

COMUNI DI ASCOLI SATRIANO, CASTELLUCCIO DEI SAURI E ORDONA

PROVINCIA DI FOGGIA

PROGETTO PEGASO

DITTA SPIRIT s.r.l.

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO

RICHIESTA DI AUTORIZZAZIONE UNICA

D.Lgs. 387/2003

PROCEDIMENTO UNICO AMBIENTALE (PUA)

Valutazione di Impatto Ambientale (V.I.A.)

D.Lgs. 152/2006 ss.mm.ii. (Art.27) "Norme in materia ambientale"

ALL. A31

PAGG. 26

Titolo dell'allegato:

RELAZIONE DI PRODUCIBILITA'

2	EMISSIONE	04/05/2020
REV	DESCRIZIONE	DATA

CARATTERISTICHE GENERALI D'IMPIANTO

GENERATORE - Altezza mozzo: fino a 140 m. Diametro rotore: fino a 170 m. Potenza unitaria: fino a 7,5 MW

IMPIANTO - Numero generatori: 20
Potenza complessiva: fino a 150 MW.

Il proponente:

SPIRIT s.r.l.
P.zza Giovanni Paolo II, 8
71017 Torremaggiore (FG)
0882/393197
spirit@pec.it

Il progettista:

ATS Engineering srl P.zza Giovanni Paolo II, 8 71017 Torremaggiore (FG) 0882/393197 atseng@pec.it

Il tecnico:

Ing. Eugenio Di Gianvito atsing@atsing.eu

Indice

1. Premessa	2
2. Descrizione generale del progetto	2
3. Potenziale eolico dell'area di progetto	4
4. Stima della producibilità energetica	11

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	1

1. Premessa

La presente relazione sullo studio della producibilità energetica riporta i risultati della valutazione della risorsa eolica e i calcoli di rendimento energetico per il progetto **PEGASO**, un impianto industriale per la produzione di energia elettrica alimentato da fonte rinnovabile eolica, proposto dalla *SPIRIT srl* con sede in Torremaggiore (FG).

2. Descrizione generale del progetto

SPIRIT srl, con sede legale in Torremaggiore (FG), Piazza Giovanni Paolo II, 8, nell'ambito dei suoi piani di sviluppo di impianti per la produzione di energia elettrica da fonti rinnovabili, ha previsto la realizzazione di un impianto eolico nel Comune di Ascoli Satriano, Castelluccio dei Sauri ed Ordona in provincia di Foggia. L'area oggetto di studio, inserita nell'area a Sud-Ovest del Tavoliere delle Puglie (*Figura 1*), è in posizione ideale per la realizzazione di un parco eolico, essa è infatti esposta alle correnti che spirano prevalentemente da Ovest, Nord-Ovest spirando dall' appennino verso il mare.

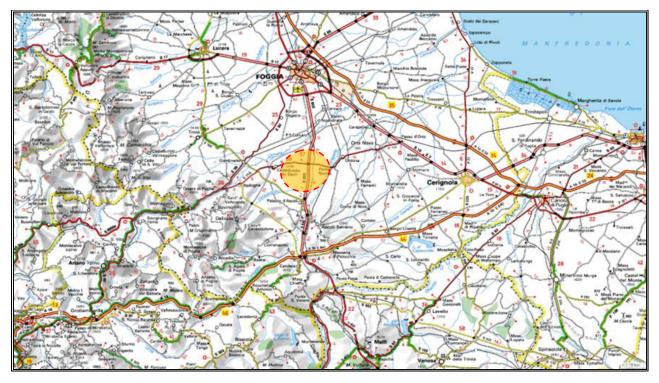


Figura 1: ubicazione dell'area di progetto

Per una identificazione univoca di ogni singolo aerogeneratore e per una più dettagliata descrizione del progetto, si riportano nella tabella seguente le coordinate relative all'ubicazione georeferenziata di ognuno di essi nel sistema di riferimento Gauss Boaga - Roma Monte Mario 1940 - Fuso EST e il comune di appartenenza:

	Gauss Boaga - Roma Monte Mario 1940 - Fuso EST		Comune
WTG			_
	Est	Nord	
1	2.562.648	4.573.773	Castelluccio dei Sauri
2	2.563.627	4.573.930	Ascoli Satriano

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	2

3	2.564.293	4.574.442	Ascoli Satriano
4	2.565.098	4.574.388	Ascoli Satriano
5	2.565.495	4.573.738	Ascoli Satriano
6	2.565.138	4.575.136	Ascoli Satriano
7	2.565.938	4.575.273	Ascoli Satriano
8	2.566.333	4.574.579	Ascoli Satriano
9	2.566.550	4.575.838	Ascoli Satriano
10	2.566.290	4.573.727	Ascoli Satriano
11	2.567.352	4.573.242	Ascoli Satriano
12	2.568.414	4.573.459	Ascoli Satriano
13	2.569.224	4.573.345	Ascoli Satriano
14	2.568.785	4.572.741	Ascoli Satriano
15	2.568.910	4.574.027	Ascoli Satriano
16	2.569.082	4.574.806	Ascoli Satriano
17	2.567.619	4.574.458	Ascoli Satriano
18	2.568.252	4.574.891	Ascoli Satriano
19	2.568.011	4.575.714	Ascoli Satriano
20	2.569.697	4.574.104	Ordona
21	2.570.508	4.574.223	Ordona
22	2.571.014	4.574.831	Ordona
23	2.570.692	4.573.411	Ordona
24	2.569.964	4.573.110	Ascoli Satriano
25	2.570.170	4.572.388	Ascoli Satriano
26	2.567.252	4.572.190	Ascoli Satriano
27	2.568.047	4.571.704	Ascoli Satriano
28	2.567.769	4.570.594	Ascoli Satriano
29	2.567.047	4.570.628	Ascoli Satriano
30	2.566.885	4.569.634	Ascoli Satriano
31	2.567.621	4.569.332	Ascoli Satriano
32	2.568.343	4.570.051	Ascoli Satriano
33	2.567.001	4.568.835	Ascoli Satriano
34	2.563.815	4.572.740	Ascoli Satriano
35	2.564.471	4.572.285	Ascoli Satriano
36	2.565.266	4.572.246	Ascoli Satriano
37	2.563.827	4.571.998	Castelluccio dei Sauri
38	2.564.196	4.571.205	Ascoli Satriano
39	2.565.021	4.571.505	Ascoli Satriano
40	2.565.849	4.570.772	Ascoli Satriano
41	2.565.479	4.570.124	Ascoli Satriano
42	2.564.405	4.569.870	Ascoli Satriano
43	2.564.254	4.568.906	Ascoli Satriano
44	2.565.023	4.569.317	Ascoli Satriano
45	2.565.910	4.569.228	Ascoli Satriano
46	2.562.419	4.569.553	Castelluccio dei Sauri
47	2.563.769	4.570.319	Ascoli Satriano
48	2.562.365	4.570.363	Castelluccio dei Sauri

