

Concessionaria per la progettazione, realizzazione e gestione del collegamento stabile tra la Sicilia e il Continente Organismo di Diritto Pubblico (Legge n° 1158 del 17 dicembre 1971, modificata dal D.Lgs. n°114 del 24 aprile 2003)

PONTE SULLO STRETTO DI MESSINA

PROGETTO DEFINITIVO

EUROLINK S.C.p.A.

IMPREGILO S.p.A. (MANDATARIA)
SOCIETÀ ITALIANA PER CONDOTTE D'ACQUA S.p.A. (MANDANTE)
COOPERATIVA MURATORI E CEMENTISTI - C.M.C. DI RAVENNA SOC. COOP. A.R.L. (MANDANTE)
SACYR S.A.U. (MANDANTE)
ISHIKAWAJIMA - HARIMA HEAVY INDUSTRIES CO. LTD (MANDANTE)

A.C.I. S.C.P.A. - CONSORZIO STABILE (MANDANTE)

IL PROGETTISTA
Dott. Ing. I. Barilli
Ordine Ingegneri
V.C.O.
n° 122
Dott. Ing. E. Pagani

Dott. Ing. E. Pagani Ordine Ingegneri Milano n° 15408

IL CONTRAENTE GENERALE

Project Manager (Ing. P.P. Marcheselli)

STRETTO DI MESSINA Direttore Generale e RUP Validazione (Ing. G. Fiammenghi) STRETTO DI MESSINA

Amministratore Delegato (Dott. P. Ciucci)

Unità Funzionale COLLEGAMENTI SICILIA ST0376_F0

Tipo di sistema STAZIONI – IMPIANTI
Raggruppamento di opere/attività STAZIONE PAPARDO

Opera - tratto d'opera - parte d'opera GENERALE

Titolo del documento RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI

MECCANICI

0 7 0 1 R D s S s G 0 0 0 0 0 0 0 0 G F0 CODICE

REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO
F0	0 20/06/2011 EMISSIONE FINALE		D. RE	M. TACCA	I. BARILLI

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0 Data 20/062011

INDICE

INI	DICE		
Int	roduzione	9	1
1	Denom	inazioni ed abbreviazioni utilizzate	2
2	Leggi e	norme di riferimento	3
3	Dati e r	equisiti di base del progetto	4
4	Dimens	sionamento apparecchiature di cabina	5
5	Dimens	sionamento linee BT	6
į	5.1 Ca	Icolo delle correnti d'impiego	6
;	5.2 Dir	mensionamento e verifica a sovraccarico dei cavi	7
	5.2.1	Generalità	7
	5.2.2	Modalità di posa	9
	5.2.3	Determinazione della portata	. 15
	5.2.3	.1 Cavi isolati in PVC ed EPR (CEI-UNEL 35024/1)	. 15
	5.2.3	.2 Cavi interrati (CEI-UNEL 35026)	. 21
	5.2.4	Dimensionamento dei conduttori di neutro	. 24
	5.2.5	Dimensionamento dei conduttori di protezione	. 25
	5.2.6	Calcolo della temperatura dei cavi	. 26
ļ	5.3 Ca	dute di tensione	. 27
ļ	5.4 Rif	asamento	. 28
ļ	5.5 Ca	lcolo dei guasti	. 28
	5.5.1	Modellizzazione delle apparecchiature in rete	. 29
	5.5.1	.1 Trasformatori	. 29
	5.5.1	.2 Generatori	. 32
	5.5.1	.3 Motori asincroni	. 32
	5.5.2	Calcolo delle correnti massime di cortocircuito	. 34
	5.5.3	Calcolo delle correnti minime di cortocircuito	. 37
;	5.6 Ve	rifica della protezione a cortocircuito delle condutture	. 39
	5.6.1	Generalità	. 39
	5.6.2	Integrale di Joule	
	5.6.3	Massima lunghezza protetta	. 4′
,	5.7 Ve	rifica contatti indiretti	. 42

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento	Rev	Data
ST0376_F0	F0	20/062011

	5.7	'.1 Sistema di distribuzione TN	43
	5.8	Calcoli dimensionali linee BT	44
6	Alle	egati	44

Eurolink S.C.p.A.

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento
ST0376 F0

Rev F0 **Data** 20/06/2011

Introduzione

Nella presente relazione vengono illustrati le modalità ed i risultati dei calcoli eseguiti durante lo sviluppo del progetto definitivo, relativo agli impianti tecnologici da realizzare a servizio della stazione metropolitana di Papardo e dei pozzi di ventilazione tipo 1 (standard), previsti lungo i collegamenti ferroviari lato Sicilia, nell'ambito della costruzione dell'Opera di attraversamento sullo Stretto di Messina.

I criteri alla base della progettazione degli impianti in oggetto si possono così elencare:

- Sicurezza degli operatori, degli utenti e degli impianti
- Semplicità ed economia di manutenzione
- Scelta di apparecchiature improntata a criteri di elevata qualità, semplicità e robustezza, per sostenere le condizioni di lavoro più gravose
- Risparmio energetico
- Affidabilità degli impianti e massima continuità di servizio

Il presente documento, relativamente ai calcoli dimensionali degli impianti di Bassa Tensione (BT), intende evidenziare:

- la normativa tecnica utilizzata per il dimensionamento;
- i criteri di dimensionamento, tenendo conto dei vincoli impiantistici e della normativa vigente;
- i dati di input
- i risultati dei calcoli dimensionali e delle verifiche di calcolo necessarie per la definizione degli impianti BT.

In particolare, sono descritti in generale i principali metodi di calcolo e di verifica, riportando le prescrizioni indicate dalla normativa in uso. Talvolta nei casi specifici, qualora sia necessario, potranno essere introdotte opportune ipotesi semplificative.

I risultati delle verifiche di impianto, ottenute con software commerciale o tramite fogli di calcolo, sono riportati negli allegati, a cui dovrà essere fatto riferimento anche per le sigle e la simbologia adottata.

Per ulteriori dettagli sulle caratteristiche delle apparecchiature scelte, si rimanda agli elaborati grafici relativi ed in particolare agli schemi unifilari dei quadri elettrici.

Eurolink S.C.p.A. Pagina 1 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376 F0

Rev F0 **Data** 20/06/2011

1 Denominazioni ed abbreviazioni utilizzate

Vengono introdotte le seguenti abbreviazioni (in ordine alfabetico):

- ac Corrente alternata
- AD Azienda distributrice di energia elettrica nel caso specifico sinonimo di ENEL
- Al AntIncendio
- BT o bt Bassa Tensione in c.a. (690/400/230V)
- CA Continuità assoluta
- cc Corrente Continua
- CEI Comitato Elettrotecnico Italiano
- CSA Capitolato Speciale di Appalto
- DL Direzione dei Lavori, generale o specifica
- FM Forza Motrice
- GE Gruppo Elettrogeno
- IMQ Istituto Italiano per il Marchio di Qualità
- IMS Interruttore di Manovra e Sezionatore
- I/O Input/Output
- IS Illuminazione di Sicurezza
- ME Messina
- PC Personal Computer
- PLC Programmable Logic Controller
- RC Reggio Calabria
- SA Servizi Ausiliari ordinari
- SE Servizi ausiliari Essenziali ai fini della sicurezza
- UNEL Unificazione Elettrotecnica Italiana
- UNI Ente Nazionale Italiano di Unificazione
- VE Impianti di ventilazione
- VVF Vigili del Fuoco
- UPS Gruppo di Continuità Assoluta

Eventuali altri acronimi potranno essere introdotti solo dopo che siano stati definiti, tra parentesi, accanto alla definizione estesa del proprio significato.

Eurolink S.C.p.A. Pagina 2 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0 Data 20/06/2011

2 Leggi e norme di riferimento

Nello sviluppo del progetto definitivo delle opere impiantistiche descritte nel presente documento, oltre ai riferimenti legislativi, alle circolari ed alle norme tecniche indicate nel documento GCG.F.01.02 (Ottobre 2004), sono stati considerati, in particolare, anche i seguenti riferimenti:

- Norma CEI 11-1 "Impianti di produzione, trasporto e distribuzione di energia elettrica.
 Norme generali"
- Norma CEI 11-17 "Impianti di produzione, trasmissione e distribuzione di energia elettrica.
 Linee in cavo"
- CEI 11-20 2000 IVa Ed. Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti I e II categoria.
- CEI 11-25 2001 IIa Ed. (IEC 60909-2001): Correnti di cortocircuito nei sistemi trifasi in corrente alternata. Parte 0: Calcolo delle correnti.
- CEI 11-28 1993 la Ed. (IEC 781): Guida d'applicazione per il calcolo delle correnti di cortocircuito nelle reti radiali e bassa tensione.
- CEI 17-5 VIIIa Ed. 2007: Apparecchiature a bassa tensione. Parte 2: Interruttori automatici.
- CEI 23-3/1 la Ed. 2004: Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari.
- CEI 33-5 la Ed. 1984: Condensatori statici di rifasamento di tipo autorigenerabile per impianti di energia a corrente alternata con tensione nominale inferiore o uguale a 660V.
- CEI 64-8 VIa Ed. 2007: Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e a 1500V in corrente continua.
- IEC 364-5-523: Wiring system. Current-carring capacities.
- IEC 60364-5-52: Electrical Installations of Buildings Part 5-52: Selection and Erection of Electrical Equipment Wiring Systems.
- CEI UNEL 35023 2009: Cavi per energia isolati con gomma o con materiale termoplastico avente grado di isolamento non superiore a 4- Cadute di tensione.
- CEI UNEL 35024/1 1997: Cavi elettrici isolati con materiale elastometrico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria.
- CEI UNEL 35024/2 1997: Cavi elettrici ad isolamento minerale per tensioni nominali non superiori a 1000 V in corrente alternata e a 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria.

Eurolink S.C.p.A. Pagina 3 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0

Data 20/06/2011

- CEI UNEL 35026 2000: Cavi elettrici con materiale elastomerico o termoplastico per tensioni nominali di 1000 V in corrente alternata e 1500 V in corrente continua. Portate di corrente in regime permanente per posa interrata.
- CEI EN 50272: Prescrizioni di sicurezza per batterie di accumulatori e loro installazioni.
- IEC 60287: Electric cables Calculation of the current rating.

3 Dati e requisiti di base del progetto

I calcoli di progetto saranno eseguiti facendo riferimento alle seguenti condizioni principali:

Ubicazione e altitudine: Messina - Reggio Calabria <100 s.l.m.

Destinazione ambienti:

stazioni metropolitane (luogo con maggior rischio in caso di incendio)

locali tecnici (locale ordinario)

Temperature di riferimento:
 Tmax int.: 40°C

■ Tmin int.: 5°C

Test.: 34°C - Uest.: 40%Test.: 3°C - Uest.: 85%

Dati dimensionali dell'intervento:

Per lo sviluppo progettuale degli impianti sono stati assunti come riferimento i seguenti dati caratteristici:

Dati rete di alimentazione ENEL:
 tensione di alimentazione: 20kV ± 10%

 corrente di cortocircuito trifase nel punto di consegna MT: 12,5 kA (valore tipico per

reti MT a 20 kV)

tempo di intervento protezioni: < 1s

Caduta di tensione massima:
 globale di impianto: <4%

Eurolink S.C.p.A. Pagina 4 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0

Data 20/06/2011

Margine di sicurezza portate interruttori: 20%

Riserva di spazio (o interruttori) sui quadri BT: 20%

Riserva di spazio nelle canalizzazioni: 50%

■ Riserva di spazio nelle tubazioni: diametro interno tubazione ≥ 1/3 del

diametro circoscritto al fascio dei cavi

Tipologia conduttori BT: cavi in galleria e nei locali tecnici posati entro

canalizzazioni e tubazioni: FG7(O)M1 0.6/1 kV

 cavi in galleria e nei locali tecnici posati entro canalizzazioni e tubazioni in materiale plastico:

NO7G9-K 450/750V

cavi relativi a circuiti di sicurezza: FTG10(O)M1

0,6/1 kV CEI 20-45

cavi interrati all'aperto posati all'interno di tubazioni

in materiale plastico: FG7(O)R 0.6/1 kV

cavi relativi a circuiti di sicurezza: FTG10(O)M1

0,6/1 kV CEI 20-45

4 Dimensionamento apparecchiature di cabina

Per quanto concerne i dettagli relativi alle potenze assorbite dai vari Impianti (ventilazione e servizi ausiliari) si rinvia agli schemi unifilari dei quadri elettrici di alimentazione.

Ovviamente, in seguito alla definizione delle taglie delle apparecchiature da installare nei locali tecnici, sono stati opportunamente dimensionati sia gli spazi tecnici per il loro contenimento che gli impianti di ventilazione/condizionamento idonei al mantenimento di una temperatura inferiore al valore massimo accettabile (tipicamente da 25°C a 40°C).

Eurolink S.C.p.A. Pagina 5 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0

Data 20/06/2011

5 Dimensionamento linee BT

5.1 Calcolo delle correnti d'impiego

Per i carichi o utenze presenti nell'impianto la corrente d'impiego è calcolata dalla formula seguente, sulla base della potenza realmente assorbita:

$$I_b = \frac{P_d}{k_{ca} \cdot V_n \cdot \cos \varphi}$$

nella quale:

- Pd = Potenza effettivamente assorbita dal carico
- Vn = Tensione nominale del sistema
- cos φ = Fattore di potenza
- kca = fattore dipendente dal sistema di collegamento
 - kca = 1 sistema monofase o bifase, due conduttori attivi;
 - kca = 1.73 sistema trifase, tre conduttori attivi.

Se la rete è in corrente continua il fattore di potenza cos φ è pari a 1.

Dal valore massimo (modulo) di *lb* vengono calcolate le correnti di fase in notazione vettoriale (parte reale ed immaginaria) con le formule:

$$\begin{split} \dot{I}_1 &= I_b \cdot e^{-j\varphi} = I_b \cdot \left(\cos\varphi - j\sin\varphi\right) \\ \dot{I}_2 &= I_b \cdot e^{-j(\varphi - 2\pi/3)} = I_b \cdot \left(\cos\left(\varphi - \frac{2\pi}{3}\right) - j\sin\left(\varphi - \frac{2\pi}{3}\right)\right) \\ \dot{I}_3 &= I_b \cdot e^{-j(\varphi - 4\pi/3)} = I_b \cdot \left(\cos\left(\varphi - \frac{4\pi}{3}\right) - j\sin\left(\varphi - \frac{4\pi}{3}\right)\right) \end{split}$$

Il vettore della tensione *Vn* è supposto allineato con l'asse dei numeri reali:

$$\dot{V_n} = V_n + j0$$

La potenza di dimensionamento *Pd* è data dal prodotto:

$$P_d = P_n \cdot coeff$$

Eurolink S.C.p.A. Pagina 6 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0

Data 20/06/2011

nel quale *coeff* è pari al fattore di utilizzo per utenze terminali oppure al fattore di contemporaneità per utenze di distribuzione.

La potenza P_n , invece, è la potenza nominale del carico per utenze terminali, ovvero, la somma delle P_d delle utenze a valle (ΣP_d a valle) per utenze di distribuzione (somma vettoriale).

La potenza reattiva delle utenze viene calcolata invece secondo la:

$$Q_n = P_n \cdot \tan \varphi$$

per le utenze terminali, mentre per le utenze di distribuzione viene calcolata come somma vettoriale delle potenze reattive nominali a valle (ΣQ_d a valle).

Il fattore di potenza per le utenze di distribuzione viene valutato, di conseguenza, con la:

$$\cos \varphi = \cos \left(arc \tan \left(\frac{Q_n}{P_n} \right) \right)$$

5.2 Dimensionamento e verifica a sovraccarico dei cavi

5.2.1 Generalità

Di seguito sono illustrati i criteri di dimensionamento e verifica dei cavi e delle relative protezioni, in relazione alle correnti di sovraccarico.

Il riferimento è la Norma CEI 64-8/4 (par. 433.2), secondo la quale il dispositivo di protezione deve essere coordinato con la conduttura in modo da verificare le condizioni:

a)
$$I_b \leq I_n \leq I_z$$

b)
$$I_f \leq 1.45 \cdot I_z$$

dove:

- Ib = Corrente di impiego del circuito
- In = Corrente nominale del dispositivo di protezione
- Iz = Portata in regime permanente della conduttura
- If = Corrente di funzionamento del dispositivo di protezione

Affinché sia verificata la condizione a) è necessario dimensionare il cavo in base alla corrente nominale della protezione a monte. Dalla corrente *lb*, pertanto, viene determinata la corrente

Eurolink S.C.p.A. Pagina 7 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0 Data 20/06/2011

nominale della protezione (seguendo i valori normalizzati) e con questa si procede alla determinazione della sezione.

Il dimensionamento dei cavi rispetta anche i seguenti casi:

- condutture senza protezione derivate da una conduttura principale protetta contro i sovraccarichi con dispositivo idoneo ed in grado di garantire la protezione anche delle condutture derivate;
- conduttura che alimenta diverse derivazioni singolarmente protette contro i sovraccarichi, quando la somma delle correnti nominali dei dispositivi di protezione delle derivazioni non supera la portata Iz della conduttura principale.

L'individuazione della portata si effettua utilizzando le seguenti tabelle di posa assegnate ai cavi:

- CEI 64-8 Tabella 52C (esempi di condutture);
- CEI-UNEL 35024/1 (portata dei cavi isolati in PVC ed EPR);
- CEI-UNEL 35026 (portata dei cavi interrati);

Esse oltre a riportare la corrente ammissibile (portata) in funzione del tipo di isolamento del cavo, del tipo di posa e del numero di conduttori attivi, riportano anche la metodologia di valutazione dei coefficienti di declassamento.

La portata minima del cavo viene calcolata come:

$$I_{z\min} = \frac{I_n}{k_{tot}}$$

dove il coefficiente k_{tot} ha lo scopo di declassare il cavo e tiene conto dei seguenti fattori:

- tipo di materiale conduttore;
- tipo di isolamento del cavo;
- numero di conduttori in prossimità compresi eventuali paralleli;
- eventuale declassamento deciso dall'utente.

Laddove necessario, saranno posti dei vincoli cautelativi, sui coefficienti di declassamento utilizzati.

La sezione viene scelta in modo che la sua portata (ricavata dalla tabella) sia superiore alla $I_{z min.}$ Gli eventuali paralleli vengono calcolati nell'ipotesi che abbiano tutti la stessa sezione, lunghezza e

Eurolink S.C.p.A. Pagina 8 di 43

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

tipo di posa (vedi norma 64.8 par. 433.3), considerando la portata minima come risultante della somma delle singole portate (declassate per il numero di paralleli dal coefficiente di declassamento per prossimità).

La condizione b) non necessita di verifica in quanto gli interruttori che rispondono alla norma CEI 23.3 hanno un rapporto tra corrente convenzionale di funzionamento I_f e corrente nominale I_n minore di 1.45 ed è costante per tutte le tarature inferiori a 125 A. Per le apparecchiature industriali, invece, le norme CEI 17.5 e IEC 947 stabiliscono che tale rapporto può variare in base alla corrente nominale, ma deve comunque rimanere minore o uguale a 1.45.

Risulta pertanto che, in base a tali normative, la condizione b) sarà sempre verificata.

Le condutture dimensionate con questo criterio sono, pertanto, protette contro le sovracorrenti.

Nei capitoli che seguono sono specificate le modalità di posa contemplate dalla Norma CEI 64-8, le tabelle ricavate dalle norme di cui sopra e i diversi metodi per la determinazione della portata.

5.2.2 Modalità di posa

Con riferimento alla norma CEI 64-8/5, le tipologie di installazione previste sono riportate nelle tabella seguente:

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	1	cavi senza guaina in tubi protettivi circolari posati entro muri termicamente isolati
	2	cavi multipolari in tubi protettivi circolari posati entro muri termicamente isolati
	3	cavi senza guaina in tubi protettivi circolari posati su o distanziati da pareti

Eurolink S.C.p.A. Pagina 9 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0 Data 20/06/2011

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	3A	cavi multipolari in tubi protettivi circolari posati su o distanziati da pareti
	4	cavi senza guaina in tubi protettivi non circolari posati su pareti
	4A	cavi multipolari in tubi protettivi non circolari posati su pareti
	5	cavi senza guaina in tubi protettivi annegati nella muratura
	5A	cavi multipolari in tubi protettivi annegati nella muratura
	11	cavi multipolari (o unipolari con guaina), con o senza armatura, posati su o distanziati da pareti
	11A	cavi multipolari (o unipolari con guaina) con o senza armatura fissati su soffitti
	12	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle non perforate

Eurolink S.C.p.A. Pagina 10 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 Data 20/06/2011

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	13	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle perforate con percorso orizzontale o verticale
	14	cavi multipolari (o unipolari con guaina), con o senza armatura, su mensole
	15	cavi multipolari (o unipolari con guaina), con o senza armatura, fissati da collari
	16	cavi multipolari (o unipolari con guaina), con o senza armatura, su passerelle a traversini
	17	cavi unipolari con guaina (o multipolari) sospesi a od incorporati in fili o corde di supporto
	18	conduttori nudi o cavi senza guaina su isolanti
	21	cavi multipolari (o unipolari con guaina) in cavità di strutture
	22	cavi unipolari senza guaina in tubi protettivi non circolari posati in cavità di strutture

Eurolink S.C.p.A. Pagina 11 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	22A	cavi multipolari (o unipolari con guaina) in tubi protettivi circolari posati in cavità di strutture
	23	cavi unipolari senza guaina in tubi protettivi non circolari posati in cavità di strutture
	24	cavi unipolari senza guaina in tubi protettivi non circolari annegati nella muratura
8 8	24A	cavi multipolari (o unipolari con guaina), in tubi protettivi non circolari annegati nella muratura
8	25	cavi multipolari (o unipolari con guaina) posati in: controsoffitti pavimenti sopraelevati
9	31	cavi senza guaina e cavi multipolari (o unipolari con guaina) in canali posati su parete con percorso orizzontale
	32	cavi senza guaina e cavi multipolari (o unipolari con guaina) in canali posati su parete con percorso verticale
	33	cavi senza guaina posati in canali incassati nel pavimento

Eurolink S.C.p.A. Pagina 12 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	33A	cavi multipolari posati in canali incassati nel pavimento
	34	cavi senza guaina in canali sospesi
	34A	cavi multipolari (o unipolari con guaina) in canali sospesi
	41	cavi senza guaina e cavi multipolari (o cavi unipolari con guaina) in tubi protettivi circolari posati entro cunicoli chiusi, con percorso orizzontale o verticale
	42	cavi senza guaina in tubi protettivi circolari posati entro cunicoli ventilati incassati nel pavimento
	43	cavi unipolari con guaina e multipolari posati in cunicoli aperti o ventilati con percorso orizzontale e verticale
	51	cavi multipolari (o cavi unipolari con guaina) posati direttamente entro pareti termicamente isolanti
•	52	cavi multipolari (o cavi unipolari con guaina) posati direttamente nella muratura senza protezione meccanica addizionale

Eurolink S.C.p.A. Pagina 13 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0 Data 20/06/2011

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	53	cavi multipolari (o cavi unipolari con guaina) posati nella muratura con protezione meccanica addizionale
9	61	cavi unipolari con guaina e multipolari in tubi protettivi interrati od in cunicoli interrati
0	62	cavi multipolari (o unipolari con guaina) interrati senza protezione meccanica addizionale
	63	cavi multipolari (o unipolari con guaina) interrati con protezione meccanica addizionale
0	71	cavi senza guaina posati in elementi scanalati
	72	cavi senza guaina (o cavi unipolari con guaina o cavi multipolari) posati in canali provvisti di elementi di separazione: circuiti per cavi per comunicazione e per elaborazione dati
	73	cavi senza guaina in tubi protettivi o cavi unipolari con guaina (o multipolari) posati in stipiti di porte

Eurolink S.C.p.A. Pagina 14 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0

Data 20/06/2011

ESEMPIO	RIFERIMENTO	DESCRIZIONE
	74	cavi senza guaina in tubi protettivi o cavi unipolari con guaina (o multipolari) posati in stipiti di finestre
	75	cavi senza guaina, cavi multipolari o cavi unipolari con guaina in canale incassato
	81	cavi multipolari immersi in acqua

Tabella 1 - Esempi di condutture (rif. CEI 64-8 tab.5C)

Le figure riportate sono solo indicative dei metodi di installazione descritti, ma non rappresentano la reale messa in opera.

5.2.3 Determinazione della portata

5.2.3.1 Cavi isolati in PVC ed EPR (CEI-UNEL 35024/1)

Per la determinazione della portata dei cavi in rame isolati in materiale elastomerico o termoplastico si fa riferimento alla tabella CEI-UNEL 35024/1.

La norma non prende in considerazione i cavi con posa interrata, in acqua o i cavi posti all'interno di apparecchi elettrici o quadri e cavi per rotabili o aeromobili.

In particolare:

- il coefficiente ktot è ottenuto dal prodotto dei coefficienti k1 e k2 ricavati dalle tabelle 3, 4, 5,
 6;
- la portata nominale è ricavata dalla tabelle 7 e 8 in relazione al numero della posa (secondo CEI 64-8/5), all'isolante e al numero di conduttori attivi (riferita a 30°C).

k₁ è il coefficiente di correzione relativo alla temperatura ambiente

k₂ è il coefficiente di correzione per i cavi in fascio, in strato o su più strati.

