

NOUVELLE LIGNE LYON TURIN – NUOVA LINEA TORINO LIONE PARTIE COMMUNE FRANCO-ITALIENNE – PARTE COMUNE ITALO-FRANCESE CUP C11J05000030001

Chantier Opérationnel 04 – Cantiere Operativo 04 CIG Ze11ed230d

Travaux de réalisation des niches de retournement et d'aménagement intérieur de la galerie de La Maddalena, transport et mise en dépôt des matériaux excavés Lavori di realizzazione delle nicchie di interscambio e di sistemazione interna della galleria La Maddalena, trasporto e messa a deposito del materiale di scavo

Projet Exécutif – Progetto Esecutivo Génie civil – Opere civili Rapport géomécanique - Relazione geomeccanica

Indice	Date/ Data	Modifications / Modifiche	Etabli par / Concepito da	Vérifié par / Controllato da	Autorisé par / Autorizzato da
0	24.04.2020	Première diffusion/Prima emissione	A. ZIMBALDI	M. GATTI	G. CASSANI
А	07.05.2020	Révision suite aux commentaires / Revisione a seguito commenti	A. ZIMBALDI	M. GATTI	G. CASSANI
В	08.05.2020	Élaboré approuvé/Elaborato approvato	A. ZIMBALDI	M. GATTI	G. CASSANI
С	28.05.2020	Elaboré approuvé avec transposition Commentaires TELT/ Elaborato approvato con recepimento commenti TELT	A. ZIMBALDI	M. GATTI	G. CASSANI

13 allée du Lac de Constance – 73370 LE BOURGET DU LAC (France) Tél. : +33 (0)4.79.68.56.50 – Fax : +33 (0)4.79.68.56.75 RCS Chambéry 439 556 952 – TVA FR 03439556952 Propriété TELT Tous droits réservés – Proprietà TELT Tutti i diritti riservati

INDICE

1	INTRODUZIONE	4
	1.1 Documenti di riferimento	5
	1.2 Normativa di riferimento	. 5
	1.3 Documentazione pregressa	5
2	CRITERI DI CARATTERIZZAZIONE GEOMECCANICA DELLE ROCCE	9
-	2.1 Descrizione mineralogica e caratteristiche fisiche	9
	 2.1 Desenzione mineralogica e caracteristerie ilsiene insenze insenze ilsiene ils	9
	2.3 Classificazioni dell'ammasso	9
	2.4 Modellazione dell'ammasso	12
	2.5 Parametri dell'ammasso	12
	2.5.1 Moduli elastici a medie deformazioni	13
	2.6 Permeabilità	14
	2.7 Stato iniziale	14
z	CRITERI DI SCELTA DEI VALORI CARATTERISTICI DEI PARAMETRI GEOTECNICI	15
5		10
4	QUADRO GEOLOGICO, GEOMECCANICO E IDROGEOLOGICO	16
	4.1 Sintesi della geologia incontrata durante lo scavo del cunicolo	10
	4.2 Caratterizzazione geomeccanica	10
	4.2.1 KIVIR	20
	4.2.2 gc	20
	4.2.5 OC	22
	4.2.4 Li	25
	4.3 Quadro riassuntivo della circolazione idrogeologica incontrata nel Cunicolo	20
	esplorativo	28
5		21
5		21
6	CARATTERIZZAZIONE GEOMECCANICA DELL'AMIMASSO	33
	6.1 Caratteristiche risiche di registeren	33
	6.2 Caratteristiche meccaniche di deferme bilità	34
	6.3 Caratteristiche di nermechilità	38
	6.4 Caratteristiche di permeabilita	39
7	CARATTERIZZAZIONE DEL DISCONTINUO	40
	7.1 Resistenza al taglio lungo le discontinuità naturali	40
8	CARATTERIZZAZIONE DEL DISCONTINUO	48
	8.1 Categoria di sottosuolo	48
	8.2 Categoria topografica	48
	8.3 Vita nominale, classe d'uso e periodo di riferimento	49
	8.4 Accelerazione sismica suolo rigido	49
	8.5 Accelerazione sismica di progetto	49
9	ALLEGATI	50

RIASSUNTO

Ce rapport comprend la caractérisation géotechnique-géomécanique de la masse rocheuse où seront creusées les niches des tunnels de la Maddalena 1.	La presente relazione include la caratterizzazione geotecnica-geomeccanica dell'ammasso roccioso in cui verranno scavate le nicchie delle gallerie Maddalena 1.
Les niches sont réalisées en agrandissement de la section existante, en démolissant les supports de la galerie géognostique de Maddalena et en élargissant la section de fouille.	Le nicchie sono realizzate in allargo della sezione esistente, mediante la demolizione dei sostegni della galleria geognostica della Maddalena e l'allargo della sezione di scavo.

1 INTRODUZIONE

La presente Relazione Geomeccanica riporta la valutazione delle qualità dell'ammasso e le relative caratteristiche di resistenza e deformabilità in corrispondenza delle nicchie di interscambio da eseguirsi all'interno del cunicolo esplorativo La Maddalena, per tutto il tratto scavato con TBM (sia il primo tratto, che verrà successivamente utilizzato per l'accesso dei veicoli bimodali e di soccorso al Tunnel di Base, che per il secondo tratto destinato allo stoccaggio irreversibile delle rocce verdi provenienti dallo scavo del Tunnel di Base. Il tratto iniziale del cunicolo, scavato in tradizionale, è già stato rivestito).

Nello specifico lungo il primo tratto del cunicolo sono previste 7 nicchie di incrocio dei veicoli (di cui 2 equipaggiate di cabina elettrica e 2 di cabina telecomunicazioni) a cui se ne aggiunge un'ottava all'innesto con la galleria di connessione 1 (anch'essa da equipaggiarsi con cabina telecomunicazioni). Il secondo tratto prevede invece la realizzazione di 14 nicchie per la logistica di stoccaggio.

1.1 Documenti di riferimento

N°	CODICE							TITOLO		
GEOLOGIA, GEOTECNICA E CALCOLO										
47	04A	1735700	00	0	Ζ	Ш	RE	GE	0701	Relazione geologica ed idrogeologica
49	04A	1735700	00	0	Ζ	Ш	RE	GC	0703	Relazione di calcolo nicchie
50	04A	1735700	00	0	Ζ	Е	RE	GC	0704	Relazione tecnica nicchie
51	04A	1735700	00	0	Ζ	Е	PF	GE	0705	Profilo geomeccanico di dettaglio

Alla presente relazione sono direttamente collegati i seguenti documenti:

1.2 Normativa di riferimento

Nel progetto è stato fatto riferimento alle seguenti Normative ed Istruzioni:

- D.M. 14/01/2008: "Norme Tecniche per le Costruzioni" (pubblicato sulla G.U. n.29 Suppl. Ordinario n.30 – del 4 febbraio 2008).
- Circolare 02/02/2009: "Istruzione C.S.LL.PP. per l'applicazione delle Norme Tecniche per le Costruzioni di cui al D.M. 14 Gennaio 2008".

1.3 Documentazione pregressa

La redazione della presente relazione di calcolo si basa su quanto già prodotto nelle precedenti fasi progettuali, in particolare:

- Rif. [1] PRV_C3B_7200_26-48-01_10-01 "Relazione ritorno di esperienza scavo Cunicolo esplorativo della Maddalena".
- Rif. [2] MAD_EXE_0004_00-00-00_30-02_Carta Geologica_A
- Rif. [3] MAD_EXE_0125_07-00-00_10-02_Relazione geologica cunicolo fino a pk 0+242_B_
- Rif. [4] MAD_EXE_0126_07-00-40_40-04_Profilo longitudinale geologico, di indagini e di monitoraggio fino a pk 0+242 C
- Rif. [5] MAD_EXE_0128_07-00-00_40-05_Profilo longitudinale geotecnico geomeccanico di progetto fino a pk 0+242_A
- Rif. [6] MAD_EXE_0145_08-01-00_10-03_Relazione geologica cunicolo da pk 0+242 fino a pk 5+765_A
- Rif. [7] MAD_EXE_0146_08-01-00_40-01_Profilo longitudinale geologico_A

- Rif. [8]MAD_EXE_0148_08-01-00_40-02_Profilo longit geomec di progetto da pk 0+242 fino a pk 5+765_A
- Rif. [9] MAD_EXE_0175_08-02-00_10-03_Relazione geologica cunicolo da pk 5+765 fino a pk 7+541_A
- Rif. [10] MAD_EXE_0176_08-02-00_40-01 Profilo longitudinale geologico tratta_opzionale_A
- Rif. [11] MAD_EXE_0240_07-00-00_10-06 "Sezioni tipo T3-T4-T4a Relazione di calcolo".
- Rif. [12] PRV_C3B_7202_26-48-01_30-01_Geologia_Maddalena_B (A0)
- Rif. [13] PRV_C3B_7206_26-48-01_40-01_Prof.Geomecc.Maddalena1_B (overA0)
- Rif. [14] MAD_EXE_VEN_0403_07-00-00_70-01_Profilo longitudinale geologico, di indagini e di monitoraggio - AS BUILT_A
- Rif. [15] MAD_EXE_VEN_0404_07-00-00_70-02_Profilo longitudinale geotecnico, geomeccanico di progetto AS BUILT_A
- Rif. [16] MAD_EXE_VEN_0516_08-01-00_70-01_Prof long geol di indagini e monitoraggio da pk 0+198 fino a pk 0+700-AS BUILT_D
- Rif. [17] MAD_EXE_VEN_0517_08-01-00_70-02_Profilo longitud geomecc di progetto da pk 0+198 fino a pk 0+700_AS BUILT_E
- Rif. [18] MAD_EXE_VEN_0518_08-01-00_70-03_Profilo longitud geomecc di progetto da pk 0+700 a pk 1+200-AS BUILT_F
- Rif. [19] MAD_EXE_VEN_0519_08-01-00_70-04_ Prof long geol di indagini e monitoraggio da pk 0+700 fino a pk 1+200 - AS BUILT_D
- Rif. [20] MAD_EXE_VEN_0531_08-01-00_70-05_Profilo longitud geomecc di progetto da pk 1+200 fino a pk 1+700 - AS BUILT_B
- Rif. [21] MAD_EXE_VEN_0532_08-01-00_70-06_ Prof long geol di indagini e monitoraggio da pk 1+200 fino a pk 1+700 - AS BUILT_B
- Rif. [22] MAD_EXE_VEN_0533_08-01-00_70-07_Profilo longitud geomecc di progetto da pk 1+700 fino a pk 2+200 - AS BUILT_D

