

REGIONE MOLISE

Provincia di Campobasso

COMUNE DI SANTA CROCE DI MAGLIANO

GGETT

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEL COMUNE DI SANTA CROCE DI MAGLIANO (CB)

COMMITTENTE

OGGETTO DELL'ELABORATO

WIND ENERGY SANTACROCE SRL

PHEEDRA S.r.I. Via Lago di Nemi, 90
74121 - Taranto
Tel. 099.7722302 - Fax 099.9870285
e-mail: info@pheedra.it - web: www.pheedra.it

Dott. Ing. Angelo Micolucci

ORDINE INGEGNERI PROVINCIA TARANTO
Sezione A
Dott. Ing.

ORDINE INGEGNERI PROVINCIA TARANTO

Sezione A

Settore

Civile Ambientale
Industriale
Informazione

1	Febbraio 2020	PRIMA EMISSIONE	CD	АМ	VS
REV.	DATA	ATTIVITA'	REDATTO	VERIFICATO	APROVATO

RELAZIONE PRODUCIBILITA' DELL'IMPIANTO

FORMATO	SCALA	CODICE DOCUMENTO			/ENTO		NOME FILE	FOGLI
A4	soc. disc	SOC.	DISC.	TIPO DOC.	PROG.	REV.	SCR-CIV-REL-025b 01	
		CIV	REL	025b	01	-5CR-CIV-REL-025b_01		
	-							

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA Nome del file:

SCR-CIV-REL-025b_01

Sommario

1.	Caratteristiche Territoriali ed Infrastrutturali del Sito	2
1.1.	. Inquadramento	2
1.2.	. Caratteristiche territoriali	2
1.3.	. Sensibilità ambientale e paesaggistica	3
1.4.		3
1.5.	. Qualità paesaggistica	3
2.	Regime anemologico	4
2.1.		
2.2.	. Densità dell'aria	5
2.3.	. Curva di potenza aerogeneratore	5
2.4.		5
2.5.		
2.6.	. Layout turbine	6
2.7.	. Correzione delle perdite	6
2.8.	. Riepilogo delle perdite	9
3.	Produttività e calcolo delle ore equivalenti	10
4.	Conclusioni	

SCR-CIV-REL-025b_01

1. CARATTERISTICHE TERRITORIALI ED INFRASTRUTTURALI DEL SITO

La presente relazione descrive il lo studio anemometrico necessaria al progetto per la realizzazione di un "Parco Eolico" per la produzione di energia elettrica da fonte rinnovabile di tipo eolica, e la conseguente immissione dell'energia prodotta, attraverso la dedicata rete di connessione, sino alla Rete di Trasmissione Nazionale.

1.1. INQUADRAMENTO

Il progetto riguarda la realizzazione di un impianto eolico composto da 10 aerogeneratori ognuno da 4,8 MW da installare nel comune di comunale di Santa Croce di Magliano, in località Piano Palazzo, Piano Moscato, Colle Passone e Piano Civolla", con opere di connessione ricadenti anche nel comune di Rotello (CB).

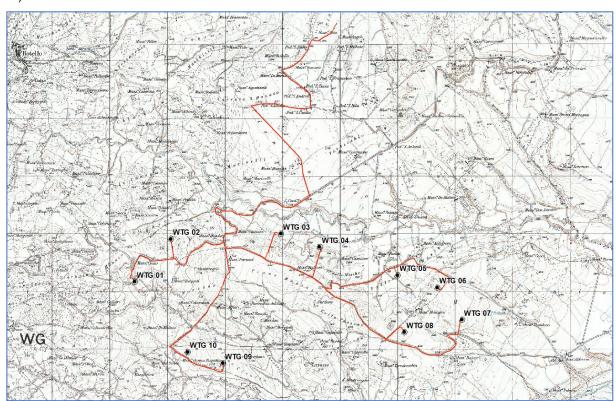


Figura 1 - Inquadramento su IGM

1.2. CARATTERISTICHE TERRITORIALI

Il progetto prevede l'installazione di 10 aerogeneratori ognuno di potenza nominale pari a 4,8 MW Il modello dell'aerogeneratore previsto è una GE 4,8-158 avente altezza al mozzo 120,9 m e diametro del rotore 158 m.

Tutti gli aerogeneratori, denominati con le sigle WTG01, WTG02, WTG03, WTG04, WTG05, WTG06, WTG07, WTG08, WTG09, WTG10, ricadono sul territorio di San Marco in Pensilis (CB) in località Piano Palazzo, Piano Moscato, Colle Passone e Piano Civolla".