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	3

49 2.561.833 4.570.820 Castelluccio dei Sauri 50 2.563.022 4.572.682 Castelluccio dei Sauri 51 2.561.917 4.572.049 Castelluccio dei Sauri 52 2.561.325 4.571.567 Castelluccio dei Sauri 53 2.560.643 4.571.274 Castelluccio dei Sauri 54 2.560.210 4.570.581 Castelluccio dei Sauri 55 2.559.795 4.571.313 Castelluccio dei Sauri 56 2.564.194 4.573.905 Ascoli Satriano				
51 2.561.917 4.572.049 Castelluccio dei Sauri 52 2.561.325 4.571.567 Castelluccio dei Sauri 53 2.560.643 4.571.274 Castelluccio dei Sauri 54 2.560.210 4.570.581 Castelluccio dei Sauri 55 2.559.795 4.571.313 Castelluccio dei Sauri	49	2.561.833	4.570.820	Castelluccio dei Sauri
52 2.561.325 4.571.567 Castelluccio dei Sauri 53 2.560.643 4.571.274 Castelluccio dei Sauri 54 2.560.210 4.570.581 Castelluccio dei Sauri 55 2.559.795 4.571.313 Castelluccio dei Sauri	50	2.563.022	4.572.682	Castelluccio dei Sauri
53 2.560.643 4.571.274 Castelluccio dei Sauri 54 2.560.210 4.570.581 Castelluccio dei Sauri 55 2.559.795 4.571.313 Castelluccio dei Sauri	51	2.561.917	4.572.049	Castelluccio dei Sauri
54 2.560.210 4.570.581 Castelluccio dei Sauri 55 2.559.795 4.571.313 Castelluccio dei Sauri	52	2.561.325	4.571.567	Castelluccio dei Sauri
55 2.559.795 4.571.313 Castelluccio dei Sauri	53	2.560.643	4.571.274	Castelluccio dei Sauri
	54	2.560.210	4.570.581	Castelluccio dei Sauri
56 2.564.194 4.573.905 Ascoli Satriano	55	2.559.795	4.571.313	Castelluccio dei Sauri
	56	2.564.194	4.573.905	Ascoli Satriano

Tabella 1: Coordinate aerogeneratori nel sistema di riferimento Gauss Boaga - Roma Monte Mario 1940

3. Potenziale eolico dell'area di progetto

Dal punto di vista geomorfologico, il sito presenta un'altezza compresa tra i 100 e i 250 m s.l.m. e un andamento variabile: ad ampie zone pianeggianti si alternano colline dalla morfologia piuttosto irregolare e dai fianchi ripidi, sulle quali si riconoscono orli di scarpata delimitati da superfici spianate.

L'area è delimitata idealmente a Sud-Est dal torrente Carapelle, a Nord-Ovest dall'abitato di Castelluccio dei Sauri.

Durante gli studi preliminari e dall'interpretazione dei dati rilevati da stazioni anemologiche presenti in provincia ed in prossimità dell'area di interesse, è stata verificata la presenza di una risorsa eolica che renderebbe conveniente la realizzazione del progetto in termini di producibilità; infatti dall'Atlante Eolico Italiano Interattivo del C.E.S.I. (*Figura 2*) si vede come la velocità del vento, nella provincia di Foggia, sia compresa tra 7 e 9 m/s alla quota di 100 metri, rendendo questa come una delle zone migliori in Italia in termini di producibilità energetica.

AS

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	4

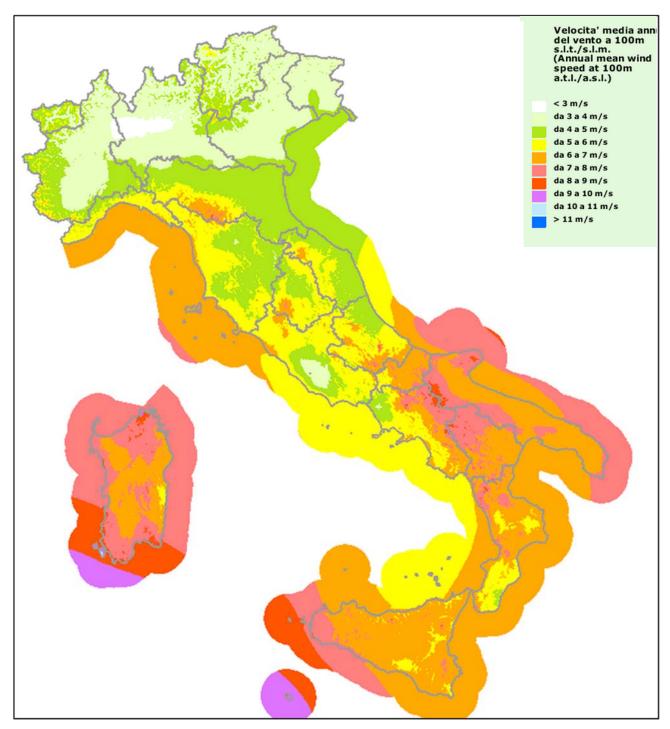


Figura 2: Atlante eolico interattivo italiano con velocità media a 100m – C.E.S.I.

Nelle mappe seguenti si vede nel dettaglio come alla quota di 100 metri sul livello del suolo, comunque ad un'altezza prossima a quella del mozzo delle turbine, la velocità media sia compresa tra i 6 e i 8 m/s (*Figura* 3) mentre la producibilità varia in un range di 2500-3500 MWh/MW (*Figura* 4).

1	S	7	**
ē		0	

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	5

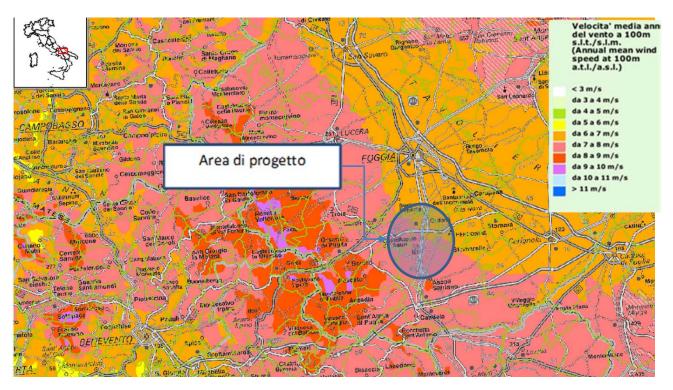


Figura 3: Area di intervento su atlante eolico interattivo con velocità media a 100m – C.E.S.I.