Il coefficiente k_2 si applica ai cavi del fascio o dello strato aventi sezioni simili (rientranti nelle tre

Eurolink S.C.p.A. Pagina 15 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0 **Data** 20/06/2011

sezioni unificate adiacenti) e uniformemente caricati.

Qualora K₂ non sia applicabile, è sostituito dal coefficiente F:

$$F = \frac{1}{\sqrt{n}}$$

dove n è il numero di cavi che compongono il fascio:

n	1	2	3	4	5	6	7	8
F	1	0.71	0.57	0.5	0.44	0.41	0.37	0.35

Tabella 2 - Fattore di correzione per conduttori in fascio F

Temperatura [°C]	PVC	EPR
10	1,22	1,15
15	1.17	1.12
20	1.12	1.08
25	1.06	1.04
30	1.00	1.00
35	0.94	0.96
40	0.87	0,91
45	0.79	0.87
50	0.71	0.82
55	0,61	0.76
60	0,50	0,71
65	-	0,65
70	-	0,58
75	-	0,50
80	-	0,41

Tabella 3 - Influenza della temperatura k₁

Eurolink S.C.p.A. Pagina 16 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0 **Data** 20/06/2011

n° di posa CEI 64-8	disposizione				nun	nero di d	circuiti d	o di cavi	multipe	olari			
		1	2	3	4	5	6	7	8	9	12	16	20
tutte le altre pose	raggruppati a fascio, annegati	1	0,8	0,7	0,65	0,6	0,57	0,54	0,52	0,5	0,45	0,41	0,38
11/12/2025	singolo strato su muro, pavimento o passerelle non perforate	1	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,7			
11A	strato a soffitto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	200	una ulta	rioro
13	strato su passerelle perforate orizzontali o verticali (perforate o non perforate)	1	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	riduzio cir	suna ulte one per p cuiti o ca nultipola	oiù di 9 avi
14-15-16-17	strato su scala posa cavi o graffato ad un sostegno	1	0,87	0,82	0,8	0,8	0,79	0,79	0,78	0,78			

Tabella 4 - Circuiti realizzati con cavi in fascio o strato k2

n° posa CEI 64-8	metodo di i	nstallazione	numero	di cavi	per ogn	i suppo	orto		
			numero di passerelle	1	2	3	4	6	9
		posa	2	1,00	0,87	0,80	0,77	0,73	0,68
13	passerelle perforate	ravvicinata	3	1,00	0,86	0,79	0,76	0,71	0,66
13	orizzonatali	posa	2	1,00	0,99	0,96	0,92	0,87	
		distanziata	3	1,00	0,98	0,95	0,91	0,85	
13	passerelle perforate	posa ravvicinata	2	1,00	0,88	0,81	0,76	0,71	0,70
15	verticali	posa distanziata	2	1,00	0,91	0,88	0,87	0,85	
	scala posa	posa	2	1,00	0,86	0,80	0,78	0,76	0,73
14-15-16-	cavi	ravvicinata	3	1,00	0,85	0,79	0,76	0,73	0,70
17	elemento	posa	2	1,00	0,99	0,98	0,97	0,96	
	di sostegno	distanziata	3	1,00	0,98	0,97	0,96	0,93	

Tabella 5 - Circuiti realizzati con cavi multipolari in strato su più supporti (es. passerelle) k2

Per posa distanziata si intendono cavi posizionati:

- ad una distanza almeno doppia del loro diametro in caso di cavi unipolari
- ad una distanza almeno pari alloro diametro in caso di cavi multipolari.

Se i cavi sono installati ad una distanza superiore a quella sopra indicata, il fattore correttivo per circuiti in fascio non si applica ($K_2 = 1$).

Eurolink S.C.p.A. Pagina 17 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

Nelle pose su passerelle orizzontali o su scala posa cavi, i cavi devono essere posizionati ad una distanza dalla superficie verticale (parete) maggiore o uguale a 20 mm.

n° posa CEI 64-8		numero d circu	iiti trifas	i		utilizzato per
		numero di passerelle	1	2	3	
13	passerelle perforate	2	0,96	0,87	0,81	3 cavi in formazione
13	passerelle periorate	3	0,95	0,85	0,78	orizzontale
13	passerelle perforate	2	0,95	0,84		3 cavi in formazione verticale
14-15-16-17	scala posa cavi o elemento	2	0,98	0,93	0,89	3 cavi in formazione
14-15-10-17	di sostegno	3	0,97	0,90	0,86	orizzontale
13	passerelle perforate	2	0,97	0,93	0,89	
13	passerelle periorate	3	0,96	0,92	0,86	
13	passerelle perforate	2	1,00	0,90	0,86	3 cavi in formazione a trefolo
14-15-16-17	scala posa cavi o elemento	2	0,97	0,95	0,93	•
14-10-10-17	di sostegno	3	0,96	0,94	0,9	

Tabella 6 - Circuiti realizzati con cavi unipolari in strato su più supporti k2

Nelle pose su passerelle orizzontali o su scala posa cavi, i cavi devono essere posizionati ad una distanza dalla superficie verticale (parete) maggiore o uguale a 20 mm. Le terne di cavi in formazione a trefolo si intendono disposte ad una distanza maggiore di due volte il diametro del singolo cavo unipolare.

Eurolink S.C.p.A. Pagina 18 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

Mercd. di Install. posa della 15 CEI 64-8 cavi in tubo incassato in 74 E E 22-23											2	Portata A									
	lsol.	conduttori								Š	Sezione nominale [ominal	[mm2]								
		caricati	-	1,5	2,5	4	9	10	16 2	25 35	20	70	95	120	150	185	240	300	400	200	630
	()	2		14,5	19,5	56	34 7	46 6	61 8	66 08	119	151	182	210	240	273	320	-		-	٠
	<u> </u>	3		13,5	18	24	31 4	42 €	2 99	73 89	108	136	164	188	216	245	286	-		-	٠
		2		19	26	35	45 6	61 8	81 10	106 131	158	3 200	241	278	318	362	424	-			
3-4-5-22-23	۲.	3		17	23	31	40	54 7	2 82	95 117	7 141	179	3 216	249	285	324	380	-		-	
	0/10	2	13,5	17,5	24	32	41 €	57 7	16 11	101	151	192	232	269	309	353	415	-	-		
24-31-32-33	2	3	12	15,5	21	28	36 6	9 09	89	89 110	134	171	207	239	275	314	369	-	-		
34-41-42-72 E	EPR	2	17	23	31	42	7	75 1	100 1:	133 164	4 198	3 253	306	354	402	472	555	-	-		
	_	3	15	20	28	37	48 6	99	1 1	117 144	175	5 222	269	312	355	417	490				
cavi in aria libera	PVC	2	1	19,5	26	35	46 (63 6	85 1.	112 138	3 168	3 213	3 258	299	344	392	461	-	-	1	
in posizione non 18	<u> </u>	3		15,5	21	28	36 6	2 2	10 11	101 125	151	192	232	269	309	353	415	-			
		2		24	33	45	28	1 08	107 1	142 175	5 212	270	327		-		-	-			
П	۲.	3		20	28	37	48 7	71 8	96 13	127 157	7 190	242	293			-	-	-			٠
cavi in aria libera 11-12-21-25 P	PVC	е	,	19,5	56	35	46	63	1	110 137	7 167	216	3 264	308	356	409	485	561	929	749	855
43-52-53 E	EPR	3		24	33	45	58	80	107 1	135 169	9 207	268	328	383	444	510	209	203	823	946	1088
13-14-15-16- P	PVC	2	,	22	30	40	52 7	71 8	96 1:	131 162	196	251	304	352	406	463	546	629	754	898	1005
17		3	,	19,5	56	35	46	63 8	85 1	114 143	3 174	225	5 275	321	372	427	205	282	689	789	902
	993	2	-	27	37	20	84 8	88 1	119 10	161 200	242	310	377	437	504	229	629	283	940	1083	1254
	4	3	-	24	33	45	28	80 1	107 1	141 176	3 216	3 279	342	400	464	533	634	982	898	866	1151
cavi in aria libera	PVC	2						_	-	146 181	1 219	3 281	341	396	456	521	615	602	852	982	1138
14-15-16	<u> </u>	3					-	-	- 1	146 181	1 219	281	341	396	456	521	615	602	852	982	1138
		2					-	-	- 1	182 226	3 275	353	3 430	200	222	199	781	905	1085	1253	1454
Ш	<u> </u>	3	-	-	-	-	-	L	- 1	182 226	3 275	353	430	200	222	661	781	805	1085	1253	1454
	D/\C	2					-	-	- 1	130 162	2 197	254	311	362	419	480	699	699	962	920	1070
cavi in aria libera distanziati su un 13-14-15-16	_	3						H	- 1	130 162		254	311	362	Н	480	569	629	795	920	1070
	003	2	-	-	-	-	-	-	- 10	161 201	1 246	318	389	454	527	909	719	833	1008	1169	1362
	<u> </u>	3					-	-	- 1	161 201	1 246	318	389	454	527	909	719	833	1008	1169	1362

Tabella 7 - Portata cavi unipolari con e senza guaina con isolamento in PVC o EPR 1

Eurolink S.C.p.A. Pagina 19 di 43

¹ PVC: mescola termoplastica a base di polivinilcloruro (temperatura massima del conduttore uguale a 70 °C). EPR: mescola elastomerica reticolata a base di gomma etilenpropilenica o similari (temperatura massima del conduttore uguale a 90 °C)

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

Motod	Altri tipi di		"u										Portata [A]	[A]									
inetod. di	posa della	Isol.	conduttori									Sezion	ne nomi	Sezione nominale [mm2]	m2]								
organi	CEI 64-8		caricati	1	1,5	2,5	4	9	10	16	25	35	20	20	32	120	150	185	240	300	400	200	630
cavo in tubo		Č.	2		4	18,5	25	32	43	22	75	92	110	139	167	192	219	248	291	334			
incassato in	2-51-73-74	2	е		13	17,5	23	29	39	52	89	83	66	125	150	172	196	223	261	298			
parete isolante	1	EPR	2		18,5	25	33	42	25	9/	66	121	145	183	220	253	290	329	386	442		-	
			3		16,5	22	30	38	51	89	89	109	130	164	197	227	259	295	346	396	-	-	
cavo in tubo	cavo in tubo 3A-4A-5A-21	C	2	13,5	16,5	23	30	38	52	69	06	111	133	168	201	232	258	294	344	394			
in aria	22A-24A-25	2	3	12	15	20	27	34	46	62	80	66	118	149	179	206	225	255	297	339			
	33A-31-34A	EPR	2	17	23	30	40	51	69	16	119	146	175	221	265	305	334	384	459	532			
	43-32		3	15	19,5	56	35	44	09	80	105	128	154	194	233	268	300	340	398	455		ŀ	
cavo in aria			2	15	22	30	40	51	20	8	119	148	180	232	282	328	379	434	514	593	-		
libera, distanziato		PVC	3	13,6	18,5	25	34	43	09	80	101	126	153	196	238	276	319	364	430	497			
dalla parete/soffitt o	13-14-15-16-	EPR	2	19	78	%	49	63	98	115	149	185	225	289	352	410	473	542	641	741			
o su passerella			3	17	23	32	42	54	75	100	127	158	190	246	298	346	388	456	538	621			
cavo in aria	11-11A-52- 53-	J/G	2	15	19,5	27	36	46	63	85	112	138	168	213	258	299	344	392	461	530			
libera, fissato	12	2	3	13,5	17,5	24	32	14	22	92	96	119	144	184	223	259	299	341	403	464			
alla parete/		603	2	19	24	33	45	58	80	107	138	171	509	569	328	382	14	909	599	693	H	П	
soffitto		1	3	17	22	30	40	52	71	96	119	147	179	229	278	322	371	424	200	929			П

Tabella 8 - Portata cavi multipolari con e senza guaina con isolamento in PVC o EPR ³

Eurolink S.C.p.A. Pagina 20 di 43

² I cavi unipolari affiancati che compongono il circuito trifase si considerano distanziati se posati in modo che la distanza tra di essi sia superiore o uguale a due volte il diametro esterno del singolo cavo unipolare.

³ PVC: mescola termoplastica a base di polivinilcloruro (temperatura massima del conduttore uguale a 70 °C). EPR: mescola elastomerica reticolata a base di gomma etilenpropilenica o similari (temperatura massima del conduttore uguale a 90 °C)

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

5.2.3.2 Cavi interrati (CEI-UNEL 35026)

Per la determinazione della portata dei cavi in rame con isolamento elastomerico o termoplastico si fa riferimento alla tabella CEI-UNEL 35026.

In particolare:

- il coefficiente ktot è ottenuto dal prodotto dei coefficienti k1, k2, k3 e k4, ricavati dalle tabelle
 9, 10, 11, 12.
- la portata nominale è ricavata dalla tabella 13 in relazione al numero della posa (secondo CEI 64-8/5), all'isolante e al numero di conduttori attivi (riferita a d una temperatura del terreno di 20°C).

k₁ è il coefficiente di correzione relativo alla temperatura del terreno

k₂ è il coefficiente di correzione per gruppi di circuiti installati sullo stesso piano

k₃ è il coefficiente di correzione relativo alla profondità di interramento

k₄ è il coefficiente di correzione relativo alla resistività termica del terreno

Eurolink S.C.p.A. Pagina 21 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

Temperatura	PVC	EPR
terreno [°C]		
10	1.1	1.07
15	1.05	1.04
20	1	1
25	0.95	0.96
30	0.89	0.93
35	0.84	0.89
40	0.77	0.85
45	0.71	0.8
50	0.63	0.76
55	0.55	0.71
60	0.45	0.65
65	-	0.6
70	-	0.53
75	-	0.46
80	-	0.38

Tabella 9 - Influenza della temperatura del terreno $-\mathbf{k}_1$

Eurolink S.C.p.A. Pagina 22 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0 Data 20/06/2011

	un cavo mu	Itipolare per o	iascun tubo	
n° circuiti		distanza fra	i circuiti [m]	
n circuiti	a contatto	0.25	0.5	1
2	0.85	0.9	0.95	0.95
3	0.75	0.85	0.9	0.95
4	0.7	0.8	0.85	0.9
5	0.65	0.8	0.85	0.9
6	0.6	0.8	0.8	0.9
	un cavo un	ipolare per ci	ascun tubo	
n° circuiti		distanza fra	i circuiti [m]	
ii circuiti	a contatto	0.25	0.5	1
2	0.8	0.9	0.9	0.95
3	0.7	0.8	0.85	0.9
4	0.65	0.75	0.8	0.9
5	0.6	0.7	0.8	0.9
6	0.6	0.7	0.8	0.9

Tabella 10 - Gruppi di più circuiti installati sullo stesso piano - k2

profonità di posa [m]	0.5	0.8	1	1.2	1.5
fattore di correzione	1.02	1	0.98	0.96	0.94

Tabella 11 - Influenza della profondità di posa - k₃

	cavi u	nipolari			
resistività del terreno [K m/W]	1	1.2	1.5	2	2.5
fattore di correzione	1.08	1.05	1	0.9	0.82
	cavi m	ultipolari			
resistività del terreno [K m/W]	1	1.2	1.5	2	2.5
fattore di correzione	1.06	1.04	1	0.91	0.84

Tabella 12 - Influenza della resistività termica del terreno $-\,k_4$

Eurolink S.C.p.A. Pagina 23 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0 **Data** 20/06/2011

1.5 2.5 4 6 10 16 25 35 50 70 35 120 135		Altri tipi di		'n									Por	Portata [A]									
Here to the first series of the content of the cont	Metod. di install.	posa della	lsol.	conduttori								Sez	ione no	minale	[mm ₂]								
FPV		CEI 64-8		caricati	1.5	2.5	4	9	10	16	H	35	20	H	H	Н	_		Н	H	400 5	200	630
EPR PVC 2 26 34 44 54 77 95 116 141 171 201 201 202 208 344 64 64 67 73 95 116 141 171 201 201 202 208 342 345 345 345 345 345 345 345 345 345 345	cavi unipolari in tubi interrati a contatto		PVC	2	22	53	38	47	63										98				
FPR PVG 2 28 39 444 54 73 95 122 144 182 222 281 301 343 386 450 450 450 450 450 450 450 450 450 450	(1 cavo per tubo)			3	20	56	34	43	22	74	H	⊢	-	H	H	-	-	H	42				
FIN FOLK STATE STA			993	2	56	뚕	44	54	73		_	_	H			_			-		592 6	999	759
House			۲ ا	3	23	31	40	49	29	Н	Н	133	Н	Н	H	Н	Н	H	_		519 5	583 (663
EPR			PVC	2	21	27	36	45	61			123	153						32				
EPR 2 24 32 41 52 70 91 118 144 176 218 256 256 340 363 450 450 450 450 450 450 450 450 450 450	cavi unipolari in	61		3	18	23	30	38	51	99	┢	┝	┝	H	┢		H	┢	25				
FPA 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	tubo interrato		900	2	24	32	41	52	20	_	_	-	⊢		_	_	_		-		9 565	671	192
FINAL PACE 19 25 33 41 56 73 94 115 143 175 208 240 273 394 115 143 175 208 273 394 115 115 115 115 115 115 115 115 115 11			Ľ L	3	21	27	35	44	29	Н	Н	Н	Н	Н	Н	H	Н	Н	ш	Н	200	992	645
61 EPR 2 10 21 28 36 47 61 79 97 120 148 175 202 231 259 26 15 15 15 15 15 15 15 15 15 15 15 15 15			PVC	2	19	25	33	41	26	73									90				
EPR 2 23 30 39 49 66 86 111 136 168 207 245 284 324 364	cavi multipolari in	61		3	16	21	28	35	47	61	_	26	_	-					74				
0 40 0E 00 44 EE 70 00 444 474 00E 000 070 00E	tupo IIIteliato		993	2	23	30	39	49	99	-	-	981	⊢	-	_	-	-	_	58				
19 23 32 41 141 141 141 200 230 272 300			4	3	19	25	32	41	22	72	93 1	114	141	174	206 2	238 2	272 3	306	360				

Tabella 13 - Portata cavi unipolari con/senza guaina e cavi multipolari con isolamento in PVC o EPR

5.2.4 Dimensionamento dei conduttori di neutro

La norma CEI 64-8 par. 524.2 e par. 524.3, prevede che la sezione del conduttore di neutro, nel caso di circuiti polifasi, può avere una sezione inferiore a quella dei conduttori di fase se sono soddisfatte le seguenti condizioni:

Eurolink S.C.p.A. Pagina 24 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0

Data 20/06/2011

- il conduttore di fase abbia una sezione maggiore di 16 mm²;;
- la massima corrente che può percorrere il conduttore di neutro non sia superiore alla portata dello stesso
- la sezione del conduttore di neutro sia almeno uguale a 16 mm² se il conduttore è in rame e a 25 mm² se il conduttore è in alluminio.

Nel caso in cui si abbiano circuiti monofasi o polifasi e questi ultimi con sezione del conduttore di fase minore di 16 mm² (conduttore in rame) e 25 mm² (conduttore in allumino), il conduttore di neutro deve avere la stessa sezione del conduttore di fase.

$$S_f < 16mm^2$$
: $S_n = S_f$
 $16 \le S_f \le 35mm^2$: $S_n = 16mm^2$
 $S_f > 35mm^2$: $S_n = S_f/2$

Qualora, in base a esigenze progettuali, si scelga di dimensionare il neutro per la reale corrente circolante, dovranno essere fatte le medesime considerazioni relative ai conduttori di fase.

5.2.5 Dimensionamento dei conduttori di protezione

Le norme CEI 64.8 par. 543.1 prevedono due metodi di dimensionamento dei conduttori di protezione:

- determinazione in relazione alla sezione di fase;
- determinazione mediante calcolo.

Il primo criterio consiste nel determinare la sezione del conduttore di protezione seguendo vincoli analoghi a quelli introdotti per il conduttore di neutro:

$$S_f < 16mm^2$$
: $S_{PE} = S_f$
 $16 \le S_f \le 35mm^2$: $S_{PE} = 16mm^2$
 $S_f > 35mm^2$: $S_{PE} = S_f / 2$

Eurolink S.C.p.A. Pagina 25 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0

Rev F0

Data 20/06/2011

Il secondo criterio determina tale valore con l'integrale di Joule, ovvero la sezione del conduttore di protezione non deve essere inferiore al valore determinato con la seguente formula:

$$S_p = \frac{\sqrt{I^2 \cdot t}}{K}$$

dove:

- Sp è la sezione del conduttore di protezione (mm²);
- I è il valore efficace della corrente di guasto che può percorrere il conduttore di protezione per un guasto di impedenza trascurabile (A);
- t è il tempo di intervento del dispositivo di protezione (s);
- K è un fattore il cui valore dipende dal materiale del conduttore di protezione, dell'isolamento e di altre parti.

Se il risultato della formula non è una sezione unificata, viene presa una unificata immediatamente superiore.

In entrambi i casi si deve tener conto, per quanto riguarda la sezione minima, del paragrafo 543.1.3.

Esso afferma che la sezione di ogni conduttore di protezione che non faccia parte della conduttura di alimentazione non deve essere, in ogni caso, inferiore a:

- 2,5 mm² se è prevista una protezione meccanica;
- 4 mm² se non è prevista una protezione meccanica;

5.2.6 Calcolo della temperatura dei cavi

La valutazione della temperatura dei cavi si esegue in base alla corrente di impiego e alla corrente nominale tramite le seguenti espressioni:

$$T_{cavo}(I_b) = T_{ambiente} + \left(\alpha_{cavo} \cdot \frac{I_b^2}{I_z^2}\right)$$

$$T_{cavo}(I_n) = T_{ambiente} + \left(\alpha_{cavo} \cdot \frac{I_n^2}{I_z^2}\right)$$

espresse in °C.

Esse derivano dalla considerazione che la sovratemperatura del cavo a regime è proporzionale alla potenza in esso dissipata.

Eurolink S.C.p.A. Pagina 26 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

Il coefficiente α_{cavo} è vincolato dal tipo di isolamento del cavo e dal tipo di tabella di posa che si sta usando.

5.3 Cadute di tensione

La caduta di tensione in una linea percorsa dalla corrente I_b è rappresentata dalla formula seguente:

$$\Delta V = k_{cdt} \cdot I_b \cdot \sqrt{(R_L \cdot L_c)^2 + (X_L \cdot L_c)^2}$$

dove

- R_L = resistenza alla temperatura di funzionamento (per unità di lunghezza);
- X_L = reattanza della linea (per unità di lunghezza);
- k_{cdt} = coefficiente pari a 2 per i sistemi monofase e 1.73 per i sistemi monofase.

I parametri R_L e X_L per i cavi sono ricavati dalla tabella 35023 in funzione della tipologia (unipolare/multipolare) ed alla sezione dei conduttori (espressi in unità di lunghezza).

Il calcolo può essere anche essere semplificato secondo la seguente formula seguente:

$$cdt(I_b) = k_{cdt} \cdot I_b \cdot L_c \cdot (R_L \cdot \cos \varphi + X_L \cdot \sin \varphi)$$

Nei calcoli di verifica, il carico è ipotizzato concentrato a fondo della linea per le utenze singole e distribuito lungo la linea per le utenze multiple alimentate da dorsali.

La caduta di tensione da monte a valle (totale) di una utenza è determinata come somma vettoriale delle cadute di tensione, riferite ad un solo conduttore.

Nel caso in cui siano presenti trasformatori, il calcolo della caduta di tensione tiene conto della caduta interna e della presenza di eventuali prese di regolazione del rapporto spire.

La caduta di tensione percentuale è riferita alla tensione nominale dell'utenza in esame.

La verifica prevede il confronto tra il valore massimo calcolato nelle tre fasi e il limiti prestabiliti dalla Norma CEI 64-8 (par. 525).

Eurolink S.C.p.A. Pagina 27 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0

Data 20/06/2011

5.4 Rifasamento

Dato un carico che assorbe la potenza attiva P_n e la potenza reattiva Q, per diminuire φ e quindi aumentare cos φ senza variare P_n (cioè per passare a $\Theta < \varphi$), si deve introdurre una potenza Qrif di segno opposto a quello di Q, tale che:

$$Q_{rif} = P_n \cdot (\tan \varphi - \tan \Theta)$$

nella quale Θ è l'angolo corrispondente al fattore di potenza a cui si vuole rifasare. Tale valore oscilla tra 0.8 e 0.9 a seconda delle esigenze progettuali.

Il rifasamento può essere eseguito in due modalità:

- distribuito:
- centralizzato.

Tale scelta va valutata al fine di ottimizzare i costi ed i risultati finali, quindi le batterie di condensatori potranno essere inseriti localmente in parallelo ad un carico terminale, oppure centralizzato per rifasare un determinato nodo della rete.

Se la rete dispone di trasformatori, possono essere inserite anche batterie di rifasamento a valle degli stessi per compensare l'energia reattiva assorbita a vuoto dalla macchina.

La corrente nominale della batteria di condensatori viene calcolata tramite la:

$$I_{nc} = \frac{Q_{rif}}{k_{ca} \cdot V_n}$$

Le correnti nominali e di taratura delle protezioni devono tenere conto (CEI 33-5) che ogni batteria di condensatori può sopportare costantemente un sovraccarico del 30% dovuto alle armoniche; inoltre deve essere ammessa una tolleranza del +15% sul valore reale della capacità dei condensatori. Pertanto la corrente nominale dell'interruttore deve essere almeno di I_{tarth} =1.53 I_{nc} . Infine la taratura della protezione magnetica non dovrà essere inferiore a I_{tarmag} = 10 I_{nc}

5.5 Calcolo dei guasti

Le tipologie di guasto considerate, sulla base della modellizzazione delle apparecchiature che compongono la rete, sono le seguenti:

guasto trifase (simmetrico);

Eurolink S.C.p.A. Pagina 28 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento
ST0376_F0

Rev F0

Data 20/06/2011

- guasto bifase (disimmetrico);
- guasto fase terra (disimmetrico);
- guasto fase neutro (disimmetrico).