Committente:

Wind Energy Santacroce Srll

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO. PIANO MOSCATO, COLLE PASSONE E PIANO **CIVOLLA**

Nome del file:

SCR-CIV-REL-025b_01

Le aree d'impianto sono servite dalla viabilità esistente costituita da strade statali, provinciali, comunali e da strade interpoderali e sterrate.

La connessione elettrica tra gli aerogeneratori sarà garantita dalla realizzazione di un cavidotto interrato in MT, che sarà realizzato principalmente tramite l'attraversamento dei terreni.

L'energia viene trasportata, tramite dei cavi MT esistenti, fino alla Sottostazione elettrica lato utente ubicata nel Comune di Rotello.

Durante gli studi preliminari, mediante l'interpretazione dei dati rilevati da stazioni metereologiche e dell'aeronautica presenti nella regione è stata verificata la presenza di una risorsa eolica.

In particolare nell'area di intervento o nelle sue immediate vicinanze saranno installate stazioni anemometriche le cui finalità sono conformi a quanto definito, riguardo ai criteri di realizzazione degli impianti, e le cui specifiche tecniche vengono riportate di seguito.

1.3. SENSIBILITÀ AMBIENTALE E PAESAGGISTICA

La sensibilità dell'ambiente e del paesaggio non è dei parametri propriamente di progetto. Tuttavia tali aspetti stanno assumendo un'importanza fondamentale nell'accettabilità pubblica di questa tipologia d'impianto.

La sensibilità ambientale è normalmente rapportata alla tipologia di colture presenti nel territorio, alla naturalità dei luoghi, agli aspetti socio-culturali legati al territorio e al rumore prodotto dalle macchine; la sensibilità paesaggistica è invece rapportata alla "scala" (o alla conformazione morfologica del territorio) ed all'atmosfera" (o alla qualità dello scenario) del contesto paesaggistico. Nella valutazione di impatto ambientale assume particolare importanza la visibilità dell'impianto dai luoghi di grande fruizione pubblica e la preminenza paesaggistica dell'impianto rispetto agli insediamenti circostanti.

1.4. QUALITÀ AMBIENTALE

Il territorio interessato dal sito e quello circostante è di tipo corrente, non di particolare pregio culturale né di significato antropologico. L'ambiente mostra un contesto prettamente agricolo e non presenta elementi di pregio, ad eccezione di qualche appezzamento di modesta entità di coltivazione pregiata.

1.5. QUALITÀ PAESAGGISTICA

Il paesaggio circostante il sito e il sito stesso sono caratterizzati da buona leggibilità e percezione di linearità. Tale circostanza suggerisce un approccio insediativo di inserimento, cioè di conferma e rafforzamento delle linee proprie con le nuove strutture del paesaggio.

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA Nome del file:

SCR-CIV-REL-025b_01

2. REGIME ANEMOLOGICO

Nel merito della valutazione dell'indice di ventosità e delle conseguenti determinazioni sulla producibilità specifica ci si è avvalsi della Ricerca di Sistema svolta d RSE S.p.A. – Ricerca sul Sistema Energetico. L'obiettivo della valutazione è stato quello di verificare i seguenti aspetti:

- valutare e confrontare le stime presunte con il limite minimo previsto per quanto attiene alla ventosità delle aree dichiarate eleggibili;
- valutare la producibilità stimata in termini di effettivo interesse da parte delle aziende di settore.

La velocità del vento cresce, con l'aumentare della quota secondo la legge logaritmica.

In base ai rilevamenti effettuati nella zona interessata, desunti i valori di rugosità del terreno e valutata la classe di stabilità atmosferica di Pasquill-Gifford di appartenenza, si è stimato il valore medio annuo della velocità del vento alla quota di 111,5 m, cioè in corrispondenza del mozzo degli aerogeneratori.

Calcolo delle ore di funzionamento dell'impianto

Sulla scorta di banche dati esistenti, utilizzando, per rappresentare i dati di vento la funzione di distribuzione di Weibull in modo da descrivere in forma compatta la distribuzione di frequenza della velocità. La funzione a due parametri di Weibull è matematicamente espressa da:

$$f(u) = \frac{k}{A} \left(\frac{u}{A}\right)^{k-1} exp\left[-\left(\frac{u}{A}\right)^{k}\right]$$

dove f(u) è la frequenza di occorrenza della velocità u. A è il parametro di scala e k il parametro di forma, si ottiene sulla scorta dei dati a disposizione i seguenti andamenti nel dominio delle frequenze, della velocità del vento e della direzione di provenienza.