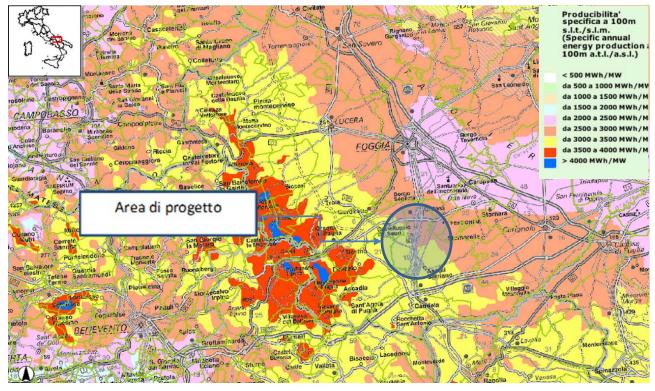


Figura 4: Area di intervento su atlante eolico interattivo con producibilità specifica a 100m - C.E.S.I.

Quanto rilevato è stato confermato da:

- CREA;
- l'Atlante Eolico Italiano Interattivo del C.E.S.I.;

Il CREA (Centro Ricerca Energia & Ambiente) dell'Università del Salento, in risposta alla direttive emanate dalla Regione Puglia e alla sempre crescente richiesta di installazione di impianti eolici, ha analizzato le peculiarità atte alla caratterizzazione eolica delle circoscrizioni provinciali dei comuni pugliesi, riportando per

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	6

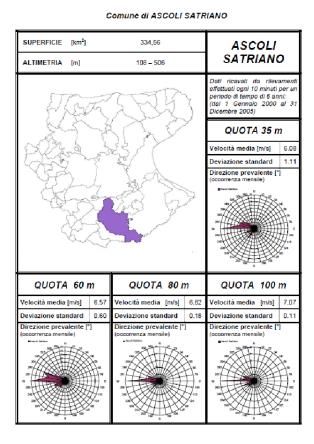
ciascuna gli elementi utili alla valutazione di idoneità eolica in relazione ai criteri tecnici richiesti dalle direttive Regionali.

Gli studi del CREA, ricostruendo le caratteristiche meteorologiche, anemologiche e geomorfologiche del territorio regionale, hanno ottenuto informazioni su:

- Direzione prevalente del vento;
- Velocità media del vento, ponderata sulla potenza.

Per ciascuno dei 258 comuni della regione è stata realizzata una scheda riassuntiva delle caratteristiche territoriali del comune di riferimento (estensione e altitudine), oltre che dei dati di velocità del vento, deviazione standard e direzione prevalente ottenuti dall'elaborazione dei rilevamenti effettuati ogni 10 minuti per un periodo di 6 anni (dal 1 Gennaio 2000 al 31 Dicembre 2006) in corrispondenza di 4 differenti quote (35-60-80-100 m sul livello del terreno).

Comune di CASTELLUCCIO DEI SAURI


SUPERFICIE [km²] 51.31 **CASTELLUCCIO DEI SAURI** ALTIMETRIA 110 - 287 ricavati da rilevam uati ogni 10 minuti per udo di tempo di 6 anni: 1 Gennaio 2000 al 3 mbre 2005) QUOTA 35 m Velocità media [m/s] 5.48 eviazione standard irezione prevalente [°] QUOTA 60 m QUOTA 80 m QUOTA 100 m Velocità media [m/s] Velocità media [m/s] 7.03 Velocità media [m/s] Deviazione standard 0.44

Comune di ORDONA

SUPERFICIE [km²]		39,96		ORDONA	
ALTIMETRIA [m]		79 – 216		URDUNA	
W.Co.	元	FER	4	Dati ricavati da rileve effettuati ogni 10 minuti, periodo di tempo di 6 an (dal 1 Gennaio 2000 Dicembre 2005)	per un ni:
345	~ {	(5.5)	7	QUOTA 35 n	1
(X2%.)	- 2	32 7		Velocità media [m/s]	4.47
College .	- To	30		Deviazione standard	0.21
QUOTA 60 I		QUOTA 80 I) A	Direzione prevalente (* (occurenza mensile)	66 66 66 113 123 125 155 155 155 155 155 155 155 155 155
Velocità media [m/s]	5.68	Velocità media [m/s]	6.49	Velocità media [m/s]	6.91
Deviazione standard Direzione prevalente [**	0.14	Deviazione standard Direzione prevalente [*	0.10	Deviazione standard Direzione prevalente [*	0.08
(occorrenza mensile)	,	(occorrenza mensile)	,	(occorrenza mensile)	,
	36 30 30 30 30 113 124		36 36 36 37 36 37 37 37 37 37 37 37		00 00 00 115 155 155 155 155 155 155 155

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	7

Figura 5: Ventosità alle quote di 35,60,80,100 m del comune di Castelluccio dei Sauri- Ordona –Ascoli Satriano Università degli studi di Lecce- Progetto M.E.T.A.

Alla consultazione degli atlanti delle mappature dei venti e dei dati storici raccolti dai centri di Ricerca dedicati alla caratterizzazione ed all'analisi statistica dell'evoluzione della meteorologia, al monitoraggio delle variazioni delle condizioni climatiche, alla caratterizzazione del moto dei flussi d'aria, è stata affianca una raccolta dei dati anemometrici nella zona dell'area di progetto.

I dati anemometrici a disposizione sono stati raccolti da stazioni anemometriche caratterizzate da una altezza della torre tubolare di 101.2 m, e analizzati con il software Wind PRO al fine di stimare la velocità del vento a lungo termine e le distribuzioni di frequenza riportati di seguito. La velocità media ottenuta è di 6.42 m/s.

Gli stessi dati sono stati elaborati al fine di ottenere un **wind shear** fino ad una altezza prossima a quella del mozzo delle turbine considerate cioè 140 m; in questo caso la velocità media ottenuta è di 6,87 m/s.

Di seguito viene sinteticamente riportata la distribuzione statistica della velocità media del vento e i valori di turbolenza dedotti da tutte le stazioni anemometrica installate nella zona (*Figura 6* e 7).

