

MONITORAGGIO AMBIENTALE IN ANTE OPERAM

SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tratto Monte Romano Est-Cinelli, Tronco 3° - Lotto 1° - Stralcio B compreso tra la SS 1 Aurelia (km 86+000) e la SS 1 Bis (km 21+500) – PROV. VITERBO

Settembre 2015

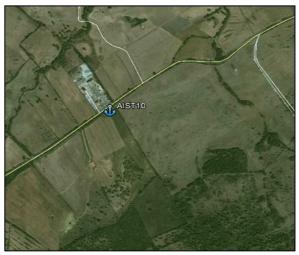
Matrice 6.3 – Idrico Sotterraneo

Carrara (MS) 54033 Via Frassina, 21 T. 0585 855624 - F. 0585 855617 Firenze (FI) 50134 Via di Soffiano, 15 T. 055 7399056 - F. 055 7134442 www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. – Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 – 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B


SEZIONE: AIST10

Posizione geografica

Coord N: 42°16'51.63"
Coord E: 11°55'18.00"

Quota (m.s.l.m)

MONITORAGGIO ANTE OPERAM

*: Foto identificative del punto del piezometro

DATA	03/09/2015
D, () , (00,00,2010

DATI COSTRUTTIVI E IDROGEOLOGICI			
Prof. Piezometro	m	11,22	
Livello di falda da b.p.	m	3,24	

PARAMETRI CHIMICO – FISICI				
Temp. Aria	°C	31		
Temp. Acqua	°C	24		
pH		7,21		
Conducibilità	μS/cm	1045		
Potenziale redox	mV	25		
Ossigeno disciolto	mg/l	2,98		

Rapporto di prova n°: 15LA17161 del 02/12/2015

Spett. **ANAS SPA VIABILITA' DEL LAZIO** VIALE BRUNO RIZZIERI 142 00173 ROMA (RM)

Dati relativi al campione

Acque di falda

Denominazione del Campione: Campione di acqua - AIST 10 Data inizio analisi: 04/09/2015 Data fine analisi: 24/09/2015

Quantità di Campione pervenuta: 2,95 Temperatura al ricevimento: 4 °C Data Accettazione: 04/09/2015

Data Arrivo: 04/09/2015

Dati di campionamento

Luogo di campionamento: Raccordo Orte Civitavecchia

Punto di prelievo: AIST 10

Modalità di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Prelevato il: 03/09/2015 da: Personale Ambiente s.c. - Ing. Ciapetti Carlo

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Residuo secco a 180°C UNI 10506:1996	mg/l	800	±50	
Carbonio organico totale (TOC) APAT CNR IRSA 5040 Man 29 2003	mg/l	13		
· Alcalinità APAT CNR IRSA 2010 B Man 29 2003	mg/l CaCO3	760	±98	
Ossidabilità UNI EN ISO 8467:1997	mgO2/l	1,6	±0,5	
Durezza Totale (da calcolo) APAT CNR IRSA 2040 A Man 29 2003	mg/l CaCO3	310	±50	
Tensioattivi anionici APAT CNR IRSA 5170 Man 29 2003	mg/l	0,15	±0,02	
Tensioattivi non ionici APAT CNR IRSA 5180 Man 29 2003	mg/l	< 0,03		
Arsenico EPA 6020A 2007	µg/l	1,11	±0,05	10
Cadmio EPA 6020A 2007	µg/I	< 0,5		5
Cromo totale EPA 6020A 2007	μg/l	5,9	±0,2	50
Ferro EPA 6020A 2007	µg/l ▶	1900	±240	200
Piombo EPA 6020A 2007	μg/l ►	38	±1	10

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Insarito negli elenchi del programma di controllo Qualità dei paramma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Attamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.Pl0054) Laboratorio riconosciuto dal Ministero della Samta (prot. 600.5/59.819/1773) e iscritto al n. 017 dell'etenco regionale dei laboratori che effettuano analisi di autocontrollo dello industrio alimentari ai sensi della LR 9 marzo 2008, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato al sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza del lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17161 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Rame EPA 6020A 2007	μg/l	< 10	1 () () () () () () () () () (1000
Manganese EPA 6020A 2007	µg/l ▶	190	±23	50
Calcio EPA 6010C 2007	mg/l	96	±13	
Magnesio EPA 6010C 2007	mg/l	17	±3	
Sodio EPA 6010C 2007	mg/l	120	±13	
Potassio EPA 6010C 2007	mg/l	3,4	±0,4	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	10,4	±0,3	
Nitriti APAT CNR IRSA 4020 Man 29 2003	µg/l	< 50		500
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	120	±5	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,5		
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	72	±3	250
Fosforo totale (come P) EPA 200.7 1994	mg/i	4,4	±0,7	
Benzene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,1		1
Etilbenzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1	10 = 110 = 00	50
Stirene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		25
Toluene EPA 5030C 2003 + EPA 8260C 2006	µд∕\	< 1		15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260C 2006	µg/i	< 1		10
Benzo (a) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/I	< 0,01		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/i	< 0,005		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Orisene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/ l	< 0,5		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inseriio negli elenchi del programma di controlio Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promoso dei Ministero della Saluta, el sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Attamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo Il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditate dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superfore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Santà (prot. 600.5/59.6 19/1773) e iecritto al n. 0.17 dell'etanco regionale dei laboratori che effettuano analiai di autocontrollo delle industrio atimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità cortificato ai sensi della UNI EN 150 9001, con Sistema di Gestiona Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza del lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17161 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1	
Pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 5		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	0,013	±0,002	0,1	
Clorometano EPA 5030C 2003 + EPA 8260C 2006	µg∕l	< 0,01		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01	94	3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 1		10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 1		810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 1		60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260C 2006	μg/i	< 0,01		0,15	
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,2	
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,001		0,001	2300
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Fribromometano (bromoformio) EPA 5030C 2003 + EPA 8260C 2006	µg/i	0,020	±0,005	0,3	
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,001		0,001	
Dibromoclorometano PA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,13	
Bromodiclorometano PA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,17	
2 - Clorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 10		180	
2,4 - Diclorofenolo	μg/l	< 10	3	110	

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero dello Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96, Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superfore e Formazione Continua (n.Pl0054) Laboratorio riconoscuto dal Ministero della Samilà (prot. 600.5/5.9.819/1773) e iscritto al n. 017 dell'alenco regionale dei iaboratori che effettuano analisi di autocontrollo dello industrie alimentari ai sensi della I.8 9 marzo 2008, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza del lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17161 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,5		5
Pentaclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,05		0,5
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002	µg/l	210	±50	350
Conta di Coliformi Fecali APAT CNR IRSA 7020 B Man 29 2003	ufc/100ml	0		
Conta di Coliformi Totali APAT CNR IRSA 7010 C Man 29 2003	ufc/100ml	11000	9300 - 13000	
Conta di Streptococchi fecali (Enterococchi) APAT CNR IRSA 7040 C Man 29 2003	ufc/100ml	0		
Conta delle colonie a 22°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	77000	61000 - 94000	
Conta delle colonie a 36°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	27000	17000 - 37000	

