

Comuni di Ozieri e Chiaramonti

Provincia di Sassari

Regione Sardegna

PARCO EOLICO "ISCHINDITTA"

PROGETTO DEFINITIVO

PROPONENTE

GRVDEP Energia S.r.l.

C.F. e P.IVA 03857060929

OGGETTO

TIMBRI E FIRME

1 - ELABORATI DESCRITTIVI GENERALI

DISCIPLINARE TECNICO PRESTAZIONALE

dott. ing. Roberto SESENNA Ingegneri Provincia di Torino Posizione n.8530J SSN RRT 75B12 C665C

VIA IS MAGLIAS N. 178 - 09122 - CAGLIA TEL. +39 011 43 77 242 studiorosso@legalmail.it

info@sria.it www.sria.it

dott. ing. Fabio AMBROGIO Ordine degli Ingegneri di Torrine DEGLI INGEGNERI Posizione ri.23B

Cod. Fisc. MBR FBA 78/03 B504K OVINCIA DI TORINO

FABIO AMBROGIO n° B 23

Coordinatore e responsabile delle attività: Dott. ing. Giorgio DEMURTAS

CONTROLLO QUALITA

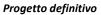
DESCRIZIONE	EMISSIONE	ľ
DATA	MAG/2020	
COD. LAVORO	409/SR20	
TIPOL, LAVORO	D	
SETTORE	G	
N. ATTIVITA'	01	
TIPOL. ELAB.	DD	
TIPOL, DOC.	E	
ID ELABORATO	11	
VERSIONE	0	

REDATTO

ing. Gianluca COLOMBO

CONTROLLATO

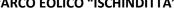
ing. Luca DEMURTAS


APPROVATO

ing. Roberto SESENNA

ELABORATO

PARCO EOLICO "ISCHINDITTA"


INDICE

1.	PREMES	SA	
•	CARATT	EDISTICUS TECNICUS DELL'ASDOCENSE ATORS	_
2.		ERISTICHE TECNICHE DELL'AEROGENERATORE	
:		PONENTI MECCANICHE DELL'IMPIANTO	
	2.1.1	Rotore	
	2.1.2	Sistema di frenatura	
	2.1.3	Sistema di orientamento	
	2.1.4	Navicella	
	2.1.5	Torre	
•		MPONENTI ELETTRICHE DELL'IMPIANTO	
	2.2.1 2.2.2	Generatore	
	2.2.2	Convertitore	
	2.2.3 2.2.4	Trasformatore MT Sistema ausiliario	
	2.2.4	Sensori di vento	
	2.2.5	VMP – Vestas Multi Processor	
		IDIZIONI DI FUNZIONAMENTO E LINEE GUIDA DELLE PRESTAZIONI	
•	2.3 CON 2.3.1	Condizioni del sito e clima	
	2.3.1	Temperatura e vento	
	2.3.2	Connessione alla rete	
	2.3.4	Autoconsumo	
	2.3.5	Condizioni per la Curve di potenza all'altezza del mozzo	
		SCRIZIONI MONTAGGIO AEROGENERATORI	
3.	OPERE E	DILI	16
:	3.1 PRE	SCRIZIONI TECNICHE DI PROGETTO	16
	3.1.1	Fondazioni	16
	3.1.2	Piazzole	
	3.1.3	Viabilità di nuova costruzione e da adeguare	
4.	OPERE E	LETTRICHE	21
	4.1 DES	CRIZIONE DELLE OPERE ELETTRICHE	21
	4.1.1	Descrizione impianto eolico	21
	4.1.2	Criteri progettuali	
	4.2 Mo	DALITÀ DI POSA E REALIZZAZIONE	
4	4.3 INTE	RFERENZE	25
5.	QUALITA	A' E PROVENIENZA DEI MATERIALI	28
	5.1 SAB	BIA, GHIAIA E PIETRISCO	28
		CESTRUZZO E FERRO DI ARMATURA	
•	5.2.1	Approvvigionamento ed accettazione dei materiali	
	5.2.2	Cementi	
	5.2.3	Classe di resistenza dei calcestruzzi	
	5.2.4	Ghiaia e pietrisco costituenti gli aggregati	
	5.2.5	Sabbie per calcestruzzo	
	5.2.6	Dosatura dei getti	
	5.2.7	Confezione dei calcestruzzi	

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

5.2.8	Getto del calcestruzzo	32
5.2.9	Prescrizioni esecutive	33
	I provini	
	Vibrazione	
	Condizioni climatiche	
	Ferro di armatura	
5 2 14	Ancoragai	31

ALLEGATI

ALLEGATO 1 – Scheda tecnica VESTAS V150 – 5.6 MW

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

1. PREMESSA

Il presente elaborato è parte integrante del progetto definitivo relativo al parco eolico "Ischinditta" e ne rappresenta il disciplinare tecnico prestazionale degli elementi tecnici.

Il Parco Eolico è sito nei comuni di Ozieri, Tula, Erula e Chiaramonti nella provincia di Sassari. Il progetto prevede l'installazione di 9 aerogeneratori del tipo VESTAS V-150. Gli aerogeneratori hanno potenza nominale di 5,6 MW, per una potenza complessiva del parco eolico di 50,4 MW. L'altezza delle torri sino al mozzo (HUB) è di 105 m, il diametro delle pale è di 150 m per una altezza complessiva della struttura pari a 180 m (in allegato si riporta la scheda tecnica).

Gli aerogeneratori del tipo VESTAS V150 – 5,6 MW sono del tipo con rotore tripala sopravento. Le pale sono controllate da un sistema basato sul posizionamento ottimizzato delle stesse in funzione delle varie condizioni del vento. Attualmente il modello è fornito di un rotore tripala da 150 m di diametro che permette di generare una potenza di 5,6 MW. Questo tipo di aerogeneratore è studiato in modo tale da permettere alla navicella di ruotare attorno all'asse della torre. Tale sistema di imbardatura attivo ha sei marce azionate elettricamente dal sistema di controllo della turbina eolica secondo le informazioni ricevute dagli anemometri e banderuole montati sulla parte superiore della navicella. Il sistema di controllo permette all'aerogeneratore di funzionare con velocità del rotore variabili massimizzando in ogni momento la potenza prodotta, mantenendola quindi prossima o pari a quella nominale sia ad alte che a basse velocità del vento, minimizzando il carico e il rumore generato.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

CARATTERISTICHE TECNICHE DELL'AEROGENERATORE

Il parco eolico "Ischinditta" è composto da 9 aerogeneratori del tipo VESATAS V - 150, le coordinate planimetriche degli aerogeneratori sono riportate nella Tabella 1.

Tabella 1 – Coordinate degli aerogeneratori sistema di riferimento WGS 84/UTM 32N e Roma 40/Gauss-Boaga.

	Coordinate degli aerogeneratori - Parco eolico "Ischinditta"			
	WGS 84 / UTM 32N		Monte Mario (1)	/ Gauss - Boaga
No. (*)	Est [m]	Nord [m]	Est [m]	Nord [m]
A1	495441.07	4510287.71	1495466.52	4510297.82
A2	494183.15	4509689.52	1494875.43	4509554.10
A3	494849.99	4509544.00	1494319.94	4510211.75
A4	494294.51	4510201.64	1494208.58	4509699.62
A5	493947.32	4509186.78	1493972.74	4509196.87
A6	493230.03	4508094.50	1493255.44	4508104.58
A7	493145.87	4508650.42	1493171.27	4508660.51
A8	492205.35	4507780.08	1492230.74	4507790.16
A9	491561.13	4507515.64	1491586.49	4507525.71

2.1 COMPONENTI MECCANICHE DELL'IMPIANTO

Per il Parco eolico da realizzarsi nel territorio dei Comuni di Ozieri, Erula, Tula e Chiaramonti in provincia di Sassari è stato preso in considerazione un aerogeneratore da 5,6 MW della VESTAS avente un rotore tripala con un sistema di orientamento della navicella attivo. Si tratta di una macchina della più avanzata tecnologia con una potenza nominale di 5,6 MW e fornita delle necessarie certificazioni rilasciate da organismi internazionali.

Il rotore ha un diametro di 150 m ed utilizza il sistema di controllo OptiTip capace di adattare l'aerogeneratore per operare in un ampio intervallo di velocità del rotore. Il numero di aerogeneratori previsti è 9 per una potenza totale installata di 44,8 MW. Gli aerogeneratori sono collocati nel parco, come si può evincere dagli elaborati grafici, ad un'interdistanza non inferiore 500 m, gli stessi sono disposti perpendicolarmente rispetto alla direzione del vento dominante. L'aerogeneratore è progettato per un intervallo di temperatura compreso fra –20°C e +45°C. Al di fuori di questo intervallo devono osservarsi precauzioni particolari. L'umidità relativa può arrivare anche al 100%.

Le pale hanno una lunghezza di 73,65 m sono costituite da due gusci alari in carbonio e fibra di vetro. Ogni pala consta di tali due elementi fissati ad una struttura di supporto mediante inserti di acciaio speciale. Tutte le turbine VESTAS V-150 - 5,6MW sono equipaggiate con OptiTip. Con il sistema OptiTip l'angolo delle pale è costantemente regolato e orientato nell'angolo ottimale a seconda delle diverse condizioni del vento. Ciò ottimizza la potenza prodotta e riduce al minimo il livello di rumore. Per ogni pale infatti, la turbina VESTAS V-150 è fornita di un sistema idraulico individuale di inclinazione della pala stessa. Ogni sistema di inclinazione è collegato alla centralina idraulica sita all'interno della navicella, la quale eroga pressione che permette la rotazione della pala.

ELABORATO 1.11 - Disciplinare tecnico prestazionale

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

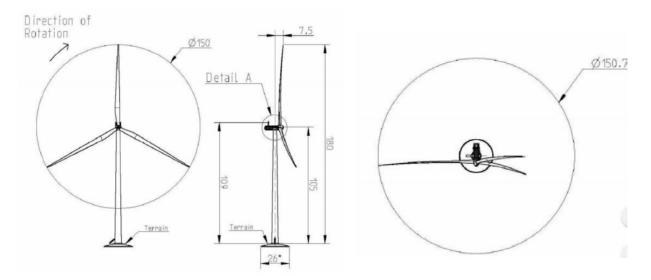


Figura 1 – Vista prospettica, laterale e dall'alto dell'aerogeneratore VESTAS V-150 da 5,6 MW in progetto.

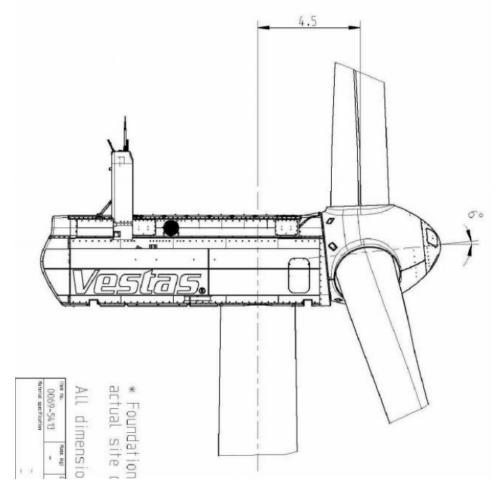


Figura 2 – Dettaglio della navicella dell'aerogeneratore VESTAS V-150 da 5,6 MW in progetto.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

In corrispondenza di un'alta velocità del vento il sistema di controllo mantiene la produzione di potenza al suo valore nominale indipendentemente dalla temperatura e dalla densità dell'aria. In corrispondenza invece di bassa velocità del vento il sistema OptiTip e il controllo ottimizzano la produzione di potenza scegliendo la migliore combinazione tra velocità del rotore e angolo di orientamento in modo da avere il massimo del rendimento.

Il mozzo centrale supporta le tre pale e trasferisce i carichi di reazione e la coppia all'albero principale. L'albero principale trasmette la potenza al generatore tramite un sistema di riduzione. Tale sistema è composto da uno stadio planetario e 2 stadi elicoidali. Da questo la potenza è trasmessa tramite l'accoppiamento a giunto cardanico al generatore.

Il generatore è tri-fase e del tipo a magneti permanenti collegato alla rete attraverso il convertitore. L'alloggiamento del generatore consente la circolazione di aria di raffreddamento all'interno dello statore e del rotore. Il calore generato dalle perdite viene rimosso da uno scambio di calore aria-acqua.

Il sistema frenante principale è aerodinamico e consiste nello sfruttare il sistema di cambio passo delle pale per ruotare completamente ciascuna delle tre pale in modo da esporre una superficie sempre minore al vento e costituire un rallentamento sino ad un blocco totale della rotazione, mentre quello secondario è un sistema di emergenza a disco attivato idraulicamente e montato sull'albero del sistema di riduzione.

Tutte le funzioni dell'aerogeneratore sono monitorate e controllate da diverse unità a microprocessori. Il sistema di controllo è posizionato nella navicella. La variazione dell'angolo delle pale è regolata da un sistema idraulico che permette una rotazione di 95°. Questo sistema fornisce anche pressione al sistema frenante.

Il sistema di imbardata è un sistema attivo basato su un sistema di cuscinetti a strisciamento e controllati dall'apposito sistema di controllo sulla base di informazioni ricevute dalla veletta montata sulla sommità della navicella. I meccanismi di imbardata fanno ruotare i pignoni che si collegano con l'anello a denti larghi montato in cima alla torre.

La copertura della navicella, costituita da poliestere rinforzato con fibre di vetro, protegge tutti i componenti interni dagli agenti atmosferici. La navicella ospita anche un paranco di servizio della portata di 800 kg.

La torre dell'aerogeneratore è costituita da un tubolare tronco conico prodotto in 3 sezioni; è inoltre verniciata per proteggerla dalla corrosione.

2.1.1 Rotore

Il rotore è costituito da 3 pale disposte in maniera aerodinamica e costruite in carbonio e fibra di vetro e fissate ad un nucleo metallico. Le caratteristiche principali del rotore sono:

Tabella 2 – Caratteristiche principali del rotore.

Diametro	150 m
Area spazzata	17.671 m ²
Intervallo velocità di rotazione	4,9 – 12,6 r.p.m.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

L'asse ad alta velocità aziona il generatore e tiene fermo il freno meccanico. La connessione del generatore all'asse di rotazione è ottenuto tramite accoppiamento cardanico che assorbe gli spostamenti radiali, assiali ed angolari che assicurano la precisione dell'allineamento e la massima trasmissione dello sforzo di rotazione.

Il generatore ha le seguenti caratteristiche:

Tabella 3 – Caratteristiche principali del generatore.

Tipo:	Sincrono a magneti permanenti	
Potenza nominale	5600 kW	
Tensione	3 x 800 V (alla velocità nominale)	
Range Frequenza	0 - 138 Hz	
Range Velocità in esercizio del rotore	0 – 460 rpm	

Il disegno generale del generatore e della navicella dà luogo ad una macchina compatta, sicura ed efficiente con accessi adeguati alle esigenze di manutenzione.

2.1.2 Sistema di frenatura

L'aerogeneratore è equipaggiato con 2 sistemi indipendenti di frenata (aerodinamico e meccanico) attivati idraulicamente e interconnessi al fine di controllare la turbina in tutte le condizioni di funzionamento.

Il sistema di regolazione del passo (noto come "pitch") delle pale si utilizza per frenare la turbina cosicché, quando le pale girano perpendicolari all'asse longitudinale, il rotore riduce la superficie esposta al vento e la turbina rallenta la rotazione fino a fermarla completamente nell'evenienza. Ogni pala ha un accumulatore idraulico che fornisce energia per la rotazione della pala.

In aggiunta è presente anche il sistema di frenatura meccanico, il quale incorpora un freno a disco attivato idraulicamente fissato all'asse a media velocita del riduttore. Il sistema di frenatura meccanico viene attivato solo come freno di stazionamento oppure in caso di necessità di arresto di emergenza. Le sue caratteristiche principali sono le seguenti:

Si distinguono 2 sistemi di frenatura:

- 1) Frenatura normale (in funzionamento) che prevede l'uso del sistema di regolazione del passo delle pale per avere una frenata controllata a bassa pressione idraulica. Con ciò i carichi sulla turbina sono ridotti al minimo e questo contribuisce a prolungare la vita del sistema.
- 2) Frenata di emergenza in situazioni critiche con attivazione, a pressione elevata, delle ganasce idrauliche.

Il sistema di frenatura e garantito dall'unita idraulica che mantiene una riserva permanente di energia immagazzinando fluido in pressione ed essendo cosi sempre disponibile indipendentemente dalla fornitura elettrica.

409/SR-D-G01-DTE-11-0

MAGGIO 2020

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Tabella 4 – Caratteristiche principali del unità idraulica.

Pompa principale	Pompe olio ridondanti per ingranaggi interni	
Pressione max	260 bar	
Motore	2 x 19 kW	

2.1.3 Sistema di orientamento

L'aerogeneratore dispone di un sistema di orientamento attivo. L'allineamento della navicella con la direzione del vento avviene mediante 4 motoriduttori che fanno presa sull'ingranaggio della corona di orientamento della torre. La banderuola situata sulla copertura della gondola invia un segnale al controllo il quale aziona i motori di orientamento che a loro volta ruotano la turbina. Il tipo di orientazione è ad anello di orientazione con bronzine.

I componenti del sistema sono di seguito specificati:

Tabella 5 – Componenti sistema di orientamento.

Tipo	Cuscinetto piano
Materiale	Anelli d'imbardata trattato termicamente. Cuscinetti piani PETP
Tipo ingranaggio	Ingranaggio planetario a più stadi
Velocità di imbardata (50Hz)	Approx. 0,4°/sec.
Velocità di imbardata (60 Hz)	Approx. 0,5°/sec.

Come caratteristica addizionale di sicurezza, il sistema di orientamento può essere utilizzato, mediante attivazione manuale per ruotare la navicella e il piano del rotore fuori dalla direzione del vento nel caso ciò sia necessario.

2.1.4 Navicella

La base della navicella è divisa in due parti ed in particolare quella frontale, in ghisa e quella posteriore è caratterizzata da una struttura reticolare. La parte frontale del basamento della navicella svolge la funzione di portare il mozzo principale di trasmissione (mozzo di alta velocità) e trasmette le forze dal rotore frontale alla torre tramite il sistema di imbardata.

La superficie inferiore della navicella poggia sulla corona di orientamento e slitta su un alloggiamento di nylon per evitare che gli sforzi trasmessi generino eccessive tensioni sugli ingranaggi del sistema di orientamento.

Le travi del paranco di servizio sono fissate alla parte posteriore della piastra del tetto.

La copertura della navicella è attaccata alla superficie di base ed è realizzata in fibra di vetro. La sezione di piano è equipaggiata con sensori di vento e lucernari che possono essere aperti dall'interno della navicella per accedere al tetto e da fuori per accedere alla navicella.

È possibile accedere dalla torre attraverso il sistema di oscillazione.

ELABORATO 1.11 - Disciplinare tecnico prestazionale

Pag. 8

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Tabella 6 – Caratteristiche platea di fondazione e copertura navicella.

Copertura navicella	GRP
Platea di base - frontale	Ghisa
Platea di base – posteriore	Struttura reticolare

2.1.5 Torre

Torri tubolari con flange di connessione, certificate con le specifiche e correnti approvazioni, sono disponibili in differenti altezze standard. Le torri sono progettate con la maggioranza delle connessioni saldate sostituite da supporti magnetici per ottenere delle torri rinforza e lisce. I magneti forniscono il supporto in una direzione orizzontale ed interna, così come piattaforme, scale etc. sono supportate verticalmente (per esempio nella direzione della forza di gravità) da connessioni meccaniche. Il design liscio delle torri riduce l'esigenza di maggiore spessore metallico, rendendo la torre più leggera se comparata ad altre con saldature interne dei gusci.

Le altezze del mozzo elencate includono una distanza dalla sezione di fondazione al livello del terreno di approssimativamente 2 m dipendendo dallo spessore della flangia in basso, ed una distanza dalla flangia più in alto al centro del mozzo di 2,2 m.

Le caratteristiche principali della torre metallica sono:

Tabella 7 – Caratteristiche della torre.

Tipo	Tubolare cilindrico/conico
Specifica materiali	Acciaio
Altezza mozzo	105 m

2.2 COMPONENTI ELETTRICHE DELL'IMPIANTO

2.2.1 Generatore

Il generatore è del tipo sincrono a tre fasi con rotore a magneti permanenti connesso in rete attraverso un convertitore. Il contenitore del generatore è costruito con un cilindro e dei canali. I canali circolano il liquido di raffreddamento attorno al corpo dello statore:

Tabella 8 – Caratteristiche tecniche generatore.

Tipo	Sincrono con magnete permanente
Potenza nominale	5,6 MW
Tensione statore	3 x 710 V (1450 rpm)
Numero di poli	12
Tipo dell'avvolgimento	Stella

 ${\tt ELABORATO~1.11-\it Disciplinare~tecnico~prestazionale}$

Pag. 9

409/SR-D-G01-DTE-11-0

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Efficienza nominale (solo generatore)	98 %
Velocità nominale	1450 giri/minute
Limite di fuori giri in accordo con IEC (2 minuti)	2400 giri/minuto
Livello delle vibrazioni	≤ 1,8 mm/s
Cuscinetto del generatore	Ibrido/ceramico
Sensori di temperatura, statore	3 sensori PT 100 posizionati nei punti caldi e 3 di riserva
Sensori di temperatura, cuscinetti	1 per cuscinetto ed uno di riserva per ognuno
Classe di isolamento	H (3 kV)

2.2.2 Convertitore

Il convertitore è un sistema convertitore su larga scala che controlla sia il generatore che la qualità della potenza messa in rete. Il convertitore consiste in quattro unità convertitrici che lavorano in parallelo con un controllore comune. Il convertitore controlla la conversione della frequenza variabile della potenza dal generatore in una frequenza fissata AC di potere con i desiderati livelli di potere attivo e reattivo (ed altri parametri di connessione alla rete) adatti per la rete. Il convertitore è posizionato nella navicella ed ha una griglia laterale di tensione di 720 V.

Tabella 9 - Caratteristiche tecniche convertitore.