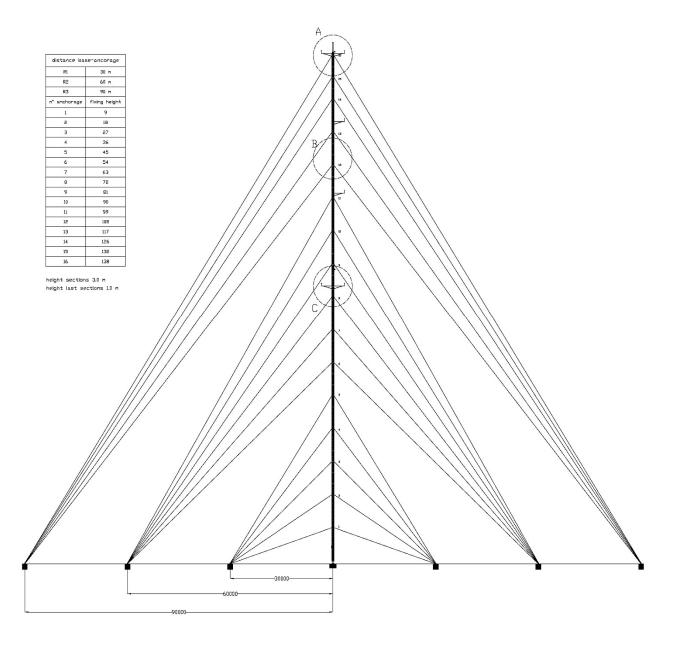
Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	8

Bin	Start	End	Sum	0-N	1-NNE	2-ENE	3-E	4-ESE	5-SSE	6-S	7-SSW	8-WSW		10-WNW	11-NNW
Mean			6.268	6.035	2.339	2.550	6.743	5.904	4.242	4.706	6.294	7.555	4.391	6.860	6.955
0		0.499	2526	216	90	75	91	177	111	82	81	95	129	402	977
1	0.500	1.499	7867	617	558	569	598	738	782	651	604	573	672	727	778
2	1.500	2.499	13395	979	580	576	952	1799	1579	975	824	776	1124	1459	1772
3	2.500	3.499	14557	1069	306	293	790	2499	1812	866	694	670	921	2045	2592
4	3.500	4.499	15914	1071	151	129	780	3035	1741	712	696	726	708	2516	3649
5	4.500	5.499	17309	1209	54	93	764	3327	1332	564	608	659	611	2903	5185
6	5.500	6.499	17951	1267	34	50	895	3505	896	478	597	598	484	2928	6219
7	6.500	7.499	17846	1315	16	32	984	3159	539	401	595	694	374	2794	6943
8	7.500	8.499	15946	1218	10	17	1069	2516	366	367	673	727	343	2462	6178
9	8.500	9.499	12534	954	14	23	990	1521	210	313	561	826	202	2208	4712
10	9.500	10.499	9650	694	11	13	737	926	144	204	519	849	175	2129	3249
11	10.500	11.499	6877	408	5	10	524	676	108	117	376	722	98	1674	2159
12	11.500	12.499	4405	212	4	2	385	444	66	68	271	531	57	1099	1266
13	12.500	13.499	2772	112	2	4	308	234	48	48	195	404	44	598	775
14	13.500	14.499	1719	66	3	3	206	132	22	27	105	275	18	361	501
15	14.500	15.499	1037	38	0	2	98	54	10	7	59	193	11	231	334
16	15.500	16.499	609	23	0	0	42	37	1	7	41	135	5	100	218
17	16.500	17.499	400	19	1	0	28	22	1	3	26	96	1	52	151
18	17.500	18.499	210	19	0	0	8	6	0	0	13	66	0	20	78
19	18.500	19.499	100	10	0	0	6	4	0	0	5	38	0	7	30
20	19.500	20.499	53	10	0	0	3	3	0	0	6	15	0	2	14
21	20.500	21.499	28	1	0	0	0	0	0	0	5	13	1	3	5
22	21.500	22.499	8	0	0	0	0	0	0	0	3	1	0	1	3
23	22.500	23.499	9	0	0	0	2	2	0	0	4	1	0	0	0
24	23.500	24.499	1	0	0	0	0	0	0	0	1	0	0	0	0
25	24.500	25.499	1	0	0	0	1	0	0	0	0	0	0	0	0
26	25.500	26.499	0	0	0	0	0	0	0	0	0	0	0	0	0
27	26.500	27.499	0	0	0	0	0	0	0	0	0	0	0	0	0
28	27.500	28.499	0	0	0	0	0	0	0	0	0	0	0	0	0
29	28.500	29.499	3	0	0	0	1	2	0	0	0	0	0	0	0
30	29.500	30.499	0	0	0	0	0	0	0	0	0	0	0	0	0

Figura 6: Distribuzione delle frequenze ad una quota di 101.2 m

Bin	Start	End	Mean		1-NNE	2-ENE	3-E	4-ESE	5-SSE	6-S	7-SSW	8-WSW	/ 9-W	10-WNW	11-NNW
Mean			0.08	0.10	0.15	0.12	0.08	0.07	0.09	0.12	0.12	0.12	0.10	0.06	0.08
0		0.4999													
1	0.5000	1.4999													
2	1.5000	2.4999													
3	2.5000	3.4999													
4	3.5000	4.4999	0.11	0.14	0.19	0.15	0.12	0.10	0.11	0.15	0.17	0.16	0.13	0.08	0.10
5	4.5000	5.4999	0.10	0.13	0.16	0.13	0.11	0.09	0.10	0.14	0.15	0.16	0.11	0.07	0.09
6	5.5000	6.4999	0.09	0.11	0.14	0.10	0.09	0.08	0.09	0.12	0.15	0.15	0.11	0.06	0.08
7	6.5000	7.4999	0.08	0.10	0.12	0.13	0.07	0.07	0.09	0.11	0.13	0.13	0.10	0.06	0.07
8	7.5000	8.4999	0.07	0.09	0.13	0.09	0.07	0.07	0.08	0.10	0.12	0.12	0.08	0.05	0.07
9	8.5000	9.4999	0.07	0.09	0.11	0.09	0.06	0.06	0.08	0.10	0.11	0.11	0.08	0.06	0.07
10	9.5000	10.4999	0.07	0.09	0.10		0.06	0.06	0.07		0.10	0.10		0.06	0.08
11	10.5000	11.4999		0.09	0.10	0.09	0.06	0.06	0.07		0.09	0.09	0.07	0.06	0.08
12		12.4999		0.09	0.12		0.07	0.05	0.06		0.09	0.09	0.08	0.06	0.08
	12.5000	13.4999	0.08		0.08	0.08		0.06	0.05		0.08	0.09	0.07	0.07	0.09
	13.5000	14.4999	0.08		0.08		0.07	0.06	0.05		0.09	0.09	0.08	0.08	0.09
	14.5000	15.4999		0.09		0.08		0.07	0.05		0.09	0.09	0.08	0.08	0.09
	15.5000	16.4999		0.09			0.08	0.08	0.06		0.10	0.09		0.08	0.09
17		17.4999		0.09	0.08		0.07	0.08	0.08	0.07	0.09		0.12	0.09	0.09
	17.5000	18.4999	0.08				0.08	0.08			0.08	0.07		0.10	0.08
	18.5000	19.4999		0.09			0.06	0.06			0.09	0.08		0.10	0.08
	19.5000	20.4999		0.09			0.08	0.00			0.09	0.09		0.12	0.07
21		21.4999		0.10							0.07	0.08	0.09	0.12	0.08
	21.5000	22.4999	0.09								0.10	0.05		0.17	0.07
	22.5000	23.4999	0.04				0.00	0.00			0.08	0.05			
	23.5000	24.4999	0.07								0.07				
	24.5000	25.4999	0.32				0.32								
	25.5000	26.4999													
27	26.5000	27.4999													
	27.5000	28.4999													
	28.5000	29.4999	0.01				0.00	0.01							
30	29.5000	30.4999													