(*) - Prova non accreditata ACCREDIA

▶ i parametri contraddistinti dal simbolo a lato sono fuori limite.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Limiti:

Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 Concentrazione Soglia di contaminazione nelle acque sotterranee

Responsabile della Sezione Biologica Marta Casella N° 056220 - Ordine Nazionale dei Biologi

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova n° 15LA17161

All.16 PGAMB08.1 rev.03 del 02.01.2014

Carrara (MS) 54033 Via Frassina, 21 0585 855624 - F. 0585 855617 Firenze (FI)
T. 50134 Via di Soffiano, 15
T. 055 7399056 - F. 055 7134442

www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. – Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 - 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B

SEZIONE: AIST11

Posizione geografica
Coord N: 42°17'0.79"
Coord E: 11°55'45.14"
Quota (m.s.l.m)

MONITORAGGIO ANTE OPERAM

*: Foto identificative del punto del piezometro

DATI COSTRUTTIVI E IDROGEOLOGICI				
Prof. Piezometro m 13				
Livello di falda da b.p. m 5,66				

PARAMETRI CHIMICO – FISICI				
Temp. Aria	°C	31		
Temp. Acqua	°C	21,2		
рН		7,17		
Conducibilità	μS/cm	6,68		
Potenziale redox	mV	52		
Ossigeno disciolto	mg/l	3,08		

Rapporto di prova nº: 15LA17162 del 02/12/2015

Spett. ANAS SPA VIABILITA' DEL LAZIO **VIALE BRUNO RIZZIERI 142** 00173 ROMA (RM)

Dati relativi al campione

Acque di falda

Denominazione del Campione: Campione di acqua - AIST 11 Data inizio analisi: 04/09/2015 Data fine analisi: 24/09/2015

Quantità di Campione pervenuta: 2.95 Temperatura al ricevimento: 4 °C Data Accettazione: 04/09/2015

Data Arrivo: 04/09/2015

Dati di campionamento

Luogo di campionamento: Raccordo Orte Civitavecchia

Punto di prelievo: AIST 11

Modalità di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Prelevato il: 03/09/2015 da: Personale Ambiente s.c. - Ing. Ciapetti Carlo

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Residuo secco a 180°C UNI 10506:1996	mg/l	560	±35	
Carbonio organico totale (TOC) APAT CNR IRSA 5040 Man 29 2003	mg/l	11		
· Alcalinità APAT CNR IRSA 2010 B Man 29 2003	mg/l CaCO3	180	±23	
Ossidabilità UNI EN ISO 8467:1997	mgO2/l	1,1	±0,4	
Durezza Totale (da calcolo) APAT CNR IRSA 2040 A Man 29 2003	mg/l CaCO3	340	±55	
Tensioattivi anionici APAT CNR IRSA 5170 Man 29 2003	mg/l	0,19	±0,03	
Tensioattivi non ionici APAT CNR IRSA 5180 Man 29 2003	mg/l	< 0,03		
Arsenico EPA 6020A 2007	µg/l	1,10	±0,05	10
Cadmio EPA 6020A 2007	μg/l	< 0,5		5
Cromo totale EPA 6020A 2007	μg/l	8,3	±0,2	50
Ferro EPA 6020A 2007	μg/l ▶	2600	±310	200
Piombo EPA 6020A 2007	μg/l ▶	43	±1	10

Ali.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che officituano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Solute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerce riconosciuto
"Attamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo II Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditate dalla Regione Toscana ai sensi dalla DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054)

Laboratorio riconosciuto dal Ministero della Santa (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elanco regionalo dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari si sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Laboratorio con Sistema di Gastione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gastione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gastione della Salute e Sicurezza dei lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17162 del 02/12/2015

Rame				
EPA 6020A 2007	μg/l	30	±1	1000
Manganese EPA 6020A 2007	µg/l ▶	130	±16	50
Calcio EPA 6010C 2007	mg/l	110	±14	
Magnesio EPA 6010C 2007	mg/l	18	±3	
Sodio EPA 6010C 2007	mg/l	19	±2	
Potassio EPA 6010C 2007	mg/l	2,8	±0,3	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	4,7	±0,2	
Nitriti APAT CNR IRSA 4020 Man 29 2003	µg/l	< 50		500
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/i	24	±1	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	0,67	±0,09	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	18	±1	250
Fosforo totale (come P) EPA 200.7 1994	mg/l	0,83	±0,13	
Benzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,1		1
Etilbenzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		50
Stirene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 1		25
Toluene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		10
Benzo (a) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	0,029	±0,004	0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,005		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	0,0033	±0,0004	0,01
Crisene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/I	< 0,5		5
Dibenzo (a,h) antracene	μg/l	< 0,001		0,01

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controlto Qualità dei laboratori che offottuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promoso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/98.

Laboratorio di ricerca riconosciuto
"Altamente Quatificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 988/07 per gli ambiti Formazione Superiore e Formazione Continua (n.Pt0054) Laboratorio riconosciuto dal Ministero della Samta (prot. 600.5/59.619/1773) e lacritto al n. 017 dell'otenco regionale dei laboratori che effettuane anellisi di autocontrollo dello industrio alimentari ai aenai della L.R.9 merzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sisiema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza del lavoratori secondo lo standard OHSAS 18001

LAB N° 0510

segue Rapporto di prova nº: 15LA17162 del 02/12/2015

μg/l	< 0,01		0,1
μg/l	< 5		50
μg/l	0,016		0,1
μg/I	< 0,01		1,5
µg/i	< 0,01		0,15
μg/l	< 0,01		0,5
µg/l	< 0,01		3
µg/l	< 0,005		0,05
µg/l	< 0,01		1,5
µg/l	< 0,01		1,1
μg/l	< 0,01		0,15
µg/l	<1		10
µg/l	<1		810
µg/l	<1		60
µg/l	< 0,01		0,15
µg/I	< 0,01		0,2
μg/l	< 0,001		0,001
µg/l	< 0,005		0,05
µg/l	< 0,01		0,3
µg/l	< 0,001		0,001
µg/l	< 0,01		0,13
μ g /l	< 0,01		0,17
µg/i	< 10		180
µg/l	< 10		110
	hall hall hall hall hall hall hall hall	Pg/I < 5 Pg/I 0,016 Pg/I < 0,01 Pg/I < 1 Pg/I < 1 Pg/I < 1 Pg/I < 0,01 Pg/I < 0,001 Pg/	μg/l < 5 μg/l 0,016 μg/l < 0,01 μg/l < 0,01 μg/l < 0,01 μg/l < 0,01 μg/l < 0,005 μg/l < 0,01 μg/l < 0,01 μg/l < 1 μg/l < 1 μg/l < 1 μg/l < 0,01 μg/l < 0,001 μg/

