

COMUNI DI LESINA E SAN PAOLO DI CIVITATE

PROVINCIA DI FOGGIA

PROGETTO ATS ALEXINA

DITTA ATS Engineering s.r.l.

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO

RICHIESTA DI AUTORIZZAZIONE UNICA

D.Lgs. 387/2003

PROCEDIMENTO UNICO AMBIENTALE (PUA)

Valutazione di Impatto Ambientale (V.I.A.)

D.Lgs. 152/2006 ss.mm.ii. (Art.27) "Norme in materia ambientale"

ALL. 09

PAGG. 15

RELAZIONE GITTATA MASSIMA

DEGLI ELEMENTI ROTANTI

1	EMISSIONE	22/05/2020
REV	DESCRIZIONE	DATA

CARATTERISTICHE GENERALI D'IMPIANTO

GENERATORE - Altezza mozzo: fino a 140 m.

Diametro rotore: fino a 170 m.

Potenza unitaria: fino a 6 MW.

IMPIANTO - Numero generatori: 21

Potenza complessiva: fino a 126 MW.

Il proponente:

ATS Engineering s.r.l. P.zza Giovanni Paolo II, 8 71017 Torremaggiore (FG) 0882/393197 atseng@pec.it

Il progettista:

ATS Engineering s.r.l. P.zza Giovanni Paolo II, 8 71017 Torremaggiore (FG) 0882/393197 atseng@pec.it

Il tecnico:

Ing. Eugenio Di Gianvito atsing@atsing.eu

Sommario

PREMESSA	2
INTRODUZIONE	2
CENNI SUI PRINCIPI DI FUNZIONAMENTO DI UN AEROGENERATORE	2
INQUADRAMENTO DEL SISTEMA	3
SPECIFICHE TECNICHE DELL'AEROGENERATORE	4
STUDIO DEL PROBLEMA	5
CALCOLO DELLA GITTATA MASSIMA DEGLI ELEMENTI ROTANTI	6
CONCLUSIONI	15

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	1

PREMESSA

Con riferimento al Decreto Ministeriale 10 Settembre 2010 e alle Regole per la Sicurezza è necessaria la "dimostrazione della gittata massima degli elementi rotanti in caso di rottura accidentale" (art.10 comma g).

Questo documento riporta lo studio realizzato per la dimostrazione della gittata massima della pala, con riferimento alla tecnologia utilizzata nel progetto del parco eolico "ATS Alexina" previsto nei Comuni di Lesina, San Paolo e Poggio Imperiale (FG).

L'impianto sarà composto da 21 aerogeneratori con potenza fino a 6.0 MW, suddivisi in 14 nel territorio comunale di Lesina e 7 nel comune di San Paolo.

La potenza complessiva prodotta dall'impianto potrà arrivare fino a 126 MW. L'impianto verrà allacciato alla rete di distribuzione MT con tensione nominale di 20 KV mediante cabina primaria BT/MT, secondo quanto disposto dalla società ENEL.

Per il parco eolico sono state prese in considerazione macchine tipo da 6 MW, fino di diametro rotore, considerazioni da ritenersi di carattere generale ed applicabili a qualsiasi aerogeneratore avente stessa potenza e dimensioni.

INTRODUZIONE

La gittata è la distanza longitudinale percorsa da un corpo lanciato in aria, con una certa direzione e con una certa velocità iniziale, prima di impattare con il suolo.

Lo studio viene effettuato applicando una metodologia di calcolo che abbia rigore scientifico e considerando tutti i possibili effetti meccanici ed aerodinamici che possono in qualche modo influenzare la distanza di gittata della pala.

CENNI SUI PRINCIPI DI FUNZIONAMENTO DI UN AEROGENERATORE

Nel dettaglio, le pale sono fissate su un mozzo, e nell'insieme costituiscono il rotore; il mozzo, a sua volta, è collegato ad un primo albero di trasmissione, detto albero lento, che ruota alla stessa velocità angolare del rotore.

L'albero lento è, nella maggior parte dei casi, collegato ad un moltiplicatore di giri, da cui si diparte un albero veloce, che ruota con velocità angolare data da quella dell'albero lento per

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	2

il rapporto di trasmissione del rotismo installato. Tutti i componenti sopra menzionati, ad eccezione del rotore e del mozzo, sono ubicati entro una cabina detta navicella, la quale a sua volta è sistemata su un supporto cuscinetto in maniera da essere facilmente orientata secondo la direzione del vento.