- Rif. [23] MAD_EXE_VEN_0534_08-01-00_70-08_Prof long geol di indagini e monitoraggio da pk 1+700 fino a pk 2+200 - AS BUILT_B
- Rif. [24] MAD_EXE_VEN_0535_08-01-00_70-09_Prof longitud geomecc di proget da pk 2+200 fino a pk 2+700-AS BUILT_A
- Rif. [25] MAD_EXE_VEN_0536_08-01-00_70-10_ Prof long geol di indagini e monitoraggio da pk 2+200 fino a pk 2+700 - AS BUILT_A
- Rif. [26] MAD_EXE_VEN_0543_08-01-00_70-11_Profilo longitud geomecc di progetto da pk 2+700 fino a pk 3+200 - AS BUILT_C
- Rif. [27] MAD_EXE_VEN_0544_08-01-00_70-12_ Prof long geol di indagini e monitoraggio da pk 2+700 fino a pk 3+200 - AS BUILT_A
- Rif. [28] MAD_EXE_VEN_0545_08-01-00_70_13_Profilo longitud geomecc di progetto da pk 3+200 a pk 3+700-AS BUILT_D
- Rif. [29] MAD_EXE_VEN_0546_08-01-00_70_14_Profilo long geol, indagini e monitoraggio da pk 3+200-3+700-AS BUILT_B
- Rif. [30] MAD_EXE_VEN_0562_08-01-00_70_25_Profilo longitud geomecc di progetto da pk 3+700 a pk 4+200-AS BUILT_D
- Rif. [31] MAD_EXE_VEN_0563_08-01-00_70-26_Profilo longitud geol di indagini e di monitoraggio da pk 3+700 a pk 4+200-AS BUILT_A
- Rif. [32] MAD_EXE_VEN_0564_08-01-00_70_27_Profilo longitud geomecc di progetto da pk 4+200 a pk 4+700-AS BUILT_D
- Rif. [33] MAD_EXE_VEN_0565_08-01-00_70-28_Profilo longitud geolo di indagini e di monitoraggio da pk 4+200 a pk 4+700-AS BUILT_A
- Rif. [34] MAD_EXE_VEN_0566-08-01-00_70_29_Prof long geomecc di progetto pk 4+700-pk 5+200-AS BUILT_A
- Rif. [35] MAD_EXE_VEN_0567_08-01-00_70-30_Prof long geol indagini e monitoraggio pk 4+700-pk 5+200-AS BUILT_A
- Rif. [36] MAD_EXE_VEN_0568-08-01-00_70_31_Profilo longitud geomecc di progetto da pk 5+200 a pk 5+764,77-AS BUILT_E

- Rif. [37] MAD_EXE_VEN_0569_08-01-00_70-32_Pro long geol indagini e monitoraggio pk 5+200-5+764.77-AS BUILT A
- Rif. [38] MAD_EXE_VEN_0570-08-02-00_70_01_Profilo longitud geomecc di progetto da pk 5+764,77 a pk 6+400_AS BUILT_A
- Rif. [39] MAD_EXE_VEN_0571-08-02-00_70_02 Profilo longitud geolog, ind e monitoraggio da pk 5+765 a pk6+400_AS BUILT_A
- Rif. [40] MAD_EXE_VEN_0572-08-02-00_70_03 _Profilo longitud geomecc di progetto da pk 6+400 a pk7+020_AS BUILT_A
- Rif. [41] MAD_EXE_VEN_0573-08-02-00_70_04 _Prof long geo ind e monitoraggio da pk 6+400 7+020_AS BUILT_A
- Rif. [42] MAD_MS5_GIA_0001_A_AP_NOT: Verifica Esiti Ambientali del Cunicolo Esplorativo de La Maddalena – Relazione
- Rif. [43] MAD_MS5_GIA_0002_A_AP_PLA: Verifica Esiti Ambientali del Cunicolo Esplorativo de La Maddalena - Profilo geomeccanico

2 CRITERI DI CARATTERIZZAZIONE GEOMECCANICA DELLE ROCCE

2.1 Descrizione mineralogica e caratteristiche fisiche

Attraverso l'analisi delle prove di laboratorio su provini, laddove disponibili, potrà essere effettuata una descrizione mineralogica nonché potranno essere determinati i valori dei pesi di volume e del grado di saturazione.

2.2 Resistenza e deformabilità delle rocce costituenti l'ammasso

I valori di resistenza potranno essere determinati dalle prove di compressione non confinata effettuate in laboratorio. Per la deformabilità della matrice si ha che:

$$E_{50} = \frac{\frac{\sigma_c}{2}}{(\varepsilon_a)_{\frac{\sigma_c}{2}}}$$

Essendo ε_a la deformazione corrispondente a $\sigma_c/2$. Tale valore risente dell'eventuale disturbo del campione e dalle caratteristiche del medesimo (campione irregolare, disturbato, con discontinuità,...).

2.3 Classificazioni dell'ammasso

Si adotta il sistema tradizionale di classificazione di Bieniawski (1989).

Per ogni litotipo, in base a quanto scaturito dai rilievi geostrutturali, viene stimato il parametro RMR_{'89} come somma dei seguenti 8 indici ($11 \rightarrow 18$):

Resistenza alla compressione semplice σ_c (MPa)	11
> 250	15
100÷250	12
50÷100	7
25÷50	4
5÷25	2
1÷5	1
<1	0

1. Resistenza alla compressione semplice della roccia intatta (I1)

2. Qualità della roccia RQD (I2)

RQD (%)	12
90÷100	20
75÷90	17
50÷75	13

25÷50	8
< 25	3

3. Spaziatura delle discontinuità (I3)

S	13
> 2 m	20
0.6 m÷2 m	15
200 mm÷600 mm	10
60 mm÷200 mm	8
< 60 mm	4

4. Lunghezza delle discontinuità (I4)

L	14
< 1 m	6
1 m÷3 m	4
3 m÷10 m	2
10 m÷20 m	1
> 20 m	0

5. Apertura delle discontinuità (I5)

н	15
0 mm	6
> 0.1 mm	5
0.1 mm÷1 mm	4
1 mm÷5 mm	1
> 5 mm	0

6. Condizioni delle superfici di discontinuità in termini di scabrezza (I6)

Descrizione	16
Molto rugose	6
Rugose	5
Poco rugose	3
Ondulate	1
Lisce	0

7. Caratteristiche del riempimento delle discontinuità (I7)

Descrizione – spessore	17
Assente	6
Compatto – < 5 mm	4
Compatto – > 5 mm	2
Tenero – < 5 mm	2
Tenero – > 5 mm	0

Descrizione	18
Non alterate	6
Poco alterate	4
Alterate	2
Molto alterate	2
Decomposte	0

8. Condizioni delle superfici di discontinuità in termini di alterazione (18)

Per il calcolo di RMR'₈₉ si assegna anche un punteggio per:

• le condizioni idrauliche riferite ad un fronte di 10 m di lunghezza

Venute d'acqua	Venute d'acqua Nessuna		10-25 l/min	25-125 l/min	> 125 l/min
Condizione	Asciutta	sciutta Umida B		Deboli venute	Forti venute
Coefficiente	15	10	7	4	0

• l'orientamento più o meno favorevole delle discontinuità rispetto alla galleria

Molto favorevole	Favorevole	Mediocre	Sfavorevole	Molto sfavorevole
0	-2	-5	-10	-12

In presenza di ammassi rocciosi eterogenei, alternanze di strati competenti e di strati con caratteristiche geotecniche più scadenti, il valore di GSI valutato sulla base di RMR_{'89} verrà messo a confronto anche con quello stimabile sulla base della carta proposta da Hoek et al. (1998):

Figura 1 – Carta del GSI, Hoek et al. (1998)

2.4 Modellazione dell'ammasso

In considerazione delle dimensioni delle opere da realizzare, la caratterizzazione geotecnica dell'ammasso roccioso verrà fatta facendo tendenzialmente riferimento allo schema concettuale di <u>mezzo continuo</u> (omogeneo o stratificato) facendo riferimento ai sistemi di classificazione precedentemente descritti.

2.5 Parametri dell'ammasso

Nel caso si debba utilizzare il <u>modello continuo</u> l'inviluppo delle resistenze dell'ammasso roccioso in condizioni "undisturbed" o "disturbed" verrà valutato sulla base di quanto riportato in Brown & Hoek (1988), Hoek & Brown (1988), Hoek, Kaiser & Bawden (1995), Hoek et al (2002).

L'ammasso roccioso verrà descritto per ogni litotipo dal seguente criterio di rottura:

$$\sigma'_{1} = \sigma'_{3} + \sigma_{c} \cdot \left(m_{b} \cdot \frac{\sigma'_{3}}{\sigma_{c}} + s\right)^{\alpha}$$

essendo:

$$m_{b} = m_{i} \cdot e^{\frac{GSI - 100}{28 - 14 \cdot D}}$$

 $s = e^{\frac{GSI - 100}{9 - 3 \cdot D}}$

D = 0 per "undisturbed rock masses"

D = 1 per "disturbed rock masses"

$$a = \frac{1}{2} + \frac{1}{6} \cdot \left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}} \right)$$

GSI = Geological Strength Index

m_i = coefficiente relativo alla roccia intatta

 $\sigma_1{}'$ = tensione principale efficace maggiore

 $\sigma_{3}{'}$ = tensione principale efficace minore

 σ_c = resistenza alla compressione semplice della roccia intatta.

Per il coefficiente m_i, come fatto in PE, si farà riferimento a quanto riportato nella seguente tabella:

Rocce	m _i (-)				
Metamorfiti	33				
Conglomerato	22				
Arenaria	19				
<u>Calcare</u>	<u>10</u>				
Argilliti	4				

Figura 2 – Coefficiente mi relativo alla roccia intatta (Hoek, Kaiser e Bawden, 1995)

I criteri di rottura espressi in termini di tensioni efficaci principali $\sigma_1' e \sigma_3'$ possono essere trasformati in termini di tensioni di taglio τ e di tensioni efficaci normali alla superficie di rottura σ_n' . A tale proposito valgono le seguenti equazioni:

$$\frac{\delta \sigma_1}{\delta \sigma_3} = 1 + \alpha \cdot m_b \cdot \left(\frac{m_b \cdot \sigma_3}{\sigma_c} + s\right)^{\alpha - 1}, \sigma_n = \frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2} \cdot \frac{\frac{\delta \sigma_1}{\sigma_3} - 1}{\frac{\delta \sigma_3}{\sigma_3} + 1}, \tau = \left(\sigma_1 - \sigma_3^{-1}\right) \cdot \frac{\sqrt{\frac{\delta \sigma_1}{\delta \sigma_3}}}{\frac{\delta \sigma_1}{\delta \sigma_3} + 1}$$

In corrispondenza di valori di σ_n' negativi (trazione) le resistenze al taglio saranno assunte pari a 0 kPa ("tension cut off"). E' quindi possibile determinare anche un inviluppo alla Mohr Coulomb attraverso una linearizzazione da cui ricavare i valori di **c' e** ϕ in corrispondenza dello stato tensionale di riferimento.

2.5.1 Moduli elastici a medie deformazioni

I moduli di Young "operativi" Em dell'ammasso roccioso possono essere stimati sulla base della seguente espressione (Bieniawski, 1978; Serafim & Pereira, 1983; Hoek et al., 2002):

$$E_m(GPa) = \left(1 - \frac{D}{2}\right) \sqrt{\frac{\sigma_{ci}}{100}} \cdot 10^{((GSI-10)/40)}$$
 per 10 < GSI < 50 e per σ_c < 100 MPa.

essendo D il coefficiente di disturbo, variabile tra 0 e 1.