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi dei programma di controllo Qualità dei jaboratori che offettuano la deferminazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dai Ministero delle Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo Il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59,819/1773) e iscritto al n. 017 dell'elenco regionale di laboratori che effettuano enalisi di autocontrolto delle industrio alimentari ai sensi della ILR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN 13O 9001, con Sistema di Gestione Ambientale certificato ai sensi della UNI EN ISO 14001, o con Sistema di Gestione della Salute e Sicurezza dei lavoratori secondo lo standard OHSAS 18001

LAR Nº 0510

segue Rapporto di prova nº: 15LA17162 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
+ 2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,5		5
Pentaclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,05		0,5
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002	µg/l	140	±35	350
Conta di Coliformi Fecali APAT CNR IRSA 7020 B Man 29 2003	ufc/100ml	0		
Conta di Coliformi Totali APAT CNR IRSA 7010 C Man 29 2003	ufc/100ml	13000	11000 - 15000	
Conta di Streptococchi fecali (Enterococchi) APAT CNR IRSA 7040 C Man 29 2003	ufc/100ml	0		
Conta delle colonie a 22°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	19000	16000 - 21000	
Conta delle colonie a 36°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	13000	11000 - 15000	10000

(*) - Prova non accreditata ACCREDIA

▶ i parametri contraddistinti dal simbolo a lato sono fuori limite.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Limiti:

Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 Concentrazione Soglia di contaminazione nelle acque sotterranee

Responsabile della Sezione Biologica Marta Casella N° 056220 - Ordine Nazionale dei Biologi Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 15LA17162

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei piogramma di controllo Qualità dei laboratori che officiuano la deleminazione quantitativa delle fibre di amianto per le tecniche MOCF del FTIR promosso dal Ministero della Saluto, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 988/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Santà (prot. 600.5/59.819/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo dello industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Laborstorio con Sistema di Gastione Qualità certificato ai sensi delta UNI EN ISO 9001, con Sistema di Gastione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gastione della Salute o Sicurezza dei lavoratori secondo lo standard OHSAS 18001

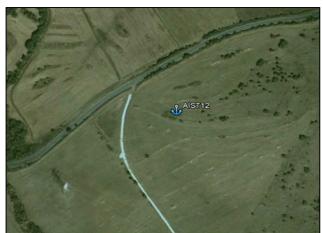
Carrara (MS) 54033 Via Frassina, 21 0585 855624 - F. 0585 855617 Firenze (FI)
T. 50134 Via di Soffiano, 15
T. 055 7399056 - F. 055 7134442

www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. - Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 - 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B


SEZIONE: AIST12

Posizione geografica

Coord N: 42°17'3.73"
Coord E: 11°55'50.94"

Quota (m.s.l.m)

MONITORAGGIO ANTE OPERAM

*: Foto identificative del punto del piezometro

DATA 03/09/	2015
-------------	------

DATI COSTRUTTIVI E IDROGEOLOGICI			
Prof. Piezometro	m	12,66	
Livello di falda da b.p.	m	5,3	

PARAMETRI CHIMICO – FISICI		
Temp. Aria	°C	31
Temp. Acqua	°C	21,1
рН		7,1
Conducibilità	μS/cm	611
Potenziale redox	mV	33
Ossigeno disciolto	mg/l	3,4

Rapporto di prova nº: 15LA17163 del 02/12/2015

Spett. **ANAS SPA VIABILITA' DEL LAZIO** VIALE BRUNO RIZZIERI 142 00173 ROMA (RM)

Dati relativi al campione

Acque di falda

Denominazione del Campione: Campione di acqua - AIST 12 Data inizio analisi: 04/09/2015 Data fine analisi: 24/09/2015

Quantità di Campione pervenuta: 2.95 Temperatura al ricevimento: 4 °C Data Accettazione: 04/09/2015

Data Arrivo: 04/09/2015

Dati di campionamento

Luogo di campionamento: Raccordo Orte Civitavecchia

Punto di prelievo: AIST 12

Modalità di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Prelevato il: 03/09/2015 da: Personale Ambiente s.c. - Ing. Ciapetti Carlo

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Residuo secco a 180°C UNI 10506:1996	mg/l	500	±31	
Carbonio organico totale (TOC) APAT CNR IRSA 5040 Man 29 2003	mg/l	5,5		
Alcalinità APAT CNR IRSA 2010 B Man 29 2003	mg/l CaCO3	200	±26	
Ossidabilità UNI EN ISO 8467:1997	mgO2/l	1,1	±0,4	
Durezza Totale (da calcolo) APAT CNR IRSA 2040 A Man 29 2003	mg/l CaCO3	350	±55	
Tensioattivi anionici APAT CNR IRSA 5170 Man 29 2003	mg/l	< 0,03		
Tensioattivi non ionici APAT CNR IRSA 5180 Man 29 2003	mg/l	< 0,03		
Arsenico EPA 6020A 2007	рд/І	< 1		10
Cadmio EPA 6020A 2007	µg/l	< 0,5		5
Cromo totale EPA 6020A 2007	µg/I	< 5		50
Ferro EPA 6020A 2007	µg/l ▶	1100	±130	200
Piombo EPA 6020A 2007	µg/l ▶	37	±1	10

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inseriio negli elenchi del programma di controllo Qualità dei laboratori che affortiuano ia determinazione quantitativa delle fibre di amianto per le teoriche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconoscuto
"Allamento Qualificato" da parte del
Ministero della Universitào Ricorca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 96807 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Santà (prot. 600.5/59,619/1773) e iscritto al n. 0.17 dell'elenco regionato dei laboratori che effettuano analisi di autocontrolto delle industrie alimentari al aensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Laboratorio con Sistema di Gestione Qualità certificato ai sensi dolla UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza dei lavoraton secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17163 del 02/12/2015

Rame EPA 6020A 2007 Manganese EPA 6020A 2007	µg/l	< 10		- Wints
		• •		1000
-r A 0020A 2007	μg/l	48	±6	50
Calcio EPA 6010C 2007	mg/l	120	±16	
Magnesio EPA 6010C 2007	mg/l	9,3	±1,5	
Sodio EPA 6010C 2007	mg/l	12	±1	
Potassio EPA 6010C 2007	mg/l	1,4	±0,2	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	18	±1	
Nitriti APAT CNR IRSA 4020 Man 29 2003	µg/I	< 50		500
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/i	26	±1	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,5		
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	16	±1	250
Fosforo totale (come P) EPA 200.7 1994	mg/l	1,9	±0,3	
Benzene EPA 5030C 2003 + EPA 8260C 2006	μg/i	< 0,1		1
Etilbenzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		50
Stirene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 1		25
Toluene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260C 2006	µg/I	< 1		10
Benzo (a) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µд∕1	< 0,01		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,005		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Crisene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/I	< 0,5		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Insenito negli elenchi del programma di controllo Qualità dei laboratori che elfottuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ei sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Alfamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore Formazione Continua (n.Pl0054) Laboratorio riconosciuto dal Ministero della Santa (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionate del taboratori che effettuano enalisi di autocontrollo delle industrio alimentari ai sensi della LR 9 mezzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratono con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestiono Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza de

segue Rapporto di prova nº: 15LA17163 del 02/12/2015

Parametro ⊌etodo	U.M.	Risultato	Incertezza	Limiti	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1	
Pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 5		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	0,013		0,1	
Clorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5	
riclorometano (Cloroformio) PA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,5	
,2 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		3	
,1 - Dicloroetilene PA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		810	**************************************
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
I,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,2	
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,001		0,001	
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/I	< 0,005		0,05	
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,3	
,2 - Dibromoetano EPA 5030C 2003 + EPA 8260C 2006	µg/I	< 0,001		0,001	
Dibromoclorometano PA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,13	
Bromodiclorometano EPA 5030C 2003 + EPA 8260C 2006	µg/ì	< 0,01		0,17	
2 - Clorofenolo PA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 10		180	
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 10		110	