Per i diversi casi, i risultati del calcolo riguardano le correnti di cortocircuito minime e massime immediatamente a valle della protezione dell'utenza (inizio linea) e a valle dell'utenza (fondo linea).

I parametri alle sequenze di ogni utenza vengono inizializzati da quelli corrispondenti della utenza a monte e, a loro volta, inizializzano i parametri della linea a valle.

Nel seguito è riportato il metodo di calcolo utilizzato, con particolare riferimento a quanto indicato nella norma CEI 11-25. Qualora si ritenga necessario, nei casi specifici, sono talvolta introdotte alcune approssimazioni, sotto opportune ipotesi, per mezzo di formule semplificate.

5.5.1 Modellizzazione delle apparecchiature in rete

5.5.1.1 Trasformatori

Le caratteristiche dei trasformatori in rete sono ricavate a partire dai seguenti dati di targa:

- Potenza nominale Pn (in kVA);
- Perdite di cortocircuito Pcc (in W);
- Tensione di cortocircuito vcc (in %)
- Rapporto tra la corrente di inserzione e la corrente nominale Ilr/Irt;
- Rapporto tra la impedenza alla sequenza omopolare e quella di corto circuito;
- Tipo di collegamento;
- Tensione nominale del primario V1 (in kV);
- Tensione nominale del secondario V02 (in V).

Impedenza di cortocircuito del trasformatore espressa in $m\Omega$:

$$Z_{cct} = \frac{v_{cc}}{100} \cdot \frac{V_{02}^2}{P_n}$$

Eurolink S.C.p.A. Pagina 29 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0

Data 20/06/2011

Resistenza di cortocircuito del trasformatore espressa in $m\Omega$:

$$R_{cct} = \frac{P_{cc}}{1000} \cdot \frac{V_{02}^2}{P_n^2}$$

Reattanza di cortocircuito del trasformatore espressa in $m\Omega$:

$$X_{cct} = \sqrt{Z_{cct}^2 - R_{cct}^2}$$

L'impedenza a vuoto omopolare del trasformatore viene ricavata dal rapporto con l'impedenza di cortocircuito dello stesso:

$$Z_{vot} = Z_{cct} \cdot \left(\frac{Z_{vot}}{Z_{cct}}\right)$$

dove il rapporto Z_{vot}/Z_{cct} vale usualmente 10-20.

In uscita al trasformatore si otterranno pertanto i parametri alla sequenza diretta, in m Ω :

$$Z_d = \left| \dot{Z}_{cct} \right| = \sqrt{R_d^2 + X_d^2}$$

nella quale:

$$R_d = R_{cct}$$
$$X_d = X_{cct}$$

I parametri alla sequenza omopolare dipendono invece dal tipo di collegamento del trasformatore in quanto, in base ad esso, abbiamo un diverso circuito equivalente.

Pertanto, se il trasformatore è collegato triangolo/stella (Dy), si ha:

$$R_{ot} = R_{cct} \cdot \frac{\left(\frac{Z_{vot}}{Z_{cct}}\right)}{1 + \left(\frac{Z_{vot}}{Z_{cct}}\right)}$$

Eurolink S.C.p.A. Pagina 30 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0

Data 20/06/2011

$$X_{ot} = X_{cct} \cdot \frac{\left(\frac{Z_{vot}}{Z_{cct}}\right)}{1 + \left(\frac{Z_{vot}}{Z_{cct}}\right)}$$

$$Z_{ot} = Z_{cct} \cdot \frac{\left(\frac{Z_{vot}}{Z_{cct}}\right)}{1 + \left(\frac{Z_{vot}}{Z_{cct}}\right)}$$

Diversamente, se il trasformatore è collegato stella/stella (Yy) si ha:

$$R_{ot} = R_{cct} \cdot \left(\frac{Z_{vot}}{Z_{cct}}\right)$$

$$X_{ot} = X_{cct} \cdot \left(\frac{Z_{vot}}{Z_{cct}}\right)$$

$$Z_{ot} = Z_{cct} \cdot \left(\frac{Z_{vot}}{Z_{cct}}\right)$$

Fattore di correzione per trasformatori, CEI 11-25 (3.3.3)

Per i trasformatori a due avvolgimenti, con e senza variazione sotto carico, si deve introdurre un fattore di correzione di impedenza K_T tale che:

$$Z_{cctK} = K_T \cdot Z_{cct}$$

$$Z_{otK} = K_T \cdot Z_{ot}$$

$$K_T = 0.95 \cdot \frac{c_{\text{max}}}{1 + 0.6 \cdot x_T}$$

dove la reattanza relativa del trasformatore è calcolata con la formula seguente:

$$x_T = \frac{X_{cct}}{V_{02}^2 / P_n}$$

Tale fattore deve essere applicato sia alla impedenza diretta che a quelle omopolari e non va

Eurolink S.C.p.A. Pagina 31 di 43

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

applicato nel caso di autotrasformatori.

5.5.1.2 Generatori

Le caratteristiche dei generatori in rete sono ricavate a partire dai seguenti dati di targa:

- potenza nominale Pn (in kVA);
- reattanza sincrona percentuale xS;
- reattanza subtransitoria percentuale x";
- rapporto tra l'impedenza omopolare e l'impedenza sincrona Zog/ZS.

L'impedenza subtransitoria si calcola con la formula:

$$X'' = \frac{x''}{100} \cdot \frac{V_{02}^2}{P_n}$$

dalla quale si ricavano le componenti alla sequenza diretta:

$$R_d = 0$$
$$X_d = X''$$

La componente resistiva si trascura rispetto alla componente reattiva del generatore.

L'impedenza sincrona si calcola con la formula:

$$X_{S} = \frac{x_{S}}{100} \cdot \frac{V_{02}^{2}}{P_{n}}$$

Dalla quale, tramite il rapporto Z_{og}/Z_{S} , si ricavano le componenti omopolari:

$$\begin{aligned} R_0 &= 0\\ X_0 &= \frac{Z_{og}}{Z_S} \cdot X_S \end{aligned}$$

5.5.1.3 Motori asincroni

Le caratteristiche dei motori asincroni in rete sono ricavate a partire dai seguenti dati di targa:

Urm tensione nominale del motore [V] (concatenata per motori trifasi, di fase per motori

Eurolink S.C.p.A. Pagina 32 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0

Data 20/06/2011

monofasi collegati fase neutro o fase fase);

- Irm corrente nominale del motore [A];
- Srm potenza elettrica apparente nominale [kVA];
- P numero di coppie polari;
- Ilr/Irm rapporto tra la corrente a motore bloccato (di c.c.) e la corrente nominale del motore;
- Fattore di potenza allo spunto.
- Possibilità di avviamento stella/triangolo per i motori trifasi, per cui si diminuisce Ilr/Irm di 3.

L'impedenza del motore si calcola con la formula:

$$Z_{M} = \frac{1}{I_{lr}/I_{rm}} \cdot \frac{U_{rm}^{2}}{S_{rm}}$$

Per i motori asincroni si considera la corrente di interruzione i_b tenendo conto del tempo di ritardo di default pari a 0.02s. per calcolare i coefficienti $m \in \mu$.

Il coefficiente m si calcola secondo la seguente tabella:

$$\begin{split} \mu &= 0.84 + 0.26 \cdot e^{-0.26 \cdot (I_{lr}/I_{rm})} & t_{\min} = 0.02 \, s \\ \mu &= 0.71 + 0.51 \cdot e^{-0.30 \cdot (I_{lr}/I_{rm})} & t_{\min} = 0.05 \, s \\ \mu &= 0.62 + 0.72 \cdot e^{-0.32 \cdot (I_{lr}/I_{rm})} & t_{\min} = 0.10 \, s \\ \mu &= 0.56 + 0.94 \cdot e^{-0.38 \cdot (I_{lr}/I_{rm})} & t_{\min} \geq 0.25 \, s \end{split}$$

se $I_{lr}/I_{rm} \le 2$ allora $\mu = 1$.

Per il coefficiente q si deve prendere la potenza attiva meccanica espressa in MW e dividerla per il numero di coppie polari *P* al fine di ottenere la variabile *m*:

$$m = \frac{S_{rm} \cdot \cos \varphi \cdot \eta}{1000 \cdot P}$$

con $\mbox{cos}\phi$ fattore di potenza e η rendimento del motore.

Quindi:

$$\begin{aligned} q &= 1.03 + 0.12 \cdot \ln m & t_{\min} &= 0.02 \, s \\ q &= 0.79 + 0.12 \cdot \ln m & t_{\min} &= 0.05 \, s \\ q &= 0.57 + 0.12 \cdot \ln m & t_{\min} &= 0.10 \, s \\ q &= 0.26 + 0.10 \cdot \ln m & t_{\min} &\geq 0.25 \, s \end{aligned}$$

Eurolink S.C.p.A. Pagina 33 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0 **Data** 20/06/2011

Se q>1 si pone q=1.

Si divide Z_M per i coefficienti μ e q per ottenere l'impedenza equivalente vista al momento del guasto:

$$Z_{Mib} = \frac{Z_M}{\mu \cdot q}$$

Da cui, a seconda della tensione e della potenza del motore, si possono avere:

$\begin{aligned} X_{\scriptscriptstyle M} &= 0.995 \cdot Z_{\scriptscriptstyle Mib} \\ R_{\scriptscriptstyle M} &= 0.10 \cdot X_{\scriptscriptstyle M} \end{aligned}$	per motori a media tensione con potenza P _m per coppie di poli >= 1 MW
$\begin{aligned} X_{M} &= 0.989 \cdot Z_{Mib} \\ R_{M} &= 0.15 \cdot X_{M} \end{aligned}$	per motori a media tensione con potenza P _m per coppie di poli < 1 MW
$\begin{aligned} X_{M} &= 0.922 \cdot Z_{Mib} \\ R_{M} &= 0.42 \cdot X_{M} \end{aligned}$	per motori a bassa tensione

Per le componenti alle sequenze si considerano le sole componenti dirette mentre quelle omopolari non vengono considerate, in quanto il contributo ai guasti lo danno solo i motori trifasi. Essi contribuiscono ai guasti trifasi e a quelli bifasi nelle utenze trifasi e bifasi.

$$R_d = R_M$$
$$X_d = X_M$$

5.5.2 Calcolo delle correnti massime di cortocircuito

Le condizioni di calcolo sono le seguenti:

- tensione di alimentazione nominale valutata con fattore di tensione Cmax (CEI 11-25 tab.1);
- impedenza di guasto minima, calcolata alla temperatura di 20°C.

La resistenza diretta, del conduttore di fase e di quello di protezione, viene riportata a 20 °C, partendo dalla resistenza a 80 °C, data dalle tabelle UNEL 35023-70, per cui esprimendola in $m\Omega$ risulta:

$$R_{dcavo} = \frac{R_{cavo}}{1000} \cdot \frac{L_{cavo}}{1000} \cdot \left(\frac{1}{1 + (60 \cdot 0.004)}\right)$$

Eurolink S.C.p.A. Pagina 34 di 43

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376 F0 Rev F0

Data 20/06/2011

Nota poi dalle stesse tabelle la reattanza a 50 Hz, se f è la frequenza d'esercizio, risulta:

$$X_{dcavo} = \frac{X_{cavo}}{1000} \cdot \frac{L_{cavo}}{1000} \cdot \frac{f}{50}$$

L'impedenza di guasto minima a fine utenza è ricavata dalla somma dei parametri diretti di cui sopra con quelli relativi all'utenza a monte.

Per le utenze in condotto in sbarre, le componenti della sequenza diretta sono:

$$R_{dsbarra} = \frac{R_{sbarra}}{1000} \cdot \frac{L_{sbarra}}{1000}$$

La reattanza è invece:

$$X_{dsbarra} = \frac{X_{sbarra}}{1000} \cdot \frac{L_{sbarra}}{1000} \cdot \frac{f}{50}$$

Per le utenze con impedenza nota, le componenti della sequenza diretta sono i valori stessi di resistenza e reattanza dell'impedenza.

Per quanto riguarda i parametri alla sequenza omopolare, occorre distinguere tra conduttore di neutro e conduttore di protezione.

Per il conduttore di neutro si ottengono da quelli diretti tramite le:

$$\begin{split} R_{0cavoNeutro} &= R_{dcavo} + 3 \cdot R_{dcavoNeutro} \\ X_{0cavoNeutro} &= 3 \cdot X_{dcavo} \end{split}$$

Per il conduttore di protezione, invece, si ottiene:

$$\begin{split} R_{0cavoPE} &= R_{dcavo} + 3 \cdot R_{dcavoPE} \\ X_{0cavoPE} &= 3 \cdot X_{dcavo} \end{split}$$

dove le resistenze $R_{dvavoNeutro}$ e $R_{dcavoPE}$ vengono calcolate come la R_{dcavo} .

Per le utenze in condotto in sbarre, le componenti della sequenza omopolare sono distinte tra conduttore di neutro e conduttore di protezione.

Per il conduttore di neutro si ha:

Eurolink S.C.p.A. Pagina 35 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0

Data 20/06/2011

$$R_{0sbarraNeutro} = R_{dsbarra} + 3 \cdot R_{dsbarraNeutro}$$

 $X_{0sbarraNeutro} = 3 \cdot X_{dsbarra}$

Per il conduttore di protezione viene utilizzato il parametro di reattanza dell'anello di guasto fornito dai costruttori:

$$R_{0sbarraPE} = R_{dsbarra} + 3 \cdot R_{dsbarraPE}$$

$$X_{0sbarraPE} = 2 \cdot X_{anello_guasto}$$

I parametri di ogni utenza vengono sommati con i parametri, alla stessa sequenza, della utenza a monte, espressi in $m\Omega$:

$$\begin{split} R_d &= R_{dcavo} + R_{dmonte} \\ X_d &= X_{dcavo} + X_{dmonte} \\ R_{0Neutro} &= R_{0cavoNeutro} + R_{0monteNeutro} \\ X_{0Neutro} &= X_{0cavoNeutro} + X_{0monteNeutro} \\ R_{0PE} &= R_{0cavoPE} + R_{0montePE} \\ X_{0PE} &= X_{0cavoPE} + X_{0montePE} \end{split}$$

Per le utenze in condotto in sbarre basta sostituire sbarra a cavo.

Ai valori totali vengono sommate anche le impedenze della fornitura.

Noti questi parametri vengono calcolate le impedenze (in $m\Omega$) di guasto trifase:

$$Z_{k \min} = \sqrt{R_d^2 + X_d^2}$$

Fase neutro (se il neutro è distribuito):

$$Z_{k1Neutr\,\text{om}\,in} = \frac{1}{3} \cdot \sqrt{\left(2 \cdot R_d + R_{0Neutro}\right)^2 + \left(2 \cdot X_d + X_{0Neutro}\right)^2}$$

Fase terra:

$$Z_{k1PE\,\text{min}} = \frac{1}{3} \cdot \sqrt{\left(2 \cdot R_d + R_{0PE}\right)^2 + \left(2 \cdot X_d + X_{0PE}\right)^2}$$

Da queste si ricavano le correnti di cortocircuito trifase I_{kmax} , fase neutro $I_{k1Neutromax}$, fase terra

Eurolink S.C.p.A. Pagina 36 di 43

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0 **Data** 20/06/2011

 $I_{k1PEmax}$ e bifase I_{k2max} espresse in kA:

$$I_{k \max} = \frac{V_n}{\sqrt{3} \cdot Z_{k \min}}$$

$$I_{k1Neutr \text{ om } ax} = \frac{V_n}{\sqrt{3} \cdot Z_{k1Neutr \text{ om } in}}$$

$$I_{k1PE \max} = \frac{V_n}{\sqrt{3} \cdot Z_{k1PE \min}}$$

$$I_{k2 \max} = \frac{V_n}{2 \cdot Z_{k \min}}$$

Infine dai valori delle correnti massime di guasto si ricavano i valori di cresta delle correnti (CEI 11-25 par. 9.1.1.):

$$\begin{split} I_p &= \kappa \cdot \sqrt{2} \cdot I_{k \max} \\ I_{p1Neutro} &= \kappa \cdot \sqrt{2} \cdot I_{k1Neutr \, \text{om} \, ax} \\ I_{p1PE} &= \kappa \cdot \sqrt{2} \cdot I_{k1PE \, \text{max}} \\ I_{p2} &= \kappa \cdot \sqrt{2} \cdot I_{k2 \, \text{max}} \end{split}$$

dove:

$$\kappa \approx 1.02 + 0.98 \cdot e^{-3 \cdot \frac{R_d}{X_d}}$$

5.5.3 Calcolo delle correnti minime di cortocircuito

Il calcolo delle correnti di cortocircuito minime viene condotto come descritto nella norma CEI 11.25 par 2.5.

La tensione nominale viene moltiplicata per il fattore di tensione c_{min} di cui alla tab. 1 della norma CEI 11-25.

Per la temperatura dei conduttori ci si riferisce al rapporto Cenelec R064-003, per cui vengono

Eurolink S.C.p.A.

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0

Data 20/06/2011

determinate le resistenze alla temperatura limite dell'isolante in servizio ordinario dal cavo. Essa viene indicata dalla norma CEI 64-8/4 par 434.3 nella quale sono riportate in relazione al tipo di isolamento del cavo, precisamente:

•	isolamento in PVC	Tmax = 70°C
•	isolamento in G	Tmax = 85°C
•	isolamento in G5/G7	Tmax = 90°C
•	isolamento serie L rivestito	Tmax = 70°C
•	isolamento serie L nudo	Tmax = 105°C
•	isolamento serie H rivestito	Tmax = 70°C
•	isolamento serie H nudo	Tmax = 105°C

Da queste è possibile calcolare le resistenze alla sequenza diretta e omopolare alla temperatura relativa all'isolamento del cavo:

$$\begin{split} R_{d\,\text{max}} &= R_d \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20 \right) \right) \\ R_{0\,\text{Neutro}} &= R_{0\,\text{Neutro}} \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20 \right) \right) \\ R_{0\,\text{PE}} &= R_{0\,\text{PE}} \cdot \left(1 + 0.004 \cdot \left(T_{\text{max}} - 20 \right) \right) \end{split}$$

Queste, sommate alle resistenze a monte, determinano le resistenze minime.

Valutate le impedenze mediante le stesse espressioni delle impedenze di guasto massime, si possono calcolare le correnti di cortocircuito trifase I_{k1min} e fase terra , espresse in kA:

$$\begin{split} I_{k \min} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k \max}} \\ I_{k1 Neutr \, \text{omin}} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k1 Neutr \, \text{om} \, ax}} \\ I_{k1 PE \, \text{min}} &= \frac{0.95 \cdot V_n}{\sqrt{3} \cdot Z_{k1 PE \, \text{max}}} \\ I_{k2 \, \text{min}} &= \frac{0.95 \cdot V_n}{2 \cdot Z_{k \, \text{max}}} \end{split}$$

Eurolink S.C.p.A. Pagina 38 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev

Data 20/06/2011

5.6 Verifica della protezione a cortocircuito delle condutture

5.6.1 Generalità

Secondo la norma 64-8 par.434.3 "Caratteristiche dei dispositivi di protezione contro i cortocircuiti.", le caratteristiche delle apparecchiature di protezione contro i cortocircuiti devono soddisfare a due condizioni:

- il potere di interruzione non deve essere inferiore alla corrente di cortocircuito presunta nel punto di installazione (a meno di protezioni adeguate a monte);
- la caratteristica di intervento deve essere tale da impedire che la temperatura del cavo non oltrepassi, in condizioni di guasto in un punto qualsiasi, la massima consentita.

La prima condizione viene considerata in fase di scelta delle protezioni. La seconda invece può essere tradotta nella relazione:

$$I^2 \cdot t \le K^2 S^2$$

dove:

- I: corrente di corto circuito [A] espressa in valore efficace
- t: durata del corto circuito
- S: sezione del conduttore [mm²]
- K: coefficiente che dipende dal tipo di cavo e dall'isolamento (descritto nei paragrafi successivi)

Pertanto, l'energia specifica sopportabile dal cavo deve essere maggiore o uguale a quella lasciata passare dalla protezione.

La norma CEI al par. 533.3 "Scelta dei dispositivi di protezioni contro i cortocircuiti" prevede pertanto un confronto tra le correnti di guasto minima (a fondo linea) e massima (inizio linea) con i punti di intersezione tra le curve. Le condizioni sono pertanto:

- Le intersezioni sono due:
 - Iccmin linters min (quest'ultima riportata nella norma come la);
 - Iccmax linters max (quest'ultima riportata nella norma come lb).
- L'intersezione è unica o la protezione è costituita da un fusibile:
 - Iccmin ☐ linters min.

Eurolink S.C.p.A. Pagina 39 di 43

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento ST0376_F0 Rev F0 **Data** 20/06/2011

- L'intersezione è unica e la protezione comprende un magnetotermico:
 - Icc max ☐ linters max.

Sono pertanto verificate le relazioni in corrispondenza del guasto, calcolato, minimo e massimo.

5.6.2 Integrale di Joule

La verifica a corto circuito, come riportato nel paragrafo precedente, fa riferimento al calcolo dell'integrale di Joule:

$$I^2 \cdot t = K^2 \cdot S^2$$

La costante K viene data dalla norma 64-8/4 (par. 434.3), per i conduttori di fase e neutro e, dal paragrafo 64-8/5 (par. 543.1), per i conduttori di protezione in funzione al materiale conduttore e al materiale isolante. Per i cavi ad isolamento minerale le norme attualmente sono allo studio, i paragrafi sopraccitati riportano però nella parte commento dei valori prudenziali.

I valori di K riportati dalla norma sono per i conduttori di fase (par. 434.3):

Cavo in rame e isolato in PVC:	K = 115
Cavo in rame e isolato in gomma G:	K = 135
Cavo in rame e isolato in gomma etilenpropilenica G5-G7:	K = 143
Cavo in rame serie L rivestito in materiale termoplastico:	K = 115
Cavo in rame serie L nudo:	K = 200
Cavo in rame serie H rivestito in materiale termoplastico:	K = 115
Cavo in rame serie H nudo:	K = 200
Cavo in alluminio e isolato in PVC:	K = 74
Cavo in alluminio e isolato in G, G5-G7:	K = 87

I valori di K per i conduttori di protezione unipolari (par. 543.1) tab. 54B:

Cavo in rame e isolato in PVC:	K = 143
Cavo in rame e isolato in gomma G:	K = 166
Cavo in rame e isolato in gomma G5-G7:	K = 176

Eurolink S.C.p.A. Pagina 40 di 43

Ponte sullo Stretto di Messina PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI

Codice documento	Rev	Data
ST0376_F0	F0	20/06/2011

Cavo in rame serie L rivestito in materiale termoplastico:	K = 143
Cavo in rame serie L nudo:	K = 228
Cavo in rame serie H rivestito in materiale termoplastico:	K = 143
Cavo in rame serie H nudo:	K = 228
Cavo in alluminio e isolato in PVC:	K = 95
Cavo in alluminio e isolato in gomma G:	K = 110
Cavo in alluminio e isolato in gomma G5-G7:	K = 116

I valori di K per i conduttori di protezione in cavi multipolari (par. 543.1) tab. 54C:

Cavo in rame e isolato in PVC:	K = 115
Cavo in rame e isolato in gomma G:	K = 135
Cavo in rame e isolato in gomma G5-G7:	K = 143
Cavo in rame serie L rivestito in materiale termoplastico:	K = 115
Cavo in rame serie L nudo:	K = 228
Cavo in rame serie H rivestito in materiale termoplastico:	K = 115
Cavo in rame serie H nudo:	K = 228
Cavo in alluminio e isolato in PVC:	K = 76
Cavo in alluminio e isolato in gomma G:	K = 89
Cavo in alluminio e isolato in gomma G5-G7:	K = 94

5.6.3 Massima lunghezza protetta

Il calcolo della massima lunghezza protetta è eseguito mediante il criterio proposto dalla norma CEI 64-8 al paragrafo 533.3, secondo cui la corrente di cortocircuito presunta è calcolata come:

$$I_{ctocto} = \frac{0.8 \cdot U}{1.5 \cdot \rho \cdot (1+m) \cdot \frac{L_{\text{max prot}}}{S_f}}$$

Partendo da essa e nota la taratura magnetica della protezione è possibile calcolare la massima lunghezza del cavo protetta in base ad essa.

Eurolink S.C.p.A. Pagina 41 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0

Data 20/06/2011

Pertanto:

$$L_{\text{max prot}} = \frac{0.8 \cdot U}{1.5 \cdot \rho \cdot (1+m) \cdot \frac{I_{\text{ctocto}}}{S_f}}$$

dove:

- U: è la tensione concatenata per i neutro non distribuito e di fase per neutro distribuito;
- ρ : è la resistività a 20°C del conduttore;
- m: rapporto tra sezione del conduttore di fase e di neutro (se composti dello stesso materiale);
- Imag: taratura della magnetica.

