area in esame non è interessata da insediamenti industriali e attività produttive che possano causare rilascio di emissioni inquinanti in atmosfera e, anzi, è prevalentemente orientata verso l'utilizzo agricolo.

Pertanto, in assenza delle principali fonti di emissione degli inquinanti citati, nonché, appunto, in considerazione dell'uso attuale del territorio e dello stato ambientale, si ritiene che il livello di qualità dell'aria sia in linea con i dati delle centraline di monitoraggio gestite dall'ARPA di Basilicata più vicine all'area di intervento. I dati riportati nello Studio di impatto ambientale si riferiscono alle relazioni ambientali disponibili per 2016 2017 (http://www.arpab.it/pubblicazioni.asp).

Valutazione impatti - Impatto in fase di costruzione

Polveri da movimento terra

In tale fase sono riconoscibili effetti derivanti dai movimenti terra per la realizzazione/sistemazione della viabilità di servizio e delle piazzole, oltre che dal transito dei mezzi di cantiere.

Le emissioni sono state stimate a partire da una valutazione quantitativa delle attività svolte nei cantieri, tramite opportuni fattori di emissione derivati da "Compilation of air pollutant emission factors" - E.P.A. - Volume I, Stationary Point and Area Sources (Fifth Edition) e riportati all'interno di linee guida prodotte da Barbaro A. et al. (2009) per la Provincia di Firenze. Per i dettagli si rimanda al Quadro Ambientale dello Studio di impatto.

Sulla base delle assunzioni fatte, sono state calcolate le emissioni di polveri. In particolare, i dati evidenziano un abbattimento mediamente pari all'88% di quelle stimate in assenza di misure di mitigazione. In assenza di specifici fattori di emissione, si è ipotizzato che il PM₁₀ costituisca il 60% delle PTS e che il PM_{2.5} sia pari alla sottrazione tra PTS e PM₁₀.

Per l'abbattimento delle polveri emesse dalle operazioni sopra descritte sono previste una serie di misure di mitigazione, tra cui:

- Bagnatura con acqua delle superfici di terreno oggetto di scavo e movimentazione con idonei nebulizzatori ad alta pressione. Tale sistema risulta idoneo all'applicazione in esame in quanto progettato per l'impiego in esterno e su ampie superfici. Inoltre, tale sistema garantisce bassi consumi idrici ed evita il formarsi di fanghiglia a causa di eccessiva bagnatura del materiale stesso
- Bagnatura con acqua del fondo delle piste non pavimentate interne all'area di cantiere attraverso l'impiego di autocisterne. In particolare di prevede un abbattimento pari al 90% delle emissioni.
- Pulizia delle ruote dei mezzi in uscita dall'area di cantiere attraverso il montaggio di idonea vasca di lavaggio, onde evitare la produzione di polveri anche sulle strade pavimentate.

Ulteriori precauzioni che possono essere adottate per ridurre in concreto le emissioni di polveri sono:

- Copertura del materiale caricato sui mezzi, che potrebbe cadere e disperdersi durante il trasporto, oltre che dei cumuli di terreno stoccati nell'area di cantiere;
- Circolazione a bassa velocità nelle zone di cantiere sterrate;
- Se necessario, idonea recinzione delle aree di cantiere con barriere antipolvere, finalizzata a ridurre il sollevamento e la fuoriuscita delle polveri;
- Se necessario, sospensione delle attività di cantiere nel caso di condizioni particolarmente ventose.

I risultati evidenziano che, grazie ai sistemi di abbattimento previsti, le emissioni di polveri si mantengono in un intervallo che va da 415 a 830 g/h che può essere considerato un valore medio, pertanto sono **necessarie attività di monitoraggio presso il recettore.**

Si tratta di valori comunque accettabili per il tipo di attività.

Pertanto l'impatto è ritenuto:

- Temporaneo, ovvero legato esclusivamente alla durata dei lavori, prevista in circa 12 mesi; in grado di diffondersi, nelle peggiori condizioni atmosferiche, poco oltre gli immediati dintorni del perimetro dell'area di cantiere, in presenza delle opportune misure di mitigazione;
- Di media intensità; sensibilità moderata dei recettori o delle risorse anche se essendo un impatto temporaneo si ha completa reversibilità. Peraltro, essendo in ambito agricolo, le emissioni di polveri derivanti dalle lavorazioni meccaniche dei terreni sono più che tollerate, poiché normalmente prodotte durante le lavorazioni sui terreni e sulle colture;
- Basso, in termini di numero di elementi vulnerabili poiché limitato a piccole comunità di individui.

Si ritiene auspicabile l'adozione, quale misura di mitigazione, della bagnatura delle superfici e dei cumuli, poiché consente di ridurre l'impatto fino a valori più che accettabili, anche se ciò comporta il consumo di una certa quantità di risorsa idrica.

Emissioni inquinanti da traffico veicolare

I mezzi d'opera impiegati per il movimento materie e, più in generale, per le attività di cantiere, determinano l'immissione in atmosfera di sostanze inquinanti (CO, CO₂, NO_X, SO_X, polveri) derivanti dalla combustione del carburante.

La metodologia adottata per la stima di tali emissioni si basa sull'utilizzo dei fattori di emissione elaborati dall'E.E.A. (*European Environmental Agency*), relativi ai mezzi di trasporto circolanti in Italia.

Le emissioni gassose dei veicoli dipendono fortemente dal tipo e dalla cilindrata del motore, dai regimi di marcia, dalla temperatura, dal profilo altimetrico del percorso e dalle condizioni ambientali.

Va specificato che il fattore di emissione tabellato di seguito rappresenta un valore medio che non tiene conto, ad esempio, dell'efficienza dei controlli, della qualità della manutenzione, delle caratteristiche operative e dell'età del mezzo.

Nel caso in esame è stata effettuata una stima del livello di emissioni nelle aree di cantiere e dei trasporti all'esterno di queste.

Tabella 6 – Emissioni per veicolo pesante >32t – copert 3 (Banca dati dei fattori di emissione medi per il parco circolante in Italia – A.P.A.T.)