Le elaborazioni, le stime e le valutazioni in seguito descritte sono state effettuate con il metodo WasP (Wind Atlas Analysis and Application Program) per il calcolo della produzione. Il programma utilizza i dati anemologici per calcolare il vento geostrofico (vento indisturbato) per una superficie di diversi km di raggio. Sovrapponendo tale modello del territorio, il programma valuta l'andamento della velocità media annua – e più in generale i parametri statistici della distribuzione della velocità media annua – in punti arbitrari di tale superficie, tenendo conto della sua natura orografica, della rugosità del terreno e dell'eventuale presenza di ostacoli al flusso del vento. Il campo di velocità fornito dal modello è tridimensionale e ciò consente di disporre in modo naturale anche del profilo della velocità media del vento a varie altezze dal suolo.

Pertanto il modello richiede i parametri del territorio quali, l'orografia, la rugosità ostacoli fisici al flusso e i parametri dinamici quali il campo di vento. I primi sono forniti sotto forma di modello territoriale i secondi sotto forma di distribuzione di Weibull.

Wind Energy Santacroce Srll

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO. PIANO MOSCATO, COLLE PASSONE E PIANO **CIVOLLA**

Nome del file:

SCR-CIV-REL-025b_01

2.1. DIREZIONE PREVALENTE DEL VENTO

La variabilità della direzione del vento è fortemente influenzata dalla micrometeorologia del sito. Siti posti a bassa quota e nei pressi di fasce costiere risentono delle brezze di mare e di brezze di terra locali, che generano una rosa dei venti molto meno articolata rispetto a siti posti a quote intermedie, dove le brezze di pendio e di valle inducono una variazione nella direzione del vento rilevante.

2.2. DENSITÀ DELL'ARIA

La densità media dell'aria è stata stimata dalla quota media di installazione degli aerogeneratori e dalla temperatura media annua della area di intervento. Data una quota di 50 m sul livello del mare ed una temperatura di 15°C la densità è 1.221kg/m³.

2.3. CURVA DI POTENZA AEROGENERATORE

La turbina individuata per la costruzione dell'estensione del parco eolico di Santa Croce di Magliano è la GE 4.8-158 della GE RENEWABLE ENERGY o similari, con potenza nominale di 4,8 MW ed altezza mozzo 120,9 m, diametro del rotore 158 m.

2.4. MODELLA RUGOSITÀ

L'area individuata per l'istallazione degli aerogeneratori è costituita da terreni destinati a coltivazioni. Le case sono sparse e di altezza inferiore ai 10 m. Per la classificazione del territorio si è fatto riferimento alla tabella seguente:

Terreno	Classe di Rugosità	$Z_0[m]$
- superfici d'acqua, superficie sabbiosa, nevosa, terreno nudo liscio, zone aeroportuali e stradali erba falciata	0	Da 10 ⁻⁴ a 10 ⁻²
- Zone di campagna con poche case sparse, alberi, case di campagna che consentono la vista dell'orizzonte	1	Da 3 10 ⁻² a 5 10 ⁻²
- Case che coprono la vista dell'orizzonte	2	Da 7 10 ⁻² a 10 ⁻¹
- Molti alberi e/o arbusti, fasce con effetto barriera, sobborghi	3	Da 3 10 ⁻¹ a 7 10 ⁻¹

2.5. MODELLAZIONE EFFETTO SCIA

La quantificazione dell'effetto scia, riduzione della velocità in corrispondenza del mozzo della turbina posteriore ad un'altra rispetto alla direzione di provenienza del vento, è stato fatto utilizzando il modello Jensen. La costante di decadimento della velocità è stata selezionata al valore standard di 0.075m. Tale

PHEEDRA SrI Servizi di Ingegneria Integrata	RELAZIONE SULLA	
Via Lago di Nemi, 90	PRODUCIBILITA'	Pagina 5 di 12
74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285	DELL'IMPIANTO	

SCR-CIV-REL-025b_01

modello permette di calcolare l'efficienza del parco tenendo conto della sovrapposizione della singola scia.