Oltre ai componenti su elencati vi è un sistema di controllo che regola la velocità di rotazione del rotore, agendo sull'angolo di attacco delle pale, e che modifica l'orientamento della navicella (controllo dell'imbardata) al fine di allineare la macchina rispetto alla direzione del vento. Si riporta di seguito una figura che evidenzia il verso di rotazione dell'aerogeneratore, in relazione alla direzione del vento che causa tale moto. La conformazione del profilo alare dell'aerogeneratore è fissa, mentre è mobile il rotore sul quale sono ancorate le pale. Questo garantisce la possibilità di poter sempre orientare il rotore rispetto al vento al fine di avere un verso orario di rotazione, indipendentemente dalla direzione del vento. Questa considerazione ci serve per fissare in ogni momento il verso della velocità tangenziale, responsabile della gittata nel piano, rispetto a quello della velocità del vento, ortogonale alla velocità tangenziale ed a sua volta responsabile della gittata fuori dal piano. Dalla composizione delle due traiettorie si ottiene la traiettoria complessiva e quindi si capisce la direzione lungo la quale l'eventuale pala o parte di essa che si distacca percorre il suo moto.

INQUADRAMENTO DEL SISTEMA

Il sistema di riferimento adottato per lo studio del problema è costituito da una terna sinistrorsa *X*, *Y*, *Z*, dalle seguenti caratteristiche:

- nel piano XY giace l'aerogeneratore, con base nell'origine del sistema;
- il rotore gira in senso orario;
- la direzione del vento è perpendicolare al piano XY, quindi parallela all'asse delle z.

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	3

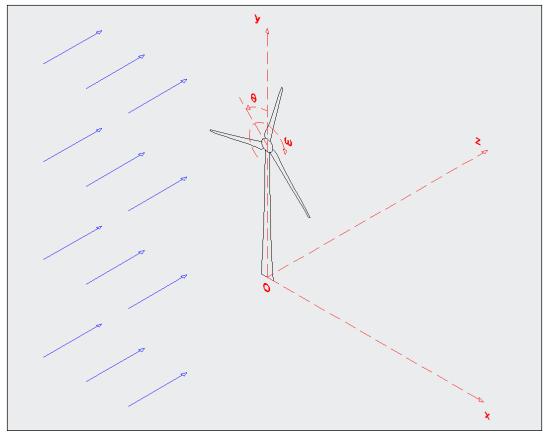


Figura 1: Riferimento del sistema

SPECIFICHE TECNICHE DELL'AEROGENERATORE di potenza nominale fino a 7,5 MW.

Diametro Rotore[m]	140
Altezza del mozzo[m]	135
Potenza nominale [MW]	7,5
Velocità rotore [rpm]	4.4 –16
Velocità di Cut-in [m/s]	3
Velocità di Cut-out [m/s]	34,0

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	4

STUDIO DEL PROBLEMA

Per il calcolo della gittata massima sono state prese in considerazione le caratteristiche di vento più gravose in cui potrebbe avvenire una rottura accidentale, nonchè i fattori aerodinamici e le caratteristiche meccaniche degli elementi che costituiscono l'aerogeneratore.

Gli episodi più critici potrebbero verificarsi quando la velocità del vento è massima, un istante prima che il sistema frenante automatico entri in funzione (Cut-out = 34 m/s, al quale corrisponde una velocità angolare del rotore pari a 16 giri al minuto), in una delle seguenti ipotesi:

- distacco dell'intera pala;
- distacco di una parte di essa (estremità della pala, di lunghezza pari a 5 metri, definita attraverso sezioni di pre-rottura appositamente create dal costruttore dell'aerogeneratore).

Nel primo caso il centro di massa del pezzo, per via della geometria della pala, è situato ad 1/3 della sua lunghezza a partire dal centro del rotore, mentre nel secondo caso si assume che il baricentro del pezzo sia situato nel mezzo della sua lunghezza (ipotesi semplificativa a vantaggio di sicurezza).