NOx					PM				
Driving conditions	g/km*veh		g/kg of fuel		Driving conditions	g/kr	n*veh	g/kg	of fuel
	Hot	Tot	Hot	Tot		Hot	Tot	Hot	Tot
Highway	0	4.71	0	15.03	Highway	0	0.2	0	0.64
Rural	5.9	5.9	18.95	18.95	Rural	0.15	0.24	0.48	0.77
Urban	8.96	8.96	18.99	18.99	Urban	0.29	0.38	0.62	0.81
NMVOC					CO2				
Driving conditions		g/km*veh	g/kg	of fuel	Driving conditions	g/kr	n*veh	g/kg	of fuel
	Hot	Tot	Hot	Tot		Hot	Tot	Hot	Tot
Highway	0	0.49	0	1.57	Highway	0	982.99	0	3137.64
Rural	0.66	0.66	2.12	2.12	Rural	977.25	977.25	3137.64	3137.64
Urban	1.15	1.15	2.44	2.44	Urban	1480.62	1480.62	3137.64	3137.64
СО					N2O				
Driving conditions		g/km*veh	g/kg of fuel		Driving conditions	g/km*veh		g/kg of fuel	
	Hot	Tot	Hot	Tot		Hot	Tot	Hot	Tot
Highway	0	1.09	0	3.48	Highway		0.03		0.1
Rural	1.11	1.11	3.57	3.57	Rural		0.03		0.1
Urban	1.95	1.95	4.13	4.13	Urban		0.03		0.06
					NH3				
					Driving conditions	g/kr	n*veh	g/kg	of fuel
Tipo di veicolo	Peso	Tipo combustibile				Hot	Tot	Hot	Tot
Heavy duty	>32t	Gasolio			Highway		0		0.01
					Rural		0		0.01
					Urban		0		0.01

In base alle valutazioni eseguite, è risultato che le emissioni durante le operazioni di movimentazione dei mezzi, tutti omologati ed accompagnati da certificato di conformità, risulteranno conformi alle normative internazionali sulle emissioni in atmosfera.

Le quantità in gioco, comunque, non sono in grado di produrre (da sole) effetti significativi dal punto di vista dei cambiamenti climatici.

In virtù di ciò, l'impatto connesso con le emissioni inquinanti derivanti dal traffico veicolare, può ritenersi:

- Temporaneo, ovvero legato esclusivamente alla durata dei lavori, prevista in circa 12 mesi;
- Confinato all'interno dell'area di cantiere, o al massimo nei suoi immediati dintorni;
- Di modesta intensità, oltre che con completa reversibilità;

 Ridotto, in termini di numero di elementi vulnerabili, limitato ad un basso numero di abitazioni rurali presenti negli immediati dintorni.

L'attenta manutenzione e le periodiche revisioni contribuiscono inoltre a garantire un buon livello di funzionamento e, di conseguenza, il rispetto degli standard attesi. Si fa presente, inoltre, che per tutti i mezzi di trasporto vige l'obbligo, durante le fasi di carico e scarico, di spegnere il motore e di circolare entro l'area di cantiere con velocità ridotte.

Va in ogni caso rilevato che le emissioni in fase di cantiere sono abbondantemente compensate dalla riduzione delle emissioni di CO_2 equivalente durante la fase di esercizio dell'impianto.

Valutazione impatti - Impatto in fase di esercizio

In fase di esercizio, tralasciando le trascurabili emissioni di polveri ed inquinanti dovute alle operazioni di manutenzione ordinaria e straordinaria, la produzione di energia elettrica consente di evitare il ricorso a fonti di produzione inquinante.

In proposito, l'ISPRA (2019), ha calcolato quanto la produzione di energia elettrica da fonti rinnovabili determina una riduzione del fattore di emissione complessivo da fonte fossile, che nel 2016 e 2017 (per quest'ultimo anno i dati sono provvisori) è stato rispettivamente pari a 316,4 e 298,2 gCO₂/kWh in media (dato che non comprende la produzione di calore).

Sulla base degli stessi dati, solo in termini di sostituzione con un impianto alimentato da fonti fossili, un impianto eolico consente di evitare la produzione di 492,9 gCO₂/kWh prodotto (dati relativi al 2018) in media. Quindi, l'impatto è pertanto fortemente positivo.

9 Indagini geologiche, idrogeologiche, idrologiche idrauliche, geotecniche, sismiche, ecc.

Ai fini della caratterizzazione preliminare per la fattibilità del progetto, volta a definire le caratteristiche geologiche latu sensu dell'intera area e ad escludere la presenza di elementi di criticità morfologica, il rilevamento geo-morfologico di superficie e la consultazione di indagini pregresse si sono dimostrate utili al raggiungimento dell'obiettivo. Le informazioni, tuttavia, possono ritenersi valide nei limiti che questa prima fase cognitiva consente, ovvero acquisizione di dati e notizie preliminari finalizzate alla redazione del progetto definitivo allo scopo di attivare tutte le procedure autorizzative del caso.

Si rimanda ai successivi gradi di approfondimento della progettazione la verifica arealmente estesa e puntuale delle caratteristiche litologiche, geotecniche, idrogeologiche e sismiche dei terreni di sedime che sarà di approfondimento di quanto già riportato nella documentazione geologica e che, inoltre, consentirà anche di redigere una cartografia tematica di maggior dettaglio.

La campagna di indagini geognostiche è stata strutturata in relazione alla natura dei litotipi affioranti ed ha visto l'esecuzione di prove sismiche indirette che hanno interessato l'area di sedime degli aerogeneratori in progetto.

Gli allegati alla relazione geologica riportano, in scala 1:5000, l'ubicazione di tutte le indagini eseguite con la localizzazione delle postazioni delle nuove torri eoliche.

10 Criteri ed elaborati del progetto esecutivo

Si riportano, di seguito, l'elenco e la descrizione dei documenti componenti il progetto esecutivo in accordo con il D.P.R. 5 ottobre 2010, n. 207.

Introduzione

- 1. Il progetto esecutivo costituisce la ingegnerizzazione di tutte le lavorazioni e, pertanto, definisce compiutamente ed in ogni particolare architettonico, strutturale ed impiantistico l'intervento da realizzare. Restano esclusi soltanto i piani operativi di cantiere, i piani di approvvigionamenti, nonché i calcoli e i grafici relativi alle opere provvisionali. Il progetto è redatto nel pieno rispetto del progetto definitivo nonché delle prescrizioni dettate in sede di rilascio della concessione edilizia o di accertamento di conformità urbanistica, o di conferenza di servizi o di pronuncia di compatibilità ambientale ovvero il provvedimento di esclusione delle procedure, ove previsti. Il progetto esecutivo è composto dai seguenti documenti:
 - a) relazione generale;
 - b) relazioni specialistiche;
- c) elaborati grafici comprensivi anche di quelli delle strutture, degli impianti e di ripristino e miglioramento ambientale;
 - d) calcoli esecutivi delle strutture e degli impianti;
 - e) piani di manutenzione dell'opera e delle sue parti;
 - f) piani di sicurezza e di coordinamento;
 - g) computo metrico estimativo definitivo e quadro economico;
 - h) cronoprogramma;
 - i) elenco dei prezzi unitari e eventuali analisi;
- I) quadro dell'incidenza percentuale della quantità di manodopera per le diverse categorie di cui si compone l'opera o il lavoro;
 - m) schema di contratto e capitolato speciale di appalto.

Relazione Generale del Progetto Esecutivo

FRI-EL S.p.A.

