

Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n°1158 del 17 dicembre 1971, modificata dal D.Lgs. n°114 del 24 aprile 2003)

PONTE SULLO STRETTO DI MESSINA

PROGETTO DEFINITIVO

EUROLINK S.C.p.A.

IMPREGILO S.p.A. (MANDATARIA) SOCIETÀ ITALIANA PER CONDOTTE D'ACQUA S.p.A. (MANDANTE) COOPERATIVA MURATORI E CEMENTISTI - C.M.C. DI RAVENNA SOC. COOP. A.R.L. (MANDANTE) SACYR S.A.U. (MANDANTE) ISHIKAWAJIMA - HARIMA HEAVY INDUSTRIES CO. LTD (MANDANTE) A.C.I. S.C.P.A. - CONSORZIO STABILE (MANDANTE)

IL PROGETTISTA (Dott. Ing. F. Colla) Ordine Ingegneri Milano n°20355

Ing. E.Pagani Ordine Ingegneri Milano N95408

IL CONTRAENTE GENERALE

Project Manager (Ing. P.P. Marcheselli) STRETTO DI MESSINA Direttore Generale e **RUP** Validazione (Ing. G. Fiammenghi)

STRETTO DI MESSINA

Amministratore Delegato (Dott. P. Ciucci)

Unità Funzionale

Tipo di sistema

ST0216 F0

Raggruppamento di opere/attività

Opera - tratto d'opera - parte d'opera

Titolo del documento

COLLEGAMENTI SICILIA STAZIONE ANNUNZIATA

PONTE STAZIONE FERROVIARIA ANNUNZIATA

RELAZIONE DI CALCOLO

CL D 0 0 F0 С G 0 7 0 0 Р S c s 2 S G 0 0 0 0 0 0 1 CODICE

REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO
F0	20-06-2011	PRIMA EMISSIONE	S. BIANCHI	G. SCIUTO	F. COLLA

NOME DEL FILE: ST0216_F0.doc revisione interna: 01

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

INDICE

I١	IDICE			3
1	RIFE	RIMEI	NTI NORMATIVI	7
2	RIFE	RIMEI	NTI BIBLIOGRAFICI	7
3	CARA	ATTEF	RISTICHE DEI MATERIALI	9
	3.1	Calce	struzzi (Secondo UNI 11104 - 2004)	9
	3.2	Acciai	o per armature di conglomerato cementizio armato (Secondo NTC 2008	3 – D.M.
	14/01/2	(800		12
	3.3	Acciai	o per cemento armato precompresso (Secondo NTC 2008 - D.M. 14/01/20	008) 14
4	DESC	CRIZIO	ONE DELLA STRUTTURA	15
	4.1	CARA	TTERISTICHE GEOMETRICHE E UBICAZIONE DELLA STRUTTURA	15
	4.2	CARA	TTERIZZAZIONE GEOTECNICA DEL LUOGO	18
	4.2.1	Des	scrizione delle litologie	18
	4.2.2	Inda	agini previste	18
	4.2.3	Car	atterizzazione geotecnica	20
	4.2.4	Par	ametri principali assunti	44
	4.3	CARA	TTERIZZAZIONE DELLA SISMICITA' DEL LUOGO	45
	4.4	CRITE	ERI GENERALI DI PROGETTAZIONE	47
	4.4.1	Ver	ifiche di resistenza	47
	4.4	.1.1	Verifiche di resistenza agli stati limite ultimi	47
	4.4.2	Ver	ifiche agli stati limite di esercizio	47
	4.4	.2.1	Definizione degli stati limite di fessurazione	47
	4.4	.2.2	Condizioni ambientali	48
	4.4	.2.3	Sensibilità delle armature alla corrosione	48
	4.4	.2.4	Scelta degli stati limite di fessurazione	48
	4.4	.2.5	Verifiche allo stato limite di fessurazione	49
	4.4	.2.6	Verifiche delle tensioni in esercizio	49
	4.4.3	Cor	mbinazioni di carico	50
	4.4.4	Azio	oni sismiche	53
	4.4	.4.1	Vita nominale	54
	4.4	.4.2	Classe d'uso	54
	4.4	.4.3	Periodo di riferimento per l'azione sismica	54

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

	4.4.4	4.4	Classificazione sismica del terreno	55
5	FASI C	COST	RUTTIVE	56
6	ELABO	DRAT	I DI RIFERIMENTO	57
7	ANALI	SI IM	PALCATO	58
7.	1 A	NALI	SI DEI CARICHI	58
	7.1.1	Cari	chi permanenti	58
	7.1.	1.1	Impalcato in c.a.p.	58
	7.1.	1.2	Soletta in calcestruzzo armato	59
	7.1.	1.3	Finiture	59
	7.1.2	Cari	chi accidentali	59
	7.1.3	Def	ormazione termica	60
	7.1.4	Azio	ne sismica	60
	7.1.4	4.1	Vita nominale	61
	7.1.4	4.2	Classe d'uso	61
	7.1.4	4.3	Periodo di riferimento per l'azione sismica	61
	7.1.4	4.4	Parametri di progetto	61
	7.1.4	4.5	Classificazione sismica del terreno	63
	7.1.4	4.6	Spettro di risposta elastico in accelerazione	63
	7.1.4	4.7	Spettro di risposta elastico in accelerazione delle componenti orizzontali	64
	7.1.4	4.8	Spettro di risposta elastico in accelerazione delle componenti verticali	66
	7.1.4	4.9	Spettro di progetto	67
	7.1.4	4.10	Determinazione della massa partecipante	67
7.	2 C	ARA	TTERISTICHE GEOMETRICHE	68
7.	3 V	'ERIF	TCHE	68
8	ANALI	SI SI	STEMA DI VINCOLAMENTO	131
ANA	LISI S	OTTO	STRUTTURE	132
8.	1 A		SI DELLE SPALLE	
	8.1.1	MOI	DELLO DI CALCOLO	133
	8.1.	1.1	DESCRZIONE DEL MODELLO DI CALCOLO	133
	8.1.2	ANA	ALISI DEI CARICHI	
	8.1.2	2.1	Peso proprio strutture	135
	8.1.2		Azioni trasmesse dall'impalcato	
	811	2.3	Determinazione della forza sismica orizzontale del terreno	141

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

8.1.2.4 Schemi di carico delle spinte del terreno	142
8.1.3 Combinazioni di carico	144
8.1.3.1 Combinazioni di carico statiche e sismiche	144
8.1.4 CALCOLO DELLE SOLLECITAZIONI	145
8.1.5 VERIFICA DELLE SEZIONI	147
8.1.6 VERIFICA STATO LIMITE DI VIBRAZIONE	148
9 ANALISI DELLE FONDAZIONI	151
9.1 ANALISI DEL SISTEMA FONDAZIONALE DELLE SPALLE	151
9.1.1 ANALISI PALI FASE 0	151
9.1.2 MODELLO DI CALCOLO	187
9.1.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO	187
9.1.2.2 VERIFICHE SLE - CEDIMENTI	220
9 1 2 3 VALUTAZIONE DEL RISUI TATI	238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

PREMESSA

La presente relazione di calcolo tratta il ponte pedonale di uscita dalla stazione Annunziata, ubicata nel comprensorio dei collegamenti lato Sicilia del ponte sullo stretto di Messina, ed inteso intrinsecamente come opera di scavalco di una fiumara.

Eurolink S.C.p.A. Pagina 6 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

1 RIFERIMENTI NORMATIVI

I calcoli delle strutture sono stati eseguiti in base alle seguenti disposizioni:

- Legge 5/11/1971 n° 1086: "Norme per le discipline delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica".
- Legge 2 febbraio 1974, n. 64 "Provvedimanti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. del 14/01/2008 "Norme Tecniche per le Costruzioni 2008"
- Istruzioni per l'applicazione delle norme tecniche per le costruzioni di cui al DM 14/01/2008 –
 Circolare 2 febbraio 2009 n. 617
- Norma UNI EN 206-1 : 2006 "Calcestruzzo. Parte 1 : specificazione, prestazione, produzione e conformità"
- Norma UNI EN 206-1 : 2006 "Calcestruzzo. Parte 1 : specificazione, prestazione, produzione e conformità"

2 RIFERIMENTI BIBLIOGRAFICI

- [1] SEAOC Blue Book "Conceptual Framewirk for Performance-Based Seismic Design", Appendix B (2000).
- [2] Gruppo di Lavoro (2004). Redazione della mappa di pericolosita sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici).
- [3] Priestley M.J.N., Seible F. e Calvi G.M. "Seismic Design and Retrofit of Bridges", J. Wiley & Sons, Inc. (1996).
- [4] Migliacci A. e Mola F., "Progetto agli stati limite delle strutture in c.a.". Parte prima e seconda, Ed. Masson. 1996.
- [5] FEMA 440 "Improvement of Nonlinear Static Seismic Analysis Procedures", prepared by ATC, ATC-55 Project, Redwood City CA, June 2005.
- [6] FEMA 440 "Improvement of Nonlinear Static Seismic Analysis Procedures", prepared by ATC, ATC-55 Project, Redwood City CA, June 2005.
- [7] M. W. O'Neill and L. C. Reese "Drilled shafts: construction procedures and design methods", prepared for U.S. Department of Transportation Federal Highway Administration; printed by ADSC: The International

Eurolink S.C.p.A. Pagina 7 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

Association of Foundation Drilling, pub. n. ADSC-TL 4, August 1999.

- [8] CALTRANS "Seismic Design Criteria" Version 1.1; California department of transportation, USA, July 1999.
- [9] ATC-32 "Improved Seismic Design Criteria for California Bridges: Provisional Recommendations" Version 1.1; California, USA, June 1996.
- [10] ATC-49 "Recommended LRFD guidelines for the seismic design of highway bridges. Part I: Specifications. Part II: Commentary and Appendices", ATC/MCEER Joint Venture, USA, June 2003.
- [11] Roesset J.M. [1969) "Foundamentals of soil amplification", Conference on Seismic Design for Nuclear Power Plants, MIT, Ed. by Robert J. Hansen, Vol 1, pp. 183-244.
- [12] Mylonakis G. [2001] "Simplified model for seismic pile bending at soil layer interfaces", The Japanese Geotechnical Society, Vol. 41, No. 4(20010815), pp. 47-58.
- [13] Joseph E. Bowles. [1988] "Fondazioni progetto e analisi", McGraw-Hill.

Eurolink S.C.p.A. Pagina 8 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

3 CARATTERISTICHE DEI MATERIALI

3.1 Calcestruzzi (Secondo UNI 11104 - 2004)

Per sottofondazioni

classe di resistenza classe di esposizione

C12/15

X0

Per pali gettati in opera

classe di resistenza		C25/30	
modulo elastico	Ę _c =	31.476	N/mm ²
massa volumica di riferimento	γ_{c} =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	25,00	N/mm ²
resistenza media a compressione cilindrica	$f_{cm} =$	33,00	N/mm ²
resistenza di calcolo a compressione	$f_{cd} =$	14,17	N/mm ²
resistenza a trazione (valore medio)	$f_{ctm} =$	2,56	N/mm ²
resistenza caratteristica a trazione	$f_{ctk} =$	1,79	N/mm ²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,15	N/mm ²
tensione a SLE – combinazione rara	$\sigma_{C} =$	14,94	N/mm ²
tensione a SLE – combinazione quasi permanente	$\sigma_{C} =$	11,20	N/mm ²
copriferro	C =	50	mm
classe di esposizione		XC2	
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4-S5	
max dimensione aggregati	Dmax =	32	mm
rapporto A/C massimo		0,50	

Baggioli e ritegni sismici

classe di resistenza		C32/40	
modulo elastico	Ę _c =	33.346	N/mm²
massa volumica di riferimento	γ_c =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	32,00	N/mm²
resistenza media a compressione cilindrica	$f_{cm} =$	40,00	N/mm ²

Eurolink S.C.p.A. Pagina 9 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

resistenza di calcolo a compressione	$f_{cd} =$	18,13	N/mm²
resistenza a trazione (valore medio)	$f_{ctm} =$	3,02	N/mm²
resistenza caratteristica a trazione	$f_{ctk} =$	2,11	N/mm ²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,65	N/mm ²
tensione a SLE – combinazione rara	σ _C =	19,92	N/mm ²
tensione a SLE – combinazione quasi permanente	σ _C =	14,94	N/mm ²
copriferro	C =	35	mm
classe di esposizione		XS1	
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	20	mm
rapporto A/C massimo		0,50	

Elevazioni spalle (cordoli di testa pali)

	C32/40	
Ę _c =	33.346	N/mm²
γ_{c} =	25,00	kN/m³
$f_{ck} =$	32,00	N/mm ²
$f_{cm} =$	40,00	N/mm ²
$f_{cd} =$	18,13	N/mm ²
$f_{ctm} =$	3,02	N/mm ²
$f_{ctk} =$	2,11	N/mm ²
$f_{cfk} =$	2,65	N/mm ²
$\sigma_{C} =$	19,92	N/mm ²
$\sigma_{C} =$	14,94	N/mm ²
C =	40	mm
	XS1	
cl	0,20	
	S4	
Dmax =	32	mm
	0,50	
	$\gamma_{c} = f_{ck} = f_{cm} = f_{cd} = f_{ctk} = f_{ctk} = \sigma_{C} = \sigma_{C}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Soletta di impalcato

Eurolink S.C.p.A. Pagina 10 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

Codice documento

Rev.

Data 20-06-2011

			$\sim 10^{-1}$	$\cap \cap$	\sim
KEL	azioi	NE L	ᄼ	ALCO	LU

ST0216_F0.doc

F0

C32/40 classe di resistenza N/mm² modulo elastico $E_c =$ 33.346 kN/m³ massa volumica di riferimento 25,00 $\gamma_c =$ N/mm² 32,00 resistenza caratteristica a compressione cilindrica $f_{ck} =$ N/mm² resistenza media a compressione cilindrica 40,00 $f_{cm} =$ N/mm² resistenza di calcolo a compressione $f_{cd} =$ 18,13 N/mm² resistenza a trazione (valore medio) $f_{ctm} =$ 3,02 N/mm² 2,11 resistenza caratteristica a trazione $f_{ctk} =$ N/mm² resistenza caratteristica a trazione per flessione $f_{cfk} =$ 2,65 N/mm² tensione a SLE - combinazione rara 19,92 σ_C = tensione a SLE - combinazione quasi permanente 14,94 N/mm² σ_{C =} copriferro estradosso C = 35 mm XF4 classe di esposizione contenuto massimo di cloruri nel calcestruzzo cl 0,20 **S**4 classe di consistenza slump 20 max dimensione aggregati Dmax = mm rapporto A/C massimo 0,45

Cordoli di impalcato

classe di resistenza		C32/40	
modulo elastico	Ę _c =	33.346	N/mm²
massa volumica di riferimento	$\gamma_c =$	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	32,00	N/mm ²
resistenza media a compressione cilindrica	$f_{cm} =$	40,00	N/mm ²
resistenza di calcolo a compressione	$f_{cd} =$	18,13	N/mm ²
resistenza a trazione (valore medio)	$f_{ctm} =$	3,02	N/mm ²
resistenza caratteristica a trazione	$f_{ctk} =$	2,11	N/mm²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,65	N/mm²
tensione a SLE – combinazione rara	$\sigma_{C} =$	19,92	N/mm²
tensione a SLE – combinazione quasi permanente	$\sigma_{C} =$	14,94	N/mm²
copriferro	C =	35	mm
classe di esposizione		XF4	
contenuto massimo di cloruri nel calcestruzzo	cl	0,20	

Eurolink S.C.p.A. Pagina 11 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	20	mm
rapporto A/C massimo		0,45	

Travi di impalcato

classe di resistenza		C45/55	
modulo elastico	Ę _c =	34.077	N/mm^2
massa volumica di riferimento	$\gamma_{\rm c}$ =	25,00	kN/m³
resistenza caratteristica a compressione cilindrica	$f_{ck} =$	35,00	N/mm²
resistenza media a compressione cilindrica	$f_{\text{cm}} =$	43,00	N/mm²
resistenza di calcolo a compressione	$f_{cd} =$	19,83	N/mm²
resistenza a trazione (valore medio)	$f_{ctm} =$	3,21	N/mm²
resistenza caratteristica a trazione	$f_{ctk} =$	2,24	N/mm²
resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,41	N/mm²
tensione a SLE – combinazione rara	$\sigma_{C} =$	21,00	N/mm²
tensione a SLE – combinazione quasi permanente	σ _C =	15,75	N/mm²
copriferro estradosso	C =	35	mm
classe di esposizione		XF4	
classe di consistenza slump		S4	
max dimensione aggregati	Dmax =	20	mm
rapporto A/C massimo		0,50	

3.2 Acciaio per armature di conglomerato cementizio armato (Secondo NTC 2008 – D.M. 14/01/2008)

		B450C	
tensione caratteristica di snervamento	$f_{yk} =$	450	N/mm²
tensione caratteristica di rottura	$f_{tk} =$	540	N/mm²
resistenza di calcolo a trazione	$f_{yd} =$	391,30	N/mm²
modulo elastico	$E_s =$	206.000	N/mm²
deformazione caratteristica al carico massimo	ϵ_{uk}	7,50	%
deformazione di progetto	$\epsilon_{\sf ud}$	6,75	%

Eurolink S.C.p.A. Pagina 12 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

coeff. resistenza a instabilità delle membrature

 $\gamma_m =$

1,10

Eurolink S.C.p.A. Pagina 13 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

3.3 Acciaio per cemento armato precompresso (Secondo NTC 2008 – D.M. 14/01/2008)

Si adottano trefoli da 0,6" in acciaio controllato in stabilimento che presentano le seguenti caratteristiche:

tensione caratteristica allo 0,1% di deformazione residua	$f_p(0,1)_k =$	1.600	N/mm ²
tensione caratteristica allo 1% di deformazione totale	$f_{p}(1)_{k} =$	1.670	N/mm ²
tensione caratteristica a rottura	$f_{tk} =$	1.860	N/mm ²
Resistenza di calcolo	$f_{yd} =$	1.391	N/mm ²
Deformazione caratteristica al carico massimo	ϵ_{uk}	3,50	%
Area nominale	A_{nom}	139	mm^2

Eurolink S.C.p.A. Pagina 14 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev.

F0

Data 20-06-2011

4 DESCRIZIONE DELLA STRUTTURA

4.1 CARATTERISTICHE GEOMETRICHE E UBICAZIONE DELLA STRUTTURA

La presente relazione di calcolo tratta le sottostrutture costituenti il ponte pedonale di accesso alla stazione ferroviaria Annunziata ed inteso intrinsecamente come opera di scavalco dell'omonima fiumara.

Da un inquadramento infrastrutturale dell'opera è possibile desumerne la strutturazione fondamentale utilizzata nel corso delle analisi.

L'impalcato è caratterizzato da un asse rettilineo, con luce tra gli assi appoggi pari a 17,60 m, e da una larghezza trasversale, di 7,30 m. Nel particolare l'estensione trasversale del suddetto impalcato, può essere ripartita in 6,00 m di superficie bitumata e 0,59 m di cordoli. Allo scopo di sopperire a logiche necessità cinematiche e di servizio, viene conferita alla sovrastruttura, una pendenza trasversale del 2,5%.

Da un punto d vista prettamente strutturale, l'impalcato del ponte oggetto di studio, è realizzato attraverso travi accostate in c.a.p.

Nell'ambito dell'esecuzione delle analisi strutturali, atte a fornire le sollecitazioni di progetto agenti sulle sottostrutture, viene utilizzato in prima fase uno schema statico a telaio con collegamenti a cerniera, mentre in seconda fase uno schema a telaio con collegamenti monolitici, conseguente alla maturazione della soletta e del sovra cordolo con conseguente solidarizzazione con le travi.

Le spalle afferenti a tale opera ed oggetto di studio del seguente elaborato, sono costituite dal cordolo in c.a. gettato in opera, posizionato in testa pali. Entrambe le spalle risultano infatti sorrette da 1 fila da 6 pali del diametro di 1.000 mm.

L'analisi dei carichi e l'analisi sismica sono state effettuate in ottemperanza alla NTC del 14 Gennaio 2008; inoltre per il terreno sono state assunte le ipotesi di spinta a riposo in condizioni statiche e spinta attiva in condizioni sismiche.

Nel seguito si riportano il profilo dell'opera in esame, la sezione trasversale sulle spalle e la planimetria di inquadramento dell'opera in esame.

Eurolink S.C.p.A. Pagina 15 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

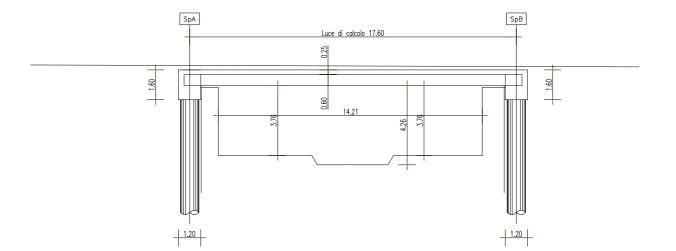


Figura 4.1 – Profilo longitudinale.

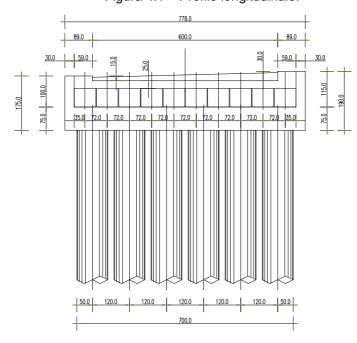


Figura 4.2 – Vista frontale spalla A.

L'impalcato ha le seguenti caratteristiche geometriche:

•	Luce di calcolo	17,60 m
•	Lunghezza totale	18,80 m
•	Larghezza impalcato (media)	7,30 m
•	Larghezza carreggiata (media)	6,00 m
•	Larghezza cordolo sinistro	0,89 m
•	Larghezza cordolo destro (medio)	0,89 m

Eurolink S.C.p.A. Pagina 16 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 17 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

4.2 CARATTERIZZAZIONE GEOTECNICA DEL LUOGO

4.2.1 Descrizione delle litologie

Le litologie prevalenti sono costituite dalla formazione dai Depositi alluvionali, dalla Serie gessoso solfifera (Calcari brecciati e argille gessose) e dal San Pier Niceto argilloso.

<u>Depositi alluvionali:</u> si tratta prevalentemente di depositi sabbioso-ghiaiosi olocenici di fondo alveo. L'incisione operata dai corsi d'acqua determina la diretta sovrapposizione di tali depositi sul substrato cristallino-metamorfico. Gli spessori massimi dedotti da affioramento e sondaggi non è superiore alla decina di metri.

<u>Serie gessoso solfifera (Calcari brecciati e Argille gessose)</u>: si tratta delle evaporiti relative alla crisi di salinità che ha interessato il Bacino Mediterraneo durante il Messiniano.

La litofacies evaporitica è caratterizzata da gessi e argille gessose, prevalentemente alla base della successione, e da calcari brecciati e vacuolari affioranti discontinuamente. L'appoggio della formazione è sempre sulle varie litofacies della Formazione di S. Pier Niceto.

<u>La formazione del San Pier Niceto</u> è costituita essenzialmente da due facies distinte, una basale conglomeratica ed arenacea e l'altra superiore di natura prevalentemente argillosa.

Alla base il conglomerato è costituito da grossi ciottoli poligenici arrotondati e ghiaie di colore marrone-avana in una matrice arenacea rossastra con sabbia sempre più fine man mano che ci si sposta verso l'alto. Nella parte superiore assume l'aspetto di un ammasso roccioso che affiora estesamente in banchi.

Superiormente la porzione arenacea lascia il posto a strati limo argillosi di potenza metrica.

La falda risulta interferente con le opere e localizzabile a profondità di circa 10m da p.c..

4.2.2 Indagini previste

I sondaggi di riferimento per la presente tratta sono S452 e S452bis.

Data l'esiguità delle prove, si è scelto di tenere conto anche delle indagini effettuate in altre tratte.

Localmente non ci sono indagini che raggiungono i primi 30 m di profondità per la caratterizzazione sismica del suolo.

Le simiche a rifrazione effettuate in località La Giostra (SR5-S454) in un contesto litostratigrafico simile forniscono una categoria di suolo variabile tra **B** (Vs30=410m/s) e **C** (Vs30=300m/s).

Eurolink S.C.p.A. Pagina 18 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Le prove localmente utilizzate nella caratterizzazione sono:

Depositi alluvionali

Le prove localmente utilizzate nella caratterizzazione sono:

- prove SPT (S452, S452bis)
- prove sismiche a rifrazione (S454-SR5)
- prove di laboratorio per la determinazione delle granulometrie e delle caratteristiche fisiche (S452)

Calcari brecciati

Data l'esiguità dei sondaggi che caratterizzano la presente formazione nella tratta in esame, si fa riferimento alla caratterizzazione generale.

Le prove utilizzate nella caratterizzazione sono:

- prove pressiometriche (S451, S451bis)
- prove sismiche a rifrazione (SR5, SR10)

Argille gessose

Data l'esiguità dei sondaggi che caratterizzano la presente formazione nella tratta in esame, si fa riferimento alla caratterizzazione generale.

Le prove utilizzate nella caratterizzazione sono:

- prove pressiometriche (S432, S454)
- prove dilatometriche (S451, S452, S452bis, S455)
- prove sismiche a rifrazione (SR5, SR10)
- prove di laboratorio per la determinazione dei parametri di resistenza (I2, S434, SPP07, SPP08)
- prove di laboratorio per la determinazione dei parametri fisici.
- prove edometriche (SPP07, SPP08)

Eurolink S.C.p.A. Pagina 19 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

San Pier Niceto argilloso

Data l'esiguità dei sondaggi che caratterizzano la presente formazione nella tratta in esame, si fa riferimento alla caratterizzazione generale.

Le prove utilizzate nella caratterizzazione sono:

- prove pressiometriche (S432, S454)
- prove dilatometriche (S459bis, S453)
- prove sismiche a rifrazione (SR2, SR3, SR5)
- prove di laboratorio per la determinazione dei parametri di resistenza (S457, S465)
- prove di laboratorio per la determinazione dei parametri fisici.

4.2.3 Caratterizzazione geotecnica

Per i criteri e per gli aspetti generali di caratterizzazione si rimanda a quanto riportato nella relazione Elab. CG0800PRBDSSBC8G00000001A. Per la definizione delle categorie di suolo si rimanda al medesimo elaborato ed alla relazione sismica di riferimento.

Depositi alluvionali

L'andamento del fuso evidenzia che le caratteristiche granulometriche dei materiali in esame sono tipiche di materiali sia di materiali a grana grossa (ghiaie 39%), sia di materiali intermedi (sabbie 45%). Il contenuto di fino è mediamente del 14%.

Con riferimento al fuso medio:

- Il valore di \mathbf{D}_{50} è pari a 0.8mm
- Il valore di \mathbf{D}_{60} è pari a 2 mm
- Il valore di \mathbf{D}_{10} è pari a 0.01 mm

Il peso di volume dei grani medio γ_s è risultato pari a circa 26.5 kN/m³.

Non si hanno a disposizione i valori di γ_{dmax} e γ_{dmin} .

Per quanto riguarda lo stato iniziale:

Eurolink S.C.p.A. Pagina 20 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

- Dr: I valori di N_{spt} sono stati corretti con il fattore correttivo C_{sg}=0.75 corrispondente al d50=0.8mm,
- e_o: a partire dal d50 stimato si ottiene di e_{max}-e_{min} pari a 0.305 stimando per e_{max} un valore pari a 0.7 a partire dai valori di Dr è stato possibile determinare i valori di e_o in sito. Il valore di e_o risulta pari a 0.5-0.6;
- γd: si ottiene un pari a 17-19 KN/m³.
- K₀: si considera la relazione di Jaky.

z(m)	Dr(%) Sabbie e ghiaie	K ₀
0-10	40-80	0.36-0.4
>10	50-60	0.38

Per quanto riguarda i <u>parametri di resistenza</u>, sulla base delle prove SPT si è ottenuto:

z(m)	φ' _{p (pff=0-272KPa)} (°)	φ' _{p (pff=272-350KPa)} (°)	φ' _{cv} (°)
0-10	37-40	33-36	33-35
>10	38	35	33-35

Come parametri operativi di picco si utilizzeranno:

c'=0

 $\phi' = 37^{\circ} - 39^{\circ}$

Per i <u>parametri di deformabilità</u>, i valori di G_0 da prove SPT hanno un andamento che, stimato graficamente con una linea di tendenza, risulta pari a:

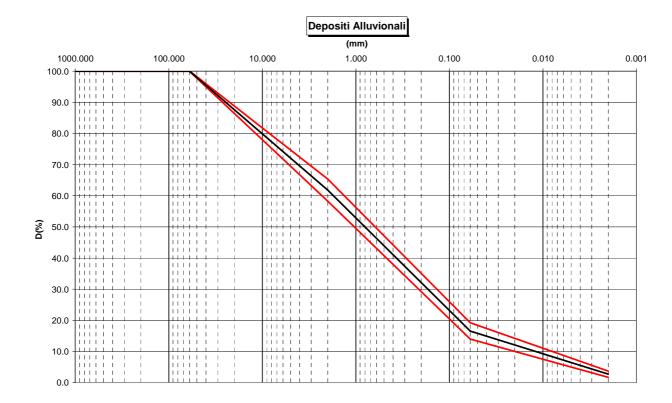
$$G_o = 39 \cdot (z)^{0.59}$$

Eurolink S.C.p.A. Pagina 21 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0


Data 20-06-2011

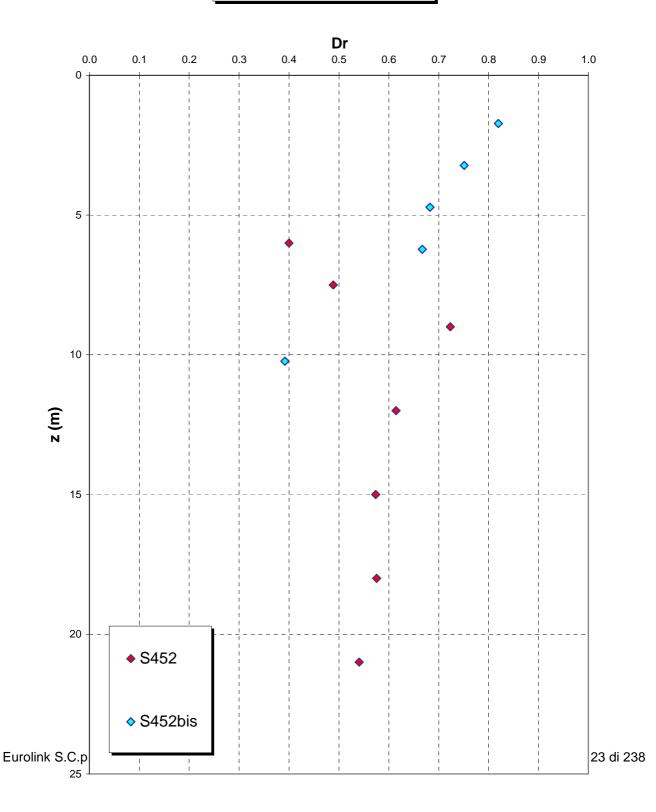
$$E_o = 93 \cdot (z)^{0.59}$$

I moduli di Young "operativi" a medie deformazioni, valutati sulla base dei criteri descritti nei capitoli precedenti risulteranno pari a:

$$E = (12 \div 31) \cdot (z)^{0.59}$$

pari rispettivamente a circa 1/10÷1/5 (medie e grandi deformazioni) ed ad 1/3 (piccole deformazioni) di quelli iniziali.

Eurolink S.C.p.A. Pagina 22 di 238

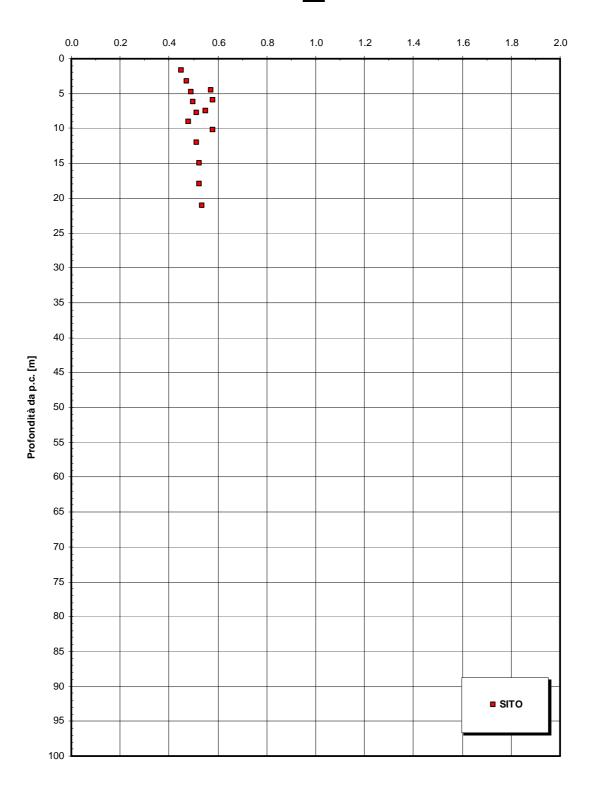

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Dr Cubrinovski e Ishihahara (1999) Componente ghiaiosa e sabbiosa DEPOSITI ALLUVIONALI

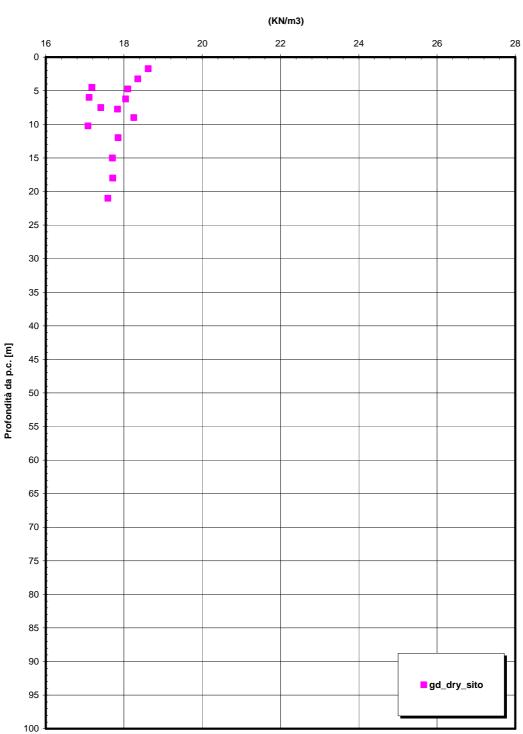

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

eo


RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 25 di 238

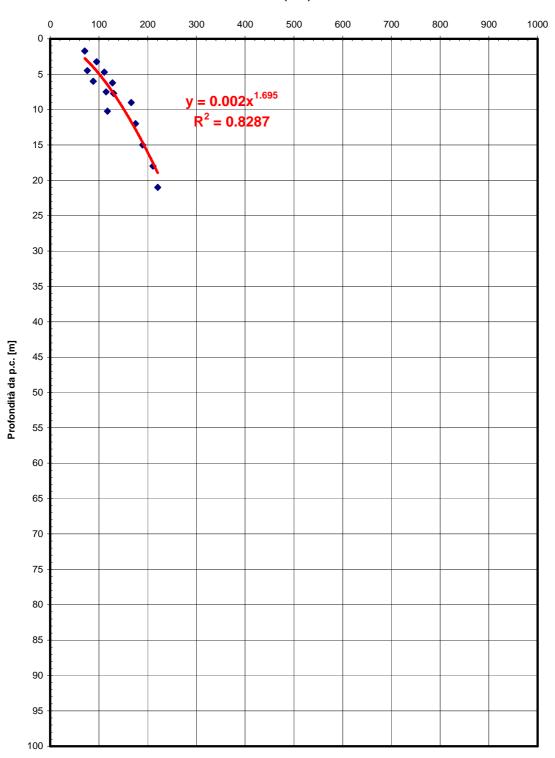
RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 26 di 238


RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 27 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

Calcari brecciati

Per le <u>caratteristiche fisiche</u> Non avendo a disposizione prove di laboratorio si può stimare un peso di volume γ pari a 19-21 KN/m³.

Per i <u>parametri di resistenza al taglio</u> in termini di sforzi efficaci in mancanza di rilievi su affioramenti, una stima del parametro RMR'89 risulta difficile a partire dalle informazioni ricavabili dalle stratigrafie e dalle foto delle cassette (es: RQD) anche a causa del disturbo causato dal carotaggio.

Cautelativamente quindi si pone:

c'=0.020 ÷ 0.050 MPa φ'=25°-30°

Per le <u>caratteristiche di deformabilità</u> i risultati dalle prove dilatometriche e pressiometriche effettuate negli strati più profondi (60-90m) nella nuova campagna di indagine 2010 (S451e S451bis mostrano valori molto variabili di E' e pari a 800 ÷ 2500 MPa nel caso di scarico e ricarico e a 150 ÷ 400 MPa nel caso di primo carico.Ciò è da imputare alla struttura molto complessa della formazione costituita da calcari e brecce calcare e da livelli di laminiti marnose.

Anche i risultati dalle prove sismiche a rifrazione risulterebbero fra loro variabili. Facendo riferimento alle stese sismiche in località Annunziata (SR10) ed in corrispondenza del sondaggio S454 (SR5) e riferendosi a profondità medie di 15-20m, si sono riscontrano velocità medie Vs rispettivamente pari a 300 (SR5) \div 400 m/s (SR10) circa, alle quali corrisponderebbe un modulo elastico iniziale medio G0 pari a 250 MPa a cui corrisponde E0= 600 MPa.In zona Annunziata la formazione si presenta già a basse profondità come una breccia calcarea; in corrispondenza del sondaggio S454 (località Giostra), invece, è descritto come una sabbia limosa con inclusi clasti eterometrici. Le sismiche forniscono per gli strati un valore medio del modulo elastico (1/10 E_0 ed 1/3 E_0) pari a 60 e 200 MPa.

Nella porzione più superficiale ed alterata (10-20m), si pone:

E'=60 ÷ 200 MPa

Per problemi di grandi deformazioni e caratterizzate da condizioni di primo carico (fondazioni, rilevati) si farà riferimento ai valori minimi del range mentre per opere di sostegno si farà

Eurolink S.C.p.A. Pagina 28 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

riferimento a valori contenuti nel range.

Nella parte più massiva e per problemi caratterizzati da piccole deformazioni in condizioni di scarico o scarico e ricarico (opere di sostegno) i valori operativi dei moduli potranno essere posti pari a:

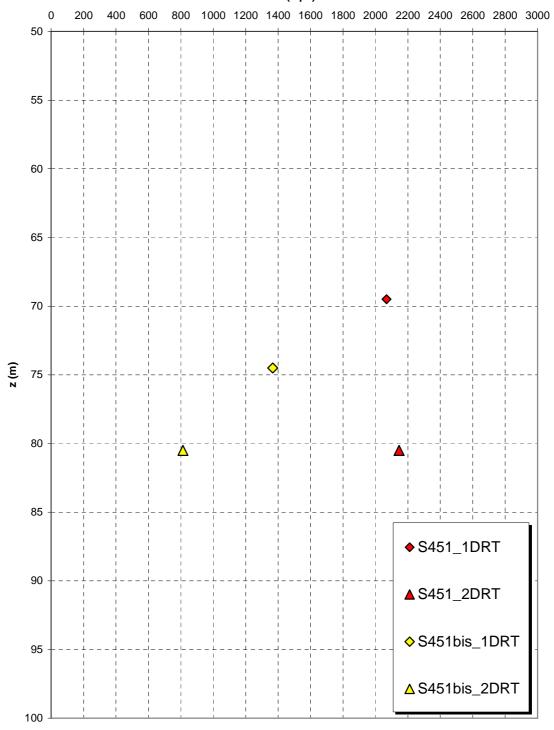
E'=200 ÷ 800 Mpa

Il massimo valore è da riferire agli strati più profondi (60-90m).

Per la <u>permeabilità</u> le due prove Le Franc localmente previste danno un valore medio pari a circa 10^{-7} m/s.

Eurolink S.C.p.A. Pagina 29 di 238

RELAZIONE DI CALCOLO


Codice documento
ST0216_F0.doc

Rev. F0

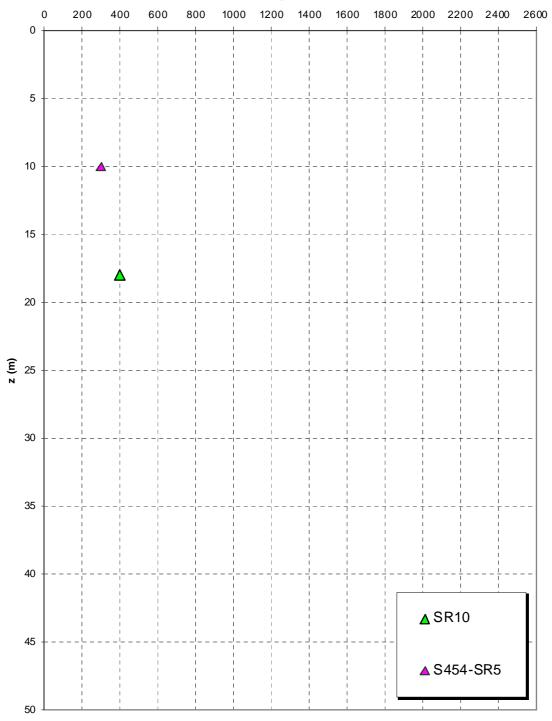
Data 20-06-2011

Prove dilatometriche CALCARI BRECCIATI

E' (Mpa)

Eurolink S.C.p.A. Pagina 30 di 238

RELAZIONE DI CALCOLO


Codice documento
ST0216_F0.doc

Rev. F0

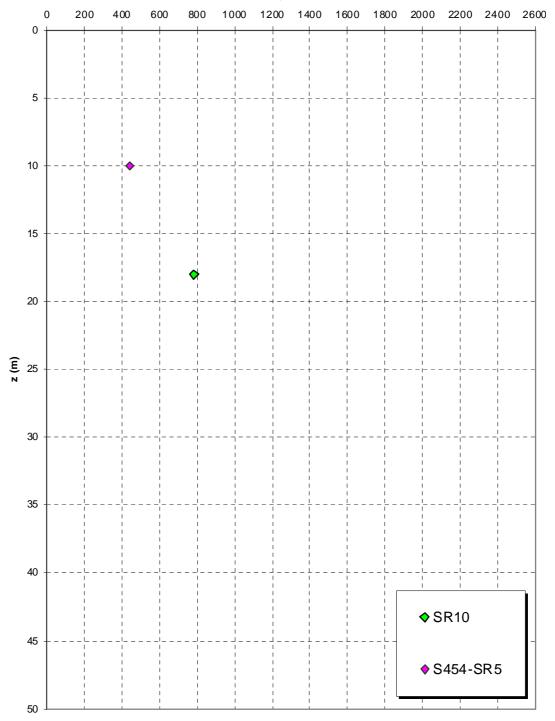
Data 20-06-2011

Prove sismiche CALCARI BRECCIATI

V_s(m/s)

Eurolink S.C.p.A. Pagina 31 di 238

RELAZIONE DI CALCOLO


Codice documento
ST0216_F0.doc

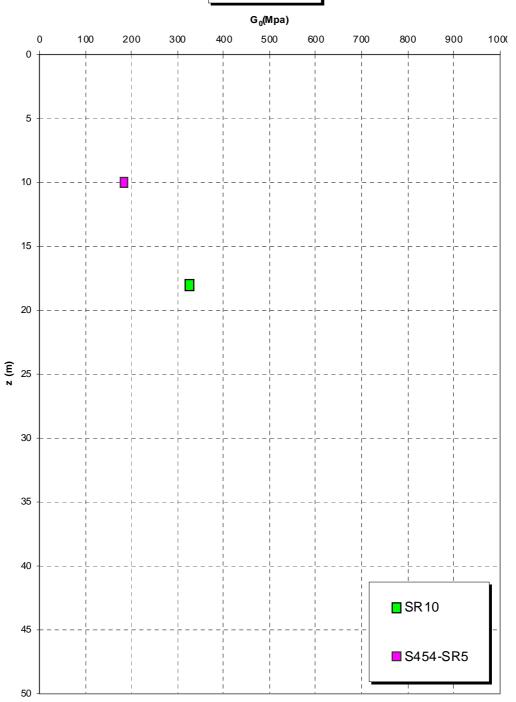
Rev. F0

Data 20-06-2011

Prove sismiche CALCARI BRECCIATI

E₀(Mpa)

Eurolink S.C.p.A. Pagina 32 di 238


RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 33 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Argille gessose

Il fuso granulometrico mostra che le caratteristiche sono tipiche di materiali a grana fine con percentuale media di ghiaia al 14%, sabbia al 30%, limo al 43% ed argilla al 16%.

Inoltre D_{50} =0.025mm, D_{60} =0.05mm e D_{10} =0.001mm

Per quanto riguarda i limiti di Atterberg si ha Wn=33%, Wl=46%, Wp=24%, IP=22%.

Dalla carta di Casagrande la posizione corrisponderebbe ad argille di medio-alta plasticità.

Per il peso di volume γ si è ottenuto un valore di 19÷21KN/m³.

Per il peso di volume γ s si è ottenuto un valore medio di 26.6KN/m³.

Per il peso di volume yd si è ottenuto un valore medio di 14.5 KN/m³.

Per quanto riguarda la determinazione delle <u>caratteristiche iniziali</u> e per la determinazione delle pressioni verticali di consolidazione:

- **OCR:** è stato possibile stimare il grado di sovraconsolidazione a partire dai valori di Cu calcolati con le prove pressiometriche ottenendo un valore massimo pari a 3 tra 35 e 40m di profondità. A partire dalle prove SPT si ottiene che per 15m<z<20m il materiale è caratterizzato da un OCR=2.5÷4 sino a 35m, diminuendo in profondità (OCR=6.8-0.174 z) ad un valore di OCR prossimo ad 1 per z>35m;
- $\mathbf{e}_{\mathbf{o}}$ è stato stimato dalle prove di laboratorio: si è ottenuto un valore compreso tra 0.7 e 0.8;
- \mathbf{k}_0 è stimabile sulla base della seguente espressione:

$$k_o = (1 - \sin \varphi') \cdot \sqrt{OCR}$$

essendo:

 φ' = angolo di attrito.

Per quanto riguarda i <u>parametri di resistenza</u>, si hanno a disposizione 12 prove di laboratorio su campioni prelevati fra 8m e 50m; le condizioni di rottura delle prove sono caratterizzate sia da $\sigma'_2 \neq \sigma'_3$ che da $\sigma'_2 = \sigma'_3$.

Dall'interpretazione dei dati, nell'ambito delle pressioni di prova, si ottengono i seguenti range di valori di resistenza di picco:

	c' _{picco} [Mpa]	φ' _{picco}	c' _{cv} [Mpa]	φ' _{cv} [၅	c', [Mpa]	φ' _r [၅
(σ' ₂ ≠σ' ₃)	0.010-0.050	30-20	0	28-30	0	16

Eurolink S.C.p.A. Pagina 34 di 238

RELAZIONE DI CALCOLO

 Codice documento
 Rev.
 Data

 ST0216_F0.doc
 F0
 20-06-2011

((('0=(0')	0.010-0.040	30-25	0	23	0	16
(02-03)	0.010 0.010	00 20	0	_)	

Il valore operativo è dato da:

c'=0.010÷0.050 MPa

φ'=30°÷20°

c'cv=0 MPa

 $\phi'_{cv}=23^{\circ}\div28^{\circ}$

I valori più coesivi ed i corrispondenti angoli di attrito sono da associare allo strato superficiale più sovraconsolidato.

In mancanza di prove di laboratorio TXUU i valori di resistenza non drenata Cu sono stati determinati correlando i valori di N_{spt} ed i risultati delle prove pressiometriche.

In questo contesto dalle pressiometriche si ottengono valori di Cu molto alti e pari da 300-370 a 900 KPa a circa 40m di profondità, trascurando dei valori molto bassi ottenuti nella prove del sondaggio S455 effettuate in strati torbosi.

Invece dalle prove SPT si ottengono valori fra 250 e 400 KPa. Tale discrepanza con le pressiometriche può ricondursi alla elevata plasticità dell'argilla che dovrebbe suggerire l'utilizzo di un fattore moltiplicativo dei valori di N_{spt} maggiore di 5.

Comunque si può assumere:

Cu=400 KPa per z<35m

Cu=250 KPa per z>35m

Per quanto riguarda i <u>parametri di deformabilità</u>, dalle prove dilatometriche (S451, S452, S452bis) si evince un modulo medio variabile da circa 40 MPa a 100 MPa tra 17 e 53m di profondità, con valori ottenuti nel sondaggio S455 troppo bassi (15-30MPa) e da scartare perché effettuati su un livelletto torboso. I valori determinati dalle prove corrispondono al primo ciclo di carico.

Dalla prova sismica down hole effettuata nel sondaggio SPPS08 si ottengono valori di Vs molto elevati (1100 m/s) corrispondenti ad uno strato molto consistente. Il modulo G_0 corrispondente risulterebbe pari a 2300 MPa.