Potere nominale apparente	4700 kVA
Voltaggio nominale della rete	720 V

2.2.3 Trasformatore MT

Il trasformatore di elevazione è posizionato in una stanza chiusa a parte nella navicella con un interruttore di corrente montato sul lato dell'alta tensione del trasformatore. Il trasformatore è a due avvolgimenti,tre fasi, tipo a a secco auto estinguente. Gli avvolgimenti sono delta connessi sul lato dell'alta tensione, se non diversamente specificato, l'avvolgimento della bassa tensione è connesso a stella. Il sistema di bassa tensione dal generatore tramite il convertitore è un sistema TN – S, il che significa che il punto a stella è connesso a terra. Il trasformatore è equipaggiato con 6 sensori PT 100 per la misurazione delle temperature del nucleo e degli avvolgimenti nel tri fase. La fornitura di potenza supplementare è data da un trasformatore 650/400 V separato posizionato nella navicella.

Tabella 10 - Caratteristiche tecniche trasformatore MT.

Tipo	Getto di resina a secco
Tensione primaria	30 kV
Tensione secondaria	3 x 720 V
Potenza nominale apparente	4700 kVA
Senza perdita di carico (tolleranze IEC)	6,6 kW

ELABORATO 1.11 – Disciplinare tecnico prestazionale

Pag. 10

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Tabella 11 - Caratteristiche tecniche trasformatore HV.

Tipo	Getto di resina a secco
Tensione avvolgimento secondario	3 x 720 V
Potere nominale apparente	4700 kVA
Perdite di carico (120 °C) (tolleranze IEC)	24,5 kW
Senza poitenza di carico reattiva	12 kWAr
Piena potenza di carico reattiva	285 kQAr
Gruppo vettore	Dyn5
Frequenza	50 Hz
Prese MT	±2 x 2,5 %
Impedenza di corto circuito (tolleranze IEC)	8% @ 720 V, 4700 kVA, 120°C
Classe d'isolamento	F
Classe climatica	C2
Classe ambientale	E2
Classe di comportamento al fuoco	F1

2.2.4 Sistema ausiliario

Il sistema ausiliario è alimentato da un trasformatore 650/400 V separato, localizzato nella navicella. Tutti i motori, le pompe, i ventilatori e i riscaldatori sono alimentati da questo sistema. Tutti gli apparecchi a 230 V sono alimentati da un trasformatore 400/230 V localizzato alla base della torre.

Tabella 12 - Caratteristiche tecniche sistema ausiliario.

Prese di corrente	
Monofase (Navicella e piattaforme della torre)	230 V (16A)/110 V (16A)
	2x 55V
Trifase (Navicella e base della torre)	3 x 400 V (16A)

2.2.5 Sensori di vento

La turbina è equipaggiata con due anemometri ultrasonici senza parti mobili. I sensori sono incorporati a caldo per minimizzare le interferenze con ghiaccio e neve, I sensori di vento sono ridondanti, e la turbina può operare con un unico sensore.

Tabella 13 - Caratteristiche tecniche sensori di vento.

Tipo	FT02LT
Principio	Risonanza Acustica
Incorporato a caldo	99W

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

2.2.6 VMP – Vestas Multi Processor

La turbina è controllata e monitorata da un sistema di controllo VMP6000. Il VMP6000 è un sistema di controllo multiprocessore costituito da quattro processori principali (base, navicella, mozzo e converter), interconnessi da una rete ottica Mbit ArcNet. In aggiunta ai quattro processori principali, il VMP6000 è composto da un numero distribuito di moduli I/O interconnessi da una rete CAN a 500 kbit.

I moduli I/O sono connessi ai moduli dell'interfaccia CAN da una serie di circuiti CTBus. Il sistema di controllo VMP6000 serve le seguenti principali funzioni: Monitoraggio e supervisione complessiva delle operazioni.

- Sincronizzazione del generatore alla rete durante le sequenze di connessione;
- Funzionamento della turbina durante varie situazioni di errore. Controllo di passo delle pale;
- Controllo del potere di reazione e operazione di variazione di velocità. Controllo delle emissioni sonore;
- Monitoraggio delle condizioni ambientali. Monitoraggio della rete;
- Monitoraggio del sistema di detenzione dei fumi.

2.3 CONDIZIONI DI FUNZIONAMENTO E LINEE GUIDA DELLE PRESTAZIONI

Il clima e le condizioni del sito comprendono molte variabili e dovrebbero essere considerate nella valutazione delle prestazioni della turbina. Il progetto e i parametri operativi stabiliti in questa sezione non costituiscono garanzie, o rappresentazione delle performance in riferimento ai siti specifici.

2.3.1 Condizioni del sito e clima

Valori riferiti all'altezza del mozzo:

Tabella 14 - Parametri estremi.

Condizione climatiche del vento	IEC IIA
Intervallo della Temperatura ambientale	-40°C a +50°C
Velocità estrema di vento (media 10 minuti)	37,5 m/s
Velocità del vento limite al danno (3 raffiche al secondo)	52,5 m/s

2.3.2 Temperatura e vento

I valori sono riferiti all'altezza del mozzo e sono determinate per mezzo di sensori e del sistema di controllo della turbina.

Tabella 15 - Condizioni di funzionamento temperatura e vento.

Intervallo della temperatura ambiente	-20°C a +40°C
Avvio	3 m/s
Arresto	25 m/s
Riavvio (10 minuti in media)	23 m/s

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

NOTA: a temperature ambiente superiori + 40°C, la manterrà la produzione, ma l'energia massima d'uscita sarà ridotta in funzione della temperatura

2.3.3 Connessione alla rete

I valori sono riferiti all'altezza del mozzo e sono determinate per mezzo di sensori e del sistema di controllo della turbina.

Tabella 16 - Inviluppo operativo - connessione alla rete.

Tensione nominale di fase	650 V
Frequenza nominale	50/60 Hz
Salto di tensione Massimo in fase stazionaria	± 2% (dalla turbina) ± 4% (dalla rete)
Gradiente massimo di frequenza	± 4 Hz/sec.
Tensione massima di sequenza negativa	3% (connessione) 2% (funzionamento)
Livello minimo di corto circuito	15 MVA
Contributo massimo di corto circuito	1.05 p.u. (Continuo) 1.45 p.u. (Picco)

Tabella 17 - Impostazioni delle protezioni.

Tensione nominale oltre il 110 % per 60 sec.	715 V
Tensione nominale oltre il 115 % per 2 sec.	748 V
Tensione nominale oltre il 120 % per 0,08 sec.	780 V
Tensione nominale oltre il 125 %	812 V
Tensione nominale sotto il 90 % per 60 sec.	585 V
Tensione nominale sotto il 85 % per 11 sec.	552 V
Frequenza oltre il 106 % per 0,2 sec.	53/63,6 Hz
Frequenza oltre il 94 % per 0,2 sec.	47/56,4 Hz

NOTA: Oltre il ciclo di vita della turbina, la caduta di linea ricorre con una media di non più che 50 volte per anno.

2.3.4 Autoconsumo

Il consumo di energia elettrica da parte della turbina è definito come l'energia usata dalla stessa quando non è provvista di energia dalla rete. Ciò è definito nel sistema di controllo come Produzione 0. I seguenti componenti hanno ampia influenza sull'auto consumo:

Tabella 18 - Caratteristiche relative all'autoconsumo di energia elettrica.

Motore idraulico	2 x 19 kW
Motori di imbardata 8 x 2,2 kW	22 kW
Ventole di raffreddamento del generatore	4 x 2,5 kW
Pompe dell'acqua	4 kW + 7.5 kW
Riscaldamento acqua	10 kW

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Pompa d'olio per la lubrificazione della scatola del cambio	7,5 kW
Tutti gli altri controlli	Approx. 3kW

Condizioni per la Curve di potenza all'altezza del mozzo

Tabella 19 - Condizioni per la curva di potenza e il valore di Ct all'altezza del mozzo

Vento di atglio	0,00 – 0,30 (10 minuti di media)
Intensità tiurbolenza	6 – 12 % (10 minuti di media)
Pale	Pulite
Pioggia	NO
Ghiaccio o neve sulle pale	NO
Bordo principale	Nessun danno
Terreno	IEC 61400 – 12 -1
Angolo di flusso verticale	0 ± 2°
Frequenza di rete	Frequenza nominale ± 0,5 Hz

La curva di potenza adottata per i calcoli energetici corrispondente ad una densità dell'aria di 1.12 kg/m3 è rappresentata in Figura 3:

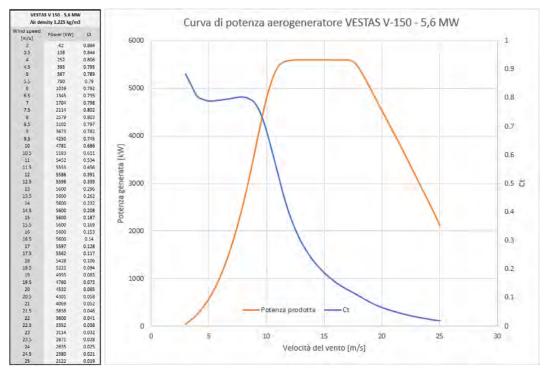


Figura 3 – Curva di potenza dell'aerogeneratore VESTAS V-150 – 5,6 MW.

La potenza elettrica è misurata non comprendendo le perdite nel trasformatore e nei cavi ad alta tensione.

ELABORATO 1.11 – Disciplinare tecnico prestazionale

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

2.4 PRESCRIZIONI MONTAGGIO AEROGENERATORI

Il montaggio degli aerogeneratori avviene secondo schemi prestabiliti e collaudati dalle imprese specializzate. I mezzi principali sono le gru che solitamente sono collocate nell'area della piazzola riservata all'assemblaggio.

Le fasi principali di montaggio, possono essere sintetizzabili in:

- Sollevamento, posizionamento e fissaggio alla fondazione della parte inferiore della torre;
- Sollevamento, posizionamento e fissaggio dei tronconi intermedi;
- Sollevamento, posizionamento e fissaggio del troncone di sommità;
- Sollevamento della navicella e fissaggio alla parte sommitale della torre;
- Assemblaggio del rotore ai piedi della torre;
- Sollevamento e fissaggio del rotore della navicella;
- Sollevamento e fissaggio singolo delle 3 pale dell'aerogeneratore;
- Realizzazione dei collegamenti elettrici e configurazione dei dati per il funzionamento ed il controllo delle apparecchiature.

Durante la fase di montaggio saranno previste due gru. La prima, solitamente gommata, ha dimensioni contenute ed una capacità di sollevamento di 150 t, ed è necessaria nella prima fase di scarico dei componenti dai mezzi di trasporto alle piazzole di assemblaggio e nelle fasi di montaggio.

La seconda autogru è utilizzata per il sollevamento ed il montaggio dei vari componenti della torre, del rotore e delle pale. Essa di solito è cingolata e possiede un'elevata potenza e una capacità di sollevamento di almeno 600 t. Operando in coordinazione con la gru gommata esegue le operazioni di montaggio. Questa seconda gru ha come vincolo operativo la necessità di essere collocata alla minore distanza possibile rispetto al centro del posizionamento del pilone principale.

Pag. 15

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

3. OPERE EDILI

3.1 Prescrizioni tecniche di progetto

3.1.1 Fondazioni

Le strutture di fondazione devono consentire il sostegno alle sollecitazioni degli elementi in elevazione. Queste saranno calcolata, in una fase esecutiva, basandosi su indagini geotecniche dei suoli e rispettando la normativa sulle costruzioni vigente.

Oltre al considerevole peso che gli aerogeneratori concentrano su una superficie molto piccola, sono rilevanti le tensioni orizzontali prodotte sul terreno dovute alla spinta orizzontale del vento su una superficie pari a quella spazzata dalle pale, provenendo il vento da ogni direzione. A queste condizioni di carico si sommano quelle dovute ai probabili eventi sismici; pertanto la fondazione è costituita da un plinto armato tale da evitare fenomeni di punzonamento, dimensionato per resistere agli sforzi di slittamento e di ribaltamento (cfr. elaborati grafici di progetto).

Nell'elaborato 2.3 – Calcoli preliminari delle fondazioni degli aerogeneratori sono riportati in dettaglio i calcoli preliminari per il dimensionamento di massima della fondazione.

In questo caso gli scavi che si realizzeranno saranno del tipo in roccia prevalentemente vista la conformazione geo-litologica dell'area di intervento e pertanto, saranno utilizzati idonei mezzi meccanici.

I materiali di risulta reteranno di proprietà dell'impresa la quale potrà reimpiegare in sito quelli ritenuti idonei dalla Direzione dei Lavori. Nel caso in cui dovesse essere accertata l'esistenza di materiali inquinanti, il terreno non potrò essere riutilizzato ma dovrà necessariamente essere conferito presso una discarica autorizzata allo smaltimento.

La tipologia della fondazione è di tipo diretta e superficiale rappresentata da un plinto armato e la gabbia di ancoraggio, tra torre e fondazione, inclusi i bulloni, viene fornita dalla Vestas come unità montata. La gabbia d'ancoraggio è impostata sul livello di pulizia e regolata per l'aggiustamento della posizione, verticale e orizzontale, per mezzo di bulloni di aggiustamento al livello della flangia più bassa. Durante la colata, che può essere fatta simultaneamente dentro e fuori la gabbia, molta attenzione dev'essere impiegata perché la gabbia non si sposti e che la flangia in basso sia a completo contatto con il calcestruzzo.

Il peso della flangia è di 10325 kg.

Il calcestruzzo secondo i calcoli effettuati avrà una resistenza cubica di valore compreso tra 30N/mmq e Rck 40N/mmq, mentre per l'armatura sarà utilizzato acciaio B450C, con una resistenza allo snervamento pari a 450 N/mmq.

Inoltre sarà realizzato un magrone di sottofondazione in calcestruzzo con una rete elettrosaldata 20x20 cm.

Il calcestruzzo utilizzato dovrà assicurare un'elevata durabilità delle opere nei confronti delle azioni aggressive esterne.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Le casserature per i getti saranno poste in opere piane, curve o comunque sagomate, realizzate in legname in qualunque posizione in accordo con la Direzione Lavori, comprese le armature di sostegno.

3.1.2 Piazzole

Per ogni aerogeneratore, si prevede un tipo di piazzola dalla forma poligonale (Figura 4), in quanto è composta da una porzione permanente e di una restante parte temporanea, necessaria allo stoccaggio e all'assemblaggio degli aerogeneratori. Tale superficie si rende necessaria per consentire l'installazione della gru e delle macchine operatrici, l'assemblaggio della torre, l'ubicazione della fondazione e la manovra degli automezzi.

La piazzola sarà dotata di uno strato di fondazione in materiale arido da cava dello spessore di 0,5 m,

Le fasi lavorative per la realizzazione della piazzola sono le seguenti:

- 1. Asportazione di un primo terreno vegetale;
- 2. Eventuale asportazione dello strato inferiore di terreno fino al raggiungimento della quota del piano di posa della massicciata stradale;
- 3. Compattazione del piano di posa della massicciata;
- 4. Realizzazione dello strato di fondazione o massicciata di tipo stradale, costituito da misto granulare di pezzatura compresa tra i 4 cm ed i 30 cm, che dovrà essere messo in opera in modo tale da ottenere, a costipamento avvenuto, uno spessore di circa 40 cm. La piazzola dovrà essere realizzata su una base di capacità portante di almeno 200 kN/mq. Valore che dovrà essere rispettato ad ogni angolo della piazzola ed anche nel centro della stessa. La compattazione del terreno che la costituisce dovrà essere all'incirca del 98 %. Dopo la fase di montaggio degli aerogeneratori, la superficie di ciascuna piazzola sarà ridotta attraverso la dismissione parziale delle stesse ed il ripristino dell'andamento naturale del terreno. La piazzola definitiva sarà mantenuta piana e carrabile, allo scopo di consentire di effettuare le operazioni di controllo e/o manutenzione. La parte eccedente utilizzata nella fase di cantiere che verrà ripristinata con riporto di terreno vegetale, sarà nuovamente destinata all'attività agricola o alla semina di specie erbacee, se ritenuta idonea.

Si deve prevedere un sicuro e corretto stoccaggio dei componenti di turbine, o sopra la piazzola o al suo fianco, ma comunque sempre all'interno del raggio di funzionamento operativo della gru principale.

Per il montaggio degli aerogeneratori VESTAS V-150 sarà necessaria la realizzazione di una piazzola provvisoria, avente forma irregolare composta da:

- Un'area di assemblaggio avente dimensioni 105,00 x 7,00 m con adiacente due blocchi ausiliari di dimensioni 25,00 x 9,00 m;
- Un'area di stoccaggio delle sezioni della torre avente dimensioni minime di 36,00 x 9,50 m;
- Un'area di lavoro per la gru ausiliaria con dimensioni 9,00 x 21,50 m;
- Un'area di lavoro per la gru principale avente dimensioni di 27,00 x 21,50m;
- Un'area di stoccaggio della navicella con dimensioni pari a 21,50 x 21,50m;

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

- Un'area di stoccaggio delle pale avente dimensioni 80,00 x 20,00.

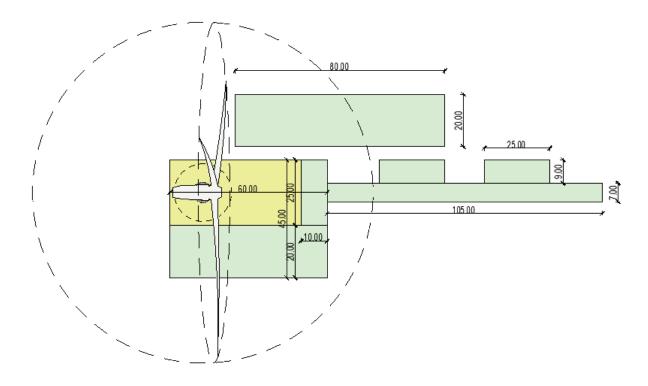


Figura 4 - Particolare planimetrico della piazzola di installazione degli aerogeneratori

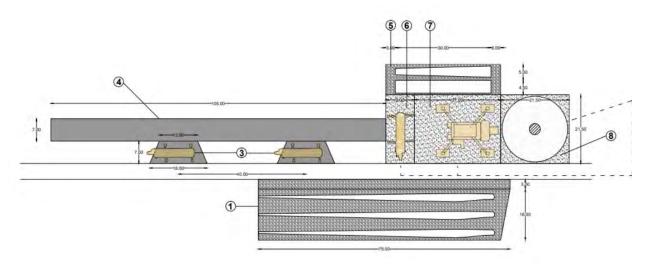


Figura 5 - Piazzola di montaggio; 1. Area di stoccaggio pale; 2. Strada di accesso; 3. Blocchi ausiliari; 4. Area di assemblaggio; 5. Area di stoccaggio sezioni torre; 6. Area di lavoro gru ausiliare; 7. Area di lavoro gru principale; 8. Area di stoccaggio navicella.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

3.1.3 Viabilità di nuova costruzione e da adeguare

Le strade di nuova realizzazione avranno una larghezza media pari a 5 metri al fine di garantire il corretto transito dei mezzi per il trasporto delle componenti dell'aerogeneratore. Il trasporto delle pale e dei conci delle torri avviene di norma, con mezzi di trasporto eccezionale, le cui dimensioni superano i 70 m di lunghezza. Per tale motivo le strade da percorrere devono rispettare determinati requisiti dimensionali e caratteristiche costruttive (pendenze, stratificazioni della sede stradale, ecc.), stabiliti dai fornitori degli aerogeneratori. Spesso, la viabilità esistente non ha le caratteristiche necessarie per permettere il passaggio di questi mezzi eccezionali e quindi, si dovranno eseguire degli interventi di adeguamento. Questi interventi generalmente consistono nell'ampliamento della sede stradale e modifica del raggio di curvatura.

La capacità di carico per le vie di accesso deve essere di almeno 2 kg/cm2 (circa 0,2 Mpa), mentre per le strade interne deve essere almeno di 4 kg/cm2, mantenendo questo valore fino ad una profondità di 1 m per le strade di accesso e di 3 m per le strade interne al campo eolico.

La società, si riserva però di effettuare delle prove sul materiale utilizzato al fine di verificare la compattazione dei diversi strati e per l'applicazione degli standard previsti dalla normativa vigente.

La densità asciutta, necessaria dopo la compattazione per i diversi tipi di materiali che costituiscono la massicciata, è del 98% di quella ottenuta nella prova Proctor (procedura utilizzata per valutare il costipamento di un terreno, valutando l'influenza del contenuto d'acqua sullo stesso, in particolare si va a determinare la massa volumica ottenibile per costipamento della frazione secca della terra e il corrispondente livello di umidità, (detto di "umidità ottima modificata o superiore").

La viabilità e le sue caratteristiche sia geometriche che dei materiali viene essenzialmente progettata in funzione dei veicoli che la dovranno percorrere. I veicoli sono utilizzati per il trasporto delle parti meccaniche delle turbine, suddivisi in 4 o 5 pezzature, dette "conci", le cui dimensioni sono standard e dipendono essenzialmente dalla casa costruttrice. I conci delle torri eoliche hanno forma tubolare, con un diametro massimo di 6 metri e presentano una lunghezza maggiore, per il concio collegato direttamente alla fondazione, e minore per tutti gli altri. La massima lunghezza del veicolo viene misurata dal fronte dello stesso fino alla fine del carico.

Nel dettaglio le strade di nuova realizzazione avranno le seguenti caratteristiche:

- Larghezza della carreggiata: 5 m
- Pendenza massima: 10 %

Le strade di nuova realizzazione, sono state progettate secondo le indicazioni fornite dalla casa costruttrice dell'aerogeneratore di progetto. In particolare, esse, avranno raggi di curvatura variabili da 70 a 85 m a seconda dell'angolo di raccordo, anch'esso variabile da 60° a 120°, così come riportate successivamente.

Il pacchetto stradale previsto per le strade di nuova realizzazione è il seguente:

- Uno strato di terreno opportunamente compattato per la preparazione della fondazione stradale;
- Uno strato di fondazione realizzato mediante spaccato di idonea granulometria proveniente da frantumazione rocce anche trovata in posto o ghiaia in natura. Tali materiali saranno

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

opportunatamente compattati e ingranati in modo da realizzare uno strato di fondazione con spessore dipendente localmente dalla consistenza del terreno presente in sito; mediamente di 50 cm.

Uno strato di finitura della pista con spessore minimo di 10 cm realizzato mediante spaccato 0/50 granulometricamente stabilizzato proveniente da frantumazione di rocce ed opportunamente compattato. Tale strato di finitura servirà a garantire il regolare transito degli automezzi previsti e ad evitare l'affioramento del materiale più grossolano presente nello strato di fondazione.