00186 Roma (RM)

- 1. La relazione generale del progetto esecutivo descrive in dettaglio, anche attraverso specifici riferimenti agli elaborati grafici e alle prescrizioni del capitolato speciale d'appalto, i criteri utilizzati per le scelte progettuali esecutive, per i particolari costruttivi e per il conseguimento e la verifica dei prescritti livelli di sicurezza e qualitativi. Nel caso in cui il progetto prevede l'impiego di componenti prefabbricati, la relazione precisa le caratteristiche illustrate negli elaborati grafici e le prescrizioni del capitolato speciale d'appalto riguardanti le modalità di presentazione e di approvazione dei componenti da utilizzare.
- 2. La relazione generale contiene l'illustrazione dei criteri seguiti e delle scelte effettuate per trasferire sul piano contrattuale e sul piano costruttivo le soluzioni spaziali, tipologiche, funzionali, architettoniche e tecnologiche previste dal progetto definitivo approvato; la relazione contiene inoltre la descrizione delle indagini, rilievi e ricerche effettuati al fine di ridurre in corso di esecuzione la possibilità di imprevisti.
- 3. La relazione generale dei progetti riguardanti gli interventi complessi di cui all'articolo 2, comma 1, lettere h) ed i), è corredata:

- a) da una rappresentazione grafica di tutte le attività costruttive suddivise in livelli gerarchici dal più generale oggetto del progetto fino alle più elementari attività gestibili autonomamente dal punto di vista delle responsabilità, dei costi e dei tempi;
- b) da un diagramma che rappresenti graficamente la pianificazione delle lavorazioni nei suoi principali aspetti di sequenza logica e temporale, ferma restando la prescrizione all'impresa, in sede di capitolato speciale d'appalto, dell'obbligo di presentazione di un programma di esecuzione delle lavorazioni riguardante tutte le fasi costruttive intermedie, con la indicazione dell'importo dei vari stati di avanzamento dell'esecuzione dell'intervento alle scadenze temporali contrattualmente previste.

Relazioni Specialistiche

- 1. Le relazioni geologica, geotecnica, idrologica e idraulica illustrano puntualmente, sulla base del progetto definitivo, le soluzioni adottate.
- 2. Per gli interventi di particolare complessità, per i quali si sono rese necessarie, nell'ambito del progetto definitivo, relazioni specialistiche, queste sono sviluppate in modo da definire in dettaglio gli aspetti inerenti alla esecuzione e alla manutenzione degli impianti tecnologici e di ogni altro aspetto dell'intervento o del lavoro, compreso quello relativo alle opere a verde.
- 3. Le relazioni contengono l'illustrazione di tutte le problematiche esaminate e delle verifiche analitiche effettuate in sede di progettazione esecutiva.

Elaborati grafici del progetto esecutivo

- 1. Gli elaborati grafici esecutivi, eseguiti con i procedimenti più idonei, sono costituiti:
- a) dagli elaborati che sviluppano nelle scale ammesse o prescritte, tutti gli elaborati grafici del progetto definitivo;
- b) dagli elaborati che risultino necessari all'esecuzione delle opere o dei lavori sulla base degli esiti, degli studi e di indagini eseguite in sede di progettazione esecutiva.
 - c) dagli elaborati di tutti i particolari costruttivi;
 - d) dagli elaborati atti ad illustrare le modalità esecutive di dettaglio;
- e) dagli elaborati di tutte le lavorazioni che risultano necessarie per il rispetto delle prescrizioni disposte dagli organismi competenti in sede di approvazione dei progetti preliminari, definitivi o di approvazione di specifici aspetti dei progetti;
- f) dagli elaborati di tutti i lavori da eseguire per soddisfare le esigenza di cui all'articolo 15, comma 7;
- g) dagli elaborati atti a definire le caratteristiche dimensionali, prestazionali e di assemblaggio dei componenti prefabbricati.
- 2. Gli elaborati sono comunque redatti in scala non inferiore al doppio di quelle del progetto definitivo, o comunque in modo da consentire all'esecutore una sicura interpretazione ed esecuzione dei lavori in ogni loro elemento.

Calcoli esecutivi delle strutture e degli impianti

Parco Eolico "Monte San Vito"

Relazione generale

- 1 I calcoli esecutivi delle strutture e degli impianti, nell'osservanza delle rispettive normative vigenti, possono essere eseguiti anche mediante utilizzo di programmi informatici.
- 2. I calcoli esecutivi delle strutture consentono la definizione e il dimensionamento delle stesse in ogni loro aspetto generale e particolare, in modo da escludere la necessità di variazioni in corso di esecuzione.
- 3. I calcoli esecutivi degli impianti sono eseguiti con riferimento alle condizioni di esercizio, alla destinazione specifica dell'intervento e devono permettere di stabilire e dimensionare tutte le apparecchiature, condutture, canalizzazioni e qualsiasi altro elemento necessario per la funzionalità dell'impianto stesso, nonché consentire di determinarne il prezzo.
- 4. La progettazione esecutiva delle strutture e degli impianti è effettuata unitamente alla progettazione esecutiva delle opere civili al fine di prevedere esattamente ingombri, passaggi, cavedi, sedi, attraversamenti e simili e di ottimizzare le fasi di realizzazione.
- 5. I calcoli delle strutture e degli impianti, comunque eseguiti, sono accompagnati da una relazione illustrativa dei criteri e delle modalità di calcolo che ne consentano una agevole lettura e verificabilità.
 - 6. Il progetto esecutivo delle strutture comprende:
- a) gli elaborati grafici di insieme (carpenterie, profili e sezioni) in scala non inferiore ad 1:50, e gli elaborati grafici di dettaglio in scala non inferiore ad 1: 10, contenenti fra l'altro:
- 1) per le strutture in cemento armato o in cemento armato precompresso: i tracciati dei ferri di armatura con l'indicazione delle sezioni e delle misure parziali e complessive, nonché i tracciati delle armature per la precompressione; resta esclusa soltanto la compilazione delle distinte di ordinazione a carattere organizzativo di cantiere;
- 2) per le strutture metalliche o lignee: tutti i profili e i particolari relativi ai collegamenti, completi nella forma e spessore delle piastre, del numero e posizione di chiodi e bulloni, dello spessore, tipo, posizione e lunghezza delle saldature; resta esclusa soltanto la compilazione dei disegni di officina e delle relative distinte pezzi;
- 3) per le strutture murarie: tutti gli elementi tipologici e dimensionali atti a consentirne l'esecuzione.
 - b) la relazione di calcolo contenente:
 - 1) l'indicazione delle norme di riferimento;
- 2) la specifica della qualità e delle caratteristiche meccaniche dei materiali e delle modalità di esecuzione qualora necessarie;
 - 3) l'analisi dei carichi per i quali le strutture sono state dimensionate;
 - 4) le verifiche statiche.
- 7. Nelle strutture che si identificano con l'intero intervento, quali ponti, viadotti, pontili di attracco, opere di sostegno delle terre e simili, il progetto esecutivo deve essere completo dei particolari esecutivi di tutte le opere integrative.
 - 8. Il progetto esecutivo degli impianti comprende:
- a) gli elaborati grafici di insieme, in scala ammessa o prescritta e comunque non inferiore ad 1:50, e gli elaborati grafici di dettaglio, in scala non inferiore ad 1:10, con le notazioni metriche necessarie;

- b) l'elencazione descrittiva particolareggiata delle parti di ogni impianto con le relative relazioni di calcolo;
- c) la specificazione delle caratteristiche funzionali e qualitative dei materiali, macchinari ed apparecchiature.