Dalla prove sismiche a rifrazione (S432-SR10, S454-SR5), ad una profondità media di 20-25m, si registra un valore medio di Vs pari a $400\div450$ m/s a cui corrisponde un valore di G_0 pari a circa $300\div400$ Mpa e quindi $E_0=720\div960$ Mpa.

Eurolink S.C.p.A. Pagina 35 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev.

F0

Data 20-06-2011

Vista la grande discrepanza fra i risultati e visto il numero esiguo di prove si ritiene cautelativo quindi assumere, un modulo operativo a medie - grandi deformazioni pari a:

E'= 80÷160 MPa

compatibile con

E'=200Cu nel valore minimo

E'=400Cu nel valore massimo

avendo posto un valore di Cu=400Kpa

Tale range corrisponde ad $1/10 \div 1/5$ del valore di E_0 determinato con le sismiche a rifrazione.

Le prove di laboratorio edometriche (SPP07, SPP08) per la determinazione delle caratteristiche di compressibilità e per la determinazione dei coefficienti di consolidazione non sono ritenute significative per il presunto disturbo dei campioni.

Il valore di Eed medio si attesta infatti intorno a 14Mpa.

Il valore di Cc medio è pari a 0.13

Il valore di cs medio è pari a 0.034

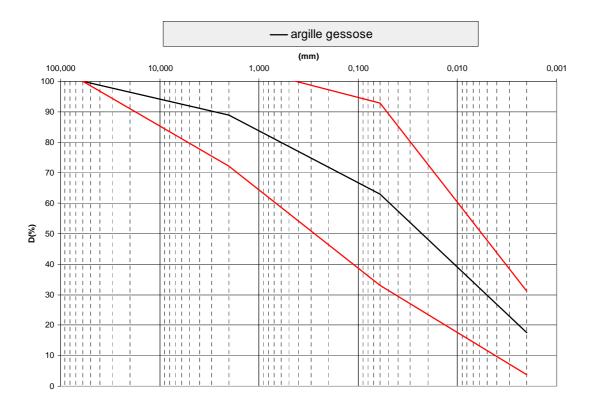
Il valore di c_v medio è pari a 1.87e⁻⁵ m²/s

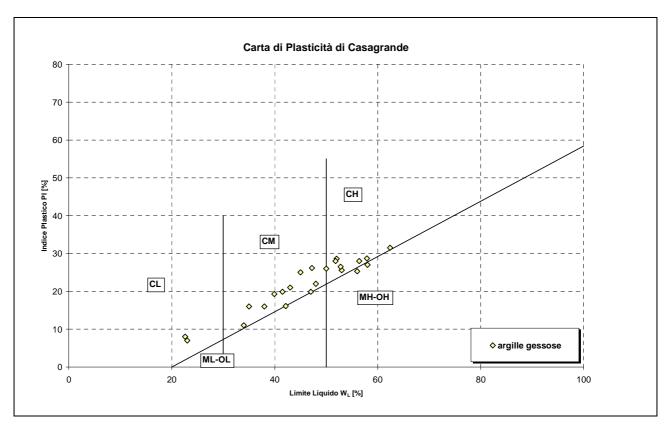
Il valore di c α medio è pari a 1.4e⁻³

Per quanto concerne la <u>permeabilità</u> le prove edometriche non determinano il valore di K che quindi verrà stimato in base alla correlazione di Rocchi (2003): per e_L che assume un valore medio pari a 1.456 si ottiene un valore della permeabilità verticale di 1 x 10⁻⁸ m/sec.

C'è da dire, però, che la permeabilità a grande scala di tale ammasso risente degli eventuali livelli più permeabili (sabbiosi, gessosi, etc,...) e quindi, considerando più rappresentativo l'esito delle prove in situ, si considerano invece valori della permeabilità (orizzontale) dell'ordine di 6 x 10⁻⁷ m/sec.

Eurolink S.C.p.A. Pagina 36 di 238



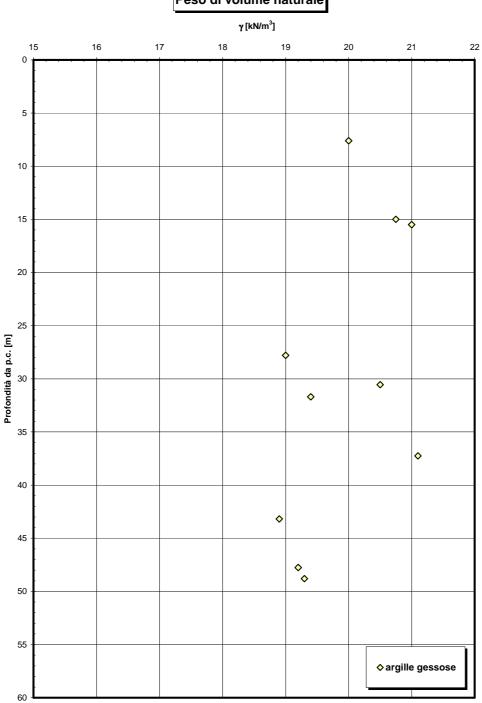

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 37 di 238


RELAZIONE DI CALCOLO

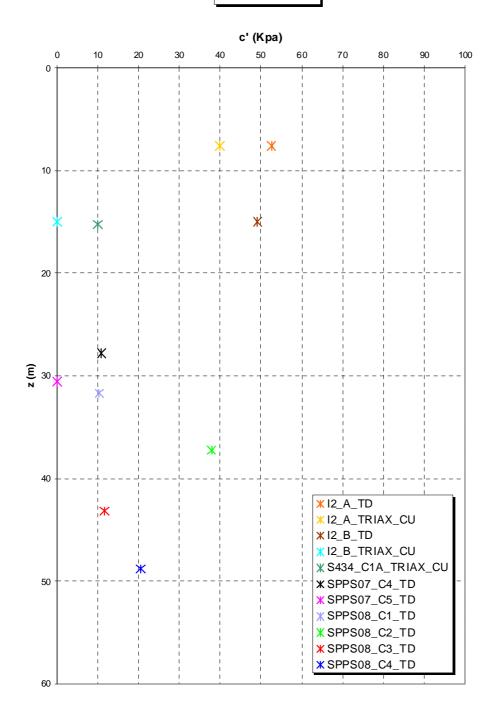
Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

Peso di volume naturale

Eurolink S.C.p.A. Pagina 38 di 238


RELAZIONE DI CALCOLO

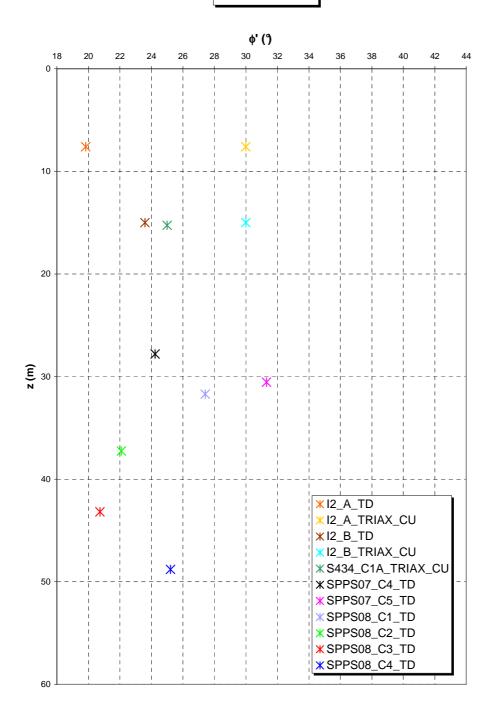
Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Coesione ARGILLE GESSOSE

Eurolink S.C.p.A. Pagina 39 di 238


RELAZIONE DI CALCOLO

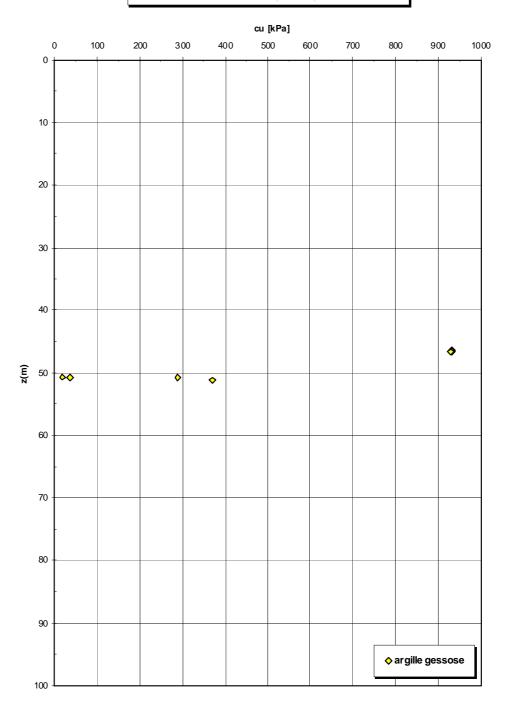
Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

Angolo di attrito ARGILLE GESSOSE

Eurolink S.C.p.A. Pagina 40 di 238


RELAZIONE DI CALCOLO

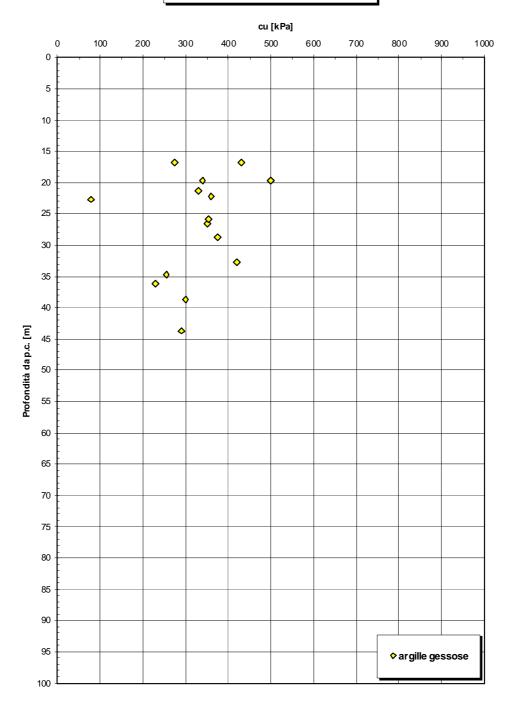
Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Coesione non drenata da prove pressiometriche

Eurolink S.C.p.A. Pagina 41 di 238


RELAZIONE DI CALCOLO

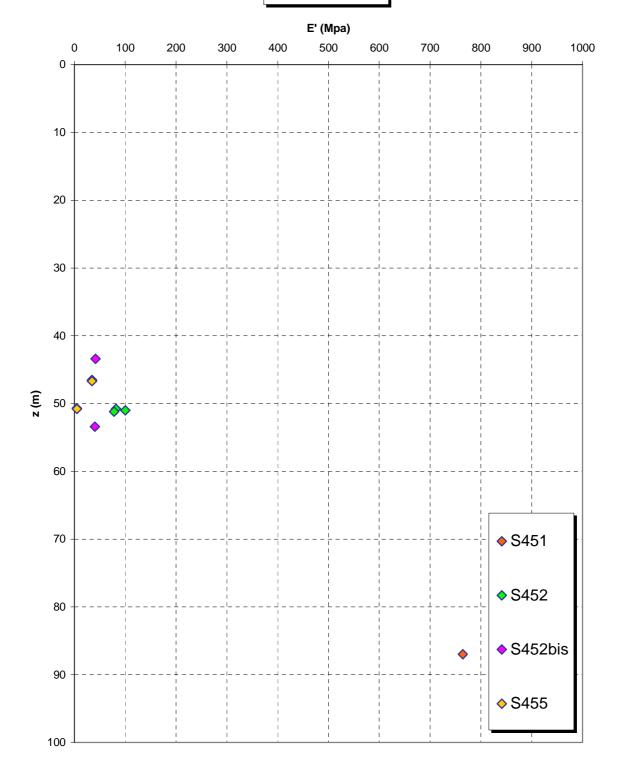
Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

Coesione non drenata da prove SPT

Eurolink S.C.p.A. Pagina 42 di 238


RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Prove dilatometriche ARGILLE GESSOSE

Eurolink S.C.p.A. Pagina 43 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev.

Data

20-06-2011

F0

4.2.4 Parametri principali assunti

La stratigrafia assunta per le verifiche geotecniche è estrapolata dal profilo geotecnico generale e così riassunto:

da p.c a -14,00 m depositi alluvionali da -14,00 a -42,00 m calcari brecciati da -42,00 a -61,00 m argille gessose

la quota della falda è assunta a -10,00 m dal piano campagna.

Parametri principali assunti - DEPOSITI ALLUVIONALI

Peso di volume $\gamma = 18 \text{ kN/m}^3$

Peso di volume saturo $\gamma_S = 26.5 \text{ kN/m}^3$

Angolo di attrito interno $\phi' = 38^{\circ}$ (prudenziale limite massimo)

Angolo di attrito terreno – palo $\phi' = 38^{\circ}$

Modulo deformazione elastico (z=6 m) E' = 50 MPa

Parametri principali assunti - CALCARI BRECCIATI

Peso di volume $\gamma = 20 \text{ kN/m}^3$

Peso di volume saturo $\gamma_S = 27 \text{ kN/m}^3$

Angolo di attrito interno $\phi' = 27^{\circ}$

Angolo di attrito terreno – palo $\phi' = 27^{\circ}$

Modulo deformazione elastico (z=3 m) E' = 130 MPa

Eurolink S.C.p.A. Pagina 44 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

4.3 CARATTERIZZAZIONE DELLA SISMICITA' DEL LUOGO

Le azioni di progetto si ricavano, ai sensi delle NTC, dalle accelerazioni ag e dalle relative forme spettrali.

Le forme spettrali previste dalle NTC sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- a_g accelerazione orizzontale massima del terreno;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno TR considerati dalla pericolosità sismica, i tre parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo ad:

a_q il valore previsto dalla pericolosità sismica;

F₀ e T_C* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica.

Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione;
- le probabilità di superamento nella vita di riferimento P_{VR} associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

A tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante

Eurolink S.C.p.A. Pagina 45 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011


l'espressione:

$$T_R = -\frac{V_R}{ln(1-P_{VR})} = -\frac{200}{ln(1-0.1)} = 1.898$$
 anni

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'accelerazione al sito a_g è espressa in g/10; F_0 è adimensionale, T_C^* è espresso in secondi.

Nel seguito si riporta una tabella riassuntiva dei parametri che caratterizzano il Comune di Messina:

Eurolink S.C.p.A. Pagina 46 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

4.4 CRITERI GENERALI DI PROGETTAZIONE

4.4.1 Verifiche di resistenza

Le verifiche delle sezioni più sollecitate sono state condotte seguendo le prescrizioni del D.M.14/01/08 e seguendo le indicazioni della norma UNI EN 1992-2005.

Più specificatamente la verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto della verifica agli stati limite ultimi, e delle verifiche nei riguardi della fessurazione e delle tensioni di esercizio.

4.4.1.1 Verifiche di resistenza agli stati limite ultimi

Si è verificato che il valore di progetto degli effetti delle azioni, ovvero delle sollecitazioni flettenti $M_{\rm d}$ sia minore dei corrispondenti momenti resistenti $M_{\rm r}$ delle sezioni di progetto.

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle condizioni più gravose che si individuano dall'inviluppo delle sollecitazioni agenti nelle diverse combinazioni di carico.

Le combinazioni e i coefficienti moltiplicativi delle singole azioni vengono definiti in base a quanto indicato nel D.M. 14 gennaio 2008.

Per quanto riguarda le verifiche a taglio ultimo, si è fatto riferimento al paragrafo 4.1.2.1.3 "Resistenza nei confronti di sollecitazioni taglianti" del D.M. 14 gennaio 2008.

4.4.2 Verifiche agli stati limite di esercizio

4.4.2.1 Definizione degli stati limite di fessurazione

In ordine di severità crescente si distinguono i seguenti stati limite:

- a) stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
- b) stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_t = \frac{f_{ctm}}{12}$$

c) stato limite di apertura delle fessure nel quale, per la combinazione di azioni prescelta, il valore

Eurolink S.C.p.A. Pagina 47 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione.

4.4.2.2 Condizioni ambientali

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature metalliche, possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella tabella seguente:

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Nel caso in esame si considera l'opera sottoposta a condizioni ordinarie.

4.4.2.3 Sensibilità delle armature alla corrosione

Le armature si distinguono in due gruppi:

- armature sensibili;
- armature poco sensibili.

Appartengono al primo gruppo gli acciai da precompresso. Appartengono al secondo gruppo gli acciai ordinari. Per gli acciai zincati e per quelli inossidabili si può tener conto della loro minor sensibilità alla corrosione.

4.4.2.4 Scelta degli stati limite di fessurazione

Nella tabella sottostante sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

Eurolink S.C.p.A. Pagina 48 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

G 11 G 11 1		Combinazione	Armatura					
Gruppi di	Condizioni	di azioni	Sensibile		Poco sensi	ibile		
esigenze ambientali		ai azioni	Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$		
	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	$\leq w_3$		
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂		
ь	Aggregiza	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$		
b Aggressive		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		
	Malta aggressiva	frequente	formazione fessure	-	ap. fessure	$\leq w_1$		
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		

4.4.2.5 Verifiche allo stato limite di fessurazione

Stato limite di decompressione e di formazione delle fessure

Le tensioni sono calcolate in base alle caratteristiche geometriche e meccaniche della sezione omogeneizzata non fessurata.

Stato limite di apertura delle fessure

Il valore caratteristico di calcolo di apertura delle fessure (w_d) non deve superare i valori nominali w_1 , w_2 , w_3 secondo quanto riportato nella Tabella sopra riportata.

Il valore caratteristico di calcolo è dato da:

$$W_d = 1.7 \cdot W_m$$

dove w_m rappresenta l'ampiezza media delle fessure.

L'ampiezza media delle fessure w_m è calcolata come prodotto della deformazione media delle barre d'armatura ε_{sm} per la distanza media tra le fessure Δ_{sm} :

$$W_{m} = \varepsilon_{sm} \cdot \Delta_{sm}$$

Per il calcolo di ε_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica. ε_{sm} può essere calcolato tenendo conto dell'effetto del "tension stiffening" nel rispetto della limitazione:

$$\varepsilon_{\text{sm}} \ge 0.6 \cdot \frac{\sigma_{\text{s}}}{E_{\text{s}}}$$

con σ_s tensione nell'acciaio dell'armatura tesa (per sezione fessurata) nelle condizioni di carico considerate ed E_s è il modulo elastico dell'acciaio.

4.4.2.6 Verifiche delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle

Eurolink S.C.p.A. Pagina 49 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente: $\sigma_c < 0.6 \cdot f_{ck}$ per la combinazione caratteristica (rara);

 $\sigma_c < 0.45 \cdot f_{ck}$ per la combinazione caratteristica quasi permanente.

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.

Tensione massima dell'acciaio in condizioni di esercizio

Per l'acciaio la tensione massima, σ_s , per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_s < 0.8 \cdot f_{yk}$$

4.4.3 Combinazioni di carico

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si dovranno considerare, generalmente, le combinazioni riportate in Tab. 5.1.IV. A causa della natura dell'opera, i gruppi di azioni da prendere in esame risultano esclusivamente i gruppi 1, 2a e 2b.

Eurolink S.C.p.A. Pagina 50 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev.

F0

Data 20-06-2011

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali			Carichi orizz	ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q₃	Forza centrifuga q4	Carico uniformemente distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m²			Schema di carico 5 con valore caratteristico 5,0 kN/m²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)
(***) Da considerare solo se si considerano veicoli speciali

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

 $\gamma_{\rm G1}$ coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;

 γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

 γ_Q coefficiente parziale delle azioni variabili da traffico;

γ_{Qi} coefficiente parziale delle azioni variabili.

Il coefficiente parziale della precompressione si assume pari a $\gamma_P=1$.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Eurolink S.C.p.A. Pagina 51 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γQ	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente Ψ2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0
	Vento a ponte carico	0,6		0,0
Managa	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Eurolink S.C.p.A. Pagina 52 di 238

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

Sono state analizzate le combinazioni di carico agli stati limite ultimi distinguendo lo stato limite di resistenza della struttura (STR), facente riferimento ai coefficienti parziali A1 e lo stato limite di resistenza del terreno (GEO), facente riferimento ai coefficienti parziali A2.

Agli stati limite di esercizio si sono considerate le verifiche per le combinazioni rara e frequente.

SLU:
$$\gamma_{\text{G1}} \cdot \text{G}_1 + \gamma_{\text{G2}} \cdot \text{G}_2 + \gamma_{\text{P}} \cdot \text{P} + \gamma_{\text{O1}} \cdot \text{Q}_{\text{k1}} + \gamma_{\text{O2}} \cdot \text{Q}_{\text{k2}} + \gamma_{\text{O3}} \cdot \text{Q}_{\text{k3}} + \dots$$

SLE RARA: $G_1 + G_2 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + \dots$

SLE FREQUENTE: $G_1 + G_2 + P + \Psi_{11} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + ...$

SLE QUASI PERMANENTE: $G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + ...$

SISMICA: $E + G_1 + G_2 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + ...$

Combinazione utilizzata nell'analisi dell'impalcato:

COEFFICENTI DI COMBINAZIONE PER LE VRIFICHE ALLO SLU STR						
	γ	Ψ	γ*Ψ			
Peso proprio acciaio	1,35	1,00	1,35			
Peso proprio soletta	1,35	1,00	1,35			
Permanenti	1,50	1,00	1,50			
Effetti primari del ritiro	1,20	1,00	1,20			
Effetti secondari del ritiro	1,20	1,00	1,20			
Accidentali mezzi	1,35	1,00	1,35			
Vento	1,5	0,60	0,90			
Deformazioni termiche	1,20	0,60	0,72			

Azione base accidentali

4.4.4 Azioni sismiche

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, che costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale di categoria A, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R .

Nel presente progetto è stata verificata la combinazione di carico sismica con riferimento allo stato limite ultimo di salvaguardia della vita (SLV): a seguito del terremoto la struttura subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali

Eurolink S.C.p.A. Pagina 53 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; mentre conserva invece una parte della esistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

4.4.4.1 Vita nominale

La vita nominale di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata. Nel caso in oggetto, l'opera ricade all'interno del tipo di costruzione: "Grandi opere ordinarie, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica" (paragrafo 2.4 delle 'Nuove Norme tecniche per le costruzioni – D.M. 14 gennaio 2008").

La vita nominale si assume pertanto pari a $V_N = 100$ anni.

4.4.4.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un'eventuale collasso, le costruzioni sono suddivise in classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: costruzioni con funzioni pubbliche o strategiche importante, anche con riferimento alla gestione della protezione civile in caso di calamità..... Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico."

Il coefficiente d'uso si assume pertanto pari a $c_U = 2,0$ anni.

4.4.4.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso CU. Tale coefficiente è funzione della classe d'uso.

 $V_R = V_N \times C_U = 100 \text{ anni } \times 2 = 200 \text{ anni}$

Le probabilità di superamento P_{VR} nel periodo di riferimento V_R , cui riferirsi per individuare l'azione sismica agente, sono pari al 10% nel caso dello stato limite SLV.

Eurolink S.C.p.A. Pagina 54 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

4.4.4.4 Classificazione sismica del terreno

Ai fini della definizione dell'azione sismica di progetto, in accordo con le NTC, si fa riferimento all'approccio semplificato che si basa sulla individuazione di categorie di sottosuolo di riferimento.

Le simiche a rifrazione effettuate in località La Giostra (SR5-S454) in un contesto litostratigrafico simile forniscono una categoria di suolo variabile tra $\bf B$ (Vs30=410m/s) e $\bf C$ (Vs30=300m/s).

Eurolink S.C.p.A. Pagina 55 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

5 FASI COSTRUTTIVE

Le fasi costruttive per l'esecuzione dell'opera in oggetto sono le seguenti:

- Scavo di sbancamento;
- Realizzazione pali di fondazione;
- Costruzione dei cordoli sommità pali;
- Varo delle travi in c.a.p.;
- Getto della soletta di impalcato;
- Getto dei cordoli di completamento in c.a.;
- Tombamento e realizzazione opere di finitura (pavimentazione, barriere di sicurezza, reti di protezione ecc.).

Nel particolare per quanto concerne l'impalcato le fasi possono essere cosi schematizzate:

La realizzazione dell'impalcato prevede le seguenti fasi:

Fase 0: Realizzazione dei pali di fondazione.

- Fase la: varo travi in c.a.p.
- Fase lb: getto della soletta superiore.
- Fase II: Applicazione degli elementi non strutturali (carichi permanenti portati).
- Al fine dell'analisi strutturale si definiscono, inoltre, le seguenti fasi:
- Applicazione carichi accidentali di breve durata.
- Perdite di precompressione per ritiro del calcestruzzo.

Eurolink S.C.p.A. Pagina 56 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

6 ELABORATI DI RIFERIMENTO

Nell'eseguire le verifiche relative all'opera di cui alla presente relazione si fa riferimento ai seguenti elaborati:

CG0700	Р	RG	D	S	CS	2S	G0	00	00	00	02	В
CG0700	Р	SH	ם	ഗ	CS	2S	G0	00	00	00	01	В
CG0700	Р	L	Δ	ഗ	CS	2S	G0	00	00	00	01	В
CG0700	Р	RB	D	S	CS	2S	G0	00	00	00	01	В
CG0700	Р	P7	D	S	CS	2S	G0	00	00	00	01	В
CG0700	Р	Z 9	ם	ഗ	CS	2S	G0	00	00	00	01	В
CG0700	Р	РА	D	S	CS	2S	G0	00	00	00	14	В
CG0700	Р	ΒZ	D	S	CS	2S	G0	00	00	00	01	В
CG0700	Р	SZ	D	S	CS	2S	G0	00	00	00	01	В
CG0700	Р	SZ	D	S	CS	2S	G0	00	00	00	04	В

Eurolink S.C.p.A. Pagina 57 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

7 ANALISI IMPALCATO

Si svolge la verifica di un impalcato da ponte in doppio incastro, realizzato con l'uso di travi prefabbricate precompresse a trefoli aderenti, solidarizzate tra loro con soletta collaborante gettata in opera.

Il peso della soletta, come pure i sovraccarichi permanenti, si suddividono tra le varie travi proporzionalmente alle rispettive larghezze di soletta collaborante.

I carichi accidentali sono quelli previsti dal vigente regolamento per ponti stradali; essi si ripartiscono tra le travi mediante il metodo di Massonnet-Guyon, i cui parametri flessionale e torsionale sono calcolati facendo riferimento alle caratteristiche statico-geometriche della sezione di solo calcestruzzo di una trave interna, con la rispettiva soletta collaborante.

Si tiene conto della diversa classe di calcestruzzo fra trave e soletta, tramite un coefficiente d'omogeneizzazione pari al rapporto tra i rispettivi moduli elastici convenzionali di regolamento; si trascura l'eventuale contributo statico offerto dal calcestruzzo di soletta presente sotto la quota d'estradosso della trave.

Le cadute di tensione nell'armatura di precompressione si scontano in parte sulla trave isolata e in parte sulla sezione composta, nelle proporzioni indicate in seguito.

Si tiene conto del ritiro differenziale fra trave e soletta, valutandone gli effetti sullo stato tensionale della sezione composta e sulle tensioni tangenziali di scorrimento all'estradosso trave.

7.1 ANALISI DEI CARICHI

7.1.1 Carichi permanenti

I carichi permanenti che gravano sull'impalcato sono costituiti dal peso proprio dell'impalcato stesso, realizzato con travi in c.a.p. affiancate, da una soletta di completamento in c.a. e dai carichi permanenti portati (pavimentazione, barriere metalliche, velette).

7.1.1.1 Impalcato in c.a.p.

Il peso dell'impalcato, costituito da travi prefabbricate in calcestruzzo armato precompresso, viene considerato in base alla sezione reale delle travi stesse con peso di volume pari a 2.500 daN/m³.

Eurolink S.C.p.A. Pagina 58 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

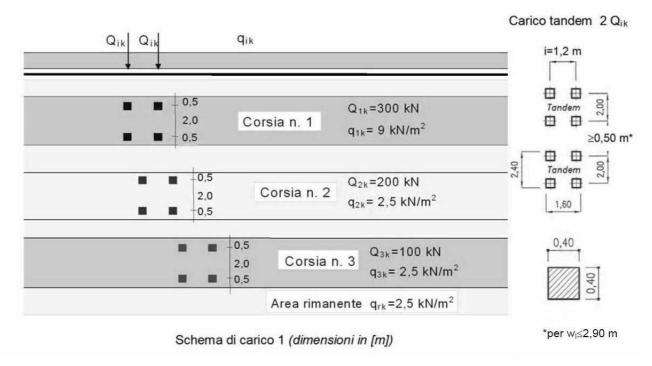
Rev. F0

Data 20-06-2011

7.1.1.2 Soletta in calcestruzzo armato

 $q_{soletta} = 0,267 \cdot 2.500 = 667 \text{ daN/m}^2$ peso proprio soletta c.a.

7.1.1.3 Finiture


 $q_1 = 0.15 \cdot 2.500 = 375 \text{ daN/m}$ cordolo

 $q_2 = 150 \text{ daN/m}$ barriera Bordo Ponte

 $q_3 = 300 \text{ daN/m}$ pavimentazione

7.1.2 Carichi accidentali

Nonostante il ponte debba essere considerato prettamente pedonale, nell'ambito dell'analisi strutturale di seguito svolta, è stato necessario considerare carichi da traffico stradale. Tale scelta è strettamente condizionata dal fatto che in una prima fase il ponte in questione sarà utilizzato per il transito di mezzi da cantiere, al fine di agevolare i lavori di realizzazione della stazione Annunziata. Le azioni variabili del traffico definite nello Schema di Carico 1 sono costituite da carichi concentrati e da carichi uniformemente distribuiti. Tale schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali.

Eurolink S.C.p.A. Pagina 59 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Il numero delle colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata, per i ponti di 1^a Categoria.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9
Corsia Numero 2	200	2,5
Corsia Numero 3	100	2,5
Altre corsie	0,00	2,50

Si precisa che secondo il Nuovo Testo Unico del 14 gennaio 2008, i carichi mobili includono gli effetti dinamici.

7.1.3 Deformazione termica

Trattandosi di un ponte semplicemente a doppio incastro la deformazione termiche dovranno essere considerate e produrranno effetti rilevanti sullo stato pensionale complessivo della struttura. Nel particolare in accordo con quanto prescritto dalla normativa di riferimento occorrerà pianificare l'intervento di una componente di deformazione uniforme e di un gradiente termico dovuto essenzialmente alla differente temperatura che può verificarsi all'estradosso e all'intradosso del ponte.

Nello specifico verrà applicato un $\Delta T = \pm 15$ °C e un gradiente di $\Delta T / h = 5.9$

7.1.4 Azione sismica

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, che costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale di categoria A, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento VR.

Nel presente progetto è stata verificata la combinazione di carico sismica con riferimento allo stato limite ultimo di salvaguardia della vita (SLV): a seguito del terremoto la struttura subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali

Eurolink S.C.p.A. Pagina 60 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; mentre conserva invece una parte della esistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.

7.1.4.1 Vita nominale

La vita nominale di un'opera strutturale è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata. Nel caso in oggetto, l'opera ricade all'interno del tipo di costruzione: "Grandi opere ordinarie, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica" (paragrafo 2.4 delle 'Nuove Norme tecniche per le costruzioni – D.M. 14 gennaio 2008"). La vita nominale si assume pertanto pari a $V_N = 100$ anni.

7.1.4.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un'eventuale collasso, le costruzioni sono suddivise in classi d'uso. Nel caso in oggetto si fa riferimento alla Classe IV: costruzioni con funzioni pubbliche o strategiche importante, anche con riferimento alla gestione della protezione civile in caso di calamità..... Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico." Il coefficiente d'uso si assume pertanto pari a $c_0 = 2,0$ anni.

7.1.4.3 Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U . Tale coefficiente è funzione della classe d'uso.

 $V_R = V_N x C_U = 100 \text{ anni } x 2 = 200 \text{ anni}$

Le probabilità di superamento P_{VR} nel periodo di riferimento V_R , cui riferirsi per individuare l'azione sismica agente, sono pari al 10% nel caso dello stato limite SLV.

7.1.4.4 Parametri di progetto

Le azioni di progetto si ricavano, ai sensi delle NTC, dalle accelerazioni a_g e dalle relative forme spettrali. Le forme spettrali previste dalle NTC sono definite, su sito di riferimento rigido

Eurolink S.C.p.A. Pagina 61 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

orizzontale, in funzione dei tre parametri:

- a_α accelerazione orizzontale massima del terreno;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per ciascun nodo del reticolo di riferimento e per ciascuno dei periodi di ritorno T_R considerati dalla pericolosità sismica, i tre parametri si ricavano riferendosi ai valori corrispondenti al 50esimo percentile ed attribuendo ad:

- a_g il valore previsto dalla pericolosità sismica;
- F0 e TC* i valori ottenuti imponendo che le forme spettrali in accelerazione, velocità e spostamento previste dalle NTC scartino al minimo dalle corrispondenti forme spettrali previste dalla pericolosità sismica.

Le forme spettrali previste dalle NTC sono caratterizzate da prescelte probabilità di superamento e vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione;
- le probabilità di superamento nella vita di riferimento P_{VR} associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

A tal fine è conveniente utilizzare, come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

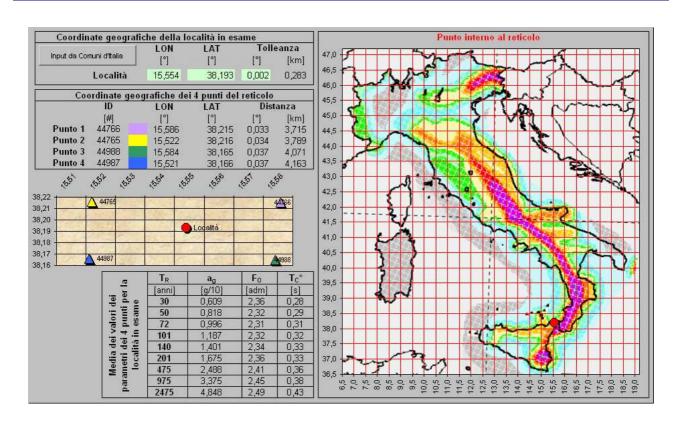
$$T_R = -\frac{V_R}{ln(1 - P_{VR})} = -\frac{200}{ln(1 - 0.1)} = 1.898$$
 anni

Si assume, a favore di sicurezza, come periodo di ritorno $T_R = 1.900$ anni.

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a Latitudine e Longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine. L'accelerazione al sito a_g è espressa in g/10; F_0 è adimensionale, T_C^* è espresso in secondi. Nel seguito si riporta una tabella riassuntiva dei parametri che caratterizzano il Comune di Messina:

Eurolink S.C.p.A. Pagina 62 di 238



RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

7.1.4.5 Classificazione sismica del terreno

Ai fini della definizione dell'azione sismica di progetto, in accordo con le NTC, si fa riferimento all'approccio semplificato che si basa sulla individuazione di categorie di sottosuolo di riferimento. Lo studio geotecnico del sito asserisce che il terreno è classificabile come **Classe B** che include depositi di terreni a grana grossa mediamente addensati e terreni a grana fine mediamente consistenti.

7.1.4.6 Spettro di risposta elastico in accelerazione

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore della accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di a_g variano al variare della probabilità di superamento nel periodo di riferimento P_{VR} .

Eurolink S.C.p.A. Pagina 63 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

7.1.4.7 Spettro di risposta elastico in accelerazione delle componenti orizzontali

Lo spettro di risposta elastico della componente orizzontale è definito dalle espressioni seguenti:

$$0 \le T \le T_B$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{0}} \cdot \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_B \leq T \leq T_C$$

$$S_e(T) = a_o \cdot S \cdot \eta \cdot F_o$$

$$T_C \le T \le T_D$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \frac{T_{C}}{T}$$

$$T_D \leq T$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left(\frac{T_{C} \cdot T_{D}}{T^{2}}\right)$$

nelle quali T ed $S_{\rm e}$ sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale.

Inoltre:

- S: è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente: $S = S_S \cdot S_T$
- essendo S_S il coefficiente di amplificazione stratigrafica e S_T il coefficiente di amplificazione topografica riportati nelle tabelle seguenti;

CATEGORIA SOTTOSUOLO	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_0 \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T * _C) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_0 \cdot \frac{a_g}{g} \le 1,50$	1,05 · (T * _C) ^{-0,33}
D	$0,90 \le 2,40 - 1,50 \cdot F_0 \cdot \frac{a_g}{g} \le 1,80$	1,25 · (T * _C) ^{-0,50}
Е	$1,00 \le 2,00 - 1,10 \cdot F_0 \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T * _C) ^{-0,40}

Eurolink S.C.p.A. Pagina 64 di 238

RELAZIONE DI CALCOLO

 Codice documento
 Rev.
 Data

 ST0216_F0.doc
 F0
 20-06-2011

CATEGORIA TOPOGRAFICA	Ubicazione dell'opera o dell'intervento	S _T
T1	_	1,00
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
Т4	In corrispondenza della cresta del rilievo	1,2

- η : è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali x diversi dal 5%, mediante la relazione: $\eta = \sqrt{\frac{10}{(5+\xi)}} \ge 0,55$
- dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione;
- F_o: è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;
- T_C : è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da: $T_C = C_C \cdot T^*_C$; dove C_C è un coefficiente funzione della categoria di sottosuolo;
- T_B : è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante; $T_B = T_C / 3$
- T_D : è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione: $T_D = 4.0 \cdot \frac{a_g}{q} + 1.6$

Nel seguito si riportano gli spettri elastici orizzontali relativi al sito ed al terreno.

Eurolink S.C.p.A. Pagina 65 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento

Rev.

Data 20-06-2011

ST0216_F0.doc

F0

§ 2.4 V_N 100 [anni]	StratigrafTopograf. Cat. sottosuolo B	Dissipaz.	Valori costanti per spettro verticale	Valori per spettro in spostamento
V _N 100 [anni] Clas. IV C _U 2,0 [adm] V _R 200 [anni]	Cond. topografia T1 S _T 1,0 [adm]	ζ η [adm] [adm] 5,0% 1,00	S _{S,V} T _{B,V} T _{C,V} T _{D,V} [adm] [s] [s] [s] 1,0 0,05 0,15 1,00	T _E T _F [s] [s] 5,0 10,0
§ 3.2.1	Valori interpolati a _g F _O T _C *	S _S C _C S	ati da a _g , F _O , e T _C *	
[adm] [anni] SLO 81% 120 SLD 63% 201 SLV 10% 1898	[g/10] [adm] [s] → 1,295 2,33 0,32 → 1,675 2,36 0,33 → 4,373 2,48 0,42	[adm] [adm] [adm] → 1,20 1,38 1,20 → 1,20 1,37 1,20 → 1,00 1,31 1,00	0,15 0,46 2,27 1,30	
SLV 10% 1898 SLC 5% 2475	→ 4,848 2,49 0,43 Spettri elastic	→ 1,00 1,30 1,00		
1,20	normalizzati orizzo			
0,80				
0,60				
0,40				
0,20	2,0	3,5		

Spettro di risposta elastico in accelerazione delle componenti verticali 7.1.4.8

Lo spettro di risposta elastico in accelerazione della componente verticale è definito dalle espressioni seguenti:

$$\begin{split} S_{ve}(T) &= a_g \cdot S \cdot \eta \cdot F_V \Bigg[\frac{T}{T_B} + \frac{1}{\eta \cdot F_O} \cdot \Bigg(1 - \frac{T}{T_B} \Bigg) \Bigg] \\ T_B &\leq T \leq T_C \\ T_C &\leq T \leq T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_V \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_V \cdot \frac{T_C}{T} \\ T_D &\leq T \end{split}$$

nelle quali T e S_{ve} sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale verticale e F_v è il fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno a_g su sito di riferimento rigido orizzontale, mediante la relazione:

Eurolink S.C.p.A. Pagina 66 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

$$F_V = 1.35 \cdot F_O \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

I valori di a_g , F_o , S_T , S_T , S_T , sono quelli già definiti per le componenti orizzontali; i valori di S_S , T_B , T_C e

T_D, sono invece quelli riportati nella tabella seguente.

CATEGORIA SOTTOSUOLO	S _S	T _B	T _C	T _D
A, B, C, D, E	1,00	0,05 s	0,15 s	1,0 s

7.1.4.9 Spettro di progetto

Per gli stati limite di esercizio lo spettro di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali che per la componente verticale, è lo spettro elastico corrispondente, riferito alla probabilità di superamento nel periodo di riferimento P_{VR} considerata.

Per le verifiche agli stati limite ultimi lo spettro di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo spettro elastico corrispondente riferito alla probabilità di superamento nel periodo di riferimento P_{VR} considerata con le ordinate ridotte sostituendo η con 1/q, dove q è il fattore di struttura, nelle formule precedentemente riportate e comunque: $S_d(T) \ge 0, 2 \cdot a_g$.

Il valore del fattore di struttura q da utilizzare per ciascuna direzione della azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato tramite la seguente espressione:

$$q = q_0 \times K_R = 1.0$$

7.1.4.10 Determinazione della massa partecipante

La determinazione dell'azione sismica viene calcolata considerando le masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2j} \cdot Q_{kj}$$

dove G_1 e G_2 riguardano le masse associate al peso proprio delle strutture ed ai carichi permanenti, mentre Q_{ki} riguarda le masse associate ai carichi accidentali.

Trattandosi della verifica di un ponte, il coefficiente ψ_{2j} viene assunto pari a 0,20.

La determinazione della massa partecipante viene effettuata partendo dalle azioni applicate all'impalcato.

Eurolink S.C.p.A. Pagina 67 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

7.2 CARATTERISTICHE GEOMETRICHE

Si riportano nelle tabelle le caratteristiche geometriche delle travi nelle due fasi e degli elementi necessari alla modellazione dell'impalcato.

Trave singola:

Area	=	4.191	cm^2
Momento statico rispetto alla base	=	126.000	cm^3
Distanza baricentro dalla base	=	30,00	cm
Momento di inerzia baricentrico x-x	=	1.260.000	cm^4
Momento di inerzia baricentrico y-y	=	1.715.000	cm^4

Trave + soletta collaborante:

E cls soletta / E cls trave		0,85	
Area normalizzata	=	5.721	cm^2
Momento statico rispetto alla base	=	240.070	cm^3
Distanza baricentro dalla base	=	41,41	cm
Momento di inerzia flessionale x-x	=	3.350.656	cm^4
Momento di inerzia flessionale y-y		2.367.272	cm^4

Nota:

I valori delle caratteristiche inerziali dei trasversi e della soletta sono calcolati in automatico e riportati negli allegati.

7.3 VERIFICHE

1 UNITA' DI MISURA E CONVENZIONI DI SEGNO

Ove non sia diversamente specificato, le grandezze contenute nella presente relazione sono espresse nelle seguenti unità di misura:

lunghezza : cm
forza : N

I diametri delle barre di armatura lenta sono sempre espressi in millimetri, i diametri dei trefoli di precompressione sono invece espressi in pollici (=25.4 mm).

Eurolink S.C.p.A. Pagina 68 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

I carichi agenti sull'impalcato sono, come è naturale assumere, positivi se diretti verso il basso.

Le tensioni sono positive se di trazione, sia per quanto riguarda il calcestruzzo che l'acciaio.

2 MODALITA' DI COSTRUZIONE DELL'IMPALCATO

L'impalcato viene realizzato con travi prefabbricate in c.a.p. e getto in opera di traversi e soletta collaboranti.

Le travi sono autoportanti, non necessitano quindi di alcun rompitratta o puntellamento provvisorio durante l'esecuzione dell'impalcato.

Si distinguono due fasi successive di lavoro:

PRIMA FASE

Le travi semplicemente appoggiate agli estremi resistono da sole al peso proprio ed a quello della soletta gettata in opera.

SECONDA FASE

Il sistema misto travi precompresse e soletta gettata in opera, divenuto solidale dopo la maturazione del calcestruzzo, resiste al peso delle sovrastrutture e dei carichi accidentali.

3 MODALITA' DI COSTRUZIONE DELLE TRAVI

Le travi vengono costruite in uno stabilimento di prefabbricazione e successivamente trasportate a piè d'opera e varate.

Il sistema di precompressione è del tipo a fili aderenti.

I trefoli che costituiscono l'armatura di precompressione vengono tesati sino alla tensione σ spi prevista nella presente relazione.

Disposta l'armatura lenta per gli sforzi di taglio (staffe), ultimata la tesatura e fissata la casseratura, si procede al getto del calcestruzzo.

La maturazione del calcestruzzo avviene con ciclo termico a vapore opportunamente tarato in funzione del mix-design e della resistenza Rckj che è richiesta al momento del taglio dei trefoli.

Una volta raggiunta la resistenza Rckj si procede all'allentamento delle armature di precompressione ed allo stoccaggio del manufatto.

4 SOVRACCARICHI ADOTTATI E NORME DI CALCOLO

Nella stesura del calcolo sono rispettate le seguenti norme:

Eurolink S.C.p.A. Pagina 69 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

Normative sui ponti stradali:

- DM 14/01/2008 Norme tecniche per le costruzioni
- Circolare 2 febbraio 2009 n. 617 Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le costruzioni".

Per la stesura della presente relazione si sono inoltre seguite le indicazioni contenute nei documenti :

- CNR 10024/84 Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo.
- NTC 2008 10.2 Analisi e verifiche svolte con l'ausilio di codici di calcolo

5 METODO ED IPOTESI DI CALCOLO

L'impalcato viene realizzato con travi in semplice appoggio collaboranti tra loro grazie all'azione della soletta.

Esso si presenta quindi come una lastra appoggiata sui lati opposti e che presenta una forte ortotropia.

Per la ricerca delle sollecitazioni nei vari elementi componenti l'impalcato si ricorre al metodo di Massonnet che permette, mediante l'ausilio di opportuni coefficienti, di risolvere la ripartizione dei carichi e conoscere le sollecitazioni.

Questo metodo fu proposto da Guyon nel 1946 per un grigliato di travi prive di rigidezza torsionale, ripreso da Massonnet nel 1950 per tener conto della torsione, infine esteso da Bares; questi ultimi Autori hanno sistemato in modo definitivo la materia in un libro ("Les calcules des grillages de pontres ed dalles orthotropes sèlon la Méthod Guyon - Massonet - Bares", Dunod, Parigi, 1966) che fornisce un gran numero di tabelle direttamente utilizzabili dal progettista e che ne ha agevolato una larga diffusione.

Nel grigliato ortotropo il procedimento di Massonnet trae origine dallo studio di un graticcio appoggiato in corrispondenza degli estremi delle travi principali longitudinali e libero sugli altri estremi; graticcio che si suppone equivalente ad una piastra ortotropa.

Se si osserva un graticcio di travi si constata che si tratta di una struttura a travi bidirezionali a direzioni per lo più ortogonali.

Il comportamento dell'impalcato dipende essenzialmente dalle rigidezzeflessionali e torsionali dei due ordini di travi e dalla loro reciprocainfluenza.

Si può, pertanto, pensare di assimilare l'impalcato ad una piastra ortotropa nella quale la caratterizzazione di comportamento nelle due direzioni sia data dalle rigidezze flessionali e torsionali anziché dai legami costitutivi dei materiali.

Il metodo di Massonnet considera l'impalcato reale come una lastra rettangolare di larghezza teorica

 $2 \times B = n \times i$

Eurolink S.C.p.A. Pagina 70 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

n = n.travi , i = interasse travi

e lunghezza pari alla luce di calcolo; tiene conto della differente deformabilità della lastra in senso longitudinale e in senso trasversale.

Si considera una condizione di carico

```
p(x;e) = P_m sen (\pi x/1)
```

variabile con legge sinusoidale ed agente parallelamente all'asse x con eccentricità e; per tale carico la deformata ha una legge w(x,y;e) che si ottiene integrando l'equazione di Huber. Esprimendo in serie di Levy, la deformata assume la forma

```
w(x,y;e) = w(1/2,y;e) \text{ sen } (\pi x/1)
```

considerando una condizione di carico avente la stessa legge di variazione e lo stesso Pm ma distribuito su tutta la larghezza dell'impalcato

```
p(x;e) = (P_m/2b) \operatorname{sen} (\pi x/1)
```

si avrà una deformata cilindrica che può assumere la forma

```
w(x) = w(1/2) \text{ sen } (\pi x/1)
```

Si può, quindi, definire per una trave di ordinata y e carico di eccentricità e, il coefficiente di ripartizione trasversale (adimensionale)

```
K(yie) = w(x,yie) / w(x) = w(1/2,yie) / w(1/2)
```

Si ha, pertanto, per il carico unitario di eccentricità e, il rapporto fra il carico su una trave di ordinata y e il carico medio 1/n dove n è il numero delle travi.

Il valore di K(y;e) è stato calcolato dal Massonnet e tabellato in base ai parametri dai quali dipende e precisamente

- a) dal rapporto y/b rappresentante la posizione della trave longitudinale presa in considerazione (e lungo la quale y ha sempre lo stesso valore);
- b) dal rapporto e/b che rappresenta la posizione del carico
- c) dal rapporto di rigidezza torsionale (compreso tra 0 e 1)
- d) dal rapporto adimensionale di rigidezza flessionale

Non viene considerato nel calcolo l'effetto dei traversi di testata.

