

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO INTERNAZIONALE E78 S.G.C. GROSSETO - FANO

ADEGUAMENTO A 4 CORSIE

NEL TRATTO GROSSETO - SIENA (S.S. 223 "DI PAGANICO")

DAL KM 41+600 AL KM 53+400 - LOTTO 9

PROGETTO ESECUTIVO

cod. FI15

PROGETTAZIONE: ATT SI	NTAGMA - GDG - I	ICARIA					
IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRE Dott. Ing. Nando Granieri Ordine degli Ingegneri della Prov. di Perugia n° A351	STAZIONI SPECIALISTICHE:	MANDATAI	progettaz RIA: tagma	MANDANTI	TECHNICAL IGN GROUP	() ICA	IRIA tà di ingegneria
IL PROGETTISTA: Dott. Ing. Federico Durastanti Ordine degli Ingegneri della Prov. di Terni n° A844		Dott.Ing. Dott.Arch. Dott.Ing. Dott.Arch. Dott.Ing. Dott.Ing.	N.Granieri N.Kamenicky V.Truffini A.Bracchini F.Durastanti E.Bartolocci	Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing. Geom.	D.Carlaccini S.Sacconi A.Rea V.De Gori C.Consorti F.Dominici	Dott. Ing. Dott. Ing. Geom. Dott. Ing. Dott. Ing. Geom.	V.Rotisciani F.Macchioni C.Vischini V.Piunno G.Pulli C.Sugaroni
IL GEOLOGO: Dott. Geol. Giorgio Cerquiglini Ordine dei Geologi della Regione Umbria n°108		Dott.Geol. Geom. Dott.Ing. Dott.Ing. Dott.Ing.	S.Scopetta L.Sbrenna E.Sellari L.Dinelli				
II R.U.P. Dott. Ing. Raffaele Franco Carso		Dott.Ing. Dott.Ing. Dott. Agr. INGEGNERI DELI	L.Nani F.Pambianco F.Berti Nulli		_		
IL COORDINATORE PER LA SICUREZZA IN FASE DI Dott. Ing. Filippo Pambianco Ordine degli Ingegneri della Prov. di Perugia n° A137	//	DOTTORS IN	GEONERE H	ORDINE degli ING INCEGNER Eedenic TURASTA	RE O		
PROTOCOLLO DATA	*:	NANDO G SETTORE CIVILE I SETTORE INE SETTORE DELIVI	E AMBIENTALE HISTRIALE	civia ad ambantale ndustriale dell'informazione Provincia di T	A 844 ERNI		

VIADOTTI VIADOTTO SUL FIUME MERSE DX Relazione di calcolo dell'impalcato

CODICE PROGET PROGETTO	TO LIV. PROG. N. PROG.	NOME FILE	//04-STR-RE01			REVISIONE	SCALA:
LOFI		CODICE TOOVIO4STRRE01				Α	-
Α	Emissione			28/02/2020	M. Botta	E.Bartolocci	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	PREN	ЛESSA	5
2	DESC	RIZIONE DELLA STRUTTURA	6
3	NOR	MATIVA DI RIFERIMENTO	7
	3.1 C	LASSE DI ESECUZIONE	8
	3.1.1	Scelta della classe di esecuzione	8
	3.1.2 servi	Classe di rischio connessa all'utilizzo della struttura (categorie di zio)	8
	3.1.3	Determinazione della classe di esecuzioen	9
	3.2	RADO DI PREPARAZIONE	10
4	CARA	ATTERISTICHE DEI MATERIALI	. 11
5	CARA	ATTERIZZAZIONE GEOTECNICA	. 14
6	ANA	LISI DEI CARICHI	. 15
	6.1 C	CONDIZIONI DI CARICO ELEMENTARI	15
	6.1.1	Pesi propri (g ₁)	16
	6.1.2	Permanenti portati (g ₂)	17
	6.1.3	Variazioni termiche (ε₃)	17
	6.1.4	Carichi accidentali mobili (q ₁)	17
	6.1.5	Azione longitudinale di frenamento (q ₃)	18
	6.1.6	Azione centrifuga (q ₄)	19
	6.1.7	Azione del vento (q ₅)	19
	6.1.8	Resistenze parassite dei vincoli (q ₇)	2 3
	6.1.9	Azioni sismiche (q ₆)	2 3

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6.2	Co	OMBINAZIONI DI CARICO	34
7 CF	RITE	RI DI CALCOLO	36
7.1	M	ETODO DI VERIFICA	36
7.2	So	DETWARE DI CALCOLO E MODELLAZIONE NUMERICA	36
8 SC	DLLE	ECITAZIONI IMPALCATO	38
8.1	So	DLLECITAZIONI 1 ^A FASE	38
8.2	So	DLLECITAZIONI 2 ^A FASE	39
9 VE	RIF	ICHE DELLE TRAVI DI IMPALCATO	43
9.1	CA	ARATTERISTICHE GEOMETRICHE DELLE SEZIONI	44
9.	1.1	Valutazione della larghezza collaborante della soletta	44
9.	1.2	Caratteristiche geometriche delle sezioni d'acciaio	46
9.	1.3	Caratteristiche meccaniche delle travi	50
9.2	CL	ASSIFICAZIONE DELLE SEZIONI	60
9.3	VE	ERIFICHE 1 ^a Fase	64
9.4	VE	ERIFICHE 2 ^A FASE (TEMPO T ₀)	66
9.5	VE	RIFICHE 2 ^A FASE (TEMPO T _∞)	68
9.6	VE	RIFICHE DI INSTABILITÀ	70
9.0	6.1	Verifiche di instabilità presso – torsionali	74
10 VE	RIF	ICHE DEGLI ELEMENTI SECONDARI	77
10.1	TR	ASVERSO PILA	77
10.2	TR	ASVERSO SPALLA	79
10.3	TR	ASVERSO DI CAMPATA	80

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11 VEI	RIFICHE A FATICA	83
11.1	MODELLO DI CARICO A FATICA	.83
11.2	COEFFICIENTE DI SICUREZZA	.83
11.3	VERIFICA DEI DETTAGLI DI FATICA	.84
12 VEI	RIFICA DELLE PIOLATURE	98
13 VEI	RIFICHE DEI COLLEGAMENTI 1	00
13.1	UNIONE DI CONTINUITÀ TRASVERSO PILA1	00
13.2	UNIONE DI CONTINUITÀ TRASVERSO SPALLA1	01
13.3	UNIONE DI CONTINUITÀ TRASVERSO CAMPATA1	I 0 3
13.4	VERIFICA NODI CONTROVENTI ORIZZONTALI1	04
13.5	VERIFICA COLLEGAMENTO SALDATO A CORDONE D'ANGOLO1	07
13.	5.1 Trasverso pila1	07
13.	5.2 Trasverso spalla1	80
13.	5.3 Trasverso campata1	08
14 SO	LETTA DI IMPALCATO 1	09
14.1	ANALISI DEI CARICHI DELLA SOLETTA	09
14.2	ANALISI DELLE SOLLECITAZIONI	09
14.3	VERIFICA DELLA SOLETTA	11
14.	3.1 Armatura di appoggio (Sezione 1)1	11
14.	3.2 Armatura di campata (Sezione 1)1	15
14.3	3.3 Armatura d'infittimento (Sezione 2)1	19
14.4	VERIFICA PREDALLE IN FASE DI GETTO1	22

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

15 VE	RIFICHE DI DEFORMABILITÀ	126
16 AN	IALISI SISMICA	130
16.1	DIMENSIONAMENTO DEL SISTEMA DI ISOLAMENTO	132
16.2	ANALISI DEI RISULTATI: SISMA SLC	133
16.3	ANALISI DEI RISULTATI: SISMA SLV	134
16.4	VERIFICA DEGLI SPOSTAMENTI DEGLI ISOLATORI	135
16 5	VERIEICA DEL GIUNTI	135

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione esecutiva dell'ampliamento da 2 a 4 corsie dell'Itinerario internazionale E78 S.G.C. Grosseto - Fano, Lotto 9.

Oggetto della presente relazione sono le analisi e le verifiche strutturali dell'impalcato metallico destro del viadotto VIO2, denominato "Viadotto sul fiume Merse".

Le strutture sono progettate coerentemente con quanto previsto dalla normativa vigente, Norme Tecniche delle Costruzioni 2018.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2 DESCRIZIONE DELLA STRUTTURA

Il viadotto VI02 ha uno sviluppo di 175m in asse appoggi ed è composto da 4 campate di 30-40-60-45m.

L'impalcato a sezione mista acciaio-calcestruzzo è costituito, per le prime 3 campate, da 2 travi in acciaio con sezione a doppio T a sezione variabile, con altezza massima sulle pile centrali pari a 2.8m e altezza minima pari a 2.2m alle estremità. Le travi metalliche sono poste ad un interasse di 6.0m. L'ultima campata da 45m presenta un allargamento della carreggiata che comporta l'insserimento di una terza trave dalle medesime caratteristiche geometriche delle precedenti.

Lo schema statico adottato è quello di trave continua. La larghezza trasversale dell'impalcato è variabile lungo l'asse, data la non perfetta linearità dell'asse stesso e la presenza di allargamenti della carreggiata, ed è al minimo pari a circa 11.71 m, con una fascia centrale pavimentata e due cordoli laterali di larghezza pari a 0.78 m e spessore di 0.17 m. La soletta ha uno spessore costante pari a 30cm.

Si rimanda agli elaborati grafici per l'ottenimento di dettagli ulteriori.

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3 NORMATIVA DI RIFERIMENTO

L'analisi dell'opera e le verifiche degli elementi strutturali sono state condotte in accordo con le vigenti disposizioni legislative e in particolare con le seguenti norme e circolari:

- ➤ Decreto Ministeriale del 17/01/2018 "Norme Tecniche per le Costruzioni".
- ➤ Circolare 21 gennaio 2019 n.7: Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al Decreto Ministeriale del 17 gennaio 2018.

Si è tenuto inoltre conto dei seguenti documenti:

- ➤ UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- ➤ UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- ➤ UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.
- ➤ UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- ➤ UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- ➤ UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- ➤ UNI-EN 1998-1 Marzo 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- ➤ UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- ➤ Legge 5-1-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- ➤ Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- ➤ UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3.1 CLASSE DI ESECUZIONE

La UNI EN 1090 Introduce il concetto di "Execution Class" in termini di requisiti specificati, classificati per l'esecuzione di un'opera nel suo complesso, di un singolo componente o di un dettaglio di un componente. La classe di esecuzione seleziona e specifica il livello di qualità appropriato riguardo alla sicurezza che quel componente avrà nell'opera di costruzione. La scelta della classe di esecuzione dovrebbe prendere in considerazione il tipo di materiale utilizzato, l'affidabilità data dalla classe di conseguenza (CC) e i rischi potenziali dati dalla:

- Categoria di servizio, legata al rischio dell'installazione/utilizzo (SC);
- Categoria di produzione, legata alla complessità di esecuzione (PC).

3.1.1 Scelta della classe di esecuzione

Nell'Eurocodice 0 EN 1990 "Criteri generali di progettazione" all'appendice B Tabella B1 "differenziazione dell'affidabilità strutturale per le costruzioni" sono riportate le classi di conseguenza in caso di malfunzionamento della struttura, definite in base all'impatto sulla popolazione, ambiente, vite umane, sociali.

CLASSE DI CONSEGUENZA (CCi)	DESCRIZIONE	ESEMPI
CC3	Gravi conseguenze per perdite di vite umane, economiche o sociali. Oppure gravi conseguenze per l'ambiente.	Tribune coperte, edifici pubblici, ove le conseguenze di errori sono alte (Esempio: sale di concerti).
CC2	Conseguenze di media entità per perdite di vite umane, economiche, sociali, oppure considerevoli conseguenze per l'ambiente.	Costruzioni residenziali oppure per uffici, uffici pubblici ove le conseguenze in caso di fallimento sono medie (Costruzioni di uffici).
CC1	Lievi conseguenze per perdite di vite umane, economiche, sociali, oppure basse o trascurabili conseguenze per l'ambiente.	Costruzioni agricole dove le persone normalmente non entrano (esempio: Magazzini, serre).

3.1.2 Classe di rischio connessa all'utilizzo della struttura (categorie di servizio)

È necessario tener conto che in una struttura possono essere contenuti componenti strutturali di entrambe le classi di rischio. In questo caso, al fine di una corretta determinazione della classe di esecuzione dell'opera la scelta cadrà sulla classe di servizio maggiormente restrittiva.

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

CATEGORIA DI SERVIZIO (SC)	DEFINITE IN BASE ALLE SOLLECITAZIONI PREVISTE (dinamiche / statiche)
SC1	Strutture e componenti progettati per azioni quasi-statiche (Esempio: Edifici) Strutture e componenti per connessioni progettate per resistere ad azioni simiche in regioni a bassa intensità sismica e DCL Strutture e componenti progettati per azioni a fatica da gru (Classe S0)
SC2	Strutture e componenti progettati per azioni a fatica in accordo con EN 1993 (Esempio: ponti ferroviari e stradali, gru (da S1 a S9), strutture suscettibili a vibrazioni determinate dall'azione del vento, gru oppure macchine con funzione rotazionale) Strutture e componenti le cui connessioni sono progettate per azioni sismiche in regioni con medio ed alto rischio sismico e in DCM e DCH
DCM: Comportam	nto strutturale poco dissipativo (EN 1998 – Prospetto 6.1) ento strutturale mediamente dissipativo (EN 1998 – Prospetto 6.1) DCH: Comportamento strutturale vo (EN 1998 – Prospetto 6.1)

Classe di conseguenza SCi (i = 1,2)

SC1 = sollecitazione statica

SC2 = sollecitazione dinamica a fatica

Classe di rischio connessa alla difficoltà nell'esecuzione della struttura (categorie di produzione).

CATEGORIA DI PRODUZIONE (PC)	DEFINITE IN BASE ALLE TECNOLOGIE PRODUTTIVE
PC1	Componenti non saldati e realizzati con qualunque grado di acciaio Componenti saldati realizzati con acciaio digrado inferiore a S355
PC2	Componenti saldati realizzati con acciaio di grado S355 e superiore Componenti essenziali per l'integrità strutturale che vengono assemblati tramite saldatura sulla costruzione in situ Componenti con formatura a caldo oppure che abbiano ricevuto un trattamento termico durante la produzione Componenti di tralicci CHS che richiedono tagli e profilature

Classe di produzione PCi (i = 1,2)

PC1 = no saldature e acciai con grado < S355

PC2 = componenti saldati e acciaio con grado ≥ S355

3.1.3 Determinazione della classe di esecuzioen

Selezionare la Classe di Conseguenza (CCi; i=1,2,3) espressa in termini di perdita di vite umane, di conseguenze economiche, sociali ed ambientali (vedere EN 1990). Selezionare la Categoria di Servizio e la Categoria di Produzione.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Determinare quindi la Classe di Esecuzione come risultato delle due operazioni precedenti, secondo quanto previsto nella tabella seguente (TAB B3 della EN1090-2).

Tabella di determinazione della classe di esecuzione							
Classi di conseguenza CC1 CC2						CC3	
Categorie di servizio		SC1	SC2	SC1	SC2	SC1	SC2
Categorie di produzione	PC1	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4	

La classe di esecuzione EXC4 deve essere scelta in caso di strutture con estreme conseguenze determinate dal cedimento della struttura, in base a disposizioni legislative.

Per la struttura in oggetto si assume una classe di conseguenza CC3, una categoria di servizio SC2 e una categoria di produzione PC2 pertanto la struttura va realizzata in classe di esecuzione EXC4.

3.2 GRADO DI PREPARAZIONE

La normativa ISO 8501-3:2008 illustra i criteri di fabbricazione da attuare a seconda della classe di corrosività ambientale di riferimento al luogo di installazione dell'opera. Tali criteri sono suddivisi in 3 gradi di preparazione superficiale:

- P1 preparazione base
- P2 preparazione accurata
- P3 preparazione molto approfondita.

Gli aspetti principali che corrispondono ai 3 gradi di preparazione riguardano: il livello di finitura superficiale delle saldature, le smussature degli spigoli più o meno accentuata, diversi gradi di rimozione della superficie dei bordi da taglio termico, lo stato superficiale dell'acciaio in genere.

Per la struttura in oggetto si prescrive una classe di preparazione P3.

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4 CARATTERISTICHE DEI MATERIALI

Di seguito si riportano le caratteristiche dei materiali impiegati, ricavate con riferimento alle indicazioni contenute D.M.17 gennaio 2018. Le classi di esposizione dei calcestruzzi sono coerenti con la UNI EN 206-1-2001.

Calcestruzzo per getto in opera solette in CA C35/45

Resistenza cubica caratteristica	$R_{ck} \\$	=	45.0	N/mm ²
Rapporto A/C		<	0.50	
Cemento per mc di impasto		=	320	Kg
Classe di esposizione			XC4+XD	1
Copriferro			50	mm

Calcestruzzo per lastre prefabbricate

Resistenza cubica caratteristica	R_{ck}	=	50.0	N/mm²
Rapporto A/C		<	0.50	
Cemento per mc di impasto		=	340	Kg
Classe di esposizione)	XC3+XD1	
Copriferro		35	5 mm	

Acciaio per armatura B450C

Tensione caratteristica di snervamento	f_{yk}	≥ 450	N/mm ²
Tensione caratteristica di calcolo	f_{yd}	≥ 391.3	N/ mm ²
Modulo di elasticità	Es	= 210000	N/mm²

Acciaio per carpenteria metallica S355

Tensione caratteristica di snervamento	f_{yk}	≥ 355	N/mm ²
Tensione caratteristica di calcolo	f_{yd}	≥ 510	N/ mm ²
Modulo di elasticità	Es	= 210000	N/mm ²

- -Elementi saldati in acciaio con sp. ≤ 20mm S355J0W
- -Elementi saldati in acciaio con 20mm < sp. ≤ 40mm S355J2W
- -Elementi saldati in acciaio con sp. > 40mm S355K2W N
- -Elementi non saldati, angolari e piastre sciolte, S355J0W

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

-Imbottiture con sp. < 3mm (S355J0W)

La tensione di snervamento nelle prove meccaniche nonché il CEV nell'analisi chimica dovranno essere nei limiti della UNI EN 10025.

Le tolleranze dimensionali per lamiere e profilati dovranno rispettare i limiti prescritti dalla UNI EN 10029 con classe di tolleranza minima A.

BULLONI CLASSE 10.9

NOTE E PRESCRIZIONI

Secondo DM 17.01.2018 e UNI EN 14399-1

I bulloni ad alta resistenza della classe 10.9, precaricati con serraggio controllato, per giunzioni ad attrito devono essere conformi alla norma armonizzata UNI EN 13499-1 e recare la marchiatura CE. Al p.to 4.3 la norma armonizzata UNI EN 13499-1 prescrive che viti, dadi e rondelle siano forniti dal medesimo produttore. La coppia di serraggio per i bulloni delle giunzioni ad attrito è quella indicata sulle targhette confezioni dei bulloni. Nel caso che la coppia di serraggio non sia riportata sulle targhette delle confezioni, ma compaia il solo fattore k secondo la classe funzionale, la coppia di serraggio è pari a:

$$M = k \cdot d \cdot Fp, C = k \cdot d \cdot 0, 7 \cdot Ares \cdot ftb$$

dove:

- d è il diametro nominale della vite;
- Ares è l'area resistente della vite;
- ftb è la resistenza a ultima a trazione del bullone.
- Controventi orizzontali:

Giunzioni di categoria A secondo EN 1993-1-8 par.3.4. (giunzioni a taglio)

Bulloni conformi per caratteristiche dimensionali alle norme

UNI EN ISO 4016 2002 e UNI 5592 1968

Classi di resistenza secondo norma UNI EN ISO 898-1 2001

Trasversi-Travi principali:

Assieme vite-dado sistema HRC conforme a EN 14399-10.

Giunzioni di categoria B secondo EN 1993-1-8 par.3.4. (giunzioni ad attrito allo SLE a serraggio controllato/calibrato)

Preparazione delle superfici: classe di rugosità C (EN 1090-2, tab18).

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

- Pioli con testa tipo "Nelson"

Acciaio tipo S235J2+C450 secondo EN ISO 13918 avente le seguenti caratteristiche meccaniche:

- tensione di snervamento fyk ≥ 350 Mpa
- tensione di rottura a trazione fu ≥ 450 Mpa

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5 CARATTERIZZAZIONE GEOTECNICA

Si riportano di seguito i parametri di resistenza e deformabilità dei terreni attraversati in accordo con la caratterizzazione geotecnica.

Unit	à gaotagniche	Unità	roologisho	g	c'	φ'	Z	Cu	E'	OCR
Offic	à geotecniche	Utilla g	geologiche	[kN/m³]	[kPa]	[°]	[m da p.c.]	[kPa]	[MPa]	[-]
			alluvioni fluviali				0÷2		5÷20	
Α	Sabbia e ghiaia	at, at2, at3	terrazzate recenti e antiche	19.5	10÷20	25÷27	>2	-	25÷50	-
В	۸ سرتالانه:	Dh	Argille a	20	10.25	20.20	0÷20	150÷250	50÷120	3÷5
В	Argilliti	Pb	Palombini	20	10÷25	28÷30	>20	100÷200	100÷220	1.5÷3
С	Calcaro/Chiaia	CV	Calcare	24 40.45	0÷15 34÷35	0÷10		40÷80		
	Calcare/Ghiaia	CV	Cavernoso	21	10-15	34733	>10	•	60÷120	-
D	Breccia/Ghiaia	CM	Dracca di Cratti	19	0	25 . 27	0÷20		50÷100	
D	Breccia/Giliala	CM	Brecce di Grotti	19	U	35÷37	>20	•	100÷200	-
			Depositi				0÷20		40÷80	3÷5
E	Argille/Limi	dl, Pa, Ps	lacustri, argille e sabbie plioceniche	19.5	10÷30	23÷25	>20	100÷200	80÷120	1.5÷3

Tabella 1: Caratterizzazione geotecnica

La quota di falda è stata posta a -3.50 m dal p.c.

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6 ANALISI DEI CARICHI

CONDIZIONI DI CARICO ELEMENTARI

Le azioni agenti sulla spalla per le condizioni di carico elementari sono di seguito indicate:

AZIONI PERMANENTI

- peso proprio degli elementi strutturali e non strutturali; g_1
- carichi permanenti portati; g_2

AZIONI VARIABILI

Q_{ik},q_{ik} azioni variabili da traffico (compreso effetto dinamico);

azione longitudinale di frenamento; qз

azione centrifuga; Q4

AZIONI CLIMATICHE

azione del vento q_5

AZIONI SISMICHE

azione sismica q_6

AZIONI DEI VINCOLI

resistenze parassite dei vincoli Q7

TEMPERATURA

temperatura £3

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6.1.1 Pesi propri (g₁)

Nei carichi permanenti strutturali sono compresi il peso proprio della pila ed i carichi permanenti strutturali trasmessi dall'impalcato. Si adotta un peso per unità di volume del calcestruzzo pari a 25 kN/m³.

Carpenteria metallica		
Trave Principale		
Peso per unità di lunghezza	10.36	kN/m
Trasverso intermedio		
Peso per unità di lunghezza		kN/m
Lunghezza	5.00	
Peso elemento	15.70	kN/m
N° Trasversi intermedi	21	
Trasverso estremità		
Peso per unità di lunghezza	6.52	kN/m
Lunghezza	5.00	m
Peso elemento	32.58	kN/m
N° Trasversi estremità	5	
Controventi		
Peso per unità di lunghezza di impalcato	0.30	kN/m
Peso per unità di lunghezza di trave	0.15	kN/m
Soletta		
Spessore	0.30	m
Larghezza media impalcato	12.65	m
Peso per unità di lunghezza di impalcato	94.88	kN/m
Peso per unità di lunghezza di trave	47.44	kN/m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6.1.2 Permanenti portati (g₂)

La determinazione dei carichi permanenti portati è stata effettuata assumendo convenzionalmente un peso specifico di 18,0 kN/m³ per la pavimentazione, 1,25 kN/m per la veletta e 4,0 kN/m per i sicurvia. Si considera inoltre il peso di una tubazione Ø400 piena d'acqua, a carico di una delle due travi principali di impalcato.

Cavishi navmananti		
Carichi permanenti		
Marciapiede SX		
Larghezza	0.78	m
Altezza	0.17	m
Peso per unità di lunghezza di impalcato	3.31	kN/m
Marciapiede DX		
Larghezza	0.78	m
Altezza	0.17	m
Peso per unità di lunghezza di impalcato	3.31	kN/m
Pavimentazione stradale		
Larghezza carreggiata	11.09	m
Spessore pavimentazione	0.11	m
Peso pavimentazione	18.00	kN/mc
Peso per unità di lunghezza di impalcato	1.98	kN/m
Peso per unità di lunghezza di impalcato	21.96	kN/m
Veletta (1.55kN/m)	1.25	kN/m
Ringhiera Parapetto (0.5kN/m)	0.00	kN/m
Barriera (1.00kN/m)	4.00	kN/m
Carichi permanenti totali	33.84	kN/m
Carichi permanenti totali per trave	16.92	kN/m

6.1.3 Variazioni termiche (ε3)

Si considera una variazione termica uniforme pari a ±15 °C, sugli elementi della struttura in elevazione.

6.1.4 Carichi accidentali mobili (q₁)

Le spalle sono state progettate considerando le massime sollecitazioni dovute al carico stradale trasmesse dall'impalcato. I carichi mobili presi in considerazione sono quelli indicati dalla normativa per ponti di prima categoria. Sono definiti dagli schemi di carico convenzionali rappresentati nelle figure seguenti e disposti su corsie

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

convenzionali. Il numero di colonne di carichi mobili considerate nel calcolo è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, nonché gli eventuali marciapiedi non protetti e di altezza inferiore a 20cm, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3.00m.

In accordo con la normativa sui ponti stradali (paragrafo 5.1.3.3.5 delle NTC18), si considera sulla sede stradale l'azione da traffico dello schema di carico riportato di seguito:

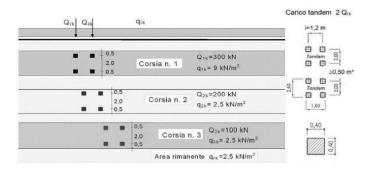


Figura 1: Schemi di carico - carichi Qik e qik.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m ²]
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Tabella 2: Intensità dei carichi Qik e qik per le diverse corsie.

Per l'impalcato in esame la larghezza della carreggiata è compatibile con 3 colonne di carico riportate di seguito:

- 1. prima corsia costituita da un mezzo Q_{1A} (600 kN) e carico q_{1k} (9.0 kN/m²;
- 2. seconda corsia d costituita da un mezzo Q_{1A} (400 kN) e carico q_{1k} (2.50 kN/m²);
- 3. terza corsia costituita da un mezzo Q_{1A} (200 kN) e carico q_{1k} (2.50 kN/m²);
- 4. parte rimanente costituita carico q_{1k} (2.50 kN/m²).

6.1.5 Azione longitudinale di frenamento (q₃)

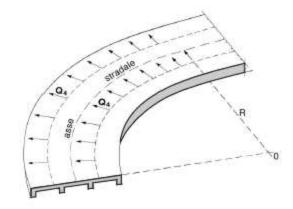
L'azione longitudinale di frenamento si assume agente nella direzione dell'asse della carreggiata ed applicata al livello del piano stradale. E' funzione del carico verticale totale agente sulla corsia convenzionale n.1 ed è uguale a:

$$180kN \le q_3 = 0.6 \cdot (2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900kN$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Per la struttura in esame risulta:


$$q_{3_1} = 0.6 \cdot 2Q_{1k} + (0.10) q_{1k} \cdot w_1 \cdot L = 0.6 \cdot 2 \cdot 300 + (0.1) \cdot 9.00 \cdot 3 \cdot 175 = 832.5 \text{ kN}$$

L'azione di frenatura è applicata a livello della pavimentazione sulla corsia convenzionale n.1 ed è assunta uniformemente distribuita sulla lunghezza caricata.

6.1.6 Azione centrifuga (q₄)

L'azione centrifuga corrispondente ad ogni colonna di carico risulta funzione dei raggi di curvatura come mostrato nel prospetto seguente:

Raggio di curvatura R	Q4 (kN)
R > 200	$0.2 \cdot Q_{\nu}$
$200 \le R < 1500$	$40 \cdot Q_v/R$
$R \ge 1500$	0

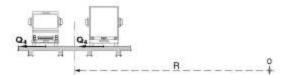


Figura 2: Valori caratteristici delle forze centrifughe - Tabella 5.1.III del D.M. 17 gennaio 2018

Il carico concentrato Q4, applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte. L'azione centrifuga si valuta convenzionalmente come indicato in Tab. 5.1.III delle NTC18 (paragrafo 5.1.3.6), essendo Qv = \sum i 2Qik il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte.

Il viadotto in esame presenta un raggio di curvatura tendente all'infinito e la forza centrifuga risulta pertanto trascurabile.

6.1.7 Azione del vento (q₅)

Il vento agente trasversalmente all'opera, oltre ad interessare la stessa, agisce sulla sagoma longitudinale dei carichi transitanti, come riportano le Norme Tecniche per le Costruzioni 2018 al paragrafo 3.3.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Si sintetizzano di seguito i dati utili per il calcolo dell'azione del vento, in accordo con quanto prescritto nel DM 17.1.2018:

- Zona 3
- Suolo riconducibile a una Classe di Rugosità D
- Tempo di ritorno: 50 anni
- Categoria di Esposizione II

Si ottiene:

Velocità base di riferimento

 $v_b = 27 \text{ m/s}$

Velocità di riferimento

 $v_r = 29.06 \text{ m/s}$

Pressione cinetica di riferimento

 $q_r = 0.50 \ \rho \ v_r^2 = 0.50 \cdot 1.25 \cdot 29.06^2 = 456.29 \ N/m^2$

dove:

 ρ = 1.25 Kg/m³ densità dell'aria

Coefficiente dinamico

 $c_d = 1$

Coefficiente topografico

 $c_t = 1$

Coefficiente di esposizione

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0)\right]$	In(z/z _o)] per z ≥ z _{min}
$c_e(z) = c_e(z_{min})$	per z < z _{min}

k _r	z ₀ [m]	z _{min} [m]
0.19	0.05	4.00

 c_e (z=11.85m) = 2.46

Coefficiente di forma impalcato CNR DT-207/2008 PAR. G.10.3 - G11

larghezza impalcato	d=	23.9	m
altezza impalcato	h=	11.85	m
altezza carichi mobili esposti al vento	hf=	3	m
altezza totale esposta al vento	htot=b	14.85	m
	d/b=	1.61	

se d/b≥2

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$c_{fx} = \frac{1.85}{d/htot} - 0.10$$

2≤d/b≤5

$$C_{fx} = \frac{1.35}{d/htot}$$

d/b>5

se

d/b<2

Nel caso di azione del vento sugli elementi di sezione rettangolare

 $\begin{array}{lll} c_{fx}{=}2 & 0.1{\le}d/b{\le}0.2 \\ c_{fx}{=}0.73 \log{(d/b)}{+}3.16 & 0.2{\le}d/b{\le}0.7 \\ c_{fx}{=}{-}1.64 \log{(d/b)}{+}2.15 & \textbf{1.81} & 0.7{\le}d/b{\le}5 \\ c_{fx}{=}{-}0.33 \log{(d/b)}{+}1.23 & 5{\le}d/b{\le}10 \\ c_{fx}{=}0.9 & 10{\le}d/b{\le}50 \end{array}$

dove d e b sono le dimensioni del rettangolo nella direzione parallela e ortogonale alla direzione del vento

Pressione del vento

$$\mathbf{p} = q_r c_e c_p c_d c_t = 456.29 \times 2.46 \times 1 \times 1.81 \times 1 = 2.03 \text{ kN/m}^2$$

L'azione del vento viene assimilata a un carico orizzontale statico con direzione perpendicolare all'asse del ponte. Tale azione agisce sulla proiezione nel piano verticale delle superfici degli elementi strutturali del ponte direttamente investite e su una parete rettangolare continua verticale alta 3,00 m, che convenzionalmente rappresenta i carichi che transitano sul ponte, come mostrato nella Figura riportata di seguito.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

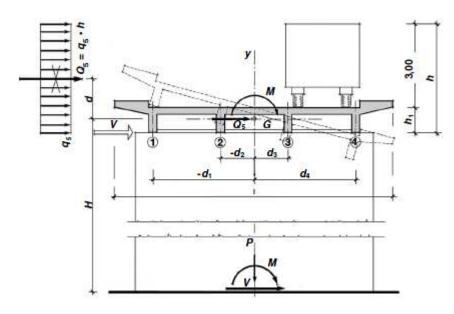


Figura 3: Direzione dell'azione del vento sul ponte

Vento trasmesso dall'impalcato a ponte carico

Il carico trasversale, per unità di lunghezza, è pari a:

$$q_{vento1} = (H_{trave} + H_{soletta}) \cdot p$$

$$q_{vento2} = (H_{carico}) \cdot p$$

dove:

q_{vento1} è il carico trasversale dovuto al vento sull'impalcato;

q_{vento2} è il carico trasversale dovuto al vento sulla superficie trasversale dei carichi transitanti, che da normativa si assimila ad una parete rettangolare continua dell'altezza di 3m a partire dal piano stradale.

Le risultanti trasversali totali indotte dal vento sull'impalcato, sono pari a:

$$T_{trasv1} = q_{vento1} * L$$

$$T_{trasv2} = q_{vento2} * L$$

 $T_{trasv_ponte\ carico} = (T_{trasv1} + T_{trasv2})$

Il baricentro dell'azione del vento rispetto a quota estradosso sottostrutture risulta pari a:

$$e_{v1} = d + [(H_{trave} + H_{soletta})/2]$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$e_{v2} = d + (H_{trave} + H_{soletta}) + (3m / 2)$$

dove:

d = distanza tra intradosso trave e estradosso sottostrutture (in metri).

L'impalcato trasmette quindi alla sottostruttura un momento pari a:

$$M_{vento_ponte\ carico} = T_{trasv1} \cdot e_{v1} + T_{trasv2} \cdot e_{v2}$$

Vento trasmesso dall'impalcato a ponte scarico

Il carico trasversale, per unità di lunghezza, è pari a:

$$q_{vento1} = (H_{trave} + H_{soletta} + H_{barriera}) \cdot p$$

dove:

q_{vento1} è il carico trasversale dovuto al vento sull'impalcato e sulla barriera di protezione.

La risultante trasversale totale indotta dal vento sull'impalcato, risulta pari a:

$$T_{trasv1} = q_{vento1} * L$$

 $T_{trasv_ponte\ scarico} = T_{trasv1}$

Il baricentro dell'azione del vento rispetto a quota estradosso sottostruttura risulta pari a:

$$e_{v1} = d + [(H_{trave} + H_{soletta} + H_{barriera})/2]$$

L'impalcato trasmette quindi alla sottostruttura un momento pari a:

$$M_{vento_ponte\ scarico} = T_{trasv1} \cdot e_{v1}$$

6.1.8 Resistenze parassite dei vincoli (q₇)

Le azioni parassite vengono calcolate come una percentuale degli scarichi verticali permanenti e dipendono dallo schema di vincolo adottato. Cautelativamente, si considerano delle forze generate da un attrito pari al 5%.

6.1.9 Azioni sismiche (q₆)

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del DM 17.1.2018.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare nel DM 17.1.2018, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g} \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{\mathfrak{g}}(T) = a_{\mathfrak{g}} \cdot S \cdot \eta \cdot F_0$$

$$T_C \le T \le T_D \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_S \cdot S_T$$
:

 S_s : coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 $^{\it F_0}$: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 a_s : accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = C_C \cdot T *_C$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{\varrho} + 1.6$$

In cui:

 C_c : coefficiente che tiene conto della categoria del terreno;

 $T^*_{\mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v.}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{_e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{_V}$$

$$T_C \leq T \leq T_D \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

nelle quali:

 $S = S_S \times S_T$: con S_S pari sempre a 1 per lo spettro verticale;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

T: periodo di vibrazione dell'oscillatore semplice;

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale

La vita nominale di un'opera strutturale (V_N) , è intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

	TIPI DI COSTRUZIONE	VitaNominale
	TILLE	(VN)
1	Opere provvisorie- Opere provvisionali- Strutture in fase costruttiva	≤10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute	>50
	o di importanza normale	230
2	Grandi opere, opere infrastrutturali e dighe di grandi dimensioni o di	>100
)	importanza strategica	2100

Per l'opera in oggetto si considera una vita nominale VN = **100** anni.

Classi D'uso

Il Decreto Ministeriale del 17 gennaio 2018 prevede quattro categorie di classi d'uso riportate nel seguito:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si considera una Classe d'uso IV.

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Periodo di Riferimento dell'Azione Sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R :

$$V_R = V_N \cdot C_U$$

Il valore del coefficiente d'uso Cu è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0.7	1	1.5	2

Pertanto per l'opera in oggetto il periodo di riferimento è pari a 100x2= 200 anni.

Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		P_{VR} : Probabilità di superamento nel periodo di riferimento V_R
Chabi limita di annuiti	SLO	81%
Stati limite di esercizio	SLD	63%
Chatilianita ultimi	SLV	10%
Stati limite ultimi	SLC	5%

Accelerazione (ag), fattore (F₀) e periodo (T*c)

Ai fini del NTC 2018 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag: accelerazione orizzontale massima sul sito;

Sintagma

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R) , e quindi dalla vita nominale (VN) e dalla classe d'uso (C_u) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

SLATO	T _R	ag	F.	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.085	2.481	0.260
SLD	201	0.104	2.479	0.264
SLV	1898	0.210	2.560	0.287
SLC	2475	0.226	2.575	0.289

Tabella 3: Valutazione dei parametri ag, Fo e T*c per i periodi di ritorno associati a ciascuno stato limite

I parametri ai quali si è fatto riferimento nella definizione dell'azione sismica di progetto, indicati nella tabella precedente, corrispondono, cautelativamente, a quei parametri che danno luogo al sisma di massima entità, fra tutti quelli individuati lungo le progressive dell'opera in progetto.

Sono stati presi in esame, secondo quanto previsto dal DM 17.1.2018 "Nuove Norme Tecniche per le Costruzioni", cap. 7.1, i seguenti Stati Limite sismici:

- SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)
- SLD: Stato Limite di Danno (Stato Limite di Esercizio)
- SLC: Stato Limite di Collasso (Stato Limite Ultimo)
- SLO: Stato Limite di Operatività (Stato Limite di Esercizio)

Le azioni sismiche relative allo stato limite di operatività (SLO) e allo stato limite di danno (SLD) non sono state considerate perché poco significative in relazione alle combinazioni di natura statica. Per quanto riguarda lo stato limite di collasso (SLC), questo è stato considerato per le combinazioni sismiche di verifica dei ritegni sismici; si faccia pertanto riferimento alle considerazioni presentate nelle rispettive relazioni di calcolo di impalcato.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici e di progetto per il restante stato limite (SLV).

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata nella tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio $V_{\rm s30}$, ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 compresi tra 360 m/s e 800 m/s (ovvero Nspt,30>50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina)
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzanti da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15< Nspt,30<50 nei terreni a grana grossa e 70 <cu,30<250 a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""></cu,30<250>
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 inferiori a 180 m/s (ovvero Nspt,30<15 nei terreni a grana grossa e cu,30<70 kPa nei terreni a grana fina)
Cat. E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s)

Si considera una **categoria B** di suolo di fondazione.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente.

Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

Categoria sottosuolo	Ss	Cc
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05\cdot(T_{C}^{*})^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Nel caso in esame (categoria di sottosuolo B) allo SLV risulta:

 $S_s = 1.185$

 $C_C = 1.412$

Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella.

Categoria	Libicazione dell'epera e dell'intervente						
topografica	Ubicazione dell'opera o dell'intervento						
T1	-						
T2	In corrispondenza della sommità del pendio						
Т3	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2					

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4	İ
--	----	---	-----	---

Nel caso in esame $S_T = 1$

Spettri di progetto

Di seguito si forniscono gli spettri di risposta elastici per lo SLV, con le tabelle dei rispettivi parametri.

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

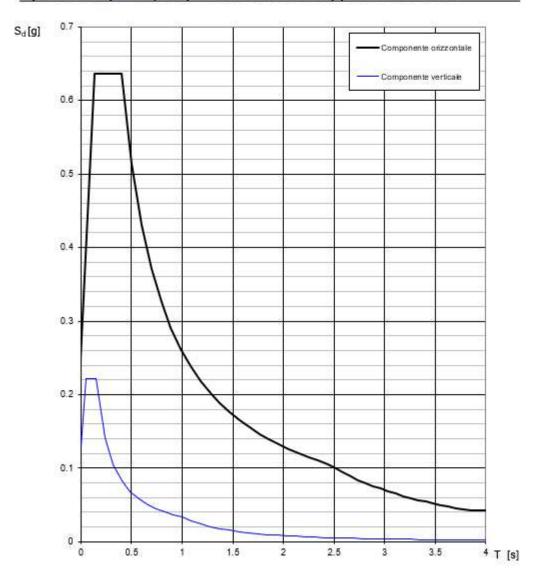


Figura 4: Spettri di risposta _SLV (Componente orizzontale e verticale)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Parametri e punti dello spettro di risposta orizzontale per lo stato lir&LV

Parametri indipendenti

STATOLIMITE	SLV						
a,	0.210 q						
F.	2.560						
T _c '	0.287 s						
Ss	1.185						
Cc	1.412						
S _T	1.000						
q	1.000						

Parametri dipendenti

S	1.185
η	1.000
Τp	0.135 s
Tc	0.405 s
Tp	2.440 s

Espressioni dei parametri dipendenti

$S = S_i \cdot S_i$	(NTC-08E ₄ , 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55$, $\eta = 1/q$	(NTC-08E4.3.2.6; §.3.2.3.5)

$$T_{\rm B} = T_{\rm C}/3$$
 (NTC-07Eq.3.2.8)
 $T_{\rm C} = C_{\rm C} \cdot T_{\rm C}^2$ (NTC-07Eq.3.2.7)

$$T_{\rm D} = 4.0 \cdot a_{\rm g}/g + 1.6$$
 (NTC-07E₄.3.2.9)

Espressioni dello spettro di risposta (NTC-08E4, 3.2.4)

$$\begin{split} 0 & \leq T < T_B \\ & S_c(T) = a_{_B} \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_c(T) = a_{_B} \cdot S \cdot \eta \cdot F_o \\ & T_C \leq T < T_D \\ & S_c(T) = a_{_B} \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \\ & S_c(T) = a_{_B} \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Laspottra di praqotta S4(T) per le verifiche aqli Stati Limite Ultimi è attenuta dalle espressioni dell'aspottra elartica S,(T) sastituendon con 1/q, dave q è il fattare distruttura. (NTC-08§3.2.3.5)

Punti dell<u>o spettro di risposta</u>

	T [s]	Se [g]					
	0.000	0.249					
To 🖛	0.135	0.637					
Tc◀	0.405	0.637					
	0.502	0.514					
	0.599	0.431					
	0.696	0.371					
	0.793	0.326					
	0.890	0.290					
	0.987	0.262					
	1.084	0.238					
	1.181	0.219					
	1.277	0.202					
	1.374	0.188					
	1.471	0.176					
	1.568	0.165					
	1.665	0.155					
ļ	1.762	0.147					
	1.859	0.139					
	1.956	0.132					
	2.053	0.126					
	2.149	0.120					
	2.246	0.115					
	2.343	0.110					
To◀	2.440	0.106					
	2.514	0.100					
	2.589	0.094					
	2.663	0.089					
	2.737	0.084					
	2.812	0.080					
	2.886	0.076					
2.4)	2.960	0.072					
	3.034	0.068					
	3.109	0.065					
	3.183	0.062					
	3.257	0.059					
	3.332	0.057					
	3.406	0.054					
	3.480	0.052					
	3.554	0.050					
	3.629	0.048					
	3.703	0.046					
	3.703 3.777	0.046 0.044					
	3.703 3.777 3.851	0.046 0.044 0.042					
	3.703 3.777	0.046 0.044					

// Sintagma

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6.2 COMBINAZIONI DI CARICO

Le azioni considerate sono le seguenti:

- g1: peso proprio degli elementi strutturali;
- g2: carichi permanenti portati;
- ε2: ritiro e viscosità della soletta;
- ε3: variazioni termiche uniformi e differenziali;
- q1: carichi mobili;
- q3: azione longitudinale di frenamento;
- q4: azione centrifuga;
- q5: azione trasversale del vento;
- q6: azioni sismiche;
- q7: reazioni parassite dei vincoli.