Figura 7: Valori della turbolenza ad una quota di 101.2 m


Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	9

Gli stessi dati sono confermati da una seconda torre anemometrica posta nel punto:

(41°31'59.39"N; 15°26'53.99"E)

La strumentazione anemometrica istallata consente di registrare le seguenti grandezze:

- Velocità medie del vento (valore mediato ogni 10 min) a 75, 100, 120, 137 e 139 m dal suolo;
- Direzioni medie del vento (valore mediato ogni 10 min) alle altezze di 75 e 139 m dal suolo;

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	10

L'analisi di questi dati è di fondamentale importanza per la corretta progettazione dell'impianto eolico in quanto questi dati influiscono direttamente su parametri quali, ad esempio, la disposizione degli aerogeneratori sul terreno, la mutua distanza da tenere tra le macchine per evitare perdita di produzione di energia o fenomeni di stress sulle componenti meccaniche degli aerogeneratori causati dall'effetto "scia".

La turbolenza è un parametro che fornisce un'informazione importante sulle caratteristiche fluidodinamiche della risorsa eolica in quanto restituisce la variabilità relativa della velocità istantanea del vento rispetto al suo valor medio nell'intervallo considerato.

Ad esempio, un valore di turbolenza (TI) superiore a 0,18 (o equivalentemente 18%), indica un fenomeno ventoso piuttosto disturbato che potrebbe sollecitare eccessivamente le macchine per la produzione di energia eolica ed inficiarne la produttività. In generale la turbolenza diminuisce man mano che ci si allontana dalla crosta terrestre in quanto sono gli ostacoli e l'orografia ad alterare i profili fluidodinamici.

4. Stima della producibilità energetica

Per la determinazione della producibilità dell'impianto è necessario disporre del diagramma di potenza (Curva di potenza) caratterizzante gli aerogeneratori considerati, le cui caratteristiche sono definite nell'allegato T21A – Caratteristiche e aerogeneratore tipo, che fornisce il valore di potenza estraibile in relazione ai differenti valori assunti dalla velocità del vento, e la distribuzione della probabilità di velocità (densità di probabilità di Weibull).

La valutazione della produzione annua di energia mediante un aerogeneratore può essere effettuata molto semplicemente conoscendo la distribuzione di frequenza della velocità del vento, valutata all'altezza media del rotore, e la curva di potenza della macchina. Infatti, per ciascuna classe di velocità, il prodotto della potenza prodotta dalla turbina eolica per il corrispondente numero di ore/annue di persistenza di tale velocità del vento fornisce direttamente la produzione netta di energia. La somma delle produzioni energetiche relative a tutte le classi di velocità del vento è pari alla produzione energetica annua totale:

$$E_{E,N} = \sum_{i=1}^{N} n_i \cdot P_i$$

Un fattore molto rilevante per la valutazione della produzione di energia e della redditività dell'iniziativa è il cosiddetto "rendimento di schiera" del parco eolico. Infatti, per effetto del disturbo aerodinamico creato da ciascuna macchina sulle altre, la produzione di energia di una turbina inserita in un gruppo di macchine è minore della produzione energetica della stessa macchina installata in posizione isolata.

L'andamento della distribuzione di Weibull rappresenta in ordinate la probabilità in termini percentuali che il vento durante l'anno abbia una certa velocità; infatti l'area sottesa dalla curva è sempre uguale a uno.

La sua forma varia da luogo a luogo, dipendendo soprattutto dalle condizioni climatiche, dall'orografia e dal tipo di superficie ed è data dalla seguente formula:

$$F(v) = exp[-(v/A)^K]$$

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	11

Dove:

- F(v) è l'intervallo di tempo per il quale la velocità media supera il valore v;
- K il parametro di forma, adimensionale, legato all'orografia del sito ed alle caratteristiche di ventosità proprie dell'area;
- A, parametro di scala (m/s), strettamente legato alla velocità media del vento.

Nota la distribuzione di Weibull del sito, l'andamento del fattore di potenza e la curva di potenza dell'aerogeneratore che si vuole installare, è possibile determinare il numero di ore/anno in cui la macchina è in grado di funzionare e la quantità di energia elettrica prodotta.

in grado di funzionare e la quantità di energia elettrica prodotta.

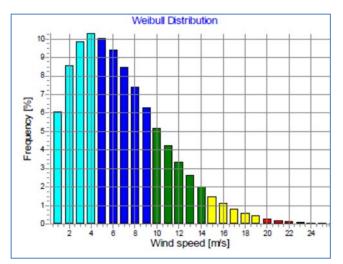


Figura 8: distribuzione di Weibull

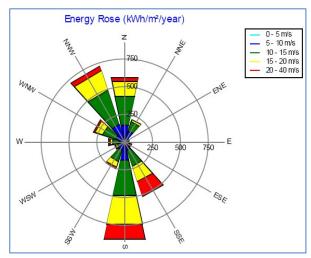


Figura 9: energia del vento nel centro del sito

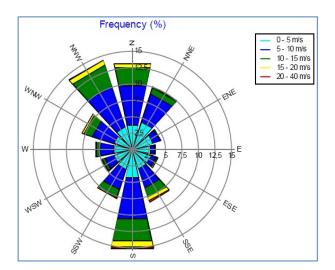
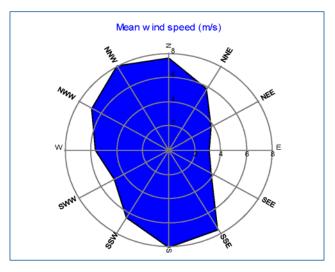
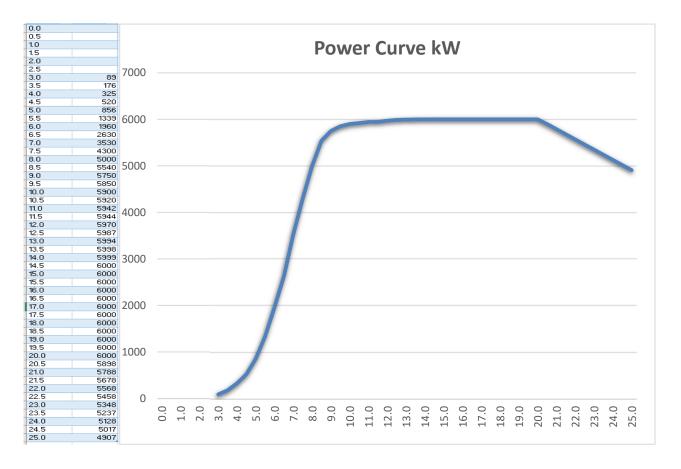
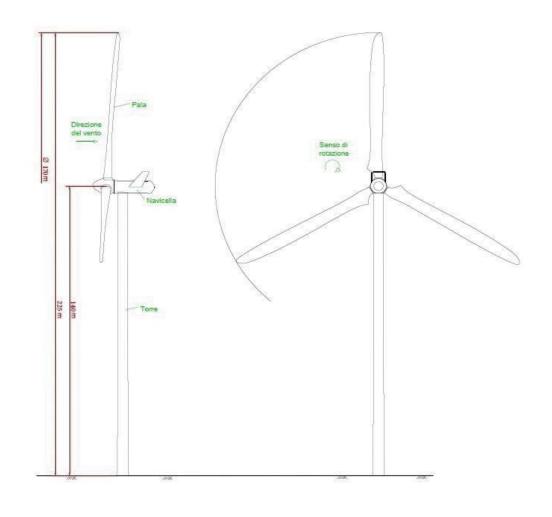