Eurolink S.C.p.A. Pagina 71 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

6 SISTEMA DI RIFERIMENTO

Si considera l'impalcato come un piano in cui un sistema di assi ortogonali x,y individua ogni punto di esso.

L'asse x è assunto longitudinalmente all'asse delle travi, l'asse y ortogonalmente.

L'origine di questo sistema di riferimento è posizionata sulla intersezione tra l'asse di simmetria delle travi prefabbricate e un asse degli appoggi (è indifferente quale dei due assi appoggi viene assunto come origine x).

Le grandezze y rappresentano percio' le eccentricità dei carichi ed hanno segno negativo verso destra e positivo verso sinistra guardando le sezioni nelle figure allegate. Le grandezze x sono sempre positive.

L'asse delle z, ortogonale al piano x,y, ha lo zero sul fondo delle travi prefabbricate ed ha valori positivi verso l'alto.

7 DATI GEOMETRICI IMPALCATO

Luce di calcolo	1760,00
Larghezza cordolo sinistro	59,00
Larghezza carreggiata	600,00
Larghezza cordolo destro	59,00
Larghezza fuori tutto impalcato	718,00
Numero travi	10
Tipo trave	Н60
Interasse travi	72,00
Larghezza travi	70,00
Lunghezza retrotrave	30,00
Lunghezza ringrosso	0,00
Lunghezza svasatura	0,00
Eccenticità travi-soletta	0,00
Spessore medio soletta	25,00
Spessore minimo soletta	25,00
Luce di calcolo soletta	70,00
Larghezza marciapede sinistro	0,00
Dist. marciapiede sinistro	0,00
Larghezza marciapede destro	0,00
Dist. marciapiede destro	0,00
Spessore medio cordoli	22,00

Eurolink S.C.p.A. Pagina 72 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

8 CARATTERISTICHE GEOMETRICHE DELLA TRAVE PREFABBRICATA

Trave tipo H60 Sezione in campata

Vertice n.	Y	z
1	-32,000	0,000
2	-35,000	3,000
3	-35,000	60,000
4	35,000	60,000
5	35,000	3,000
6	32,000	0,000
7	-32,000	0,000
8	0,000	0,000

Altezza della sezione	60,00
Spessore complessivo anime	70,00
Area sezione di calcestruzzo	4191,00
Ordinata y baricentro	30,06
Ascissa x baricentro	0,00
J baricentro	1252410,25
Peso specifico	0,0245
Modulo elastico	3500000,00
Coefficiente torsionale	2177778,00
Lunghezza trave in asse	1820,00

9 RIPARTIZIONE TRASVERSALE DEI CARICHI

Parametri di Massonnet

Trave verificata: 1 eccentricitày= -324Luce di calcolo travi principali L = 1760,00Interasse traversi L1 = 1,00Semilarghezza teorica impalcato B = 360,00Interasse travi B1 = 72,00

Trave:

Ap = 5721,00 (area sezione cls trave+soletta)

Eurolink S.C.p.A. Pagina 73 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Dp = 41,41 (quota baricentro)

Jp = 3350656,08 (momento d'inerzia flessionale)
Cp = 2177778,00 (coefficiente di torsione)

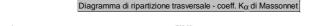
Traverso:

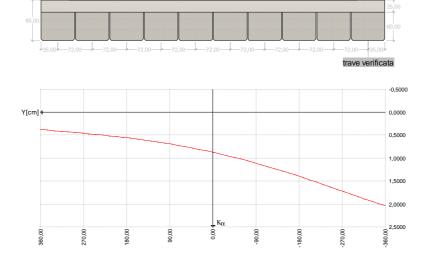
Ae = 25,00 (area sezione traverso/soletta)

De = 12,50 (quota baricentro da base sezione)

Je = 1302,08 (momento d'inerzia flessionale)

Ce = 0,00 (coefficiente di torsione)


Larghezza soletta collaborante con il traverso = 1,00


Coeff. omogen. E cls soletta / E cls trave = 0,85

Teta = 0,521 Radice alfa = 1,000

Si calcolano i coefficienti d'influenza della la trave che ha una eccentricita' y = 324 cm e che risulta essere la piu' sollecitata:

Y	360,000	270,000	180,000	90,000	0,000	-90,000	-180,000	-270,000	-360,000
K_0	-1,187	-0,788	-0,373	0,095	0,661	1,369	2,242	3,265	4,361
K_1	0,379	0,459	0,558	0,693	0,875	1,109	1,395	1,720	2,042
${\tt K}_\alpha$	0,379	0,459	0,558	0,693	0,875	1,109	1,395	1,720	2,042
μα	-0,068	-0,046	-0,015	0,038	0,132	0,038	-0,015	-0,046	-0,068

Eurolink S.C.p.A. Pagina 74 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

10 ANALISI DEI CARICHI

10.1 VALORI CARATTERISTICI DELLE AZIONI PERMANENTI

Fase 1

Lunghezza trave in asse	1820,00	[cm]
Peso trave (sezione filante)	102,78	[N/cm]
Peso totale trave prefabbricata	187067,38	[N]
Larghezza soletta collaborante con la trave	71,00	[cm]
Peso soletta gravante sulla trave	43,53	[N/cm]

Fase 2

Peso pavimentazione (0,30 [N/cm²]) gravante sulla trave: 17,38 [N/cm]

La larghezza della carreggiata viene suddivisa in 20 intervalli uguali e per ciascuno di essi si determina il valore del coefficiente K_{α} di Massonnet in corrispondenza del proprio baricentro. Si procede poi alla somma di tali effetti in modo da ottenere la porzione del carico pavimentazione agente sulla trave considerata

Cordoli

Descrizione	Peso [N/cm]	Ecc. Y	K Massonnet	μ Massonnet
cordolo sinistro	31,833	329,50	0,405	-0,061
cordolo destro	31,833	-329,50	1,936	-0,061

Lineari per trave

Vengono considerati concentrati in direzione y e uniformemente distribuiti in direzione x.

n.	Descrizione	[N/cm]	Ecc. Y	K Massonnet	μ Massonnet
1	Barriera H4	11,000	330,00	0,405	-0,061
2	Barriera H4	10,000	-330,00	1,938	-0,061

10.2 VALORI CARATTERISTICI DELLE AZIONI VARIABILI

Il numero delle colonne di carichi mobili da considerare nel calcolo dei ponti è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, nonché gli eventuali marciapiedi non protetti e di altezza inferiore a 20 cm, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3.00 m. In ogni caso il numero delle colonne non deve essere inferiore a 2, a meno che la larghezza della sede stradale sia inferiore a 5,40 m. La disposizione dei carichi ed il numero delle colonne sulla carreggiata saranno volta

Eurolink S.C.p.A. Pagina 75 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

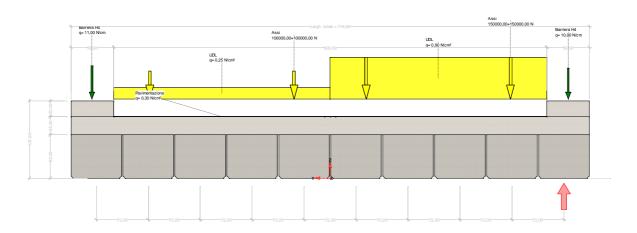
Rev. F0

Data 20-06-2011

per volta quelli che determinano le condizioni più sfavorevoli di sollecitazione per la struttura, membratura o sezione considerata.

Categoria ponte : Stradale 1a Categoria

Carichi mobili


colonna	Nome		Q	đ	alfaQ	alfaq
1	Colonna	1	300000,00	0,90	1,00	1,00
2	Colonna	2	200000,00	0,25	1,00	1,00
3	Colonna	3	100000,00	0,25	1,00	1,00

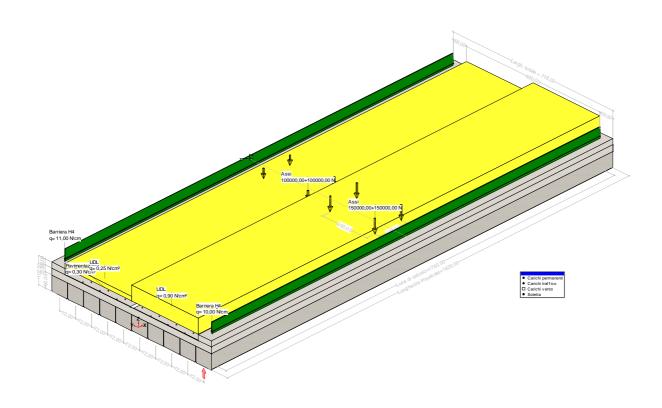
Carico folla sui marciapiedi= 0,50 [N/cm²]

Descrizione	Q*α[N]	$q*\alpha[N/cm]$	Ecc. Y	Larghezza	Ka
Colonna 1	300000,000	270,00	-150,00	300,00	1,295
Colonna 2	200000,000	75,00	150,00	300,00	0,599
Descrizione	q [N/cm]	Ecc. Y	Larghezza	Ka	

Coefficiente di incremento dinamico = 1.0

Le colonne di carico vengono posizionate in direzione x in modo da generare la massima sollecitazione nella specifica sezione di verifica.

Eurolink S.C.p.A. Pagina 76 di 238



RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

11 PARAMETRI DI SOLLECITAZIONE SULLA TRAVE PREFABBRICATA

11.1 SOLLECITAZIONI SULLA TRAVE 1

Coefficienti di combinazione Stati Limite Ultimi

Coeff.	sicurezza	carichi	permanenti	1,35	1,00
Coeff.	sicurezza	carichi	traffico	1,35	0,00
Coeff.	sicurezza	carichi	vento	1,50	0,00

Coefficienti di combinazione Stati Limite di Esercizio

Carico	ψ_{\circ}	$\psi_{\scriptscriptstyle 1}$	$\psi_{\scriptscriptstyle 2}$
LM1/UDL	0,40	0,40	0,00
LM1/TS	0,75	0,75	0,00
forze orizzontali	0,00	0,00	0,00
carico pedonale	0,00	0,00	0,00

Eurolink S.C.p.A. Pagina 77 di 238

RELAZIONE DI CALCOLO

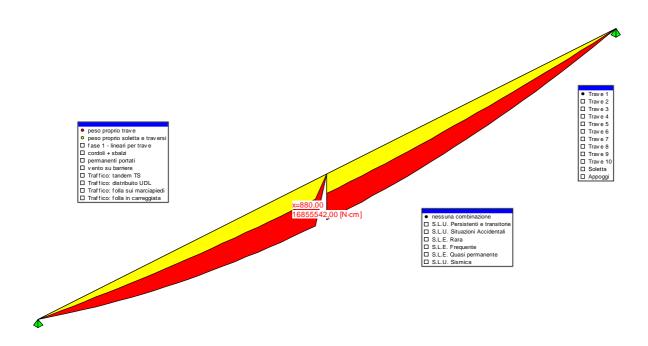
Codice documento	Rev.	Data
ST0216_F0.doc	F0	20-06-2011

LM4 folla	0,00	0,75	0,00
LM3	0,00	0,00	0,00
asse singolo LM2	0,00	0,00	0,00
vento	0,60	0,20	0,00
termico	0,60	0,60	0,50

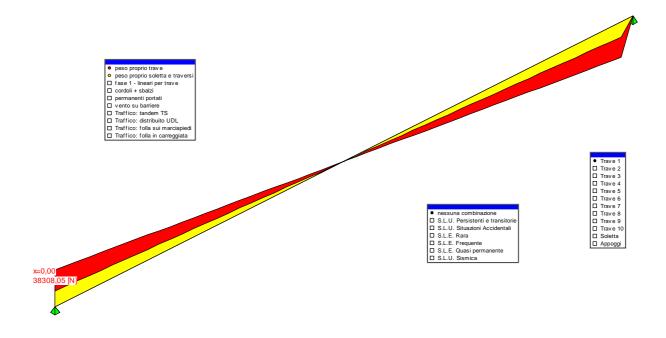
Valori caratteristici sollecitazioni in prima fase

Sez.	Descrizione	PP. Trave		PP. trav	erso/soletta
		М	v	М	v
0,00	appoggio	0,00	90450,16	0,00	38308,05
100,00		8522576,06	80171,73	3609537,70	33954,86
200,00		16020532,69	69893,31	6785121,82	29601,68
400,00		27942587,65	49336,45	11834429,27	20895,30
440,00		29832634,23	45225,08	12634914,28	19154,03
600,00		35766164,86	28779,60	15147922,36	12188,93
800,00		39456531,47	8222,74	16710890,80	3482,55
880,00	mezzeria	39798071,28	0,00	16855542,00	0,00
1000,00		39042631,53	-12334,11	16535593,17	-5223,82
1200,00		34530253,85	-32890,97	14624481,17	-13930,20
1400,00		25890454,37	-53447,82	10965296,23	-22636,57
1600,00		13140599,54	-74004,68	5565393,50	-31342,95
1760,00	appoggio	0,00	-90450,16	0,00	-38308,05

Eurolink S.C.p.A. Pagina 78 di 238


RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc


Rev.

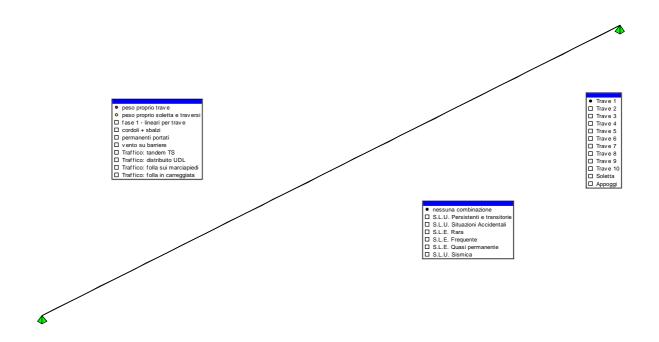
F0

Data 20-06-2011

TRAVE 1 - MOMENTO FLETTENTE

TRAVE 1 - TAGLIO

Eurolink S.C.p.A. Pagina 79 di 238



RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

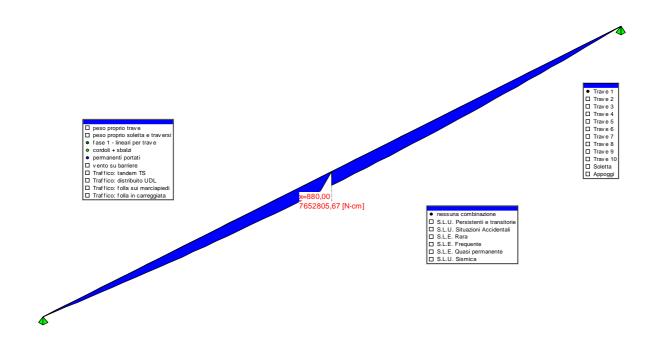
Data 20-06-2011

TRAVE 1 - MOMENTO TORCENTE

Valori caratteristici sollecitazioni in fase 2: carichi permanenti

Sez.	Descrizione	Cordoli + Sbalzi			
		M	v	T	
0,00	appoggio	0,00	6557,61	-634632,22	
100,00		617884,40	5812,43	-624374,95	
200,00		1161484,17	5067,25	-594332,48	
400,00		2025829,84	3576,88	-479318,62	
440,00		2162857,69	3278,81	-448437,07	
600,00		2593037,01	2086,51	-304023,11	
800,00		2860587,57	596,15	-90242,73	
880,00	mezzeria	2885349,11	0,00	0,00	
1000,00		2830579,94	-894,22	134781,23	
1200,00		2503433,81	-2384,59	342948,49	
1400,00		1877050,75	-3874,95	507797,95	
1600,00		952689,81	-5365,32	608606,49	
1760,00	appoggio	0,00	-6557,61	634632,22	

Eurolink S.C.p.A. Pagina 80 di 238


RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

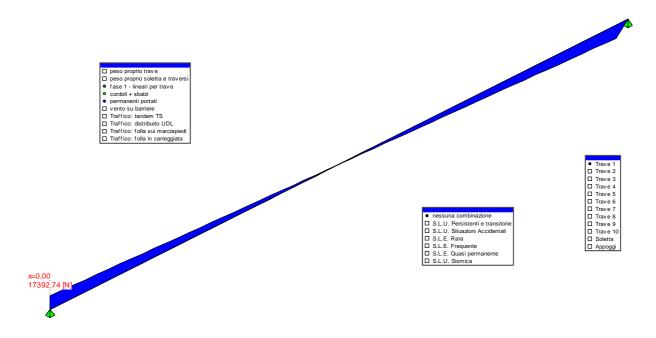
Rev. F0

Data 20-06-2011

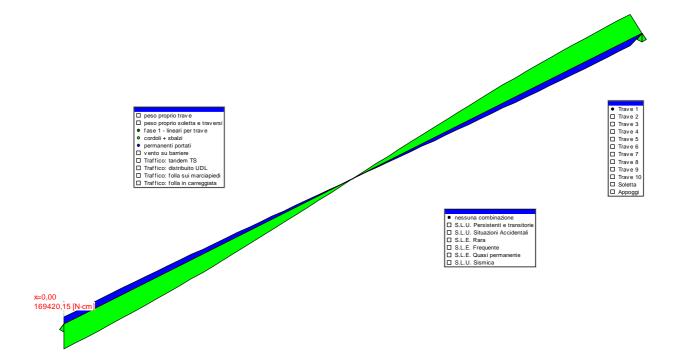
Sez.	Descrizione	:	Perm. portati	
		М	v	T
0,00	appoggio	0,00	17392,74	169420,15
100,00		1638813,55	15416,29	166684,82
200,00		3080602,14	13439,84	158672,50
400,00		5373104,43	9486,95	127988,07
440,00		5736543,13	8696,37	119746,71
600,00		6877506,89	5534,05	81195,77
800,00		7587130,69	1581,16	24103,97
880,00	mezzeria	7652805,67	0,00	0,00
1000,00		7507541,51	-2371,74	-35999,77
1200,00		6639852,49	-6324,63	-91588,45
1400,00		4978497,94	-10277,53	-135587,47
1600,00		2526817,29	-14230,42	-162479,52
1760,00	appoggio	0,00	-17392,74	-169420,15

TRAVE 1 - MOMENTO FLETTENTE

Eurolink S.C.p.A. Pagina 81 di 238


Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO


Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

TRAVE 1 - TAGLIO

TRAVE 1 - MOMENTO TORCENTE

Eurolink S.C.p.A. Pagina 82 di 238

Descrizione

Sez.

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Tandem-TS

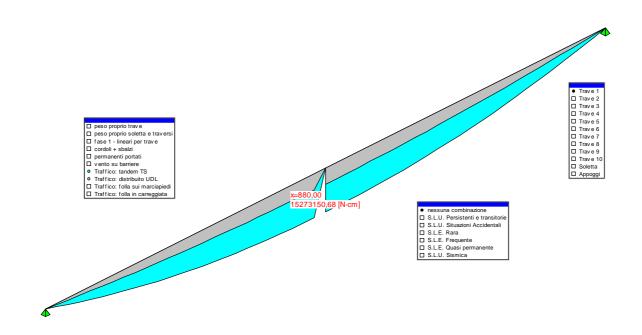
Rev. F0

Data 20-06-2011

Valori caratteristici sollecitazioni in fase 2: carichi da traffico

		M	v	T
0,00	appoggio	0,00	98161,63	20624,79
100,00		9229171,32	92387,42	52293,62
200,00		17307121,39	86613,21	74976,60
400,00		30009357,81	75064,78	82491,54
440,00		31994357,10	72755,09	78582,54
600,00		38106709,24	63516,35	61045,48
800,00		41560151,25	51967,92	19392,08
880,00	mezzeria	41666729,38	-47348,55	-5333,08
1000,00		41233691,04	-54277,61	-29146,05
1200,00		36856670,41	-65826,04	-66235,67
1400,00		27842244,42	-77374,46	-84908,15
1600,00		14209925,31	-88922,89	-67252,66
1760,00	appoggio	0,00	-98161,63	-20624,79
		- 1		
Sez.	Descrizione		stribuito-UDL	
Sez.	Descrizione	Di M	stribuito-UDL V	T
Sez.	Descrizione appoggio			T 32778,69
		М	v	
0,00		M	v 34711,71	32778,69
0,00		M 0,00 3270675,79	v 34711,71 30881,11	32778,69 31776,88
0,00 100,00 200,00		M 0,00 3270675,79 6148137,38	v 34711,71 30881,11 27273,93	32778,69 31776,88 29073,18
0,00 100,00 200,00 400,00		M 0,00 3270675,79 6148137,38 10723417,94	v 34711,71 30881,11 27273,93 20729,83	32778,69 31776,88 29073,18 21316,75
0,00 100,00 200,00 400,00 440,00		M 0,00 3270675,79 6148137,38 10723417,94 11448753,75	v 34711,71 30881,11 27273,93 20729,83 19528,81	32778,69 31776,88 29073,18 21316,75 19787,81
0,00 100,00 200,00 400,00 440,00 600,00		M 0,00 3270675,79 6148137,38 10723417,94 11448753,75 13725841,67	v 34711,71 30881,11 27273,93 20729,83 19528,81 15079,40	32778,69 31776,88 29073,18 21316,75 19787,81 14562,66
0,00 100,00 200,00 400,00 440,00 600,00	appoggio	M 0,00 3270675,79 6148137,38 10723417,94 11448753,75 13725841,67 15142079,28	v 34711,71 30881,11 27273,93 20729,83 19528,81 15079,40 10330,20	32778,69 31776,88 29073,18 21316,75 19787,81 14562,66 9307,13
0,00 100,00 200,00 400,00 440,00 600,00 800,00	appoggio	M 0,00 3270675,79 6148137,38 10723417,94 11448753,75 13725841,67 15142079,28 15273150,68	v 34711,71 30881,11 27273,93 20729,83 19528,81 15079,40 10330,20 -8677,93	32778,69 31776,88 29073,18 21316,75 19787,81 14562,66 9307,13 -7070,81
0,00 100,00 200,00 400,00 440,00 600,00 800,00 880,00	appoggio	M 0,00 3270675,79 6148137,38 10723417,94 11448753,75 13725841,67 15142079,28 15273150,68 14983238,51	v 34711,71 30881,11 27273,93 20729,83 19528,81 15079,40 10330,20 -8677,93 -11209,36	32778,69 31776,88 29073,18 21316,75 19787,81 14562,66 9307,13 -7070,81 -10361,83
0,00 100,00 200,00 400,00 440,00 600,00 800,00 880,00 1000,00	appoggio	M 0,00 3270675,79 6148137,38 10723417,94 11448753,75 13725841,67 15142079,28 15273150,68 14983238,51 13251540,92	v 34711,71 30881,11 27273,93 20729,83 19528,81 15079,40 10330,20 -8677,93 -11209,36 -16137,79	32778,69 31776,88 29073,18 21316,75 19787,81 14562,66 9307,13 -7070,81 -10361,83 -15730,47
0,00 100,00 200,00 400,00 440,00 600,00 800,00 1000,00 1200,00 1400,00	appoggio	M 0,00 3270675,79 6148137,38 10723417,94 11448753,75 13725841,67 15142079,28 15273150,68 14983238,51 13251540,92 9935878,75	v 34711,71 30881,11 27273,93 20729,83 19528,81 15079,40 10330,20 -8677,93 -11209,36 -16137,79 -21966,20	32778,69 31776,88 29073,18 21316,75 19787,81 14562,66 9307,13 -7070,81 -10361,83 -15730,47 -22905,75

Eurolink S.C.p.A. Pagina 83 di 238


RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

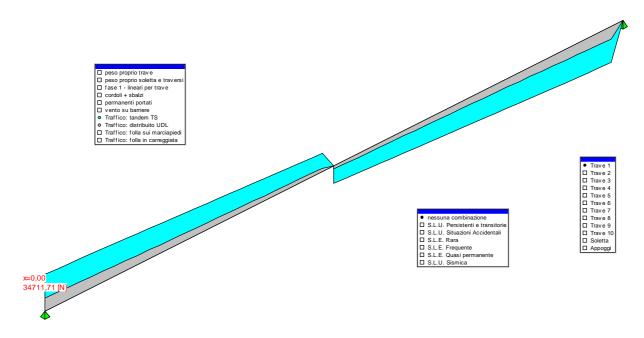
Rev. F0

Data 20-06-2011

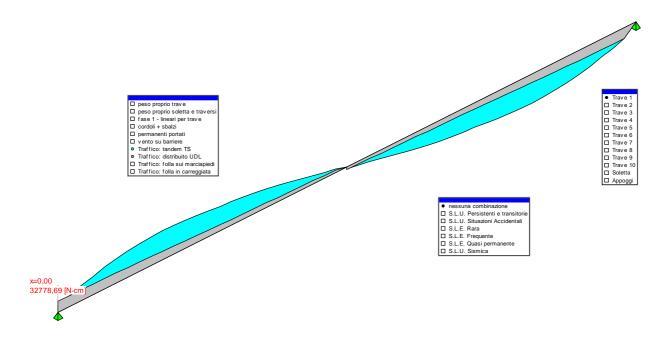
Sez.	Descrizione	Folla marciapiedi		
		M	v	T
0,00	appoggio	0,00	0,00	0,00
100,00		0,00	0,00	0,00
200,00		0,00	0,00	0,00
400,00		0,00	0,00	0,00
440,00		0,00	0,00	0,00
600,00		0,00	0,00	0,00
800,00		0,00	0,00	0,00
880,00	mezzeria	0,00	0,00	0,00
1000,00		0,00	0,00	0,00
1200,00		0,00	0,00	0,00
1400,00		0,00	0,00	0,00
1600,00		0,00	0,00	0,00
1760,00	appoggio	0,00	0,00	0,00

TRAVE 1 - MOMENTO FLETTENTE

Eurolink S.C.p.A. Pagina 84 di 238



RELAZIONE DI CALCOLO


Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

TRAVE 1 - TAGLIO

TRAVE 1 - MOMENTO TORCENTE

Eurolink S.C.p.A. Pagina 85 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Valori caratteristici sollecitazioni in fase di sollevamento

Coefficiente di incremento dinamico 0,15

Sez.	Descrizione	M max	M min
-30,00		0,00	0,00
120,00	aggancio	-982874,63	-1329771,56
170,00		3003794,38	2220195,84
370,00		17416484,99	12873054,12
570,00		27115926,20	20042206,32
770,00		32083810,90	23714121,10
970,00		32310153,39	23881417,72
1170,00		27823246,47	20565008,26
1370,00		18611440,17	13756281,87
1570,00		4651434,53	3438016,82
1640,00	aggancio	-982874,63	-1329771,56
1790,00		0,00	0,00

Frecce massime condizioni carichi 1 fase

Trave	PP trave	PP soletta/trav	ersi carichi aggiunt	ivi
1		2,93	1,24	0,00
2		2,93	1,26	0,00
3		2,93	1,26	0,00
4		2,93	1,26	0,00
5		2,93	1,26	0,00
6		2,93	1,26	0,00
7		2,93	1,26	0,00
8		2,93	1,26	0,00
9		2,93	1,26	0,00
10		2,93	1,24	0,00

Frecce massime carichi permanenti 2a fase

Trave	Cordoli+Sbalzi	Perm.Portati
1	0,08	0,20
2	0,07	0,21

Eurolink S.C.p.A. Pagina 86 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

3	0,06	0,21
4	0,06	0,21
5	0,06	0,21
6	0,06	0,21
7	0,06	0,21
8	0,06	0,21
9	0,07	0,21
10	0,08	0,21

Frecce massime carichi da traffico

Trave	Tandem-TS	Distribuito-UDL	Folla marciapiedi
1	0,95	0,4	1 0,00
2	0,98	0,4	1 0,00
3	1,00	0,4	1 0,00
4	1,00	0,4	0,00
5	0,98	0,3	8 0,00
6	0,95	0,3	6 0,00
7	0,93	0,3	3 0,00
8	0,90	0,3	1 0,00
9	0,86	0,2	9 0,00
10	0,82	0,2	7 0,00

Combinazioni SLU: prima fase al taglio dei trefoli

Sez.	Descrizione	M	v
0,00	appoggio	0,00	122107,72
100,00		11505477,69	108231,84
200,00		21627719,14	94355,96
400,00		37722493,32	66604,21
440,00		40274056,21	61053,86
600,00		48284322,56	38852,46
800,00		53266317,48	11100,70
880,00	mezzeria	53727396,23	0,00
1000,00		52707552,56	-16651,05

Eurolink S.C.p.A. Pagina 87 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

1200,00		46615842,69	-44402,81
1400,00		34952113,40	-72154,56
1600,00		17739809,37	-99906,32
1760,00	appoggio	0,00	-122107,72

Combinazioni SLU: Sollevamento

Sez.	Descrizione	Mmax	Mmin
0,00	appoggio	-39314,99	-71807,66
200,00		7374742,85	4037701,40
400,00		25883733,16	14171448,11
600,00		38029836,79	20821488,74
800,00		43759130,95	23958300,36
880,00		44289371,50	24248609,20
1000,00		43116551,29	23606485,41
1200,00		36111084,94	19770964,38
1400,00		22697796,25	12427134,82
1600,00		2903646,62	1589758,21
1760,00	appoggio	-39314,99	-71807,66

Combinazioni SLU: prima fase al getto della soletta

Sez.	Descrizione	M	V
0,00	appoggio	0,00	173823,59
100,00		16378353,59	154070,91
200,00		30787633,59	134318,23
400,00		53698972,84	94812,87
440,00		57331190,49	86911,79
600,00		68734017,75	55307,50
800,00		75826020,07	15802,14
880,00	mezzeria	76482377,93	0,00
1000,00		75030603,34	-23703,22
1200,00		66358892,27	-63208,58
1400,00		49755263,31	-102713,94
1600,00		25253090,60	-142219,30

Eurolink S.C.p.A. Pagina 88 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

1760,00 appoggio 0,00 -173823,59

Combinazioni SLU: Seconda fase P/T

Sez.	Descrizione	M	v	T
0,00	appoggio	0,00	385535,57	-628036,29
100,00		36299689,42	349142,20	-617881,67
200,00		68179049,45	313050,44	-588140,96
400,00		118676781,36	241771,76	-474296,25
440,00		126643581,25	227661,54	-443731,98
600,00		151493195,74	171699,53	-300816,91
800,00		166478450,91	102843,97	-89287,33
880,00	mezzeria	167577724,96	-75635,74	-16745,26
1000,00		164879922,17	-116519,66	133354,98
1200,00		146348414,05	-185617,18	339336,05
1400,00		110010720,33	-255929,68	502484,14
1600,00		55941761,85	-327452,04	602271,40
1760,00	appoggio	0,00	-385535,57	628036,29

Combinazioni SLE: prima fase al taglio dei trefoli

Sez.	Descrizione	М	v
0,00	appoggio	0,00	90450,16
100,00		8522576,06	80171,73
200,00		16020532,69	69893,31
400,00		27942587,65	49336,45
440,00		29832634,23	45225,08
600,00		35766164,86	28779,60
800,00		39456531,47	8222,74
880,00	mezzeria	39798071,28	0,00
1000,00		39042631,53	-12334,11
1200,00		34530253,85	-32890,97
1400,00		25890454,37	-53447,82
1600,00		13140599,54	-74004,68
1760,00	appoggio	0,00	-90450,16

Eurolink S.C.p.A. Pagina 89 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Combinazioni SLE: Sollevamento

Sez.	Descrizione	Mmax	Mmin
0,00	appoggio	-39314,99	-53190,86
200,00		5462772,48	4037701,40
400,00		19173135,68	14171448,11
600,00		28170249,47	20821488,74
800,00		32414171,07	23958300,36
880,00		32806941,86	24248609,20
1000,00		31938186,14	23606485,41
1200,00		26748951,81	19770964,38
1400,00		16813182,41	12427134,82
1600,00		2150849,35	1589758,21
1760,00	appoggio	-39314,99	-53190,86

Combinazioni SLE: Prima fase al getto della soletta

Sez.	Descrizione	M	v
0,00	appoggio	0,00	128758,21
100,00		12132113,77	114126,60
200,00		22805654,51	99494,98
400,00		39777016,92	70231,75
440,00		42467548,51	64379,11
600,00		50914087,22	40968,52
800,00		56167422,27	11705,29
880,00	mezzeria	56653613,28	0,00
1000,00		55578224,69	-17557,94
1200,00		49154735,01	-46821,17
1400,00		36855750,60	-76084,40
1600,00		18705993,04	-105347,63
1760,00	appoggio	0,00	-128758,21

Combinazioni 2a fase:S.L.E. Rara

Sez. Descrizione M V T

Eurolink S.C.p.A. Pagina 90 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

0,00	appoggio	0,00	156823,69	-411808,58
100,00		14756545,06	144497,25	-373619,62
200,00		27697345,08	132394,23	-331610,19
400,00		48131710,02	108858,44	-247522,26
440,00		51342511,67	104259,07	-230320,00
600,00		61303094,81	86216,31	-147219,21
800,00		67149948,77	64475,43	-37439,55
880,00	mezzeria	67478034,84	-56026,48	0,00
1000,00		66555050,99	-68752,92	98781,46
1200,00		59251497,61	-90673,04	251360,04
1400,00		44633671,86	-113493,14	372210,48
1600,00		22732349,07	-137209,44	446126,97
1760,00	appoggio	0,00	-156823,69	465212,07

Combinazioni 2a fase:S.L.E. Frequente

Sez.	Descrizione	M	v	T
0,00	appoggio	0,00	111456,26	-436632,00
100,00		10486846,75	102871,73	-405759,15
200,00		19681682,30	94376,57	-367798,25
400,00		34195319,80	77654,34	-280935,20
440,00		36474670,15	74353,02	-261838,32
600,00		43540912,50	61289,59	-171218,17
800,00		47674663,40	45285,33	-47871,85
880,00	mezzeria	47897462,09	-38982,58	0,00
1000,00		47256685,12	-48457,91	98781,46
1200,00		42086405,46	-64533,86	251360,04
1400,00		31711583,51	-80969,81	372210,48
1600,00		16154117,75	-97764,23	446126,97
1760,00	appoggio	0,00	-111456,26	465212,07

Combinazioni 2a fase:S.L.E. Quasi permanente

Sez.	Descrizione	М	v	T
0,00	appoggio	0,00	23950,35	-465212,07

Eurolink S.C.p.A. Pagina 91 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

	100,00	2256697,95	21228,72	-457690,12
	200,00	4242086,31	18507,09	-435659,97
	400,00	7398934,27	13063,83	-351330,55
	440,00	7899400,82	11975,18	-328690,35
	600,00	9470543,90	7620,57	-222827,34
	800,00	10447718,25	2177,30	-66138,76
eria	880,00	10538154,78	0,00	0,00
	1000,00	10338121,44	-3265,96	98781,46
	1200,00	9143286,29	-8709,22	251360,04
	1400,00	6855548,69	-14152,48	372210,48
	1600,00	3479507,11	-19595,74	446126,97
aaic	1760,00	0,00	-23950,35	465212,07

12 PARAMETRI DI SOLLECITAZIONE SULLA SOLETTA (effetto globale)

Valori caratteristici M per carichi permanenti

Sez.	Descrizione	Cordoli + Sbalzi	Perm Portati
-360,	00 estremità dx	0,00	0,00
-300,	00	-15,18	-1,30
-200,	00	-1167,11	281,27
-100,	00	-1650,20	401,48
0,	00 mezzeria	-1779,99	407,72
100,	00	-1650,20	396,61
200,	00	-1167,11	278,01
300,	00	-15,18	12,86
360,	00 estremità sx	0,00	0,00

Valori caratteristici M per carichi traffico

Sez.	Descrizione	Tandem-TS	
		Mmax	Mmin
-360	,00 estremità dx	0,00	0,00
-300	,00	4502,36	-3764,07

Eurolink S.C.p.A. Pagina 92 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

-200,00		6824,92	-6442,95
-100,00		6946,69	-4548,88
0,00	mezzeria	0,00	6648,22
100,00		6946,69	-4548,88
200,00		6824,92	-6442,95
300,00		4502,36	-3764,07
360,00	estremità sx	0,00	0,00

Sez.	Descrizione	Distribuito-UDL	
		Mmax	Mmin
-360,00	estremità dx	0,00	-562,77
-300,00		1071,16	-2316,88
-200,00		8441,82	-3753,72
-100,00		8232,60	-3074,26
0,00	mezzeria	0,00	-95,59
100,00		8232,60	-3326,09
200,00		8441,82	-3668,74
300,00		1071,16	-1947,58
360,00	estremità sx	0,00	0,00

Sez.	Descrizione	Folla	Marciap	iedi	
		Mmax		Mmin	
-360,00) estremità dx		0,00		0,00
-300,00)		0,00		0,00
-200,00)		0,00		0,00
-100,00)		0,00		0,00
0,00) mezzeria		0,00		0,00
100,00)		0,00		0,00
200,00)		0,00		0,00
300,00)		0,00		0,00
360,00) estremità sx		0,00		0,00

Combinazioni SLU P/T

Sez. Descrizione Mmax Mmin

Eurolink S.C.p.A. Pagina 93 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

-360,00	estremità dx	1221,34	-1995,99
-300,00		10013,68	-9148,14
-200,00		20704,75	-15109,35
-100,00		18527,10	-11105,20
0,00	mezzeria	7473,78	-1852,56
100,00		19280,56	-12374,87
200,00		19598,55	-14832,43
300,00		7029,57	-7537,75
360,00	estremità sx	0,00	0,00

Combinazioni SLE rare

Sez.	Descrizione	Mmax	Mmin
-360,00	estremità dx	904,70	-1423,92
-300,00		7381,04	-6776,40
-200,00		15088,43	-11192,11
-100,00		13388,25	-8226,07
0,00	mezzeria	5180,36	-1372,27
100,00		13957,58	-9166,57
200,00		14289,31	-10986,98
300,00		5207,09	-5577,50
360,00	estremità sx	0,00	0,00

Combinazioni SLE frequenti

Sez.	Descrizione	Mmax	Mmin
-360,00	estremità dx	714,03	-818,34
-300,00		4957,29	-4306,60
-200,00		7580,19	-7319,82
-100,00		7382,38	-5417,10
0,00	mezzeria	3575,66	-1372,27
100,00		7241,91	-6023,53
200,00		7610,10	-7176,17
300,00		3569,89	-3495,66
360,00	estremità sx	0,00	0,00

Eurolink S.C.p.A. Pagina 94 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Combinazioni SLE quasi permanenti

Sez.	Descrizione	Mmax	Mmin
-360,00	estremità dx	210,55	210,55
-300,00		-140,81	-140,81
-200,00		-958,18	-958,18
-100,00		-1294,16	-1294,16
0,00	mezzeria	-1372,27	-1372,27
100,00		-1250,94	-1250,94
200,00		-879,95	-879,95
300,00		23,23	23,23
360,00	estremità sx	0,00	0,00

13 EFFETTI LOCALI SULLA SOLETTA

Il momento massimo trasversale dato dall'effetto locale dei carichi sulla soletta viene determinato usando uno schema semplificato di trave semi incastrata.

I carichi permanenti considerati sono il peso proprio della soletta e la pavimentazione.

La ricerca del massimo momento flettente generato dai carichi mobili viene condotta considerando il caricoLM2 illustrato nella Normativa al punto 5.1.3.3.5.

Tale schema, considerato autonomamente e assunto a riferimento solo per verifiche locali, è costituito da un singolo asse applicato su specifiche impronte di pneumatico (di dimensioni 35,00x60,00 [cm]) poste ad un interasse di 200,00 [cm]: il carico totale asse è pari a 400000,00 [N]

I carichi concentrati da considerarsi ai fini delle verifiche locali si assumono uniformemente distribuiti sulla superficie della rispettiva impronta. La diffusione attraverso la pavimentazione e lo spessore della soletta si considera avvenire attraverso una diffusione a 45°, fino al piano medio della struttura della soletta sottostante

Il momento minimo dato dall'effetto locale, invece, viene valutato come uno schema statico di trave perfettamente incastrata.

Luce Soletta	70,00
Carico per ruota	200000,00
Interasse ruote	200,00
Larghezza Impronta	60,00
Lunghezza influenza	200,00

Momento flettente trasversale (positivo tende le fibre inferiori):

Eurolink S.C.p.A. Pagina 95 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

	M max	M min
effetto locale perm.	559,29	-372,86
effetto locale acc.	4803,92	-4803,92
M tot. effetto locale	5363,21	-5176,78

14 REAZIONI MASSIME AGLI APPOGGI

Forze Orizzontali

Azione del vento:

Altezza barriera 0,00

Pressione cinetica 0,00

Forza totale sull'impalcato Fyw 0,00

Azione longitudinale di frenamento q3:

Forza totale sull'impalcato Fxq 407520,00

Azione centrifuga Q4:

Raggio di curvatura 0,00

Forza totale sull'impalcato Fyq 0,00

Reazioni Rz condizioni singole carichi 1a fase

Trave	PP trave	PP soletta/traverso
1	93533,69	39614,01
2	93533,69	40171,95
3	93533,69	40171,95
4	93533,69	40171,95
5	93533,69	40171,95
6	93533,69	40171,95
7	93533,69	40171,95
8	93533,69	40171,95

Eurolink S.C.p.A. Pagina 96 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

9	93533,69	40171,95
10	93533.69	39614.01

Reazioni Rz condizioni singole carichi 2 fase

Trave	Cordoli+Sbalzi	Perm.Portati
1	6781,17	15817,44
2	6178,98	16161,25
3	5650,12	16462,19
4	5266,96	16679,92
5	5067,36	16793,23
6	5067,36	16793,23
7	5266,96	16679,92
8	5650,12	16462,19
9	6178,98	16161,25
10	6781,17	15817,44

Lineari di 2a fase

Trave	x =0	x=Luce
1	2096,75	2096,75
2	1918,76	1918,76
3	1764,78	1764,78
4	1657,30	1657,30
5	1608,28	1608,28
6	1622,95	1622,95
7	1701,52	1701,52
8	1839,09	1839,09
9	2023,59	2023,59
10	2231,66	2231,66

Carichi da Traffico

Trave	Tandem-TS	Distribuito-UDL	Folla Marciapiedi
1	98161,64	34711,71	0,00
2	100790,91	35142,67	0,00
3	102888,00	35228,18	0,00

Eurolink S.C.p.A. Pagina 97 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

4	102804,76	34261,70	0,00
5	100807,07	32368,40	0,00
6	98426,46	30253,75	0,00
7	96014,85	28230,34	0,00
8	92821,52	26286,31	0,00
9	88725,62	24425,28	0,00
10	84718,36	22770,27	0,00

Reazioni appoggi: combinazioni SLU P/T

Trave	Rz max	Rz min
1	392467,15	157843,06
2	396762,60	157964,64
3	399193,53	157582,73
4	397407,97	157309,81
5	391972,45	157174,50
6	385923,67	157189,17
7	380158,95	157354,04
8	373632,59	157657,04
9	366147,48	158069,46
10	358379,90	157977,97

Reazione laterale totale Ry = 0.00Reazione longitudinale totale Rx = 550152.00

Reazioni appoggi: combinazioni SLE rare

Trave	Rz max	Rz min
1	290716,40	0,00
2	293898,22	0,00
3	295698,91	0,00
4	294376,27	0,00
5	290349,96	0,00
6	285869,38	0,00
7	281599,22	0,00
8	276764,88	0,00

Eurolink S.C.p.A. Pagina 98 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

9	271220,36	0,00
10	265466.60	0.00

Reazione laterale totale Ry = 0.00Reazione longitudinale totale Rx = 407520.00

Reazioni appoggi: combinazioni SLE frequenti

Trave	Rz max	Rz min
1	245348,97	0,00
2	247614,89	0,00
3	248840,00	0,00
4	248118,06	0,00
5	245727,16	0,00
6	243110,52	0,00
7	240657,31	0,00
8	237787,71	0,00
9	234383,79	0,00
10	230624,84	0,00

Reazione laterale totale Ry = 0,00 Reazione longitudinale totale Rx = 0,00

Reazioni appoggi: combinazioni SLE quasi permanenti

Trave	Rz max	Rz min
1	157843,06	0,00
2	157964,64	0,00
3	157582,73	0,00
4	157309,81	0,00
5	157174,50	0,00
6	157189,17	0,00
7	157354,04	0,00
8	157657,04	0,00
9	158069,46	0,00
10	157977,97	0,00

Eurolink S.C.p.A. Pagina 99 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

Reazione laterale totale Ry = 0,00 Reazione longitudinale totale Rx = 0,00

15 AZIONE SISMICA

Parametri per la determinazione dell'azione sismica

Categoria di sottosuolo C
Categoria topografica T1
Coeff. di combinazione sismica 0,2

q Coefficiente di struttura

 η 1/q

 $a_{\rm g}$ $\,$ Accelerazione orizzontale massima al sito

 ${T_{\text{c}}}^{^{\star}}$ Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

 $F_{0}\,$ Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

Forze orizzontali

Dati per SLE

 $\eta = 0,70$

 a_g 0,44/g

T_c* 0,42

F₀ 2,48

Dati per SLU

q 1,5

 η 0,70

 a_g 0,44/g

T_c* 0,42

F₀ 2,48

Forze verticali

Dati per SLE

η 0,70

Dati per SLU

q 1,5

η 0,70

Dati Spalla

Altezza 380,00

B Trasversale 778,00 B Longitudinale 120,00

Rck 3434

Eurolink S.C.p.A. Pagina 100 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

Peso Impalcato 3153574,79
Peso Carichi Mobili 1127900,00
Aliquota Carichi Mobili 0,20
Peso Totale Struttura 3379154,79

Massa Struttura [Kg massa] 344460,22

Rigidezza 165204,21

Periodo fondamentale [s] 0,2869

Peso spalla 870068,52

Massa spalla [Kg massa] 88692,00 Modulo elastico spalla 3244170

Momento d'inerzia trasversale 4709109520,00 Momento d'inerzia longitudinale 112032000,00

Rigidezza trasversale 835242981,94 Rigidezza longitudinale 19870835,74

Periodo fondamentale (componente trasversale) [s] 0,0136 Periodo fondamentale (componente longitudinale) [s] 0,0879 Valore massimo del coeff. di amplificazione topografica $S_{\rm t}$ 1,00

Forze orizzontali

Valori per SLE

S_s 1,05

C_c 1,40 TB 0,20

TC 0,59

TD 3,35

Spettro di risposta elastico in accelerazione(componente trasversale) $\rm S_{\rm e}\,\,0\,,4822$

Forza 1629593,87

Spettro di risposta elastico in accelerazione (componente longitudinale) $S_e = 0.6105$ Forza 2063008,63

Valori per SLU

S_s 1,05

C_c 1,40

TB 0,20

TC 0,59

TD 3,35

Spettro di risposta elastico in accelerazione (componente trasversale) S_e 0,4822

Forza 1629593,87

Spettro di risposta elastico in accelerazione (componente longitudinale) $S_{\rm e}$ 0,6105 Forza 2063008,63

FOIZA 2003000,03

Forze verticali

TB 0,05

TC 0,15

TD 1,00

Eurolink S.C.p.A. Pagina 101 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

Valori per SLE

1,00

Fattore di amplificazione spettrale massima $F_{\rm v}\,2\,,21\,$

Spettro di risposta elastico in accelerazione $S_{ve} \hspace{0.5cm} \text{0,3718}$

Azione sismica caratteristica sulla trave

Sez.	Descrizione	Mmax	Vmax	Tmax
0,00	appoggio	0,00	66656,65	-168992,59
100,00		6279167,98	59490,59	-163915,59
200,00		11800331,14	52341,14	-154239,25
400,00		20568643,02	38092,09	-122903,93
440,00		21956578,78	35250,30	-114890,77
600,00		26304935,64	23909,49	-77223,99
800,00		28983513,93	9793,91	-22456,03
880,00	mezzeria	29215572,68	-4166,08	-922,34
1000,00		28687619,00	-12611,77	33788,71
1200,00		25400923,86	-26740,68	87359,54
1400,00		19060796,90	-40936,52	130369,13
1600,00		9680085,64	-55198,99	158612,59
1760,00	appoggio	0,00	-66656,65	168992,59
Co.=	Doggwisione	Monday.	17min	me i e
Sez.	Descrizione	Mmin	Vmin	Tmin
0,00	Descrizione appoggio	0,00	56776,31	-172963,62
0,00		0,00 5349691,31	56776,31 50324,46	-172963,62 -170167,00
0,00 100,00 200,00		0,00 5349691,31 10056220,55	56776,31 50324,46 43872,61	-172963,62 -170167,00 -161976,29
0,00 100,00 200,00 400,00		0,00 5349691,31 10056220,55 17539792,82	56776,31 50324,46 43872,61 30968,90	-172963,62 -170167,00 -161976,29 -130623,02
0,00 100,00 200,00 400,00 440,00		0,00 5349691,31 10056220,55 17539792,82 18726190,65	56776,31 50324,46 43872,61 30968,90 28388,16	-172963,62 -170167,00 -161976,29 -130623,02 -122205,50
0,00 100,00 200,00 400,00 440,00 600,00		0,00 5349691,31 10056220,55 17539792,82 18726190,65 22450716,78	56776,31 50324,46 43872,61 30968,90 28388,16 18065,19	-172963,62 -170167,00 -161976,29 -130623,02 -122205,50 -82846,14
0,00 100,00 200,00 400,00 440,00 600,00	appoggio	0,00 5349691,31 10056220,55 17539792,82 18726190,65 22450716,78 24767190,35	56776,31 50324,46 43872,61 30968,90 28388,16 18065,19 5161,48	-172963,62 -170167,00 -161976,29 -130623,02 -122205,50 -82846,14 -24590,08
0,00 100,00 200,00 400,00 440,00 600,00 800,00		0,00 5349691,31 10056220,55 17539792,82 18726190,65 22450716,78 24767190,35 24981577,71	56776,31 50324,46 43872,61 30968,90 28388,16 18065,19 5161,48 0,00	-172963,62 -170167,00 -161976,29 -130623,02 -122205,50 -82846,14 -24590,08 0,00
0,00 100,00 200,00 400,00 440,00 600,00 800,00 880,00	appoggio	0,00 5349691,31 10056220,55 17539792,82 18726190,65 22450716,78 24767190,35	56776,31 50324,46 43872,61 30968,90 28388,16 18065,19 5161,48 0,00 -7742,22	-172963,62 -170167,00 -161976,29 -130623,02 -122205,50 -82846,14 -24590,08 0,00 36726,48
0,00 100,00 200,00 400,00 440,00 600,00 800,00	appoggio	0,00 5349691,31 10056220,55 17539792,82 18726190,65 22450716,78 24767190,35 24981577,71	56776,31 50324,46 43872,61 30968,90 28388,16 18065,19 5161,48 0,00	-172963,62 -170167,00 -161976,29 -130623,02 -122205,50 -82846,14 -24590,08 0,00
0,00 100,00 200,00 400,00 440,00 600,00 800,00 880,00	appoggio	0,00 5349691,31 10056220,55 17539792,82 18726190,65 22450716,78 24767190,35 24981577,71 24507381,94	56776,31 50324,46 43872,61 30968,90 28388,16 18065,19 5161,48 0,00 -7742,22	-172963,62 -170167,00 -161976,29 -130623,02 -122205,50 -82846,14 -24590,08 0,00 36726,48

