

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO INTERNAZIONALE E78 S.G.C. GROSSETO - FANO

ADEGUAMENTO A 4 CORSIE

NEL TRATTO GROSSETO - SIENA (S.S. 223 "DI PAGANICO")

DAL KM 41+600 AL KM 53+400 - LOTTO 9

PROGETTO ESECUTIVO

cod. **FI15**

ATI SINTAGMA - GDG - ICARIA PROGETTAZIONE: IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: IL GRUPPO DI PROGETTAZIONE: MANDATARIA: MANDANTI: Dott. Ing. Nando Granieri Ordine degli Ingegneri della Prov. di Perugia nº A351 Sintagma età di ingegneria Dott.Ing. Dott.Arch. N.Granieri Dott. Ing. D.Carlaccini Dott. Ing. V.Rotisciani Dott. Ing. Dott. Ing. S.Sacconi A.Rea V.De Gori Dott. Ing. N.Kamenicky V.Truffini F.Macchioni IL PROGETTISTA: Dott.Ing. C.Vischini Geom. A.Bracchini F.Durastanti Dott. Ing. Federico Durastanti Dott.Arch. Dott. Ing. Dott. Ina. V.Piunno Ordine degli Ingegneri della Prov. di Terni n° A844 Dott.Ing. Dott. Ing. C.Consorti Dott. Ing. G.Pulli Dott.Ing. C.Sugaroni E.Bartolocci Geom. F.Dominici Geom. Dott.Geol. G.Cerquiglini IL GEOLOGO: Geom. S.Scopetta L.Sbrenna Dott.Ing. Dott. Geol. Giorgio Cerquiglini E.Sellari Ordine dei Geologi della Regione Umbria n°108 Dott.Ing L.Dinelli L.Nani F.Pambianco Dott.Ing. II R.U.P. Dott.Ing. F.Berti Nulli Dott. Ing. Dott. Agr. Raffaele Franco Carso INGEGNERI DELLA PROVINCIA Sezion A PE ORDINE degli INGEGNERI IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE: INCEGNERE Dott. Ing. Filippo Pambianco Ordine degli Ingegneri della Prov. di Perugia n° A1373 DOTTORS INSEGNERE Federico MANDO GRANIERI **PROTOCOLLO** DATA SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE Provincia di TERNI SETTORE DELL'INFORMAZIONE

OPERE DI ATTRAVERSAMENTO IDRAULICO PONTICELLO 0I02 Relazione di calcolo

CODICE PROGET PROGETTO	TO LIV. PROG. N. PROG.	NOME FILE	02-STR-RE01-A			REVISIONE	SCALA:	
LOFI		CODICE ELAB.	T0000I02S	TRRE	0 1	Α	-	
Α	Emissione			28/02/2020	P. Castraberte	E.Bartolocci	N.Granieri	
RFV	DESCRIZIONE			ΡΑΤΑ	REDATTO	VERIFICATO	APPROVATO	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

INDICE

1	PREMESSA	. 5
2	NORMATIVA DI RIFERIMENTO	. 7
3	UNITA' DI MISURA	. 8
4	CARATTERISTICHE DEI MATERIALI	. 9
4	.1 CALCESTRUZZO	.9
	4.1.1 Getto in opera sottovia scatolare ed elevazione opere di sostegno	9
4	.2 ACCIAIO PER ARMATURE ORDINARIE	.9
4	.3 COPRIFERRI MINIMI	10
4	.4 DURABILITÀ E PRESCRIZIONI SUI MATERIALI	10
5	CARATTERIZZAZIONE GEOTECNICA	11
6	GEOMETRIA DELLA STRUTTURA	12
7	ANALISI DEI CARICHI	13
7	.1 CONDIZIONI DI CARICO	13
	7.1.1 Peso proprio strutturale (g ₁)	13
	7.1.2 Carichi permanenti portati (g ₂)	13
	7.1.1 Spinta della terra in condizioni statiche (g ₃)	14
	7.1.2 Azioni della falda (g _{3_W})	15
	7.1.3 Variazioni termiche (q ₇)	16
	7.1.1 Ritiro (ε ₂)	16
	7.1.1 Azioni d'urto da traffico veicolare (q ₈)	17
	7.1.2 Carichi accidentali mobili (q ₁)	17

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	7.1.3 Azione longitudinale di frenamento o di accelerazione (q ₃)	22
	7.1.4 Azione centrifuga (q ₄)	23
	7.1.5 Spinta del sovraccarico sul rilevato (q _{1_SOVRCSPINTA})	24
	7.1.6 Azione del vento (q ₅)	24
	7.1.7 Azioni sismiche (q ₆)	27
7.	2 COMBINAZIONI DI CARICO	39
8	MODELLAZIONE NUMERICA	. 45
8.	1 CONDIZIONI DI CARICO	45
8.2	2 MODELLO DI CARICO	45
	8.2.1 Interazione terreno-struttura	46
9	CRITERI DI VERIFICA	. 47
9.	1 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO	47
	9.1.1 Verifica a fessurazione	47
	9.1.2 Verifica delle tensioni in esercizio	48
9.2	2 VERIFICHE AGLI STATI LIMITE ULTIMI	48
	9.2.1 Sollecitazioni flettenti	48
	9.2.2 Sollecitazioni taglianti	48
10	ANALISI DELLE SOLLECITAZIONI	. 51
11	VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO	. 56
11	.1SOLETTA SUPERIORE – SEZIONE DI MEZZERIA	5 8
11	.2SOLETTA SUPERIORE – SEZIONE DI INCASTRO	64
11	.3SOLETTA INFERIORE – SEZIONE DI MEZZERIA	72

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11	.4SOLET	TA INFERIORE – SEZIONE DI INCASTRO	79
11	.5PIEDRI	ITTI – SEZIONE DI INCASTRO INFERIORE	86
11	.6PIEDRI	ITTI – SEZIONE DI INCASTRO SUPERIORE	93
11	.7PIEDRI	TTI – SEZIONE DI MEZZERIA	101
11	.8SETTI (CENTRALI – SEZIONE DI INCASTRO INFERIORE	108
11	.9SETTI (CENTRALI – SEZIONE DI INCASTRO SUPERIORE	115
11	.10 SI	ETTI CENTRALI – SEZIONE DI MEZZERIA	122
12	VERIFIC	HE GEOTECNICHE	. 129
12	.1VERIFI	CA ALLO STATO LIMITE DI SOLLEVAMENTO	129
12	.2VERIFI	CA DELLA CAPACITÀ PORTANTE	129
12	.3VALUT	AZIONE DEI CEDIMENTI	139
13	MURI D	I IMBOCCO	. 143
14	CRITER	I DI CALCOLO	. 144
14	.1VERIFI	CHE GEOTECNICHE	144
	14.1.1	Verifica a ribaltamento	144
	14.1.2	Verifica a scorrimento	145
	14.1.3	Verifica al carico limite	146
	14.1.4	Verifica alla stabilità globale	146
14	.2VERIFI	CHE STRUTTURALI	147
	14.2.1	Verifiche allo stato limite ultimo (SLU+SLV)	147
	14.2.2	Verifiche allo stato limite di esercizio (SLE)	149

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

15.1PESO PROPRIO	150
15.2SPINTA STATICA DELLE TERRE	150
15.3SPINTA STATICA DELL'ACQUA	151
15.4SPINTA DA SOVRACCARICO ACCIDENTALE	151
15.5COMBINAZIONI DI CARICO	151
16 MODELLO DI CALCOLO	154
16.1 DATI	154
16.2RISULTATI PER COMBINAZIONE	161
16.3RISULTATI PER INVILUPPO	213
16 4FI ENCO FERRI	242

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione esecutiva dell'ampliamento da 2 a 4 corsie dell'Itinerario internazionale E78 S.G.C. Grosseto – Fano, Lotto 9.

Oggetto della presente relazione sono le analisi e le verifiche statiche dell'opera di attraversamento idraulico denominata "S02".

Il sottopasso è costituito da una struttura scatolare realizzata in conglomerato cementizio gettato in opera, di dimensioni interne 27.00 x 5.15m, con soletta di copertura di spessore 1.00m, piedritti di spessore 1.00m e soletta di fondazione di spessore 1.00m.

Nelle figure seguenti si riportano alcune viste dell'opera in esame. Si rimanda agli elaborati grafici per ulteriori dettagli.

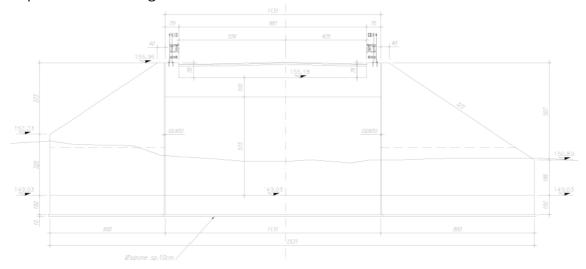


Figura 1: Sezione longitudinale

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

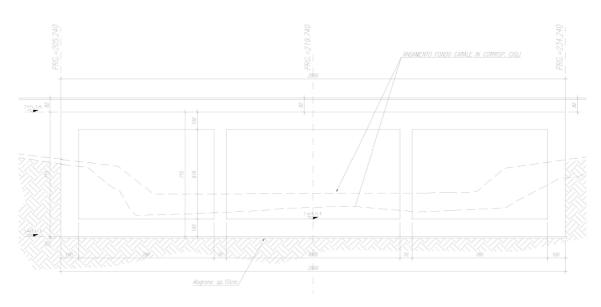


Figura 2: Sezione trasversale

Le strutture sono progettate coerentemente con quanto previsto dalla normativa vigente, Norme Tecniche delle Costruzioni 2018 e Circolare Applicativa.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

NORMATIVA DI RIFERIMENTO

Il progetto è stato redatto sulla base delle seguenti normative e standard progettuali:

- L. 1086 05.11.1971 "Norme per la disciplina delle opere in conglomerato" cementizio armato normale e precompresso ed a struttura metallica";
- Legge n. 64 del 2 febbraio 1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
- Decreto Ministeriale del 17/01/2018 "Norme Tecniche per le Costruzioni";
- ➤ Circolare 21 gennaio 2019 n.7 " Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018":
- ➤ UNI EN 206-1:2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità":
- ➤ UNI 11104-2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità - Istruzioni complementari per l'applicazione della EN 206-1";
- ➤ UNI EN 1992-1-1 2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo - Parte 1-1: Regole generali e regole per gli edifici";
- ➤ UNI EN 1993-1-1 2005: "Eurocodice 3 Progettazione delle strutture in acciaio";
- ➤ UNI-EN 1997-1 2005: "Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali";
- ➤ UNI-EN 1998-1 2005: "Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici";
- > UNI-EN 1998-5 2005: "Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici";
- ➤ UNI EN 1537: "Esecuzione di lavori geotecnici speciali Tiranti di ancoraggio".

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3 UNITA' DI MISURA

Le unità di misura usate nella presente relazione sono:

			-
>	•	lunghezze	[m]
>	•	forze	[kN]
>	•	momenti	[kNm]
>	•	tensioni	[MPa]

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4 CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

4.1.1 Getto in opera sottovia scatolare ed elevazione opere di sostegno

Per la realizzazione dello scatolare, si prevede l'utilizzo di calcestruzzo avente classe di resistenza 28/35 (Rck \geq 35.00 N/mm²) che presenta le seguenti caratteristiche:

Resistenza caratteristica a compressione (cilindrica)

 $f_{ck} = 0.83 \times R_{ck} =$

29.05

N/mm²

> Resistenza media a compressione

 $f_{cm} = f_{ck} + 8 =$

37.05

 N/mm^2

Modulo elastico

 $E_{cm}=22000 \times (f_{cm}/10)^{0.3} =$

32588

 N/mm^2

> Resistenza di calcolo a compressione

 $f_{cd} = a_{cc} \times f_{ck}/\gamma_c = 0.85 * f_{ck}/1.5 =$

16.46

N/mm²

> Resistenza a trazione media

 $f_{ctm} = 0.30 \times f_{ck}^{2/3} =$

2.83

N/mm²

> Resistenza a trazione

 $f_{ctk} = 0.7 \times f_{ctm} =$

1.98

N/mm²

> Resistenza a trazione di calcolo

 $f_{ctd} = f_{ctk} / \gamma_c =$

1.32

N/mm²

> Resistenza a compressione (comb. Rara)

 $\sigma_c = 0.60 \times f_{ck} =$

17.43

N/mm²

> Resistenza a compressione (comb. Quasi permanente)

 $\sigma_c = 0.45 \times f_{ck} =$

13.07

N/mm²

4.2 Acciaio per armature ordinarie

Classe acciaio per armature ordinarie B450C

Tensione di snervamento caratteristica fyk≥ 450 MPa

Tensione caratteristica di rottura ft ≥ 540 MPa

Modulo di elasticità Ea=210000 MPa

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.3 Copriferri minimi

Si riportano di seguito i copriferri minimi per le strutture in calcestruzzo armato:

Strutture di elevazione 4.0 cm Strutture di fondazione 4.0 cm

Durabilità e prescrizioni sui materiali

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Si adotta quanto segue:

Fondazione - Elevazione Classe di esposizione XC2

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5 CARATTERIZZAZIONE GEOTECNICA

Si riportano i parametri di resistenza e deformabilità assunti nel calcolo in accordo con i risultati dei sondaggi riportati nella relazione geotecnica.

				γ	c'	φ'	z	Cu	E'	OCR
Unità geotecniche		Unità geologiche		[kN/m³]	[kPa]	[°]	[m da p.c.]	[kPa]	[MPa]	[-]
	Sabbia e		alluvioni fluviali				0÷2		5÷20	
Α	ghiaia	at, at2, at3	terrazzate recenti e antiche	19.5	10÷20	25÷27	>2	-	25÷50	-
В	A nailliti	Dh	Argillo a Dalambini	20	10.25	28÷30	0÷20	150÷250	50÷120	3÷5
В	Argilliti	Pb	Argille a Palombini	20	10÷25	20730	>20	100÷200	100÷220	1.5÷3
С	Calcare/Ghiaia	CV	Calcare Cavernoso	21	10÷15	34÷35	0÷10		40÷80	
	Calcal e/ Giliala	CV	Calcare Cavernoso	21	10-13	34733	>10	-	60÷120	
	Dunania /Chinin	CNA	Dunnen di Cuntti	10	•	25.27	0÷20		50÷100	
D	Breccia/Ghiaia	CM	Brecce di Grotti	19	0	35÷37	>20	-	100÷200	-
_	/		Depositi lacustri,	40.5	10.20	22.25	0÷20	100:200	40÷80	3÷5
E	Argille/Limi	dl, Pa, Ps	argille e sabbie plioceniche	19.5	10÷30	23÷25	>20	100÷200	80÷120	1.5÷3

Tabella 1: Caratterizzazione geotecnica

La quota del pelo libero della falda è posta a circa 3.575 m dalla quota di intradosso soletta di fondazione.

Per il rilevato stradale sono state considerate le seguenti caratteristiche:

 γ = 19.00 kN/m³ peso di volume naturale

 $\varphi' = 35^{\circ}$ angolo di resistenza al taglio

c' = 0.00kPa coesione drenata

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6 GEOMETRIA DELLA STRUTTURA

Nel seguito sarà esaminata una striscia di scatolare avente lunghezza 1.00m. Si riportano di seguito le dimensioni geometriche della sezione.