Per le strade da adeguare invece saranno realizzati, laddove necessari, allargamenti della carreggiata per garantire il corretto passaggio dei mezzi di trasporto. Inoltre, l'intervento sarà completato mediante la realizzazione di stesura di misto stabilizzato, opportunamente compattato, per migliorare l'aderenza del tracciato.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

4. OPERE ELETTRICHE

4.1 DESCRIZIONE DELLE OPERE ELETTRICHE

Le opere elettriche necessarie a convogliare, l'energia prodotta dagli aerogeneratori di progetto, e immettere la stessa nella RTN, sono sintetizzate di seguito:

- Realizzazione della rete di cavidotti in media tensione;
- Realizzazione di un cavidotto interrato in MT;
- Realizzazione di una stazione di trasformazione MT/AT;
- Realizzazione del collegamento tra la sottostazione elettrica e la rete esistente, mediante un cavidotto interrato in AT;

4.1.1 Descrizione impianto eolico

L'impianto eolico "Ischinditta" è un impianto di produzione da fonte rinnovabile di tipo eolico, costituito da 9 aerogeneratori VESTAS V-150 - 5,6 MW per una potenza nominale di impianto pari a 50,4 MW, le cui caratteristiche sono riportate nella tabella seguente:

	Tipo generatore	Sincrono a magneti permanenti
	Potenza nominale	5,6 MW
	Corrente nominale	53 A $@ \cos \varphi = 1$
GENERATORE	Tensione nominale statore	3 x 710 V (1450 rpm)
	Frequenza	50 Hz
	Numero di poli	12
	Fattore di potenza	0,95 cap ÷ 0,95 ind.
	Potenza nominale	4700 kVA
TRASFORMATORE	Tensione nominale primario	30 kV
	Tensione nominale secondario	3 x 720 V
	Impedenza di cortocircuito %	8% @ 720 V, 4700 kVA, 120°C
	Gruppo vettoriale	Dyn5
	Diametro	150 m
ROTORE	Velocità cut in	3 m/s
	Velocità cut out	25 m/s
SOSTEGNO	Altezza	105 m

Pag. 21

409/SR-D-G01-DTE-11-0

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

4.1.2 Criteri progettuali

Nella definizione dei tracciati dei cavidotti e dell'opera di distribuzione di energia elettrica sono stati adottati i seguenti criteri:

- contenere per quanto possibile i tracciati dei cavidotti sia per occupare la minor porzione possibile di territorio, sia per non superare certi limiti di convenienza tecnico economica;
- evitare per quanto possibile di interessare case sparse ed isolate, rispettando le distanze prescritte dalla normativa vigente;
- minimizzare le interferenze con zone di pregio naturalistico, paesaggistico e archeologico;
- transitare su aree di minor pregio interessando aree prevalentemente agricole e sfruttando la viabilità esistente.

I cavidotti MT seguono strade di accesso nuove e/o esistenti per circa 95% del loro percorso. Il dimensionamento dei cavi è stato effettuato in base a:

 criterio termico per cui la corrente di impiego è inferiore alla corrente nominale del cavo ridotta mediante alcuni coefficienti correttivi che tengono conto delle condizioni di posa in base alla seguente formula:

$$I_b = \frac{P}{\sqrt{3}V_n cos\varphi} < k_H \cdot k_{\rho t} \cdot k_T \cdot k_D \cdot I_{nC}$$

in cui P è la potenza che transita nel tronco di linea, Vn è la tensione di parco pari a 30 kV, cosφ è il fattore di potenza assunto pari a 0,95, in cui kH dipende dalla profondità di posa; kpt dipende dalla resistività termica del terreno; kT dipende dalla temperatura del terreno; kD dipende dalla temperatura del terreno, Inc è la corrente nominale del cavo,

 criterio della massima caduta di tensione percentuale per cui la somma delle cadute di tensione calcolate nei tronchi di linea comprese fra una determinata turbina ed il punto di connessione deve essere inferiore ad un valore prestabilito (3 – 4%):

$$\Delta V = \sum_{i}^{N} \sqrt{3} I_{bi} L_{i} \cdot (R_{i} cos \varphi + X_{i} sen \varphi)$$

 criterio delle perdite calcolate in funzione della distribuzione di Weibull calcolata in funzione delle misure anemometriche sul sito.

Il calcolo della corrente di impiego e delle cadute di tensione con fattore di potenza pari a 0,95 mentre le perdite sono calcolate con fattore di potenza pari a 1.

4.2 MODALITÀ DI POSA E REALIZZAZIONE

ELABORATO 1.11 - Disciplinare tecnico prestazionale

Con riferimento alla norma CEI 11-17 le modalità di posa dei cavi potranno essere secondo la configurazione M.1 o M.2

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Figura 6 - Modalità di posa.

L'integrità dei cavi deve essere garantita da una robusta protezione meccanica supplementare in grado di assorbire senza danni per il cavo stesso le sollecitazioni meccaniche, statiche e dinamiche derivanti dal traffico veicolare (resistenza a schiacciamento) e degli abituali attrezzi manuali di scavo (resistenza all'urto).

Per quanto concerne le profondità minime di posa nel caso di attraversamento della sede stradale vale il Nuovo Codice della Strada che fissa un metro, dall'estradosso della protezione per le strade di uso pubblico, mentre valgono le profondità minime stabilite dalla norma CEI 11-17 per tutti gli altri suoli.

La profondità di posa dei cavi sarà generalmente di 1,2 m rispetto ai piani finiti di strade o piazzali o alla quota del piano di campagna.

Eventuali variazioni si potrebbero rendere necessarie in corrispondenza d'incroci con altri servizi tecnologici interrati. Nei tratti con più terne gli interassi misureranno circa 30 cm. Le trincee avranno una lunghezza compresa tra 60 cm per una terna e 100 cm per 3 terne. La fascia di terreno potenzialmente impegnata durante la fase di costruzione/manutenzione sarà di 6 m. I cavi di potenza, a fibre ottiche e il dispersore di terra saranno posati in uno strato di materiale sabbioso (pezzatura massima: 5 mm) di circa 50 cm su cui saranno appoggiati i tegoli o le lastre copricavo. Un nastro segnalatore sarà posto all'interno del rimanente volume dello scavo riempito con materiale arido a circa 50 cm dalla superficie.

La posa dei cavi si articolerà nelle seguenti attività:

- Scavo a sezione obbligata della larghezza e della profondità precedentemente menzionate;
- Posa del cavo di potenza e del dispersore di terra;
- rinterro parziale con strato di sabbia vagliata;
- posa del tubo contenente il cavo in fibre ottiche;
- posa dei tegoli protettivi;
- rinterro parziale con terreno di scavo;
- posa nastro monitore;

ELABORATO 1.11 - Disciplinare tecnico prestazionale

- rinterro complessivo con ripristino della superficie originale;
- apposizione di paletti di segnalazione presenza cavo.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Nella posa degli stessi cavi dovranno essere rispettati alcuni criteri particolari per l'esecuzione delle opere in accordo con la regola d'arte come di seguito indicata.

Laddove il tracciato dei cavidotti è caratterizzato da ampi tratti rettilinei, la posa del cavo può essere effettuata con il metodo a bobina fissa; in questo caso la bobina deve essere posta sull'apposito alza bobine, con asse di rotazione perpendicolare all'asse mediano della trincea ed in modo che si svolga dal basso. Sul fondo della trincea devono essere collocati ad intervalli variabili in dipendenza del diametro e della rigidità del cavo i rulli di scorrimento. Tale distanza non deve comunque superare i 3 m. In alternativa potrà essere utilizzata la tecnica della bobina mobile: in questo caso il cavo deve essere steso percorrendo con il carro porta bobine il bordo della trincea e quindi calato manualmente nello scavo.

L'asse del cavo posato nella trincea deve scostarsi dall'asse della stessa di qualche centimetro a destra ed a sinistra, al fine di evitare dannose sollecitazioni dovute all'assestamento del terreno.

Durante le operazioni di posa, gli sforzi di tiro devono essere applicati ai conduttori e non devono superare i 60 N/mmq rispetto alla sezione totale. Il raggio di curvatura dei cavi durante le operazioni d'installazione non dovrà essere inferiore a 3 m.

Lo schermo metallico dei singoli spezzoni di cavo dovrà essere messo a terra da entrambe le estremità della linea. È vietato usare lo schermo dei cavi come conduttore di terra per altre parti di impianto. In corrispondenza dell'estremità di cavo connesso alla stazione di utenza, onde evitare il trasferimento di tensioni di contatto pericolose a causa di un guasto sull'alta tensione, la messa a terra dello schermo avverrà solo all'estremità connessa alla stazione di utenza.

Per la posa dei cavi in fibra ottica lo sforzo di tiro che può essere applicato a lungo termine sarà al massimo di 3000 N. Il raggio di curvatura dei cavi durante le operazioni d'installazione non dovrà essere inferiore a 20 cm.

Durante le operazioni di posa è indispensabile che il cavo non subisca deformazioni temporanee. Il rispetto dei limiti di piegatura e di tiro è garanzia di inalterabilità delle caratteristiche meccaniche della fibra durante le operazioni di posa.

Se inavvertitamente il cavo subisce delle deformazioni o schiacciamenti visibili la posa deve essere interrotta e dovrà essere effettuata una misurazione con OTDR per verificare eventuali rotture o attenuazioni eccessive provocate dallo stress meccanico.

La realizzazione delle giunzioni dovrà essere effettuata secondo le seguenti indicazioni:

- prima di tagliare i cavi controllare l'integrità della confezione e l'eventuale presenza di umidità;
- non interrompere mai il montaggio del giunto o del terminale;
- utilizzare esclusivamente materiali contenuti nella confezione.

A operazione conclusa devono essere applicate delle targhe identificatrici su ciascun giunto in modo da poter individuare l'esecutore, la data e le modalità d'esecuzione.

Su ciascun tronco fra l'ultima turbina e la stazione elettrica di utenza dovranno essere collocati dei giunti d'isolamento tra gli schermi dei due diversi impianti di terra (dispersore di terra della stazione elettrica e

ELABORATO 1.11 - Disciplinare tecnico prestazionale

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

dispersore di terra dell'impianto eolico. Essi dovranno garantire la tenuta alla tensione che si può stabilire tra i due schermi dei cavi MT.

Nell'esecuzione delle terminazioni all'interno dei quadri MT di aerogeneratori e stazione, si deve realizzare il collegamento di terra degli schermi dei cavi con trecce flessibili di rame stagnato, eventualmente prolungandole e dotandole di capocorda a compressione per l'ancoraggio alla presa di terra dello scomparto. Lo schermo dovrà essere collegato a terra da entrambe le estremità. Ogni terminazione deve essere dotata di una targa di riconoscimento in PVC atta a identificare esecutore, data e modo d'esecuzione e indicazione della fase (R, S o T).

La messa a terra dovrà essere eseguita da entrambe le parti del cavo. Le terminazioni dei cavi in fibra ottica dovranno essere portate a termine nella seguente maniera:

- posa del cavo, da terra al relativo cassetto ottico, previa eliminazione della parte eccedente, con fissaggio del cavo o a parete o ad elementi verticali con apposite fascette, ogni 0,50 m circa
- sbucciatura progressiva del cavo;
- fornitura ed applicazione, su ciascuna fibra ottica, di connettore;
- esecuzione della "lappatura" finale del terminale;
- fissaggio di ciascuna fibra ottica.

4.3 INTERFERENZE

La risoluzione delle interferenze sarà effettuata in conformità alla norma CEI 11-17. Eventuali deroghe saranno possibili previo parere dell'ente gestore dell'opera interferente.

- 1. Parallelismo e incroci tra cavi elettrici. I cavi aventi la stessa tensione possono essere posati alla stessa profondità, ad una distanza di circa 3 volte il loro diametro nel caso di posa diretta. I cavi a diversa tensione devono essere invece segregati (posti all'interno di condutture o canalette);
- 2. Incroci tra cavi elettrici e cavi di telecomunicazione. Negli incroci il cavo elettrico, di regola, deve essere situato inferiormente al cavo di telecomunicazione. La distanza fra i due cavi non deve essere inferiore a 0,30 m e inoltre il cavo posto superiormente deve essere protetto, per una lunghezza non inferiore a 1 m, mediante un dispositivo di protezione identico a quello previsto per i parallelismi. Tali dispositivi devono essere disposti simmetricamente rispetto all'altro cavo. Ove, per giustificate esigenze tecniche, non possa essere rispettato il distanziamento minimo di cui sopra, anche sul cavo sottostante deve essere applicata una protezione analoga a quella prescritta per il cavo situato superiormente. Non è necessario osservare le prescrizioni sopraindicate quando almeno uno dei due cavi è posto dentro appositi manufatti che proteggono il cavo stesso e ne rendono possibile la posa e la successiva manutenzione senza necessità di effettuare scavi
- 3. Parallelismo tra cavi elettrici e cavi di telecomunicazione. Nei parallelismi con cavi di telecomunicazione i cavi elettrici devono, di regola, essere posati alla maggiore distanza possibile fra loro e quando vengono posati lungo la stessa strada si devono posare possibilmente ai lati opposti di questa. Ove, per

ELABORATO 1.11 – Disciplinare tecnico prestazionale409/SR-D-G01-DTE-11-0

PARCO EOLICO "ISCHINDITTA"

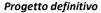
Progetto definitivo

giustificate esigenze tecniche, non sia possibile attuare quanto sopra è ammesso posare i cavi in vicinanza purché sia mantenuta tra due cavi una distanza minima, in proiezione sul piano orizzontale, non inferiore a 0,30 m. Qualora detta distanza non possa essere rispettata è necessario applicare sui cavi uno dei seguenti dispositivi di protezione:

- Cassetta metallica zincata a caldo;
- Tubazione in acciaio zincato a caldo;
- Tubazione in PVC o fibrocemento, rivestite esternamente con uno spessore di calcestruzzo non inferiore a 10 cm.

I predetti dispositivi possono essere omessi sul cavo posato alla maggiore profondità quando la differenza di quota tra i due cavi è uguale o superiore a 0,15 m. Le prescrizioni di cui sopra non si applicano quando almeno uno dei due cavi è posato, per tutta la parte interessata in appositi manufatti (tubazioni, cunicoli, etc..), che proteggono il cavo stesso e rendono possibile la posa e la successiva manutenzione senza la possibilità di effettuare scavi.

- 4. Parallelismo ed incroci tra cavi elettrici e tubazioni o strutture metalliche interrate. La distanza in proiezione orizzontale tra cavi elettrici e tubazioni metalliche interrate parallelamente a esse non deve essere inferiore a 0,30 m. Si può tuttavia derogare alla prescrizione suddetta previo accordo tra gli esercenti quando:
 - la differenza di quota fra le superfici esterne delle strutture interessate è superiore a 0,50 m;
 - tale differenza è compresa tra 0,30 m e 0,50 m, ma si interpongono fra le due strutture elementi separatori non metallici nei tratti in cui la tubazione non è contenuta in un manufatto di protezione non metallico.


Non devono mai essere disposti nello stesso manufatto di protezione cavi di energia e tubi convoglianti fluidi infiammabili; per le tubazioni per altro tipo di posa è invece consentito, previo accordo tra gli Enti interessati, purché il cavo elettrico e la tubazione non siano posti a diretto contatto fra loro. Le interferenze con eventuali gasdotti sono disciplinate dal D.M. 24/11/1984 e saranno risolte in accordo con l'ente proprietario. Nei casi di parallelismi, sovra e sottopasso i cavi dovranno essere posati all'interno di tubazioni e/o cunicoli. La distanza misurata fra le superfici affacciate del cavidotto e del gasdotto deve essere tale da consentire eventuali interventi di manutenzione su entrambi i servizi interrati.

L' incrocio fra cavi d'energia e tubazioni metalliche interrate non deve essere effettuato sulla proiezione verticale di giunti non saldati delle tubazioni stesse. Non si devono effettuare giunti sui cavi a distanza inferiore ad 1 m dal punto di incrocio. Nel caso di incrocio con un gasdotto interrato i cavi dovranno essere alloggiati all'interno di un manufatto di protezione, che dovrà essere prolungato da una parte e dall'altra dell'incrocio stesso per almeno 1 metro nei sovrappassi e 3 metri nei sottopassi, misurati a partire dalle tangenti verticali alle pareti esterne del gasdotto.

Nessuna prescrizione è data nel caso in cui la distanza minima, misurata fra le superfici esterne di cavi elettrici e di tubazioni metalliche o fra quelle di eventuali loro manufatti di protezione, è superiore a 0,50 m.

PARCO EOLICO "ISCHINDITTA"

Tale distanza può essere ridotta fino ad un minimo di 0,30 m, quando una delle strutture di incrocio è contenuta in manufatto di protezione non metallico, prolungato per almeno 0,30 m per parte rispetto all'ingombro in pianta dell'altra struttura oppure quando fra le strutture che si incrociano si venga interposto un elemento separatore non metallico (ad esempio lastre di calcestruzzo o di materiale isolante rigido); questo elemento deve poter coprire, oltre alla superficie di sovrapposizione in pianta delle strutture che si incrociano, quella di una striscia di circa 0,30 m di larghezza ad essa periferica.

Le distanze suddette possono ulteriormente essere ridotte, previo accordo fra gli Enti proprietari o Concessionari, se entrambe le strutture sono contenute in un manufatto di protezione non metallico.

Prescrizioni analoghe devono essere osservate nel caso in cui non risulti possibile tenere l'incrocio a distanza uguale o superiore a 1 m dal giunto di un cavo oppure nei tratti che precedono o seguono immediatamente incroci eseguiti sotto angoli inferiori a 60° e per i quali non risulti possibile osservare prescrizioni sul distanziamento.

- 1. Attraversamenti di linee in cavo con strade pubbliche, ferrovie, tranvie, filovie, funicolari terrestri. In corrispondenza degli attraversamenti delle linee in cavo interrato con ferrovie, tranvie, filovie, funicolari terrestri in servizio pubblico o in servizio privato per trasporto di persone, autostrade, strade statali e provinciali e loro collegamenti nell'interno degli abitati, il cavo deve essere disposto entro robusti manufatti (tubi, cunicoli, ecc.) prolungati di almeno 0,60 m fuori della sede ferroviaria o stradale, da ciascun lato di essa, e disposti a profondità non minore di 1,50 m sotto il piano del ferro di ferrovie di grande comunicazione, non minore di 1,00 m sotto il piano del ferro di ferrovie secondarie, tranvie, funicolari terrestri, e sotto il piano di autostrade, strade statali e provinciali. Le distanze vanno determinate dal punto più alto della superficie esterna del manufatto. Le gallerie praticabili devono avere gli accessi difesi da chiusure munite di serrature a chiave. Quando il cavo è posato in gallerie praticabili sottopassanti l'opera attraversata, non si applicano le prescrizioni di cui sopra purché il cavo sia o interrato a profondità non minore di 0,50 m sotto il letto della galleria, o sia protetto contro le azioni meccaniche mediante adatti dispositivi di protezione (di cemento, mattoni, legno o simili).
- 2. Attraversamenti di corsi d'acqua, canali. L'attraversamento di corsi d'acqua, canali e simili può essere effettuato mediante staffaggio su ponti e strutture preesistenti ovvero mediante perforazione teleguidata. Quest'ultima in particolare consente grande sicurezza ed evita, inoltre, interventi su argini e/o sponde. L'intervento sarà effettuato nelle fasi seguenti: a. Realizzazione di un foro pilota, infilando nel terreno, mediante spinta e rotazione, una successione di aste che guidate opportunamente dalla testa, che creano un percorso sotterraneo che va da un pozzetto di partenza ad uno di arrivo. b. Recupero delle aste con dietro un alesatore che, opportunamente avvitato al posto della testa, ruotando con le aste genera il foro del diametro voluto. Insieme all'alesatore, o in seguito, sono posate le condutture ben sigillate entro cui verrà posizionato il cavo. La trivellazione viene eseguita ad una profondità tra 5 e 10 m sotto l'alveo del corso d'acqua, tale da non essere interessata da fenomeni di erosione, mentre i pozzetti di ispezione che coincidono con quello di partenza e di arrivo della tubazione di attraversamento vengono realizzati alla quota del terreno.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

5. QUALITA' E PROVENIENZA DEI MATERIALI

I principali materiali da utilizzarsi nelle lavorazioni saranno: acqua, calce, leganti idraulici, ghiaia, pietrisco, sabbia, detrito di cava o tout venant di cava, roccia frantumata in posto, pietrame, mattoni, materiali ferrosi, legname, bitumi ed olii minerali. In particolare, i conglomerati cementizi per strutture in cemento armato e gli acciai per l'armatura del calcestruzzo dovranno rispettare tutte le prescrizioni di cui al Decreto del 17 gennaio 2018 "Aggiornamento delle «Norme tecniche per le costruzioni»" (18A00716) (GU Serie Generale n.42 del 20-02-2018 - Suppl. Ordinario n. 8) e successive relative circolari esplicative.

A meno che il presente Disciplinare non ne indichi specificatamente la provenienza, l'Appaltatore potrà approvvigionare i materiali ovunque ritenga opportuno, purché le loro qualità rispettino i requisiti contrattuali, le Leggi ed i regolamenti vigenti in materia. Tutti i materiali e componenti impiegati dovranno giungere in cantiere accompagnati, oltre che dalle eventuali istruzioni di posa in opera, dalla documentazione atta a dimostrarne tale rispondenza ed a certificarne la conformità a quanto previsto dalla Legislazione vigente. Qualora tale documentazione non sia ritenuta idonea o completa, su richiesta insindacabile della D.L., l'Appaltatore è tenuto, a propria cura e spese, ad effettuare, per la verifica della conformità alle caratteristiche direttamente richieste nel presente documento, presso un Laboratorio Ufficiale concordato con la D.L., prove di qualifica su materiali o componenti da impiegare o già impiegati nonché su campioni di lavori già eseguiti, da prelevarsi in opera, sostenendo anche tutte le spese per il prelevamento degli stessi e per la loro spedizione.

Nel caso di non rispondenza dei materiali o dei componenti alle caratteristiche richieste, l'Appaltatore è tenuto a sostituirli, a sua cura e spese, con altri idonei, provvedendo anche a rimuoverli dal cantiere entro il termine fissato dalla D.L.. Nel caso di inadempienza è facoltà della D.L. di provvedervi direttamente ma a spese dell'Appaltatore, a carico dei quale va posto anche qualsiasi danno che possa da ciò derivare. Anche nel corso delle diverse fasi delle lavorazioni in cantiere la D.L. potrà sempre chiedere la modifica e/o sostituzione, a cura e spese dell'Appaltatore, di quei componenti che non risultassero a norma di contratto. L'Appaltatore deve comunicare alla D.L., con congruo anticipo, la data di arrivo dei materiali e dei componenti approvvigionati nonché la data di inizio delle varie lavorazioni in cantiere affinché la stessa possa pianificare i dovuti controlli.