Viene tenuto conto, inoltre, dei fattori di riduzione (per la reattanza):

- 0.9 per sezioni di 120 mm²;
- 0.85 per sezioni di 150 mm²2;
- 0.8 per sezioni di 185 mm²;
- 0.75 per sezioni di 240 mm²;

Per ulteriori dettagli si veda norma CEI 64-8 par.533.3 sezione commenti.

5.7 Verifica contatti indiretti

La verifica della protezione contro i contatti indiretti è eseguita secondo i criteri descritti dalla Norma CEI 64-8 e di seguito riportati, relativamente ai diversi sistemi di distribuzione.

Per assicurare la protezione contro i contatti indiretti mediante interruzione automatica del circuito è necessario adottare i seguenti accorgimenti:

- Collegamento a terra di tutte le masse metalliche;
- Collegamento al collettore di terra dell'edificio dei conduttori di protezione, delle masse estranee (ad esempio: le delle tubazioni metalliche entranti nel fabbricato) tramite collegamenti equipotenziali principali e supplementari.

Eurolink S.C.p.A. Pagina 42 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0 Rev F0

Data 20/06/2011

5.7.1 Sistema di distribuzione TN

La protezione contro i contatti indiretti, in un sistema TN, deve essere garantita mediante una o più delle seguenti misure:

- Tempestivo intervento delle protezioni di massima corrente degli interruttori preposti alla protezione delle linee e, laddove ciò non risultasse possibile, tramite protezioni di tipo differenziale
- Utilizzo di componenti di classe II
- Realizzazione di separazione elettrica con l'uso di trasformatore di isolamento

Nel primo caso, affinché sia verificata la protezione contro i contatti indiretti, è necessario che in ogni punto dell'impianto sia rispettata la condizione:

$$I_a \leq \frac{U_0}{Z_g}$$

dove:

- U_0 è la tensione di fase (stellata)
- Z_g è l'impedenza dell'anello di guasto
- lacksquare I_a è la corrente di intervento entro i tempi previsti dalla Norma

I tempi di intervento (dipendenti dalla tensione nominale), sono indicati nella tabella seguente (rif. CEI 64-8/4 tab.41A):

U₀[V]	Tempi di interruzione [s]
120	0.8
230	0.4
400	0.2
>400	0.1

I dati in tabella sono validi per circuiti terminali protetti da dispositivi con corrente nominale non superiore a 32 A.

Tempi di interruzione convenzionali non superiori a 5 s sono ammessi negli altri casi.

Se il dispositivo di protezione è equipaggiato con una protezione differenziale, la corrente utilizzata per la verifica è la soglia di intervento nominale del dispositivo differenziale.

Eurolink S.C.p.A. Pagina 43 di 43

RELAZIONE DI CALCOLO IMPIANTI ELETTRICI A SERVIZIO DEGLI IMPIANTI MECCANICI Codice documento ST0376_F0

Rev F0 **Data** 20/06/2011

5.8 Calcoli dimensionali linee BT

I calcoli e le verifiche delle linee BT sono stati condotti con software dedicato AMPERE PROFESSIONAL® (versione 2009 - 7.3.5.), che tiene conto dei vincoli e dei procedimenti sopra indicati.

Il software si caratterizza per le seguenti funzioni principali:

- simulazione e dimensionamento reti BT
- dimensionamento cavi BT secondo norme CEI 64-8
- dimensionamento condotti sbarre
- determinazione della potenza dissipata dalle reti
- equilibratura dei carichi monofase
- verifica linee e protezioni
- tarature e coordinamento delle protezioni
- verifica termica dei quadri elettrici

I report di calcolo delle linee BT sono riportati nell'Allegato 1

6 Allegati

Gli allegati sono organizzati nei seguenti documenti:

Allegato 1: Calcoli linee BT a servizio degli impianti meccanici

Eurolink S.C.p.A. Pagina 44 di 43

Quadro				-	Tavola:			Impia	nto: P	roget	to Imp	Impianto: Progetto Impianto Elettrico	Eletti	ico								
QUADRO IMPIANTI (Q_MEC)	QUADRO GENERALE IMPIANTI MECCANICI (Q_MEC)	ZALE VNIC	шѫ		CG0700P6ADSIS1SG000 000001B	JSIS1SG	0000			•												
Sigla Arrivo:	rrivo:				Cliente:			Descr	rizione	Descrizione Quadro:	dro:											
Q_MEC-N -0	0- N-0				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO MESSIN DEFINIT	- <u>A</u>	SCHE	EMA E	:LETI	TRICO	SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	ILARE	:- SE	TORE	NOR	MALE					
Sistema	Sistema di distribuzione: TN-S	ne: TI	S-N			-		C.d.t. %	% Max	C.d.t. % Max ammessa:	i	3,64 %	8	i barrat	Icc di barratura: 42,4	4 [kA]		Tens	Tensione:	400 [V]	Σ	
	Circuito	0			Apparecchiatura	hiatura					S	Corto	circuito	5				လ	Sovraccarico	ccal	<u>;</u>	Test
Lun	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	nezza i .d.t. m	тах лах					_	lcc max ≤ P.d.I.	≤ P.d.I.				1 4≤	l⁴ ≤K²S²			չ զ	չ ≥ ո ≤ ո		l _f ≤ 1,45 l _z	
												FA	FASE	NEUTRO	TRO	PROTEZIONE	ZIONE					
Sigla utenza	Sezione	٦ -	L C.	C.d.t.%	Tipo	Distribuzione		P.d.I.	lcc max	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	.	- "1	- I	1.451,	N N
	[mm ₂]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A²S]	[A²S]	[A²S]	[A]	[A]	[A] [A]	[A]	
Q_MEC-N -0		ı	1	0,25	NW25/63 HA C	Quadripolare	0	1	42,4	ı	38.021	1	ı		ı	ı		1.998	0	0	ļ	
Q_MEC-N -1		1	-	0,25	NW25/63 HA C	Quadripolare	0	ı	41,83	1	36.799	1	ı	-	ı	ı	ı	0	0	0	I	
Q_MEC-N -2	Q_MEC-N -2 3(1x150)+(1x95)+(1P E120)	80	178	1,5	NS400H-STR23SE LSI C	Quadripolare	0	02	41,83	2.576	5.376	1.539.640	460, 102, 50 0	1.523.845	184.552.22 5	1.539.640	446.054.40 0	221	320 33	325 384	4 471	S
Q_MEC-N -3	Q_MEC-N -3 3(1x150)+(1x95)+(1P E120)	96	178	0,25	NS400H-STR23SE LSI C	Quadripolare	0	02	41,83	2.576	4.612	1.539.640	460.102.50 0	1.523.845	184.552.22 5	1.539.640	446.054.40 0	0	320 32	325 384	4 471	īs —
Q_MEC-N -4	Q_MEC-N -4 3(2x1x150)+(1x150)+(11150)+(111150)+(111111111111111111111111111111111111	100	125	0,25	NS630H-STR23SE LSI C	Quadripolare	0	02	41,83	4.564	5,560	2.716.983	460.102.50 0	2.696.125	460.102.50	2,716.983	446.054.40 0	0	567 65	650 680	0 942	S
Q_MEC-N -5	Q_MEC-N -5 3(2x1x150)+(1x150)+(45	125	90,1	NS630H-STR23SE LSI C	Quadripolare	0	70	41,83	4.564	10.739	2.716.983	2.716.983 460.102.50 0	2.696.125	460.102.50 0	2.716.983	446.054.40 0	501	567 64	650 680	0 942	ıs
Q_MEC-N -6:	Q_MEC-N -6 3(3×1×120)+(2×120)+(100	113	1,65 N	NS1000H-Mic 5.0 LSI N/2	Quadripolare	0	70	41,83	5.280	5.902	41.004.374	294.465.60 0	40.346.839	294.465.60 40.346.839 294.465.60 41.004.374 446.054.40 0 0	41.004.374	446.054.40 0	508	800	840 960	0 1.218	<u>s</u>
Q_MEC-N -7	Q_MEC-N -7 3(3x1x120)+(2x120)+(45	113	0,47 N	NS1000H-Mic 5.0 LSI N/2	Quadripolare	0	70	41,83	5.280	11.348	41.004.374	294.465.60 0	40.346.835	41.004.374 294.465.60 40.348.839 294.465.60 41.004.374 446.054.40 0 0	41.004.374	446.054.40 0	184	8008	840 960	0 1.218	īš .
Q_MEC-N -8	Q_MEC-N -8 3(1x120)+(1x70)+(1P	65	219	1,27	NS250H- 22SE LSI N/2	Quadripolare	0	22	41,83	1.610	5,980	701.774	294.465.60	697.212	100.200.10	701.774	446.054.40 0	184	200 2	280 240	10 406	-S

					Test	z ₁ :		1.4512	[A]	406 SI	406 SI	347 SI	129 SI		 	1
				400 [V]	Sovraccarico	l _f ≤ 1,45 l _z		1.4	[A]	336 40	336 40	270 3	¥			ł
					acca			-Z-	[A]	280	280	239	8			Ì
				Tensione:	ovra	lb ≤ ln ≤ lz		_5	- [¥]	280	280	225	28			
			***	Ten	Š	չ զ		٩	[A]	184	0	198	52			
			MALE				PROTEZIONE	K²S²	[A ² S]	446.054.40 0	100.200.10 1.539.640 446.054.40 0	446.054.40 0	12.780.625			
			NON II	,4 [kA]			PROTE	l't max Inizio Linea	[A ² S]	1.539.640	1.539.640	701.774	556.595			
			TORE	ura: 42 ,		ر _{\$} \$2	TRO	K²S²	[A ² S]	100.200.10 0	100.200.10	51.122.500	12.780.625			
.ico			SEI	lcc di barratura: 42,4 [kA]	<u>o</u>	l²t ≤K²S²	NEUTRO	l ² t max Inizio Linea	[A ² S]	1.523.845	1.523.845	697.212	540.940			
Impianto: Progetto Impianto Elettrico			SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	<u> </u>	Corto circuito		Ж	K²S²	[A²S]	294.465.60 1.523.845 100.200.10 1.539.640 446.054.40 0 0	294.465.60 1.523.845 0	184.552.22	12.780.625			
vianto			E E	3,64 %	orto c		FASE	l ² t max Inizio Linea	[A²S]	1,539,640	1.539.640	701.774	556.595			
to Imp		Jro:	RICO		ان			l gt Fondo Linea	<u> </u>	5.006	10.035	5.862	657			
roget		Descrizione Quadro:	LETT	% Max ammessa:		≤ P.d.I.		I di Int. Prot.	[<u>A</u>]	2.254	2.254	1.811	258			
Into: P		rizione	EMA E	% Max		Icc max ≤ P.d.I.		lcc max	[kA]	41,83	41,83	41,83	41,83			
Impia	,	Desc	SCHI	C.d.t.				P.d.I.	[kA]	02	02	0.2	70			
	0000		INA -		ģ			Pl	<u>•</u>	0	0	0	0			
	ADSIS1S		LO JI MESS DEFINI		chiatur			Distribuzione		Quadripolare	Quadripolare	Quadripolare	Quadripolare			
Tavola:	CG0700P6ADSIS1SG000 000001B	Cliente:	PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO		Apparecchiatura			Про		NS400H-STR23SE LSI N/2	NS400H-STR23SE LSI N/2	NS250H- 22SE LSI N/2	NS160H- 22SE LS1 N/2			
								C.d.t.% con l _b	[%]	1,49	0,25	1,55	ω_			
	4 2			S-NT		a max max		Пах	[m]	189	189	158	385			
	RAL			one:	uito	yhezz: C.d.t.			[m]	8	35	09	150	_		
	QUADRO GENERALE IMPIANTI MECCANICI (Q_MEC)	rrivo:	0- N-0	Sistema di distribuzione: TN-S	Circuito	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max		Sezione	[mm ₂]	Q_MEC-N -9 3(1x120)+(1x70)+(1P E120)	Q_MEC-N - 3(1x120)+(1x70)+(1P 10	Q_MEC-N - 3(1x95)+(1x50)+(1PE 11	1(5G25)			
Quadro:	QUADRO IMPIANTI (Q_MEC)	Sigla Arrivo:	Q_MEC-N -0	Sistema		Luni C.d		Sigla utenza		Q_MEC-N -9 :	Q_MEC-N - 10	Q_MEC-N -	Q_MEC-N - 12		-	_

Quadro:	·			Tavola:			Impia	nto: P	Impianto: Progetto Impianto Elettrico	to Im	ojanto	Elett	rico								
QUADRO IMPIANTI (Q_MEC)	QUADRO GENERALE IMPIANTI MECCANICI (Q_MEC)	SALE INIC	–	CG0700P6ADSIS1SG000 000001B	ADSIS1S(3000															
Sigla Arrivo:	rrivo:			Cliente:			Descr	rizione	scrizione Quadro:	io:											
Q_MEC-C -0	- C -0			PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	DI MESSI DI DEFINIT	NA -	SCH	EMA E	SCHEMA ELETTRICO UNIFILARE	RICO	UNIF	ILARI		ITOR	E CO	- SETTORE CONTINUITA'	Ā.				
Sistema	Sistema di distribuzione: TN-S	ne: T	S-7				C.d.t. 9	% Max	% Max ammessa:	ssa: 2,8	% 8	<u>8</u>	Icc di barratura:	tura: 5,42	42 [kA]		Ten	Tensione:	ŀ	400 [V]	
	Circuito	٥		Appare	Apparecchiatura	~~				ပ	Corto (circuito	to				Ŋ	ovra	ıcca	Sovraccarico	Test
Lun	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	iezza r .d.t. ma	nax ax					lcc max ≤ P.d.I.	≤ P.d.I.				²t ≤	l²t ≤K²S²			9	z ≥ n ≥ d!	z	≤ 1,45 l _z	z ₁
	1										FA	FASE	NEU	NEUTRO	PROT	PROTEZIONE					-
Sigla utenza	Sezione		L C.d.t.% max con l _b	Tipo	Distribuzione	_ _¤	P.d.I.	lcc max	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	9	<u>-</u>	_2	ļ. 4.1	1.4512
	[mm ₂]	[m]	[m] [%]			<u> </u>	[ka]	[kg]	[A]	[A]	[A²S]	[A ² S]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A]	<u>-</u>	[A]	[A]	[<u>4</u>
Q_MEC-C -0		1	0,02	2 NG125N	Quadripolare	0	25	5,42	320	4.578	1	l	1	i	1	1	23	04		28	IS .
Q_MEC-C -1			90'0	6 C60H+Vigi A	Monofase L1+N	0,03 - A	93	5,3	50,03	3.058		l L		l			2,406	5	1	15 -	IS -
Q_MEC-C -2		ı	0,03	3 C60H+Vigi A	Monofase L2+N	0,03 - A	30	5,3	6,03	3.058	-		1	1	1	ı	0,481	10	1	- 15	IS .
Q_MEC-C -3	1(2x6)+(1PE120)	8	185 1,28	8 C60H	Monofase L3+N	0	8	5,3	22	494	11.046	736.164	10.226	736.164	11.046	446.054.40	5,774	10	4	15 6	64 SI
Q_MEC-C -4	1(2x6)+(1PE120)	36	185 1,49	H090 6	Monofase L1+N	0	98	5,3	77	425	11.046	736.164	10.226	736.164	11.046	446.054.40 0	5,774	5	4	15 6	64 SI
Q_MEC-C -5	1(2x6)+(1PE120)	001	185 1,57	7 C60H	Monofase L2+N	0	93	5,3	77	406	11.046	736.164	10.226	736.164	11.046	446.054.40 0	5,774	5	4	. 6	64 S1
Q_MEC-C -6	1(2x6)+(1PE120)	45	185 0,77	7 C60H	Monofase L3+N	o	e e	6,3	77	792	11.046	736.164	10.226	736.164	11.046	446.054.40	5,774	0	44	15 6	64 SI
Q_MEC-C -7	1(2x6)+(1PE120)	90	181 1,6	C60H	Monofase L1+N	0	OE	5,3	77	406	11.046	736.164	10.226	736.164	11.046	446.054.40 0	5,889	6	4	15 6	64 SI
Q_MEC-C-8	1(2x6)+(1PE120)	45	185 0,77	2 Сеон	Monofase L2+N	0	30	5,3	77	792	11.046	736.164	10.226	736.164	11.046	446.054.40 5,774 0	5,774	9	4	15 6	64 SI

					Test					SS	S	ß	ß	S			
				l.		45 lz		1.45lz	<u> </u>	2	49	64	64	-			
				400 [V]	Sovraccarico	l _f ≤ 1,45 l _z		<u>.</u>	[A]	٤	15	15	15	15			
				.e: 4	acc	z		7	[A]	4	4	44	4	[
				Tensione:	OV	² > ¹ > ^q		-	[A]	10	5	10	9	5			
			Ι Τ Α'	Te	တ	91		4	<u> </u>	0 4,571	5,774	5,774	0 6,947	0,962			
			ONIL				PROTEZIONE	K²S²	[A ² S]	446.054.40 4,571 0	446.054.40	446.054.40 5,774	446.054.40 6,947 0	. 1	_		
			CO	12 [kA]			PROTE	I ² t max Inizio Linea	[A ² S]	11.046	11.046	11.046	11.046	I			
			ITORI	ura: 5,4		2 t \leq K 2 S 2	NEUTRO	K²S²	[A ² S]	736.164	736.164	736.164	736.164	I			
ico			: SE	lcc di barratura: 5,42	5	1.4≤	NEU	I ² t max Inizio Linea	[A ² S]	10.226	10.226	10.226	10.226	1			
Elettr			ILARE	22	ircuit		SE	K²S²	[A²S]	736.164	736.164	736.164	736.164	-			
npianto: Progetto Impianto Elettrico			SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	2,8 %	Corto circuito		FASE	l ² t max Inizio Linea	[A²S]	11.046	11.046	11.046	11.046				
to Imp		Jro:	RICO		Q		•	l gt Fondo Linea	<u> </u>	689	494	956	629	3.058			
roget		Descrizione Quadro:	ELETT	C.d.t. % Max ammessa:		≤ P.d.l.		l di Int. Prot.	[A]	11	22	2.2	2.2	£0'0			
into: P		rizione	EMA E	% Max		lcc max ≤ P.d.l.		lcc max	[kA]	5,3	5,3	5,3	5,3	5,3			
Impia		Desc	SCH	C.d.t.				P.d.I.	[kA]	30	30	30	30	30			
	G000		INA -		ία			PI	[A]	0	0	0	0	0'03 - A			
	ADSIS1S		LLO JI MESSI) DEFINI		Apparecchiatura			Distribuzione		Monofase L3+N	Monofase L1+N	Monofase L2+N	Monofase L3+N	Monofase L1+N			
Tavola:	CG0700P6ADSIS1SG000 000001B	Cliente:	PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO		Appare			Про		Сеон	Сеон	Сеон	Сеон	C60H+Vigi A			
								C.d.t.% con l _b	[%]	0,84	1,28	29'0	1,18	0,04			
	삑ㅁ			S-NT		а тах тах		L	[m]	236	185	185	152	1			
	RAL			one:	to	yhezza C.d.t.		۲ _	[m]	92	8	35	9				
	QUADRO GENERALE IMPIANTI MECCANICI (Q_MEC)	rivo:	9 0	Sistema di distribuzione: TN-S	Circuito	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max		Sezione	[mm ²]	1(2x6)+(1PE120)	1(2x6)+(1PE120)	1(2x6)+(1PE120)	1(2x6)+(1PE120)				
Quadro:	QUADRO IMPIANTI (Q_MEC)	Sigla Arrivo:	Q_MEC-C -0	Sistema (Lung		Sigla utenza		Q_MEC-C -9	Q_MEC-C-	Q_MEC-C - 11	Q_MEC-C-	Q_MEC-C -		•	

					Test					ıs	IS	SI	ıs				
					Te	z	_	15	-								
				Z	rico	l _f ≤ 1,45 l _z		1.4512	1] [A]	4	ie 406	7 26	7 26				
				400 [V]	Sovraccarico	<u> </u>		l _z	[A] [A]	384	280 336	18 8,7	18 8,7				
				Tensione:	vra	zl ≥ n ≥ d			[A]	320	280 28	6 1	9				
				Tens	So	≥ q		_a	[A]	221 3	221 2	0,17	0,17				
			ALE				빌	K²S²	[A ² S]		151.782.40	46.010	46.010				
			RM/	[kA]			PROTEZIONE		├ -				-				
			2	,46 [ا			PRO	l ² t max Inizio Linea	[A ² S]		536.889	2.816	2.816				
			TORE	ıra: 13,		2S ₂	RO	K²S²	[A ² S]	1	ŀ	46.010	46.010				
9			- SET	Icc di barratura: 13,46	0	l²t ≤K²S²	NEUTRO	l ² t max Inizio Linea	[A23]	1	ı	1.654	1.654				
Impianto: Progetto Impianto Elettrico			ARE	Icc di	Corto circuito			K²S²	[A²S]		294,465,60	46.010	46.010	_	_		
anto E			NIFIL	%	rto ci		FASE	l ² t max Inizio Linea	[A ² S]	-	963,452 29	2.816	2.816				_
Impia		::		3,64 %	Co		<u> </u>		_	367			_		_		
getto		nadro	TTR	messa		.d.I.											
Pro	ADSIS1SG000 LLO DI MESSINA - O DEFINITIVO Cchiatura	 															
ianto			,														
d m																	
	30005	:	INA -		ľa				[A]	0	0					 	
	DSIS18		LO I MESS DEFIN		chiatuı			istribuzione		Quadripolare	Tripolare	fonofase L1+N	fonofase L2+N				
Tavola:	CG0700P6A 000003B	Cliente:	PONTE SUL STRETTO D PROGETTO		Apparec					INS400	NS400N-STR23SE LSI						
	~						-	C.d.t.% con l _b	[%]	1,51	1,8	1,54	1,54			_	
	ORI NA			S-N.		max лах		L C	[E]	.	89	98	8	_			-
	LAT			ne: T	0	hezza).d.t. n		7	Ē	ł	15	15	15				
	QUADRO VENTILATORI ARIA SOTTOBANCHINA 1 (Q_VE01)	rivo:	1 -0	Sistema di distribuzione: TN-S	Circuito	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max		Sezione	[mm ²]		3(1×120)+(1PE70)	1(3G1,5)	1(3G1,5)				
Quadro:	QUADRO ARIA SOT (Q_VE01)	Sigla Arrivo:	Q_VE01 -0	Sistema c		Lung C.d.		Sigla utenza		Q_VE01 -0	Q_VE01 -1	Q_VE01 -2	Q_VE01 -3				

QUADRO VENTILATORIA ARIA SOTTOBANCHINA 1 CG0700P6ADSIS1SG000 Descrizione Quadro: Cliente: CC41. % Max ammessa: 2,8 % Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc.	Quadro:			Tavola:			Impia	nto: P	pianto: Progetto Impianto Elettrico	to Imp	ianto	Eletti	.ico									
Cliente: PONTE SULLO STRETTO DI MESSINA -	QUADRO VENTILAT ARIA SOTTOBANCH Q_VE01)	ORI	_	CG0700P6A 000003B	DSIS1SC	3000																
PONTE SULLO STRETTO DI MESSINA -	Sigla Arrivo:			Cliente:			Descr	izione	Quac	<u></u>												-
Circuito Apparecchiatura C.d.t. % Max ammessa: 3 Apparecchiatura Icc max ≤ P.d.I. Apparecchiatura Indicate Sezione L C.d.t.% Tipo Distribuzione I.a. P.d.I. Int Prot.	2_VE01 -0			PONTE SUL STRETTO D PROGETTO	LO I MESSII DEFINIT	- ∀ ≥	SCHE	MA	CETT	RICO	UNIE	LARE	SE	TORE	CON	NI L	ΤΑ.					
Circuito Apparecchiatura Rezione L Ld.1.% Tipo Distribuzione La Loc max Fond. Sezione L L C.d.1.% Tipo Distribuzione La Prd.1. lc I prot. Line	Sistema di distribuzione: T	S-N					C.d.t. %	% Max	ammes		%	8	Icc di barratura: 0,77 [kA]	ura: 0,7	7 [kA]		Ter	Tensione:	.e. 4	400 [V]		
add 1 % con lb ≤ C.d.t. max Sezione L L C.d.t.% Tipo Distribuzione ld P.d.l. lcc l di lf max l mizio linzio l	Circuito			Apparec	chiatura					ပ	orto c	ircui	ව				Ś	OV.	၁၁	Sovraccarico		Test
Sezione L C.d.t.% Tipo Distribuzione I _d P.d.I. Icc I di I gt I't max [mm²] [mm²] [mm²] [mm²] I max Intriport. Fondo Inizio [mm²] [mm²] [mm²] I max I max I max I max I mizio [mm²] [mm²] [mm²] I max I mizio I mizio I mizio I mizio I max I max I mizio I mizio I mizio I mizio I mizio I mizio I max I max I max I mizio	Lunghezza ≤ Lunghezza C.d.t. % con l _b ≤ C.d.t. r	т тах тах					_	cc max	≤ P.d.I.				l ² t ≤l	l²t ≤K²S²			; q	z ≥ n ≥ d!		l _f ≤ 1,45 l _z	z -	-
Sezione L C.d.t.% Tipo Distribuzione I _d P.d.I. Icc I di Initio Igh I th max int. Int. Prof. Linea L	•									I	FA	Ж	NEUTRO	TRO	PROTEZIONE	ZIONE						
[mm²] [m] [m] </td <td>Sezione</td> <td></td> <td>C.d.t.% con l_b</td> <td></td> <td>istribuzione</td> <td>_9</td> <td>P.d.I.</td> <td></td> <td>l di Int. Prot.</td> <td>l gt Fondo Linea</td> <td>l²t max Inizio Linea</td> <td>K²S²</td> <td>l²t max Inizio Linea</td> <td>K²S²</td> <td>l²t max Inizio Linea</td> <td>K2S2</td> <td>_و</td> <td>_=</td> <td>71</td> <td>7-</td> <td>1.45l_z</td> <td></td>	Sezione		C.d.t.% con l _b		istribuzione	_9	P.d.I.		l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l²t max Inizio Linea	K²S²	l²t max Inizio Linea	K2S2	_و	_=	71	7-	1.45l _z	
1,28	[m]		[%]			<u>[</u>	[kA]	[kA]	[<u>A</u>	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[<u>A</u>]	Z	[Ā]	[A]	[A]	
1,44 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 383 1,31 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 383 1,31 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 383 1,36 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 383 1,36 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 383 1,36 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 389 300 300 1,369 1		1	1,28	<u> </u>	fonofase L3+N	0	l	0,77	2.2	493	-	-	-		-	1	5,774	10		15	1	ıs
		1	1,44		,	0,03 - A	20	22'0	50,0	383	ı	ı	1	1	1	ļ	2,406	9	1	8,7		ı IS
1,31 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 383 1,36 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 383 1,36 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 309 900 1/(3G6) 15 876 1,4 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 309 900		1	1,31		l	0,03 - A	70	7,00	0,03	383	ı	ı	-	1	I	ı	0,481	ø	1	- 2'8	1	S
1(3G6) 15 876 1,4 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 383 1(3G6) 15 876 1,4 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 309 900		†	1,31			0,03 - A	20	7.40	0,03	383	ı	!		I	-	ı	0,481	9	!	8,7	1	S
1(3G6) 15 876 1,4 C60N+Vigi A Monofase L3+N 0,03 - A 20 0,77 0,03 309 900		ı	1,36			0,03 - A	20	72,0	50,03	383	1	1	1	1		1	1,203	9	-	8,7		SI
	1(3G6)	876	1,4			0,03 - A	20	0,77	0,03	309	900	736.164	206	736.164	006	736.164	1,203	9	4	8,7 - 6	64	<u>s</u>
																			\top		1	