Tali azioni sono combinate secondo il punto 5.1.3.12 delle NTC 2018.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Si riportano di seguito le combinazioni delle azioni maggiormente significative per la determinazione delle sollecitazioni più gravose.

		g1	g3	ε2	ε3	q1	q3	q4	q5	q6	q7
	SLE (QP)	1	1	1	0.5	0	0	0	0	0	0
	SLE (FR)	1	1	1	0.5	0.75 Q _{ik} 0.4 q _{ik} 0.75 q _{folla}	0	0	0	0	0
	SLE (FR) 2	1	1	1	0.5	0.75 Q _{ik} 0.4 q _{ik} 0.75 q _{folla}	0.75	0	0	0	0
SLE	SLE (RARA) 1	1	1	1	0.6	1 Q _{ik} 1 q _{ik} 1 q _{folla}	0	0	0.6	0	0
	SLE (RARA) 2	1	1	1	0.6	1 Q _{ik} 1 q _{ik} 1 q _{folla}	0	0	0.8	0	0
	SLE (RARA) 3	1	1	1	0.6	1 Q _{ik} 1 q _{ik} 1 q _{folla}	0.75	0	0.6	0	0
	SLE (RARA) 4	1	1	1	0.6	1 Q _{ik} 1 q _{ik} 1 q _{folla}	0.75	0	0.8	0	0
	SLU1	1.35	1.5	1.2	1.2.0.6	0	0	0	1.5	0	1.35.0.75
	SLU2	1.35	1.5	1.2	1.2.0.6	1.35	0	0	0.9	0	1.35.0.75
SLU	SLU3	1.35	1.5	1.2	1.2·0.6	1.35·0.75 Q _{ik} 1.35·0.40 q _{ik} 1.35·0.75 q _{folla}	1.5	0	0.9	0	1.35·0.75
	SLU4	1.35	1.5	1.2	1.2·0.6	1.35·0.75 Q _{ik} 1.35·0.40 q _{ik} 1.35·0.75 q _{folla}	0	1.5	0.9	0	1.35·0.75
SLV	SLV	1	1	1	0.5	0.2	0	0	0	±1	0

Tabella 4: Combinazioni di carico

La risposta della struttura alle azioni sismiche è stata valutata mediante analisi dinamica lineare, valutando gli effetti sulla struttura tramite la seguente espressione:

 $E_1 + 0.3E_t + 0.3E_v$;

 $0.3E_{l}+E_{t}+0.3E_{v}$;

MANDANTE

 $0.3E_{l}+0.3E_{t}+E_{v}$.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7 CRITERI DI CALCOLO

7.1 METODO DI VERIFICA

Per le verifiche delle sezioni è adottato il metodo agli Stati Limite.

7.2 SOFTWARE DI CALCOLO E MODELLAZIONE NUMERICA

Al fine di determinare le sollecitazioni agenti è stato utilizzato il programma agli elementi finiti Sap2000. Il modello di calcolo è costituito da elementi frame, monodimensionali, rappresentativi delle travi a sezione composta acciaio-cls e dei traversi. La soletta è stata modellata come elementi a piastra. I controventi di piano sono stati considerati incernierati alle estremità, le aste dei trasversi incastrate alle estremità. Nelle figure di seguito riportate si evidenzia il modello tridimensionale implementato.

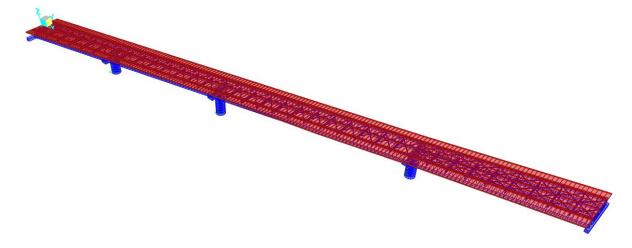


Figura 5 Impalcato - Modello di calcolo FEM tridimensionale

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

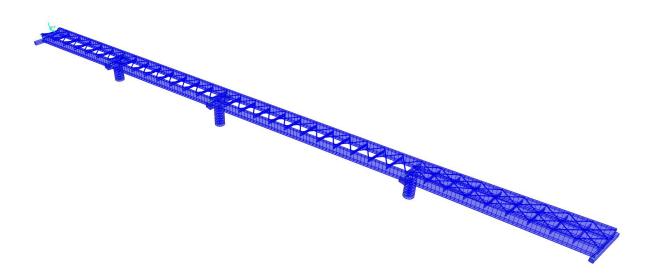
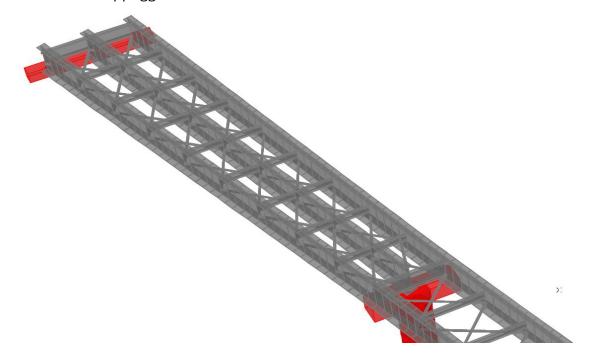



Figura 6 Impalcato - Modello di calcolo FEM tridimensionale – Particolare modellezione impalcato

In particolare si evidenzia la modellazione della campata di riva da 45m che, vista la presenza di un allargamento esterno della carreggiata, necèssita l'introduzione di una terza trave di impalcato; pertanto i pulvini della pila P3 e della spalla S2 sono stati modellati con 3 appoggi.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

L'inserimento di una terza trave è risultato necessario per il contenimento degli sbalzi della soletta: l'area di pertinenza di ciscuna trave è inferiore o al più paragonabile a quella delle altre campate.

8 SOLLECITAZIONI IMPALCATO

Si riportano di seguito le sollecitazioni della trave più caricata a causa degli effetti di eccentricità del carico.

8.1 SOLLECITAZIONI 1^A FASE

Con riferimento ai carichi di 1a fase, costituiti dal peso proprio delle parti in acciaio e della soletta, sono rappresentate le caratteristiche delle sollecitazioni flettenti e taglianti.

In tali fasi, la sezione reagente è costituita dalle sole travi in acciaio, in quanto l'eventuale soletta non è collaborante ed è presente solo come carico applicato.

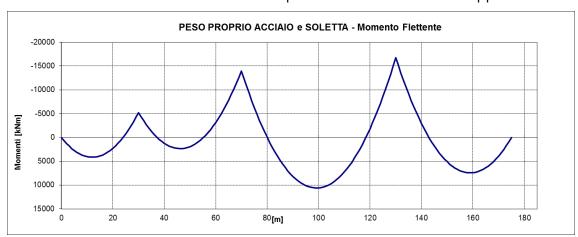


Figura 7 Peso proprio acciaio e soletta (Momento)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

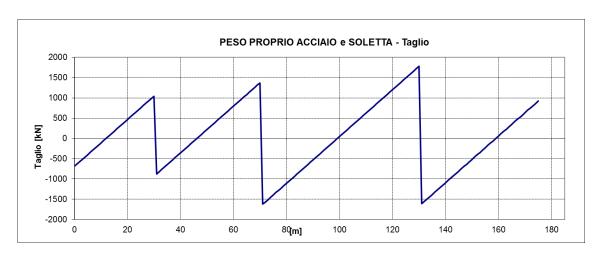


Figura 8 Peso proprio acciaio e soletta (Taglio)

8.2 SOLLECITAZIONI 2^A FASE

Con riferimento ai carichi di 2a fase, si considerano a tempo t₀ e t∞ i seguenti contributi:

•	permanenti portati	(t∞)
•	effetti termici uniformi	(t ₀)
•	effetti termici differenziali	(t ₀)
•	cedimenti fondazioni	(t∞)
•	ritiro	(t∞)
•	carico accidentale	(t ₀)
•	vento	(t ₀)

Si riportano di seguito i diagrammi di taglio e momento flettente nel piano verticale dei singoli contributi dei carichi di 2a fase delle azioni dimensionanti.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

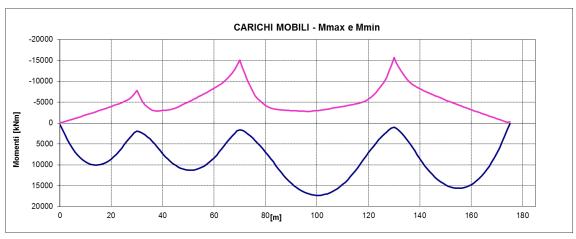


Figura 9 Carichi accidentali (Momento)

Figura 10 Carichi accidentali (Taglio)

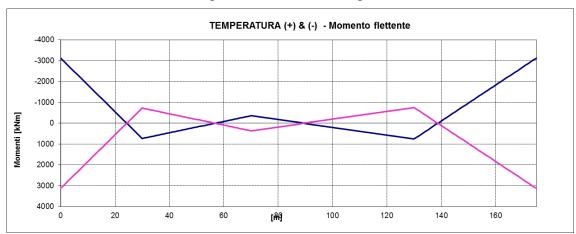


Figura 11 Effetti termici differenziali a tempo t0 (±5°) (Momento)

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

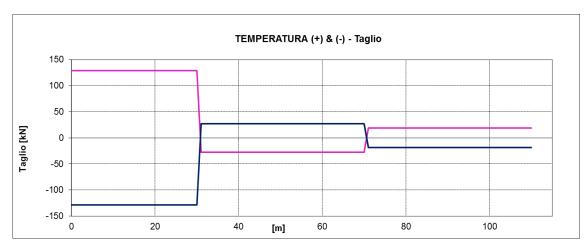


Figura 12 Effetti termici differenziali a tempo t0 (±5°) (Taglio)

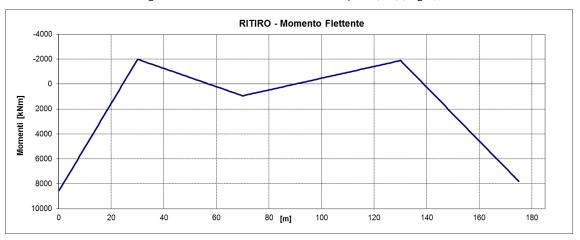


Figura 13 Ritiro (Momento)

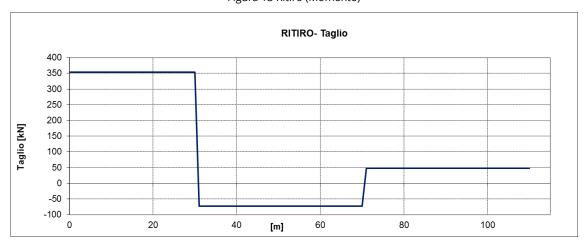


Figura 14 Ritiro (Taglio)

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

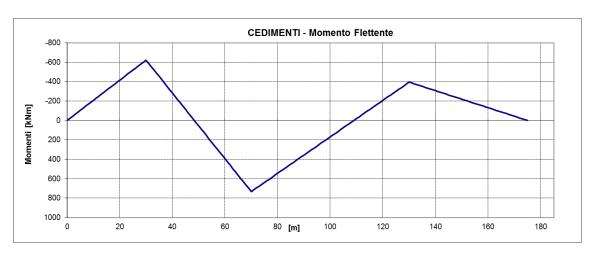


Figura 15 Cedimento (Momento)

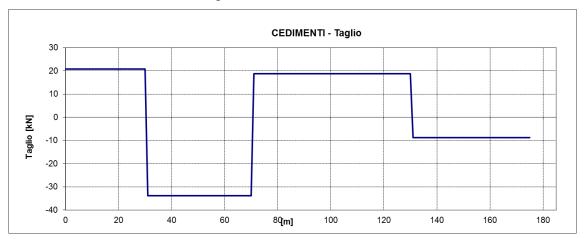


Figura 16 Cedimento (Taglio)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9 VERIFICHE DELLE TRAVI DI IMPALCATO

Si riportano nei paragrafi seguenti le verifiche di tutte le sezioni dell'impalcato in 1ª e 2ª fase per le combinazione di carico di normativa. Nelle verifiche sono state assunte, convenzionalmente, come positive le tensioni di trazione. L'unità di misura utilizzata per le tensioni è il N/mm² (MPa).

Le caratteristiche inerziali delle sezioni di verifica sono state calcolate per tutti gli elementi del modello tenendo conto della larghezza collaborante B.

Per ciascuna sezione e ciascun elemento strutturale (trave, soletta, armature) si riportano la tensione massima (di trazione) e minima (di compressione) relativa alla combinazione in esame. Tali valori sono stati ricavati come somma dei contributi in termini di tensioni ottenuti utilizzando i moduli di resistenza pertinenti alla fase della sollecitazione:

1^a fase:

- tutti i carichi utilizzano i moduli di resistenza del solo acciaio;

2^a fase a tempo T_0 :

- il peso proprio delle travi e della soletta utilizzano i moduli di resistenza dell'acciaio;
- tutti gli altri carichi utilizzano i moduli di resistenza a tempo T₀;

2a fase a tempo T_∞:

- il peso proprio delle travi e della soletta utilizzano i moduli di resistenza dell'acciaio;
- termica differenziale, accidentali e vento utilizzano i moduli di resistenza a T₀;
- tutti gli altri carichi utilizzano i moduli di resistenza a T∞;

Nel momento in cui la somma delle tensioni sulla soletta di calcestruzzo è di trazione, la verifica viene svolta considerando la soletta non reagente.

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.1 CARATTERISTICHE GEOMETRICHE DELLE SEZIONI

9.1.1 Valutazione della larghezza collaborante della soletta

Con riferimento alle NTC2018, si definisce la larghezza collaborante della soletta attraverso la relazione:

$$b_{eff} = b_o + b_{e1} + b_{e2}$$

dove:

 b_{ei} = min [L_e/8; b_{i}];

b_o = distanza tra i connettori perpendicolarmente all'asse della trave.

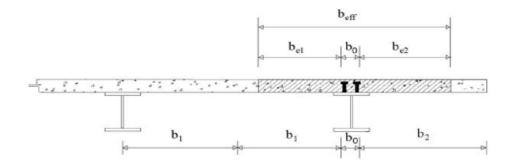


Figura 17 Definizione della larghezza efficace beff

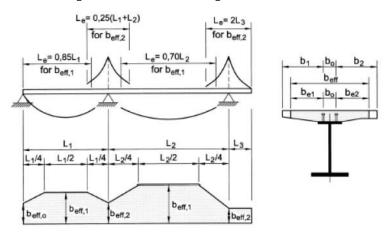


Figura 18 Larghezza efficace b_{eff} e luci equivalenti L_e per le travi continue

DESIGN GROUP

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

LARGHEZZA EFFICACE MEZZERIA CAM	PATA			
Distanza tra gli assi dei connettori	b_0	=	600	mm
Luce travi	L	=	40000	mm
Luce equivalente (vedi fig. 4.3.2 NTC)	L_{e}	=	28000	mm
Semi interasse travi longitudinali	b_1	=	3000	mm
Sbalzo della soletta	b_2	=	2625	mm
Larghezza efficace 1	b_{e1}	=	2700	mm
Larghezza efficace 2	$b_{e2} \\$	=	2325	mm
Larghezza efficace	\mathbf{b}_{eff}	_	5625	mm
			3023	
LARGHEZZA EFFICACE APPOGGIO CAM		1		
Distanza tra gli assi dei connettori	b_0	=	600	mm
Luce trave 1 Luce trave 2	L_1 L_2	=	40000 60000	mm
Luce equivalente (vedi fig. 4.3.2 NTC)	L ₂	=	25000	mm mm
Semi interasse travi longitudinali	Le b₁		3000	mm
Sbalzo della soletta	b_1	=	2625	mm
Larghezza efficace 1 (vedi C4.3.2.3)	b_{e1}	=	2700	mm
Larghezza efficace 2 (vedi C4.3.2.3)	b _{e2}	=	2325	mm
Larghozza cinicaco z (vodi 04.0.2.0)	Dez	_	2020	
Larghezza efficace	\mathbf{b}_{eff}	=	5625	mm
LARGHEZZA EFFICACE MEZZERIA CAMPATA I	ESTR	EM I	TA'	
LARGHEZZA EFFICACE MEZZERIA CAMPATA I Distanza tra gli assi dei connettori	ESTR b ₀	EMI =	TA' 600	mm
LARGHEZZA EFFICACE MEZZERIA CAMPATA I Distanza tra gli assi dei connettori Luce travi				mm mm
Distanza tra gli assi dei connettori	b_0	=	600	
Distanza tra gli assi dei connettori Luce travi	b ₀ L	= =	600 30000	mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC)	b ₀ L L _e	= = =	600 30000 25500 3000	mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali	b ₀ L L _e b ₁	= = = =	600 30000 25500 3000	mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \end{array}$	= = = =	600 30000 25500 3000 2625 2700	mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3)	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \end{array}$	= = = = =	600 30000 25500 3000 2625 2700 2325	mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3)	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \end{array}$	= = = = =	600 30000 25500 3000 2625 2700	mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA	$egin{array}{c} b_0 \ L \ L_e \ b_1 \ b_2 \ b_{e1} \ b_{e2} \ \end{array}$	= = = =	600 30000 25500 3000 2625 2700 2325 5625	mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \\ \textbf{b}_{eff} \\ \\ \textbf{b}_0 \end{array}$	= = = = = =	600 30000 25500 3000 2625 2700 2325 5625	mm mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori Luce travi	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \\ \textbf{b}_{\textbf{eff}} \\ \\ \textbf{b}_{\textbf{o}} \\ \\ \\ \\ \textbf{b}_{\textbf{o}} \\ \\ \\ \textbf{b}_{\textbf{o}} \\ \\ \\ \\ \\ \textbf{b}_{\textbf{o}} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	= = = = = =	600 30000 25500 3000 2625 2700 2325 5625 ITA' 600 30000	mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC)	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \end{array}$	= = = = = = = = = =	600 30000 25500 3000 2625 2700 2325 5625 ITA' 600 30000 25500	mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \\ \textbf{b}_{eff} \\ \\ \textbf{ESTR} \\ b_0 \\ L \\ L_e \\ b_1 \\ \end{array}$	= = = = = = = = = =	600 30000 25500 3000 2625 2700 2325 5625 ITA' 600 30000 25500 3000	mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \\ \textbf{b}_{eff} \\ \\ \textbf{ESTR} \\ b_0 \\ L \\ L_e \\ b_1 \\ b_2 \end{array}$	= = = = = = = = = =	600 30000 25500 3000 2625 2700 2325 5625 ITA' 600 30000 25500 3000 2625	mm mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3)	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	600 30000 25500 3000 2625 2700 2325 5625 TTA' 600 30000 25500 3000 2625 2700	mm mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	600 30000 25500 3000 2625 2700 2325 5625 ITA' 600 30000 25500 3000 2625 2700 2325	mm mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3)	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \\ \textbf{b}_{eff} \\ \\ \textbf{ESTR} \\ b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \beta \ 1 \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	600 30000 25500 3000 2625 2700 2325 5625 ITA' 600 30000 25500 3000 2625 2700 2325 0.7861	mm mm mm mm mm mm
Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3) Larghezza efficace 2 (vedi C4.3.2.3) Larghezza efficace LARGHEZZA EFFICACE APPOGGIO CAMPATA Distanza tra gli assi dei connettori Luce travi Luce equivalente (vedi fig. 4.3.2 NTC) Semi interasse travi longitudinali Sbalzo della soletta Larghezza efficace 1 (vedi C4.3.2.3)	$\begin{array}{c} b_0 \\ L \\ L_e \\ b_1 \\ b_2 \\ b_{e1} \\ b_{e2} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	600 30000 25500 3000 2625 2700 2325 5625 ITA' 600 30000 25500 3000 2625 2700 2325	mm mm mm mm mm mm

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.1.2 Caratteristiche geometriche delle sezioni d'acciaio

Le dimensioni geometriche delle sezioni delle travi d'acciaio, in corrispondenza dei traversi e dei giunti, sono riportate nella tabella seguente:

H_{tot} altezza totale della trave

t spessore dell'anima

B_{sup} larghezza della piattabanda superiore

s_{sup} spessore della piattabanda superiore

B_{inf} larghezza della piattabanda inferiore

sinf spessore della piattabanda inferiore

Si riportano le dimensioni delle travi per tutte le sezioni di verifica individuate dalla progressiva espressa in metri.

Duaguagaina			TRA	VE METALL	.ICA		
Progressiva		Aniı	ma	Piattaba	nda sup.	Piattaba	anda inf.
Х	H _{tot}	h _{anima}	t _w	B _{sup}	S _{sup}	B _{inf}	S _{inf}
[m]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
0.00	2200	2,130	22	600	30	950	40
1.00	2200	2,130	22	600	30	950	40
2.00	2200	2,130	22	600	30	950	40
3.00	2200	2,130	22	600	30	950	40
4.00	2200	2,130	22	600	30	950	40
5.00	2200	2,130	22	600	30	950	40
6.00	2200	2,130	22	600	30	950	40
7.00	2200	2,130	22	600	30	950	40
8.00	2200	2,140	22	600	20	950	40
9.00	2211	2,151	22	600	20	950	40
10.00	2222	2,162	22	600	20	950	40
11.00	2233	2,173	22	600	20	950	40
12.00	2244	2,184	22	600	20	950	40
13.00	2256	2,196	22	600	20	950	40
14.00	2267	2,207	22	600	20	950	40
15.00	2278	2,218	22	600	20	950	40
16.00	2289	2,229	22	600	20	950	40
17.00	2300	2,240	22	600	20	950	40
18.00	2311	2,251	22	600	20	950	40
19.00	2322	2,262	22	600	20	950	40
20.00	2333	2,273	22	600	20	950	40
21.00	2344	2,284	22	600	20	950	40
22.00	2356	2,296	22	600	20	950	40
23.00	2367	2,307	22	600	20	950	40
24.00	2378	2,318	22	600	20	950	40
25.00	2400	2,310	30	600	40	950	50
26.00	2400	2,310	30	600	40	950	50
27.00	2400	2,310	30	600	40	950	50
28.00	2400	2,310	30	600	40	950	50

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	TRAVE METALLICA											
Progressiva		Ani	ma	Piattaba	anda sup.	Piattabanda inf.						
Х	H _{tot}	h _{anima}	t _w	B _{sup}	S _{sup}	B _{inf}	S _{inf}					
[m]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]					
29.00	2400	2,310	30	600	40	950	50					
30.00	2400	2,310	30	600	40	950	50					
31.00	2400	2,310	30	600	40	950	50					
32.00	2400	2,310	30	600	40	950	50					
33.00	2400	2,310	30	600	40	950	50					
34.00	2400	2,310	30	600	40	950	50					
35.00	2400	2,330	22	600	30	950	40					
36.00	2413	2,343	22	600	30	950	40					
37.00	2426	2,356	22	600	30	950	40					
38.00	2439	2,369	22	600	30	950	40					
39.00	2452	2,382	22	600	30	950	40					
40.00	2465	2,395	22	600	30	950	40					
41.00	2477	2,407	22	600	30	950	40					
42.00	2490	2,420	22	600	30	950	40					
43.00	2503	2,433	22	600	30	950	40					
44.00	2516	2,446	22	600	30	950	40					
45.00	2529	2,459	22	600	30	950	40					
46.00	2542	2,472	22	600	30	950	40					
47.00	2555	2,485	22	600	30	950	40					
48.00	2568	2,498	22	600	30	950	40					
49.00	2581	2,511	22	600	30	950	40					
50.00	2594	2,524	22	600	30	950	40					
51.00	2606	2,536	22	600	30	950	40					
52.00	2619	2,549	22	600	30	950	40					
53.00	2632	2,562	22	600	30	950	40					
54.00	2645	2,575	22	600	30	950	40					
55.00	2658	2,588	22	600	30	950	40					
56.00	2671	2,601	22	600	30	950	40					
57.00	2684	2,614	22	600	30	950	40					
58.00	2697	2,627	22	600	30	950	40					
59.00	2710	2,640	22	600	30	950	40					
60.00	2723	2,653	22	600	30	950	40					
61.00	2735	2,665	22	600	30	950	40					
62.00	2748	2,678	22	600	30	950	40					
63.00	2761	2,691	22	600	30	950	40					
64.00	2774	2,704	22	600	30	950	40					
65.00	2800	2,690	30	600	50	950	60					
66.00	2800	2,690	30	600	50	950	60					
67.00	2800	2,690	30	600	50	950	60					
68.00	2800	2,690	30	600	50	950	60					
69.00	2800	2,690	30	600	50	950	60					
70.00	2800	2,690	30	600	50	950	60					
71.00	2800	2,690	30	600	50	950	60					
72.00	2800	2,690	30	600	50	950	60					
73.00	2800	2,690	30	600	50	950	60					
74.00	2800	2,690	30	600	50	950	60					
75.00	2800	2,710	22	600	40	950	50					

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

			TRA	VE METALI	_ICA			
Progressiva		Ani	ma	Piattaba	anda sup.	Piattabanda inf.		
х	H _{tot}	h _{anima}	t _w	B _{sup}	S _{sup}	B _{inf}	S _{inf}	
[m]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
76.00	2800	2,710	22	600	40	950	50	
77.00	2800	2,710	22	600	40	950	50	
78.00	2800	2,710	22	600	40	950	50	
79.00	2800	2,710	22	600	40	950	50	
80.00	2800	2,710	22	600	40	950	50	
81.00	2800	2,710	22	600	40	950	50	
82.00	2800	2,710	22	600	40	950	50	
83.00	2800	2,710	22	600	40	950	50	
84.00	2800	2,710	22	600	40	950	50	
85.00	2800	2,710	22	600	40	950	50	
86.00	2800	2,710	22	600	40	950	50	
87.00	2800	2,710	22	600	40	950	50	
88.00	2800	2,710	22	600	40	950	50	
89.00	2800	2,710	22	600	40	950	50	
90.00	2800	2,710	22	600	40	950	50	
91.00	2800	2,710	22	600	40	950	50	
92.00	2800	2,710	22	600	40	950	50	
93.00	2800	2,710	22	600	40	950	50	
94.00	2800	2,710	22	600	40	950	50	
95.00	2800	2,710	22	600	40	950	50	
96.00	2800	2,710	22	600	40	950	50	
97.00	2800	2,710	22	600	40	950	50	
98.00	2800	2,710	22	600	40	950	50	
99.00	2800	2,710	22	600	40	950	50	
100.00	2800	2,710	22	600	40	950	50	
101.00	2800	2,710	22	600	40	950	50	
102.00	2800	2,710	22	600	40	950	50	
102.00	2800	2,710	22	600	40	950	50	
103.00	2800	2,710	22	600	40	950	50	
104.00			22		40	950		
106.00	2800	2,710 2,710	22	600 600	40	950	50 50	
107.00	2800		22		40	950	50	
+	2800	2,710	22	600	40		50	
108.00		2,710	1	600	1	950 950		
109.00	2800	2,710	22	600	40		50 50	
110.00	2800	2,710	22	600	40	950	50	
111.00	2800	2,710	22	600	40	950	50	
112.00	2800	2,710	22	600	40	950	50	
113.00	2800	2,710	22	600	40	950	50	
114.00	2800	2,710	22	600	40	950	50	
115.00	2800	2,710	22	600	40	950	50	
116.00	2800	2,710	22	600	40	950	50	
117.00	2800	2,710	22	600	40	950	50	
118.00	2800	2,710	22	600	40	950	50	
119.00	2800	2,710	22	600	40	950	50	
120.00	2800	2,710	22	600	40	950	50	
121.00	2800	2,710	22	600	40	950	50	
122.00	2800	2,710	22	600	40	950	50	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Duaguagaina	TRAVE METALLICA									
Progressiva		Aniı	ma	Piattaba	nda sup.	Piattaba	anda inf.			
X	H_{tot}	h _{anima}	t _w	B _{sup}	S _{sup}	B _{inf}	Sinf			
[m]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
123.00	2800	2,710	22	600	40	950	50			
124.00	2800	2,710	22	600	40	950	50			
125.00	2800	2,680	35	600	50	950	70			
126.00	2800	2,680	35	600	50	950	70			
127.00	2800	2,680	35	600	50	950	70			
128.00	2800	2,680	35	600	50	950	70			
129.00	2800	2,680	35	600	50	950	70			
130.00	2800	2,680	35	600	50	950	70			
131.00	2800	2,680	35	600	50	950	70			
132.00	2800	2,680	35	600	50	950	70			
133.00	2800	2,680	35	600	50	950	70			
134.00	2800	2,680	35	600	50	950	70			
135.00	2800	2,710	30	600	40	950	50			
136.00	2787	2,697	30	600	40	950	50			
137.00	2774	2,684	30	600	40	950	50			
138.00	2761	2,671	30	600	40	950	50			
139.00	2748	2,658	30	600	40	950	50			
140.00	2735	2,645	30	600	40	950	50			
141.00	2723	2,633	30	600	40	950	50			
142.00	2710	2,620	30	600	40	950	50			
143.00	2697	2,607	30	600	40	950	50			
144.00	2684	2,594	30	600	40	950	50			
145.00	2671	2,581	30	600	40	950	50			
146.00	2658	2,568	30	600	40	950	50			
147.00	2645	2,555	30	600	40	950	50			
148.00	2632	2,542	30	600	40	950	50			
149.00	2619	2,529	30	600	40	950	50			
150.00	2606	2,516	30	600	40	950	50			
151.00	2594	2,504	30	600	40	950	50			
152.00	2581	2,491	30	600	40	950	50			
153.00	2568	2,478	30	600	40	950	50			
154.00	2555	2,465	30	600	40	950	50			
155.00	2542	2,452	30	600	40	950	50			
156.00	2529	2,439	30	600	40	950	50			
157.00	2516	2,426	30	600	40	950	50			
158.00	2503	2,413	30	600	40	950	50			
159.00	2490	2,400	30	600	40	950	50			
160.00	2477	2,387	30	600	40	950	50			
161.00	2465	2,375	30	600	40	950	50			
162.00	2452	2,362	30	600	40	950	50			
163.00	2439	2,349	30	600	40	950	50			
164.00	2426	2,336	30	600	40	950	50			
165.00	2400	2,330	25	600	30	950	40			
166.00	2400	2,330	25	600	30	950	40			
167.00	2400	2,330	25	600	30	950	40			
168.00	2400	2,330	25	600	30	950	40			
169.00	2400	2,330	25	600	30	950	40			
109.00	2400	۷,330	23	000	30	930	40			

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Progressiva	TRAVE METALLICA											
Flogressiva		Anir	na	Piattaba	nda sup.	Piattabanda inf.						
х	H _{tot}	h _{anima}	t _w	B _{sup}	S _{sup}	B _{inf}	Sinf					
[m]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]					
170.00	2400	2,330	25	600	30	950	40					
171.00	2400	2,330	25	600	30	950	40					
172.00	2400	2,330	25	600	30	950	40					
173.00	2400	2,330	25	600	30	950	40					
174.00	2400	2,330	25	600	30	950	40					
175.00	2400	2,330	25	600	30	950	40					

9.1.3 Caratteristiche meccaniche delle travi

Per ciascuna sezione si riportano omogeneizzate in acciaio:

Α [m²] area

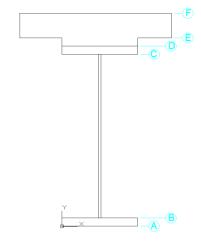
[m] ascissa della sezione Y_G

[m⁴] momento d'inerzia principale lз

Trave W_A [m³] modulo di resistenza per flessione dell' intradosso della trave

d'acciaio

[m³] modulo di resistenza per flessione dell' estradosso della trave Trave W_D


d'acciaio

Sol W_{cs} [m³] modulo di resistenza per flessione dell'estradosso della soletta

Sol [m³] modulo di resistenza per flessione dell'intradosso della soletta

W_{Φsup} [m³] modulo di resistenza per flessione del 1° strato di armature Arm

W_{Φsinf} [m³] modulo di resistenza per flessione del 2° strato di armature Arm

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

SEZIONE SOLO ACCIAIO

_	TRAVE METALLICA									
Progressiva			CA	RATTERIS	STICHE INE	RZIALI				
х	A _{trave}	S _{trave}	Yg	J	W _A	W _B	W _C	W _D		
[m]	[m ²]	[m ³]	[m]	[m ⁴]	[m ³]	[m ³]	[m ³]	[m ³]		
0.00	1.03E-01	1.34E-01	1.307	7.88E-02	8.83E-02	9.24E-02	-6.17E-02	-6.03E-02		
1.00	1.03E-01	1.34E-01	1.307	7.88E-02	8.83E-02	9.24E-02	-6.17E-02	-6.03E-02		
2.00	1.03E-01	1.34E-01	1.307	7.88E-02	8.83E-02	9.24E-02	-6.17E-02	-6.03E-02		
3.00	1.03E-01	1.34E-01	1.307	7.88E-02	8.83E-02	9.24E-02	-6.17E-02	-6.03E-02		
4.00	1.03E-01	1.34E-01	1.307	7.88E-02	8.83E-02	9.24E-02	-6.17E-02	-6.03E-02		
5.00	1.03E-01	1.34E-01	1.307	7.88E-02	8.83E-02	9.24E-02	-6.17E-02	-6.03E-02		
6.00	1.03E-01	1.34E-01	1.307	7.88E-02	8.83E-02	9.24E-02	-6.17E-02	-6.03E-02		
7.00	1.03E-01	1.34E-01	1.307	7.88E-02	8.83E-02	9.24E-02	-6.17E-02	-6.03E-02		
8.00	9.71E-02	1.34E-01	1.383	6.88E-02	8.42E-02	8.85E-02	-5.05E-02	-4.97E-02		
9.00	9.73E-02	1.35E-01	1.389	6.96E-02	8.47E-02	8.90E-02	-5.08E-02	-5.01E-02		
10.00	9.76E-02	1.36E-01	1.396	7.04E-02	8.52E-02	8.95E-02	-5.12E-02	-5.05E-02		
11.00	9.78E-02	1.37E-01	1.402	7.12E-02	8.57E-02	9.00E-02	-5.16E-02	-5.08E-02		
12.00	9.80E-02	1.38E-01	1.408	7.21E-02	8.62E-02	9.06E-02	-5.19E-02	-5.12E-02		
13.00	9.83E-02	1.39E-01	1.415	7.30E-02	8.68E-02	9.11E-02	-5.23E-02	-5.16E-02		
14.00	9.86E-02	1.40E-01	1.421	7.38E-02	8.73E-02	9.16E-02	-5.27E-02	-5.20E-02		
15.00	9.88E-02	1.41E-01	1.427	7.47E-02	8.78E-02	9.21E-02	-5.31E-02	-5.23E-02		
16.00	9.90E-02	1.42E-01	1.434	7.55E-02	8.83E-02	9.26E-02	-5.34E-02	-5.27E-02		
17.00	9.93E-02	1.43E-01	1.440	7.64E-02	8.88E-02	9.31E-02	-5.38E-02	-5.31E-02		
18.00	9.95E-02	1.44E-01	1.446	7.73E-02	8.93E-02	9.37E-02	-5.42E-02	-5.34E-02		
19.00	9.98E-02	1.45E-01	1.452	7.81E-02	8.98E-02	9.42E-02	-5.46E-02	-5.38E-02		
20.00	1.00E-01	1.46E-01	1.458	7.90E-02	9.03E-02	9.47E-02	-5.49E-02	-5.42E-02		
21.00	1.00E-01	1.47E-01	1.465	7.99E-02	9.09E-02	9.52E-02	-5.53E-02	-5.46E-02		
22.00	1.01E-01	1.48E-01	1.471	8.09E-02	9.14E-02	9.58E-02	-5.57E-02	-5.50E-02		
23.00	1.01E-01	1.49E-01	1.478	8.18E-02	9.19E-02	9.63E-02	-5.61E-02	-5.53E-02		
24.00	1.01E-01	1.50E-01	1.484	8.27E-02	9.25E-02	9.68E-02	-5.65E-02	-5.57E-02		
25.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
26.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
27.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
28.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
29.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
30.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
31.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
32.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
33.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		
34.00	1.41E-01	1.96E-01	1.393	1.25E-01	1.24E-01	1.30E-01	-9.21E-02	-8.95E-02		

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

_	TRAVE METALLICA									
Progressiva			CA	RATTERIS	STICHE INE	RZIALI				
х	A _{trave}	Strave	Yg	J	W _A	W _B	Wc	W _D		
[m]	[m ²]	[m ³]	[m]	[m ⁴]	[m ³]	[m ³]	[m ³]	[m ³]		
35.00	1.07E-01	1.52E-01	1.417	9.63E-02	9.80E-02	1.02E-01	-6.95E-02	-6.80E-02		
36.00	1.08E-01	1.53E-01	1.424	9.76E-02	9.86E-02	1.03E-01	-7.00E-02	-6.85E-02		
37.00	1.08E-01	1.54E-01	1.431	9.88E-02	9.93E-02	1.03E-01	-7.05E-02	-6.90E-02		
38.00	1.08E-01	1.55E-01	1.438	1.00E-01	9.99E-02	1.04E-01	-7.10E-02	-6.95E-02		
39.00	1.08E-01	1.57E-01	1.445	1.01E-01	1.01E-01	1.05E-01	-7.15E-02	-7.01E-02		
40.00	1.09E-01	1.58E-01	1.452	1.02E-01	1.01E-01	1.05E-01	-7.21E-02	-7.06E-02		
41.00	1.09E-01	1.59E-01	1.459	1.04E-01	1.02E-01	1.06E-01	-7.25E-02	-7.10E-02		
42.00	1.09E-01	1.60E-01	1.466	1.05E-01	1.02E-01	1.07E-01	-7.31E-02	-7.16E-02		
43.00	1.10E-01	1.61E-01	1.473	1.06E-01	1.03E-01	1.07E-01	-7.36E-02	-7.21E-02		
44.00	1.10E-01	1.63E-01	1.480	1.07E-01	1.04E-01	1.08E-01	-7.41E-02	-7.26E-02		
45.00	1.10E-01	1.64E-01	1.487	1.09E-01	1.04E-01	1.09E-01	-7.46E-02	-7.31E-02		
46.00	1.10E-01	1.65E-01	1.494	1.10E-01	1.05E-01	1.09E-01	-7.52E-02	-7.36E-02		
47.00	1.11E-01	1.66E-01	1.501	1.11E-01	1.06E-01	1.10E-01	-7.57E-02	-7.42E-02		
48.00	1.11E-01	1.67E-01	1.509	1.13E-01	1.06E-01	1.11E-01	-7.62E-02	-7.47E-02		
49.00	1.11E-01	1.69E-01	1.516	1.14E-01	1.07E-01	1.11E-01	-7.67E-02	-7.52E-02		
50.00	1.12E-01	1.70E-01	1.523	1.15E-01	1.08E-01	1.12E-01	-7.73E-02	-7.58E-02		
51.00	1.12E-01	1.71E-01	1.529	1.17E-01	1.08E-01	1.12E-01	-7.78E-02	-7.62E-02		
52.00	1.12E-01	1.72E-01	1.536	1.18E-01	1.09E-01	1.13E-01	-7.83E-02	-7.68E-02		
53.00	1.12E-01	1.73E-01	1.543	1.19E-01	1.10E-01	1.14E-01	-7.88E-02	-7.73E-02		
54.00	1.13E-01	1.75E-01	1.550	1.21E-01	1.10E-01	1.14E-01	-7.94E-02	-7.78E-02		
55.00	1.13E-01	1.76E-01	1.557	1.22E-01	1.11E-01	1.15E-01	-7.99E-02	-7.84E-02		
56.00	1.13E-01	1.77E-01	1.565	1.23E-01	1.12E-01	1.16E-01	-8.05E-02	-7.89E-02		
57.00	1.14E-01	1.78E-01	1.572	1.25E-01	1.12E-01	1.16E-01	-8.10E-02	-7.95E-02		
58.00	1.14E-01	1.80E-01	1.579	1.26E-01	1.13E-01	1.17E-01	-8.15E-02	-8.00E-02		
59.00	1.14E-01	1.81E-01	1.586	1.28E-01	1.14E-01	1.18E-01	-8.21E-02	-8.05E-02		
60.00	1.14E-01	1.82E-01	1.593	1.29E-01	1.14E-01	1.18E-01	-8.26E-02	-8.11E-02		
61.00	1.15E-01	1.83E-01	1.599	1.30E-01	1.15E-01	1.19E-01	-8.31E-02	-8.16E-02		
62.00	1.15E-01	1.85E-01	1.606	1.32E-01	1.16E-01	1.20E-01	-8.37E-02	-8.21E-02		
63.00	1.15E-01	1.86E-01	1.613	1.33E-01	1.16E-01	1.20E-01	-8.42E-02	-8.27E-02		
64.00	1.15E-01	1.87E-01	1.620	1.35E-01	1.17E-01	1.21E-01	-8.48E-02	-8.32E-02		
65.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
66.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
67.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
68.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
69.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
70.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
71.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

_	TRAVE METALLICA									
Progressiva			CA	RATTERIS	STICHE INE	RZIALI				
х	A _{trave}	Strave	Yg	J	W _A	W _B	W _C	W _D		
[m]	[m ²]	[m ³]	[m]	[m ⁴]	[m ³]	[m ³]	[m ³]	[m ³]		
72.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
73.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
74.00	1.68E-01	2.71E-01	1.617	2.04E-01	1.73E-01	1.82E-01	-1.30E-01	-1.26E-01		
75.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
76.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
77.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
78.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
79.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
80.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
81.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
82.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
83.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
84.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
85.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
86.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
87.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
88.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
89.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
90.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
91.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
92.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
93.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
94.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
95.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
96.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
97.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
98.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
99.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
100.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
101.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
102.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
103.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
104.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
105.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
106.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
107.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		
108.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01		

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

_				TRAVE	METALLIC	A		
Progressiva			CA	RATTERIS	STICHE INE	RZIALI		
х	A _{trave}	Strave	Yg	J	W _A	W _B	W _C	W _D
[m]	[m ²]	[m ³]	[m]	[m ⁴]	[m ³]	[m ³]	[m ³]	[m ³]
109.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
110.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
111.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
112.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
113.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
114.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
115.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
116.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
117.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
118.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
119.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
120.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
121.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
122.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
123.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
124.00	1.31E-01	2.15E-01	1.643	1.64E-01	1.42E-01	1.48E-01	-1.02E-01	-1.00E-01
125.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
126.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
127.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
128.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
129.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
130.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
131.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
132.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
133.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
134.00	1.90E-01	3.15E-01	1.655	2.24E-01	1.96E-01	2.09E-01	-1.40E-01	-1.36E-01
135.00	1.53E-01	2.46E-01	1.608	1.79E-01	1.50E-01	1.56E-01	-1.14E-01	-1.11E-01
136.00	1.52E-01	2.44E-01	1.601	1.77E-01	1.49E-01	1.56E-01	-1.13E-01	-1.10E-01
137.00	1.52E-01	2.42E-01	1.594	1.75E-01	1.48E-01	1.55E-01	-1.12E-01	-1.10E-01
138.00	1.52E-01	2.41E-01	1.587	1.73E-01	1.47E-01	1.54E-01	-1.12E-01	-1.09E-01
139.00	1.51E-01	2.39E-01	1.580	1.71E-01	1.46E-01	1.53E-01	-1.11E-01	-1.08E-01
140.00	1.51E-01	2.37E-01	1.573	1.69E-01	1.46E-01	1.52E-01	-1.10E-01	-1.07E-01
141.00	1.50E-01	2.36E-01	1.567	1.67E-01	1.45E-01	1.51E-01	-1.10E-01	-1.07E-01
142.00	1.50E-01	2.34E-01	1.560	1.65E-01	1.44E-01	1.50E-01	-1.09E-01	-1.06E-01
143.00	1.50E-01	2.32E-01	1.553	1.64E-01	1.43E-01	1.50E-01	-1.08E-01	-1.05E-01
144.00	1.49E-01	2.31E-01	1.546	1.62E-01	1.42E-01	1.49E-01	-1.07E-01	-1.05E-01
145.00	1.49E-01	2.29E-01	1.539	1.60E-01	1.41E-01	1.48E-01	-1.07E-01	-1.04E-01