Una formulazione alternativa, di Hoek e Diederichs (2006), lega il modulo elastico dell'ammasso a quello della roccia intatta E_i, secondo la formula:

$$E_{\rm rm} = E_{\rm i} \left(0.02 + \frac{1 - D/2}{1 + e^{((60 + 15D - GSI)/11)}} \right)$$

2.6 Permeabilità

I coefficienti di permeabilità dell'ammasso roccioso sono stati determinati con prove di permeabilità Lugeon, laddove disponibili.

2.7 Stato iniziale

Lo stato tensionale in sito è stabilito in base a considerazioni di carattere geologico e può essere determinato in base a prove all'interno dei sondaggi (fatturazione idraulica)

In mancanza di tali elementi, a partire dalla formulazione di Heim, lo stato tensionale tensionale tende alle condizioni di tipo idrostatico in profondità, a causa di fenomeni viscosi ed a causa della ridotta capacità di assorbire elevate tensioni deviatoriche.

In prima approssimazione per elevate profondità è plausibile definire verticali ed orizzontali le tensioni principali e pari alla profondità moltiplicata per i pesi di volume.

Le misure dello stato tensionale in sito eseguite in fase di scavo e analizzate nel par. 4.2.9 di Rif. [1] restituiscono risultati sporadici e non attendibili.

Dato che le nicchie verranno scavate con coperture tra 200e 2000m, si continua a considerare come in PRV un rapporto tra tensione orizzontale e tensione verticale k0 pari a 1.3, per tener conto dell'orientazione dei piani di discontinuità.

3 CRITERI DI SCELTA DEI VALORI CARATTERISTICI DEI PARAMETRI GEOTECNICI

Come definito dalla Normativa per valore caratteristico si intende un parametro geotecnico che corrisponde ad una stima ragionata e cautelativa del valore del parametro per ogni stato limite considerato.

Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità.

La scelta dei valori caratteristici dei parametri geotecnici avviene generalmente in due fasi.

La prima fase comporta l'identificazione dei *parametri geotecnici appropriati* ai fini progettuali cioè quei parametri da riferirsi alla tipologia specifica di opera ed al suo comportamento tenso-deformativo.

La seconda fase del processo decisionale riguarda la valutazione dei valori caratteristici degli stessi parametri.

Nelle valutazioni che il progettista deve svolgere per pervenire ad una scelta corretta dei valori caratteristici, appare giustificato il riferimento a valori prossimi ai valori medi quando nello stato limite considerato è coinvolto un elevato volume di terreno, perché a larga scala si compensano le eterogeneità o quando la struttura a contatto con il terreno è dotata di rigidezza sufficiente a trasferire le azioni dalle zone meno resistenti a quelle più resistenti.

Al contrario, valori caratteristici prossimi ai valori minimi dei parametri geotecnici appaiono più giustificati nel caso in cui siano coinvolti modesti volumi di terreno, con concentrazione delle deformazioni fino alla formazione di superfici di rottura nelle porzioni di terreno meno resistenti del volume significativo, o nel caso in cui la struttura ha una ridotta rigidezza.

Una valutazione dei valori caratteristici può essere ottenuta operando le opportune valutazioni statistiche.

La variabilità intrinseca dei terreni è dovuta prevalentemente ai processi geologici e geomorfologici naturali agenti sui volumi di terreno in situ. Gli errori di misura sono dovuti alle limitazioni tecnologiche della strumentazione, ad imperfezioni nelle procedure di prova, a possibili errori dell'operatore e ad una componente di errore aleatorio. I risultati di prova possono inoltre essere affetti da incertezze di tipo statistico e da errori di campionamento, dovuti a numerosità limitata delle misure.

Pertanto, statistiche riguardanti le proprietà geotecniche dei terreni derivanti da analisi di variabilità totale, sono applicabili benché limitatamente al sito specifico, al gruppo geotecnico analizzato, alla strumentazione e tipologia di prova impiegata.

4 QUADRO GEOLOGICO, GEOMECCANICO E IDROGEOLOGICO

Nel seguito si riporta una sintesi del quadro geologico, geomeccanico e idrogeologico di riferimento, definita sulla base delle informazioni rilevate nel corso dello scavo del cunicolo esplorativo de La Maddalena e raccolte nei documenti di as-built e nella "*Relazione ritorno di esperienza scavo Cunicolo esplorativo della Maddalena*" a cui si rimanda per ulteriori dettagli, reinterpretate ed organizzate in funzione dell'ubicazione delle previste nicchie in esame.

4.1 Sintesi della geologia incontrata durante lo scavo del cunicolo

Lo scavo del cunicolo della Maddalena ha coinvolto nella sua parte iniziale materiali sciolti di origine glaciale e fluvioglaciale e litotipi di diversa natura, principalmente calcarei, per interessare successivamente i litotipi del Complesso di Ambin e, nella parte centrale, dalle rocce corrispondenti al Complesso di Clarea.

Nel dettaglio nel tratto scavato in tradizionale, fino alla progressiva Km 0+198, si sono intercettati depositi sciolti.

Il tratto successivo, scavato con metodo meccanizzato, ha interessato, come da previsioni di Progetto Esecutivo la struttura a duomo costituita nella parte più esterna dai litotipi del Complesso di Ambin e nella parte centrale dalle rocce corrispondenti al Complesso di Clarea.

Nel dettaglio tra le progressive Km 0+198 e 1+148 (nicchie da NS1 a NS5) sono stati attraversati gli gneiss aplitici, di colore da grigio scuro a grigio chiaro, fino a verde chiaro per presenza di clorite. Queste rocce di origine metamorfica presentano grana medio fine, struttura eteroblastica e tessitura da isotropa a debolmente foliata, per effetto dell'alternanza di livelli sialici di quarzo e subordinatamente feldspati e livelli lepidoblastici di mica bianca. Le principali famiglie di giunti e faglie risultano orientate circa sub-parallele ai piani di scistosità. Lungo il settore compreso tra le pk 0+950 e 1+050 (nessuna nicchia) è presente un tratto, di circa 100 m, caratterizzato da alternanze tra gneiss albitici minuti e micascisti quarzosi. Nel settore compreso tra pk 1+050 e 1+148 (nicchia NS5) la fratturazione risulta essere più marcata.

Nei successivi 202 m (tra progressive Km 1+148 e 1+350 – nessuna nicchia) sono stati incontrati i litotipi rappresentati dagli gneiss albitici minuti (granofels ad albite, quarzo e

fengite) passanti a micascisti quarzosi. In generale la roccia è di colore scuro, a grana medio fine, tessitura in genere foliata dovuta all'alternanza di livelli di scisti nerastri intensamente laminati con gneiss minuti, micascisti e vene di quarzo. Il contatto con i precedenti gneiss aplitici è risultato essere di tipo tettonico duttile.

A partire dalla pk 1+350 (dalla nicchia NS6 in poi) il Cunicolo esplorativo ha intercettato micascisti grigio scuri, i micascisti quarzosi e gli gneiss minuti (a glaucofane più o meno albitizzati) del Complesso di Clarea.

Il passaggio tra il Complesso di Ambin e quello di Clarea è caratterizzato da una zona con intensa fratturazione (nessuna nicchia interessata).

Si segnala inoltre che, durante lo scavo del Cunicolo, non sono state incontrate o attraversate le lenti di metabasiti segnalate in letteratura e in taluni casi rinvenute in affioramento in superficie entro i litotipi del Complesso di Clarea.

Focalizzando l'attenzione sulle sole nicchie, nella seguente Tabella 1 si riporta una sintesi delle principali caratteristiche geologiche individuate nei tratti di cunicolo in cui verranno realizzati gli scavi di allargo.

Nicchia	Pk	Pk	Formaz	Copertura	Faglie e zone tettonizzate	Criticità
	inizio	fine	ione			geologiche
NS 1	385	415	AMBIN	195 - 215	Locali	Non rilevate
NS 2	544	596	AMBIN	335-400	Locali	Non rilevate
NS 3	725	755	AMBIN	475-495	Non rilevate	Non rilevate
NS 4	892.5	927.5	AMBIN	550-560	Zone con fratturazione spaziata ma persistente (parte finale - 12m)	Non rilevate
NS 5	1065	1095	AMBIN	485-520	Zone con fratturazione spaziata ma persistente (18m)	Non rilevate
NS 6	1462.5	1497.5	CLAREA	275-295	Zone con fratturazione spaziata ma persistente (12m)	Non rilevate
NS 7	1854	1906	CLAREA	515-550	Faglie locali	Non rilevate
NS 8	2180	2245	CLAREA	761 - 810	Zone con fratturazione spaziata ma persistente (parte iniziale - 26m)	Non rilevate
NLS 1	2632	2667	CLAREA	1025-1060	Non rilevata	Non rilevate
NLS 2	3005	3040	CLAREA	1130-1135	Non rilevata	Temperature > 30° (ultimi 5m)
NLS 3	3123	3158	CLAREA	1145-1165	Fratturazione spaziata ma persistente	Temperature > 30°
NLS 4	3272	3307	CLAREA	1120-1130	Fratturazione spaziata ma persistente. Faglie e zone tettonizzate ultimi 21 m	Temperature > 30°
NLS 5	3421	3456	CLAREA	1085-1120	Fratturazione spaziata ma persistente 22m	Temperature > 30°
NLS 6	3570	3605	CLAREA	1060	Zone con fratturazione spaziata ma persistente (ultimi 9m)	Temperature > 30°

Nicchia	Pk	Pk	Formaz	Copertura	Faglie e zone tettonizzate	Criticità
	inizio	fine	ione			geologiche
NLS 7	4022.5	4057.5	CLAREA	950	Faglie e zone tettonizzate 7m	Temperature > 30°
NLS 8	4279.5	4314.5	CLAREA	950	Fratturazione spaziata ma persistente. Faglie e zone tettonizzate 22 m	Temperature > 30°
NLS 9	4782.5	4817.5	CLAREA	1075-1085	Non rilevate	Temperature > 30°
NLS 10	5182.5	5217.5	CLAREA	1210-1235	Zone con fratturazione spaziata ma persistente (primi 16.5 m)	Temperature > 30°
NLS 11	5582.5	5617.5	CLAREA	1470-1505	Zone con fratturazione spaziata ma persistente (primi 6.5 m). Faglie e zone tettonizzate 20.5m	Temperature > 30°
NLS 12	6022.5	6057.5	CLAREA	1795-1800	Zone con fratturazione spaziata ma persistente (Ultimi 17.5m)	Temperature > 30°
NLS 13	6382.5	6417.5	CLAREA	1905-1910	Non rilevate	Temperature > 30°
NLS 14	6760	6795	CLAREA	1985-1995	Faglie e zone tettonizzate 2m	Temperature > 30°

Tabella 1 – Sintesi geologia nicchie

4.2 Caratterizzazione geomeccanica

Nelle figure seguenti si riportano i grafici con la distribuzione per ciascuna nicchia dei principali parametri che definiscono o la qualità geomeccanica dell'ammasso roccioso. I dati sono stati presi dai numerosi rilievi geomeccanici delle superfici di scavo eseguiti durante lo scavo del cunicolo esplorativo

4.2.1 RMR

Nel grafico di Figura 4 è presentato il dettaglio della distribuzione delle classi di RMR di Bieniawsky (1989) per tutte le nicchie in Progetto. I valori di RMR più elevati sono associati agli gneiss aplitici (AMC), che in generale presentano struttura massiva ed elevata resistenza. In corrispondenza dei micascisti di Clarea (CLR) si registra una diminuzione dell'indice di qualità della roccia, verosimilmente legata al maggiore carattere scistoso e micaceo delle rocce, ad un generale maggior grado di fratturazione dell'ammasso con sistemi di discontinuità sovente impostati lungo la stessa foliazione. Il valore RMR rimane tuttavia sufficientemente elevato (> 50), rientrante nella classificazione di "roccia buona".