Quadro:		i			Tavola:			Impiar	nto: P	pianto: Progetto Impianto Elettrico	to Imp	ianto	Elettr	100									
QUADRO VENTILATORI ARIA SOTTOBANCHINA 2 (Q_VE02)	VENTI	LATC	ORI INA	7	CG0700P6ADSIS1SG000 000006B	DSIS1S(3000																
Sigla Arrivo:	.; 				Cliente:			Descr	izione	Descrizione Quadro:	ro:												
Q_VE02 -0	0				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSII DEFINIT	- O ≱ ≥!	SCHE	EMA E	ETT	RICO	N F	ILARE	- SE	ITORE	SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	MALE						
Sistema di distribuzione: TN-S	istribuzio	ne: TI	S-N					C.d.t. %	% Max	C.d.t. % Max ammessa:		3,64 %	8	li barrat	Icc di barratura: 11,88	,88 [kA]		Ten	Tensione:	1	400 [V]		
)	Circuito	o			Apparecchiatura	chiatura					اق	Corto circuito	ircui	ţo				Š	ovra	3CC	Sovraccarico		Test
Lunghez: C.d.t. %	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	hezza ı .d.t. m	max лах					_	lcc max ≤ P.d.l.	≤ P.d.I.				²t ≤	l²t ≤K²S²			⁵ 9	- - - - - - - - - - - - - - - - - - -		l _f ≤ 1,45 l _z	2 12	
				•							•	FASE	SE	NEUTRO	TRO	PROTEZIONE	ZIONE						
Sigla Se utenza	Sezione		L C	C.d.t.% con l _b	Тіро	Distribuzione	_0	P.d.I.	lcc max I	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	9	"	ž ₁	1.	1.451,	
]	[mm ²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A] [[A]	
Q_VE02 -0		I	1	0,25	INS400	Quadripolare	0	ı	11,88	2.576	4.605	ı		!	-	-]	0	320	1	384	-	<u>8</u>
Q_VE02 -1 3(1x12	3(1x120)+(1PE70)	51	88	0,55	NS400N-STR23SE LSI	Tripolare	0	45	11,86	2.576	3.821	1.516.474	294.465.60		l	1.516.474	151.782.40 0	221	280	280	336 4	406	īS
Q_VE02 -2 10	1(3G1,5)	15	96	0,28	HO90	Monofase L1+N	0	15	6E,3	09	307	2.718	46.010	1.618	46.010	2.718	46.010	0,17	9	18	8,7	26	S
Q_VE02 -3 10	1(3G1,5)	15	8	0,28	CEOH	Monofase L2+N	0	5	6,39	09	307	2.718	46.010	1.618	46.010	2.718	46.010	0,17	9	18	8,7	56	SI
																					-		
																				\neg		_	
														1									

					Test					ıs	SI	IS	ıs	SI	SI			
									-	_				_	64	\dashv	\dashv	
				Σ	Sovraccarico	l _f ≤ 1,45 l _z		1.4512	(1) [A]	- 2		- 2			-	\dashv	_	\dashv
		:		Tensione: 400 [V]	ccai	4		4 7	[A] [A]	15	- 8,7	- 8,7	- 8,7	- 8,7	44 8,7		_	_
				ione:	vra	7 > 4 > 9		<u>-</u> 	[A] [V]	- 01	9	9	9	9	9		+	
			₹	Tens	လိ	≥ <u>q</u>		_ <u>_</u>	[A]	5,774	2,406	0,481	0,481	1,203	1,203			
			LID NI				ONE	K²S²	[A ² S]	1	1		1	1	736.164 1			
			CONT	[kA]			PROTEZIONE	l ² t max Inizio Linea	[A²S]	1	1	1	ı	ı	808			
			ORE	a: 0,67		0 ₂	-	K ² S ² i	[A²S]	ı		ı	1		736.164			
0			SETT	lcc di barratura: 0,67		l²t ≤K²S²	NEUTRO	l't max Inizio Linea	[A ² S]	1	1				409 7		_	
Impianto: Progetto Impianto Elettrico			SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	lcc di k	Corto circuito			K ² S ² ⁴	[A ² S]	1	ı	-			736.164			
anto E			JNIFIL	,o	rto ciı		FASE	I ² t max I Inizio Linea	[A ² S]	1	1	1	1		808 73			
Impia			100 n	1: 2,8 %	ပိ		<u> </u>	lgt I ⁴ Fondo II Linea L	[A]	424	340	340	340	340	281			
getto		scrizione Quadro:	ETTR	nmessa		.d.I.		ldi Int. Prot. Fo	[A]	11	50,03	0,03	50,03	50,03	0,03			•
o: Pro	-	ione (AA EL	Махап		lcc max ≤ P.d.l.		lcc max Int	[kA]	79'0	99'0	0,66	99'0	99'0	99'0			
npiant		Descriz	CHEN	C.d.t. % Max ammessa:		<u> </u>		P.d.I.	[kA]	1	8	20	20	8	20		_	
=	000		' 0	0				₽	[A]	0.	0,03 - A	0,03 - A	0'03 - A	0,03 - A	0,03 - A			
-	1SG		SSIN		ura			oue		Z +								
	NDSIS		LO OI MES		chiat			Distribuzione		Monofase L1+N								
Tavola:	CG0700P6ADSIS1SG000 000006B	Cliente:	PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO		Apparecchiatura			Tipo		_	C60N+Vigi A							
	7 7							C.d.t.%	[%]	1,5	1,66	1,53	1,53	1,58	1,62			
	OR N N M			TN-S		a max max		L max	[m]	1	I	!	1		804		_	
	ILA NCI			one:	ito	ghezz C.d.t.			[m]				1	1	15			
	QUADRO VENTILATORI ARIA SOTTOBANCHINA 2 (Q_VE02)	rrivo:	7 -0	Sistema di distribuzione: TN-S	Circuito	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	ŀ	Sezione	[mm ²]						1(3G6)			
Quadro.	QUADRO ARIA SOT (Q_VE02)	Sigla Arrivo:	Q_VE02 -0	Sistema		Lun		Sigla utenza		Q_VE02 -0	Q_VE02 -1	Q_VE02 -2	Q_VE02 -3	Q_VE02-4	Q_VE02 -5			

Quadro:				Tavola:			Impia	nto: F	Impianto: Progetto Impianto Elettrico	to Im	pianto	Elett	ico									
QUADRO VENTILATORI ARIA BANCHINA 3 (Q_VE03)	TILA IA 3 (TOR (a	I ′E03)	CG0700P6ADSIS1SG000 000007B	DSIS1S	3000																<u> </u>
Sigla Arrivo:				Cliente:			Desci	rizion	Descrizione Quadro:	dro:							 					
Q_VE03 -0				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LLO I MESSI DEFINIT	NA -	SCH	EMA	SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	rricc	UNIF	ILARE	SE.	ITORI	NON (MALE						
Sistema di distribuzione: TN-S	zione:	S-NT					C.d.t. 9	% Max	.t. % Max ammessa:		3,64 %) 	Icc di barratura: 18,29	ura: 18	,29 [kA]		Ten	sion(<u>%</u> 40	Tensione: 400 [V]		
Circuito	lito			Apparecchiatura	chiatur					S	Corto circuito	ircui	ب				Š	ovr	၂၁၁	Sovraccarico		Test
Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	nghezz ≤ C.d.t.	а тах тах						lcc max	lcc max ≤ P.d.l.				l ² t ≤	l²t ≤K²S²			5 વ լ	² > ¹ > ⁹		l _f ≤ 1,45 l _z	2 12	
											FA	FASE	NEU	NEUTRO	PROTEZIONE	ZIONE						
Sigla Sezione utenza	7	пах	C.d.t.% con l _b	Tipo	Distribuzione	P	P.d.I.	Ісс тах	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	_q	_ <u>_</u>	<u></u>	<u>+</u>	1.45l _z	
[mm ₂]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[v]	[A]	[4]	[A]	[A]	
Q_VE03-0	1	ı	0,25	0E9SNI	Quadripolare	0	ı	18,29	4.564	5.552	1	1	-	1	ı	-	0	295	-	089	.	S
Q_VE03 -1 3(2x1x150)+(1PE120)	20) 15	22	0,54	NS630N-STR23SE LSI	Tripolare	0	45	18,25	4.637	4.890	2.208.905	460.102.50 0	-1	I	2.204.581	446.054.40 0	501	504	9 9 9	605	942	io.
Q_VE03 -2 1(3G1,5)	15	98	0,28.	H090	Monofase L2+N	0	15	8,2	09	310	2.834	46.010	1.707	46.010	2.834	46.010	0,17	ဖ	18	8,7	26	ıs
Q_VE03 -3 1(3G1,5)	15	96	0,28	H090	Monofase L3+N	0	15	8,2	09	310	2.834	46.010	1.707	46.010	2.834	46.010	0,17	9	8	8,7	26	S
																				_		

			Tavola:			Impia	into: F	Impianto: Progetto Impianto Elettrico	to Im	pianto	Elett	rico									
ITIL/ NA 3	QUADRO VENTILATORI ARIA BANCHINA 3 (Q_V	QUADRO VENTILATORI ARIA BANCHINA 3 (Q_VE03)	CG0700P6ADSIS1SG000 000007B	ADSIS1S	G000																
			Cliente:			Desc	rizione	Descrizione Quadro:	dro:										ŀ		T
			PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LLO DI MESSI O DEFINI	NA- NEO	SCHE	EMA	ELETI	rrico	UNITE OF THE STATE	ILARE	SE.	HEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	CON	I) NIL	Ψ.					
uzione	Sistema di distribuzione: TN-S					C.d.t.	% Max	.t. % Max ammessa:	ł .	2,8 %	8	Ji barrat	lcc di barratura: 0,64 [kA]	4 [kA]		Ten	sione	9. 40	Tensione: 400 [V]		
Circuito			Appare	Apparecchiatura	a				၂	Corto circuito	sircui	to				တိ	OVE	300	Sovraccarico		Test
unghez b ≤ C.d.	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	J					Icc max	lcc max ≤ P.d.l.				l²t ≤l	l²t ≤K²S²			<u> q</u>	2 ≥ u ≥ q		l _f ≤ 1,45 l _z		
			:							¥	FASE	NEU	NEUTRO	PROTEZIONE	ZIONE						
	max	C.d.t.%	Tipo	Distribuzione	PI	P.d.I.	lcc max	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²		<u>-</u> -	-Z-	+	1.451,	
<u>"</u> "]	[m] [m]	[%]			[A]	[kA]	[kA]	[A]	[¥]	[A ² S]	[A2]	[A ² S]	[A²S]	[A²S]	[A²S]	Z	Z	3	[A]	[A]	
-	1	1,57	_	Monofase L2+N	0	1	0,64	77	405	-	1	-	ı	ı	ı	5,774	5	1	15		ıs
	-	1,73	C60N+Vigi A	Monofase L2+N	0,03 - A	20	0,64	0,03	328	****	I		1	l	-	2,406	ဖ		8,7		l is
ı	-	1,6	C60N+Vigi A	Monofase L2+N	0,03 - A	20	0,64	60,03	328	1	1	-	I	1	-	0,481	9	1	8,7	,	SI
		1,6	C60N+Vigi A	Monofase L2+N	0,03 - A	8	0,64	£0'0	328	ı		-	1			0,481	9	1	2'8	-	ıs
-	1	1,65	C60N+Vigi A	Monofase L2+N	0,03 - A	8	0,64	£0,0	328	and the second	I	-	1	1	-	1,203	ø		8,7		ıs
#	15 779	1,69	C60N+Vigi A	Monofase L2+N	0,03 - A	20	0,64	60'0	272	782	736.164	381	736.164	782	736.164	1,203	9	44	8,7	64	Si
																			-		
	_						_]							_							

SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE SCHEMA SC				Tavola:			_	Impiaı	nto: P	roget	to Imp	Impianto: Progetto Impianto Elettrico	Elettr	<u>0</u>								
Corto Max ammessa: 3,64 % Icc di barratura: 26,86 [kA] Tensione: 400 [V] Lic max ≤ P.d.1. Icc max ≤ P.d.1. Int. Prot. Linea Line	ENTILATORI HINA 4	TORI		CG0700P6ADSIS1SG 000008B	ADSIS1SG	(i)	000					į										
CHEMA ELETTRICO UNIFILARE - SETTORE NORMALE d.t. % Max ammessa: 3,64 % loc di barratura: 26,86 [kA] Tensione: 400 [V] Corto circuito Sovraccarico Lic max FASE Intrao Sovraccarico Il. loc ludi ligio linizio Linea	Sigla Arrivo: Cliente:	Cliente:	Cliente:	Cliente:				Descr	izione	⇒ Quac	ro:											
d.t. % Max ammessa: 3,64 % Icc di barratura: 26,86 [kA] Tensione: 400 [V] FASE Icc max \leq P.d.1. Icc max \leq P.d.1. FASE Iritrac	PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	PONTE SULLO STRETTO DI MESSINA PROGETTO DEFINITIVO	STRETTO DI MESSINA PROGETTO DEFINITIVO	PONTE SULLO STRETTO DI MESSINA PROGETTO DEFINITIVO	LLO JI MESSINA) DEFINITIVO	NA N	1.0	SCHE	MA E	ELETT	RICO	UNIFI	LARE	- SE	TORE	NOR	MALE					
Cc max ≤ P.d.l. FASE NEUTRO PROTEZIONE FASE FA	Sistema di distribuzione: TN-S	e: TN-S	ှ		10			C.d.t. %	% Max	ammes		% 4%	p col	i barrat	ura: 26 ,	86 [kA]		Ten	sione		0 [V]	
Cc max ≤ P.d.l. FASE NEUTRO PROTEZIONE FASE FAMBAX FASE F	Circuito Apparecchiatura		Apparecchiatura	Apparecchiatura	chiatura	æ	-				٥	orto c	ircuit	٥				Š	ovra	င်င်ခ	ırico	<u> </u>
C	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	ezza max 1.t. max	ax *		ı			-	сс шах	≤ P.d.I.				²t ≤	(₂ S ₂			<u>a</u>	. ≥ 1		í ≤ 1,45	N
1 1 1 1 1 1 1 1 1 1											•	FAS)E	NEU	RO	PROTE	ZIONE	ļ				1
[kA] [A] [A] <th>Sezione L C.d.t.% Tipo Distribuzione I_d max con I_b</th> <th>L C.d.t.% Tipo Distribuzione max con l_b</th> <th>C.d.t.% Tipo Distribuzione con l_b</th> <th>Tipo Distribuzione</th> <th></th> <th>P</th> <th></th> <th>P.d.I.</th> <th></th> <th>I di Int. Prot.</th> <th>l gt Fondo Linea</th> <th>I²t max Inizio Línea</th> <th>K²S²</th> <th>l²t max Inizio Linea</th> <th>K²S²</th> <th>l²t max Inizio Linea</th> <th>K²S²</th> <th>۹</th> <th><u>-</u></th> <th></th> <th></th> <th></th>	Sezione L C.d.t.% Tipo Distribuzione I _d max con I _b	L C.d.t.% Tipo Distribuzione max con l _b	C.d.t.% Tipo Distribuzione con l _b	Tipo Distribuzione		P		P.d.I.		I di Int. Prot.	l gt Fondo Linea	I ² t max Inizio Línea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	۹	<u>-</u>			
26,86 4,564 10,712 — — — — — — 501 567 — 680 — 26,79 4,637 8,512 2,479,751 460,102.50 — — — — — 605 605 605 942 14,83 60 318 3,161 46,010 1,798 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 1,798 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 3,161 46,010 0,17 6	[mm²] [m] [m] [%] [A]	[m] [%]	[%]		[A]	[A]	П	[kA]	[kA]	[A]	[A]	[A ² S]	[A²S]	[A ² S]	[A²S]	[A²S]	[A²S]	_	 	-		
26,79 4,637 8,512 2,479,751 460,102.50 — — 1,868,602 446,054,40 501 504 650 605 942 14,83 60 318 3,161 46,010 1,798 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 1,798 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 1,798 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 318 3,161 46,010 3,161 46,010	1,09 INS630 Quadripolare 0	1,09 INS630 Quadripolare	1,09 INS630 Quadripolare	INS630 Quadripolare		0		1	26,86	4.564	10.712	I	I	I	ı	1	ı	501	267			<u>s</u>
14,83 60 3161 46,010 1,796 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 3161 46,010 1,796 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 3161 46,010 1,796 46,010 0,17 6 18 8,7 26 14,83 60 3161 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 16 16 16 16 16 16 16 16 14,83 60 3161 46,010 3,161 46,010 0,17 6 18 8,7 26 14,83 60 16 16 16 16 16 16 16 16 16 16 14,83 60 16<	3(2x1x150)+(1PE120) 15 77 1,38 NS630N-STR23SE LSI Tripolare 0	77 1,38 NS630N-STR23SE LSI Tripolare	1,38 NS630N-STR23SE LSI Tripolare	NS630N-STR23SE LSI Tripolare		0		45	26,79	4.637	8.512	2.479.751	460.102.50 0		1	1.868.602	146.054.40 0					
14,83 60 318 3.161 46,010 3.161 46,010 0,17 6 18 8,7 26 14,83 60 3161 46,010 0,17 6 18 8,7 26 14,83 60 10 10 10 10 10 10 10 14,83 60 10 10 10 10 10 10 10 10 14,83 10 10 10 10 10 10 10 10 10 10 10	1(3G1,5) 15 96 1,12 C60L Monofase L2+N 0	96 1,12 C60L Monofase L2+N	1,12 C60L Monofase L2+N	C60L Monofase L2+N		0		25	14,83	Ó9	318	3.161	46.010	1.798	46.010	3.161	46.010	0,17	9			
	1(3G1,5) 15 96 1,12 C60L Monofase L3+N 0	96 1,12 C60L Monofase L3+N	1,12 C60L Monofase L3+N	C60L Monofase L3+N		0		25	14,83	09	318	3.161	46.010	1.798	46.010	3.161	46.010	0,17	9			
							1															
							1															
							r														_	\dashv
																				-	_	_

Quadro:					Tavola:			Impia	nto: P	pianto: Progetto Impianto Elettrico	to Imp	ianto	Eletti	<u>00</u>									
QUADR ARIA B	QUADRO VENTILATORI ARIA BANCHINA 4 (Q_VE04)	LATC	ORI VE		CG0700P6ADSIS1SG000 000008B	DSIS1S(3000																-
Sigla Arrivo:	rivo:			 	Cliente:			Desc	rizione	Descrizione Quadro:	Jro:											i e	
Q_VE04 -0	t -0				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSI DEFINIT	NA - IIVO	SCHE	EMA E	LETT	RICO	UNIE	ILARE	- SEI	TORE	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	I) NIL	.∡					
Sistema	Sistema di distribuzione: TN-S	ne: Ti	S-N					C.d.t.	% Max	C.d.t. % Max ammessa:		2,8 %	8	i barrat	lcc di barratura: 1,23 [kA]	3 [kA]		Ten	sione	40	Tensione: 400 [V]		
-	Circuito	<u>o</u>			Apparecchiatura	chiatura	~		-		ن	Corto circuito	ircui	o.			:	Š	ovra	CC	Sovraccarico		Test
Lung C.d.	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	hezza r 3.d.t. m	max 1ax						ícc max ≤ P.d.l.	≤ P.d.l.		*		l²t ≤K²S²	(₂ S ₂			≥ 9	z¦ ≥ n' ≥ d		l _f ≤ 1,45 l _z	z ₁	
		,	:									FASE	36	NEUTRO	TRO	PROTEZIONE	ZIONE						
Sigla utenza	Sezione	٦ .	L C.	C.d.t.% con l _b	Tipo	Distribuzione	P ₁	P.d.I.	lcc max	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	<u>a</u>	<u>_</u> =	ž	1.4	1,4512	
	[mm ²]	[ш] [ш]		[%]			[A]	[kA]	[kA]	[A]	[A]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A²S]	[A²S]	[4]	[A]	[A]	[A] [/	[A]	
Q_VE04 -0		1	1	0,77	-	Monofase L3+N	0		1,23	22	789	1	1	Acade	ì	1	1	5,774	10	-	15	,	IS
Q_VE04 -1		-	-	0,93	C60N+Vigi A	Monofase L3+N	0,03 - A	20	1,22	£0'0	542	I	****	-	I	ļ	-	2,406	φ	1	8,7		ıs
Q_VE04 -2		l		8,0	C60N+Vigi A	Monofase L3+N	0,03 - A	20	1,22	0,03	542	ı	-	1		ı	-	0,481	ω	1	8,7	1	<u>8</u>
Q_VE04 -3		1	1	8.0	C60N+Vigi A	Monofase L3+N	0,03 - A	20	1,22	0,03	542	!	i	!		i		0,481	ø		8,7		ত
Q_VE04 -4		-	1	0,85	C60N+Vigi A	Monofase L3+N	0,03 - A	20	1,22	£0'0	542	1	-	I	1	٦١	-	1,203	9	1	8,7		Si
Q_VE04 -5	1(3G6)	30 1	1.044	0,94	C60N+Vigi A	Monofase L3+N	0,03 - A	20	1,22	60,03	323	1.231	736.164	695	736.164	1.231	736,164	1,203	9	44	8,7 6	64	<u></u>
																			_			_	Ī
			_																		\dashv	_	
																				\dashv			