Eurolink S.C.p.A. Pagina 102 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

1760,00 appoggio 0,00 -56776,31 172963,62

Combinazione

Sez.	Descrizione	Mmax	Vmax	Tmax
0,00	appoggio	0,00	245939,88	-638175,69
100,00		23167949,11	219499,61	-627857,12
200,00		43539123,71	193120,64	-597636,27
400,00		75891149,36	140546,60	-481953,57
440,00		81012150,29	130061,36	-450895,85
600,00		97056076,95	88217,73	-305673,48
800,00		106939100,55	36136,13	-90728,84
880,00	mezzeria	107795316,75	-15371,37	-3403,12
1000,00		105847351,05	-46533,06	135507,94
1200,00		93720587,43	-98663,83	344814,50
1400,00		70327720,82	-151041,53	510596,55
1600,00		35716154,18	-203665,10	611994,84
1760,00	appoggio	0,00	-245939,88	638175,69
Sez.	Descrizione	Mmin	Vmin	Tmin
Sez. 0,00	Descrizione appoggio	Mmin 0,00	Vmin 209484,88	Tmin -623523,96
0,00		0,00	209484,88	-623523,96
0,00		0,00 19738503,03	209484,88 185679,78	-623523,96 -604791,62
0,00 100,00 200,00		0,00 19738503,03 37103961,37	209484,88 185679,78 161874,68	-623523,96 -604791,62 -569089,27
0,00 100,00 200,00 400,00		0,00 19738503,03 37103961,37 64715744,00	209484,88 185679,78 161874,68 114264,48	-623523,96 -604791,62 -569089,27 -453472,83
0,00 100,00 200,00 400,00 440,00		0,00 19738503,03 37103961,37 64715744,00 69093139,99	209484,88 185679,78 161874,68 114264,48 104742,44	-623523,96 -604791,62 -569089,27 -453472,83 -423907,06
0,00 100,00 200,00 400,00 440,00 600,00		0,00 19738503,03 37103961,37 64715744,00 69093139,99 82835347,90	209484,88 185679,78 161874,68 114264,48 104742,44 66654,28	-623523,96 -604791,62 -569089,27 -453472,83 -423907,06 -284929,71
0,00 100,00 200,00 400,00 440,00 600,00	appoggio	0,00 19738503,03 37103961,37 64715744,00 69093139,99 82835347,90 91382330,87	209484,88 185679,78 161874,68 114264,48 104742,44 66654,28 19044,08	-623523,96 -604791,62 -569089,27 -453472,83 -423907,06 -284929,71 -82854,95
0,00 100,00 200,00 400,00 440,00 600,00 800,00	appoggio	0,00 19738503,03 37103961,37 64715744,00 69093139,99 82835347,90 91382330,87 92173345,77	209484,88 185679,78 161874,68 114264,48 104742,44 66654,28 19044,08 0,00	-623523,96 -604791,62 -569089,27 -453472,83 -423907,06 -284929,71 -82854,95 0,00
0,00 100,00 200,00 400,00 440,00 600,00 800,00 880,00 1000,00	appoggio	0,00 19738503,03 37103961,37 64715744,00 69093139,99 82835347,90 91382330,87 92173345,77 90423728,08	209484,88 185679,78 161874,68 114264,48 104742,44 66654,28 19044,08 0,00 -28566,12	-623523,96 -604791,62 -569089,27 -453472,83 -423907,06 -284929,71 -82854,95 0,00 124668,60
0,00 100,00 200,00 400,00 440,00 600,00 800,00 880,00 1000,00	appoggio	0,00 19738503,03 37103961,37 64715744,00 69093139,99 82835347,90 91382330,87 92173345,77 90423728,08 79972946,55	209484,88 185679,78 161874,68 114264,48 104742,44 66654,28 19044,08 0,00 -28566,12 -76176,32	-623523,96 -604791,62 -569089,27 -453472,83 -423907,06 -284929,71 -82854,95 0,00 124668,60 322326,35

Azione sismica caratteristica sul traverso

Eurolink S.C.p.A. Pagina 103 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

Sez.	Descrizione	Mmax	Mmin
-360,00	estremità dx	0,00	0,00
-300,00)	408,31	-429,29
-200,00)	805,87	-752,60
-100,00)	664,45	-584,53
0,00) mezzeria	-510,20	487,25
100,00)	662,64	-584,53
200,00)	804,66	-752,60
300,00)	413,58	-429,29
360,00	estremità sx	0,00	0,00

Combinazione

Sez.	Descrizione	Mmax	Mmin
-360,00	estremità dx	0,00	0,00
-300,00)	1506,54	-1600,41
-200,00)	2973,39	-3662,66
-100,00)	2451,58	-3405,46
0,00) mezzeria	425,51	-1882,47
100,00)	2444,91	-3410,32
200,00)	2968,91	-3665,92
300,00)	1525,96	-1586,25
360,00	Destremità sx	0,00	0,00

Valori per SLU

S_s 1,00

Fattore di amplificazione spettrale massima $F_{\rm v}\,2\,,21$ Spettro di risposta elastico $S_{\rm ve}\,$ 0,3718

Azione sismica caratteristica sulla trave

Sez.	Descrizione	Mmax	Vmax	Tmax
0,00	appoggio	0,00	66656,65	-168992,59
100,00		6279167,98	59490,59	-163915,59
200,00		11800331,14	52341,14	-154239,25
400,00		20568643,02	38092,09	-122903,93
440,00		21956578,78	35250,30	-114890,77

Eurolink S.C.p.A. Pagina 104 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

600,00		26304935,64	23909,49	-77223,99
800,00		28983513,93	9793,91	-22456,03
880,00	mezzeria	29215572,68	-4166,08	-922,34
1000,00		28687619,00	-12611,77	33788,71
1200,00		25400923,86	-26740,68	87359,54
1400,00		19060796,90	-40936,52	130369,13
1600,00		9680085,64	-55198,99	158612,59
1760,00	appoggio	0,00	-66656,65	168992,59

Sez.	Descrizione	Mmin	Vmin	Tmin
0,00	appoggio	0,00	56776,31	-172963,62
100,00		5349691,31	50324,46	-170167,00
200,00		10056220,55	43872,61	-161976,29
400,00		17539792,82	30968,90	-130623,02
440,00		18726190,65	28388,16	-122205,50
600,00		22450716,78	18065,19	-82846,14
800,00		24767190,35	5161,48	-24590,08
880,00	mezzeria	24981577,71	0,00	0,00
1000,00		24507381,94	-7742,22	36726,48
1200,00		21674925,24	-20645,93	93454,46
1400,00		16251651,83	-33549,64	138386,07
1600,00		8248462,75	-46453,35	165867,87
1760,00	appoggio	0,00	-56776,31	172963,62

Combinazione

Sez.	Descrizione	Mmax	Vmax	Tmax
0,00	appoggio	0,00	245939,88	-638175,69
100,00		23167949,11	219499,61	-627857,12
200,00		43539123,71	193120,64	-597636,27
400,00		75891149,36	140546,60	-481953,57
440,00		81012150,29	130061,36	-450895,85
600,00		97056076,95	88217,73	-305673,48
800,00		106939100,55	36136,13	-90728,84
880.00	mezzeria	107795316.75	-15371.37	-3403.12

Eurolink S.C.p.A. Pagina 105 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

1000,00		105847351,05	-46533,06	135507,94
1200,00		93720587,43	-98663,83	344814,50
1400,00		70327720,82	-151041,53	510596,55
1600,00		35716154,18	-203665,10	611994,84
1760,00	appoggio	0,00	-245939,88	638175,69

Sez.	Descrizione	Mmin	Vmin	Tmin
0,00	appoggio	0,00	209484,88	-623523,96
100,00		19738503,03	185679,78	-604791,62
200,00		37103961,37	161874,68	-569089,27
400,00		64715744,00	114264,48	-453472,83
440,00		69093139,99	104742,44	-423907,06
600,00		82835347,90	66654,28	-284929,71
800,00		91382330,87	19044,08	-82854,95
880,00	mezzeria	92173345,77	0,00	0,00
1000,00		90423728,08	-28566,12	124668,60
1200,00		79972946,55	-76176,32	322326,35
1400,00		59962951,12	-123786,52	481016,83
1600,00		30433962,89	-171396,72	585225,38
1760,00	appoggio	0,00	-209484,88	623523,96

Azione sismica caratteristica sul traverso

Sez.	Descrizione	Mmax	Mmin
-360,00	estremità dx	0,00	0,00
-300,00	1	408,31	-429,29
-200,00	1	805,87	-752,60
-100,00	1	664,45	-584,53
0,00	mezzeria	-510,20	487,25
100,00	1	662,64	-584,53
200,00	1	804,66	-752,60
300,00	1	413,58	-429,29
360,00	estremità sx	0,00	0,00

Combinazione

Eurolink S.C.p.A. Pagina 106 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Sez.	Descrizione	Mmax	Mmin
-360,00	estremità dx	0,00	0,00
-300,00		1506,54	-1600,41
-200,00		2973,39	-3662,66
-100,00		2451,58	-3405,46
0,00	mezzeria	425,51	-1882,47
100,00		2444,91	-3410,32
200,00		2968,91	-3665,92
300,00		1525,96	-1586,25
360,00	estremità sx	0,00	0,00

16 VERIFICHE

Generalità

Oggetto della relazione

La presente relazione espone la verifica di una struttura lineare continua soggetta a forze esterne contenute nel piano verticale longitudinale alla struttura stessa e vincolata nel medesimo piano.

La struttura è in calcestruzzo armato precompresso, realizzata per fasi utilizzando travi prefabbricate in c.a.p. e getto successivo eseguito in opera per realizzare traversi di collegamento e soletta collaborante.

Convenzioni

Sistema di riferimento

Il sistema di riferimento delle grandezze geometriche e delle forze è una terna sinistrogira con l'asse X parallelo all'asse longitudinale della struttura, l'asse Z contenuto nel piano verticale e l'asse Y ortogonale a tale piano e orientato verso l'osservatore che veda le X positive a destra e le Z positive in alto.

I carichi agenti sulla struttura e le reazioni dei vincoli sono positivi se sono diretti verso l'alto e verso destra. I momenti flettenti sulla trave sono positivi quando tendono la fibra inferiore della sezione.

Tensioni e deformazioni sono positive se di trazione, sia per il calcestruzzo che per l'acciaio.

Normativa

Eurolink S.C.p.A. Pagina 107 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Sono state rispettate le seguenti normative: Legge 05/11/1971 n. 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica

D.M. 14/01/2008: Norme tecniche per le costruzioni - NTC 2008

Unità di misura

Ove non sia diversamente specificato, le grandezze contenute nella presente relazione sono espresse nelle seguenti unità di misura:

lunghezza	[cm]
forza	[N]
angolo	[rad]

I diametri delle barre di armatura lenta sono sempre espressi in [mm], i diametri dei trefoli di precompressione sono invece espressi in [inch] (= 25.4 [mm]).

Codice di calcolo

La verifica è stata condotta con il codice di calcolo automatico TCAP ed. 8.2 - 12/2010 sviluppato da SIGMAc SOFT - Padova.

Procedura di calcolo tensionale per flessione: PREFLErett vers. TCAP/2.0 09/10 - SIGMACSOFT

Procedura di calcolo a rottura per flessione: FindLim ed. TCAP/1.0 05/10 - SIGMAcSOFT Procedura di calcolo a rottura per taglio: VrdCalc ed. TCAP/1.0 06/10 - SIGMAcSOFT Modello iperstatico: TRSP ed. TCAP/1.0 04/10 - SIGMAcSOFT

Modello di calcolo

Il codice di calcolo TCAP riceve le combinazioni di carico della struttura dal programma di calcolo delle sollecitazioni ed esegue le verifiche nelle situazioni agli Stati Limite Ultimi e agli Stati Limite di Esercizio inserendo nelle combinazioni l'effetto della precompressione.

Per valutare l'effetto della precompressione nelle varie sezioni viene assunto un modello di calcolo appropriato che riproduce le condizioni iperstatiche della struttura reale. La struttura è considerata lineare e rettilinea, soggetta a deformazione longitudinale assiale generata dalla precompressione e deformazione trasversale per inflessione nel piano verticale. Essa viene schematizzata come una struttura a telaio piano che discretizza i tratti a sezione (e quindi baricentro) costante con aste orizzontali e i tratti a geometria variabile con aste inclinate.

Le forze di precompressione sono rappresentate da forze longitudinali e da coppie di trasporto delle forze stesse alla quota del baricentro locale.

Per il calcolo dei momenti flettenti resistenti a rottura viene utilizzata la procedura FindLim ed. TCAP/1.0 05/10 - SIGMAcSOFT che tiene conto, oltre al contributo del

Eurolink S.C.p.A. Pagina 108 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

calcestruzzo, del contributo delle armature lente (stesso stato deformativo del calcestruzzo) e del contributo delle armature di precompressione nello stato deformativo effettivo (pretensione).

Dati di calcolo

Materiali - resistenze di calcolo

In questo capitolo non valgono le convezioni di segno precedentemente riportate: per il calcestruzzo tutte le grandezze sono indicate con segno positivo e contestualmente viene specificato se si tratta di valori di compressione o di trazione.

Calcestruzzo delle travi prefabbricate

Ai fini del calcolo le caratteristiche rilevanti del calcestruzzo sono date dalla resistenza a rottura, dal modulo elastico e dall'entità dei fenomeni differiti nel tempo. Le travi prefabbricate in c.a.p. sono precompresse a trefoli aderenti e devono perciò rispettare delle limitazioni tensionali già in fase iniziale, al rilascio dei trefoli. Data l'entità delle sollecitazioni iniziali si raccomanda di eseguire il trasferimento della precompressione con opportuna gradualità. Nel seguito della relazione si indicherà sinteticamente tale operazione come "taglio dei trefoli".

Calcestruzzo	C45/55
resistenza caratteristica R _{ck28,cub}	5500,00
resistenza al taglio dei trefoli R _{ckj,cub}	3850,00
coefficiente sicurezza verifiche a rottura	1,500
modulo elastico	3641611,39
peso specifico	0,0245
ritiro totale	-0,00030
% ritiro prima del taglio trefoli	25,5%
% ritiro taglio trefoli-getto soletta	0%
% ritiro da getto soletta a t=inf.	74,5%
coeff. di viscosità	2,300
% viscosità taglio trefoli-getto soletta	33%
% viscosità da getto soletta a t=inf.	67%

Resistenza caratteristica cilindrica a compressione :

```
a tempo infinito f_{ck} = 0.83 \cdot R_{ck} = 0.83 \cdot 5500,00 = 4565,00 \; \text{N/cm}^2 al taglio dei trefoli f_{ckj} = 0.83 \cdot R_{ckj} = 0.83 \cdot 3850,00 = 3195,50 \; \text{N/cm}^2
```

Resistenza di calcolo a compressione :

```
a tempo infinito  f_{\rm cd} = \alpha_{\rm cc} \cdot f_{\rm ck} / \gamma_{\rm c} = 0.85 \cdot 4565, 00/1, 5 = 3880, 25 \text{N/cm}^2  al taglio dei trefoli  f_{\rm cdj} = \alpha_{\rm cc} \cdot f_{\rm ckj} / \gamma_{\rm c} = 0.85 \cdot 3195, 50/1, 5 = 2716, 18 \text{N/cm}^2
```

Nel calcolo a rottura delle sezioni si utilizza il diagramma parabola-rettangolo con tensione massima pari a :

 $f_{cd} = 3880,25$

Eurolink S.C.p.A. Pagina 109 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Resistenza di calcolo a trazione per flessione :

a tempo infinito $f_{\text{ctd}} = f_{\text{ctk}}/\gamma_{\text{c}} = 268,23/1,5 = 321,88$ al taglio dei trefoli $f_{\text{ctd}} = f_{\text{ctk}}/\gamma_{\text{c}} = 211,47/1,5 = 253,76$

Nelle condizioni di esercizio la massima tensione di compressione nel calcestruzzo deve rispettare le seguenti limitazioni:

al taglio dei trefoli:

 \mathbf{O}_{cj} < 0.7· f_{ckj} = 3195,50 N/cm²

a cadute avvenute :

 σ_{c} < 0.6· f_{ck} = 2739,00 N/cm² (per comb. caratteristica rara) σ_{c} < 0.45· f_{ck} = 2054,25 N/cm² (per comb. quasi permanente)

Calcestruzzo gettato in opera

Calcestruzzo	C32/40
resistenza caratteristica R _{ck,cub}	4000,00
coefficiente sicurezza verifiche a rottura	1,5
modulo elastico	3364277,77
peso specifico	0,0245
coeff. di omogeneizzazione con cls travi	0,924

Resistenza caratteristica cilindrica a compressione :

a tempo infinito $f_{ck} = 0.83 \cdot R_{ck} = 0.83 \cdot 4000,00 = 3320,00 \text{ N/cm}^2$

Resistenza di calcolo a compressione :

 $f_{cd} = 2822,00$

a tempo infinito $f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_{c} = 0.85 \cdot 3320,00 / 1,5 = 2822,00 \text{N}/\text{cm}^2$ Nel diagramma parabola-rettangolo la tensione massima è pari a :

Resistenza di calcolo a trazione per flessione :

a tempo infinito $f_{ctd} = f_{ctk} / \gamma_c = 216,93/1,5 = 260,31$

Nelle condizioni di esercizio la massima tensione di compressione del calcestruzzo deve rispettare le seguenti limitazioni:

 σ_{c} < 0.6· f_{ck} = 1992,00 N/cm² (per comb. caratteristica rara)

Eurolink S.C.p.A. Pagina 110 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

20-06-2011

Data

 $\sigma_{c} < 0.45 \cdot f_{ck} = 1494,00 \text{ N/cm}^2$

(per comb. quasi permanente)

Acciaio per c.a.p.

tipo acciaio tensione all'1% deform. residua $f_{\mathfrak{p}(1)k}$	prec.fpk=1860 167400,00
	•
Modulo elastico	20600000,00
coeff. di omogeneizzazione a cls travi	6
coefficiente di sicurezza	1,15
% rilassam. prima del taglio trefoli	41,4%
% rilassam. taglio trefoli-getto soletta	0%
% rilassam. da getto soletta a t=inf.	58,6%

In base al punto 4.1.8.1.5 del D.M. 14/01/2008 le tensioni iniziali all'atto della tesatura dei cavi pre-tesi deve rispettare la più restrittiva delle seguenti limitazioni:

$$\begin{split} & \pmb{\sigma}_{\text{spi}} < = \text{ 0.80} \cdot \textbf{f}_{\text{ptk}} = \text{ 0.80} \cdot 184140,00 = 147312,00 \text{N/cm}^2 \\ & \pmb{\sigma}_{\text{spi}} < = \text{ 0.90} \cdot \textbf{f}_{\text{p(1)k}} = \text{ 0.90} \cdot 167400,00 = 150660,00 \text{N/cm}^2 \end{split}$$

E' ammessa una sovratensione iniziale pari a 0.05 $f_{p(1)k}$.

La tensione massima in esercizio nella combinazione caratteristica (rara) deve rispettare la seguente limitazione (4.1.8.1.2 e 4.1.2.2.5.2 D.M.14/01/2008):

 $\mathbf{O}_{sp} \le 0.80 \cdot \mathbf{f}_{p(1)k} = 133920,00 \quad N/cm^2$

Nel calcolo a rottura si utilizza il diagramma triangolo-rettangolo con tensione massima pari a:

 $f_{ptd} = f_{p(1)k}/\gamma_s = 167400,00/1,15 = 145565,22N/cm^2$

Acciaio per armatura lenta

Questo tipo di acciaio costituisce l'armatura destinata ad assorbire gli sforzi di taglio (staffe) ed altri sforzi locali di trazione nel calcestruzzo.

tipo acciaio B450 tensione di snervamento f_{yk} 45000,00 coefficiente sicurezza verifiche a rottura 1,15 modulo elastico 21000000,00 coeff. di omogeneizzazione a cls travi 6

La tensione massima consentita (4.1.2.2.5.2 D.M. 14/01/2008) nella combinazione rara deve rispettare la seguente limitazione:

 $\mathbf{O}_{s} \le 0.80 \cdot f_{yk} = 0.80 \cdot 45000,00 = 36000,00N/cm^{2}$

Nel calcolo a rottura si utilizza il diagramma triangolo-rettangolo con tensione massima pari a:

Eurolink S.C.p.A. Pagina 111 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

 $f_{yd} = f_{yk}/\gamma_s$ = 45000,00/1,15 = 39130,43N/cm²

Dati geometrici

Schemi statici

L'impalcato viene realizzato con travi prefabbricate in c.a.p. e getto eseguito in opera di traversi e soletta collaborante.Si distinguono due fasi successive di lavoro:

PRIMA FASE Le travi semplicemente appoggiate agli estremi resistono al peso proprioed a quello del getto eseguito in opera.

SECONDA FASE Il sistema misto, travi prefabbricate e soletta gettata in opera, divenuto solidale dopo la maturazione del calcestruzzo, resiste al peso delle sovrastrutture e dei carichi accidentali.

Prima fase

Nella prima fase i prefabbricati sono soggetti alle seguenti condizioni di vincolo prima di essere posti in opera:

Sbalzo sinistro = 50,00 Sbalzo destro = 50,00

In fase di sollevamento:
Sbalzo sinistro = 150,00
Sbalzo sinistro = 150,00

Seconda fase

In seconda fase la struttura è vincolata sugli appoggi definitivi:

appoggio	descrizione	x	luce campata
1	Spalla A	0,00	
2	Spalla B	1760,00	1760,00

Cadute di tensione nell'acciaio da precompressione

Rilassamento dell'acciaio da precompressione

La valutazione del rilassamento dell'acciaio da precompressione avviene con la formulazione indicata dalla normativa e con i dati forniti dal produttore.

Ad una temperatura costante di 20 [°C] la caduta di tensione $\Delta\sigma_{\rm pr}$ per rilassamento al tempo t è:

Eurolink S.C.p.A. Pagina 112 di 238

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

classetipo

caduta

2trecce e trefoli stabilizzati

 $\Delta \sigma_{pr} = \sigma_{pi} \cdot [0.66 \cdot \rho_{1000} \cdot e^{9.1}^{\mu} \cdot (t/1000)^{0.75(1-1000)}$

 μ_{1} · 10⁻⁵1

dove:

 σ_{pi} è la tensione iniziale nel cavo;

 ho_{1000} è la perdita per rilassamento (in percentuale) a 1000 ore dopo la messa in tensione, a 20 [°C] e a partire da una tensione iniziale pari a 0.7 della resistenza f_p del campione provato:

Acciaio classe ρ_{1000}

 $\mu = \sigma_{pi}/f_{pk};$

 f_{pk} è la resistenza caratteristica a trazione dell'acciaio; t è il tempo misurato in ore dalla messa in tensione.

La caduta finale per rilassamento può essere valutata con le formule sopra scritte ed inserendo un tempo di 500000 ore.

Si ottiene così:

Armatura classe μ $\Delta\sigma_{pr}/\sigma_{pi}$ Trave 1 - gruppo 1 2 0,682 0,036 3,60%

Ritiro del calcestruzzo

L'accorciamento dovuto al ritiro viene assunto pari a :

prefabbricati \mathbf{E}_{csl} = -0,00030 getto in opera \mathbf{E}_{cs2} = -0,00030

e la conseguente caduta di tensione nell'acciaio da precompressione viene calcolata in base al modulo elastico dell'acciaio stesso:

Armatura $\Delta \sigma_{ps}$ Trave 1 - gruppo 1 -0,00030·20600000,00=-6180,00 4,92%

Viscosità del calcestruzzo

Il valore della deformazione lenta del calcestruzzo (viscosità) si assume, ai fini del calcolo delle cadute di tensione nell'acciaio, secondo quanto indicato dalle norme $(11.2.10.7\ D.M.14/01/2008)$, pari a :

 $\Phi_{\text{inf},1} = 2.3$ (cavi pretesi nei prefabbricati)

Eurolink S.C.p.A. Pagina 113 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Sviluppo nel tempo delle cadute di tensione

I valori totali dei fenomeni differiti esposti ai paragrafi precedenti vengono ripartiti nelle diverse fasi tenendo conto delle diverse condizioni ambientali e tensionali.

			rilassamento	ritiro	viscosità
dalla posa in t	ensione al	taglio trefoli	41,40	25,50	0,00
dal taglio	trefoli al	getto in opera	0,00	0,00	33,00
dal getto	in opera a	tempo infinito	58,60	74,50	67,00

Stati Limite di Esercizio

Stato Limite delle tensioni in esercizio - procedimento di calcolo

Per valutare lo stato tensionale nelle sezioni di verifica distingueremo le seguenti fasi :

PRIMA FASE

- a) al manifestarsi della precompressione
- b) prima del getto in opera
- c) subito dopo il getto in opera

SECONDA FASE

- d) impalcato scarico
- e) impalcato carico

In tutte le fasi la determinazione dello stato tensionale degli elementi da verificare avviene in base alla combinazione caratteristica (rara) :

$$S = G_1 + G_2 + P + Q$$

dove:

 G_1 = permanenti strutturali

 G_2 = permanenti non strutturali

P = precompressione

Q = azioni variabili

Verifica al sollevamento

La verifica al sollevamento della trave viene eseguita in fase a). Incremento dinamico = 0.15

Stato Limite di deformazione

Viene valutata l'entità delle deformazioni significative degli elementi inflessi nelle varie fasi.

Eurolink S.C.p.A. Pagina 114 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

La valutazione di tali deformazioni viene fatta assumendo per il modulo elastico del calcestruzzo il valore:

 $E_{travi} = 3641611,39$ $E_{soletta} = 3364277,77$

e, per determinare gli effetti sotto l'azione dei carichi permanenti, viene assunto un coefficiente di viscosità pari a:

 $\Phi_{inf} = 2,3$

L'effetto della viscosità viene poi ridotto moltiplicando tutte le deformazioni conseguenti per il valore 0,5

Le frecce calcolate sono positive se rappresentano uno spostamento verso l'alto, negative se verso il basso.

Prima fase

H60:

freccia in
mezzeria [cm]
al taglio dei trefoli 0,6407
al getto della soletta -0,2665
dopo maturazione soletta (28gg) -0,2679

Seconda fase

Freccie in mezzeria [cm]:

campata	dopo maturazione	postesi e	t=inf.	t=inf.
	soletta	cambio vincoli	comb. rara max	comb. rara min
1	-0.2679	-0.2679	-0.9691	-2.3281

Stati Limite Ultimi

Stato Limite Ultimo per sollecitazioni flettenti

Il calcolo dei momenti ultimi delle sezioni viene eseguito tenendo conto del diagramma

 σ -E parabola-rettangolo per il calcestruzzo, con deformazione limite pari a -0.0035 in compressione, corrispondente ad una tensione di calcolo pari a f_{cd} =3880,25, e deformazione indefinita a trazione con tensione nulla (sezione fessurata).

Per gli acciai si utilizza un diagramma tensioni-deformazioni linearmente elastico fino alla tensione di rottura e lineare orizzontale fino alla deformazione 0.01, sia in trazione che in compressione.

Si rimanda al capitolo dei materiali per i valori dei moduli elastici e delle tensioni di calcolo.

Eurolink S.C.p.A. Pagina 115 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Nel calcolo del momento ultimo si tiene conto del diverso stato deformativo dell'acciaio da precompressione rispetto agli altri materiali.

Stato Limite Ultimo per sollecitazioni taglianti e torcenti

Per valutare i tagli e momenti torcenti resistenti viene utilizzata la formulazione indicata dalle norme:

 $V_{\text{Rd}} = (0.18 \cdot \text{k} \cdot ((100 \cdot \boldsymbol{\rho}_1 \cdot f_{\text{ck}})^{1/3} / \gamma_{\text{c}}) + 0.15 \cdot \boldsymbol{\sigma}_{\text{cp}}) \cdot b_{\text{w}} \cdot d \qquad \text{(taglio ultimo in assenza di armatura trasversale)}$

 $V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \mathbf{\Omega}_{\text{c}} \cdot 0.5 \cdot \mathbf{f}_{\text{cd}} \cdot (\text{ctg}\mathbf{\Omega} + \text{ctg}\mathbf{\theta}) / (1 + \text{ctg}^2\mathbf{\theta}) \tag{taglio ultimo per rottura}$

delle bielle compresse)

 $V_{\text{Rsd}} = 0.9 \cdot d \cdot (A_{\text{sw}}/\text{s}) \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha \qquad \qquad (\text{taglio ultimo per rottura})$

delle staffe)

 $T_{\text{Rcd}} = 2 \cdot A_k \cdot 0.5 \cdot f_{\text{cd}} \cdot \text{ctg} \theta / (1 + \text{ctg}^2 \theta)$ (momento torcente ultimo per rottura delle bielle compresse)

 $T_{Rsd} = 2 \cdot A_k \cdot (A_{sw}/s) \cdot f_{yd} \cdot ctg \theta$ (momento torcente ultimo per rottura delle staffe)

Dove:

d: altezza utile della sezione

 b_{w} : larghezza minima della sezione

 A_{sw} : area armatura trasversale

s: passo staffe

lpha: inclinazione risp. all'orizzontale delle armature trasversali (90 [deg])

heta: inclinazione bielle compresse in cls

 $lpha_{ ext{c}}\colon ext{coeff. maggiorativo dovuto alla presenza dello sforzo assiale}$

 $A_{\rm sl}$: area acciaio in zona tesa

 $k = 1 + (200/d)^{1/2}$

 $\sigma_{cp} = N_{Ed}/A_{cls}$

 $\rho_1 = A_{s1}/(b_w*d)$

 A_k : area racchiusa dalla fibra media del profilo periferico della sezione

Nel modello a traliccio a rottura si considerano inclinate a 45 [deg] le bielle compresse di calcestruzzo in sezioni non precompresse, mentre si tiene conto dell'effetto benefico della precompressione valutando una minore inclinazione delle bielle in base alla tensione principale di trazione presente nella sezione a quota baricentrica. L'inclinazione così determinata viene comunque limitata come indicato nelle norme citate.

Eurolink S.C.p.A. Pagina 116 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Verifiche

Verifica sezione X=100,00

Prima fase: sola trave

Sezione di calcolo:

n.	У	z
1	-32,00	0,00
2	-35,00	3,00
3	-35,00	60,00
4	35,00	60,00
5	35,00	3,00
6	32,00	0,00
7	-32.00	0.00

A = 4191,000

 $J_f = 1252410,2459$

 $Y_g = 30,06$

Armature di precompressione :

n.	Z	area
1	55,00	3,720
2	13,50	5,580
3	9,50	5,580
4	5,50	5,580

Armature lente longitudinali :

	area	Z	n.
5Ø12	5,655	0,00	1

n = 6,000

 $A_{id} = 5979,996$

 $J_{f,id} = 3621924,4741$

 $Y_{g,id} = 41,28$

Cadute di tensione prima del taglio trefoli

	%	$\Delta oldsymbol{\sigma}_{ exttt{sp}}$	$\Delta \sigma_{ exttt{sp}} / \sigma_{ exttt{spi}}$
ritiro cls	25,5%	1575,90	1,3%
rilassamento acciaio	30,6%	1870,57	1,5%

Sollecitazioni

istante	$N_{\mathtt{precomp}}.$	$\mathbf{M}_{\mathtt{precomp}}.$	${\tt M_{\tt esterno}}$
t=0 dopo taglio trefoli	-2498238,29	-30702221,93	8522576,06
prima del getto	-2441372,48	-30003366,78	8522576,06
dopo getto soletta	-2440652,01	-29994512,51	12132113.77

Tensioni sul calcestruzzo

Eurolink S.C.p.A. Pagina 117 di 238

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

istante	$\sigma_{\rm e,max}$	$\sigma_{\scriptscriptstyle i, max}$
t=0 dopo taglio trefoli	-120,67	-989,83
prima del getto	-122,29	-963,18
dopo getto soletta	-203.53	-886.49

Tensioni sugli acciai

	$oldsymbol{\sigma}_{ exttt{sp}}$	$\sigma_{\scriptscriptstyle ext{long,inf}}$	$\sigma_{\text{long,sup}}$
t=0 dopo taglio trefoli	118441,66	-4949,16	-4587,01
prima del getto	115753,68	-4815,89	-4465,52
dopo getto soletta	115903,23	-4432,45	-4147,89

Cadute di tensione dal taglio trefoli al getto soletta

	%	$\Delta\sigma_{ exttt{ iny sp}}$	$\Delta\sigma_{ ext{sp}}/\sigma_{ ext{spi}}$
ritiro cls	0,0%	0,00	0,0%
rilassamento acciaio	0,0%	0,00	0,0%
viscosità cls	38,6%	2779,37	2,2%

Cadute di tensione durante maturazione soletta

	%	$\Delta\sigma_{ exttt{ iny sp}}$	$\Delta \sigma_{ exttt{sp}} / \sigma_{ exttt{spi}}$
ritiro cls	0,2%	12,95	0,0%
rilassamento acciaio	0,1%	7,44	0,0%
viscosità cls	0,2%	14,82	0,0%

Momenti di rottura in flessione retta

 $\Delta\epsilon$ armature pretese: $\epsilon_{\rm sp,z=17,77}=0.00579$

fless.	Z asse neutro	Mr	$\mathcal{E}_{ ext{sup}}$	$z \boldsymbol{\epsilon}_{\mathtt{sup}}$	$\mathbf{\mathcal{E}_{inf}}$	$z \mathbf{\epsilon}_{\scriptscriptstyle ext{inf}}$
(+)	36,14	1,365463E8	-0,00350	60,00	0,00530	0,00
(-)	11,72	-3,743231E7	0,01000	55,00	-0,00271	0,00

 $M_{d,max} = 16378353,59 < Mr$

Verifica rottura a taglio

Calcestruz		[rad] ,381	b _w	Staffe:	A _{sw} 0,314
d 60,00	K 1,577	A _{s1} 14,880	р 1 0,0035	G _{cp} 582,53	Ω _c 1,225
v 568035,	rd 80 16	V_{Rsd} 59577,00	V _{Rc} . 2065552		

Seconda fase: trave+soletta

 $V_{d,max} = 154070,91 < 1659577,47$

Sezione di calcolo :

n. Y 2

Eurolink S.C.p.A. Pagina 118 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

1	20.00	0 00	
1	-32,00	0,00	
2	-35,00	3,00	
3	-35,00	60,00	
4	35,00	60,00	
5	35,00	3,00	
6	32,00	0,00	fine prefabb.
7	-32,00	0,00	
8	-35,00	85,00	getto in opera
9	36,00	85,00	(m=0,924)
10	36,00	60,00	
11	-35,00	60,00	
12	-35,00	85,00	

A = 5830,822

 $J_f = 3460517,8780$

 $Y_g = 42,00$

Armature di precompressione :

n.	Z	area
1	55,00	3,720
2	13,50	5,580
3	9,50	5,580
4	5,50	5,580

Armature lente longitudinali :

n = 6,000

 $A_{id} = 5979,996$

 $J_{f,id} = 3621924,4741$

 $Y_{g,id} = 41,28$

Cadute di tensione da maturazione soletta a t=inf.

	%	$\Delta\sigma_{ exttt{ iny sp}}$	$\Delta\sigma_{ ext{sp}}/\sigma_{ ext{spi}}$
ritiro cls	74,3%	4591,15	3,7%
rilassamento acciaio	43,2%	2640,27	2,1%
viscosità cls	61,2%	4411,53	3,5%

Н60	$\mathbf{\sigma}_{\mathtt{e,max}}$	$\mathbf{O}_{\text{e,min}}$	$\sigma_{\text{i,max}}$	$\mathbf{O}_{i,min}$
dopo maturaz. getto	-203,55	-203,55	-886,15	-886,15
t=infSLE Rare	-202,96	-262,82	-626,34	-761,68
t=infSLE Frequenti	-202,96	-242,37	-672,57	-761,68
t=infSLE Quasi Permanenti	-202,96	-202,96	-761,68	-761,68

Getto in opera	$\sigma_{\rm e,max}$	$oldsymbol{\sigma}_{ ext{e,min}}$	$\sigma_{\scriptscriptstyle exttt{i,max}}$	$\sigma_{\scriptscriptstyle i,min}$
dopo maturaz. getto	0,00	0,00	0,00	0,00
t=infSLE Rare	-51,03	-192,22	0,59	-59,27
t=infSLE Frequenti	-51,03	-143,99	0,59	-38,82
t=infSLE Quasi Permanenti	-51,03	-51,03	0,59	0,59

Eurolink S.C.p.A. Pagina 119 di 238

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Momenti di rottura per flessione retta

Allungamento armature pretese: $\mathbf{E}_{\mathrm{sp,z=17,77}}$ =0,00564

fless. Z	asse neutro	Mr	$\mathbf{\mathcal{E}}_{ ext{sup}}$	$z oldsymbol{\mathcal{E}}_{ ext{sup}}$	$\mathbf{\mathcal{E}}_{ ext{inf}}$	$z \mathbf{\mathcal{E}}_{ ext{inf}}$
(+)	59,83	2,268651E8	-0,00350	85,00	0,00832	0,00
(-)	11,58	-3,735024E7	0,01000	55,00	-0,00267	0,00

 $M_{d,max} = 36299689,42 < Mr$

Verifica rottura per taglio

Calcestruzz		[rad] 0,381	b _w	Staffe:	A sw 0,314
d 85,00	K 1,485	A _{s1}	р ₁ 0,0025	G _{cp} 377,72	Q _e 1,146
V _{Rd}	-	V _{Rsd}	V _R 273710		

 $V_{d,max} = 349142,20 < 2351072,33$

Verifica sezione X=200,00

Prima fase: sola trave

Sezione di calcolo :

n.	У	z
1	-32,00	0,00
2	-35,00	3,00
3	-35,00	60,00
4	35,00	60,00
5	35,00	3,00
6	32,00	0,00
7	-32,00	0,00

A = 4191,000

 $J_f = 1252410,2459$

 $Y_{q} = 30,06$

Armature di precompressione :

n.	7.	area
	_	
1	55,00	3,720
2	13,50	5,580
3	9,50	5,580
4	5,50	5,580

Armature lente longitudinali :

Eurolink S.C.p.A. Pagina 120 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

5Ø12

Rev. F0

Data 20-06-2011

n.	Z	area
1	0,00	5,655

n = 6,000

 $A_{id} = 5979,996$

 $J_{f,id} = 3621924,4741$

 $Y_{g,id} = 41,28$

Cadute di tensione prima del taglio trefoli

	%	$\Delta\sigma_{ ext{ iny sp}}$	$\Delta \sigma_{ m sp}/\sigma_{ m spi}$
ritiro cls	25,5%	1575,90	1,3%
rilassamento acciaio	30,6%	1870,57	1,5%

Sollecitazioni

istante	$\mathbf{N}_{\mathtt{precomp}}.$	$\mathbf{M}_{\mathtt{precomp}}.$	$\mathbf{M}_{\mathtt{esterno}}$
t=0 dopo taglio trefoli	-2498238,29	-30702221,93	16020532,69
prima del getto	-2444039,55	-30036143,89	16020532,69
dopo getto soletta	-2443347,82	-30027642,89	22805654,51

Tensioni sul calcestruzzo

istante	$\sigma_{\rm e,max}$	$oldsymbol{\sigma}_{\scriptscriptstyle exttt{i,max}}$
t=0 dopo taglio trefoli	-268,88	-878,65
prima del getto	-271,03	-851,83
dopo getto soletta	-426,86	-700,35

Tensioni sugli acciai

	$oldsymbol{\sigma}_{ exttt{sp}}$	$\sigma_{\scriptscriptstyle ext{long,inf}}$
t=0 dopo taglio trefoli	118613,40	-4393,24
prima del getto	116055,59	-4259,13
dopo getto soletta	116357,82	-3501,77

Cadute di tensione dal taglio trefoli al getto soletta

	%	$\Delta\sigma_{ exttt{ iny sp}}$	$\Delta\sigma_{ exttt{sp}}/\sigma_{ exttt{spi}}$
ritiro cls	0,0%	0,00	0,0%
rilassamento acciaio	0,0%	0,00	0,0%
viscosità cls	37.4%	2649.01	2.1%

Cadute di tensione durante maturazione soletta

	%	$\Delta\sigma_{ exttt{sp}}$	$\Delta \sigma_{ exttt{sp}}/\sigma_{ exttt{spi}}$
ritiro cls	0,2%	12,95	0,0%
rilassamento acciaio	0,1%	7,44	0,0%
viscosità cls	0,2%	13,42	0,0%

Momenti di rottura in flessione retta

 $\Delta \epsilon$ armature pretese: $\epsilon_{\rm sp,z=17,77}=0.00580$

fless. Z	Z asse neutro	Mr	$\mathbf{\mathcal{E}}_{ ext{sup}}$	$\mathrm{z}\boldsymbol{\epsilon}_{\scriptscriptstyle{\mathrm{sup}}}$	$\mathbf{\mathcal{E}_{inf}}$	$z\mathbf{\epsilon}_{\scriptscriptstyle ext{inf}}$
(+)	40,25	1,137382E8	-0,00350	60,00	0,00713	0,00
(-)	13,57	-3,50759E7	0,01000	55,00	-0,00327	0,00

Eurolink S.C.p.A. Pagina 121 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

 $M_{d,max} = 30787633,59 < Mr$

Verifica rottura a taglio

Calcestruzzo: θ [rad] b_w Staffe: A_{sw} 0,381 70,00 0,314

d κ A_{sl} ρ₁ σ_{cp} α_c
60,00 1,577 18,425 0,0044 583,16 1,225

 V_{Rd}
 V_{Rsd}
 V_{Rcd}

 582281,50
 1659577,00
 2065966,00

 $V_{d,max} = 134318,23 < 1659577,47$

Seconda fase: trave+soletta

Sezione di calcolo :

n.	Y	Z	
1	-32,00	0,00	
2	-35,00	3,00	
3	-35,00	60,00	
4	35,00	60,00	
5	35,00	3,00	
6	32,00	0,00	fine prefabb.
7	-32,00	0,00	
8	-35,00	85,00	getto in opera
9	36,00	85,00	(m=0,924)
10	36,00	60,00	
11	-35,00	60,00	
12	-35,00	85,00	

A = 5830,822

 $J_f = 3460517,8780$

 $Y_g = 42,00$

Armature di precompressione :

n.	Z	area
1	55,00	3,720
2	13,50	5,580
3	9,50	5,580
4	5,50	5,580

Armature lente longitudinali :

n. Z area1 0,00 5,655 5012

n = 6,000

 $A_{id} = 5979,996$

Eurolink S.C.p.A. Pagina 122 di 238

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

 $J_{f,id} = 3621924,4741$

 $Y_{g,id} = 41,28$

Cadute di tensione da maturazione soletta a t=inf.

	%	$\Delta\sigma_{ ext{ iny sp}}$	$\Delta\sigma_{ m sp}/\sigma_{ m spi}$
ritiro cls	74,3%	4591,15	3,7%
rilassamento acciaio	43,2%	2640,27	2,1%
viscosità cls	62,4%	4411,53	3,5%

н60	$\sigma_{\scriptscriptstyle \rm e,max}$	$\sigma_{\rm e,min}$	$\sigma_{\scriptscriptstyle exttt{i,max}}$	$\sigma_{\scriptscriptstyle i, min}$
dopo maturaz. getto	-426,88	-426,88	-700,01	-700,01
t=infSLE Rare	-435,95	-548,51	-283,80	-547,97
t=infSLE Frequenti	-435,95	-510,05	-374,08	-547,97
t=infSLE Quasi Permanenti	-435,95	-435,95	-547,97	-547,97

Getto in opera	$\sigma_{\rm e,max}$	$\sigma_{\scriptscriptstyle \rm e,min}$	$\sigma_{\scriptscriptstyle ext{i,max}}$	$\sigma_{\scriptscriptstyle i, min}$
dopo maturaz. getto	0,00	0,00	0,00	0,00
t=infSLE Rare	-76,19	-345,73	-9,06	-121,63
t=infSLE Frequenti	-76,19	-253,62	-9,06	-83,16
t=infSLE Quasi Permanenti	-76,19	-76,19	-9,06	-9,06

Momenti di rottura per flessione retta

Allungamento armature pretese: $\mathbf{E}_{\text{sp,z=17,77}}$ =0,00567

fless. Z as	sse neutro	Mr	$\mathbf{\mathcal{E}}_{ ext{sup}}$	$z oldsymbol{\epsilon}_{ ext{sup}}$	$\mathbf{\mathcal{E}_{inf}}$	$z\mathbf{\epsilon}_{\scriptscriptstyle ext{inf}}$
(+)	63,46	1,900793E8	-0,00339	85,00	0,01000	0,00
(-)	13,41	-3,510391E7	0,01000	55,00	-0,00322	0,00

 $M_{d,max} = 68179049,45 < Mr$

Verifica rottura per taglio

Calcestruzzo:	$oldsymbol{ heta}$ [rad]	$\mathbf{b}_{\mathtt{w}}$	Staffe:	$\mathbf{A}_{\mathtt{SW}}$
	0,381	70,00		0,314

d K A_{s1} ρ_1 σ_{cp} α_{cp} 85,00 1,485 26,115 0,0044 378,19 1,146

 V_{Rd}
 V_{Rsd}
 V_{Rcd}

 625524,20
 2351072,00
 2737530,00

 $V_{d,max} = 313050,44 < 2351072,33$

Eurolink S.C.p.A. Pagina 123 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Verifica sezione X=440,00

Prima fase: sola trave

Sezione di calcolo:

n.	У	z
1	-32,00	0,00
2	-35,00	3,00
3	-35,00	60,00
4	35,00	60,00
5	35,00	3,00
6	32,00	0,00
7	-32,00	0,00

A = 4191,000

 $J_f = 1252410,2459$

 $Y_g = 30,06$

Armature di precompressione :

n.	Z	area
1	55,00	3,720
2	13,50	5,580
3	9,50	7,440
4	5,50	7,440

Armature lente longitudinali:

n.	Z	area	
1	0,00	5,655	5Ø12

n = 6,000

 $A_{id} = 5979,996$

 $J_{f,id} = 3621924,4741$

 $Y_{g,id} = 41,28$

Cadute di tensione prima del taglio trefoli

	%	$\Delta\sigma_{ exttt{ iny sp}}$	$\Delta \sigma_{ ext{sp}} / \sigma_{ ext{spi}}$
ritiro cls	25,5%	1575,90	1,3%
rilassamento acciaio	30,6%	1870,57	1,5%

Sollecitazioni

istante	$N_{precomp}$.	$\mathbf{M}_{\mathtt{precomp}}.$	$\mathbf{M}_{\mathtt{esterno}}$
t=0 dopo taglio trefoli	-2952463,43	-40950575,12	29832634,23
prima del getto	-2881448,52	-39965600,57	29832634,23
dopo getto soletta	-2880629,50	-39954240,69	42467548,51

Tensioni sul calcestruzzo

	istante	$oldsymbol{\sigma}_{ ext{e,max}}$	$oldsymbol{\sigma}_{\scriptscriptstyle exttt{i,max}}$
t=0 dopo taglio	trefoli	-465,21	-887,99
prima d	el getto	-470,44	-850,77

Eurolink S.C.p.A. Pagina 124 di 238

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

dopo getto soletta -759,53 -571,53

Tensioni sugli acciai

	$oldsymbol{\sigma}_{ exttt{sp}}$	$\sigma_{\scriptscriptstyle ext{long,inf}}$
t=0 dopo taglio trefoli	118234,06	-4439,95
prima del getto	115425,95	-4253,87
dopo getto soletta	116055,27	-2857,65

Cadute di tensione dal taglio trefoli al getto soletta

	%	$\Delta\sigma_{ exttt{ iny sp}}$	$\Delta\sigma_{ m sp}/\sigma_{ m spi}$
ritiro cls	0,0%	0,00	0,0%
rilassamento acciaio	0,0%	0,00	0,0%
viscosità cls	39,9%	2936,93	2,3%

Cadute di tensione durante maturazione soletta

	%	$\Delta\sigma_{ exttt{ iny sp}}$	$\Delta\sigma_{ exttt{sp}}/\sigma_{ exttt{spi}}$
ritiro cls	0,2%	12,95	0,0%
rilassamento acciaio	0,1%	7,44	0,0%
viscosità cls	0,2%	13,48	0,0%

Momenti di rottura in flessione retta

 $\Delta \varepsilon$ armature pretese: $\varepsilon_{\rm sp,z=16,19}=0.00578$

fless. Z a	sse neutro	Mr	$\mathbf{\mathcal{E}}_{ ext{sup}}$	$\mathrm{z} \mathbf{\epsilon}_{ ext{ iny sup}}$	$\mathbf{\mathcal{E}_{inf}}$	$z \mathbf{\epsilon}_{\scriptscriptstyle ext{inf}}$
(+)	36,63	1,325986E8	-0,00350	60,00	0,00549	0,00
(-)	14.77	-3.412409E7	0.00954	55.00	-0.00350	0.00

 $M_{d,max} = 57331190,49 < Mr$

Verifica rottura a taglio

Calcestru	zzo:	0 [rad]	b _w	Staffe:	A_{sw} 0,157
d 60,00	к 1,577	A_{s1} 26,115	P ₁ 0,0062	G _{cp} 687,53	Q _e
675649	V _{Rd} ,20	V _{Rsd} 829788,70	V _{Rc}		

 $V_{d,max} = 86911,79 < 829788,73$

Seconda fase: trave+soletta

Sezione di calcolo:

n.	Y	Z
1	-32,00	0,00
2	-35,00	3,00
3	-35,00	60,00
4	35.00	60.00

Eurolink S.C.p.A. Pagina 125 di 238

RELAZIONE DI CALCOLO

Codice documento	
ST0216 F0 doc	

Rev. F0

Data 20-06-2011

5	35,00	3,00	
6	32,00	0,00	fine prefabb.
7	-32,00	0,00	
8	-35,00	85,00	getto in opera
9	36,00	85,00	(m=0,924)
10	36,00	60,00	
11	-35,00	60,00	
12	-35,00	85,00	

A = 5830,822

 $J_f = 3460517,8780$

 $Y_g = 42,00$

Armature di precompressione :

n.	${f z}$	area
1	55,00	3,720
2	13,50	5,580
3	9,50	7,440
4	5,50	7,440

Armature lente longitudinali:

	area	Z	n.
5	5,655	0,00	1

n = 6,000

 $A_{id} = 5979,996$

 $J_{f,id} = 3621924,4741$

 $Y_{g,id} = 41,28$

Cadute di tensione da maturazione soletta a t=inf.