Figura 4 – Valori di RMR di Bieniawsky (1989) valutati per ciascuna nicchia

Utilizzando come base la Figura 7 della relazione di PRV Rif. [1], si mettono a confronto la media dei valori di RMR in corrispondenza delle nicchie, così come sulle tavole di As-built, con la distribuzione di valori registrati lungo lo scavo del cunicolo: si sottolinea come le posizioni delle nicchie siano state ottimizzate al fine di scavarle nelle zone localmente con caratteristiche migliori, rispettando comunque le interdistanze normative tra le nicchie.

Figura 5 – Distribuzione dei valori di RMR di Bieniawsky (1989) e delle classi di qualità valutati lungo il Cunicolo della Maddalena e per ciascuna nicchia di progetto

4.2.2 GSI

Nei rilievi geologici dei paramenti eseguiti in avanzamento, oltre alle diverse caratteristiche strutturali che hanno permesso di calcolare il valore dell'indice RMR di Bieniawsky, sono anche stati stimati i valori di GSI (Geological Strength Index) lungo i diversi settori di ammasso roccioso.

La distribuzione dei diversi valori di GSI, stimati per ciascuna nicchia, è riportata nella seguente Figura 6. Anche per il valore di GSI, la cui distribuzione lungo il tracciato del cunicolo risulta essere coerente con quello del RMR, si registrano i valori più elevati nella prima tratta dove lo scavo ha interessato gli gneiss aplitici (AMC), mentre valori inferiori sono statti rilevati in corrispondenza dei micascisti di Clarea (CLR).

Come fatto per l'RMR, utilizzando come base la Figura 10 della relazione di PRV Rif. [1], si mettono a confronto la media dei valori di GSI in corrispondenza delle nicchie, così come mostrato sulle tavole di As-built, con la distribuzione di valori registrati lungo lo scavo del cunicolo: si sottolinea come le posizioni delle nicchie siano state ottimizzate al fine di scavarle nelle zone localmente con caratteristiche migliori, rispettando comunque le interdistanze normative tra le nicchie.

Nello stesso grafico sono riportati anche i valori assunti a progetto, così come poi riportato in forma tabellare in Tabella 6.

Figura 6 – Valori di GSI rilevati per ciascuna nicchia

Figura 7 – Distribuzione dei valori di GSI valutati lungo il Cunicolo della Maddalena e per ciascuna nicchia di progetto

4.2.3 σc

In avanzamento allo scavo sono stati eseguiti una serie di prove di PLT (Point Load Test) su diversi provini di roccia, eseguite sia in direzione parallela che ortogonale alla scistosità principale. Dai diversi valori di PLT sono stati successivamente ricavati i valori di σ_c medio, parallelo e ortogonale alla scistosità.

Per i litotipi AMC, e in parte gli AMD, non sono definiti valori di σ_c orientato (parallelo e ortogonale) a causa della foliazione mal definita e della sostanziale anisotropia dei litotipi. La distribuzione dei valori di σ_c è riportata nei grafici delle figure seguenti.

Appare evidente, come è naturale aspettarsi, che i valori di resistenza alla compressione ortogonali alla foliazione (Figura 10) sono più elevati rispetto a quelli misurati in direzione parallela (Figura 9).

Figura 8 – Distribuzione dei valori di oc medio ricavato dalle prove di PLT (Point Load Test) eseguiti lungo il cunicolo

Figura 9 – Distribuzione dei valori di oc parallelo alla scistosità principale ricavato dalle prove di PLT (Point Load Test) eseguiti lungo il cunicolo

Figura 10 – Distribuzione dei valori di σc ortogonale alla scistosità principale ricavato dalle prove di PLT (Point Load Test) eseguiti lungo il cunicolo

In aggiunta alle prove di point load test in situ, sono state eseguite anche prove dii compressione uniassiale in laboratorio.

Figura 11 – Distribuzione lungo il Cunicolo delle misure di resistenza a compressione uniassiale eseguite in laboratorio sui campioni prelevati.

Si riporta un grafico d'insieme di tutti i valori di resistenza a compressione registrati:

Figura 12 – Valori di σ_c lungo il cunicolo geognostico

Prova	MIN	MED	MAX			
Point load test	65.2	149.5	267			
Compressione monoassiale	138.8	183.8	236			
Taballa 2 Pasistanza a compressione a [MDa] par Complesse Ambin						

Tabella 2 – Resistenza a compressione σ_c [MPa] per Complesso Ambin

Prova	MIN	MED	MAX
Point load test	80.1	159.8	368.7
Compressione monoassiale	37.7	95.9	232.2

Tabella 3 – Resistenza a compressione σ_c [MPa] per Complesso Clarea

Supportati dai risultati delle altre prove eseguite in situ (dilatometriche, prove su piastra nelle nicchie...), si è quindi assunta come σ_c della roccia intatta un valore di 149.5MPa per l'unità Ambin e di 95.9MPa per l'unità Clarea. Questi 2 valori sono stati riportati nelle Figura 8 e Figura 11 in corrispondenza di ogni nicchia

4.2.4 Ei

Anche per la determinazione del modulo elastico della roccia intatta E_i, si è fatto riferimento ai risultati delle prove di compressione uniassiale, confermati dai valori ottenuti da altre tipologie di prove eseguite nelle nicchie.

Complesso	MIN	MED	MAX			
Ambin	33.5	37.5	50.7			
Clarea	7.3	46.8	76			

Si è assunta quindi come E_i della roccia intatta un valore di 37.5GPa per l'unità Ambin e di 46.8GPa per l'unità Clarea.

Figura 13 – Valori di E_ilungo il cunicolo geognostico e valori di progetto

4.2.5 Sintesi

Nella tabella seguente si riporta una sintesi delle considerazioni espresse.

Geologia	Litotipo	Classe	RMR	GSI	σ _c [MPa]
		geomeccanica			
Complesso	AMC - Gneiss	da I a III	52 ≤ RMR	54 ≤ GSI ≤ 98	$68 \le \sigma_{c \text{ medio}} \le 251$
di Ambin	Aplitici	(II prevalente)	≤ 98	valore medio	
				76,5	
AMD - Gneiss alb		da II a IV	40 ≤ RMR	43 ≤ GSI ≤ 70	$70 \le \sigma_{c \text{ medio}} \le 149$
	passanti a micascisti		≤ 66	valore medio	
	quarzosi			53,5	
Complesso	CLR - Micascisti e	da I a IV	34 ≤ RMR	30≤ GSI ≤ 85	$60 \le \sigma_{c \text{ medio}} \le 255$
di Clarea	gneiss minuti più o	(III prevalente)	≤ 85	valore medio	
	meno albitizzati			64	

Tabella 5 – Sintesi geomeccanica

Nella seguente tabella si riportano le principali caratteristiche geomeccaniche individuate nei tratti di cunicolo in cui verranno realizzati gli scavi di allargo:

Nicchia	Pk inizio	Pk fine	Formazione	Copertura	RMR	GSI	GSI prog.	Fenomeni di instabilità
NS 1	385	415	AMBIN	195 - 215	76	78	80	Non rilevati
					87	88		
					88	89		
					98	98		
					86	86		
NS 2	544	596	AMBIN	335-400	94	94	80	Distacco di cunei tra
					95	95		576 e 582
					94	94		

Nicchia	Pk inizio	Pk fine	Formazione	Copertura	RMR	GSI	GSI prog.	Fenomeni di instabilità
					84	85		
					85	85		
					78	80		
					78	80		
					64	65		
NS 3	722.5	757.5	AMBIN	475-495	71	75	80	Non rilevati
					80	80		
					81	81		
					89	90		
					82	82		
NS 4	892.5	927.5	AMBIN	550-560	86	86	70	Distacco di cunei tra
					82	82		904 e 909
					85	85		
					60	65		
					62	65		
NS 5	1065	1095	AMBIN	485-520	80	80	70	Distacco di cunei tra
					78	78		1086 e 1093
					76	78		
					66	70		
					79	80		
NS 6	1462.5	1497.5	CLAREA	275-295	85	80	70	Distacco di cunei tra
					70	70		1466 e 1478
					73	75		
		1000			73	75		
NS 7	1854	1906	CLAREA	515-550	62	65	60	Distacco di cunei per
					61	65		tutto lo sviluppo
					56	60		
					53	60 CE		
	2100	2245		761 910	50 E 2	05 E0	60	Distassa di sunai tra
N2 0	2180	2245	CLAREA	701 - 810	55		60	
					57	- 30 - 70		2100 0 2104
					53	60		
					60	65		
					59	65		
NLS 1	2632	2667	CLAREA	1025-1060	62	65	65	Non rilevati
1120 1	2032	2007		1023 1000	62	65	00	
					62	65		
					62	65		
NLS 2	3005	3040	CLAREA	1130-1135	58	65	65	Distacco di cunei tra
					58	65		3027 e 3040
					56	65		
NLS 3	3123	3158	CLAREA	1145-1165	59	65	60	Distacco di cunei per
					56	60		tutto lo sviluppo
					50	55		
					49	55		
NLS 4	3272	3307	CLAREA	1120-1130	57	60	60	Non rilevati
					56	60		
					55	60		

Nicchia	Pk inizio	Pk fine	Formazione	Copertura	RMR	GSI	GSI prog.	Fenomeni di instabilità
NLS 5	3421	3456	CLAREA	1085-1120	56	60	60	Distacco di cunei tra
					56	60		3421 e 3430
					55	60		Distacco di cunei tra
					56	60		3440 e 3456
NLS 6	3570	3605	CLAREA	1060	58	65	65	Distacco di cunei per
					58	65		tutto lo sviluppo
					58	65		
NLS 7	4022.5	4057.5	CLAREA	950	65	70	70	Non rilevati
					65	70		
					65	70		
NLS 8	4279.5	4314.5	CLAREA	950	60	65	65	Non rilevati
					61	67		
NLS 9	4782.5	4817.5	CLAREA	1075-1085	65	70	65	Distacco di cunei per
					61	65		tutto lo sviluppo
					61	65		
NLS 10	5182.5	5217.5	CLAREA	1210-1235	57	65	60	Distacco di cunei per
					58	65		tutto lo sviluppo
					58	60		
NI S 11	5582 5	56175		1/170-1505	59	65	65	Distacco di cunei per
	5562.5	5017.5	CEARCEAR	1470 1505	55	05	05	tutto lo sviluppo
					58	65		
NLS 12	6022.5	6057.5	CLAREA	1795-1800	61	65	65	Distacco di cunei per
					58	65		tutto lo sviluppo
NLS 13	6382.5	6417.5	CLAREA	1905-1910	59	65	65	Distacco di cunei per
					58	65		tutto lo sviluppo
NLS 14	6760	6795	CLAREA	1985-1995	59	65	0	Distacco di cunei per
					55	60		tutto lo sviluppo

Tabella 6 – Sintesi caratteristiche geomeccar	iche nelle nicchie
---	--------------------

4.3 Quadro riassuntivo della circolazione idrogeologica incontrata nel Cunicolo esplorativo

Lo scavo del Cunicolo esplorativo ha permesso di raccogliere una buona mole di dati che, uniti all'assetto geologico strutturale conosciuto dalle fasi progettuali precedenti, hanno permesso di verificare più in dettaglio il quadro della circolazione idrica presente nel massiccio roccioso del Complesso di Ambin e del Complesso di Clarea interessato dallo scavo delle nicchie in Progetto.