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

			TRAVE METALLICA									
Progressiva			CA	RATTERIS	STICHE INE	RZIALI						
Х	A _{trave}	Strave	Yg	J	W _A	W _B	Wc	W _D				
[m]	[m ²]	[m ³]	[m]	[m ⁴]	[m ³]	[m ³]	[m ³]	[m ³]				
146.00	1.49E-01	2.28E-01	1.532	1.58E-01	1.40E-01	1.47E-01	-1.06E-01	-1.03E-01				
147.00	1.48E-01	2.26E-01	1.525	1.56E-01	1.40E-01	1.46E-01	-1.05E-01	-1.03E-01				
148.00	1.48E-01	2.24E-01	1.518	1.55E-01	1.39E-01	1.45E-01	-1.05E-01	-1.02E-01				
149.00	1.47E-01	2.23E-01	1.511	1.53E-01	1.38E-01	1.44E-01	-1.04E-01	-1.01E-01				
150.00	1.47E-01	2.21E-01	1.504	1.51E-01	1.37E-01	1.44E-01	-1.03E-01	-1.00E-01				
151.00	1.47E-01	2.20E-01	1.497	1.49E-01	1.36E-01	1.43E-01	-1.02E-01	-9.97E-02				
152.00	1.46E-01	2.18E-01	1.490	1.48E-01	1.35E-01	1.42E-01	-1.02E-01	-9.90E-02				
153.00	1.46E-01	2.16E-01	1.483	1.46E-01	1.35E-01	1.41E-01	-1.01E-01	-9.83E-02				
154.00	1.45E-01	2.15E-01	1.476	1.44E-01	1.34E-01	1.40E-01	-1.00E-01	-9.76E-02				
155.00	1.45E-01	2.13E-01	1.469	1.42E-01	1.33E-01	1.39E-01	-9.97E-02	-9.69E-02				
156.00	1.45E-01	2.12E-01	1.462	1.41E-01	1.32E-01	1.38E-01	-9.90E-02	-9.63E-02				
157.00	1.44E-01	2.10E-01	1.455	1.39E-01	1.31E-01	1.38E-01	-9.83E-02	-9.56E-02				
158.00	1.44E-01	2.08E-01	1.448	1.37E-01	1.30E-01	1.37E-01	-9.76E-02	-9.49E-02				
159.00	1.44E-01	2.07E-01	1.441	1.36E-01	1.29E-01	1.36E-01	-9.69E-02	-9.42E-02				
160.00	1.43E-01	2.05E-01	1.434	1.34E-01	1.29E-01	1.35E-01	-9.62E-02	-9.35E-02				
161.00	1.43E-01	2.04E-01	1.428	1.33E-01	1.28E-01	1.34E-01	-9.55E-02	-9.29E-02				
162.00	1.42E-01	2.02E-01	1.421	1.31E-01	1.27E-01	1.33E-01	-9.48E-02	-9.22E-02				
163.00	1.42E-01	2.01E-01	1.414	1.29E-01	1.26E-01	1.33E-01	-9.42E-02	-9.15E-02				
164.00	1.42E-01	1.99E-01	1.407	1.28E-01	1.25E-01	1.32E-01	-9.35E-02	-9.08E-02				
165.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
166.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
167.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
168.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
169.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
170.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
171.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
172.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
173.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
174.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				
175.00	1.14E-01	1.60E-01	1.403	9.98E-02	1.00E-01	1.04E-01	-7.27E-02	-7.11E-02				

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

SEZIONE MISTA A T₀

						SEZIONI	MISTE t ₀	5.9								
Progressiva			(CARATTERIST	ICHE INER	ZIALI				TR	AVE		SOL	ETTA	ARMA	ATURA
х	A _{mista_0}	S _{mista_0}		Yg	Jc	J_{ϕ}	Ja	J	W _A	[m³] [m³] [m³]			W _{cs}	W _{ci}	W _{és}	W _{oi}
[m]	[m ²]	[m ³]	[m]	Controllo	[m ⁴]	[m ⁴]	[m ⁴]	[m ⁴]	[m ³]	[m ³]	[m ³]	[m ³]	[m ³]	[m ³]	[m ³]	[m ³]
0.00	4.04E-01	0.21665	0.536	Yg >= h_sol	4.44E-02	2.81E-03	2.10E-01	2.58E-01	0.12726	0.12983	-1.76387	-1.46326	-2.85881	-6.49247	-0.52996	-0.90052
1.00	4.04E-01	0.21665	0.536	Yg >= h_sol	4.44E-02	2.81E-03	2.10E-01	2.58E-01	0.12726	0.12983	-1.76387	-1.46326	-2.85881	-6.49247	-0.52996	-0.90052
2.00	4.04E-01	0.21665	0.536	Yg >= h sol	4.44E-02	2.81E-03	2.10E-01	2.58E-01	0.12726	0.12983	-1.76387	-1.46326	-2.85881	-6.49247	-0.52996	-0.90052
3.00	4.04E-01	0.21665	0.536	Yg >= h sol	4.44E-02	2.81E-03	2.10E-01	2.58E-01	0.12726	0.12983	-1.76387	-1.46326	-2.85881	-6.49247	-0.52996	-0.90052
4.00	4.04E-01	0.21665	0.536	Yg >= h_sol	4.44E-02	2.81E-03	2.10E-01	2.58E-01	0.12726	0.12983	-1.76387	-1.46326	-2.85881	-6.49247	-0.52996	-0.90052
5.00	4.04E-01	0.21665	0.536	Yg >= h_sol	4.44E-02	2.81E-03	2.10E-01	2.58E-01	0.12726	0.12983	-1.76387	-1.46326	-2.85881	-6.49247	-0.52996	-0.90052
6.00	4.04E-01	0.21665	0.536	Yg >= h_sol	4.44E-02	2.81E-03	2.10E-01	2.58E-01	0.12726	0.12983	-1.76387	-1.46326	-2.85881	-6.49247	-0.52996	-0.90052
7.00	4.04E-01	0.21665	0.536	Yg >= h sol	4.44E-02	2.81E-03	2.10E-01	2.58E-01	0.12726	0.12983	-1.76387	-1.46326	-2.85881	-6.49247	-0.52996	-0.90052
8.00	3.98E-01	0.21442	0.538	Yg >= h sol	4.49E-02	2.84E-03	2.10E-01	2.57E-01	0.12733	0.12990	-1.62712	-1.44452	-2.84569	-6.42942	-0.52730	-0.89321
9.00	3.99E-01	0.21545	0.540	Yg >= h sol	4.54E-02	2.87E-03	2.12E-01	2.60E-01	0.12808	0.13065	-1.62065	-1.44105	-2.86279	-6.43424	-0.53025	-0.89534
10.00	3.99E-01	0.21648	0.543	Yg >= h sol	4.59E-02	2.90E-03	2.14E-01	2.63E-01	0.12883	0.13141	-1.61443	-1.43773	-2.87990	-6.43925	-0.53319	-0.89747
11.00	3.99E-01	0.21752	0.545	Yg >= h_sol	4.64E-02	2.93E-03	2.16E-01	2.65E-01	0.12958	0.13216	-1.60843	-1.43454	-2.89701	-6.44445	-0.53613	-0.89962
12.00	3.99E-01	0.21856	0.547	Yg >= h_sol	4.69E-02	2.97E-03	2.18E-01	2.68E-01	0.13033	0.13292	-1.60264	-1.43148	-2.91414	-6.44983	-0.53907	-0.90177
13.00	4.00E-01	0.21969	0.550	Yq >= h sol	4.75E-02	3.00E-03	2.21E-01	2.71E-01	0.13116	0.13374	-1.59658	-1.42829	-2.93283	-6.45590	-0.54229	-0.90413
14.00	4.00E-01	0.22073	0.552	Yg >= h sol	4.80E-02	3.03E-03	2.23E-01	2.74E-01	0.13191	0.13450	-1.59123	-1.42549	-2.94997	-6.46165	-0.54523	-0.90630
15.00	4.00E-01	0.22178	0.554	Yg >= h sol	4.85E-02	3.07E-03	2.25E-01	2.76E-01	0.13267	0.13526	-1.58608	-1.42281	-2.96713	-6.46757	-0.54818	-0.90847
16.00	4.00E-01	0.22283	0.557	Yg >= h_sol	4.90E-02	3.10E-03	2.27E-01	2.79E-01	0.13343	0.13603	-1.58111	-1.42025	-2.98429	-6.47366	-0.55112	-0.91066
17.00	4.01E-01	0.22388	0.559	Yg >= h sol	4.95E-02	3.13E-03	2.29E-01	2.82E-01	0.13419	0.13679	-1.57633	-1.41780	-3.00146	-6.47990	-0.55407	-0.91285
18.00	4.01E-01	0.22493	0.561	Yg >= h sol	5.01E-02	3.16E-03	2.31E-01	2.85E-01	0.13495	0.13756	-1.57172	-1.41545	-3.01864	-6.48631	-0.55702	-0.91505
19.00	4.01E-01	0.22599	0.563	Yg >= h sol	5.06E-02	3.20E-03	2.34E-01	2.88E-01	0.13571	0.13832	-1.56728	-1.41321	-3.03582	-6.49287	-0.55997	-0.91726
20.00	4.01E-01	0.22705	0.566	Yg >= h sol	5.12E-02	3.23E-03	2.36E-01	2.90E-01	0.13648	0.13909	-1.56301	-1.41107	-3.05302	-6.49958	-0.56292	-0.91948
21.00	4.02E-01	0.22811	0.568	Yg >= h_sol	5.17E-02	3.27E-03	2.38E-01	2.93E-01	0.13724	0.13986	-1.55889	-1.40903	-3.07022	-6.50643	-0.56587	-0.92170
22.00	4.02E-01	0.22927	0.571	Yg >= h_sol	5.23E-02	3.30E-03	2.41E-01	2.96E-01	0.13808	0.14070	-1.55457	-1.40692	-3.08900	-6.51408	-0.56908	-0.92414
23.00	4.02E-01	0.23033	0.573	Yg >= h_sol	5.28E-02	3.34E-03	2.43E-01	2.99E-01	0.13885	0.14148	-1.55077	-1.40507	-3.10622	-6.52124	-0.57204	-0.92638
24.00	4.02E-01	0.23140	0.575	Yg >= h_sol	5.34E-02	3.37E-03	2.45E-01	3.02E-01	0.13962	0.14225	-1.54711	-1.40332	-3.12345	-6.52853	-0.57499	-0.92862
25.00	4.42E-01	0.29199	0.660	Yg >= h_sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
26.00	4.42E-01	0.29199	0.660	Yg >= h_sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
27.00	4.42E-01	0.29199	0.660	Yg >= h_sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
28.00	4.42E-01	0.29199	0.660	Yg >= h_sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
29.00	4.42E-01	0.29199	0.660	Yg >= h_sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
30.00	4.42E-01	0.29199	0.660	Yg >= h_sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
31.00	4.42E-01	0.29199	0.660	Yg >= h sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
32.00	4.42E-01	0.29199	0.660	Yg >= h sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
33.00	4.42E-01	0.29199	0.660	Yg >= h_sol	7.60E-02			3.73E-01	0.17785		-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-
34.00	4.42E-01	0.29199	0.660	Yg >= h_sol	7.60E-02	4.78E-03	2.93E-01	3.73E-01	0.17785	0.18219	-1.43377	-1.24288	-3.36378	-6.16350	-0.61171	-0.90979
35.00	4.09E-01	0.23578	0.577	Yg >= h_sol	5.39E-02	3.40E-03	2.51E-01	3.08E-01	0.17763	0.16219	-1.64638	-1.41884	-3.17524	-6.61326	-0.58434	-0.94166
36.00	4.09E-01	0.23705	0.580	Yg >= h_sol	5.45E-02	3.44E-03	2.53E-01	3.11E-01	0.14109	0.14372	-1.64109	-1.41708	-3.17524	-6.62277	-0.58788	-0.94441
37.00	4.09E-01	0.23703	0.582	Yg >= h_sol	5.45E-02 5.52E-02	3.48E-03	2.56E-01	3.11E-01	0.14201	0.14464	-1.63603	-1.41706	-3.19592	-6.63246	-0.59143	-0.94717
38.00	4.09E-01	0.23961	0.585	_	5.52E-02 5.59E-02	3.52E-03	2.59E-01	3.18E-01	0.14292	0.14557	-1.63118	-1.41344	-3.23729	-6.64231	-0.59143	-0.94717
	4.09E-01	0.23961		Yg >= h_sol	5.65E-02			3.16E-01	0.14365	0.14649	-1.62654	-1.41391			-0.59497	-0.94995
39.00 40.00	4.10E-01 4.10E-01	0.24089	0.588	Yg >= h_sol	5.65E-02 5.72E-02	3.57E-03 3.61E-03	2.62E-01 2.65E-01	3.22E-01 3.26E-01	0.14477	0.14742	-1.62210	-1.41247	-3.25800 -3.27871	-6.65234 -6.66252	-0.59852	-0.95272
				Yg >= h_sol					1		-1.61816	-1.41114				-
41.00 42.00	4.10E-01 4.11E-01	0.24338	0.593	$Yg >= h_sol$ Yg >= h sol	5.78E-02 5.85E-02	3.65E-03 3.69E-03	2.67E-01 2.70E-01	3.29E-01 3.32E-01	0.14655 0.14748	0.14921	-1.61408	-1.41000	-3.29784 -3.31858	-6.67206 -6.68254	-0.60534 -0.60889	-0.95809 -0.96090
43.00	4.11E-01	0.24467	0.596	-	5.85E-02 5.92E-02	3.73E-03	2.70E-01 2.73E-01	3.32E-01	0.14748	0.15014	-1.61017	-1.40781	-3.33933	-6.69318	-0.61244	-0.96090
				Yg >= h_sol					1				1			1
44.00	4.11E-01	0.24727	0.601	Yg >= h_sol	5.99E-02	3.78E-03	2.76E-01	3.40E-01	0.14934	0.15202	-1.60644	-1.40685	-3.36008	-6.70396	-0.61599	-0.96652

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	iva SEZIONI MISTE to n(to) = 5.9 CARATTERISTICHE INERZIALI TRAVE SOLETTA															
Progressiva			(CARATTERIST	ICHE INER	ZIALI		.,,		TR	AVE		SOLI	ETTA	ARMA	TURA
х	A _{mista_0}	S _{mista_0}		Yg	Jc	J_{ϕ}	Ja	J	WA	W _B	Wc	W _D	W _{cs}	Wci	W _{φs}	W _{φi}
[m]	[m ²]	[m ³]	[m]	Controllo	[m ⁴]	[m ⁴]	[m ⁴]	[m ⁴]	[m ³]							
45.00	4.11E-01	0.24858	0.604	Yg >= h_sol	6.06E-02	3.82E-03	2.79E-01	3.43E-01	0.15028	0.15296	-1.60287	-1.40597	-3.38085	-6.71488	-0.61954	-0.96935
46.00	4.12E-01	0.24989	0.607	Yg >= h_sol	6.14E-02	3.87E-03	2.82E-01	3.47E-01	0.15122	0.15390	-1.59946	-1.40518	-3.40163	-6.72595	-0.62309	-0.97218
47.00	4.12E-01	0.25121	0.610	Yg >= h_sol	6.21E-02	3.91E-03	2.85E-01	3.51E-01	0.15216	0.15484	-1.59621	-1.40447	-3.42242	-6.73715	-0.62664	-0.97502
48.00	4.12E-01	0.25252	0.613	Yg >= h_sol	6.28E-02	3.96E-03	2.88E-01	3.54E-01	0.15310	0.15579	-1.59310	-1.40384	-3.44321	-6.74849	-0.63020	-0.97787
49.00	4.13E-01	0.25385	0.615	Yg >= h_sol	6.35E-02	4.00E-03	2.91E-01	3.58E-01	0.15404	0.15674	-1.59014	-1.40329	-3.46402	-6.75996	-0.63375	-0.98072
50.00	4.13E-01	0.25517	0.618	Yg >= h_sol	6.43E-02	4.05E-03	2.94E-01	3.62E-01	0.15499	0.15769	-1.58732	-1.40281	-3.48484	-6.77155	-0.63730	-0.98358
51.00	4.13E-01	0.25640	0.621	Yg >= h_sol	6.50E-02	4.09E-03	2.97E-01	3.66E-01	0.15586	0.15857	-1.58483	-1.40243	-3.50406	-6.78237	-0.64059	-0.98623
52.00	4.13E-01	0.25773	0.623	Yg >= h_sol	6.57E-02	4.14E-03	3.00E-01	3.69E-01	0.15681	0.15952	-1.58226	-1.40209	-3.52490	-6.79421	-0.64414	-0.98911
53.00	4.14E-01	0.25907	0.626	Yg >= h_sol	6.65E-02	4.18E-03	3.03E-01	3.73E-01	0.15777	0.16048	-1.57982	-1.40182	-3.54574	-6.80616	-0.64770	-0.99199
54.00	4.14E-01	0.26041	0.629	Yg >= h_sol	6.72E-02	4.23E-03	3.06E-01	3.77E-01	0.15872	0.16144	-1.57750	-1.40161	-3.56659	-6.81824	-0.65125	-0.99487
55.00	4.14E-01	0.26175	0.632	Yg >= h_sol	6.80E-02	4.28E-03	3.09E-01	3.81E-01	0.15968	0.16240	-1.57530	-1.40147	-3.58746	-6.83043	-0.65481	-0.99777
56.00	4.15E-01	0.26310	0.635	Yg >= h_sol	6.88E-02	4.33E-03	3.12E-01	3.85E-01	0.16064	0.16336	-1.57322	-1.40139	-3.60833	-6.84274	-0.65837	-1.00067
57.00	4.15E-01	0.26445	0.638	Yg >= h_sol	6.95E-02	4.38E-03	3.15E-01	3.89E-01	0.16160	0.16433	-1.57124	-1.40138	-3.62921	-6.85515	-0.66193	-1.00357
58.00	4.15E-01	0.26581	0.640	Yg >= h_sol	7.03E-02	4.43E-03	3.18E-01	3.93E-01	0.16256	0.16530	-1.56938	-1.40142	-3.65010	-6.86767	-0.66549	-1.00648
59.00	4.15E-01	0.26716	0.643	Yg >= h_sol	7.11E-02	4.47E-03	3.21E-01	3.97E-01	0.16353	0.16627	-1.56761	-1.40153	-3.67099	-6.88030	-0.66905	-1.00940
60.00	4.16E-01	0.26853	0.646	Yg >= h_sol	7.19E-02	4.52E-03	3.24E-01	4.01E-01	0.16449	0.16724	-1.56595	-1.40169	-3.69190	-6.89304	-0.67261	-1.01232
61.00	4.16E-01	0.26979	0.649	Yg >= h_sol	7.26E-02	4.57E-03	3.27E-01	4.05E-01	0.16539	0.16814	-1.56451	-1.40189	-3.71120	-6.90488	-0.67590	-1.01503
62.00	4.16E-01	0.27116	0.651	Yg >= h_sol	7.35E-02	4.62E-03	3.31E-01	4.09E-01	0.16636	0.16911	-1.56303	-1.40215	-3.73212	-6.91781	-0.67946	-1.01796
63.00	4.17E-01	0.27253	0.654	Yg >= h_sol	7.43E-02	4.67E-03	3.34E-01	4.13E-01	0.16733	0.17009	-1.56165	-1.40247	-3.75305	-6.93084	-0.68303	-1.02090
64.00	4.17E-01	0.27391	0.657	Yg >= h_sol	7.51E-02	4.72E-03	3.37E-01	4.17E-01	0.16831	0.17107	-1.56036	-1.40284	-3.77399	-6.94396	-0.68659	-1.02384
65.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
66.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
67.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
68.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
69.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
70.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
71.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
72.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
73.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
74.00	4.69E-01	0.37679	0.803	Yg >= h_sol	1.23E-01	7.72E-03	4.36E-01	5.67E-01	0.24039	0.24667	-1.44018	-1.27777	-4.19534	-6.69576	-0.75198	-1.02376
75.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
76.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
77.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
78.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
79.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
80.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
81.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
82.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
83.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
84.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
85.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
86.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
87.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
88.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
89.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
90.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
91.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	SEZIONI MISTE t ₀ n(t ₀) = 5.9 VA CARATTERISTICHE INERZIALI TRAVE SOLETTA															
Progressiva			(CARATTERIST	ICHE INER	ZIALI				TR	AVE		SOLI	ETTA	ARMA	TURA
х	A _{mista_0}	S _{mista_0}		Yg	Jc	J_{ϕ}	Ja	J	WA	W _B	Wc	W _D	W _{cs}	Wci	W _{φS}	W _{φi}
[m]	[m ²]	[m ³]	[m]	Controllo	[m ⁴]	[m ⁴]	[m ⁴]	[m ⁴]	[m ³]	[m ³]	[m ³]	[m ³]	[m ³]	[m ³]	[m ³]	[m ³]
92.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
93.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
94.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
95.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
96.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
97.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
98.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
99.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
100.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
101.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
102.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
103.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
104.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
105.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
106.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
107.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
108.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
109.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
110.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
111.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
112.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
113.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
114.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
115.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
116.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
117.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
118.00	4.32E-01	0.30786	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
119.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
120.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
121.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
122.00	4.32E-01	0.30786	0.712	Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
123.00	4.32E-01	0.30786	0.712	· -	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
124.00	4.32E-01	0.30786	0.712	$Yg >= h_sol$ Yg >= h sol	9.17E-02	5.76E-03	3.83E-01	4.80E-01	0.19621	0.20030	-1.53992	-1.36489	-4.01410	-6.93750	-0.72568	-1.03987
125.00	4.32E-01 4.92E-01	0.30786	0.712	Yg >= h_sol		9.39E-03		6.33E-01	0.19621	-	-1.36898	-1.23530	-4.01410	-6.57843	-0.76946	-1.03987
126.00	4.92E-01	0.42871	0.872		1.50E-01	9.39E-03	4.73E-01	6.33E-01	0.27646	0.28519	-1.36898	-1.23530	-4.31532	-6.57843	-0.76946	-1.01686
127.00	4.92E-01	0.42871		Yg >= h_sol			4.73E-01	6.33E-01	0.27646	0.28519	-1.36898			-6.57843	-0.76946	-1.01686
127.00	4.92E-01 4.92E-01	0.42871	0.872	Yg >= h_sol	1.50E-01	9.39E-03	4.73E-01 4.73E-01	6.33E-01	0.27646	0.28519	-1.36898	-1.23530 -1.23530	-4.31532 -4.31532		1	
		1	0.872	Yg >= h_sol	1.50E-01	9.39E-03				0.28519				-6.57843	-0.76946	-1.01686
129.00	4.92E-01	0.42871	0.872	Yg >= h_sol	1.50E-01	9.39E-03	4.73E-01	6.33E-01	0.27646		-1.36898	-1.23530	-4.31532 -4.31532	-6.57843 -6.57843	-0.76946 -0.76946	-1.01686
130.00	4.92E-01	0.42871	0.872	Yg >= h_sol	1.50E-01	9.39E-03	4.73E-01	6.33E-01	0.27646	0.28519	-1.36898	-1.23530				-1.01686
131.00	4.92E-01	0.42871	0.872	Yg >= h_sol	1.50E-01	9.39E-03	4.73E-01	6.33E-01	0.27646	0.28519	-1.36898	-1.23530	-4.31532	-6.57843	-0.76946	-1.01686
132.00	4.92E-01	0.42871	0.872	Yg >= h_sol	1.50E-01	9.39E-03	4.73E-01	6.33E-01	0.27646	0.28519	-1.36898	-1.23530	-4.31532	-6.57843	-0.76946	-1.01686
133.00	4.92E-01	0.42871	0.872	Yg >= h_sol	1.50E-01	9.39E-03	4.73E-01	6.33E-01	0.27646	0.28519	-1.36898	-1.23530	-4.31532	-6.57843	-0.76946	-1.01686
134.00	4.92E-01	0.42871	0.872	Yg >= h_sol	1.50E-01	9.39E-03	4.73E-01	6.33E-01	0.27646	0.28519	-1.36898	-1.23530	-4.31532	-6.57843	-0.76946	-1.01686
135.00	4.54E-01	0.34591	0.762	Yg >= h_sol	1.08E-01	6.79E-03	4.01E-01	5.16E-01	0.21519	0.21977	-1.42670	-1.28464	-4.03075	-6.64967	-0.72510	-1.00850
136.00	4.54E-01	0.34408	0.758	Yg >= h_sol	1.07E-01	6.72E-03	3.97E-01	5.11E-01	0.21393	0.21851	-1.42599	-1.28280	-4.00893	-6.63285	-0.72140	-1.00522
137.00	4.53E-01	0.34226	0.755	Yg >= h_sol	1.06E-01	6.64E-03	3.93E-01	5.06E-01	0.21268	0.21725	-1.42533	-1.28099	-3.98712	-6.61608	-0.71771	-1.00195
138.00	4.53E-01	0.34044	0.752	Yg >= h_sol	1.05E-01	6.57E-03	3.90E-01	5.01E-01	0.21143	0.21599	-1.42472	-1.27920	-3.96532	-6.59938	-0.71401	-0.99869

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Drogrossi: :						SEZIONI	MISTE t ₀	5.9								
Progressiva			C	CARATTERIST	TICHE INER	ZIALI				TR	AVE		SOL	ETTA	ARMA	TURA
Х	A _{mista_0}	S _{mista_0}		Yg	Jc	J_{ϕ}	Ja	J	WA	W _B	Wc	W _D	W _{cs}	Wci	W _{∳S}	$W_{\phi i}$
[m]	[m ²]	[m ³]	[m]	Controllo	[m ⁴]	[m ⁴]	[m ⁴]	[m ⁴]	[m ³]							
139.00	4.53E-01	0.33863	0.748	Yg >= h_sol	1.04E-01	6.50E-03	3.86E-01	4.96E-01	0.21019	0.21474	-1.42416	-1.27744	-3.94353	-6.58273	-0.71031	-0.99543
140.00	4.52E-01	0.33682	0.745	Yg >= h_sol	1.03E-01	6.43E-03	3.82E-01	4.91E-01	0.20894	0.21349	-1.42366	-1.27571	-3.92175	-6.56615	-0.70662	-0.99217
141.00	4.52E-01	0.33516	0.742	Yg >= h_sol	1.01E-01	6.37E-03	3.79E-01	4.86E-01	0.20780	0.21233	-1.42323	-1.27414	-3.90165	-6.55089	-0.70321	-0.98916
142.00	4.51E-01	0.33336	0.738	Yg >= h_sol	1.00E-01	6.30E-03	3.75E-01	4.82E-01	0.20656	0.21109	-1.42283	-1.27246	-3.87988	-6.53443	-0.69951	-0.98591
143.00	4.51E-01	0.33157	0.735	Yg >= h_sol	9.92E-02	6.23E-03	3.71E-01	4.77E-01	0.20533	0.20984	-1.42248	-1.27081	-3.85813	-6.51802	-0.69582	-0.98267
144.00	4.51E-01	0.32978	0.732	Yg >= h_sol	9.81E-02	6.16E-03	3.68E-01	4.72E-01	0.20409	0.20860	-1.42219	-1.26919	-3.83638	-6.50169	-0.69213	-0.97943
145.00	4.50E-01	0.32800	0.728	Yg >= h_sol	9.70E-02	6.09E-03	3.64E-01	4.67E-01	0.20286	0.20737	-1.42195	-1.26760	-3.81464	-6.48542	-0.68843	-0.97619
146.00	4.50E-01	0.32622	0.725	Yg >= h_sol	9.60E-02	6.02E-03	3.60E-01	4.62E-01	0.20164	0.20613	-1.42178	-1.26604	-3.79291	-6.46921	-0.68474	-0.97296
147.00	4.49E-01	0.32445	0.722	Yg >= h_sol	9.49E-02	5.96E-03	3.57E-01	4.58E-01	0.20041	0.20490	-1.42167	-1.26452	-3.77120	-6.45307	-0.68106	-0.96973
148.00	4.49E-01	0.32268	0.719	Yg >= h_sol	9.38E-02	5.89E-03	3.53E-01	4.53E-01	0.19919	0.20367	-1.42162	-1.26302	-3.74949	-6.43701	-0.67737	-0.96650
149.00	4.49E-01	0.32092	0.715	Yg >= h_sol	9.28E-02	5.82E-03	3.50E-01	4.48E-01	0.19797	0.20244	-1.42164	-1.26156	-3.72779	-6.42101	-0.67368	-0.96328
150.00	4.48E-01	0.31916	0.712	Yg >= h_sol	9.17E-02	5.76E-03	3.46E-01	4.43E-01	0.19676	0.20122	-1.42172	-1.26014	-3.70610	-6.40508	-0.66999	-0.96007
151.00	4.48E-01	0.31754	0.709	Yg >= h_sol	9.07E-02	5.70E-03	3.43E-01	4.39E-01	0.19564	0.20009	-1.42186	-1.25885	-3.68609	-6.39045	-0.66659	-0.95710
152.00	4.48E-01	0.31580	0.706	Yg >= h_sol	8.97E-02	5.63E-03	3.39E-01	4.35E-01	0.19442	0.19887	-1.42208	-1.25750	-3.66442	-6.37466	-0.66291	-0.95390
153.00	4.47E-01	0.31405	0.702	Yg >= h_sol	8.87E-02	5.57E-03	3.36E-01	4.30E-01	0.19322	0.19766	-1.42237	-1.25618	-3.64275	-6.35896	-0.65922	-0.95070
154.00	4.47E-01	0.31232	0.699	Yg >= h_sol	8.76E-02	5.50E-03	3.32E-01	4.25E-01	0.19201	0.19644	-1.42274	-1.25489	-3.62110	-6.34333	-0.65554	-0.94750
155.00	4.46E-01	0.31058	0.696	Yg >= h_sol	8.66E-02	5.44E-03	3.29E-01	4.21E-01	0.19081	0.19523	-1.42318	-1.25365	-3.59946	-6.32777	-0.65186	-0.94431
156.00	4.46E-01	0.30886	0.693	Yg >= h_sol	8.56E-02	5.38E-03	3.25E-01	4.16E-01	0.18961	0.19403	-1.42371	-1.25245	-3.57783	-6.31230	-0.64818	-0.94112
157.00	4.46E-01	0.30713	0.689	Yg >= h_sol	8.46E-02	5.32E-03	3.22E-01	4.12E-01	0.18841	0.19282	-1.42431	-1.25128	-3.55621	-6.29691	-0.64450	-0.93794
158.00	4.45E-01	0.30542	0.686	Yg >= h_sol	8.36E-02	5.25E-03	3.19E-01	4.08E-01	0.18722	0.19162	-1.42500	-1.25016	-3.53461	-6.28161	-0.64082	-0.93476
159.00	4.45E-01	0.30370	0.683	Yg >= h_sol	8.26E-02	5.19E-03	3.15E-01	4.03E-01	0.18603	0.19042	-1.42578	-1.24908	-3.51301	-6.26639	-0.63714	-0.93159
160.00	4.44E-01	0.30200	0.680	Yg >= h_sol	8.17E-02	5.13E-03	3.12E-01	3.99E-01	0.18484	0.18922	-1.42664	-1.24805	-3.49142	-6.25125	-0.63347	-0.92843
161.00	4.44E-01	0.30043	0.677	Yg >= h_sol	8.08E-02	5.08E-03	3.09E-01	3.95E-01	0.18374	0.18812	-1.42752	-1.24713	-3.47150	-6.23736	-0.63007	-0.92551
162.00	4.44E-01	0.29873	0.673	Yg >= h_sol	7.98E-02	5.02E-03	3.06E-01	3.90E-01	0.18256	0.18693	-1.42857	-1.24619	-3.44994	-6.22240	-0.62640	-0.92235
163.00	4.43E-01	0.29704	0.670	Yg >= h_sol	7.88E-02	4.96E-03	3.02E-01	3.86E-01	0.18138	0.18574	-1.42972	-1.24529	-3.42838	-6.20753	-0.62273	-0.91920
164.00	4.43E-01	0.29535	0.667	Yg >= h_sol	7.79E-02	4.90E-03	2.99E-01	3.82E-01	0.18020	0.18456	-1.43096	-1.24443	-3.40684	-6.19276	-0.61905	-0.91606
165.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
166.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
167.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
168.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
169.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
170.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
171.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
172.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
173.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
174.00	4.16E-01	0.24665	0.594	Yg >= h_sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491
175.00	4.16E-01	0.24665	0.594	Yg >= h sol	5.79E-02	3.65E-03	2.56E-01	3.18E-01	0.14665	0.14941	-1.56114	-1.36058	-3.18482	-6.43996	-0.58457	-0.92491

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.2 CLASSIFICAZIONE DELLE SEZIONI

Nel caso in esame si analizza l'impalcato d'acciaio utilizzando l'analisi elastica, andando a verificare la resistenza delle sezioni trasversali e verificando i fenomeni di imbozzamento per effetto di instabilità locali. Le sezioni trasversali degli elementi strutturali si classificano in funzione della loro capacità rotazionale C₀. Si distinguono le seguenti classi di sezioni:

Classe1: quando la sezione è in grado di sviluppare una cerniera plastica avente la capacità rotazionale richiesta per l'analisi strutturale condotta con il metodo plastico di cui al \$4.2.3.2 senza subire riduzioni della resistenza. Possono generalmente classificarsi come tali le sezioni con capacità rotazionale $C\theta < 3$;

Classe2: la sezione può sviluppare il proprio momento resistente elastico, ma ha una capacità rotazionale limitata. Possono generalmente classificarsi come tali le sezioni con capacità rotazionale CJ ³ 1,5;

Classe3: sono quelle sezioni trasversali dove la fibra d'acciaio estrema compressa può raggiungere la tensione di snervamento, ma l'instabilità locale può impedire il raggiungimento del momento resistente plastico;

Classe4: quando, per determinarne la resistenza flettente, tagliante o normale, è necessario tener conto degli effetti dell'instabilità locale in fase elastica nelle parti compresse che compongono la sezione. In tal caso nel calcolo della resistenza la sezione geometrica effettiva può sostituirsi con una sezione efficace.

La definizione delle classi viene fornita dalla NTC2018 e nel caso di una sezione composta, la classificazione è in funzione della classe più sfavorevole relativa alle varie parti che la compongono (piattabanda superiore, inferiore e pannello d'anima). Questa classificazione delle sezioni trasversali dipende dallo stato tensioanle e dalla proporzione di ciascuno degli elementi compressi.

I rapporti di snellezza delle varie lamiere che compongono la sezione trasversale vengono confrontati con i valori limite suggeriti nelle tabelle tab. 4.2.III e tab. 4.2.IV. Si riporta di seguito la classificazione per ciascuna porziona analizzata.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

					STA	TO TEN	SIONAL	E				STAT	O TENS	IONA	LE	
Progressiva		GEOMETRIA				2° FA							3° FAS			
J		Anima		TRA	AVE					TRA	AVE					
х	h _{anima}	hanima + irridimento	tw	σa	σD	Ψ	c/t LIM	c/t	CLASSE	σa	σD	Ψ	c/t LIM	c/t	CLASSE	CLASSE
[m]	[mm]	[mm]	[mm]	(N/mm ²)	(N/mm ²)					(N/mm ²)	(N/mm ²)					
0.00	2,130	710	22	11.3	8.3	0.00	51	32	CLASSE 3	54.2	-56.8	-1.0	106	32	CLASSE 3	CLASSE 3
1.00	2,130	710	22	35.3	-7.7	-4.61	607	32	CLASSE 3	76.9	-72.4	-0.9	95	32	CLASSE 3	CLASSE 3
2.00	2,130	710	22	58.4	-22.3	-2.62	295	32	CLASSE 3	98.5	-86.6	-0.9	90	32	CLASSE 3	CLASSE 3
3.00	2,130	710	22	79.3	-35.6	-2.23	243	32	CLASSE 3	117.6	-99.5	-0.8	87	32	CLASSE 3	CLASSE 3
4.00	2,130	710	22	98.2	-47.6	-2.06	222	32	CLASSE 3	134.5	-110.9	-0.8	86	32	CLASSE 3	CLASSE 3
5.00	2,130	710	22	115.2	-58.2	-1.98	211	32	CLASSE 3	149.4	-121.0	-0.8	85	32	CLASSE 3	CLASSE 3
6.00	2,130	710	22	130.2	-67.4	-1.93	205	32	CLASSE 3	162.2	-129.5	-0.8	84	32	CLASSE 3	CLASSE 3
7.00	2,130	710	22	142.7	-75.1	-1.90	202	32	CLASSE 3	172.3	-136.5	-0.8	84	32	CLASSE 3	CLASSE 3
8.00	2,140	713	22	156.1	-99.0	-1.58	163	32	CLASSE 3	181.9	-161.4	-0.9	91	32	CLASSE 3	CLASSE 3
9.00	2,151	717	22	164.1	-104.2	-1.57	163	33	CLASSE 3	186.7	-165.7	-0.9	91	33	CLASSE 3	CLASSE 3
10.00	2,162	721	22	170.0	-107.7	-1.58	163	33	CLASSE 3	189.4	-168.3	-0.9	91	33	CLASSE 3	CLASSE 3
11.00	2,173	724	22	174.0	-109.6	-1.59	165	33	CLASSE 3	189.9	-169.2	-0.9	91	33	CLASSE 3	CLASSE 3
12.00	2,184	728	22	175.7	-109.7	-1.60	166	33	CLASSE 3	188.0	-168.3	-0.9	91	33	CLASSE 3	CLASSE 3
13.00	2,196	732	22	175.5	-108.2	-1.62	169	33	CLASSE 3	184.1	-165.7	-0.9	92	33	CLASSE 3	CLASSE 3
14.00	2,207	736	22	173.8	-105.2	-1.65	172	33	CLASSE 3	178.5	-161.6	-0.9	92	33	CLASSE 3	CLASSE 3
15.00	2,218	739	22	170.4	-100.8	-1.69	177	34	CLASSE 3	171.1	-156.0	-0.9	93	34	CLASSE 3	CLASSE 3
16.00	2,229	743	22	165.4	-94.8	-1.74	183	34	CLASSE 3	162.0	-148.8	-0.9	93	34	CLASSE 3	CLASSE 3
17.00	2,240	747	22	158.3	-87.2	-1.81	191	34	CLASSE 3	150.7	-140.0	-0.9	94	34	CLASSE 3	CLASSE 3
18.00	2,251	750	22	149.6	-78.3	-1.91	203	34	CLASSE 3	137.6	-129.8	-0.9	95	34	CLASSE 3	CLASSE 3
19.00	2,262	754	22	139.4	-67.9	-2.05	220	34	CLASSE 3	122.9	-118.1	-1.0	97	34	CLASSE 3	CLASSE 3
20.00	2,273	758	22	127.8	-56.3	-2.27	248	34	CLASSE 3	106.7	-105.1	-1.0	99	34	CLASSE 3	CLASSE 3
21.00	2,284	761	22	114.8	-43.3	-2.65	300	35	CLASSE 3	89.0	-90.7	-1.0	103	35	CLASSE 3	CLASSE 3
22.00	2,296	765	22	100.0	-28.8	-3.47	420	35	CLASSE 3	69.3	-74.7	-1.1	109	35	CLASSE 3	CLASSE 3
23.00	2,307	769	22	83.8 -82.2	-13.1 19.0	-6.40 -0.23	944	35	CLASSE 3	48.1	-57.5	-1.2	121	35	CLASSE 3	CLASSE 3
24.00	2,318	773 770	30	-74.6	29.0	-0.23	58 63	35 26	CLASSE 3	-158.0 -136.9	-47.8 -19.8	0.3	44	35 26	CLASSE 3	CLASSE 3
26.00	2,310	770	30	-74.0	42.8	-0.50	68	26	CLASSE 3	-150.9	-19.6	0.0	51	26	CLASSE 3	CLASSE 3
27.00	2,310	770	30	-98.7	58.6	-0.59	72	26	CLASSE 3	-171.3	18.1	-9.5	1622	26	CLASSE 3	CLASSE 3
28.00	2,310	770	30	-113.4	76.1	-0.67	76	26	CLASSE 3	-191.4	40.0	-4.8	639	26	CLASSE 3	CLASSE 3
29.00	2,310	770	30	-129.9	95.4	-0.73	80	26	CLASSE 3	-213.4	63.7	-3.3	401	26	CLASSE 3	CLASSE 3
30.00	2,310	770	30	-148.0	116.3	-0.79	83	26	CLASSE 3	-237.3	89.3	-2.7	301	26	CLASSE 3	CLASSE 3
31.00	2,310	770	30	-126.0	92.9	-0.74	80	26	CLASSE 3	-212.1	63.3	-3.4	402	26	CLASSE 3	CLASSE 3
32.00	2,310	770	30	-106.4	71.7	-0.67	76	26	CLASSE 3	-189.4	39.7	-4.8	636	26	CLASSE 3	CLASSE 3
33.00	2,310	770	30	-89.2	52.9	-0.59	72	26	CLASSE 3	-169.3	18.5	-9.1	1547	26	CLASSE 3	CLASSE 3
34.00	2,310	770	30	-76.3	37.9	-0.50	68	26	CLASSE 3	-153.6	1.3	####	67295	26	CLASSE 3	CLASSE 3
35.00	2,330	777	22	-80.5	28.8	-0.36	62	35	CLASSE 3	-172.8	-20.9	0.1	48	35	CLASSE 3	CLASSE 3
36.00	2,343	781	22	-67.9	13.6	-0.20	57	36	CLASSE 3	-156.9	-38.2	0.2	46	36	CLASSE 3	CLASSE 3
37.00	2,356	785	22	-58.4	1.4	-0.02	52	36	CLASSE 3	-144.3	-52.5	0.4	43	36	CLASSE 3	CLASSE 3
38.00	2,369	790	22	72.8	-5.1	-14.33	2928	36	CLASSE 3	33.0	-46.6	-1.4	144	36	CLASSE 3	CLASSE 3
39.00	2,382	794	22	85.2	-14.3	-5.95	855	36	CLASSE 3	46.7	-56.1	-1.2	122	36	CLASSE 3	CLASSE 3
40.00	2,395	798	22	96.5	-22.4	-4.32	557	36	CLASSE 3	59.2	-64.4	-1.1	110	36	CLASSE 3	CLASSE 3
41.00	2,407	802	22	106.6	-29.1	-3.66	450	36	CLASSE 3	70.2	-71.4	-1.0	103	36	CLASSE 3	CLASSE 3
42.00	2,420	807	22	114.9	-34.6	-3.32	398	37	CLASSE 3	79.3	-77.0	-1.0	98	37	CLASSE 3	CLASSE 3
43.00	2,433	811	22	121.8	-38.8	-3.14	370	37	CLASSE 3	86.8	-81.4	-0.9	95	37	CLASSE 3	CLASSE 3