	%	$\Delta\sigma_{ ext{ iny sp}}$	$\Delta\sigma_{\rm sp}/\sigma_{\rm spi}$
ritiro cls	74,3%	4591,15	3,7%
rilassamento acciaio	43,2%	2640,27	2,1%
viscosità cls	59,9%	4411,53	3,5%

н60	$\sigma_{\rm e,max}$	$\sigma_{\rm e,min}$	$\sigma_{\scriptscriptstyle ext{i,max}}$	$\sigma_{\scriptscriptstyle i, min}$
dopo maturaz. getto	-759,59	-759,59	-571,10	-571,10
t=infSLE Rare	-786,28	-994,76	129,36	-355,81
t=infSLE Frequenti	-786,28	-923,41	-36,68	-355,81
t=infSLE Quasi Permanenti	-786,28	-786,28	-355,81	-355,81

Getto in opera	$\mathbf{\sigma}_{\scriptscriptstyle e,max}$	$\sigma_{\rm e,min}$	$oldsymbol{\sigma}_{ exttt{i}, exttt{max}}$	$\sigma_{\scriptscriptstyle ext{i,min}}$
dopo maturaz. getto	0,00	0,00	0,00	0,00
t=infSLE Rare	-127,52	-625,01	-26,69	-235,16
t=infSLE Frequenti	-127,52	-454,75	-26,69	-163,82
t=infSLE Quasi Permanenti	-127,52	-127,52	-26,69	-26,69

Momenti di rottura per flessione retta

Allungamento armature pretese: $\epsilon_{\rm sp,z=16,19} = \text{0.00566}$

fless. Z asse neutro	Mr	$\mathbf{\mathcal{E}}_{\text{sup}}$ $\mathbf{Z}\mathbf{\mathcal{E}}_{\text{sup}}$	Einf ZEinf

Eurolink S.C.p.A. Pagina 126 di 238

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

(+) (-)

60,28 2,212372E8 -0,00350 85,00 0,00853 14,51 -3,425932E7 0,00976 55,00 -0,00350

0,00 0,00

 $M_{d,max} = 126643581,25 < Mr$

Verifica rottura per taglio

θ [rad] b_w 0,381 70,00 $\mathbf{b}_{\mathtt{W}}$ Calcestruzzo: Staffe: 0,157

G_{cp} 445,75 1,172

V_{Rd} **V**_{Rsd} 698899,90 1175536,00 $\mathbf{V}_{\mathtt{Rsd}}$ **V_{Rcd}** 2799913,00

 $V_{d,max} = 227661,54 < 1175536,16$

Verifica sezione X=880,00 mezzeria

Prima fase: sola trave

Sezione di calcolo:

n.	У	z
1	-32,00	0,00
2	-35,00	3,00
3	-35,00	60,00
4	35,00	60,00
5	35,00	3,00
6	32,00	0,00
7	-32,00	0,00

A = 4191,000

 $J_f = 1252410,2459$

 $Y_g = 30,06$

Armature di precompressione :

n.	Z	area
	_	
1	55,00	3,720
2	13,50	5,580
3	9,50	7,440
4	5,50	7,440

Armature lente longitudinali:

Z area 0,00 5,655 5Ø12

n = 6,000

Eurolink S.C.p.A. Pagina 127 di 238

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

 $A_{id} = 5979,996$ $J_{f,id} = 3621924,4741$ $Y_{g,id} = 41,28$

Cadute di tensione prima del taglio trefoli

	%	$\Delta oldsymbol{\sigma}_{ exttt{sp}}$	$\Delta \sigma_{ exttt{sp}} / \sigma_{ exttt{spi}}$
ritiro cls	25,5%	1575,90	1,3%
rilassamento acciaio	30,6%	1870,57	1,5%

Sollecitazioni

istante	$N_{\mathtt{precomp}}.$	$\mathbf{M}_{\mathtt{precomp}}$.	${\tt M_{esterno}}$
t=0 dopo taglio trefoli	-2952463,43	-40950575,12	39798071,28
prima del getto	-2890558,10	-40091950,18	39798071,28
dopo getto soletta	-2889811,38	-40081593,09	56653613,28

Tensioni sul calcestruzzo

istante	$oldsymbol{\sigma}_{ ext{e,max}}$	$oldsymbol{\sigma}_{\scriptscriptstyle exttt{i,max}}$
t=0 dopo taglio trefoli	-693,22	-667,75
prima del getto	-697,78	-635,30
dopo getto soletta	-1083,45	-262,78

Tensioni sugli acciai

	$\mathbf{O}_{\mathtt{sp}}$	O _{long,inf}
t=0 dopo taglio trefoli	118730,43	-3338,73
prima del getto	116282,53	-3176,51
dopo getto soletta	117122,08	-1313,89

Cadute di tensione dal taglio trefoli al getto soletta

	%	$\Delta\sigma_{ exttt{sp}}$	$\Delta\sigma_{ exttt{sp}}/\sigma_{ exttt{spi}}$
ritiro cls	0,0%	0,00	0,0%
rilassamento acciaio	0,0%	0,00	0,0%
viscosità cls	36,7%	2560,19	2,0%

Cadute di tensione durante maturazione soletta

	%	$\Delta\sigma_{ ext{ iny sp}}$	$\Delta\sigma_{ m sp}/\sigma_{ m spi}$
ritiro cls	0,2%	12,95	0,0%
rilassamento acciaio	0,1%	7,44	0,0%
viscosità cls	0.2%	10.49	0.0%

Momenti di rottura in flessione retta

 $\Delta \epsilon$ armature pretese: $\epsilon_{\rm sp,z=16,19}=0.00580$

fless. Z	asse neutro	Mr	$\mathbf{\mathcal{E}_{\mathrm{sup}}}$	$\rm z\epsilon_{\rm sup}$	$\mathbf{\mathcal{E}_{inf}}$	z $\mathbf{\epsilon}_{\scriptscriptstyle \mathtt{inf}}$
(+)	36,62	1,325793E8	-0,00350	60,00	0,00548	0,00
(-)	14,80	-3,410197E7	0,00950	55,00	-0,00350	0,00

 $M_{d,max} = 76482377,93 < Mr$

Verifica rottura a taglio

[rad]	\mathbf{b}_{w}	Staffe:	$\mathbf{A}_{\mathtt{SW}}$
	[rad]	[rad] b _w	[rad] b _w Staffe:

Eurolink S.C.p.A. Pagina 128 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

0,381 70,00 0,157

d K A_{s1} ρ_1 σ_{cp} α_{cp} 60,00 1,577 26,115 0,0062 689,71 1,250

 V_{Rd}
 V_{Rsd}
 V_{Rcd}

 677018,60
 829788,70
 2107380,00

 $V_{d,max} = 0,00 < 829788,73$

Seconda fase: trave+soletta

Sezione di calcolo :

n.	Y	Z	
1	-32,00	0,00	
2	-35,00	3,00	
3	-35,00	60,00	
4	35,00	60,00	
5	35,00	3,00	
6	32,00	0,00	fine prefabb.
7	-32,00	0,00	
8	-35,00	85,00	getto in opera
9	36,00	85,00	(m=0,924)
10	36,00	60,00	
11	-35,00	60,00	
12	-35,00	85,00	

A = 5830,822

 $J_f = 3460517,8780$

 $Y_g = 42,00$

Armature di precompressione :

n.	\mathbf{z}	area
1	55,00	3,720
2	13,50	5,580
3	9,50	7,440
4	5,50	7,440

Armature lente longitudinali :

n. Z area 1 0,00 5,655 5012

n = 6,000

 $A_{id} = 5979,996$

 $J_{f,id} = 3621924,4741$

 $Y_{g,id} = 41,28$

Cadute di tensione da maturazione soletta a t=inf.

% $\Delta\sigma_{ exttt{sp}}$ $\Delta\sigma_{ exttt{sp}}/\sigma_{ exttt{spi}}$

Eurolink S.C.p.A. Pagina 129 di 238

PROGETTO DEFINITIVO

AZIOI		

Codice documento	Rev.	Data
ST0216_F0.doc	F0	20-06-2011

ritiro cls	74,3%	4591,15	3,7%
rilassamento acciaio	43,2%	2640,27	2,1%
viscosità cls	63,2%	4411,53	3,5%

н60	$oldsymbol{\sigma}_{\scriptscriptstyle \mathrm{e,max}}$	$oldsymbol{\sigma}_{\scriptscriptstyle ext{e,min}}$	$oldsymbol{\sigma}_{\scriptscriptstyle exttt{i,max}}$	$\sigma_{\scriptscriptstyle i, min}$
dopo maturaz. getto	-1083,50	-1083,50	-262,39	-262,39
t=infSLE Rare	-1122,85	-1396,09	618,28	-17,62
t=infSLE Frequenti	-1122,85	-1302,13	399,60	-17,62
t=infSLE Quasi Permanenti	-1122,85	-1122,85	-17,62	-17,62

Getto in opera	$oldsymbol{\sigma}_{\scriptscriptstyle ext{e,max}}$	$oldsymbol{\sigma}_{\scriptscriptstyle{ m e,min}}$	$\sigma_{\scriptscriptstyle exttt{i,max}}$	$\sigma_{\scriptscriptstyle i, min}$
dopo maturaz. getto	0,00	0,00	0,00	0,00
t=infSLE Rare	-157,74	-809,78	-39,35	-312,59
t=infSLE Frequenti	-157,74	-585,56	-39,35	-218,63
t=infSLE Ouasi Permanenti	-157,74	-157,74	-39,35	-39,35

Momenti di rottura per flessione retta

Allungamento armature pretese: $\boldsymbol{\xi}_{\text{sp,z=16,19}}$ =0,00571

fless. Z	asse neutro	Mr	$\mathbf{\mathcal{E}}_{ ext{sup}}$	z $\mathbf{E}_{ ext{sup}}$	$\mathbf{\mathcal{E}_{_{\mathrm{inf}}}}$	$\mathrm{z}\mathbf{\epsilon}_{\scriptscriptstyle \mathrm{inf}}$
(+)	60,25	2,21272E8	-0,00350	85,00	0,00852	0,00
(-)	14.61	-3,420865E7	0,00967	55,00	-0,00350	0,00

 $M_{d,max} = 167577724,96 < Mr$

Verifica rottura per taglio

Calcestruzzo:	$oldsymbol{ heta}$ [rad]	$\mathbf{b}_{\mathtt{W}}$	Staffe:	$\mathbf{A}_{\mathtt{SW}}$
	0,381	70,00		0,157

d K A_{s1} ρ_1 σ_{cp} α_{cp} 85,00 1,485 29,835 0,0050 447,33 1,173

 V_{Rd}
 V_{Rsd}
 V_{Rcd}

 700305,30
 1175536,00
 2801367,00

 $V_{d,max} = 75635,74 < 1175536,16$

Eurolink S.C.p.A. Pagina 130 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

8 ANALISI SISTEMA DI VINCOLAMENTO

Per quanto concerne il sistema di vincolamento adottato per I impalcato è bene osservare come esso sia stato differenziato a seconda della fase considerata. Nel particolare come già espresso in precedenza possono essere distinte due fasi principali, che vengono così classificate.

FASE 1:

Le travi prefabbricate vengono posizionate in opera e viene eseguito il getto della soletta di c.a. e del cordolo di completamento. In questa fase il svincolamento tra impalcato e spalla è realizzato attraverso una cerniera.

FASE 2:

La soletta e il cordolo giungono a maturazione. Intervengono i carichi portati permanenti e accidentali. Lo schema di vincolamento assume caratteristiche di forte monoliticità modellata sostituendo alle cerniere degli incastri.

Eurolink S.C.p.A. Pagina 131 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

ANALISI SOTTOSTRUTTURE

8.1 ANALISI DELLE SPALLE

La spalla oggetto delle seguenti analisi è costituita da un cordolo in c.a. di dimensioni 1,60 x 1,20 x 7,78 m solidarizzato con la soletta gettata dell'impalcato e le travi prefabbricate. La spalla è dotata di 1 fila da 6 pali \$\phi1.000\$ mm.

Frontalmente ad essa è posizionato un muro in c.a. esistente facente parte della struttura dell'opera originaria di incanalamento artificiale della fiumara. Nell'ambito delle analisi esso viene cautelativamente trascurato, considerando in questo modo anche l'eventuale possibilità di un suò futuro abbattimento.

Si precisa sin da ora, con riferimento al paragrafo inerente alla modellazione per maggiori dettagli a riguardo, che lo studio delle sottostrutture sono stati condotti utilizzando una modellazione basata sulla schematizzazione a telaio, riferita ad 1,20 m di larghezza, pari quindi all'interasse dei pali.

La spalla è rappresentata nella figura seguente:

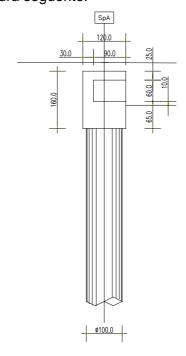


Figura 9.1 – Vista laterale Spalla.

Eurolink S.C.p.A. Pagina 132 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

8.1.1 MODELLO DI CALCOLO

8.1.1.1 DESCRZIONE DEL MODELLO DI CALCOLO

Per quanto concerne l'analisi strutturale condotta sulla spalla, è necessario chiarire preliminarmente quelle che sono le scelte di modellazione adottate.

Al fine di ottenere una conoscenza il più accurata possibile delle sollecitazioni interne all'opera, anche in virtù del particolare schema statico dell'opera in questione, si è deciso di utilizzare una modellazione globale, che comprenda tutti gli elementi strutturali e portanti del ponte, dalla sovrastruttura alle fondazioni.

Da un punto di vista dello schema statico i singoli elementi costitutivi della spalla, dell'impalcato e delle fondazioni,sono stati modellati attraverso opportuni elementi frame deformabili con proprietà inerziali e pesi propri dipendenti dalle sezioni ad esse assegnate.

La modellazione di tali elementi è stata poi ricondotta a porzioni di struttura di profondità pari all'interasse dei pilastri, ottenendo in questo modo, grazie ad una lecita bi-dimensionalizzazione del problema, un consistente sgravio computazionale.

Nella valutazione delle spinte agenti sulla struttura ad opera del terreno a tergo in condizioni sismiche, ci si è ricondotti alle teorie di comprovata validità di Woods. Tale scelta supportata dalle prescrizioni della normativa vigente è avvalorata da una riflessione condotta sulla possibile cinematica dell'elemento spalla. Ritenendo infatti corretto supporre una completa staticità della struttura, si è preferito utilizzare la suddetta teoria rispetto ad altre presenti in letteratura (es. Mononobe-Okabe).

Per una descrizione dettagliata delle trattazioni teoriche alla base di tali teorie si rimanda alla bibliografia citata.

Nei paragrafi seguenti vengono anche opportunamente esplicati gli schemi di spinta del terreno in condizioni non sismiche, utilizzati nell'ambito delle combinazioni delle azioni.

Eurolink S.C.p.A. Pagina 133 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 134 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

8.1.2 ANALISI DEI CARICHI

8.1.2.1 Peso proprio strutture

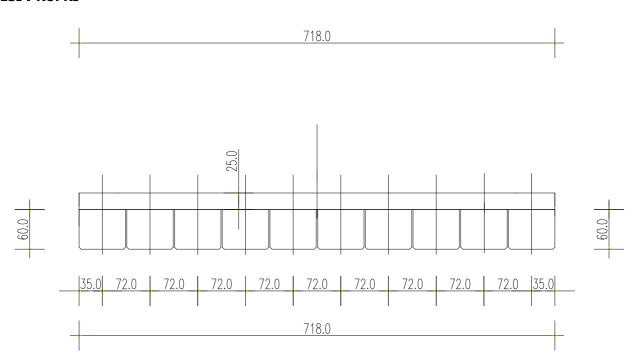
Il peso proprio degli elementi in calcestruzzo armato costituenti l'opera viene valutato in ragione di 25 kN/m³. Nel particolare come già precedentemente accennato tali valori vengono determinati automaticamente dal programma di calcolo strutturale sulla base dell'elemento frame e dell'area della sezione ad esso assegnata.

Gli elementi interessati da tale computazione sono logicamente:

Travi prefabbricata Soletta Cordoli in c.a Pali di fondazione

Eurolink S.C.p.A. Pagina 135 di 238

RELAZIONE DI CALCOLO


Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

8.1.2.2 Azioni trasmesse dall'impalcato

PESI PROPRI

GLOBALE

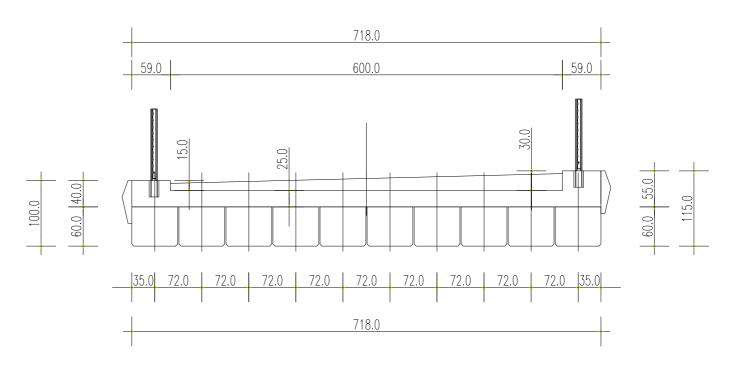
Peso soletta $q = 25 \cdot 0,25 \cdot 7,18 = 45 \text{ KN/m}$ Peso travi $q = 25 \cdot 0,60 \cdot 7,18 = 108 \text{ KN/m}$

MODELLO (1,20 m di larghezza)

Peso soletta q = 7,52 KN/m

Peso travi q = 18 KN/m

Eurolink S.C.p.A. Pagina 136 di 238


RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev.

F0

Data 20-06-2011

CARICHI PERMANENTI

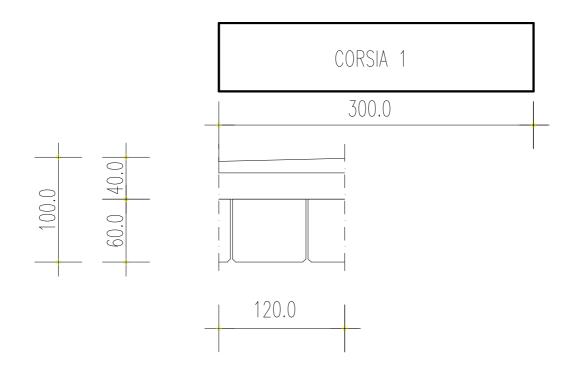
GLOBALE

Peso cordoli $q = 2 \cdot 25 \cdot 0,89 \cdot 0,30 = 13 \text{ KN/m}$ Peso pavimentazione $q = 3 \cdot 6,00 = 18 \text{ KN/m}$

Peso barriere di sicurezza $q = 2 \cdot 1,0 = 2 \text{ KN/m}$

MODELLO (1,20 m di larghezza) Totale Permanenti q = 5,13 KN/m

Eurolink S.C.p.A. Pagina 137 di 238


RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

ACCIDENTALI DA TRAFFICO.

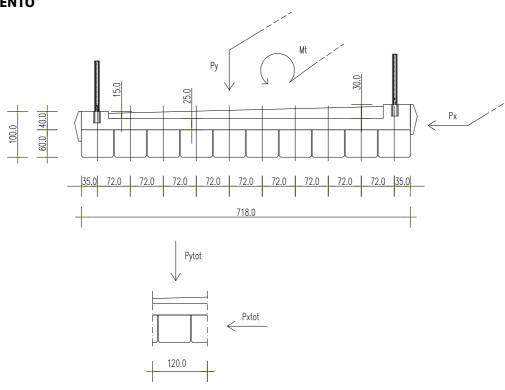
MODELLO (1,20 m di larghezza)

Totale distribuito q = 5,13 KN/mCoppia di carichi concentrati viaggianti

Q = 120 KN

Eurolink S.C.p.A. Pagina 138 di 238

RELAZIONE DI CALCOLO


Codice documento
ST0216_F0.doc

Rev. F0

20-06-2011

Data

CARICO DA VENTO

IMPALCATO SCARICO GLOBALE

Risultante pressione X	4,95	kN/m
Risultante pressione Y	9,99	kN/m
Risultante momento torcente	14,24	kNm/m

IMPALCATO CARICO GLOBALE

Risultante pressione X	14,41	kN/m
Risultante pressione Y	8,90	kN/m
Risultante momento torcente	14,76	kNm/m

IMPALCATO SCARICO MODELLO (1,20 m larghezza)

Risultante pressione X	4,95	kN/m
Risultante pressione Y	3,9	kN/m

Eurolink S.C.p.A. Pagina 139 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

IMPALCATO SCARICO MODELLO (1,20 m larghezza)

Risultante pressione X 14,41 kN/m Risultante pressione Y 6,5 kN/m

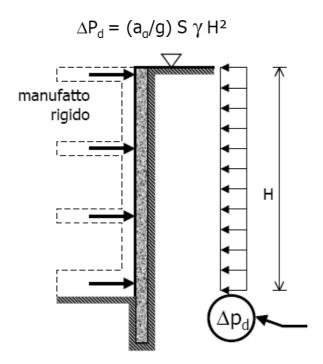
CARICO DA FRENAMENTO ED ATTRITO

In virtù del ridotto utilizzo veicolare dell'opera in questione (essendo per definizione un ponte pedonale, con utilizzo stradale sono in una prima fase a scopo di servizio) si è ritenuto lecito trascurare tale componente sollecitante, in quanto eccessivamente cautelativa nei confronti della reale necessità della struttura.

Eurolink S.C.p.A. Pagina 140 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc


Rev. F0

Data 20-06-2011

8.1.2.3 Determinazione della forza sismica orizzontale del terreno.

In accordo con quanto indicato nelle "Norme Tecniche 2008" al paragrafo 7.11.6.2.1, per le verifiche allo SLU si assume il coefficiente di spinta del terreno come segue, considerando la tabella 7.11.II.

Dove l'incremento di spinta attiva del terreno in condizioni sismiche può essere valutata attraverso la teoria di Woods nel seguente modo:

Avente punto di applicazione ad una quota pari ad H/2.

$$\frac{a_{\text{max}}}{g} = 0,4373$$
 accelerazione orizzontale massima attesa al sito

 $S = S_S \cdot S_T = 1,00 \cdot 1,00 = 1,00$ amplificazione per sottosuolo tipo C

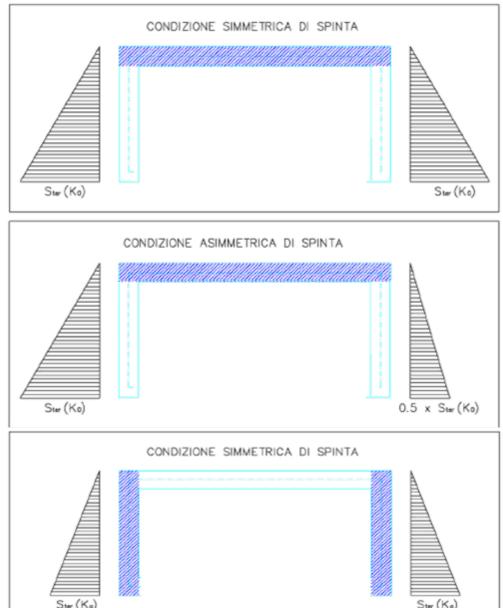
Si ottiene quindi:

Spinta sisma alla base:
$$\Delta p_{ah} = \frac{a_g}{g} \cdot S \cdot \gamma_t \cdot H = 35 \text{ kN/m}^2$$

Eurolink S.C.p.A. Pagina 141 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc


Rev. F0

Data 20-06-2011

8.1.2.4 Schemi di carico delle spinte del terreno.

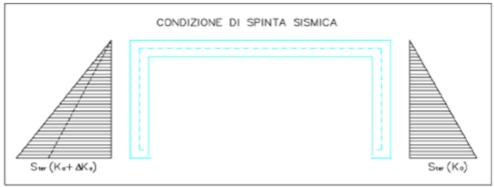
1.1.1.1.1 Statiche

In fase statica deve essere valutata sia la condizione di spinta "attiva" che di spinta a "risposo", inoltre deve essere valutata anche la possibilita di uno squilibrio delle spinte dovuta a una diversa compattazione dei rilevati.

Eurolink S.C.p.A. Pagina 142 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc


Rev. F0

Data 20-06-2011

1.1.1.1.2 Sismiche

In fase sismica si considera la spinta statica "attiva" (nella direzione concorde all'azione simsica) e si considera (a favore di sicurezza) la spinta a "riposo" dal lato opposto all'applicazione di incremento sisimico di spinta; durante il sisma (sisma da sinistra verso destra) si suppone che nel terreno si generi uno stato di spinta attiva sulla parete di sinistra e uno stato di parziale spinta passiva sulla parete di destra: analiticamente si carica la parete di sinistra con la spinta attiva in fase sismica e la parete di destra, a favore di sicurezza, con la spinta a riposo (simulando pertanto il fatto che la reazione non mobiliti per intero la spinta passiva).

Eurolink S.C.p.A. Pagina 143 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

8.1.3 Combinazioni di carico

8.1.3.1 Combinazioni di carico statiche e sismiche

Si considerano le combinazioni di carico statiche allo SLU previste dalla normativa vigente al fine della valutazione delle sollecitazioni in FASE 2. Per la FASE 1 si rimanda a quanto presentato per l'analisi dell'impalcato.

		Peso	Permane	Vento	Temp +	Temp -	Grad +	Grad -	Ritiro	Mezzi	Ka	Ka	Ko	Ko	K
		Proprio	nti	Carico	·	•					sinistra	Destra	sinistra	destra	Sismica
	Comb 1	0	.,-	1,5	1,2	0	1,2	0	1,2	1	1,5	1,5	0	0	0
	Comb 2	0	.,0	1,5	0	1,2	0	1,2	1,2	1	1,5	1,5	0	0	0
	Comb 3	0	.,0	1,5	1,2	0	1,2	0	1,2	1	1,5	0,75	0	0	0
	Comb 4	0	.,0	1,5	0	1,2	0	1,2	1,2	1	1,5	0,75	0	0	0
	Comb 5	0	.,0	1,5	1,2	0	1,2	0	1,2	1	0	0	1,5	1,5	0
_	Comb 6	0	.,0	1,5	0	1,2	0	1,2	1,2	1	0	0	1,5	1,5	0
S	Comb 7	0	.,-	1,5	1,2	0	1,2	0	1,2	1	0	0	1,5	0,75	0
l T	Comb 8	0	.,-	1,5	0	1,2	0	1,2	1,2	1	0	0	1,5	0,75	0
Ė	Comb 9	0	.,0	0,9	1,2	0	1,2	0	1,2	1,35	1,5	1,5	0	0	0
R	Comb 10	0	.,0	0,9	0	1,2	0	1,2	1,2	1,35	1,5	1,5	0	0	0
	Comb 11	0	.,0	0,9	1,2	0	1,2	0	1,2	1,35	1,5	0,75	0	0	0
	Comb 12	0	.,0	0,9	0	1,2	0	1,2	1,2	1,35	1,5	0,75	0	0	0
	Comb 13	0	.,-	0,9	1,2	0	1,2	0	1,2	1,35	0	0	1,5	1,5	0
	Comb 14	0	.,-	0,9	0	1,2	0	1,2	1,2	1,35	0	0	1,5	1,5	0
	Comb 15	0		0,9	1,2	0	1,2	0	1,2	1,35	0	0	1,5	0,75	0
	Comb 16	0	.,,-	0,9	0	1,2	0	1,2	1,2	1,35	0	0	1,5	0,75	0
	Comb 17	0	-,-	1,3	1,2	0	1,2	0	1,2	0,86	1,3	1,3	0	0	0
	Comb 18	0	1,3	1,3	0	1,2	0	1,2	1,2	0,86	1,3	1,3	0	0	0
	Comb 19	0	1,3	1,3	1,2	0	1,2	0	1,2	0,86	1,3	0,65	0	0	0
	Comb 20	0	1,3	1,3	0	1,2	0	1,2	1,2	0,86	1,3	0,65	0	0	0
	Comb 21	0	1,3	1,3	1,2	0	1,2	0	1,2	0,86	0	0	1,3	1,3	0
	Comb 22	0	1,3	1,3	0	1,2	0	1,2	1,2	0,86	0	0	1,3	1,3	0
G	Comb 23	0	1,3	1,3	1,2	0	1,2	0	1,2	0,86	0	0	1,3	0,65	0
E	Comb 24	0	1,3	1,3	0	1,2	0	1,2	1,2	0,86	0	0	1,3	0,65	0
_	Comb 25	0	1,3	0,78	1,2	0	1,2	0	1,2	1,15	1,3	1,3	0	0	0
0	Comb 26	0	1,3	0,78	0	1,2	0	1,2	1,2	1,15	1,3	1,3	0	0	0
	Comb 27	0	1,3	0,78	1,2	0	1,2	0	1,2	1,15	1,3	0,65	0	0	0
	Comb 28	0	1,3	0,78	0	1,2	0	1,2	1,2	1,15	1,3	0,65	0	0	0
	Comb 29	0	1,3	0,78	1,2	0	1,2	0	1,2	1,15	0	0	1,3	1,3	0
	Comb 30	0	1,3	0,78	0	1,2	0	1,2	1,2	1,15	0	0	1,3	1,3	0
	Comb 31	0	1,3	0,78	1,2	0	1,2	0	1,2	1,15	0	0	1,3	0,65	0
	Comb 32	0	1,3	0,78	0	1,2	0	1,2	1,2	1,15	0	0	1,3	0,65	0
SLV	Comb 33	0	1	0,2	0	0	0	0	0	0,2	1	0	0	1	1

Si considerano inoltre 4 combinazioni SLE:

			Peso	Permane	Vento	Tomp	Temp -	Grad +	Grad -	Ritiro	Mezzi	Ka	Ka	Ko	Ko	K
			Proprio	nti	Carico	Temp +	remp -	Giau +	Giau -	Killio	MEZZI	sinistra	Destra	sinistra	destra	Sismica
ı	L F	Comb 34	1	1	0,2	0,6	0	0,6	0	0	0,75	1	1	0	0	0
		Comb 35	1	1	0,2	0	0,6	0	0,6	0	0,75	1	1	0	0	0
		Comb 36	1	1	0,2	0,6	0	0,6	0	0	0,75	0	0	1	1	0
L		Comb 37	1	1	0,2	0	0,6	0	0,6	0	0,75	0	0	1	1	0

Eurolink S.C.p.A. Pagina 144 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

8.1.4 CALCOLO DELLE SOLLECITAZIONI

SOLLECITAZIONI CORDOLO (FASE 2)

TABLE: Ele	ment Forces	- Frames					_
Frame	Station	OutputCase	CaseType	StepType	P	V2	М3
Text	m	Text	Text	Text	KN	KN	KN-m
2	0	INV_STR	Combination	Max	-113,199	-142,34	1445,9225
2	0,6	INV_STR	Combination	Max	-113,199	-144,824	1618,327
2	1,2	INV_STR	Combination	Max	-113,199	-145,652	1811,9132
2	0	INV_STR	Combination	Min	-561,517	-321,8	572,5104
2	0,6	INV_STR	Combination	Min	-561,517	-328,475	675,4287
2	1,2	INV_STR	Combination	Min	-561,517	-330,701	781,0174
2	0	INV_GEO	Combination	Max	-100,363	-135,145	1317,571
2	0,6	INV_GEO	Combination	Max	-100,363	-137,298	1472,9966
2	1,2	INV_GEO	Combination	Max	-100,363	-138,016	1646,7796
2	0	INV_GEO	Combination	Min	-482,352	-288,907	557,6525
2	0,6	INV_GEO	Combination	Min	-482,352	-294,693	653,9189
2	1,2	INV_GEO	Combination	Min	-482,352	-296,621	752,4996
2	0	INV_SLV	Combination	Max	-41,418	-59,569	39,5392
2	0,6	INV_SLV	Combination	Max	-41,418	-82,225	94,1955
2	1,2	INV_SLV	Combination	Max	-41,418	-103,777	162,1143
2	0	INV_SLV	Combination	Min	-106,947	-79,674	-64,8445
2	0,6	INV_SLV	Combination	Min	-106,947	-102,33	-22,251
2	1,2	INV_SLV	Combination	Min	-106,947	-123,882	33,6049
7	0	INV_STR	Combination	Max	-119,196	321,8	-613,5453
7	0,6	INV_STR	Combination	Max	-119,196	328,475	-726,3451
7	1,2	INV_STR	Combination	Max	-119,196	330,701	-821,6269
7	0	INV_STR	Combination	Min	-567,514	143,996	-1481,3669
7	0,6	INV_STR	Combination	Min	-567,514	145,238	-1668,3482
7	1,2	INV_STR	Combination	Min	-567,514	145,652	-1856,6646
7	0	INV_GEO	Combination	Max	-105,56	288,907	-593,2161
7	0,6	INV_GEO	Combination	Max	-105,56	294,693	-698,0464
7	1,2	INV_GEO	Combination	Max	-105,56	296,621	-802,0915
7	0	INV_GEO	Combination	Min	-487,55	136,581	-1348,2895
7	0,6	INV_GEO	Combination	Min	-487,55	137,657	-1516,3483
7	1,2	INV_GEO	Combination	Min	-487,55	138,016	-1685,5642
7	0	INV_SLV	Combination	Max	-71,75	117,948	-178,3718
7	0,6	INV_SLV	Combination	Max	-71,75	122,398	-238,5613
7	1,2	INV_SLV	Combination	Max	-71,75	123,882	-300,5309
7	0	INV_SLV	Combination	Min	-137,279	97,843	-282,7555
7	0,6	INV_SLV	Combination	Min	-137,279	102,294	-355,0078

Eurolink S.C.p.A. Pagina 145 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

7	1,2	INV_SLV	Combination	Min	-137,279	103,777	-429,0402

Nmax	-567,514	KN
Nmin	-41,418	KN
Mpositivo	1811,913	KN m
Mnegativo	-1856,66	KN m
V positivo	330,701	KN
V negativo	-330,701	KN

Il cordolo viene verificato previa la suddetta modellazione in virtu del fatto che tale schematizzazione consente l'estrapolazione della sollecitazione flessionale prevalente per tale elemento strutturale, che non potrebbe in altro modo essere colta.

Eurolink S.C.p.A. Pagina 146 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

8.1.5 **VERIFICA DELLE SEZIONI**

FLESSIONE NEGATIVA E TAGLIO (FASE 2).

 $N_{sd} = -41 \, kN$

 $M_{sd} = -1.856 \text{ kNm}$

Presso-Flessione:

SEZIONE base (cm) 120

> altezza (cm) 120

ARMATURA compressa φ24/10

> tesa φ24/10

INDICI DI RESISTENZA Mrd =2.416 kNm

IR = 1,30

Taglio:

 $V_{sd} = 330 \text{ kN}$

RISULTATI VERIFICA A TAGLIO

Verifica senza armatura trasversale

Taglio res. ultimo (VRd): 47396.879 Indice di resistenza: 0.70

Verifica delle bielle compresse

Taglio resistente ultimo (VRcd): 402857.719 ctg(Theta): 2.50 Indice di resistenza: 0.08

Verifica con armatura trasversale

Taglio attribuito all'armatura (VRsd): 33000.002

Armatura trasversale per unita' di

lunghezza (Asw,cm²/m): 3.20

Vengono applicati solo i minimi di norma perchè la

sezione non richiede armatura trasversale a taglio (V<=Vrdu1)

Staffe a 4 braccia

(in accordo con i minimi di norma per pilastri): $\emptyset14/25.0\text{cm}$

Eurolink S.C.p.A. Pagina 147 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

8.1.6 VERIFICA STATO LIMITE DI VIBRAZIONE

Sfruttando la modellazione appena proposta per la verifica delle spalle, si procederà andando a valutare lo stato limite di vibrazione della struttura. L'utilizzo di una modellazione semplificata, in quanto parzialmente rappresentativa dell'opera complessiva è avvalorata dalla seguente confutazione.

La modellazione utilizzata rappresenta una porzione longitudinale dell'opera nel suo insieme. Aspetto di fondamentale importanza per lo studio dei limiti di vibrazione è rappresentato dal periodo proprio di vibrare della struttura To.

E' noto, grazie alle normali teorie dinamiche che il periodo proprio di vibrare, ad esempio di un oscillatore semplice ad un grado di libertà è in realtà funzione della pulsazione propria dell'opera ω_{Ω} . Nel particolare:

 $T_{\Omega} = 2\pi/\omega_{\Omega}$

Ma è altresì risaputo che:

 $\omega_{\rm O} = \sqrt{K/m}$

Dove K e m rappresentano la rigidezza e la massa globale della struttura.

Noto quindi che, grazie alla particolare conformazione geometrica dell'opera e alla omogeneità del materiale, sia la rigidezza che la massa varieranno linearmente con la medesima proporzionalità aumentando o diminuendo la lunghezza trasversale della porzione di struttura considerata nella modellazione, allora risulta lecito affermare che eseguendo tale verifica rapportandosi con una modellazione spazialmente semplificata come quella in uso, il risultato possa essere considerato comunque attendibile in quanto dipendente esclusivamente dal valore di To.

Il passo umano può essere schematizzato come un carico non costante e prevalentemente verticale; la componente trasversale alla direzione del movimento, dovuta al periodico spostamento del peso da una gamba all'altra, è d'intensità pari a circa 1/10 di quella verticale e può attivare vibrazioni nel piano dell'impalcato. La frequenza del passo è contenuta in un campo piuttosto ampio, in funzione del tipo di moto (cammino, marcia, corsa o salto) e delle caratteristiche fisiche del pedone.

In figura 8.1 è riportata la storia temporale della forza trasmessa dal passo di un pedone medio; la figura 8.2 ne rappresenta lo spettro di Fourier. Il contenuto armonico principale, figura 8.1, è collocato tra 2 e 2.4 Hz, con la seconda armonica tra 4.6 e 5 Hz, mentre la terza armonica, di

Eurolink S.C.p.A. Pagina 148 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

minore ampiezza, si colloca nell'intervallo 6.9-7.3Hz. Secondo altri riferimenti le armoniche del passo umano sarebbero collocate negli intervalli multipli interi di [1.6-2.2] Hz.

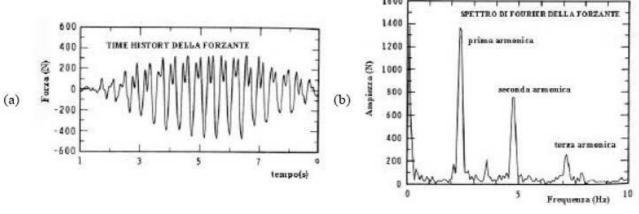


Figura 8.1 Figura 8.2

I criteri di verifica della risposta dinamica di un ponte pedonale alle azioni del passo umano possono essere ricondotti a tre procedure principali:

- (a) l'accordo di frequenza;
- (b) il carico di risonanza;
- (c) il carico di passo.

Procedure semplificate sono disponibili solo per semplici schemi strutturali, come travi in semplice appoggio e travi continue, la cui applicazione al di fuori del campo di validazione e su strutture diverse da quelle per le quali sono state sviluppate fornisce risultati di affidabilità incerta.

Il Metodo dell'accordo di frequenza

L'accordo di frequenza è la forma più semplice di verifica e fu proposto da Bachmann nel 1992. La struttura è considerata soddisfacente allo stato limite di esercizio per vibrazione se le frequenze dei modi di vibrazione principali sono al di fuori dell'intervallo di frequenza 1.6-2.4 Hz (relativo alla prima armonica del passo) e, per strutture con smorzamento inferiore all'1%, anche del campo di frequenze 3.5-4.5 Hz (relative alla seconda armonica). Per questo motivo alcuni autori propongono di considerare esenti da vibrazioni percepibili soltanto le passerelle con frequenza fondamentale superiore a 4-5 Hz, valore di frequenza che individua una struttura di rigidezza molto elevata.

Nella struttura in oggetto si è condotta un'analisi modale per l'individuazione del primo modo di vibrare utilizzando il programma ad elementi finiti SAP2000.

Si sono considerati i carichi permanenti descritti nel capitolo 3 e come carico accidentale si è assunto il carico della folla compatta in combinazione frequente. Si riportano i principali modi di vibrare per le condizioni con e senza accidentali:

Eurolink S.C.p.A. Pagina 149 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

TABLE: Mod	dal Periods	And Frequ	encies	
OutputCase	StepType	StepNum	Period	Frequency
Text	Text	Unitless	Sec	Cyc/sec
MODAL	Mode	1	0,303463	3,2953
MODAL	Mode	2	0,044401	22,522
MODAL	Mode	3	0,044064	22,694
MODAL	Mode	4	0,041462	24,119
MODAL	Mode	5	0,037561	26,623
MODAL	Mode	6	0,023168	43,163
MODAL	Mode	7	0,023137	43,22
MODAL	Mode	8	0,018769	53,28
MODAL	Mode	9	0,009914	100,87
MODAL	Mode	10	0,009648	103,65
MODAL	Mode	11	0,009491	105,37
MODAL	Mode	12	0,009163	109,13
MODAL	Mode	13	0,005382	185,82
MODAL	Mode	14	0,005382	185,82
MODAL	Mode	15	0,002143	466,6
MODAL	Mode	16	0,002143	466,6

Si nota come i primi modi di vibrare risultano essere esterni all'intervallo corrispondente alla prima armonica del passo.

Eurolink S.C.p.A. Pagina 150 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

9 ANALISI DELLE FONDAZIONI

9.1 ANALISI DEL SISTEMA FONDAZIONALE DELLE SPALLE

9.1.1 ANALISI PALI FASE 0.

Come anticipato nella descrizione viene eseguita una verifica preliminare attraverso il software PARATIE 2011, della palificata, supponendo l'assenza del muro di contenimento della fiumara. Nel corso delle analisi si suppone la presenza di un sovraccarico a tergo della paratia, dovuto alla presenza di mezzi d'opera nel corso della realizzazione del ponte.

In tale fase per l'appunto i pali lavoreranno come una paratia non essendo ancora stati posizionati le travi in c.a.p.

Di seguito si riporta l'output del software di calcolo e le relative verifiche eseguite sulla base di tali analisi.

Eurolink S.C.p.A. Pagina 151 di 238

SISTEMI

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

20-06-2011

Data

CONVENZIONI

IPOTESI GENERALI DI CALCOLO

DI

cartesiana globale con l'asse Z verticale rivolto verso l'alto e l'asse Y verso destra.

PARATIE PLUS è un codice agli elementi finiti che simula il problema di uno scavo sostenuto da diaframmi flessibili e permette di valutare il comportamento della parete di sostegno durante tutte le fasi intermedie e nella configurazione finale. Il problema è ricondotto ad un problema piano in cui viene analizzata una "fetta" di parete di larghezza unitaria, come mostrato nella Figura seguente La modellazione numerica dell'interazione terreno-struttura è del tipo "TRAVE SU SUOLO ELASTICO": le pareti di sostegno vengono rappresentate con elementi finiti trave il cui comportamento è definito dalla rigidezza flessionale EJ, mentre il terreno viene simulato attraverso elementi elastoplastici monodimensionali(molle) connessi ai nodi delle paratie: ad ogni nodo convergono uno o al massimo due elementi La realizzazione dello scavo sostenuto da una o due paratie, eventualmente tirantate, viene seguita in tutte le varie fasi attraverso due tipi di analisi 1) Analisi classica tramite metodi all'equilibrio Analisi STATICA INCREMENTALE: ogni passo di carico coincide con una ben precisa configurazione caratterizzata da una certa quota di scavo, da un certo insieme di tiranti applicati, da una ben precisa disposizione di carichi applicati. Poiché il comportamento degli elementi finiti è di tipo elastoplastico, ogni configurazione dipende in generale dalle configurazioni precedenti e lo sviluppo di deformazioni plastiche ad un certo passo condiziona la risposta della struttura nei passi successivi. La soluzione ad ogni nuova configurazione (step) viene raggiunta attraverso un calcolo iterativo Newton-Raphson

SISTEMI DI RIFERIMENTO E CONVENZIONI Le coordinate, i carichi, i cedimenti, le reazioni vincolari e gli spostamenti dei NODI sono riferiti ad una terna destra cartesiana globale con l'asse Z verticale rivolto verso l'alto e l'asse Y verso destra.

RIFERIMENTO

Le coordinate, i carichi, i cedimenti, le reazioni vincolari e gli spostamenti dei NODI sono riferiti ad una terna destra

Eurolink S.C.p.A. Pagina 152 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216 F0.doc

Rev. F0

Data 20-06-2011

ELEMENTO TRUSS

1. FORCE : FORZA NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ 2. STRESS : SPORZO

ELEMENTO BEAM (vedi figura 11-1) 1. VA : TAGLIO AL PRIMO ESTREMO : TAGLIO AL SECONDO ESTREMO 3. MA : MOMENTO AL PRIMO ESTREMO 4. MB : MOMENTO AL SECONDO ESTREMO (tutti per unità di profondità)

ELEMENTO ELPL (MOLLA ELASTOPLASTICA)

- 1. PORCE : FORZA NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ
- 2. PLASTIC: DEFORMAZIONE PLASTICA

ELEMENTO WIRE (TIRANTE)

1. FORCE : FORZA NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ

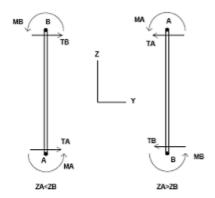


Figura 11-1: convenzioni di segno per l'elemento BEAM

ELEMENTO CELAS (MOLLA ELASTICA)

- 1. PORCE : PORZA NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ 2. MOMENT : MOMENTO NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ
 - ELEMENTO SLAB (SOLETTA FRA DUE PARETI)

1. VA : TAGLIO AL PRIMO ESTREMO 2. VB : TAGLIO AL SECONDO ESTREMO 3. MA : MOMENTO AL PRIMO ESTREMO : MOMENTO AL SECONDO ESTREMO

: AZIONE ASSIALE 5. AXIAL (tutti per unità di profondità)

L'analisi delle sezioni trasversali della paratia ai fini della verfica viene eseguita considerando il sistema di riferiemento riportato nella figura seguente

- asse X coincidente con l'asse dell'asta e con verso dal nodo iniziale al nodo finale;
- immaginando la trave a sezione rettangolare l'asse Y è parallelo alla base e l'asse Z è parallelo all'altezza. La rotazione dell'asta comporta quindi una rotazione di tutta la terna locale.