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio inserito negli elenchi del programma di controllo Qualità dei laborator che offettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Saluto, si a sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

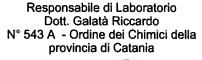
Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.Pl0054) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.819/1773) e iscritto al n. 017 dell'olenco regionale di laboratori che effettuano analisi di autocontrollo delle industrio alimentari ai sensi della IL 9 marzo 2008, n. 9 (docreto 1236 del 20.03.2007) Laboratorio con Sistema di Gastione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestiona Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza dei lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17163 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
• 2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,5		5
Pentaclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,05		0,5
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002	μg/l	170	±40	350
Conta di Coliformi Fecali APAT CNR IRSA 7020 B Man 29 2003	ufc/100ml	17	10 - 27	
Conta di Coliformi Totali APAT CNR IRSA 7010 C Man 29 2003	ufc/100ml	14000	12000 - 16000	
Conta di Streptococchi fecali (Enterococchi) APAT CNR IRSA 7040 C Man 29 2003	ufc/100ml	# m,o,		
Conta delle colonie a 22°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	35000	23000 - 46000	
Conta delle colonie a 36°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	11000	9300 - 13000	

(*) - Prova non accreditata ACCREDIA

▶ i parametri contraddistinti dal simbolo a lato sono fuori limite.


Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Limiti:

Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 Concentrazione Soglia di contaminazione nelle acque sotterranee

Note: #m,o,= microrganismi presenti nel volume esaminato

Responsabile della Sezione Biologica Marta Casella N° 056220 - Ordine Nazionale dei Biologi

Fine del rapporto di prova nº 15LA17163

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Selute, ai sensi del D.M. 14/05/98.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del Ministero della Universitàe Ricerca (MIUR) secondo il Decreto Ministeriale 8 agosto 2000

Agenzia Formativa accredinte dalla Regione Toscana el sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio nonosciuto dal Ministero della Samila (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'etenco regionale dei laboratori che effettuano enalisi di autocontrolto delle industrio alimentari ai sensi della LR 9 merzzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Laboratione con Sistema di Gestione Qualità cortificato ai sensi della UNI EN ISO 9001, con Sistema di Gestiono Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza dei lavoratori secondo lo standard OHSAS 18001

Carrara (MS) 54033 Via Frassina, 21 T. 0585 855624 - F. 0585 855617

Firenze (FI) 50134 Via di Soffiano, 15 T. 055 7399056 - F. 055 7134442 www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. – Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 - 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B

SEZIONE: AIST13

Posizione geografica

Coord N: 42°17'43.78"
Coord E: 11°56'48.95"

Quota (m.s.l.m)

MONITORAGGIO ANTE OPERAM

*: Foto identificative del punto del piezometro

DATA 03/09/2015

DATI COSTRUTTIVI E IDROGEOLOGICI			
Prof. Piezometro	m	31	
Livello di falda da b.p.	m	7,1	

PARAMETRI CHIMICO – FISICI		
Temp. Aria Temp. Acqua pH	°C °C	30 22 7,51
Conducibilità Potenziale redox Ossigeno disciolto	μS/cm mV mg/l	850 62 3,21

Rapporto di prova nº: 15LA17164 del 02/12/2015

Spett.

ANAS SPA VIABILITA' DEL LAZIO
VIALE BRUNO RIZZIERI 142
00173 ROMA (RM)

Dati relativi al campione

Acque di falda

Denominazione del Campione: Campione di acqua - AIST 13 Data inizio analisi: 04/09/2015 Data fine analisi: 24/09/2015

Quantità di Campione pervenuta: 2.95 Temperatura al ricevimento: 4 °C Data Accettazione: 04/09/2015

Data Arrivo: 04/09/2015

Dati di campionamento

Luogo di campionamento: Raccordo Orte Civitavecchia

Punto di prelievo: AIST 13

Modalità di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Prelevato il: 03/09/2015 da: Personale Ambiente s.c. - Ing. Ciapetti Carlo

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Residuo secco a 180°C UNI 10506:1996	mg/l	650	±40	
Carbonio organico totale (TOC) APAT CNR IRSA 5040 Man 29 2003	mg/l	6,0		
Alcalinità APAT CNR IRSA 2010 B Man 29 2003	mg/l CaCO3	210	±27	
Ossidabilità UNI EN ISO 8467:1997	mgO2/l	1,3	±0,4	
Durezza Totale (da calcolo) APAT CNR IRSA 2040 A Man 29 2003	mg/l CaCO3	240	±39	
Tensioattivi anionici APAT CNR IRSA 5170 Man 29 2003	mg/l	0,060	±0,008	
Tensioattivi non ionici APAT CNR IRSA 5180 Man 29 2003	mg/l	< 0,03	57/11	
Arsenico EPA 6020A 2007	µg/l	< 1		10
Cadmio EPA 6020A 2007	μg/l	< 0,5		5
Cromo totale EPA 6020A 2007	μg/l	< 5		50
Ferro EPA 6020A 2007	µg/l ▶	450	±55	200
Piombo EPA 6020A 2007	µg/l ▶	37	±1	10

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratono Inaerito negli elenchi del programma di controllo Qualità dei laboratori che offettuano ila determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso del Ministero dello Salute, ei sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Leboratorio di noerce riconosciuto
"Altamente Custificato" da parte dei
Ministero della Universitàe Ricerca (MIUR)
secondo Il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditats dalla Regione Toscana si sensi della DGR 968/07 por gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Senstà (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'olenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza dei lavoratori secondo lo standard ONSAS 18001

segue Rapporto di prova nº: 15LA17164 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Rame EPA 6020A 2007	µg/l	< 10		1000
Manganese EPA 6020A 2007	µg/l ▶	95	±11	50
Calcio EPA 6010C 2007	mg/l	78	±10	
Magnesio EPA 6010C 2007	mg/i	12	±2	
Sodio EPA 6010C 2007	mg/l	110	±11	
Potassio EPA 6010C 2007	mg/l	6,0	±0,7	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	9,6	±0,3	
Nitriti APAT CNR IRSA 4020 Man 29 2003	µg/l	< 50		500
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	79	±3	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,5		
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	70	±3	250
Fosforo totale (come P) EPA 200.7 1994	mg/l	0,39	±0,06	
Benzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,1		1
Etilbenzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		50
Stirene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		25
Toluene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 1		15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 1		10
Benzo (a) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,01		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,01		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,005		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Crisene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,5		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/i	< 0,001		0,01