Piano di manutenzione dell'opera e delle sue parti

- 1. Il piano di manutenzione è il documento complementare al progetto esecutivo che prevede, pianifica e programma, tenendo conto degli elaborati progettuali esecutivi effettivamente realizzati, l'attività di manutenzione dell'intervento al fine di mantenerne nel tempo la funzionalità, le caratteristiche di qualità, l'efficienza ed il valore economico.
- 2. Il piano di manutenzione assume contenuto differenziato in relazione all'importanza e alla specificità dell'intervento, ed è costituito dai seguenti documenti operativi:
 - a) il manuale d'uso;
 - b) il manuale di manutenzione;
 - c) il programma di manutenzione;
- 3. Il manuale d'uso si riferisce all'uso delle parti più importanti del bene, ed in particolare degli impianti tecnologici. Il manuale contiene l'insieme delle informazioni atte a permettere all'utente di conoscere le modalità di fruizione del bene, nonché tutti gli elementi necessari per limitare quanto più possibile i danni derivanti da un'utilizzazione impropria, per consentire di eseguire tutte le operazioni atte alla sua conservazione che non richiedono conoscenze specialistiche e per riconoscere tempestivamente fenomeni di deterioramento anomalo al fine di sollecitare interventi specialistici.
 - 4. Il manuale d'uso contiene le seguenti informazioni:
 - a) la collocazione nell'intervento delle parti menzionate;
 - b) la rappresentazione grafica;
 - c) la descrizione;
 - d) le modalità di uso corretto.
- 5. Il manuale di manutenzione si riferisce alla manutenzione delle parti più importanti del bene ed in particolare degli impianti tecnologici. Esso fornisce, in relazione alle diverse unità tecnologiche, alle caratteristiche dei materiali o dei componenti interessati, le indicazioni necessarie per la corretta manutenzione nonché per il ricorso ai centri di assistenza o di servizio.
 - 6. Il manuale di manutenzione contiene le seguenti informazioni:
 - a) la collocazione nell'intervento delle parti menzionate;
 - b) la rappresentazione grafica;
 - c) la descrizione delle risorse necessarie per l'intervento manutentivo;
 - d) il livello minimo delle prestazioni;
 - e) le anomalie riscontrabili;
 - f) le manutenzioni eseguibili direttamente dall'utente;
 - g) le manutenzioni da eseguire a cura di personale specializzato.

7. Il programma di manutenzione prevede un sistema di controlli e di interventi da eseguire, a cadenze temporalmente o altrimenti prefissate, al fine di una corretta gestione del bene e delle sue parti nel corso degli anni. Esso si articola secondo tre sottoprogrammi:

- a) il sottoprogramma delle prestazioni, che prende in considerazione, per classe di requisito, le prestazioni fornite dal bene e dalle sue parti nel corso del suo ciclo di vita;
- b) il sottoprogramma dei controlli, che definisce il programma delle verifiche e dei controlli al fine di rilevare il livello prestazionale (qualitativo e quantitativo) nei successivi momenti della vita del bene, individuando la dinamica della caduta delle prestazioni aventi come estremi il valore di collaudo e quello minimo di norma;
- c) il sottoprogramma degli interventi di manutenzione, che riporta in ordine temporale i differenti interventi di manutenzione, al fine di fornire le informazioni per una corretta conservazione del bene.
- 8. Il programma di manutenzione, il manuale d'uso ed il manuale di manutenzione redatti in fase di progettazione sono sottoposti a cura del direttore dei lavori, al termine della realizzazione dell'intervento, al controllo ed alla verifica di validità, con gli eventuali aggiornamenti resi necessari dai problemi emersi durante l'esecuzione dei lavori.
 - 9. Il piano di manutenzione è redatto a corredo dei:
- a) progetti affidati dopo sei mesi dalla data di entrata in vigore del presente regolamento, se relativi a lavori di importo pari o superiore a 35.000.000 di Euro;
- b) progetti affidati dopo dodici mesi dalla data di entrata in vigore del presente regolamento, se relativi a lavori di importo pari o superiore a 25.000.000 di Euro;
- c) progetti affidati dopo diciotto mesi dalla data di entrata in vigore del presente regolamento, se relativi a lavori di importo pari o superiore a 10.000.000 di Euro, e inferiore a 25.000.000 di Euro;
- d) progetti affidati dopo ventiquattro mesi dalla data di entrata in vigore del presente regolamento, se relativi a lavori di importo inferiore a 10.000.000 di Euro, fatto salvo il potere di deroga del responsabile del procedimento, ai sensi dell'articolo 16, comma 2, della Legge.

Piani di Sicurezza e di Coordinamento

- 1. I piani di sicurezza e di coordinamento sono i documenti complementari al progetto esecutivo che prevedono l'organizzazione delle lavorazioni atta a prevenire o ridurre i rischi per la sicurezza e la salute dei lavoratori. La loro redazione comporta, con riferimento alle varie tipologie di lavorazioni, individuazione, l'analisi e la valutazione dei rischi intrinseci al particolare procedimento di lavorazione connessi a congestione di aree di lavorazioni e dipendenti da sovrapposizione di fasi di lavorazioni.
- 2. I piani sono costituiti da una relazione tecnica contenente le coordinate e la descrizione dell'intervento e delle fasi del procedimento attuativo, la individuazione delle caratteristiche delle attività lavorative con la specificazione di quelle critiche, la stima della durata delle lavorazioni, e da una relazione contenente la individuazione, l'analisi e la valutazione dei rischi in rapporto alla morfologia del sito, alla pianificazione e programmazione delle lavorazioni, alla presenza contemporanea di più soggetti prestatori d'opera, all'utilizzo di sostanze pericolose e ad ogni altro elemento utile a valutare oggettivamente i rischi per i lavoratori. I piani sono integrati da un

Parco Eolico "Monte San Vito"

Relazione generale

disciplinare contenente le prescrizioni operative atte a garantire il rispetto delle norme per la prevenzione degli infortuni e per la tutela della salute dei lavoratori e da tutte le informazioni relative alla gestione del cantiere. Tale disciplinare comprende la stima dei costi per dare attuazione alle prescrizioni in esso contenute.