Le convenzioni utilizzate per le sollecitazioni sugli elementi BEAM della paratia sono le seguenti:

Eurolink S.C.p.A. Pagina 153 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216 F0.doc

Rev. F0

Data 20-06-2011

ELEMENTO TRUSS

1. FORCE : FORZA NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ 2. STRESS : SPORZO

ELEMENTO BEAM (vedi figura 11-1)

1. VA : TAGLIO AL PRIMO ESTREMO : TAGLIO AL SECONDO ESTREMO : MOMENTO AL PRIMO ESTREMO : MOMENTO AL SECONDO ESTREMO (tutti per unità di profondità)

ELEMENTO ELPL (MOLLA ELASTOPLASTICA)

- 1. FORCE : FORZA NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ
- 2. PLASTIC: DEPORMAZIONE PLASTICA

ELEMENTO WIRE (TIRANTE)

1. FORCE : FORZA NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ



Figura 11-1: convenzioni di segno per l'elemento BEAN

ELEMENTO CELAS (MOLLA ELASTICA)

1. PORCE : PORZA NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ 2. MOMENT : MOMENTO NELL'ELEMENTO PER UNITÀ DI PROFONDITÀ

ELEMENTO SLAB (SOLETTA FRA DUE PARETI)

1. VA : TAGLIO AL PRIMO ESTREMO 2. VB : TAGLIO AL SECONDO ESTREMO 3. MA : MOMENTO AL PRIMO ESTREMO : MOMENTO AL SECONDO ESTREMO 4. MB

: AZIONE ASSIALE (tutti per unità di profondità)

CODICI DI VERIFICA

Le normative di riferimento sono:

- DM 2008 "Norme tecniche per le costruzioni"
- CSLP, "Istruzioni per l'applicazione delle Notme tecniche per le costruzioni di cui al DM 14/1/2008"
- EC2 1-1:2004, Eurocode 2 Design of concrete structures
- Ec3 1-1:2005, Eurocodice 3 Design of steel structures
- Ec3 5:2002, Eurocodice 3 Design of steel sheet piles walls
- Ec8:2004 Seismic design of structures
- AISC ASD 9th Edition, 1989
- AISC LRFD 2nd Edition, 2003
- ACI 318-2002
- AASHTO 2000 ADS / LRFD

PARAMETRI DI VERIFICA

DM2008

Verifica a presso flessione della paratia

gamma_c=1.5

gamma_s=1.15

alfa_cc=coeff riduttivo per le resistenze di lunga durata=0.85

Non si considera comportamento incrudente dell'acciaio, k=0 (DM2008 par. 4.1.2.1.2.3)

Eurolink S.C.p.A. Pagina 154 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

Verifica a taglio della paratia theta=inclinazione dei puntoni compressi=45° alfa=angolo di inclinazione dell'armatura trasversale=90°

Verifica tensioni in esercizio Si considera lo scenario di progetto con tutti coeff moltiplicatori=1 sigmac_amm=0.6*fck sigmas_amm=0.8*fyk

Verifica a fessurazione in esercizio

Si considera lo scenario di progetto con tutti coeff moltiplicatori=1 sigmas_amm=0.8*fyk

kt = 0.4 (per carichi a lunga termine).

Ac.eff= 2.5*B*(h-d) (B=base sezione, h=altezza sezione, d=altezza utile)

c=copriferro=distanza tra bordo sezione e asse armature

d dipende dalla direzione di sollecitazione dei momenti flettenti

Alpha_e = Es/Ecm (Ecm calcolato dai parametri materiali)

k1=Bond coefficient=0.8000

k2=Strain distribution coefficient=0.5000

k3=valore suggerito da Ec2=3.4000

k4=valore suggerito da Ec2=0.4250

Phi=diametro medio delle barre di armature

EC2 1-1:2004

Verifica a presso flessione della paratia

gamma_c=1.5

gamma_s=1.15

alfa_cc=coeff riduttivo per le resistenze di lunga durata=0.85

Verifica a taglio della paratia

theta=inclinazione dei puntoni compressi=45°

alfa=angolo di inclinazione dell'armatura trasversale=90°

Verifica tensioni in esercizio

Si considera lo scenario di progetto con tutti coeff moltiplicatori=1

sigmac_amm=0.6*fck

sigmas_amm=0.8*fyk

Verifica a fessurazione in esercizio

Si considera lo scenario di progetto con tutti coeff moltiplicatori=1

sigmas_amm=0.8*fyk

kt = 0.4 (per carichi a lungo termine).

Ac.eff= 2.5*B*(h-d) (B=base sezione, h=altezza sezione, d=altezza utile)

c=copriferro=distanza tra bordo sezione e asse armature

d dipende dalla direzione di sollecitazione dei momenti flettenti

Alpha_e = Es/Ecm (Ecm calcolato dai parametri materiali)

k1=Bond coefficient=0.8000

k2=Strain distribution coefficient=0.5000

k3=valore suggerito da Ec2=3.4000

k4=valore suggerito da Ec2=0.4250

Eurolink S.C.p.A. Pagina 155 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Progetto: Ponte FIP Annunziata
Risultati per la Design Section 1: 0: DM08_ITA: Comb. 1: A1+M1+R1

APPROCCI DI PROGETTO E FATTORI DI COMBINAZIONE

Scenari di progetto utilizzati (da Normativa o personalizzati) e relativi fattori di combinazione

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	DM08_ITA	1: A1+M1+R1	1	1	1	0	1.3	1.5	1.2	1.1	1.3	1	1.3	1	1.35	0.9	1	1
1	DM08_ITA	1: A1+M1+R1	1	1	1	0	1.3	1.5	1.2	1.1	1.3	1	1.3	1	1.35	0.9	1	1

Stage=Fase di scavo

Design Code=Codice di verifica

Ftan fr=fattore moltiplicatoretangente angolo di attrito

F C'=fattore moltiplicatorecoesione efficace

F Su'=fattore moltiplicatorecoesione non drenata

F EQ=fattore moltiplicatoreazione sismica

F perm load=fattore moltiplicatore carichi permanenti

F temp load=fattore moltiplicatore carichi accidentali/variabili

F perm supp=fattore di riduzione resistenza per verifica pull out tirante

F temp supp=fattore di riduzione resistenza per verifica pull out tirante

F earth Dstab=fattore moltiplicatore per spinta attiva nel caso sfavorevole

F earth stab=fattore moltiplicatore per spinta attiva nel caso favorevole

F GWT Dstab (ground water)=fattore moltiplicatore per spinta idrostatica sfavorevole

F GWT stab (ground water)=fattore moltiplicatore per spinta idrostatica favorevole

F HYD Dstab=fattore moltiplicatore per spinta idrodinamica sfavorevole

F HYD stab=fattore moltiplicatore per spinta idrodinamica favorevole

F UPL Dstab=fattore moltiplicatore per sifonamento sfavorevole

F UPL stab=fattore moltiplicatore per sifonamento favorevole

DATI TERRENO

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	Eur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(kN/m3)	(kN/m3)	(deg)	(kPa)	(kPa)	(deg)	(deg)	(kPa)	(kPa)	Springs	Springs	Springs	Springs		Model	
Calcari brecciati	27	20	27	0	N/A	N/A	N/A	130000	130000	0.38	2.66	N/A	N/A	True	Linear	
Depositi alluvionali	26.5	18	38	0	N/A	N/A	N/A	50000	50000	0.24	4.2	N/A	N/A	True	Linear	

gtot=peso specifico /totale terreno gdry=peso secco del terreno

Eurolink S.C.p.A. Pagina 156 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

Frict=angolo di attrito di calcolo

C'=coesione efficace

Su = Coesione non drenata, parametro attivo per terreni tipo CLAY in condizioni NON drenate

Dilat=Dilatanza terreno (parametro valido solo in analisi non lineare)

Evc=modulo a compressioen vergine molla equivalente terreno

Eur=modulo di scarico/ricarico (fase elastica) molla equivalente terreno

Kap= coefficiente di spinta attiva di picco

Kpp= coefficiente di spinta passiva di picco

Kacv= coefficiente di spinta attiva di picco

Kpcv= coefficiente di spinta passiva di picco

Spring models= modalità di definizione dei moduli di rigidezza molle terreno (LIN, EXP, SIMC)

LIN= Lineare-Elastico-Perfettamente plastico

EXP: esponenziale, SUB: Modulo di reazione del sottosuolo

SIMC= Modo semplificato per argille

STRATIGRAFIA TERRENI

Top Elev= quota superiore strato Soil type=nome del terreno OCR=rapporto di sovraconsolidazione K0=coefficiente di spinta a riposo

Nome: Boring 1, pos: (-8, 0)

Top elev.	Soil type	OCR	Ko
0	Depositi alluvionali	1	0.38
-14	Calcari brecciati	1	0.55

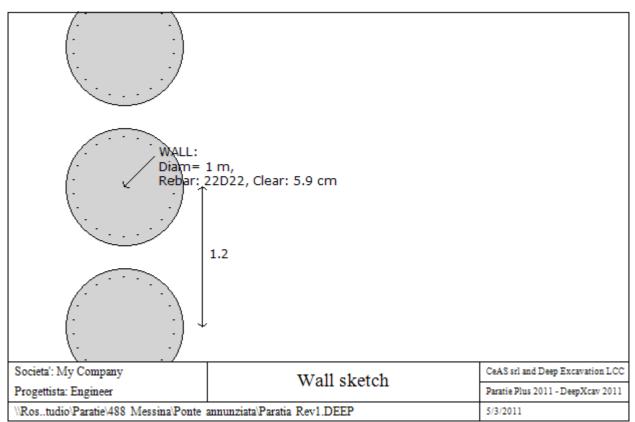
PROPRIETA' SEZIONI TRAVI DI RIPARTIZIONE

Sezioni paratia0: Paratia

Eurolink S.C.p.A. Pagina 157 di 238

Codice documento

Rev.


Data

RELAZIONE DI CALCOLO

ST0216 F0.doc

F0

20-06-2011

Sezioni paratia0: Paratia

Tipo paratia: Pali tangenti: pali in calcestruzzo armato Quota sommita' paratia: 0 m Quota piede paratia: -15 m Dimensione fuori piano paratia: 1.2 Spessore paratia = 1

Ampiezza zona spinta passiva al di sotto del piano di scavo: 1.2 Ampiezza zona spinta attiva al di sotto del piano di scavo: 1.2

fc' cls = 20.7 Fy barre = 413.8 Ecls = 29420 FcT calcestruzzo a trazione = 10% di Fc'

fy profilati in acciaio = 248.3 Eacciaio = 1961330

Attrito paratia: Ignorato

Le capacita' paratie in acciaio sono calcolate con NTC 2008

Le capacita' paratie in calcestruzzo sono calcolate con ACI 318-2002.

Nota: con la capacita' ultima si dovrebbe adottare un fattore di sicurezza strutturale.

Proprieta' paratie di pali tangenti

Tipo di sezione di calcestruzzo: Rettangolare

Dimensioni della sezione

D = 100 m B = 100 m A = 7853.9816 cm2 lxx = 4907956.51 cm4

Armatura longitudinale

Barre cima: N = 22 barre #D22 = AsTop 83.622 cm2, Ctop = 7 m

Barre fondo: N = 22 barre #D25 = AsBot 39.2699081698724 cm2, Cbot = 7 m

Armatura a taglio

Bar #D10 = As 0.785 cm2, sV = 25 m, sH = 25 m

PROPRIETA' GENERALI

Le travi di ripartizione sono utilizzate sui supporti come elementi strutturali ma non vengono inclusi nel calcolo della rigidezza della paratia.

f'c=fck= resistenza cilindrica del calcestruzzo

Eurolink S.C.p.A. Pagina 158 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

fyk=fy= resistenza caratteristica acciaio

fy= resistenza caratteristica barre di armatura

TABELLA DEI PARAMETRI (parametri principali)

1) Tutte le travi di ripartizione in calcestruzzo hanno sezione rettangolare

N/A= dato non disponibile

Fy=fyk

F'c=fck

D= altezza della trave

B= larghezza della trave

2)Proprieta' della trave in acciaio

W= peso per unita' di lunghezza

A= area

D= diametero

tw= spessore anima

tp= spessore tubo

bf= larghezza ala

tf= spessore ala

k= spessore flangia

Ixx= modulo di inerzia asse forte (per unita' di lunghezza)

Sxx= momento statico asse forte (per unita' di lunghezza)

rx= raggio giratore di inerzia - asse X

ry= raggio giratore di inerzia - asse Y

lyy= modulo di inerzia asse debole (per unita' di lunghezza)

Syy= momento statico asse debole (per unita' di lunghezza)

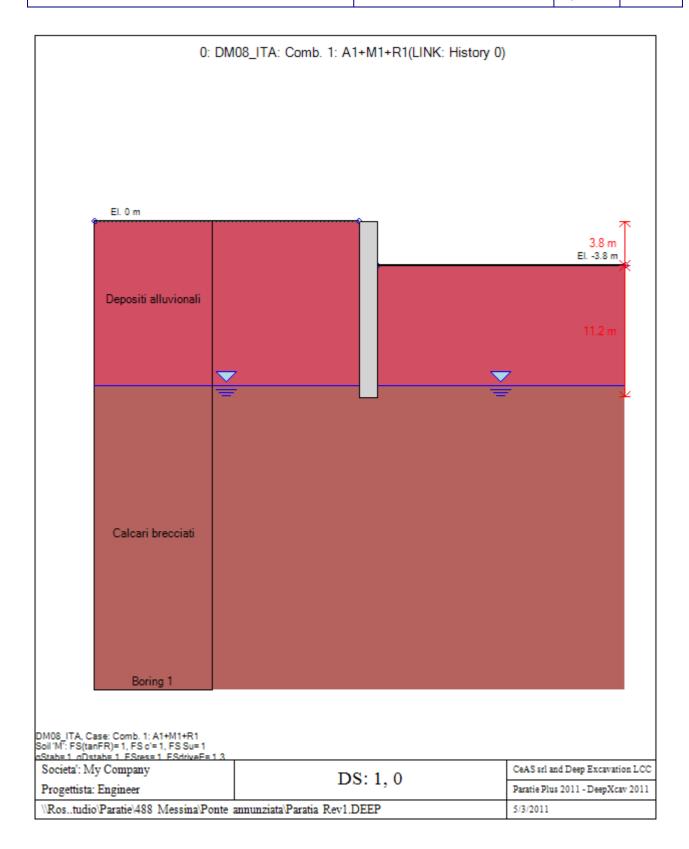
rT= raggio giratore per la torsione

Cw= costante di ingobbimento

GRAFICI FASI DI SCAVO

Di seguito si riportano gli schemi grafici delle fasi di scavo principali.

Eurolink S.C.p.A. Pagina 159 di 238



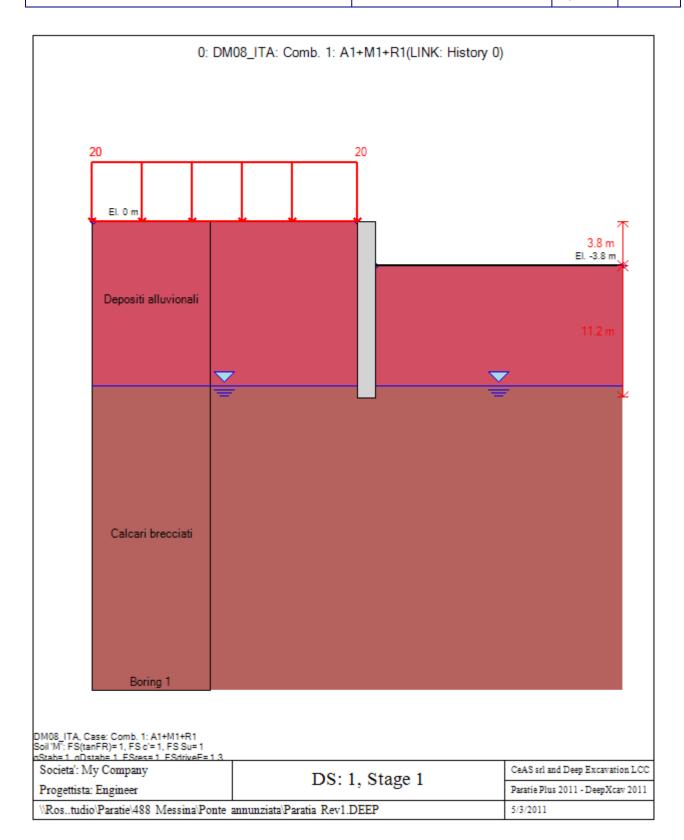
RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 160 di 238



RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 161 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

PARAMETRI DI CALCOLO PER SINGOLA FASE

Sommario delle assunzioni dell'ultima fase

Name	Analysis	Drive	ka- Mult	Htr T/B	Resist	Res	Contlever	Support	Axial	Used	Min Toe	Toe	Toe
	Method	Press		(%)	Press	Mult	Method	Model	Incl	FSwall	FDtoe	FSrot	FSpas
Stage 0	Springs-Up	Ka	N/A	N/A	Кр	N/A		Fixed	N/A	1	0	0	0
Stage 1	Springs-Up	Ka	N/A	N/A	Кр	N/A		Fixed	N/A	1	0	0	0

Name=nome fase

Analysis method=metodo di calcolo

COnventional=analisi all'equilibriolimite

springs UP=analisi non lineare (schema a molle elasto plastiche)

DR=analisi per terreni tipo argilla in condizione drenata

U=analisi per terreni tipo argilla in condizione NON drenata

Up=analisi non drenata solo per i terreni selezionati

Drive press=Ka=spinta terreno attiva

ka mult=eventuale moltiplicatore Ka

Htr T/B (%)=schema pressione attiva di tipo trapezioidale

Resit press=Kp=spinta terreno passiva

Res Mult=eventuale moltiplicatore Kp

COntle Method=

Support Model=tipologia vincoli fissi (fixed=fissi)

Axial Incl=se azione assiale inclusa

Used FS wall=coeff di riduzione dominio MN

Min FD TOe=sicurezza minima per infissione (analisi classica)

Toe FS rot=sicurezza a rotazione (analisi classica)

Toe FSpas=sicurezza sulle pressioni agenti/resistenti (analisi classica)

CARICHI DI SUPERFICIE

Di seguito si riportano i carichi di superficie. Il carico di superifcie rappresenta un carico di pressione parziale o lungo quanto le superifici di monte/valle uniforme o trapezioidale.

Sovraccarico 0: X1 = -15, X2 = 0

Sovraccarico variabile

Stage No	Active	X1	Z1	qX1	qZ1	X2	Z2	qX2	qZ2
	Si'/No	(m)	(m)	(kPa)	(kPa)	(m)	(m)	(kPa)	(kPa)
0	No	-15	0	0	0	0	0	0	0
1	Si'	-15	0	0	19.9997	0	0	0	19.9997

Eurolink S.C.p.A. Pagina 162 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

LEGENDA

Stage No=fase di scavo

Active=stato carico (Yes=attivo)

X1=coordinata X primo estremo carico

Z1=coordinata Z primo estremo carico

qX1=valore carico in direz orizzontale primo estremo

qZ1=valore carico in direz verticale primo estremo

.

X2=coordinata X secondo estremo carico

Z2=coordinata Z secondo estremo carico

qX2=valore carico in direz orizzontale secondo estremo

qZ2=valore carico in direz verticale secondo estremo

Stabilita' del piede

FS infissione per fase

	FS minimo al piede	FS Passivo	FS Rotazione	FS Lunghezza	FS Pass. mobilizzato	FS Forza attiva / attiva teorica
Stage #0	N/A	N/A	N/A	N/A	7.161	1.184
Stage #1	N/A	N/A	N/A	N/A	6.383	1.14

TABELLA RISULTATI PARATIA

Paratia Stage: 0

Wall	EL	М	V	dx	Mcap L	Mcap R	VcapL	VcapR
Node	(m)	(kN- m/m)	(kN/m)	(cm)	(kN- m/m)	(kN- m/m)	(kN/m)	(kN/m)
0	0	0	0	0.56	949.94	951.25	224.31	224.31
2	-0.4	0.04	0.22	0.53	949.94	951.25	224.31	224.31
4	-0.8	0.45	1.34	0.51	949.94	951.25	224.31	224.31
6	-1.2	1.56	3.34	0.48	949.94	951.25	224.31	224.31
8	-1.6	3.74	6.24	0.46	949.94	951.25	224.31	224.31
10	-2	7.35	10.02	0.44	949.94	951.25	224.31	224.31
12	-2.4	12.74	14.7	0.41	949.94	951.25	224.31	224.31
14	-2.8	20.27	20.27	0.39	949.94	951.25	224.31	224.31
16	-3.2	30.3	26.73	0.36	949.94	951.25	224.31	224.31
18	-3.6	43.17	34.08	0.34	949.94	951.25	224.31	224.31
20	-4	59.26	42.33	0.32	949.94	951.25	224.31	224.31
22	-4.4	75.76	39.66	0.29	949.94	951.25	224.31	224.31
24	-4.8	89.51	32.68	0.27	949.94	951.25	224.31	224.31

Eurolink S.C.p.A. Pagina 163 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

					_		_	
26	-5.2	100.64	26.23	0.25	949.94	951.25	224.31	224.31
28	-5.6	109.33	20.26	0.23	949.94	951.25	224.31	224.31
30	-6	115.75	14.7	0.21	949.94	951.25	224.31	224.31
32	-6.4	120.07	9.52	0.2	949.94	951.25	224.31	224.31
34	-6.8	122.41	4.64	0.18	949.94	951.25	224.31	224.31
36	-7.2	122.87	0	0.17	949.94	951.25	224.31	224.31
38	-7.6	121.53	-4.45	0.15	949.94	951.25	224.31	224.31
40	-8	118.44	-8.79	0.14	949.94	951.25	224.31	224.31
42	-8.4	113.64	-13.06	0.13	949.94	951.25	224.31	224.31
44	-8.8	107.14	-17.34	0.12	949.94	951.25	224.31	224.31
46	-9.2	98.93	-21.55	0.11	949.94	951.25	224.31	224.31
48	-9.6	89.35	-24.65	0.1	949.94	951.25	224.31	224.31
50	-10	78.89	-26.56	0.1	949.94	951.25	224.31	224.31
52	-10.4	67.98	-27.42	0.09	949.94	951.25	224.31	224.31
54	-10.8	57.01	-27.35	0.08	949.94	951.25	224.31	224.31
56	-11.2	46.32	-26.45	0.08	949.94	951.25	224.31	224.31
58	-11.6	36.22	-24.81	0.07	949.94	951.25	224.31	224.31
60	-12	26.97	-22.5	0.07	949.94	951.25	224.31	224.31
62	-12.4	18.83	-19.57	0.07	949.94	951.25	224.31	224.31
64	-12.8	12.04	-16.06	0.06	949.94	951.25	224.31	224.31
66	-13.2	6.82	-12.01	0.06	949.94	951.25	224.31	224.31
68	-13.6	3.38	-7.42	0.06	949.94	951.25	224.31	224.31
70	-14	1.94	-2.3	0.05	949.94	951.25	224.31	224.31
72	-14.4	0.9	-2.59	0.05	949.94	951.25	224.31	224.31
74	-14.8	0.13	-1.61	0.05	949.94	951.25	224.31	224.31

Paratia Stage: 1

Wall	EL	М	V	dx	Mcap L	Mcap R	VcapL	VcapR
Node	(m)	(kN- m/m)	(kN/m)	(cm)	(kN- m/m)	(kN- m/m)	(kN/m)	(kN/m)
0	0	0	0.71	1	949.94	951.25	224.31	224.31
2	-0.4	0.62	2.37	0.95	949.94	951.25	224.31	224.31
4	-0.8	2.73	6.34	0.91	949.94	951.25	224.31	224.31
6	-1.2	6.7	11.2	0.86	949.94	951.25	224.31	224.31
8	-1.6	12.88	16.95	0.82	949.94	951.25	224.31	224.31
10	-2	21.63	23.59	0.77	949.94	951.25	224.31	224.31
12	-2.4	33.31	31.13	0.73	949.94	951.25	224.31	224.31
14	-2.8	48.26	39.55	0.68	949.94	951.25	224.31	224.31
16	-3.2	66.86	48.87	0.64	949.94	951.25	224.31	224.31
18	-3.6	89.45	59.08	0.59	949.94	951.25	224.31	224.31
20	-4	116.38	70.18	0.55	949.94	951.25	224.31	224.31

Eurolink S.C.p.A. Pagina 164 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

_	_				_		_	
22	-4.4	144.89	70.36	0.51	949.94	951.25	224.31	224.31
24	-4.8	169.4	57.73	0.47	949.94	951.25	224.31	224.31
26	-5.2	188.49	44.49	0.43	949.94	951.25	224.31	224.31
28	-5.6	202.68	32.57	0.4	949.94	951.25	224.31	224.31
30	-6	212.47	21.89	0.36	949.94	951.25	224.31	224.31
32	-6.4	218.34	12.34	0.33	949.94	951.25	224.31	224.31
34	-6.8	220.7	3.81	0.3	949.94	951.25	224.31	224.31
36	-7.2	219.91	-3.81	0.27	949.94	951.25	224.31	224.31
38	-7.6	216.32	-10.64	0.25	949.94	951.25	224.31	224.31
40	-8	210.21	-16.78	0.23	949.94	951.25	224.31	224.31
42	-8.4	201.81	-22.36	0.2	949.94	951.25	224.31	224.31
44	-8.8	191.32	-27.46	0.19	949.94	951.25	224.31	224.31
46	-9.2	178.91	-32.21	0.17	949.94	951.25	224.31	224.31
48	-9.6	164.67	-36.68	0.15	949.94	951.25	224.31	224.31
50	-10	148.71	-40.98	0.14	949.94	951.25	224.31	224.31
52	-10.4	131.33	-44.15	0.13	949.94	951.25	224.31	224.31
54	-10.8	113.2	-45.56	0.12	949.94	951.25	224.31	224.31
56	-11.2	94.98	-45.41	0.11	949.94	951.25	224.31	224.31
58	-11.6	77.25	-43.86	0.1	949.94	951.25	224.31	224.31
60	-12	60.51	-41.07	0.09	949.94	951.25	224.31	224.31
62	-12.4	45.23	-37.15	0.09	949.94	951.25	224.31	224.31
64	-12.8	31.83	-32.19	0.08	949.94	951.25	224.31	224.31
66	-13.2	20.71	-26.26	0.07	949.94	951.25	224.31	224.31
68	-13.6	12.24	-19.39	0.07	949.94	951.25	224.31	224.31
70	-14	6.79	-11.63	0.06	949.94	951.25	224.31	224.31
72	-14.4	2.79	-9.3	0.06	949.94	951.25	224.31	224.31
74	-14.8	0.36	-4.82	0.05	949.94	951.25	224.31	224.31
	_							
				·				

LEGENDA

Wall node=numero nodo

EL=quota

Sht L=pressione terreno orizzontale totale a sx paratia

Sht R=pressione terreno orizzontale totale a dx paratia

Shs L=pressione terreno orizzontale efficace a sx paratia

Shs R=pressione terreno orizzontale efficace a dx paratia

q=pressioni dovute al sovraccarico

Ü L=pressione acqua a sx paratia

U R=pressione acqua a dx paratia

M=momento flettente (per metro)

V=taglio (per metro)

dx=spostamento orizzontale

McapL=Momento ultimo lato sx

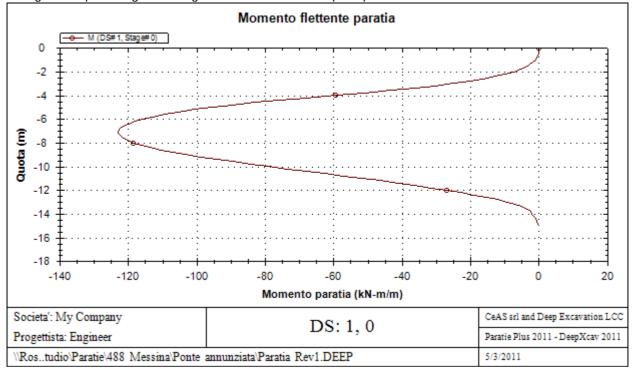
McapR=Momento ultimo lato dx

VcapL=Taglio ultimo resistente lato sx

Eurolink S.C.p.A. Pagina 165 di 238

RELAZIONE DI CALCOLO


Codice documento
ST0216_F0.doc

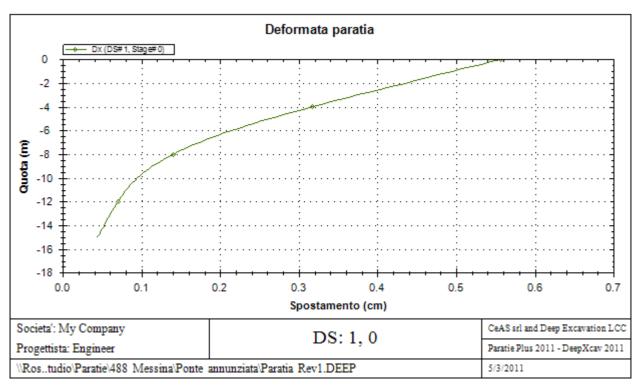

Rev. F0

Data 20-06-2011

VcapR=Taglio ultimo resistente lato dx

GRAFICI FASI DI SCAVO

Eurolink S.C.p.A. Pagina 166 di 238



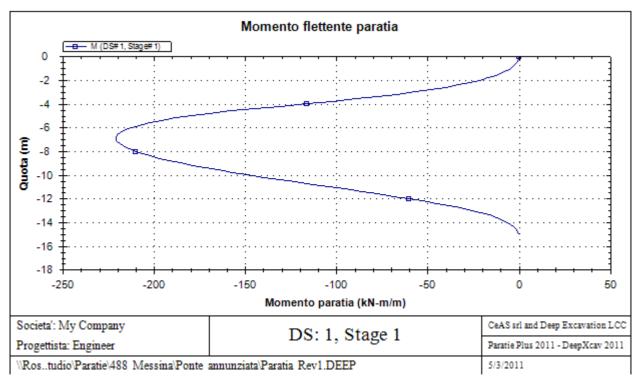

RELAZIONE DI CALCOLO

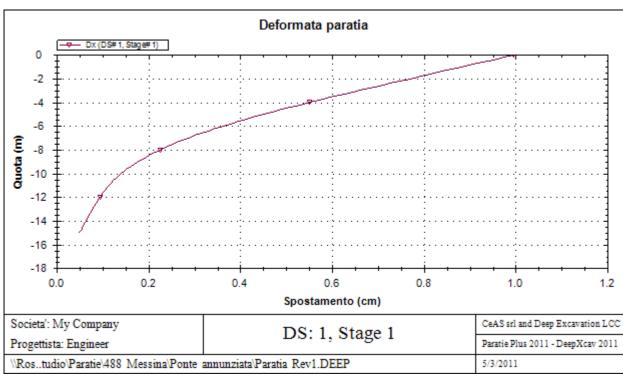
Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 167 di 238



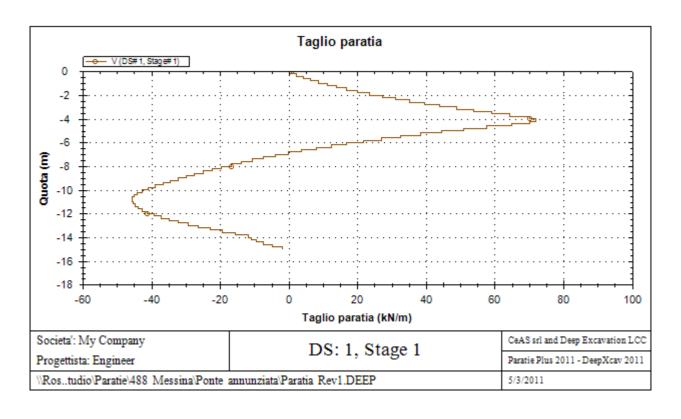

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 168 di 238



RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 169 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Progetto: Ponte FIP Annunziata
Risultati per la Design Section 2: 0: DM08_ITA: Comb. 2: A2+M2+R1

APPROCCI DI PROGETTO E FATTORI DI COMBINAZIONE

Scenari di progetto utilizzati (da Normativa o personalizzati) e relativi fattori di combinazione

Stage	Design Code	Design Case	F(tan	F	F	F	F(perm	F(temp	F(perm	F(temp	F Earth	F Earth	F GWT	F GWT	F HYD	F HYD	F UPL	F UPL
	Name		fr)	(c')	(Su)	(EQ)	load)	load)	sup)	sup)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)	(Dstab)	(stab)
0	DM08_ITA	2: A2+M2+R1	1.25	1.25	1.4	0	1	1.3	1.2	1.1	1	1	1	1	1.35	0.9	1	1
1	DM08_ITA	2: A2+M2+R1	1.25	1.25	1.4	0	1	1.3	1.2	1.1	1	1	1	1	1.35	0.9	1	1

Stage=Fase di scavo

Design Code=Codice di verifica

Ftan fr=fattore moltiplicatoretangente angolo di attrito

- F C'=fattore moltiplicatorecoesione efficace
- F Su'=fattore moltiplicatorecoesione non drenata
- F EQ=fattore moltiplicatoreazione sismica
- F perm load=fattore moltiplicatore carichi permanenti
- F temp load=fattore moltiplicatore carichi accidentali/variabili
- F perm supp=fattore di riduzione resistenza per verifica pull out tirante
- F temp supp=fattore di riduzione resistenza per verifica pull out tirante
- F earth Dstab=fattore moltiplicatore per spinta attiva nel caso sfavorevole
- F earth stab=fattore moltiplicatore per spinta attiva nel caso favorevole
- F GWT Dstab (ground water)=fattore moltiplicatore per spinta idrostatica sfavorevole
- F GWT stab (ground water)=fattore moltiplicatore per spinta idrostatica favorevole
- F HYD Dstab=fattore moltiplicatore per spinta idrodinamica sfavorevole
- F HYD stab=fattore moltiplicatore per spinta idrodinamica favorevole
- F UPL Dstab=fattore moltiplicatore per sifonamento sfavorevole
- F UPL stab=fattore moltiplicatore per sifonamento favorevole

DATI TERRENO

Name	g tot	g dry	Frict	C'	Su	FRp	FRcv	Eload	Eur	kAp	kPp	kAcv	kPcv	Vary	Spring	Color
	(kN/m3)	(kN/m3)	(deg)	(kPa)	(kPa)	(deg)	(deg)	(kPa)	(kPa)	Springs	Springs	Springs	Springs		Model	
Calcari brecciati	27	20	27	0	N/A	N/A	N/A	130000	130000	0.38	2.66	N/A	N/A	True	Linear	
Depositi alluvionali	26.5	18	38	0	N/A	N/A	N/A	50000	50000	0.24	4.2	N/A	N/A	True	Linear	

Eurolink S.C.p.A. Pagina 170 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

20-06-2011

Data

gtot=peso specifico /totale terreno gdry=peso secco del terreno

Frict=angolo di attrito di calcolo

C'=coesione efficace

Su = Coesione non drenata, parametro attivo per terreni tipo CLAY in condizioni NON drenate

Dilat=Dilatanza terreno (parametro valido solo in analisi non lineare)

Evc=modulo a compressioen vergine molla equivalente terreno

Eur=modulo di scarico/ricarico (fase elastica) molla equivalente terreno

Kap= coefficiente di spinta attiva di picco

Kpp= coefficiente di spinta passiva di picco

Kacv= coefficiente di spinta attiva di picco

Kpcv= coefficiente di spinta passiva di picco

Spring models= modalità di definizione dei moduli di rigidezza molle terreno (LIN, EXP, SIMC)

LIN= Lineare-Elastico-Perfettamente plastico

EXP: esponenziale, SUB: Modulo di reazione del sottosuolo

SIMC= Modo semplificato per argille

STRATIGRAFIA TERRENI

Top Elev= quota superiore strato Soil del type=nome terreno OCR=rapporto di sovraconsolidazione

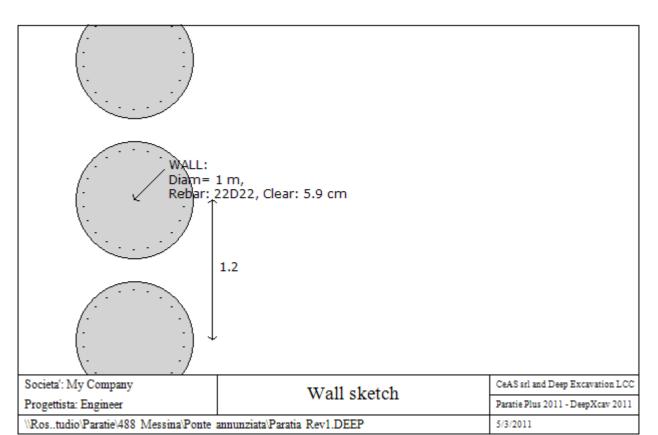
K0=coefficiente di spinta a riposo Nome: Boring 1, pos: (-8, 0)

Top elev.	Soil type	OCR	Ko
0	Depositi alluvionali	1	0.38
-14	Calcari brecciati	1	0.55

PROPRIETA' SEZIONI TRAVI DI RIPARTIZIONE

Sezioni paratia0: Paratia

Eurolink S.C.p.A. Pagina 171 di 238


RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev.

F0

Data 20-06-2011

Sezioni paratia0: Paratia

Tipo paratia: Pali tangenti: pali in calcestruzzo armato Quota sommita' paratia: 0 m Quota piede paratia: -15 m Dimensione fuori piano paratia: 1.2 Spessore paratia = 1

Ampiezza zona spinta passiva al di sotto del piano di scavo: 1.2 Ampiezza zona spinta attiva al di sotto del piano di scavo: 1.2

fc' cls = 20.7 Fy barre = 413.8 Ecls = 29420 FcT calcestruzzo a trazione = 10% di Fc'

fy profilati in acciaio = 248.3 Eacciaio = 1961330

Attrito paratia: Ignorato

Le capacita' paratie in acciaio sono calcolate con NTC 2008

Le capacita' paratie in calcestruzzo sono calcolate con ACI 318-2002.

Nota: con la capacita' ultima si dovrebbe adottare un fattore di sicurezza strutturale.

Proprieta' paratie di pali tangenti

Tipo di sezione di calcestruzzo: Rettangolare

Dimensioni della sezione

D = 100 m B = 100 m A = 7853.9816 cm2 lxx = 4907956.51 cm4

Armatura longitudinale

Barre cima: N = 22 barre #D22 = AsTop 83.622 cm2, Ctop = 7 m

Barre fondo: N = 22 barre #D25 = AsBot 39.2699081698724 cm2, Cbot = 7 m

Armatura a taglio

Bar #D10 = As 0.785 cm2, sV = 25 m, sH = 25 m

PROPRIETA' GENERALI

Le travi di ripartizione sono utilizzate sui supporti come elementi strutturali ma non vengono inclusi nel calcolo della rigidezza della paratia.

f'c=fck= resistenza cilindrica del calcestruzzo

Eurolink S.C.p.A. Pagina 172 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

fyk=fy= resistenza caratteristica acciaio fy= resistenza caratteristica barre di armatura

TABELLA DEI PARAMETRI (parametri principali)

1) Tutte le travi di ripartizione in calcestruzzo hanno sezione rettangolare

N/A= dato non disponibile

Fy=fyk

F'c=fck

D= altezza della trave

B= larghezza della trave

2)Proprieta' della trave in acciaio

W= peso per unita' di lunghezza

A= area

D= diametero

tw= spessore anima

tp= spessore tubo

bf= larghezza ala

tf= spessore ala

k= spessore flangia

Ixx= modulo di inerzia asse forte (per unita' di lunghezza)

Sxx= momento statico asse forte (per unita' di lunghezza)

rx= raggio giratore di inerzia - asse X

ry= raggio giratore di inerzia - asse Y

lyy= modulo di inerzia asse debole (per unita' di lunghezza)

Syy= momento statico asse debole (per unita' di lunghezza)

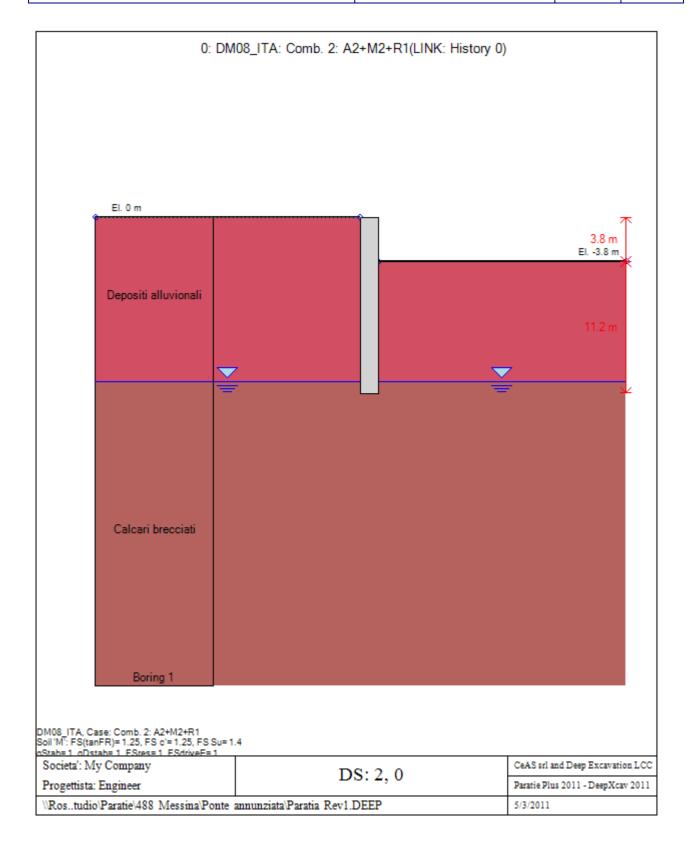
rT= raggio giratore per la torsione

Cw= costante di ingobbimento

GRAFICI FASI DI SCAVO

Di seguito si riportano gli schemi grafici delle fasi di scavo principali.

Eurolink S.C.p.A. Pagina 173 di 238



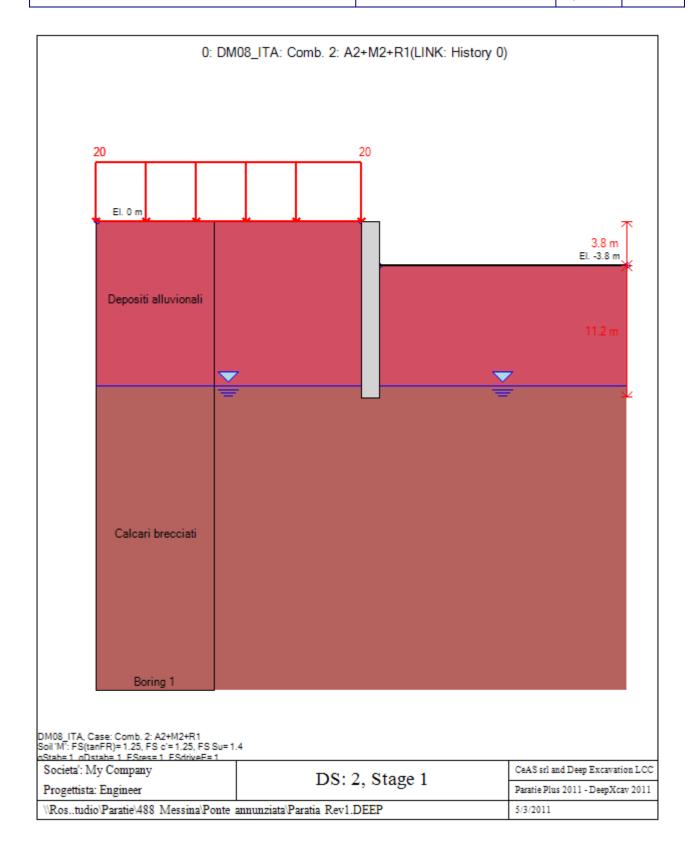
RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 174 di 238



RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 175 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

PARAMETRI DI CALCOLO PER SINGOLA FASE

Sommario delle assunzioni dell'ultima fase

Name	Analysis	Drive	ka- Mult	Htr T/B	Resist	Res	Contlever	Support	Axial	Used	Min Toe	Toe	Toe
	Method	Press		(%)	Press	Mult	Method	Model	Incl	FSwall	FDtoe	FSrot	FSpas
Stage 0	Springs-Up	Ka	N/A	N/A	Кр	N/A		Fixed	N/A	1	0	0	0
Stage 1	Springs-Up	Ka	N/A	N/A	Кр	N/A		Fixed	N/A	1	0	0	0

Name=nome fase

Analysis method=metodo di calcolo

COnventional=analisi all'equilibriolimite

springs UP=analisi non lineare (schema a molle elasto plastiche)

DR=analisi per terreni tipo argilla in condizione drenata

U=analisi per terreni tipo argilla in condizione NON drenata

Up=analisi non drenata solo per i terreni selezionati

Drive press=Ka=spinta terreno attiva

ka mult=eventuale moltiplicatore Ka

Htr T/B (%)=schema pressione attiva di tipo trapezioidale

Resit press=Kp=spinta terreno passiva

Res Mult=eventuale moltiplicatore Kp

COntle Method=

Support Model=tipologia vincoli fissi (fixed=fissi)

Axial Incl=se azione assiale inclusa

Used FS wall=coeff di riduzione dominio MN

Min FD TOe=sicurezza minima per infissione (analisi classica)

Toe FS rot=sicurezza a rotazione (analisi classica)

Toe FSpas=sicurezza sulle pressioni agenti/resistenti (analisi classica)

CARICHI DI SUPERFICIE

Di seguito si riportano i carichi di superficie. Il carico di superifcie rappresenta un carico di pressione parziale o lungo quanto le superifici di monte/valle uniforme o trapezioidale.

Sovraccarico 0: X1 = -15, X2 = 0

Sovraccarico variabile

Stage No	Active	X1	Z1	qX1	qZ1	X2	Z2	qX2	qZ2
	Si'/No	(m)	(m)	(kPa)	(kPa)	(m)	(m)	(kPa)	(kPa)
0	No	-15	0	0	0	0	0	0	0
1	Si'	-15	0	0	19.9997	0	0	0	19.9997

Eurolink S.C.p.A. Pagina 176 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

LEGENDA

Stage No=fase di scavo

Active=stato carico (Yes=attivo)

X1=coordinata X primo estremo carico

Z1=coordinata Z primo estremo carico

qX1=valore carico in direz orizzontale primo estremo

qZ1=valore carico in direz verticale primo estremo

.