Quadro					Tavola:			Impia	nto: P	Impianto: Progetto Impianto Elettrico	o Imp	ianto	Elettr	00									
QUADRO SOPRAB, BANCHIN (Q_VE05)	QUADRO VENTIL. ARIA SOPRABANCHINA BANCHINA E TRANSITO 5 (Q_VE05)	AF ANS	RIA SITO	9	CG0700P6ADSIS1SG000 000009B	DSIS1SC	0005																
Sigla Arrivo:	rrivo:				Cliente:			Descr	izione	scrizione Quadro:	lro:												
Q_VE05 -0	- - 0				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	.LO I MESSII DEFINIT	- ₹	SCHE	EMA E	HEMA ELETTRICO UNIFILARE	RICO	ONIE	ILARE		TORE	- SETTORE NORMALE	MALE						
Sistema	Sistema di distribuzione: TN-S	Je: T	S-Z					C.d.t. %	% Max	% Max ammessa:		3,64 %	8	Icc di barratura:	ura: 21,57	57 [kA]		Len	Tensione:		400 [V]		
	Circuito	0			Apparecchiatura	chiatura	_				Ú	Corto	circuito	<u>5</u>				တိ	Vre	ıcca	Sovraccarico		Test
Lun	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	lezza .d.t. m	max rer					_	lcc max ≤ P.d.I.	≤ P.d.I.				l²t ≤K²S²	(²S²				2 ≥ ≥		l _f ≤ 1,45 l _z	Z I:	_
	1											FASE	兴	NEUTRO	TRO	PROTEZIONE	ZIONE						
Sigla utenza	Sezione		L C	C.d.t.% con l _b	Тіро	Distribuzione	.P	P.d.I.	Ісс тах	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	9	_ <u>_</u>		اد 1.4	1.45l _z	
	[mm ₂]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[<u>A</u>]	[A ² S]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A] [/	[A]	
Q_VE05-0		1	-	1,66	INS1000	Quadripolare	0	I	21,57	5.280	5.897	I			I	1	-	208	800	1	- 096		SI
Q_VE05 -1	3(1x70)+(1PE35)	20	126	2,28	NS160N- 22SE LSI	Tripolare	0	98	21,54	1.178	2.288	453.057	100.200.10	!	ı	257.444	37.945.600	92	128	195 1	154 28	283	. IS
Q_VE05 -2	3(1x70)+(1PE35)	05	126	2,28	NS160N-22SE LSI	Tripolare	0	36	21,54	1.178	2.288	453.057	100.200.10	-	partie	257.444	37.945.600	65	128	195	154 2	283	IS .
Q_VE05 -3	1(3G1,5)	6	8	1,73	L CEOH	Monofase L3+N	0	15	11,79	09	135	2.866	46.010	1.761	46.010	2.866	46.010	0,17	9	18	8,7	56	<u></u>
Q_VE05 4	1(3G1,5)	9	8	1,73	НО92	Monofase L1+N	o	15	11,79	09	135	2.866	46.010	1.761	46.010	2.866	46.010	0,17	ø	18	8,7	26	-SI
Q_VE05 -5	Q_VE05 -5 3(2x1x150)+(1PE120)	20	62	2,04	NS630N-STR23SE LSI	Tripolare	O'	45	21,54	4.637	4.953	2.486.504	460.102.50 0			2.486.504	446.054.40 0	501	504	650 6	602	942	S
Q_VE05-6	1(3G1,5)	22	96	1,7	Сеон	Monofase L1+N	0	15	11,79	09	247	2.866	46.010	1.761	46.010	2.866	46.010	0,17	ဖ	18	8,7		SI
Q_VE05 -7	1(3G1,5)	20	96	1,7	С60Н	Monofase L2+N	0	15	11,79	09	247	2.866	46.010	1.761	46.010	2.866	46.010	0,17	؈	18	8,7	26	SI
Q_VE05 -8	1(4G6)	15	145	1,81	NG125L	Tripolare	0	20	21,54	160	1.204	21.464	736.164	1	ı	12.870	736.164	6,682	8	8	59	55	ıs
																					\dashv	\dashv	7

Quadro:					Tavola:			Impiar	nto: P	Impianto: Progetto Impianto Elettrico	o Imp	ianto	Elett	<u>i</u>									
QUADRO VENTIL. ARIA SOPRABANCHINA BANCHINA E TRANSITO 5 (Q_VE05)	VENTI ANCHII IA E TR	L. AI	RIA	<u>۔</u>	CG0700P6ADSIS1SG000 000009B	DSIS1SC																	
Sigla Arrivo:	ō:				Cliente:			Descr	izione	scrizione Quadro:	<u>10</u> :												
Q_VE05 -0	o.				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSII DEFINIT	' 0	SCHE	MAE	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	RICO	UNIF	ILARE	SE	TOR	CON	D N E	Ξ Α					
Sistema di distribuzione: TN-S	listribuzic	ne: T	S-N.					C.d.t. %	% Max 8	.t. % Max ammessa:	1	2,8 %	8	li barrat	Icc di barratura: 0,64 [kA]	74 [kA]		Ten	Tensione:	e: 4	400 [V]		
	Circuito	ව			Apparecchiatura	chiatura					ر ا	Corto circuito	ircui	<u>و</u>				Š	ovr	acc	Sovraccarico		Test
Lunghez C.d.t. %	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	jhezza 3.d.t. rr	max nax					-	lcc max ≤ P.d.l.	≤ P.d.l.				l . ⁴	l²t ≤K²S²			ş q	zl ≥ nl ≥ dl	z	l _f ≤ 1,45 l _z	5 lz	
	1			_							٠	FASE	Ä	NEU	NEUTRO	PROTE	PROTEZIONE						
Sigla S	Sezione	_	L C	C.d.t.%	Тіро	Distribuzione	_9	P.d.I.	lcc max lı	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	9	ᅸ	2	7-	1.45l _z	
1	[mm ₂]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
Q_VE05 -0		I	ı	1,6	. 1	Monofase L1+N	0	ı	0,64	22	405	1	1	1	- 1	I	-	5,889	10	1	15		SI
Q_VE05 -1		1	-	1,76	C60N+Vigi A	Monofase L1+N (0,03 - A	20	0,64	0,03	328	1	i		1	l	ļ	2,406	ဖ	1	8,7	1	N S
Q_VE05 -2		1	ı	1,63	C60N+Vigi A	Monofase L1+N	0,03 - A	20	0,64	60,03	328	!	ı	-	-	1	ı	0,481	ဖ		8,7	-	SI
Q_VE05 -3		1	1	1,63	C60N+Vigi A	Monofase L1+N	0,03 - A	20	0,64	60,03	328	ı	1			Ì	l	0,481	g	ı	8,7	ı	IS
Q_VE05 -4			-	1,68	C60N+Vigi A	Monofase L1+N (0,03 - A	50	0,64	0,03	328	1	-	1	ı	ı	ı	1,203	ဖ	ı	8,7		ıs
Q_VE05 -5	1(3G6)	9	692	8.	C60N+Vigi A	Monofase L1+N	0'03 - A	50	0,64	60,0	212	782	736.164	381	736.164	782	736.164	1,203	ဖ	44	8,7	64	SI
Q_VE05 -6				1,61	C60H+Vigi AC	Monofase L1+N 0	0,03 - AC	30	0,64	60,03	328	+	l			l	1	0,115	9	1	8,7	-	SI
Q_VE05 -7	1(3G1,5)	6	1.057	1,66	STI Gr. 8.5x31.5	Monofase L1+N	60,03	20	0,52	5,4	47	9	46.010	9	46.010	φ	46.010	950,0	2	15	4,2	22	SI
Q_VE05 -8	1(3G1,5)	100	1.057	1,7,1	STI Gr. 8.5x31.5	Monofase L1+N	60,03	20	0,52	5,4	43	9	46.010	9	46.010	9	46.010	0,077	2	15	4,2	22	SI
				٠																			

Quadro:	1			-	Tavola:			Impia	nto: F	roget	to Im	piantc	Impianto: Progetto Impianto Elettrico										
QUADR. SOPRAI BANCHI	QUADRO VENTIL. ARIA SOPRABANCHINA E BANCHINA 6 (Q_VE06)	L'A AE	RIA		CG0700P6ADSIS1SG000 000010B	DSIS1SC	3000																
Sigla Arrivo:	rivo:				Cliente:			Desci	rizione	Descrizione Quadro:	.: Ju												
Q_VE06 -0	0- 1				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSII DEFINIT	- ∀	SCHE	EMA E	EET.	RICO	NO.	SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	S H	ITOR	E NOF	RMALE	111					
Sistema d	Sistema di distribuzione: TN-S	ne: 1	S-Z					C.d.t.	% Max	d.t. % Max ammessa:		3,64 %	3	Icc di barratura: 29,91	tura: 29	,91 [kA]	7	Tel	Tensione:	1	400 [V]		
	Circuito	0			Apparecchiatura	chiatura					O	orto	Corto circuito	<u>و</u>				လ	N	acc	Sovraccarico		Test
Lungh C.d.t	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	hezza	тах пах						lcc max	lcc max ≤ P.d.l.				² t s	l²t ≤K²S²			_ <u>_</u>	² 1 ≥ 4 ≥ 4		l _f ≤ 1,45 l _z	2 I ₂	
												¥.	FASE	NEC	NEUTRO	PROTE	PROTEZIONE						
Sigla utenza	Sezione		L C	C.d.t.%	Про	Distribuzione	PI	P.d.I.	Ісс тах	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	· <u> </u>	<u>-</u>	_z	7	1.4512	
	[mm ₂]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	₹	[A]	[A]	[A]	[A]	
Q_VE06 -0		ı	l	0,47	INS1000	Quadripolare	0	-	29,91	5.280	11.331	1	1			ł	Ţ	184	800	ı	096		ī,
Q_VE06 -1 3	3(1x70)+(1PE35)	15	141	99'0	NS160N-22SE LSI	Tripolare	0	36	29,86	1.178	5.959	512.216	100.200.10	1	1	380.948	37.945.600	92	128	195	154	283	<u>s</u>
Q_VE06 -2 3	3(1x70)+(1PE35)	15	141	99'0	NS160N- 22SE LSI	Tripolare	0	98	29,86	1.178	5.959	512.216	100.200.10	l	1	380.948	37.945.600	6	128	195	154	283	IS
Q_VE06 -3	1(3G1,5)	15	96	0,5	Ceor	Monofase L3+N	0	25	19,83	09	318	3.180	46.010	1.825	46.010	3.180	46.010	0,17	9	18	8,7	- Se	is
Q_VE064	1(3G1,5)	15	96	9'0	Ceor	Monofase L1+N	0	25	19,83	09	318	3.180	46.010	1.825	46.010	3.180	46.010	0,17	9	18	8,7	26	S
Q_VE06 -5 3(2)	3(2x1x150)+(1PE120)	15	08	92'0	NS630N-STR23SE LSI	Tripolare	0	45	29,86	4.637	8.897	2.528.690	460.102.50 0	!	i	1.931.872	446.054.40 0	501	504	650	909	942	SI
Q_VE06 -6	1(3G1,5)	15	96	9'0	T092	Monofase L1+N	0	25	19,83	99	318	3.180	46.010	1.825	46.010	3.180	46.010	0,17	9	18	8,7	26	SI
Q_VE06 -7	1(3G1,5)	15	96	5,0	7092	Monofase L2+N	0	25	19,83	90	318	3.180	46.010	1.825	46.010	3.180	46.010	0,17	ဖ	18	8,7	26	SI

Quadro:			-		Tavola:			Impia	nto: P	Impianto: Progetto Impianto Elettrico	to Imp	vianto	Elett	rico									
QUADRO VENTIL. ARIA SOPRABANCHINA E BANCHINA 6 (Q_VE06)	VENTI ANCHIN VA 6 (Q	L A E	RIA		CG0700P6ADSIS1SG000 000010B	DSIS1S	0000							,									
Sigla Arrivo:					Cliente:			Desci	rizione	Descrizione Quadro:	iro:												
Q_VE06 -0	O		-		PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO II MESSI DEFINIT	NA -	SCH	EMA E	ELETT	RICO	UNIT	ILARE	S.	ITORI	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	DNI L	ΤΑ'					
Sistema di distribuzione: TN-S	distribuzic	ne: T	S-N					C.d.t.	% Max	C.d.t. % Max ammessa:		2,8 %	<u>8</u>	Ji barra	lcc di barratura: 1,23	23 [KA]		Ten	Tensione:		400 [V]		!
	Circuito	9			Apparecchiatura	chiatur	- Cr				Q	Corto circuito	ircui	to				Š	OVE	300	Sovraccarico		Test
Lunghe C.d.t. 3	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	hezza 3.d.t. n	max nax						lcc max ≤ P.d.l.	≤ P.d.l.				2 t ≤	l²t ≤K²S²			₹ 9	² 1 > 4 > 9		l _f ≤ 1,45 l ₂	-Z-1:0	
												FASE	SE	NEU	NEUTRO	PROTEZIONE	ZIONE						
Sigla utenza	Sezione		L C.	C.d.t.%	Tipo	Distribuzione	P	P.d.I.	lcc max	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	q ₁		-2	7-	1.4512	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[¥]	[A]	[A]	[A]	[A]	
Q_VE06 -0		1	1	0,77	_	Monofase L2+N	0	- 1	1,23	77	789	-			1	1	-	5,774	5	ı	15		-S
Q_VE06 -1		ı	-	0,93	C60N+Vigi A	Monofase L2+N	0,03 - A	20	1,22	60'0	542	ı	-	ı	1	1	-	2,406	ø	1	- 2'8		S
Q_VE06 -2		1	-	8,0	C60N+Vigi A	Monofase L2+N	0,03 - A	20	1,22	£0'0	542	I	-	1	ı	-	-	0,481	φ	1	8,7		SI
Q_VE06 -3		ı	1	8'0	C60N+Vigi A.	Monofase L2+N	0,03A	20	1,22	0,03	542	I	-		1	1		0,481	ø		. 7,8	1	S
Q_VE06 -4	,	1	1	0,85	C60N+Vigi A	Monofase L2+N	0,03 - A	20	1,22	£0'0	542	-	1	!	1	-	1	1,203	9	1	8,7		Si
Q_VE06 -5	1(3G6)	15	1.044	6'0	- C60N+Vigi A	Monofase L2+N	0,03 - A	20	1,22	60,03	405	1.231	736.164	969	736.164	1.231	736.164	1,203	9	4	8,7 (64	S
												-										_	

QUADRO VENTILATORI CG0700P6ADSIS1SG000 BARRIERE ARIA (Q_BA) CG07005B Sigla Arrivo: Cliente: Ca_BA -0 Sistema di distribuzione: TN-S Circuito Apparecchiatura Cat. % con l₀ ≤ C.d.t. max Cat. % con l₀ ≤ C.d.t. max Sigla Sezione L L Cat.% Tipo Distribuzione I/a O_BA -0 Sigla Sezione L L Cat.% Tipo Distribuzione I/a Q_BA -1 Si(x70)+(1PESS) 15 17 NS160N-22SE LSI Tripolare	Tavola:	드	Impiant	o: Pro	getto	into: Progetto Impianto Elettrico	anto E	Elettri	စ္ပ									
ribuzione: TN-S rribuzione: TN-S rcuito		000																
distribuzione: TN-S Circuito ezza ≤ Lunghezza max % con l₀ ≤ C.d.t. max % con l₀ ≤ C.d.t. max con l₀ lmm²] [m] [m] [%] lx70)+(1PE35) 15 127 1,47 1(361.5) 15 96 1,31 1(361.5) 15 96 1,31 1(361.5) 15 96 1,31	Cliente:		Descrizione Quadro:	ione (Juadr	 O												
Circuito Apparecchiatura Apparecchiatura Apparecchiatura Sezione L	PONTE SULLO STRETTO DI MESSINA PROGETTO DEFINITI		SCHEN	AA EL	ETTR	אוכס ר	JNIFIL	ARE.	- SET	TORE	NOR	EMA ELETTRICO UNIFILARE - SETTORE NORMALE						
Circuito Apparecchiatura Sezione L C.d.t.% Tipo Distribuzione Sezione L L C.d.t.% Tipo Distribuzione Imm² J [m] [%] Tipo Distribuzione Imm² J [m] [%] Mondaripolare 3(1x70)+(1PE35) 15 127 1,47 NS160N- 22SE LSI Tripolare 3(1x70)+(1PE35) 15 127 1,47 NS160N- 22SE LSI Tripolare 1(3G1,5) 15 96 1,31 CG0H Monofase L2+N 1(3G1,5) 15 96 1,31 CG0H Monofase L2+N		O	C.d.t. % I	% Max ammessa:	nmess	a: 3,64 %	%	lcc di	barratı	Icc di barratura: 14,17	17 [KA]	-	Ten	sion	e: 4	Tensione: 400 [V]		
Sezione L C.d.t. Max con lb ≤ C.d.t. max Sezione L C.d.t.% Tipo Distribuzione [mm²] [m] [%] Max con lb [max con lb ≤ C.d.t. max [mm²] [m] [%] Max [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [max con lb [max con lb [max con lb [max con lb [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m	Apparecchiatura					ပိ	rto ci	Corto circuito					Š	OVE	acc	Sovraccarico		Test
Sezione L C.d.t.% Tipo Distribuzione [mm²] [m]			<u>8</u>	lcc max ≤ P.d.l.	P.d.I.				l²t ≤K²S²	² S ²			<u>, d</u>	zl ≥ nl ≥ dl	Z	l _f ≤ 1,45 l _z	ئ ا ک	
Sezione L C.d.t.% Tipo Distribuzione [mm²] [m]						<u> </u>	FASE	 	NEUTRO	RO	PROTEZIONE	ZIONE						
[mm²] [m] [%]	C.d.t.% Tipo Distribuzione		P.d.l.	lcc I	ldi Int. Prot.	lgt l² Fondo li Linea L	I ² t max Inizio Linea	K²S² I	l ² t max Inizio Linea	K²S²	1 ² t max Inizio Linea	K²S²	_a	_=	_2	-	1.45l _z	
3(1x70)+(1PE35) 15 127 1,47 NS160N-22SE LSI Tripolare 1(3G1,5) 15 96 1,31 C60H Monofase L1+N 3(1x70)+(1PE35) 15 127 1,47 NS160N-22SE LSI Tripolare 1(3G1,5) 15 96 1,31 C60H Monofase L2+N	[%]	[A]	[kA] [k	[kA]	[<u>A</u>	[A]	[A²S]	[A²S]	[A ² S]	[A²S]	[A²S]	[A ² S]	[4]	[A]	[<u>A</u>]	[A]	[A]	
3(1x70)+(1PE35) 15 127 1,47 NS160N-22SE LSI Tripolare 1(3G1,5) 15 96 1,31 C60H Monofase L1+N 3(1x70)+(1PE35) 15 127 1,47 NS160N-22SE LSI Tripolare 1(3G1,5) 15 96 1,31 C60H Monofase L2+N	iNS400 Quadripolare		14	14,17	1.610	5.968	ì	1	1	ı	ı	1	184	200	ı	240		SI
1(3G1.5) 15 96 1,31 C60H Monofase L1+N 3(1x70)+(1PE35) 15 127 1,47 NS160N-22SE LSI Tripolare 1(3G1.5) 15 96 1,31 C60H Monofase L2+N	NS160N- 22SE LSI Tripolare		36 14	14,13	1.178	4.030	363.644 10	100.200.10	ı	ı	259.285	37.945.600	76	128	195	154	283	IS
3(1x70)+(1PE35) 15 127 1,47 NS160N-22SE LSI Tripolare 1(3G1,5) 15 96 1,31 C60H Monofase L2+N	C60H Monofase L1+N		15 8,	8,32	09	311	2.872	46.010	1.638	46.010	2.872	46.010	0,17	9	18	8,7	56	IS
1(3G1,5) 15 96 1,31 C60H Monofase L2+N	NS160N- 22SE LSI Tripolare		36 14	14,13	1.178	4.030 34	363.644 10	100.200.10	1	-	259.285	37.945.600	92	128	195	154	283	SI
	C60H Monofase L2+N		15 8	8,32	. 09	311	2.872	46.010	1.638	46.010	2.872	46.010	0,17	ဖ	18	8,7	26	<u>s</u>
										_								
														_		-		

Quadro:				_	Tavola:			Impia	nto: P	roget	to Imp	Impianto: Progetto Impianto Elettrico	Eletti	ico									
QUADR	QUADRO VENTILATORI BARRIERE ARIA (Q_BA)	LAT (Q	ORI BA)		CG0700P6ADSIS1SG000 000005B	NDSIS1S(3000																
Sigla Arrivo:	rivo:				Cliente:			Descr	rizione	scrizione Quadro:	dro:												
Q_BA -0	0				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSI DEFINIT	NA - ONL	SCH	EMA E	ELETI	RICO	ON N	ILARE	SE.	TORE	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	I) NIT	ΤΑ'					
Sistema c	Sistema di distribuzione: TN-S	one: T	S-N					C.d.t.	% Мах	C.d.t. % Max ammessa:		2,8 %	30	lcc di barratura: 0,92 [kA]	ura: 0,9	2 [kA]		Ter	Ision	e: 4	Tensione: 400 [V]]	
	Circuito	<u>و</u>			Apparecchiatura	chiatur	~				ပ	Corto circuito	ircui	ᅌ				S	OVE	acc	Sovraccarico		Test
Lung C.d.	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	jhezza C.d.t. n	пах пах						lcc max ≤ P.d.l.	≤ P.d.I.				l²t ≤K²S²	ر²S²			. q	7 > >	l _z	l _f ≤ 1,45 l _z	45 l ₂	
	1						-					FASE	NE	NEUTRO	TRO	PROTEZIONE	ZIONE	_		•			
Sigla utenza	Sezione	٦	Пах	C.d.t.% con l _b	Tipo	Distribuzione	ρl	P.d.I.	lcc max	1 di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	_9	u _l	7	-	1.45lz	
	[mm ²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A²S]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
Q_BA -0		ı	1	0,84	_	Monofase L3+N	0		0,92	22	289	1		-	ı	-	ı	4,571	10	-	15	1	ß
Q_BA -1		ı	-	-	C60N+Vigi A	Monofase L3+N	0,03 - A	20	0,92	£0'0	438	ı	ı	I	I	1		2,406	9	-	8,7	1	SI
Q_BA -2		1	í	88'0	C60N+Vigi A	Monofase L3+N	0,03 - A	20	0,92	0,03	438	I	i	!	-1	-	, ,	0,481	ဖ	-	8,7	1	S
Q_BA -3		l	1	88,0	C60N+Vigi A	Monofase L3+N	0,03 - A	20	0,92	£0'0	438	I	-	I	1	1	I	0,481	9	-	8,7	-	S
Q_BA -4		i	ı	0,92	C60N+Vigi A	Monofase L3+N	0,03 - A	20	0,92	0,03	438	1	-		1	1	1	1,203	9		8,7	-	SI
																						_	

					Test					-S	īs	ıs	ıs	-Si				
									[A]		283	283	26	26				
				400 [V]	rico	l _f ≤ 1,45 l _z		Ir 1.451z	[A]	336	154 28	154 28	8,7	8,7	_			-
					cca			- Z	[A] [A	33	195 15	195 15	18 8,	18			_	
				Tensione:	Sovraccarico	ا ≥ ا _ا ≥ ا		<u>-</u> £	[A]	280	128	128 1	9	9				
				Ten	Sc	√ զ		۹	[¥]	184	95	95	0,17	0,17				
			MALE				IONE	K²S²	[A ² S]	I	37.945.600	37.945.600	46.010	46.010				
			NOR	8 [kA]			PROTEZIONE	l ² t max Inizio Linea	[A²S]		233.001 3	233.001 3	2.764	2.764				
			rore	lcc di barratura: 12,28		\mathcal{S}_2		K²S²	[A²S]		1	`	46.010	46.010				
93			- SET	barratuı	0	l²t ≤K²S²	NEUTRO	l ² t max Inizio Linea	[A²S]		ı		1.594	1.594				
Impianto: Progetto Impianto Elettrico			SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	lcc di	Corto circuito		ш	K ² S ²	[A²S]	-	100.200.10	100.200.10	46.010	46.010				
ianto			UNIFII	3,64 %	orto ci		FASE	l ² t max Inizio Linea	[A ² S]		332.052 10	332.052 10	2.764	2.764				
o Imp		ro:	RICO		ၓ		I	l gt Fondo Linea	[<u>A</u>]	4.998	2.996	2.996	204	204				
rogett		Descrizione Quadro:	ELETT	d.t. % Max ammessa:		≤ P.d.I.		I di Int. Prot.	[A]	2.254	1.178	1.178	09	09				
into: P		rizione	EMA E	% Max		lcc max ≤ P.d.l.		lcc max	[kA]	12,28	12,26	12,26	7,01	7,01				
Impia		Desc	SCH	C.d.t.	<u>-</u>	<u></u>		P.d.I.	[kA]	-	9g	မ္က	15	15				
	G000		INA -		ä			PI	[A]	0	0	0	0	0				
	DSIS1S		LO II MESSI DEFINI		chiatur			Distribuzione		Quadripolare	Tripolare	Tripolare	Monofase L1+N	Monofase L2+N				
Tavola:	CG0700P6ADSIS1SG000 000012B	Cliente:	PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO		Apparecchiatura			Тіро		INS400	NS160N-22SE LSI	NS160N- 22SE LSI	H090	НОЭО				
		-						C.d.t.% con I _b	[%]	1,49	1,81	1,81	1,54	1. 42.				
	ORI HNA			S-NI		з тах тах		L	[m]		121	121	96	8				
	ILAT NCF			one:]	to	jhezza C.d.t. i		Γ	[m]	l	25	25	25	25	ļ .	_		
	QUADRO VENTILATORI ARIA SOPRABANCHINA 7 (Q_VE07)	rivo:	9	Sistema di distribuzione: TN-S	Circuito	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max		Sezione	[mm ²]		3(1×70)+(1PE35)	3(1x70)+(1PE35)	1(3G1,5)	1(3G1,5)				
Quadro:	QUADRO ARIA SOF (Q_VE07)	Sigla Arrivo:	Q_VE07 -0	Sistema d		Lungl C.d.t		Sigla utenza		Q_VE07 -0	Q_VE07 -1	Q_VE07 -2	Q_VE07 -3	Q_VE07 -4				