Cronoprogramma

- 1. Il progetto esecutivo è corredato dal cronoprogramma delle lavorazioni, redatto al fine di stabilire in via convenzionale, nel caso di lavori compensati a prezzo chiuso, l'importo degli stessi da eseguire per ogni anno intero decorrente dalla data della consegna.
- 2. Nei casi di appalto-concorso e di appalto di progettazione esecutiva ed esecuzione, il cronoprogramma è presentato dall'appaltatore unitamente all'offerta.
- 3 Nel calcolo del tempo contrattuale deve tenersi conto della prevedibile incidenza dei giorni di andamento stagionale sfavorevole.
- 4. Nel caso di sospensione o di ritardo dei lavori per fatti imputabili all'impresa, resta fermo lo sviluppo esecutivo risultante dal cronoprogramma.

11 Relazione sulla fase di cantierizzazione

Descrizione dei fabbisogni di materiali da approvvigionamento, e degli esuberi di materiale di scarto, provenienti dagli scavi; individuazione delle cave per approvvigionamento delle materie e delle aree di deposito per lo smaltimento delle terre di scarto; descrizione delle soluzioni di sistemazione finali proposte

Nella fase di cantiere l'area occupata dalla piazzola adibita all'allestimento di ciascun aerogeneratore sarà di circa m 32x61.5 (più un'area per lo stoccaggio delle pale di circa 55x20 m come illustrato negli elaborati di progetto) necessaria al trasporto ed all'erezione della torre, della navicella e del rotore.

Le piazzole di cantiere per la posa in opera degli aerogeneratori e stoccaggio pale occuperanno complessivamente un'area di circa 29.580 m².

Le strade di accesso per il transito dei mezzi eccezionali di carreggiata 5 m circa si estenderanno per una lunghezza complessiva di circa m 5.140m per le strade ex-novo e di 4.145 per le strade da adeguare saranno prevalentemente costitute da bretelle di collegamento interno, e al confine, dei mappali dei terreni agricoli per il raggiungimento dei singoli aerogeneratori.

Scavi e sbancamenti

Gli scavi e gli sbancamenti da realizzare sono:

- sbancamenti per la predisposizione dei terreni per lo stazionamento delle autogrù dedicate all'erezione delle torri e degli aerogeneratori (piazzole in fase di cantiere);
- scavi per la realizzazione delle fondazioni di sostegno degli aerogeneratori;
- scavi per la realizzazione e/o l'adeguamento della viabilità;
- scavi per la realizzazione dei cavidotti per il trasporto dell'energia generata.

Ad ogni torre corrisponde la realizzazione di una piazzola per il transito dell'automezzo adibito alla posa delle pale dell'aerogeneratore, dei tronchi di torre (N°6 tronchi per ogni torre) e della navicella.

Le aree interessate, dopo aver subìto lo sbancamento per circa 30 cm, vengono riempite con acciottolato di vaglio diverso, costipato e rullato. Nel caso di massimo carico, che corrisponde al trasporto del drive train (circa 130 t, mezzo + carico), si dovrà avere una sollecitazione sotto l'inerte costipato e rullato inferiore al carico ammissibile del terreno. Il terreno, considerato di media consistenza si ritiene possa resistere a sollecitazioni unitarie superiori a 1,5-2,0 kg/cm²; tale dato sarà comunque verificato a seguito delle prove geognostiche che saranno eseguite in sede di progettazione esecutiva. Aalternativamente, ove possibile, si impiegherà un trattamento a calce allo scopo di ridurre i volumi di scavo.

Non vi sono problematiche dovute alla presenza di acqua ed a problemi di frane nelle fasi di scavo, data la consistenza del terreno e la modesta profondità. In ogni caso le pareti saranno controllate con l'inclinazione di scavo di circa 60° qualora la profondità di scavo non superi 1,5 m, nel caso di profondità maggiori gli scavi dovranno essere opportunamente blindati come previsto dalla normativa sulla sicurezza.

Anche per la realizzazione del cavidotto si renderà necessario uno scavo; in parte i materiali scavati saranno utilizzati come materiale di ricoprimento, previa compattazione e quindi di riporto. I volumi in esubero, dati dalla differenza fra scavo e riporto, verranno conferiti presso impianti di

recupero, rispettando quanto sancito dalla normativa vigente. Ad ogni modo, per maggiori informazioni si consulti la "Relazione sulla gestione delle materie (terre e rocce da scavo)".

Per quanto attiene alle strade definitive per l'accesso agli aerogeneratori (operazioni di presidio e manutenzione), saranno ripristinate le strade esistenti.

Il terreno movimentato e relativo alle piazzole ed alle strade di accesso al cantiere sarà depositato in luogo tale da non causare ingombro durante le fasi di lavoro, ed al fine di ostacolare quanto meno le attività agricole dei proprietari dei terreni.

Una volta ultimato il cantiere e superata la fase di collaudo dell'impianto le porzioni di piazzole e di strade eccedenti le necessità di cui alla successiva fase di esercizio, saranno dismesse, il materiale costipato di sottofondo sarà coperto da uno strato di terreno vegetale per rendere il terreno coltivabile e consentire future eventuali operazioni di manutenzione delle macchine installate.

Descrizione della viabilità di accesso ai cantieri e valutazione della sua adeguatezza, in relazione anche alle modalità di trasporto delle apparecchiature

I mezzi pesanti che dovranno trasportare la componentistica di montaggio di ciascun aerogeneratore, durante la fase di installazione, seguiranno un tracciato così definito:

- partenza dal porto di Taranto;
- arrivo sulla SS106 "Ionica" per percorrerla fino allo svincolo di "Ginosa Marina";
- proseguire sulla SS 175;
- imboccare la strada SP (ex SS 380) e proseguire verso la SS 7;
- dalla SS 7 proseguire fino alla SP in destra Lago S. Giuliano mediante la Strada Cùpolo Ròvivo per accedere presso l'area parco lato est.

Ad ogni modo suddetto percorso potrebbe variare in funzione delle esigenze del fornitore degli aerogeneratori e relativo trasporto.

Si premette che il trasporto dei componenti costituenti le torri eoliche avverrà su un tracciato di strade statali e comunali già esistente, mentre si renderanno necessari interventi contenuti di nuova viabilità di fatto limitati a:

- realizzazione delle bretelle di collegamento tra la viabilità esistente e i singoli aerogeneratori. Tali bretelle sono concentrate all'interno di terreni adibiti ad uso agricolo e saranno realizzate rispettando per quanto possibile i tracciati esistenti ovvero i limiti di confine degli appezzamenti agricoli;
- adeguamenti della viabilità comunale esistente così come mostrato negli elaborati grafici riportati a corredo della presente;
- eventuali allargamenti in corrispondenza di svincoli caratterizzati da raggi di curvatura incompatibili con il transito dei mezzi eccezionali.