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

		CEOMETRIA			STA	TO TEN	SIONAL	E				STAT	O TENS	IONA	LE	
Progressiva		GEOMETRIA				2° FA	SE						3° FAS	E		
		Anima		TRA	AVE					TRA	AVE					
х	h _{anima}	hanima + irridimento	tw	σa	σ _D	Ψ	C/t LIM	c/t	CLASSE	σa	σ _D	Ψ	C/t LIM	c/t	CLASSE	CLASSE
[m]	[mm]	[mm]	[mm]	(N/mm ²)	(N/mm ²)					(N/mm ²)	(N/mm ²)					
44.00	2,446	815	22	127.4	-41.9	-3.04	355	37	CLASSE 3	92.9	-84.6	-0.9	92	37	CLASSE 3	CLASSE 3
45.00	2,459	820	22	131.6	-43.9	-3.00	349	37	CLASSE 3	97.4	-86.6	-0.9	91	37	CLASSE 3	CLASSE 3
46.00	2,472	824	22	134.6	-44.7	-3.01	351	37	CLASSE 3	100.5	-87.4	-0.9	89	37	CLASSE 3	CLASSE 3
47.00	2,485	828	22	135.9	-44.3	-3.07	359	38	CLASSE 3	101.8	-86.9	-0.9	88	38	CLASSE 3	CLASSE 3
48.00	2,498	833	22	135.9	-42.9	-3.17	375	38	CLASSE 3	101.7	-85.4	-0.8	87	38	CLASSE 3	CLASSE 3
49.00	2,511	837	22	134.6	-40.4	-3.34	399	38	CLASSE 3	100.2	-82.8	-0.8	86	38	CLASSE 3	CLASSE 3
50.00	2,524	841	22	132.1	-36.8	-3.59	438	38	CLASSE 3	97.6	-79.1	-0.8	85	38	CLASSE 3	CLASSE 3
51.00	2,536	845	22	128.5	-32.3	-3.98	501	38	CLASSE 3	93.6	-74.4	-0.8	84	38	CLASSE 3	CLASSE 3
52.00	2,549	850	22	123.2	-26.6	-4.64	612	39	CLASSE 3	87.9	-68.5	-0.8	83	39	CLASSE 3	CLASSE 3
53.00	2,562	854	22	116.7	-19.9	-5.86	838	39	CLASSE 3	80.7	-61.6	-0.8	82	39	CLASSE 3	CLASSE 3
54.00	2,575	858	22	109.1	-12.3	-8.86	1481	39	CLASSE 3	72.3	-53.7	-0.7	80	39	CLASSE 3	CLASSE 3
55.00	2,588	863	22	100.3	-3.8	-26.50	7142	39	CLASSE 3	62.6	-44.8	-0.7	79	39	CLASSE 3	CLASSE 3
56.00	2,601	867	22	-97.5	35.1	-0.36	62	39	CLASSE 3	-163.9	-28.9	0.2	47	39	CLASSE 3	CLASSE 3
57.00	2,614	871	22	-107.6	47.5	-0.44	65	40	CLASSE 3	-174.9	-15.6	0.1	49	40	CLASSE 3	CLASSE 3
58.00	2,627	876	22	-118.5	60.8	-0.51	68	40	CLASSE 3	-187.3	-0.8	0.0	51	40	CLASSE 3	CLASSE 3
59.00	2,640	880	22	-129.9	75.0	-0.58	71	40	CLASSE 3	-200.5	14.9	-13.4	2667	40	CLASSE 3	CLASSE 3
60.00	2,653	884	22	-141.9	89.9	-0.63	74	40	CLASSE 3	-214.5	31.6	-6.8	1025	40	CLASSE 3	CLASSE 3
61.00	2,665	888	22	-154.6	105.8	-0.68	77	40	CLASSE 3	-229.4	49.3	-4.7	616	40	CLASSE 3	CLASSE 3
62.00	2,678	893	22	-168.2	122.7	-0.73	80	41	CLASSE 3	-245.2	68.0	-3.6	441	41	CLASSE 3	CLASSE 3
63.00	2,691	897	22	-182.5	140.4	-0.77	82	41	CLASSE 3	-261.9	87.8	-3.0	347	41	CLASSE 3	CLASSE 3
64.00	2,704	901	22	-197.7	159.3	-0.81	85	41	CLASSE 3	-279.7	108.8	-2.6	289	41	CLASSE 3	CLASSE 3
65.00	2,690	897	30	-150.4	128.7	-0.86	88	30	CLASSE 3	-212.7	94.0	-2.3	248	30	CLASSE 3	CLASSE 3
66.00	2,690	897	30	-163.6	144.5	-0.88	90	30	CLASSE 3	-228.1	111.7	-2.0	219	30	CLASSE 3	CLASSE 3
67.00	2,690	897	30	-178.2	161.8	-0.91	92	30	CLASSE 3	-245.0	130.9	-1.9	198	30	CLASSE 3	CLASSE 3
68.00	2,690	897	30	-194.0	180.3	-0.93	94	30	CLASSE 3	-263.3	151.5	-1.7	182	30	CLASSE 3	CLASSE 3
69.00	2,690	897	30	-211.1	200.1	-0.95	96	30	CLASSE 3	-282.9	173.5	-1.6	169	30	CLASSE 3	CLASSE 3
70.00	2,690	897	30	-229.4	221.2	-0.96	97	30	CLASSE 3	-303.9	196.9	-1.5	159	30	CLASSE 3	CLASSE 3
71.00	2,690	897	30	-204.5	193.1	-0.94	95	30	CLASSE 3	-275.8	166.2	-1.7	173	30	CLASSE 3	CLASSE 3
72.00	2,690	897	30	-181.4	166.9	-0.92	93	30	CLASSE 3	-249.7	137.3	-1.8	192	30	CLASSE 3	CLASSE 3
73.00	2,690	897	30	-159.5	141.9	-0.89	91	30	CLASSE 3	-224.9	109.8	-2.0	220	30	CLASSE 3	CLASSE 3
74.00	2,690	897	30	-138.7	118.1	-0.85	88	30	CLASSE 3	-201.3	83.6	-2.4	267	30	CLASSE 3	CLASSE 3
75.00	2,710	903	22	-144.2	114.9	-0.80	84	41	CLASSE 3	-217.0	68.9	-3.2	372	41	CLASSE 3	CLASSE 3
76.00	2,710	903	22	-122.2	89.2	-0.73	80	41	CLASSE 3	-191.8	40.6	-4.7	627	41	CLASSE 3	CLASSE 3
77.00	2,710	903	22	-104.0	66.9	-0.64	75	41	CLASSE 3	-170.5	15.8	-10.8	1951	41	CLASSE 3	CLASSE 3
78.00	2,710	903	22	-87.1	45.9	-0.53	69	41	CLASSE 3	-150.8	-7.4	0.0	50	41	CLASSE 3	CLASSE 3
79.00	2,710	903	22	-71.4	26.3	-0.37	62	41	CLASSE 3	-132.3	-29.3	0.2	46	41	CLASSE 3	CLASSE 3
80.00	2,710	903	22	-56.8	7.9	-0.14	55	41	CLASSE 3	-115.1	-49.8	0.4	42	41	CLASSE 3	CLASSE 3
81.00	2,710	903	22	71.1	-13.7	-5.18	710	41	CLASSE 3	41.7	-54.0	-1.3	132	41	CLASSE 3	CLASSE 3
82.00	2,710	903	22	86.1	-28.2	-3.05	357	41	CLASSE 3	58.4	-69.1	-1.2	120	41	CLASSE 3	CLASSE 3
83.00	2,710	903	22	100.9	-42.0	-2.40	266	41	CLASSE 3	74.8	-83.5	-1.1	113	41	CLASSE 3	CLASSE 3
84.00	2,710	903	22	115.2	-55.1	-2.09	225	41	CLASSE 3	90.7	-97.1	-1.1	108	41	CLASSE 3	CLASSE 3
85.00	2,710	903	22	129.0	-67.4	-1.91	203	41	CLASSE 3	105.8	-109.9	-1.0	105	41	CLASSE 3	CLASSE 3
86.00	2,710	903	22	142.0	-78.9	-1.80	190	41	CLASSE 3	120.1	-121.8	-1.0	102	41	CLASSE 3	CLASSE 3
87.00	2,710	903	22	154.0	-89.5	-1.72	180	41	CLASSE 3	133.2	-132.8	-1.0	100	41	CLASSE 3	CLASSE 3
88.00	2,710	903	22	165.1	-99.2	-1.66	173	41	CLASSE 3	145.3	-142.9	-1.0	99	41	CLASSE 3	CLASSE 3
89.00	2,710	903	22	175.4	-108.2	-1.62	168	41	CLASSE 3	156.4	-152.2	-1.0	98	41	CLASSE 3	CLASSE 3

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

		OFOMETRIA			STA	TO TEN	SIONAL	E		STATO TENSIONALE								
Progressiva		GEOMETRIA				2° FA	SE						3° FAS	E				
		Anima		TRA	AVE					TRA	AVE							
х	h _{anima}	hanima + irridimento	tw	σa	σ_{D}	Ψ	C/t LIM	c/t	CLASSE	σΑ	σD	Ψ	C/t LIM	c/t	CLASSE	CLASSE		
[m]	[mm]	[mm]	[mm]	(N/mm ²)	(N/mm ²)					(N/mm ²)	(N/mm ²)							
90.00	2,710	903	22	184.8	-116.4	-1.59	164	41	CLASSE 3	166.7	-160.7	-1.0	97	41	CLASSE 3	CLASSE 3		
91.00	2,710	903	22	193.4	-123.8	-1.56	162	41	CLASSE 3	176.3	-168.4	-1.0	96	41	CLASSE 3	CLASSE 3		
92.00	2,710	903	22	201.0	-130.2	-1.54	159	41	CLASSE 3	184.7	-175.1	-0.9	96	41	CLASSE 3	CLASSE 3		
93.00	2,710	903	22	207.6	-135.8	-1.53	158	41	CLASSE 3	192.1	-181.0	-0.9	95	41	CLASSE 3	CLASSE 3		
94.00	2,710	903	22	213.4	-140.7	-1.52	156	41	CLASSE 3	198.5	-186.1	-0.9	95	41	CLASSE 3	CLASSE 3		
95.00	2,710	903	22	218.3	-144.7	-1.51	155	41	CLASSE 3	203.9	-190.3	-0.9	94	41	CLASSE 3	CLASSE 3		
96.00	2,710	903	22	222.4	-147.9	-1.50	155	41	CLASSE 3	208.3	-193.6	-0.9	94	41	CLASSE 3	CLASSE 3		
97.00	2,710	903	22	225.4	-150.2	-1.50	155	41	CLASSE 3	211.6	-196.0	-0.9	94	41	CLASSE 3	CLASSE 3		
98.00	2,710	903	22	227.4	-151.6	-1.50	154	41	CLASSE 3	213.8	-197.5	-0.9	94	41	CLASSE 3	CLASSE 3		
99.00	2,710	903	22	228.6	-152.3	-1.50	155	41	CLASSE 3	214.9	-198.2	-0.9	93	41	CLASSE 3	CLASSE 3		
100.00	2,710	903	22	228.9	-152.2	-1.50	155	41	CLASSE 3	215.1	-198.0	-0.9	93	41	CLASSE 3	CLASSE 3		
101.00	2,710	903	22	228.4	-151.2	-1.51	156	41	CLASSE 3	214.4	-196.9	-0.9	93	41	CLASSE 3	CLASSE 3		
102.00	2,710	903	22	226.7	-149.3	-1.52	157	41	CLASSE 3	212.4	-194.9	-0.9	93	41	CLASSE 3	CLASSE 3		
103.00	2,710	903	22	224.1	-146.6	-1.53	158	41	CLASSE 3	209.4	-192.1	-0.9	93	41	CLASSE 3	CLASSE 3		
104.00	2,710	903	22	220.6	-143.1	-1.54	159	41	CLASSE 3	205.3	-188.4	-0.9	93	41	CLASSE 3	CLASSE 3		
105.00	2,710	903	22	216.3	-138.8	-1.56	161	41	CLASSE 3	200.2	-183.8	-0.9	93	41	CLASSE 3	CLASSE 3		
106.00	2,710	903	22	211.1	-133.7	-1.58	164	41	CLASSE 3	194.3	-178.4	-0.9	93	41	CLASSE 3	CLASSE 3		
107.00	2,710	903	22	204.8	-127.6	-1.60	166	41	CLASSE 3	187.1	-172.0	-0.9	93	41	CLASSE 3	CLASSE 3		
108.00	2,710	903	22	197.6	-120.7	-1.64	170	41	CLASSE 3	178.8	-164.8	-0.9	93	41	CLASSE 3	CLASSE 3		
109.00	2,710	903	22	189.4	-113.1	-1.68	175	41	CLASSE 3	169.5	-156.7	-0.9	94	41	CLASSE 3	CLASSE 3		
110.00	2,710	903	22	180.4	-104.6	-1.72	181	41	CLASSE 3	159.3	-147.8	-0.9	94	41	CLASSE 3	CLASSE 3		

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.3 VERIFICHE 1^A FASE

In tale fase si riportano le tensioni relative alle travi principali al lembo superiore ed inferiore. La soletta di calcestruzzo in questa fase è presente esclusivamente come carico.

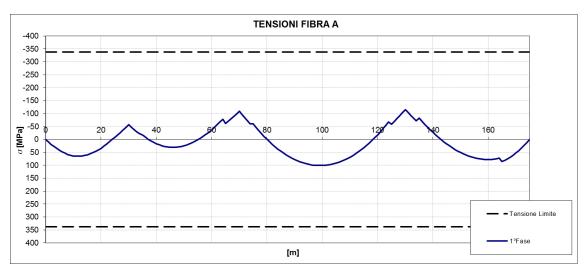


Figura 19 Peso travi + Peso Soletta (Tensioni normali)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

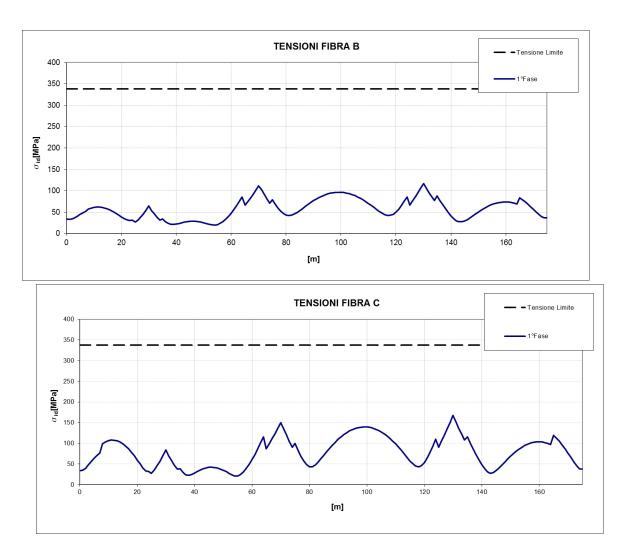
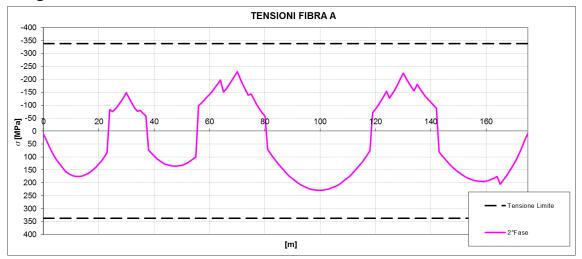


Figura 20 Peso travi + Peso Soletta (Tensioni ideali)

Le tensioni indotte sugli elementi strutturali sono inferiori ai rispettivi valori limite.



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.4 VERIFICHE 2^A FASE (TEMPO T₀)

In tale fase si riportano le tensioni relative alle travi principali al lembo superiore ed inferiore con riferimento ai carichi di 2a fase. Si riportano per le travi principali le tensioni normali, tangenziali ed ideali. Alle tensioni, riportate nei diagrammi seguenti, è stato già sommato lo stato tensionale indotto dai carichi di 1a fase.



Figura 21 Inviluppo tensioni normali

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO



Figura 22 Inviluppo tensioni ideali

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.5 VERIFICHE 2^A FASE (TEMPO T_∞)

In tale fase si riportano le tensioni relative alle travi principali al lembo superiore ed inferiore. Si riportano per le travi principali le tensioni normali ed ideali.

Alle tensioni, riportate nei diagrammi seguenti, è stato già sommato lo stato tensionale indotto dai carichi.

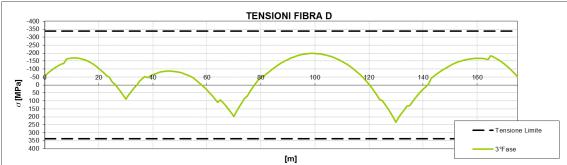


Figura 23 Inviluppo tensioni normali

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

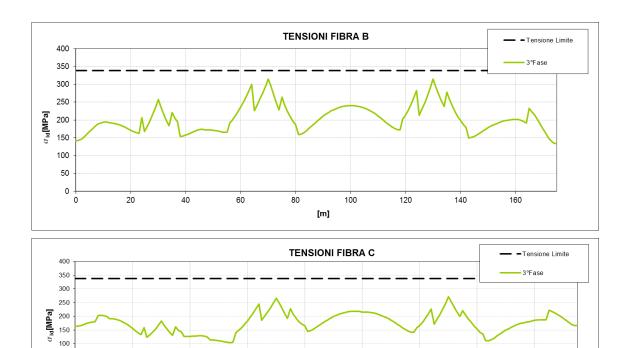


Figura 24 Inviluppo tensioni ideali

[m]

40

MANDATARIA

140

160

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.6 VERIFICHE DI INSTABILITÀ

Al fine di evitare fenomeni di instabilità nelle strutture principali di acciaio sono stati disposti opportuni irrigidimenti trasversali e longitudinali. Questi suddividono l'anima in campi di passo costante ed altezza variabile. Si riporta di seguito la verifica nel campo maggiormente sollecitato. Per completezza si riporta in forma tabellare la verifica di tutti i pannelli dell'impalcato.

Sezione progressiva 70m

In questa sezione è presente un irrigidimento longitudinale che divide la trave in tre campi di altezza uguale. La tensioni utilizzate nella verifica sono:

σ_{sup} = 188.0 Mpa (compr.)	tensione all'estradosso della trave
σ_{inf} = -293.1 Mpa (traz.)	tensione all'intradosso della trave

$$\tau$$
 = 61.1 Mpa tensione tangenziale

$$\sigma_1$$
 = -293.1 Mpa (compr.) tensione all'estradosso del campo σ_2 = 132.8 (compr.) tensione all'intradosso del campo

$$\sigma_{1,id}$$
 = 311.7 Mpa massima tensione ideale nel campo

$$\alpha$$
 = a/h = 5.58 rapporto di forma lunghezza/altezza

$$\psi = \sigma_2 / \sigma_1 = 0.45$$
 rapporto di tensione

$$k_{\sigma}$$
 = 5.41 coefficiente di imbozzamento

$$\sigma_{cr,o}$$
 = 208.43Mpa tensione di riferimento

$$\sigma_{cr} = k_{\sigma} \times \sigma_{cr,o} = 1127.46 \text{ Mpa}$$
 tensione critica

$$\sigma_{cr,id}$$
 = 1141.43 Mpa tensione critica ideale

essendo σ cr > 0.8·fd (258.2 Mpa) per la verifica si utilizza una tensione critica ridotta con un valore pari a

$$\sigma_{cr,red}$$
 = 319.6 Mpa tensione critica ideale ridotta

La verifica risulta soddisfatta.

 $\sigma_{cr,red}$ / $\sigma_{1,id}$ = 1.03 $\geq \beta \nu$ = 1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

х	а	h	h _{anima}	tw	σ 1	σ2	τ	σid	Ψ	α		kσ	k T	σ _{cr,0}	σcr	τ _{cr}	σ cr,id	0.8f _d	σ _{cr,red}	VERIFICA
[m]	[m]	[m]	[mm]	[mm]	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)						(N/mm ²)						
0.00	5	1.07	2130	22	-55.3	-1.6	61.2	119.5	0.03	4.69	Ι	7.45	4.42	79.46	591.59	350.97	564.69	258.2	309.7	2.59
1.00	5	1.07	2130	22	-70.3	1.9	60.0	125.6	-0.03	4.69	П	7.81	4.42	79.46	620.79	350.97	573.49	258.2	310.1	2.47
2.00	5	1.07	2130	22	-84.1	5.5	57.4	130.3	-0.07	4.69	П	8.09	4.42	79.46	642.67	350.97	585.45	258.2	310.6	2.38
3.00	5	1.07	2130	22	-96.5	8.6	54.3	134.7	-0.09	4.69	П	8.27	4.42	79.46	657.30	350.97	598.24	258.2	311.1	2.31
4.00	5	1.07	2130	22	-107.6	11.3	51.1	139.3	-0.10	4.69	П	8.40	4.42	79.46	667.58	350.97	610.95	258.2	311.6	2.24
5.00	5	1.07	2130	22	-117.3	13.6	48.0	143.7	-0.12	4.69	Ш	8.50	4.42	79.46	675.29	350.97	623.00	258.2	312.0	2.17
6.00	5	1.07	2130	22	-125.6	15.7	43.6	146.5	-0.12	4.69	П	8.57	4.42	79.46	681.15	350.97	635.64	258.2	312.5	2.13
7.00	5	1.07	2130	22	-132.3	17.2	40.7	149.9	-0.13	4.69	Ш	8.62	4.42	79.46	684.61	350.97	644.56	258.2	312.8	2.09
8.00	5	1.07	2140	22	-158.2	8.7	37.7	171.2	-0.05	4.67	П	8.01	4.42	78.71	630.58	347.81	612.56	258.2	311.7	1.82
9.00	5	1.08	2151	22	-162.5	8.9	34.7	173.3	-0.05	4.65	II	8.01	4.42	77.91	624.02	344.38	609.02	258.2	311.5	1.80
10.00	5	1.08	2162	22	-165.1	8.9	31.9	174.1	-0.05	4.63	Ш	8.00	4.42	77.12	617.20	341.00	604.72	258.2	311.4	1.79
11.00	5	1.09	2173	22	-166.0	8.8	28.4	173.1	-0.05	4.60	II	7.99	4.42	76.34	610.31	337.67	600.34	258.2	311.2	1.80
12.00	5	1.09	2184	22	-165.1	8.3	22.8	169.8	-0.05	4.58	II 	7.98	4.42	75.58	602.81	334.39	596.20	258.2	311.0	1.83
13.00	5	1.10	2196	22	-162.6	7.7	26.1	168.8	-0.05	4.55	11	7.95	4.43	74.75	594.59	330.87	586.19	258.2	310.6	1.84
14.00	5	1.10	2207	22	-158.6	7.0	29.4	166.6	-0.04	4.53	11	7.93	4.43	74.01	586.92	327.70	576.47	258.2	310.2	1.86
15.00	5	1.11	2218	22	-153.2	6.1	32.7	163.3	-0.04	4.51	11	7.90	4.43	73.28	579.06	324.57	566.33	258.2	309.7	1.90
16.00	5	1.11	2229 2240	22	-146.1 -137.5	5.2	36.4 39.7	159.2 153.8	-0.04 -0.03	4.49	11	7.87	4.43	72.55	571.20 562.51	321.49 318.45	555.63 544.18	258.2 258.2	309.2 308.6	1.94 2.01
17.00	5	1.13	2251	22	-137.5	4.1 2.8	43.0	147.7	-0.03	4.44	"	7.83 7.78	4.43	71.84	553.24	315.46	532.14	258.2	308.0	2.01
19.00	5	1.13	2262	22	-116.1	1.4	46.3	141.1	-0.02	4.42	11	7.71	4.44	70.45	543.25	312.51	519.65	258.2	307.2	2.18
20.00	5	1.14	2273	22	-103.3	-0.1	49.5	134.3	0.00	4.40	1	7.63	4.44	69.77	532.18	309.60	507.00	258.2	306.4	2.28
21.00	5	1.14	2284	22	-89.1	-1.6	53.3	128.3	0.02	4.38	İ	7.51	4.44	69.10	519.19	306.74	494.52	258.2	305.5	2.38
22.00	5	1.15	2296	22	-73.5	-3.3	56.5	122.4	0.05	4.36	İ	7.33	4.44	68.38	501.49	303.66	482.66	258.2	304.6	2.49
23.00	5	1.15	2307	22	-56.6	-5.1	59.7	117.9	0.09	4.33	ī	7.06	4.44	67.73	477.85	300.88	474.17	258.2	304.0	2.58
24.00	5	1.16	2318	22	-156.2	-102.5	62.9	190.5	0.66	4.31	Ι	4.78	4.44	67.09	320.91	298.14	342.37	258.2	284.4	1.49
25.00	5	1.16	2310	30	-134.5	-78.1	48.9	158.9	0.58	4.33	Ι	5.00	4.44	125.62	627.77	558.10	659.29	258.2	313.2	1.97
26.00	5	1.16	2310	30	-149.9	-77.1	52.2	175.1	0.51	4.33	1	5.20	4.44	125.62	653.55	558.10	680.31	258.2	313.8	1.79
27.00	5	1.16	2310	30	-167.3	-76.2	54.8	192.4	0.46	4.33	1	5.40	4.44	125.62	678.45	558.10	700.03	258.2	314.3	1.63
28.00	5	1.16	2310	30	-186.6	-75.2	57.5	211.5	0.40	4.33	1	5.59	4.44	125.62	701.98	558.10	718.87	258.2	314.7	1.49
29.00	5	1.16	2310	30	-207.6	-74.3	60.2	232.3	0.36	4.33	Ι	5.76	4.44	125.62	723.91	558.10	736.71	258.2	315.1	1.36
30.00	5	1.16	2310	30	-230.5	-73.3	62.8	254.9	0.32	4.33	1	5.92	4.44	125.62	744.13	558.10	753.45	258.2	315.5	1.24
31.00	5	1.16	2310	30	-206.3	-73.8	44.5	220.3	0.36	4.33	1	5.76	4.44	125.62	723.87	558.10	731.19	258.2	315.0	1.43
32.00	5	1.16	2310	30	-184.6	-74.4	42.7	198.9	0.40	4.33	1	5.59	4.44	125.62	702.13	558.10	712.06	258.2	314.6	1.58
33.00	5	1.16	2310	30	-165.4	-75.0	40.9	179.9	0.45	4.33	I	5.41	4.44	125.62	679.25	558.10	692.17	258.2	314.1	1.75
34.00		1.16	2310	30	-150.4	-75.9	39.1	165.0	0.50	4.33	1	5.24	4.44	125.62	657.72	558.10	673.42	258.2	313.6	1.90
35.00	5	1.17	2330	22	-170.2	-96.5	50.5	191.4	0.57	4.29	I	5.04	4.45	66.40	334.61	295.20	346.16	258.2	285.4	1.49
36.00			2343	22	-154.9	-116.5	46.7	174.8		6.40	1	4.54	4.35		670.09	642.72	698.74	258.2	314.3	1.80
37.00			2356	22	-142.7	-113.0	44.1	161.9				4.44	4.35		648.77	635.77		258.2	313.8	1.94
38.00			2369	22	-45.6	6.0	53.6	103.4				8.63			1246.64		1057.02		319.1	3.09
39.00			2382	22	-54.9	11.7	50.1	102.7				9.44	4.35		1348.91		1081.86		319.2	3.11
40.00	5	0.80		22	-62.9	17.1	46.7	102.5				10.09			1426.12	615.61			319.4	3.12
41.00	5		2407	22	-69.7	22.0	42.5	101.4				10.62		140.00	1486.32	609.60	1153.88		319.7	3.15
42.00	5	0.81		22	-75.1	26.1	39.3	101.3				11.02		138.50	1526.80		1191.55		319.8	3.16
43.00	5	0.81	2433	22	-79.4	29.6	36.0	101.0				11.37		137.02	1557.62	596.88		258.2	320.0	3.17
44.00	5	0.82	2446	22	-82.5	32.5	32.9	100.2				11.67		135.57	1581.50			258.2	320.2	3.19
45.00	5	0.82	2459	22	-84.4	34.9	29.8	98.9	-0.41			11.93		134.14	1600.42	584.57		258.2	320.3	3.24
46.00	5	0.82	2472	22	-85.2	36.6	26.0	96.4	-0.43			12.18		132.73	1616.78			258.2	320.5	3.33
47.00	5	0.83	2485	22	-84.7	37.7	20.5	91.9	-0.44			12.40		131.35	1628.36			258.2	320.7	3.49
48.00	5	0.83	2498	22	-83.2	38.1	22.3	91.7		6.00		12.60		129.98	1638.11	566.82		258.2	320.6	3.50
49.00	5	υ.ŏ4	2511	22	-80.6	38.1	24.1	90.8	-0.47	5.97	11	12.82	4.36	128.64	1649.08	561.08	1357.88	258.2	320.5	3.53

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

х	а	h	hanima	tw	σ 1	σ2	τ	σid	Ψ	α		kσ	k T	σ _{cr,0}	σcr	τ _{cr}	σ cr,id	0.8f _d	σ _{cr,red}	VERIFICA
[m]	[m]	[m]	[mm]	[mm]	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)						(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	V 2.1 10 A
50.00	5	0.84	2524	22	-77.1	37.5	26.0	89.3	-0.49	5.94	Ш	13.05	4.36	127.32	1661.93	555.44	1317.06	258.2	320.4	3.59
51.00	5	0.85	2536	22	-72.5	36.5	28.2	87.4	-0.50	5.91	Ш	13.33	4.36	126.12	1681.41	550.30	1267.33	258.2	320.2	3.67
52.00	5	0.85	2549	22	-66.7	34.7	30.0	84.6	-0.52	5.88	Ш	13.61	4.36	124.83	1698.61	544.82	1212.42	258.2	319.9	3.78
53.00	5	0.85	2562	22	-60.0	32.4	32.7	82.5	-0.54	5.85	Ш	13.93	4.37	123.57	1721.68	539.42	1145.63	258.2	319.6	3.88
54.00	5	0.86	2575	22	-52.3	29.5	35.4	80.5	-0.56	5.83	Ш	14.36	4.37	122.32	1756.12	534.11	1079.89	258.2	319.2	3.96
55.00	5	0.86	2588	22	-43.6	26.1	38.0	79.0	-0.60	5.80	Ш	14.97	4.37	121.10	1812.42	528.87	1019.27	258.2	318.8	4.04
56.00	5	0.87	2601	22	-161.8	-118.0	41.1	176.8	0.73	5.77	ı	4.59	4.37	119.89	550.53	523.71	567.60	258.2	309.8	1.75
57.00	5	0.87	2614	22	-172.5	-120.8	43.8	188.4	0.70	5.74	ı	4.67	4.37	118.70	553.88	518.63	570.45	258.2	309.9	1.64
58.00	5	0.88	2627	22	-184.5	-124.0	46.5	201.3	0.67	5.71	ı	4.74	4.37	117.53	557.18	513.62	573.00	258.2	310.0	1.54
59.00	5	0.88	2640	22	-197.4	-127.4	49.2	215.0	0.65	5.68	ı	4.81	4.37	116.38	560.05	508.69	575.05	258.2	310.1	1.44
60.00	5	0.88	2653	22	-210.9	-131.0	51.9	229.2	0.62	5.65	ı	4.88	4.37	115.24	562.45	503.83	576.58	258.2	310.2	1.35
61.00	5	0.89	2665	22	-225.3	-134.8	55.3	244.8	0.60	5.63	I	4.95	4.37	114.20	564.86	499.41	578.44	258.2	310.3	1.27
62.00	5	0.89	2678	22	-240.6	-138.9	58.0	260.7	0.58	5.60	ı	5.01	4.37	113.10	566.44	494.68	579.12	258.2	310.3	1.19
63.00	5	0.90	2691	22	-256.8	-143.2	60.7	277.5	0.56	5.57	Ι	5.07	4.37	112.01	567.60	490.02	579.38	258.2	310.3	1.12
64.00	5	0.90	2704	22	-274.1	-147.9	63.4	295.2	0.54	5.55	I	5.12	4.38	110.93	568.36	485.43	579.26	258.2	310.3	1.05
65.00	5	0.90	2690	30	-206.2	-107.9	48.9	222.9	0.52	5.58	ı	5.17	4.37	208.43	1078.38	911.86	1099.24	258.2	319.3	1.43
66.00	5	0.90	2690	30	-220.8	-112.0	51.9	238.5	0.51	5.58	ı	5.23	4.37	208.43	1089.31	911.86	1109.21	258.2	319.4	1.34
67.00	5	0.90	2690	30	-237.0	-116.6	54.2	254.9	0.49	5.58	ı	5.28	4.37	208.43	1099.77	911.86	1118.08	258.2	319.5	1.25
68.00	5	0.90	2690	30	-254.4	-121.6	56.5	272.6	0.48	5.58	ı	5.32	4.37	208.43	1109.63	911.86	1126.41	258.2	319.5	1.17
69.00	5	0.90	2690	30	-273.1	-126.9	58.8	291.5	0.46	5.58	ı	5.37	4.37	208.43	1118.86	911.86	1134.20	258.2	319.5	1.10
70.00	5	0.90	2690	30	-293.1	-132.8	61.1	311.7	0.45	5.58	Ι	5.41	4.37	208.43	1127.46	911.86	1141.43	258.2	319.6	1.03
71.00	5	0.90	2690	30	-266.4	-124.8	55.5	283.2	0.47	5.58	I	5.36	4.37	208.43	1116.18	911.86	1130.72	258.2	319.5	1.13
72.00	5	0.90	2690	30	-241.4	-117.5	54.0	258.9	0.49	5.58	I	5.29	4.37	208.43	1103.50	911.86	1120.84	258.2	319.5	1.23
73.00	5	0.90	2690	30	-217.7	-110.5	52.5	235.9	0.51	5.58	I	5.22	4.37	208.43	1089.00	911.86	1109.87	258.2	319.4	1.35
74.00	5	0.90	2690	30	-195.2	-104.0	51.0	214.2	0.53	5.58	I	5.15	4.37	208.43	1072.38	911.86	1097.73	258.2	319.3	1.49
75.00	5	0.90	2710	22	-211.9	-119.6	67.0	241.6	0.56	5.54	I	5.05	4.38	110.44	557.26	483.34	577.21	258.2	310.2	1.28
76.00	5	0.90	2710	22	-187.7	-112.7	63.9	217.9	0.60	5.54	Ι	4.94	4.38	110.44	545.57	483.34	569.31	258.2	309.9	1.42
77.00	5	0.90	2710	22	-167.2	-107.1	61.9	198.7	0.64	5.54	Ι	4.83	4.38	110.44	533.03	483.34	561.61	258.2	309.5	1.56
78.00	5	0.90	2710	22	-148.2	-102.0	60.0	181.0	0.69	5.54	1	4.70	4.38	110.44	518.85	483.34	553.34	258.2	309.1	1.71
79.00	5	0.90	2710	22	-130.4	-97.2	58.0	164.7	0.75	5.54	ı	4.55	4.38	110.44	502.73	483.34	544.47	258.2	308.6	1.87
80.00	5	0.90	2710	22	-113.9	-92.9	56.1	149.7	0.82	5.54	ı	4.39	4.38	110.44	484.40	483.34	535.00	258.2	308.1	2.06
81.00	5	0.90	2710	22	-52.6	9.1	64.4	123.3	-0.17	5.54	П	9.02	4.38	110.44	996.27	483.34	819.00	258.2	316.6	2.57
82.00	5	0.90	2710	22	-67.3	15.0	61.8	126.4	-0.22	5.54	П	9.53	4.38	110.44	1052.41	483.34	841.43	258.2	316.9	2.51
83.00	5	0.90	2710	22	-81.2	20.9	59.1	130.7	-0.26	5.54	П	9.91	4.38	110.44	1094.56	483.34	870.13	258.2	317.3	2.43
84.00	5	0.90	2710	22	-94.4	26.7	56.5	136.0	-0.28	5.54	П	10.21	4.38	110.44	1127.88	483.34	902.89	258.2	317.7	2.34
85.00	5	0.90	2710	22	-106.8	32.4	53.9	141.9	-0.30	5.54	П	10.45	4.38	110.44	1154.53	483.34	937.54	258.2	318.1	2.24
86.00	5	0.90	2710	22	-118.3	37.7	50.7	147.4	-0.32	5.54	П	10.65	4.38	110.44	1175.96	483.34	974.49	258.2	318.4	2.16
87.00	5	0.90	2710	22	-129.0	42.6	48.2	153.6	-0.33	5.54	П	10.80	4.38	110.44	1192.47	483.34	1007.80	258.2	318.7	2.07
88.00	5	0.90	2710	22	-138.8	47.2	45.6	159.7	-0.34	5.54	П	10.92	4.38	110.44	1205.92	483.34	1039.16	258.2	318.9	2.00
89.00	5	0.90	2710	22	-147.8	51.4	43.1	165.6	-0.35	5.54	П	11.02	4.38	110.44	1217.05	483.34	1068.20	258.2	319.1	1.93
90.00	5	0.90	2710	22	-156.0	55.2	40.6	171.1	-0.35	5.54	П	11.11	4.38	110.44	1226.71	483.34	1095.03	258.2	319.3	1.87
91.00	5	0.90	2710	22	-163.4	58.9	37.6	175.9	-0.36	5.54	П	11.20	4.38	110.44	1236.44	483.34	1122.55	258.2	319.5	1.82
92.00	5	0.90	2710	22	-170.0	62.2	35.1	180.5	-0.37	5.54	Ш	11.27	4.38	110.44	1244.23	483.34	1145.22	258.2	319.6	1.77
93.00	5	0.90	2710	22	-175.7	65.0	32.6	184.5	-0.37	5.54	П	11.33	4.38	110.44	1250.90	483.34	1165.46	258.2	319.7	1.73
94.00	5	0.90	2710	22	-180.6	67.5	30.2	188.0	-0.37	5.54	Ш	11.38	4.38	110.44	1256.69	483.34	1183.60	258.2	319.8	1.70
95.00	5	0.90	2710	22	-184.6	69.7	27.7	190.8	-0.38	5.54	Ш	11.42	4.38	110.44	1261.71	483.34	1199.82	258.2	319.9	1.68
96.00	5	0.90	2710	22	-187.8	71.5	24.9	192.7	-0.38	5.54	Ш	11.47	4.38	110.44	1266.60	483.34	1215.94	258.2	320.0	1.66
97.00	5	0.90	2710	22	-190.1	72.8	23.1	194.3	-0.38	5.54	Ш	11.50	4.38	110.44	1270.23	483.34	1226.52	258.2	320.0	1.65
98.00	5	0.90	2710	22	-191.6	73.7	21.4	195.2	-0.38	5.54	Ш	11.53	4.38	110.44	1273.16	483.34	1235.32	258.2	320.1	1.64
99.00	5	0.90	2710	22	-192.3	74.3	19.8	195.3	-0.39	5.54	П	11.55	4.38	110.44	1275.56	483.34	1242.87	258.2	320.1	1.64