2.6. LAYOUT TURBINE

Coordinate aerogeneratori (UTM33 - WGS - 84)

TURBINA	E	N
WTG01	502406	4617938
WTG02	502994	4618725
WTG03	504936	4618802
WTG04	505576	4618585
WTG05	506933	4618050
WTG06	507617	4617880
WTG07	508204	4617558
WTG08	507253	4617008
WTG09	503894	4616570
WTG10	503283	4616764

2.7. CORREZIONE DELLE PERDITE

La produzione lorda di energia del parco eolico di Santa Croce di Magliano non include le perdite che si verificano per la disponibilità della macchina, le perdite per il controllo (isteresi della velocità), le perdite elettriche nelle linee di distribuzione interne al parco fino al punto di misura. Si è tenuto conto di tali perdite considerando un fattore correttivo definito come:

$$E_{net} = \eta * E_{gross}$$

$$\eta = \prod_{i} Lf_{i}$$

$$Lf_i = \left(1 - \frac{\Delta E_i}{E_{aross}}\right)$$

Turbine

Sulla base dei dati raccolti in letteratura e dalle indicazioni fornite dal costruttore le perdite dovute alla disponibilità delle turbine possono essere stimate in 2.0%.

PHEEDRA SrI Servizi di Ingegneria Integrata	RELAZIONE SULLA	
Via Lago di Nemi, 90 74121 – Taranto (Italy)	PRODUCIBILITA'	Pagina 6 di 12
Tel. +39.099.7722302 – Fax: +39.099.9870285	DELL'IMPIANTO	

CIVOLLA

Sottostazione e linee interne

Sulla base dei dati raccolti in letteratura e dalle indicazioni fornite dai costruttori di sottostazioni di trasformazione e linee elettriche le perdite per indisponibilità di tali apparti è **0.5%**.

Rete di distribuzione

Si assume un valore del 1.0%

Perdite elettriche

Considerando il progetto delle linee elettriche e la distribuzione della velocità del vento le perdite dal punto di connessione in bassa tensione ed il punto di misura possono essere stimate in 0.5%, sulla base delle indicazioni derivanti dall'esperienza di gestione di altre centrali analoghe. Le perdite sulle linee, cavidotti interni, dalle turbine al punto di misura sono stimate essere il **2.0%.**

Sporcamento delle pale e ghiaccio

Sulla base delle indicazioni del sito, assenza di insediamenti industriali, e sulla possibilità di formazione di ghiaccio sulle pale si assume che tale perdita sia del **0.3%**.

Perdite dovute al controllo della turbina

L'algoritmo di controllo di fermo macchina per alta velocità di vento introduce una perdita di energia che non è considerata nella curva di potenza fornita dal costruttore.

L'ammontare di questa perdita è funzione sia dei parametri di controllo che della distribuzione della velocità del vento.

La valutazione di tale perdita può essere fatta considerando che:

$$\Delta E = \int_0^\infty P(V) \cdot g \cdot p(V) \, dV$$

Dove:

P(V) è la curva di potenza della turbina

p (V) è la funzione di probabilità della velocità in sito

g è pari alle seguenti possibilità:

$$g = 0$$
 $per V \le V1$

$$g = \frac{0.5 \cdot (V - V1)}{(V2 - V1)} \ per V1 < V \le V2$$

$$g = 0$$
 per $V < V2$

Committente: Wind Energy Santacroce Srll	PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO. COLLE PASSONE E PIANO	Nome del file: SCR-CIV-REL-025b 01
	CIVOLLA	30K-01V-KEE-023B_01

Con V1 è la velocità di restart dopo il fermo macchina per alta velocità (20m/s) e V2 è la velocità di fermo macchina. (25m/s)

In tal evento, mediante l'equazione 1, la perdita calcolata è minore dell'0.5%. In ogni caso si assume un valore par a **0.6%.**

Topografia

L'evidenza sperimentale suggerisce che il modello sottostima le variazioni di velocità all'interno del sito. Per stimare l'ammontare di tale perdita si è considerato un rendimento dovuto alla topografia

$$\Delta E = E \cdot \left| \eta_{topog} \right|$$

dove η_{topog} include le perdite per variazione di velocità all'interno del sito e pari a **0,98**.