Ali.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Insento negli efenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del FTIR promoso dal Ministero dello Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconoscuto
"Altermento Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo II Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regiono Toscana ai eensi dotla DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.Pl0054) Laboratorio riconosciuto dal Ministero della Santà (prot. 600.5/50.819/1773) e scritto ai n. 017 dell'elenco regionale di laboratori che effettuano analisi di autocontrollo delle industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gastione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gastiono Ambientale certificato ai sensi della UNI EN ISO 14001, o con Sistema di Gastione della Saluto e Sicurezza de

segue Rapporto di prova nº: 15LA17164 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1	i i see
Pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 5		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	0,013		0,1	
Clorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		60	0.000
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,15	
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260C 2006	hā\j	< 0,01		0,2	
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,001		0,001	
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Fribromometano (bromoformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,3	
,2 - Dibromoetano PA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,001		0,001	
Dibromoclorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01	*****	0,13	
Bromodiclorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,17	
2 - Clorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 10		180	
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 10		110	

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi dei programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promoso dei Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana el sensi della DGR 968/07 per gli ambiti Formazione Superfore e Formazione Continua (n.Pi0054)

Leboratorio riconosciuto dal Ministero della Santit (prot. 600,5/50,819/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo dello industrie alimentari ai sensi della LR 9 marzo 2008, n. 9 (decreto 1236 del 20.03,2007)

Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestiono Ambientale certificato ai sensi della UNI EN ISO 14001, o con Sistema di Gestione della Salute e Sicurezza del lavoratori secondo lo standard OHSAS 18001

LAB N° 0510

segue Rapporto di prova nº: 15LA17164 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
• 2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,5		5
Pentaclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,05	2	0,5
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002	µg/l	< 35		350
Conta di Coliformi Fecali APAT CNR IRSA 7020 B Man 29 2003	ufc/100ml	0		
Conta di Coliformi Totali APAT CNR IRSA 7010 C Man 29 2003	ufc/100ml	97000	78000 - 120000	
Conta di Streptococchi fecali (Enterococchi) APAT CNR IRSA 7040 C Man 29 2003	ufc/100mi	0	×	
Conta delle colonie a 22°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	60000	45000 - 75000	
Conta delle colonie a 36°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	46000	33000 - 59000	

(*) - Prova non accreditata ACCREDIA

▶ i parametri contraddistinti dal simbolo a lato sono fuori limite.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Limiti:

Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 Concentrazione Soglia di contaminazione nelle acque sotterranee

Responsabile della Sezione Biologica Marta Casella N° 056220 - Ordine Nazionale dei Biologi Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 15LA17164

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del FTIR promosao dal Ministero della Salute, ei sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciulo
"Altamente Quatificato" da parte del
Ministero della Universitàe Ricerca (MiUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.Pi0054) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.559.61941773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestione Ambierniale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza deli avoratori secondo lo standard OHSAS 18001

Carrara (MS) 54033 Via Frassina, 21 T. 0585 855624 - F. 0585 855617 Firenze (FI) 50134 Via di Soffiano, 15 T. 055 7399056 - F. 055 7134442 www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. - Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 - 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B

MONITORAGGIO ANTE OPERAM

*: Foto identificative del punto del piezometro

DATA	03/09/2015
------	------------

DATI COSTRUTTIVI E IDROGEOLOGICI					
Prof. Piezometro	m	12,45			
Livello di falda da b.p.	m	6,9			

PARAMETRI CHIMICO – FISICI		
Temp. Aria	°C	31
Temp. Acqua	°C	22
рН		7,14
Conducibilità	μS/cm	624
Potenziale redox	mV	22
Ossigeno disciolto	mg/l	2,8

Rapporto di prova nº: 15LA17165 del 02/12/2015

Spett.

ANAS SPA VIABILITA' DEL LAZIO
VIALE BRUNO RIZZIERI 142
00173 ROMA (RM)

Dati relativi al campione

Acque di falda

Denominazione del Campione: Campione di acqua - AIST 14 Data inizio analisi: 04/09/2015 Data fine analisi: 24/09/2015

Quantità di Campione pervenuta: 2.95 Temperatura al ricevimento: 4 °C Data Accettazione: 04/09/2015

Data Arrivo: 04/09/2015

Dati di campionamento

Luogo di campionamento: Raccordo Orte Civitavecchia

Punto di prelievo: AIST 14

Modalità di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Prelevato il: 03/09/2015 da: Personale Ambiente s.c. - Ing. Ciapetti Carlo

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Residuo secco a 180°C UNI 10506:1996	mg/l	490	±30	
Carbonio organico totale (TOC) APAT CNR IRSA 5040 Man 29 2003	mg/i	70		
· Alcalinità APAT CNR IRSA 2010 B Man 29 2003	mg/l CaCO3	270	±35	
Ossidabilità UNI EN ISO 8467:1997	mgO2/l	1,4	±0,5	
Durezza Totale (da calcolo) APAT CNR IRSA 2040 A Man 29 2003	mg/l CaCO3	290	±47	
Tensioattivi anionici APAT CNR IRSA 5170 Man 29 2003	mg/l	0,040	±0,006	
Tensioattivi non ionici APAT CNR IRSA 5180 Man 29 2003	mg/l	< 0,03		
Arsenico EPA 6020A 2007	μg/l	1,17	±0,05	10
Cadmio EPA 6020A 2007	µg/l	< 0,5	1	5
Cromo totale EPA 6020A 2007	µg/l	< 5		50
Ferro EPA 6020A 2007	µg/l ▶	610	±74	200
Piombo EPA 6020A 2007	µg/l ▶	46	±2	10

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio inserito negli elenchi del programma di controllo Qualità dei inboratori che effettuare la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promoso dal Ministero della Salute, ai sensi del D.M., 07/07/97 e del D.M., 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 988/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Santà (prot. 600.5/59.819/1773) e iscritto al n. 017 dell'eterco regionale del taboratori che effettuano analisi di autocontrollo delle industrio alimentari ai sensi della LR 9 mazzo 2008, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestiona Ambientale certificato ai sensi della UNI EN ISO 14001, o con Sistema di Gestione della Saluto e Sicurezzo dei lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17165 del 02/12/2015

Parametro ^{Metodo}	U.M.	Risultato	Incertezza	Limiti
Rame EPA 6020A 2007	μg/i	< 10		1000
Manganese EPA 6020A 2007	µg/l ▶	62	±7	50
Calcio EPA 6010C 2007	mg/l	93	±12	
Magnesio EPA 6010C 2007	mg/l	15	±2	
Sodio EPA 6010C 2007	mg/l	21	±2	
Potassio EPA 6010C 2007	mg/ł	4,1	±0,5	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	0,54	±0,04	
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	32	±1	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,5		
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	19	±1	250
Fosforo totale (come P) EPA 200.7 1994	mg/l	6,2	±1,0	
Benzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,1		1
Etilbenzene EPA 5030C 2003 + EPA 8260C 2006	μ g /l	< 1		50
Stirene EPA 5030C 2003 + EPA 8260C 2006	µg/I	< 1		25
Toluene EPA 5030C 2003 + EPA 8260C 2006	µg/I	< 1		15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		10
Benzo (a) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01	1 2 2	0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μ g /l	< 0,001		0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,005		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	0,0018	±0,0002	0,01
Crisene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,5		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,001		0,01
Dipenzo (a,n) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	рд/і	< 0,001		0,01