In definitiva le manifestazioni idriche registrate in galleria non sono state di elevata intensità e non è stata incontrata nessuna struttura idrogeologica di particolare rilevanza. Tale dato è confortante in quanto l'asse del tracciato ha sotto attraversato il torrente Clare (coperture inferiori a 300m) senza registrare particolari criticità di carattere idrogeologico.

Lungo lo sviluppo del Cunicolo esplorativo le portate transitorie sono state, per la maggior parte dei casi, di qualche litro al secondo e solo tra le pk 2+600-2+750 sono state registrate portate maggiori (circa 10-15 l/s). Queste portate in fase di scavo si sono ridotte nell'arco di qualche settimana a pochi litri al secondo, con tassi di decrescita variabili da 50% a 90%.

Le portate stabilizzate (puntuali), tutt'ora in fase di monitoraggio, variano da meno di un litro al secondo ad un massimo di circa 5 l/s.

Come indicato in Figura 14, si possono evidenziare lungo lo sviluppo del Cunicolo esplorativo tre scenari differenti con le caratteristiche indicate di seguito:

Figura 14 – Suddivisione della tratta per settori di circolazione idrica sotterranea

- **settore a bassa copertura**: circolazione con prevalente ricarica superficiale dove probabilmente le portate sono ancora influenzate, con tempi relativamente rapidi, dalle precipitazioni meteoriche;
- settore di versante a copertura crescente: circolazione profonda di acque lente cariche dove solo localmente le acque più fresche e giovani provenienti dall'infiltrazione superficiale si miscelano con quelle profonde. E' possibile che nei settori a minor copertura (fino alla pk 1500) la ricarica stagionale possa influenzare le portate in galleria;
- settore di elevata copertura: la circolazione profonda è poco sviluppata ma influenzata dalla infiltrazione di apporti superficiali lungo i fasci di fratturazione ad elevata persistenza orientati NE-SW. Le portate, una volta stabilizzate non risentono, se non in maniera marginale, degli eventi stagionali (sciolta delle nevi, precipitazioni intense).

Nella seguente Tabella 7 sono sintetizzate le venute puntuali (in regime stabilizzato) misurate nel corso degli scavi in corrispondenza della posizione delle future nicchie.

Nicchia	Pk inizio	Pk fine	Formazione	Copertura	Venute d'acqua [l/s]
NS 1	385	415	AMBIN	195 - 215	0.1
NS 2	544	596	AMBIN	335-400	0.5
NS 3	722.5	757.5	AMBIN	475-495	Non rilevate
NS 4	892.5	927.5	AMBIN	550-560	0.2 – 0.3
NS 5	1065	1095	AMBIN	485-520	0.1
NS 6	1462.5	1497.5	CLAREA	275-295	Non rilevate
NS 7	1854	1906	CLAREA	515-550	0.1 - 0.2
					venuta in foro cross-hole
					venuta in foro sparo TSP

Nicchia	Pk inizio	Pk fine	Formazione	Copertura	Venute d'acqua [l/s]
NS 8	2180	2245	CLAREA	761 - 810	0.1 - 1
NLS 1	2632	2667	CLAREA	1025-1060	0.1
NLS 2	3005	3040	CLAREA	1130-1135	Non rilevata
NLS 3	3123	3158	CLAREA	1145-1165	Non rilevata
NLS 4	3272	3307	CLAREA	1120-1130	0.1
NLS 5	3421	3456	CLAREA	1085-1120	0.1
NLS 6	3570	3605	CLAREA	1060	0.1
NLS 7	4022.5	4057.5	CLAREA	950	Non rilevate
NLS 8	4279.5	4314.5	CLAREA	950	0.05 – 0.2
NLS 9	4782.5	4817.5	CLAREA	1075-1085	> 0.1
NLS 10	5182.5	5217.5	CLAREA	1210-1235	Non rilevate
NLS 11	5582.5	5617.5	CLAREA	1470-1505	0.4
NLS 12	6022.5	6057.5	CLAREA	1795-1800	0.1
NLS 13	6382.5	6417.5	CLAREA	1905-1910	Non rilevate
NLS 14	6760	6795	CLAREA	1985-1995	0.1

Tabella 7 – Sintesi venute puntuali (in regime stabilizzato) misurate in corrispondenza della posizione delle nicchie

5 INDIVIDUAZIONE DELLE SITUAZIONI DI POTENZIALE RISCHIO

Dato che le nicchie costituiscono sezioni di allargo di un cunicolo già scavato e le caratteristiche geomeccaniche e le manifestazioni idrogeologiche sono di conseguenza in gran parte conosciute, i fattori di rischio risultano essere relativamente contenuti e rappresentano più un'indicazione di attenzione e studio che dei potenziali fattori di criticità.

In ogni caso i maggiori fattori individuati risultano essere:

- Elevate coperture: Ricoprimenti superiori ai 1000 m sono attesi già a partire dalla nicchia NLS1, ovvero dall'innesto della galleria di connessione 1. Elevate coperture possono favorire l'occorrenza di fenomeni di rilascio tensionale, come quelli osservati nell'intorno della pk 4+200. Coperture rilevanti, superiori a 1900 m, in combinazione con condizioni geomeccaniche mediocri (valori di GSI nell'intorno di 60) possono facilitare fenomeni di plasticizzazione che aumentano le convergenze al fronte.
- Fratturazione spaziata dell'ammasso roccioso: Numerose zone con fratturazione spaziata ma persistente sono state intercettate nel corso degli scavi, come riportato sui profili geomeccanici di as built. L'intensa fratturazione, oltre ad aumentare i fenomeni di splaccaggio di cunei rocciosi, favorisce la circolazione di acqua, aumenta la porosità secondaria dell'ammasso e provoca l'usura di utensili di scavo.
- **Condizioni geomeccaniche mediocri**: Condizioni geomeccaniche mediocri (50 ≤ GSI ≤ 60), sono state rilevate e riportate nel profilo geomeccanico AS BUILT ad alte coperture nel Complesso di Clarea.
- Anisotropia: La scistosità dell'ammasso roccioso causa un comportamento meccanico diverso nelle direzioni e favorisce la rottura lungo piani preferenziali. Pertanto, la scistosità, unitamente alla presenza di ricorrenti famiglie di discontinuità e a elevati stati tensionali legati alle alte coperture, sono la principale causa di fenomeni gravitativi di rilascio e sono una condizione diffusa in quasi tutte le nicchie.
- Venute di acqua: Il rischio di venute d'acqua durante lo scavo è minimo perché tali venute sono principalmente legate allo svuotamento della rete di fratture comunicanti. Solo tra le pk 2+600-2+750 sono state registrate portate maggiori (circa 10-15 l/s), che comunque si sono ridotte nell'arco di qualche settimana. Pertanto, si suppone che nel momento dello scavo delle nicchie il contributo delle venute d'acqua sarà drasticamente diminuito (se non addirittura esaurito) e potrà essere stabilizzato puntualmente.
- **Temperature elevate**: Dalla progressiva 3+030 circa sono attese temperature maggiori di 30°. Tuttavia, il ritorno di esperienza del cunicolo esplorativo ha permesso di escludere le elevate temperature come fattore di rischio per lo scavo delle nicchie, in quanto sono sempre risultate in linea con quelle attese alle alte coperture.

La combinazione dei fattori di rischio individuati può portare all'insorgere di fenomeni quali:

 Fenomeni di rottura fragile: Condizioni di decompressione violenta con conseguente rottura fragile sono prospettate in corrispondenza di rocce dure e poco fratturate in condizioni di elevate coperture nel basamento dell'Ambin. Il rischio è elevato in quanto sono stati già osservati fenomeni simili di rottura fragile durante lo scavo del cunicolo geognostico in condizioni di elevate coperture, condizioni geomeccaniche caratterizzate da valori GSI compresi tra 62 ÷ 75, e a livello strutturale, una presenza di scistosità sub-orizzontale dell'ammasso e discontinuità inclinate spesso con riempimenti carbonatici. In genere questi fenomeni si accompagnano a improvvisi boati cui fa seguito una immediata forte deformazione del sostegno applicato (spostamenti radiali pluridecimetrici del sostegno superficiale tra i bulloni).

La frammentazione della roccia e le caratteristiche dell'evento principale, avvenuto durante lo scavo del cunicolo alla pk 4+200, hanno permesso di evidenziare un meccanismo di danno classificabile secondo CRRP (1996) in "Bulking without ejection": l'energia accumulata si è consumata nel processo di fratturazione, con conseguente importante aumento di volume per dilatanza.

Da analisi 3D svolte dalla Direzione ai Lavori le principali caratteristiche risultati sono riassunte nel seguito:

- Inizio fessurazione ("damage") circa al fronte di scavo (calotta e arco rovescio);
- Condizioni potenziali per rockburst entro circa un diametro di scavo;
- Profondità di danno max 1-(1.5) m.
- Fenomeni di rilascio gravitativo: I fenomeni di rilascio gravitativo rappresentano il rischio più diffuso per lo scavo delle nicchie. Infatti, come riportato dai profili geomeccanici AS BUILT, splaccaggi di cunei rocciosi si sono verificati lungo tutta la tratta, con maggiore frequenza e con una certa entità a partire da circa pk 3+500. Tali fenomeni di instabilità hanno comportato la necessità della messa in opera di sostegni per mezzo di centinature sia leggere (sezioni tipo F3C_1 e FMV) che pesanti (F4 e F5) al posto delle previste bullonature.
- Forti plasticizzazioni al contorno del cavo: In presenza di coperture elevate e indici GSI bassi è possibile osservare fenomeni di plasticizzazione del cavo a causa dello scavo che possono indurre convergenze rilevanti.

6 CARATTERIZZAZIONE GEOMECCANICA DELL'AMMASSO

Nel seguito si riporta il calcolo delle principali caratteristiche dell'ammasso, dimostrando che i valori assunti a Progetto per i parametri caratteristici dell'ammasso permettono di ottenere i valori delle grandezze calcolate e riportate sui pofili geomeccanici di As-built.