Spessore pacchetto stradale	H _{ps} =	0.12m
Spessore rinterro	$H_{rint} =$	0.70m
Spessore ricoprimento	H _{ricop} =	0.82m
Larghezza totale dello scatolare	L _{tot} =	29.00m
Larghezza utile dello scatolare	L _{int} =	27.00m
Larghezza mensola di fondazione sinistra	L _{msx} =	0.00m
Larghezza mensola di fondazione destra	$L_{mdx} =$	0.00m
Spessore della soletta di copertura	S _s =	1.00m
Spessore piedritti	S _p =	1.00m
Spessore ritti centrali	S _{pc} =	0.70m
Spessore della soletta di fondazione	S _f =	1.00m
Altezza libera dello scatolare	H _{int} =	5.15m
Altezza totale dello scatolare	H _{tot} =	7.15m
Quota falda da intradosso fondazione	H _w =	3.58m
Larghezza striscia di calcolo	b =	1.00m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono le condizioni di carico elementari assunte per l'analisi delle sollecitazioni e per le verifiche della struttura in esame. Tali condizioni di carico elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3;$ sovrastruttura stradale: $\gamma_{ril} = 18 \text{ kN/m}^3.$

7.1 Condizioni di carico

7.1.1 Peso proprio strutturale (g₁)

Il peso proprio delle solette e dei piedritti risulta:

Peso soletta superiore $P_{ss} = 25.00 \times 1.00 = 25.00 \text{ kN/m}$ Peso soletta inferiore $P_{si} = 25.00 \times 1.00 = 25.00 \text{ kN/m}$ Peso piedritti $P_p = 25.00 \times 1.00 = 25.00 \text{ kN/m}$

Peso setti centrali $P_{sc} = 25.00 \times 0.70 \times 2 = 35.00 \text{ kN/m}$

7.1.2 Carichi permanenti portati (g₂)

7.1.2.1 Soletta superiore

Per la soletta superiore i carichi permanenti sono:

Pacchetto stradale $0.12 \text{ m} \times 18.00 \text{ kN/mc} = 2.40$

kN/mg

Rinterro 0.70 m x 20.00 kN/mc = 14.00 kN/mq

Peso totale permanenti portati sulla soletta superiore:

 $P_{ps} = 16.40 \text{ kN/m}$

Inoltre si considera, come carico concentrato nei nodi di connessione tra la soletta superiore e i piedritti, il carico permanente dovuto al peso della zona sovrastante la metà dello spessore del piedritto (la modellazione dello scatolare è stata fatta in asse piedritto):

Peso ricoprimento per metà spessore piedritto $P_{ps_p} = 8.20$ kN

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7.1.2.2 Soletta inferiore

Sulla soletta inferiore sono stati considerati i carichi permanenti relativi all'acqua contenuta nel tombino:

Permanenti portati soletta inferiore

36.50 kN/m

In particolare la spinta dovuta all'acqua contenuta nel tombino non è stata considerata a vantaggio di sicurezza in quanto ha direzione opposta alla spinta del terreno e all'eventuale spinta dell'acqua dovuta alla presenza di una falda. Analogamente, nelle combinazioni sarà considerata una volta il peso dell'acqua contenuta nel tombino e una volta la sottospinta dell'acqua dovuta alla presenza di una eventuale falda.

7.1.1 Spinta della terra in condizioni statiche (g₃)

La struttura è stata analizzata nella condizione di spinta a riposo.

 $K_0 = 0.426$

La pressione del terreno è stata calcolata come:

 $P = (P_b + h_{variabile} * \gamma_{terreno_piedritto}) * K_o$

al di sopra della falda

 $P = [P_b + h_{variabile}*(\gamma_{terreno_piedritto} - \gamma_w)]* K_o$

al di sotto della falda

per cui risulta quanto segue.

Pressione estradosso soletta superiore $P_1 = 6.99 \text{ kN/m}$

Pressione in asse soletta superiore $P_2 = 11.04 \text{ kN/m}$

Pressione in asse soletta inferiore $P_3 = 46.54 \text{ kN/m}$

Pressione intradosso soletta inferiore $P_4 = 48.46 \text{ kN/m}$

Inoltre sono stati considerati, come carichi concentrati nei nodi della copertura e della fondazione, i contributi delle spinte del terreno esercitate su metà spessore delle soletta di copertura e di fondazione.

Spinta semispessore soletta di copertura $P_{H.t.cop} = 4.51$

kΝ

MANDATARIA

Spinta semispessore soletta di fondazione P_{H.t.fond} = 23.75 kN

Nella figura seguente si riportano i diagrammi di spinta del terreno agenti sui piedritti.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

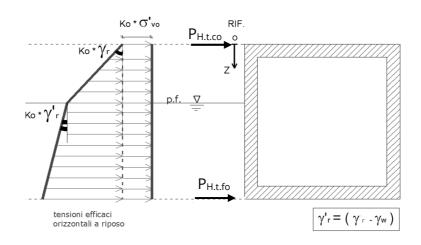


Figura 3 SPTSX

7.1.2 Azioni della falda (g_{3_W})

La quota del pelo libero della falda è posta a circa 3.575 m dalla quota di intradosso soletta di fondazione. I valori delle spinte agenti sui piedritti, sono stati calcolati come:

$$P = z \times \gamma_w$$

per cui risulta:

Pressione in asse soletta inferiore $P_{w1} = 30.75 \text{ kN/m}$

Pressione intradosso soletta inferiore $P_{w2} = 35.75 \text{ kN/m}$

Inoltre sono stati considerati, come carichi concentrati nei nodi della fondazione e dei piedritti, i seguenti contributi:

Spinta semispessore soletta di fondazione $P_{wf} = 16.63$ kN

Sottopinta semispessore piedritti $P_{wp} = 17.88$ KN

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

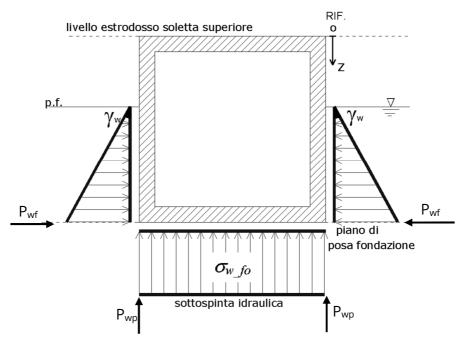


Figura 4 SPTW

7.1.3 Variazioni termiche (q₇)

Sono stati considerati gli effetti dovuti alle variazioni termiche. In particolare, è stata considerata sulla soletta superiore una variazione termica uniforme di $\pm 15^{\circ}$ C ed una variazione termica nello spessore, tra estradosso ed intradosso, pari a $\Delta Tv = \pm 5^{\circ}$ C. Il valore applicato della variazione termica uniforme viene ridotto di 1/3 per considerare gli effetti viscosi del calcestruzzo, ed è quindi pari a $\pm 5^{\circ}$ C. Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 * 10^{-6} = 0.00001 °C^{-1}$$
.

7.1.1 Ritiro (ε₂)

Il ritiro viene applicato mediante una variazione termica uniforme della copertura, in grado di produrre la stessa deformazione nel calcestruzzo.

I fenomeni di ritiro sono stati considerati agenti sulla sola soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente pari a:

$$\Delta T_{ritiro} = -11.04$$
 °C.

Di seguito i risultati delle analisi.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria, assumendo la dimensione convenzionale h_0 pari a $2 \times A_c/u$ ed un calcestruzzo 28/35.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Caratteristiche della sezione:

B = 1.00 m

H = 1.00 m

Caratteristiche del cls a tempo zero:

f_{ck}= 29.05 N/mm² classe del cls

 $f_{cm} = f_{ck} + 8 = 37.05 \text{ N/mm}^2$ resistenza a compressione media

Deformazione da ritiro:

U.R. = 75.00 % umidità relativa

 $\varepsilon_{ca}(t=\infty)=-4.76E-05$ ritiro autogeno

 $\varepsilon_{cd}(t=\infty)$ = -3.05E-04 ritiro per essiccamento

 $\varepsilon_r = \varepsilon_{ca} + \varepsilon_{cd} = -3.53E-04$

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

$$\alpha \times \Delta T \times E_c = \varepsilon_r \times E_c / (1 + \phi)$$

$$\Delta T = \varepsilon_r / [\alpha \times (1 + \omega)] = -3.53E-04/[1.00E-05 \times (1 + 2.195)] = -11.04$$
°C

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura.

7.1.1 Azioni d'urto da traffico veicolare (q₈)

In accordo con quanto riportato nel paragrafo 3.6.3.3.2 delle NTC18, si è tenuto conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione pari a 100 kN agente ad un 1,0 m sopra il livello del piano di marcia.

7.1.2 Carichi accidentali mobili (q1)

In accordo con la normativa sui ponti stradali (paragrafo 5.1.3.3.5 delle NTC18), si considera sulla sede stradale l'azione da traffico dello schema di carico riportato di seguito:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

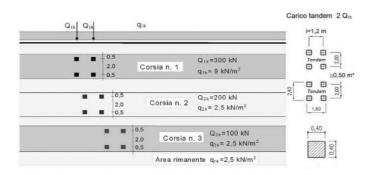


Figura 5: Schemi di carico - carichi Qik e qik

Posizione	Carico asse Q _{ik} [kN]	$q_{ik} [kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Tabella 2: Intensità dei carichi Qik e qik per le diverse corsie

Per la definizione delle corsie convenzionali si è fatto riferimento al paragrafo 5.1.3.3.2 delle NTC18.

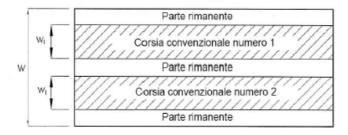


Figura 6 Numerazione delle corsie convenzionali

Tabella 3 Numero e larghezza delle corsie

Larghezza della superfi- cie carrabile "w"	Numero di corsie con- venzionali	Larghezza di una corsia convenzionale [m]	[Larghezza della zona rimanente [m]
w < 5,40 m	n ₁ = 1	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	$n_1 = 2$	w/2	0
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 x n _l)

Nel presente caso risulta:

Larghezza della superficie carrabile w = 9.81 m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Numero di corsie convenzionali $n_l = 3$ - Larghezza di una corsia convenzionale $L_{corsia} = 3.00$ m Larghezza della zona rimanente $L_{rim} = 0.81$ m

La disposizione dei carichi accidentali è stata definita in modo da indurre le più sfavorevoli condizioni di sollecitazione.

7.1.2.1 Diffusione dei carichi accidentali

I sovraccarichi accidentali sono stati diffusi fino al piano medio della soletta superiore considerando:

- Diffusione 1:1
 - 1. all'interno della soletta in c.a.;
 - 2. nello strato relativo al pacchetto stradale.
- Diffusione 3:2
 - 3. nel terreno di ricoprimento.

La ripartizione dei carichi si effettua considerando per il carico isolato un'impronta quadrata di lato 0.4 m.

Si considera una larghezza di ripartizione trasversale massima pari alla larghezza della corsia di carico.

Si ottiene:

 $b_L = L_{1a} + I_L + d_{ps} + d_r + d_s = 3.77$ m Lunghezza di diffusione longitudinale

 b_t = L_{1a} + L_{1r}

dove:

Lato impronta quadrata del carico isolato L_{1a} 0.4 [m]

Interasse trasversale carichi isolati Q1 I_T 2 [m]

Interasse longitudinale carichi isolati Q1 IL 1.2 [m]

Diffusione nel pacchetto stradale $d_{ps} = 2 \cdot H_{ps} \cdot (1:1)$ 0.24 [m]

Diffusione nel rinterro $d_r = 2 \cdot H_r \cdot (2:3)$ 0.93 [m]

Diffusione nella soletta $d_s = 2 \cdot H_s/2 (1:1)$ 1.00 [m]

7.1.2.2 Carichi da traffico

Corsia convenzionale n°1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$Q_{soletta} = \frac{2Q_{1k}}{b_t b_t} = 53.00 \text{ kN/m}$$

Corsia convenzionale n°2

$$Q_{soletta} = \frac{2Q_{1k}}{b_t b_t} = 35.34 \text{ kN/m}$$

Corsia convenzionale n°3

$$Q_{soletta} = \frac{2Q_{1k}}{b_t b_t} = 17.67 \text{ kN/m}$$

Parte rimanente

$$q_{soletta} = \frac{q_K w}{b_t} =$$
 2.50 kN/m

Avendo definito b_L e b_t si può valutare l'intensità del carico q_{eq} equivalente all'effetto indotto dai carichi tandem sulla soletta superiore. Considerando il carico tandem dovuto alla prima colonna di carico:

$$Q_{s}q_{sq} = \frac{2Q_{1k}}{b_{I}b_{I}} = 53.00 \text{ kN/m}$$

a cui si sovrappone il carico q = 9 kN/m uniforme su tutta la soletta (corrispondente al carico q_{1k}).

La posizione del carico q_{eq} equivalente al tandem viene variata su tutta la soletta per massimizzare: 1)il momento in mezzeria della soletta; 2) il taglio nella soletta a filo piedritto.

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

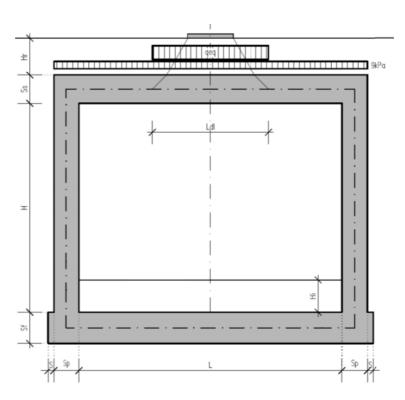


Figura 7: Condizioni di carico che massimizza il momento in mezzeria della soletta

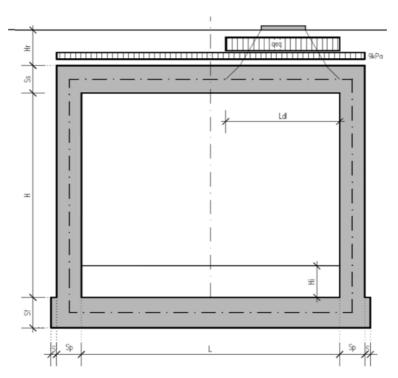


Figura 8: Condizioni di carico che massimizza il taglio della soletta a filo piedritto

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Si osserva che se $b_L > L + 2*S_p$ (larghezza netta interna + spessore dei piedritti) allora il carico equivalente è applicato per tutta la larghezza della soletta superiore.

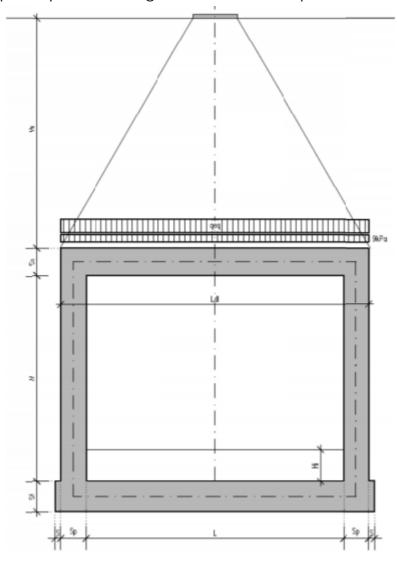


Figura 9: Caso in cui b_L>L+2*S_D

7.1.3 Azione longitudinale di frenamento o di accelerazione (q₃)

L'azione longitudinale di frenamento o di accelerazione si assume in funzione del carico verticale totale agente sulla 1° corsia convenzionale pari a:

$$180 \text{ kN} \le q_{\text{fren}} = 0.6(2Q_{1k}) + 0.1 q_{1k} w_1 L \le 900 \text{ kN}$$
 (L_c = 28.00 m)

essendo w_1 la larghezza della corsia e L la lunghezza della zona caricata. La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata.

PROGETTO ESECUTIVO

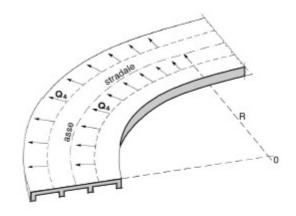
RELAZIONE DI CACOLO

$$F_{fren} = 435.60 \text{ kN}$$

Successivamente si ripartisce la forza F_{fren} al livello del piano medio della soletta superiore ipotizzando che la diffusione interessi trasversalmente una lunghezza pari alla luce di calcolo del solettone superiore (L_c =28.00 m), ed una larghezza pari a b_T :

$$F_{fren_sol} = F_{fren}/(b_T \cdot L_c) = 5.19 \text{ KN/m}$$

Inoltre è stata aggiunta, come carico concentrato nei nodi della soletta di copertura, la seguente forza:


Spinta semispessore soletta di copertura $Q_{fNODO} = 2.59$ kN

La spinta è applicata da sinistra verso destra per massimizzare gli effetti di sbilanciamento della struttura.

7.1.4 Azione centrifuga (q₄)

L'azione centrifuga corrispondente ad ogni colonna di carico risulta funzione dei raggi di curvatura come mostrato nel prospetto seguente:

Raggio di curvatura R (m)	Q_4 (kN)			
R > 200	$0.2 \cdot Q_{\nu}$			
$200 \le R < 1500$	$40 \cdot Q_v/R$			
$R \ge 1500$ 0				

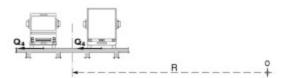


Figura 10: Valori caratteristici delle forze centrifughe - Tabella 5.1.III del D.M. 17 gennaio 2018

Il ponticello in esame si sviluppa interamente in rettifilo (raggio di curvatura tendente all'infinito) e la forza centrifuga risulta pertanto nulla.

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7.1.5 Spinta del sovraccarico sul rilevato (q_{1_SOVRCSPINTA})

Il sovraccarico accidentale agente sul terreno ai lati della struttura è posto pari rispettivamente a 20 kN/m².

$$P_{H,Q,ritti} = q_{traffico} K_0 = 0.426 * 20 = 8.53 kN/m$$

Sono stati aggiunti, come carichi concentrati nei nodi della copertura e della fondazione per la spinta sul piedritto sinistro e per la spinta sul piedritto destro, le seguenti forze:

7.1.6 Azione del vento (q5)

Il vento agente trasversalmente all'opera, oltre ad interessare la stessa, agisce sulla sagoma longitudinale dei carichi transitanti, come riportano le Norme Tecniche per le Costruzioni 2018 al paragrafo 3.3.