CG0700P6ADSIS1SG000 000012B Cliente: PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO STRETTO DI MESSINA - PROGETTO DEFINITIVO L'28 Tipo Distribuzione I _d 1,28 I Monofase L1+N 0,03 - A 1,31 C60N+Vigi A Monofase L1+N 0,03 - A 1,31 C60N+Vigi A Monofase L1+N 0,03 - A 1,34 C60N+Vigi A Monofase L1+N 0,03 - A 1,4 C60N+Vigi A Monofase L1+N 0,03 - A 1,5 C60N+Vigi A Monofase L1+N 0,03 - A 1,6 C60N+Vigi A Monofase L1+N 0,03 - A 1,7 C60N+Vigi A Monofase L1+N 0,03 - A 1				Tavola:			Impia	nto.	roneff	uml o	ianto	Floff	<u>ر</u>								
Cliente: Descrizione Quadro: SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA* STRETTO DI MESSINA SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA* STRETTO DI MESSINA SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA* STRETTO DI MESSINA SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA* SCHEMA ELETTRICO UNIFILARE - SETTORE - SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA* SCHEMA ELETTRICO UNIFILARE - SETTORE - SCHEMA ELETTRICO UNIFILARE - SETTORE - SCHEMA ELETTRICO UNIFILARE - SETTORE - SCHEMA ELETTRICO UNIFILARE - SCHEMA ELETTRICO UNIFILARE - SETTORE - SCHEMA ELETTRICO UNIFILARE - SCHEMA ELETTRICO UNIFILARE - SETTORE - SCHEMA ELETTRICO UNIFICATIONE S	BAN	ATO	동 점	CG0700P6/ 000012B	ADSIS1S	3000	_														
PONTE SULLO SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA STREETTO DI MESSINA - PROGETTO DI MESSINA - PROGETTO DEFINITIVO C.d.t. % Max ammessa: 2,8 % Icc di barratura: 0,77 [kA] Tensione: 400 [V] V. S. A. S				Cliente:			Descr	izione	Quad	<u>.:</u>											
Apparecchiatura C.d.f. % Max ammesa: 2,8 % Icc di barratura: 0,77 [kA] Tensione: Apol [VI]				PONTE SUI STRETTO I	LLO DI MESSI DEFINI	- V	SCHE	MA	ilett	RICO	UNIF	LARE	- SEI	TORE	CON	D NIL	TA'				
	ibuzior	Je: TN-	ý				C.d.t. %	% Max	ammes		%	<u> </u>	i barrat	ıra: 0,7			Ten	sione		Σ	
Cd.1.% Tipo Distribuzione la P.d. I. Icc max S.P.d.I. FASE NEUTRO PROTEZIONE Italia	rcuit	٥		Appared	chiatur	_				ŭ	orto c	ircuit	0				S	Vra	cca	rico	Ë
Cdt.% Tipo Distribuzione l ₄ P.d.1. lcc ldi lgt ltmax R/S ² ltmax R/	Lungh n l _b ≤ C.	iezza ma .d.t. max	×					сс тах	≤ P.d.I.				²t≤	² S ²			<mark>%</mark>	zl ≥ nl		≤ 1,45	N
Lange Linear Con b Linear Con	1										FAS	Щ	NEU	RO	PROTE	ZIONE					
[m] [m] <th>Sezione</th> <th></th> <th></th> <th></th> <th>Distribuzione</th> <th>_=</th> <th>P.d.I.</th> <th></th> <th>I di Int. Prot.</th> <th>l gt Fondo Linea</th> <th>l²t max Inizio Linea</th> <th>K²S²</th> <th>l't max Inizio Linea</th> <th>K²S²</th> <th>l²t max Inizio Linea</th> <th>K²S²</th> <th>_0</th> <th></th> <th></th> <th></th> <th>_z</th>	Sezione				Distribuzione	_=	P.d.I.		I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l't max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	_0				_z
1,28 1 Monofase L1+N 0 0,77 77 483	[mm ²]	[m]			-	<u>-</u>	[k	[kA]	[<u>A</u>	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]				<u> </u>	
1,44 C60N+Vigi A Monofase L1+N 0,03 - A 20 0,77 0,03 383			1,28	_	Monofase L1+N	0		22'0	11	493	ا ا	ł	l	1			5,774	10	1		S
- - 1,31 Cc0N+Vigi A Monofase L1+N 0,03 - A 20 0,77 0,03 383 -		<u> </u>			Monofase L1+N	0,03 - A	8	7,00	6,03	383	ı	-	ı	1	1	l	2,406	ဖ	<u> </u>		<u>s</u>
1,31 C60N+Vigi A Monofase L1+N 0,03-A 20 0,77 0,03 383 1,36 C60N+Vigi A Monofase L1+N 0,03-A 20 0,77 0,03 383 1,36 C60N+Vigi A Monofase L1+N 0,03-A 20 0,77 0,03 309 900 736.164 506 736.164 1,203 6 44 8,7 64 1			_	C60N+Vigi A		0,03 - A	20	22'0	0,03	383	1	1	1		1	!	0,481	-	<u> </u>		S
1,36 C60N+Vigi A Monofase L1+N 0,03 - A 20 0,77 0,03 383 1,203 6 - 8,7 - 64 15 876 1,4 C60N+Vigi A Monofase L1+N 0,03 - A 20 0,77 0,03 309 900 736.164 506 736.164 1,203 6 44 8,7 64 1				C60N+Vigi A	ı	0,03A	20	72'0	60,03	383	I	- 1	ı	-	ſ	1	0,481	9	8		SI
15 876 1,4 C60N+Vigi A Monofase L1+N 0,03-A 20 0,77 0,03 309 900 736.164 506 736.164 900 736.164 1,203 6 44 8,7 64			1,36			0,03 - A	20	0,77	60,0	383	1	-	1	-	-	I	1,203	ဖ			IS
	1(3G6)			C60N+Vigi A		0,03 - A	20	72,0	60,03	309	006	736.164	506	736.164	006	736.164	1,203		-		IS
										-											-
			-																		

Quadro:				Tavola:			Impia	nto: P	Impianto: Progetto Impianto Elettrico	to Imp	vianto	Elettr	<u>ico</u>						ļ		
QUADRO VENTILATORI ARIA SOPRABANCHINA 8 (Q_VE08)	O VENTII	LATO	NA 8	CG0700P6ADSIS1SG000 000013B	ADSIS1S(3000															
Sigla Arrivo:	ivo:			Cliente:			Desci	rizione	Descrizione Quadro:	lro:											
Q_VE08 -0	Q			PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LLO JI MESSI) DEFINIT	- AN IVO	SCHE	EMA E	SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	RICO	UNIE	ILARE	- SE	TORE	NOR	MALE					
Sistema di	Sistema di distribuzione: TN-S	ne: TN	-S-I			-	C.d.t. 9	% Max	C.d.t. % Max ammessa:		3,64 %	0 23	i barrat	ura: 20,	Icc di barratura: 20,91 [kA]		Tens	Tensione:		400 [V]	
	Circuito	0		Appare	Apparecchiatura	7				ŭ	Corto circuito	ircuit	o _i		-		Sc	ovra	cca	Sovraccarico	Test
Lungh C.d.t.	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	hezza rr).d.t. ma	nax ax					lcc max ≤ P.d.l.	≤ P.d.1.				i²t ≤K²S²	(²S²		•	≥ q l	2 1 ≥ 11 ≥ d		l _f ≤ 1,45 l _z	N
										•	FASE)K	NEUTRO	8	PROTEZIONE	ZIONE					
Sigla utenza	Sezione		L C.d.t.% max con l _b	t.% Tipo	Distribuzione	-	P.d.I.	lcc max	l di Int. Prot.	l gt Fondo Linea	l²t max Inizio Linea	K²S²	l't max Inizio Linea	K²S²	l²t max Inizio Linea	K²S²	9	<u> </u>		l _f 1.45l ₂	
	[mm ²]	[m]	[m] [%]	[9]		[A]	[w]	[kA]	[A]	[A]	[A²S]	[A ² S]	[A²S]	[A ² S]	[A ² S]	[A ² S]	<u>-</u>	[A]	[A]	[A] [A]	
Q_VE08 -0		ı	- 0,25	25 INS400	Quadripolare	0	1	20,91	2.254	10.003	1	I	ļ	-	l	I	0	280	e -	336	IS .
Q_VE08 -1 3(3(1x70)+(1PE35)	20 1:	139 0,51	51 NS160N- 22SE LSI	Tripolare	0	æ	20,85	1.178	4.846	446.588	100.200.10	I	1	353.571	37.945.600	95	128	195	154 283	<u>s</u>
Q_VE08 -2 3(3(1x70)+(1PE35)	20 1:	139 0,51	51 NS160N- 22SE LSI	Tripolare	0	98	20,85	1.178	4.846	446.588	100.200.10	I	1	353.571	37.945.600	92	128 1	195 1	154 283	S
Q_VE08 -3	1(3G1,5)	8	96 0,29	29 С60Н	Monofase L1+N	0	15	13,51	09	251	3.130	46.010	1.742	46.010	3.130	46.010	0,17	9	18 8	8,7 26	S
Q_VE08 -4	1(3G1,5)	20 8	96 0,29	29 C60H	Monofase L2+N	0	15	13,51	09	251	3.130	46.010	1.742	46.010	3.130	46.010	0,17	6	18 8	8,7 26	IS
																					_
																			-		
			-																-	_	\dashv
																		\dashv		_	

QUADRO VENTILATORI ARIA SOPRABANCHINA 8 (Q_VE08) Sigla Arrivo: Q_VE08 -0	TOR		5			Impia	10: T	roget	to Imp	pianto	pianto: Progetto Impianto Elettrico	rico									
Sigla Arrivo: Q_VE08 -0	HIN	₩ 8	CG0700P6ADSIS1SG000 000013B	ADSIS1S	3000																
Q_VE08 -0			Cliente:		"	Desci	rizione	Descrizione Quadro:	dro:												
			PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO OI MESSI	NA -	SCHE	EMA E	ELETT	RICO	UNIF	ILARE	- SE	rtori	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	D NI L	TA'					
Sistema di distribuzione: TN-S	S-NT:					C.d.t. 9	% Max	C.d.t. % Max ammessa:		2,8 %) 22	Ji barra:	Icc di barratura: 1,47	17 [kA]		Len	Tensione:	»: 4 0	400 [V]		
Circuito			Apparecchiatura	chiatur					Ö	Corto circuito	sircui	to				S	ovra	ICC:	Sovraccarico	Те	Test
Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	za max t. max	J					lcc max ≤ P.d.l.	≥ P.d.l.				t ≤	l²t ≤K²S²			Տ զի	zl ≥ ln ≥ d		l _f ≤ 1,45 l _z	z	
										FĀ	FASE	NEU	NEUTRO	PROTE	PROTEZIONE						
Sigla Sezione L utenza	Т	C.d.t.%	Tipo	Distribuzione	P	P.d.I.	Ісс тах	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l²t max Inizio Linea	K²S²	91	<u>-</u>	7	l _f 1.45l _z	25	
[mm²] [m]	[m]	[%]			[<u>A</u>]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A] [A]	7	
Q_VE08 -0		0,62	<u>-</u>	Monofase L2+N	۾ 0	ı	1,47	11	3952	1	I	1	1	I	1	5,774	10		15		SI
Q_VE08 -1	1	0,78	C60N+Vigi A	Monofase L2+N	0,03 - A	20	1,47	50,0	615	ı	l	1	1	ı	1	2,406	9		8,7		SI
Q_VE08-2	1	99'0	C60N+Vigi A	Monofase L2+N	0,03 - A	20	1,47	£0'0	615	1	1	1		1	1	0,481	9	1	8,7		SI
Q_VE08-3	!	99'0	C60N+Vigi A	Monofase L2+N	0,03 - A.	20	1,47	0,03	615	1	1	I	1	1	l	0,481	9	I	8,7		SI
Q_VE08-4	1	2,0	C60N+Vigi A	Monofase L2+N	0,03 - A	20	1,47	60,0	615	1		-	-		ı	1,203	9		8,7		SI
Q_VE08 -5 1(3G6) 15	5 1.093	3 0,75	C60N+Vigi A	Monofase L2+N	0,03 - A	20	1,47	60,0	445	1.379	736.164	780	736.164	1.379	736.164	1,203	ø	4	8,7 64	\dashv	-S
																	-				
										,											
																				-	

Quadro:					Tavola:			Impia	nto: P	roget	to Im	pianto: Progetto Impianto Elettrico	Elettr	100	-								
QUADR (Q_AP)	QUADRO ARIA PRIMARIA (Q_AP)	J. RIII	MAR	ĕ	CG0700P6ADSIS1SG000 000004B	DSIS1S	3000																
Sigla Arrivo:	rrivo:				Cliente:			Desci	rizione	scrizione Quadro:	dro:												
Q_AP -0	0				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LLO I MESSI	NA -	SCH	EMA E	ELETI	RICO	SCHEMA ELETTRICO UNIFILARE- SETTORE NORMALE	ILARE	:- SET	TORE	NOR	MALE						
Sistema	Sistema di distribuzione: TN-S	ne:	TN-S					C.d.t.	% Max	C.d.t. % Max ammessa:		3,64 %	<u> </u>	Icc di barratura: 13,36	ura: 13,	36 [kA]		Ter	Tensione:		400 [V]	_	
	Circuito	<u></u>			Apparecchiatura	chiatur					ပ	Corto circuito	ircuit	ᅌ				Ŝ	ovr	acc	Sovraccarico		Test
Lung C.d	Lunghezza ≤ Lunghezza max C.d.t. % con lь ≤ C.d.t. max	hezza 3.d.t. j	a max max						lcc max ≤ P.d.l.	≥ P.d.l.				l²t ≤K²S²	(2S ²)			: 9 1	z ≥ n ≥ d	z ₁	l _f ≤ 1,45 l _z	² 1 51	-
												FASE	NE NE	NEUTRO	TRO TRO	PROTEZIONE	ZIONE	_		_			
Sigla	Sezione	_	L max	C.d.t.% con l _b	Tipo	Distribuzione	Pl	P.d.I.	Ісс тах	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	91	-u	ž1	<u>.</u>	1.451 _z	
	[mm ²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A²S]	[A²S]	[A ² S]	[A ² S]	[A²S]	[A ² S]	[A]	[A]	[A]	[A]	[<u>A</u>]	
0_AP -0			ı	1,56	INS250	Quadripolare	0	ı	13,36	1.811	5.840	ı	I	ı	ŀ	1	1	198	225	ı	270	ŀ	ıs
Q_AP -1	4(1×70)+(1PE35)	30	100	2,18	NS250N- 22SE LSI N/2	Quadripolare	0	98	13,3	1.409	3.013	577.084	100.200.10	246.350	100.200.10 0	413.797	37.945.600	144	175	195	210	283	ıs
Q_AP -2	1(3G2,5)	25	124	1,64	C60H+Vigi A. N	Monofase L1+N	0,03 - A	30	8,25	60,0	356	11.072	127.806	9.208	127.806	11.072	127.806	0,511	10	25	15	37	<u>s</u>
Q_AP -3	1(3G1,5)	2	52	1,6	C60H+Vigi A N	Monofase L2+N	0,03 - A	30	8,25	60'0	1.560	11.072	46.010	9.208	46.010	11.072	46.010	1,189	10	18	15	56	SI
Q_AP-4	1(3G1,5)	99	75	2,2	C60H+Vigi A N	Monofase L3+N	0,03 - A	30	8,25	60,0	06	11.072	46.010	9.208	46.010	11.072	46.010	1,019	10	18	15	56	SI
Q_AP -5		-	1	1,57	NS160N- 22GE LSI 4r	Quadripolare	0	98	13,3	285	5.721	_	-	_	-		1	35	100	1	120	Ļ	<u>s</u>
Q_AP -6	1(4G6)	15	68	1,99	NG125N	Tripolare	0	25	12,96	256	1,233	36.024	736.164		-	25.093	736.164	21	32	88	46	55	ıs
Q_AP -7	1(4G6)	15	115	1,85	NG125N	Tripolare	0	25	12,96	200	1.216	23.028	736.164		i	16.541	736.164	4	25	gg	æ	55	S
Q_AP -8	1(4G1,5)	15	125	1,88	Сеон	Monofase L1+N	0	15	8,25	45	310	2.853	46.010	1.585	46.010	2.853	46.010	1,37	9	5	8,7	26	ıs

Quadro:				Ta	Tavola:			Impiar	nto: P	pianto: Progetto Impianto Elettrico	to Imp	ianto	Eletti	<u>;</u>									
QUADRO ARIA PRIMARIA (Q_AP)	O ARIA F	RIM	ARIA	·	CG0700P6ADSIS1SG000 000004B	DSIS1S(3000																
Sigla Arrivo:	No:			S	Cliente:			Descr	izione	Descrizione Quadro:	lro:							1					
Q_AP -0		;		PO STI	PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSII DEFINIT	- \ O\!	SCHE	MA E	EETT	RICO	UNIF	ILARE	SET	TORE	SCHEMA ELETTRICO UNIFILARE- SETTORE NORMALE	MALE						
Sistema di distribuzione: TN-S	distribuzic	ne: Ti	S-N					C.d.t. 9	6 Max	C.d.t. % Max ammessa:		3,64 %		lcc di barratura: 13,36	ura: 13,	36 [kA]		Ten	Sion	.e. 4	Tensione: 400 [V]		
	Circuito	ا مِ			Apparecchiatura	chiatura					ن	Corto circuito	ircui	to				တိ	OVE	၁၁۳	Sovraccarico		Test
Lunghe C.d.t.	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	hezza r 3.d.t. m	max 1ax					-	lcc max ≤ P.d.l.	≤ P.d.l.				l²t ≤K²S²	(² S ₂			_0	2 ≥ ≥ d	_z	l _f ≤ 1,45 l _z		
											•	FA	FASE	NEUTRO	RO .	PROTEZIONE	ZIONE						
Sigla utenza	Sezione		max cc	C.d.t.% con l _b	Тіро	Distribuzione	P	P.d.I.	lcc max	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K ₂ S ₂	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	a a	_5	ž	1.4	1.45I ₂	
	[mm²]] [w]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A²S]	[A ² S]	[A²S]	[A²S]	[A²S]	[A ² S]	[A]	<u>-</u>	[A]	[A] [/	[A]	
Q_AP -9	1(4G1,5)	15	125 1	1,88	C60H	Monofase L2+N	0	15	8,25	45	310	2.853	46.010	1.585	46.010	2.853	46.010	1,37	9	18	8,7	56	ıs
Q_AP -10	1(4G2,5)	. 15	127 1	1,77	Ceol	Tripolare	0	25	13,3	77	257	11.451	127.806	1	1	9.322	127.806	4,151	10	22	15	32	SI
Q_AP -11	1(4G2,5)	. 15	127	1,77	Ceol	Tripolare	0	25	13,3	11	292	11.451	127.806		1	9.322	127.806	4,151	5	22	15	32	-S
Q_AP -12	1(4G2,5)	15	127	1,77	Ceol	Tripolare	0	25	13,3	11	557	11.451	127.806		1	9.322	127.806	4,151	10	22	15	32	IS
Q_AP -13	1(4G2,5)	15	127	1,77	CeoL	Tripolare	0	25	13,3	22	557	11.451	127.806	-	ı	9.322	127.806	4,151	10	22	15	32	IS
Q_AP -14	1(3G6)	25	97 2	2,25	Сеон	Monofase L2+N	Ö	15	8,25	125	982	14,651	736.164	8.641	736.164	14.651	736.164	9,623	16	4	23 6	64	ıs
Q_AP -15	1(3G6)	15	26	2	CEOH N	Monofase L3+N	0	15	8,25	125	1.169	14.651	736.164	8.641	736.164	14.651	736.164	9,623	16	4	23	49	-S
																						_	\neg

Quadro	:0				Tavola:			Impia	nto: P	pianto: Progetto Impianto Elettrico	to Imp	ojanto	Eletti	ico									
QUADF (Q_AP)	QUADRO ARIA PRIMARIA (Q_AP)	PRIN	IARI		CG0700P6ADSIS1SG000 000004B	DSIS1S(3000																
Sigla Arrivo:	Arrivo:				Cliente:			Desc	rizione	Descrizione Quadro:	dro:					٠							
Q_AP -0	O _P				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LLO OI MESSII DEFINIT	NA -	SCHI	EMA E	HET	RICO	UNIF	ILARE	- SE	ITOR	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	ONIE	TA'					
Sistema	Sistema di distribuzione: TN-S	one: T	S-N					C.d.t.	% Max	C.d.t. % Max ammessa:	ssa: 2,8	% 8	8	lcc di barratura: 0,98 [kA]	ura: 0,9	8 [kA]		Tel		le: 4	Tensione: 400 [V]	_	
	Circuito	to			Apparecchiatura	chiatur					ပ	Corto circuito	ircui	to				S	OVI	acc	Sovraccarico		Test
Lu O.	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	yhezza C.d.t. n	max						lcc max ≤ P.d.l.	≥ P.d.I.				<u>7</u> .	l²t ≤K²S²			91	z ≥ u ≥ a		l _f ≤ 1,45 l _z	45 l _z	
	:											FA	FASE	NEC	NEUTRO	PROTEZIONE	ZIONE					-	
Sigla utenza	Sezione	_	шах	C.d.t.%	Tipo	Distribuzione	P	P.d.I.	lcc max	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	ھ_	<u>"</u>	ž-	ار	1.45l _z	
	[mm²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A²S]	[A²S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
Q_AP-0		1	-	1,19	1	Monofase L3+N	0	-	86'0	22	628	-	-	1	-	-	I	6,947	10	ı	15	ı	ıs
Q_AP -1		1.	1	1,28	C60N+Vigi AC	Monofase L3+N 0,03 - AC	0,03 - AC	20	86'0	£0'0	574	_		ļ	1	1	ł	5,292	9	1	15		ıs
Q_AP -2		-	1	1,28	1	Monofase L3+N	0,03	ı	6'0	60'0	574		-	l	I	-	1	4,811	5	l	15		ß
Q_AP -3	1(3G1,5)	25	69	4,1	Ì	Monofase L3+N	0,03	ı	6'0	£0'0	170	3.027	46.010	1.185	46.010	3.027	46.010	0,481	5	82	15	56	S
Q_AP -4		1	[1,22	C60N+Vigi A	Monofase L3+N	0,03 - A	50	86'0	0,03	460	-			-	1		0,481	ဖ	l	8,7	1	ıs
Q_AP -5		ı		1,22	C60N+Vigi A	Monofase L3+N	0,03 - A	20	86'0	0,03	460			I		1		0,481	9	1	8,7	1	SI
Q_AP-6		1	-	1,23	C60H+Vigi AC	Monofase L3+N (0,03 - AC	30	86'0	60,0	460	-	-	1	ı	-	4444	699'0	9	ı	8,7	-	S
Q_AP -7	1(3G1,5)	65	1.067	1,27	STI Gr. 8.5x31.5	Monofase L3+N	60,03	50	0,72	5,4	61	9	46.010	9	46.010	9	46.010	0,038	7	15	4,2	22	<u>w</u>
Q_AP-8	1(3G1,5)	9	1.067	1,27	STI Gr. 8.5x31.5	Monofase L3+N	0,03	20	0,72	5,4	64	9	46.010	9	46.010	မ	46.010	0,038	7	15	4,2	22	S

Quadro:	0:			_	Tavola:			Impiar	nto: P	Impianto: Progetto Impianto Elettrico	to Imp	ianto	Elettr	<u>00</u>									
QUADF (Q_AP)	QUADRO ARIA PRIMARIA (Q_AP)	PRIM	IARI	<																			
Sigla Arrivo:	\rrivo:				Cliente:			Descr	izione	escrizione Quadro:	io:										1		
Q_AP -0	o				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSII DEFINIT	- AN - OVI	SCHE	MAE	CHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	RICO	UNIF	LARE	- SET	TORE	CON	D N I	ΞΑ'					
Sistema	Sistema di distribuzione: TN-S	one: T	S-N		Resistenza di terra: 3 [Ω]	ərra: 3 [Ω]		C.d.t. %	% Max a	C.d.t. % Max ammessa:	sa: 4 %	.0	8	lcc di barratura: 0,98 [kA]	ıra: 0,9	8 [kA]		Ter	Sion	9. 4	Tensione: 400 [V]		
	Circuito	to			Apparecchiatura	chiatur	~	:			ŭ	orto c	Corto circuito	0				Ń	OVE	၂၁၁	Sovraccarico		Test
rp C	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	yhezza C.d.t. m	тах лах					<u>-</u>	lcc max ≤ P.d.l.	≤ P.d.I.				²t ≤K²S²	(² S ²			<u> </u>	2 1 ≥ 11 ≥ 9		l _f ≤ 1,45 l ₂	_2	
											•	FASE	щ	NEUTRO	RO	PROTEZIONE	ZIONE						
Sigla utenza	Sezione		L C	C.d.t.% con l _b	Tipo	Distribuzione	P	P.d.I.	lcc max 1	l di Int. Prot.	l gt Fondo Linea	I ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l²t max Inizio Linea	K²S²	م	<u>-</u> 5	ž _ľ	l _f 1.451 ₂	215	
	[mm ₂]	[w]	[ш]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A²S]	[A ² S]	[A²s]	[A ² S]	[A ² S]	[A ² S]	[A]	[_	[A]	[A]	[A]	
Q_AP -9	1(3G1,5)	60 1	1.067	1,31	STI Gr. 8.5x31.5	Monofase L3+N	60,03	90	0,72	5,4	64	ဖ	46.010	ø	46.010	φ	46.010	0,077	2	15	4,2	22	ıs
Q_AP -10	1(3G1,5)	82	1.067	1,42	STI Gr. 8.5x31.5	Monofase L3+N	60,03	50	0,72	5,4	51	φ	46.010	σ	46.010	g	46.010	0,154	2	15	4,2	22	<u>8</u>
Q_AP -11	1(3G1,5)	. 06	1.067	1,33	STI Gr. 8.5x31.5	Monofase L3+N	60,0	90	0,72	5,4	49	9	46.010	9	46.010	ဖ	46.010	0,077	2	15	4,2 2.	22	S
Q_AP -12	1(3G1,5)	. 36	1.067	1,33	STI Gr. 8.5x31.5	Monofase L3+N	60,03	90	0,72	5,4	47	g	46.010	g	46.010	σ	46.010	220'0	2	15	4,2	77	Si
Q_AP -13	1(3G1,5)	100	518	1,48	STI Gr. 8.5x31.5	Monofase L3+N	60,03	50	0,72	11	51	21	46.010	21	46.010	21	46.010	0,231	4	15	8,4 2	22	SI
								_	-														
EXEL Engi	EXEL Engineering & Software	ware						CAL	COLI E	CALCOLI E VERIFICHE	岩									ď	Progetto INTEGRA	INTEG	iRA