5.1 SABBIA, GHIAIA E PIETRISCO

Gli inerti, naturali o di frantumazione, devono essere costituiti da elementi non gelivi e non friabili, privi di sostanze organiche, limose ed argillose, di gesso, ecc., in proporzioni nocive all'indurimento del conglomerato od alla conservazione delle armature. Gli inerti, quando non espressamente stabilito, possono provenire da cava in acqua o da fiume, a seconda della località dove si eseguono i lavori ed in rapporto alle preferenze di approvvigionamento: in ogni caso dovranno essere privi di sostanze organiche, impurità ed elementi eterogenei. Gli aggregati devono essere disposti lungo una corretta curva granulometrica, per assicurare il massimo riempimento dei vuoti interstiziali. Tra le caratteristiche chimico-fisiche degli aggregati occorre considerare anche il contenuto percentuale di acqua, per una corretta definizione del rapporto a/c, ed i valori di peso specifico assoluto per il calcolo della miscela d'impasto. La granulometria inoltre dovrà essere studiata scegliendo il diametro massimo in funzione della sezione minima del getto, della distanza minima tra i ferri

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

d'armatura e dello spessore del copriferro. La ghiaia o il pietrisco devono avere dimensioni massime commisurate alle caratteristiche geometriche della carpenteria del getto ed all'ingombro delle armature. Gli inerti normali sono, solitamente, forniti sciolti; quelli speciali possono essere forniti sciolti, in sacchi o in autocisterne. Entrambi vengono misurati a metro cubo di materiale assestato su automezzi per forniture di un certo rilievo, oppure a secchie, di capacità convenzionale pari ad 1/100 di metro cubo nel caso di minimi quantitativi.

La sabbia naturale o artificiale dovrà risultare bene assortita in grossezza, sarà pulitissima, non avrà tracce di sali, di sostanze terrose, limacciose, fibre organiche, sostanze friabili in genere e sarà costituita di grani resistenti, non provenienti da roccia decomposta o gessosa. Essa deve essere scricchiolante alla mano, non lasciare traccia di sporco, non contenere materie organiche, melmose o comunque dannose; deve essere lavata ad una o più riprese con acqua dolce, qualora ciò sia necessario, per eliminare materie nocive e sostanze eterogenee.

Per la qualità di ghiaie e pietrischi da impiegarsi nella formazione dei calcestruzzi valgono le stesse norme prescritte per le sabbie. La ghiaia deve essere ad elementi puliti di materiale calcareo o siliceo, bene assortita, formata da elementi resistenti e non gelivi, scevra da sostanze estranee, da parti friabili, terrose, organiche o comunque dannose. La ghiaia deve essere lavata con acqua dolce, qualora ciò sia necessario per eliminare le materie nocive. Qualora invece della ghiaia si adoperi pietrisco questo deve provenire dalla frantumazione di roccia compatta, durissima, silicea o calcarea pura e di alta resistenza alle sollecitazioni meccaniche, esente da materie terrose, sabbiose e, comunque, eterogenee, non gessosa né geliva, non deve contenere impurità né materie pulverulenti, deve essere costituito da elementi, le cui dimensioni soddisfino alle condizioni indicate per la ghiaia. Il pietrisco deve essere lavato con acqua dolce qualora ciò sia necessario per eliminare materie nocive. Le dimensioni degli elementi costituenti ghiaie e pietrischi dovranno essere tali da passare attraverso un vaglio di fori circolari del diametro:

- di 5 cm se si tratta di lavori di fondazione o di elevazione, muri di sostegno, piedritti, rivestimenti di scarpe e simili;
- di 4 cm se si tratta di volti di getto;
- di 3 cm se si tratta di cappe di volti o di lavori in cemento armato od a pareti sottili.

Gli elementi più piccoli delle ghiaie e dei pietrischi non devono passare in un vaglio a maglie rotonde in un centimetro di diametro, salvo quando vanno impiegati in cappe di volti od in lavori in cemento armato ed a pareti sottili, nei quali casi sono ammessi anche elementi più piccoli. Se il cemento adoperato è alluminoso, è consentito anche l'uso di roccia gessosa, quando l'approvvigionamento d'altro tipo risulti particolarmente difficile e si tratti di roccia compatta, non geliva e di resistenza accertata.

5.2 CALCESTRUZZO E FERRO DI ARMATURA

5.2.1 Approvvigionamento ed accettazione dei materiali

I materiali che si utilizzeranno per la preparazione dei calcestruzzi dovranno rispettare tutte le prescrizioni di cui al Decreto del 17 gennaio 2018 "Aggiornamento delle «Norme tecniche per le costruzioni»" (18A00716) (GU

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

Serie Generale n.42 del 20-02-2018 - Suppl. Ordinario n. 8) e successive relative circolari esplicative. A richiesta del Direttore dei Lavori, l'Appaltatore dovrà documentare la provenienza dei materiali e sottoporli, a sue spese, alle consuete prove di laboratorio per l'accertamento delle loro caratteristiche tecniche. Tutti i materiali potranno essere messi in opera solo dopo accettazione del Direttore dei Lavori. Egli, esaminati i materiali approvvigionati, può rifiutare, prima del loro impiego, quelli che non risultino rispondenti alle prescrizioni contrattuali. I materiali contestati dovranno essere prontamente allontanati dal cantiere. Qualora successivamente si accerti che materiali accettati e posti in opera siano non rispondenti ai requisiti richiesti e/o di cattiva qualità, il Direttore dei Lavori potrà ordinarne la demolizione ed il rifacimento a spese e rischio dell'Appaltatore. Qualora, senza opposizione del Committente, l'Appaltatore, di sua iniziativa, impiegasse materiali migliori o con lavorazione più accurata, non avrà diritto ad aumento dei prezzi rispetto a quelli stabiliti per la categoria di lavoro prescritta. Se invece sia ammessa dal Committente qualche carenza, purché accettabile senza pregiudizio, si applicherà una adeguata riduzione del prezzo.

5.2.2 Cementi

I leganti idraulici da impiegare devono essere conformi alle prescrizioni e definizioni contenute nella normativa. Il dosaggio minimo di cemento per mc di calcestruzzo deve essere determinato in funzione del diametro minimo degli inerti, secondo la Norma UNI 8981, Parte Seconda, sulla durabilità dei calcestruzzo, il tutto come riportato negli elaborati di progetto o secondo le disposizioni impartite dalla D.L.

5.2.3 Classe di resistenza dei calcestruzzi

Tutte le strutture per fondazioni, platee, pozzetti, muri ecc. saranno realizzate con calcestruzzo della classe specificata sugli elaborati progettuali per ogni singola opera e/o indicata dalla D.L.. Da progettazione preliminare, per le strutture di fondazione dovrà essere usato cemento con classe di resistenza C25/30 e C32/40 salvo diverse risultanti conseguenti la progettazione esecutiva. Lo slump sarà costantemente controllato nel corso dei lavoro dall'Appaltatore mediante il cono di Abrams e non potrà mai superare i valori prescritti dalla D.L. per ogni classe, mentre detti valori potranno essere ridotti quando sia possibile ed opportuno per migliorare la qualità dei calcestruzzo.

5.2.4 Ghiaia e pietrisco costituenti gli aggregati

Dovranno essere costituiti da elementi lapidei puliti non alterabili dal freddo e dall'acqua. Dovranno essere esenti da polveri, gessi, cloruri, terra, limi, ecc. e dovranno avere forme tondeggianti o a spigoli vivi, comunque non affusolate o piatte. L'appaltatore dovrà provvedere, a richiesta della Direzione Lavori ed a suo onere, al controllo granulometrico mediante i crivelli UNI 2333:1983 e 2334:1943 ed alla stesura delle curve granulometriche eventualmente prescritte. Per il pietrisco vale quanto detto per la ghiaia. La massima dimensione degli aggregati sarà funzione dell'impiego previsto per il calcestruzzo, del diametro delle armature e della loro spaziatura.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

5.2.5 Sabbie per calcestruzzo

Dovranno essere costituite da elementi silicei procurati da cave o fiumi, dovranno essere di forma angolosa, dimensioni assortite ed esenti da materiali estranei o aggressivi come per le ghiaie; in particolare dovranno essere esenti da limi, polveri, elementi vegetali od organici. Le sabbie prodotte in mulino potranno essere usate previa accettazione della granulometria da parte del Direttore Lavori. In ogni caso l'Appaltatore dovrà provvedere a suo onere alla formulazione delle granulometrie delle sabbie usate ogni qualvolta la Direzione Lavori ne faccia richiesta; le granulometrie dovranno essere determinate con tele e stacci UNI 2331:1980 ed UNI 2332:1979.

5.2.6 Dosatura dei getti

Il cemento e gli aggregati sono di massima misurati a peso, mentre l'acqua è normalmente misurata a volume. L'Appaltatore dovrà adottare, in accordo con la vigente normativa, un dosaggio di componenti (ghiaia, sabbia, acqua, cemento) tale da garantire le resistenze indicate sui disegni di progetto. Dovrà inoltre garantire che il calcestruzzo possa facilmente essere lavorato e posto in opera, in modo da passare attraverso le armature, circondarle completamente e raggiungere tutti gli angoli delle casseforme. Qualora non espressamente altrove indicato, le dosature si intendono indicativamente così espresse:

calcestruzzo magro:

cemento kg 150

sabbia mc 0,4

ghiaia mc 0,8

calcestruzzo normale:

cemento kg 250/300

sabbia mc 0,4

ghiaia mc 0,8

calcestruzzo grasso:

cemento kg 350

sabbia mc 0,4

ghiaia mc 0,8

dovranno comunque sempre essere raggiunte le caratteristiche e la classe di resistenza previste nei documenti e disegni di progetto. Il rapporto acqua/cemento dovrà essere minore od eguale a 0,5. Qualora venga utilizzato un additivo superfluidificante il rapporto acqua/cemento dovrà essere minore od uguale a 0,45; il dosaggio dovrà essere definito in accordo con le prescrizioni del produttore, con le specifiche condizioni di lavoro e con il grado di lavorabilità richiesto. Come già indicato l'uso di additivi dovrà essere autorizzato dalla Direzione dei Lavori.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

5.2.7 Confezione dei calcestruzzi

Dovrà essere eseguita in ottemperanza al d.m. 09/01/1996, ed alle norme tecniche per il cemento armato ordinario. Il calcestruzzo dovrà essere confezionato dall'appaltatore in apposita centrale di betonaggio nel rispetto del d.m. 09/01/1996, delle clausole delle presenti specifiche e nel rispetto delle indicazioni di disegno. È ammesso l'uso di calcestruzzo preconfezionato, con esplicita approvazione della Direzione Lavori e sarà autorizzato l'impiego di cls. preconfezionato presso impianti di betonaggio della zona, purché in detti impianti si seguano le indicazioni di Norma. Sarà cura ed onere dall'Appaltatore fornire alla D.L. idonea certificazione relativa alla composizione dei cls proveniente dalla centrale di betonaggio. Tutte le cautele e le prescrizioni esposte precedentemente dovranno essere applicate anche dal produttore del calcestruzzo preconfezionato. La Direzione Lavori si riserva comunque il diritto, dopo accordi e con il supporto dell'Appaltatore, di accedere agli impianti di preconfezionamento, eseguendo tutti i controlli e gli accertamenti che saranno ritenuti opportuni. La Direzione dei Lavori richiederà comunque documenti comprovanti il dosaggio e la natura dei componenti del calcestruzzo fornito. L'Appaltatore è, comunque, responsabile unico delle dosature dei calcestruzzi e della loro rispondenza per l'ottenimento delle resistenze richieste nei disegni e documenti contrattuali. Gli impianti a mano sono ammessi per piccoli getti non importanti staticamente e previa autorizzazione del Direttore dei Lavori.

5.2.8 Getto del calcestruzzo

Oltre a quanto previsto dalla Normativa vigente, si precisa che il cls sarà posto in opera, appena confezionato, in strati successivi fresco su fresco, possibilmente per tutta la superficie interessante il getto, convenientemente pistonato e vibrato con vibratori meccanici ad immersione e/o percussione, evitando accuratamente la segregazione degli inerti. Non potranno inoltre essere eseguite interruzioni nei getti di cls se non previste nei disegni di progetto ovvero preventivamente concordate con la D.L.. I getti saranno effettuati con l'ausilio di pompa da calcestruzzo a cura e spese dell'Appaltatore, evitando nel contempo la caduta libera dell'impasto da altezze superiori a 1,5 m. Il getto dovrà essere eseguito con cura, steso a tratti di 15/20 cm, opportunamente costipato ed eventualmente vibrato secondo le prescrizioni del Direttore dei Lavori.

Le interruzioni di getto dovranno essere evitate e comunque autorizzate dal Direttore dei Lavori. Le riprese dovranno essere eseguite in modo da trovarsi in zone di momento flettente nullo nelle strutture inflesse ed in modo da essere perpendicolari allo sforzo di compressione nelle strutture verticali. Quando la ripresa avviene contro un getto ancora plastico, si dovrà procedere a previa boiaccatura del getto esistente. Se il getto esistente è in fase di presa, occorre scalpellarlo e mettere a vivo la ghiaia quindi bagnare, applicare uno strato di malta di cemento di 1 - 2 cm e procedere al nuovo getto. Qualora richiesto dalla Direzione Lavori, l'Appaltatore dovrà provvedere all'uso di additivi per la ripresa senza onere per la Committente. Tutte le superfici orizzontali dei getti di cls che rimarranno in vista dovranno essere rifinite e lisciate a frattazzo fine in fase di presa dei getto.

E' vietato porre in opera conglomerati cementizio a temperatura inferiore a zero gradi centigradi. I getti di cls dovranno essere eseguiti con una tolleranza massima di errore geometrico di ±0,5cm; errori superiori dovranno essere eliminati, a cura e spese dell'Appaltatore, solo con le modalità che la D.L. riterrà opportune. Tutti i getti dovranno essere mantenuti convenientemente bagnati durante la prima fase della presa (almeno tre giorni) e

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

protetti con idonei tessuti inumiditi. Al momento del getto, fermo restando l'obbligo di corrispondere alle caratteristiche della Classe prescritta, il calcestruzzo dovrà avere consistenza tale da permettere una buona lavorabilità e nello stesso tempo da limitare al massimo i fenomeni di ritiro, nel rispetto del rapporto acqua/cemento definito. Le strutture in fase di maturazione dovranno essere protette dal gelo, dal caldo eccessivo e dalle piogge violente; così pure sulle strutture suddette dovrà essere vietato il transito di persone, mezzi o comunque qualsiasi forma di sollecitazione. La maturazione con riscaldamento locale diffuso è ammessa solo previo accordo scritto con la Direzione Lavori.

5.2.9 Prescrizioni esecutive

Nei getti dovranno essere inserite tutte le casserature, cassette, tubi, ecc. atti a creare i fori, le cavità, i passaggi indicati nei disegni delle strutture e degli impianti tecnologici, come pure dovranno essere messi in opera ferramenta varia (inserti metallici, tirafondi, ecc.) per i collegamenti di pareti e di altri elementi strutturali e/o di finitura. Sono vietati, salvo approvazione della Direzione Lavori, i getti contro terra. Indipendentemente dalle dosature, i getti di calcestruzzo eseguiti dovranno risultare compatti, privi di alveolature, senza affioramento di ferri; i ferri, nonché tutti gli accessori di ripresa (giunti di neoprene, lamierini, ecc.) e tutti gli inserti dovranno risultare correttamente posizionati; tutte le dimensioni dei disegni dovranno essere rispettate ed a tal fine il costruttore dovrà provvedere a tenere anticipatamente in considerazione eventuali assestamenti o movimenti di casseri ed armature. Tutti gli oneri relativi saranno compresi nel costo del calcestruzzo, a meno che esplicito diverso richiamo venga fatto nell'elenco voci del progetto. I getti delle strutture destinate a ricevere una finitura di sola verniciatura dovranno essere realizzati con casseri metallici atti a garantire una superficie del getto la più liscia possibile. Eventuali irregolarità dovranno essere rettificate senza oneri aggiuntivi. Tutte le conseguenze per la mancata esecuzione delle predisposizioni così prescritte negli elaborati progettuali o dalla D.L., saranno a totale carico dell'Appaltatore, sia per quanto riguarda le rotture, i rifacimenti, le demolizioni e le ricostruzioni di opere di spettanza dell'Appaltatore stesso, sia per quanto riguarda le eventuali opere di adattamento di impianti, i ritardi, le forniture aggiuntive di materiali e la maggiore mano d'opera occorrente da parte di fornitori.

5.2.10 I provini

Durante la confezione dei calcestruzzi l'appaltatore dovrà prevedere il prelievo e la conservazione dei provini di calcestruzzo in numero sufficiente secondo le norme e secondo le prescrizioni del Direttore dei Lavori. Per ciò che concerne la normativa di prova di esecuzione, collaudo, conservazione, nonché le pratiche per la denuncia dei cementi armati, valgono tutte le leggi vigenti e quelle che venissero promulgate in corso d'opera. Dovranno inoltre essere eseguiti provini sulle barre di armatura, secondo le prescrizioni contenute nella normativa vigente e le indicazioni della D.L.. Gli oneri relativi al prelievo, maturazione e certificazione dei provini sono a carico dell'impresa esecutrice dei lavori.

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

5.2.11 Vibrazione

Le norme ed i tipi di vibrazione dovranno essere approvati dal Direttore dei Lavori sempre restando l'appaltatore stesso responsabile della vibrazione e di tutte le operazioni relative al getto, L'onere delle eventuali vibrazioni è sempre considerato incluso nel prezzo del getto.

5.2.12 Condizioni climatiche

Sono vietati i getti con temperatura sotto zero e con prevedibile discesa sotto lo zero. Fino a temperatura -5°C il Direttore dei lavori, d'accordo con l'impresa, sarà arbitro di autorizzare i getti previa sua approvazione degli additivi e delle precauzioni da adottare, sempre restando l'appaltatore responsabile dell'opera eseguita; conseguentemente il Direttore dei Lavori è autorizzato ad ordinare all'appaltatore di eseguire a proprio onere (dell'appaltatore) la demolizione dei getti soggetti a breve termine a temperatura eccessivamente bassa e non prevista. I getti con temperatura superiore a 32 °C dovranno essere autorizzati dalla Direzione Lavori. L'Appaltatore è obbligato all'innaffiamento costante dei getti in fase di maturazione per un minimo di 8 giorni e/o nei casi di getti massicci secondo indicazioni della Direzione Lavori.

5.2.13 Ferro di armatura

Per le strutture in c.a. dovrà utilizzarsi acciaio B450C. L'Appaltatore dovrà documentare la provenienza dei materiali e sottoporli, a sue spese, alle consuete prove di laboratorio per l'accertamento delle loro caratteristiche tecniche. Il prelievo di spezzoni di barre da sottoporre agli accertamenti sulle caratteristiche fisico-chimiche avverrà secondo le indicazioni della D.L.; detti spezzoni verranno inviati ad un Laboratorio Ufficiale di analisi a cura e spese dell'Appaltatore al quale spetteranno anche gli oneri relativi alle prove stesse. Tutti i materiali potranno essere messi in opera solo dopo accettazione del Direttore dei Lavori. Il Direttore dei

Lavori, esaminati i materiali approvvigionati, può rifiutare, prima del loro impiego, quelli che non risultino rispondenti alle prescrizioni contrattuali. I materiali contestati dovranno essere prontamente allontanati dal cantiere. Qualora successivamente si accerti che materiali accettati e posti in opera siano non rispondenti ai requisiti richiesti e/o di cattiva qualità, il Direttore dei Lavori potrà ordinarne la demolizione ed il rifacimento a spese e rischio dell'Appaltatore. Qualora, senza opposizione del Committente, l'Appaltatore, di sua iniziativa, impiegasse materiali migliori o con lavorazione più accurata, non avrà diritto ad aumento dei prezzi rispetto a quelli stabiliti per la categoria di lavoro prescritta. Se invece sia ammessa dal Committente qualche carenza, purché accettabile senza pregiudizio, si applicherà una adeguata riduzione del prezzo. Gli acciai impiegati, tondi, nervati, in cavo o fili, in rete elettrosaldata dovranno essere conformi alle N.T.C. 2008 e 2018 e successive circolari esplicative. Dovranno inoltre essere conformi, come materiale ed assiemaggio, a quanto indicato nei disegni. Tutte le armature dovranno essere classificate in base al tipo, alla qualità ed al lotto di provenienza dell'acciaio e dovranno essere corredate dai certificati prescritti dalle leggi e norme vigenti. La sagomatura delle barre deve essere effettuata meccanicamente a mezzo di mandrini o con ogni altro procedimento che permetta di ottenere i raggi di curvatura stabiliti dal progetto esecutivo, evitando accentuazioni locali della curvatura stessa. È vietata la piegatura a caldo. È obbligatorio il posizionamento di distanziatori in plastica per evitare l'affioramento della armatura sulle superfici dei getti. È obbligatoria la pulizia delle armature da grassi,

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

oli, terra, polvere, scaglie di ruggine, incrostazioni di calcestruzzo provenienti da getti precedenti. È vietato effettuare giunzioni nelle armature delle travi salvo quando indicato dai disegni o autorizzato dalla Direzione Lavori, sentito il parere del progettista. Le saldature di barre d'armatura dovranno essere autorizzate dalla Direzione Lavori e dovranno essere oggetto di una nota scritta di prescrizione delle modalità di esecuzione. Le giunzioni potranno essere effettuate mediante manicotti. Questi potranno essere sia del tipo "a pressare" che del tipo filettato, purché certificati da opportuna documentazione e verificati mediante l'esecuzione di tre provini di giunzione per ogni diametro da giuntare. Per le giunzioni pressate i provini dovranno essere eseguiti in cantiere, con la attrezzatura prevista per le normali operazioni e possibilmente dallo stesso addetto che opererà le giunzioni effettive. La distanza delle armature dalle pareti dovrà rispettare le norme relative al calcestruzzo armato ordinario. Le legature, i supporti ed i distanziatori devono sopportare tutte le azioni che si generano durante le operazioni di getto e costipamento, garantendo che le armature restino nelle posizioni volute.