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità del laboratori che officitiano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamento Cualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo Il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditate della Regione Toscana si sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Santia (prot. 600.5/59.619/1773) a iscritto al n. 017 dell'etenco rogionale dei laboratori che effettuano naniali di autocontrollo delle industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007) Leboratorio con Sistema di Gestione Quajità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato ai senal della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza de

segue Rapporto di prova nº: 15LA17165 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1	
Pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 5		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	0,014		0,1	
Clorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1	MINE SALE	810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,2	
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,001		0,001	
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,3	
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,001		0,001	
Dibromoclorometano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,13	
Bromodiclorometano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,01		0,17	
2 - Clorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 10		180	
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 10		110	

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianio per le tacciche MOCF ed FTIR promosso dal Ministero dello Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte dei
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana al sensi della DGR 968/07 per gli ambiti Formazione Superfore e Formazione Continua (n.Pt0054)

Laboratorio nonosciulo dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale di laboratori che effettuano analisi di autocontrollo delle industrio alimentari ai senai della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza dei lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17165 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,5		5
Pentaclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,05		0,5
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002	µg/l	< 35		350
Conta di Coliformi Fecali APAT CNR IRSA 7020 B Man 29 2003	ufc/100ml	1400	1200 - 1600	
Conta di Coliformi Totali APAT CNR IRSA 7010 C Man 29 2003	ufc/100ml	14000000	1000000 - 1600000	
Conta di Streptococchi fecali (Enterococchi) APAT CNR IRSA 7040 C Man 29 2003	ufc/100ml	44	31 - 56	
Conta delle colonie a 22°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	77000	61000 - 94000	
Conta delle colonie a 36°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	81000	64000 - 98000	

(*) - Prova non accreditata ACCREDIA

▶ i parametri contraddistinti dal simbolo a lato sono fuori limite.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Limiti:

Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 Concentrazione Soglia di contaminazione nelle acque sotterranee

Responsabile della Sezione Biologica Marta Casella N° 056220 - Ording Nazionale dei Biologi Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 15LA17165

All.16 PGAMB08.1 rev.03 del 02.01.2014

Carrara (MS) 54033 Via Frassina, 21 T. 0585 855624 - F. 0585 855617 Firenze (FI) 50134 Via di Soffiano, 15 T. 055 7399056 - F. 055 7134442 www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. - Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 – 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B

SEZIONE: **AIST15**Posizione geografica

Coord N: 42°17'51.51"
Coord E: 11°57'18.45"

Quota (m.s.l.m)

MONITORAGGIO ANTE OPERAM

*: Foto identificative del punto del piezometro

DATA	03/09/2015
------	------------

DATI COSTRUTTIVI E IDROGEOLOGICI					
Prof. Piezometro	m	11,8			
Livello di falda da b.p. m 11,4					

PARAMETRI CHIMICO – FISI	CI	
Temp. Aria	°C	-
Temp. Acqua	°C	-
рН		-
Conducibilità	μS/cm	-
Potenziale redox	mV	-
Ossigeno disciolto	mg/l	-

NOTA: non campionabile, piezometro quasi secco

Carrara (MS) 54033 Via Frassina, 21 T. 0585 855624 - F. 0585 855617 Firenze (FI) 50134 Via di Soffiano, 15 T. 055 7399056 - F. 055 7134442 www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. - Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 - 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B

SEZIONE: **AIST16**| Posizione geografica | Coord N: 42°17'47.89" | Quota (m.s.l.m) | Coord E: 11°57'43.35" |

MONITORAGGIO ANTE OPERAM

*: Foto identificative del punto del piezometro

DATA	03/09/2015
------	------------

DATI COSTRUTTIVI E IDROGEOLOGICI				
Prof. Piezometro	m	32		
Livello di falda da b.p. m 8,6				

PARAMETRI CHIMICO – FISICI		
Tanan Aria	°C	20
Temp. Aria	°C	30
Temp. Acqua	°C	20,3
рН		7,31
Conducibilità	μS/cm	459
Potenziale redox	mV	43
Ossigeno disciolto	mg/l	3,1

Rapporto di prova nº: 15LA17167 del 02/12/2015

Spett.

ANAS SPA VIABILITA' DEL LAZIO
VIALE BRUNO RIZZIERI 142
00173 ROMA (RM)

Dati relativi al campione

Acque di falda

Denominazione del Campione: Campione di acqua - AIST 16 Data inizio analisi: 04/09/2015 Data fine analisi: 24/09/2015

Quantità di Campione pervenuta: 2.95 Temperatura al ricevimento: 4 °C Data Accettazione: 04/09/2015

Data Arrivo: 04/09/2015

Dati di campionamento

Luogo di campionamento: Raccordo Orte Civitavecchia

Punto di prelievo: AIST 16

Modalità di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Prelevato il: 03/09/2015 da: Personale Ambiente s.c. - Ing. Ciapetti Carlo

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti	E
Residuo secco a 180°C UNI 10506:1996	mg/l	390	±24		
Carbonio organico totale (TOC) APAT CNR IRSA 5040 Man 29 2003	mg/l	7,9			
Alcalinità APAT CNR IRSA 2010 B Man 29 2003	mg/l CaCO3	130	±16		
Ossidabilità UNI EN ISO 8467:1997	mgO2/l	1,6	±0,5		
Durezza Totale (da calcolo) APAT CNR IRSA 2040 A Man 29 2003	mg/l CaCO3	160	±26		
Tensioattivi anionici APAT CNR IRSA 5170 Man 29 2003	mg/i	0,19	±0,03		9
Tensioattivi non ionici APAT CNR IRSA 5180 Man 29 2003	mg/l	< 0,03			
Arsenico EPA 6020A 2007	µg/I	2,7	±0,1	10	
Cadmio EPA 6020A 2007	µg/l	< 0,5		5	
Cromo totale EPA 6020A 2007	µg/l	< 5		50	
Ferro EPA 6020A 2007	µg/l ▶	730	±90	200	
Piombo EPA 6020A 2007	µg/l ▶	61	±2	10	