Si sintetizzano di seguito i dati utili per il calcolo dell'azione del vento, in accordo con quanto prescritto nel DM 17.1.2018:

- Zona 3
- Suolo riconducibile a una Classe di Rugosità D
- Tempo di ritorno: 50 anni
- Categoria di Esposizione II

Si ottiene:

Velocità base di riferimento

 $v_b = 27 \text{ m/s}$

Velocità di riferimento

 $v_r = 29.06 \text{ m/s}$

Pressione cinetica di riferimento

$$q_r = 0.50 \rho v_r^2 = 0.50 \cdot 1.25 \cdot 29.06^2 = 456.29 \text{ N/m}^2$$

dove:

 $\rho = 1.25 \text{ Kg/m}^3 \text{ densità dell'aria}$

Coefficiente dinamico

 $c_d = 1$

Coefficiente topografico

 $c_{t} = 1$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Coefficiente di esposizione

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0)\right]$	n(z/z ₀)] per z ≥ z _{min}
$c_e(z) = c_e(z_{min})$	per z < z _{min}

k _r	z ₀ [m]	z _{min} [m]
0.19	0.05	4.00

 $c_E(6.93)=2.12$

Coefficiente di forma impalcato CNR DT-207/2008 PAR. G.10.3 - G11

larghezza impalcato	d=	11.31 m
altezza impalcato	h=	6.93 m
altezza carichi mobili esposti al vento	hf=	3 m
altezza totale esposta al vento	htot=b	9.93 m
	d/b=	1.14

se d/b≥2

$$c_{fx} = \frac{1.85}{d/htot} - 0.10$$

$$C_{fy} = \frac{1.35}{d / h + c + c}$$

2≤d/b≤5

d/b>5

se d/b<2

Nel caso di azione del vento sugli elementi di sezione rettangolare

$c_{fx}=2$		0.1≤d/b≤0.2
c _{fx} =0.73 log (d/b)+3.16		0.2≤d/b≤0.7
c _{fx} =-1.64 log (d/b)+2.15	2.06	0.7≤d/b≤5
c _{fx} =-0.33 log (d/b)+1.23		5≤d/b≤10
c _{fx} =0.9		10≤d/b≤50

dove d e b sono le dimensioni del rettangolo nella direzione parallela e ortogonale alla direzione del vento

Pressione del vento

$$p = q_r c_e c_p c_d c_t = 456.29 \times 2.12 \times 1 \times 2.06 \times 1 = 1.99 \text{ kN/m}^2$$

In favore di sicurezza si considera una pressione del vento pari a 2,5 kN/m²

L'azione del vento viene assimilata a un carico orizzontale statico con direzione perpendicolare all'asse del ponte. Tale azione agisce sulla proiezione nel piano verticale delle

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

superfici degli elementi strutturali del ponte direttamente investite e su una parete rettangolare continua verticale alta 3,00 m, che convenzionalmente rappresenta i carichi che transitano sul ponte, come mostrato nella Figura riportata di seguito.

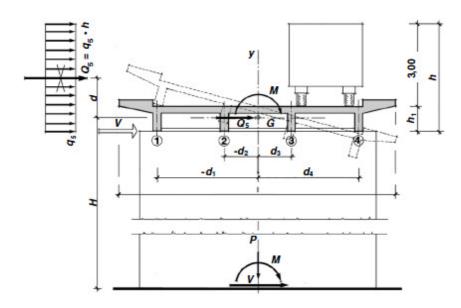


Figura 11: Direzione dell'azione del vento sul ponte

Vento trasmesso dall'impalcato a ponte carico

Il carico trasversale, per unità di lunghezza, è pari a:

 $q_{vento1} = (H_{trave} + H_{soletta}) \cdot p$

 $q_{vento2} = (H_{carico}) \cdot p$

dove:

q_{vento1} è il carico trasversale dovuto al vento sull'impalcato;

q_{vento2} è il carico trasversale dovuto al vento sulla superficie trasversale dei carichi transitanti, che da normativa si assimila ad una parete rettangolare continua dell'altezza di 3m a partire dal piano stradale.

Le risultanti trasversali totali indotte dal vento sull'impalcato, sono pari a:

 $T_{trasv1} = q_{vento1} * L$

 $T_{trasv2} = q_{vento2} * L$

 $T_{trasv_ponte\ carico} = (T_{trasv1} + T_{trasv2})$

Il baricentro dell'azione del vento rispetto a quota estradosso sottostrutture risulta pari a: $e_{v1} = d + [(H_{trave} + H_{soletta})/2]$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$e_{v2} = d + (H_{trave} + H_{soletta}) + (3m / 2)$$

dove:

d = distanza tra intradosso trave e estradosso sottostrutture (in metri).

L'impalcato trasmette quindi alla sottostruttura un momento pari a:

$$M_{vento_ponte\ carico} = T_{trasv1} \cdot e_{v1} + T_{trasv2} \cdot e_{v2}$$

Vento trasmesso dall'impalcato a ponte scarico

Il carico trasversale, per unità di lunghezza, è pari a:

$$q_{vento1} = (H_{trave} + H_{soletta} + H_{barriera}) \cdot p$$

dove:

q_{vento1} è il carico trasversale dovuto al vento sull'impalcato e sulla barriera di protezione.

La risultante trasversale totale indotta dal vento sull'impalcato, risulta pari a:

$$T_{trasv1} = q_{vento1} * L$$

 $T_{trasv_ponte\ scarico} = T_{trasv1}$

Il baricentro dell'azione del vento rispetto a quota estradosso sottostruttura risulta pari a:

$$e_{v1} = d + [(H_{trave} + H_{soletta} + H_{barriera})/2]$$

L'impalcato trasmette quindi alla sottostruttura un momento pari a:

$$M_{\text{vento_ponte scarico}} = T_{\text{trasv1}} \cdot e_{\text{v1}}$$

7.1.7 Azioni sismiche (q₆)

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del DM 17.1.2018.

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare nel DM 17.1.2018, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_1(T) = a_{gl} \cdot S \cdot \eta \cdot F_0$$

RELAZIONE DI CACOLO

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

 $S = S_S \cdot S_T$

S_s: coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 a_g : accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = C_C \cdot T^*_C$$

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 T^*_{C} : periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$0 \le T \le T_B \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v.}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{\perp}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v}$$

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{_e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

nelle quali:

 $S = S_S \times S_T$: con S_S pari sempre a 1 per lo spettro verticale;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale

La vita nominale di un'opera strutturale (V_N), è intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	TIPI DI COSTRUZIONE	VitaNominale
	TIFT DI COSTROZIONE	(VN)
1	Opere provvisorie- Opere provvisionali- Strutture in fase costruttiva	≤10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o	>50
	di importanza normale	250
2	Grandi opere, opere infrastrutturali e dighe di grandi dimensioni o di	>100
3	importanza strategica	2100

Per l'opera in oggetto si considera una vita nominale VN = 100 anni.

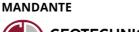
Classi D'uso

Il Decreto Ministeriale del 17 gennaio 2018 prevede quattro categorie di classi d'uso riportate nel seguito:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.


Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si considera una **Classe d'uso IV**.

Periodo di Riferimento dell'Azione Sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso Cu:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$V_R = V_N \cdot C_U$$

Il valore del coefficiente d'uso Cu è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0.7	1	1.5	2

Pertanto per l'opera in oggetto il periodo di riferimento è pari a 100x2=200**anni.**

Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		P_{VR} : Probabilità di superamento nel periodo di riferimento V_R
Stati limite di esercizio	SLO	81%
Stati minite di esercizio	SLD	63%
Stati limite ultimi	SLV	10%
Stati iiiiite ditiiiii	SLC	5%

Accelerazione (ag), fattore (F₀) e periodo (T*_c)

Ai fini del NTC 2018 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag: accelerazione orizzontale massima sul sito;

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R), e

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

quindi dalla vita nominale (VN) e dalla classe d'uso (C_u) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

I parametri adottati per il sito in esame (Long: 11.17748; Lat: 43.139470) risultano:

SLATO	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.085	2.481	0.260
SLD	201	0.104	2.479	0.264
SLV	1898	0.210	2.560	0.287
SLC	2475	0.226	2.575	0.289

Tabella 4: Valutazione dei parametri ag, F₀ e T^{*}_C per i periodi di ritorno associati a ciascuno stato limite

I parametri ai quali si è fatto riferimento nella definizione dell'azione sismica di progetto, indicati nella tabella precedente, corrispondono, cautelativamente, a quei parametri che danno luogo al sisma di massima entità, fra tutti quelli individuati lungo le progressive dell'opera in progetto.

Sono stati presi in esame, secondo quanto previsto dal DM 17.1.2008 "Nuove Norme Tecniche per le Costruzioni", cap. 7.1, i seguenti Stati Limite sismici:

- SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)
- SLD: Stato Limite di Danno (Stato Limite di Esercizio)
- SLC: Stato Limite di Collasso (Stato Limite Ultimo)
- SLO: Stato Limite di Operatività (Stato Limite di Esercizio)

Le azioni sismiche relative allo stato limite di operatività (SLO) e allo stato limite di danno (SLD) non sono state considerate perché poco significative in relazione alle combinazioni di natura statica. Per quanto riguarda lo stato limite di collasso (SLC), questo è stato considerato per le combinazioni sismiche di verifica dei ritegni sismici; si faccia pertanto riferimento alle considerazioni presentate nelle rispettive relazioni di calcolo di impalcato.

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici e di progetto per il restante stato limite (SLV).

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata nella tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio V_{s30} , ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 compresi tra 360 m/s e 800 m/s (ovvero Nspt,30>50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina)
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzanti da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15< Nspt,30<50 nei terreni a grana grossa e 70 <cu,30<250 a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""></cu,30<250>
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 inferiori a 180 m/s (ovvero Nspt,30<15 nei terreni a grana grossa e cu,30<70 kPa nei terreni a grana fina)
Cat. E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s)

Si considera una categoria B di suolo di fondazione.

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente.

Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Categoria sottosuolo	Ss	c_{c}
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_C^*)^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Nel caso in esame (categoria di sottosuolo B) allo SLV risulta:

 $S_s = 1.185$

 $C_c = 1.412$

Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella.

Categoria	Ubicazione dell'opera o dell'intervento	S _T
topografica	obicazione dell'opera o dell'intervento	٦١
T1	-	1
T2	In corrispondenza della sommità del pendio	1.2
Т3	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2
T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4

Nel caso in esame $S_T = 1$

Spettri di progetto

Di seguito si forniscono gli spettri di risposta elastici per lo SLV, con le tabelle dei rispettivi parametri.

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

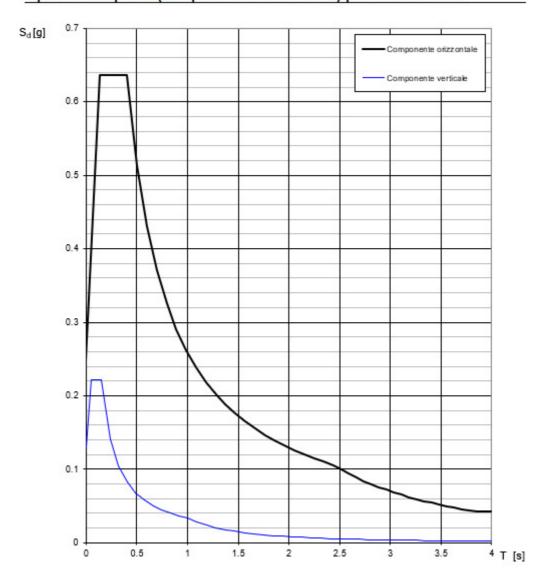


Figura 12: Spettri di risposta _SLV (Componente orizzontale e verticale)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Parametri e punti dello spettro di risposta orizzontale per lo stato lir&LV

Punti dell<u>o spettro di risposta</u> Parametri indipendenti STATO LIMITE SLV T[s] 0.210 < 0.135 0.637 0.287 a Tc◀ 0.405 0.637 1.185 0.502 0.514 1.412 0.599 0.431 1.000 0.371 0.696 1.000 0.793 0.326 0.890 0.290 0.987 0.262 Parametri dipendenti 1.084 0.238 1.181 0.219 1.277 0.202 0.135 a 1.374 0.188 0.405 / 1.471 0.176 2.440 ء 1.568 0.165 1.665 0.155 1.762 0.147 Espressioni dei parametri dipendenti 1.859 0.139 1.956 0.132 (NTC-08Eq. 3.2.5) 2.053 0.126 S-S-S 2.149 0.120 $\eta = \sqrt{10.(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08E4.3.2.6; §.3.2.3.5) 2.246 0.115 2.343 0.110 (NTC-07Eq. 3.2.8) $T_{-} = T_{c}/3$ 2.514 0.100 (NTC-07Eq. 3.2.7) $T_C = C_C \cdot T_C^*$ 2.589 0.094 2.663 0.089 $T_D = 4.0 \cdot a_g / g + 1.6$ (NTC-07Ea, 3,2,9) 2.737 0.084 2.812 0.080 2.886 0.076 Espressioni dello spettro di risposta (NTC-08E4.3.2.4) 2.960 0.072 3.034 0.068 $0 \le T < T_B$ $S_c(T) = a_{_R} \cdot S \cdot \eta \cdot F_c \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_c} \left(1 - \frac{T}{T_B} \right) \right]$ 3.109 0.065 3.183 0.062 3.257 0.059 $T_B \le T < T_C \mid S_c(T) = a_k \cdot S \cdot \eta \cdot F_o$ 3.332 0.057 3,406 0.054 3,480 0.052 $T_C \le T < T_D$ $S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{I_C}{T}\right)$ 0.050 3.629 0.048 $S_c(T) = a_{g_c} \cdot S \cdot \eta \cdot F_c \cdot \left(\frac{T_C T_D}{T^2} \right)$ 3.703 0.046 3.777 0.044 Laspottra di pragotta S₄(T) por lo vorificho agli Stati Limito Ultimi è 3.851 0.042 attonuta dallo osprossiani della spettra elartica S.(T) sastituendan 3.926 0.042

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudo-statica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h \times W$ Forza sismica verticale $F_v = k_v \times W$

con 1/q, dovo q & il fattoro distruttura. (NTC-08 § 3.2.3.5)

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

4.000

0.042

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$k_h = a_{max}/g = 0.249$$

 $k_v = \pm 0.5 \times k_h = 0.124444$

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \psi_{2j} Q_{kj}$$

Dove nel caso specifico si assumerà, per i carichi dovuti al transito dei mezzi, ψ_{2j} = 0.2.

Pertanto avremo che:

Massa associata al peso proprio copertura G_1 = 25.00 kN/m Massa associata al carico permanente G_2 = 16.40 kN/m Massa traffico Q_k = 20.00 kN/m G_3 = 25.00 kN/m

Massa associata al peso dei setti centrali G_4 = 35.00 kN/m

7.1.7.1 Forze sismiche orizzontali (q_{6_orizz})

Forza orizzontale sulla soletta di copertura (carico orizzontale uniformemente distribuito applicato alla soletta di copertura):

$$F'_h = k_h (G_1 + G_2 + \psi_{2i} Q_{ki}) = 11.30$$
 kN/m

Forza orizzontale sui piedritti (carico orizzontale uniformemente distribuito applicato ai piedritti):

$$F''_h = k_h G_p = 6.22$$
 kN/m

7.1.7.2 Forze sismiche verticali (q_{6 vert})

Per la forza sismica verticale avremo analogamente (carico verticale uniformemente distribuito applicato alla soletta di copertura):

Forza verticale sulla soletta di copertura:

$$F'_{v} = k_{v} (G_1 + G_2 + \psi_{2j} Q_{kj}) = 5.65$$
 kN/m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

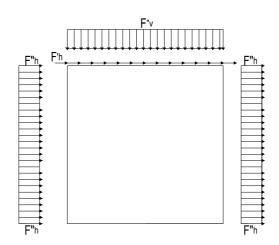


Figura 13: Forze sismiche agenti sulla struttura

7.1.7.3 Spinta delle terre in fase sismica

Le spinte delle terre sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = (a_{max}/g) \cdot y \cdot H^2 =$$

291.36

kN/m

con risultante applicata ad un'altezza pari ad H/2.