5.2.14 Ancoraggi

Per la predisposizione di ciascun plinto in cemento armato di fondazione degli aerogeneratori si inserirà, nel relativo getto di calcestruzzo, una struttura di interfaccia in carpenteria metallica munita di flange di ancoraggio, di piastre in acciaio al fine di garantirne il corretto posizionamento. Per la predisposizione delle strutture edili in genere al successivo montaggio di componenti impiantistici vari, verranno inseriti nelle stesse piastre in acciaio di ogni tipo e dimensione, tirafondi con o senza flange, inserti scatolari ed altri manufatti metallici.

Comuni di Ozieri e Chiaramonti Provincia di SASSARI - REGIONE SARDEGNA

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

ELABORATO 1.11 – Disciplinare tecnico prestazionale

Pag. 36

409/SR-D-G01-DTE-11-0

Comuni di Ozieri e Chiaramonti Provincia di SASSARI - REGIONE SARDEGNA

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

ALLEGATI

Comuni di Ozieri e Chiaramonti Provincia di SASSARI - REGIONE SARDEGNA

PARCO EOLICO "ISCHINDITTA"

Progetto definitivo

ALLEGATO 1

Scheda tecnica VESTAS V150 – 5.6 MW

Restricted
Document no.: 0081-5059 V02
2019-01-24

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz

Date: 2019-01-24

Restricted

Page 2 of 34

RESTRICTED

Performance Specification EnVentus™ 5 MW

V150-5.6 MW 50/60 Hz

Table of contents

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

1	GENI	ERAL DESCRIPTION	4
2	TYPE	APPROVALS AND AVAILABLE HUB HEIGHTS	4
3		RATIONAL ENVELOPE AND PERFORMANCE GUIDELINES	
3			
	3.1	CLIMATE AND SITE CONDITIONS	
	3.1.1		
	3.2	OPERATIONAL ENVELOPE – WIND	
	3.3	OPERATIONAL ENVELOPE — TEMPERATURE AND ALTITUDE	
	3.3.1	- Paramatan and	
	3.4	OPERATIONAL ENVELOPE — CONDITIONS FOR POWER CURVE AND CT VALUES (AT HUB HEIGHT)	
	3.5	OPERATIONAL ENVELOPE – REACTIVE POWER CAPABILITY	
	3.6	SOUND MODES	
4	DRA	WINGS	12
	4.1	TURBINE VISUAL IMPRESSION — SIDE VIEW	12
5	GENI	ERAL RESERVATIONS, NOTES AND DISCLAIMERS	13
6	POW	YER CURVES, CT VALUES AND SOUND CURVES, MODE 0	14
	6.1	Power Curves, Mode 0	
	6.2	CT VALUES, MODE 0	
	6.3	Sound Curves, Mode 0	
7	POW	ER CURVES, CT VALUES AND SOUND CURVES, SOUND OPTIMIZED MODES	17
	7.1	POWER CURVES, SOUND OPTIMIZED MODE SOO	
	7.2	CT VALUES, SOUND OPTIMIZED MODE SOO	
	7.3	SOUND CURVES, SOUND OPTIMIZED MODE SOO	
	7.4	POWER CURVES, SOUND OPTIMIZED MODE SO2	
	7.5	CT VALUES, SOUND OPTIMIZED MODE SO2	
	7.6	SOUND CURVES, SOUND OPTIMIZED MODE SO2	
	7.7	POWER CURVES, SOUND OPTIMIZED MODE SO3	
	7.8	CT VALUES, SOUND OPTIMIZED MODE SO3	
	7.9	SOUND CURVES, SOUND OPTIMIZED MODE SO3	
	7.10	POWER CURVES, SOUND OPTIMIZED MODE SO4	
	7.11	CT VALUES, SOUND OPTIMIZED MODE SO4	
	7.12	SOUND CURVES, SOUND OPTIMIZED MODE SO4	
	7.13	POWER CURVES, SOUND OPTIMIZED MODE SO5	
	7.14	CT VALUES, SOUND OPTIMIZED MODE SO5	
	7.15	SOUND CURVES, SOUND OPTIMIZED MODE SO5	
	7.16	POWER CURVES, SOUND OPTIMIZED MODE SO6	
	7.17	CT VALUES, SOUND OPTIMIZED MODE SO6	
	7.18	SOUND CURVES, SOUND OPTIMIZED MODE SO6	34

Original Instruction: T05 0081-5059 VER 02

T05 0081-5059 Ver 02 - Approved- Exported from DMS: 2019-01-30 by FRPIC

RESTRICTED

Document no.: 0081-5059 V02

Document owner: Platform Management

Type: T05 - General Description

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 3 of 34

Recipient acknowledges that (i) this Performance Specification is provided for recipient's information only, and, does not create or constitute a warranty, guarantee, promise, commitment, or other representation (Commitment) by Vestas Wind Systems or any of its affiliated or subsidiary companies (Vestas), all of which are disclaimed by Vestas and (ii) any and all Commitments by Vestas to recipient as to this Performance Specification (or any of the contents herein) are to be contained exclusively in signed written contracts between recipient and Vestas, and not within this document.

See general reservations, notes and disclaimers (including, Section 5, p. 13) to this Performance Specification.

Document no.: 0081-5059 V02
Document owner: Platform Management
Type: T05 - General Description

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 4 of 34

1 General Description

The Vestas V150-5.6 MW is a wind turbine variant within the EnVentus[™] 5 MW turbine range. It is a pitch regulated upwind turbine with active yaw and a three-blade rotor. The V150-5.6 MW turbine has a rotor diameter of 150 m and a rated power of 5.6 MW.

For more details, please refer to the General Description of the EnVentus[™] 5MW turbine range (General Description EnVentus[™] 5 MW - 0081-5017).

2 Type Approvals and Available Hub Heights

The standard turbine is type certified according to the certification standards and available hub heights listed below:

Certification	Wind Class	Hub Height				
IEC 61400-22	IEC S	105 / 125 / 155 m				
DIBt 2012	DIBt S	125 / 148 / 166 m				

Document no.: 0081-5059 V02
Document owner: Platform Management
Type: T05 - General Description

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 5 of 34

3 Operational Envelope and Performance Guidelines

Actual climate and site conditions have many variables and should be considered in evaluating actual turbine performance. The design and operating parameters set forth in this section do not constitute warranties, guarantees, or representations as to turbine performance at actual sites.

3.1 Climate and Site Conditions

The standard turbine is designed for the wind climate conditions listed below. Values refer to hub height.

Wind Climate	IEC S	IEC S	IEC S
Power Rating	5.6 MW	5.6 MW	5.6 MW
Hub Height	105	125	155
Average design parar	neters - IEC	C	
Wind Speed (10 min average), V_{ave}	8.5 m/s	8.5 m/s	8.0 m/s
Weibull Scale Factor, C	9.6 m/s	9.6 m/s	9.0 m/s
Weibull Shape Factor, k	2.3	2.3	2.48
I _{ref} acc. to IEC 61400-1	0.14	0.14	0.15
Turbulence Intensity acc. to IEC 61400-1, Including Wind Farm Turbulence (@15 m/s) I_{90} (90% quantile)	15.7%	15.7%	16.9 %
Wind Shear, <i>α</i>	0.20	0.20	0.30
Inflow Angle (vertical)	8°	8°	8°
Extreme design parar	neters - IEC	C	
Extr. Wind Speed (10 min average), V ₅₀	37.5 m/s	37.5 m/s	40.1 m/s
Survival Wind Speed (3 s gust), V _{e50}	52.5 m/s	52.5 m/s	56.1 m/s
Turbulence Intensity, Iv50	11 %	11%	11 %

Document no.: 0081-5059 V02
Document owner: Platform Management
Type: T05 - General Description

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 6 of 34

Wind Climate	DIBt S	DIBt S	DIBt S
Hub Height	125 m	148 m	166 m
Power Rating	5.6 MW	5.6 MW	5.6 MW
Average des	sign paramete	rs - DIBt	
Wind Speed (10 min average), <i>V</i> _{ave}	7.0 m/s	7.3 m/s	7.5 m/s
I _{ref} acc. to IEC 61400-1	S	S	S
Turbulence Intensity, <i>I90</i> (90% quant.)	S	S	S
Extreme des	sign paramete	rs – DIBt	
Extr Wind Speed (10 min average), <i>V</i> ₅₀	36.1 m/s	37.0 m/s	37.6 m/s
Survival Wind Speed (3 s gust), V_{e50}	50.5 m/s	51.8 m/s	52.6 m/s
Turbulence intensity, $I_{v(z)}$	12.7%	12.3%	12.1%
Wind Shear, α	0.20	0.20	0.20
Inflow Angle	8°	8°	8°

NOTE

The turbine is intended for low to medium wind speed sites but is also applicable on high wind speed sites, depending on site specific conditions. It is classified as IEC S and DIBt S. Please contact Vestas Wind Systems A/S for further information if needed.

3.1.1 Wind Power Plant Layout

Turbine spacing is to be evaluated site-specifically. Spacing below two rotor diameters (2D) may require sector-wise curtailment.

NOTE

As evaluation of climate and site conditions is complex, consult Vestas for every project. If conditions exceed the above parameters, Vestas must be consulted.

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz

Document no.: 0081-5059 V02
Document owner: Platform Management
Type: T05 - General Description

Date: 2019-01-24 Restricted Page 7 of 34

3.2 Operational Envelope – Wind

Values refer to hub height and are determined by the sensors and control system of the turbine.

Wind Climate	IEC S / DIBt S				
	Mode 0, SO0	SO2, SO3, SO4, SO5, SO6			
Cut-In, V _{in}	3 m/s	3 m/s			
Cut-Out (10 min exponential avg.), V_{out}	25 m/s	20 m/s			
Re-Cut In (10 min exponential avg.)	23 m/s	18 m/s			

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz

Document no.: 0081-5059 V02 Document owner: Platform Management Type: T05 - General Description Date: 2019-01-24 Restricted Page 8 of 34

3.3 Operational Envelope – Temperature and Altitude

Values below refer to hub height and are determined by the sensors and control system of the turbine.

Operational Envelope – Temperature	
Ambient Temperature Interval (Standard Turbine)	-20° to +45°C
Ambient Temperature Interval (Low Temperature Turbine)	-30° to +45°C

NOTE

The wind turbine will stop producing power at ambient temperatures above 45°C. For the low temperature options of the wind turbine consult Vestas.

The turbine is designed for use at altitudes up to 1000 m above sea level as standard and optional up to 2000 m above sea level.

3.3.1 Temperature dependent operation

Values below refer to hub height and are determined by the sensors and control system of the turbine. At ambient temperatures above the thresholds shown for each operating mode, the turbine will maintain derated production.

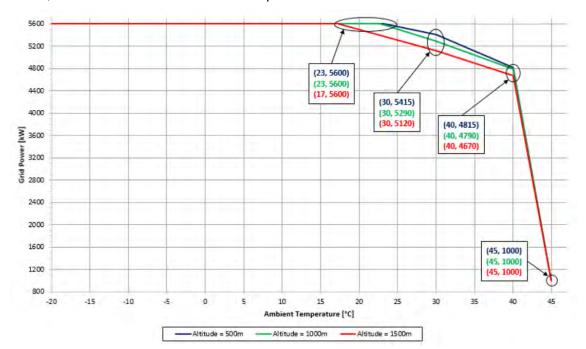


Figure 3-1: Temperature dependant derated operation.

NOTE

All derating settings are preliminary and subject to change.

Document no.: 0081-5059 V02 Document owner: Platform Management Type: T05 - General Description V150-5.6 MW 50/60 Hz

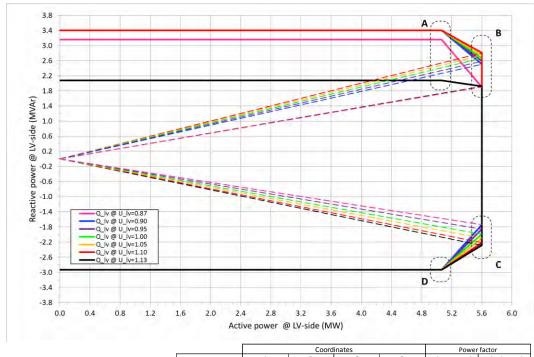
Performance Specification EnVentus™ 5 MW

Date: 2019-01-24 Restricted Page 9 of 34

Operational Envelope – Conditions for Power Curve and Ct 3.4 Values (at Hub Height)

Please consult section 6 and subsequent, for power curves and Ct values.

Conditions for Power Curve and Ct Values (at Hub Height)								
Wind Shear, α	0.00-0.30 (10-minute average)							
Turbulence Intensity, I	6-12% (10-minute average)							
Blades	Clean							
Rain	No							
Ice/Snow on Blades	No							
Leading Edge	No damage							
Terrain	IEC 61400-12-1							
Inflow Angle (Vertical)	0 ±2°							
Grid Voltage	Nominal Voltage ±2.5%							
Grid Frequency	Nominal Frequency ±0.5 Hz							
Grid Active Power (LV-side)	Per tabulated values in Section 6 and following sections							
Grid Reactive Power (LV-side)	Power Factor 1.0							


Performance Specification EnVentus™ 5 MW

V150-5.6 MW 50/60 Hz

Date: 2019-01-24 Restricted Page 10 of 34

3.5 **Operational Envelope – Reactive Power Capability**

The turbine has a reactive power capability on the low voltage side of the HV transformer as illustrated in Figure 3-2:

		Coordinates						Power factor			
	Point:	,	Α		3	С		D		B (Capacitive)	C (Inductive)
	Coordinate:	x (P)	y (Q)	x (P)	y (Q)	x (P)	y (Q)	x (P)	y (Q)		
Reactive power [kVAr] @ LV side @ U_lv = 0	Reactive power [kVAr] @ LV side @ U_lv = 0.87 p.u. voltage				1.900	5.600	-1.739	5.067	-2.933	0.947	0.955
Reactive power [kVAr] @ LV side @ U_lv = 0	Reactive power [kVAr] @ LV side @ U_lv = 0.90 p.u. voltage				2.503	5.600	-1.739	5.067	-2.933	0.913	0.955
Reactive power [kVAr] @ LV side @ U_lv = 0	.95 p.u. voltage	5.067	3.400	5.600	2.584	5.600	-1.856	5.067	-2.933	0.908	0.949
Reactive power [kVAr] @ LV side @ U_lv = 1	.00 p.u. voltage	5.067	3.400	5.600	2.664	5.600	-1.987	5.067	-2.933	0.903	0.942
Reactive power [kVAr] @ LV side @ U_lv = 1	Reactive power [kVAr] @ LV side @ U_lv = 1.05 p.u. voltage				2.736	5.600	-2.093	5.067	-2.933	0.898	0.937
Reactive power [kVAr] @ LV side @ U_lv = 1	Reactive power [kVAr] @ LV side @ U_lv = 1.10 p.u. voltage		3.400	5.600	2.807	5.600	-2.213	5.067	-2.933	0.894	0.930
Reactive power [kVAr] @ LV side @ U_lv = 1	Reactive power [kVAr] @ LV side @ U_lv = 1.13 p.u. voltage				1.919	5.600	-2.283	5.067	-2.933	0.946	0.926
	- 1 - 5	5.067	2.080	5.600		. ,			,,,,,		

Figure 3-2: Reactive power capability.

The turbine is able to maintain the reactive power capability at low wind with no active power production.

NOTE

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

All reactive power capabilities are preliminary and subject to change.

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 11 of 34

3.6 Sound Modes

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

The sound modes listed below are available for the turbine.

Sound modes											
Mode No.	Maximum Sound Level	Serrated trailing edges	Available hub heights								
0	104.9 dBA	Yes (standard)	105 / 125 / 148 / 155 / 166 m								
0-0\$	107.7 dBA	No (option)	105 / 125 / 148 / 155 / 166 m								

In addition, Sound Optimized (SO) modes as listed below are available as options for the turbine.

Sound	Sound Optimized (SO) modes												
Mode No.	Maximum Sound Level	Serrated trailing edges	Available hub heights										
SO0	104 dBA	Yes (standard)	105 / 125 / 148 / 155 / 166 m										
SO2	102 dBA	Yes (standard)	105 / 125 / 148 / 155 / 166 m										
SO3	101 dBA	Yes (standard)	105 / 125 / 148 / 155 / 166 m										
SO4	100 dBA	Yes (standard)	105 / 125 / 148 / 155 / 166 m										
SO5	99 dBA	Yes (standard)	105 / 125 / 148 / 155 / 166 m										
SO6	98 dBA	Yes (standard)	Site specific										

NOTE Sound Optimized (SO) modes are only available with serrated trailing edges on the blades. For further details on sound performance and in case of specific requests, please contact Vestas Wind Systems A/S.

Performance Specification EnVentus™ 5 MW

Document no.: 0081-5059 V02 Document owner: Platform Management Type: T05 - General Description V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 12 of 34

4 **Drawings**

Overview drawings describing the wind turbines, tower and foundation are shown in these documents.

V150 HH105 - 0077-2108 V150 HH125 - 0073-8666 V150 HH148 - 0073-8667 V155 HH155 - 0079-6643 V150 HH166 - 0073-8669

NOTE For detailed drawings, please contact Vestas Wind Systems A/S.

Turbine visual impression - side view 4.1

Date: 2019-01-24

Restricted

Page 13 of 34

RESTRICTED

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

EnVentus™ 5 MW

Performance Specification V150-5.6 MW 50/60 Hz

5 **General Reservations, Notes and Disclaimers**

- © 2019 Vestas Wind Systems A/S. This document is created by Vestas Wind Systems A/S and/or its affiliates and contains copyrighted material, trademarks, and other proprietary information. All rights reserved. No part of the document may be reproduced or copied in any form or by any means - such as graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems - without the prior written permission of Vestas Wind Systems A/S. The use of this document is prohibited unless specifically permitted by Vestas Wind Systems A/S. Trademarks, copyright or other notices may not be altered or removed from the document.
- The performance specifications described in this document apply to the current version of the V150-5.6 MW wind turbine. Updated versions of the V150-5.6 MW wind turbine, which may be manufactured in the future, may differ from these performance specifications. In the event that Vestas supplies an updated version of the V150-5.6 MW wind turbine, Vestas will provide an updated performance specification applicable to the updated version.
- All listed start/stop parameters (e.g. wind speeds) are equipped with hysteresis control. This can, in certain borderline situations, result in turbine stops even though the ambient conditions are within the listed operation parameters.
- This document, Performance Specification, is not an offer for sale, and does not contain any guarantee, warranty and/or verification of the power curve and sound (including, without limitation, the power curve and sound verification method). Any guarantee, warranty and/or verification of the power curve and sound (including, without limitation, the power curve and sound verification method) must be agreed to separately in writing.

Performance Specification EnVentus™ 5 MW

Document no.: 0081-5059 V02 Document owner: Platform Management Type: T05 - General Description V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 14 of 34

Power Curves, Ct Values and Sound Curves, Mode 0 6

Power Curves, Mode 0 6.1

Wind speed			Air density [kg/m³]												
[m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275	
3.0	42	13	16	18	20	23	25	28	31	33	36	39	45	48	
3.5	138	87	92	97	101	106	111	115	120	124	129	134	143	147	
4.0	252	177	184	190	197	204	211	218	225	232	239	245	259	266	
4.5	393	286	296	305	315	325	335	344	354	364	373	383	403	412	
5.0	567	421	435	448	461	474	488	501	514	527	540	553	580	593	
5.5	780	586	603	621	639	656	674	692	710	727	745	763	798	816	
6.0	1039	784	807	831	854	877	900	923	946	970	993	1016	1062	1086	
6.5	1345	1021	1050	1080	1110	1139	1169	1198	1227	1257	1286	1316	1374	1404	
7.0	1704	1299	1336	1373	1410	1447	1484	1521	1558	1594	1631	1667	1740	1777	
7.5	2114	1618	1664	1709	1754	1800	1845	1890	1935	1980	2024	2069	2158	2203	
8.0	2579	1982	2036	2091	2145	2200	2254	2308	2363	2417	2471	2525	2633	2687	
8.5	3102	2390	2455	2520	2585	2650	2715	2779	2844	2909	2973	3037	3166	3230	
9.0	3673	2839	2916	2992	3069	3145	3221	3297	3373	3449	3524	3599	3747	3821	
9.5	4250	3320	3407	3495	3582	3670	3754	3839	3924	4008	4089	4170	4328	4405	
10.0	4781	3806	3902	3998	4094	4190	4278	4367	4455	4544	4623	4702	4851	4920	
10.5	5183	4269	4369	4469	4569	4669	4750	4832	4913	4995	5058	5121	5232	5282	
11.0	5452	4685	4782	4878	4975	5072	5137	5202	5266	5331	5372	5412	5477	5503	
11.5	5553	5032	5110	5189	5268	5347	5386	5426	5466	5506	5521	5537	5562	5570	
12.0	5586	5275	5330	5386	5441	5496	5513	5531	5549	5566	5573	5580	5590	5594	
12.5	5598	5429	5460	5492	5523	5554	5563	5571	5580	5589	5592	5595	5599	5600	
13.0	5600	5508	5525	5542	5559	5576	5582	5587	5592	5597	5598	5599	5600	5600	
13.5	5600	5538	5551	5564	5577	5590	5592	5595	5597	5599	5600	5600	5600	5600	
14.0	5600	5559	5568	5577	5586	5595	5596	5598	5599	5600	5600	5600	5600	5600	
14.5	5600	5570	5577	5584	5590	5597	5598	5598	5599	5600	5600	5600	5600	5600	
15.0	5600	5573	5579	5585	5591	5597	5598	5598	5599	5600	5600	5600	5600	5600	
15.5	5600	5578	5583	5588	5592	5597	5598	5598	5599	5600	5600	5600	5600	5600	
16.0	5600	5582	5586	5590	5594	5598	5598	5599	5599	5600	5600	5600	5600	5600	
16.5	5600	5586	5589	5592	5595	5598	5598	5599	5600	5600	5600	5600	5600	5600	
17.0	5597	5579	5582	5586	5589	5592	5593	5594	5595	5596	5597	5597	5598	5598	
17.5	5562	5494	5504	5514	5524	5534	5539	5543	5548	5552	5556	5559	5565	5568	
18.0	5428	5301	5318	5335	5352	5368	5378	5387	5397	5406	5414	5421	5436	5443	
18.5	5222	5054	5076	5098	5120	5143	5155	5168	5181	5193	5203	5212	5231	5240	
19.0	4993	4788	4815	4842	4870	4897	4912	4928	4944	4959	4970	4982	5003	5013	
19.5	4760	4538	4567	4597	4626	4655	4673	4691	4708	4726	4737	4749	4771	4782	
20.0	4532	4306	4336	4365	4395	4425	4443	4461	4479	4498	4509	4520	4542	4552	
20.5	4301	4084	4113	4141	4170	4198	4215	4232	4249	4266	4277	4289	4310	4320	
21.0	4069	3881	3905	3930	3954	3979	3994	4008	4023	4038	4049	4059	4079	4089	
21.5	3838	3684	3705	3725	3746	3766	3777	3788	3799	3810	3819	3828	3845	3853	
22.0	3600	3482	3497	3512	3527	3542	3551	3561	3570	3580	3587	3594	3608	3616	
22.5	3352	3269	3279	3288	3298	3308	3314	3320	3326	3332	3339	3345	3357	3362	
23.0	3114	3057	3062	3068	3074	3079	3084	3090	3095	3100	3104	3109	3118	3123	
23.5	2871	2828	2832	2836	2840	2844	2849	2853	2858	2863	2866	2868	2876	2881	
24.0	2635	2595	2599	2603	2607	2610	2614	2617	2620	2624	2628	2631	2639	2642	
24.5	2380	2349	2352	2356	2359	2362	2365	2368	2370	2373	2375	2377	2384	2388	
25.0	2122	2081	2085	2090	2094	2098	2101	2104	2107	2110	2114	2118	2126	2130	