Fermo preventivo

Per alcune turbine i costruttori prevedono il fermo preventivo quando il flusso proviene da alcuni settori al fine di proteggere le macchine. Nel caso del parco eolico di Ascoli Satriano non sono state introdotte restrizioni, pertanto il fattore riduttivo e **0.0%**

Wind Shear

La velocità del vento varia lungo l'asse del rotore determinando una perdita che può essere valutata con la seguente espressione:

$$\Delta E = E_{grass} \left(-0.0352 \xi^2 + 0.1484 \xi - 0.156 \right) \quad per \ \xi \le 2$$

$$\Delta E = 0 \ per \ \xi > 2$$

$$\operatorname{Con} \xi = \frac{h_{hub} - D}{R}$$

Dove h_{hub} è l'altezza del mozzo delle turbine, D è l'altezza massima Z_0 corrispondente agli elementi di rugosità, R è il raggio del rotore.

In questo caso la perdita sarà pari a 0.0%.

Crescita degli alberi

L'effetto della crescita degli alberi è modellizzata da un effettivo aumento dell'altezza di ostacoli.

L'ammontare della perdita può essere stimata dalla seguente espressione:

PHEEDRA SrI	RELAZIONE SULLA	
Servizi di Ingegneria Integrata	RELAZIONE SULLA	
Via Lago di Nemi, 90	PRODUCIBILITA'	Pagina 8 di 12
74121 - Taranto (Italy)		r agina o di 12
Tel. +39.099.7722302 - Fax: +39.099.9870285	DELL'IMPIANTO	
Email: info@nheedra it – web: www.nheedra it	DEEL IVII II II I	

Nome del file:

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA

SCR-CIV-REL-025b_01

$$\Delta E = E_{grass} \left(4.04 - 0.29 \, V_{ref} \right) \frac{\alpha \Delta h}{(h_{hub} - 0.65h) \, \cdot \ln(\frac{h_{hub}}{h - 0.65})}$$

Dove:

 Δh = è l'aumento di altezza degli alberi in un anno,

h = è l'altezza iniziale degli alberi

 α = è un fattore che converte la cresita annuale in una media annuale su 10 anni e può essere calcolata come:

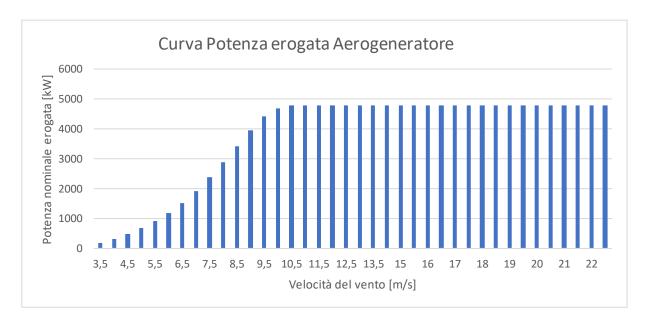
$$\alpha = \frac{(10-0.5m)m}{10}$$
 con $m = min\left(10, \frac{h_{max}-h}{\Delta h}\right)$

Fermo macchina per alta velocità

La probabilità di fremo per alta velocità del vento è già determinata dalla probabilità cumulata della curva di Weibull ed estrapolata all'altezza del mozzo.

2.8. RIEPILOGO DELLE PERDITE

Tipologie perdite	Origine	Perdita (%) ΔE/E	Fattore correttivo delle perdite (Lfi)
Disponibilità (turbine)	Stima	2	0.98
Disponibilità (sottostazione e linee interne)	Stima	0.5	0.995
Disponibilità (Rete di distribuzione)	Stima	1	0.99
Elettriche (in bassa tensione)	Stima	0.5	0.995
Elettriche (nelle linee interne)	Stima	2	0.98
Turbolenza (influenza sulla curva di potenza)	Stima	0.5	0.995
Sporcamento pale (ghiaccio + degrado)	Stima	0.3	0.997
Controllo (isteresi per alta velocità)	Stima	0.6	0.994
Fermo per alta velocità	Calcolato	0	1
Fermo preventivo	Stima	0	1
Topografia	Stima	0	0.98
Wind Shear	Stima	2	1
Crescita degli alberi	Stima	0	1
		Prodotto	0.9096


PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA

SCR-CIV-REL-025b_01

3. Produttività e calcolo delle ore equivalenti

La seguente sezione mostra il sommario dei risultati basati, sulle specifiche statistiche di Weibull, sui dati metereologici, sui dati anemometrici. I calcoli sono stati eseguiti con i metodi in precedenza descritti tenendo in conto anche delle perdite.