Tali mezzi avranno le dimensioni massime idonee al trasporto dell'aerogeneratore previsto in progetto; per i tronchi delle torri il trasporto prevede un ingombro massimo in larghezza di m 5 circa. I viaggi previsti per il trasporto dei principali componenti dell'aerogeneratore sono indicati nella tabella seguente.

FRI-EL S.p.A.

Piazza della Rotonda 2

00186 Roma (RM)

Tabella 7: viaggi previsti per il trasporto dell'aerogeneratore

Quantità	Descrizione del trasporto VESTAS V162-4.5MW-HH119	
1	1 Trasporto navicella	
3	Trasporto singola pala	
6	Trasporto tronchi torre	
1 Trasporto drive train		
1	Trasporto mozzo (Hub)	

Il massimo peso si avrà con il trasporto del drive train, che richiede l'utilizzo di un automezzo con dimensioni in lunghezza di circa 10 m, avente massa complessiva di 130 tonnellate.

La costruzione delle strade di accesso in fase di cantiere dovrà rispettare adeguate pendenze sia trasversali che longitudinali allo scopo di consentire il drenaggio delle acque impedendone gli accumuli in prossimità delle piazzole di lavoro e montaggio. A tal fine le strade dovranno essere realizzate con sezione a "dorso di mulo" oppure "a pendenza" con inclinazione superiore al 2%. Eventuali drenaggi a latere delle strade dovranno essere eseguiti previa valutazione in sede esecutiva.

Tutti i raggi di curvatura all'imbocco delle strade di accesso al cantiere dovranno essere adeguate almeno al valore minimo di 70 m allo scopo di consentire l'accesso dei mezzi eccezionali.

Montaggio delle apparecchiature

Si premette che la navicella non è equipaggiata di generatore, moltiplicatore di giri, trasformatore, ecc.. Tali dispositivi (drive train) verranno alloggiati nella navicella in cantiere, e successivamente la navicella verrà sollevata e posata in quota completamente assemblata. La torre è invece costituita da 6 tronchi che vengono innestati con sistema telescopico nella fase di erezione. Le pale vengono unite in quota alla navicella tramite il mozzo. Per erigere ciascuna torre, navicella e rotore è richiesto l'impiego di una gru a traliccio semovente che dovrà essere piazzata nell'area predisposta, prospiciente il blocco di fondazione della torre. Per il montaggio del singolo aerogeneratore occorrono in particolare i seguenti mezzi:

- gru tralicciata da 500 t min con altezza minima sotto gancio pari a 120 m;
- gru di appoggio da 160 t;
- gru di appoggio da 60 t.

L'area predisposta sarà opportunamente dimensionata per resistere alle sollecitazioni dovute al carico gravante. La casa costruttrice fornisce le specifiche a cui dovrà rispondere il sistema per erigere il singolo aerogeneratore.

Il montaggio del singolo aerogeneratore richiede mediamente 3/4 (tre/quattro) giorni consecutivi. Durante le fasi di montaggio la velocità del vento a 60 m non dovrà essere superiore a 8.0 m/s al fine di non ostacolare e consentire di eseguire in sicurezza le operazioni di montaggio stesse.

In conformità al progetto:

- i lavori verranno eseguiti in maniera da non determinare alcun danneggiamento o alterazione agli eventuali beni architettonici diffusi nel paesaggio agrario;
- tutti i materiali da costruzione necessari alla realizzazione del parco eolico quali pietrame, pietrisco, ghiaia e ghiaietto verranno prelevate da cave autorizzate e/o da impianti di frantumazione e vagliatura per inerti all'uopo autorizzati;

- i materiali di risulta provenienti dagli scavi delle platee di fondazione degli aerogeneratori verranno riutilizzati in cantiere per consentire la realizzazione della fondazione delle strade di progetto;
- in linea generale verrà effettuato il compenso tra i materiali di scavo e quelli di riporto;
- i lavori di messa in opera del cantiere (fasi di spostamenti di terra, seppellimento e modificazioni della struttura vegetazionale, apertura di strade per il transito di mezzi pesanti, aree di deposito materiali) saranno gestiti al di fuori del periodo riproduttivo delle specie prioritarie presenti nell'area.

Eventuale progettazione della viabilità provvisoria

La viabilità di progetto verrà utilizzata sia in fase di cantiere sia in fase di manutenzione degli aerogeneratori, per cui non è prevista la progettazione della viabilità provvisoria.

<u>Indicazione degli accorgimenti atti a evitare interferenze con il traffico locale e pericoli per</u> le persone

Gli accorgimenti da prescrivere durante la fase di manutenzione consistono nel posizionare segnali stradali lungo la viabilità di nuova realizzazione e in prossimità di ciascuna pala. In particolare, i primi hanno l'obbiettivo di invitare gli autisti dei veicoli transitanti nella zona a rispettare i limiti di velocità imposti dalla normativa stradale vigente. I secondi, invece, vogliono avvertire le persone transitanti nell'area delle torri che è presente il rischio elettrico.

<u>Indicazione degli accorgimenti atti a evitare inquinamenti del suolo, acustici, idrici e atmosferici</u>

La sottostazione esistente risulta già ditata di una vasca di tipo IMHOFF.

Descrizione del ripristino dell'area cantiere

Una volta ultimato il cantiere e superata la fase di collaudo dell'impianto, le porzioni di piazzole non definitive saranno ricoperte del terreno vegetale originario perché siano nuovamente destinate alle attività agricole di origine.

12 Riepilogo degli aspetti economici e finanziari del progetto

- Oneri della sicurezza
- Rilievi, accertamenti e indagini
- Imprevisti
- Acquisizione aree o immobili, indennizzi;
- Spese tecniche;
- Spese per accertamenti di laboratorio e verifiche tecniche e collaudi
- Collaudi

Rifacendosi all'esperienza fin qui maturata e ad un esame dei costi sostenuti per la realizzazione di altri impianti in Italia, si è potuto redigere, in via preliminare, un'analisi dei costi da sostenere per la realizzazione dell'impianto oggetto di studio.

Le voci più importanti che concorrono alla realizzazione di un quadro economico per la realizzazione di un parco eolico, possono essere attribuiti agli investimenti iniziali e di sviluppo della promozione (studio di fattibilità, costi di progettazione, autorizzazioni/concessioni, costo degli aerogeneratori, ecc.) ed alla gestione (costi di manutenzione ordinaria e straordinaria degli aerogeneratori, affitto dei terreni, ecc.).