Figura 10: frequenza del vento nel centro del sito

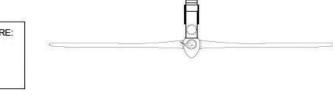



Figura 11: direzione dei venti

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	12


Dai dati si evince come alla quota di 100 metri sul livello del suolo, ad una altezza prossima a quella del mozzo degli aerogeneratori considerati, la **velocità media** è pari a circa **6,55 m/s** la direzione del vento sia in prevalenza da N, NNW e S.

Le producibilità in MWh/anno stimate tengono conto delle perdite dovute alla scia degli aerogeneratori, già considerate nelle curve di potenza.


Curva di potenza aerogeneratore tipo e tabella dati della curva di potenza

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	13

CARATTERISTICHE DEL GENERATORE:

Altezza mozzo: fino a 140 m. Diametro rotore: fino a 170 m. Potenza unitaria: fino a 6 MW

Tipo Aerogeneratore	Potenza nominale (kW)	Producibilità aerogeneratore (KWh/anno)	Capacity factor
Repower 3.0M122	3.000	9.847.541,87	0,37
Nordex 131/3000	3.000	10.775.588,40	0,41

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	14

Gamesa G136 4.5	4.500	13.363.413,28	0,34
Aerogeneratore tipo	6.000	24.090.000,00	0,46

Tabella 2: Producibilità dell'impianto per ogni singolo aerogeneratore

Ai fini della valutazione della fattibilità dell'impianto, c' è da evidenziare che i valori sopra riportati tengono conto dei parametri di incertezza legati a:

- Stima della ventosità;
- Variabilità della velocità media in relazione al periodo di deduzione della stessa;
- Estrapolazione della velocità all'altezza del mozzo;
- Accuratezza del modello di calcolo;
- Perdita elettrica;
- Perdite di scia;
- Disponibilità aerogeneratori;
- Disponibilità sottostazione;
- Disponibilità rete;
- Degradazione superficie pale,

Quantificabili in un'incertezza totale pari a circa il 21%.

5. Conclusioni

L'utilizzo dell'energia eolica in Puglia appare strategico, grazie alle favorevoli condizioni anemometriche in specifiche aree della regione. Le turbine prese in considerazione sono in grado di garantire un ottima producibilità energetica (oltre 24.000 MWh di energia all'anno per l'aerogeneratore di progetto), rendendo valida la realizzazione del parco eolico da un punto di vista tecnico-economico.

***	AS	***

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	15

CERTIFICATO

Certificato n. 8417

SMEA S.r.I.

Sede legale: Via A. Guariglia, 12 – 84127 Salerno (SA) Sede operativa: Via Camporeale, 6 - 83031 Ariano Irpino (AV)

QS Zürich AG certifica con il presente che il Sistema di Gestione dell'impresa succitata è stato valutato e soddisfa i requisiti definiti nelle norme riportate di seguito:

UNI EN ISO 9001: 2008 UNI EN ISO 14001: 2004 OHSAS 18001: 2007

Il Sistema di Gestione comprende:

FORNITURA, INSTALLAZIONE, DISINSTALLAZIONE E MANUTENZIONE DI TORRI ANEMOMETRICHE TUBOLARI E TRALICCIATE ON SHORE ED OFF SHORE. ELABORAZIONE ED ANALISI DATI DI VENTO. PROGETTAZIONE, REALIZZAZIONE, INSTALLAZIONE E MANUTENZIONE DI IMPIANTI EOLICI E SOLARI. TRADING TITOLI MERCATI ENERGETICI. ESCO.

Settore EA 28, 34, 35

Nel corso della validità del presente certificato il Sistema di Gestione dell'impresa deve permanentemente soddisfare i requisiti delle norme internazionali e tale adempimento sarà regolarmente controllato da QS Zürich AG-7

Per informazioni puntuali ed aggiornate circa eventuali variazioni intervenute nello stato della certificazione di cui al presente certificato, si prega di contattare administrator@csitalia.com

Data del' audit: 25.07.2012 Emissione: 02.08.2012

Data scadenza certificazione: 24.07/2015

QS Zürich AG P.O. Box 6335 CH-8050 Zürich qs-zuerich@quality-service.ch

SCESm 047 www.sas.ch

Direction

Progetto	Titolo	Rev.	Pag.
Impianto eolico ''Pegaso' '	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	16

Svend Ole Hansen ApS

SCT JORGENS ALLÉ 7· DK-1615 KOBENHAVN V . DENMARK
TEL: (+45) 33 25 38 38· FAX: (+45) 33 25 38 39 . WWW.SOHANSEN.DK

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 13.02.4101

Date of issue: Jun 10, 2013

Type: NRG #40

Serial number: 179500068797

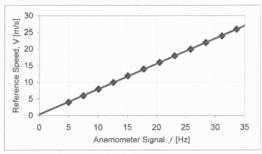
Manufacturer: NRG Systems, 110 Commerce Street, Hinesburg, Vermont 05461, USA

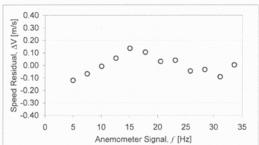
Client: NRG Systems, Inc., 110 Riggs Road, Hinesburg, VT 05461, USA