QUADRO GRUPPO PRESSURIZZAZIONE IDRANTI (Q_GPI)			Tavola:			Impia	nto: F	roget	to Im	oianto	Impianto: Progetto Impianto Elettrico	rico	-							
	ONE		CG0700P4ADSIS1SG000 000002B	ADSIS1S	0000															
Sigla Arrivo:			Cliente:			Desci	rizione	Descrizione Quadro:	dro:											
Q_GPI-N -0			PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LLO JI MESSI) DEFINI	NA -	SCHE	EMA	ELETI	TRICC	UNI	ILARE	S -	TTOR	HEMA ELETTRICO UNIFILARE - SETTORE NORMALE	RMALE					
Sistema di distribuzione: TN-S	e: TN-6	(A)				C.d.t.	% Max	% Max ammessa:		3,15 %	8	lcc di barratura:	tura: 7,38	38 [kA]		Tens	Tensione:		400 [V]	
Circuito		_	Appared	Apparecchiatura	æ					orto	Corto circuito	1				So	vra	cca	Sovraccarico	Test
Lunghezza ≤ Lunghezza max	ezza ma)	×					Ісс тах	lcc max ≤ P.d.l.	1			²t≤	l²t ≤K²S²			ડ વ	² 1 ≥ ¹ 1 ≥ ¹ 1	4	l _f ≤ 1,45 l _z	z
										FA	FASE	NEU	NEUTRO	PROTE	PROTEZIONE					
Sigla Sezione utenza	L L max	C.d.t.%	Tipo	Distribuzione	_=	P.d.l.	lcc max	I di Int. Prot.	l gt Fondo Linea	l ⁴ t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K ² S ²	9	.	7	I _f 1.45I _z	215
[mm ²]	[m] [m]	1 [%]			[A]	[ka]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A] [A]	[A]	-
O_GPI-N -0		0,01	NS160N-22SE LSI	Tripolare	0	မွ	7,38	902	6.553			1	1	-	ļ	. 02	112	- 13	134	IS .
Q_GPI-N -1	1	0,01	NS160N-22SE LSI	Tripolare	0	36	7,35	902	6.504		I	1	-	-	1	. 0	112	- 1	134	- SI
Q_GPI-N -2 3(1x35)+(1PE35)	15 142	0,25		Tripolare	0	1	7,35	802	4.324	276.635	25.050.025	1	1	276.635	37.945.600	. 02	112 1	141 13	134 204	4 S
	_	_																		
		_																		
		_																		
																	-			•
		<u> </u>	:								_									

Quadro:				Tavola:			Impia	nto: F	pianto: Progetto Impianto Elettrico	to Imp	ojanto	Elett	ico									
QUADRO GRUPPO PRESSURIZZAZIONE IDRANTI (Q_GPI)	PPO ZION (I'	Ш		CG0700P4ADSIS1SG000 000002B	DSIS1S	G000																
Sigla Arrivo:				Cliente:			Desc	rizione	Descrizione Quadro:	Jro:												
Q_GPI-C -0				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSI DEFINI	NA -	SCH	EMA	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	RICO	UNIF	ILARE	S.	ITORI	CON	I)	ΠΑ'					
Sistema di distribuzione: TN-S	ione:	S-NT					C.d.t.	% Max	C.d.t. % Max ammessa:		3,03 %	<u>8</u>	di barra	ura: 0,7	Icc di barratura: 0,72 [kA]		Ter	noist	e: 4	Tensione: 400 [V]	· 	
Circuito	ito			Apparecchiatura	chiatur	æ				ပ	Corto circuito	circui	t t				S	ovr	acc	Sovraccarico		Test
Lunghezza ≤ Lunghezza max C.d.t. % con l _h ≤ C.d.t. max	nghezza	a max max						lcc max	lcc max ≤ P.d.l.				²t ≤	l²t ≤K²S²			<u> </u>	z ≥ n ≥ d	ž	l _f ≤ 1,45 l _z	- 1 Si	
1										-	FĀ	FASE	NEC	NEUTRO	PROTE	PROTEZIONE						
Sigla Sezione utenza	7	Пах	C.d.t.% con l _b	Тіро	Distribuzione	PI	P.d.I.	lcc max	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	9	41	21	4	1.45l ₂	
[mm ²]	[m]	[ш]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A2]	[A ² S]	I A²S I	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
Q_GPI-C -0	1	1	8,0	_	Monofase L3+N	0	ı	0,72	77	457	-	ļ	l	ı	1	.	3,368	10	ı	15	1	IS
Q_GPI-C -1	-	ı	96'0	C60N+Vigi A	Monofase L3+N	0,03 - A	20	0,72	60,03	361	1	ı	1	-	i		2,406	9	-	8,7	-	IS
Q_GPI-C -2	ı	1	0,83	C60N+Vigi A	Monofase L3+N	0,03 - A	20	0,72	60,0	361	1	-	1	ı	I	-	0,481	9	-	8,7		SI
Q_GPI-C -3	ı	ı	0,83	C60N+Vigi A	Monofase L3+N	0,03 - A	20	0,72	60,03	361	-	-	1	i	1	ı	0,481	9	ı	8,7	1	ıs
	_																					
										!												
																					_	
																_						
	$\frac{1}{2}$	1		1																		

Quadro:					Tavola:			Impia	into: F	npianto: Progetto Impianto Elettrico	to Im	ojanto	Elett	rico									
QUADF PRESS SPRINI	QUADRO GRUPPO PRESSURIZZAZIONE SPRINKLER (Q_GPS)	PO ZIONE GPS	ш∽		CG0700P4ADSIS1SG000 000001B	DSIS1S(3000																
Sigla Arrivo:	rrivo:				Cliente:			Desc	rizion	Descrizione Quadro:	dro:												
Q_GPS-N -0	0- N-9				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO II MESSII	NA -	SCH	EMA	SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	TRICO	HINO.	ILARE	S. SE	TTOR	E NOF	RMALI	111					
Sistema	Sistema di distribuzione: TN-S	one: T	S-N-					C.d.t.	% Max	C.d.t. % Max ammessa:		3,4 %	8	Ji barra	Icc di barratura: 3,97 [kA]	77 [KA]		Ter	Tensione:	e: 4	400 [V]		
	Circuito	ţo			Apparecchiatura	chiatura	~				၂၁	Corto circuito	sircui	to				Š	ovr	acc	Sovraccarico		Test
Lunç C.d	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	ghezza C.d.t. n	max nax						lcc max	lcc max ≤ P.d.l.				²t ≤	l²t ≤K²S²			<u> </u>	7 ≥ 4 ≥ 9		l _f ≤ 1,45 l ₂	2 12	
												FA	FASE	NEC	NEUTRO	PROTE	PROTEZIONE						
Sigla utenza	Sezione		L C	C.d.t.% con I _b	Tipo	Distribuzione	<u> </u>	P.d.l.	lcc max	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K ² S ²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	_و	<u>"</u>	- Z- ·	7-	1.4512	
	[mm ²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A²S]	[¥]	Ξ.	[¥]	[A]	[A]	
Q_GPS-N -0		-		0	NS160N- 22SE LSI	Tripolare	0	98	3,97	644	3.484		ı		-	ı	1	28	8	1	96	1	S
Q_GPS-N-1		-	-	0	NS160N-22SE LSI	Tripolare	0	36	3,96	644	3.469		I	ı	1	ı		0	8		96		<u>s</u>
Q_GPS-N -2	1(4G25)	15	137	0,13	-	Tripolare	0	I	3,96	644	2.546	160.323	12.780.625	1	1	160.323	12.780.625	28	88	102	96	147	S
										,													
-																							

Quadro:			Tavola:	a:			Impiar	ito: Pi	pianto: Progetto Impianto Elettrico	o Imp	ianto	Elettr	001						:			
QUADRO GRUPPO PRESSURIZZAZIONE SPRINKLER (Q_GPS)	PO IONE GPS)		CG0700F	'00P4AI)1B	CG0700P4ADSIS1SG000 000001B	3000				•												
Sigla Arrivo:			Cliente:	 			Descr	izione	Descrizione Quadro:	<u>.</u> 0:								i.	i i			
Q_GPS-C -0			STRE	PONTE SULLO STRETTO DI M PROGETTO DE	PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO		SCHE	MA E	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	RICO	UNIE E	LARE	- SE	TOR	CON	ONIE	ITA'					
Sistema di distribuzione: TN-S	ne: TN	\$ -					C.d.t. %	6 Max 6	C.d.t. % Max ammessa:		3,03 %	<u> </u>	i barrat	ura: 0,7	Icc di barratura: 0,72 [kA]		ē	nsion	e: 4	Tensione: 400 [V]		
Circuito	<u>0</u>		Αp	pareco	Apparecchiatura	-				ပ	Corto circuito	ircuit	<u>.</u>				S	ovr	acc	Sovraccarico		Test
Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	jhezza rr 3.d.t. ma	Xen Xe					-	lcc max ≤ P.d.I.	≤ P.d.I.		:		l²t ≤K²S²	(²S²			<u>a</u>	2 ≥ ≥ d	zl.	l _f ≤ 1,45 l _z	2 l²	
•										1	FASE	iñ	NEUTRO	TRO	PROTE	PROTEZIONE	1					
Sigla Sezione utenza	u T	L C.d	C.d.t.% Tipo		Distribuzione	P	P.d.I.	lcc max li	1 di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	9	"		1	1.4512	
[mm ²]	[m]	[m]	[%]			[<u>A</u>]	[kA]	[kA]	[A]	[¥]	[A ² S]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	₹	[A]	<u> </u>	[A]	[A]	
Q_GPS-C -0	ı	0	8'0	W	Monofase L2+N	0	1	0,72	22	457	-		1			-	3,368	10	ı	15	-	SI
Q_GPS-C -1	1	0	0,96 C60N+Vigi A		Monofase L2+N	0,03 - A	50	0,72	60,0	361	ı	1		-		i	2,406	9	1	8,7	ļ	is
Q_GPS-C -2	1	o l	0,83 C60N+Vigi A		Monofase L2+N	0,03 - A	20	0,72	60,0	361	1	-	-	1		I	0,481	6	1	8,7	1	S
Q_GPS-C -3		0	0,83 C60N+Vigi A		Monofase L2+N	0,03 A.	50	0,72	60,03	361	ı	!			-	l	0,481	9	ı	8,7	ŀ	IS
						-																
				-																		

Quadro:					Tavola:			Impia	nto: P	Impianto: Progetto Impianto Elettrico	to Imp	ianto	Elett	ico									
QUADE	QUADRO GENERALE IMPIANTI IDRICI (Q_IDR)	RAL Q	Ē DR.		CG0700P6ADSIS1SG000 000011B	DSIS1S(3000																
Sigla Arrivo:	rrivo:				Cliente:			Descr	izione	scrizione Quadro:	Jro:												
Q_IDR-N -0	0- V -				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO II MESSII DEFINIT	- AN	SCHE	EMA E	ELETT	RICO	UNIE	ILARE	: - SE:	ITORE	NOR	SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	111			į		
Sistema	Sistema di distribuzione: TN-S	ne: J	S-N					C.d.t. %	% Max	C.d.t. % Max ammessa:		3,79 %	320	li barrat	Icc di barratura: 21,5	,5 [kA]		Ten	sion	e: 4 (Tensione: 400 [V]		
	Circuito	Q			Apparecchiatura	chiatura	٠			·	ပ	Corto circuito	ircui	<u>ئ</u>				Ñ	OVE	၁၁၉	Sovraccarico		Test
Lung	Lunghezza ≤ Lunghezza max C.d.t. % con l₅ ≤ C.d.t. max	jhezza 3.d.t. r	з тах тах						lcc max ≤ P.d.I.	≥ P.d.l.				7. ≥	l²t ≤K²S²			<u> </u>	² 1 ≥ ¹ 1 ≥ ⁴ 1		l _f ≤ 1,45 l _z	2 Iz	
	2											FA	FASE	NEU	NEUTRO	PROTE	PROTEZIONE						
Sigla utenza	Sezione	-	L	C.d.t.% con l _b	Тіро	Distribuzione	PI	P.d.I.	lcc max	I di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	٩	_ <u>_</u>	7	+	1.45l _z	
	[mm ₂]	[ш]	[m]	[%]			[A]	[kA]	[¥]	[A]	[A]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	[A]	[A]	[A]	[A]	[A]	
Q_IDR-N -0		1	1	10,0	NS250NA	Quadripolare	0	ı	21,5		19.555	I		I	ı		ł	116	0	!	0	1	
Q_IDR-N -1		ı	1	10,0	NS250NA	Quadripolare	0	ı	21,44		19.436	I	ı	ı	1	-		0	0	1	0	-	
Q_IDR-N -2	4(1x35)+(1PE25)	85	111	1,69	NS160N- 22SE LSI 4r	Quadripolare	0	98	21,44	1.030	1.334	477.322	25.050.025	473.138	25.050.025	477.322	19.360.000	83	128	141	154	204	S
Q_IDR-N -3	1(4x25)+(1PE120)	85	329	28'0	NS160N- 22SE LSI 4r	Quadripolare	0	36	21,44	451	1.828	329.754	12.780.625	324.435	12.780.625	329.754	446.054.40 0	33	99	102	29	147	ß
																				\exists		\dashv	
																						_	

Quadro:					Tavola:			Impia	nto: P	Impianto: Progetto Impianto Elettrico	to Imp	vianto	Elett	031									
QUADR	QUADRO GENERALE IMPIANTI IDRICI (Q_IDR)	RAL (Q	E IDR)		CG0700P6ADSIS1SG000 000011B	DSIS1S(3000																
Sigla Arrivo:	rivo:				Cliente:			Descr	rizione	scrizione Quadro:	lro:												
Q_IDR-C -0	ှ ပ				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSII DEFINIT	- AN	SCH	EMA E	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	RICO	N H	ILARE	:- SE	TORE	CON	INIT	Τ					
Sistema c	Sistema di distribuzione: TN-S	ne: T	S-N					C.d.t. 9	% Max	C.d.t. % Max ammessa:	1	3,03 %	8	lcc di barratura: 5,42	ura: 5,4	12 [KA]		Ten	Tensione:	e: 40	400 [V]		
	Circuito	9			Apparecchiatura	chiatura	~				S	orto (Corto circuito	ţo.				Š	OVE	3008	Sovraccarico		Test
Lung	Lunghezza ≤ Lunghezza max C.d.t. % con l. < C.d.t. max	hezza	max		·				lcc max ≤ P.d.l.	≤ P.d.I.				²t ≤	l²t ≤K²S²			l _b ≥	z ≥ n ≥ d!		l _f ≤ 1,45 l _z	- 2 12	
5												FA	FASE	NEUTRO	TRO	PROTEZIONE	ZIONE						
Sigla utenza	Sezione	_	L C	C.d.t.%	σ	Distribuzione	_P	P.d.l.	lcc max	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	<u>-</u>	_=		1. 1	1.45l _z	
	[mm ²]	[m]	[=	[%]			[A]	[kA]	[kA]	[A]	[A]	[A²S]	[A ² S]	[A²S]	[A²S]	[A²S]	[A ² S]	₹	₹	[A]	[A]	[A]	
Q_IDR-C -0		1		60,0	NG125N	Quadripolare	0	25	5,42	128	4.007	1	l	I		l		68'9	91	i	23	1	SI
Q_IDR-C -1		1		20'0	C60H+Vigi A N	Monofase L1+N	0,03 - A	8	4,91	0,03	2.707	-		ı	ı	1	-	2,406	5	١	15		SI
Q_IDR-C -2		ı	1	6,03	C60H+Vigi A N	Monofase L2+N	0,03 - A	30	4,91	£0'0	2.707		1	1	1	ı		0,481	10	1	15		Si
Q_IDR-C -3	1(2x6)+(1PE120)	85	334	0,83	C60H	Monofase L1+N	0	30	4,91	11	458	10.752	736.164	068.6	736.164	10.752	446.054.40	3,522	5	20	15	73	SI
Q_IDR-C -4	1(2x6)+(1PE120)	85	349	8,0	HO9O	Monofase L2+N	0	င္က	16,4	77	458	10.752	736.164	9.390	736.164	10.752	446.054.40 3,368	3,368	10	50	15	73	SI
Q_IDR-C -5	1(2x6)+(1PE120)	85	349	8,0	C60H	Monofase L3+N	0	30	4,91	77	458	10.752	736.164	9.390	736.164	10.752	446.054.40 3,368 0	898'8	10	50	15	73	SI
Q_IDR-C-6			1	0,0	C60H+Vigi A	Monofase L1+N	0,03 - A	30	4,91	60,03	2.707	1	1	i	ı			0,962	10	1	15	1	SI
																					\dashv		
																				7	\dashv	_	

Quadro:					Tavola:			Impia	nto: P	pianto: Progetto Impianto Elettrico	to Imp	ianto	Elettr	100									
QUADRO SERVIZI CENTRALE ANTINCENDIO (Q_SI)	SERVI E ANT	IZI INC	Ë	<u> </u>	CG0700P6ADSIS1SG000 000002B	DSIS1S(3000																
Sigla Arrivo:	.o.				Cliente:			Desci	rizione	Descrizione Quadro:	Jro:												
Q_SI-N -0	_				PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO II MESSII DEFINIT	NA -	SCH	EMA E	ELETT	RICO	UNIE	ILARE	SE	TORE	SCHEMA ELETTRICO UNIFILARE - SETTORE NORMALE	MALE						
Sistema di distribuzione: TN-S	listribuzic	ר :anc	LN-S					C.d.t.	% Max	C.d.t. % Max ammessa:		3,79 %	32	lcc di barratura:	ura: 3,42	2 [kA]		Ter	Tensione:		400 [V]		
	Circuito	to			Apparecchiatura	chiatur	m.				Ű	Corto circuito	ircui	ţo				Ś	OVE	acc	Sovraccarico		Test
Lunghez C.d.t. %	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	jhezza C.d.t. r	з тах тах						lcc max ≤ P.d.l.	≤ P.d.l.				l²t ≤K²S²	(² S ₂			- P	² 1 ≥ ¹ 1 ≥ ⁹ 1	7	l _f ≤ 1,45 l _z	719	
	ı											FASE	36	NEUTRO	80	PROTEZIONE	ZIONE						
Sigla Soutenza	Sezione	7	Мах	C.d.t.% con l _b	Tipo	Distribuzione	Pj	P.d.I.	lcc max	l di Int. Prot.	l gt Fondo Linea	I ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	9	"	ži	7	1.4512	
1	[mm ²]	[m]	[m]	[%]			[A]	[kA]	[kA]	[A]	[A]	[A ² S]	[A²S]	[A ² S]	[A²S]	[A²S]	[A ² S]	[A]	[A]	[A]	[A] [[A]	
0- N-IS-O		I	1	28'0	inse3	Quadripolare	0	ı	3,42	451	1.822	1	ı	 	ı	1	ı	33	56	1	29		ıs
Q_SI-N -1	1(4G2,5)	15	123	1,16	Сбон	Tripolare	0	15	3,4	11	459	4.928	127.806		I	4.151	127.806	5,66	10	22	15	32	SI
Q_SI-N -2	1(5G2,5)	15	288	26'0	C60H+Vigi A	Quadripolare	0,03 - A	15	3,4	60,03	456	4.804	127.806	2.174	127.806	4.060	127.806	1,868	10	23	15	33	SI
Q_SI-N -3	1(5G2,5)	15	430	1	C60H+Vigi A	Quadripolare	0,03 - A	15	3,4	£0'0	456	4.804	127.806	2.174	127.806	4.060	127.806	2,547	10	23	15	33	SI
Q_SI-N -4	1(5G2,5)	15	288	76'0	C60H+Vigi A	Quadripolare	0,03 - A	15	3,4	60,03	456	4.804	127.806	2.174	127.806	4.060	127.806	1,868	10	23	15	33	IS
Q_SI-N -5	1(5G2,5)	15	430	-	C60H+Vigi A	Quadripolare	0,03 - A.	15	3,4	60'0	456	4,804	127.806	2.174	127.806	4.060	127.806	2,547	10	23	15	33	SI
0_SI-N -6	1(5G6)	15	167	1,11	C60H+Vigi A	Quadripolare	0,03 - A	15	3,4	£0'0	262	6.426	736.164	3.064	736.164	5.392	736.164	10	16	38	23	55	<u>s</u>
Q_SI-N -7	1(5G6)	15	100	1,05	C60H+Vigi A	Quadripolare	0,03 - A	15	3,4	60,0	823	6.986	736.164	3.727	736.164	5.952	736.164	8,49	25	88	98	55	-S

Quadro:				-	Tavola:			Impia	nto: P	pianto: Progetto Impianto Elettrico	to Imp	vianto	Elett	, 00,									
QUADRO SERVIZI CENTRALE ANTINCENDIO (Q_SI)	SERVI LE ANT	NC INC	END	<u>o</u>	CG0700P6ADSIS1SG000 000002B	DSIS1S	G000																_
Sigla Arrivo:	.ov				Cliente:			Desci	rizione	Descrizione Quadro:	<u>10:</u>												
Q_SI-C -0					PONTE SULLO STRETTO DI MESSINA - PROGETTO DEFINITIVO	LO I MESSI DEFINI	NA -	SCH	EMA E	EETT	RICO	N Fi	ILARE	SE.	ITOR	SCHEMA ELETTRICO UNIFILARE - SETTORE CONTINUITA'	ONIE	ITA'					
Sistema di distribuzione: TN-S	distribuzic	one: 1	S-NJ					C.d.t.	% Max	C.d.t. % Max ammessa:		3,03 %	8	lcc di barratura: 0,72 [kA]	ura: 0,7	72 [kA]		<u>ē</u>	Tensione:		400 [V]		
	Circuito	to			Apparecchiatura	chiatur	Ø				ŭ	Corto circuito	ircui	5				ဟ	ovr	acc	Sovraccarico		Test
Lunghe C.d.t. 5	Lunghezza ≤ Lunghezza max C.d.t. % con l _b ≤ C.d.t. max	yhezza C.d.t. г	і тах пах						lcc max ≤ P.d.l.	< P.d.l.			-	1 4 ≤	l²t ≤K²S²			ھ_	² 1 > ¹ 1 > ⁰ 1	z	l _f ≤ 1,45 l ₂	5 12	
												FASE	šE	NEU	NEUTRO	PROTEZIONE	ZIONE						
Sigla utenza	Sezione		L C	C.d.t.% con l _b	Tipo	Distribuzione	P	P.d.l.	lcc max	l di Int. Prot.	l gt Fondo Linea	l ² t max Inizio Linea	K²S²	I ² t max Inizio Linea	K²S²	l ² t max Inizio Linea	K²S²	<u>4</u>	"1	<u>z</u>	-	1.45l _z	
	[mm²]	[ш]	[m]	[%]			[A]	[kA]	[kA]	[A]	<u> </u>	[A²S]	[A²S]	[A ² S]	[A ² S]	[A ² S]	[A ² S]	₹	[A]	[A]	[A]	<u>-</u>	
Q_SI-C -0		ı	1	0,83	_	Monofase L1+N	0	-	0,72	22	457	. 1			l	1	1	3,522	10		15	ı	IS.
Q_SI-C -1		i	-	66'0	C60N+Vigi A	Monofase L1+N	0,03 - A	20	0,72	£0'0	361	ı		ı	I	1	1	2,406	9	ı	8,7	1	<u>s</u>
Q_SI-C -2		1	-	0,87	C60N+Vigi A	Monofase L1+N	0,03 - A	20	0,72	£0'0	361	1	L	1	l	J	1	0,481	9		8,7	-	S
Q_SI-C -3		ı	-	0,87	C60N+Vigi A	Monofase L1+N	0,03 - A	20	0,72	£0°0	361	-	1	·		ı	ł	0,481	9	-	8,7	-	SI
Q_SI-C -4		ı	-	0,84	C60H+Vigi AC	Monofase L1+N 0,03 - AC	0,03 - AC	30	0,72	60,03	361	i		1	1	1		0,154	9	1	8,7	-	SI
Q_SI-C -5	1(3G1,5)	15	1,060	0,87	STI Gr. 8.5x31.5	Monofase L1+N	60,03	99	0,57	5,4	115	9	46.010	9	46.010	9	46.010	0,038	2	15	4,2	22	SI
9- 2-IS_0	1(3G1,5)	15	1.060	0,87	STI Gr. 8.5x31.5	Monofase L1+N	£0'0	95	75'0	5,4	115	9	46.010	9	46.010	9	46.010	860,0	2	15	4,2	22	S
0_SI-C -7	1(3G1,5)	15	1.060	78,0	STI Gr. 8.5x31.5	Monofase L1+N	0,03	90	0,57	5,4	115	9	46.010	9	46.010	g	46.010	0,038	2	15	4,2	22	<u>s</u>
Q_SI-C -8	1(3G1,5)	15	1.060	0,87	STI Gr. 8.5x31.5	Monofase L1+N	0,03	90	0,57	5,4	115	ဖ	46.010	9	46.010	ဖ	46.010	0,038	2	15	4,2	22	S