Prima del confronto, si riportano in forma tabellare i valori delle grandezze riportate sui profili geomeccanici di As-built i corrispondenza delle nicchie:

Nicchia	Pk inizio	Pk fine	σ _c [MPa] ammasso	m _b Hoek e Brown	E _m (2002)	E _m (2006)
NS 1	385	415	17.5 - 195	4.1 - 11.2	30.5 - 158.5	33.9 - 70.1
NS 2	544	596	17.5 - 195	4.1 - 11.2	30.5 - 158.5	33.9 - 70.1
NS 3	722.5	757.5	23.5 - 208.9	4.4 - 10.4	35.4 - 141.2	
NS 4	892.5	927.5	23.5 - 208.9	4.4 - 10.4	35.4 - 141.2	
			4.09 - 30.1	1.17 - 2	8.26 - 23.7	
NS 5	1065	1095	23.5 - 208.9	4.4 - 10.4	35.4 - 141.2	
			4.09 - 30.1	3.1 - 3.5	31.6 - 39.8	
			23.5 - 208.9	4.4 - 10.4	35.4 - 141.2	
NS 6	1462.5	1497.5	5.82 - 97.29	4.11 - 7.02	17.61 - 74.99	16.78 - 43.1
NS 7	1854	1906	2.49 - 43.62	1.40 - 2.39	7.42 - 31.62	18.15 - 32.57
NS 8	2180	2245	2.49 - 43.62	1.40 - 2.39	7.42 - 31.62	18.15 - 32.57
			4.75 - 55.09	1.40- 2.01	10.24 - 23.71	28.42 - 43.97
NLS 1	2632	2667	5.55 - 62.24	1.80 - 3.08	11.08 - 31.62	8.52 - 55.13
NLS 2	3005	3040	4.58 - 39.75	1.68 - 2.58	11.63 - 23.71	23.2 - 32.05
NLS 3	3123	3158	4.58 - 39.75	1.68 - 2.58	11.63 - 23.71	23.2 - 32.05
			4.99-17.7	1.40 - 1.4	10.5 - 13.33	
NLS 4	3272	3307	6.30 - 37.20	1.56 - 2.58	12.9 - 23.7	22.8 - 30.3
NLS 5	3421	3456	6.30 - 37.20	1.56 - 2.58	12.9 - 23.7	22.8 - 30.3
NLS 6	3570	3605	6.30 - 37.20	1.56 - 2.58	12.9 - 23.7	22.8 - 30.3
NLS 7	4022.5	4057.5	11.50 - 71.85	2.58 - 4.84	21.3 - 47.3	32 - 62
NLS 8	4279.5	4314.5	10.00-63.00	2.60 - 4.5	20 - 42	43 - 56
NLS 9	4782.5	4817.5	12.0 - 58.00	2.60 - 4.5	21 - 42	
NLS 10	5182.5	5217.5	8.00 - 34.00	1.70 - 2.6	15 - 24	33 - 58
NLS 11	5582.5	5617.5	8.00 - 31.00	1.70 - 2.6	15 - 24	
NLS 12	6022.5	6057.5	6.00 - 31.00	1.70 - 2.6	13 - 24	22 - 38
NLS 13	6382.5	6417.5	3.00 - 31.00	1.40 - 2.6	8 - 24	16 - 40
			6.00 - 31.00	1.70 - 2.6	13 - 24	22 - 38
NLS 14	6760	6795	3.00 - 31.00	1.40 - 2.6	8 - 24	16 - 40

Tabella 8 – Riassunto dei valori di alcune grandezze riportate sui profili geomeccanici di As-built in corrispondenza delle nicchie

6.1 Caratteristiche fisiche

Per la determinazione del peso di volume dell'ammasso roccioso, sono state eseguite delle prove di laboratorio per la determinazione della massa volumica apparente, utilizzando campioni di roccia estratti durante lo scavo del cunicolo.

Come risulta in Figura 44 della relazione di PRV Rif. [1], si evince che i litotipi AMC degli gneiss aplitici del Complesso di Ambin presentano valori inferiori rispetto ai micascisti e gneiss minuti del Complesso di Clarea.

Figura 15 – Distribuzione lungo il Cunicolo dei risultati relativi alle misure della massa volumica apparente eseguite in laboratorio sui campioni prelevati

Complesso	MIN	MED	MAX
Ambin	26.3	26.8	27.2
Clarea	26.5	27.6	29.0

Tabella 9 – Massa volumica [kN/m³]

Sebbene sui profili longitudinali geomeccanici di As Built si riporti un peso di volume di $27kN/m^3$ costante lungo tutto il cunicolo, a livello progettuale si assume γ pari a $27kN/m^3$ per AMC e $27.7kN/m^3$ per CLS, valori di poco superiori al valor medio.

6.2 Caratteristiche meccaniche di resistenza

Si riportano i valori di resistenza a compressione σ_c dell'ammasso in corrispondenza delle nicchie, così come calcolato sui profili geomeccanici di As-built, assumendo i valori massimi e minimi in direzione perpendicolare e parallela alle discontinuità:

Figura 16 – Valori massimi di oc dell'ammasso in corrispondenza delle nicchie – As-built

Mediando i 2 valori di resistenza, si osserva che il valore medio di resistenza a compressione dell'ammasso in As-built risulta superiore al valore di Progetto, calcolato secondo la formulazione presentata nel par. 2.5, impostando $\sigma_3=0$: dato che i valori di As-built sono puntuali, i valori di Progetto sono correttamente più bassi, in modo cautelativo.

Figura 18 – Paragone tra i valori di resistenza a compressione dell'ammasso di as-built e di progetto

Sui profili geomeccanici di As-built sono stati riportati anche i valori del parametro mb nelle 2 direzioni principali, assunte in direzione perpendicolare e parallela alle discontinuità:

Figura 19 – Valori massimi di mb per l'ammasso in corrispondenza delle nicchie – As-built

Figura 20 – Valori minimi di mb per l'ammasso in corrispondenza delle nicchie – As-built

Paragonando i valori di progetto e di as-built, si osserva una buona corrispondenza:

Figura 21 – Paragone tra i valori di mb per l'ammasso di as-built e di progetto

6.3 Caratteristiche meccaniche di deformabilità

Si riportano i valori di modulo elastico dell'ammasso in corrispondenza delle nicchie, così come calcolato sui profili geomeccanici di As-built, assumendo i valori massimi e minimi in direzione perpendicolare e parallela alle discontinuità:

Figura 22 – Valori massimi del modulo elastico dell'ammasso in corrispondenza delle nicchie – As-built

Figura 23 – Valori minimi del modulo elastico dell'ammasso in corrispondenza delle nicchie – As-built

Mediando i 2 valori di Em, si osserva che il valor medio di Em di As built risulta superiore o al più paragonabile al valore di Progetto, calcolato secondo la formulazione presentata nel par. 2.5.1: dato che i valori di As-built sono puntuali, i valori di Progetto sono correttamente più bassi, in modo cautelativo.

Figura 24 – Paragone tra i valori di modulo elastico dell'ammasso di as-built e di progetto

6.4 Caratteristiche di permeabilità

In accordo con Rif. [1], lungo il Cunicolo sono state eseguite n. 4 prove Lugeon, in corrispondenza di Pk 0+290, Pk 1+338, Pk 1+640 e Pk 2+375, con lo scopo di determinare il grado di permeabilità dell'ammasso: i valori di permeabilità lungo il Cunicolo sono compresi tra 10⁻⁷m/s entro i litotipi del Complesso di Ambin e 10⁻¹⁰ m/s nel Complesso di Clarea.

Dati i bassi valori di permeabilità bassi ed il fatto che il cunicolo già scavato funziona da dreno, lo scavo per l'allargo delle nicchie verrà eseguito in condizioni di assenza di battente idraulico al contorno.

7 CARATTERIZZAZIONE DEL DISCONTINUO

Nel seguito si valutano le proprietà di resistenza dell'ammasso roccioso lungo le discontinuità, impiegate per le analisi di stabilità del modello discontinuo per le verifiche delle chiodature previste (Relazione di calcolo 04A_OO--_0Z_E_RE_GC_0703_0).

7.1 Resistenza al taglio lungo le discontinuità naturali

I modelli di mezzo discontinuo normalmente utilizzati sono di tipo rigido o elasto-plastico.

Dal punto di vista della resistenza a i giunti viene attribuita una resistenza nulla a trazione e una resistenza a taglio funzione dello sforzo normale, usualmente definita con un criterio lineare o con un criterio non lineare; quest'ultimo rappresenta meglio il comportamento di giunti scabri privi di riempimento.

Il criterio non lineare suggerito è quello di Barton (1974), definito dalla relazione seguente:

 $\tau = \sigma_n \tan [JRC \cdot \log 10 (JCS/\sigma_n) + \phi_r]$

essendo:

JRC = Joint Roughness Coefficient (coefficiente di scabrezza)

JCS = Joint Wall Compressive Strength (coefficiente di resistenza delle pareti)

 ϕ_r = angolo di attrito residuo

Il criterio di Barton può essere linearizzato in modo da avere parametri di

resistenza in termini di c' e ϕ ' mediante le seguenti equazioni:

$$\phi = \arctan\left(\frac{\partial \tau}{\partial \sigma_n}\right)$$
$$\frac{\partial \tau}{\partial \sigma_n} = \tan\left(JRC \cdot \log_{10}\left(\frac{JCS}{\sigma_n}\right) + \phi_b\right) - \frac{\pi \cdot JRC}{180 \cdot \ln 10} \cdot \left[\tan^2\left(JRC \cdot \log_{10}\left(\frac{JCS}{\sigma_n}\right) + \phi_r\right) + 1\right]$$

 $c = \tau - \sigma_n \cdot \tan \phi$

JRC e JCS essi possono essere determinati da apposite prove di taglio da eseguire sulle discontinuità.

In mancanza di tali prove si può ricorrere ai dati dei rilievi geostrutturali e facendo ricorso alle correlazioni empiriche. Al proposito si riporta di seguito quanto proposto per **JRC** da Barton (1977); **JCS** è determinato mediante misure con martello di Schimdt.

04A_OO--_0Z_E_RE_GE_0702_C_Relazione geomeccanica.docx

Come parametri di input sono stati impiegati i numerosi rilievi geomeccanici delle superfici di scavo eseguiti praticamente in continuo lungo tutto il cunicolo esplorativo della Maddalena, utilizzando nello specifico quelli svolti in corrispondenza delle nicchie previste. In dettaglio sono stati utilizzati i seguenti valori:

- $\Phi_{\rm b}$ = 33° (corrispondente al minimo angolo d'attrito di base da letteratura);
- JRC = valori compresi tra 8 e 11 (dai rilievi geostrutturali);
- JCS = valori compresi tra 76 e 100 Mpa, corrispondenti a 2/3 del valore di compressione determinato dalle prove di Point Load (dai rilievi geostrutturali).

Per la definizione dell'assetto strutturale e giaciturale delle discontinuità, sono state analizzate e processate un totale di 210 giaciture, estratte da 58 rilievi geostrutturali. Nella figura seguente si riporta la proiezione stereografica di tutte le giaciture analizzate, dove sono state differenziate graficamente in funzione della famiglia di appartenenza riportata nelle schede geostrutturali.

Figura 26 – Proiezione stereografica di tutti i dati geostrutturali analizzati

Nella seguente tabella si riportano tutti i dati ritenuti utili per le analisi in esame, raccolti dai rilievi geostrutturali analizzati, suddivisi per singola nicchia.