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 15 of 34

6.2 Ct Values, Mode 0

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

	Air density kg/m³													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	0.884	0.877	0.878	0.880	0.881	0.883	0.883	0.884	0.884	0.884	0.884	0.884	0.884	0.884
3.5	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844
4.0	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.805	0.805
4.5	0.795	0.794	0.795	0.795	0.796	0.796	0.796	0.796	0.796	0.796	0.795	0.795	0.795	0.795
5.0	0.789	0.793	0.793	0.793	0.792	0.792	0.791	0.791	0.791	0.790	0.790	0.790	0.789	0.789
5.5	0.790	0.788	0.788	0.788	0.789	0.789	0.789	0.789	0.789	0.789	0.789	0.790	0.790	0.790
6.0	0.792	0.789	0.789	0.790	0.790	0.790	0.791	0.791	0.791	0.792	0.792	0.792	0.793	0.793
6.5	0.795	0.791	0.792	0.792	0.792	0.793	0.793	0.793	0.794	0.794	0.794	0.794	0.795	0.795
7.0	0.798	0.794	0.794	0.795	0.795	0.795	0.796	0.796	0.797	0.797	0.797	0.798	0.798	0.798
7.5	0.802	0.800	0.800	0.800	0.800	0.800	0.801	0.801	0.801	0.801	0.802	0.802	0.802	0.803
8.0	0.803	0.801	0.801	0.801	0.802	0.802	0.802	0.802	0.803	0.803	0.803	0.803	0.803	0.804
8.5	0.797	0.795	0.795	0.795	0.795	0.796	0.796	0.796	0.796	0.796	0.797	0.797	0.797	0.797
9.0	0.782	0.782	0.782	0.783	0.783	0.783	0.783	0.783	0.783	0.783	0.783	0.783	0.781	0.780
9.5	0.745	0.768	0.767	0.766	0.765	0.764	0.762	0.760	0.757	0.755	0.752	0.748	0.741	0.737
10.0	0.686	0.737	0.734	0.730	0.727	0.724	0.719	0.714	0.710	0.705	0.698	0.692	0.678	0.671
10.5	0.611	0.690	0.684	0.679	0.674	0.669	0.661	0.653	0.646	0.638	0.629	0.620	0.601	0.591
11.0	0.534	0.635	0.628	0.621	0.614	0.607	0.597	0.587	0.577	0.567	0.556	0.545	0.523	0.511
11.5	0.456	0.573	0.564	0.555	0.546	0.537	0.526	0.514	0.503	0.492	0.480	0.468	0.446	0.435
12.0	0.391	0.508	0.498	0.488	0.478	0.468	0.456	0.445	0.433	0.421	0.411	0.401	0.382	0.373
12.5	0.339	0.447	0.437	0.426	0.415	0.404	0.394	0.384	0.374	0.364	0.356	0.347	0.331	0.324
13.0	0.296	0.392	0.382	0.372	0.362	0.352	0.344	0.335	0.327	0.318	0.311	0.304	0.290	0.283
13.5	0.262	0.344	0.336	0.327	0.319	0.310	0.302	0.295	0.288	0.280	0.274	0.268	0.256	0.251
14.0	0.232	0.305	0.297	0.290	0.282	0.274	0.268	0.262	0.255	0.249	0.243	0.238	0.228	0.223
14.5	0.208	0.271	0.265	0.258	0.251	0.245	0.239	0.233	0.228	0.222	0.217	0.213	0.204	0.200
15.0	0.187	0.243	0.237	0.231	0.225	0.219	0.214	0.209	0.204	0.199	0.195	0.191	0.183	0.180
15.5	0.169	0.219	0.213	0.208	0.203	0.198	0.193	0.189	0.184	0.180	0.176	0.173	0.166	0.162
16.0	0.153	0.198	0.193	0.188	0.184	0.179	0.175	0.171	0.167	0.163	0.160	0.157	0.150	0.148
16.5	0.140	0.180	0.176	0.171	0.167	0.163	0.159	0.156	0.152	0.149	0.146	0.143	0.137	0.135
17.0	0.128	0.164	0.160	0.156	0.152	0.149	0.145	0.142	0.139	0.136	0.133	0.131	0.126	0.123
17.5	0.117	0.148	0.145	0.142	0.139	0.135	0.133	0.130	0.127	0.124	0.122	0.120	0.115	0.113
18.0	0.106	0.132	0.129	0.126	0.124	0.121	0.119	0.116	0.114	0.112	0.110	0.108	0.104	0.102
18.5	0.094	0.116	0.113	0.111	0.109	0.107	0.105	0.103	0.101	0.099	0.097	0.096	0.092	0.091
19.0	0.083	0.101	0.099	0.097	0.095	0.094	0.092	0.090	0.089	0.087	0.086	0.084	0.081	0.080
19.5	0.073	0.089	0.087	0.086	0.084	0.083	0.081	0.080	0.079	0.077	0.076	0.075	0.072	0.071
20.0	0.065	0.078	0.077	0.076	0.075	0.073	0.072	0.071	0.070	0.069	0.068	0.066	0.064	0.063
20.5	0.058	0.070	0.068	0.067	0.066	0.065	0.064	0.063	0.062	0.061	0.060	0.059	0.057	0.056
21.0	0.052	0.062	0.061	0.060	0.059	0.058	0.057	0.056	0.055	0.054	0.053	0.053	0.051	0.050
21.5	0.046	0.055	0.055	0.054	0.053	0.052	0.051	0.050	0.049	0.048	0.048	0.047	0.045	0.045
22.0	0.041	0.050	0.049	0.048	0.047	0.046	0.045	0.044	0.044	0.043	0.042	0.042	0.040	0.040
22.5	0.036	0.044	0.043	0.042	0.042	0.041	0.040	0.039	0.039	0.038	0.037	0.037	0.036	0.035
23.0	0.032	0.039	0.038	0.038	0.037	0.036	0.035	0.035	0.034	0.034	0.033	0.033	0.032	0.031
23.5	0.028	0.034	0.034	0.033	0.032	0.032	0.031	0.031	0.030	0.030	0.029	0.029	0.028	0.027
24.0	0.025	0.030	0.030	0.029	0.028	0.028	0.027	0.027	0.026	0.026	0.026	0.025	0.024	0.024
24.5	0.021	0.026	0.026	0.025	0.025	0.024	0.024	0.023	0.023	0.023	0.022	0.022	0.021	0.021
25.0	0.019	0.022	0.022	0.022	0.021	0.021	0.020	0.020	0.020	0.019	0.019	0.019	0.018	0.018

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 16 of 34

6.3 Sound Curves, Mode 0

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Sound Power Level at Hub Height Conditions for Sound Measurement standard IEC 61400-11 ed. 3											
Conditions for Sound Power Level:	Measurement standard IE Maximum turbulence at he Inflow angle (vertical): 0 ± Air density: 1.225 kg/m³	ub height: 30%									
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Mode 0 (Blades with serrated trailing edge)	Sound Power Level at Hub Height [dBA] Mode 0-0S (Blades without serrated trailing edge)									
3	91.3	94.1									
4	91.8	94.6									
5	94.1	96.9									
6	96.9	99.7									
7	100.0	102.8									
8	102.7	105.5									
9	104.0	106.8									
10	104.1	106.9									
11	104.9	107.7									
12	104.9	107.7									
13	104.9	107.7									
14	104.9	107.7									
15	104.9	107.7									
16	104.9	107.7									
17	104.9	107.7									
18	104.9	107.7									
19	104.9	107.7									
20	104.9	107.7									

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 17 of 34

7 Power Curves, Ct Values and Sound Curves, Sound Optimized Modes

7.1 Power Curves, Sound Optimized Mode SO0

Air density [kg/m³]														
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	40	13	15	17	19	22	24	27	29	32	35	38	43	46
3.5	137	86	91	95	100	105	109	114	118	123	128	132	141	146
4.0	251	175	182	189	196	203	210	217	223	230	237	244	258	264
4.5	391	284	294	304	313	323	333	342	352	362	371	381	401	410
5.0	564	419	432	445	459	472	485	498	511	524	538	551	577	590
5.5	777	583	600	618	635	653	671	688	706	724	741	759	794	812
6.0	1034	780	803	826	850	873	896	919	942	965	988	1011	1057	1080
6.5	1339	1016	1045	1075	1104	1134	1163	1192	1222	1251	1280	1310	1368	1398
7.0	1696	1293	1330	1367	1403	1440	1477	1513	1550	1587	1623	1660	1733	1769
7.5	2105	1612	1657	1702	1747	1792	1836	1881	1926	1971	2015	2060	2149	2194
8.0	2568	1973	2028	2082	2136	2190	2244	2298	2352	2406	2460	2514	2622	2675
8.5	3087	2378	2443	2508	2572	2637	2702	2766	2831	2895	2959	3023	3151	3215
9.0	3653	2822	2898	2974	3050	3126	3202	3278	3353	3429	3504	3578	3727	3801
9.5	4222	3288	3376	3463	3551	3638	3723	3808	3893	3978	4060	4141	4301	4379
10.0	4748	3748	3846	3944	4042	4140	4231	4322	4413	4504	4585	4667	4820	4893
10.5	5154	4176	4283	4389	4495	4601	4689	4777	4864	4952	5020	5087	5208	5261
11.0	5429	4559	4666	4773	4880	4987	5062	5138	5213	5288	5335	5382	5459	5489
11.5	5541	4884	4978	5073	5168	5263	5315	5368	5421	5473	5496	5519	5552	5564
12.0	5578	5125	5202	5278	5354	5431	5460	5490	5519	5548	5558	5568	5584	5590
12.5	5593	5301	5355	5408	5461	5515	5530	5545	5560	5576	5581	5587	5596	5598
13.0	5598	5414	5448	5483	5518	5552	5561	5570	5579	5588	5592	5595	5599	5600
13.5	5599	5460	5487	5515	5542	5569	5576	5583	5590	5596	5597	5598	5600	5600
14.0	5600	5493	5515	5536	5558	5579	5584	5589	5593	5598	5599	5599	5600	5600
14.5	5600	5515	5532	5550	5567	5584	5588	5592	5595	5599	5599	5599	5600	5600
15.0	5600	5526	5541	5556	5571	5586	5589	5592	5595	5598	5598	5599	5600	5600
15.5	5600	5539	5551	5564	5577	5589	5591	5594	5596	5598	5599	5599	5600	5600
16.0	5600	5549	5559	5570	5581	5591	5593	5595	5597	5599	5599	5599	5600	5600
16.5	5600	5557	5566	5575	5584	5593	5595	5596	5597	5599	5599	5599	5600	5600
17.0	5597	5554	5563	5572	5580	5589	5591	5592	5594	5596	5596	5597	5598	5598
17.5	5563	5487	5499	5511	5523	5535	5539	5544	5548	5553	5556	5559	5565	5568
18.0	5433	5312	5328	5345	5362	5378	5387	5396	5404	5413	5420	5426	5440	5446
18.5	5233	5070	5092	5114	5136	5158	5170	5182	5193	5205	5215	5224	5242	5250
19.0	5006	4806	4833	4860	4887	4914	4928	4942	4957	4972	4983	4994	5016	5026
19.5	4773	4554	4583	4612	4642	4671	4688	4705	4722	4739	4750	4762	4783	4793
20.0	4544	4319	4349	4379	4409	4439	4456	4474	4491	4509	4520	4532	4553	4563
20.5	4312	4098	4126	4154	4182	4210	4228	4245	4262	4279	4290	4301	4322	4331
21.0	4082	3892	3917	3942	3966	3991	4006	4020	4035	4049	4060	4071	4090	4098
21.5	3849	3696	3716	3735	3755	3775	3787	3799	3811	3823	3832	3840	3856	3862
22.0	3613	3494	3509	3525	3540	3556	3565	3574	3583	3592	3599	3606	3619	3626
22.5	3361	3281	3291	3300	3310	3320	3326	3332	3338	3344	3350	3356	3364	3367
23.0	3123	3068	3074	3080	3086	3093	3097	3101	3105	3109	3114	3118	3128	3132
23.5	2879	2838	2843	2847	2852	2857	2860	2863	2865	2868	2872	2875	2884	2889
24.0	2638	2606	2609	2612	2615	2619	2621	2624	2627	2630	2632	2635	2642	2647
24.5	2384	2361	2364	2366	2369	2372	2373	2374	2375	2376	2379	2382	2387	2391
25.0	2124	2090	2093	2096	2100	2103	2106	2108	2111	2113	2117	2120	2128	2132
												2.20	2.20	

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 18 of 34

7.2 Ct Values, Sound Optimized Mode SO0

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Air density kg/m ³														
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	0.877	0.869	0.870	0.872	0.874	0.875	0.876	0.876	0.876	0.877	0.877	0.877	0.877	0.877
3.5	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838
4.0	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800
4.5	0.790	0.789	0.790	0.790	0.790	0.791	0.790	0.790	0.790	0.790	0.790	0.790	0.790	0.789
5.0	0.784	0.788	0.788	0.787	0.787	0.786	0.786	0.786	0.785	0.785	0.785	0.784	0.784	0.783
5.5	0.785	0.783	0.783	0.783	0.783	0.783	0.783	0.784	0.784	0.784	0.784	0.784	0.785	0.785
6.0	0.787	0.784	0.784	0.784	0.785	0.785	0.785	0.786	0.786	0.786	0.787	0.787	0.788	0.788
6.5	0.790	0.786	0.787	0.787	0.787	0.788	0.788	0.788	0.789	0.789	0.789	0.789	0.790	0.790
7.0	0.793	0.788	0.789	0.789	0.790	0.790	0.791	0.791	0.792	0.792	0.792	0.793	0.793	0.794
7.5	0.798	0.795	0.795	0.795	0.796	0.796	0.796	0.797	0.797	0.797	0.797	0.798	0.798	0.799
8.0	0.798	0.794	0.795	0.795	0.796	0.796	0.797	0.797	0.797	0.797	0.798	0.798	0.798	0.799
8.5	0.788	0.785	0.785	0.785	0.785	0.786	0.786	0.786	0.787	0.787	0.787	0.787	0.788	0.788
9.0	0.774	0.773	0.773	0.773	0.773	0.774	0.774	0.774	0.774	0.774	0.774	0.774	0.773	0.772
9.5	0.739	0.755	0.754	0.754	0.754	0.753	0.752	0.750	0.749	0.747	0.744	0.741	0.735	0.731
10.0	0.682	0.720	0.719	0.717	0.715	0.714	0.710	0.706	0.702	0.699	0.693	0.687	0.675	0.668
10.5	0.610	0.671	0.668	0.665	0.663	0.660	0.654	0.647	0.641	0.635	0.627	0.618	0.601	0.591
11.0	0.534	0.615	0.611	0.607	0.602	0.598	0.590	0.582	0.574	0.566	0.555	0.545	0.524	0.513
11.5	0.457	0.552	0.546	0.541	0.535	0.529	0.520	0.510	0.500	0.491	0.480	0.469	0.447	0.436
12.0	0.392	0.490	0.483	0.477	0.470	0.463	0.452	0.442	0.432	0.422	0.412	0.402	0.383	0.374
12.5	0.340	0.435	0.427	0.419	0.411	0.402	0.393	0.383	0.374	0.364	0.356	0.348	0.332	0.325
13.0	0.297	0.385	0.377	0.368	0.360	0.351	0.343	0.335	0.327	0.318	0.311	0.304	0.291	0.284
13.5	0.262	0.340	0.332	0.325	0.317	0.310	0.302	0.295	0.288	0.281	0.275	0.268	0.257	0.251
14.0	0.233	0.302	0.295	0.288	0.281	0.274	0.268	0.262	0.256	0.249	0.244	0.238	0.228	0.223
14.5	0.208	0.269	0.263	0.257	0.251	0.245	0.239	0.234	0.228	0.223	0.218	0.213	0.204	0.200
15.0	0.187	0.241	0.236	0.230	0.225	0.219	0.214	0.210	0.205	0.200	0.196	0.192	0.184	0.180
15.5	0.169	0.218	0.213	0.208	0.203	0.198	0.194	0.189	0.185	0.180	0.177	0.173	0.166	0.163
16.0	0.154	0.197	0.193	0.188	0.184	0.179	0.175	0.171	0.168	0.164	0.160	0.157	0.151	0.148
16.5	0.140	0.179	0.175	0.171	0.167	0.163	0.160	0.156	0.153	0.149	0.146	0.143	0.137	0.135
17.0	0.128	0.164	0.160	0.156	0.153	0.149	0.146	0.143	0.139	0.136	0.134	0.131	0.126	0.123
17.5	0.118	0.149	0.145	0.142	0.139	0.136	0.133	0.130	0.127	0.125	0.122	0.120	0.115	0.113
18.0	0.106	0.132	0.129	0.127	0.124	0.121	0.119	0.117	0.114	0.112	0.110	0.108	0.104	0.102
18.5	0.094	0.116	0.114	0.112	0.110	0.107	0.105	0.103	0.101	0.099	0.098	0.096	0.093	0.091
19.0	0.083	0.101	0.100	0.098	0.096	0.094	0.093	0.091	0.089	0.088	0.086	0.085	0.082	0.081
19.5	0.074	0.089	0.088	0.086	0.085	0.083	0.082	0.081	0.079	0.078	0.076	0.075	0.073	0.072
20.0	0.066	0.079	0.078	0.076	0.075	0.074	0.073	0.071	0.070	0.069	0.068	0.067	0.065	0.064
20.5	0.058	0.070	0.069	0.068	0.067	0.066	0.065	0.063	0.062	0.061	0.060	0.059	0.058	0.057
21.0	0.052	0.062	0.061	0.060	0.059	0.058	0.057	0.056	0.055	0.055	0.054	0.053	0.051	0.050
21.5	0.046	0.056	0.055	0.054	0.053	0.052	0.051	0.050	0.050	0.049	0.048	0.047	0.046	0.045
22.0	0.041	0.050	0.049	0.048	0.047	0.046	0.046	0.045	0.044	0.043	0.043	0.042	0.041	0.040
22.5	0.036	0.044	0.043	0.043	0.042	0.041	0.040	0.040	0.039	0.038	0.038	0.037	0.036	0.035
23.0	0.032	0.039	0.039	0.038	0.037	0.036	0.036	0.035	0.034	0.034	0.033	0.033	0.032	0.031
23.5	0.028	0.035	0.034	0.033	0.033	0.032	0.031	0.031	0.030	0.030	0.029	0.029	0.028	0.028
24.0	0.025	0.030	0.030	0.029	0.029	0.028	0.028	0.027	0.027	0.026	0.026	0.025	0.025	0.024
24.5	0.022	0.026	0.026	0.025	0.025	0.024	0.024	0.023	0.023	0.023	0.022	0.022	0.021	0.021
25.0	0.019	0.022	0.022	0.022	0.021	0.021	0.021	0.020	0.020	0.020	0.019	0.019	0.018	0.018

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 19 of 34

7.3 Sound Curves, Sound Optimized Mode SO0

	Sound Power Level at Hub Height
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Sound Optimized ModeSO0 (Blades with serrated trailing edge)
3	91.3
4	91.8
5	94.1
6	96.9
7	100.0
8	102.6
9	103.7
10	103.9
11	104.0
12	104.0
13	104.0
14	104.0
15	104.0
16	104.0
17	104.0
18	104.0
19	104.0
20	104.0