N° Generatori Previsti	10
Potenza Nominale	4.80 MW
Altezza Torre	120,9 m
Diametro Rotore	158 m

Velocità del vento [m\s]	Potenza [KW]	Coef. Spinta [Ct]	Velocità del vento [m\s]	Potenza [KW]	Coef. Spinta [Ct]
3,5	177	1,173	13	4800	0,319
4	312	1,159	13,5	4800	0,285
4,5	472	1,174	14	4800	0,255
5	668	1,165	15	4800	0,206
5,5	906	1,158	15,5	4800	0,186
6	1192	1,149	16	4800	0,170
6,5	1529	1,139	16,5	4800	0,156
7	1923	1,128	17	4800	0,142
7,5	2372	1,117	17,5	4800	0,131
8	2876	1,105	18	4800	0,121

Velocità del vento [m\s]	Potenza [KW]	Coef. Spinta [Ct]	Velocità del vento [m\s]	Potenza [KW]	Coef. Spinta [Ct]
8,5	3423	1,078	18,5	4800	0,113
9	3964	1,012	19	4800	0,104
9,5	4416	0,909	19,5	4800	0,096
10	4687	0,786	20	4800	0,090
10,5	4778	0,662	20,5	4800	0,085
11	4799	0,559	21	4800	0,079
11,5	4800	0,477	21,5	4800	0,075
12	4800	0,413	22	4800	0,071
12,5	4800	0,362	22,5	4800	0,067

Poiché la potenza estraibile da un flusso eolico è direttamente proporzionale alla densità dell'aria, nel caso in cui essa, nelle aree relative al sito in questione, si scosti dal suddetto valore standard è necessario correggere le curve di potenza e del coefficiente di spinta in riferimento alla densità realmente rilevata.

Il Valore della distribuzione della densità di Weibull così calcolato [F(u) = 90,96 %], si traduce in un funzionamento annuo dell'impianto pari a:

In relazione alle caratteristiche degli aerogeneratori e dei dati anemometrici si prevede una produzione annua totale per il parco eolico, al netto delle perdite elettriche e dell'accuratezza delle stime anemologiche e anemometriche effettuate.

In funzione della velocità media annua stimata e in base alla resa dell'aerogeneratore previsto in progetto, si è desunta la produttività energetica media degli aerogeneratori, pari a **14.160 MWh/anno** con una probabilità del 50% di essere superata.

$$\frac{Energia\ prodotta/anno}{Potenza\ Nominale\ Aerogeneratore} = \frac{14.160}{4.80} = 2.950$$

4. Conclusioni

La presente relazione riporta i risultati dell'analisi e validazione dei dati di vento per il sito di Sant'Agata di Puglia. Con i risultati ottenuti si è proceduto a valutare la produzione attesa annua sulla base del layout e del tipo di aerogeneratore ipotizzati.

Tale stima di produzione annua netta rappresenta la P_{50%}, ossia il valor medio della distribuzione statistica della produzione annua. Lo scarto quadratico medio di tale distribuzione è dato dal valore dell'incertezza totale calcolato al precedente paragrafo. Sulla base di semplici considerazioni di carattere statistico siamo

PHEEDRA SrI	RELAZIONE SULLA	
Servizi di Ingegneria Integrata	INLLAZIONE SULLA	
Via Lago di Nemi, 90	PRODUCIBILITA'	Pagina 11 di 12
74121 - Taranto (Italy)	TRODUCIDILITA	r agina i i di iz
Tel. +39.099.7722302 - Fax: +39.099.9870285	DELL'IMPIANTO	
Fmail: info@nheedra it - web: www.nheedra it	DELE IIII I III O	

Committente: Wind Energy Santacroce Srll

PROGETTO PER LA REALIZZAZIONE DI UN PARCO NEL COMUNE DI SANTACROCE DI MAGLIANO (CB) LOCALITA' PIANO PALAZZO, PIANO MOSCATO, COLLE PASSONE E PIANO CIVOLLA

Nome del file:

SCR-CIV-REL-025b_01

in grado di valutare il valore di P_{75%}, vale a dire la produzione attesa che presenta una probabilità del 75% di essere superata nel corso dell'anno.

Viene di seguito riportata la tabella riepilogativa indicante per ogni singolo aerogeneratore la producibilità al netto delle perdite per effetto scia e la $P_{75\%}$ al netto delle perdite sistematiche e dei parametri di incertezza sopraelencati.

La producibilità media attesa a $P_{75\%}$ è 2.712 ore equivalenti mentre a $P_{50\%}$ è 2.950 ore equivalenti.