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elanchi del programma di controllo Qualità dei laborator che effetiuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salte, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 988/07 per gli ambiti Formazione Superfore Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'atenco regionale di laboratori che effettuano anellai di autocontrollo delle industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità certificato ai sensi dolla UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato al sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza dei lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17167 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Rame EPA 6020A 2007	μg/l	10		1000
Manganese EPA 6020A 2007	µg/l ▶	120	±14	50
Calcio EPA 6010C 2007	mg/l	57	±7	
Magnesio EPA 6010C 2007	mg/l	4,4	±0,7	
Sodio EPA 6010C 2007	mg/l	42	±5	
Potassio EPA 6010C 2007	mg/l	7,8	±0,9	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	9,9	±0,3	
Nitriti APAT CNR IRSA 4020 Man 29 2003	µg/l	< 50		500
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	27	±1	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	2,8	±0,4	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	15	±1	250
Fosforo totale (come P) EPA 200.7 1994	mg/l	< 0,2		
Benzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,1		1
Etilbenzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		50
Stirene EPA 5030C 2003 + EPA 8260C 2006	µg/i	<1		25
Toluene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260C 2006	μg/l	<1		10
Benzo (a) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/I	< 0,01		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/i	< 0,001		0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/I	< 0,01		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,005		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Crisene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,5		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Insento negli elenchi del programma di controllo Qualità dei laboratori che difottuano la determinazione quantitativa delle fibre di amianto per le fecniche MOCF ed FTIR promoso del Ministero dello Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/98.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo II Decreto Ministeriale 8 agosto
2000

Agenzia Fermativa accreditata dalla Regione Teccana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054)

Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e scritto al n. 017 dell'elenco rogionale dei laboratori che effettuano analisi di autocontrollo delle industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gostione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gostione della Salute a Sicurezza dei lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17167 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1	
Pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 5		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	0,013		0,1	
Clorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1	N.W	10	1,000
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	μg/i	<1		810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/i	< 0,01		0,15	
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,2	
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,001		0,001	
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05	
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,3	
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,001		0,001	
Dibromoclorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,13	
Bromodiclorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,17	
2 - Clorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 10		180	
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 10		110	

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserilo negli elenchi del programma di controlio Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianio per le tacniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M., 07/07/97 e del D.M., 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formetiva accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore Formazione Continua (n.P10054)

Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.819/1773) e iscritto ai n. 017 dell'elenco regionate del laboratori che effettuane analisi di autocortrollo dello industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

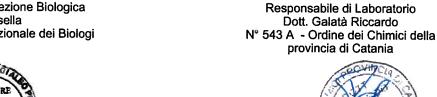
Laboratorio con Sistema di Gastione Qualità cortificato ai sensi dotta UNI EN ISO 9001, con Sistema di Gastiono Ambientale carifficato al sensi della UNI EN ISO 14001, e con Sistema di Gastione della Salute e Sicurezza de

LAB N° 0510

segue Rapporto di prova n°: 15LA17167 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,5		5
Pentaclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,05		0,5
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002	μg/l	58	±14	350
Conta di Coliformi Fecali APAT CNR IRSA 7020 B Man 29 2003	ufc/100ml	240	140 - 330	
Conta di Coliformi Totali APAT CNR IRSA 7010 C Man 29 2003	ufc/100ml	99000	80000 - 120000	
Conta di Streptococchi fecali (Enterococchi) APAT CNR IRSA 7040 C Man 29 2003	ufc/100ml	10	5,0 - 18	
Conta delle colonie a 22°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	50000	37000 - 63000	
Conta delle colonie a 36°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	63000	48000 - 78000	3,00

(*) - Prova non accreditata ACCREDIA


▶ i parametri contraddistinti dal simbolo a lato sono fuori limite.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Limiti:

Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 Concentrazione Soglia di contaminazione nelle acque sotterranee

Responsabile della Sezione Biologica Marta Casella N° 056220 - Ordine Nazionale dei Biologi

Fine del rapporto di prova nº 15LA17167

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promoso dal Ministero della Salute, ai sensi del D.M. 07707/97 e del D.M. 14705/98.

Laboratorio di noerce riconosciuto

"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MiUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata datla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Santà (prot. 600.%/59.619/1773) o iscritto ai n. 017 dell'afenco regionate dei laboratori che effettuano annalai di autocontrollo delle industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Laboratorio con Sistema di Gastione Qualità cartificato ai sensi della UNI EN ISO 9001, con Sistema di Gestiono Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza dei lavoratori secondo la standard OHSAS 18001

Carrara (MS) 54033 Via Frassina, 21 T. 0585 855624 - F. 0585 855617 Firenze (FI) 50134 Via di Soffiano, 15 T. 055 7399056 - F. 055 7134442 www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. - Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 - 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B

SEZIONE: AIST17	Posizione geografica	Coord N:	42°17'53.63"	Quota (m.s.l.m)
SEZIONE: AIST II		Coord E:	11°57'57.22"	

MONITORAGGIO ANTE OPERAM

*: Foto identificative del punto del piezometro

DATA	03/09/2015

DATI COSTRUTTIVI E IDROGEOLOGICI				
Prof. Piezometro	m	31,1		
Livello di falda da b.p. m 4,66				

PARAMETRI CHIMICO – FISICI		
Temp. Aria	°C	27
Temp. Acqua	°C	24,7
рН		7,34
Conducibilità	μS/cm	510
Potenziale redox	mV	66
Ossigeno disciolto	mg/l	3,68

Rapporto di prova n°: 15LA17166 del 02/12/2015

Spett.

ANAS SPA VIABILITA' DEL LAZIO
VIALE BRUNO RIZZIERI 142
00173 ROMA (RM)

Dati relativi al campione

Acque di falda

Denominazione del Campione: Campione di acqua - AIST 17 Data inizio analisi: 04/09/2015 Data fine analisi: 24/09/2015

Quantità di Campione pervenuta: 2.95 Temperatura al ricevimento: 4 °C Data Accettazione: 04/09/2015

Data Arrivo: 04/09/2015

Dati di campionamento

Luogo di campionamento: Raccordo Orte Civitavecchia

Punto di prelievo: AIST 17

Modalità di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Prelevato il: 03/09/2015 da: Personale Ambiente s.c. - Ing. Ciapetti Carlo

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Residuo secco a 180°C UNI 10506:1996	mg/l	440	±27	
Carbonio organico totale (TOC) APAT CNR IRSA 5040 Man 29 2003	mg/l	15		
Alcalinità APAT CNR IRSA 2010 B Man 29 2003	mg/l CaCO3	140	±18	
Ossidabilità UNI EN ISO 8467:1997	mgO2/l	1,1	±0,4	
Durezza Totale (da calcolo) APAT CNR IRSA 2040 A Man 29 2003	mg/l CaCO3	170	±27	
Tensioattivi anionici APAT CNR IRSA 5170 Man 29 2003	mg/l	< 0,03		
Tensioattivi non ionici APAT CNR IRSA 5180 Man 29 2003	mg/i	< 0,03		
Arsenico EPA 6020A 2007	µg/l ▶	14	±1	10
Cadmio EPA 6020A 2007	µg/l	< 0,5		5
Cromo totale EPA 6020A 2007	μg/l	< 5		50
Ferro EPA 6020A 2007	ha\l	570	±70	200
Piombo EPA 6020A 2007	µg/l ▶	25	±1	10