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

100.00 5 0.90 2710 22 -192.1 74.5 19.4 195.0 19.5 19.4 195.0 10.00 5 0.90 2710 22 -191.1 74.3 21.8 194.7 -0.39 5.54 11 11.60 4.38 110.44 1279.73 483.34 1239.80 258.2 33.1 10.40 5 0.90 2710 22 -186.3 72.7 26.7 192.0 -0.39 5.54 11 11.60 4.38 110.44 1280.73 483.34 1231.23 258.2 33.1 10.40 5 0.90 2710 22 -178.3 69.5 31.7 186.6 -0.39 5.54 11 11.60 4.38 110.44 1281.14 483.34 120.84 258.2 33.1 10.50 5 0.90 2710 22 -178.3 69.5 31.7 186.6 -0.39 5.54 11 11.59 4.38 110.44 1281.04 483.34 1194.12 258.2 33.1 10.50 5 0.90 2710 22 -178.3 69.5 31.7 186.6 -0.39 5.54 11 11.59 4.38 110.44 1280.27 483.34 1194.12 258.2 33.1 10.50 5 0.90 2710 22 -178.3 69.5 31.7 186.6 -0.39 5.54 11 11.59 4.38 110.44 1280.27 483.34 1194.12 258.2 33.1 10.50 5 0.90 2710 22 -178.3 69.5 31.7 186.6 -0.39 5.54 11 11.59 4.38 110.44 1280.27 483.34 1194.12 258.2 33.1 10.50 5 0.90 2710 22 -166.9 64.8 36.8 178.6 -0.39 5.54 11 11.59 4.38 110.44 1280.27 483.34 117.82 258.2 33.1 10.50 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 11 11.55 4.38 110.44 1275.74 483.34 113.34 258.2 33.1 10.50 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 11 11.55 4.38 110.44 1275.74 483.34 113.45 258.2 33.1 11.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 11 11.55 4.38 110.44 1275.74 483.34 113.45 258.2 33.1 11.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 11 11.55 4.38 110.44 1275.74 483.34 113.45 258.2 33.1 11.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 -0.38 5.54 11 11.55 4.38 110.44 1275.74 483.34 113.45 258.2 33.1 11.00 5 0.90	verifica verifica 0.1 1.64 0.1 1.64 0.0 1.65 0.0 1.67 9.9 1.71 9.8 1.75 9.7 1.79 9.6 1.84 9.4 1.90 9.2 1.96 9.0 2.03
101.00 5 0.90 2710 22 -191.1 74.3 21.8 194.7 -0.39 5.54 II 11.69 4.38 110.44 1279.73 483.34 1239.80 258.2 3. 103.00 5 0.90 2710 22 -186.3 72.7 26.7 192.0 -0.39 5.54 II 11.60 4.38 110.44 1280.73 483.34 1231.23 258.2 3. 104.00 5 0.90 2710 22 -178.3 69.5 31.7 186.6 -0.39 5.54 II 11.60 4.38 110.44 1281.14 483.34 120.84 258.2 3. 106.00 5 0.90 2710 22 -173.1 67.4 34.3 183.0 -0.39 5.54 II 11.69 4.38 110.44 1280.73 483.34 120.84 258.2 3. 106.00 5 0.90 2710 22 -173.1 67.4 34.3 183.0 -0.39 5.54 II 11.69 4.38 110.44 1280.74 483.34 1194.12 258.2 3. 106.00 5 0.90 2710 22 -166.9 64.8 36.8 178.6 -0.39 5.54 II 11.69 4.38 110.44 1280.27 483.34 117.82 258.2 3. 108.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 II 11.59 4.38 110.44 1276.47 483.34 117.82 258.2 3. 110.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 II 11.55 4.38 110.44 1276.47 483.34 111.34 258.2 3. 110.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 II 11.55 4.38 110.44 1276.47 483.34 111.34 258.2 3. 111.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 -0.37 5.54 II 11.48 4.38 110.44 1264.25 483.34 1033.36 258.2 3. 115.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 -0.37 5.54 II 11.18 4.38 110.44 1264.25 483.34 1033.36 258.2 3. 115.00 5 0.90 2710 22 -138.1 5.52 138.5 -0.38 5.54 II 11.30 4.38 110.44 1264.25 483.34 1033.36 258.2 3. 115.00 5 0.90 2710 22 -138.1 5.52 138.5 -0.38 5.54 II 11.18 4.38 110.44 1264.25 483.34 1033.36 258.2 3. 115.00 5 0.90 2710 22 -138.1 5.52 138.5 -0.38 5.54 II 11.18 4.38 110.44 1264.25 483.34 1033.36	0.1 1.64 0.0 1.65 0.0 1.67 9.9 1.69 9.9 1.71 9.8 1.75 9.7 1.79 9.6 1.84 9.4 1.90 9.2 1.96
101.00 5 0.90 2710 22 -191.1 74.3 21.8 194.7 -0.39 5.54 II 11.60 4.38 110.44 1281.73 483.34 1231.23 258.2 3. 103.00 5 0.90 2710 22 -186.3 72.7 26.7 192.0 -0.39 5.54 II 11.60 4.38 110.44 1281.14 483.34 1220.81 258.2 3. 105.00 5 0.90 2710 22 -178.3 69.5 31.7 186.6 -0.39 5.54 II 11.60 4.38 110.44 1281.14 483.34 120.84 258.2 3. 106.00 5 0.90 2710 22 -173.1 67.4 34.3 183.0 -0.39 5.54 II 11.69 4.38 110.44 1281.04 483.34 1194.12 258.2 3. 106.00 5 0.90 2710 22 -173.1 67.4 34.3 183.0 -0.39 5.54 II 11.69 4.38 110.44 1281.04 483.34 1194.12 258.2 3. 106.00 5 0.90 2710 22 -166.9 64.8 36.8 178.6 -0.39 5.54 II 11.69 4.38 110.44 1280.27 483.34 117.82 258.2 3. 109.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 II 11.59 4.38 110.44 1276.47 483.34 1156.31 258.2 3. 110.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 II 11.59 4.38 110.44 1276.47 483.34 1136.31 258.2 3. 110.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 II 11.55 4.38 110.44 1276.47 483.34 118.36 258.2 3. 111.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 II 11.48 4.38 110.44 1276.47 483.34 1083.98 258.2 3. 112.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 II 11.48 4.38 110.44 1264.25 483.34 1053.36 258.2 3. 115.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 II 11.48 4.38 110.44 1264.25 483.34 1053.36 258.2 3. 115.00 5 0.90 2710 22 -136.4 41.4 52.5 148.5 -0.38 5.54 II 11.48 4.38 110.44 1264.25 483.34 1053.36 258.2 3. 115.00 5 0.90 2710 22 -136.4 41.4 52.5 148.5 -0.38 5.54 II 11.48 4.38 110.44 126	0.0 1.65 0.0 1.67 9.9 1.69 9.9 1.71 9.8 1.75 9.7 1.79 9.6 1.84 9.4 1.90 9.2 1.96
103.00 5 0.90 2710 22 -186.3 72.7 26.7 192.0 -0.39 5.54 11 11.60 4.38 110.44 1281.14 483.34 1220.81 258.2 3. 105.00 5 0.90 2710 22 -178.3 69.5 31.7 186.6 -0.39 5.54 11 11.60 4.38 110.44 1281.04 483.34 120.846 258.2 3. 105.00 5 0.90 2710 22 -173.1 67.4 34.3 183.0 -0.39 5.54 11 11.59 4.38 110.44 1280.47 483.34 1194.12 258.2 3. 107.00 5 0.90 2710 22 -166.9 64.8 36.8 178.6 -0.39 5.54 11 11.59 4.38 110.44 1280.27 483.34 1178.45 258.2 3. 108.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 11 11.52 4.38 110.44 1275.78 483.34 1136.31 258.2 3. 110.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 11 11.52 4.38 110.44 1276.47 483.34 136.31 258.2 3. 111.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 -0.38 5.54 11 11.48 4.38 110.44 1264.25 483.34 1053.36 258.2 3. 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 -0.37 5.54 11 11.30 4.38 110.44 1267.14 483.34 1020.23 258.2 3. 115.00 5 0.90 2710 22 -170.3 36.1 55.2 138.5 -0.38 5.54 11 11.30 4.38 110.44 1276.47 483.34 193.45 258.2 3. 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.36 5.54 11 11.8 4.38 110.44 1276.47 483.34 31.45 258.2 3. 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.36 5.54 11 11.64 4.38 110.44 1276.47 483.34 43.45 258.2 3. 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.36 5.54 11 11.8 4.38 110.44 1276.47 483.34 31.45 258.2 3. 115.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 -0.36 5.54 11 11.64 4.38 110.44 1276.47 483.34 47.45 483.34 47.45 483.34 47.45 483.34 47.45 483.34 47.45 483.34 47.45 483.34 47.45 483.34 47.45 483.34 47.45	0.0 1.67 9.9 1.69 9.9 1.71 9.8 1.75 9.7 1.79 9.6 1.84 9.4 1.90 9.2 1.96
104.00 5 0.90 2710 22 -182.8 71.3 29.2 189.6 -0.39 5.54 11 11.60 4.38 110.44 1281.04 483.34 128.46 258.2 3 105.00 5 0.90 2710 22 -173.1 67.4 34.3 183.0 -0.39 5.54 11 11.59 4.38 110.44 1280.47 483.34 1194.12 258.2 3 107.00 5 0.90 2710 22 -166.9 64.8 36.8 178.6 -0.39 5.54 11 11.59 4.38 110.44 1280.27 483.34 117.82 258.2 3 108.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 11 11.59 4.38 110.44 1275.78 483.34 1158.45 258.2 3 110.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 11 11.55 4.38 110.44 1275.78 483.34 1136.31 258.2 3 110.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 -0.38 5.54 11 11.45 4.38 110.44 1264.25 483.34 103.39 258.2 3 111.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 -0.37 5.54 11 11.8 4.38 110.44 1275.74 483.34 1020.23 258.2 3 115.00 5 0.90 2710 22 -170.3 36.1 55.2 138.5 -0.36 5.54 11 11.8 4.38 110.44 1267.44 483.34 985.10 258.2 3 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.36 5.54 11 11.8 4.38 110.44 1267.44 483.34 985.10 258.2 3 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.36 5.54 11 11.05 4.38 110.44 1267.44 483.34 34.54 258.2 3 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.36 5.54 11 11.05 4.38 110.44 1267.47 483.34 34.54 258.2 3 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.36 5.54 11 11.05 4.38 110.44 1267.44 483.34 30.20.23 258.2 3 115.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 -0.37 5.54 11 11.05 4.38 110.44 1267.47 483.34 30.45 258.2 3 115.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 -0.36 5.54 11 11.04 4.38 110.44 1267.47 483.34 30.20.23	9.9 1.69 9.9 1.71 9.8 1.75 9.7 1.79 9.6 1.84 9.4 1.90 9.2 1.96
105.00 5 0.90 2710 22 -178.3 69.5 31.7 186.6 0.39 5.54 II 11.59 4.38 110.44 1280.47 483.34 1194.12 258.2 3 107.00 5 0.90 2710 22 -166.9 64.8 36.8 178.6 0.39 5.54 II 11.59 4.38 110.44 1280.27 483.34 117.82 258.2 3 107.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 0.39 5.54 II 11.59 4.38 110.44 1278.47 483.34 1158.45 258.2 3 108.00 5 0.90 2710 22 -152.0 58.4 41.9 188.5 0.38 5.54 II 11.59 4.38 110.44 1278.47 483.34 1158.45 258.2 3 110.00 5 0.90 2710 22 -152.0 58.4 41.9 188.5 0.38 5.54 II 11.59 4.38 110.44 1278.47 483.34 1158.45 258.2 3 110.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 112.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 112.00 5 0.90 2710 22 -123.6 46.3 49.9 150.8 112.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 0.37 5.54 II 11.39 4.38 110.44 1280.27 483.34 1136.31 258.2 3 112.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 0.37 5.54 II 11.59 4.38 110.44 1278.47 483.34 1158.45 258.2 3 110.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 0.37 5.54 II 11.45 4.38 110.44 1268.16 483.34 108.39 258.2 3 112.00 5 0.90 2710 22 -103.3 36.1 55.2 138.5 0.37 5.54 II 11.39 4.38 110.44 1268.16 483.34 1053.36 258.2 3 116.00 5 0.90 2710 22 -33.8 24.7 60.9 128.8 0.37 5.54 II 11.39 4.38 110.44 1267.78 483.34 1053.36 258.2 3 116.00 5 0.90 2710 22 -33.8 24.7 60.9 128.8 0.37 5.54 II 11.39 4.38 110.44 1267.78 483.34 113.34 102.2 126.2	9.9 1.71 9.8 1.75 9.7 1.79 9.6 1.84 9.4 1.90 9.2 1.96
106.00 5 0.90 2710 22 -173.1 67.4 34.3 183.0 -0.39 5.54 II 11.59 4.38 110.44 1280.27 483.34 1177.82 258.2 3 107.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 -0.39 5.54 II 11.55 4.38 110.44 1275.78 483.34 1136.31 258.2 3 110.00 5 0.90 2710 22 -152.0 58.4 41.9 168.5 -0.38 5.54 II 11.55 4.38 110.44 1272.20 483.34 111.34 258.2 3 111.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 -0.38 5.54 II 11.45 4.38 110.44 1264.25 483.34 1063.39 258.2 3 113.00 5 0.90 2710 22 -123.6 46.3 49.9 150.8 -0.37 5.54 II 11.30 4.38 110.44 1257.14 483.34 1053.36 258.2 3 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 -0.37 5.54 II 11.30 4.38 110.44 1257.14 483.34 1053.36 258.2 3 115.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.36 5.54 II 11.03 4.38 110.44 1276.4 483.34 949.04 258.2 3 116.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.36 5.54 II 11.05 4.38 110.44 1276.4 483.34 949.04 258.2 3 116.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.36 5.54 II 11.05 4.38 110.44 1179.77 483.34 879.71 258.2 3 117.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.36 5.54 II 10.54 4.38 110.44 1179.77 483.34 879.71 258.2 3 117.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.36 5.54 II 10.66 4.38 110.44 1179.77 483.34 879.71 258.2 3 117.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.36 5.54 II 10.66 4.38 110.44 1179.77 483.34 879.71 258.2 3 117.00 5 0.90 2710 22 -73.8 -73	9.8 1.75 9.7 1.79 9.6 1.84 9.4 1.90 9.2 1.96
107.00 5 0.90 2710 22 -166.9 64.8 36.8 178.6 -0.39 5.54 II 11.58 4.38 110.44 1278.47 483.34 1158.45 258.2 3 109.00 5 0.90 2710 22 -152.0 58.4 41.9 168.5 -0.38 5.54 II 11.55 4.38 110.44 1275.78 483.34 1136.31 258.2 3 3 10.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 -0.38 5.54 II 11.55 4.38 110.44 1272.20 483.34 1111.34 258.2 3 3 110.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 -0.38 5.54 II 11.48 4.38 110.44 1272.20 483.34 1111.34 258.2 3 3 111.00 5 0.90 2710 22 -123.6 46.3 49.9 150.8 -0.37 5.54 II 11.38 4.38 110.44 1264.25 483.34 1053.36 258.2 3 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 -0.37 5.54 II 11.38 4.38 110.44 1276.4 483.34 1020.23 258.2 3 115.00 5 0.90 2710 22 -103.3 36.1 55.2 138.5 -0.36 5.54 II 11.38 4.38 110.44 1247.64 483.34 949.04 258.2 3 115.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.37 5.54 II 11.58 4.38 110.44 1276.4 483.34 1053.36 258.2 3 115.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.37 5.54 II 11.38 4.38 110.44 1247.64 483.34 949.04 258.2 3 115.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 -0.37 5.54 II 11.58 4.38 110.44 110.53 483.34 879.71 258.2 3 115.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 -0.37 5.54 II 10.06 4.38 110.44 110.53 483.34 879.71 258.2 3 115.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 -0.37 5.54 II 10.06 4.38 110.44 110.53 483.34 577.36 258.2 3 120.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 -0.38 5.54 II 10.06 4.38 110.44 110.53 483.34 577.36 258.2 3 120.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 -0.38 5.54 II 10.06 4.38 110.44 110.53	9.7 1.79 9.6 1.84 9.4 1.90 9.2 1.96
108.00 5 0.90 2710 22 -159.9 61.8 39.3 173.8 109.00 5 0.90 2710 22 -152.0 58.4 41.9 168.5 110.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 158.2 3 111.00 5 0.90 2710 22 -123.6 46.3 49.9 150.8 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 0.37 5.54 11 11.38 4.38 110.44 1275.78 483.34 1033.36 258.2 3 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 0.37 5.54 11 11.38 4.38 110.44 1264.25 483.34 1053.36 258.2 3 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 0.37 5.54 11 11.30 4.38 110.44 1275.14 483.34 1020.23 258.2 3 115.00 5 0.90 2710 22 -170.3 36.1 55.2 138.5 0.36 5.54 11 11.30 4.38 110.44 1276.4 483.34 985.10 258.2 3 115.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 113.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 119.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 119.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 120.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 120.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 123.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 123.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 0.73 5.54 1 4.83 4.38 110.44 55.54 483.34 577.36 258.2 3 123.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 0.66 5.54 1 4.83 4.38 110.44 564.94 483.34 577.36 258.2 3 123.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 0.66 5.54 1 4.83 4.38 110.44 564.94 483.34 577.36 258.2 3 125.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 0.66 5.54 1 4.83 4.38 110.44 564.94 483.34 577.36 258.2 3 125.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 0.66 5.54 1 4.83 4.38 110.44 564.94 483.34 577.36 258.2 3 125.00 5 0.90 2710	9.6 1.84 9.4 1.90 9.2 1.96
109.00 5 0.90 2710 22 -152.0 58.4 41.9 168.5 110.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 111.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 112.00 5 0.90 2710 22 -123.6 46.3 49.9 150.8 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 43.8 110.44 1264.25 48.34 1053.36 258.2 3 113.00 5 0.90 2710 22 -10.03 36.1 55.2 138.5 114.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 115.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -59.1 18.3 63.7 125.1 43.8 43.	9.4 1.90 9.2 1.96
110.00 5 0.90 2710 22 -143.4 54.7 44.5 162.8 111.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 150.8 112.00 5 0.90 2710 22 -123.6 46.3 49.9 150.8 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 -0.37 5.54 11.38 4.38 110.44 1247.64 483.34 1020.23 258.2 3 114.00 5 0.90 2710 22 -100.3 36.1 55.2 138.5 113.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 116.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -37.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -37.8 24.7 60.9 128.8 118.00 5 0.90 2710 22 -318.1 -101.2 69.1 182.8 119.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 120.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 122.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1 125.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 1 5.33 4.37 285.82 1522.74 1250.21 1558.74 258.2 31.26.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 1 5.33 4.37 285.82 1522.74 1250.21 1558.74 258.2 31.26.00 3.80 258.2 31.26.00 3.8	9.2 1.96
111.00 5 0.90 2710 22 -134.0 50.8 47.3 157.0 120.0 5 0.90 2710 22 -123.6 46.3 49.9 150.8 113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 114.00 5 0.90 2710 22 -100.3 36.1 55.2 138.5 132.9 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 116.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 119.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 120.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 120.00 5 0.90 2710 22 -138.5 -126.70 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 125.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 56.0 1 5.33 4.37 285.82 152.274 1250.21 1558.74 258.2 3 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 1 5.33 4.37 285.82 152.274 1250.21 1558.74 258.2 3 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 1 5.33 4.37 285.82 152.74 1250.21 1558.74 258.2 3 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 1 5.33 4.37 285.82 152.274 1250.21 1558.74 258.2 3 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 1 5.33 4.37 285.82 152.274 1250.21 1558.74 258.2 3 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 1 5.33 4.37 285.82 152.274 1250.21 1558.74 258.2 3 126.00 1 158.2 125.00 1 158.2 125.00 1 158.2 125.00 1 158.2 125.00 1 158.2 125.00 1 158.2 125.00 1 158.2 125.00 1 158.2 125.00 1 158.2 125.00 1 125.00 1 125.00 1 125.00 1 125.00 1 125.00 1 125.00 1 125.00 1 125.00 1 125.00 1 125.00 1 125.00 1 125.00	
112.00 5 0.90 2710 22 -123.6 46.3 49.9 150.8 131.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 131.00 5 0.90 2710 22 -100.3 36.1 55.2 138.5 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 116.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -59.1 18.3 63.7 125.1 118.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 119.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 120.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 120.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 122.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.00 1 5.33 4.37 285.2 152.7 125.07 125.07 125.07 155.7 226.6 0.48 5.00 1 5.33 4.37 285.82 152.7 125.07	9.0 2.03
113.00 5 0.90 2710 22 -112.3 41.4 52.5 144.6 -0.37 5.54 II 11.30 4.38 110.44 1247.64 483.34 985.10 258.2 3 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.35 5.54 II 11.18 4.38 110.44 1235.12 483.34 949.04 258.2 3 116.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -59.1 18.3 63.7 125.1 118.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 119.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 120.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 121.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 122.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1 125.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 15.30 15.30 15.30 1.53 125.2 3 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 15.30 1.53 1.044 5.54 15.30 1.54 1.044 1	
114.00 5 0.90 2710 22 -100.3 36.1 55.2 138.5 -0.36 5.54 II 11.18 4.38 110.44 1235.12 483.34 949.04 258.2 3 115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 -0.35 5.54 II 11.03 4.38 110.44 1218.49 483.34 949.04 258.2 3 115.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.31 5.54 II 10.85 4.38 110.44 1197.97 483.34 879.71 258.2 3 117.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 -0.27 5.54 II 10.6 4.38 110.44 1197.97 483.34 894.04 258.2 3 118.00 5 0.90 2710 22 -138.1 -101.2 69.1 <td>8.8 2.11</td>	8.8 2.11
115.00 5 0.90 2710 22 -87.4 30.5 57.8 132.9 116.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 117.00 5 0.90 2710 22 -59.1 18.3 63.7 125.1 118.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 129.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 129.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 121.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 122.00 5 0.90 2710 22 -191.2 -115.1 78.2 234.3 123.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 126.00 5 0.89 2680 35 -185.8 -92.6 55.1 208.9 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 1 5.33 4.37 285.82 1522.74 1250.21 1558.74 258.2 3 3 3 3 3 3 3 3 3	8.5 2.20
116.00 5 0.90 2710 22 -73.8 24.7 60.9 128.8 -0.33 5.54 II 10.85 4.38 110.44 1197.97 483.34 879.71 258.2 3 117.00 5 0.90 2710 22 -59.1 18.3 63.7 125.1 -0.31 5.54 II 10.54 4.38 110.44 1197.97 483.34 879.71 258.2 3 118.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 -0.27 5.54 II 10.54 4.38 110.44 1110.53 483.34 851.06 258.2 3 120.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 0.68 5.54 II 10.06 4.38 110.44 1110.53 483.34 851.06 258.2 3 120.00 5 0.90 2710 22 -154.2 -105.3 71.9 </td <td>8.2 2.30</td>	8.2 2.30
117.00 5 0.90 2710 22 -59.1 18.3 63.7 125.1 -0.31 5.54 II 10.54 4.38 110.44 1164.06 483.34 851.06 258.2 3 118.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 119.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 120.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 121.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 122.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 122.00 5 0.90 2710 22 -191.2 -115.1 78.2 234.3 123.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1 0.57 5.54 1 </td <td>7.8 2.39</td>	7.8 2.39
118.00 5 0.90 2710 22 -43.7 11.8 66.4 123.0 -0.27 5.54 II 10.06 4.38 110.44 111.053 483.34 829.77 258.2 3 119.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 0.73 5.54 I 4.58 4.38 110.44 506.23 483.34 555.88 258.2 3 120.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 0.68 5.54 I 4.71 4.38 110.44 506.23 483.34 555.88 258.2 3 121.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 0.64 5.54 I 4.83 110.44 503.33 483.34 570.89 258.2 3 122.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1	7.4 2.47
119.00 5 0.90 2710 22 -138.1 -101.2 69.1 182.8 0.73 5.54 1 4.58 4.38 110.44 506.23 483.34 555.88 258.2 38 120.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 121.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 122.00 5 0.90 2710 22 -191.2 -115.1 78.2 234.3 123.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1 124.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 125.00 5 0.89 2680 35 -185.8 -92.6 55.1 208.9 126.00 5 0.89 2680 35 -234.4 -97.0 57.7 226.6 0.48 5.60 1<	7.1 2.53
120.00 5 0.90 2710 22 -154.2 -105.3 71.9 198.2 0.68 5.54 1 4.71 4.38 110.44 520.33 483.34 563.31 258.2 38 121.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 0.64 5.54 1 4.83 4.38 110.44 533.30 483.34 570.89 258.2 3 122.00 5 0.90 2710 22 -191.2 -115.1 78.2 234.3 123.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1 124.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 125.00 5 0.89 2680 35 -185.8 -92.6 55.1 208.9 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6	6.8 2.57
121.00 5 0.90 2710 22 -172.0 -110.0 75.4 215.9 0.64 5.54 1 4.83 4.38 110.44 533.30 483.34 570.89 258.2 3 122.00 5 0.90 2710 22 -191.2 -115.1 78.2 234.3 0.60 5.54 1 4.94 4.38 110.44 545.03 483.34 577.36 258.2 3 123.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1 0.57 5.54 1 5.03 4.38 110.44 555.54 483.34 577.36 258.2 3 124.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 0.54 5.54 1 5.03 4.38 110.44 555.54 483.34 583.37 258.2 3 125.00 5 0.89 2680 35 -185.8 -92.6 55.1 208.9 0.50 5.60 1 5.26 4.37 285.82 1502.03	9.2 1.69
122.00 5 0.90 2710 22 -191.2 -115.1 78.2 234.3 123.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1 124.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 125.00 5 0.89 2680 35 -185.8 -92.6 55.1 208.9 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6	9.6 1.56
123.00 5 0.90 2710 22 -211.7 -120.7 81.1 254.1 124.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 125.00 5 0.89 2680 35 -185.8 -92.6 55.1 208.9 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6	0.0 1.44
124.00 5 0.90 2710 22 -233.6 -126.7 83.9 275.1 125.00 5 0.89 2680 35 -185.8 -92.6 55.1 208.9 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6	0.2 1.32
125.00 5 0.89 2680 35 -185.8 -92.6 55.1 208.9 126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1543.02 258.2 33 0.48 5.60 1 5.33 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1543.02 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1543.02 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1543.02 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.60 1 5.60 1 5.26 4.37 285.82 1502.03 1250.21 1558.74 258.2 33 0.50 5.60 1 5.6	0.5 1.22
126.00 5 0.89 2680 35 -203.4 -97.0 57.7 226.6 0.48 5.60 I 5.33 4.37 285.82 1522.74 1250.21 1558.74 258.2 33	0.7 1.13
	1.0 1.54
127.00 5 0.89 2680 35 -222.3 -101.7 59.5 245.0 0.46 5.60 I 5.39 4.37 285.82 1541.49 1250.21 1572.45 258.2 3	1.0 1.42
	1.1 1.31
128.00 5 0.89 2680 35 -244.0 -107.3 61.4 266.2 0.44 5.60 I 5.45 4.37 285.82 1559.11 1250.21 1585.37 258.2 33	1.1 1.21
129.00 5 0.89 2680 35 -267.3 -113.5 63.3 288.9 0.42 5.60 I 5.51 4.37 285.82 1574.85 1250.21 1597.20 258.2 33	1.1 1.11
130.00 5 0.89 2680 35 -291.6 -119.9 65.2 312.8 0.41 5.60 I 5.56 4.37 285.82 1588.82 1250.21 1607.94 258.2 33	1.2 1.03
131.00 5 0.89 2680 35 -269.8 -114.2 44.9 280.8 0.42 5.60 I 5.51 4.37 285.82 1576.07 1250.21 1587.37 258.2 33	1.1 1.14
132.00 5 0.89 2680 35 -249.9 -109.1 43.5 261.0 0.44 5.60 I 5.47 4.37 285.82 1562.34 1250.21 1575.23 258.2 33	1.1 1.23
133.00 5 0.89 2680 35 -231.0 -104.4 42.1 242.3 0.45 5.60 I 5.41 4.37 285.82 1547.28 1250.21 1562.04 258.2 33	1.1 1.33
134.00 5 0.89 2680 35 -213.2 -99.9 40.8 224.6 0.47 5.60 I 5.36 4.37 285.82 1530.79 1250.21 1547.72 258.2 33	1.0 1.43
135.00 5 0.90 2710 30 -251.7 -126.7 45.5 263.7 0.50 5.54 I 5.24 4.38 205.36 1075.95 898.77 1087.83 258.2 3	9.3 1.21
136.00 5 0.90 2697 30 -232.0 -121.1 43.3 243.8 0.52 5.56 I 5.18 4.38 207.35 1073.81 907.25 1087.00 258.2 3	9.3 1.31
137.00 5 0.89 2684 30 -213.7 -116.0 42.0 225.8 0.54 5.59 I 5.11 4.37 209.36 1070.46 915.85 1085.67 258.2 3	9.3 1.41
138.00 5 0.89 2671 30 -196.7 -111.4 40.7 209.0 0.57 5.62 I 5.04 4.37 211.41 1065.76 924.58 1083.27 258.2 3	9.2 1.53
139.00 5 0.89 2658 30 -181.3 -107.3 39.4 193.7 0.59 5.64 I 4.96 4.37 213.48 1059.88 933.43 1079.94 258.2 3	9.2 1.65
140.00 5 0.88 2645 30 -168.1 -104.0 38.0 180.5 0.62 5.67 I 4.89 4.37 215.58 1053.48 942.42 1076.07 258.2 3	9.2 1.77
141.00 5 0.88 2633 30 -155.3 -100.8 36.0 167.3 0.65 5.70 I 4.80 4.37 217.55 1044.62 950.83 1069.17 258.2 3	9.1 1.91
142.00 5 0.87 2620 30 -143.2 -97.9 34.6 155.3 0.68 5.73 I 4.71 4.37 219.72 1034.95 960.08 1062.61 258.2 3	9.1 2.06
143.00 5 0.87 2607 30 -40.6 19.7 48.8 93.7 -0.49 5.75 II 13.05 4.37 221.91 2895.45 969.46 1749.48 258.2 33	1.4 3.43
144.00 5 0.86 2594 30 -53.5 25.9 47.0 97.4 -0.48 5.78 II 13.02 4.37 224.14 2918.60 978.99 1839.47 258.2 33	1.5 3.30
145.00 5 0.86 2581 30 -65.9 32.0 45.2 102.3 -0.49 5.81 II 13.04 4.37 226.41 2952.38 988.66 1947.11 258.2 33	
146.00 5 0.86 2568 30 -77.6 37.8 42.9 107.4 -0.49 5.84 II 13.06 4.37 228.70 2987.03 998.48 2070.63 258.2 33	1.7 3.14
147.00 5 0.85 2555 30 -88.5 43.1 41.1 113.6 -0.49 5.87 II 13.06 4.36 231.04 3017.64 1008.44 2190.45 258.2 33	1.7 3.14 1.8 3.00
149.00 5 0.84 2529 30 -108.4 52.8 37.5 126.3 -0.49 5.93 II 13.06 4.36 235.81 3079.24 1028.84 2423.12 258.2 33	1.8 3.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

v	а	h	h .				_					kσ	lr_		_	_	.	0.8f _d		
(m)	[m]	[m]	h _{anima} [mm]	t _w	σ ₁ (N/mm ²)	σ ₂ (N/mm ²)	τ (N/mm ²)	(N/mm ²)	Ψ	α		Nσ	k T	σ _{cr,0} (N/mm ²)	(N/mm ²)	τ _{cr} (N/mm ²)	σcr,id (N/mm ²)	(N/mm ²)	σ _{cr,red} (N/mm ²)	VERIFICA
					,	,	,	,	0.40	F 00		10.05	4.00	, ,	, ,	, ,	, ,	(' /	,	0.40
150.00	5	0.84	2516	30	-117.3	57.1	35.7	132.5	-0.49			13.05				1039.28		258.2	322.1	2.43
151.00	5	0.83	2504	30	-125.3	61.0	33.4	138.0		5.99		13.06		240.54		1049.06		258.2	322.1	2.33
152.00	5	0.83		30	-132.6	64.5	31.5	143.4	-0.49			13.05				1059.81		258.2	322.2	2.25
153.00	5	0.83		30	-139.1	67.6	29.6	148.3	-0.49	6.05		13.04		245.62		1070.73		258.2	322.2	2.17
154.00	5	0.82		30	-144.8	70.2	27.8	152.6	-0.49	6.09		13.03		248.22		1081.83		258.2	322.2	2.11
155.00	5	0.82		30	-149.8	72.5	25.9	156.4		6.12		13.01		250.86		1093.11		258.2	322.3	2.06
156.00	5	0.81	2439	30	-153.9	74.4	23.7	159.3	-0.48			13.01		253.54		1104.56		258.2	322.3	2.02
157.00	5	0.81		30	-157.1	75.8	21.8	161.5		6.18		12.99		256.26		1116.20		258.2	322.3	2.00
158.00	5	0.80		30	-159.4	76.6	19.8	163.1	-0.48	6.22		12.96	4.35	259.03		1128.03		258.2	322.3	1.98
159.00	5	0.80		30	-160.9	77.0	19.9	164.6	-0.48			12.93		261.84		1140.05		258.2	322.3	1.96
160.00	5	0.80		30	-161.5	77.0	21.5	165.8	-0.48	6.28		12.89		264.70		1152.26		258.2	322.3	1.94
161.00	5	0.79	2375	30	-161.2	76.4	23.2	166.1	-0.47	6.32		12.86	4.35	267.39	3437.91	1163.72	3225.37	258.2	322.3	1.94
162.00	5	0.79	2362	30	-159.8	75.3	25.0	165.6	-0.47	6.35	Ш	12.80	4.35	270.34	3461.46	1176.33	3218.28	258.2	322.3	1.95
163.00	5	0.78	2349	30	-157.6	73.6	26.8	164.3	-0.47	6.39	II	12.74	4.35	273.34	3482.16	1189.15	3204.67	258.2	322.3	1.96
164.00	5	0.78	2336	30	-154.4	71.3	28.6	162.1	-0.46	6.42	II	12.66	4.35	276.39	3499.76	1202.18	3183.95	258.2	322.3	1.99
165.00	5	0.78	2330	25	-178.8	88.8	36.5	189.6	-0.50	6.44	П	13.22	4.35	192.93	2550.03	839.08	2258.41	258.2	321.9	1.70
166.00	5	0.78	2330	25	-171.4	84.1	38.7	184.1	-0.49	6.44	Ш	13.12	4.35	192.93	2530.73	839.08	2201.19	258.2	321.9	1.75
167.00	5	0.78	2330	25	-162.7	78.4	40.9	177.5	-0.48	6.44	П	12.97	4.35	192.93	2502.81	839.08	2135.25	258.2	321.8	1.81
168.00	5	1.17	2330	25	-152.9	15.7	43.1	170.1	-0.10	4.29	П	8.39	4.45	85.74	719.10	381.20	687.02	258.2	314.0	1.85
169.00	5	1.17	2330	25	-141.9	13.1	45.4	162.2	-0.09	4.29	П	8.30	4.45	85.74	711.74	381.20	675.93	258.2	313.7	1.93
170.00	5	1.17	2330	25	-129.7	10.3	47.7	153.8	-0.08	4.29	П	8.19	4.45	85.74	702.61	381.20	663.34	258.2	313.3	2.04
171.00	5	1.17	2330	25	-116.4	7.3	50.9	146.0	-0.06	4.29	Ш	8.07	4.45	85.74	691.72	381.20	649.02	258.2	312.9	2.14
172.00	5	1.17	2330	25	-101.7	3.7	53.6	137.7	-0.04	4.29	П	7.88	4.45	85.74	675.55	381.20	633.26	258.2	312.4	2.27
173.00	5	1.17	2330	25	-85.9	-0.2	56.9	130.7	0.00	4.29	Ι	7.62	4.45	85.74	653.66	381.20	617.40	258.2	311.8	2.39
174.00	5	1.17	2330	25	-68.9	-4.3	60.2	125.0	0.06	4.29	Ι	7.23	4.45	85.74	619.77	381.20	602.88	258.2	311.3	2.49
175.00	5	1.17	2330	25	-50.9	-7.8	63.5	121.2	0.15	4.29	ı	6.71	4.45	85.74	575.05	381.20	595.22	258.2	311.0	2.57

9.6.1 Verifiche di instabilità presso - torsionali

La verifica viene eseguita in fase di getto della soletta. In questa condizione la piattabanda superiore compressa, non essendo vincolata dal getto superiore in calcestruzzo, tende ad instabilizzarsi. La verifica viene svolta secondo le formule dell'Eurocodice 3 cap. 5.5.2 e 5.5.4, considerando agenti sulla trave il peso della soletta nella Fase di Getto 1. Si adotta lo schema di trave continua su più appoggi; i trasversi vengono considerati come vincoli torsionali.

$$M_{b,Rd} = \chi_{LT} \beta_w W_{pl/y} f_y / \gamma_{M1}$$
 [5.48]

dove: $\beta_w = 1$ per sezioni trasversali di classe 1 o classe 2;

 $\beta_{\rm w} = W_{\rm e} l_{\rm v} / W_{\rm p} l_{\rm v}$ per sezioni trasversali di classe 3;

 $\beta_{\rm w} = W_{\rm eff.v}/W_{\rm p}\ell_{\rm v}$ per sezioni trasversali di classe 4;

XLT è il coefficiente di riduzione per l'instabilità flesso-torsionale.

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

(2) Il valore di χ_{LT} per la snellezza adimensionale appropriata λ̄_{LT} può essere determinato dalla equazione:

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi_{LT}^2 - \overline{\lambda}_{LT}^2\right]^{0.5}} \qquad \text{con la limitazione} \qquad \chi_{LT} \le 1$$
 [5.49]

nella quale:

$$\phi_{LT} = 0.5 [1 + \alpha_{LT} (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^{2}]$$

Per sezioni di classe 1 e 2:

$$\frac{N_{\text{Sd}}}{\chi_{\min} A f_{y} / \gamma_{\text{M1}}} + \frac{k_{y} M_{y, \text{Sd}}}{W_{\text{pf}, y} f_{y} / \gamma_{\text{M1}}} + \frac{k_{z} M_{y, \text{Sd}}}{W_{\text{pf}, z} f_{y} / \gamma_{\text{M1}}} \le 1$$
 [5.51]

$$\frac{N_{Sd}}{\chi_z A f_y / \gamma_{M1}} + \frac{k_{LT} M_{y.Sd}}{\chi_{LT} W_{pf,y} f_y / \gamma_{M1}} + \frac{k_z M_{z.Sd}}{W_{pf,z} f_y / \gamma_{M1}} \le 1$$
[5.52]

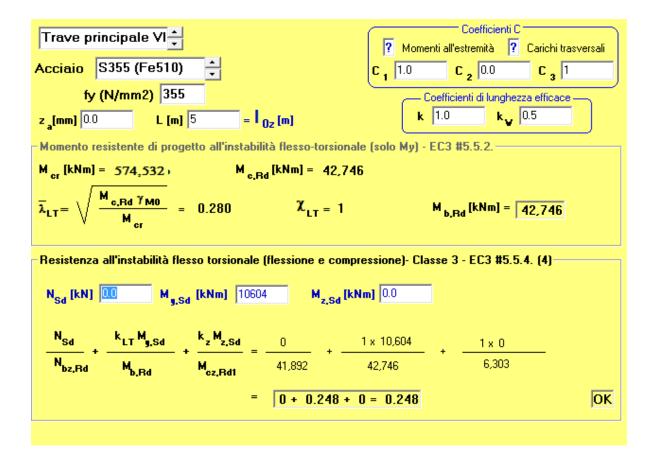
Per sezioni di classe 3:

$$\frac{N_{Sd}}{\chi_{min} A f_{y} / \gamma_{M1}} + \frac{k_{y} M_{y,Sd}}{W_{ef,y} f_{y} / \gamma_{M1}} + \frac{k_{z} M_{z,Sd}}{W_{ef,z} f_{y} / \gamma_{M1}} \le 1$$
 [5.53]

Per sezioni di classe 4:

$$\frac{N_{\text{Sd}}}{\chi_{\text{min}} A_{\text{eff}} f_{y} / \gamma_{\text{M1}}} + \frac{k_{y} (M_{y,\text{Sd}} + N_{\text{Sd}} e_{\text{Ny}})}{W_{\text{eff.}y} f_{y} / \gamma_{\text{M1}}} + \frac{k_{z} (M_{z,\text{Sd}} + N_{\text{Sd}} e_{\text{Nz}})}{W_{\text{eff.}z} f_{y} / \gamma_{\text{M1}}} \le 1$$
[5.56]

$$\frac{N_{\text{Sd}}}{\chi_{z} A_{\text{eff}} f_{y} / \gamma_{\text{M1}}} + \frac{k_{\text{LT}} (M_{y,\text{Sd}} + N_{\text{Sd}} e_{\text{Ny}})}{\chi_{\text{LT}} W_{\text{eff},y} f_{y} / \gamma_{\text{M1}}} + \frac{k_{z} (M_{z,\text{Sd}} + N_{\text{Sd}} e_{\text{Nz}})}{W_{\text{eff},z} f_{y} / \gamma_{\text{M1}}} \le 1$$
[5.57]



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

10 VERIFICHE DEGLI ELEMENTI SECONDARI

I diaframmi correnti sono realizzati con travi a doppio T, saldate alle travi principali, con passo di 5 metri. I controventi concentrici di piano sono invece realizzati con profili angolari accoppiati 2L 100x10. I trasversi correnti sono calcolati sulla base dei risultati forniti dal modello di calcolo.

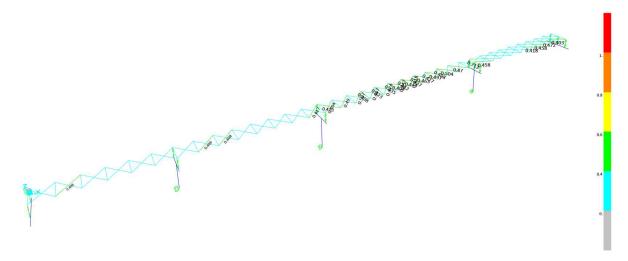
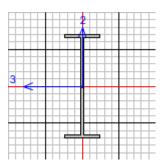



Figura 25 Andamento delle verifiche dei diaframmi

10.1 TRASVERSO PILA

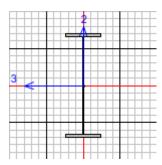
Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C X Mid: 130. Y Mid: 0. Z Mid: -0.36 Frame : 288
Length: 6.242 Combo: ENV SLU/SLV Design Type: Beam Frame Type: Non Dissipative Shape: H1500 : 0.48 Class: Class 1 Rolled : No Interaction=Method B MultiResponse=Envelopes P-Delta Done? No Consider Torsion? Yes Ignore Special EQ Load? No Ignore Seismic Code? No D/P Plug Welded? GammaM0=1. GammaM1=1. GammaM2=1.25q0=1.Omega=1. GammaRd=1.12 Ān/Ag=1. RLLF=1. PLLF=0.75 D/C Lim=0.95

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Aeff=0.083 A=0.083 It=3.287E-05 Iw=4.458E-04 E=210000000.	Iyy Izz Iyz	y=0. y=0.028 z=8.365E- z=0. =350000.	-04 izz=0 h=1.5	.587 .101	Wel, yy=0.03 Wel, zz=0.00 Wpl, yy=0.04 Wpl, zz=0.00	3 Wed 4 Av,	ff, yy=0.038 ff, zz=0.003 y=0.04 z=0.043
STRESS CHECK F Location 0.48		MOMENTS Ned -160.218		Med,zz 119.106		Ved, y 40.741	
PMM DEMAND/CAE D/C Ratio:		.28 = 0.0	008 + 0.201 +	0.071 <		OK eNy)/(Chi I	UT.
My,Rk/GammaM1)		+	kzz (Mz, Ed+N	JEd eNz)/(Mz,	Rk/GammaM1)	(NTC E	Eq C4.2.38)
AXIAL FORCE DE	SIGN						
		Ned		Nt,Rd			
Axial	-	Force -160.218	Capacity 28910.	Capacity 28910.			
		Npl,Rd 28910.		· · · · · · · · · · · · · · · · · · ·	Ncr,TF 74298.918	An/Ag 1.	
	Curve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb, Rd
Major (y-y				0.138	0.499	1.	28910.
MajorB(y-y	7) b	0.34	1515071.006 1515071.006	0.138	0.499	1.	28910.
Minor (z-z	z) c	0.49	44502.096 44502.096	0.806	0.973	0.658	19034.
			44502.096	0.806	0.973	0.658	19034.
Torsional	TF c	0.49	74298.918	0.624	0.798	0.771	22295.4
MOMENT DESIGN							
		Med	Med, span	Mm, Ed	Meq, Ed		
		Moment	Moment	Moment	Moment		
Major (y-y		612.429		1196.185			
Minor (z-z	2)	119.106	140.69	128.999	131.337		
		Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	(Capacity	Capacity	Capacity	Capacity		
Major (y-y		15513.05		15513.05	9131.15		
Minor (z-z	2) 1	1861.825	1861.825	1861.825			
	Curve	AlphaLT	LambdaBarLT	PhiLT	ChiLT	Iw	Mcr
LTB			0.786		0.589	4.458E-04	25137.555
Factors	kw	Psi	C2	C3			
	1.	1.132	0.459	0.525			
	za		zg	ZZ	zj		
	0.75	0.	0.75	0.	0.		
		kyy	kyz	kzy	kzz		
Factors		0.726	0.565	0.999	0.941		
SHEAR DESIGN							
		Ved	Ted	Vpl.Rd	Reduction	Stress	Status
		Force	Torsion	Capacity		Ratio	Check
Major (z)		501.359		8608.289		0.058	OK
Minor (y)		42.008	0.73	8082.9	0.999	0.005	OK

PROGETTO ESECUTIVO


RELAZIONE DI CACOLO

Vpl,Rd Eta LambdabarW Reduction 8608.289 1. 0.618

CONNECTION SHEAR FORCES FOR BEAMS

VMajor VMajor Left Right Major (V2) 505.481 451.906

10.2 TRASVERSO SPALLA

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station)
Units : KN, m, C

Frame : 3 X Mid: 0. Combo: SLU Design Type: Beam

Length: 6.242 Y Mid: 0. Shape: H1200 Frame Type: Non Dissipative Loc : 6.242 Z Mid: -0.36 Class: Class 1 Rolled: No

Interaction=Method B MultiResponse=Envelopes P-Delta Done? No

Consider Torsion? Yes

Ignore Seismic Code? No Ignore Special EQ Load? No D/P Plug Welded?

Yes

GammaM0=1. GammaM1=1. GammaM2=1.25 q0=1. Omega=1. GammaRd=1.12

An/Ag=1. RLLF=1. PLLF=0.75 D/C Lim=0.95

Aeff=0.054 eNy=0. eNz=0. A=0.054 Iyy=0.013 iyy=0.491 Wel,yy=0.022 Weff,yy=0.022

 It=1.894E-05
 Izz=4.274E-04
 izz=0.089
 We1,zz=0.002
 Weff,zz=0.002

 Iw=1.438E-04
 Iyz=0.
 h=1.2
 Wp1,yy=0.025
 Av,y=0.032

 E=210000000.
 fy=350000.
 fu=510000.
 Wp1,zz=0.003
 Av,z=0.022

STRESS CHECK FORCES & MOMENTS

Location Ned Med, yy Med, zz Ved, z Ved, y Ted 6.242 -131.754 -422.302 41.343 154.066 -10.158 -0.184

PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38)

D/C Ratio: 0.39 = 0.012 + 0.349 + 0.029 < 0.95 OK

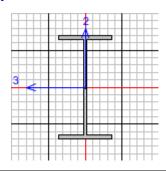
= NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT

My, Rk/GammaM1) + kzz (Mz, Ed+NEd eNz)/(Mz, Rk/GammaM1) (NTC Eq C4.2.38)

AXIAL FORCE DESIGN

Ned Nc,Rd Nt,Rd
Force Capacity Capacity
Axial -131.754 19040. 19040.