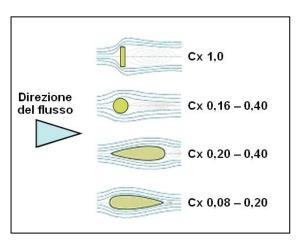
L'oggetto che accidentalmente si distacca dal rotore viene messo in moto a causa dell'annullamento della forza centripeta, con una velocità iniziale v_0 applicata nel suo baricentro, la cui direzione coincide con la tangente alla traiettoria disegnata dall'oggetto durante il suo consueto movimento (prima della rottura); tale v_0 è quindi proporzionale alla velocità di rotazione del rotore e alla distanza tra il centro del rotore ed il centro di massa dell'oggetto stesso, mentre l'angolo nel quale si trova la pala al momento della rottura determina le rispettive proiezioni di v_0 sull'asse delle x e su quello delle y.

Siccome il sistema è immerso nel campo gravitazionale terrestre l'oggetto è anche soggetto ad una accelerazione costante $g = 9.81 \text{m/s}^2$ diretta lungo -y.

Al moto dell'oggetto inoltre si oppone la forza di resistenza dell'aria, che è proporzionale al coefficiente di forma dell'oggetto, alla densità dell'aria, al quadrato della velocità dell'oggetto in volo, e alla superficie di riferimento dell'oggetto:

$$R_a=0.5 \cdot c_x \cdot \rho \cdot v^2 \cdot S$$

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	5


Infine sull'oggetto in volo agisce la forza del vento parallela all'asse delle z:

$$R_a=0,5\cdot c_{x2}\cdot \rho\cdot w_s^2\cdot S_2$$

identica nella forma all'equazione della forza di resistenza dell'aria, ma diretta trasversalmente al moto iniziale di gittata, con c_{x2} e S_2 pari al coefficiente di forma ed alla superficie di riferimento secondo un flusso diretto parallelamente all'asse delle z, e con w_s pari alla velocità del vento che impatta sull'oggetto, e che varia in base alla quota in cui esso si trova.

E' importante considerare che:

entrambi i coefficienti di forma non rimangono costanti durante tutto l'intervallo di tempo *t* ma cambiano rapidamente e ripetutamente a causa delle roto-traslazioni che l'oggetto subisce durante il volo e per via della svergolatura delle pale, assumendo valori compresi tra 0,08 e 1;

- la gittata massima non viene calcolata secondo la sola posizione finale del baricentro dell'oggetto, ma tiene anche conto della lunghezza più gravosa della rimanente parte di frammento;
- per questioni legate alla funzionalità ed alla producibilità dell'impianto, gli
 aerogeneratori sono dotati di sistemi anticongelamento che evitano la formazione di
 blocchi di ghiaccio lungo le pale quando essi sono in funzione, pertanto l'ipotesi di
 distacco di un pezzo di ghiaccio viene esclusa a priori.

CALCOLO DELLA GITTATA MASSIMA DEGLI ELEMENTI ROTANTI

Sulla base delle considerazioni sopra esposte si è proceduto con il calcolo della gittata massima nei 2 casi critici.

Caso 1 - Distacco dell'intera pala (lunghezza: 70 metri)

Si considerano i seguenti dati:

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	6

Velocità del vento, al momento della rottura:

$$w_s = 34 \text{ m/s}$$

Velocità angolare massima del rotore, al momento della rottura:

$$\omega = 16 \text{ giri/minuto}$$

Altezza al mozzo dell'aerogeneratore:

$$H = 135 \text{ m}$$

Distanza tra il centro del rotore ed il baricentro della pala:

$$D = 23,333 \text{ m}$$

Velocità tangenziale:

$$v_0 = 39,09 \text{ m/s}$$

Densità dell'aria:

$$\rho = 1,23 \text{ Kg/m}^3$$

Coefficiente di forma:

$$c_x = \text{variabile } (0.08 \div 1)$$

Superficie di riferimento:

$$S = 300 \text{ m}^2$$

Di seguito si riportano i valori di calcolo della gittata relativa al primo quadrante, con θ compreso tra 0 e 90° , nel quale si verifica la condizione di gittata massima:

θ	X ₀	y o	V _x	Vy	t	Gittata
۰	m	m	m/s	m/s	s	m
0	0,00	158,33	39,09	0,00	5,6815	165,12
1	-0,41	158,33	39,09	0,68	5,7515	165,67
2	-0,81	158,32	39,07	1,36	5,8221	166,21
3	-1,22	158,30	39,04	2,05	5,8934	166,77
4	-1,63	158,28	39,00	2,73	5,9653	167,32
5	-2,03	158,24	38,95	3,41	6,0379	167,88
6	-2,44	158,21	38,88	4,09	6,1111	168,45
7	-2,84	158,16	38,80	4,76	6,1848	169,02
8	-3,25	158,11	38,71	5,44	6,2591	169,60
9	-3,65	158,05	38,61	6,12	6,3339	170,19
10	-4,05	157,98	38,50	6,79	6,4092	170,79
11	-4,45	157,90	38,38	7,46	6,4850	171,39
12	-4,85	157,82	38,24	8,13	6,5612	172,01

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	7

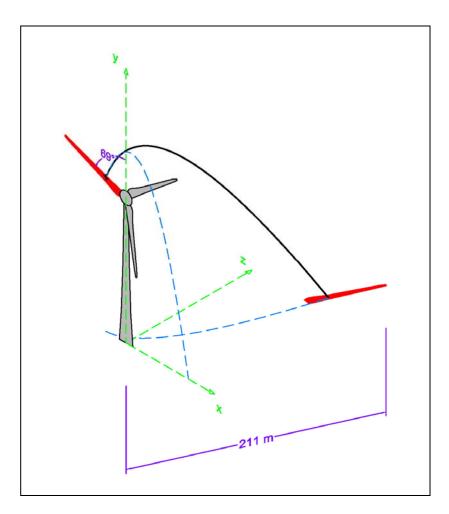
I	Ī	l 1	ſ	1	Ì	1
13	-5,25	157,73	38,09	8,79	6,6377	172,63
14	-5,64	157,64	37,93	9,46	6,7146	173,27
15	-6,04	157,54	37,76	10,12	6,7918	173,92
16	-6,43	157,43	37,58	10,78	6,8693	174,58
17	-6,82	157,31	37,39	11,43	6,9470	175,26
18	-7,21	157,19	37,18	12,08	7,0249	175,94
19	-7,60	157,06	36,96	12,73	7,1030	176,64
20	-7,98	156,93	36,74	13,37	7,1812	177,36
21	-8,36	156,78	36,50	14,01	7,2594	178,09
22	-8,74	156,63	36,25	14,65	7,3377	178,83
23	-9,12	156,48	35,99	15,28	7,4160	179,58
24	-9,49	156,32	35,71	15,90	7,4943	180,35
25	-9,86	156,15	35,43	16,52	7,5724	181,14
26	-10,23	155,97	35,14	17,14	7,6504	181,93
27	-10,59	155,79	34,83	17,75	7,7283	182,74
28	-10,95	155,60	34,52	18,35	7,8059	183,57
29	-11,31	155,41	34,19	18,95	7,8832	184,40
30	-11,67	155,21	33,86	19,55	7,9603	185,25
31	-12,02	155,00	33,51	20,14	8,0370	186,10
32	-12,36	154,79	33,15	20,72	8,1132	186,97
33	-12,71	154,57	32,79	21,29	8,1891	187,85
34	-13,05	154,34	32,41	21,86	8,2645	188,73
35	-13,38	154,11	32,02	22,42	8,3393	189,62
36	-13,71	153,88	31,63	22,98	8,4136	190,52
37	-14,04	153,63	31,22	23,53	8,4872	191,42
38	-14,37	153,39	30,81	24,07	8,5602	192,32
39	-14,68	153,13	30,38	24,60	8,6325	193,23
40	-15,00	152,87	29,95	25,13	8,7040	194,14
41	-15,31	152,61	29,51	25,65	8,7748	195,04
42	-15,61	152,34	29,05	26,16	8,8447	195,94
43	-15,91	152,06	28,59	26,66	8,9138	196,84
44	-16,21	151,78	28,12	27,16	8,9819	197,73
45	-16,50	151,50	27,64	27,64	9,0491	198,61
46	-16,78	151,21	27,16	28,12	9,1153	199,47
47	-17,06	150,91	26,66	28,59	9,1805	200,33
48	-17,34	150,61	26,16	29,05	9,2446	201,17
49	-17,61	150,31	25,65	29,51	9,3077	202,00
50	-17,87	150,00	25,13	29,95	9,3695	202,80
51	-18,13	149,68	24,60	30,38	9,4302	203,58
52	-18,39	149,37	24,07	30,81	9,4897	204,34