Nicchia	Rilievo n°	Pk [m]	Copertura [m]	Direzione [°]	Inclinaz.	RMR	GSI	σc [Mpa]	Venute [l/s]	disc	Spaziatura [cm]	Persistenza [m]	dip dir	dip	JRC	Alteraz.
	42	392	193	306	179.71	76	78	162	1	F1	10-15	3-10	330	70	12	mod
	1			-						F5		3-10	230	20	12	mod
	42	200	200	200	170 71	07	00	210	0.1	FAGLIA		2.10	100	40	8	mod
NS 1	43	399	206	306	1/9./1	8/	88	219	0.1	FI	-	3-10	140	40	12	n.a.
	44	408	211	306	179.71	88	89	158	0.3	F1		3-10	110	60	12	n.a.
	a li		2	-						FAGLIA			110	30	12	n.a.
	45	414	215	306	179.71	98	98	217	0				100		10	
	60	545	335	310	179.71	94	94	129	0	F1 F7	> 200	1	105	55	12	n.a.
	61	555	349	310	179.71	95	95	172	0	F1	> 200	1-3	120	45	12	n.a.
	62	560	354	310	179.71	94	94	162	0	F1	> 200	1-3	120	45	12	n.a.
	63	569	366	310	179.71	84	85	122	0	F1	>200	3-10	165	60	12	n.a.
	C.4	576	270	212	170 71	05	05	125	-	F2	100-200	1-3	330	75	12	n.a.
	65	5/6	375	313	179.71	78	80	135	01	F1 F1	>200	3-10	1/5	70	12	n.a. mod
		502	502	511	1/3./1		00	111	0.1	F2	100 200	3-10	320	60	16	deb
NS 2	1									F3		3-10	80	50	16	deb
										F4		1-3	50	50	12	mod
	66	589	390	314	179.71	78	80	134	0.5	F1	> 200	3-10	140	70	12	deb
										FAGLIA	20-00	3-10	100	40	12	deb
	67	598	406	314	179.71	64	65	115	1	F1	20-60	1-3	100	60	12	deb
			6			s				F2	20-60	1-3	330	40	12	deb
			1	-			-			Faglia 1	-	3-10	100	40	12	deb
├ ──	79	730	482	318	179 71	71	75	118	0.2	Faglia 2	150	3-10	330	40	12	deb
	80	736	483	318	179.71	80	80	143	0.2	F1	>200	3-10	145	75	12	n.a.
										F2	> 200	3-10	110	40	8	deb
NS 3	81	743	487	318	179.71	81	81	173	0	F2	> 200	3-10	110	40	8	deb
	82	755	493	319	179.71	89	90	158	0.1	F1	>200	3-10	140	70	8	n.a.
						-				FZ F3	>200	3-10	330	70	8	deb
	98	893	553	320	179.71	86	86	163	0	F1	>200	1-3	120	60	8	deb
										F2	>200	1-3	350	70	8	n.a.
	-			-						F3	> 200	<1	60	20	8	deb
		904	554	325	179 71	82	82	144	0	F4 E1	>200	1-3	240	15	8	n.a.
	33	304	334	323	1/9./1	02	02	744	0	F1 F2	>200	<1	20	70	8	n.a.
	(a	1	07		8					F3	>200	1-3	60	20	8	deb
NS 4										F4	100-200	1-3	240	75	8	n.a.
	100	909	555	325	179.71	85	85	168	0	F1	>200	<1	120	45	8	deb
										F3	100-200	<1	60	20	8	deb
	101	922	556	325	179.71	60	65	116	1	F1	> 200	1-3	120	45	8	n.a.
		2	8	3					-	F2	100-200	3-10	340	80	12	deb
	102	022	667	225	170 71	62	65	120	0.5	FR1	100 200	3-10	100	40	12	deb
	102	332	337	323	1/5./1	02	05	130	0.5	FR1	100-200	3-10	100	40	12	deb
	117	1066	521	330	179.71	80	80	169	0	F1	> 200	3-10	130	50	12	n.a.
								Not had set		F3	100-200	1-3	225	75	8	росо
	118	1079	504	332	179.71	78	78	135	0	F1	100-200	3-10	120	45	12	росо
	119	1086	490	332	179.71	76	78	120	0.5	F10	100-200	3-10	140	55	8	poco
NS 5	120	1093	486	332	179.71	66	70	152	0.1	F1	> 200	3-10	130	30	8	deb
	î î	1		-						F1b	100-200	3-10	160	50	8	deb
	—		-	-						F2	> 200	3-10	320	80	12	deb
	121	1102	483	332	179.71	79	80	156	0.1	F3	>200	3-10	130	70	12	n.a.
										F2	> 200	1-3	320	60	8	n.a.
1	159	1466	278	333	179.71	85	80	177	0	F1	100-200	3-10	120	50	8	n.a.
	-	-	1 12	-		-				F1b	100-200	3-10	115	35	8	n.a.
	160	1478	301	333	179.71	70	70	86	0	F5	> 200	3-10	135	55	8	n.a.
										F1b	50-100	3-10	125	35	8	n.a.
										F3		<1	300	25	8	n.a.
		-		-		-				F4		1-3	220	25	8	n.a.
NS 6	161	1490	301	333	179.71	73	75	95	0	F5	100-200	3-10	135	55	8	n.a.
									-	F1b	> 200	3-10	125	35	8	n.a.
					8		1			F2		3-10	340	80	8	n.a.
										F6	-	1-3	260	25	12	n.a.
	162	1502	302	333		73	75	87	0	F7 F1	> 200	<1	135	55	12	n.a.
	102	1502	202	555		,5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	57		F1b	100-200	3-10	125	35	8	n.a.
					0					F3		<1	30	20	12	n.a.
							4-			F6		3-10	260	25	12	n.a.
	192	1858	515	333	2.28	62	65	139	0	F1	50-100	3-10	130	40	8	n.a.
		-								F1D F2	50-100	1-3	350	60	8	n.a.
										F4	50-100	3-10	240	30	8	n.a.
										F3		1-3	80	25	8	n.a.
	193	1868	521	333	2.28	61	65	129	0	F1	50-100	3-10	130	40	8	n.a.
	-						-			F10 F2	50-100	3-10 1-3	350	60	8	n.a.
			2 2							F4	50-100	3-10	240	30	8	n.a.
1	1 N		1							E3	19	1-3	80	25	8	na

Nicchia	Rilievo n°	Pk [m]	Copertura [m]	Direzione [°]	Inclinaz. [°]	RMR	GSI	σc [Mpa]	Venute [l/s]	disc	Spaziatura [cm]	Persistenza [m]	dip dir	dip	JRC	Alteraz.
	194	1884	531	333	2.28	56	60	124		F1	50-100	3-10	130	40	8	n.a.
NS 7										F1b	20-50	3-10	275	50	8	n.a.
1000200	o	5	2	1		3 3				F2	50-100	1-3	350	60	8	n.a.
	· · · · ·	°				2				F4	100-200	3-10	240	30	8	n.a.
	105	1000	520	222	2.20		60	05		F3	50.100	1-3	80	25	8	n.a.
	195	1896	539	333	2.28	53	60	85		F1 F1b	20-50	3-10	285	40	8	n.a. deb
										F2	20-50	1-3	350	60	8	n.a.
										F4		3-10	240	30	8	n.a.
	196	1911	549	333	2.28	60	65	97		F1	50-100	3-10	145	40	8	n.a.
	<u>.</u>	0	2				-			F1b	20-50	3-10	285	60	8	deb
			1		8	-	-			F2 E4		2-10	350	60	8	n.a.
	224	2184	757	333	2.28	53	58	145	0.2	Faglia		3-10	130	60	8	deb
										F1	50-100	3-10	130	60	8	n.a.
										F1b	20-50	3-10	110	30	8	n.a.
			2	-	0					F2	100-200	1-3	320	65	8	n.a.
	225	2106	765	222	2.20	50	59	15.2	0.5	F4 E1	50-100	2-10	260	45	8	n.a.
	225	2150	705	333	2.20	50	50	152	0.5	F1b	20-50	3-10	145	25	8	n.a.
			1.5	·		· · · · · · · · · · · · · · · · · · ·	1			F2	100-200	1-3	320	60	8	n.a.
										F4		1-3	260	35	8	n.a.
	226	2207	773	333	2.28	57	70	162	2	F1	100-200	3-10	145	70	8	n.a.
NS 8							-			F1D F2	100-150	5-10 1-3	320	60	8	n.a.
	227	2223	783	333	2.28	53	60	138	2	F1	100-200	3-10	145	70	8	n.a.
	° °	0	0		17	2				F1b	50-100	3-10	95	25	8	n.a.
								10.1		F2	100-200	1-3	320	60	8	n.a.
	228	2236	792	333	2.28	60	65	174		F1	100-200	3-10	145	70	8	n.a.
										F1D F2	100-200	3-10 1-3	320	60	8	n.a.
	229	2246	803	333	2.28	59	65	143	0.2	F1	100-200	3-10	145	70	8	n.a.
										F1b	50-100	3-10	95	25	8	n.a.
		2	2	1						F2	> 200	1-3	320	60	8	n.a.
	250	2622	1050	222	2.20		65	100	-	F4	100 200	1-3	250	45	8	n.a.
	258	2633	1058	333	2.28	62	65	168		F1 F1b	100-200	3-10	145	40	6	n.a.
						-	-			F2	100-200	3-10	320	45	8	n.a.
		ļ								F4	100-200	1-3	270	60	8	n.a.
										F1c		3-10	90	25	6	n.a.
	250	2642	1010	222	2.20	63	65	100	0.1	F3	100.000	1-3	43	35	8	n.a.
	259	2643	1046	333	2.28	62	65	168	0.1	F1 F1b	100-200	3-10	145	40	6	n.a.
	10	10	с. 		8					F2	100-200	3-10	320	45	8	n.a.
MICA										F4	100-200	1-3	270	60	8	n.a.
NLS I	1									F1c		3-10	90	25	6	n.a.
	260	2655	1031	333	2.28	62	65	182	0.1	F1	100-200	3-10	145	55	6	n.a.
	-			-						F1D F2	100-200	3-10	320	40	8	n.a.
										F4	100-200	1-3	260	35	8	n.a.
	261	2667	1023	333	2.28	62	65	180	0.1	F1	100-200	3-10	145	55	6	n.a.
		1								F1b	100-200	3-10	120	40	6	n.a.
						-				F2	100-200	3-10	320	45	8	n.a.
			-		-					F4	100-200	3-10	90	25	6	n.a.
<u> </u>	286	3017	1137	333	2.28	58	65	160	0.1	Faglia 1		3-10	300	65	6	deb
		0				-			1	Faglia 2		3-10	140	70	6	deb
										F1	100-200	1-3	140	70	6	n.a.
		2		-	-	-	-			F1b	50-100	3-10	125	60	8	n.a.
	-			-			-			F2 F4	100-200	1-3	230	45	8	n.a.
										F4b		1-3	220	30	8	n.a.
NIS7	287	3027	1137	333	2.28	58	65	158		F1	100-200	3-10	140	60	6	n.a.
				-	2					F1b	50-100	3-10	300	20	8	n.a.
	-	6. 0	2	-	2		-			FZ F1c	100-200	3-10	355	40	8	n.a.
	-		5. ²	-	8					F4		1-3	270	30	8	n.a.
	288	3042	1136	333	2.28	56	65	134		F1	100-200	3-10	140	60	6	n.a.
										F1b	50-100	3-10	120	10	8	n.a.
		-				-				F2	100-200	3-10	320	40	8	n.a.
	20.4	3110	1127	322	2.28	59	65	167		F4	100-200	3_10	1/0	30 60	6	n.a.
	2.94	5110	113/	332	2.20	20	05	107		F1b	50-100	3-10	120	5	8	n.a.
					8					F1c	100-200	3-10	110	30	8	n.a.
										F2	100-200	1-3	320	50	8	n.a.
			-	-						F4		3-10	260	40	8	n.a.
	295	3122	1143	331	2.28	59	65	155	0.1	F4D F1	100-200	3-10	140	60	6	n.a.
		5111	1145	551	2.20		35	202	5.1	F1b	50-100	3-10	100	20	8	n.a.
		0	0			5				F2	100-200	1-3	320	50	8	n.a.
1000000	· · · · ·		2		7	2				F4	8	3-10	260	40	8	n.a.
NLS 3	200	2122	1140	220	2.20	50	65	175		F4b	100 200	1-3	220	70	8	n.a.
	296	3133	1149	330	2.28	59	65	1/5		F1 F1h	50-100	3-10	100	20	8	n.a.
										F2	100-200	1-3	320	50	8	n.a.
										F4b	100-200	1-3	220	70	8	n.a.
I I							1			F4		3-10	260	40	8	n.a.