Anemometer received: Jun 1, 2013

Anemometer calibrated: Jun 9,2013

Calibrated by: jth


Calibration procedure: IEC 61400-12-1, MEASNET


Certificate prepared by: jsa

Approved by: Calibration engineer, aht

Calibration equation obtained: v [m/s] = 0.761 f[Hz] + 0.31

Reference	Anemometer	Residual	Ref. Speed
Speed [m/s]	Output [Hz]	[m/s]	Uncertainty
3.987	4.988	-0.120	0.546%
7.959	10.058	-0.009	0.486%
11.923	15.076	0.135	0.472%
15.955	20.510	0.031	0.475%
19.917	25.816	-0.046	0.469%
23.917	31.132	-0.092	0.476%
25.889	33.597	0.002	0.473%
21.899	28.404	-0.034	0.466%
17.939	23.105	0.039	0.475%
13.959	17.790	0.105	0.472%
9.950	12.589	0.057	0.476%
5.960	7.510	-0.068	0.547%

Page 1 of2

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	17

EQUIPMENT USED

Serial number	Description
-	Boundary layer wind tunnel.
1256	Control cup anemometer.
	Mounting tube, $D = 25 \text{ mm}$
t3	PT100 temperature sensor, wind tunnel.
t4	PT100 temperature sensor, control room.
950610	PPC500 Furness pressure manometer
Z0420014	HMW71U Humidity transmitter
U4220037	PTB100AVaisala analogue barometer.
P11	Pitot tube
HB2835279	Computer Board. 16 bit A/D data acquisition board.
	PC dedicated to data acquisition.

Traceable calibrations of the equipment are carried out by external accredited institutions: Furness (PPC500) and Saab Metech. A real-time analysis module within the data acquisition software detects pulse frequency.

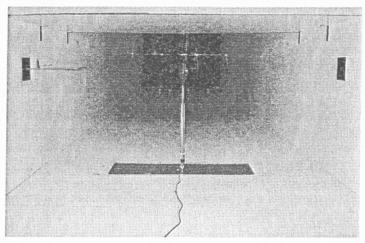


Photo of a cup anemometer in the wind tunnel. The shown anemometer is of the same type as the calibrated one.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the MEASNET procedure that prescribes an absolute uncertainty less than 0.1 m/s at a mean wind velocity of 10 m/s, that is 1%. See Document 97.00.004 "MEASNET - Test report on the calibration campaign" for further details.

This certificate must not be reproduced, except in full, without the approval of S. O. Hansen ApS

Page 2 of 2

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	18

Svend Ole Hansen ApS

SCT JORGENS ALLÉ 7· DK-1615 KOBENHAVN V . DENMARK
TEL: (+45) 33 25 38 38· FAX: (+45) 33 25 38 39 . WWW.SOHANSEN.DK

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 13.02.3990

Date of issue: Apr 20, 2013

Type: NRG #40

Serial number: 179500068954

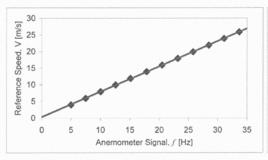
Manufacturer: NRG Systems, 110 Commerce Street, Hinesburg, Vermont 05461, USA

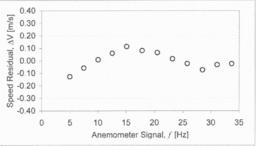
Client: NRG Systems, Inc., 110 Riggs Road, Hinesburg, VT 05461, USA

Anemometer received: Apr 3, 2013

Anemometer calibrated: Apr 19,2013

Calibrated by: jth


Calibration procedure: IEC 61400-12-1, MEASNET


Certificate prepared by: jsa

Approved by: Calibration engineer, aht

Calibration equation obtained: v [m/s] = 0.76 f[Hz] + 0.32

Reference	Anemometer	Residual	Ref. Speed Uncertainty
Speed [m/s]	Output [Hz]	[m/s]	Uncertainty
3.980	4.989	-0.128	0.605%
7.955	10.043	0.008	0.520%
11.901	15.100	0.113	0.487%
15.938	20.479	0.064	0.481%
19.888	25.795	-0.023	0.486%
23.899	31.088	-0.033	0.483%
25.872	33.674	-0.025	0.472%
21.892	28.500	-0.074	0.487%
17.930	23.166	0.015	0.481%
13.934	17.819	0.081	0.485%
9.926	12.570	0.060	0.488%
5.954	7.496	-0.058	0.514%

Page 1 of2

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	19

EQUIPMENT USED

Serial number	Description
-	Boundary layer wind tunnel.
1256	Control cup anemometer.
-	Mounting tube, $D = 25 \text{ mm}$
t3	PT100 temperature sensor, wind tunnel.
t4	PT100 temperature sensor, control room.
950610	PPC500 Furness pressure manometer
Z0420014	HMW71U Humidity transmitter
U4220037	PTB100AVaisala analogue barometer.
P11	Pitot tube
HB2835279	Computer Board. 16 bit A/D data acquisition board.
-	PC dedicated to data acquisition.

Traceable calibrations of the equipment are carried out by external accredited institutions: Furness (PPC500) and Saab Metech. A real-time analysis module within the data acquisition software detects pulse frequency.

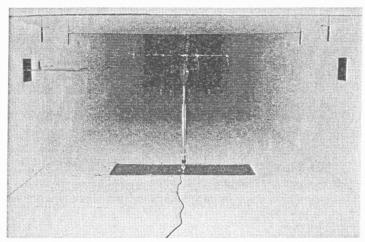


Photo of a cup anemometer in the wind tunnel. The shown anemometer is of the same type as the calibrated one.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the MEASNET procedure that prescribes an absolute uncertainty less than 0.1 m/s at a mean wind velocity of 10 m/s, that is 1%. See Document 97.00.004 "MEASNET - Test report on the calibration campaign" for further details.

This certificate must not be reproduced, except in full, without the approval of S. O. Hansen ApS

Page 2 of 2

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	20

Date: 1/14/2013

http://www.nrgsystems.com/sitecore/content/Products/1900.aspx

SPECIFICATIONS

Sensor type Applications

Sensor range

Signal type

Calibration

Uncertainty

Instrument compatibility

Anemometer Transfer Function

Output voltage at threshold

Distance constant (63% recovery)

Output voltage at 60Hz

Output signal range

Moment of inertia

Mounting

Tools required

Connections

Swept diameter of rotor

Operating temperature range Operating humidity range

NRG #40C Anemometer, Calibrated, With Boot

The industry standard anemometer used worldwide. Constructed of rugged Lexan cups molded in one piece for repeatable performance. Includes calibration certificate.