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	8

53	-18,63	149,04	23,53	31,22	9,5479	205,07
54	-18,88	148,71	22,98	31,63	9,6048	205,77
55	-19,11	148,38	22,42	32,02	9,6604	206,44
56	-19,34				•	-
		148,05	21,86	32,41	9,7147	207,08
57	-19,57	147,71	21,29	32,79	9,7676	207,68
58	-19,79	147,36	20,72	33,15	9,8190	208,24
59	-20,00	147,02	20,14	33,51	9,8690	208,76
60	-20,21	146,67	19,55	33,86	9,9176	209,24
61	-20,41	146,31	18,95	34,19	9,9646	209,67
62	-20,60	145,95	18,35	34,52	10,0101	210,05
63	-20,79	145,59	17,75	34,83	10,0540	210,39
64	-20,97	145,23	17,14	35,14	10,0963	210,67
65	-21,15	144,86	16,52	35,43	10,1370	210,90
66	-21,32	144,49	15,90	35,71	10,1761	211,07
67	-21,48	144,12	15,28	35,99	10,2135	211,19
68	-21,63	143,74	14,65	36,25	10,2493	211,25
69	-21,78	143,36	14,01	36,50	10,2833	211,25
70	-21,93	142,98	13,37	36,74	10,3156	211,19
71	-22,06	142,60	12,73	36,96	10,3461	211,07
72	-22,19	142,21	12,08	37,18	10,3748	210,90
73	-22,31	141,82	11,43	37,39	10,4018	210,68
74	-22,43	141,43	10,78	37,58	10,4270	210,40
75	-22,54	141,04	10,12	37,76	10,4503	210,07
76	-22,64	140,64	9,46	37,93	10,4718	209,70
77	-22,73	140,25	8,79	38,09	10,4915	209,29
78	-22,82	139,85	8,13	38,24	10,5093	208,85
79	-22,90	139,45	7,46	38,38	10,5252	208,40
80	-22,98	139,05	6,79	38,50	10,5392	207,93
81	-23,05	138,65	6,12	38,61	10,5513	207,47
82	-23,11	138,25	5,44	38,71	10,5615	207,04
83	-23,16	137,84	4,76	38,80	10,5698	206,64
84	-23,21	137,44	4,09	38,88	10,5761	206,31
85	-23,24	137,03	3,41	38,95	10,5805	206,07
86	-23,28	136,63	2,73	39,00	10,5830	205,94
87	-23,30	136,22	2,05	39,04	10,5835	-205,97
88	-23,32	135,81	1,36	39,07	10,5821	-206,18
89	-23,33	135,41	0,68	39,09	10,5788	-206,62
90	-23,33	135,00	0,00	39,09	10,5734	-207,33

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina -A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	9

Gittata massima:


 $L_{max} = 211,25 \text{ m}$

Angolo zenitale

di gittata massima:

$$\theta = 69^{\circ}$$

Caso 2 - Distacco di un pezzo di estremità della pala (lunghezza: 5 metri)

Si considerano i seguenti dati:

Velocità del vento, al momento della rottura:

$$w_s = 34 \text{ m/s}$$

Velocità angolare massima del rotore, al momento della rottura:

$$\omega = 16 \text{ giri/minuto}$$

Altezza al mozzo dell'aerogeneratore:

$$H = 135 \text{ m}$$

Distanza tra il centro del rotore ed il baricentro della pala:

$$D = 67.5 \text{ m}$$

Velocità tangenziale:

$$v_0 = 113,10 \text{ m/s}$$

Densità dell'aria:

$$\rho = 1,23 \text{ Kg/m}^3$$

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina -A09 - Relazione di calcolo sulla gittata massima degli elementi - REVI.doc	1	10