Per quel che concerne i costi di manutenzione ordinaria e straordinaria va detto che questi vengono definiti attraverso dei contratti di "service" tra il committente e il fornitore degli aerogeneratori. Tali contratti prevedono la manutenzione ordinaria per ogni macchina eolica, con controlli periodici e revisione delle apparecchiature meccaniche ed elettriche. La manutenzione straordinaria è, solitamente, inserita parzialmente nei contratti di service e prevede la sostituzione delle parti meccaniche non funzionanti. Tali contratti, inoltre, vengono stipulati all'acquisto degli aerogeneratori ed hanno una durata di almeno 10 anni. Il fornitore delle apparecchiature prevede, all'interno del contratto, anche dei corsi di formazione e specializzazione per gli addetti alla maintenance. Tra le voci di costo, in fase iniziale, si prevede anche la fase di smontaggio degli aerogeneratori anche se, molto spesso, quand'anche la vita delle macchine sia di 30 anni, quelle esistenti potranno essere sottoposte a repowering, cioè sostituite con aerogeneratori tecnologicamente più moderni ed efficaci, magari di maggiore potenza allo scopo di ridurne il numero.

Costi dell'investimento iniziale

Ai fini della realizzazione di un impianto eolico e, quindi, del suo avviamento, i costi maggiori da sostenere sono concentrati nella fase autorizzativa-promozionale e di costruzione.

Nel suo complesso l'investimento può essere così suddiviso:

- attività di sviluppo e promozione: 5% dell'investimento totale;
- acquisizione aerogeneratori: 75% dell'investimento totale;
- realizzazione opere infrastrutturali civili ed elettriche: 20% dell'investimento totale;

Come si evince da quanto sopra riportato, la spesa maggiore dell'intero investimento consiste nell'acquisizione degli aerogeneratori; per quanto concerne, invece, la realizzazione delle opere accessorie, delle infrastrutture e della connessione alla rete, queste dipendono essenzialmente dalla complessità del sito ed in particolare: accessibilità con i mezzi pesanti, morfologia e natura del suolo, distanza del punto di connessione dalla rete elettrica, ecc...

Parco Eolico "Monte San Vito"

rarco Eolico "Monte San Vito"

Relazione generale

Ad oggi, si può stimare che, mediamente, il costo "chiavi in mano" di un impianto eolico sia dell'ordine di 900.000/950.000 €/MW installato.

Sviluppo dell'iniziativa

Lo sviluppo dell'iniziativa consiste nell'individuazione del sito, nella valutazione dei vincoli ambientali e non presenti sul territorio, nella sua valutazione anemologica attraverso una campagna di misurazione della durata minima di un anno, nella progettazione dell'impianto, nell'ottenimento di tutte le autorizzazioni necessarie alla realizzazione dell'impianto stesso, dal giudizio di compatibilità ambientale all'Autorizzazione Unica, come da normativa nazionale (d.lgs. 387/03).

Anche se, nel complesso, dal punto di vista economico rappresenta solo il 5% circa dell'investimento totale, in realtà la sua importanza è enorme in quanto un'errata valutazione del sito potrebbe avere ripercussioni pesanti sulla producibilità dell'impianto stesso.

A causa degli innumerevoli fattori esterni che condizionano tale fase, i tempi stimati sono quasi sempre superiori ad un anno.

Installazione degli aerogeneratori

Nell'economia generale dell'investimento l'acquisto degli aerogeneratori rappresenta i 3/4 circa dello stesso. Il tipo di aerogeneratore da installare varia in base a diversi fattori, come, in particolare, l'orografia del sito e le sue condizioni di ventosità, oltre che in funzione dei modelli effettivamente disponibili sul mercato e adeguati alle caratteristiche del sito individuato.

Nel caso oggetto di studio il modello di aerogeneratore attualmente previsto dalla proposta progettuale in esame e che sfrutta in modo migliore le condizioni di ventosità del sito, presenta le seguenti caratteristiche dimensionali:

- potenza massima nominale aerogeneratore: 4.5 MW
- diametro massimo rotore: 162 m
- altezza complessiva massima al tip (punta): 200 m

Opere accessorie ed infrastrutture

I costi relativi alle opere accessorie ed alle infrastrutture sono, generalmente, molto variabili in quanto dipendono dalle caratteristiche del sito e dalla sua complessità.

Bisogna tener presente, infatti, che per realizzare le fondazioni, le piazzole, gli scavi per i cavidotti, la viabilità necessaria per raggiungere le postazioni con i mezzi speciali (dagli automezzi adibiti al trasporto dei componenti alle gru usate per il montaggio degli stessi), la morfologia e la natura del terreno possono influenzare anche in maniera rilevante questi costi.

Se da un lato, inoltre, l'accessibilità impatta sui costi di trasporto e sull'organizzazione del cantiere, dall'altro la distanza dalle linee elettriche esistenti o da costruire determina i costi di trasmissione alla rete elettrica.

Nel computo generale questi costi incidono, sull'intero investimento, per un 20% circa.

L'impianto eolico in oggetto è ubicato in un'area dotata di idonea viabilità perché le strade utilizzate per raggiungerlo, provinciali e comunali, sono tutte in buone condizioni generali.

L'allacciamento

Il gestore della rete propone la soluzione per la connessione alla RTN ed individua le parti di impianto necessarie:

www.f4ingegneria.it - f4ingegneria@pec.it

- impianti di rete per la connessione;
- impianti di utenza per la connessione.

Per impianto di rete per la connessione si intende la porzione di impianto per la connessione di competenza del gestore di rete, con obbligo di connessione a terzi. Con il termine impianto di utenza per la connessione ci si riferisce alla porzione di impianto per la connessione la cui realizzazione, gestione, esercizio e manutenzione rimangono di competenza del soggetto richiedente la connessione.

I fattori che caratterizzano la connessione alla RTN sono:

- potenza di connessione;
- livello di tensione alla quale viene realizzata la connessione;
- tipologia dell'impianto per il quale è stato richiesto l'accesso alle infrastrutture di reti elettriche, con riferimento all'immissione o al prelievo di energia elettrica;
- tipologia della rete elettrica esistente;
- eventuali aspetti riguardanti la gestione e la sicurezza del sistema elettrico.

I gestori di rete individuano le tipologie degli impianti di rete per la connessione che possono essere progettati e realizzati a cura dei soggetti richiedenti la connessione, alle condizioni economiche fissate dall'Autorità.

Gli impianti di rete per la connessione realizzati dal soggetto richiedente sono resi disponibili al gestore di rete per il collaudo e la conseguente accettazione, nonché per la gestione, secondo la normativa vigente per la rete interessata dalla connessione, attraverso appositi contratti stipulati tra il soggetto richiedente la connessione ed il gestore medesimo, prima dell'inizio della realizzazione.

Il soggetto richiedente la connessione alla rete di un impianto elettrico, o la modifica della potenza di una connessione esistente, presenta detta richiesta al Gestore della rete o all'impresa distributrice competente nell'ambito territoriale.

L'importo complessivo è estremamente variabile ed è strettamente correlato a:

- potenza dell'impianto;
- obbligo di progettazione di impianti di rete;
- tipologia di sottostazioni;
- tipologia della rete (ad alta o media tensione);
- lunghezza del cavidotto interrato;
- numero di linee di cavo interrato;
- eventuali linee aeree.