X2=coordinata X secondo estremo carico

Z2=coordinata Z secondo estremo carico

qX2=valore carico in direz orizzontale secondo estremo

qZ2=valore carico in direz verticale secondo estremo

Stabilita' del piede

FS infissione per fase

	FS minimo al piede	FS Passivo	FS Rotazione	FS Lunghezza	FS Pass. mobilizzato	FS Forza attiva / attiva teorica
Stage #0	N/A	N/A	N/A	N/A	5.046	1.032
Stage #1	N/A	N/A	N/A	N/A	4.287	1.024

TABELLA RISULTATI PARATIA

Paratia Stage: 0

Wall	EL	М	V	dx	Mcap L	Mcap R	VcapL	VcapR
Node	(m)	(kN- m/m)	(kN/m)	(cm)	(kN- m/m)	(kN- m/m)	(kN/m)	(kN/m)
0	0	0	0	0.8	949.94	951.25	224.31	224.31
2	-0.4	0.04	0.22	0.77	949.94	951.25	224.31	224.31
4	-0.8	0.44	1.33	0.74	949.94	951.25	224.31	224.31
6	-1.2	1.55	3.32	0.7	949.94	951.25	224.31	224.31
8	-1.6	3.71	6.19	0.67	949.94	951.25	224.31	224.31
10	-2	7.29	9.95	0.63	949.94	951.25	224.31	224.31
12	-2.4	12.64	14.59	0.6	949.94	951.25	224.31	224.31
14	-2.8	20.11	20.11	0.56	949.94	951.25	224.31	224.31
16	-3.2	30.06	26.52	0.53	949.94	951.25	224.31	224.31
18	-3.6	42.84	33.82	0.5	949.94	951.25	224.31	224.31
20	-4	58.8	42	0.46	949.94	951.25	224.31	224.31
22	-4.4	76.42	44.03	0.43	949.94	951.25	224.31	224.31
24	-4.8	92.3	37.56	0.4	949.94	951.25	224.31	224.31

Eurolink S.C.p.A. Pagina 177 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

							_	_
26	-5.2	104.48	28.17	0.37	949.94	951.25	224.31	224.31
28	-5.6	113.22	19.84	0.34	949.94	951.25	224.31	224.31
30	-6	118.94	12.52	0.32	949.94	951.25	224.31	224.31
32	-6.4	122.01	6.13	0.29	949.94	951.25	224.31	224.31
34	-6.8	122.79	0.62	0.27	949.94	951.25	224.31	224.31
36	-7.2	121.6	-4.09	0.24	949.94	951.25	224.31	224.31
38	-7.6	118.75	-8.07	0.22	949.94	951.25	224.31	224.31
40	-8	114.51	-11.4	0.2	949.94	951.25	224.31	224.31
42	-8.4	109.11	-14.14	0.19	949.94	951.25	224.31	224.31
44	-8.8	102.78	-16.35	0.17	949.94	951.25	224.31	224.31
46	-9.2	95.7	-18.11	0.16	949.94	951.25	224.31	224.31
48	-9.6	88.05	-19.46	0.14	949.94	951.25	224.31	224.31
50	-10	79.95	-20.46	0.13	949.94	951.25	224.31	224.31
52	-10.4	71.55	-21.17	0.12	949.94	951.25	224.31	224.31
54	-10.8	62.94	-21.62	0.11	949.94	951.25	224.31	224.31
56	-11.2	54.22	-21.86	0.1	949.94	951.25	224.31	224.31
58	-11.6	45.45	-21.93	0.09	949.94	951.25	224.31	224.31
60	-12	36.72	-21.71	0.08	949.94	951.25	224.31	224.31
62	-12.4	28.34	-20.65	0.08	949.94	951.25	224.31	224.31
64	-12.8	20.63	-18.75	0.07	949.94	951.25	224.31	224.31
66	-13.2	13.92	-16.03	0.06	949.94	951.25	224.31	224.31
68	-13.6	8.54	-12.54	0.06	949.94	951.25	224.31	224.31
70	-14	4.78	-8.29	0.05	949.94	951.25	224.31	224.31
72	-14.4	1.98	-6.47	0.04	949.94	951.25	224.31	224.31
74	-14.8	0.26	-3.45	0.04	949.94	951.25	224.31	224.31

Paratia Stage: 1

Wall	EL	М	V	dx	Mcap L	Mcap R	VcapL	VcapR
Node	(m)	(kN- m/m)	(kN/m)	(cm)	(kN- m/m)	(kN- m/m)	(kN/m)	(kN/m)
0	0	0	0.8	1.56	949.94	951.25	224.31	224.31
2	-0.4	0.68	2.62	1.49	949.94	951.25	224.31	224.31
4	-0.8	3	6.91	1.42	949.94	951.25	224.31	224.31
6	-1.2	7.29	12.1	1.35	949.94	951.25	224.31	224.31
8	-1.6	13.93	18.16	1.28	949.94	951.25	224.31	224.31
10	-2	23.26	25.11	1.21	949.94	951.25	224.31	224.31
12	-2.4	35.63	32.95	1.14	949.94	951.25	224.31	224.31
14	-2.8	51.4	41.67	1.07	949.94	951.25	224.31	224.31
16	-3.2	70.93	51.27	1	949.94	951.25	224.31	224.31
18	-3.6	94.56	61.76	0.94	949.94	951.25	224.31	224.31
20	-4	122.65	73.13	0.87	949.94	951.25	224.31	224.31

Eurolink S.C.p.A. Pagina 178 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

22	-4.4	153.68	78.35	0.81	949.94	951.25	224.31	224.31
24	-4.8	184.25	75.08	0.74	949.94	951.25	224.31	224.31
26	-5.2	210.97	63.32	0.69	949.94	951.25	224.31	224.31
28	-5.6	230.87	45.24	0.63	949.94	951.25	224.31	224.31
30	-6	244	28.89	0.57	949.94	951.25	224.31	224.31
32	-6.4	251.23	14.64	0.52	949.94	951.25	224.31	224.31
34	-6.8	253.35	2.34	0.48	949.94	951.25	224.31	224.31
36	-7.2	251.1	-8.14	0.43	949.94	951.25	224.31	224.31
38	-7.6	245.16	-16.96	0.39	949.94	951.25	224.31	224.31
40	-8	236.15	-24.26	0.35	949.94	951.25	224.31	224.31
42	-8.4	224.64	-30.18	0.32	949.94	951.25	224.31	224.31
44	-8.8	211.13	-34.86	0.29	949.94	951.25	224.31	224.31
46	-9.2	196.09	-38.43	0.26	949.94	951.25	224.31	224.31
48	-9.6	179.93	-41	0.23	949.94	951.25	224.31	224.31
50	-10	163	-42.69	0.21	949.94	951.25	224.31	224.31
52	-10.4	145.63	-43.61	0.19	949.94	951.25	224.31	224.31
54	-10.8	128.1	-43.83	0.17	949.94	951.25	224.31	224.31
56	-11.2	110.67	-43.46	0.15	949.94	951.25	224.31	224.31
58	-11.6	93.55	-42.55	0.14	949.94	951.25	224.31	224.31
60	-12	76.93	-41.17	0.12	949.94	951.25	224.31	224.31
62	-12.4	60.99	-39.37	0.11	949.94	951.25	224.31	224.31
64	-12.8	45.95	-36.92	0.1	949.94	951.25	224.31	224.31
66	-13.2	32.31	-33.01	0.08	949.94	951.25	224.31	224.31
68	-13.6	20.67	-27.68	0.07	949.94	951.25	224.31	224.31
70	-14	11.58	-20.98	0.06	949.94	951.25	224.31	224.31
72	-14.4	4.66	-15.84	0.05	949.94	951.25	224.31	224.31
74	-14.8	0.59	-8.05	0.04	949.94	951.25	224.31	224.31
	-				•			

LEGENDA

Wall node=numero nodo

EL=quota

Sht L=pressione terreno orizzontale totale a sx paratia

Sht R=pressione terreno orizzontale totale a dx paratia

Shs L=pressione terreno orizzontale efficace a sx paratia

Shs R=pressione terreno orizzontale efficace a dx paratia

q=pressioni dovute al sovraccarico

Ü L=pressione acqua a sx paratia

U R=pressione acqua a dx paratia

M=momento flettente (per metro)

V=taglio (per metro)

dx=spostamento orizzontale

McapL=Momento ultimo lato sx

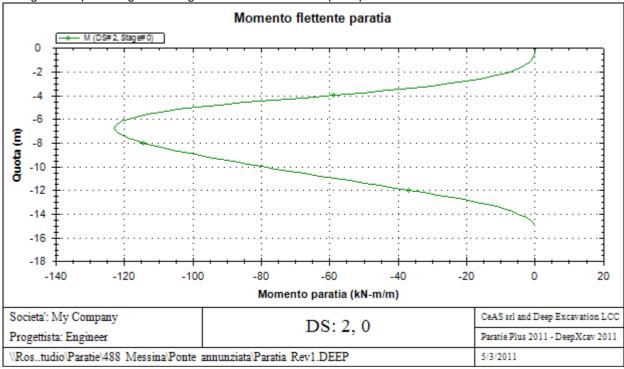
McapR=Momento ultimo lato dx

VcapL=Taglio ultimo resistente lato sx

Eurolink S.C.p.A. Pagina 179 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc


Rev. F0

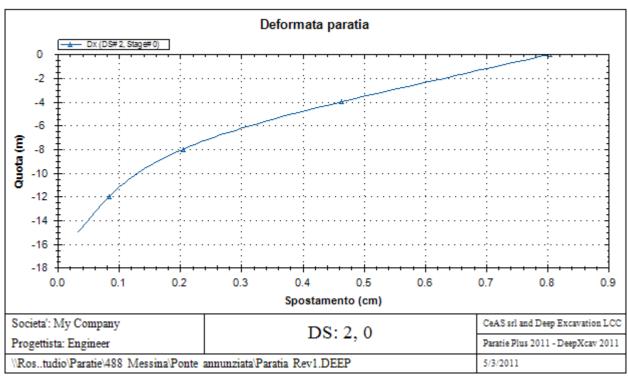
Data 20-06-2011

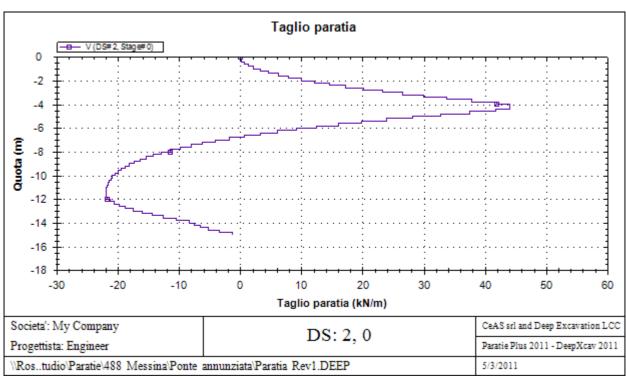
VcapR=Taglio ultimo resistente lato dx

GRAFICI FASI DI SCAVO

Di seguito si riportano gli schemi grafici delle fasi di scavo principali.

Eurolink S.C.p.A. Pagina 180 di 238



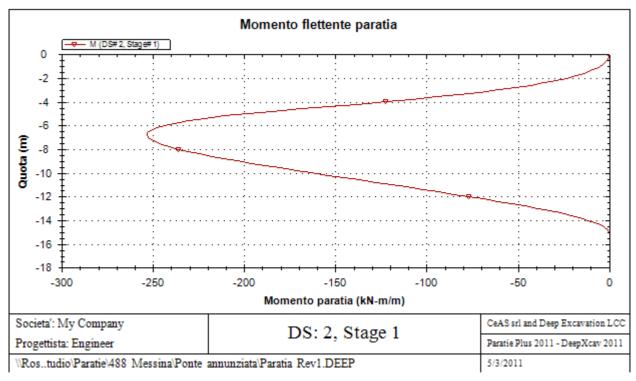

RELAZIONE DI CALCOLO

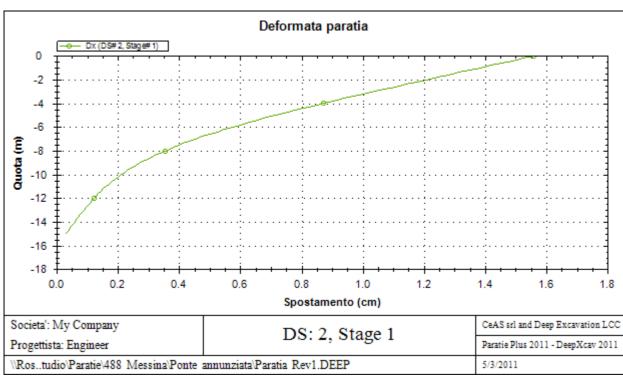
Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 181 di 238



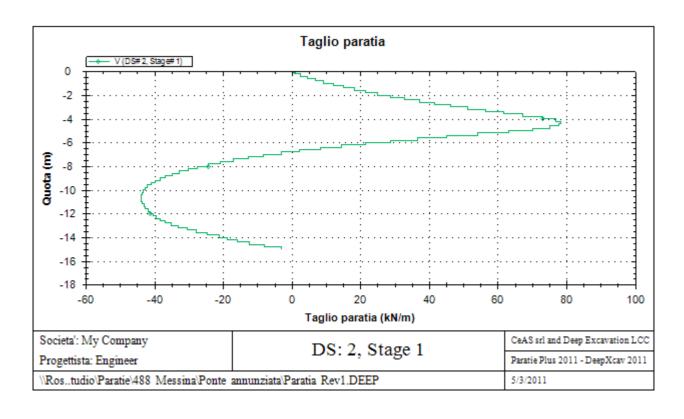

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 182 di 238



RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 183 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

ANALISI DEI CARICHI FASE 1 E 2

Si riportano in primis i valori di sollecitazione nel tratto di palo dalla quota del cordolo sino a quella del letto della fiumara.

TABLE: Elei	TABLE: Element Forces - Frames									
Frame	Station	OutputCase	CaseType	StepType	Р	V2	М3			
Text	m	Text	Text	Text	KN	KN	KN-m			
1	0	INV_STR	Combination	Max	-113,199	-69,069	640,9392			
1	1,5	INV_STR	Combination	Max	-113,199	-129,042	1028,1414			
1	3	INV_STR	Combination	Max	-113,199	-142,34	1445,9225			
1	0	INV_STR	Combination	Min	-561,517	-249,331	181,6778			
1	1,5	INV_STR	Combination	Min	-561,517	-285,985	344,2479			
1	3	INV_STR	Combination	Min	-561,517	-321,8	572,5104			
1	0	INV_GEO	Combination	Max	-100,363	-71,644	589,8046			
1	1,5	INV_GEO	Combination	Max	-100,363	-123,621	940,4369			
1	3	INV_GEO	Combination	Max	-100,363	-135,145	1317,571			
1	0	INV_GEO	Combination	Min	-482,352	-226,101	183,5784			
1	1,5	INV_GEO	Combination	Min	-482,352	-257,868	342,1487			
1	3	INV_GEO	Combination	Min	-482,352	-288,907	557,6525			
1	0	INV_SLV	Combination	Max	-41,418	69,851	-11,3193			
1	1,5	INV_SLV	Combination	Max	-41,418	1,796	-34,4226			
1	3	INV_SLV	Combination	Max	-41,418	-59,569	39,5392			
1	0	INV_SLV	Combination	Min	-106,947	49,746	-56,1122			
1	1,5	INV_SLV	Combination	Min	-106,947	-18,309	-109,0109			
1	3	INV_SLV	Combination	Min	-106,947	-79,674	-64,8445			
6	0	INV_STR	Combination	Max	-119,196	263,19	-181,6778			
6	1,5	INV_STR	Combination	Max	-119,196	291,874	-360,5794			
6	3	INV_STR	Combination	Max	-119,196	321,8	-613,5453			
6	0	INV_STR	Combination	Min	-567,514	85,538	-652,0298			
6	1,5	INV_STR	Combination	Min	-567,514	135,155	-1053,75			
6	3	INV_STR	Combination	Min	-567,514	143,996	-1481,3669			
6	0	INV_GEO	Combination	Max	-105,56	238,112	-183,5784			
6	1,5	INV_GEO	Combination	Max	-105,56	262,971	-356,3027			
6	3	INV_GEO	Combination	Max	-105,56	288,907	-593,2161			
6	0	INV_GEO	Combination	Min	-487,55	85,917	-599,4164			
6	1,5	INV_GEO	Combination	Min	-487,55	130,72	-962,631			
6	3	INV_GEO	Combination	Min	-487,55	136,581	-1348,2895			
6	0	INV_SLV	Combination	Max	-71,75	52,113	34,4879			
6	1,5	INV_SLV	Combination	Max	-71,75	94,072	-47,2538			
6	3	INV_SLV	Combination	Max	-71,75	117,948	-178,3718			
6	0	INV_SLV	Combination	Min	-137,279	32,008	-10,305			
6	1,5	INV_SLV	Combination	Min	-137,279	73,967	-121,8421			
6	3	INV_SLV	Combination	Min	-137,279	97,843	-282,7555			

Eurolink S.C.p.A. Pagina 184 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Nmin	-41,418	KN
Nmax	-567,514	KN
Mpos	1445,923	KNm
Mneg	-1481,37	KNm
Vpos	321,8	KN
Vneg	-321,8	KN

Ora si riportano nello specifico i massimi valori di sollecitazione nel palo in corrispondenza del letto della fiumara

FASE 1

Vista la particolare condizione statica considerata in FASE 1, prenderemo in considerazione solo i carichi verticali dati dai pesi propri strutturali, agenti sui pali.

N= 307*1.3=399 KN

FASE 2

Nmin	-41,418	KN
Nmax	-567,514	KN
Mpos	640,9392	KNm
Mneg	-652,03	KNm
Vpos	263,19	KN
Vneg	-249,331	KN

Si riportano inoltre i valori delle sollecitazioni derivanti dalle combinazioni SLE già descritte nei precedenti paragrafi della presente relazione:

TABLE: Element Forces - Frames									
Frame	Station	OutputCase	Р	V2	М3				
Text	m	Text	Text	Text	KN	KN	KN-m		
1	0	COMB34	Combination	Max	-56,584	-10,763	164,9021		
1	1,5	COMB34	Combination	Max	-56,584	-26,318	305,2814		
1	3	COMB34	Combination	Max	-56,584	-35,183	463,9756		
1	0	COMB34	Combination	Min	-302,318	-86,155	-3,0713		
1	1,5	COMB34	Combination	Min	-302,318	-101,71	25,5753		
1	3	COMB34	Combination	Min	-302,318	-110,575	72,5368		
1	0	COMB35	Combination	Max	-56,584	-11,664	212,4481		

Eurolink S.C.p.A. Pagina 185 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

1	1,5	COMB35	Combination	Max	-56,584	-27,219	354,1788
1	3	COMB35	Combination	Max	-56,584	-36,084	514,2245
1	0	COMB35	Combination	Min	-302,318	-87,056	44,4747
1	1,5	COMB35	Combination	Min	-302,318	-102,611	74,4727
1	3	COMB35	Combination	Min	-302,318	-111,476	122,7857
1	0	COMB36	Combination	Max	-56,584	6,76	125,7615
1	1,5	COMB36	Combination	Max	-56,584	-35,199	261,0839
1	3	COMB36	Combination	Max	-56,584	-59,075	445,7826
1	0	COMB36	Combination	Min	-302,318	-68,633	-42,2119
1	1,5	COMB36	Combination	Min	-302,318	-110,592	-18,6222
1	3	COMB36	Combination	Min	-302,318	-134,468	54,3438
1	0	COMB37	Combination	Max	-56,584	5,859	173,3075
1	1,5	COMB37	Combination	Max	-56,584	-36,1	309,9814
1	3	COMB37	Combination	Max	-56,584	-59,976	496,0315
1	0	COMB37	Combination	Min	-302,318	-69,534	5,3341
1	1,5	COMB37	Combination	Min	-302,318	-111,493	30,2753
1	3	COMB37	Combination	Min	-302,318	-135,369	104,5927
6	0	COMB34	Combination	Max	-56,584	86,155	3,0713
6	1,5	COMB34	Combination	Max	-56,584	101,71	-25,5753
6	3	COMB34	Combination	Max	-56,584	110,575	-72,5368
6	0	COMB34	Combination	Min	-302,318	10,763	-164,9021
6	1,5	COMB34	Combination	Min	-302,318	26,318	-305,2814
6	3	COMB34	Combination	Min	-302,318	35,183	-463,9756
6	0	COMB35	Combination	Max	-56,584	87,056	-44,4747
6	1,5	COMB35	Combination	Max	-56,584	102,611	-74,4727
6	3	COMB35	Combination	Max	-56,584	111,476	-122,7857
6	0	COMB35	Combination	Min	-302,318	11,664	-212,4481
6	1,5	COMB35	Combination	Min	-302,318	27,219	-354,1788
6	3	COMB35	Combination	Min	-302,318	36,084	-514,2245
6	0	COMB36	Combination	Max	-56,584	68,633	42,2119
6	1,5	COMB36	Combination	Max	-56,584	110,592	18,6222
6	3	COMB36	Combination	Max	-56,584	134,468	-54,3438
6	0	COMB36	Combination	Min	-302,318	-6,76	-125,7615
6	1,5	COMB36	Combination	Min	-302,318	35,199	-261,0839
6	3	COMB36	Combination	Min	-302,318	59,075	-445,7826
6	0	COMB37	Combination	Max	-56,584	69,534	-5,3341
6	1,5	COMB37	Combination	Max	-56,584	111,493	-30,2753
6	3	COMB37	Combination	Max	-56,584	135,369	-104,5927
6	0	COMB37	Combination	Min	-302,318	-5,859	-173,3075
6	1,5	COMB37	Combination	Min	-302,318	36,1	-309,9814
6	3	COMB37	Combination	Min	-302,318	59,976	-496,0315

Eurolink S.C.p.A. Pagina 186 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

9.1.2 MODELLO DI CALCOLO

9.1.2.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Normative di riferimento

- Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

- Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

- D.M. LL.PP. del 11/03/1988.

Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione.

- D.M. LL.PP. del 14/02/1992.

Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche.

- D.M. 9 Gennaio 1996

Norme Tecniche per il calcolo, l' esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche

- D.M. 16 Gennaio 1996

Norme Tecniche relative ai 'Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi'

- D.M. 16 Gennaio 1996

Norme Tecniche per le costruzioni in zone sismiche

- Circolare Ministero LL.PP. 15 Ottobre 1996 N. 252 AA.GG./S.T.C.

Istruzioni per l'applicazione delle Norme Tecniche di cui al D.M. 9 Gennaio 1996

- Circolare Ministero LL.PP. 10 Aprile 1997 N. 65/AA.GG.

Istruzioni per l'applicazione delle Norme Tecniche per le costruzioni in zone sismiche di cui al D.M. 16 Gennaio 1996

- Norme Tecniche per le Costruzioni 2008 (D.M. 14 Gennaio 2008)
- Circolare 617 del 02/02/2009

Eurolink S.C.p.A. Pagina 187 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev.

F0

Data 20-06-2011

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

Determinazione della capacità portante

carico verticale che grava sul palo va confrontato con il valore di calcolo della resistenza verticale del palo stesso. Il problema che si pone, quindi, è quello di determinare la capacità portante del palo. Determinata la capacità portante, la resistenza di calcolo verticale del palo si ottiene applicando degli opportuni coefficienti di sicurezza.

La capacità portante di un palo viene valutata come somma di due contributi: portanza di base (o di punta) e portanza per attrito laterale lungo il fusto. Cioè si assume valida l'espressione:

$$Q_T = Q_P + Q_I - W_P$$

dove:

Q_T Portanza totale del palo;

Q_P Portanza di base del palo;

Q₁ Portanza per attrito laterale del palo;

W_P Peso proprio del palo.

Le due componenti Q_P e Q_L sono calcolate in modo indipendente fra loro. Risulta molto difficoltoso, tranne che in poche situazioni, stabilire quanta parte del carico viene assorbita per attrito laterale e quanta per resistenza alla base.

Nel caso di pali soggetti a trazione la resistenza allo sfilamento vale:

$$Q_T = Q_L + W_P$$

Dalla capacità portante del palo si ricava il carico ammissibile del palo Q_A applicando degli opportuni coefficienti di sicurezza rispettivamente γ_b e γ_s .

I coefficienti γ_b e γ_s rappresentano rispettivamente i valori del coefficiente di sicurezza per la portanza di punta e quello per la portanza laterale.

Quindi nel caso di pali compressi abbiamo la seguente relazione:

$$Q_A = Q_p/\gamma_b + Q_1/\gamma_s - W_P$$

Nel caso invece di pali soggetti a sforzi di trazione abbiamo la seguente relazione:

Eurolink S.C.p.A. Pagina 188 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

 $Q_A = Q_I/\gamma_s + W_P$

Capacità portante di punta

In generale la capacità portante di punta viene calcolata tramite l'espressione:

$$Q_P = A_P (c N_c + q_b N_q)$$

dove A_P è l'area portante efficace della punta del palo, c è la coesione, q_b è la pressione del terreno alla quota della punta del palo ed i coefficienti N_c e N_q sono i coefficienti delle formule della capacità portante corretti per tener conto degli effetti di profondità.

 N_c ed N_q dipendono sia dalla geometria del palo che dalle caratteristiche del terreno angolo di attrito e coesione (ϕ e c).

In letteratura è possibile trovare diverse formule per il calcolo dei valori di N_c ed N_q.

Per pali in argilla in condizioni non drenate (ϕ =0, c=c_u) si assume in genere per N_c il valore proposto da Skempton pari a 9 (valore in corrispondenza della punta del palo) mentre N_q=1. Diversi autori hanno proposto altri valori per il fattore N_c ma in generale le variazioni sono abbastanza contenute.

Diverso è il caso del fattore N_q per il quale diversi autori propongono dei valori spesso molto discordanti fra di loro.

In particolare da prove effettuati su pali realizzati in terreni non coesivi, si vede che la variazione della resistenza alla punta non cresce in modo lineare con la profondità, ma raggiunto un certo valore essa si mantiene pressocchè costante. Questo fenomeno è stato spiegato da Vesic mettendo in conto un <<effetto arco>> che si manifesta nei dintorni del palo.

Un modo semplice per tener conto del fatto che la resistenza alla punta non può crescere indefinitamente è quello di considerare il diagramma delle pressioni verticali in corrispondenza del palo opportunamente modificato.

In particolare si assume che la pressione verticale σ_v cresca linearmente (pressione geostatica) fino ad una certa profondità z_c ($\sigma_v = \sigma_c$); superata tale profondità il valore della pressione verticale si mantiene costante e pari a σ_c : in pratica si assume un diagramma bilatero per l'andamento della pressione verticale in corrispondenza del palo.

Il valore di z_c (detta anche profondità critica) dipende dal diametro del palo, D, dalla tecnologia di realizzazione (palo infisso o trivellato) dall'angolo di attrito del terreno ϕ .

Eurolink S.C.p.A. Pagina 189 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

Nella determinazione di z_c il valore di ϕ da considerare è funzione del valore dell'angolo di attrito prima dell'installazione del palo, ϕ' , secondo le seguenti relazioni:

Per pali infissi $\phi = 3/4 \phi' + 10$

Per pali trivellati $\phi = \phi' - 3$

A parità di diametro influisce il grado di addensamento del terreno (densità relativa D_r) e la resistenza alla punta cresce con il crescere della densità.

Nella sezione successiva descriveremo le relazioni per la determinazione di N_c ed N_q.

Capacità portante per attrito laterale

La portanza laterale è data dall'integrale esteso a tutta la superficie laterale del palo delle tensioni tangenziali palo-terreno in condizioni limiti:

$$Q_1 = Int(\tau_a)dS$$

dove τ_a è dato dalla nota relazione di Coulomb:

$$\tau_a = c_a + \sigma_h tg \delta$$

dove c_a è l'adesione palo-terreno, δ è l'angolo di attrito palo-terreno, e σ_h è la tensione orizzontale alla generica profondità z. La tensione orizzontale σ_h è legata alla pressione verticale σ_v tramite il coefficiente di spinta K_s

$$\sigma_h = K_s \sigma_v$$

Indicando con C il perimetro e con L la lunghezza del palo abbiamo:

$$Int^{L}(C(c_a + K_s\sigma_v tg \delta)dz)$$

Analisi del palo soggetto a forze orizzontali(Portanza trasversale)

La resistenza limite laterale di un palo è determinata dal minimo valore fra il carico orizzontale necessario per produrre il collasso del terreno lungo il fusto del palo ed il carico orizzontale necessario per produrre la plasticizzazione del palo. Il primo meccanismo (plasticizzazione del

Eurolink S.C.p.A. Pagina 190 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

F0

Data 20-06-2011

terreno) si verifica nel caso di pali molto rigidi in terreni poco resistenti (meccanismo di palo corto) mentre il secondo meccanismo si verifica nel caso di pali aventi rigidezze non eccessive rispetto al terreno di infissione (meccanismo di palo lungo o intermedio). Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante di rigidezza elastica, Kh, espressa in DaN/cm²/cm che rappresenta la pressione (in DaN/cm²) che bisogna applicare per ottenere lo spostamento di 1 cm. La determinazione di questa costante può essere fatta o tramite prove di carico su piastra o mediante metodi analitici (convenzionali). La variazione della costante di Winkler con la profondità dipende dal tipo di terreno in cui il palo è immerso. Ad esempio nel caso di terreni coesivi in condizioni non drenate Kh assume un valore costante con la profondità mentre nel caso di terreni incoerenti la variazione di Kh è di tipo lineare (crescente con la profondità). In generale l'espressione di Kh assume una forma binomia del tipo:

$$K_h(z) = A + B z^n$$

Per l'analisi di pali caricati trasversalmente si utilizza il modello di Winkler. Il palo viene suddiviso in un determinato numero (100) di elementi tipo trave aventi area ed inerzia pari a quella della sezione trasversale del palo. In corrispondenza di ogni nodo di separazione fra i vari elementi viene inserita una molla orizzontale di opportuna rigidezza che schematizza il terreno. Il comportamento delle molle che schematizzano il terreno non è infinitamente elastico ma è di tipo elastoplastico. La singola molla reagisce fino ad un valore limite di spostamento o di reazione; una volta che è stato superato tale limite la molle non offre ulteriori incrementi di resistenza (diagramma tipo elastoplastico perfetto). Indicando con dy_ela lunghezza del tratto di influenza della molla, con D il diametro del palo la molla avrà una rigidezza pari a:

$$K_m = dy_e D K_k$$

La resistenza limite del terreno rappresenta il valore limite di resistenza che il terreno può esplicare quando il palo è soggetto ad un carico orizzontale. La resistenza limite pu=pu(z) dipende dalle caratteristiche del terreno e dalla geometria del palo. In terreni puramente coesivi (c=cu, ϕ =0) la resistenza cresce dal valore 0 in sommità fino ad un valore limite in corrispondenza di una profondità pari a circa 3 diametri. Il valore limite in tal caso è variabile fra 8 e 12 cu. Nel caso di

Eurolink S.C.p.A. Pagina 191 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev.

F0

Data 20-06-2011

terreni dotati di attrito e coesione la resistenza limite ad una generica profondità z è rappresentata dalla relazione (Brinch Hansen):

 $P_u = q K_{pq} + c K_{pc}$

dove:

D diametro del palo

g pressione geostatica alla profondità z

c coesione alla profondità z

 K_{pq} , K_{pc} coefficienti funzione dell'angolo di attrito del terreno ϕ e del rapporto z/D.

Broms ha eseguito l'analisi considerando il caso sia di palo vincolato in testa che di palo libero immerso in un mezzo omogeneo. Nel caso di terreni coesivi Broms assume in questo caso un diagramma di resistenza nullo fino ad una profondità pari a 1,5D e poi valore costante pari a 9c, D. Nel caso di terreni incoerenti Broms assume che la resistenza laterale sia variabile con la profondità dal valore 0 (in testa) fino al valore $3\sigma_v~K_p~D$ (alla base) essendo K_p il coefficiente di resistenza passiva espresso da $K_p = tan^2(45^\circ + \phi/2)$.

Geometria della fondazione

Simbologia adottata

Descrizione	Descrizione del palo
Forma	Forma del palo ((C)=Costante, (R)=Rastremato)
Χ	Ascissa del baricentro del palo espressa in [m]
Υ	Ordinata del baricentro del palo espressa in [m]
D	Diametro del palo espresso in [cm]

L Lunghezza del palo espressa in [m]

Descrizione	Forma	X	Υ	D	L
Palo 60	(C)	0,00	0,00	100,00	12,00

Materiali palo

Eurolink S.C.p.A. Pagina 192 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

Calcestruzzo

Tipo C25/30

Resistenza caratteristica a compressione R_{ck} 3000,0 [N/cmq] Peso specifico 24,5170 [kN/mc]

Coeff. di omogeneizzazione 15,00

Acciaio

Tipo B450C

Tensione caratteristica di snervamento 45000,0 [N/cmq]

Coefficienti di sicurezza sui materiali

Coefficiente di sicurezza calcestruzzo 1.50
Fattore riduzione da resistenza cubica a cilindrica 0.83
Fattore di riduzione per carichi di lungo periodo 0.85
Coefficiente di sicurezza acciaio 0.85

Coefficiente di sicurezza sezione 1.50

Caratteristiche pali

Pali in c.a.

Armatura con ferri longitudinali e staffe

Vincolo in testa di tipo INCASTRO

Tipo di palo TRIVELLATO

Contributo sia della portanza laterale sia della portanza di punta

Descrizione terreni e falda

Simbologia adottata

Descrizione Descrizione terreno

 γ Peso di volume del terreno espresso in [kN/mc]

γ_{sat} Peso di volume saturo del terreno espresso in [kN/mc]

Eurolink S.C.p.A. Pagina 193 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

ϕ	Angolo di attrito interno del terreno espresso in gradi
δ	Angolo di attrito palo-terreno espresso in gradi
С	Coesione del terreno espressa in [N/cmq]
ca	Adesione del terreno espressa in [N/cmq]
$\phi_{min},~\phi_{med}$	Angolo di attrito interno del terreno minimo e medio espresso in gradi
$\delta_{\!$	Angolo di attrito palo-terreno minimo e medio espresso in gradi
C _{min} , C _{med}	Coesione del terreno minima e media espressa in [N/cmq]
ca _{min} , ca _{med}	Adesione del terreno minima e media espressa in [N/cmq]

Parametri caratteristici

Descrizione	γ	γ_{sat}	ф	δ	С	ca
Depositi alluvional	18,000	26,500	38,00	38,00	0,00	0,00
Calcari brecciati	20,000	27,000	27,00	27,00	0,00	0,00
<u>Parametri minimi</u>						
Descrizione			ϕ_{min}	δ_{min}	C _{min}	ca _{min}
Depositi alluvional			38,00	38,00	0,00	0,00
Calcari brecciati			27,00	27,00	0,00	0,00
<u>Parametri medi</u>						
Descrizione			ϕ_{med}	δ_{med}	\mathbf{c}_{med}	ca _{med}
Depositi alluvional			38,00	38,00	0,00	0,00
Calcari brecciati			27,00	27,00	0,00	0,00

<u>Falda</u>

Profondità dal piano di posa 10,00 [m]

Descrizione stratigrafia

Simbologia adottata

N Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Eurolink S.C.p.A. Pagina 194 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Z2 Quota dello strato in corrispondenza del punto di sondaggio nº2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n³ espressa in [m]

Terreno dello strato

Kw Costante di Winkler espressa in DaN/cm²/cm

Ks Coefficiente di spinta

 α Coefficiente di espansione laterale

n°	Z 1	Z2	Z 3	Terreno	Kw	Ks	α
1	-14,0	-14,0	-10,0	Depositi alluvional	10,00	0,50	
	1,00						
2	-30,0	-30,0	-30,0	Calcari brecciati	10,00	0,50	
	1,00						

Normativa

N.T.C. 2008

Calcolo secondo: Approccio 1

Simbologia adottata

$\gamma_{\sf Gsfav}$	Coefficiente parziale sfavorevole sulle azioni permanenti
γ_{Gfav}	Coefficiente parziale favorevole sulle azioni permanenti
γ_{Qsfav}	Coefficiente parziale sfavorevole sulle azioni variabili
γ_{Qfav}	Coefficiente parziale favorevole sulle azioni variabili
$\gamma_{tan\phi'}$	Coefficiente parziale di riduzione dell'angolo di attrito drenato
$\gamma_{c'}$	Coefficiente parziale di riduzione della coesione drenata
γ_{cu}	Coefficiente parziale di riduzione della coesione non drenata
γ_{qu}	Coefficiente parziale di riduzione del carico ultimo
γ_{γ}	Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Eurolink S.C.p.A. Pagina 195 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc Rev. F0

Data 20-06-2011

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1,00	1,00
Permanenti	Sfavorevole	γGsfav	1,30	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ̈́Qsfav	1,50	1,30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1,00	1,25
Coesione efficace	$\gamma_{c'}$	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

Coefficienti parziali combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{\sf Gfav}$	1,00	1,00
Permanenti	Sfavorevole	γ_{Gsfav}	1,00	1,00
Variabili	Favorevole	γQfav	0,00	0,00
Variabili	Sfavorevole	γ_{Qsfav}	1,00	1,00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan_{\phi'}}$	1,00	1,25
Coesione efficace	$\gamma_{c'}$	1,00	1,25
Resistenza non drenata	γ_{cu}	1,00	1,40
Resistenza a compressione uniassiale	γ_{qu}	1,00	1,60
Peso dell'unità di volume	γ_{γ}	1,00	1,00

PALI DI FONDAZIONE

Eurolink S.C.p.A. Pagina 196 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

CARICHI VERTICALI. Coefficienti parziali γ_R per le verifiche dei pali

Pali trivellati

		R1	R2	R3
Punta	γ _b	1,00	1,70	1,35
Laterale compressione	γ_{s}	1,00	1,45	1,15
Totale compressione	γ_{t}	1,00	1,60	1,30
Laterale trazione	γ_{st}	1,00	1,60	1,25

CARICHI TRASVERSALI. Coefficienti parziali γ_T per le verifiche dei pali.

	R1	R2	R3
γ_{T}	1,00	1,60	1,30

Coefficienti di riduzione ξ per la determinazione della resistenza caratteristica dei pali

Numero di verticali indagate 1 ξ_3 =1,70 ξ_4 =1,70

Coeff. di combinazione $\Psi_0 = 0.70$ $\Psi_1 = 0.50$ $\Psi_2 = 0.20$

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione

 N_{TOT} Sforzo normale totale espressa in [kN]

 Mx_{TOT} Momento in direzione X espressa in [kNm]

 My_{TOT} Momento in direzione Y espresso in [kNm]

ex Eccentricità del carico lungo X espressa in [m]

ey Eccentricità del carico lungo Y espressa in [m]

 β Inclinazione del taglio nel piano espressa in [9]

 T_{TOT} Forza di taglio espressa in [kN]

Eurolink S.C.p.A. Pagina 197 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

Condizione n°1 (Condizione n°1)

Fondazione	N_{TOT}	Mx_{TOT}	$\mathbf{M}\mathbf{y}_{TOT}$	ex	еу	β	T_{TOT}
Palo 60	440,000	0,000	-652,000	-1,5	0,0	90,0	249,000
Condizione n°2 (Condizione n°2)							

Descrizione combinazioni di carico

Simbologia adottata

 γ Coefficiente di partecipazione della condizione

 Ψ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Combinazione n°1 SLU - Caso A1-M1

Analisi in condizioni drenate

Verifica della portanza assiale

Il metodo utilizzato per il calcolo della portanza verticale è: Berezantzev ridotto.

E' stato richiesto di correggere l'angolo di attrito in funzione del tipo di palo (Trivellato/Infisso).

L'andamento della pressione verticale σ_V con la profondità, per il calcolo della portanza di punta, è stata definita come: Pressione geostatica.

Simbologia adottata

Comb Identificativo della combinazione

Nc, Ng Fattori di capacità portante

Pl_{min}, Pl_{med} Portanza laterale minima e media espressa in [kN]

Pp_{min}, Pp_{med} Portanza di punta minima e media espressa in [kN]

Pd Portanza di progetto espressa in [kN]

Eurolink S.C.p.A. Pagina 198 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev.

Data

F0

20-06-2011

N Scarico verticale in testa al palo espresso in [kN]

η Coeff. di sicurezza per carichi verticali

 Comb
 Nc
 Nq

 1
 41,16
 29,82

 PI_{min} Comb PI_{med} Pp_{med} Pp_{min} Pd Ν η 1587.30 1587.30 4998.14 1 4998.14 3642.72 8,28 440,00

Il valore di η ricavato dall'analisi deve risultare comunque maggiore di un coefficiente derivante dalla riduzione per pali in gruppo, ricavabile dalla formula empirica di Converse – Labarre,:

$$\eta_{rid} = 1 - \xi \cdot \left[\frac{\left(n-1\right) \cdot m + \left(m-1\right) \cdot n}{m \cdot n} \right] \cdot \frac{1}{90}$$

m = 1 numero di linee di pali nel gruppo

n = 6 numero di pali in una linea (approssimazione)

d = 100 diametro del singolo palo

s = 120 distanza tra gli assi di due pali contigui

 ξ = arctan (d/s) = arctan (100/120) = 39,81°

$$\eta_{rid} = 1 - 39.81 \cdot \left\lceil \frac{\left(6 - 1\right) \cdot 1 + \left(1 - 1\right) \cdot 100}{1 \cdot 6} \right\rceil \cdot \frac{1}{90} = 0.631$$

La capacità portante di un palo all'interno del gruppo risulta così ridotta tramite il coefficiente d'efficienza η_{rid} ; deve quindi risultare:

$$\eta \ge \frac{1}{\eta_{rid}} = \frac{1}{0.631} = 1.59$$

Verifica della portanza trasversale

Costante di Winkler orizzontale definita da STRATO

Criterio di rottura palo-terreno: Pressione limite (Pressione passiva con moltiplicatore = 3,00)

Eurolink S.C.p.A. Pagina 199 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Simbologia adottata

Comb Identificativo della combinazione

Tu Taglio resistente ultimo in testa al palo, espresso in [kN]

Mu Momento resistente ultimo in testa al palo, espresso in [kNm]

Tx Taglio agente in testa al palo, espresso in [kN]

η=Tu/Tx Coeff. di sicurezza per carichi orizzontali

Comb	Tu	Mu Tx	η
1	730,0392	1254,9812 -249,0000	2,93

Momento ultimo della sezione

A_{f1}	A_{f2}	$M_{\sf usez1}$	M_{usez2}
83,63	83,63	1254,9812	1254,9812

Sollecitazioni in esercizio

Simbologia adottata

Nr. Identificativo sezione

Y ordinata della sezione a partire dalla testa positiva verso il basso (in [m])

N sforzo normale espresso in [kN]

T taglio espresso in [kN]

M momento espresso in [kNm]

Combinazione n°1

Nr.	Υ	M	Т	N
1	0,00	376,5239	249,0000	440,0000
2	0,12	346,6439	245,7312	442,2945
3	0,24	317,1562	239,1935	444,5565
4	0,36	288,4530	229,3870	446,7862
5	0,48	260,9265	218,2126	448,9834
6	0,60	234,7410	207,1916	451,1482

Eurolink S.C.p.A. Pagina 200 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

7	0,72	209,8780	196,3497	453,2806
8	0,84	186,3161	185,7101	455,3806
9	0,96	164,0308	175,2932	457,4481
10	1,08	142,9957	165,1170	459,4833
11	1,20	123,1816	155,1973	461,4860
12	1,32	104,5579	145,5476	463,4563
13	1,44	87,0922	136,1794	465,3942
14	1,56	70,7507	127,1022	467,2997
15	1,68	55,4984	118,3239	469,1728
16	1,80	41,2996	109,8506	471,0134
17	1,92	28,1175	101,6869	472,8217
18	2,04	15,9151	93,8358	474,5975
19	2,16	4,6548	86,2990	476,3409
20	2,28	-5,7011	79,0773	478,0519
21	2,40	-15,1904	72,1698	479,7305
22	2,52	-23,8508	65,5750	481,3766
23	2,64	-31,7197	59,2902	482,9904
24	2,76	-38,8346	53,3121	484,5717
25	2,88	-45,2320	47,6363	486,1207
26	3,00	-50,9484	42,2579	487,6372
27	3,12	-56,0193	37,1713	489,1212
28	3,24	-60,4799	32,3704	490,5729
29	3,36	-64,3643	27,8485	491,9922
30	3,48	-67,7061	23,5986	493,3790
31	3,60	-70,5380	19,6132	494,7335
32	3,72	-72,8916	15,8847	496,0555
33	3,84	-74,7977	12,4051	497,3451
34	3,96	-76,2863	9,1660	498,6023
35	4,08	-77,3863	6,1593	499,8270
36	4,20	-78,1254	3,3763	501,0194
37	4,32	-78,5305	0,8085	502,1793
38	4,44	-78,6275	-1,5527	503,3069
39	4,56	-78,4412	-3,7160	504,4020

Eurolink S.C.p.A. Pagina 201 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

40	4,68	-77,9953	-5,6899	505,4647
41	4,80	-77,3125	-7,4830	506,4949
42	4,92	-76,4145	-9,1037	507,4928
43	5,04	-75,3221	-10,5606	508,4583
44	5,16	-74,0548	-11,8618	509,3913
45	5,28	-72,6314	-13,0154	510,2919
46	5,40	-71,0696	-14,0295	511,1601
47	5,52	-69,3860	-14,9118	511,9959
48	5,64	-67,5966	-15,6700	512,7993
49	5,76	-65,7162	-16,3114	513,5702
50	5,88	-63,7588	-16,8433	514,3088
51	6,00	-61,7376	-17,2727	515,0149
52	6,12	-59,6649	-17,6064	515,6886
53	6,24	-57,5522	-17,8508	516,3299
54	6,36	-55,4101	-18,0124	516,9388
55	6,48	-53,2486	-18,0972	517,5153
56	6,60	-51,0769	-18,1110	518,0593
57	6,72	-48,9036	-18,0595	518,5710
58	6,84	-46,7365	-17,9480	519,0502
59	6,96	-44,5827	-17,7817	519,4970
60	7,08	-42,4489	-17,5654	519,9114
61	7,20	-40,3411	-17,3038	520,2934
62	7,32	-38,2646	-17,0014	520,6430
63	7,44	-36,2244	-16,6623	520,9601
64	7,56	-34,2250	-16,2905	521,2448
65	7,68	-32,2701	-15,8899	521,4972
66	7,80	-30,3633	-15,4638	521,7171
67	7,92	-28,5076	-15,0157	521,9046
68	8,04	-26,7058	-14,5487	522,0596
69	8,16	-24,9599	-14,0657	522,1823
70	8,28	-23,2720	-13,5694	522,2725
71	8,40	-21,6437	-13,0625	522,3304
72	8,52	-20,0762	-12,5473	522,3558

Eurolink S.C.p.A. Pagina 202 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

73	8,64	-18,5705	-12,0260	522,3488
74	8,76	-17,1274	-11,5006	522,3094
75	8,88	-15,7473	-10,9730	522,2375
76	9,00	-14,4306	-10,4450	522,1333
77	9,12	-13,1772	-9,9181	521,9966
78	9,24	-11,9870	-9,3938	521,8275
79	9,36	-10,8597	-8,8734	521,6261
80	9,48	-9,7949	-8,3581	521,3922
81	9,60	-8,7920	-7,8490	521,1258
82	9,72	-7,8501	-7,3470	520,8271
83	9,84	-6,9685	-6,8530	520,4959
84	9,96	-6,1461	-6,3677	520,1324
85	10,08	-5,3820	-5,8919	519,7369
86	10,20	-4,6749	-5,4262	519,3113
87	10,32	-4,0238	-4,9709	518,8556
88	10,44	-3,4273	-4,5267	518,3698
89	10,56	-2,8841	-4,0938	517,8539
90	10,68	-2,3928	-3,6727	517,3080
91	10,80	-1,9521	-3,2634	516,7321
92	10,92	-1,5605	-2,8664	516,1261
93	11,04	-1,2165	-2,4816	515,4900
94	11,16	-0,9187	-2,1094	514,8238
95	11,28	-0,6656	-1,7497	514,1276
96	11,40	-0,4557	-1,4026	513,4014
97	11,52	-0,2873	-1,0683	512,6450
98	11,64	-0,1591	-0,7467	511,8586
99	11,76	-0,0695	-0,4378	511,0422
100	11,88	-0,0170	-0,1417	510,1957
101	12,00	0,000	-0,1417	509,3191

Sollecitazioni limiti

Simbologia adottata

Eurolink S.C.p.A. Pagina 203 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Nr. Identificativo sezione

Y ordinata della sezione a partire dalla testa positiva verso il basso (in [m])

Nr sforzo normale espresso in [kN]

Tr taglio espresso in [kN]

Mr momento espresso in [kNm]

Combinazione n°1

Nr.	Υ	 Mr	Tr	Nr
1	0,00	1254,9812	730,0392	6585,4319
2	0,12	1167,4045	726,7704	6585,1138
3	0,24	1080,1920	720,2327	6584,4776
4	0,36	993,7641	710,4262	6583,5233
5	0,48	908,5129	697,3509	6582,2509
6	0,60	824,8308	681,0067	6580,6604
7	0,72	743,1100	661,3938	6578,7518
8	0,84	663,7428	638,5119	6576,5251
9	0,96	587,1213	612,3613	6573,9803
10	1,08	513,6380	582,9418	6571,1174
11	1,20	443,6850	550,2535	6567,9364
12	1,32	377,6546	516,2418	6564,4373
13	1,44	315,7055	483,2111	6560,6201
14	1,56	257,7202	451,1959	6556,4848
15	1,68	203,5767	420,2247	6552,0313
16	1,80	153,1497	390,3199	6547,2598
17	1,92	106,3113	361,4984	6542,1702
18	2,04	62,9315	333,7719	6536,7625
19	2,16	22,8789	307,1473	6531,0367
20	2,28	-13,9788	281,6273	6524,9928
21	2,40	-47,7740	257,2103	6518,6308
22	2,52	-78,6393	233,8912	6511,9506
23	2,64	-106,7062	211,6614	6504,9524
24	2,76	-132,1056	190,5092	6497,6361

Eurolink S.C.p.A. Pagina 204 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

25	2,88	-154,9667	170,4202	6490,0017
26	3,00	-175,4171	151,3774	6482,0492
27	3,12	-193,5824	133,3615	6473,7786
28	3,24	-209,5858	116,3515	6465,1898
29	3,36	-223,5480	100,3242	6456,2830
30	3,48	-235,5869	85,2552	6447,0581
31	3,60	-245,8175	71,1187	6437,5151
32	3,72	-254,3517	57,8877	6427,6539
33	3,84	-261,2983	45,5343	6417,4747
34	3,96	-266,7624	34,0299	6406,9774
35	4,08	-270,8460	23,3452	6396,1620
36	4,20	-273,6474	13,4505	6385,0284
37	4,32	-275,2615	4,3157	6373,5768
38	4,44	-275,7793	-4,0893	6361,8071
39	4,56	-275,2886	-11,7948	6349,7193
40	4,68	-273,8732	-18,8310	6337,3133
41	4,80	-271,6135	-25,2279	6324,5893
42	4,92	-268,5862	-31,0153	6311,5472
43	5,04	-264,8644	-36,2228	6298,1869
44	5,16	-260,5176	-40,8793	6284,5086
45	5,28	-255,6121	-45,0136	6270,5122
46	5,40	-250,2105	-48,6535	6256,1976
47	5,52	-244,3721	-51,8266	6241,5650
48	5,64	-238,1529	-54,5597	6226,6142
49	5,76	-231,6057	-56,8790	6211,3454
50	5,88	-224,7802	-58,8098	6195,7585
51	6,00	-217,7230	-60,3769	6179,8534
52	6,12	-210,4778	-61,6041	6163,6303
53	6,24	-203,0853	-62,5145	6147,0890
54	6,36	-195,5836	-63,1304	6130,2297
55	6,48	-188,0079	-63,4734	6113,0523
56	6,60	-180,3911	-63,5640	6095,5567
57	6,72	-172,7634	-63,4220	6077,7431

Eurolink S.C.p.A. Pagina 205 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

58	6,84	-165,1528	-63,0664	6059,6113
59	6,96	-157,5848	-62,5154	6041,1615
60	7,08	-150,0830	-61,7862	6022,3935
61	7,20	-142,6686	-60,8953	6003,3075
62	7,32	-135,3612	-59,8584	5983,9033
63	7,44	-128,1782	-58,6903	5964,1811
64	7,56	-121,1353	-57,4052	5944,1407
65	7,68	-114,2467	-56,0162	5923,7823
66	7,80	-107,5248	-54,5361	5903,1057
67	7,92	-100,9804	-52,9765	5882,1111
68	8,04	-94,6233	-51,3485	5860,7983
69	8,16	-88,4615	-49,6626	5839,1675
70	8,28	-82,5019	-47,9285	5817,2185
71	8,40	-76,7505	-46,1551	5794,9515
72	8,52	-71,2119	-44,3511	5772,3663
73	8,64	-65,8898	-42,5241	5749,4631
74	8,76	-60,7869	-40,6814	5726,2417
75	8,88	-55,9051	-38,8297	5702,7022
76	9,00	-51,2455	-36,9752	5678,8447
77	9,12	-46,8085	-35,1234	5654,6690
78	9,24	-42,5937	-33,2795	5630,1752
79	9,36	-38,6002	-31,4482	5605,3634
80	9,48	-34,8264	-29,6337	5580,2334
81	9,60	-31,2704	-27,8399	5554,7854
82	9,72	-27,9296	-26,0701	5529,0192
83	9,84	-24,8012	-24,3276	5502,9349
84	9,96	-21,8818	-22,6149	5476,5326
85	10,08	-19,1681	-20,9344	5449,8275
86	10,20	-16,6559	-19,2884	5422,8274
87	10,32	-14,3413	-17,6787	5395,5323
88	10,44	-12,2199	-16,1067	5367,9422
89	10,56	-10,2871	-14,5739	5340,0571
90	10,68	-8,5382	-13,0814	5311,8770

Eurolink S.C.p.A. Pagina 206 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev. F0

Data 20-06-2011

91	10,80	-6,9684	-11,6301	5283,4019
92	10,92	-5,5728	-10,2208	5254,6318
93	11,04	-4,3463	-8,8541	5225,5667
94	11,16	-3,2839	-7,5305	5196,2065
95	11,28	-2,3802	-6,2503	5166,5514
96	11,40	-1,6302	-5,0139	5136,6013
97	11,52	-1,0285	-3,8214	5106,3561
98	11,64	-0,5699	-2,6729	5075,8159
99	11,76	-0,2492	-1,5684	5044,9808
100	11,88	-0,0610	-0,5081	5013,8506
101	12,00	0,000	-0,5081	0,0000

Descrizione armature

Il progetto e la verifica delle armature sono stati effettuati con il metodo degli stati limite ultimi.