Coefficiente di forma:

$$c_x = variabile (0.08 \div 1)$$

Superficie di riferimento:

$$S = 10 \text{ m}^2$$

Di seguito si riportano i valori di calcolo della gittata relativa al primo quadrante, con θ compreso tra 0 e 90° , nel quale si verifica la condizione di gittata massima:

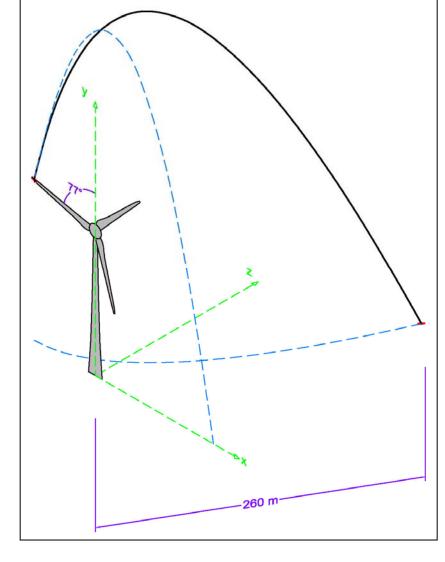
θ	X 0	y o	V _x	Vy	t	Gittata
0	m	m	m/s	m/s	S	m
0	0,00	202,50	113,10	0,00	6,4253	200,74
1	-1,18	202,49	113,08	1,97	6,6295	200,26
2	-2,36	202,46	113,03	3,95	6,8396	199,74
3	-3,53	202,41	112,94	5,92	7,0555	199,18
4	-4,71	202,34	112,82	7,89	7,2770	198,59
5	-5,88	202,24	112,67	9,86	7,5042	197,98
6	-7,06	202,13	112,48	11,82	7,7366	197,34
7	-8,23	202,00	112,25	13,78	7,9743	196,69
8	-9,39	201,84	112,00	15,74	8,2170	196,02
9	-10,56	201,67	111,70	17,69	8,4644	195,36
10	-11,72	201,47	111,38	19,64	8,7164	194,70
11	-12,88	201,26	111,02	21,58	8,9726	194,04
12	-14,03	201,02	110,63	23,51	9,2328	193,40
13	-15,18	200,77	110,20	25,44	9,4969	192,78
14	-16,33	200,49	109,74	27,36	9,7643	192,19
15	-17,47	200,20	109,24	29,27	10,0350	191,62
16	-18,61	199,89	108,72	31,17	10,3086	191,10
17	-19,74	199,55	108,16	33,07	10,5849	190,61
18	-20,86	199,20	107,56	34,95	10,8635	190,18
19	-21,98	198,82	106,94	36,82	11,1441	189,79
20	-23,09	198,43	106,28	38,68	11,4265	189,46
21	-24,19	198,02	105,59	40,53	11,7105	189,20
22	-25,29	197,58	104,86	42,37	11,9956	189,00
23	-26,37	197,13	104,11	44,19	12,2817	188,86
24	-27,45	196,66	103,32	46,00	12,5685	188,81
25	-28,53	196,18	102,50	47,80	12,8556	188,82
26	-29,59	195,67	101,65	49,58	13,1430	188,92
27	-30,64	195,14	100,77	51,35	13,4302	189,10