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualtà demi laboratori che effettuuno la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, a

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi dalla DGR 968/07 per gli ambiti Formazione Superiore Formazione Continua (n.Pi0054) Laboratorio riconosciute dal Ministero della Santa (prot. 600.5/59.619/1773) a iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo dello industrio alimentari ai sensi della LR 9 mazzo 2006, n. 9 (docreto 1236 del 20.03.2007)

Laboratorio con Sistema di Gestione Qualità cartificato ai sensi della UNI EN ISO 9001, con Sistema di Gestiono Ambientale cartificato ai sensi della UNI EN ISO 14001, o con Sistema di Gostione della Salute e Sicurezza dei lavoratori secondo lo standard ONSAS 18001

segue Rapporto di prova nº: 15LA17166 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Rame EPA 6020A 2007	μg/l	30	±1	1000
Manganese EPA 6020A 2007	µg/l ▶	54	±6	50
Calcio EPA 6010C 2007	mg/l	51	±7	
Magnesio EPA 6010C 2007	mg/i	9,8	±1,6	
Sodio EPA 6010C 2007	mg/l	37	±4	
Potassio EPA 6010C 2007	mg/l	22	±2	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	58	±2	. (5-325
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	32	±1	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	3,1	±0,4	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	21	±1	250
Fosforo totale (come P) EPA 200.7 1994	mg/l	0,70	±0,11	
Benzene EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,1		1
Etilbenzene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		50
Stirene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 1		25
Toluene EPA 5030C 2003 + EPA 8260C 2006	µg/i	<1		15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260C 2006	μg/l	<1		10
Benzo (a) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,001		0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/1	< 0,005		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	0,0013	±0,0002	0,01
Crisene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,5		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 0,001		0,01

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Quadtà dei laboratori che effottuano la determinazione quantifiativa delle fibre di amilanto per le tecniche MOCF ed FTIR promosso dal Ministero della Satute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/98. Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.819/1773) e iscriito al n. 017 dell'elenco rogionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Laboratorio con Sistema di Gestione Qualità certificato ei sensi dolla UNI EN ISO 9001, con Sistema di Gestiono Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Satule e Sicurezza dei lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17166 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,01		0,1
Pirene EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 5	_1,0 mm	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	0,014		0,1
Clorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,005		0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260C 2006	μg/l	<1		10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260C 2006	μg/l	<1		810
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260C 2006	µg/l	<1		60
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,15
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,001		0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,005		0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260C 2006	μg/l	< 0,001		0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260C 2006	µg/l	< 0,01		0,17
2 - Clorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 10		180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	μg/l	< 10		110

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli efenchi del programma di controlio Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Satute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata della Regione Toscana ai sensi della DGR 988/07 per gli ambili Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.819/1773) e scritto al n. 017 dell'eterco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai ensai della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007) Laboratorio con Sistema di Gestione Qualità cartificato ai sensi della UNI EN 150 9001, con Sistema di Gestione Amblentale cartificato ai senal della UNI EN ISO 14001, e con Sistema di Gestione della Satute e Sicurezza del lavoratori secondo lo standard OHSAS 18001

segue Rapporto di prova nº: 15LA17166 del 02/12/2015

Parametro Metodo	U.M.	Risultato	Incertezza	Limiti
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,5		5
Pentaclorofenolo EPA 3510C 1996 + EPA 3620C 2007 + EPA 8270D 2007	µg/l	< 0,05		0,5
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002	µg/l	< 35		350
Conta di Coliformi Fecali APAT CNR IRSA 7020 B Man 29 2003	ufc/100ml	10	5,0 - 18	
Conta di Coliformi Totali APAT CNR IRSA 7010 C Man 29 2003	ufc/100ml	590000	440000 - 740000	
Conta di Streptococchi fecali (Enterococchi) APAT CNR IRSA 7040 C Man 29 2003	ufc/100ml	# m,o.		
Conta delle colonie a 22°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	100000	81000 - 120000	
Conta delle colonie a 36°C APAT CNR IRSA 7050 Man 29 2003	ufc/ml	77000	61000 - 94000	

(*) - Prova non accreditata ACCREDIA

▶ i parametri contraddistinti dal simbolo a lato sono fuori limite.

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Limiti:

Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 Concentrazione Soglia di contaminazione nelle acque sotterranee

Note: # m,o.= microrganismi presenti nel volume esaminato

Responsabile della Sezione Biologica Marta Casella N° 056220 - Ordine Nazionale dei Biologi

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova n° 15LA17166

All.16 PGAMB08.1 rev.03 del 02.01.2014

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TITR promosso dal Ministero della Salute, al sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto "Attamente Qualificato" da parte doi Ministero della Universitàe Ricerca (MIUR) secondo Il Decreto Ministeriale 8 agosto 2000 Aganzia Formativa accreditata dalle Regione Toecana ai sensi della DGR 988/07 per gli ambiti Formazione Superiore e Formazione Continua (n.P10054) Laboratorio riconosciuto dal Ministero della Santili (prot. 600.5/59.618/1773) o iscritto al n. 017 dell'elenco rogionale del taboratori che effettuano analiai di autocontrollo delle industrio alimentari ai sensi della LR 9 marzo 2006, n. 9 (docreto 1236 del 20.03.2007)

Laboratorio con Sistema di Gestione Qualità certificato ai sensi della UNI EN ISO 9001, con Sistema di Gestione Ambientale certificato ai sensi della UNI EN ISO 14001, e con Sistema di Gestione della Salute e Sicurezza dei lavoratori secondo lo standard OHSAS 18001

Carrara (MS) 54033 Via Frassina, 21 0585 855624 - F. 0585 855617 Firenze (FI)
T. 50134 Via di Soffiano, 15
T. 055 7399056 - F. 055 7134442

www.ambientesc.it home@ambientesc.it P.IVA 00262540453

Committente: ANAS S.p.A. – Compartimento della Viabilità per il Lazio

Viale Bruno Rizzieri nr. 142 - 00173 Roma

Cantiere: SS.N. 675 "Umbro-Laziale" – Lavori di realizzazione della SS 675 "Umbro-Laziale" (ex raccordo Civitavecchia-Orte) tra il Km 86+000 e il Km 21+500 della SS1bis - tratto Monte Romano Est-Cinelli, tronco 3° - Lotto 1° - Stralcio B

SEZIONE: AIST18

Posizione geografica
Coord N: 42°18'1.59"
Coord E: 11°58'23.69"
Quota (m.s.l.m)

MONITORAGGIO ANTE OPERAM

* : Foto identificative del punto del piezometro

DATA	03/09/2015
------	------------

DATI COSTRUTTIVI E IDROGEOLOGICI				
Prof. Piezometro	m	11,9		
Livello di falda da b.p.	m	4,3		

PARAMETRI CHIMICO – FISICI		
Temp. Aria	°C	26
Temp. Acqua	°C	20,3
pH		7,52
Conducibilità	μS/cm	544
Potenziale redox	mV	87
Ossigeno disciolto	mg/l	3,43