Nicchia	Rilievo n°	Pk [m]	Copertura [m]	Direzione [°]	Inclinaz. [°]	RMR	GSI	σc [Mpa]	Venute [l/s]	disc	Spaziatura [cm]	Persistenza [m]	dip dir	dip	JRC	Alteraz.
	297	3143	1155	329	2.28	56	60	160		F1	100-200	3-10	140	60	6	n.a.
	î ()			·		1	0			F1b	50-100	3-10	100	20	8	n.a.
	0									F2	100-200	1-3	320	50	8	n.a.
										F4	100-200	3-10	260	40	8	n.a.
										F4b	50-100	3-10	225	65	8	n.a.
	332	3580	1060	304	2.28	58	65	163		F1	100-200	3-10	145	55	8	росо
		ō.	8	1						F1b	50-100	3-10	100	15	8	n.a.
	· · ·	÷	2							F2	100-200	1-3	325	60	8	росо
			аў —		÷	1				F3	100-200	3-10	20	70	8	росо
			0							F4b	100-200	3-10	210	75	8	росо
	333	3593	1061	303	2.28	58	65	164		F1	100-200	3-10	145	55	8	росо
										F1b	50-100	3-10	90	20	8	n.a.
NLS 6		1					0			F2	> 200	1-3	325	50	8	росо
			10		10					F3	100-200	3-10	25	70	8	росо
										F4b	100-200	3-10	210	75	8	росо
	334	3605	1061	303	2.28	58	65	163	0.1	F1	100-200	3-10	135	50	8	росо
	10 D		60)		2	-				F1b	50-100	3-10	90	20	8	n.a.
	· · · · ·	5.	3			1				F2	100-200	1-3	325	50	8	росо
										F4b	50-100	3-10	210	75	8	росо
	368	4026	950	299	2.28	65	70	170		F1	100-200	3-10	110	65	8	росо
			10							F1b	100-150	3-10	10	15	8	n.a.
	0	5	8							F2	> 200	1-3	270	50	8	росо
	· · · · ·	с	2			2	1			F4b	100-200	3-10	205	75	8	росо
			аў. 1		8	1	1			F1d		1-3	125	80	8	росо
			8							F3		3-10	350	30	8	росо
	369	4042	951	299	2.28	65	70	171		Faglia		3-10	0	30	8	росо
			20				1			F1	100-200	3-10	110	40	8	росо
										F1b	100-150	3-10	10	15	8	n.a.
NLS /										F2	> 200	1-3	270	45	8	росо
	5 5	0	8							F4b	100-200	3-10	205	75	8	росо
	· · ·	0	2		S7	2				F3	S 6 6	1-3	350	30	8	росо
	1		÷		8	1	1			F4		1-3	280	70	8	росо
	370	4060	951	299	2.28	65	70	172		F1	100-200	3-10	110	40	8	росо
	0						0			F1b	100-150	3-10	10	15	8	n.a.
			2							F2	> 200	1-3	270	45	8	росо
		2					0			F4b	100-200	3-10	205	75	8	росо
		3	0							F3		1-3	350	30	8	росо

Tabella 10 – Sintesi dei dati geostrutturali impiegati

Nei grafici seguenti è stata riportata la distribuzione del le principali caratteristiche delle discontinuità, ossia spaziatura (espressa in cm), persistenza (espressa in m), rugosità (valore JRC) e il grado di alterazione determinato lungo il giunto.

Da tali grafici si evince che le discontinuità hanno una spaziatura ampia (varo rappresentativo 100-200 cm), medio bassa persistenza (3-10 m), rugosità medio bassa (JRC più rappresentativo pari a 8) e non risultano alterate.

Figura 27 – Distribuzione della spaziatura (in cm) delle discontinuità

Figura 28 – Distribuzione della persistenza (in m) delle discontinuità

Figura 29 – Distribuzione della rugosità

Figura 30 – Distribuzione del grado di alterazione

8 CARATTERIZZAZIONE DEL DISCONTINUO

Nel seguito si definisce l'accelerazione sismica attesa in corrispondenza delle nicchie. La galleria Maddalena interessa il settore compreso tra la zona della Maddalena di Chiomonte e la media e alta Val Clarea, per buona parte sul suo versante sinistro. Le coordinate rappresentative delle nicchie oggetto di questa relazione sono:

> LATITUDINE 45° 8'21.66"N LONGITUDINE 6°58'26.84"E

Figura 31 – Inquadramento dell'opera

8.1 Categoria di sottosuolo

Per quanto riguarda la caratterizzazione del sottosuolo, si tiene conto dei risultati delle tomografie sismiche a rifrazione a paramento eseguite nel cunicolo, che restituiscono valori di V_p di 2000-4000m/s. Dato che il rapporto tra le onde longitudinali e quelle trasversali è pari a $v_p = v_s \cdot \sqrt{(1-v_b)/(0.5-v_b)}$, con il coefficiente di poisson pari a 0.3 le V_s risultano tra i 1000 e i 2000m/s.

Per questo motivo, alla profondità delle nicchie, il sottosuolo rientra nella categoria A "Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m".

8.2 Categoria topografica

Per quanto concerne le caratteristiche della superficie topografica, data la significativa profondità delle nicchie (superiore almeno a 200m), la morfologia dell'area può essere ricondotta alla configurazione T1, dalla seguente descrizione: *"Superficie pianeggiante, pendii e rilevati isolati con inclinazione media i* \leq 15°".

8.3 Vita nominale, classe d'uso e periodo di riferimento

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale e destinata. Le nicchie rientrano nel tipo di costruzione I "Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva", con $V_N < 10$ anni.

Per quanto riguarda la classe d'uso, il cunicolo si inserisce nella classe II "Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti."

In accordo col DM 2008 l'azione sismica viene valutata in relazione al periodo di riferimento V_R che è ricavato moltiplicandone la vita nominale V_N per il coefficiente d'uso C_u , ottenendo: $V_R = 10 \times 1.0 = 10$ anni.

Essendo V_R inferiore a 35 anni, si impone V_R uguale a 35 anni, in accordo alla Normativa.

8.4 Accelerazione sismica suolo rigido

Secondo il D.M. 14/01/2008 «Norme tecniche per le costruzioni» all'allegato B, al punto della maglia sismica per la longitudine e la latitudine in esame corrisponde il seguente valore di accelerazione orizzontale massima convenzionale (a_g) ed i corrispondenti T_r, ₀ e T_c^{*}:

Stato limite	a _g [g]	T _r [anni]	F ₀ [-]	T _c * [s]
SLV	0.116	332	2.451	0.260
Taballa	11 Assolars			

Tabella 11 – Accelerazione sismica

dove a_g rappresenta l'accelerazione orizzontale massima al sito, T_r il tempo di ritorno, F_o il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale, T_c il periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale e lo Stato Limite di Vita (SLV).

8.5 Accelerazione sismica di progetto

L'accelerazione sismica di progetto è calcolata amplificando l'accelerazione sismica su suolo rigido per:

- coefficiente S_S di amplificazione stratigrafica, pari a 1, per sottosuolo tipo A;
- coefficiente S_T di amplificazione topografica, pari a 1, per superficie T1.

L'accelerazione sismica orizzontale di progetto risulta quindi pari a **0.116g** <u>e quella</u> <u>verticale è pari alla metà.</u>

In condizione statica, le sollecitazioni sul prerivestimento, risultanti dall'analisi numerica con i parametri caratteristici della roccia, sono amplificate per 1.3 per eseguire le verifiche allo SLU. In campo sismico, le sollecitazioni dovrebbero tener conto di un incremento di carico pari a 0.116, inferiore allo 0.3 della combinazione SLU in campo statico.

Per questo motivo, come è prassi per le galleria a grande profondità in contesti rocciosi, la combinazione sismica non risulta dimensionante e non verrà analizzata nella relazione di calcolo delle nicchie.

9 ALLEGATI

ALLEGATO	TITOLO
1	Profilo Longitudinale Geotecnico - Geomeccanico - Tratta scavata in tradizionale - AS BUILT
2	Profilo Longitudinale Geotecnico - Geomeccanico - pk 0+198÷0+700 - AS BUILT
3	Profilo Longitudinale Geotecnico - Geomeccanico - pk 0+700÷1+200 - AS BUILT
4	Profilo Longitudinale Geotecnico - Geomeccanico - pk 1+200÷1+700 - AS BUILT
5	Profilo Longitudinale Geotecnico - Geomeccanico - pk 1+700÷2+200 - AS BUILT
6	Profilo Longitudinale Geotecnico - Geomeccanico - pk 2+200÷2+700 - AS BUILT
7	Profilo Longitudinale Geotecnico - Geomeccanico - pk 2+700÷3+200 - AS BUILT
8	Profilo Longitudinale Geotecnico - Geomeccanico - pk 3+200÷3+700 - AS BUILT
9	Profilo Longitudinale Geotecnico - Geomeccanico - pk 3+700÷4+200 - AS BUILT
10	Profilo Longitudinale Geotecnico - Geomeccanico - pk 4+200÷4+700 - AS BUILT
11	Profilo Longitudinale Geotecnico - Geomeccanico - pk 4+700÷5+200 - AS BUILT
12	Profilo Longitudinale Geotecnico - Geomeccanico - pk 5+200÷5+764.77 - AS BUILT
13	Profilo Longitudinale Geotecnico - Geomeccanico - pk 5+764.77÷6+400 - AS BUILT
14	Profilo Longitudinale Geotecnico - Geomeccanico - pk 6+400÷7+020 - AS BUILT
15	Profilo Longitudinale Geotecnico - Geomeccanico - AS BUILT