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW

V150-5.6 MW 50/60 Hz

Date: 2019-01-24 Restricted Page 20 of 34

7.4 **Power Curves, Sound Optimized Mode SO2**

Air density [kg/m³]														
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	42	13	16	18	20	23	25	28	31	33	36	39	45	48
3.5	138	87	92	97	101	106	111	115	120	124	129	134	143	147
4.0	252	177	184	191	197	204	211	218	225	232	239	246	259	266
4.5	393	286	295	305	315	325	334	344	354	364	373	383	403	412
5.0	567	421	434	448	461	474	487	501	514	527	540	553	580	593
5.5	780	586	603	621	639	656	674	692	709	727	745	763	798	816
6.0	1039	784	807	831	854	877	900	923	946	970	993	1016	1062	1085
6.5	1345	1021	1051	1080	1110	1139	1169	1198	1228	1257	1287	1316	1375	1404
7.0	1705	1300	1337	1374	1411	1448	1484	1521	1558	1595	1631	1668	1741	1778
7.5	2112	1618	1663	1708	1753	1798	1843	1888	1933	1978	2022	2067	2157	2202
8.0	2570	1974	2029	2083	2137	2192	2246	2300	2354	2408	2462	2516	2624	2678
8.5	3042	2342	2405	2469	2533	2597	2661	2724	2788	2852	2915	2979	3105	3168
9.0	3565	2750	2824	2898	2973	3047	3121	3196	3270	3344	3418	3491	3637	3710
9.5	4097	3176	3262	3347	3432	3517	3601	3685	3770	3854	3935	4016	4169	4241
10.0	4513	3566	3661	3756	3851	3946	4034	4123	4212	4300	4371	4442	4570	4626
10.5	4761	3910	4009	4109	4208	4307	4384	4461	4538	4615	4664	4712	4793	4824
11.0	4892	4210	4302	4393	4485	4576	4635	4694	4752	4811	4838	4865	4904	4917
11.5	4924	4434	4512	4590	4668	4746	4782	4818	4854	4890	4901	4913	4931	4937
12.0	4940	4602	4662	4722	4781	4841	4860	4880	4899	4919	4926	4933	4943	4947
12.5	4947	4711	4754	4798	4842	4886	4897	4909	4921	4933	4938	4942	4948	4950
13.0	4949	4773	4806	4839	4872	4905	4914	4922	4931	4940	4943	4946	4950	4951
13.5	4950	4799	4828	4857	4886	4915	4923	4930	4938	4946	4947	4949	4950	4951
14.0	4950	4826	4850	4874	4899	4923	4929	4935	4941	4947	4948	4949	4951	4951
14.5	4950	4847	4867	4888	4908	4928	4933	4938	4943	4948	4949	4950	4951	4951
15.0	4950	4863	4880	4896	4913	4930	4934	4939	4943	4948	4949	4949	4950	4951
15.5	4950	4877	4891	4906	4920	4934	4938	4941	4945	4948	4949	4950	4951	4951
16.0	4950	4884	4897	4910	4924	4937	4940	4943	4946	4949	4949	4950	4951	4951
16.5	4951	4885	4898	4912	4925	4938	4941	4943	4946	4949	4950	4950	4951	4951
17.0	4950	4884	4897	4910	4924	4937	4940	4943	4946	4949	4949	4950	4951	4951
17.5	4951	4864	4881	4898	4914	4931	4935	4940	4944	4948	4949	4950	4951	4951
18.0	4950	4863	4880	4896	4913	4930	4935	4939	4943	4948	4948	4949	4951	4951
18.5	4946	4842	4860	4879	4898	4916	4922	4928	4934	4940	4942	4944	4947	4948
19.0	4885	4722	4746	4770	4794	4818	4830	4842	4854	4866	4872	4878	4889	4894
19.5	4740	4531	4560	4588	4617	4645	4661	4677	4693	4709	4719	4730	4748	4755
20.0	4532	4306	4336	4365	4395	4425	4443	4461	4479	4498	4509	4520	4542	4551

EnVentus™ 5 MW

Performance Specification V150-5.6 MW 50/60 Hz

Date: 2019-01-24 Restricted Page 21 of 34

Ct Values, Sound Optimized Mode SO2 7.5

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

	Air density kg/m³													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	0.885	0.877	0.878	0.880	0.881	0.883	0.883	0.884	0.884	0.884	0.884	0.884	0.884	0.884
3.5	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844
4.0	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.805	0.805
4.5	0.795	0.795	0.795	0.795	0.796	0.796	0.796	0.796	0.796	0.796	0.795	0.795	0.795	0.795
5.0	0.789	0.793	0.793	0.792	0.792	0.792	0.791	0.791	0.791	0.790	0.790	0.790	0.789	0.789
5.5	0.790	0.788	0.788	0.788	0.788	0.788	0.789	0.789	0.789	0.789	0.789	0.790	0.790	0.790
6.0	0.792	0.789	0.789	0.790	0.790	0.790	0.791	0.791	0.791	0.792	0.792	0.792	0.793	0.793
6.5	0.796	0.792	0.793	0.793	0.793	0.794	0.794	0.794	0.795	0.795	0.795	0.795	0.796	0.796
7.0	0.798	0.795	0.795	0.795	0.796	0.796	0.796	0.797	0.797	0.797	0.798	0.798	0.798	0.799
7.5	0.797	0.792	0.793	0.793	0.793	0.794	0.794	0.795	0.795	0.795	0.796	0.796	0.797	0.797
8.0	0.778	0.775	0.776	0.776	0.776	0.776	0.776	0.777	0.777	0.777	0.777	0.777	0.778	0.779
8.5	0.733	0.731	0.731	0.731	0.731	0.731	0.732	0.732	0.732	0.732	0.732	0.733	0.733	0.733
9.0	0.709	0.707	0.707	0.707	0.707	0.708	0.708	0.708	0.709	0.709	0.709	0.709	0.709	0.709
9.5	0.690	0.695	0.696	0.696	0.696	0.696	0.696	0.696	0.696	0.695	0.694	0.692	0.686	0.682
10.0	0.630	0.657	0.657	0.657	0.657	0.658	0.655	0.653	0.650	0.648	0.642	0.636	0.622	0.613
10.5	0.545	0.599	0.598	0.597	0.596	0.595	0.590	0.585	0.579	0.574	0.564	0.555	0.534	0.523
11.0	0.462	0.539	0.536	0.532	0.529	0.525	0.517	0.510	0.502	0.494	0.484	0.473	0.451	0.441
11.5	0.392	0.477	0.472	0.467	0.462	0.457	0.448	0.439	0.430	0.421	0.411	0.401	0.383	0.374
12.0	0.337	0.423	0.416	0.410	0.403	0.397	0.388	0.379	0.370	0.362	0.353	0.345	0.330	0.322
12.5	0.294	0.374	0.367	0.360	0.353	0.346	0.338	0.330	0.322	0.314	0.307	0.300	0.287	0.281
13.0	0.258	0.330	0.323	0.316	0.310	0.303	0.296	0.289	0.283	0.276	0.270	0.264	0.252	0.247
13.5	0.228	0.292	0.286	0.280	0.274	0.268	0.262	0.256	0.250	0.244	0.239	0.234	0.224	0.219
14.0	0.203	0.260	0.254	0.249	0.244	0.238	0.233	0.228	0.222	0.217	0.213	0.208	0.199	0.195
14.5	0.182	0.233	0.228	0.223	0.218	0.213	0.208	0.204	0.199	0.194	0.190	0.186	0.179	0.175
15.0	0.164	0.210	0.205	0.201	0.196	0.191	0.187	0.183	0.179	0.175	0.171	0.168	0.161	0.158
15.5	0.149	0.190	0.185	0.181	0.177	0.173	0.169	0.166	0.162	0.158	0.155	0.152	0.146	0.143
16.0	0.135	0.172	0.168	0.164	0.161	0.157	0.154	0.150	0.147	0.144	0.141	0.138	0.133	0.130
16.5	0.123	0.156	0.153	0.150	0.146	0.143	0.140	0.137	0.134	0.131	0.128	0.126	0.121	0.119
17.0	0.113	0.143	0.140	0.137	0.134	0.131	0.128	0.125	0.123	0.120	0.118	0.115	0.111	0.109
17.5	0.104	0.131	0.128	0.126	0.123	0.120	0.118	0.116	0.113	0.111	0.109	0.106	0.102	0.100
18.0	0.096	0.120	0.118	0.116	0.113	0.111	0.109	0.106	0.104	0.102	0.100	0.098	0.094	0.093
18.5	0.089	0.111	0.108	0.106	0.104	0.102	0.100	0.098	0.096	0.094	0.092	0.091	0.087	0.086
19.0	0.081	0.099	0.098	0.096	0.094	0.092	0.091	0.089	0.087	0.085	0.084	0.082	0.080	0.078
19.5	0.073	0.089	0.087	0.086	0.084	0.083	0.081	0.080	0.078	0.077	0.076	0.074	0.072	0.071
20.0	0.065	0.078	0.077	0.076	0.075	0.073	0.072	0.071	0.070	0.069	0.068	0.066	0.064	0.063

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 22 of 34

7.6 Sound Curves, Sound Optimized Mode SO2

	Sound Power Level at Hub Height
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA]
neight [m/s]	Sound Optimized Mode SO2 (Blades with serrated trailing edge)
3	91.3
4	91.5
5	93.9
6	96.9
7	99.7
8	102.0
9	102.0
10	102.0
11	102.0
12	102.0
13	102.0
14	102.0
15	102.0
16	102.0
17	102.0
18	102.0
19	102.0
20	102.0

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 23 of 34

7.7 Power Curves, Sound Optimized Mode SO3

	Air density [kg/m³]													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	42	13	16	18	20	23	25	28	31	33	36	39	45	48
3.5	138	87	92	97	101	106	111	115	120	124	129	134	143	147
4.0	252	177	184	191	197	204	211	218	225	232	239	246	259	266
4.5	393	286	295	305	315	325	334	344	354	364	373	383	403	412
5.0	567	421	434	448	461	474	487	501	514	527	540	553	580	593
5.5	780	586	603	621	639	656	674	692	709	727	745	763	798	816
6.0	1039	784	807	831	854	877	900	923	946	970	993	1016	1062	1085
6.5	1346	1021	1051	1080	1110	1140	1169	1199	1228	1258	1287	1316	1375	1404
7.0	1705	1300	1337	1374	1411	1448	1485	1522	1558	1595	1632	1668	1741	1778
7.5	2108	1614	1659	1704	1749	1794	1839	1884	1929	1974	2018	2063	2152	2196
8.0	2542	1953	2007	2060	2114	2168	2221	2275	2328	2382	2435	2489	2595	2648
8.5	2979	2292	2355	2418	2480	2543	2605	2667	2730	2792	2854	2917	3041	3103
9.0	3450	2660	2732	2804	2876	2948	3020	3092	3164	3236	3307	3378	3520	3590
9.5	3901	3019	3100	3181	3262	3344	3424	3505	3585	3666	3744	3822	3975	4048
10.0	4248	3327	3416	3505	3594	3683	3769	3855	3941	4026	4100	4174	4310	4372
10.5	4470	3587	3682	3776	3870	3965	4047	4129	4211	4293	4352	4411	4512	4554
11.0	4604	3816	3910	4003	4096	4190	4261	4332	4403	4474	4518	4561	4629	4653
11.5	4661	4003	4090	4177	4264	4351	4409	4466	4524	4581	4608	4635	4674	4686
12.0	4684	4131	4212	4292	4373	4454	4499	4543	4588	4633	4650	4667	4692	4700
12.5	4695	4218	4292	4366	4440	4514	4550	4586	4621	4657	4670	4682	4701	4707
13.0	4700	4289	4355	4422	4488	4555	4584	4613	4642	4671	4681	4690	4705	4710
13.5	4707	4338	4397	4456	4515	4574	4601	4627	4653	4679	4688	4698	4711	4715
14.0	4710	4388	4441	4494	4547	4600	4622	4644	4665	4687	4695	4702	4713	4716
14.5	4712	4430	4477	4525	4572	4620	4638	4657	4675	4694	4700	4706	4715	4718
15.0	4713	4457	4500	4544	4587	4630	4646	4662	4678	4695	4701	4707	4715	4717
15.5	4714	4469	4510	4551	4592	4633	4649	4665	4681	4696	4702	4708	4716	4718
16.0	4713	4473	4513	4552	4592	4632	4648	4664	4679	4695	4701	4707	4715	4717
16.5	4712	4474	4514	4553	4592	4631	4646	4662	4678	4693	4700	4706	4714	4717
17.0	4711	4476	4514	4553	4591	4629	4645	4660	4676	4692	4698	4705	4714	4716
17.5	4708	4454	4493	4532	4571	4610	4629	4647	4666	4685	4692	4700	4711	4715
18.0	4708	4464	4501	4539	4576	4614	4632	4650	4668	4686	4693	4701	4711	4714
18.5	4708	4478	4514	4550	4585	4621	4638	4655	4672	4688	4695	4702	4712	4715
19.0	4699	4477	4511	4544	4578	4612	4628	4644	4660	4676	4683	4691	4703	4706
19.5	4641	4421	4453	4485	4516	4548	4564	4581	4597	4614	4623	4632	4647	4653
20.0	4503	4282	4312	4343	4373	4403	4420	4437	4455	4472	4482	4493	4512	4520

Document no.: 0081-5059 V02 Performance Specification Document owner: Platform Management EnVentus $^{\text{TM}}$ 5 MW V150-5.6 MW 50/60 Hz

Date: 2019-01-24 Restricted Page 24 of 34

7.8 Ct Values, Sound Optimized Mode SO3

Air density kg/m³														
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	0.885	0.877	0.878	0.880	0.881	0.883	0.883	0.884	0.884	0.884	0.884	0.884	0.884	0.884
3.5	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844
4.0	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.805	0.805
4.5	0.795	0.795	0.795	0.795	0.796	0.796	0.796	0.796	0.796	0.796	0.795	0.795	0.795	0.795
5.0	0.789	0.793	0.793	0.792	0.792	0.792	0.791	0.791	0.791	0.790	0.790	0.790	0.789	0.789
5.5	0.790	0.788	0.788	0.788	0.788	0.788	0.789	0.789	0.789	0.789	0.789	0.790	0.790	0.790
6.0	0.792	0.789	0.789	0.790	0.790	0.790	0.791	0.791	0.791	0.792	0.792	0.792	0.793	0.793
6.5	0.797	0.793	0.794	0.794	0.794	0.795	0.795	0.795	0.796	0.796	0.796	0.796	0.797	0.797
7.0	0.798	0.795	0.795	0.795	0.795	0.796	0.796	0.796	0.797	0.797	0.797	0.797	0.798	0.798
7.5	0.782	0.779	0.779	0.780	0.780	0.780	0.780	0.781	0.781	0.781	0.781	0.782	0.782	0.782
8.0	0.748	0.746	0.746	0.747	0.747	0.747	0.747	0.748	0.748	0.748	0.748	0.748	0.749	0.749
8.5	0.698	0.696	0.696	0.696	0.697	0.697	0.697	0.697	0.697	0.697	0.698	0.698	0.698	0.698
9.0	0.669	0.666	0.667	0.667	0.667	0.667	0.668	0.668	0.668	0.668	0.668	0.669	0.669	0.668
9.5	0.636	0.637	0.637	0.637	0.637	0.638	0.638	0.638	0.638	0.638	0.638	0.637	0.634	0.631
10.0	0.572	0.583	0.583	0.584	0.584	0.584	0.583	0.583	0.582	0.582	0.579	0.575	0.567	0.563
10.5	0.498	0.523	0.523	0.523	0.522	0.522	0.520	0.518	0.516	0.514	0.509	0.503	0.490	0.483
11.0	0.428	0.468	0.467	0.466	0.464	0.463	0.459	0.455	0.451	0.448	0.441	0.434	0.420	0.411
11.5	0.367	0.418	0.416	0.413	0.411	0.409	0.404	0.399	0.394	0.389	0.382	0.374	0.360	0.352
12.0	0.318	0.371	0.368	0.365	0.362	0.359	0.354	0.349	0.343	0.338	0.331	0.325	0.311	0.305
12.5	0.277	0.328	0.325	0.322	0.319	0.316	0.311	0.306	0.300	0.295	0.289	0.283	0.272	0.266
13.0	0.244	0.292	0.289	0.286	0.283	0.279	0.274	0.270	0.265	0.260	0.255	0.249	0.239	0.234
13.5	0.217	0.261	0.258	0.254	0.251	0.248	0.244	0.239	0.235	0.230	0.226	0.221	0.212	0.208
14.0	0.193	0.235	0.231	0.228	0.225	0.222	0.218	0.214	0.210	0.206	0.201	0.197	0.190	0.186
14.5	0.173	0.212	0.209	0.206	0.202	0.199	0.196	0.192	0.188	0.184	0.181	0.177	0.170	0.167
15.0	0.156	0.191	0.189	0.186	0.183	0.180	0.176	0.173	0.169	0.166	0.163	0.160	0.153	0.150
15.5	0.142	0.173	0.171	0.168	0.165	0.162	0.159	0.156	0.153	0.150	0.147	0.144	0.139	0.136
16.0	0.129	0.157	0.155	0.152	0.150	0.147	0.145	0.142	0.139	0.136	0.134	0.131	0.126	0.124
16.5	0.117	0.143	0.141	0.139	0.136	0.134	0.132	0.129	0.127	0.124	0.122	0.120	0.115	0.113
17.0	0.108	0.131	0.129	0.127	0.125	0.123	0.120	0.118	0.116	0.114	0.112	0.110	0.106	0.104
17.5	0.099	0.120	0.118	0.116	0.114	0.113	0.111	0.109	0.107	0.105	0.103	0.101	0.097	0.096
18.0	0.091	0.111	0.109	0.107	0.105	0.104	0.102	0.100	0.098	0.097	0.095	0.093	0.090	0.088
18.5	0.085	0.102	0.101	0.099	0.097	0.096	0.094	0.093	0.091	0.089	0.088	0.086	0.083	0.082
19.0	0.078	0.094	0.093	0.091	0.090	0.088	0.087	0.085	0.084	0.082	0.081	0.079	0.077	0.075
19.5	0.072	0.086	0.085	0.084	0.082	0.081	0.079	0.078	0.077	0.075	0.074	0.073	0.070	0.069
20.0	0.065	0.078	0.077	0.076	0.074	0.073	0.072	0.071	0.069	0.068	0.067	0.066	0.064	0.063

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 25 of 34

7.9 Sound Curves, Sound Optimized Mode SO3

	Sound Power Level at Hub Height
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Sound Optimized Mode SO3 (Blades with serrated trailing edge)
3	91.3
4	91.5
5	93.9
6	96.9
7	99.7
8	101.0
9	101.0
10	101.0
11	101.0
12	101.0
13	101.0
14	101.0
15	101.0
16	101.0
17	101.0
18	101.0
19	101.0
20	101.0

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 26 of 34

7.10 Power Curves, Sound Optimized Mode SO4

	Air density [kg/m³]													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	42	13	16	18	20	23	25	28	31	33	36	39	45	48
3.5	138	87	92	97	101	106	111	115	120	124	129	134	143	147
4.0	252	177	184	191	197	204	211	218	225	232	239	246	259	266
4.5	393	286	295	305	315	325	334	344	354	364	373	383	403	412
5.0	567	421	434	448	461	474	487	501	514	527	540	553	580	593
5.5	780	586	603	621	639	656	674	692	709	727	745	763	798	816
6.0	1039	785	808	831	854	877	900	923	947	970	993	1016	1062	1086
6.5	1346	1021	1051	1080	1110	1140	1169	1199	1228	1258	1287	1317	1375	1404
7.0	1702	1299	1336	1373	1409	1446	1483	1520	1556	1593	1630	1666	1739	1776
7.5	2092	1603	1647	1692	1736	1781	1825	1870	1914	1959	2003	2048	2136	2180
8.0	2498	1919	1972	2025	2077	2130	2183	2236	2288	2341	2394	2446	2551	2604
8.5	2898	2229	2290	2351	2412	2473	2534	2594	2655	2716	2777	2837	2958	3018
9.0	3303	2547	2616	2685	2754	2823	2892	2960	3029	3098	3166	3235	3372	3440
9.5	3664	2830	2907	2983	3059	3136	3212	3288	3364	3440	3515	3589	3736	3808
10.0	3945	3066	3148	3230	3313	3395	3476	3558	3639	3720	3795	3870	4010	4075
10.5	4147	3266	3354	3441	3528	3616	3698	3780	3863	3945	4012	4080	4197	4247
11.0	4271	3434	3525	3616	3707	3798	3873	3948	4024	4099	4157	4214	4310	4349
11.5	4338	3555	3646	3736	3826	3917	3987	4057	4128	4198	4245	4292	4367	4396
12.0	4375	3650	3737	3824	3911	3998	4063	4127	4192	4256	4296	4336	4396	4417
12.5	4396	3731	3814	3898	3982	4065	4124	4182	4240	4299	4331	4364	4413	4430
13.0	4412	3804	3883	3962	4042	4121	4174	4227	4280	4333	4359	4386	4425	4438
13.5	4420	3869	3942	4016	4089	4162	4209	4256	4302	4349	4373	4396	4432	4445
14.0	4429	3922	3992	4061	4131	4200	4242	4284	4327	4369	4389	4409	4440	4451
14.5	4434	3955	4022	4088	4155	4221	4260	4300	4339	4378	4396	4415	4444	4454
15.0	4430	3963	4028	4094	4159	4225	4262	4300	4338	4376	4394	4412	4440	4450
15.5	4429	3970	4034	4099	4163	4227	4264	4301	4338	4375	4393	4411	4439	4448
16.0	4427	3977	4040	4103	4166	4229	4265	4301	4338	4374	4392	4409	4437	4447
16.5	4426	3988	4050	4111	4172	4234	4269	4304	4339	4374	4392	4409	4436	4446
17.0	4426	4004	4064	4124	4184	4243	4276	4310	4343	4376	4393	4410	4436	4446
17.5	4419	4010	4065	4120	4175	4230	4263	4296	4329	4362	4381	4400	4430	4442
18.0	4424	4038	4091	4143	4195	4247	4278	4309	4340	4370	4388	4406	4434	4445
18.5	4429	4071	4120	4169	4218	4267	4295	4324	4352	4381	4397	4413	4439	4448
19.0	4427	4093	4140	4188	4235	4282	4308	4334	4359	4385	4399	4413	4436	4445
19.5	4430	4129	4171	4214	4256	4299	4322	4345	4368	4391	4404	4417	4437	4445
20.0	4384	4123	4159	4196	4232	4268	4288	4309	4329	4349	4360	4372	4392	4400