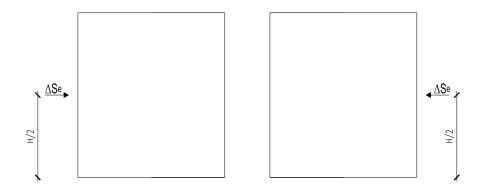


Figura 14: Spinta sismica del terreno secondo la teoria di Wood

Nel modello di calcolo si è applicato il valore della forza sismica per unità di superficie agente su un piedritto, pari a:

$$\Delta s_E = \Delta s_E / H =$$

40.75

kN/m²

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7.2 Combinazioni di carico

Le azioni considerate sono le seguenti:

g1: peso proprio degli elementi strutturali;

g2: carichi permanenti portati;

g3: spinta delle terre;

ε2: ritiro e viscosità della soletta;

q1: carichi mobili;

q3: azione longitudinale di frenamento;

q4: azione centrifuga;

q5: azione trasversale del vento;

q6: azioni sismiche;

q7: azioni della temperatura

q8: azioni sui parapetti e urto di veicoli in svio.

Tali azioni sono combinate secondo il punto 5.1.3.12 delle NTC 2018.

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni:

> Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + ...$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

> Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Per le combinazioni di carico si è fatto riferimento al paragrafo 5.1.3.14 delle NTC18.

Si ripota la Tabella 5.1.V delle NTC18 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

Tabella 5 Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Si riporta la Tabella 5.1.VI delle NTC18 in cui sono espressi i coefficienti di combinazione delle azioni:

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Tabella 6 Coefficienti di combinazione per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Vo di combi-	Coefficiente W ₁ (valori	Coefficiente ψ ₂ (valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Nella combinazione sismica le azioni indotte dal traffico dei mezzi sono combinate con un coefficiente $\psi 2$ = 0.2 (paragrafo 5.1.3.12 del DM 17/01/2018) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Si riportano di seguito le combinazioni delle azioni maggiormente significative per la determinazione delle sollecitazioni più gravose.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

		g1+g3	g2	ε2	q1(*)	q3	q4	q5	q6_orizz	q6_vert	q7	q8
	SLE (QP)	1	1	1	0	0	0	0	0	0	0.5	0
	SLE (FR) 1	1	1	1	0.75 Qik 0.4 qik 0.75 qfolla	0	0	0	0	0	0.5	0
	SLE (FR) 2	1	1	1	0.75 Q _{ik} 0.4 q _{ik} 0.75 q _{folla}	0.75	0	0	0	0	0.5	0
	SLE (FR) 3	1	1	1	0	0	0	0.2	0	0	0.5	0
	SLE (FR) 4	1	1	1	0	0	0	0	0	0	0.6	0
	SLE (RARA) 1	1	1	1	1	0	0	0.6	0	0	0.6	0
	SLE (RARA) 2	1	1	1	1	0	0	0.8	0	0	0.6	0
	SLE (RARA) 3	1	1	1	0.75 Q _{ik} 0.4 q _{ik} 0.75 q _{folla}	1	0	0.6	0	0	0.6	0
SLE	SLE (RARA) 4	1	1	1	0.75 Qik 0.4 qik 0.75 qfolla	1	0	0.8	0	0	0.6	0
	SLE (RARA) 5	1	1	1	0.75 Q _{ik} 0.4 q _{ik} 0.75 q _{folla}	0	1	0.6	0	0	0.6	0
	SLE (RARA) 6	1	1	1	0.75 Q _{ik} 0.4 q _{ik} 0.75 q _{folla}	0	1	0.8	0	0	0.6	0
	SLE (RARA) 7	1	1	1	0.75 Qik 0.4 qik 0.75 q _{folla}	0	0	1	0	0	0.6	0
	SLE (RARA) 8	1	1	1	0.75 Qik 0.4 qik 0.75 qfolla	0	0	0.6	0	0	1	0
	SLE (RARA) 9	1	1	1	0.75 Q _{ik} 0.4 q _{ik} 0.75 q _{folla}	0	0	0.8	0	0	1	0
SLU	SLU1	1.35	1.5	1.2	1.35	0	0	1.50.0.60	0	0	1.50.0.60	0

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	SLU2	1.35	1.5	1.2	1.35	0	0	1.50.0.80	0	0	1.50.0.60	0
	SLU3	1.35	1.5	1.2	1.35·0.75 Qik 1.35·0.40 qik 1.35·0.75 Qfolla	1.35	0	1.50.0.60	0	0	1.50-0.60	0
	SLU4	1.35	1.5	1.2	1.35·0.75 Qik 1.35·0.40 qik 1.35·0.75 q _{folla}	1.35	0	1.50.0.80	0	0	1.50.0.60	0
	SLU5	1.35	1.5	1.2	1.35·0.75 Qik 1.35·0.40 qik 1.35·0.75 qfolla	0	1.35	1.50.0.60	0	0	1.50.0.60	0
	SLU6	1.35	1.5	1.2	1.35·0.75 Qik 1.35·0.40 qik 1.35·0.75 q _{folla}	0	1.35	1.50.0.80	0	0	1.50·0.60	0
	SLU7	1.35	1.5	1.2	1.35·0.75 Qik 1.35·0.40 qik 1.35·0.75 qfolla	0	0	1.50	0	0	1.50.0.60	0
	SLU8	1.35	1.5	1.2	1.35·0.75 Qik 1.35·0.40 qik 1.35·0.75 q _{folla}	0	0	1.50.0.60	0	0	1.50	0
	SLU9	1.35	1.5	1.2	1.35·0.75 Qik 1.35·0.40 qik 1.35·0.75 qfolla	0	0	1.50.0.80	0	0	1.50	0
	SLV1	1	1	1	0.2	0	0	0	1	0.3	0.5	0
SLV	SLV2	1	1	1	0.2	0	0	0	1	-0.3	0.5	0
JL V	SLV3	1	1	1	0.2	0	0	0	0.3	1	0.5	0
	SLV4	1	1	1	0.2	0	0	0	0.3	-1	0.5	0
	ECC	1	1	1	0	0	0	0	0	0	0.5	1

^(*) Sono state considerate principalmente due condizioni di carico accidentale: 1) per massimizzare il momento in mezzeria della soletta; 2) per massimizzare il taglio nella soletta a filo piedritto.

Tabella 7: Combinazioni di carico

La risposta della struttura alle azioni sismiche è stata valutata mediante analisi dinamica lineare, valutando gli effetti sulla struttura tramite la seguente espressione:

 $E_1 + 0.3E_t + 0.3E_v$;

 $0.3E_{l}+E_{t}+0.3E_{v}$;

 $0.3E_1+0.3E_t+E_v$.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

8 MODELLAZIONE NUMERICA

8.1 Condizioni di carico

L'analisi della struttura scatolare è stata condotta con un programma agli elementi finiti (STRAUS7) facendo riferimento agli assi baricentrici degli elementi schematizzati con elementi "beam".

8.2 Modello di carico

Le analisi sono state condotte per una striscia di struttura di lunghezza unitaria, implementando un modello di calcolo bidimensionale in condizioni di deformazione piana. La struttura è definita sulla base degli assi baricentrici degli elementi. La fondazione è schematizzata come una trave su suolo elastico alla Winkler non reagente a trazione, il calcolo della costante di sottofondo è riportata nel paragrafo 8.2.1.

Lo schema statico della struttura e la relativa numerazione dei nodi e delle aste sono riportati nelle seguenti figure.

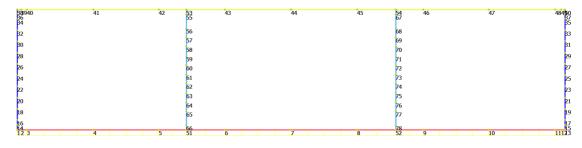


Figura 15 Modello F.E.M struttura - numerazione nodi

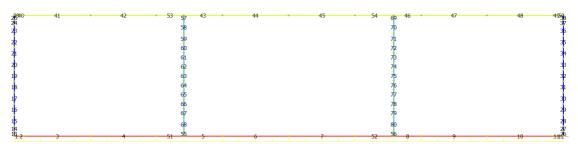


Figura 16 Modello F.E.M. struttura – numerazione aste

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

8.2.1 Interazione terreno-struttura

Nelle analisi strutturali, per la determinazione del coefficiente di sottofondo alla Winkler si è fatto riferimento alla seguente relazione (Vesic, 1965):

$$K = \frac{0.65E}{1 - v^2} 12 \sqrt{\frac{Eb^4}{(EJ)_{fond}}}$$

dove:

E = modulo elastico del terreno;

v = coefficiente di Poisson;

b = dimensione trasversale;

h = altezza;

J = inerzia;

Ec = modulo elastico del calcestruzzo della fondazione.

Nel caso in esame K risulta pari a 57504 kN/mc. Tale rigidezza è stata applicata come beam support lungo l'elemento, in particolare considerando la striscia di calcolo pari ad 1m risulta 57504 kPa/m*1m = 57504 kN/m/m.

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9 CRITERI DI VERIFICA

Le verifiche di sicurezza sono state effettuate sulla base dei criteri definiti nelle vigenti norme tecniche - "Norme tecniche per le costruzioni"- DM 2018.

In particolare vengono effettuate le verifiche agli stati limite di servizio ed allo stato limite ultimo. Le combinazioni di carico considerate ai fini delle verifiche sono quelle indicate nei precedenti paragrafi.

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali.

9.1 Verifiche agli stati limite di esercizio

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 8: Descrizione delle condizioni ambientali (Tab. 4.1.III delle NTC18)

9.1.1 Verifica a fessurazione

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.4 del DM 17.1.2018.

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture:

Gruppi di Condizioni esigenze ambientali		Combinazione	Armatura				
		di azioni	Sensibile	Poco sensibile			
esigenze	ашолентан	di azioni	Stato limite	Wd	Stato limite	Wd	
	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$	
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
	Λ	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
ь	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
36.6		frequente	formazione fessure	-	ap. fessure	$\leq w_1$	
c	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Tabella 9: Criteri di scelta dello stato limite di fessurazione - Tabella 4.1.IV del DM 17.1.2018

Nella Tabella sopra riportata, w1=0.2mm, w2=0.3mm; w3=0.4mm.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.1.2 Verifica delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti, di seguito riportati.

La massima tensione di compressione del calcestruzzo σ c, deve rispettare la limitazione seguente:

 σ_c < 0,60 f_{ck} per combinazione caratteristica (rara)

 σ_c < 0,45 f_{ck} per combinazione quasi permanente.

Per l'acciaio ordinario, la tensione massima σ_s per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_{\rm s}$$
 < 0,80 $f_{\rm vk}$

dove f_{vk} per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

9.2 Verifiche agli stati limite ultimi

9.2.1 Sollecitazioni flettenti

La verifica di resistenza (SLU) è stata condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabolo-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 ($\sigma_{max} = 0.85 \times 0.83 \times R_{ck}/1.5$);
- legame costitutivo dell'armatura d'acciaio elastico-perfattamente plastico con deformazione limite di rottura a 0.01 ($\sigma_{max} = f_{vk} / 1.15$)

9.2.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$\begin{split} V_{Rd} = & \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, (v_{min} \, + \, 0.15 \cdot \, \sigma_{cp}) \, \cdot b_w d \\ \text{con:} \end{split}$$

$$k = 1 + (200/d)^{1/2} \le 2$$

 $v_{min} = 0.035k^{3/2}f_{ck}^{1/2}$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

e dove:

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{sl} / (b_w \times d)$ è il rapporto geometrico di armatura longitudinale ($\leq 0,02$);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0,2 f_{cd}$);

b_w è la larghezza minima della sezione (in mm).

La resistenza a taglio VRd di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

 $1 \le ctg \ \theta \le 2.5$

La verifica di resistenza (SLU) si pone con:

 $V_{Rd} \ge V_{Ed}$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è stata calcolata con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" è stata calcolata con:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

 $V_{Rd} = min (V_{Rsd}, V_{Rcd})$

In cui:

d è l'altezza utile della sezione;

b_w è la larghezza minima della sezione;

s_{cp} è la tensione media di compressione della sezione;

A_{sw} è l'area dell'armatura trasversale;

S è interasse tra due armature trasversali consecutive;

è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave; f'_{cd} è la resistenza a compressione ridotta del calcestruzzo d'anima (f'_{cd} =0.5 f_{cd});

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

à è un coefficiente maggiorativo, pari ad 1 per membrature non compresse.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

10 ANALISI DELLE SOLLECITAZIONI

Nelle seguenti tabelle sono riportati i valori massimi delle caratteristiche delle sollecitazioni ricavati per le sezioni oggetto di verifica, indicate in figura.

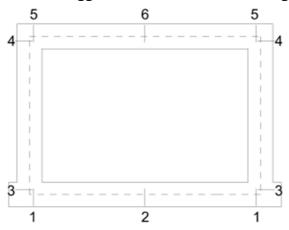


Figura 17 Sezioni di verifica

Di seguito è riportato l'inviluppo delle sollecitazioni flettenti e taglianti dello stato limite ultimo. Le unità di misura adottate nei diagrammi seguenti sono kN-m.

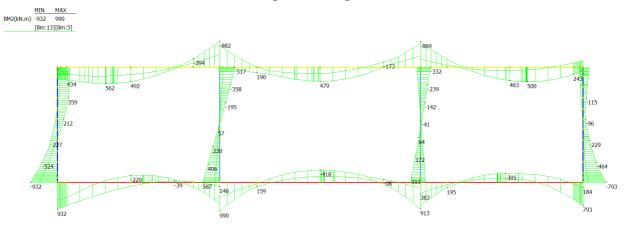


Figura 18 Inviluppo SLU/Sisma: Momenti flettenti

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

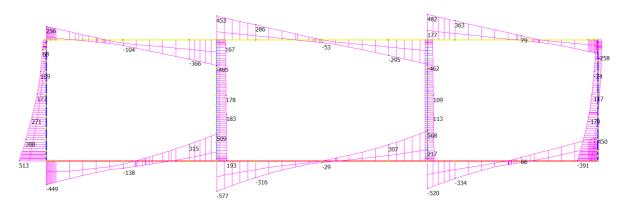


Figura 19 Inviluppo SLU/Sisma: sollecitazioni taglianti

AxForce(kN) MIN MAX -1078 171 [Bm:56] [Bm:3]

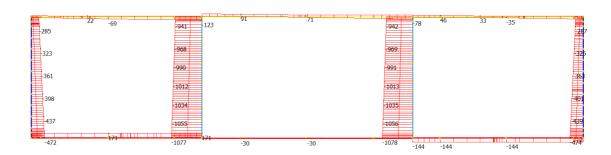
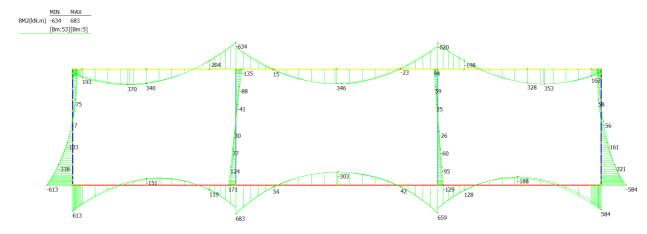



Figura 20 Inviluppo SLU/Sisma: sforzo normale

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Figura 21 Inviluppo SLE Momenti flettenti

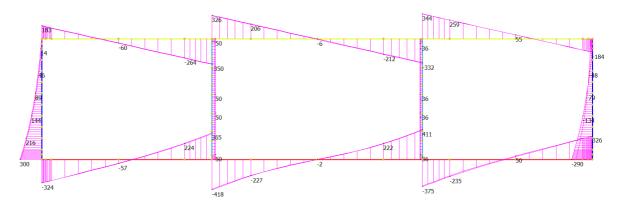


Figura 22 Inviluppo SLE: sollecitazioni taglianti

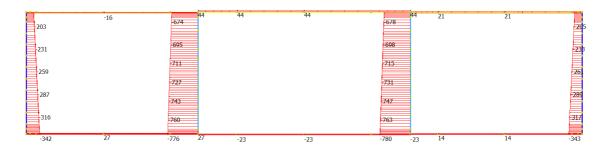


Figura 23 Inviluppo SLE: sforzo normale

Di seguito si riportano i valori delle sollecitazioni per le combinazioni di carico più gravose relative a tutte le sezioni di verifica.