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	11

28	-31,69	194,60	99,86	53,10	13,7171	189,37
29	-32,72	194,04	98,92	54,83	14,0035	189,72
30	-33,75	193,46	97,95	56,55	14,2890	190,17
31	-34,77	192,86	96,94	58,25	14,5735	190,70
32	-35,77	192,24	95,91	59,93	14,8567	191,32
33	-36,76	191,61	94,85	61,60	15,1385	192,03
34	-37,75	190,96	93,76	63,24	15,4186	192,84
35	-38,72	190,29	92,64	64,87	15,6968	193,73
36	-39,68	189,61	91,50	66,48	15,9730	194,72
37	-40,62	188,91	90,32	68,06	16,2469	195,79
38	-41,56	188,19	89,12	69,63	16,5183	196,95
39	-42,48	187,46	87,89	71,17	16,7872	198,19
40	-43,39	186,71	86,64	72,70	17,0532	199,52
41	-44,28	185,94	85,36	74,20	17,3163	200,92
42	-45,17	185,16	84,05	75,68	17,5763	202,40
43	-46,03	184,37	82,71	77,13	17,8330	203,95
44	-46,89	183,56	81,36	78,56	18,0862	205,57
45	-47,73	182,73	79,97	79,97	18,3359	207,25
46	-48,56	181,89	78,56	81,36	18,5818	208,99
47	-49,37	181,03	77,13	82,71	18,8239	210,78
48	-50,16	180,17	75,68	84,05	19,0620	212,63
49	-50,94	179,28	74,20	85,36	19,2960	214,52
50	-51,71	178,39	72,70	86,64	19,5257	216,45
51	-52,46	177,48	71,17	87,89	19,7511	218,41
52	-53,19	176,56	69,63	89,12	19,9719	220,40
53	-53,91	175,62	68,06	90,32	20,1881	222,42
54	-54,61	174,68	66,48	91,50	20,3997	224,45
55	-55,29	173,72	64,87	92,64	20,6064	226,49
56	-55,96	172,75	63,24	93,76	20,8081	228,54
57	-56,61	171,76	61,60	94,85	21,0048	230,59
58	-57,24	170,77	59,93	95,91	21,1964	232,63
59	-57,86	169,77	58,25	96,94	21,3828	234,66
60	-58,46	168,75	56,55	97,95	21,5639	236,67
61	-59,04	167,72	54,83	98,92	21,7395	238,65
62	-59,60	166,69	53,10	99,86	21,9097	240,61
63	-60,14	165,64	51,35	100,77	22,0743	242,52
64	-60,67	164,59	49,58	101,65	22,2332	244,39
65	-61,18	163,53	47,80	102,50	22,3865	246,21
66	-61,66	162,45	46,00	103,32	22,5339	247,97
67	-62,13	161,37	44,19	104,11	22,6755	249,67

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	12

•			•			
68	-62,58	160,29	42,37	104,86	22,8111	251,28
69	-63,02	159,19	40,53	105,59	22,9408	252,80
70	-63,43	158,09	38,68	106,28	23,0644	254,23
71	-63,82	156,98	36,82	106,94	23,1819	255,54
72	-64,20	155,86	34,95	107,56	23,2932	256,72
73	-64,55	154,74	33,07	108,16	23,3983	257,76
74	-64,89	153,61	31,17	108,72	23,4971	258,62
75	-65,20	152,47	29,27	109,24	23,5896	259,28
76	-65,49	151,33	27,36	109,74	23,6758	259,72
77	-65,77	150,18	25,44	110,20	23,7555	259,89
78	-66,02	149,03	23,51	110,63	23,8288	259,74
79	-66,26	147,88	21,58	111,02	23,8956	259,23
80	-66,47	146,72	19,64	111,38	23,9559	258,29
81	-66,67	145,56	17,69	111,70	24,0097	256,85
82	-66,84	144,39	15,74	112,00	24,0569	254,86
83	-67,00	143,23	13,78	112,25	24,0974	252,25
84	-67,13	142,06	11,82	112,48	24,1314	249,02
85	-67,24	140,88	9,86	112,67	24,1587	245,23
86	-67,34	139,71	7,89	112,82	24,1794	241,14
87	-67,41	138,53	5,92	112,94	24,1934	237,33
88	-67,46	137,36	3,95	113,03	24,2006	234,95
89	-67,49	136,18	1,97	113,08	24,2012	-236,13
90	-67,50	135,00	0,00	113,10	24,1951	-244,29


Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	13

Gittata massima:

 $L_{max} = 259,89 \ m$

Angolo zenitale:

$$\theta = 77^{\circ}$$

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REVI.doc	1	14

CONCLUSIONI

In conclusione, in caso di rottura accidentale, le condizioni più gravose sono rappresentate dall'ipotesi 2, ovvero dal distacco di un frammento di estremità della pala, di lunghezza pari a 5 metri. In tal caso si ottiene la gittata massima, pari a 260 metri, con un angolo di lancio $\theta = 77^{\circ}$.

Progetto	Titolo	Rev.	Pag.
ATS Alexina	ATS Alexina –A09 - Relazione di calcolo sulla gittata massima degli elementi - REV1.doc	1	15