PROGETTO ESECUTIVO


RELAZIONE DI CACOLO

		Npl,Rd 19040.	Nu,Rd 19975.68	Ncr,T 36884.563	Ncr, TF 36884.563	An/Ag 1.	
(Curve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
Major (y-y)	b	0.34	697465.648	0.165	0.508	1.	19040.
MajorB(y-y)	b	0.34	697465.648	0.165	0.508	1.	19040.
Minor (z-z)	C	0.49	22737.771	0.915	1.094	0.591	11244.865
MinorB(z-z)	C	0.49	22737.771	0.915	1.094	0.591	11244.865
Torsional T	F c	0.49	36884.563	0.718	0.885	0.713	13579.739
MOMENT DESIGN							
HOHENT DECIGN		Med	Med, span	Mm, Ed	Meq,Ed		
		Moment	Moment	Moment	Moment		
Major (y-y)	_	422.302	-1103.519	-744.666	-968.066		
Minor (z-z)		41.343	41.343	30.818	32.923		
		Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd		
	C	apacity	Capacity	Capacity	Capacity		
Major (y-y)		8691.2	8691.2	8691.2	3151.422		
Minor (z-z)		1159.2	1159.2	1159.2			
(Curve :	AlphaLT	LambdaBarLT	PhiLT	ChiLT	Iw	Mcr
LTB	d	_	1.235	1.655	0.363	1.438E-04	5701.921
Factors	kw	Psi	C2	C3			
	1.	1.132	0.459	0.525			
	za 0.6	zs 0.	zg	zz 0.	zj		
	0.6	0.	0.6	0.	-1.		
		kyy	kyz	kzy	kzz		
Factors		0.733	0.485	0.998	0.808		
SHEAR DESIGN							
SHERIK DESIGN		Ved	Ted	Vpl.Rd	Reduction	Stress	Status
		Force	Torsion	Capacity	Factor	Ratio	Check
Major (z)		395.784	0.184	4526.424	1.	0.087	OK
Minor (y)		10.158	0.184	6466.32	1.	0.002	OK
		Tal Da	Eta	LambdabarW			
Reduction	4	Vpl,Rd 526.424	1.	0.742			

CONNECTION SHEAR FORCES FOR BEAMS

VMajor VMajor Left Right Major (V2) 431.068 395.784

10.3 TRASVERSO DI CAMPATA

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Italian NTC 2018 Units : KN, m,		CHECK (S	Summary for	Combo and Station	n)	
Frame: 8433 Length: 6.215 Loc: 6.215	X Mid: 100. Y Mid: 0.01 Z Mid: -0.3	3 Shape:	SLU HE600A Class 1	Design Type Frame Type Rolled:	e: Non D	issipative
Interaction=Metho Consider Torsion?		MultiF	Response=Env	elopes	P-De	lta Done? No
Ignore Seismic Co Yes		Ignore	e Special EQ	Load? No	D/P	Plug Welded?
GammaM0=1. q0=1. An/Ag=1.	GammaM1=1. Omega=1. RLLF=1.		M2=1.25 Rd=1.12).75	D/C Lim=0.95		
Aeff=0.023 A=0.023 It=4.070E-06 Iw=8.994E-06 E=210000000.	eNy=0. Iyy=0.001 Izz=1.127E-0 Iyz=0. fy=350000.	eNz=0. iyy=0. 4 izz=0. h=0.59 fu=510	.25 .071)	Wel, yy=0.005 Wel, zz=7.513E-0 Wpl, yy=0.005 Wpl, zz=0.001	Weff Av,y	,yy=0.005 ,zz=7.513E-04 =0.016 =0.009
STRESS CHECK FORC Location 6.215	ES & MOMENTS Ned -389.979	Med,yy 355.267	Med,zz 11.262	Ved,z 11.339	Ved, y 1.912	Ted -0.032
PMM DEMAND/CAPACI D/C Ratio:	0.442 = 0.09		0.024 <	q C4.2.38) 0.95 y (My,Ed+NEd eNy	OK)/(Chi_LT	
My, Rk/GammaM1)	+ k	zz (Mz,Ed+NE	Ed eNz)/(Mz,	Rk/GammaM1)	(NTC Eq	C4.2.38)
AXIAL FORCE DESIG		N- D-	ME DA			
Axial	Ned Force -389.979	Nc,Rd Capacity 7910.	Nt,Rd Capacity 7910.			
	Npl,Rd 7910.	Nu,Rd 8298.72	Ncr,T 12025.78	Ncr,TF 12025.78	An/Ag 1.	
Cu Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z) Torsional TF	rve Alpha a 0.21 a 0.21 b 0.34 b 0.34 b 0.34	Ncr 75761.144 75761.144 6046.941 6046.941 12025.78	LambdaBar 0.323 0.323 1.144 1.144 0.811	Phi 0.565 0.565 1.314 1.314 0.933	Chi 0.972 0.972 0.51 0.51	Nb,Rd 7688.751 7688.751 4030.83 4030.83 5676.447
MOMENT DESIGN Major (y-y)	Med Moment 355.267	Med, span Moment 355.267	Mm,Ed Moment 182.221	Meq,Ed Moment 266.45		
Major (y-y) Minor (z-z)	11.262 Mc,Rd Capacity 1872.5 404.6	11.262 Mv,Rd Capacity 1872.5 404.6	7.967 Mn,Rd Capacity 1872.5 404.6	8.626 Mb,Rd Capacity 1076.054		

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	Curve	-	LambdaBarLT	PhiLT	ChiLT	Iw	Mcr
LTB	b	0.34	1.036	1.178	0.575	8.994E-06	1746.28
Factors	kw	Psi	C2	C3			
	1.	1.132	0.459	0.525			
	za	zs	zq	ZZ	zj		
	0.295	0.	0.295	0.	0.		
		kyy	kyz	kzy	kzz		
Factors		0.623		-	0.87		
SHEAR DESIGN							
		Ved	Ted	Vpl.Rd	Reduction	Stress	Status
		Force	Torsion	Capacity	Factor	Ratio	Check
Major (z)		104.915	0.032		1.	0.056	OK
Minor (y)		3.162	0.032	3148.29	1.	0.001	OK
		Vpl,Rd	Eta	LambdabarW			
Reduction	1	1874.222	1.	0.568			

CONNECTION SHEAR FORCES FOR BEAMS

	VMajor	VMajor
	Left	Right
Major (V2)	119.511	104.915

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11 VERIFICHE A FATICA

Con riferimento al §5.1.4.3 delle NTC2018, per strutture, elementi strutturali e dettagli sensibili a fenomeni di fatica vanno eseguite opportune verifiche. Vengono svolte le verifiche a fatica per vita illimitata adottando gli spettri di carico associati. In assenza di studi specifici, volti alla determinazione dell'effettivo spettro di carico che interessa il ponte, si fa far riferimento ai modelli descritti nel seguito.

La verifica a vita illimitata si esegue controllando che per le tensioni normali sia verificata la seguente diseguaglianza:

$$\Delta \sigma_{\text{max}} = \gamma_{\text{Mf}} \times \Delta \sigma_{\text{max}} <= \Delta \sigma_{\text{D}}$$

oppure per le tensioni tangenziali:

$$\Delta \tau_{\text{max}} = \gamma_{\text{Mf}} \times \Delta \tau_{\text{max}} \leq \Delta \tau_{\text{D}}$$

dove sono, rispettivamente, i valori di progetto delle massime escursioni di tensioni normali e di tensioni tangenziali indotte nel dettaglio considerato dallo spettro di carico per le verifiche a vita illimitata, e $\Delta \sigma_D$ e $\Delta \tau_D$ i limiti di fatica ad ampiezza costante.

11.1 MODELLO DI CARICO A FATICA

Secondo quanto previsto dalle NTC18 al § 5.1.4.3, per la verifica a vita illimitata si prevede Modello di carico di fatica 1, assumendo il 70% dei carichi concentrati ed il 30% di quelli distribuiti applicati in asse alle corsie convenzionali individuate nell'analisi statica. Per verifiche locali si è considerato, se più gravoso, il modello costituito dall'asse singolo dello schema di carico 2, isolato e con carico al 70%, come illustrato nella figura seguente.

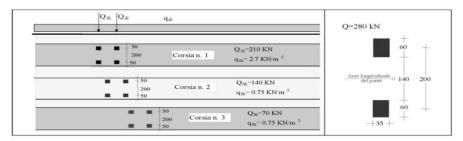


Figura 26 : Modello di carico a fatica 1

11.2 COEFFICIENTE DI SICUREZZA

Il coefficiente parziale di sicurezza per le verifiche a fatica γ_{Mf} è fornito dalla relazione:

 $\gamma_{Mf} = \gamma_f \times \gamma_M$

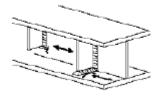
PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

ove γ_f è il coefficiente parziale relativo alle azioni di fatica e γ_M il coefficiente parziale relativo alla resistenza, che copre le incertezze nella valutazione dei carichi e delle tensioni e la possibile presenza di difetti nei particolari in esame.

Il coefficiente γ_{Mf} dipende sia dalla possibilità di individuare e riparare eventuali lesioni per fatica, sia dall'entità delle conseguenze della crisi per fatica dell'elemento o della struttura. A questo scopo, le strutture possono essere distinte, a seconda della loro sensibilità alla crisi per fatica, in strutture poco sensibili e in strutture sensibili.

Criteri di valutazione	Conseguenze della rottura							
	Conseguenze moderate	Conseguenze significative						
Danneggiamento accettabile	$\gamma_{\rm M} = 1,00$	$\gamma_{\rm M}=1.15$						
Vita utile a fatica	$\gamma_{\rm M} = 1.15$	$\gamma_{\rm M}=1,35$						


Tabella 5 : coefficiente di sicurezza da assumere per la verifica a fatica

Per i dettagli strutturali primari per cui le conseguenze della rottura per fatica risultano significative si assume un coefficiente di sicurezza pari a γ_{Mf} =1.35.

11.3 VERIFICA DEI DETTAGLI DI FATICA

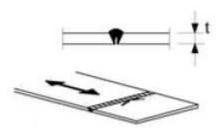
Nelle verifiche a fatica le tensioni considerate sono coerenti con quelle alle quali è riferita la curva S-N del dettaglio. Per le successive verifiche si farà riferimento a tre dettagli tipologici di classe 71 e 80 con resistenza non influenzata dallo spessore del metallo base, ritenuto ragionevolmente cautelativo ed inviluppante la maggior parte dei dettagli previsti per l'impalcato metallico. A tali dettagli si associa una curva S-N riferita alle tensioni nominali e pertanto ad esse si fa riferimento.

<u>Dettaglio 80:</u> per le giunzioni previste per realizzare gli attacchi degli irrigidimenti trasversali alle travi principali (in corrispondenza di anima e piattabande)

Caratteristiche resistenziali del dettaglio a fatica

 $\Delta \sigma_{C}$ = 80 MPa classe del particolare: limite di fatica per 2x10⁶ cicli

<u>Dettaglio 71</u>: per le giunzioni previste per connettere le travi longitudinali



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

 $\Delta \sigma_{\rm C}$ = 71 MPa classe del particolare: limite di fatica per 2x10⁶ cicli

Si riportano di seguito i delta di tensioni longitudinali di fibra assunte a base di verifica e per i vari componenti strutturali principali dell'impalcato metallico.

				FATIC	A	
Progressiva	Piattabanda sup.	Piattabanda inf.		SOLECITA	ZIONI	
X	S _{sup}	S _{inf}	M _{MAX}	M _{MIN}	T _{MAX}	T _{MIN}
[m]	[mm]	[mm]	[kNm]	[kNm]	[kN]	[kN]
0.00	30	40	96	-8	117	-891
1.00	30	40	816	-99	100	-808
2.00	30	40	1477	-186	100	-775
3.00	30	40	2073	-271	106	-739
4.00	30	40	2612	-355	120	-702
5.00	30	40	3141	-433	134	-635
6.00	30	40	3551	-514	161	-602
7.00	30	40	3907	-600	188	-570
8.00	20	40	4214	-686	217	-539
9.00	20	40	4471	-773	247	-509
10.00	20	40	4713	-857	277	-468
11.00	20	40	4854	-946	307	-437
12.00	20	40	4958	-1035	336	-408
13.00	20	40	5016	-1125	365	-381
14.00	20	40	5032	-1216	394	-355
15.00	20	40	5042	-1303	426	-335
16.00	20	40	4960	-1398	455	-308
17.00	20	40	4835	-1493	485	-281
18.00	20	40	4672	-1589	514	-256
19.00	20	40	4474	-1685	542	-232
20.00	20	40	4282	-1779	583	-226
21.00	20	40	4002	-1882	613	-202
22.00	20	40	3686	-1985	643	-179
23.00	20	40	3340	-2090	672	-157
24.00	20	40	2968	-2196	700	-137
25.00	40	50	2613	-2300	747	-138
26.00	40	50	2184	-2427	782	-117
27.00	40	50	1763	-2591	811	-97
28.00	40	50	1360	-2791	840	-78
29.00	40	50	1006	-3028	867	-60
30.00	40	50	792	-3279	962	-95
31.00	40	50	950	-2727	144	-896
32.00	40	50	1182	-2227	144	-875

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

				FATIC	A	
Progressiva	Piattabanda sup.	Piattabanda inf.		SOLECITA	ZIONI	
х	S _{sup}	S _{inf}	M _{MAX}	M _{MIN}	T _{MAX}	T _{MIN}
[m]	[mm]	[mm]	[kNm]	[kNm]	[kN]	[kN]
33.00	40	50	1448	-1828	145	-855
34.00	40	50	1738	-1657	147	-834
35.00	30	40	2083	-1511	146	-786
36.00	30	40	2392	-1403	151	-764
37.00	30	40	2721	-1343	163	-742
38.00	30	40	3063	-1312	180	-720
39.00	30	40	3401	-1297	199	-698
40.00	30	40	3762	-1285	208	-652
41.00	30	40	4053	-1284	226	-630
42.00	30	40	4318	-1286	244	-608
43.00	30	40	4559	-1289	262	-586
44.00	30	40	4775	-1293	283	-565
45.00	30	40	5001	-1366	302	-528
46.00	30	40	5152	-1488	323	-504
47.00	30	40	5272	-1610	344	-481
48.00	30	40	5362	-1733	366	-460
49.00	30	40	5425	-1857	388	-439
50.00	30	40	5495	-1978	413	-414
51.00	30	40	5488	-2109	436	-390
52.00	30	40	5448	-2241	459	-367
53.00	30	40	5377	-2373	482	-345
54.00	30	40	5278	-2507	505	-323
55.00	30	40	5188	-2637	539	-323
56.00	30	40	5018	-2780	564	-287
	30	40	4815	+	590	-264
57.00 58.00	30	40	4583	-2925 -3070	615	-242
	30			+		
59.00		40	4324	-3217	639	-220
60.00	30	40	4080	-3361	680	-218
61.00	30	40	3753	-3522	708	-197
62.00	30	40	3400	-3687	735	-176
63.00	30	40	3029	-3863	762	-156
64.00	30	40	2648	-4054	788	-137
65.00	50	60	2306	-4262	836	-140
66.00	50	60	1903	-4511	865	-120
67.00	50	60	1505	-4790	893	-101
68.00	50	60	1120	-5105	921	-82
69.00	50	60	782	-5453	948	-65
70.00	50	60	559	-5819	1050	-109
71.00	50	60	770	-5127	64	-1041
72.00	50	60	1031	-4482	69	-1021
73.00	50	60	1272	-3879	74	-1002
74.00	50	60	1577	-3323	87	-984
75.00	40	50	1948	-2807	74	-932
76.00	40	50	2273	-2503	85	-913
77.00	40	50	2608	-2292	97	-894
78.00	40	50	2952	-2108	111	-875
79.00	40	50	3308	-1947	126	-856

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

				FATIC	A				
Progressiva	Piattabanda sup.	Piattabanda inf.		SOLECITAZIONI MMAX MMIN TMAX T					
Х	S _{sup}	S _{inf}	M _{MAX}	M _{MIN}	T _{MAX}	T _{MIN}			
[m]	[mm]	[mm]	[kNm]	[kNm]	[kN]	[kN]			
80.00	40	50	3709	-1803	124	-812			
81.00	40	50	4058	-1689	137	-789			
82.00	40	50	4408	-1597	151	-770			
83.00	40	50	4760	-1528	165	-752			
84.00	40	50	5110	-1473	181	-735			
85.00	40	50	5479	-1421	189	-698			
86.00	40	50	5790	-1380	203	-681			
87.00	40	50	6081	-1342	217	-663			
88.00	40	50	6352	-1306	232	-646			
89.00	40	50	6605	-1270	248	-630			
90.00	40	50	6866	-1232	258	-601			
91.00	40	50	7070	-1200	274	-582			
92.00	40	50	7250	-1169	290	-564			
93.00	40	50	7409	-1138	306	-548			
94.00	40	50	7548	-1108	321	-533			
95.00	40	50	7694	-1075	336	-512			
96.00	40	50	7784	-1048	352	-492			
97.00	40	50	7850	-1021	368	-474			
98.00	40	50	7894	-995	384	-457			
99.00	40	50	7916	-970	401	-442			
100.00	40	50	7946	-996	419	-429			
101.00	40	50	7920	-1032	436	-410			
102.00	40	50	7870	-1069	453	-391			
103.00	40	50	7797	-1106	470	-374			
104.00	40	50	7705	-1143	487	-358			
105.00	40	50	7618	-1179	506	-352			
106.00	40	50	7478	-1219	525	-333			
107.00	40	50	7315	-1261	543	-315			
108.00	40	50	7129	-1303	562	-297			
109.00	40	50	6923	-1345	580	-280			
110.00	40	50	6736	-1387	606	-277			
111.00	40	50	6479	-1433	626	-259			
112.00	40	50	6199	-1480	646	-239			
113.00	40	50	5899	-1528	666	-224			
114.00	40	50	5582	-1526	685	-224			
	_	50		-1628	714	-212			
115.00	40		5289	+					
116.00	40	50	4932	-1691	735	-195 179			
117.00	40	50	4564	-1764	756	-178			
118.00	40	50	4192	-1853	777	-163			
119.00	40	50	3827	-1965	797	-148			
120.00	40	50	3506	-2093	833	-155			
121.00	40	50	3133	-2254	855	-140			
122.00	40	50	2765	-2439	877	-125			
123.00	40	50	2404	-2647	899	-111			
124.00	40	50	2055	-2880	920	-97			
125.00	50	70	1758	-3209	962	-108			
126.00	50	70	1416	-3740	985	-92			

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

				FATIC	A	
Progressiva	Piattabanda sup.	Piattabanda inf.		SOLECITA		
X	S _{sup}	S _{inf}	M _{MAX}	M _{MIN}	T _{MAX}	T _{MIN}
[m]	[mm]	[mm]	[kNm]	[kNm]	[kN]	[kN]
127.00	50	70	1085	-4317	1007	-77
128.00	50	70	793	-4940	1029	-64
129.00	50	70	549	-5605	1051	-54
130.00	50	70	449	-6268	787	-226
131.00	50	70	622	-5572	82	-887
132.00	50	70	897	-5160	87	-877
133.00	50	70	1115	-4780	88	-863
134.00	50	70	1406	-4432	97	-845
135.00	40	50	1774	-4102	76	-810
136.00	40	50	2103	-3844	87	-789
137.00	40	50	2440	-3619	101	-767
138.00	40	50	2781	-3424	116	-744
139.00	40	50	3120	-3249	131	-723
140.00	40	50	3485	-3068	125	-681
141.00	40	50	3784	-2929	139	-659
142.00	40	50	4062	-2794	154	-638
143.00	40	50	4319	-2662	170	-616
144.00	40	50	4557	-2531	187	-595
145.00	40	50	4812	-2394	184	-567
146.00	40	50	5010	-2287	200	-545
147.00	40	50	5183	-2182	217	-525
148.00	40	50	5332	-2078	234	-505
149.00	40	50	5459	-1975	251	-486
150.00	40	50	5604	-1869	245	-473
151.00	40	50	5695	-1780	262	-452
152.00	40	50	5760	-1693	280	-431
153.00	40	50	5799	-1607	298	-412
154.00	40	50	5814	-1521	316	-395
155.00	40	50	5847	-1434	309	-395
156.00	40	50	5827	-1357	327	-373
157.00	40	50	5778	-1280	345	-353
158.00	40	50	5701	-1204	365	-334
159.00	40	50	5597	-1129	384	-315
160.00	40	50	5511	-1052	384	-325
161.00	40	50	5371	-980	403	-302
162.00	40	50	5198	-909	423	-281
163.00	40	50	4993	-838	443	-260
164.00	40	50	4757	-767	466	-240
165.00	30	40	4543	-696	474	-252
166.00	30	40	4260	-627	496	-232
167.00	30	40	3943	-560	520	-206
168.00	30	40	3590	-493	546	-184
169.00	30	40	3200	-493	572	-162
170.00	30	40	2836	-429	603	-162
170.00	30		2366		634	-142
		40	1848	-292 -216		
172.00	30	40		-216	667	-116
173.00	30	40	1276	-139	704	-97

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

				FATIC	Α				
Progressiva	Piattabanda sup.	Piattabanda inf.		SOLECITA	ZIONI				
Х	S _{sup}	S _{inf}	M _{MAX} M _{MIN} T _{MAX} T _{MIN}						
[m]	[mm]	[mm]	[kNm]	[kNm]	[kN]	[kN]			
174.00	30	40	654	-65	744	-97			
175.00	30	40	58	-30	882	-141			

_															
Progr.							STAT	O TENSIO	NALE						
x	ФА Мах	О В Мах	σc Max	σ D Max	τMax	σ A Min	σ B Min	σ C Min	σ D Min	τMin	$\Delta\sigma_{\text{pA Inf}}$	$\Delta\sigma_{ m pB}$ Inf	$\Delta\sigma_{\text{p}}$ CSup	$\Delta\sigma_{ m pDInf}$	Δτ
[m]	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)
0.00	0.8	0.7	-0.05	-0.07	2.50	-0.1	-0.1	0.05	5.86	19.02	0.8	0.8	0.1	5.9	21.52
1.00	6.4	6.3	-0.46	-0.56	2.13	-0.9	-0.9	0.63	5.31	17.23	7.3	7.2	1.1	5.9	19.37
2.00	11.6	11.4	-0.84	-1.01	2.13	-1.7	-1.6	1.18	5.10	16.54	13.3	13.0	2.0	6.1	18.67
3.00	16.3	16.0	-1.18	-1.42	2.25	-2.5	-2.4	1.72	4.86	15.77	18.8	18.4	2.9	6.3	18.02
4.00	20.5	20.1	-1.48	-1.78	2.57	-3.3	-3.1	2.26	4.62	14.99	23.8	23.3	3.7	6.4	17.56
5.00	24.7	24.2	-1.78	-2.15	2.85	-4.0	-3.8	2.75	4.18	13.56	28.7	28.0	4.5	6.3	16.41
6.00	27.9	27.3	-2.01	-2.43	3.43	-4.7	-4.6	3.27	3.96	12.85	32.6	31.9	5.3	6.4	16.27
7.00	30.7	30.1	-2.22	-2.67	4.01	-5.5	-5.3	3.82	3.75	12.17	36.2	35.4	6.0	6.4	16.17
8.00	33.1	32.4	-2.59	-2.92	4.60	-6.3	-6.1	4.77	3.83	11.46	39.4	38.6	7.4	6.7	16.06
9.00	34.9	34.2	-2.76	-3.10	5.21	-7.1	-6.8	5.35	3.60	10.77	42.0	41.1	8.1	6.7	15.98
10.00	36.6	35.9	-2.92	-3.28	5.83	-7.8	-7.6	5.91	3.29	9.84	44.4	43.4	8.8	6.6	15.66
11.00	37.5	36.7	-3.02	-3.38	6.41	-8.6	-8.3	6.49	3.06	9.15	46.0	45.0	9.5	6.4	15.56
12.00	38.0	37.3	-3.09	-3.46	6.99	-9.3	-9.0	7.07	2.85	8.49	47.4	46.3	10.2	6.3	15.49
13.00	38.2	37.5	-3.14	-3.51	7.56	-10.1	-9.8	7.65	2.64	7.89	48.3	47.3	10.8	6.2	15.44
14.00	38.1	37.4	-3.16	-3.53	8.11	-10.8	-10.5	8.23	2.45	7.31	49.0	47.9	11.4	6.0	15.42
15.00	38.0	37.3	-3.18	-3.54	8.72	-11.5	-11.2	8.78	2.30	6.86	49.5	48.5	12.0	5.8	15.58
16.00	37.2	36.5	-3.14	-3.49	9.29	-12.3	-11.9	9.38	2.11	6.27	49.5	48.4	12.5	5.6	15.56
17.00	36.0	35.3	-3.07	-3.41	9.84	-13.1	-12.7	9.97	1.92	5.71	49.1	48.0	13.0	5.3	15.55
18.00	34.6	34.0	-2.97	-3.30	10.38	-13.8	-13.4	10.57	1.74	5.17	48.5	47.4	13.5	5.0	15.54
19.00	33.0	32.3	-2.85	-3.17	10.89	-14.6	-14.2	11.16	1.57	4.66	47.6	46.5	14.0	4.7	15.55
20.00	31.4	30.8	-2.74	-3.03	11.65	-15.3	-14.9	11.73	1.52	4.51	46.7	45.6	14.5	4.6	16.17
21.00	29.2	28.6	-2.57	-2.84	12.20	-16.1	-15.6	12.36	1.35	4.02	45.3	44.3	14.9	4.2	16.22
22.00	26.7	26.2	-2.37	-2.62	12.73	-16.9	-16.4	12.97	1.19	3.55	43.6	42.6	15.3	3.8	16.27
23.00	24.1	23.6	-2.15	-2.38	13.24	-17.7	-17.2	13.60	1.04	3.10	41.8	40.8	15.8	3.4	16.35
24.00	21.3	20.9	-1.92	-2.11	13.73	-18.5	-18.0	14.23	0.90	2.69	39.8	38.8	16.1	3.0	16.42
25.00	14.7	14.3	-1.82	-2.10	10.78	-15.5	-14.9	12.01	0.75	1.99	30.2	29.2	13.8	2.9	12.78
26.00	12.3	12.0	-1.52	-1.76	11.29	-16.3	-15.7	12.67	0.63	1.69	28.6	27.7	14.2	2.4	12.97
27.00	9.9	9.7	-1.23	-1.42	11.71	-17.4	-16.8	13.52	0.52	1.40	27.3	26.4	14.8	1.9	13.10
28.00	7.6	7.5	-0.95	-1.09	12.12	-18.8	-18.1	14.57	0.42	1.12	26.4	25.5	15.5	1.5	13.24
29.00	5.7	5.5	-0.70	-0.81	12.52	-20.4	-19.6	15.81	0.33	0.87	26.0	25.1	16.5	1.1	13.39
30.00	4.5	4.3	-0.55	-0.64	13.89	-22.1	-21.2	17.12	0.52	1.38	26.5	25.6	17.7	1.2	15.26
31.00	5.3	5.2	-0.66	-0.76	2.08	-18.3	-17.7	14.24	4.86	12.93	23.7	22.9	14.9	5.6	15.01
32.00	6.6	6.5	-0.82	-0.95	2.08	-15.0	-14.4	11.63	4.75	12.63	21.6	20.9	12.4	5.7	14.71
33.00	8.1	7.9	-1.01	-1.17	2.09	-12.3	-11.8	9.54	4.63	12.33	20.4	19.8	10.6	5.8	14.43
34.00	9.8	9.5	-1.21	-1.40	2.13	-11.1	-10.7	8.65	4.52	12.03	20.9	20.3	9.9	5.9	14.16

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Progr.															
riogi.							STAT	O TENSIO	NALE						
х	σ A Max	О В Мах	σ C Max	σ D Max	τMax	σ A Min	σ B Min	σ c Min	σ D Min	τ Min	$\Delta\sigma_{\text{pA Inf}}$	$\Delta\sigma_{\text{pB Inf}}$	$\Delta\sigma_{\text{p CSup}}$	$\Delta\sigma_{\text{pD Inf}}$	Δτ
[m]	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)
35.00	14.8	14.5	-1.27	-1.47	2.85	-12.5	-12.2	8.90	4.77	15.33	27.3	26.7	10.2	6.2	18.18
36.00	16.8	16.5	-1.46	-1.69	2.93	-11.6	-11.2	8.22	4.61	14.82	28.4	27.8	9.7	6.3	17.75
37.00	19.0	18.7	-1.66	-1.92	3.14	-11.0	-10.7	7.83	4.45	14.31	30.0	29.4	9.5	6.4	17.45
38.00	21.3	20.9	-1.88	-2.17	3.46	-10.7	-10.4	7.61	4.30	13.81	32.0	31.3	9.5	6.5	17.27
39.00	23.5	23.1	-2.09	-2.41	3.80	-10.5	-10.2	7.49	4.15	13.32	34.0	33.3	9.6	6.6	17.12
40.00	25.8	25.4	-2.32	-2.67	3.96	-10.3	-10.0	7.38	3.86	12.37	36.2	35.4	9.7	6.5	16.32
41.00	27.7	27.2	-2.50	-2.87	4.26	-10.3	-10.0	7.35	3.71	11.89	37.9	37.2	9.9	6.6	16.15
42.00	29.3	28.8	-2.68	-3.07	4.58	-10.2	-9.9	7.32	3.56	11.42	39.5	38.7	10.0	6.6	16.00
43.00	30.7	30.2	-2.83	-3.24	4.90	-10.2	-9.9	7.30	3.42	10.96	40.9	40.1	10.1	6.7	15.86
44.00	32.0	31.4	-2.97	-3.39	5.25	-10.2	-9.9	7.29	3.28	10.50	42.1	41.3	10.3	6.7	15.75
45.00	33.3	32.7	-3.12	-3.56	5.58	-10.7	-10.4	7.67	3.05	9.76	43.9	43.1	10.8	6.6	15.34
46.00	34.1	33.5	-3.22	-3.67	5.94	-11.5	-11.2	8.31	2.89	9.27	45.6	44.7	11.5	6.6	15.20
47.00	34.6	34.0	-3.30	-3.75	6.30	-12.4	-12.1	8.95	2.75	8.80	47.1	46.1	12.2	6.5	15.10
48.00	35.0	34.4	-3.37	-3.82	6.66	-13.3	-12.9	9.59	2.62	8.37	48.3	47.4	13.0	6.4	15.03
49.00	35.2	34.6	-3.41	-3.87	7.02	-14.2	-13.8	10.22	2.49	7.96	49.4	48.4	13.6	6.4	14.97
50.00	35.5	34.8	-3.46	-3.92	7.44	-15.0	-14.6	10.84	2.33	7.46	50.5	49.4	14.3	6.3	14.90
51.00	35.2	34.6	-3.46	-3.91	7.82	-15.9	-15.5	11.51	2.19	7.00	51.1	50.1	15.0	6.1	14.82
52.00	34.7	34.2	-3.44	-3.89	8.19	-16.8	-16.4	12.17	2.05	6.55	51.5	50.5	15.6	5.9	14.74
53.00	34.1	33.5	-3.40	-3.84	8.55	-17.7	-17.2	12.83	1.91	6.11	51.8	50.7	16.2	5.7	14.67
54.00	33.3	32.7	-3.35	-3.77	8.92	-18.6	-18.1	13.49	1.79	5.71	51.8	50.8	16.8	5.6	14.63
55.00	32.5	31.9	-3.29	-3.70	9.47	-19.4	-18.9	14.13	1.71	5.45	51.9	50.9	17.4	5.4	14.91
56.00	31.2	30.7	-3.19	-3.58	9.86	-20.4	-19.8	14.82	1.57	5.01	51.6	50.6	18.0	5.2	14.87
57.00	29.8	29.3	-3.06	-3.44	10.25	-21.3	-20.7	15.52	1.44	4.59	51.1	50.0	18.6	4.9	14.85
58.00	28.2	27.7	-2.92	-3.27	10.64	-22.2	-21.7	16.22	1.31	4.18	50.4	49.4	19.1	4.6	14.82
59.00	26.4	26.0	-2.76	-3.08	11.01	-23.2	-22.6	16.92	1.19	3.80	49.6	48.6	19.7	4.3	14.80
60.00	24.8	24.4	-2.61	-2.91	11.65	-24.1	-23.5	17.59	1.17	3.74	48.9	47.8	20.2	4.1	15.39
61.00	22.7	22.3	-2.40	-2.68	12.07	-25.1	-24.4	18.36	1.05	3.35	47.8	46.8	20.8	3.7	15.42
62.00	20.4	20.1	-2.18	-2.43	12.47	-26.1	-25.5	19.13	0.94	2.98	46.6	45.6	21.3	3.4	15.46
63.00	18.1	17.8	-1.94	-2.16	12.87	-27.2	-26.5	19.95	0.83	2.63	45.3	44.3	21.9	3.0	15.50
64.00	15.7	15.5	-1.70	-1.89	13.25	-28.4	-27.7	20.85	0.72	2.30	44.1	43.2	22.5	2.6	15.55
65.00	9.6	9.3	-1.60	-1.80	10.36	-21.2	-20.3	17.61	0.60	1.74	30.8	29.7	19.2	2.4	12.10
66.00	7.9	7.7	-1.32	-1.49	10.72	-22.4	-21.5	18.64	0.52	1.49	30.3	29.2	20.0	2.0	12.20
67.00	6.3	6.1	-1.05	-1.18	11.06	-23.8	-22.8	19.80	0.43	1.25	30.0	28.9	20.8	1.6	12.31
68.00	4.7	4.5	-0.78	-0.88	11.41	-25.3	-24.3	21.10	0.35	1.02	30.0	28.9	21.9	1.2	12.43
69.00	3.3	3.2	-0.54	-0.61	11.74	-27.1	-26.0	22.54	0.28	0.80	30.3	29.2	23.1	0.9	12.55
70.00	2.3	2.3	-0.39	-0.44	13.01	-28.9	-27.7	24.05	0.47	1.35	31.2	30.0	24.4	0.9	14.37
71.00	3.2	3.1	-0.53	-0.60	0.79	-25.5	-24.4	21.19	4.47	12.90	28.7	27.6	21.7	5.1	13.69
72.00	4.3	4.2	-0.72	-0.81	0.86	-22.3	-21.4	18.52	4.39	12.65	26.5	25.5	19.2	5.2	13.51
73.00	5.3	5.2	-0.88	-1.00	0.92	-19.3	-18.5	16.03	4.30	12.41	24.5	23.6	16.9	5.3	13.33
74.00	6.6	6.4	-1.10	-1.23	1.08	-16.5	-15.8	13.73	4.23	12.19	23.1	22.2	14.8	5.5	13.27
75.00	9.9	9.7	-1.26	-1.43	1.24	-16.7	-16.2	13.05	4.48	15.64	26.6	25.9	14.3	5.9	16.88
76.00	11.6	11.3	-1.48	-1.67	1.43	-14.9	-14.4	11.64	4.38	15.31	26.5	25.8	13.1	6.0	16.74

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Progr.															
riogi.							STAT	O TENSIO	NALE						
х	σ A Max	О В Мах	σ C Max	σ _D Max	τMax	σ A Min	σ B Min	σ c Min	σ D Min	τ Min	$\Delta\sigma_{\text{pA Inf}}$	$\Delta\sigma_{\text{pB Inf}}$	$\Delta\sigma_{\text{p CSup}}$	$\Delta\sigma_{ m pDInf}$	Δτ
[m]	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)
77.00	13.3	13.0	-1.69	-1.91	1.63	-13.7	-13.2	10.66	4.29	14.99	26.9	26.2	12.3	6.2	16.62
78.00	15.0	14.7	-1.92	-2.16	1.86	-12.6	-12.2	9.80	4.20	14.67	27.6	26.9	11.7	6.4	16.53
79.00	16.9	16.5	-2.15	-2.42	2.12	-11.6	-11.2	9.05	4.11	14.36	28.5	27.7	11.2	6.5	16.47
80.00	18.9	18.5	-2.41	-2.72	2.07	-10.7	-10.4	8.38	3.90	13.62	29.6	28.9	10.8	6.6	15.69
81.00	20.7	20.3	-2.64	-2.97	2.30	-10.1	-9.7	7.85	3.79	13.23	30.7	30.0	10.5	6.8	15.53
82.00	22.5	22.0	-2.86	-3.23	2.53	-9.5	-9.2	7.42	3.70	12.92	32.0	31.2	10.3	6.9	15.45
83.00	24.3	23.8	-3.09	-3.49	2.77	-9.1	-8.8	7.10	3.61	12.62	33.4	32.6	10.2	7.1	15.39
84.00	26.0	25.5	-3.32	-3.74	3.03	-8.8	-8.5	6.85	3.53	12.32	34.8	34.0	10.2	7.3	15.35
85.00	27.9	27.4	-3.56	-4.01	3.16	-8.5	-8.2	6.60	3.35	11.71	36.4	35.5	10.2	7.4	14.88
86.00	29.5	28.9	-3.76	-4.24	3.40	-8.2	-8.0	6.42	3.27	11.42	37.7	36.9	10.2	7.5	14.82
87.00	31.0	30.4	-3.95	-4.46	3.64	-8.0	-7.7	6.24	3.18	11.12	39.0	38.1	10.2	7.6	14.77
88.00	32.4	31.7	-4.12	-4.65	3.89	-7.8	-7.5	6.07	3.10	10.84	40.2	39.2	10.2	7.8	14.73
89.00	33.7	33.0	-4.29	-4.84	4.16	-7.6	-7.3	5.91	3.02	10.56	41.2	40.3	10.2	7.9	14.72
90.00	35.0	34.3	-4.46	-5.03	4.33	-7.3	-7.1	5.73	2.89	10.08	42.3	41.4	10.2	7.9	14.41
91.00	36.0	35.3	-4.59	-5.18	4.59	-7.1	-6.9	5.58	2.80	9.76	43.2	42.2	10.2	8.0	14.36
92.00	37.0	36.2	-4.71	-5.31	4.86	-7.0	-6.7	5.43	2.71	9.47	43.9	42.9	10.1	8.0	14.33
93.00	37.8	37.0	-4.81	-5.43	5.13	-6.8	-6.6	5.29	2.63	9.20	44.5	43.6	10.1	8.1	14.32
94.00	38.5	37.7	-4.90	-5.53	5.39	-6.6	-6.4	5.15	2.56	8.93	45.1	44.1	10.1	8.1	14.32
95.00	39.2	38.4	-5.00	-5.64	5.63	-6.4	-6.2	5.00	2.46	8.58	45.6	44.6	10.0	8.1	14.21
96.00	39.7	38.9	-5.05	-5.70	5.91	-6.2	-6.0	4.87	2.36	8.25	45.9	44.9	9.9	8.1	14.16
97.00	40.0	39.2	-5.10	-5.75	6.18	-6.1	-5.9	4.75	2.28	7.95	46.1	45.1	9.8	8.0	14.13
98.00	40.2	39.4	-5.13	-5.78	6.45	-5.9	-5.7	4.63	2.19	7.67	46.2	45.1	9.8	8.0	14.11
99.00	40.3	39.5	-5.14	-5.80	6.73	-5.8	-5.6	4.51	2.12	7.42	46.1	45.1	9.7	7.9	14.15
100.00	40.5	39.7	-5.16	-5.82	7.02	-5.9	-5.7	4.63	2.06	7.19	46.4	45.4	9.8	7.9	14.21
101.00	40.4	39.5	-5.14	-5.80	7.32	-6.1	-5.9	4.80	1.97	6.87	46.5	45.5	9.9	7.8	14.19
102.00	40.1	39.3	-5.11	-5.77	7.61	-6.4	-6.2	4.97	1.88	6.56	46.5	45.4	10.1	7.6	14.17
103.00	39.7	38.9	-5.06	-5.71	7.89	-6.6	-6.4	5.14	1.80	6.28	46.3	45.3	10.2	7.5	14.17
104.00	39.3	38.5	-5.00	-5.64	8.17	-6.8	-6.6	5.31	1.72	6.01	46.1	45.1	10.3	7.4	14.18
105.00	38.8	38.0	-4.95	-5.58	8.49	-7.0	-6.8	5.48	1.69	5.91	45.8	44.8	10.4	7.3	14.40
106.00	38.1	37.3	-4.86	-5.48	8.80	-7.3	-7.0	5.67	1.60	5.58	45.4	44.4	10.5	7.1	14.39
107.00	37.3	36.5	-4.75	-5.36	9.11	-7.5	-7.3	5.86	1.51	5.28	44.8	43.8	10.6	6.9	14.39
108.00	36.3	35.6	-4.63	-5.22	9.42	-7.8	-7.5	6.06	1.43	4.98	44.1	43.1	10.7	6.7	14.41
109.00	35.3	34.6	-4.50	-5.07	9.73	-8.0	-7.8	6.25	1.35	4.70	43.3	42.3	10.8	6.4	14.43
110.00	34.3	33.6	-4.37	-4.93	10.16	-8.3	-8.0	6.45	1.33	4.65	42.6	41.6	10.8	6.3	14.81
111.00	33.0	32.3	-4.21	-4.75	10.50	-8.5	-8.3	6.66	1.24	4.35	41.6	40.6	10.9	6.0	14.84
112.00	31.6	30.9	-4.03	-4.54	10.83	-8.8	-8.5	6.88	1.16	4.05	40.4	39.5	10.9	5.7	14.88
113.00	30.1	29.5	-3.83	-4.32	11.16	-9.1	-8.8	7.10	1.08	3.76	39.2	38.3	10.9	5.4	14.92
114.00	28.5	27.9	-3.63	-4.09	11.49	-9.4	-9.1	7.33	1.00	3.49	37.8	37.0	11.0	5.1	14.98
115.00	27.0	26.4	-3.43	-3.87	11.97	-9.7	-9.4	7.57	1.02	3.55	36.7	35.8	11.0	4.9	15.52
116.00	25.1	24.6	-3.20	-3.61	12.33	-10.1	-9.7	7.86	0.94	3.27	35.2	34.4	11.1	4.5	15.60
117.00	23.3	22.8	-2.96	-3.34	12.68	-10.5	-10.2	8.20	0.86	2.99	33.8	33.0	11.2	4.2	15.68
118.00	21.4	20.9	-2.72	-3.07	13.03	-11.0	-10.7	8.62	0.78	2.73	32.4	31.6	11.3	3.9	15.76

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Progr.															
i iogi.					1	1	STAT	O TENSIO	NALE	1	1	1	1	1	
х	ФА Мах	О В Мах	σc Max	σ _D Max	τмах	σ A Min	σ B Min	σ C Min	σ D Min	τMin	$\Delta\sigma_{\text{pA Inf}}$	$\Delta\sigma_{\text{pB Inf}}$	$\Delta\sigma_{\text{p CSup}}$	$\Delta\sigma_{ m pD\ Inf}$	Δτ
[m]	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)
119.00	19.5	19.1	-2.49	-2.80	13.37	-11.7	-11.3	9.14	0.71	2.48	31.2	30.4	11.6	3.5	15.85
120.00	17.9	17.5	-2.28	-2.57	13.97	-12.5	-12.1	9.73	0.75	2.60	30.3	29.6	12.0	3.3	16.57
121.00	16.0	15.6	-2.03	-2.30	14.34	-13.4	-13.0	10.48	0.67	2.34	29.4	28.6	12.5	3.0	16.68
122.00	14.1	13.8	-1.80	-2.03	14.71	-14.5	-14.1	11.34	0.60	2.09	28.6	27.9	13.1	2.6	16.80
123.00	12.3	12.0	-1.56	-1.76	15.08	-15.8	-15.3	12.31	0.53	1.85	28.0	27.3	13.9	2.3	16.93
124.00 125.00	10.5 6.4	10.3 6.2	-1.33 -1.28	-1.51 -1.42	15.43 10.26	-17.2 -14.0	-16.6 -13.4	13.39	0.47	1.63	27.6 20.4	26.9 19.5	14.7 14.1	2.0 1.9	17.07
126.00	5.1	5.0	-1.20	-1.42	10.26	-14.0	-15.4	14.95	0.43	0.98	21.5	20.5	16.0	1.5	11.48
127.00	3.9	3.8	-0.79	-0.88	10.74	-18.9	-18.0	17.26	0.32	0.82	22.8	21.8	18.1	1.2	11.56
128.00	2.9	2.8	-0.79	-0.64	10.74	-21.6	-20.6	19.75	0.32	0.69	24.5	23.3	20.3	0.9	11.66
129.00	2.0	1.9	-0.40	-0.44	11.21	-24.5	-23.3	22.41	0.22	0.58	26.5	25.2	22.8	0.7	11.79
130.00	1.6	1.6	-0.33	-0.36	8.39	-27.4	-26.1	25.06	0.94	2.41	29.0	27.7	25.4	1.3	10.80
131.00	2.3	2.2	-0.45	-0.50	0.87	-24.4	-23.2	22.27	3.68	9.45	26.6	25.4	22.7	4.2	10.33
132.00	3.2	3.1	-0.66	-0.73	0.92	-22.6	-21.5	20.63	3.64	9.35	25.8	24.6	21.3	4.4	10.28
133.00	4.0	3.9	-0.81	-0.90	0.93	-20.9	-19.9	19.11	3.58	9.20	24.9	23.8	19.9	4.5	10.13
134.00	5.1	4.9	-1.03	-1.14	1.03	-19.4	-18.4	17.72	3.51	9.01	24.5	23.4	18.7	4.6	10.04
135.00	8.2	8.1	-1.24	-1.38	0.94	-23.0	-22.2	18.37	3.75	9.97	31.2	30.3	19.6	5.1	10.91
136.00	9.8	9.6	-1.48	-1.64	1.08	-21.6	-20.9	17.29	3.67	9.75	31.5	30.6	18.8	5.3	10.83
137.00	11.5	11.2	-1.71	-1.90	1.25	-20.5	-19.8	16.36	3.58	9.52	32.0	31.0	18.1	5.5	10.77
138.00	13.2	12.9	-1.95	-2.17	1.44	-19.5	-18.9	15.56	3.49	9.29	32.7	31.7	17.5	5.7	10.73
139.00	14.8	14.5	-2.19	-2.44	1.65	-18.6	-18.0	14.83	3.41	9.06	33.5	32.5	17.0	5.9	10.71
140.00	16.7	16.3	-2.45	-2.73	1.57	-17.7	-17.1	14.07	3.23	8.58	34.3	33.4	16.5	6.0	10.16
141.00	18.2	17.8	-2.66	-2.97	1.76	-17.0	-16.4	13.49	3.14	8.35	35.2	34.2	16.2	6.1	10.10
142.00	19.7	19.2	-2.86	-3.19	1.96	-16.3	-15.7	12.93	3.05	8.11	35.9	35.0	15.8	6.2	10.07
143.00	21.0	20.6	-3.04	-3.40	2.18	-15.6	-15.1	12.38	2.96	7.87	36.6	35.6	15.4	6.4	10.05
144.00	22.3	21.8	-3.20	-3.59	2.41	-14.9	-14.4	11.83	2.88	7.65	37.2	36.2	15.0	6.5	10.06
145.00	23.7	23.2	-3.38	-3.80	2.38	-14.2	-13.7	11.25	2.75	7.32	37.9	36.9	14.6	6.6	9.70
146.00	24.8	24.3	-3.52	-3.96	2.59	-13.6	-13.2	10.80	2.66	7.07	38.5	37.5	14.3	6.6	9.66
147.00	25.9	25.3	-3.65	-4.10	2.83	-13.1	-12.6	10.35	2.58	6.84	38.9	37.9	14.0	6.7	9.67
148.00	26.8	26.2	-3.75	-4.22	3.07	-12.5	-12.1	9.91	2.49	6.62	39.3	38.3	13.7	6.7	9.69
149.00	27.6	27.0	-3.84	-4.33	3.31	-12.0	-11.6	9.46	2.41	6.41	39.6	38.5	13.3	6.7	9.71
150.00	28.5	27.9	-3.94	-4.45	3.25	-11.4	-11.0	9.00	2.36	6.27	39.9	38.9	12.9	6.8	9.52
151.00	29.1	28.5	-4.01	-4.52	3.48	-10.9	-10.5	8.61	2.26	6.01	40.0	39.0	12.6	6.8	9.50
152.00	29.6	29.0	-4.05	-4.58	3.74	-10.4	-10.1	8.23	2.17	5.77	40.1	39.0	12.3	6.8	9.51
153.00	30.0	29.3	-4.08	-4.62	4.00	-10.0	-9.6	7.85	2.09	5.54	40.0	39.0	11.9	6.7	9.55
154.00	30.3	29.6	-4.09	-4.63	4.27	-9.5	-9.2	7.47	2.01	5.34	39.8	38.8	11.6	6.6	9.61
155.00	30.6	29.9	-4.11	-4.66	4.21	-9.0	-8.7	7.08	2.02	5.37	39.7	38.6	11.2	6.7	9.58
156.00	30.7	30.0	-4.09	-4.65	4.46	-8.6	-8.3	6.73	1.92	5.10	39.3	38.3	10.8	6.6	9.57
157.00	30.7	30.0	-4.06	-4.62	4.74	-8.1	-7.9	6.38	1.82	4.85	38.8	37.8	10.4	6.4	9.59
158.00	30.5	29.8	-4.00	-4.56	5.04	-7.7	-7.4	6.03	1.73	4.61	38.2	37.2	10.0	6.3	9.65
159.00	30.1	29.4	-3.93	-4.48	5.34	-7.3	-7.0	5.68	1.65	4.37	37.4	36.4	9.6	6.1	9.71
160.00	29.8	29.1	-3.86	-4.42	5.36	-6.8	-6.6	5.33	1.70	4.53	36.6	35.7	9.2	6.1	9.89