Per quel che concerne l'impianto eolico ubicato nel Comune di Grottole, denominato "Monte San Vito", ci si è riferiti alla richiesta di connessione, di cui FRI-EL S.p.A. è titolare, con la quale TERNA ha comunicato che lo schema di allacciamento alla RTN prevede che la centrale venga collegata alla Rete di Trasmissione Nazionale (RTN) mediante gli impianti esistenti della società FRI-EL Grottole Srl. In particolare, l'energia prodotta dagli aerogeneratori verrà convogliata, tramite un cavidotto interrato a 30 kV, ad un nuovo impianto di trasformazione MT/AT che verrà realizzato all'interno dell'esistente sottostazione di trasformazione MT/AT, che attualmente accoglie gli impianti di trasformazione dei parchi eolici denominati "Grottole 18MW" (IM_S17G1RT) e "Grottole 36MW" (IM_S17G2RT), di proprietà della società Fri-El Grottole S.r.l., per venire poi ceduta alla RTN tramite un collegamento in antenna a 150kV all'esistente Stazione Elettrica (SE) 150 kV RTN denominata "Grottole", ubicata nel comune di Grottole (MT).

La proprietà e la gestione delle aree e degli impianti ad uso comune rimarrà in capo alla Fri-El Grottole S.r.l., mentre ogni produttore rimarrà responsabile per il proprio impianto per quanto

www.f4ingegneria.it - f4ingegneria@pec.it

concerne ordini di dispacciamento, rispetto del regolamento di esercizio, rispetto del codice di rete, taratura delle proprie protezioni e verifica dei complessi di misura fiscale.

Costi di funzionamento e produzione

I costi di funzionamento e di produzione sono relativi a:

- costi di mantenimento in esercizio dell'impianto e di manutenzione dello stesso;
- costi di produzione dell'energia elettrica;
- costi sostenuti per il canone di concessione all'Ente concedente;
- costi esterni (impatto ambientale);
- costi di dismissione.

costi di funzionamento di un impianto eolico riguardano, essenzialmente, l'amministrazione, il canone agli Enti Locali ed ai proprietari dei terreni sui quali sono installati gli aerogeneratori, i premi assicurativi e la manutenzione ordinaria e straordinaria dell'impianto stesso.

Per quel che concerne l'esercizio dell'impianto, va detto che con le moderne tecnologie gli impianti sono ormai controllati a distanza e non richiedono presidi permanenti sul sito. In relazione, invece, alla manutenzione, va detto che gli attuali aerogeneratori sono realizzati per funzionare oltre 200.000 ore, durante la vita dell'impianto prevista in 30 anni.

Dopo un periodo iniziale di garanzia, in genere di tre anni, coperto dal costruttore delle macchine, alcuni gestori d'impianti eolici stipulano un contratto di servizio con società specializzate nella manutenzione, ovvero provvedono in maniera autonoma alla stessa.

I costi della manutenzione, man mano che l'impianto accumula ore di funzionamento, tendono ad aumentare; alcune parti, infatti, sono particolarmente soggette ad usura e, quindi, necessitano di essere sostituite durante la vita dell'aerogeneratore; si tratta, generalmente, del rotore e degli ingranaggi contenuti nel moltiplicatore di giri dell'albero. In tal caso, la spesa da sostenere per la manutenzione è di circa 2.000.000 €/annui.

	QUADRO ECONOMICO GENERALE (VALORE COMPLESSIVO DELL'OPERA PRIVATA)				
	Descrizione	Importi (€)	iva (%)	TOTALE iva compresa (€)	
A)	Costo dei lavori				
A.1	Lavori previsti	€ 37,561,693.48	10%	€41,317,862.83	
A.2	Oneri di sicurezza	€ 122,450.36	10%	€ 134,695.40	
A.3	Opere di mitigazione	€ 67,500.00	10%	€ 74,250.00	
A.4	Spese previste da Studio di Impatto Ambientale, Studio Preliminare Ambientale e Progetto di Monitoraggio Ambientale	€ 645,444.00	22%	€ 787,441.68	
A.5	Opere connesse	€0.00	10%	€0.00	
	Totale A	€ 38,397,087.84		€ 42,314,249.90	
B)	Spese Generali				
B.1)	Spese tecniche	€170,000.00	22%	€ 207,400.00	
B.2)	Spese di consulenza e supporto tecnico	€ 70,000.00	22%	€ 85,400.00	
B.3)	Collaudi	€ 10,000.00	22%	€12,200.00	
B.4)	Rilievi accertamenti ed indagini	€50,000.00	22%	€ 61,000.00	
B.5)	Oneri di legge su spese tecniche B.1)B.2)B.4) e B.3) (4% su B.1 e B.3)	€ 7,200.00	22%	€8,784.00	
B.6)	Imprevisti	€419,854.39	10%	€461,839.83	
B.7)	Spese varie	€ 0.00	0%	€0.00	
	Totale B	€ 727,054.39		€ 836,623.83	
C)	Eventuali altre imposte e contributi dovuti per legge oppure indicazione della disposizione relativa l'eventuale esonero				
	"Valore complessivo dell'opera" TOTALE (A+B+C)	€ 39,124,142.23		€ 43,150,873.74	

12.1 Sintesi di forme e fonti di finanziamento per la copertura dei costi dell'intervento

Il gruppo dispone attualmente di 34 parchi eolici nel territorio italiano, un parco eolico in Bulgaria ed uno in Spagna, per una capacità complessiva installata di 950 MW. Inoltre, il gruppo FRI-EL opera in diversi settori; infatti, oltre ad essere azienda leader nel settore eolico, si colloca tra i primi produttori in Italia di energia prodotta dalla combustione di biogas di origine agricola. Il gruppo gestisce 21 impianti idroelettrici, un impianto a biomassa solida e una delle centrali termoelettriche a biomassa liquida più grandi d'Europa. Le attività e le principali competenze del gruppo comprendono tutte le fasi di progettazione, costruzione, produzione e vendita di energia elettrica da fonti rinnovabili, includendo l'analisi e la valutazione del paesaggio e il processo di approvazione.

L'investimento per la realizzazione del progetto verrà realizzato con la formula del Project Financing.

12.2 Cronoprogramma della producibilità

Il cronoprogramma della producibilità stima il comportamento energetico dell'installazione eolica in progetto. In particolare, sulla base dell'esperienza, si può considerare un'oscillazione di produzione annua inferiore al 14% con riduzioni durante il 10° e il 15° anno, in corrispondenza dei quali si ipotizzano interventi di manutenzione straordinaria sul 20% degli aerogeneratori installati. La producibilità si riduce notevolmente durante l'ultimo anno di vita utile dell'impianto, quando è pensabile inizi la fase di repowering dello stesso.