L'armatura longitudinale è costituita da 22 ¢22 mentre l'armatura trasversale è costituita da staffe ¢10 / 25 [cm].

Verifica armature pali

Simbologia adottata

Y ordinata della sezione a partire dalla testa positiva verso il basso espressa in [m]

CS coefficiente di sicurezza

Mu momento ultimo espresso in [kNm]

Nu sforzo normale espresso in [kN]

Tu taglio ultimo espresso in [kN]

Combinazione 1

Υ	\mathbf{A}_{f}	$\mathbf{M}_{\mathbf{u}}$	N_{u}	T_{u}	CS
0,00	83,63	1684,23	1968,17	517,99	4,47
0,12	83,63	1728,46	2205,40	517,99	4,99

Eurolink S.C.p.A. Pagina 207 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

0,24	83,63	1762,30	2470,20	517,99	5,56
0,36	83,63	1801,61	2790,52	517,99	6,25
0,48	83,63	1849,77	3182,95	517,99	7,09
0,60	83,63	1882,08	3617,16	517,99	8,02
0,72	83,63	1915,00	4135,89	517,99	9,12
0,84	83,63	1927,60	4711,31	517,99	10,35
0,96	83,63	1927,38	5375,08	517,99	11,75
1,08	83,63	1875,80	6027,45	517,99	13,12
1,20	83,63	1805,07	6762,48	517,99	14,65
1,32	83,63	1703,91	7552,63	517,99	16,30
1,44	83,63	1574,44	8413,33	517,99	18,08
1,56	83,63	1412,19	9327,36	517,99	19,96
1,68	83,63	1213,36	10257,51	517,99	21,86
1,80	83,63	980,30	11180,12	517,99	23,74
1,92	83,63	718,44	12081,17	517,99	25,55
2,04	83,63	405,13	12081,17	517,99	25,46
2,16	83,63	118,06	12081,17	517,99	25,36
2,28	83,63	144,08	12081,17	517,99	25,27
2,40	83,63	382,54	12081,17	517,99	25,18
2,52	83,63	598,59	12081,17	517,99	25,10
2,64	83,63	780,86	11889,93	517,99	24,62
2,76	83,63	915,42	11422,42	517,99	23,57
2,88	83,63	1024,74	11013,19	517,99	22,66
3,00	83,63	1115,17	10673,56	517,99	21,89
3,12	83,63	1187,51	10368,49	517,99	21,20
3,24	83,63	1246,86	10113,70	517,99	20,62
3,36	83,63	1295,69	9904,07	517,99	20,13
3,48	83,63	1334,96	9727,94	517,99	19,72
3,60	83,63	1364,87	9572,81	517,99	19,35
3,72	83,63	1388,58	9449,83	517,99	19,05
3,84	83,63	1406,90	9354,79	517,99	18,81
3,96	83,63	1420,50	9284,28	517,99	18,62
4,08	83,63	1429,90	9235,52	517,99	18,48

Eurolink S.C.p.A. Pagina 208 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

4,20	83,63	1435,55	9206,21	517,99	18,37
4,32	83,63	1437,82	9194,43	517,99	18,31
4,44	83,63	1437,02	9198,58	517,99	18,28
4,56	83,63	1433,41	9217,30	517,99	18,27
4,68	83,63	1427,22	9249,40	517,99	18,30
4,80	83,63	1418,64	9293,90	517,99	18,35
4,92	83,63	1407,84	9349,92	517,99	18,42
5,04	83,63	1394,97	9416,68	517,99	18,52
5,16	83,63	1380,16	9493,51	517,99	18,64
5,28	83,63	1363,52	9579,80	517,99	18,77
5,40	83,63	1345,17	9674,99	517,99	18,93
5,52	83,63	1325,10	9777,82	517,99	19,10
5,64	83,63	1301,98	9877,05	517,99	19,26
5,76	83,63	1277,38	9982,68	517,99	19,44
5,88	83,63	1251,39	10094,26	517,99	19,63
6,00	83,63	1224,10	10211,41	517,99	19,83
6,12	83,63	1195,61	10333,73	517,99	20,04
6,24	83,63	1166,00	10460,81	517,99	20,26
6,36	83,63	1135,38	10592,30	517,99	20,49
6,48	83,63	1102,95	10719,46	517,99	20,71
6,60	83,63	1069,32	10845,79	517,99	20,94
6,72	83,63	1034,97	10974,78	517,99	21,16
6,84	83,63	1000,02	11106,07	517,99	21,40
6,96	83,63	964,54	11239,29	517,99	21,63
7,08	83,63	928,65	11374,09	517,99	21,88
7,20	83,63	891,96	11503,92	517,99	22,11
7,32	83,63	854,93	11632,56	517,99	22,34
7,44	83,63	817,82	11761,49	517,99	22,58
7,56	83,63	780,72	11890,39	517,99	22,81
7,68	83,63	743,73	12018,93	517,99	23,05
7,80	83,63	703,11	12081,17	517,99	23,16
7,92	83,63	659,90	12081,17	517,99	23,15
8,04	83,63	618,01	12081,17	517,99	23,14

Eurolink S.C.p.A. Pagina 209 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

8,16	83,63	577,47	12081,17	517,99	23,14
8,28	83,63	538,33	12081,17	517,99	23,13
8,40	83,63	500,60	12081,17	517,99	23,13
8,52	83,63	464,33	12081,17	517,99	23,13
8,64	83,63	429,51	12081,17	517,99	23,13
8,76	83,63	396,16	12081,17	517,99	23,13
8,88	83,63	364,29	12081,17	517,99	23,13
9,00	83,63	333,90	12081,17	517,99	23,14
9,12	83,63	304,97	12081,17	517,99	23,14
9,24	83,63	277,52	12081,17	517,99	23,15
9,36	83,63	251,52	12081,17	517,99	23,16
9,48	83,63	226,96	12081,17	517,99	23,17
9,60	83,63	203,82	12081,17	517,99	23,18
9,72	83,63	182,09	12081,17	517,99	23,20
9,84	83,63	161,74	12081,17	517,99	23,21
9,96	83,63	142,76	12081,17	517,99	23,23
10,08	83,63	125,10	12081,17	517,99	23,24
10,20	83,63	108,76	12081,17	517,99	23,26
10,32	83,63	93,69	12081,17	517,99	23,28
10,44	83,63	79,88	12081,17	517,99	23,31
10,56	83,63	67,28	12081,17	517,99	23,33
10,68	83,63	55,88	12081,17	517,99	23,35
10,80	83,63	45,64	12081,17	517,99	23,38
10,92	83,63	36,53	12081,17	517,99	23,41
11,04	83,63	28,51	12081,17	517,99	23,44
11,16	83,63	21,56	12081,17	517,99	23,47
11,28	83,63	15,64	12081,17	517,99	23,50
11,40	83,63	10,72	12081,17	517,99	23,53
11,52	83,63	6,77	12081,17	517,99	23,57
11,64	83,63	3,76	12081,17	517,99	23,60
11,76	83,63	1,64	12081,17	517,99	23,64
11,88	83,63	0,40	12081,17	517,99	23,68
12,00	83,63	0,00	12081,17	517,99	23,72

Eurolink S.C.p.A. Pagina 210 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Inviluppo					
Υ	A_{f}	\mathbf{M}_{u}	$N_{\rm u}$	T _u	cs
0,00	83,63	1684,23	1968,17	517,99	4,47
0,12	83,63	1728,46	2205,40	517,99	4,99
0,24	83,63	1762,30	2470,20	517,99	5,56
0,36	83,63	1801,61	2790,52	517,99	6,25
0,48	83,63	1849,77	3182,95	517,99	7,09
0,60	83,63	1882,08	3617,16	517,99	8,02
0,72	83,63	1915,00	4135,89	517,99	9,12
0,84	83,63	1927,60	4711,31	517,99	10,35
0,96	83,63	1927,38	5375,08	517,99	11,75
1,08	83,63	1875,80	6027,45	517,99	13,12
1,20	83,63	1805,07	6762,48	517,99	14,65
1,32	83,63	1703,91	7552,63	517,99	16,30
1,44	83,63	1574,44	8413,33	517,99	18,08
1,56	83,63	1412,19	9327,36	517,99	19,96
1,68	83,63	1213,36	10257,51	517,99	21,86
1,80	83,63	980,30	11180,12	517,99	23,74
1,92	83,63	718,44	12081,17	517,99	25,55
2,04	83,63	405,13	12081,17	517,99	25,46
2,16	83,63	118,06	12081,17	517,99	25,36
2,28	83,63	144,08	12081,17	517,99	25,27
2,40	83,63	382,54	12081,17	517,99	25,18
2,52	83,63	598,59	12081,17	517,99	25,10
2,64	83,63	780,86	11889,93	517,99	24,62
2,76	83,63	915,42	11422,42	517,99	23,57
2,88	83,63	1024,74	11013,19	517,99	22,66
3,00	83,63	1115,17	10673,56	517,99	21,89
3,12	83,63	1187,51	10368,49	517,99	21,20
3,24	83,63	1246,86	10113,70	517,99	20,62
3,36	83,63	1295,69	9904,07	517,99	20,13
3,48	83,63	1334,96	9727,94	517,99	19,72

Eurolink S.C.p.A. Pagina 211 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

3,60	83,63	1364,87	9572,81	517,99	19,35
3,72	83,63	1388,58	9449,83	517,99	19,05
3,84	83,63	1406,90	9354,79	517,99	18,81
3,96	83,63	1420,50	9284,28	517,99	18,62
4,08	83,63	1429,90	9235,52	517,99	18,48
4,20	83,63	1435,55	9206,21	517,99	18,37
4,32	83,63	1437,82	9194,43	517,99	18,31
4,44	83,63	1437,02	9198,58	517,99	18,28
4,56	83,63	1433,41	9217,30	517,99	18,27
4,68	83,63	1427,22	9249,40	517,99	18,30
4,80	83,63	1418,64	9293,90	517,99	18,35
4,92	83,63	1407,84	9349,92	517,99	18,42
5,04	83,63	1394,97	9416,68	517,99	18,52
5,16	83,63	1380,16	9493,51	517,99	18,64
5,28	83,63	1363,52	9579,80	517,99	18,77
5,40	83,63	1345,17	9674,99	517,99	18,93
5,52	83,63	1325,10	9777,82	517,99	19,10
5,64	83,63	1301,98	9877,05	517,99	19,26
5,76	83,63	1277,38	9982,68	517,99	19,44
5,88	83,63	1251,39	10094,26	517,99	19,63
6,00	83,63	1224,10	10211,41	517,99	19,83
6,12	83,63	1195,61	10333,73	517,99	20,04
6,24	83,63	1166,00	10460,81	517,99	20,26
6,36	83,63	1135,38	10592,30	517,99	20,49
6,48	83,63	1102,95	10719,46	517,99	20,71
6,60	83,63	1069,32	10845,79	517,99	20,94
6,72	83,63	1034,97	10974,78	517,99	21,16
6,84	83,63	1000,02	11106,07	517,99	21,40
6,96	83,63	964,54	11239,29	517,99	21,63
7,08	83,63	928,65	11374,09	517,99	21,88
7,20	83,63	891,96	11503,92	517,99	22,11
7,32	83,63	854,93	11632,56	517,99	22,34
7,44	83,63	817,82	11761,49	517,99	22,58

Eurolink S.C.p.A. Pagina 212 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

7,56	83,63	780,72	11890,39	517,99	22,81
7,68	83,63	743,73	12018,93	517,99	23,05
7,80	83,63	703,11	12081,17	517,99	23,16
7,92	83,63	659,90	12081,17	517,99	23,15
8,04	83,63	618,01	12081,17	517,99	23,14
8,16	83,63	577,47	12081,17	517,99	23,14
8,28	83,63	538,33	12081,17	517,99	23,13
8,40	83,63	500,60	12081,17	517,99	23,13
8,52	83,63	464,33	12081,17	517,99	23,13
8,64	83,63	429,51	12081,17	517,99	23,13
8,76	83,63	396,16	12081,17	517,99	23,13
8,88	83,63	364,29	12081,17	517,99	23,13
9,00	83,63	333,90	12081,17	517,99	23,14
9,12	83,63	304,97	12081,17	517,99	23,14
9,24	83,63	277,52	12081,17	517,99	23,15
9,36	83,63	251,52	12081,17	517,99	23,16
9,48	83,63	226,96	12081,17	517,99	23,17
9,60	83,63	203,82	12081,17	517,99	23,18
9,72	83,63	182,09	12081,17	517,99	23,20
9,84	83,63	161,74	12081,17	517,99	23,21
9,96	83,63	142,76	12081,17	517,99	23,23
10,08	83,63	125,10	12081,17	517,99	23,24
10,20	83,63	108,76	12081,17	517,99	23,26
10,32	83,63	93,69	12081,17	517,99	23,28
10,44	83,63	79,88	12081,17	517,99	23,31
10,56	83,63	67,28	12081,17	517,99	23,33
10,68	83,63	55,88	12081,17	517,99	23,35
10,80	83,63	45,64	12081,17	517,99	23,38
10,92	83,63	36,53	12081,17	517,99	23,41
11,04	83,63	28,51	12081,17	517,99	23,44
11,16	83,63	21,56	12081,17	517,99	23,47
11,28	83,63	15,64	12081,17	517,99	23,50
11,40	83,63	10,72	12081,17	517,99	23,53

Eurolink S.C.p.A. Pagina 213 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

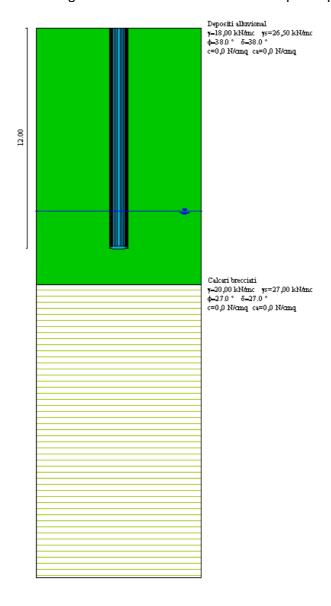
Rev. F0

Data 20-06-2011

11,52	83,63	6,77	12081,17	517,99	23,57
11,64	83,63	3,76	12081,17	517,99	23,60
11,76	83,63	1,64	12081,17	517,99	23,64
11,88	83,63	0,40	12081,17	517,99	23,68
12,00	83,63	0,00	12081,17	517,99	23,72

Eurolink S.C.p.A. Pagina 214 di 238

RELAZIONE DI CALCOLO


Codice documento
ST0216_F0.doc

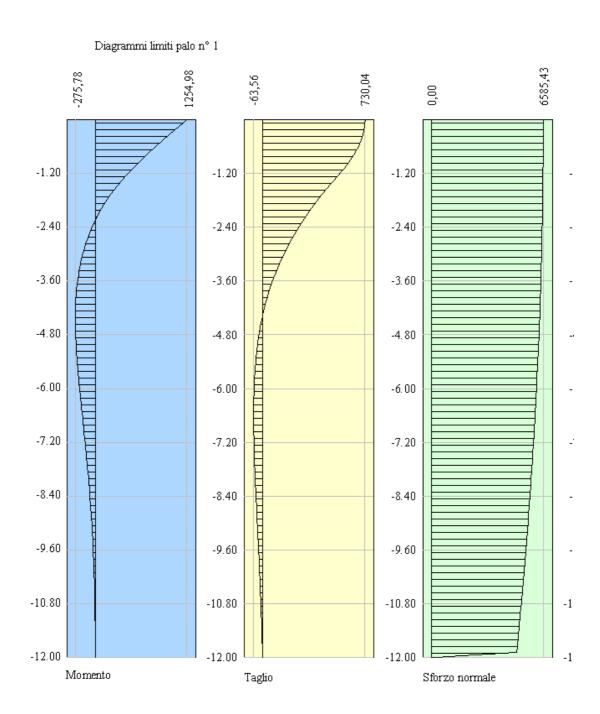
Rev.

F0

Data 20-06-2011

Si riportano di seguito alcuni diagrammi riassuntivi delle analisi sopra esposte.

Eurolink S.C.p.A. Pagina 215 di 238



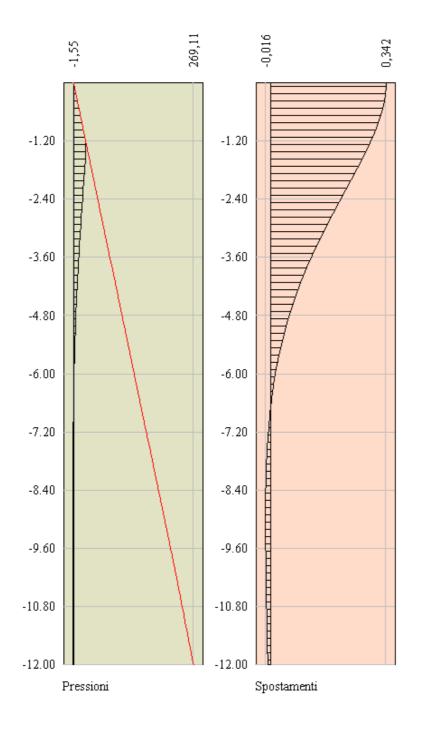
RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 216 di 238



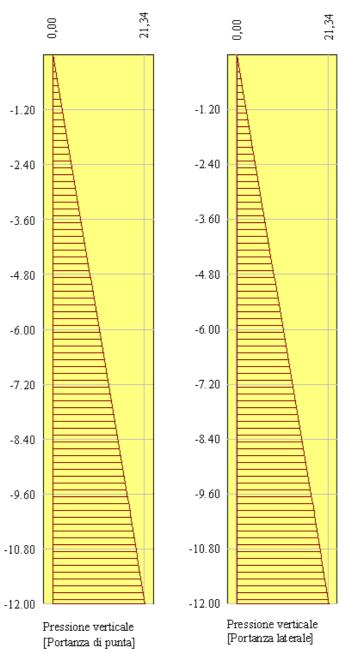
RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 217 di 238


RELAZIONE DI CALCOLO

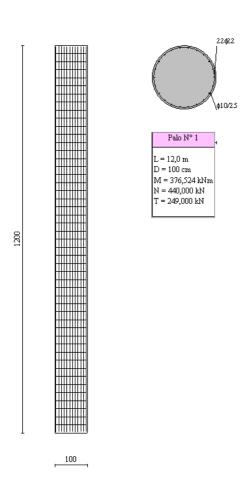
Codice documento
ST0216_F0.doc

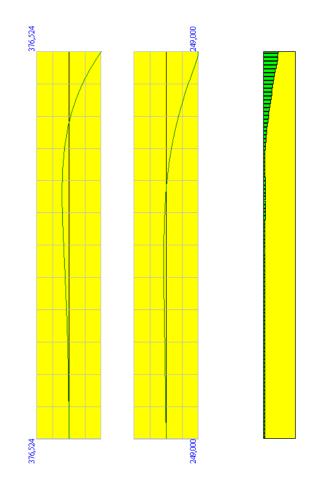
Rev. F0

Data 20-06-2011

Diagrammi pressione verticale

Eurolink S.C.p.A. Pagina 218 di 238




RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Eurolink S.C.p.A. Pagina 219 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

9.1.2.2 VERIFICHE SLE - CEDIMENTI

Con riferimento alla tabella riassuntiva delle sollecitazioni SL, si effettuano le verifiche agli SLE per i cedimenti verticali ed orizzontali per la combinazione 37, che risulta essere la peggiorativa per carico assiale ed orizzontale.

Calcolo dei cedimenti verticali dei pali

Il cedimento del singolo palo viene calcolato tramite la relazione di Meyerhof.

$$\delta = \frac{\text{N D}}{30 \text{ Q}_{t}}$$

dove N è il carico gravante sul palo, D il diametro, e Q_t è la portanza totale del palo.

PALI DI FONDAZIONE

CARICHI VERTICALI. Coefficienti parziali γ_R per le verifiche dei pali

Pali trivellati

		R1	R2	R3
Punta	γ_{b}	1,00	1,70	1,35
Laterale compressione	γ_{s}	1,00	1,45	1,15
Totale compressione	γ_{t}	1,00	1,60	1,30
Laterale trazione	$\gamma_{ m st}$	1,00	1,60	1,25

CARICHI TRASVERSALI. Coefficienti parziali γ_T per le verifiche dei pali.

	R1	R2	R3
γ_{T}	1,00	1,60	1,30

Coefficienti di riduzione $\boldsymbol{\xi}$ per la determinazione della resistenza caratteristica dei pali

Numero di verticali indagate 1 ξ_3 =1,70 ξ_4 =1,70

Eurolink S.C.p.A. Pagina 220 di 238

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

Codice documento ST0216 F0.doc

Rev. F0

Data 20-06-2011

Coeff. di combinazione

 $\Psi_0 = 0.70$ $\Psi_1 = 0.50$

 $\Psi_2 = 0.20$

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione

 N_{TOT} Sforzo normale totale espressa in [kN]

 Mx_{TOT} Momento in direzione X espressa in [kNm]

 My_{TOT} Momento in direzione Y espresso in [kNm]

Eccentricità del carico lungo X espressa in [m] ex

ey Eccentricità del carico lungo Y espressa in [m]

β Inclinazione del taglio nel piano espressa in [9]

 T_{TOT} Forza di taglio espressa in [kN]

Condizione n°1 (Condizione n°1)

Fondazione	N_{TOT}	Mx_{TOT}	My_{TOT}	ex	ey	β	T_{TOT}
Palo 60	302,000	0,000	105,000	0,3	0,0	90,0	135,000

Descrizione combinazioni di carico

Simbologia adottata

Coefficiente di partecipazione della condizione γ

Ψ Coefficiente di combinazione della condizione

C Coefficiente totale di partecipazione della condizione

Combinazione n°1 SLE

C Ψ γ

Eurolink S.C.p.A. Pagina 221 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Condizione n°1 1.00 1.00 1.00

Analisi in condizioni drenate

Momento ultimo della sezione

A_{f1} **A**_{f2} **M**_{usez1} **M**_{usez2} 80,42 80,42 1212,1242 1212,1242

Cedimento verticale in testa ai pali

Per il calcolo dei cedimenti è stato utilizzato il metodo di Meyerhof. Simbologia adottata

Comb Identificativo della combinazione

w Cedimento in testa al palo, espresso in [cm]

Combinazione w
1 0,0481

Spostamenti e pressioni in esercizio

Simbologia adottata

Nr. Identificativo sezione palo

Y ordinata palo espressa in [cm]

Ue spostamento in esercizio espresso in [cm]

Pe pressione in esercizio espressa in [N/cmq]

Combinazione n°1

Nr.	Υ	Ue	Pe
1	0,00	0,0509	0,00
2	0,12	0,0509	2,72
3	0,24	0,0506	4,96
4	0,36	0,0502	4,92

Eurolink S.C.p.A. Pagina 222 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

5	0,48	0,0496	4,87
6	0,60	0,0489	4,80
7	0,72	0,0482	4,72
8	0,84	0,0473	4,63
9	0,96	0,0463	4,54
10	1,08	0,0452	4,43
11	1,20	0,0441	4,32
12	1,32	0,0429	4,20
13	1,44	0,0416	4,08
14	1,56	0,0403	3,95
15	1,68	0,0390	3,82
16	1,80	0,0376	3,69
17	1,92	0,0363	3,56
18	2,04	0,0349	3,42
19	2,16	0,0335	3,28
20	2,28	0,0321	3,15
21	2,40	0,0307	3,01
22	2,52	0,0293	2,87
23	2,64	0,0279	2,74
24	2,76	0,0265	2,60
25	2,88	0,0252	2,47
26	3,00	0,0239	2,34
27	3,12	0,0226	2,21
28	3,24	0,0213	2,09
29	3,36	0,0201	1,97
30	3,48	0,0189	1,85
31	3,60	0,0177	1,74
32	3,72	0,0166	1,62
33	3,84	0,0154	1,52
34	3,96	0,0144	1,41
35	4,08	0,0133	1,31
36	4,20	0,0124	1,21
37	4,32	0,0114	1,12

Eurolink S.C.p.A. Pagina 223 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

38	4,44	0,0105	1,03
39	4,56	0,0096	0,94
40	4,68	0,0088	0,86
41	4,80	0,0080	0,78
42	4,92	0,0072	0,71
43	5,04	0,0065	0,63
44	5,16	0,0058	0,57
45	5,28	0,0051	0,50
46	5,40	0,0045	0,44
47	5,52	0,0039	0,38
48	5,64	0,0034	0,33
49	5,76	0,0028	0,28
50	5,88	0,0024	0,23
51	6,00	0,0019	0,19
52	6,12	0,0015	0,15
53	6,24	0,0011	0,11
54	6,36	0,0007	0,07
55	6,48	0,0004	0,04
56	6,60	0,0001	0,01
57	6,72	-0,0002	-0,02
58	6,84	-0,0005	-0,05
59	6,96	-0,0007	-0,07
60	7,08	-0,0010	-0,09
61	7,20	-0,0012	-0,11
62	7,32	-0,0013	-0,13
63	7,44	-0,0015	-0,15
64	7,56	-0,0017	-0,16
65	7,68	-0,0018	-0,17
66	7,80	-0,0019	-0,19
67	7,92	-0,0020	-0,20
68	8,04	-0,0021	-0,20
69	8,16	-0,0021	-0,21
70	8,28	-0,0022	-0,22

Eurolink S.C.p.A. Pagina 224 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

8,40	-0,0023	-0,22
8,52	-0,0023	-0,22
8,64	-0,0023	-0,23
8,76	-0,0023	-0,23
8,88	-0,0023	-0,23
9,00	-0,0023	-0,23
9,12	-0,0023	-0,23
9,24	-0,0023	-0,23
9,36	-0,0023	-0,23
9,48	-0,0023	-0,22
9,60	-0,0023	-0,22
9,72	-0,0022	-0,22
9,84	-0,0022	-0,22
9,96	-0,0022	-0,21
10,08	-0,0021	-0,21
10,20	-0,0021	-0,20
10,32	-0,0020	-0,20
10,44	-0,0020	-0,19
10,56	-0,0019	-0,19
10,68	-0,0019	-0,18
10,80	-0,0018	-0,18
10,92	-0,0018	-0,17
11,04	-0,0017	-0,17
11,16	-0,0017	-0,16
11,28	-0,0016	-0,16
11,40	-0,0015	-0,15
11,52	-0,0015	-0,15
11,64	-0,0014	-0,14
11,76	-0,0014	-0,13
11,88	-0,0013	-0,13
12,00	-0,0013	-0,12
	8,52 8,64 8,76 8,88 9,00 9,12 9,24 9,36 9,48 9,60 9,72 9,84 9,96 10,08 10,20 10,32 10,44 10,56 10,68 10,80 10,92 11,04 11,16 11,16 11,28 11,40 11,52 11,64 11,76 11,88	8,52-0,00238,64-0,00238,76-0,00238,88-0,00239,00-0,00239,12-0,00239,24-0,00239,48-0,00239,60-0,00239,72-0,00229,84-0,002210,08-0,002110,20-0,002110,32-0,002010,44-0,002010,56-0,001910,68-0,001910,80-0,001810,92-0,001811,04-0,001711,16-0,001711,28-0,001611,40-0,001511,52-0,001511,64-0,001411,76-0,001411,88-0,0013

Spostamenti e pressioni limiti

Eurolink S.C.p.A. Pagina 225 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Simbologia adottata

Nr. Identificativo sezione palo

Y ordinata palo espressa in [cm]

Ur spostamento limite espresso in [cm]

Pr pressione limite espressa in [N/cmq]

Combinazione n°1

Nr.	Υ	Ur	Pr
1	0,00	0,3294	0,00
2	0,12	0,3289	2,72
3	0,24	0,3273	5,45
4	0,36	0,3247	8,17
5	0,48	0,3212	10,90
6	0,60	0,3169	13,62
7	0,72	0,3119	16,34
8	0,84	0,3062	19,07
9	0,96	0,2999	21,79
10	1,08	0,2930	24,52
11	1,20	0,2857	27,24
12	1,32	0,2781	27,27
13	1,44	0,2700	26,48
14	1,56	0,2617	25,67
15	1,68	0,2532	24,83
16	1,80	0,2445	23,97
17	1,92	0,2356	23,10
18	2,04	0,2266	22,23
19	2,16	0,2176	21,34
20	2,28	0,2086	20,46
21	2,40	0,1996	19,57
22	2,52	0,1906	18,69
23	2,64	0,1817	17,82
24	2,76	0,1729	16,95

Eurolink S.C.p.A. Pagina 226 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

25	2,88	0,1642	16,10
26	3,00	0,1556	15,26
27	3,12	0,1472	14,44
28	3,24	0,1390	13,63
29	3,36	0,1310	12,84
30	3,48	0,1231	12,08
31	3,60	0,1155	11,33
32	3,72	0,1081	10,60
33	3,84	0,1009	9,90
34	3,96	0,0940	9,22
35	4,08	0,0873	8,56
36	4,20	0,0808	7,93
37	4,32	0,0746	7,32
38	4,44	0,0687	6,73
39	4,56	0,0629	6,17
40	4,68	0,0575	5,64
41	4,80	0,0522	5,12
42	4,92	0,0473	4,64
43	5,04	0,0425	4,17
44	5,16	0,0380	3,73
45	5,28	0,0338	3,31
46	5,40	0,0297	2,91
47	5,52	0,0259	2,54
48	5,64	0,0223	2,19
49	5,76	0,0189	1,86
50	5,88	0,0157	1,54
51	6,00	0,0128	1,25
52	6,12	0,0100	0,98
53	6,24	0,0074	0,73
54	6,36	0,0050	0,49
55	6,48	0,0028	0,27
56	6,60	0,0007	0,07
57	6,72	-0,0012	-0,12

Eurolink S.C.p.A. Pagina 227 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

58	6,84	-0,0029	-0,29
59	6,96	-0,0045	-0,44
60	7,08	-0,0060	-0,59
61	7,20	-0,0073	-0,72
62	7,32	-0,0085	-0,83
63	7,44	-0,0096	-0,94
64	7,56	-0,0105	-1,03
65	7,68	-0,0114	-1,12
66	7,80	-0,0121	-1,19
67	7,92	-0,0128	-1,25
68	8,04	-0,0133	-1,31
69	8,16	-0,0138	-1,35
70	8,28	-0,0142	-1,39
71	8,40	-0,0145	-1,42
72	8,52	-0,0148	-1,45
73	8,64	-0,0149	-1,47
74	8,76	-0,0151	-1,48
75	8,88	-0,0151	-1,49
76	9,00	-0,0152	-1,49
77	9,12	-0,0151	-1,49
78	9,24	-0,0151	-1,48
79	9,36	-0,0150	-1,47
80	9,48	-0,0148	-1,45
81	9,60	-0,0147	-1,44
82	9,72	-0,0145	-1,42
83	9,84	-0,0142	-1,40
84	9,96	-0,0140	-1,37
85	10,08	-0,0137	-1,35
86	10,20	-0,0135	-1,32
87	10,32	-0,0132	-1,29
88	10,44	-0,0128	-1,26
89	10,56	-0,0125	-1,23
90	10,68	-0,0122	-1,20

Eurolink S.C.p.A. Pagina 228 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

91	10,80	-0,0119	-1,16
92	10,92	-0,0115	-1,13
93	11,04	-0,0112	-1,10
94	11,16	-0,0108	-1,06
95	11,28	-0,0105	-1,03
96	11,40	-0,0101	-0,99
97	11,52	-0,0097	-0,96
98	11,64	-0,0094	-0,92
99	11,76	-0,0090	-0,88
100	11,88	-0,0087	-0,85
101	12,00	-0,0083	-0,81

Sollecitazioni in esercizio

Simbologia adottata

Nr. Identificativo sezione

Y ordinata della sezione a partire dalla testa positiva verso il basso (in [m])

N sforzo normale espresso in [kN]

T taglio espresso in [kN]

M momento espresso in [kNm]

Combinazione n°1

Nr.	Υ	М	Т	N
1	0,00	197,7961	135,0000	302,0000
2	0,12	181,5961	131,7312	304,2978
3	0,24	165,7884	125,7766	306,5699
4	0,36	150,6952	119,8707	308,8162
5	0,48	136,3107	114,0301	311,0367
6	0,60	122,6271	108,2697	313,2315
7	0,72	109,6347	102,6031	315,4006
8	0,84	97,3223	97,0423	317,5439
9	0,96	85,6773	91,5979	319,6614

Eurolink S.C.p.A. Pagina 229 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

10	1,08	74,6855	86,2794	321,7532
11	1,20	64,3320	81,0950	323,8193
12	1,32	54,6006	76,0517	325,8596
13	1,44	45,4744	71,1557	327,8742
14	1,56	36,9357	66,4118	329,8630
15	1,68	28,9663	61,8241	331,8260
16	1,80	21,5474	57,3959	333,7633
17	1,92	14,6599	53,1295	335,6749
18	2,04	8,2843	49,0266	337,5607
19	2,16	2,4012	45,0880	339,4208
20	2,28	-3,0094	41,3140	341,2551
21	2,40	-7,9671	37,7042	343,0637
22	2,52	-12,4916	34,2580	344,8465
23	2,64	-16,6025	30,9738	346,6035
24	2,76	-20,3194	27,8498	348,3349
25	2,88	-23,6614	24,8839	350,0404
26	3,00	-26,6474	22,0734	351,7203
27	3,12	-29,2962	19,4154	353,3743
28	3,24	-31,6261	16,9067	355,0026
29	3,36	-33,6549	14,5439	356,6052
30	3,48	-35,4001	12,3232	358,1820
31	3,60	-36,8789	10,2408	359,7331
32	3,72	-38,1078	8,2926	361,2584
33	3,84	-39,1029	6,4744	362,7580
34	3,96	-39,8799	4,7820	364,2319
35	4,08	-40,4537	3,2110	365,6799
36	4,20	-40,8390	1,7570	367,1023
37	4,32	-41,0499	0,4154	368,4988
38	4,44	-41,0997	-0,8183	369,8697
39	4,56	-41,0015	-1,9484	371,2148
40	4,68	-40,7677	-2,9797	372,5341
41	4,80	-40,4101	-3,9164	373,8277
42	4,92	-39,9402	-4,7631	375,0955

Eurolink S.C.p.A. Pagina 230 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

43	5,04	-39,3686	-5,5242	376,3376
44	5,16	-38,7057	-6,2039	377,5539
45	5,28	-37,9612	-6,8064	378,7445
46	5,40	-37,1445	-7,3361	379,9094
47	5,52	-36,2641	-7,7969	381,0484
48	5,64	-35,3285	-8,1929	382,1618
49	5,76	-34,3454	-8,5278	383,2494
50	5,88	-33,3220	-8,8055	384,3112
51	6,00	-32,2654	-9,0297	385,3473
52	6,12	-31,1818	-9,2038	386,3576
53	6,24	-30,0773	-9,3313	387,3422
54	6,36	-28,9576	-9,4155	388,3011
55	6,48	-27,8277	-9,4596	389,2342
56	6,60	-26,6925	-9,4667	390,1415
57	6,72	-25,5565	-9,4395	391,0231
58	6,84	-24,4238	-9,3811	391,8790
59	6,96	-23,2981	-9,2940	392,7091
60	7,08	-22,1828	-9,1808	393,5134
61	7,20	-21,0811	-9,0439	394,2920
62	7,32	-19,9958	-8,8858	395,0449
63	7,44	-18,9295	-8,7084	395,7720
64	7,56	-17,8845	-8,5140	396,4733
65	7,68	-16,8628	-8,3045	397,1489
66	7,80	-15,8663	-8,0817	397,7988
67	7,92	-14,8965	-7,8474	398,4229
68	8,04	-13,9548	-7,6032	399,0213
69	8,16	-13,0424	-7,3507	399,5939
70	8,28	-12,1603	-7,0913	400,1407
71	8,40	-11,3094	-6,8263	400,6618
72	8,52	-10,4902	-6,5570	401,1572
73	8,64	-9,7034	-6,2845	401,6268
74	8,76	-8,9493	-6,0098	402,0707
75	8,88	-8,2281	-5,7341	402,4888

Eurolink S.C.p.A. Pagina 231 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

76	9,00	-7,5400	-5,4581	402,8812
77	9,12	-6,8850	-5,1827	403,2478
78	9,24	-6,2631	-4,9087	403,5886
79	9,36	-5,6741	-4,6367	403,9038
80	9,48	-5,1177	-4,3673	404,1931
81	9,60	-4,5936	-4,1012	404,4567
82	9,72	-4,1014	-3,8389	404,6946
83	9,84	-3,6408	-3,5807	404,9067
84	9,96	-3,2111	-3,3271	405,0931
85	10,08	-2,8118	-3,0785	405,2541
86	10,20	-2,4424	-2,8351	405,3912
87	10,32	-2,1022	-2,5972	405,5044
88	10,44	-1,7905	-2,3651	405,5937
89	10,56	-1,5067	-2,1389	405,6591
90	10,68	-1,2501	-1,9188	405,7006
91	10,80	-1,0198	-1,7049	405,7183
92	10,92	-0,8152	-1,4975	405,7120
93	11,04	-0,6355	-1,2965	405,6819
94	11,16	-0,4799	-1,1020	405,6280
95	11,28	-0,3477	-0,9140	405,5501
96	11,40	-0,2380	-0,7327	405,4484
97	11,52	-0,1501	-0,5580	405,3227
98	11,64	-0,0831	-0,3900	405,1732
99	11,76	-0,0363	-0,2287	404,9998
100	11,88	-0,0089	-0,0740	404,8026
101	12,00	0,0000	-0,0740	404,5814

Sollecitazioni limiti

Simbologia adottata

Nr. Identificativo sezione

Y ordinata della sezione a partire dalla testa positiva verso il basso (in [m])

Eurolink S.C.p.A. Pagina 232 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

Nr sforzo normale espresso in [kN]

Tr taglio espresso in [kN]

Mr momento espresso in [kNm]

Combinazione n°1

Nr.	Υ	Mr	Tr	Nr
1	0,00	1212,1242	708,9361	6585,4319
2	0,12	1127,0667	705,6673	6585,1138
3	0,24	1042,3866	699,1297	6584,4776
4	0,36	958,4910	689,3232	6583,5233
5	0,48	875,7723	676,2478	6582,2509
6	0,60	794,6225	659,9037	6580,6604
7	0,72	715,4341	640,2907	6578,7518
8	0,84	638,5992	617,4088	6576,5251
9	0,96	564,5101	591,2582	6573,9803
10	1,08	493,5592	561,8387	6571,1174
11	1,20	426,1385	529,1504	6567,9364
12	1,32	362,6405	496,4277	6564,4373
13	1,44	303,0691	464,6497	6560,6201
14	1,56	247,3112	433,8495	6556,4848
15	1,68	195,2492	404,0545	6552,0313
16	1,80	146,7627	375,2861	6547,2598
17	1,92	101,7284	347,5605	6542,1702
18	2,04	60,0211	320,8890	6536,7625
19	2,16	21,5144	295,2781	6531,0367
20	2,28	-13,9189	270,7303	6524,9928
21	2,40	-46,4066	247,2441	6518,6308
22	2,52	-76,0759	224,8146	6511,9506
23	2,64	-103,0536	203,4333	6504,9524
24	2,76	-127,4656	183,0890	6497,6361
25	2,88	-149,4363	163,7678	6490,0017
26	3,00	-169,0884	145,4533	6482,0492
27	3,12	-186,5428	128,1269	6473,7786

Eurolink S.C.p.A. Pagina 233 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

28	3,24	-201,9181	111,7683	6465,1898
29	3,36	-215,3303	96,3554	6456,2830
30	3,48	-226,8929	81,8644	6447,0581
31	3,60	-236,7166	68,2705	6437,5151
32	3,72	-244,9091	55,5478	6427,6539
33	3,84	-251,5748	43,6695	6417,4747
34	3,96	-256,8152	32,6078	6406,9774
35	4,08	-260,7281	22,3347	6396,1620
36	4,20	-263,4083	12,8216	6385,0284
37	4,32	-264,9468	4,0395	6373,5768
38	4,44	-265,4316	-4,0406	6361,8071
39	4,56	-264,9467	-11,4479	6349,7193
40	4,68	-263,5730	-18,2113	6337,3133
41	4,80	-261,3876	-24,3599	6324,5893
42	4,92	-258,4644	-29,9222	6311,5472
43	5,04	-254,8737	-34,9268	6298,1869
44	5,16	-250,6825	-39,4014	6284,5086
45	5,28	-245,9544	-43,3737	6270,5122
46	5,40	-240,7495	-46,8707	6256,1976
47	5,52	-235,1250	-49,9187	6241,5650
48	5,64	-229,1348	-52,5435	6226,6142
49	5,76	-222,8296	-54,7704	6211,3454
50	5,88	-216,2571	-56,6238	6195,7585
51	6,00	-209,4623	-58,1273	6179,8534
52	6,12	-202,4870	-59,3041	6163,6303
53	6,24	-195,3705	-60,1762	6147,0890
54	6,36	-188,1493	-60,7653	6130,2297
55	6,48	-180,8575	-61,0918	6113,0523
56	6,60	-173,5265	-61,1758	6095,5567
57	6,72	-166,1854	-61,0361	6077,7431
58	6,84	-158,8611	-60,6911	6059,6113
59	6,96	-151,5781	-60,1583	6041,1615
60	7,08	-144,3591	-59,4542	6022,3935

Eurolink S.C.p.A. Pagina 234 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

61	7,20	-137,2246	-58,5947	6003,3075
62	7,32	-130,1933	-57,5948	5983,9033
63	7,44	-123,2819	-56,4690	5964,1811
64	7,56	-116,5056	-55,2306	5944,1407
65	7,68	-109,8780	-53,8925	5923,7823
66	7,80	-103,4109	-52,4668	5903,1057
67	7,92	-97,1148	-50,9647	5882,1111
68	8,04	-90,9991	-49,3971	5860,7983
69	8,16	-85,0714	-47,7738	5839,1675
70	8,28	-79,3386	-46,1042	5817,2185
71	8,40	-73,8061	-44,3971	5794,9515
72	8,52	-68,4784	-42,6605	5772,3663
73	8,64	-63,3591	-40,9019	5749,4631
74	8,76	-58,4509	-39,1284	5726,2417
75	8,88	-53,7555	-37,3463	5702,7022
76	9,00	-49,2740	-35,5615	5678,8447
77	9,12	-45,0066	-33,7795	5654,6690
78	9,24	-40,9530	-32,0052	5630,1752
79	9,36	-37,1124	-30,2431	5605,3634
80	9,48	-33,4832	-28,4972	5580,2334
81	9,60	-30,0636	-26,7713	5554,7854
82	9,72	-26,8510	-25,0687	5529,0192
83	9,84	-23,8428	-23,3922	5502,9349
84	9,96	-21,0357	-21,7446	5476,5326
85	10,08	-18,4264	-20,1282	5449,8275
86	10,20	-16,0110	-18,5449	5422,8274
87	10,32	-13,7856	-16,9965	5395,5323
88	10,44	-11,7460	-15,4846	5367,9422
89	10,56	-9,8878	-14,0104	5340,0571
90	10,68	-8,2066	-12,5751	5311,8770
91	10,80	-6,6976	-11,1795	5283,4019
92	10,92	-5,3560	-9,8243	5254,6318
93	11,04	-4,1771	-8,5103	5225,5667

Eurolink S.C.p.A. Pagina 235 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216_F0.doc

Rev. F0

Data 20-06-2011

94	11,16	-3,1559	-7,2377	5196,2065
95	11,28	-2,2874	-6,0070	5166,5514
96	11,40	-1,5665	-4,8185	5136,6013
97	11,52	-0,9883	-3,6722	5106,3561
98	11,64	-0,5476	-2,5684	5075,8159
99	11,76	-0,2394	-1,5070	5044,9808
100	11,88	-0,0586	-0,4882	5013,8506
101	12,00	0,0000	-0,4882	5013,8506

Diagramma Carico-Cedimento verticale

Simbologia adottata

N Carico sul palo espressa in [kN]

w Cedimento del palo espresso in [cm]

Combinazione n°1

w	N
0,107	673,36
0,264	1658,71
0,499	3136,72
0,852	4812,63
1,226	6321,98
1,291	6585,43

Diagramma Carico-Cedimento orizzontale

Simbologia adottata

N Carico sul palo espressa in [kN]

u Cedimento del palo espresso in [cm]

Combinazione n°1

N u 135,02 0,051

Eurolink S.C.p.A. Pagina 236 di 238

RELAZIONE DI CALCOLO

Codice documento ST0216_F0.doc

Rev. F0

Data 20-06-2011

135,04	0,051
135,13	0,051
135,88	0,051
141,90	0,054
188,13	0,072
514,07	0,221
537,38	0,233
549,03	0,239
637,44	0,288
645,85	0,292
650,06	0,295
683,70	0,314
687,54	0,317
689,45	0,318
704,24	0,326
705,60	0,327
706,28	0,328
706,39	0,328
706,44	0,328
706,87	0,328
706,95	0,328
706,98	0,328
707,28	0,328
707,34	0,328
707,36	0,328
707,58	0,328
707,62	0,329
707,65	0,329
707,81	0,329
708,94	0,329

Eurolink S.C.p.A. Pagina 237 di 238

RELAZIONE DI CALCOLO

Codice documento
ST0216 F0.doc

Rev.

F0

Data 20-06-2011

9.1.2.3 VALUTAZIONE DEI RISULTATI

I fattori di sicurezza ottenuti per verifica di portanza verticale della sottostruttura in oggetto risultano per le combinazioni statiche spesso ampiamente superiori al valore richiesto dalla normativa vigente; la lunghezza dei pali è infatti richiesta in maniera principale per la fase iniziale, in cui i pali formano una berlinese di sostegno a protezione del muro esistente della fiumara.

I valori dei cedimenti risultano molto contenuti, nell'ordine dei decimi di cm; questi valori sono del tutto giustificati, in relazione al fatto che il carico assiale sul singolo palo risulta piuttosto esiguo a causa della luce ridotta del ponte ed al numero elevato di pali dovuto al già citato utilizzo di fase iniziale.

Eurolink S.C.p.A. Pagina 238 di 238