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

D															
Progr.							STAT	O TENSIO	NALE						
x	Фа мах	О В Мах	σ c Max	σ _D Max	τMax	σ A Min	σ _{B Min}	σc Min	σ D Min	τ Min	$\Delta\sigma_{\text{pA Inf}}$	$\Delta\sigma_{\text{pB Inf}}$	$\Delta\sigma_{\text{p CSup}}$	$\Delta\sigma_{ m pD\ Inf}$	Δτ
[m]	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)
161.00	29.2	28.5	-3.76	-4.31	5.65	-6.4	-6.2	4.99	1.60	4.24	35.6	34.7	8.7	5.9	9.90
162.00	28.5	27.8	-3.64	-4.17	5.97	-6.0	-5.7	4.65	1.49	3.96	34.4	33.6	8.3	5.7	9.93
163.00	27.5	26.9	-3.49	-4.01	6.29	-5.5	-5.3	4.31	1.39	3.69	33.1	32.2	7.8	5.4	9.98
164.00	26.4	25.8	-3.32	-3.82	6.64	-5.1	-4.9	3.96	1.29	3.42	31.5	30.7	7.3	5.1	10.06
165.00	31.0	30.4	-2.91	-3.34	8.13	-5.6	-5.5	4.05	1.51	4.32	36.6	35.9	7.0	4.8	12.46
166.00	29.0	28.5	-2.73	-3.13	8.52	-5.1	-4.9	3.65	1.37	3.93	34.1	33.4	6.4	4.5	12.45
167.00	26.9	26.4	-2.53	-2.90	8.93	-4.5	-4.4	3.26	1.24	3.54	31.4	30.8	5.8	4.1	12.48
168.00	24.5	24.0	-2.30	-2.64	9.37	-4.0	-3.9	2.87	1.10	3.16	28.5	27.9	5.2	3.7	12.53
169.00	21.8	21.4	-2.05	-2.35	9.82	-3.5	-3.4	2.50	0.97	2.78	25.3	24.8	4.5	3.3	12.60
170.00	19.3	19.0	-1.82	-2.08	10.35	-3.0	-2.9	2.13	1.01	2.88	22.3	21.9	4.0	3.1	13.23
171.00	16.1	15.8	-1.52	-1.74	10.88	-2.4	-2.3	1.70	0.85	2.43	18.5	18.1	3.2	2.6	13.31
172.00	12.6	12.4	-1.18	-1.36	11.45	-1.7	-1.7	1.26	0.69	1.99	14.3	14.1	2.4	2.1	13.44
173.00	8.7	8.5	-0.82	-0.94	12.09	-1.1	-1.1	0.81	0.58	1.66	9.8	9.6	1.6	1.5	13.75
174.00	4.5	4.4	-0.42	-0.48	12.78	-0.5	-0.5	0.38	0.58	1.66	5.0	4.9	0.8	1.1	14.44
175.00	0.4	0.4	-0.04	-0.04	15.14	-0.2	-0.2	0.17	0.85	2.42	0.6	0.6	0.2	0.9	17.56

D			Δσο	80					Δσα	: 71		
Progressiva	Piatta	abanda	Sup.	Piat	tabanda	Inf.	Piatt	abanda	Sup.	Piat	tabanda	Inf.
х	Δσ _p c sup	Δσ	c/γ _{mf}	Δσ _{p B Inf}	Δσ	c/γ _{mf}	$\Delta\sigma_{\text{p DSup}}$	Δσ	c/γ _{mf}	$\Delta\sigma_{pA\ Inf}$	Δσ	c/γ _{mf}
[m]	(N/mm ²)	59.26	(N/mm ²)	(N/mm ²)	59.26	(N/mm ²)	(N/mm ²)	52.59	(N/mm ²)	(N/mm ²)	52.59	(N/mm ²)
0.00	0.10		Ok	0.81		Ok	5.93		Ok	0.82		Ok
1.00	1.09		Ok	7.16		Ok	5.87		Ok	7.31		Ok
2.00	2.02		Ok	13.02		Ok	6.11		Ok	13.31		Ok
3.00	2.90		Ok	18.37		Ok	6.28		Ok	18.77		Ok
4.00	3.74		Ok	23.27		Ok	6.40		Ok	23.77		Ok
5.00	4.54		Ok	28.04		Ok	6.33		Ok	28.65		Ok
6.00	5.28		Ok	31.91		Ok	6.39		Ok	32.61		Ok
7.00	6.03		Ok	35.43		Ok	6.42		Ok	36.20		Ok
8.00	7.36		Ok	38.55		Ok	6.75		Ok	39.41		Ok
9.00	8.11		Ok	41.07		Ok	6.70		Ok	41.98		Ok
10.00	8.83		Ok	43.42		Ok	6.57		Ok	44.39		Ok
11.00	9.51		Ok	45.02		Ok	6.45		Ok	46.02		Ok
12.00	10.17		Ok	46.33		Ok	6.31		Ok	47.37		Ok
13.00	10.79		Ok	47.26		Ok	6.16		Ok	48.32		Ok
14.00	11.39		Ok	47.89		Ok	5.98		Ok	48.97		Ok
15.00	11.96		Ok	48.45		Ok	5.85		Ok	49.54		Ok
16.00	12.52		Ok	48.39		Ok	5.60		Ok	49.48		Ok
17.00	13.04		Ok	48.02		Ok	5.33		Ok	49.11		Ok
18.00	13.54		Ok	47.38		Ok	5.04		Ok	48.46		Ok
19.00	14.02		Ok	46.50		Ok	4.73		Ok	47.57		Ok
20.00	14.47		Ok	45.65		Ok	4.55		Ok	46.71		Ok

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

			Δσο	80					Δσο	: 71		
Progressiva	Piatt	abanda	Sup.	Piat	tabanda	Inf.	Piatt	abanda	Sup.	Piat	tabanda	a Inf.
х	Δσ _p c Sup	Δσ	c/γ _{mf}	Δσ _{p B Inf}	Δσ	c/γ_{mf}	Δσ _{p DSup}	Δσ	c/γ _{mf}	Δσ _{pA Inf}	Δσ	ic/γ _{mf}
[m]	(N/mm ²)	59.26	(N/mm ²)	(N/mm ²)	59.26	(N/mm ²)	(N/mm ²)	52.59	(N/mm ²)	(N/mm ²)	52.59	(N/mm ²)
21.00	14.92		Ok	44.25		Ok	4.19		Ok	45.29		Ok
22.00	15.35		Ok	42.61	(Ok	3.81		Ok	43.62		Ok
23.00	15.75		Ok	40.79	(Ok	3.42		Ok	41.77		Ok
24.00	16.15		Ok	38.82	(Ok	3.02		Ok	39.77		Ok
25.00	13.83		Ok	29.23	(Ok	2.85		Ok	30.16		Ok
26.00	14.19		Ok	27.70	(Ok	2.39		Ok	28.61		Ok
27.00	14.75		Ok	26.45	(Ok	1.94		Ok	27.34		Ok
28.00	15.52		Ok	25.53	(Ok	1.52		Ok	26.42		Ok
29.00	16.51		Ok	25.13	(Ok	1.14		Ok	26.03		Ok
30.00	17.67		Ok	25.58	(Ok	1.15		Ok	26.51		Ok
31.00	14.90		Ok	22.87	(Ok	5.62		Ok	23.69		Ok
32.00	12.45		Ok	20.90		Ok	5.70		Ok	21.63		Ok
33.00	10.55		Ok	19.78		Ok	5.80		Ok	20.44		Ok
34.00	9.86		Ok	20.27		Ok	5.92		Ok	20.92		Ok
35.00	10.16		Ok	26.67	(Ok	6.24		Ok	27.30		Ok
36.00	9.68		Ok	27.77		Ok	6.30		Ok	28.41		Ok
37.00	9.49	,	Ok	29.39	(Ok	6.38		Ok	30.05		Ok
38.00	9.49		Ok	31.30		Ok	6.47		Ok	31.98		Ok
39.00	9.58	,	Ok	33.27	(Ok	6.56		Ok	33.99		Ok
40.00	9.70		Ok	35.41	(Ok	6.52		Ok	36.16		Ok
41.00	9.85	,	Ok	37.15	(Ok	6.58		Ok	37.93		Ok
42.00	10.00		Ok	38.70	(Ok	6.63		Ok	39.51		Ok
43.00	10.14		Ok	40.08	(Ok	6.66		Ok	40.91		Ok
44.00	10.27		Ok	41.30	(Ok	6.67		Ok	42.14		Ok
45.00	10.79		Ok	43.07	(Ok	6.61		Ok	43.95		Ok
46.00	11.53		Ok	44.71	(Ok	6.56		Ok	45.62		Ok
47.00	12.25		Ok	46.13	(Ok	6.50		Ok	47.07		Ok
48.00	12.95		Ok	47.35	(Ok	6.44		Ok	48.32		Ok
49.00	13.64		Ok	48.39	(Ok	6.35		Ok	49.38		Ok
50.00	14.30		Ok	49.44		Ok	6.25		Ok	50.45		Ok
51.00	14.97		Ok	50.09		Ok	6.10		Ok	51.11		Ok
52.00	15.61		Ok	50.50		Ok	5.94		Ok	51.54		Ok
53.00	16.23		Ok	50.73		Ok	5.75		Ok	51.77		Ok
54.00	16.84		Ok	50.79		Ok	5.55		Ok	51.84		Ok
55.00	17.42		Ok	50.87		Ok	5.41		Ok	51.93		Ok
56.00	18.01		Ok	50.55		Ok	5.15		Ok	51.60		Ok
57.00	18.58		Ok	50.05		Ok	4.87		Ok	51.10		Ok
58.00	19.14		Ok	49.39		Ok .	4.58		Ok	50.43		Ok
59.00	19.68		Ok	48.58		Ok 	4.27		Ok	49.61		Ok
60.00	20.20		Ok	47.85		Ok 	4.08		Ok	48.87		Ok
61.00	20.76		Ok	46.77		Ok	3.73		Ok	47.78		Ok
62.00	21.31		Ok	45.57	•	Ok	3.36		Ok	46.56		Ok

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

			Δσο	80					Δσο	: 71		
Progressiva	Piatt	abanda	Sup.	Piat	tabanda	Inf.	Piatt	abanda	Sup.	Piat	tabanda	a Inf.
х	Δσ _p c Sup	Δσ	c/γ _{mf}	Δσ _{p B Inf}	Δσ	c/γ _{mf}	Δσ _{p DSup}	Δσ	c/γ _{mf}	Δσ _{pA Inf}	Δσ	ic/γ _{mf}
[m]	(N/mm ²)	59.26	(N/mm ²)	(N/mm ²)	59.26	(N/mm ²)	(N/mm ²)	52.59	(N/mm ²)	(N/mm ²)	52.59	(N/mm ²)
63.00	21.89		Ok	44.33		Ok	2.99		Ok	45.31		Ok
64.00	22.54		Ok	43.16	(Ok	2.61		Ok	44.13		Ok
65.00	19.21		Ok	29.66	(Ok	2.41		Ok	30.75		Ok
66.00	19.96		Ok	29.21	(Ok	2.01		Ok	30.31		Ok
67.00	20.84		Ok	28.93	(Ok	1.61		Ok	30.04		Ok
68.00	21.87		Ok	28.87	(Ok	1.23		Ok	30.00		Ok
69.00	23.08		Ok	29.16	(Ok	0.89		Ok	30.33		Ok
70.00	24.44		Ok	30.00	(Ok	0.91		Ok	31.21		Ok
71.00	21.72		Ok	27.56	(Ok	5.08		Ok	28.66		Ok
72.00	19.24		Ok	25.54	(Ok	5.19		Ok	26.54		Ok
73.00	16.91		Ok	23.65	(Ok	5.30		Ok	24.55		Ok
74.00	14.83		Ok	22.23		Ok	5.46		Ok	23.06		Ok
75.00	14.32		Ok	25.91		Ok	5.90		Ok	26.65		Ok
76.00	13.11		Ok	25.78		Ok	6.05		Ok	26.49		Ok
77.00	12.35		Ok	26.23	(Ok	6.20		Ok	26.95		Ok
78.00	11.72		Ok	26.89		Ok	6.36		Ok	27.60		Ok
79.00	11.20	,	Ok	27.74	27.74 Ok		6.53		Ok	28.46		Ok
80.00	10.79		Ok	28.91		Ok	6.62		Ok	29.64		Ok
81.00	10.49		Ok	30.00		Ok	6.76		Ok	30.75		Ok
82.00	10.29		Ok	31.21	(Ok	6.93		Ok	31.98		Ok
83.00	10.19	,	Ok	32.57	(Ok	7.10		Ok	33.36		Ok
84.00	10.16		Ok	34.00	(Ok	7.27		Ok	34.82		Ok
85.00	10.16		Ok	35.54	(Ok	7.37		Ok	36.39		Ok
86.00	10.18		Ok	36.87	(Ok	7.51		Ok	37.73		Ok
87.00	10.19		Ok	38.10	(Ok	7.64		Ok	38.99		Ok
88.00	10.20		Ok	39.24	(Ok	7.76		Ok	40.15		Ok
89.00	10.19		Ok	40.30	(Ok	7.86		Ok	41.23		Ok
90.00	10.19		Ok	41.38	(Ok	7.92		Ok	42.33		Ok
91.00	10.17		Ok	42.21	(Ok	7.98		Ok	43.18		Ok
92.00	10.14		Ok	42.94		Ok	8.02		Ok	43.92		Ok
93.00	10.10		Ok	43.55	(Ok	8.06		Ok	44.54		Ok
94.00	10.05		Ok	44.07	(Ok	8.09		Ok	45.07		Ok
95.00	10.00		Ok	44.61	(Ok	8.09		Ok	45.62		Ok
96.00	9.93		Ok	44.90		Ok	8.07		Ok	45.92		Ok
97.00	9.85		Ok	45.08		Ok	8.03		Ok	46.09		Ok
98.00	9.75		Ok	45.14		Ok	7.98		Ok	46.16		Ok
99.00	9.65		Ok	45.12		Ok	7.92		Ok	46.13		Ok
100.00	9.79		Ok	45.41		Ok	7.88		Ok	46.43		Ok
101.00	9.94		Ok	45.49		Ok	7.77		Ok	46.51		Ok
102.00	10.08		Ok	45.45		Ok .	7.65		Ok	46.47		Ok
103.00	10.20		Ok	45.30		Ok	7.51		Ok	46.33		Ok
104.00	10.32		Ok	45.06		Ok	7.37		Ok	46.08		Ok

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

			Δσο	80					Δσο	: 71		
Progressiva	Piatt	abanda	Sup.	Piat	tabanda	Inf.	Piatt	abanda	Sup.	Piat	tabanda	a Inf.
х	Δσ _p c sup	Δσ	c/γ _{mf}	Δσ _{p B Inf}	Δσ	c/γ _{mf}	Δσ _{p DSup}	Δσ	c/γ _{mf}	Δσ _{pA Inf}	Δσ	rc/γ _{mf}
[m]	(N/mm ²)	59.26	(N/mm ²)	(N/mm ²)	59.26	(N/mm ²)	(N/mm ²)	52.59	(N/mm ²)	(N/mm ²)	52.59	(N/mm ²)
105.00	10.43		Ok	44.83		Ok	7.27		Ok	45.85		Ok
106.00	10.53		Ok	44.36	(Ok	7.08		Ok	45.38		Ok
107.00	10.61		Ok	43.79	(Ok	6.87		Ok	44.79		Ok
108.00	10.69		Ok	43.10	(Ok	6.65		Ok	44.09		Ok
109.00	10.75		Ok	42.32	(Ok	6.42		Ok	43.30		Ok
110.00	10.82		Ok	41.62	(Ok	6.27		Ok	42.59		Ok
111.00	10.87		Ok	40.60	(Ok	5.99		Ok	41.55		Ok
112.00	10.91		Ok	39.48		Ok	5.70		Ok	40.41		Ok
113.00	10.93		Ok	38.26	(Ok	5.40		Ok	39.17		Ok
114.00	10.96		Ok	36.96		Ok	5.09		Ok	37.85		Ok
115.00	11.00		Ok	35.79	(Ok	4.89		Ok	36.65		Ok
116.00	11.06		Ok	34.37	(Ok	4.55		Ok	35.21		Ok
117.00	11.17		Ok	32.96	(Ok	4.20		Ok	33.77		Ok
118.00	11.34		Ok	31.62		Ok	3.85		Ok	32.41		Ok
119.00	11.62		Ok	30.44	(Ok	3.51		Ok	31.21		Ok
120.00	12.01		Ok	29.57	(Ok	3.31		Ok	30.34		Ok
121.00	12.52		Ok	28.64	(Ok	2.97		Ok	29.40		Ok
122.00	13.13		Ok	27.86	(Ok	2.62		Ok	28.62		Ok
123.00	13.87		Ok	27.27		Ok	2.29		Ok	28.02		Ok
124.00	14.73		Ok	26.86	(Ok	1.97		Ok	27.63		Ok
125.00	14.11		Ok	19.52	(Ok	1.87		Ok	20.40		Ok
126.00	15.99		Ok	20.53	(Ok	1.53		Ok	21.48		Ok
127.00	18.05		Ok	21.77		Ok	1.20		Ok	22.81		Ok
128.00	20.33		Ok	23.34	(Ok	0.91		Ok	24.48		Ok
129.00	22.81		Ok	25.25		Ok	0.67		Ok	26.50		Ok
130.00	25.39		Ok	27.66	(Ok	1.30		Ok	29.04		Ok
131.00	22.73		Ok	25.37	(Ok	4.18		Ok	26.62		Ok
132.00	21.28		Ok	24.62	(Ok	4.37		Ok	25.82		Ok
133.00	19.92		Ok	23.80	(Ok	4.48		Ok	24.94		Ok
134.00	18.74		Ok	23.37	(Ok	4.65		Ok	24.47		Ok
135.00	19.61		Ok	30.29	(Ok	5.13		Ok	31.21		Ok
136.00	18.77		Ok	30.56	(Ok	5.31		Ok	31.47		Ok
137.00	18.07		Ok	31.05	(Ok	5.49		Ok	31.96		Ok
138.00	17.51		Ok	31.73	(Ok	5.67		Ok	32.65		Ok
139.00	17.02		Ok	32.52	(Ok	5.85		Ok	33.45		Ok
140.00	16.52		Ok	33.40	(Ok	5.96		Ok	34.35		Ok
141.00	16.15		Ok	34.22		Ok	6.11		Ok	35.17		Ok
142.00	15.79		Ok	34.97		Ok	6.24		Ok	35.94		Ok
143.00	15.42		Ok	35.65		Ok	6.36		Ok	36.63		Ok
144.00	15.03		Ok	36.25		Ok	6.47		Ok	37.23		Ok
145.00	14.63		Ok	36.91		Ok	6.55		Ok	37.91		Ok
146.00	14.32		Ok	37.47		Ok	6.62		Ok	38.48		Ok

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

		Δα	sc 80			Δσο	: 71	
Progressiva	Piatta	abanda Sup.	Piat	tabanda Inf.	Piatt	abanda Sup.	Piat	tabanda Inf.
х	Δσ _p c sup	$\Delta\sigma_{ m C}/\gamma_{ m mf}$	$\Delta\sigma_{p\;B\;Inf}$	$\Delta\sigma_{ m C}/\gamma_{ m mf}$	Δσ _{p DSup}	$\Delta\sigma_{ m C}/\gamma_{ m mf}$	Δσ _{pA} Inf	$\Delta\sigma_{ m C}/\gamma_{ m mf}$
[m]	(N/mm ²)	59.26 (N/mm ²) (N/mm²)	59.26 (N/mm²)	(N/mm ²)	52.59 (N/mm²)	(N/mm ²)	52.59 (N/mm²)
147.00	14.00	Ok	37.93	Ok	6.67	Ok	38.94	Ok
148.00	13.66	Ok	38.28	Ok	6.71	Ok	39.30	Ok
149.00	13.30	Ok	38.53	Ok	6.74	Ok	39.56	Ok
150.00	12.94	Ok	38.86	Ok	6.81	Ok	39.89	Ok
151.00	12.62	Ok	39.00	Ok	6.79	Ok	40.03	Ok
152.00	12.28	Ok	39.05	Ok	6.75	Ok	40.08	Ok
153.00	11.93	Ok	38.96	Ok	6.70	Ok	39.99	Ok
154.00	11.56	Ok	38.76	Ok	6.64	Ok	39.78	Ok
155.00	11.19	Ok	38.64	Ok	6.68	Ok	39.66	Ok
156.00	10.82	Ok	38.30	Ok	6.57	Ok	39.31	Ok
157.00	10.44	Ok	37.82	Ok	6.44	Ok	38.81	Ok
158.00	10.04	Ok	37.18	Ok	6.29	Ok	38.16	Ok
159.00	9.61	Ok	36.40	Ok	6.13	Ok	37.36	Ok
160.00	9.19	Ok	35.70	Ok	6.12	Ok	36.64	Ok
161.00	8.75	Ok	34.71	Ok	5.90	Ok	35.62	Ok
162.00	8.29	Ok	33.55	Ok	5.66	Ok	34.44	Ok
163.00	7.80	Ok	32.21	Ok	5.40	Ok	33.06	Ok
164.00	7.29	Ok	30.68	Ok	5.11	Ok	31.49	Ok
165.00	6.96	Ok	35.87	Ok	4.85	Ok	36.61	Ok
166.00	6.38	Ok	33.44	Ok	4.50	Ok	34.12	Ok
167.00	5.78	Ok	30.78	Ok	4.14	Ok	31.41	Ok
168.00	5.17	Ok	27.90	Ok	3.74	Ok	28.47	Ok
169.00	4.55	Ok	24.79	Ok	3.32	Ok	25.29	Ok
170.00	3.95	Ok	21.86	Ok	3.09	Ok	22.30	Ok
171.00	3.21	Ok	18.12	Ok	2.59	Ok	18.49	Ok
172.00	2.44	Ok	14.06	Ok	2.05	Ok	14.35	Ok
173.00	1.63	Ok	9.63	Ok	1.52	Ok	9.82	Ok
174.00	0.80	Ok	4.89	Ok	1.06	Ok	4.98	Ok
175.00	0.21	Ok	0.63	Ok	0.89	Ok	0.64	Ok

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

12 VERIFICA DELLE PIOLATURE

L'insieme dei connettori deve resistere alla forza di scorrimento totale V (longitudinal shear) risultante dal flusso degli sforzi di scorrimento tra la soletta in cls e la trave in acciaio. La forza di scorrimento totale V deve quindi equilibrare la risultante delle compressioni C della soletta.

I connettori presenti nel tratto compreso fra la sezione di momento nullo e la sezione di momento massimo (metà luce per trave semplicemente appoggiata con carico simmetrico) devono trasferire alla trave in acciaio la forza di scorrimento V. La resistenza dei connettori è determinata come il più piccolo dei seguenti valori [EC4 §6.3.2.1]

$$P_{Rd} = 0.8 \cdot f_u (\pi d^2 / 4) / \gamma_v$$

$$P_{Rd} = 0.29 \cdot \alpha \cdot d^2 \sqrt{(f_{ck} E_{cm})} / \gamma_V$$

Con $\alpha = 0.2 \cdot [(h / d) + 1] \text{ per } 3 \le h / d \le 4$

 α = 1 per h/d>4

h altezza del piolo

d diametro del singolo piolo

f_u resistenza ultima a trazione del piolo (≤ 500 N/mm2)

f_{ck} resistenza cilindrica caratteristica del cls considerato

E_{cm} valore medio del modulo secante del cls

 y_v =1,25 coeff. parziale di sicurezza

CAMPATA CENTRALE	
SEZIONE DI APPOGGIO	
2,721	
3.16	
1.69	
0.30	
1.382	
0.1752	
0.3285	
1451.54	
0.17	
4	
61.7	

Prd [N]	61690.33
---------	----------

CAMPATA DI RIVA	
SEZIONE DI APPOGGIO DI ESTREMITà	
TAGLIO MAX [KN]	1,961
Htot (m)	2.76
A _{soletta} (m ²)	1.69
S _{soletta} (m)	0.30
Yg (m)	1.382
S [m ³]	0.1322
J [m ⁴]	0.1704
q [kN/m]	1521.05
i [m]	0.17
n	4
Q [KN]	64.6

Prd [N]	64644.46
---------	----------

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

gv	1.25
fu	450
Area piolo [mm ²]	214.20
Diametro Pioli	16.52
Diametro Progetto	22

RESISTENZA DI UN PIOLO	
ft	450
gv	1.25
F	22
P _{rd,1} [KN]	109.42

RESISTENZA DEL CLS	
а	1
CLS soletta	C35/45
Fck	37.35
Ec	34625
P _{rd,2} [KN]	127.69

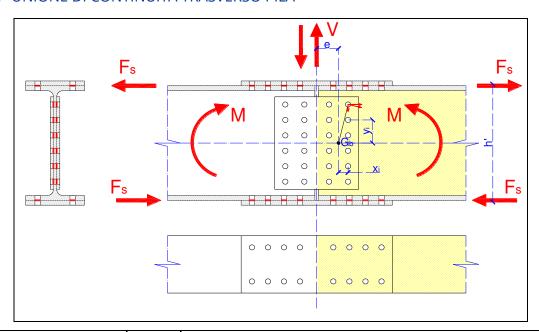
RESISTENZA MINIMA	
P _{rd min}	109.42
Q [KN]	61.69
VERIFICA	Verifica soddisfatta

gv	1.25
fu	450
Area piolo [mm ²]	224.46
Diametro Pioli	16.91
Diametro Progetto	22

RESISTENZA DI UN PIOLO	
ft	450
gv	1.25
F	22
P _{rd,1} [KN]	109.42

RESISTENZA DEL CLS	
а	1
CLS soletta	C35/45
Fck	37.35
Ec	34625
P _{rd,2} [KN]	127.69

RESISTENZA MINIMA	
P _{rd min}	109.42
Q [KN]	64.64
VERIFICA	Verifica soddisfatta



PROGETTO ESECUTIVO

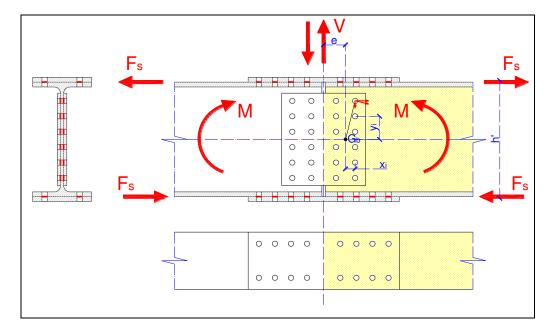
RELAZIONE DI CACOLO

13 VERIFICHE DEI COLLEGAMENTI

13.1 UNIONE DI CONTINUITÀ TRASVERSO PILA

Caratteristiche del profilo util	izzato	H1500		Caratteristiche di sollecitazione	
Altezza del profilo	h	150	[cm]	Taglio	49,000 [kg]
Larghezza dell'ala	b	40	[cm]	Momento flettente	166,000 [kgm]
Spessore dell'anima	tw	3	[cm]	Forza normale	100,600 [kg]
Spessore delle ali	tr	4	[cm]	Momento flettente agente sulle ali	116,929 [kgm]
Raggio di curvatura	r	0	[cm]	Momento flettente agente sull'anima	49,071 [kgm]
Altezza saldabile	h ₁	142	[cm]	Forza normale agente sulle ali	21,576 [kg]
Altezza interna	h ₂	142	[cm]	Forza normale agente sull'anima	57,447 [kg]
Area della sezione	Α	746	[cm ²]		
Momento d'inerzia xx	Jxx	2421528	[cm ⁴]		
Momento d'inerzia yy	Jyy	42986	[cm ⁴]	Caratteristiche dei materiali	
Modulo di resistenza xx	Wxx	32287	[cm ³]	Resitenza di calcolo	3,381 [kg/cm ²] Diametri foro
Modulo di resistenza yy	Wyy	2149	[cm ³]	Diametro bulloni d'ala	20 [mm] 22 [mm]
Raggio d'inerzia xx	İxx	56.97	[cm]	Diametro bulloni d'anima	20 [mm] 22 [mm]
Raggio d'inerzia yy	İyy	7.59	[cm]	Area resistente del bullone d'ala	2.45 [cm ²]
				Resistenza a taglio del bullone	4950 [kg/cm ²]
				Passo minimo dei bulloni d'ala	6 [cm]
Momento d'inerzia delle ali	Jxx (ali)	1705707	[cm ⁴]	Passo minimo dei bulloni d'anima	6 [cm]
Momento d'inerzia dell'anima	Jxx (anima)	715821	[cm ⁴]	Passo reale adottato (bulloni anima)	6 [cm] Passo idoneo
Area dell'anima	A (anima)	426	[cm ²]	Area resistente del bullone d'anima	2.45 [cm ²]
Area delle ali	A (ali)	320	[cm ²]		

Geometria del fazzoletto d'anima						
Altezza del fazzoletto	hc	110 [cm]				
Larghezza metà fazzoletto	Lc	20.25 [cm]				
Numero bulloni d'anima	n _{b,w}	30				
Ascissa baricentro bulloni	XG,b	10 [cm]				
Ordinata baricentro bulloni	y G,b	31.00 [cm]				
Spessore del fazzoletto	tcw	2 [cm]				



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Denominazione del giunto	TRASV. PILA		
Profilo utilizzato nel giunto	H1500		
Caratteristiche di sollecitazio	ne	Verifica del giunto d'anima	
Taglio	49,000 [kg]	Forza di taglio agente sul giunto	49,000 [kg]
Momento flettente	166,000 [kgm]	Forza normale agente sul giunto	57,447 [kg]
Forza normale	100,600 [kg]	Momento flettente agente sul giunto	49,071 [kgm]
Momento flettente agente sulle ali	116,929 [kgm]	Eccentricità del taglio	10 [cm]
Momento flettente agente sull'anima	49,071 [kgm]	Momento torcente di trasporto	4,900 [kgm]
Forza normale agente sulle ali	21,576 [kg]	Momento totale	53,971 [kgm]
Forza normale agente sull'anima	57,447 [kg]	Numero di sezioni resistenti per ogni bullone	2.00
		Forza verticale dovuta al taglio	816.67 [kg]
Caratteristiche dei materiali		Forza verticale dovuta alla normale	957.45 [kg]
		Forza orizzontale dovuta al momento torcente	8044.64 [kg]
Resistenza di calcolo dell'acciaio	3,381 [kg/cm2]	Forza verticale dovuta al momento torcente	31.41 [kg]
Resistenza a taglio dei bulloni	4,950 [kg/cm2]	Risultante di taglio sul bullone più caricato	9041.96 [kg]
Diametro bulloni d'ala	20 [mm]	Verifica di resistenza dei bulloni	3690.59 [kg/cmq]
Diametro bulloni d'anima	20 [mm]	Momento d'inerzia dei fazzoletti al netto dei fori	-23068.53 [cm4]
Diametro dei fori d'ala	22 [mm]	Area dei fazzoletti al netto dei fori	281.60 [cm2]
Diametro dei fori d'anima	22 [mm]	Verifica di resistenza dei coprigiunti	12667.31 [kg/cmq]
	. ,	Verifica di rifollamento dell'anima della trave o dei coprigi	
Verifica del giunto d'ala		Verifica del profilo al netto dei fori	
Forza di scorrimento su metà coprigiunto	101,665 [kg]	Momento d'inerzia della sezione depurata dai fori	1,883,896 [cm4]
Numero di sezioni resistenti per ogni bullone	2	Modulo di resistenza calcolato sull'estradosso dell'ala	25,119 [cm3]
Verifica di resistenza dei bulloni	1,297 [kg/cmq]	Modulo di resistenza calcolato sull'intradosso dell'ala	26,534 [cm3]
Larghezza coprigiunto sup.	40.0 [cm]	Tensione massima all'estradosso dell'ala	661 [kg/cmq]
Larghezza coprigiunto inf.	37.0 [cm]	Tensione massima all'intradosso dell'ala	626 [kg/cmq]
Spessore coprigiunto	2.0 [cm]	Tensione tangenziale media all'intradosso dell'ala	160 [kg/cmq]
Numero di bulloni per fila	2.0	Tensione ideale all'intradosso dell'ala	684 [kg/cmq]
Area netta coprig. Sup.	71.2 [cmg]	Tonorono resulto un infradosso dell'ula	OOT [Rg/Clifq]
Area netta coprig. Inf.	65.2 [cmq]		
Verifica semplice coprigiunto	1,427.9 [kg/cm2]		
Verifica doppio coprigiunto	745.3 [kg/cm2]		
Verifica di rifollamento dell'ala della trave o c	794.3 [kg/cm2]	Tutte le verifiche risultano soddisfatte	

13.2 UNIONE DI CONTINUITÀ TRASVERSO SPALLA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Caratteristiche del profilo utilizzato		H1200		Caratteristiche di sollecitazione
Altezza del profilo	h	120	[cm]	Taglio 44,100 [kg]
Larghezza dell'ala	b	40	[cm]	Momento flettente 142,000 [kgm]
Spessore dell'anima	tw	3	[cm]	Forza normale 82,500 [kg]
Spessore delle ali	tr	4	[cm]	Momento flettente agente sulle ali 116,639 [kgm]
Raggio di curvatura	r	0	[cm]	Momento flettente agente sull'anima 25,361 [kgm]
Altezza saldabile	hı	112	[cm]	Forza normale agente sulle ali 15,772 [kg]
Altezza interna	h2	112	[cm]	Forza normale agente sull'anima 50,956 [kg]
Area della sezione	Α	544	[cm ²]	
Momento d'inerzia xx	Jix	1311061	[cm ⁴]	
Momento d'inerzia yy	Jyy	42741	[cm ⁴]	Caratteristiche dei materiali
Modulo di resistenza xx	W _{xx}	21851	[cm ³]	Resitenza di calcolo 3,381 [kg/cm²] Diametri foro
Modulo di resistenza yy	Wyy	2137	[cm ³]	Diametro bulloni d'ala 20 [mm] 22 [mm]
Raggio d'inerzia xx	İxx	49.09	[cm]	Diametro bulloni d'anima 20 [mm] 22 [mm]
Raggio d'inerzia yy	İyy	8.86	[cm]	Area resistente del bullone d'ala 2.45 [cm²]
				Resistenza a taglio del bullone 4950 [kg/cm²]
	_			Passo minimo dei bulloni d'ala 6 [cm]
Momento d'inerzia delle ali	Jxx (ali)	1076907	[cm4]	Passo minimo dei bulloni d'anima 6 [cm]
Momento d'inerzia dell'anima	J _{xx} (anima)	234154	[cm ⁴]	Passo reale adottato (bulloni anima) 6 [cm] Passo idoneo
Area dell'anima	A (anima)	336	[cm ²]	Area resistente del bullone d'anima 2.45 [cm²]
Area delle ali	A (ali)	208	[cm ²]	

Geometria del fazzoletto d'ar	nima	
Altezza del fazzoletto	hc	80 [cm]
Larghezza metà fazzoletto	Lc	20.25 [cm]
Numero bulloni d'anima	n _{b,w}	30
Ascissa baricentro bulloni	XG,b	10 [cm]
Ordinata baricentro bulloni	y G,b	31.00 [cm]
Spessore del fazzoletto	tcw	2 [cm]

Denominazione del giunto TRASV. SPALLA Profilo utilizzato nel giunto H1200 Caratteristiche di sollecitazione Taglio 44 100 [kg] 142 000 [kgm] Momento flettente

Forza normale 82 500 [kg] Momento flettente agente sulle ali 116 639 [kgm] Momento flettente agente sull'anima 25 361 [kgm] orza normale agente sulle ali 15 772 [kg] orza normale agente sull'anima 50 956 [kg]

Caratteristiche dei materiali 3 381 [kg/cm2] Resistenza di calcolo dell'acciaio Resistenza a taglio dei bulloni 4 950 [kg/cm2] Diametro bulloni d'ala 20 [mm] Diametro bulloni d'anima 20 [mm] Diametro dei fori d'ala 22 [mm] 22 [mm] Diametro dei fori d'anima

Verifica del giunto d'ala Forza di scorrimento su metà coprigiunto 116 323 [kg] Numero di sezioni resistenti per ogni bullone 1 484 [kg/cmq] Verifica di resistenza dei bulloni Larghezza coprigiunto sup. 40 [cm] Larghezza coprigiunto inf. 37 [cm] 2 [cm] 2 Spessore coprigiunto Numero di bulloni per fila 71 [cmq] Area netta coprig. Sup. Area netta coprig. Inf. 65 [cmq] Verifica semplice coprigiunto 1 634 [kg/cm2] Verifica doppio coprigiunto Verifica di rifollamento dell'ala della trave o c 853 [kg/cm2]

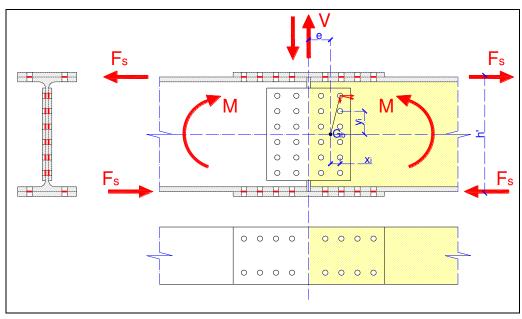
Verifica del giunto d'anima Forza di taglio agente sul giunto 44 100 [kg] Forza normale agente sul giunto 50 956 [kg] Momento flettente agente sul giunto 25 361 [kgm] Eccentricità del taglio 10 [cm] Momento torcente di trasporto 4 410 [kgm] Momento totale 29 771 [kgm] Numero di sezioni resistenti per ogni bullone 2 Forza verticale dovuta al taglio 735 [kg] Forza verticale dovuta alla normale 849 [kg] Forza orizzontale dovuta al momento torcente 2 820 [kg] 376 [kg] 3 834 [kg] Forza verticale dovuta al momento torcente Risultante di taglio sul bullone più caricato 1 <u>565 [kg/cmq]</u> Verifica di resistenza dei bulloni Momento d'inerzia dei fazzoletti al netto dei fori 170 667 [cm4] Area dei fazzoletti al netto dei fori 206 [cm2] 1 016 [kg/cmq] Verifica di resistenza dei coprigiunti 1 278 [kg/cmq] Verifica di rifollamento dell'anima della trave o dei coprigio

Verifica del profilo al netto dei fori Momento d'inerzia della sezione depurata dai fori 1192 648 [cm4] Modulo di resistenza calcolato sull'estradosso dell'ala 19 877 [cm3] 21 297 [cm3] Modulo di resistenza calcolato sull'intradosso dell'ala 714 [kg/cmq] Tensione massima all'estradosso dell'ala Tensione massima all'intradosso dell'ala 667 [kg/cmq] Tensione tangenziale media all'intradosso dell'ala 176 [kg/cmq] 733 [kg/cmq] Tensione ideale all'intradosso dell'ala

Tutte le verifiche risultano soddisfatte

MANDATARIA

909 [kg/cm2]



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

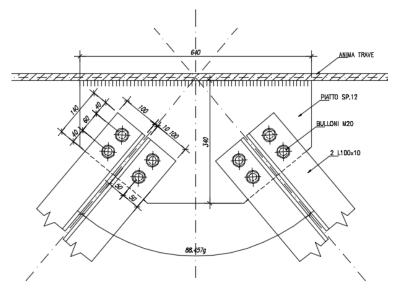
13.3 UNIONE DI CONTINUITÀ TRASVERSO CAMPATA

Caratteristiche del profilo utilizzato	ļ	HEB1000		Caratteristiche di sollecitazione
Altezza del profilo Larghezza dell'ala Spessore dell'anima Spessore delle ali Raggio di curvatura	h b tw tr	100 30 1.9 3.6 3	[cm] [cm] [cm] [cm]	Taglio 29,400 [kg] Momento flettente 74,700 [kgm] Forza normale 80,100 [kg] Momento flettente agente sulle ali 58,167 [kgm] Momento flettente agente sull'anima 16,533 [kgm]
Altezza saldabile Altezza interna	h1 h2	86.8 92.8	[cm]	Forza normale agente sulle ali 22,396 [kg] Forza normale agente sull'anima 35,308 [kg]
Area della sezione Momento d'inerzia xx	A J∞	400 644748	[cm ²] [cm ⁴]	
Momento d'inerzia yy	J _{yy}	16276	[cm ⁴]	Caratteristiche dei materiali
Modulo di resistenza xx Modulo di resistenza yy	W _{xx} W _{yy}	12895 1085	[cm ³] [cm ³]	Resitenza di calcolo 3,381 [kg/cm²] Diametri foro Diametro bulloni d'ala 20 [mm] 22 [mm]
Raggio d'inerzia xx	İxx	40.15	[cm]	Diametro bulloni d'anima 20 [mm] 22 [mm] Area resistente del bullone d'ala 2.45 [cm²]
Raggio d'inerzia yy	lyy	6.38	[cm]	Area resistente del bullone d'ala 2.45 [cm²] Resistenza a taglio del bullone 4950 Passo minimo dei bulloni d'ala [cm]
Momento d'inerzia delle ali	Jixx (ali)	502053	[cm ⁴]	Passo minimo dei bulloni d'anima 6 [cm]
Momento d'inerzia dell'anima	J _{xx} (anima)	142695	[cm ⁴]	Passo reale adottato (bulloni anima) 6 [cm] Passo idoneo
Area dell'anima	A (anima)	176.32	[cm ²]	Area resistente del bullone d'anima 2.45 [cm²]
Area delle ali	A (ali)	223.68	[cm ²]	

Geometria del fazzoletto d'a	nima	
Altezza del fazzoletto	hc	56 [cm]
Larghezza metà fazzoletto	Lc	20.25 [cm]
Numero bulloni d'anima	Nb,w	27
Ascissa baricentro bulloni	XG,b	10 [cm]
Ordinata baricentro bulloni	y G,b	28.00 [cm]
Spessore del fazzoletto	tcw	2 [cm]

MANDANTE

Sintagma


PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Denominazione del giunto	TRASV. CAMPATA		
Profilo utilizzato nel giunto	HEB1000		
Caratteristiche di sollecitazion	e	Verifica del giunto d'anima	
Saranonineno ar sonocinazion		Yourness doi: ground a cumina	
Taglio	29 400 [kg]	Forza di taglio agente sul giunto	29 400 [kg]
Momento flettente	74 700 [kgm]	Forza normale agente sul giunto	35 308 [kg]
Forza normale	80 100 [kg]	Momento flettente agente sul giunto	16 533 [kgm]
Momento flettente agente sulle ali	58 167 [kgm]	Eccentricità del taglio	10 [cm]
Momento flettente agente sull'anima	16 533 [kgm]	Momento torcente di trasporto	2 940 [kgm]
Forza normale agente sulle ali	22 396 [kg]	Momento totale	19 473 [kgm]
Forza normale agente sull'anima	35 308 [kg]	Numero di sezioni resistenti per ogni bullone	2
Ť		Forza verticale dovuta al taglio	544 [kg]
Caratteristiche dei materiali		Forza verticale dovuta alla normale	654 [kg]
		Forza orizzontale dovuta al momento torcente	3 278 [kg]
Resistenza di calcolo dell'acciaio	3 381 [kg/cm2]	Forza verticale dovuta al momento torcente	820 [kg]
Resistenza a taglio dei bulloni	4 950 [kg/cm2]	Risultante di taglio sul bullone più caricato	4 162 [kg]
Diametro bulloni d'ala	20 [mm]	Verifica di resistenza dei bulloni	1 699 [kg/cmg]
Diametro bulloni d'anima	20 [mm]	Momento d'inerzia dei fazzoletti al netto dei fori	58 539 [cm4]
Diametro dei fori d'ala	22 [mm]	Area dei fazzoletti al netto dei fori	145 [cm2]
Diametro dei fori d'anima	22 [mm]	Verifica di resistenza dei coprigiunti	1 227 [kg/cmq]
	. ,	Verifica di rifollamento dell'anima della trave o dei coprigi	2 190 [kg/cmq]
Verifica del giunto d'ala		Verifica del profilo al netto dei fori	
Forza di scorrimento su metà coprigiunto	82 736 [kg]	Momento d'inerzia della sezione depurata dai fori	571 148 [cm4]
Numero di sezioni resistenti per ogni bullone	2	Modulo di resistenza calcolato sull'estradosso dell'ala	11 423 [cm3]
Verifica di resistenza dei bulloni	1 055 [kg/cmq]	Modulo di resistenza calcolato sull'intradosso dell'ala	12 309 [cm3]
Larghezza coprigiunto sup.	30 [cm]	Tensione massima all'estradosso dell'ala	654 [kg/cmq]
Larghezza coprigiunto inf.	22 [cm]	Tensione massima all'intradosso dell'ala	607 [kg/cmq]
Spessore coprigiunto	2 [cm]	Tensione tangenziale media all'intradosso dell'ala	212 [kg/cmq]
Numero di bulloni per fila	2 [cm]	Tensione ideale all'intradosso dell'ala	709 [kg/cmq]
Area netta coprig. Sup.	51 [cmq]	Tonorono recordo un minudosso don una	707 [kg/cliiq]
Area netta coprig. Inf.	35 [cmq]		
Verifica semplice coprigiunto	1 616 [kg/cm2]		
Verifica doppio coprigiunto	955 [kg/cm2]		
Verifica di rifollamento dell'ala della trave o c	718 [kg/cm2]	Tutte le verifiche risultano soddisfatte	

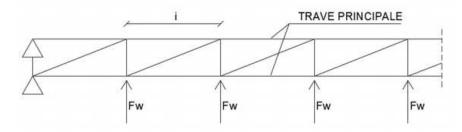
13.4 VERIFICA NODI CONTROVENTI ORIZZONTALI

La controventatura è soggetta all'azione del vento agente perpendicolarmente all'anima della trave principale.