Date: 2019-01-24 Restricted Page 27 of 34

7.11 Ct Values, Sound Optimized Mode SO4

Air density kg/m³														
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	0.885	0.877	0.878	0.880	0.881	0.883	0.883	0.884	0.884	0.884	0.884	0.884	0.884	0.884
3.5	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844
4.0	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.805	0.805
4.5	0.795	0.795	0.795	0.795	0.796	0.796	0.796	0.796	0.796	0.796	0.795	0.795	0.795	0.795
5.0	0.789	0.793	0.793	0.792	0.792	0.792	0.791	0.791	0.791	0.790	0.790	0.790	0.789	0.789
5.5	0.790	0.789	0.788	0.788	0.788	0.788	0.789	0.789	0.789	0.789	0.790	0.790	0.790	0.790
6.0	0.794	0.790	0.791	0.791	0.791	0.792	0.792	0.792	0.792	0.793	0.793	0.793	0.794	0.794
6.5	0.796	0.792	0.793	0.793	0.793	0.794	0.794	0.794	0.795	0.795	0.795	0.795	0.796	0.796
7.0	0.791	0.788	0.788	0.789	0.789	0.789	0.789	0.790	0.790	0.790	0.790	0.791	0.791	0.791
7.5	0.761	0.759	0.759	0.759	0.759	0.760	0.760	0.760	0.760	0.760	0.761	0.761	0.761	0.761
8.0	0.717	0.715	0.715	0.716	0.716	0.716	0.716	0.716	0.717	0.717	0.717	0.717	0.718	0.718
8.5	0.665	0.663	0.663	0.663	0.663	0.663	0.664	0.664	0.664	0.664	0.664	0.665	0.665	0.665
9.0	0.626	0.624	0.624	0.624	0.624	0.625	0.625	0.625	0.625	0.625	0.625	0.626	0.626	0.626
9.5	0.576	0.575	0.575	0.575	0.575	0.575	0.576	0.576	0.576	0.576	0.576	0.576	0.575	0.574
10.0	0.512	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.516	0.515	0.513	0.510	0.507
10.5	0.449	0.459	0.459	0.459	0.460	0.460	0.459	0.458	0.457	0.457	0.454	0.452	0.444	0.440
11.0	0.390	0.409	0.409	0.409	0.409	0.409	0.407	0.405	0.403	0.401	0.397	0.394	0.385	0.380
11.5	0.338	0.362	0.362	0.361	0.361	0.360	0.358	0.356	0.353	0.351	0.347	0.343	0.333	0.328
12.0	0.295	0.321	0.320	0.319	0.318	0.317	0.315	0.312	0.310	0.307	0.303	0.299	0.290	0.285
12.5	0.259	0.286	0.285	0.284	0.283	0.281	0.279	0.276	0.273	0.271	0.267	0.263	0.254	0.250
13.0	0.229	0.256	0.255	0.254	0.252	0.251	0.248	0.245	0.243	0.240	0.236	0.232	0.225	0.220
13.5	0.203	0.231	0.229	0.228	0.226	0.224	0.222	0.219	0.216	0.214	0.210	0.207	0.200	0.196
14.0	0.182	0.209	0.207	0.205	0.204	0.202	0.199	0.197	0.194	0.191	0.188	0.185	0.179	0.175
14.5	0.163	0.188	0.187	0.185	0.183	0.182	0.179	0.177	0.174	0.172	0.169	0.166	0.160	0.158
15.0	0.147	0.170	0.168	0.167	0.165	0.164	0.161	0.159	0.157	0.155	0.152	0.150	0.145	0.142
15.5	0.133	0.154	0.152	0.151	0.150	0.148	0.146	0.144	0.142	0.140	0.138	0.135	0.131	0.129
16.0	0.121	0.140	0.138	0.137	0.136	0.134	0.133	0.131	0.129	0.127	0.125	0.123	0.119	0.117
16.5	0.110	0.128	0.126	0.125	0.124	0.123	0.121	0.119	0.118	0.116	0.114	0.112	0.109	0.107
17.0	0.101	0.117	0.116	0.115	0.114	0.113	0.111	0.109	0.108	0.106	0.105	0.103	0.099	0.098
17.5	0.093	0.108	0.107	0.106	0.105	0.103	0.102	0.101	0.099	0.098	0.096	0.095	0.092	0.090
18.0	0.086	0.100	0.099	0.098	0.097	0.096	0.094	0.093	0.092	0.090	0.089	0.087	0.085	0.083
18.5	0.080	0.093	0.092	0.091	0.090	0.089	0.087	0.086	0.085	0.084	0.082	0.081	0.078	0.077
19.0	0.074	0.086	0.085	0.084	0.083	0.082	0.081	0.080	0.078	0.077	0.076	0.075	0.072	0.071
19.5	0.068	0.081	0.080	0.079	0.078	0.077	0.075	0.074	0.073	0.072	0.071	0.070	0.067	0.066
20.0	0.063	0.075	0.074	0.073	0.072	0.071	0.070	0.069	0.067	0.066	0.065	0.064	0.062	0.061

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 28 of 34

7.12 Sound Curves, Sound Optimized Mode SO4

Sound Power Level at Hub Height							
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³						
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Sound Optimized Mode SO4 (Blades with serrated trailing edge)						
3	91.3						
4	91.5						
5	93.9						
6	96.9						
7	99.5						
8	100.0						
9	100.0						
10	100.0						
11	100.0						
12	100.0						
13	100.0						
14	100.0						
15	100.0						
16	100.0						
17	100.0						
18	100.0						
19	100.0						
20	100.0						

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 29 of 34

7.13 Power Curves, Sound Optimized Mode SO5

	Air density [kg/m³]													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	42	13	16	18	20	23	25	28	31	33	36	39	45	48
3.5	138	87	92	97	101	106	111	115	120	124	129	134	143	147
4.0	252	177	184	191	197	204	211	218	225	232	239	246	259	266
4.5	393	286	295	305	315	325	334	344	354	364	373	383	403	412
5.0	567	421	434	448	461	474	487	501	514	527	540	553	580	593
5.5	781	586	604	621	639	656	674	692	710	727	745	763	798	816
6.0	1040	785	808	831	854	878	901	924	947	970	993	1017	1063	1086
6.5	1343	1019	1049	1078	1108	1137	1167	1196	1225	1255	1284	1313	1372	1401
7.0	1689	1289	1325	1362	1398	1435	1471	1508	1544	1580	1617	1653	1726	1762
7.5	2056	1575	1619	1662	1706	1750	1794	1838	1881	1925	1969	2012	2100	2143
8.0	2428	1865	1916	1968	2019	2070	2121	2173	2224	2275	2326	2377	2480	2531
8.5	2780	2139	2197	2256	2314	2373	2431	2489	2548	2606	2664	2722	2838	2896
9.0	3101	2390	2454	2519	2584	2649	2714	2778	2843	2908	2972	3037	3166	3230
9.5	3365	2594	2665	2735	2805	2875	2945	3016	3086	3156	3225	3295	3434	3504
10.0	3588	2770	2845	2920	2995	3070	3144	3219	3293	3368	3441	3515	3659	3730
10.5	3758	2910	2988	3067	3145	3224	3301	3379	3456	3534	3609	3683	3828	3898
11.0	3873	3017	3098	3179	3260	3341	3421	3501	3581	3661	3732	3802	3936	3998
11.5	3952	3098	3181	3264	3347	3430	3510	3590	3669	3749	3817	3884	4009	4065
12.0	4012	3172	3256	3341	3426	3510	3588	3665	3743	3820	3884	3948	4064	4115
12.5	4066	3246	3332	3418	3504	3590	3665	3739	3814	3889	3948	4007	4113	4160
13.0	4112	3317	3403	3489	3575	3661	3733	3804	3876	3948	4002	4057	4155	4197
13.5	4131	3369	3454	3539	3623	3708	3775	3842	3910	3977	4028	4080	4169	4208
14.0	4140	3398	3481	3565	3648	3731	3796	3861	3926	3992	4041	4090	4176	4213
14.5	4140	3413	3495	3577	3659	3741	3805	3868	3931	3995	4043	4092	4176	4212
15.0	4143	3427	3507	3587	3667	3746	3810	3873	3936	4000	4047	4095	4177	4211
15.5	4145	3445	3524	3602	3680	3758	3821	3883	3945	4007	4053	4099	4178	4212
16.0	4153	3470	3547	3624	3700	3777	3838	3898	3959	4019	4064	4108	4184	4216
16.5	4166	3504	3579	3654	3729	3804	3863	3922	3980	4039	4081	4124	4196	4226
17.0	4184	3548	3621	3694	3768	3841	3897	3954	4010	4066	4106	4145	4211	4239
17.5	4173	3586	3655	3724	3793	3862	3913	3964	4015	4066	4102	4138	4200	4227
18.0	4195	3638	3705	3772	3838	3905	3953	4001	4049	4097	4130	4163	4219	4244
18.5	4219	3697	3761	3825	3889	3953	3997	4042	4086	4130	4160	4189	4240	4262
19.0	4236	3760	3818	3876	3934	3992	4034	4075	4117	4158	4184	4210	4254	4271
19.5	4260	3830	3884	3939	3993	4047	4084	4121	4157	4194	4216	4238	4276	4291
20.0	4260	3884	3933	3982	4031	4080	4111	4142	4173	4204	4223	4241	4273	4286

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 30 of 34

7.14 Ct Values, Sound Optimized Mode SO5

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

	Air density kg/m³													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	0.885	0.877	0.878	0.880	0.881	0.883	0.883	0.884	0.884	0.884	0.884	0.884	0.884	0.884
3.5	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844
4.0	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.805	0.805
4.5	0.795	0.794	0.795	0.795	0.796	0.796	0.796	0.796	0.796	0.796	0.795	0.795	0.795	0.795
5.0	0.789	0.793	0.793	0.792	0.792	0.792	0.791	0.791	0.791	0.790	0.790	0.790	0.789	0.789
5.5	0.791	0.789	0.789	0.789	0.789	0.789	0.790	0.790	0.790	0.790	0.791	0.791	0.791	0.792
6.0	0.795	0.792	0.792	0.792	0.793	0.793	0.793	0.794	0.794	0.794	0.794	0.795	0.795	0.795
6.5	0.785	0.782	0.783	0.783	0.783	0.784	0.784	0.784	0.784	0.785	0.785	0.785	0.785	0.786
7.0	0.764	0.762	0.762	0.762	0.762	0.762	0.763	0.763	0.763	0.763	0.764	0.764	0.764	0.764
7.5	0.726	0.724	0.724	0.724	0.724	0.725	0.725	0.725	0.725	0.725	0.726	0.726	0.726	0.726
8.0	0.681	0.679	0.679	0.679	0.679	0.680	0.680	0.680	0.680	0.680	0.681	0.681	0.681	0.681
8.5	0.627	0.626	0.626	0.626	0.626	0.626	0.626	0.627	0.627	0.627	0.627	0.627	0.628	0.628
9.0	0.572	0.570	0.571	0.571	0.571	0.571	0.571	0.571	0.571	0.572	0.572	0.572	0.572	0.572
9.5	0.509	0.508	0.508	0.508	0.509	0.509	0.509	0.509	0.509	0.509	0.509	0.509	0.510	0.510
10.0	0.451	0.451	0.451	0.451	0.451	0.451	0.451	0.451	0.451	0.451	0.451	0.451	0.451	0.450
10.5	0.397	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.398	0.397	0.396	0.395
11.0	0.348	0.351	0.351	0.351	0.351	0.351	0.351	0.351	0.351	0.351	0.350	0.349	0.346	0.344
11.5	0.305	0.309	0.309	0.309	0.309	0.309	0.309	0.309	0.309	0.308	0.307	0.306	0.303	0.300
12.0	0.268	0.275	0.275	0.275	0.275	0.275	0.274	0.274	0.273	0.273	0.271	0.270	0.266	0.264
12.5	0.238	0.246	0.246	0.246	0.246	0.246	0.245	0.244	0.244	0.243	0.241	0.240	0.236	0.234
13.0	0.212	0.222	0.222	0.222	0.221	0.221	0.220	0.219	0.219	0.218	0.216	0.214	0.210	0.208
13.5	0.190	0.200	0.200	0.200	0.199	0.199	0.198	0.197	0.196	0.195	0.193	0.191	0.188	0.186
14.0	0.170	0.180	0.180	0.179	0.179	0.179	0.178	0.177	0.176	0.174	0.173	0.171	0.168	0.166
14.5	0.152	0.162	0.162	0.161	0.161	0.161	0.160	0.159	0.158	0.157	0.155	0.154	0.151	0.149
15.0	0.138	0.147	0.146	0.146	0.145	0.145	0.144	0.143	0.142	0.141	0.140	0.139	0.136	0.134
15.5	0.125	0.133	0.133	0.133	0.132	0.132	0.131	0.130	0.129	0.128	0.127	0.126	0.123	0.122
16.0	0.114	0.122	0.122	0.121	0.121	0.120	0.119	0.119	0.118	0.117	0.116	0.115	0.112	0.111
16.5	0.104	0.112	0.112	0.111	0.111	0.110	0.110	0.109	0.108	0.107	0.106	0.105	0.103	0.102
17.0	0.096	0.104	0.104	0.103	0.103	0.102	0.101	0.101	0.100	0.099	0.098	0.097	0.095	0.093
17.5	0.088	0.097	0.096	0.096	0.095	0.095	0.094	0.093	0.092	0.091	0.090	0.089	0.087	0.086
18.0	0.082	0.091	0.090	0.089	0.089	0.088	0.087	0.086	0.086	0.085	0.084	0.083	0.081	0.080
18.5	0.076	0.085	0.084	0.084	0.083	0.082	0.082	0.081	0.080	0.079	0.078	0.077	0.075	0.074
19.0	0.070	0.080	0.079	0.078	0.077	0.077	0.076	0.075	0.074	0.073	0.072	0.071	0.069	0.069
19.5	0.066	0.075	0.074	0.074	0.073	0.072	0.071	0.070	0.070	0.069	0.068	0.067	0.065	0.064
20.0	0.061	0.071	0.070	0.069	0.069	0.068	0.067	0.066	0.065	0.064	0.063	0.062	0.061	0.060

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW V150-5.6 MW 50/60 Hz Date: 2019-01-24 Restricted Page 31 of 34

7.15 Sound Curves, Sound Optimized Mode SO5

Sound Power Level at Hub Height							
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³						
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Sound Optimized Mode SO5 (Blades with serrated trailing edge)						
3	91.3						
4	91.5						
5	93.9						
6	96.9						
7	98.7						
8	99.0						
9	99.0						
10	99.0						
11	99.0						
12	99.0						
13	99.0						
14	99.0						
15	99.0						
16	99.0						
17	99.0						
18	99.0						
19	99.0						
20	99.0						

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

EnVentus™ 5 MW

Performance Specification V150-5.6 MW 50/60 Hz

Date: 2019-01-24 Restricted Page 32 of 34

7.16 **Power Curves, Sound Optimized Mode SO6**

	Air density [kg/m³]													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	42	13	16	18	20	23	25	28	31	33	36	39	45	48
3.5	138	87	92	97	101	106	111	115	120	124	129	134	143	147
4.0	252	177	184	191	197	204	211	218	225	232	239	246	259	266
4.5	393	286	295	305	315	325	334	344	354	364	373	383	403	412
5.0	567	421	434	448	461	474	487	501	514	527	540	553	580	593
5.5	781	586	604	621	639	657	674	692	710	727	745	763	798	816
6.0	1039	785	808	831	854	877	900	923	947	970	993	1016	1062	1086
6.5	1337	1016	1045	1074	1104	1133	1162	1191	1221	1250	1279	1308	1366	1396
7.0	1667	1272	1308	1344	1380	1416	1452	1488	1524	1560	1595	1631	1702	1738
7.5	2000	1532	1575	1617	1660	1702	1745	1788	1830	1872	1915	1957	2042	2084
8.0	2316	1779	1828	1877	1926	1975	2024	2073	2121	2170	2219	2268	2365	2414
8.5	2596	1997	2052	2106	2161	2215	2270	2324	2378	2433	2487	2541	2650	2704
9.0	2828	2177	2236	2296	2355	2414	2473	2532	2591	2650	2710	2769	2887	2946
9.5	3018	2325	2388	2451	2514	2577	2640	2703	2766	2829	2892	2955	3081	3144
10.0	3169	2442	2509	2575	2641	2707	2773	2839	2905	2971	3037	3103	3234	3299
10.5	3280	2530	2599	2667	2735	2804	2872	2940	3009	3077	3145	3213	3347	3414
11.0	3371	2601	2671	2741	2812	2882	2952	3022	3092	3162	3232	3301	3437	3502
11.5	3448	2666	2737	2809	2881	2953	3025	3096	3168	3240	3309	3379	3511	3573
12.0	3522	2733	2807	2880	2954	3027	3100	3173	3246	3319	3387	3454	3582	3642
12.5	3580	2790	2864	2939	3014	3089	3163	3236	3310	3383	3449	3515	3637	3694
13.0	3611	2824	2900	2976	3052	3128	3201	3273	3346	3419	3483	3547	3665	3720
13.5	3617	2843	2919	2995	3070	3146	3218	3289	3361	3433	3494	3555	3668	3719
14.0	3623	2858	2934	3010	3085	3161	3232	3303	3373	3444	3504	3563	3673	3723
14.5	3631	2876	2952	3028	3104	3180	3250	3319	3389	3458	3516	3574	3681	3730
15.0	3645	2900	2975	3051	3126	3202	3269	3337	3404	3472	3530	3588	3694	3743
15.5	3669	2934	3010	3085	3160	3235	3301	3368	3434	3500	3556	3612	3716	3764
16.0	3701	2980	3055	3130	3205	3280	3344	3409	3474	3538	3592	3647	3747	3793
16.5	3738	3033	3108	3182	3256	3330	3393	3456	3519	3582	3634	3686	3781	3824
17.0	3777	3094	3167	3239	3312	3385	3446	3507	3568	3630	3679	3728	3818	3858
17.5	3796	3160	3230	3299	3369	3438	3495	3551	3608	3664	3708	3752	3831	3866
18.0	3843	3239	3307	3374	3441	3509	3562	3616	3670	3723	3763	3803	3874	3906
18.5	3890	3324	3389	3455	3520	3585	3635	3684	3734	3784	3819	3855	3917	3944
19.0	3922	3408	3468	3527	3587	3646	3691	3736	3781	3826	3858	3890	3946	3970
19.5	3963	3494	3550	3606	3662	3718	3758	3798	3839	3879	3907	3935	3982	4002
20.0	3997	3580	3632	3684	3736	3788	3823	3858	3893	3928	3951	3974	4013	4029

EnVentus™ 5 MW

Performance Specification V150-5.6 MW 50/60 Hz

Date: 2019-01-24 Restricted Page 33 of 34

Ct Values, Sound Optimized Mode SO6 7.17

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

	Air density kg/m³													
Wind speed [m/s]	1.225	0.950	0.975	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200	1.250	1.275
3.0	0.885	0.877	0.878	0.880	0.881	0.883	0.883	0.884	0.884	0.884	0.884	0.884	0.884	0.884
3.5	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844	0.844
4.0	0.806	0.805	0.805	0.805	0.805	0.805	0.805	0.805	0.806	0.806	0.806	0.806	0.805	0.805
4.5	0.795	0.794	0.795	0.795	0.796	0.796	0.796	0.796	0.796	0.796	0.795	0.795	0.795	0.795
5.0	0.789	0.793	0.793	0.792	0.792	0.792	0.791	0.791	0.791	0.790	0.790	0.790	0.789	0.789
5.5	0.792	0.790	0.790	0.790	0.790	0.790	0.790	0.791	0.791	0.791	0.791	0.792	0.792	0.792
6.0	0.793	0.790	0.790	0.790	0.791	0.791	0.791	0.792	0.792	0.792	0.792	0.793	0.793	0.794
6.5	0.776	0.774	0.774	0.774	0.774	0.775	0.775	0.775	0.775	0.776	0.776	0.776	0.777	0.777
7.0	0.740	0.738	0.739	0.739	0.739	0.739	0.739	0.739	0.740	0.740	0.740	0.740	0.741	0.741
7.5	0.692	0.690	0.691	0.691	0.691	0.691	0.691	0.691	0.692	0.692	0.692	0.692	0.692	0.692
8.0	0.639	0.637	0.637	0.638	0.638	0.638	0.638	0.638	0.638	0.639	0.639	0.639	0.639	0.639
8.5	0.575	0.573	0.573	0.574	0.574	0.574	0.574	0.574	0.574	0.574	0.574	0.574	0.575	0.575
9.0	0.505	0.504	0.504	0.504	0.504	0.504	0.504	0.504	0.504	0.504	0.504	0.504	0.505	0.505
9.5	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.442	0.443	0.443
10.0	0.387	0.386	0.386	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387	0.387
10.5	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338	0.338
11.0	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.297	0.296
11.5	0.262	0.262	0.263	0.263	0.263	0.263	0.263	0.263	0.263	0.263	0.263	0.262	0.262	0.261
12.0	0.233	0.235	0.235	0.235	0.235	0.235	0.235	0.235	0.235	0.235	0.234	0.234	0.233	0.232
12.5	0.208	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.210	0.209	0.207	0.207
13.0	0.186	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.187	0.186	0.185	0.184
13.5	0.166	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.167	0.166	0.165	0.164
14.0	0.148	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.151	0.150	0.150	0.149	0.147	0.146
14.5	0.134	0.137	0.137	0.137	0.137	0.137	0.136	0.136	0.136	0.136	0.135	0.134	0.133	0.132
15.0	0.121	0.124	0.124	0.124	0.124	0.124	0.124	0.123	0.123	0.123	0.122	0.122	0.120	0.119
15.5	0.110	0.114	0.114	0.114	0.114	0.114	0.113	0.113	0.113	0.112	0.112	0.111	0.110	0.109
16.0	0.101	0.105	0.105	0.105	0.105	0.105	0.104	0.104	0.104	0.103	0.103	0.102	0.101	0.100
16.5	0.094	0.098	0.098	0.097	0.097	0.097	0.097	0.096	0.096	0.095	0.095	0.094	0.093	0.092
17.0	0.087	0.091	0.091	0.091	0.091	0.090	0.090	0.090	0.089	0.089	0.088	0.087	0.086	0.085
17.5	0.080	0.086	0.086	0.085	0.085	0.085	0.084	0.084	0.083	0.083	0.082	0.081	0.080	0.079
18.0	0.075	0.081	0.081	0.080	0.080	0.080	0.079	0.078	0.078	0.077	0.077	0.076	0.074	0.074
18.5	0.070	0.077	0.076	0.076	0.076	0.075	0.075	0.074	0.073	0.073	0.072	0.071	0.070	0.069
19.0	0.065	0.073	0.072	0.072	0.071	0.070	0.070	0.069	0.068	0.068	0.067	0.066	0.065	0.064
19.5	0.061	0.069	0.068	0.068	0.067	0.067	0.066	0.065	0.065	0.064	0.063	0.062	0.061	0.060
20.0	0.058	0.066	0.065	0.064	0.064	0.063	0.062	0.062	0.061	0.060	0.059	0.059	0.057	0.056

Document no.: 0081-5059 V02

Type: T05 - General Description

Document owner: Platform Management

Performance Specification EnVentus™ 5 MW

V150-5.6 MW 50/60 Hz

Date: 2019-01-24 Restricted Page 34 of 34

Sound Curves, Sound Optimized Mode SO6 7.18

Sound Power Level at Hub Height							
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³						
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Sound Optimized Mode SO6 (Blades with serrated trailing edge)						
3	91.3						
4	91.5						
5	93.9						
6	96.9						
7	97.8						
8	98.0						
9	98.0						
10	98.0						
11	98.0						
12	98.0						
13	98.0						
14	98.0						
15	98.0						
16	98.0						
17	98.0						
18	98.0						
19	98.0						
20	98.0						