Description

3-cup anemometer

- meteorological studiesenvironmental monitoring

1 m/s to 96 m/s (2.2 mph to 215 mph) (highest recorded)

all NRG loggers

Output signal

low level AC sine wave, frequency linearly proportional to wind

· Consensus Transfer Function:

 Consensus (Tansfer Function:
 Scale Factor (Slope): 0.765 m/s/Hz (1.711 mph/Hz)
 Offset: 0.35 m/s (0.78 mph)
 refer to the white paper "The Maximum Type 40 Anemometer Calibration Project" for more information on the consensus transfer function

80 mV (peak-to-peak) minimum

- 12 V (peak-to-peak) typical
 output amplitude NOT proportional to wind speed

each anemometer individually calibrated, calibration reports provided via electronic download

0 Hz to 125 Hz (highest recorded)

Accuwind (Riso-R-1556) Classification:

- Class 2.4AClass 7.7B
- this 7.7b
 EC 61400-12-1 operational standard uncertainty:
 ± 0.14 m/s at 10 m/s for Class A
 ± 0.45 m/s at 10 m/s for Class B
 refer to calibration sheet for information on calibration

- uncertainty
- refer to application note "#40C Anemometer Uncertainty" for definitions and more information

Response characteristics

2.55 m (8.37 feet) at 5m/s per ASTM D 5096-02
2.56 m (8.40 feet) at 10m/s per ASTM D 5096-02

• 1.01 x 10-4 kg-m2

• 74.5 x 10-6 S-ft2 190 mm (7.5 inches)

Installation

onto a 13 mm (0.5 inch) diameter mast with cotter pin and set

0.25 inch nut driver, petroleum jelly, electrical tape

Environmental

-55 °C to 60 °C (-67 °F to 140 °F)

0 to 100% RH

Physical

4-40 brass hex nut/post terminals

0.14 kg (0.3 pounds)

- 3 cups of conical cross-section, 51 mm (2 inches) dia.
 81 mm (3.2 inches) overall assembly height

Makaulala

646

Weight Dimensions

	Progetto	Titolo	Rev.	Pag.
+	Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	21

<u>materiais</u>

Cups one piece injection-molded black polycarbonate

housing is black ABS plastic Body beryllium copper, fully hardened Shaft Bearing modified Teflon, self-lubricating

Indox 1, 25 mm (1 inch) diameter, 13 mm (0.5 inch) long, 4 poles Magnet

single coil, bobbin wound, 4100 turns of #40 wire, shielded for ESD protection $\,$ Coil

protective PVC sensor terminal boot included Boot

Terminals brass

110 Riggs Road - Hinesburg - VT 05461 USA - TEL (802) 482-2255 - FAX (802) 482-2272 - EMAIL sales@nrgsystems.com

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	22

Date: 1/14/2013

http://www.nrgsystems.com/sitecore/content/Products/1904.aspx

SPECIFICATIONS

Applications

NRG #200P Wind Direction Vane, 10K, With Boot

The industry standard wind direction vane used worldwide. Thermoplastic and stainless steel components resist corrosion and contribute to a high strength-to-weight ratio.

Description Sensor type continuous rotation potentiometric wind direction

· wind resource assessment

meteorological studiesenvironmental monitoring

360° mechanical, continuous rotation Sensor range

Instrument compatibility all NRG loggers

Output signal

Analog DC voltage from conductive plastic potentiometer, 10K ohms Signal type

Transfer function Output signal is a ratiometric voltage potentiometer linearity within 1% Accuracy

Dead band 8° Maximum, 4° Typical

Output signal range 0 V to excitation voltage (excluding deadband)

Response characteristics

Threshold 1 m/s (2.2 miles per hour)

Power requirements

Supply voltage Regulated potentiometer excitation of 1 V to 15 V

<u>Installation</u>

Mounting onto a 13 mm (0.5 inch) diameter mast with cotter

pin and set screw

Tools required 0.25 inch nut driver, petroleum jelly, electrical

tape

Environmental

-55 °C to 60 °C (-67 °F to 140 °F) Operating temperature range

Operating humidity range 0 to 100% RH

Lifespan 50 million revolutions (2 to 6 years normal

operation) **Physical**

Connections 4-40 brass hex nut/post terminals

0.14 kg (0.3 pounds) Weight

Dimensions • 21 cm (8.3 inches) length x 12 cm (4.3 inches)

· 27 cm (10.5 inches) swept diameter

Wing black UV stabilized injection molded plastic black UV stabilized static-dissipating plastic Body

Shaft stainless steel Bearing

protective PVC sensor terminal boot included **Boot**

Terminals brass

110 Riggs Road - Hinesburg - VT 05461 USA - TEL (802) 482-2255 - FAX (802) 482-2272 - EMAIL sales@nrgsystems.com

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	23

http://www.nrgsystems.com/sitecore/content/Products/1906.aspx

SPECIFICATIONS

Sensor type **Applications**

Sensor range

Signal type

Accuracy

Transfer function

Instrument compatibility

Electrical time constant

Thermal time constant

Operating temperature range

Operating humidity range

Output signal range

Supply voltage

Supply current

Tools required

Mounting

Lifespan

Connections

Cable length Weight

Dimensions

NRG #110S **Temperature Sensor** with Radiation Shield

Date: 1/14/2013

Durable integrated circuit temperature sensor provides a high level voltage output signal. Ideal for collecting temperature data for energy density calculations and monitoring air temperature at remote sites.

Description

integrated circuit temperature sensor with six plate radiation shield

- · wind resource assessment
- meteorological studies
 environmental monitoring

-40 °C to 52.5 °C (-40 °F to 126.5 °F)

all NRG loggers

Output signal

linear analog voltage

Temp = (Voltage x 55.55) - 86.38 °C [Temp = (Voltage x 100) - 123.5 °F]

• offset is +/- 0.8 °C (1.4 °F) maximum • nonlinearity is +/- 0.33 °C (+/- 0.6 °F) maximum • total error +/- 1.1 °C (2 °F) maximum

0 V to 2.5 V DC

Response characteristics

Power requirements

4 V to 35 V DC

300 µA max. (no load on output)

Installation

attaches to tower with included hose clamps

- 8mm (5/16 inch) nut driver or flat blade (-) screwdriver
- (to install hose clamps)
 sheet metal shears or similar (for trimming hose clamps)

-40 °C to 52.5 °C (-40 °F to 126.5 °F)

0 to 100% RH

10 years +

Physical

wire leads:

- signal (clear wire)
 ground (black wire)
 excitation (red wire)
 shield wire for earth ground

0.47 kg (1.04 pounds)

sensor only: 30.5 mm (1.2 inches) height x 12.7 mm (0.5 inch) diameter
sensor with radiation shield: 127 mm (5 inches) diameter x 127 mm (5 inches) height

<u>Materials</u>

Cable

Probe Shield 3 conductor 22 AWG, with overall foil shield and drain wire, chrome PVC jacket $\,$

aluminum, epoxy filled

UV-stabilized thermoplastic solar radiation shield

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	24

Progetto	Titolo	Rev.	Pag.
Impianto eolico "Pegaso"	PEGASO – A31 – Studio della producibilità energetica – Rev0.doc	0	25

Frangible Coupling Stake Mounting System Stake Tapper