Componente trasversale

 $q_{vb} = 2.03 \text{ kN/mq}$

PROGETTO ESECUTIVO


RELAZIONE DI CACOLO

$$F_w = h/2 \cdot q_{vb} \cdot i = (2.61/2) \cdot 2.03 \cdot 6.00 = 15.89 \text{ kN}$$

Con h = altezza media trave principale =2.61m

i = interasse medio controventi = 6.00m

La forza derivante dal vento viene applicata, nel piano orizzontale, ad una trave reticolare, in cui vengono considerati solo i controventi tesi:

La forza risultante nel controvento all'appoggio risulta pari ad Nk = 82 kN

Risulta dunque NED= Nk * 1.5 = 123 kN

Verifica Profilo L100x100x10

 $A = area lorda = 19.15 cm^2$

 d_0 = diametro foro = 22 mm

d = diametro bullone = 20 mm

 t_P = spessore profilo = 10mm

t_g = spessore piatto = 12mm

$$A_{net} = A - d_0 * t_P = 17.15 cmq$$

$$N_{pl,Rd} = A * f_{vk} / y_{M0} = 647 kN$$

$$N_{u,Rd}$$
= 0.9* A_{net} * f_{tk} / y_{M0} = 622 kN

 $N_{Rd} = min(N_{pl,Rd}; N_{u,Rd}) = 622 \text{ kN} > 123 \text{ kN}$

Verificato Verifica Bullone N_{ED}= 123 kN /4 =30.75 kN

L'eccentricità tra l'asse baricentrico dell'unione e le linee di truschino genera una componente orizzontale su ogni bullone, perpendicolare all'azione tagliante N_{ED} già calcolata.

La risultante su ogni bullone è dunque pari a:

 $R_{ed}=35.16kN$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Inioni a t	aglio					
fub =	1000	N/mm ²	tensione ultima del bullone		NTC18 (tab	. 11.3.XII.b
A _s =	245	mm ²	area sezione filettata del bullone		UNI 4534-6	4
n _{res} =	2		numero sezioni resistenti del bullone			
γ _{M2} =	1,25				NTC 18 (tal	o. 4.2.XII)
			classi 4.6-5.6-8.8	0,6		
	0,5	==>	classi 4.8-5.8-6.8-10.9	0,5		
F _{v,Rd} =	196,00	kN	resistenza a taglio di progetto del bullone	•		

Rifollam	ento			
fu =	510	N/mm ²	tensione di rottura del piatto	
t _p =	10	mm	spessore profilo	
t _o =	16	mm	spessore piatto	
t =	10	mm	spessore di calcolo	
fub =	1000	N/mm ²	tensione ultima del bullone	NTC 18 (tab. 11.3.XII.b)
d =	20	mm	diametro del bullone	141C 16 (tab. 11.5.All.b)
d0 =	22	mm	diametro del foro	
γ _{M2} =	1,25	,,,,,,	diametro del loto	NTC 18 (tab. 4.2.XII)
bulloni inte	erni			
p1 =	60	mm	passo dei bulloni nella direzione parall	ela a quella della forza
p2 =	40	mm	passo dei bulloni nella direzione ortogo	onale a quella della forza
α _b =	1			
kl =	0,85			
F _{b,Rd} =	68,99	kN	resistenza a rifollamento	
bulloni di b	oordo			
e1 =	40	mm	distanza dal bordo dei bulloni nella dire	ezione parallela a quella della forza
e2 =	40	mm	distanza dal bordo dei bulloni nella dire	ezione ortogonale a quella della forza
α _b =	1			
kl =	2,5			
F _{b,Rd} =	204,00	kN	resistenza a rifollamento	
F _{b. Rd} =	68,99	kN	resistenza a rifollamento	

FbRd= 68.99 kN > 35.16 kN Verificato

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica Piatto

L = Lunghezza lorda = $2 * p_1 * tg30° * 2 = 13.6 cm$

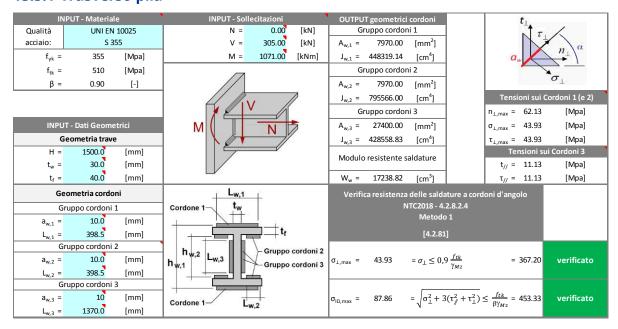
 d_0 = diametro foro = 22 mm

d = diametro bullone = 20 mm

t_g = spessore piatto = 12 mm

 L_{net} = Lunghezza netta = L - d₀= 11.4 cm

 $A_{net} = L_{net} * t_g = 13.68 \text{ cm}^2$

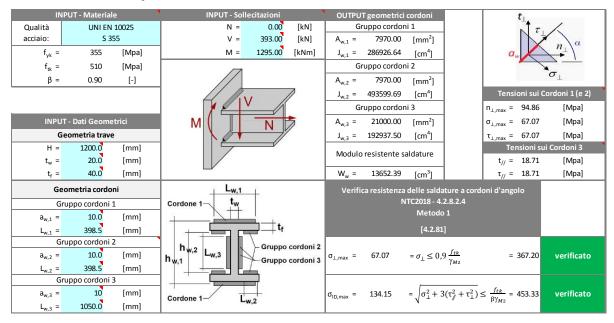

 $N_{Rd} = A_{net} * f_{yk} / y_{M0} = 462.51 kN > N_{ED} = 123 kN Verificato$

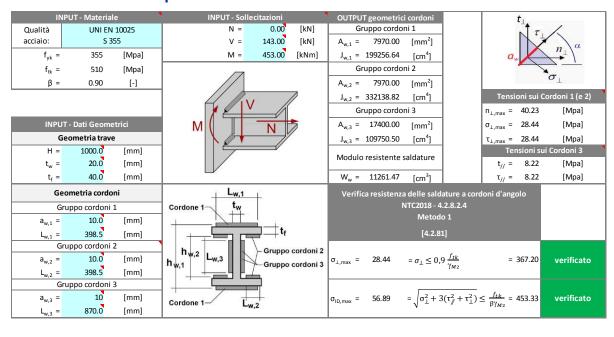
13.5 VERIFICA COLLEGAMENTO SALDATO A CORDONE D'ANGOLO

Si suppone convenzionalmente che lo sforzo di taglio sia assorbito soltanto dai cordoni dell'anima e che le corrispondenti tensioni tangenziali siano uniformante distribuite nelle relative sezioni di gola.

Le tensioni normali dovute al momento flettente si calcolato invece prendendo in considerazione i cordoni posti sulle ali.

13.5.1 Trasverso pila




PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

13.5.2 Trasverso spalla

13.5.3 Trasverso campata

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

14 SOLETTA DI IMPALCATO

L'impalcato in esame è costituito da 2 travi in acciaio poste ad interasse di 6.00 m, con sbalzi di 2.625 m, per una larghezza complessiva di impalcato pari a 11.25 m. La soletta in c.a. gettata in opera ha spessore 30 cm.

La ricerca delle sollecitazioni prodotte nella soletta è effettuato mediante apposito modello spaziale a piastre, eseguito utilizzando il software di modellazione agli elementi finiti Sap2000.

14.1 ANALISI DEI CARICHI DELLA SOLETTA

Per quanto concerne i sovraccarichi accidentali indotti dal traffico, relativamente agli effetti locali, si utilizzano gli schemi di carico convenzionali 1 e 2 come indicato nella normativa vigente (nuove norme tecniche per le costruzioni 'NTC18') per ponti di prima categoria.

In particolare, lo Schema di Carico 1 è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti come già mostrato nel paragrafo della presente relazione relativo all'analisi dei carichi mobili accidentali. Questo schema si assume a riferimento sia per le verifiche globali, sia per le verifiche locali.

Posizione	Carico asse Qik [kN]	$q_{ik} [kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Figura 27 Intensità dei carichi Qik e qik per le diverse corsie

Relativamente allo Schema di carico 2, questo è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m. Questo schema va considerato autonomamente con asse longitudinale nella posizione più gravosa ed è da assumere a riferimento solo per verifiche locali.

14.2 ANALISI DELLE SOLLECITAZIONI

Definiti gli schemi di carico, sopra citati, si procede alla definizione delle combinazioni allo SLU e allo SLE-Rara, SLE-Frequente e SLE-Quasi Permanente, applicando i coefficienti conformi alla normativa vigente.

Si prevede un'armatura costituita da ϕ 20/10 in zona tesa (sezione 1), ad eccezione delle zone di estremità e delle pile dove si prevede un'armatura costituita da ϕ 24/10 in zona tesa (sezione 2).

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Di seguito i diagrammi dei momenti massimi in campata e all'appoggio, relativi alla combinazione di carico SLU/SLV, SLE_FR, SLE_QP.

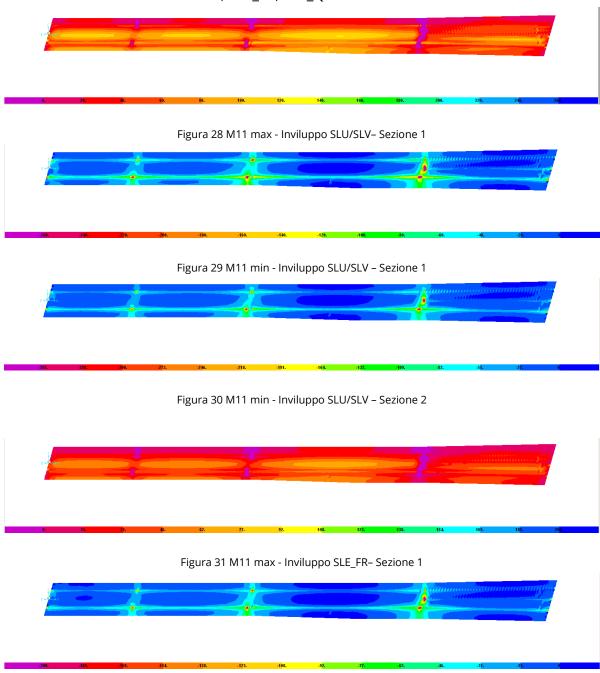


Figura 32 M11 min - Inviluppo SLE_FR- Sezione 1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

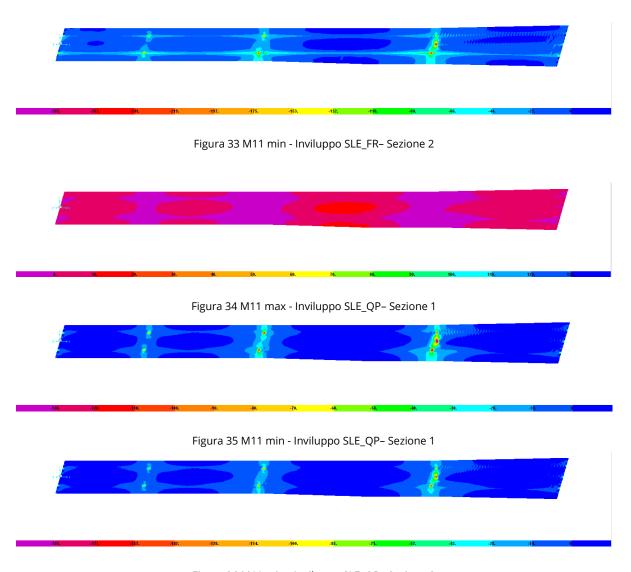


Figura 36 M11 min - Inviluppo SLE_QP- Sezione 2

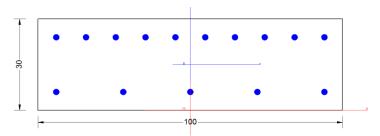
14.3 VERIFICA DELLA SOLETTA

Si riportano di seguito le verifiche strutturali eseguite in RC-SEC.

14.3.1 Armatura di appoggio (Sezione 1)

Armatura tesa Φ20/10

Armatura compressa Φ 20/20



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C35/45	
	Resis. compr. di progetto fcd:	21.170	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	34625.0	MPa
	Resis. media a trazione fctm:	3.350	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	224.10	daN/cm²
	Ap.Fessure limite S.L.E. comb. Frequen	nti: 0.300	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C35/45
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	30.0
3	50.0	30.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-44.0	6.0	20
2	-44.0	24.0	20
3	44.0	24.0	20
4	44.0	6.0	20

DATI GENERAZIONI LINEARI DI BARRE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NIOD	Norman at the second second at the set of attacks at the second

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)						
	Momento flettente	e [kNm] intorno all'a	sse x princ. d'inerzia	1			
	con verso positivo	o se tale da comprin	nere il lembo sup. de	ella sez.			
			, ,				
	Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia x			
N	Mx	Му	Vy	Vx			
	N	Momento flettent con verso positivo Momento flettent con verso positivo Componente del Componente del	Momento flettente [kNm] intorno all'a: con verso positivo se tale da comprin Momento flettente [kNm] intorno all'a: con verso positivo se tale da comprin Componente del Taglio [kN] parallela Componente del Taglio [kN] parallela	Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. de Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro Componente del Taglio [kN] parallela all'asse princ.d'iner Componente del Taglio [kN] parallela all'asse princ.d'iner			

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

-258.00

0.00

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

0.00

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

0.00

0.00

N°Comb. N Mx My 1 0.00 -190.00 (-65.25) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 0.00 -125.00 (-65.25) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.0 cm Interferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

MANDATARIA

Му

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) My Res Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	-258.00	0.00	0.00	-258.07	0.00	1.00	31.4(4.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d	Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.275	-50.0	0.0	0.00031	-44.0	6.0	-0.00924	44.0	24.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb h C Rid С y/d 0.00000000 -0.000530845 0.003500000 1 0.275 0.783

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 15.26 50.0 -300.4 34.2 31.4 0.0 24.0 650

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

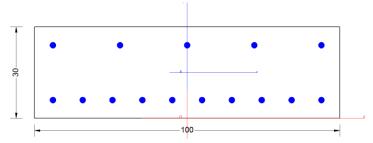
PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

e1		Massima def	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata											
e2		Minima defor	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata											
k1		= 0.8 per ba	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]											
kt		= 0.4 per co	mb. quasi p	ermanenti	/ = 0.6 pc	er comb.fred	uenti [cfr. eq.(7.9)EC2]							
k2		= 0.5 per fles	sione; =(e1	+ e2)/(2*e	1) per tra	zione eccen	trica [eq.(7.13)EC2]							
k3		= 3.400 Coef	f. in eq.(7.1	1) come da	annessi	nazionali								
k4		= 0.425 Coef												
Ø		Diametro [mr	n] equivaler	ite delle ba	irre tese	comprese ne	ell'area efficace Ac eff [eq.(7.11)E	C2]						
Cf		Copriferro [m	nm] netto cal	colato con	riferimer	nto alla barra	più tesa							
e sm	- e cm	Differenza tra	a le deforma	zioni medi	e di accia	aio e calcest	ruzzo [(7.8)EC2 e (C4.1.7)NTC]							
		Tra parentes	i: valore min	imo = 0.6 S	Smax / E	s [(7.9)EC	2 e (C4.1.8)NTC]							
sr ma	ax	Massima dist	tanza tra le t	fessure [mr	m]									
wk		Apertura fess	sure in mm o	calcolata =	sr max*(e_sm - e_cn	n) [(7.8)EC2 e (C4.1.7)NTC]. Valo	re limite	tra parentesi					
Mx fe	ess.	Componente												
My fe	ess.	Componente	momento d	i prima fes	surazione	e intorno all'a	asse Y [kNm]							
-							-							
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess			
											•			
1	S	-0.00216	0	0.500	20.0	50	0.00124 (0.00090)	240	0.297 (0.30)	-65.25	0.00			
•	Ŭ	0.00210	·	0.000	_0.0	00	0.00121 (0.0000)		0.201 (0.00)	00.20	0.00			

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	10.04	50.0	0.0	-197.6	34.2	24.0	650	31.4


COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00142	0	0.500	20.0	50	0.00081 (0.00059)	240	0.195 (0.20)	-65.25	0.00

14.3.2 Armatura di campata (Sezione 1)

Armatura tesa Φ 20/10

Armatura compressa Φ20/20

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C35/45	
	Resis. compr. di progetto fcd:	21.170	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	34625.0	MPa
	Resis. media a trazione fctm:	3.350	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	224.10	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freq	uenti: 0.300	mm

MANDATARIA

Sc limite S.L.E. comb. Q.Permanenti:

0.00 Mpa

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00

MPa
391.30

MPa
391.30

MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C35/45	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	30.0
3	50.0	30.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-44.0	6.0	20
2	-44.0	24.0	20
3	44.0	24.0	20
4	44 0	6.0	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	2	3	3	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Mx

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x
	• • • • • • • • • • • • • • • • • • • •

MANDATARIA

N°Comb.

Ν

Му

Vy

٧x

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.00 258.00 0.00 0.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 190.00 (65.25) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 $N^{\circ} Comb.$ N Mx My

1 0.00 125.00 (65.25) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.0 cm Interferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb N Res Ver Ν Му Mx Res My Res Mis.Sic. As Tesa Mx S 0.00 258.00 0.00 0.00 258.07 0.00 1.00 31.4(4.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.275	-50.0	30.0	0.00031	44.0	24.0	-0.00924	-44.0	6.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000530845 -0.012425354 0.275 0.783

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 15.26 -50.0 30.0 -300.4 -44.0 6.0 650 31.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

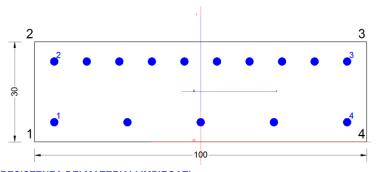
Mx fess. Componente momento di prima fessurazione intomo all'asse X [kNm]
My fess. Componente momento di prima fessurazione intomo all'asse Y [kNm]

Comb. e2 k2 Ø Cf Ver e1 e sm - e cm sr max wk Mx fess My fess S -0.00216 0.500 20.0 0.00124 (0.00090) 0.297(0.30)65.25 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 1 S 10.04 -50.030.0 -197.6 -34.2 6.0 650 31.4

PROGETTO ESECUTIVO


RELAZIONE DI CACOLO

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0 00142	0	0.500	20.0	50	0.00081 (0.00059)	240	0 195 (0 20)	65 25	0.00

14.3.3 Armatura d'infittimento (Sezione 2)

Armatura tesa Φ24/10 Φ24/20 Armatura compressa

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C35/45	
	Resis. compr. di progetto fcd:	21.170	MPa

0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 34625.0 MPa

Resis. media a trazione fctm: 3.350 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 224.10 daN/cm²

Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C

Resist. caratt. snervam. fyk: 450.00 MPa Resist, caratt, rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale Classe Conglomerato: C35/45

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 30.0
3	50.0	30.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.8	6.2	24
2	-43.8	23.8	24
3	43.8	23.8	24
4	43.8	6.2	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generaz
α	Diametre in mm delle harra della generazione

azione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	24
2	2	3	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

	Sforzo normale [k	N] applicato nel Bar	ic. (+ se di compre	ssione)			
	Momento flettente [kNm] intorno all'asse x princ. d'inerzia						
	con verso positivo	se tale da comprin	nere il lembo sup. de	ella sez.			
	Momento flettente	[kNm] intorno all'as	sse y princ. d'inerzia	a			
	con verso positivo	se tale da comprin	nere il lembo destro	della sez.			
	Componente del Taglio [kN] parallela all'asse princ d'inerzia y						
Componente del Taglio [kN] parallela all'asse princ.d'inerzia x							
N	Mx	Му	Vy	Vx			
	N	Momento flettente con verso positivo Momento flettente con verso positivo Componente del Componente omento flettente [kNm] intorno all'as con verso positivo se tale da comprin Momento flettente [kNm] intorno all'as con verso positivo se tale da comprin Componente del Taglio [kN] parallela Componente del Taglio [kN] parallela	con verso positivo se tale da comprimere il lembo sup. di Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro Componente del Taglio [kN] parallela all'asse princ.d'iner Componente del Taglio [kN] parallela all'asse princ.d'iner				

			,	,	
1	0.00	-350.00	0.00	0.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)						
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione						
Му		flettente [kNm] intorno all'asse y positivo se tale da comprimere i		om.Fessurazione)			
N°Comb.	N	Mx	My				
1	0.00	-260.00 (-70.87)	0.00 (0.00)				

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 -175.00 (-70.87) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.0 cm Interferro netto minimo barre longitudinali: 7.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν Mx My N Res Mx Res My Res Mis.Sic. As Tesa 1 S 0.00 -350.00 0.00 0.00 -350.79 0.00 1.00 45.2(4.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Deform. unit. minima nell'acciaio (negativa se di trazione) es min Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb Xc max Ys min x/d Yc max es min Xs min es max Xs max Ys max ec max 1 0.00350 0.342 -50.0 0.0 0.00083 -43.8 6.2 -0.0067443.8 23.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 -0.000430368 0.003500000 0.342 0.867

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver	S = comb. verificata/ N = comb. non verificata
	0 - Comb. Vernicata/ N - Comb. Hon Vernicata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver As eff. Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. 1 S -295.2 700 45.2 18.31 50.0 0.0 24.3 23.8

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

			calcestruzzo sia inferiore a fctr	

,	/er.	ESITO DELIA VERITICA
•	e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq. (7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Ø Comb. Ver k2 Cf e1 Mx fess My fess e sm - e cm sr max -0.00222 1 S n 0.500 24.0 50 0.00126 (0.00089) 233 0.294 (0.30) -70.87 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

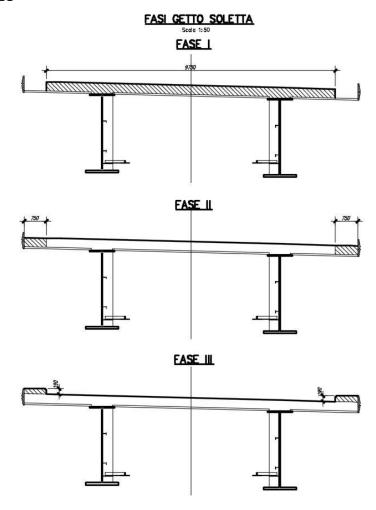
$N^{\circ}Comb$	Ver	Sc max	Xc max Yc	max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	12 32	50.0	0.0	-198 7	34 1	23.8	700	45.2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00149	0	0.500	24.0	50	0.00085 (0.00060)	233	0.198 (0.20)	-70.87	0.00

14.4 VERIFICA PREDALLE IN FASE DI GETTO

Nella presente sezione si verifica l'armatura delle predalles in fase di getto. Tutte le armature principali della soletta saranno realizzate con acciaio B450C. Le solette degli impalcati saranno realizzate con l'ausilio di predalles autoportanti, aventi spessore di 6 cm e larghezza pari a 240 cm, tessute trasversalmente e appoggiate sulle travi metalliche principali. Le predalles sono dotate di tralicci H = 18 cm.



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Il getto della soletta è previsto mediante 3 fasi di getto distinte, mostrate in figura, così definite:

- Fase 1-2: getto nella zona compresa fra le travi metalliche e sullo sbalzo;
- Fase 3: getto nella zona rimanente dello sbalzo; tale getto di completamento sarà realizzato soltanto dopo che il calcestruzzo del getto di prima fase abbia raggiunto una resistenza maggiore di 25 MPa.

Caratteristiche sezione

Interasse trasversale tralicci Altezza totale solaio Spessore soletta superiore Larghezza travetti

Caratteristiche geometriche traliccio

MANDANTE

MANDATARIA

340 mm

360 mm

300 mm

0 mm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Diametro corrente superiore Diametro corrente inferiore Diametro aste diagonali Interasse trasversale correnti inferiori Interasse longitudinale diagonali	16 10 106	mm mm mm mm
Altezza traliccio Spessore lastre predalles		mm mm
Pesi specifici materiali Peso specifico els fresco al getto	25	KN/m^3
Peso specifico els maturato		KN/m^3
Peso specifico blocchi alleggerimento		KN/m^3
Peso specifico acciaio	78.5	KN/m^3
Resistenza materiali		
Resistenza caratteristica cubica cls		Mpa
Resistenza caratteristica snervamento acciaio Fattore parziale riduzione resistenza cls	450 1.50	Мра
Fattore parziale riduzione resistenza acciaio	1.15	
Resistenza di calcolo cls	21.17	Мра
Resistenza di calcolo acciaio	391.30	•
Carichi solaio I fase		
Peso traliccio		KPa
Peso predalles		KPa
Peso cls al getto		KPa
Peso blocchi Sovraccarico attrezzature cantiere		KPa KPa
Soviaccanco attrezzature carmere	1.00	rra
Carichi traliccio singolo I fase		
Peso traliccio		KN/m
Peso predalles		KN/m
Peso cls al getto		KN/m
Peso blocchi allegerimento Sovraccarico attrezzature cantiere		KN/m KN/m
Soviaccanco attrezzature cantiere	0.34	rin/III
Coefficienti combinazione carichi SLU		
coefficiente carchi permanenti strutturali	1.35	
coefficiente carchi permanenti non strutturali	1.35	
coefficiente sovraccarichi variabili	1.50	
Carico di calcolo SLU I fase		
Carico di calcolo SLU I fase traliccio singolo	4.77	KN/m
Coefficienti combinazione carichi SLE	4.00	
coefficiente carchi permanenti strutturali	1.00	
coefficiente carchi permanenti non strutturali coefficiente sovraccarichi variabili	1.00 1.00	
COEMCIENTE SOVIACCANCIII VANADIII	1.00	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Caratte	eristiche	geometriche trave	

Luce campata trave 6.00 m

Sollecitazioni slu I fase traliccio singolo

Momento max campata	16.1	KNm
Taglio max appoggi	21.5	KN

Parametri geometrici per verifiche aste traliccio

Braccio correnti sup-inf	162	mm
Angolo α asta diagonale/piano sez trasv	0.55	rad
Angolo β asta diagonale/piano sez long	0.32	rad
Lunghezza corrente superiore	200	mm
Lunghezza asta diagonale	197.6	mm

Sollecitazioni slu I fase aste traliccio

Forza di compressione corrente superiore	99.4	ΚN
Forza di trazione corrente singolo inferiore	49.7	ΚN
Forza compressione asta diagonale	13.3	ΚN

Verifiche slu aste traliccio:stabilità diagonale

Area tondo	78.54	mm^2
Mom inerzia tondo	490.87	mm^4
Raggio di girazione	2.50	mm
Lunghezza lib. Inflessione	197.62	mm
Snellezza	79.05	-
Fattore amplificazione ω	1.77	
Tensione normale amplificata	300.0	Мра
	VERIFICA ($\omega \sigma < \text{fyd}$)	OK

Verifiche slu aste traliccio:stabilità corrente compresso

Area tondo	314.16	mm^2
Mom inerzia tondo	7853.98	mm^4
Raggio di girazione	5.00	mm
Lunghezza lib. Inflessione	200.00	mm
Snellezza	40.00	-
Fattore amplificazione ω	1.19	
Tensione normale amplificata 376.6		Мра
	VERIFICA ($\omega \sigma < fyd$)	OK

Verifiche slu aste traliccio:resistenza corrente teso

Area tondo	201.06	mm^2
Tensione normale	247.21	Мра
Deformazione iniziale acciaio correnti inferiori	0.00118	

VERIFICA (σ < fyd) OK

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

15 VERIFICHE DI DEFORMABILITÀ

Per il controllo delle deformazioni si riportano gli abbassamenti riferiti alle seguenti condizioni:

- 1. Carichi permanenti (peso proprio + permanenti)
- 2. Carichi accidentali (mobili + ΔT + vento)

La freccia dovuta alla prima condizione è eliminata imponendo alle travi principali una contromonta uguale e contraria. La freccia dovuta alla seconda condizione dovrà invece essere inferiore a limite di 1/500 L.

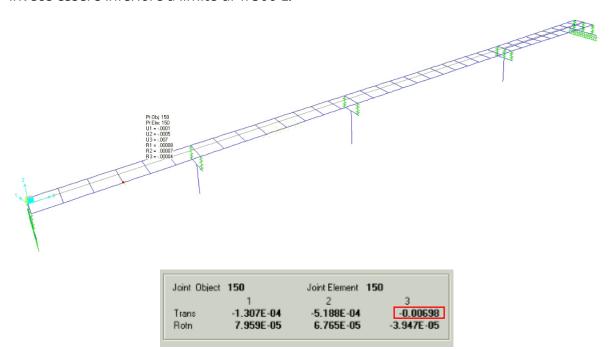


Figura 37 Valore della contromonta iniziale campata 1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

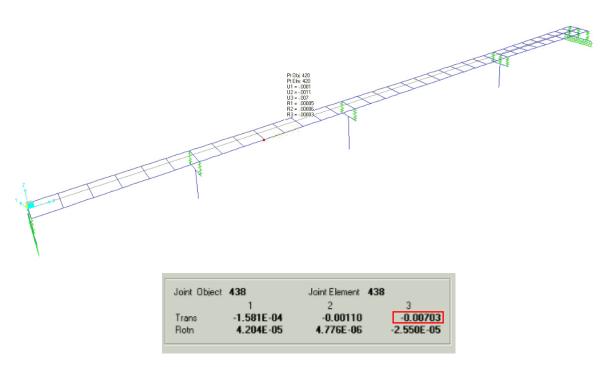


Figura 38 Valore della contromonta iniziale campata 2

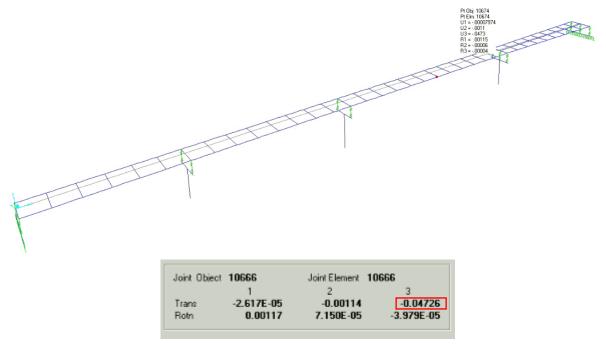


Figura 39 Valore della contromonta iniziale campata 3

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Figura 40 Valore della contromonta iniziale campata 4-travi di riva

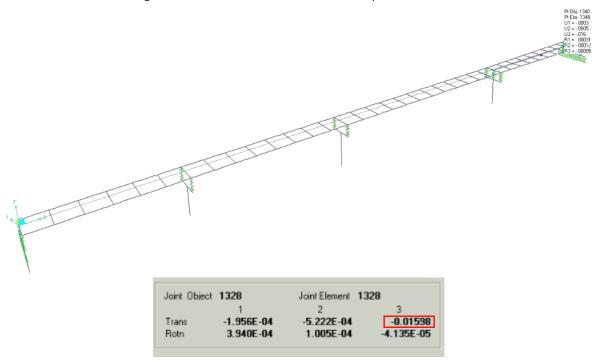


Figura 41 Valore della contromonta iniziale campata 4-trave intermedia

Di seguito si riporta la freccia dovuta alla seconda condizione pari alla somma di tutti i carichi accidentali moltiplicati per un coefficiente unitario.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

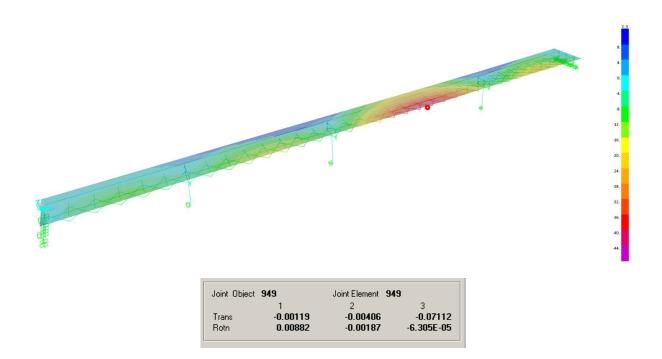


Figura 42 Deformata carichi mobili - soletta

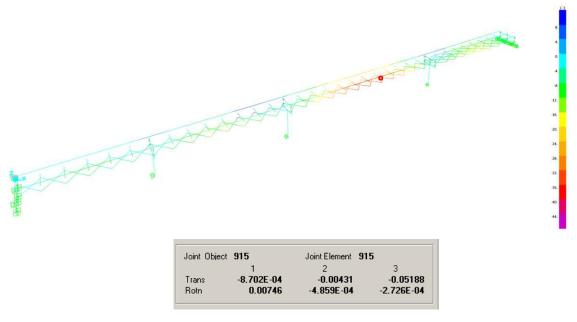


Figura 43 Deformata carichi mobili - travi

Il massimo valore di abbassamento è pari a d_{zmax} =0.05188 m = 1/1449 L.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

ANALISI SISMICA 16

Il sistema di isolamento adottato consiste di 10 dispositivi elastomerici ad alto smorzamento tipo HDRB. La struttura isolata ha un periodo pari a 2.16 sec e presenta uno spostamento massimo in fase sismica di 14cm. Lo smorzamento viscoso equivalente ξ è pari al 10%. Il progetto della struttura è stato eseguito tramite analisi dinamica lineare con riferimento allo spettro elastico, assumendo q=1.

Per tener conto dell'effetto di smorzamento viscoso equivalente degli isolatori si è utilizzato il fattore correttivo n determinato dalla seguente espressione:

$$\eta = \sqrt{10} / (5 + \xi) \ge 0.55$$

in cui ξ esprime lo smorzamento viscoso, pari al 15%, pertanto il fattore η è uguale a 0.816.

Il modello è tridimensionale e rappresenta in modo puntuale le effettive distribuzioni spaziali di massa, rigidezza e resistenza. Nell'analisi svolta si sono eseguiti i seguenti step:

- determinazione dei modi di vibrare del ponte (analisi modale),
- calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto per ciascuno dei modi di vibrare;
- combinazione degli effetti.

E' stato considerato un numero di modi la cui massa partecipante totale sia superiore all'85%. Per la combinazione degli effetti relativi ai singoli modi è stata utilizzata la combinazione quadratica completa degli effetti relativi a ciascun modo (SRSS). Si riportano nelle figure seguenti le deformate corrispondenti ai primi 2 modi.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

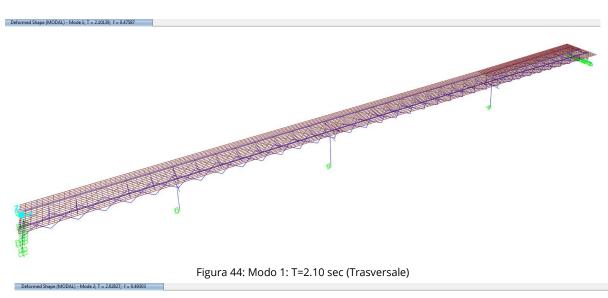


Figura 45: Modo 2: T=2.07sec (Longitudinale)

Si sono considerate le seguenti combinazioni di carico: Sisma Longitudinale: Ex + 0.3 Ey + 0.3 Ez

Sisma Trasversale: 0.3 Ex + Ey + 0.3 EzSisma Verticale: 0.3 Ex + 0.3Ey + Ez

dove la direzione x è parallela all'asse longitudinale del ponte e la direzione y all'asse trasversale.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

16.1 DIMENSIONAMENTO DEL SISTEMA DI ISOLAMENTO

La presenza dei dispositivi di isolamento è stata simulata mediante elementi lineari (Link) che riproducono il comportamento dei dispositivi adottati, posizionati in corrispondenza degli appoggi delle travi.

Il sistema di isolamento sismico adottato consiste di dispositivi a geometria circolare, pertanto la rigidezza laterale è polarsimmetrica ($k_{hx}=k_{hy}$)

La rigidezza laterale degli isolatori può essere determinata considerando le seguenti relazioni:

$$T_{\rm isol} = 2\pi \sqrt{\frac{m}{k}}$$

$$k = \left(\frac{2\pi}{T_{isol}}\right)^2 m$$

in cui

m = massa dell'impalcato = 2735 ton

T = 2.00 sec

k = rigidezza totale degli isolatori = 26993 kN/m

Considerando che nel ponte sono presenti 10 isolatori, la rigidezza k_i di ciascun isolatore è pari 2,69kN/mm. Sono stati quindi adottati isolatori con rigidezza $k_{hx}=k_{hy}=2,63kN/mm$ e rigidezza verticale pari a circa $k_v=2954000.kN/mm$. Nella modellazione non sono stati inseriti smorzatori in quanto gli effetti dello smorzamento sono stati implicitamente considerati nella valutazione dell'azione sismica scalata per effetto del valore del fattore correttivo η .

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

16.2 ANALISI DEI RISULTATI: SISMA SLC

Si riporta lo spettro relativo allo SLC, corrispondente ad uno smorzamento ξ pari al 10%.

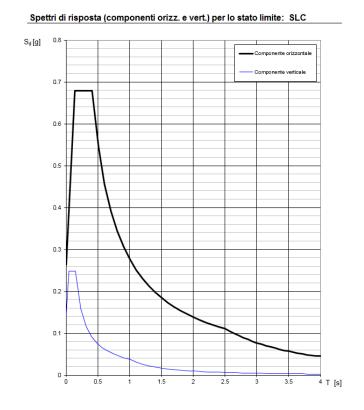


Figura 46 Spettri elastici dell'accelerazione orizzontale e verticale (SLC - ξ pari al 10%)

I dispositivi di isolamento sono stati verificati in modo da poter sostenere senza rotture gli spostamenti indotti dal sisma allo SLC. Nel caso del sisma longitudinale, il massimo spostamento longitudinale risulta pari a 0.1399m. Si riporta nella figura seguente la deformata corrispondente.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

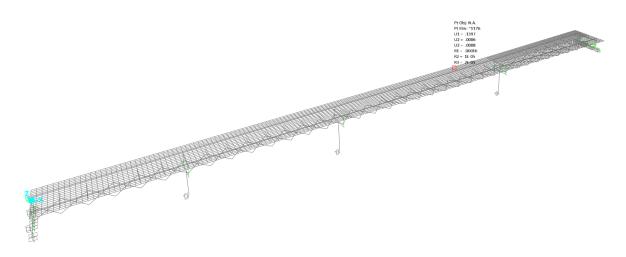


Figura 47: Deformata nella condizione di carico Sisma Longitudinale

16.3 ANALISI DEI RISULTATI: SISMA SLV

Si riporta lo spettro relativo allo SLV, corrispondente ad uno smorzamento ξ pari al 10%.

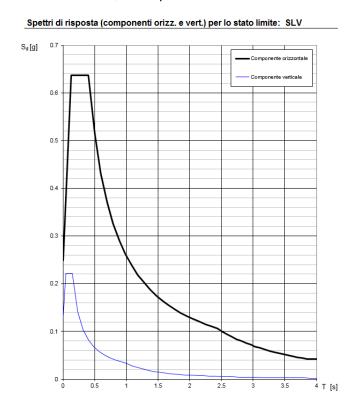


Figura 48 - Spettri elastici dell'accelerazione orizzontale e verticale (SLV - ξ pari al 10%)

Nel caso del sisma trasversale, il massimo spostamento trasversale risulta pari a 0.1305m. Si riporta nella Figura 49 la deformata corrispondente.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

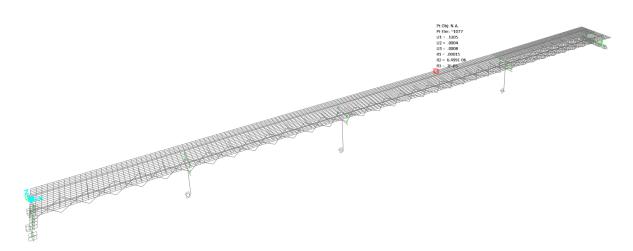


Figura 49: Deformata nella condizione di carico Sisma longitudinale

16.4 VERIFICA DEGLI SPOSTAMENTI DEGLI ISOLATORI

L'impalcato subisce sotto l'azione sismica uno spostamento massimo pari a circa 0.14m. Per effetto della temperatura, considerando una variazione termica uniforme di ±37.5°, ottenuta incrementando del 50% la variazione di temperatura prevista per le strutture in acciaio esposte, e considerando che gli spostamenti sono consentiti da entrambe le estremità del ponte, si ottiene uno spostamento pari a :

$$\eta = \alpha \Delta t L$$
 = 31 mm

Poiché nella combinazione sismica gli effetti della temperatura sono valutati con un coefficiente pari a 0.5, lo spostamento totale risulta pari a circa±15cm.

Sono stati previsti isolatori che consentono spostamenti massimi pari a ±15cm.

16.5 VERIFICA DEI GIUNTI

Sono stati previsti giunti in corrispondenza delle spalle che consentono spostamenti da ±15cm.