COP_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLV	69	349	239
SLU	91	562	366
SLE RARA	44	370	-
SLE FREQUENTE	40	340	-
SLE QUASI PERM.	46	277	-
COP_INC	N	Mx	Vy

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	(KN)	(KNm)	(KNm)
SLV	123	645	306
SLU	105	882	485
SLE RARA	44	634	-
SLE FREQUENTE	40	584	-
SLE QUASI PERM.	46	447	-

FOND_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLV	0	289	247
SLU	0	418	334
SLE RARA	0	303	-
SLE FREQUENTE	0	282	-
SLE QUASI PERM.	0	224	-
FOND_INC	N	Mx	Vy
FOND_INC	N (KN)	Mx (KNm)	Vy (KNm)
FOND_INC SLV			,
	(KN)	(KNm)	(KNm)
SLV	(KN) 0	(KNm) 905	(KNm) 391
SLV SLU	(KN) 0 0	(KNm) 905 990	(KNm) 391

PIEDR_PIEDE	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLV	333	905	513
SLU	439	932	411
SLE RARA	317	613	-
SLE FREQUENTE	301	578	-
SLE QUASI PERM.	243	508	-
PIEDR_TESTA	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLV	195	413	75
SLU	287	307	61
SLE RARA	205	112	-
SLE FREQUENTE	189	105	-
SLE QUASI PERM.	131	128	-
PIEDR_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

SLV	279	359	328
SLU	401	229	234
SLE RARA	289	161	-
SLE FREQUENTE	273	146	-
SLE QUASI PERM.	215	97	-

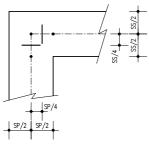
SETTO			
CENTRALE_PIEDE	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLV	666	587	193
SLU	1056	408	124
SLE RARA	763	171	-
SLE FREQUENTE	709	156	-
SLE QUASI PERM.	552	122	-
SETTO			
CENTRALE_TESTA	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLV	565	517	167
SLU	942	357	124
SLE RARA	678	135	-
SLE FREQUENTE	624	124	-
SLE QUASI PERM.	467	97	-
SETTO			
CENTRALE_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLV	634	317	181
SLU	1035	172	124
SLE RARA	747	77	-
SLE FREQUENTE	693	70	-
SLE QUASI PERM.	535	55	-

MANDANTE

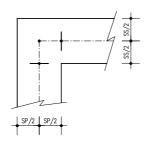
PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11 VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO


Si riassumono di seguito i risultati delle verifiche allo stato limite ultimo per le sollecitazioni di taglio e flessione, relative all'inviluppo delle combinazioni di carico. In particolare si riportano le sollecitazioni massime per tutte le sezioni di verifica e le combinazioni di carico più gravose (minimo coefficiente di sicurezza), sia per la verifica a flessione sia per la verifica a taglio.

Nelle verifiche della soletta di fondazione, cautelativamente, non si è tenuto in conto del contributo dello sforzo normale.


Le verifiche a flessione in corrispondenza dei nodi tra setti adiacenti sono effettuate rispettivamente:

- nella sezione ubicata a metà fra asse piedritto e sezione d'attacco piedritto-soletta nel caso delle verifiche della soletta;
- nella sezione ubicata a metà fra asse soletta e sezione d'attacco del piedritto nel caso delle verifiche del piedritto.

Le verifiche a fessurazione e a taglio sono eseguite nelle sezioni di attacco soletta-piedritto.

VERIFICHE A FLESSIONE

VERIFICHE A FESSURAZIONE E TAGLIO

I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D.M.17.01.2018 con l'UNI EN 1992 (Eurocodice 2).

Si riporta di seguito l'armatura degli elementi strutturali nelle sezioni di mezzeria e di incastro.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Elemento	Sezione	Dimensioni [cm]		Fle	ssione	Armatura		
Elemento	Elemento Sezione		В Н		Lato terra	Lato interno	a taglio	
SOLETTA SUP.	INCASTRO	100		4.00	10 Ø 26	10Ø24	Ø14/20x40	
SOLETTA SUP.	MEZZERIA	100	Х	100	10Ø24	10 Ø 26	-	
	TESTA			10Ø24	10Ø24	Ø12/20x40		
PIEDRITTI	MEZZERIA	100	Х	100	10Ø24	10Ø24 Ø12	Ø12/20x40	
	PIEDE				10 Ø 26	10 Ø 26	Ø12/20x40	
COLETTA INC	INCASTRO	400		100	10 Ø 26	10 Ø 26	Ø14/20x40	
SOLETTA INF.	MEZZERIA	100	Х		10 Ø 26	10 Ø 26	-	
	TESTA				10Ø24	10Ø24	Ø10/20x40	
SETTI CENTRALI	MEZZERIA	100	Х	70	10Ø20	10Ø20	Ø10/20x40	
	PIEDE				10Ø24	10Ø24	Ø10/20x40	

Nelle verifiche riportate di seguito sono stati rispettati i minimi di armatura previsti dalle NTC18 riportate al paragrafo 4.1.6.

Facendo riferimento al paragrafo 7.4.6.2.4 delle NTC18, si è rispettato il limite per le pareti di almeno 9 legature ogni metro quadrato.

L'armatura trasversale di ripartizione si pone pari al 25% dell'armatura longitudinale.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11.1 Soletta superiore - sezione di mezzeria

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Copertura mezzeria

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do	Poligonale	
Classe Conglo	C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

MANDATARIA

 N° Barra X [cm] Y [cm] Diam $\emptyset [mm]$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	91.9	91.9	24
0			
2	91.9	8.1	26
3	8.1	8.1	26
4	8.1	91.9	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	3	2	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [k	N] applicato nel Bar	ric. (+ se di compre	ssione)		
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
		con verso positivo	se tale da comprin	nere il lembo sup. de	ella sez.		
My		Momento flettente [kNm] intorno all'asse y princ. d'inerzia					
-		con verso positivo se tale da comprimere il lembo destro della se					
Vy		Componente del Taglio [kN] parallela all'asse princ d'inerzia y					
Vx		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	rzia x		
N°Comb.	N	Mx	Му	Vy	Vx		

			,	- ,	
1	91.00	562.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 44.00 370.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 40.00 340.00 (621.78) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

46.00 277.00 (627.62) 0.00 (0.00)

RISULTATI DEL CALCOLO

1

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 6.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb N Res My Res Ver N My Mx Res Mis Sic As Tesa Mχ 91.00 0.00 1 S 562.00 0.00 91.24 1851.62 3.29 53.1(15.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00186	0.157	100.0	100.0	0.00082	91.9	91.9	-0.01000	8.1	8.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.000000000 0.000129070 -0.011045466 0.157 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 2.44 100.0 100.0 -80.2 8.1 2027 53.1 1 8.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 2 24 100.0 100.0 -7372000 53.1 1 26.7 8 1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.

Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

0.500 26.0

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

-0.00042

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

0

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess

0.00022 (0.00022)

1 0.00

S

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

68

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 1.84
 100.0
 100.0
 -58.9
 26.7
 8.1
 2000
 53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb Ver e2 k2 Ø Cf e sm - e cm sr max Mx fessMy fess S -0.000330 0.500 26.0 68 0.00018 (0.00018) 398 0.070 (0.30) 627.62 1 0.00

MANDATARIA

398

0.088 (0.40)

621 78

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

daN/cm²

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Resis. compr. di progetto fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa

Resis. media a trazione fctm: 2.760 MPa

ACCIAIO - Tipo: B450C**

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:
Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00

MPa
391.30

MPa
398.50

MPa
0.010

Deform. ultima di progetto Epu: 0.010 Modulo Elastico Ef 2000000

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do	Poligonale	
Classe Conglo	C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.9	91.9	24
2	91.9	8.1	26
3	8.1	8.1	26
4	8.1	91.9	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	1	4	8	24
2	3	2	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione						
Mx		Momento flettente	e [kNm] intorno all'a	sse x princ. d'inerzia	ı		
		con verso positivo	o se tale da comprin	nere il lembo sup. de	ella sez.		
My		Momento flettente	e [kNm] intorno all'a	sse y princ. d'inerzia	ı		
•		con verso positivo	o se tale da comprin	nere il lembo destro	della sez.		
Vy		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia y		
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	My	Vv	Vx		

1 69.00 349.00 0.00 0.00 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 6.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)
Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	69.00	349.00	0.00	69.14	1745.23	0.00	5.00	53.1(15.9)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

Deform. unit. massima del conglomerato a compressione
Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00085	0.302	100.0	100.0	0.00060	91.9	91.9	-0.00196	8.1	8.1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000030513 -0.002203654 0.302 0.818

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

MIL I ODO A	JLI STATT	CIIVILLE OF LIIVIL - A	LINII IONE F	AIAGLIO	
SEZIONE					
b _w	=	100	cm		
h	=	100	cm		
С	=	8.1	cm		
d	=	h-c	II	91.9	cm
MATERIALI					
f _{y wd}	=	391.30	MPa		
	•				
R _{ck}	=	35	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	16.46	MPa
ARMATURE	LONGITU	DINALI	,		
Øl	=	26			
Numero	=	10			
A _{sl}	=	53.093	cm ²		
					_
TAGLIO AG	ENTE	V _{Ed} =	366	(KN)	1
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	<u> </u>
		α _c =	1.0000		

ELEMENTI SENZA ARMATURA A TAGLIO						
k vmin ρι _{σcp=} Ned/Ac=	= = =	1.47 0.335 0.0058 0.0000	(Mpa)	$1 + (200/d)^{1/2} \le 2$ $0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$		
V _{Rd1}	=	414.07	(KN)	V _{Rd} =	414.07	(KN)
V _{Rd2}	=	307.88	(KN)	V _{Rd} −	414.07	(1/1/1)

11.2 Soletta superiore – sezione di incastro

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C28/35
Resis. compr. di progetto fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa
Resis. media a trazione fctm: 2.760 MPa
Coeff. Omogen. S.L.E.: 15.00
Coeff. Omogen. S.L.E.: 15.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Frequenti: Sc limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.:	168.00 0.400 0.00 0.300	daN/cm² mm Mpa mm
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1 2	100.0 100.0	100.0 0.0
3	0.0	0.0
Δ	0.0	100.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.9	91.9	24
2	91.9	8.1	26
3	8.1	8.1	26
4	8.1	91.9	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione				
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø		
1	1	4	8	24		
2	3	2	8	26		

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

con verso positivo se tale da comprimere il lembo destro della sez.

Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y

Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb. N Mx My Vy Vx 1 105.00 882.00 0.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 44.00 634.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 40.00 584.00 (615.97) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 46.00 447.00 (620.03) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 6.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000
As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν Mx My N Res Mx Res My Res Mis.Sic. As Tesa 1 S 105.00 882.00 0.00 104.77 1857.20 0.00 2.10 53.1(15.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00187	0.157	100.0	100.0	0.00082	91.9	91.9	-0.01000	8.1	8.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000129146 -0.011046084 0.157 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 4.15 0.0 100.0 -140.1 91.9 8.1 2050 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 3.82 0.0 100.0 -129.1 82.6 8.1 2045 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Ver.		Esito della ve	Esito della verifica							
e1		Massima defo	rmazione ι	ınitaria di t	razione n	el calcestruzz	zo (trazione -) valutata in sezione	fessurat	а	
e2		Minima deform	nazione un	itaria di tra	zione nel	calcestruzzo	(trazione -) valutata in sezione f	essurata		
k1		= 0.8 per bar	re ad adere	nza miglio	rata [eq.(7.11)EC2]	,			
kt		= 0.4 per co	mb. quasi p	ermanenti	/ = 0.6 pe	er comb.frequ	enti [cfr. eq.(7.9)EC2]			
k2							ica [eq.(7.13)EC2]			
k3		= 3.400 Coeff					, .			
k4		= 0.425 Coeff	in eq.(7.1	1) come da	annessi	nazionali				
Ø		Diametro [mn	n] equivaler	ite delle ba	rre tese o	comprese nel	l'area efficace Ac eff [eq.(7.11)E	C21		
Cf		Copriferro [mi	Copriferro [mm] netto calcolato con riferimento alla barra più tesa							
e sm	- e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]								
sr ma	ax	Massima dista					(() () () ()			
wk						e sm - e cm	[(7.8)EC2 e (C4.1.7)NTC]. Valo	re limite t	ra parentesi	
Mx fe	ess	Componente								
My fe		Componente								
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fessMy fess
										•
1	S	-0.00073	0	0.500	26.0	68	0.00039 (0.00039)	401	0.155 (0.40)	615.97
0.00							,		,	

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min X	s min Ys min	Ac eff.	As eff.
1	S	2.94	0.0 100.0	-97.5	82.6 8.1	2006	53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fessMy fess
1 0.00	S	-0.00055	0	0.500	26.0	68	0.00029 (0.00029)	398	0.116 (0.30)	620.03

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

A Sforzo Norm. costante Percorso sollecitazione: Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	

MANDATARIA

Sintagma

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Modulo Elastico Ef 2000000 daN/cm² Bilineare finito Diagramma tensione-deformaz.:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.9	91.9	24
2	91.9	8.1	26
3	8.1	8.1	26
4	8.1	91.9	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato a Numero della barra i Numero della barra i Numero di barre ger Diametro in mm della	niziale cui si riferisc finale cui si riferisce perate equidistanti c	e la generazione la generazione ui si riferisce la ge	
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø	
1	1	4	8	24 26	

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx				aric. (+ se di compre		
Му	con verso positivo se tale da comprimere il lembo sup. de					
Vy Vx		Componente del	Taglio [kN] parallel	mere il lembo destro a all'asse princ.d'ine a all'asse princ.d'ine	erzia y	
N°Comb.	N	Mx	Му	Vy	Vx	
1	123.00	645.00	0.00	0.00	0.00	

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 6.7 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	123.00	645.00	0.00	122.85	1765.09	0.00	2.73	53.1(15.9)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00086	0.306	100.0	100.0	0.00061	91.9	91.9	-0.00196	8.1	8.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000030669	-0.002204920	0.306	0.822

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

METODO AGLISTATI LIMITE ULTIMI - VERIFICHE A TAGLIO					
SEZIONE					
b _w	=	100	cm		
h	=	100	cm		
С	=	8.1	cm		
d	=	h-c	=	91.9	cm
MATERIALI				-	
f _{y wd}	=	391.30	MPa		
				•	
R _{ck}	=	35	MPa		
γς	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	16.46	MPa
ARMATURE	A TAGLIC)			
Ø _{st}	=	14			
braccia	=	5			
Ø _{st2}	=	0			
braccia	=	0			
passo	=	40	cm		
(A_{sw}/s)	=	19.242	cm ² / m		
α	=	90	٥	(90° staffe	verticali)
·					
TAGLIO AG	SENTE	V _{Ed} =	485	(KN)	
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	
		αc =	1.0000		

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 3.15$ $\theta = 17.61$ °

IPOTESI 1	1<= cot (<= 2.5 Rottura bilanciata V _{Rsd} =V _{Rcd}
V _{Rsd} =	1962.60 <i>(KN)</i>	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$
V _{Rcd} =	1962.60 (KN)	$0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta)/(1 + ctg^2\theta)$
V _{Rd} =	1963 (KN)	$\min(V_{Rsd},VR_{cd})$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11.3 Soletta inferiore – sezione di mezzeria

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Fondazione mezzeria

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:

A Sforzo Norm. costante
Poco aggressive
Assi x,y principali d'inerzia
Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	

Modulo Elastico Ef 2000000 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

MANDATARIA

 N° Barra X [cm] Y [cm] DiamØ[mm]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	91.9	91.9	26
1			
2	91.9	8.1	26
3	8.1	8.1	26
4	8.1	91.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	3	2	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	olicato nel Baric. (+ se di compressione) i] intorno all'asse x princ. d'inerzia					
Му		con verso positiv Momento flettent	ositivo se tale da comprimere il lembo sup. della sez. stituto se tale da comprimere il lembo sup. della sez. stituto se tale da comprimere il lembo destro della sez.			
Vy Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x				
N°Comb.	N	Mx	Му	Vy	Vx	
1	0.00	418.00	0.00	0.00	0.00	

418.00 COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro	(+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Mx

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N 0.00 1 303.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν My 0.00 282.00 (614.36) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 224.00 (614.36) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 6.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb N Res My Res Ver Ν My Mx Res Mis Sic As Tesa Mχ 0.00 0.00 0.00 1 S 418.00 0.00 1814.27 4.34 53.1(14.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X.Y.O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00176	0.149	100.0	100.0	0.00072	91.9	91.9	-0.01000	8.1	8.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.00000000 0.000127920 -0.011036152 0 149 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata V/er

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 1.91 0.0 100.0 -68.6 91.9 2050 53.1 1 8.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 1 78 100.0 100.0 -63.98 1 8 1 2050 53.1 1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess

e2 k2 Ø Cf Mx fessMy fess Comb e sm - e cm sr max

S -0.00036 0 0.500 26.0 68 0.00019 (0.00019) 402 0.077 (0.40) 614 36 1 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S -50.7 2000 53.1 1 1.41 100.0 100.0 36.0 8.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb Ver e2 k2 Ø Cf e sm - e cm sr max Mx fessMy fess S -0.000290 0.500 26.0 68 0.00015 (0.00015) 398 0.061 (0.30) 614.36 1 0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

daN/cm²

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Resis. compr. di progetto fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa

Resis. media a trazione fctm: 2.760 MPa

ACCIAIO - Tipo: B450C**

Resist. caratt. snervam. fyk: 450.00 MPa
Resist. caratt. rottura ftk: 458.20 MPa
Resist. snerv. di progetto fyd: 391.30 MPa
Resist. ultima di progetto ftd: 398.50 MPa

Deform. ultima di progetto Epu: 0.010 Modulo Elastico Ef 2000000

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1 2	100.0 100.0	100.0 0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.9	91.9	26
2	91.9	8.1	26
3	8.1	8.1	26
4	8.1	91.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	1	4	8	26
2	3	2	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [k	N] applicato nel Bar	ic. (+ se di compre	ssione)
Mx		Momento flettente	e [kNm] intorno all'as	sse x princ. d'inerzia	1
		con verso positivo	o se tale da comprim	nere il lembo sup. de	ella sez.
My			e [kNm] intorno all'as		
		con verso positivo	o se tale da comprim	nere il lembo destro	della sez.
Vy		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia y
Vx		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia x
N°Comb.	N	Mx	My	Vv	Vx

1 0.00 289.00 0.00 0.00 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 6.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	289.00	0.00	0.00	1723.51	0.00	5.96	53.1(14.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00081	0.292	100.0	100.0	0.00056	91.9	91.9	-0.00196	8.1	8.1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d C.Rid. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid. 1 0.000000000 0.000030050 -0.002199908 0.292 0.804

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

SEZIONE		TI LIMITE OLI IMI			
b _w	=	100	cm		
h	=	100	cm		
С	=	8.1	cm		
d	=	h-c	=	91.9	cm
MATERIALI					
f _{y wd}	=	391.30	MPa		
•		•			
R _{ck}	=	35	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	16.46	MPa
ARMATURE	LONGITU	DINALI			
Øl	=	26			
Numero	=	10			
A _{sl}	=	53.093	cm ²		
					7
TAGLIO AGI		V _{Ed} =	334	(KN)	_
SFORZO NO	RMALE	N _{ed} =	0	(KN)	
		α _c =	1.0000		

ELEMENTI SENZA ARMATURA A TAGLIO							
k vmin	= =	1.47 0.335 0.0058		$1 + (200/d)^{1/2} \le 2$ 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}			
$\rho_{\text{Cp=}}$ Ned/Ac=	=	0.0000	(Mpa)				
V _{Rd1}	=	414.07	(KN)	V _{Rd} =	414.07	(KN)	
V _{Rd2}	=	307.88	(KN)	¥Rd−	414.07	(KN)	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11.4 Soletta inferiore – sezione di incastro

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Fondazione incastro

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:
A Sforzo Norm. costante
Poco aggressive
Assi x,y principali d'inerzia
Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa

Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32308.0 MPa Resis, media a trazione fctm: 2.760 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 168.00 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm
Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa
Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO - Tipo: B450C**

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:458.20MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:398.50MPaDeform. ultima di progetto Epu:0.010

Modulo Elastico Ef 2000000 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

MANDATARIA

 N° Barra X [cm] Y [cm] Diam $\emptyset [mm]$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	91.9	91.9	26
2	91.9	8.1	26
3	8.1	8.1	26
4	8.1	91.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	3	2	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione							
Mx		Momento flettente	e [kNm] intorno all'a:	sse x princ. d'inerzia				
		con verso positivo	o se tale da comprin	nere il lembo sup. de	ella sez.			
My		Momento flettente [kNm] intorno all'asse y princ. d'inerzia						
		con verso positivo	o se tale da comprin	nere il lembo destro	della sez.			
Vy	Vy Componente del Taglio [kN] parallela all'asse princ.							
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	Му	Vy	Vx			

990.00 COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

0.00

1

N	Sforzo normale [kN] applicato nel Baricentro	(+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

0.00

con verso positivo se tale da comprimere il lembo superiore della sezione

0.00

0.00

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N 0.00 1 683.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν My 0.00 632.00 (614.36) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 508.00 (614.36) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 6.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb N Res My Res Mis.Sic. Ver Ν My Mx Res As Tesa Mχ 0.00 0.00 0.00 1 S 990.00 0.00 1814.27 1.83 53.1(14.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00176	0.149	100.0	100.0	0.00072	91.9	91.9	-0.01000	8.1	8.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.00000000 0.000127920 -0.011036152 0 149 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata V/er

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 4.30 0.0 100.0 -154.7 91.9 2050 53.1 1 8.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 3 98 100.0 100.0 -143 2 54.7 2000 53.1 1 8 1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess

e2 k2 Ø Cf Mx fessMy fess Comb e sm - e cm sr max

S -0.00081 0 0.500 26.0 68 0.00043 (0.00043) 398 0.171 (0.40) 614 36 1

0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 100.0 82.6 2050 53.1 1 3.20 0.0 -115.1 8.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb Ver e2 k2 Ø Cf e sm - e cm sr max Mx fessMy fess S -0.000650 0.500 26.0 68 0.00035 (0.00035) 402 0.139 (0.30) 614.36 1 0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

daN/cm²

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

asse: C28/35	
	asse: C28/35

Resis. compr. di progetto fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa

Resis. media a trazione fctm: 2.760 MPa

ACCIAIO - Tipo: B450C**

Resist. caratt. snervam. fyk: 450.00 MPa
Resist. caratt. rottura ftk: 458.20 MPa
Resist. snerv. di progetto fyd: 391.30 MPa
Resist. ultima di progetto ftd: 398.50 MPa

Deform. ultima di progetto Epu: 0.010 Modulo Elastico Ef 2000000

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1 2	100.0 100.0	100.0 0.0
3	0.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	91.9	91.9	26
2	91.9	8.1	26
3	8.1	8.1	26
4	8.1	91.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	1	4	8	26
2	3	2	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)							
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.							
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez							
Vy				all'asse princ.d'ine				
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x							
N°Comb.	N	Mx	Му	Vy	Vx			

1 0.00 905.00 0.00 0.00 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.8 cm Interferro netto minimo barre longitudinali: 6.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	905.00	0.00	0.00	1723.51	0.00	1.90	53.1(14.7)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

Deform. unit. massima del conglomerato a compressione
Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00081	0.292	100.0	100.0	0.00056	91.9	91.9	-0.00196	8.1	8.1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid. 1 0.000000000 0.000030050 -0.002199908 0.292 0.804

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

SEZIONE					
b _w	=	100	cm		
h	II	100	cm		
С	=	8.1	cm		
d	=	h-c	=	91.9	cm
MATERIALI					
f _{y wd}	=	391.30	MPa		
				•	
R _{ck}	=	35	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	16.46	MPa
				-	
ARMATURE			Ī		
Øst	II	14			
braccia	=	5			
Ø _{st2}	=	0			
braccia	=	0			
passo	=	40	cm		
(A _{sw} /s)	=	19.242	cm ² / m		
α	=	90	٥	(90° staffe	verticali)
			=00	44.0	1
TAGLIO AG		V _{Ed} =	568	(KN)	
SFORZO NO	DRMALE	N _{ed} =	0	(KN)	
		α _c =	1.0000	1	

L			a _c –	1.0000
Ī				
	ELEMEN'	TI CON A	RMATURA A	TAGLIO

Calcolo di cot θ

 $cot(\theta) =$ 3.15 θ= 17.61°

IPOTESI 1	1<= cot θ <= 2.5	Rottura bilanciata V _{Rsd} =V _{Rcd}
V _{Rsd} =	1962.60 <i>(KN)</i>	$0,9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$
V _{Rcd} =	1962.60 <i>(KN)</i>	$0.9 \cdot d \cdot b_{\mathrm{w}} \cdot \alpha_{\mathrm{c}} \cdot f'_{\mathrm{cd}} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$
V _{Rd} =	1963 (KN)	$\min(\bigvee_{Rsd}, VR_{cd})$

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Bilineare finito

1.00

0.50

360.00 MPa

11.5 Piedritti – sezione di incastro inferiore

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Piedritto piede

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	
	Modulo Elastico Ef	2000000	daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Coeff. Aderenza istantaneo ß1*ß2:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Classe Conglomerato:		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1 2	100.0	100.0
3	100.0 0.0	0.0 0.0
4	0.0	100.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.1	92.1	26

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	92.1	7.9	26
3	7.9	7.9	26
4	7.9	92.1	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	3	2	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia				
Му		con verso positivo se tale da comprimere il lembo sup. della sez Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della se			
Vy Vx		Componente del	Taglio [kN] parallela Taglio [kN] parallela	a all'asse princ.d'ine	rzia y
N°Comb.	N	Mx	My	Vy	Vx
1	439.00	932.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo norm	ale [kN] applicato nel Baricentro (+ se di compressione)
---------------	--

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 317.00 613.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 301.00 578.00 (684.44) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N° Comb. N Mx My

1 243.00 508.00 (678.28) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 6.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν Mx My N Res Mx Res My Res Mis.Sic. As Tesa S 439.00 932.00 0.00 438.93 2002.07 0.00 2.15 53.1(15.9) 1

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00195	0.163	100.0	100.0	0.00093	92.1	92.1	-0.01000	7.9	7.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.00000000 0.000129769 -0.011025177 0.163 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc may Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min. Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 4.08 100.0 100.0 -111.7 26.6 7.9 1950 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 1 S 3.84 100.0 100.0 -105.17.9 7.9 1996 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4

= 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb. Ver e2 k2 Ø Cf e sm - e cm sr max Mx fessMy fess

S -0.000600 0.500 26.0 66 0.00032 (0.00032) 391 0.123 (0.40) 684.44

0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff S 3.36 0.0 100.0 -94.2 92.1 7.9 2000 53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ø Cf Ver e1 e2 k2 e sm - e cm sr max Mx fessMy fess S -0.00053 0 0.500 26.0 66 0.00028 (0.00028) 391 0.110 (0.30) 678.28 0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

daN/cm²

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Resis. compr. di progetto fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa

Resis. media a trazione fctm: 2.760 MPa

ACCIAIO - Tipo: B450C**

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:
Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00 MPa
458.20 MPa
391.30 MPa
398.50 MPa
0.010

Deform. ultima di progetto Epu: 0.010 Modulo Elastico Ef 2000000

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do	Poligonale	
Classe Conglo	C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.1	92.1	26
2	92.1	7.9	26
3	7.9	7.9	26
4	7.9	92.1	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	1	4	8	26 26
2	3	2	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compress						
Mx		Momento flettente	e [kNm] intorno all'as	sse x princ. d'inerzia			
		con verso positivo	se tale da comprim	nere il lembo sup. de	lla sez.		
My		Momento flettente	nento flettente [kNm] intorno all'asse y princ. d'inerzia				
•		con verso positivo	se tale da comprim	nere il lembo destro	della sez.		
Vy		Componente del	Taglio [kN] parallela	all'asse princ.d'iner:	zia y		
Vx		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia x		
N°Comb	N	Mv	My	Vv	\/v		

N Comb.	11	IVIA	iviy	v y	٧٨
1	333.00	905.00	0.00	0.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 6.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	333.00	905.00	0.00	332.95	1853.13	0.00	2.05	53.1(15.9)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00089	0.312	100.0	100.0	0.00064	92.1	92.1	-0.00196	7.9	7.9

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000030890 -0.002200529 0.312 0.830

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

SEZIONE		TI EIWITE OETIMI			
b _w	=	100	cm	1	
h	=	100	cm		
C	=	7.9	cm		
d	=	h-c	II	92.1	cm
MATERIALI					
f _{y wd}	=	391.30	MPa		
Į.				1	
R _{ck}	=	35	MPa		
γο	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	16.46	MPa
ARMATURE	A TAGLIC)			·
Ø _{st}	=	12			
braccia	=	5			
Ø _{st2}	=	0			
braccia	=	0			
passo	=	40	cm		
(A _{sw} /s)	=	14.137	cm ² / m		
α	=	90	0	(90° staffe	verticali)
TAGLIO AGE	ENTE	V _{Ed} =	513	(KN)	1
SFORZO NO		N _{ed} =	0	(KN)	
		α _c =	1.0000		1
		CLC C		I	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 3.73$ $\theta = 15.03$ °

IPOTESI 1	$1 <= \cot \theta <= 2.5$	Rottura bilanciata V _{Rsd} =V _{Rcd}
V _{Rsd} =	1708.26 <i>(KN)</i>	$0,9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$
V _{Rcd} =	1708.26 <i>(KN)</i>	$0.9 \cdot d \cdot b_{\mathrm{w}} \cdot \alpha_{\mathrm{c}} \cdot f'_{\mathrm{cd}} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$
V _{Rd} =	1708 (KN)	$\min(V_{Rsd, VR_{cd}})$

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11.6 Piedritti - sezione di incastro superiore

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Piedritto testa

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI Classo:

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa
	D (')	0.0000	

Def unit, max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32308.0 MPa Resis, media a trazione fctm: MPa 2.760

Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 168.00

daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Мра Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO -B450C** Tipo:

> Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 458.20 MPa 391.30 MPa Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: 398.50 MPa Deform. ultima di progetto Epu: 0.010

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

MANDATARIA

Y [cm] N°Barra X [cm] Diam@[mm]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	93.6	93.6	24
2	93.6	6.4	24
3	6.4	6.4	24
4	6.4	93.6	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	3	2	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)					
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
		con verso positivo	o se tale da comprim	iere il lembo sup. de	ella sez.	
My Momento flettente [kNm] intorno all'asse y princ.					l	
		con verso positivo	o se tale da comprim	nere il lembo destro	della sez.	
Vy	Vy Componente del Taglio [kN] parallela all'asse princ d'inerzia y					
Vx		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia x	
N°Comb.	N	Mx	Mv	Vv	Vx	

			,	- ,	
1	287.00	307.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 205.00 112.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 189.00 105.00 (921.02) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 131.00 128.00 (749.91) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 7.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb N Res My Res Ver Ν My Mx Res Mis Sic As Tesa Mχ 0.00 1 S 287.00 307.00 0.00 286.72 1716.05 5.59 45.2(15.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00168	0.144	100.0	100.0	0.00088	93.6	93.6	-0.01000	6.4	6.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.000000000 0.000124789 -0.010798650 0.144 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 0.83 100.0 100.0 -11.0 6.4 1600 45.2 1 6.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 0.78 0.0 100.0 -10.6839 1600 45.2 1 64

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.

Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess

1 S -0.00006 0 0.500 24.0 52 0.00003 (0.00003) 321 0.010 (0.40) 921.02

0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 0.92 -20.6 93.6 1600 45.2 1 0.0 100.0 6.4

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb Ver e2 k2 Ø Cf e sm - e cm sr max Mx fessMy fess S -0.00011 0 0.500 24.0 52 0.00006 (0.00006) 321 0.020 (0.30) 749.91 1 0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Bilineare finito

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C28/35 15.860 0.0020 0.0035	MPa
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	MD-
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	
	Modulo Elastico Ef	2000000	daN/cm²

Diagramma tensione-deformaz.:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	93.6	93.6	24
2	93.6	6.4	24
3	6.4	6.4	24
4	6.4	93.6	24

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	3	2	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettente	e [kNm] intorno all'a	ric. (+ se di compre sse x princ. d'inerzia nere il lembo sup. de	a ,
Му		Momento flettente	e [kNm] intorno all'a	sse y princ. d'inerzia nere il lembo destro	ì
Vy Vx		Componente del	Taglio [kN] paraİlela	all'asse princ.d'iner all'asse princ.d'iner	zia y
N°Comb.	N	Mx	Му	Vy	Vx

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

195.00

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 7.3 cm

413.00

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

0.00

0.00

0.00

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r.Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

N°Comb Ver Ν Мx My N Res Mx Res My Res Mis.Sic. As Tesa 1 S 195.00 413.00 0.00 194.77 1588.36 0.00 3.85 45.2(15.9)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform, unit, massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00078	0.285	100.0	100.0	0.00059	93.6	93.6	-0.00196	6.4	6.4

As Tesa

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000029216 -0.002143480 0.285 0.796

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

SEZIONE					
b _w	=	100	cm		
h	=	100	cm		
С	=	6.4	cm		
d	=	h-c	=	93.6	cm
MATERIAL	I				
f _{y wd}	=	391.30	MPa		
				ı	
R _{ck}	=	35	MPa		
γс	=	1.5			
10				20.05	MD-
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{ck}	=	0.83xR _{ck} 0.85xf _{ck} /γ _c	=	29.05 16.46	мРа МРа
f _{ck}		0.85xf _{ck} /γ _c			
f _{ck}	=	0.85xf _{ck} /γ _c			
f_{ck} f_{cd}	= E A TAGLIC	0.85xf _{ck} /γ _c			
f_{ck} f_{cd} ARMATURI \emptyset_{st}	= E A TAGLIO	0.85xf _{ck} /γ _c			
f _{ck} f _{cd} ARMATUR Ø _{st} braccia	= E A TAGLIC	0.85xf _{ck} /γ _c 12 5			
f _{ck} f _{cd} ARMATURI Ø _{st} braccia Ø _{st2}	= E A TAGLIC = = =	0.85xf _{ck} /γ _c 12 5 0			
f_{ck} f_{cd} ARMATURI \emptyset_{st} braccia \emptyset_{st2} braccia	= E A TAGLIC = = = = = = =	0.85xf _{ck} /γ _c 12 5 0 0	=		
f _{ck} f _{cd} ARMATURI Ø _{st} braccia Ø _{st2} braccia passo	= A TAGLIO	0.85xf _{ck} /γ _c 12 5 0 40	= cm		МРа
$\begin{array}{c} f_{ck} \\ f_{cd} \\ \\ \hline \textbf{ARMATUR} \\ \textbf{Ø}_{st} \\ \\ braccia \\ \textbf{Ø}_{st2} \\ braccia \\ \\ passo \\ (\textbf{A}_{sw}/s) \\ \\ \hline \alpha \\ \\ \end{array}$	= A TAGLIO	0.85xf _{ck} /γ _c 12 5 0 40 14.137 90	cm cm²/m°	16.46 (90° staffe	МРа
$\begin{array}{c} f_{ck} \\ f_{cd} \\ \\ \hline {\bf ARMATUR} \\ \emptyset_{st} \\ braccia \\ \emptyset_{st2} \\ braccia \\ passo \\ (A_{sw}/s) \\ \alpha \\ \\ \hline {\bf TAGLIO~AG} \\ \\ \end{array}$	E A TAGLIO	0.85xf _{ck} /γ _c 12 5 0 40 14.137	= cm cm ² / m	16.46 (90° staffe	МРа
$\begin{array}{c} f_{ck} \\ f_{cd} \\ \\ \hline \textbf{ARMATUR} \\ \textbf{Ø}_{st} \\ \\ braccia \\ \textbf{Ø}_{st2} \\ braccia \\ \\ passo \\ (\textbf{A}_{sw}/s) \\ \\ \hline \alpha \\ \\ \end{array}$	E A TAGLIO	0.85xf _{ck} /γ _c 12 5 0 40 14.137 90	cm cm²/m°	16.46 (90° staffe	МРа

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 3.73$ $\theta = 15.03$ °

IPOTESI 1	$1 <= \cot \theta <= 2.5$	Rottura bilanciata V _{Rsd} =V _{Rcd}
V _{Rsd} =	1736.08 <i>(KN)</i>	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$
V _{Rcd} =	1736.08 (KN)	$0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta)/(1 + ctg^{2}\theta)$
V _{Rd} =	1736 (KN)	min(V _{Rsd} , VR _{cd})

IPOTESI 2	cot d	> 2,5	Si assume	∘% = 21,8°
Armatura tra	ısversale			
V _{Rsd} =	1165.03 <i>(KN)</i>		$0.9 \cdot d \cdot \frac{A_s}{s}$	$\frac{w}{\cdot} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
V _{Red} =	2390.92 (KN)		$0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot ($	$ctg\alpha + ctg\theta)/(1 + ctg^2\theta)$
V _{Rd} =	1165 (KN)			$\min(V_{Rsd}, VR_{cd})$

IPOTESI 3	Cot d	= 1 % = 45°
Armatura tra	sversale	
V _{Rsd} =	466.01 <i>(KN)</i>	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
V _{Rcd} =	3466.83 <i>(KN)</i>	$0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$
V _{Rd} =	466.01 (KN)	$\min(V_{Rsd}, VR_{cd})$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11.7 Piedritti – sezione di mezzeria

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Piedritto mezzeria

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C28/35 15.860 0.0020 0.0035	MPa
	Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Coeff. Omogen. S.L.E.:	Parabola-Rettangolo 32308.0 2.760 15.00 15.00	MPa MPa
	Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Frequenti: Sc limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.:	168.00	daN/cm² mm Mpa mm
ACCIAIO -	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu:	B450C** 450.00 458.20 391.30 398.50 0.010	MPa MPa MPa MPa
	Modulo Elastico Ef Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo ß1*ß2: Coeff. Aderenza differito ß1*ß2: Sf limite S.L.E. Comb. Rare:	2000000 Bilineare finito 1.00 0.50 360.00	daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1 2 3	100.0 100.0 0.0	100.0 0.0 0.0
4	0.0	100.0

DATI BARRE ISOLATE

MANDATARIA

 N° Barra X [cm] Y [cm] Diam $\emptyset [mm]$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	92.1	92.1	24
2	92.1	7.9	24
3	7.9	7.9	24
4	7.9	92.1	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	3	2	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Vx N°Comb.		Mx	Taglio [kN] parallela Mv	VV	zia x Vx	
My Vy	Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
	con verso positivo se tale da comprimere il lembo sup. della se					
N Mx	Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia					

1 287.00 307.00 0.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 205.00 112.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 189.00 105.00 (898.70) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. My

131.00 128.00 (735.04) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

6.7 cm Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb N Res My Res Mis.Sic. Ver Ν My Mx Res As Tesa Mχ 0.00 1 S 287.00 307.00 0.00 287.16 1677.04 5.46 45.2(15.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X.Y.O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00179	0.152	100.0	100.0	0.00078	92.1	92.1	-0.01000	7.9	7.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

Coeff. di riduz. momenti per sola flessione in travi continue N°Comb

C.Rid.

x/d

C.Rid.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

0.700 1 0.00000000 0.000127971 -0.011010971 0 152

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata V/er

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 0.85 0.0 100.0 -11.3 92.1 7.9 1700 45.2 1

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 0.80 0.0 100.0 -10.8827 1700 45 2 1 7.9

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess

Comb e2 k2 Ø Cf Mx fessMy fess Ver e sm - e cm sr max

S -0.00006 0 0.500 24.0 0.00003 (0.00003) 67 381 0.012 (0.40) 898 70 1 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 0.95 100.0 100.0 2000 45.2 1 -21.2 7.9 7.9

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb Ver e2 k2 Ø Cf e sm - e cm sr max Mx fessMy fess S -0.00012 0 0.500 24.0 67 0.00006 (0.00006) 408 0.026 (0.30) 735.04 1 0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

daN/cm²

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C28/3	5

Resis. compr. di progetto fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa

Resis. media a trazione fctm: 2.760 MPa

ACCIAIO - Tipo: B450C**

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Special special

Deform. ultima di progetto Epu: 0.010 Modulo Elastico Ef 2000000

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	100.0	100.0
2	100.0	0.0
3	0.0	0.0
4	0.0	100.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.1	92.1	24
2	92.1	7.9	24
3	7.9	7.9	24
4	7.9	92.1	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	1	4	8	24
2	3	2	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [k	N] applicato nel Bar	ic. (+ se di compres	ssione)
Mx				sse x princ. d'inerzia	
		con verso positivo	se tale da comprim	nere il lembo sup. de	ella sez.
My		Momento flettente	e [kNm] intorno all'as	sse y princ. d'inerzia	
·		con verso positivo	se tale da comprim	nere il lembo destro	della sez.
Vy		Componente del	Taglio [kN] parallela	all'asse princ.d'inera	zia y
Vx		Componente del	Taglio [kN] parallela	all'asse princ.d'inera	zia x
N°Comb.	N	Mx	Mv	Vv	Vx

N Comb.	IN	IVIA	iviy	v y	٧٨
1	195.00	413.00	0.00	0.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.7 cm Interferro netto minimo barre longitudinali: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	195.00	413.00	0.00	195.28	1553.46	0.00	3.76	45.2(15.9)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

Deform. unit. massima del conglomerato a compressione
Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00080	0.289	100.0	100.0	0.00056	92.1	92.1	-0.00196	7.9	7.9

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d C.Rid. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid. 1 0.000000000 0.000029888 -0.002192616 0.289 0.802

METODO AGLISTATI I IMITE III TIMI - VERIFICHE A TAGLIO

METODO A	GLISTAII	LIMITE ULTIMI -	VERIFICH	E A TAGL	Ю
SEZIONE					
b _w	=	100	cm		
h	=	100	cm		
С	=	7.9	cm		
d =		h-c	=	92.1	cm
MATERIALI					
f _{y wd}	=	391.30	MPa		
R _{ck}	=	35	MPa		
γc	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	16.46	MPa
ARMATURE			1		
Ø _{st}	=	12			
braccia	=	5			
Ø _{st2}	=	0			
braccia	=	0		_	
passo	=	40	cm		
(A_{sw}/s)	II	14.137	cm ² / m		
α	=	90	0	(90° staffe	verticali)
					•
TAGLIO AG		V _{Ed} =	75	(KN)	
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	
		αc =	1.0000		

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) =$ 3.73 15.03°

IPOTESI 1	$1 <= \cot \theta <= 2.5$	Rottura bilanciata V _{Rsd} =V _{Rcd}
V _{Rsd} =	1708.26 <i>(KN)</i>	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
V _{Rcd} =	1708.26 <i>(KN)</i>	$0.9 \cdot d \cdot b_{\mathrm{w}} \cdot \alpha_{\mathrm{c}} \cdot f'_{\mathrm{cd}} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$
V _{Rd} =	1708 (KN)	min(V _{Rsd} , VR _{cd})

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

0.50

360.00 MPa

11.8 Setti centrali - sezione di incastro inferiore

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Setti centrale piede

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque		mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	70.0
2	100.0	0.0
3	0.0	0.0
1	0.0	70.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.8	62.8	24

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	92.8	7.2	24
3	7.2	7.2	24
4	7.2	62.8	24

DATI GENERAZIONI LINEARI DI BARRE

1056.00

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	3	2	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compression				ssione)	
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia				
		con verso positivo	o se tale da comprin	nere il lembo sup. de	ella sez.	
My		Momento flettente [kNm] intorno all'asse y princ. d'inerzia				
		con verso positivo	o se tale da comprin	nere il lembo destro	della sez.	
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y				
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x			zia x	
N°Comb.	N	Mx	Му	Vy	Vx	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

408.00

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
---	---

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

0.00

con verso positivo se tale da comprimere il lembo superiore della sezione

0.00

0.00

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 763.00 171.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 709.00 156.00 (784.20) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx

552.00 122.00 (778.83) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 7 1 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

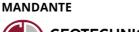
Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb N Res Mis.Sic. Ver Ν Mx My Mx Res My Res As Tesa S 1056.00 408.00 0.00 1055.87 1324.38 0.00 3.25 45.2(11.2) 1

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00280	0.218	100.0	70.0	0.00133	92.8	62.8	-0.01000	7.2	7.2


POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb y/d C.Rid. h а С

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.000000000 0.000203750 -0.011467000 0.218 0.713

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc may Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 2.57 0.0 70.0 -9.0 92.8 7.2 800 45.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 1 S 2.35 100.0 70.0 -7.7 7.2 7.2 800 45.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb. Ver e2 k2 Ø Cf e sm - e cm sr max Mx fessMy fess S 0.500 0.00002 (0.00002) -0.00006 0 24.0 60 276 0.006 (0.40) 784.20

0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff S 1.84 100.0 70.0 -6.17.2 7.2 800 45.2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. e2 k2 Ø Cf Mx fessMy fess Ver e1 e sm - e cm sr max S -0.00005 0 0.500 24.0 60 0.00002 (0.00002) 276 0.005 (0.30) 778.83 0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

N.T.C. Normativa di riferimento:

Percorso sollecitazione: A Sforzo Norm. costante Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C28/35
CALCESTRUZZO - Classe: C28/35

Resis. compr. di progetto fcd: 15.860 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32308.0 MPa Resis. media a trazione fctm: 2.760 MPa

ACCIAIO -Tipo: B450C**

> Resist. caratt. snervam. fyk: MPa 450.00 Resist. caratt. rottura ftk: 458.20 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 398.50 MPa

Deform. ultima di progetto Epu: 0.010 Modulo Elastico Ef 2000000

daN/cm² Bilineare finito Diagramma tensione-deformaz.:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0 100.0	70.0 0.0
3	0.0	0.0
4	0.0	70.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.8	62.8	24
2	92.8	7.2	24
3	7.2	7.2	24
4	7.2	62.8	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	1	4	8	24 24
2	3	2	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)					
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia				
		con verso positivo	se tale da comprim	iere il lembo sup. de	ella sez.	
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia					
-		con verso positivo	se tale da comprim	nere il lembo destro	della sez.	
Vy		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia y	
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	Му	Vy	Vx	

1 666.00 587.00 0.00 0.00 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 7.1 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)
Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	666.00	587.00	0.00	665.72	1151.87	0.00	1.96	45.2(11.2)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00115	0.370	100.0	70.0	0.00080	92.8	62.8	-0.00196	7.2	7.2

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. x/d 1 0.000000000 0.000049489 -0.002312822 0.370 0.903

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

391.30

SEZIONE					
b _w	=	100	cm		
h	=	70	cm		
С	=	7.2	cm		
d	=	h-c	=	62.8	cm
		-			•

MATERIALI

				l.	
R _{ck}	=	35	MPa		
γc	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	16.46	MPa

ARMATURE A TAGLIO

ø _{st}	=	10	
braccia	=	5	
Ø _{st2}	=	0	
braccia	=	0	
passo	=	40	cm
(A _{sw} /s)	=	9.817	cm ² / m
α	=	90	٥

(90° staffe verticali)

TAGLIO AGENTE	V _{Ed} =	193	(KN)
SFORZO NORMALE	N _{ed} =	0	(KN)
	α _c =	1.0000	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $cot(\theta) =$ 4.52 12.48 °

IPOTESI 1	$1 \le \cot \theta \le 2.5$	Rottura bilanciata V _{Rsd} =V _{Rcd}
V _{Rsd} =	981.30 <i>(KN)</i>	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
V _{Rcd} =	981.30 <i>(KN)</i>	$0.9 \cdot d \cdot b_{\mathrm{w}} \cdot \alpha_{\mathrm{c}} \cdot f'_{\mathrm{cd}} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$
V _{Rd} =	981 (KN)	$min(V_{Rsd}, VR_{cd})$

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.00

0.50

360.00 MPa

11.9 Setti centrali – sezione di incastro superiore

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: Setti centrale testa

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm²
	Ap.Fessure limite S.L.E. comb. Frequen	nti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	70.0
2	100.0	0.0
3	0.0	0.0
4	0.0	70.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.8	62.8	24

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	92.8	7.2	24
3	7.2	7.2	24
4	7.2	62.8	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	24
2	3	2	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Sforzo normale [kN] applicato nel Baric. (+ se di cor Momento flettente [kNm] intorno all'asse x princ. d'in con verso positivo se tale da comprimere il lembo su Momento flettente [kNm] intorno all'asse y princ. d'in con verso positivo se tale da comprimere il lembo de Componente del Taglio [kN] parallela all'asse princ. Componente del Taglio [kN] parallela all'asse princ.			inerzia sup. della sez. inerzia destro della sez. c.d'inerzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	942.00	357.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+	+ se di compressione)
---	-----------------------

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 678.00 135.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 624.00 124.00 (939.95) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx

467.00 97.00 (863.32) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 7 1 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb Mis.Sic. Ver Ν Mx My N Res Mx Res My Res As Tesa S 942.00 357.00 0.00 942.14 1294.25 0.00 3.63 45.2(11.2) 1

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00272	0.214	100.0	70.0	0.00126	92.8	62.8	-0.01000	7.2	7.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb y/d C.Rid. h а С

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.000000000 0.000202497 -0.011457978 0.214 0.707

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min

Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Ase eff.
Ase eff.
Ase abarre [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 2.08 100.0 70.0 -4.3 7.2 7.2 750 45.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 1 S 1.91 100.0 70.0 -397.2 7.2 750 45.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

24.0

sr max Massima distanza tra le fessure [mm]

-0.00004

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

0

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess

0.00001 (0.00001)

0.00

S

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

60

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.48 0.0 70.0 -3.8 92.8 7.2 850 45.2

0.500

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. k2 Ø Cf Mx fessMy fess Ver e1 e2 e sm - e cm sr max S -0.00003 0 0.500 24.0 60 0.00001 (0.00001) 281 0.003 (0.30) 863.32 0.00

MANDATARIA

272

0.003 (0.40)

939.95

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

daN/cm²

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C28/35
CALCESTRUZZO - Classe. C20/33

Resis. compr. di progetto fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa

Resis. media a trazione fctm: 2.760 MPa

ACCIAIO - Tipo: B450C**

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

391.30 MPa

398.50 MPa

Deform. ultima di progetto Epu: 0.010 Modulo Elastico Ef 2000000

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0 100.0	70.0 0.0
3	0.0	0.0
4	0.0	70.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.8	62.8	24
2	92.8	7.2	24
3	7.2	7.2	24
4	7.2	62.8	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	1	4	8	24
2	3	2	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [kN] applicato nel Baric. (+ se di compressione)					
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
		con verso positivo	se tale da comprin	nere il lembo sup. de	ella sez.		
My		Momento flettente [kNm] intorno all'asse y princ. d'inerzia					
·		con verso positivo	se tale da comprin	nere il lembo destro	della sez.		
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx		Componente del Taglio [kN] parallela all'asse princ d'inerzia x					
VA		Componente dei	ragilo [iti 1] parallola	an accepting a mor	ZIU X		
N°Comb.	N	Mx	Mv	Vv	Vx		
iv Comb.	11	IVIA	iviy	v y	٧٨		

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

565.00

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 7.1 cm

517.00

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

0.00

0.00

0.00

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	565.00	517.00	0.00	565.10	1127.51	0.00	2.18	45.2(11.2)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

Deform. unit. massima del conglomerato a compressione
Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00112	0.363	100.0	70.0	0.00076	92.8	62.8	-0.00196	7.2	7.2

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000048932 -0.002308807 0.363 0.894

MPa

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

391.30

SEZIONE					
b _w	=	100	cm		
h	=	70	cm		
С	=	7.2	cm		
d	=	h-c	=	62.8	cm
	-				•

MATERIALI

R _{ck}	=	35	MPa		
γc	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	0.85xf _{ck} /γ _c	=	16.46	MPa

ARMATURE A TAGLIO

=

Ø _{st}	=	10		
braccia	=	5		
ø _{st2}	=	0		
braccia	=	0		
passo	=	40	cm	
(A _{sw} /s)	=	9.817	cm ² / m	
α	=	90	0	(9

(90° staffe verticali)

TAGLIO AGENTE	V _{Ed} =	167	(KN)
SFORZO NORMALE	N _{ed} =	0	(KN)
	α _c =	1.0000	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

$$\cot(\theta) = 4.52$$

 $\theta = 12.48$ °

IPOTESI 1	$1 <= \cot \theta <= 2.5$	Rottura bilanciata V _{Rsd} =V _{Rcd}
V _{Rsd} =	981.30 <i>(KN)</i>	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
V _{Rcd} =	981.30 <i>(KN)</i>	$0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$
V _{Rd} =	981 (KN)	$\min(\bigvee_{Rsd}, VR_{cd})$

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11.10Setti centrali - sezione di mezzeria

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Setti centrale mezzeria

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resis. compr. di progetto fcd:	15.860	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32308.0	MPa
	Resis. media a trazione fctm:	2.760	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	168.00	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C**	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	458.20	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	398.50	MPa
	Deform. ultima di progetto Epu:	0.010	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0	70.0
2	100.0	0.0
3	0.0	0.0
4	0.0	70.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.8	62.8	20

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	92.8	7.2	20
3	7.2	7.2	20
4	7.2	62.8	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	20
2	3	2	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx				ric. (+ se di compres sse x princ. d'inerzia	
Му		con verso positivo se tale da comprimere il lembo sup. della sez Momento flettente [kNm] intorno all'asse y princ. d'inerzia			
Vy				nere il lembo destro all'asse princ.d'iner	
Vx		Componente del	Taglio [kN] parallela	all'asse princ.d'iner	zia x
N°Comb.	N	Mx	Му	Vy	Vx

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

172.00

N Sforzo normale	[kN] applicato nel Baricentro (+ se di compressione)
------------------	--

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

0.00

con verso positivo se tale da comprimere il lembo superiore della sezione

0.00

0.00

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 747.00 77.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 693.00 70.00 (898.70) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

1

1035.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx

535.00 55.00 (735.04) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.2 cm Interferro netto minimo barre longitudinali: 7.5 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb N Res Mis.Sic. Ver Ν Mx My Mx Res My Res As Tesa S 1035.00 172.00 0.00 1035.12 1015.40 0.00 5.90 31.4(11.2) 1

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00263	0.208	0.0	70.0	0.00118	7.2	62.8	-0.01000	7.2	7.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb y/d C.Rid. h а С

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 0.000000000 0.000201060 -0.011447634 0.208 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min Ys min

Ascissa Ordinata [cm] della parra corrisp. a Sf min (sistema rif. X Y O)

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.69 100.0 70.0 5.2 7.2 7.2 ----

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.56 100.0 70.0 4.9 7.2 7.2 ----

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm er. Esito della verifica

Ver. Esito della verifica e1 Massima deformazione ui

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k3 = Coeff. in eq.(7.11) come da annessi nazionali

k4 = Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess

1 S -0.00006 0 ---- --- --- 0.000 (0.40) 898.70

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.21 0.0 70.0 3.7 92.8 7.2 ----

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fessMy fess
1 0.00	S	-0.00012	0					0.000 (0.30)	735.04

0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

daN/cm²

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35
CALCESTRUZZO -	Classe:	C28/3

Resis. compr. di progetto fcd: 15.860 MPa

Def.unit. max resistenza ec2: 0.0020

Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa

Resis. media a trazione fctm: 2.760 MPa

ACCIAIO - Tipo: B450C**

Resist. caratt. snervam. fyk: 450.00 MPa
Resist. caratt. rottura ftk: 458.20 MPa
Resist. snerv. di progetto fyd: 391.30 MPa
Resist. ultima di progetto ftd: 398.50 MPa

Deform. ultima di progetto Epu: 0.010 Modulo Elastico Ef 2000000

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C28/35	
N°vertice:	X [cm]	Y [cm]
1	100.0 100.0	70.0 0.0
3	0.0	0.0
4	0.0	70.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	92.8	62.8	20
2	92.8	7.2	20
3	7.2	7.2	20
4	7.2	62.8	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	1	4	8	20
2	3	2	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [k	:N] applicato nel Bar	ic. (+ se di compres	ssione)
Mx		Momento flettente	e [kNm] intorno all'as	sse x princ. d'inerzia	
		con verso positivo	se tale da comprin	nere il lembo sup. de	ella sez.
My		Momento flettente	e [kNm] intorno all'as	sse y princ. d'inerzia	
-		con verso positivo	se tale da comprin	nere il lembo destro	della sez.
Vy		Componente del	Taglio [kN] parallela	all'asse princ.d'iner:	zia y
Vx		Componente del	Taglio [kN] parallela	all'asse princ.d'iner.	zia x
V°Comb	N	My	Mv	1/1/	1/2

N Comb.	IN	IVIX	iviy	vy	VX
1	634.00	317 00	0.00	0.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.2 cm Interferro netto minimo barre longitudinali: 7.5 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	634.00	317.00	0.00	633.92	855.03	0.00	2.70	31.4(11.2)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

Deform. unit. massima del conglomerato a compressione
Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00102	0.342	100.0	70.0	0.00068	83.3	62.8	-0.00196	7.2	7.2

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000047347 -0.002297401 0.342 0.868

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

SEZIONE					
b _w	=	100	cm		
h	=	70	cm		
С	=	7.2	cm		
d	=	h-c	=	62.8	cm
					-

MATERIALI

f _{y wd}	=	391.30	MPa		
				•	
R _{ck}	=	35	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	29.05	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	16.46	MPa

ARMATURE A TAGLIO

ø _{st}	=	10		
braccia	=	5		
Ø _{st2}	=	0		
braccia	=	0		
passo	=	40	cm	
(A _{sw} /s)	=	9.817	cm ² / m	Ī
α	=	90	0	10

(90° staffe verticali)

TAGLIO AGENT	Έ	V _{Ed} =	181	(KN)
SFORZO NORMALE		N _{ed} =	0	(KN)
		α _c =	1.0000	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $cot(\theta) = 4.52$ $\theta = 12.48$ °

IPOTESI 1	$1 <= \cot \theta <= 2.5$	Rottura bilanciata V _{Rsd} =V _{Rcd}
V _{Rsd} =	981.30 <i>(KN)</i>	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$
V _{Rcd} =	981.30 <i>(KN)</i>	$0.9 \cdot d \cdot b_{w} \cdot \alpha_{e} \cdot f'_{ed} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$
V _{Rd} =	981 (KN)	$min(V_{Rsd}, VR_{cd})$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

12 VERIFICHE GEOTECNICHE

12.1 Verifica allo stato limite di sollevamento

Si riporta la verifica al sollevamento, assumendo nel calcolo del peso dello scatolare (forza stabilizzante) il solo peso proprio delle strutture.

Essendo il peso permanente:

e la sottospinta idraulica:

SPW = 1036.75 kl

si ottiene il coefficiente di sicurezza:

F.S. = PP /
$$(1.1 \text{ SPW}) = 1.49 \ge 1.00$$

per cui la verifica risulta soddisfatta.

12.2 Verifica della capacità portante

La verifica a capacità portante del complesso fondazione – terreno è stata effettuata applicando la combinazione (A1+M1+R3) dell'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I delle NTC2018. I coefficienti □R sono riportati nella seguente tabella 6.4.I delle NTC18):

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente	
	parziale	
	(R3)	
Carico limite	$\gamma_R = 2.3$	
Scorrimento	$\gamma_R = 1.1$	

La pressione limite puo' essere calcolata in base alla formula generale di Brinch Hansen (1970):

$$q_{lim} = 0.5 \cdot \gamma \cdot BN_{\gamma} \cdot s_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} + q \cdot N_q s_q d_q i_q b_q g_q + c N_c s_c d_c i_c b_c g_c$$

(valida in condizioni drenate)

$$q_{lim} = c_U N_c^* d_C^* i_C^* s_C^* b_C^* g_C^* + q$$

(valida in condizioni <u>non</u> drenate)

essendo

RELAZIONE DI CACOLO

 N_q , N_c , N_γ i fattori di capacità portante in condizioni drenate;

 N_c^* il fattore di capacità portante in condizioni non drenate;

 $S_{\gamma} S_{q} S_{c}$ i fattori di forma della fondazione;

 $i_{\gamma} i_{q} i_{c}$ i fattori correttivi per l'inclinazione del carico;

 $b_{\gamma} b_{\alpha} b_{c}$ i fattori correttivi per l'inclinazione della base della fondazione;

 $g_{\gamma} g_q g_c$ i fattori correttivi per l'inclinazione del piano campagna;

 $d_{\gamma} d_{q} d_{c}$ i fattori correttivi per la profondità del piano di posa;

 $d_{c}^{*}i_{c}^{*}s_{c}^{*}b_{c}^{*}g_{c}^{*}$ i fattori correttivi corrispondenti rispettivamente a quanto sopra esposto ma validi in condizioni non drenate.

In condizioni drenate valgono le seguenti espressioni:

$$N_q = tg^2 (45 + \phi'/2) * e^{(\pi^* tg\phi')}$$

$$N_c = (N_a - 1)/tg\phi'$$

$$N_{y} = 1.5(N_{q} - 1) * tg\phi'$$

$$i_{y} = \left[1 - \frac{H}{N + B' \cdot c \cdot \cot \phi'}\right]^{m+1}$$

$$i_q = i_c = \left[1 - \frac{H}{N + B' \cdot c \cdot \cot g d'}\right]^m$$

$$\mathbf{d}_{_{\mathbf{q}}} = 1 + 2\operatorname{tg}\phi' \cdot (1 - \sin\phi')^{2} \cdot \frac{\mathbf{D}}{\mathsf{B}'}$$

$$d_q = 1 + 2 \operatorname{tg} \phi' \cdot (1 - \sin \phi')^2 \cdot \operatorname{arctg} \left(\frac{D}{B'}\right)$$

$$d_c = d_q - \frac{1 - d_q}{N_c t g \phi'}$$

RELAZIONE DI CACOLO

$$s_a = 1 + (B/2) tg \phi'$$

$$s_r = 1 - 0.4B/4$$

$$s_c = 1 + \frac{Nq B}{NcL}$$

$$q_y = q_g = (1-0.5 \text{ tg}\beta)^5$$

$$g_c = 1 - \beta^{\circ}/147^{\circ}$$

$$\mathbf{b}_{\mathbf{q}} = e^{(-2\eta i \mathbf{g} \varphi)}$$

$$b\gamma = e^{(-2.7\eta ig\phi)}$$

ove
$$\beta+\eta \le 90^{\circ}e \ \beta \le \phi$$

In condizioni non drenate i fattori hanno le seguenti espressioni:

$$N_c^* = (2 + \pi)$$

$$s_c^* = 0.2 + \frac{B}{L}$$

$$i_c * = \left[1 - \frac{mH}{B'cuNc} \right] m$$

$$d_c^* = 0.4 + \frac{D}{B}$$

$$d_c* = 0.4 + \frac{tg^{-1D}}{B}$$

per D/B > 1

$$g*_{c} = \beta^{\circ}/147^{\circ}$$

$$b*_c = \eta ^{\circ}/147^{\circ}$$

Si sono indicate con:

q = γ *D= pressione verticale totale agente alla quota di imposta della fondazione;

B' = larghezza efficace equivalente della fondazione;

γ =peso di volume naturale del terreno;

c_u =coesione non drenata;

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

D =affondamento della fondazione;

H =carico orizzontale agente.

Per valutare gli effetti dell'eccentricità è necessario inserire nell'equazione della capacità due dimensioni L' e B' ridotte secondo le:

$$L' = L - 2e_x$$

$$B' = B - 2e_y$$

dove B e L sono le reali dimensioni della fondazione e ex e ey sono le eccentricità.

Si riporta di seguito la verifica per la condizione più gravosa.

Di seguito l'andamento delle reazioni dei vincoli elastici rappresentanti l'interazione con il terreno e l'azione complessiva trasmessa al terreno dalla fondazione nella condizione più gravosa, pari a circa 5513kN per una striscia di larghezza unitaria e 5513x11.31=62352 kN globalmente per la struttura in esame.

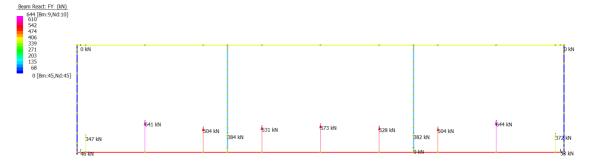


Figura 24 Sollecitazioni trasmesse al terreno

Itinerario Internazionale E78 S.G.C. GROSSETO – FANO Adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "Di Paganico")

Dal km 41+600 al km 53+400 - Lotto 9

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

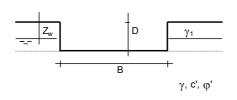
<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

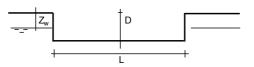
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

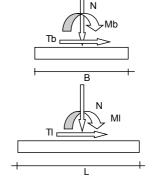
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

	az	ioni	proprietà d	el terreno	resistenze	
Metodo di calcolo	permanenti tempora variab		tan _φ '	c'	qlim	scorr
Stato Ditime A1+M1+R3	1.30	1.50	1.00	1.00	2.30	1.10
SISMA	1.00	1.00	1.00	1.00	2.30	1.10
Definiti dal Progettista X	1.00	1.00	1.00	1.00	2.30	1.10

(Per fondazione nastriforme L = 100 m)

B = 29.00 (m

= 11.31 (m)

D = 4.00 (m)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Valori di progetto

AZIONI

			valori o	di input	Valori di
			permanenti	temporanee	calcolo
ſ	N	[kN]	62352.03		62352.03
ı	Mb	[kNm]	1622.00		1622.00
ı	MI	[kNm]	0.00		0.00
ı	Tb	[kN]	344.00		344.00
ı	TI	[kN]	0.00		0.00
L	Н	[kN]	344.00	0.00	344.00

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$ $\gamma = 20.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

 $c' = 10.00 \quad (kN/mq)$ $c' = 10.00 \quad (kN/mq)$ $\phi' = 28.00 \quad (°)$ $\phi' = 28.00 \quad (°)$

Profondità della falda

Zw = 0.42 (m)

q : sovraccarico alla profondità D

q = 44.20 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 10.00 \, (kN/mc)$

Nc, Nq, Nγ : coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg_{\phi'})}$$

Nq = 14.72

 $Nc = (Nq - 1)/tan_{\varphi}'$

Nc = 25.80

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N_{\gamma} = 16.72$

Itinerario Internazionale E78 S.G.C. GROSSETO – FANO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

s_c , s_q , s_γ : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.22$$

$$s_q = 1 + B*tan_{\phi}' / L*$$

$$s_0 = 1.21$$

$$s_{\gamma} = 0.84$$

i_c , i_q , i_γ : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1.72 $\theta = arctg(Tb/TI) = 90.00$

m = 1.72 (-)

(°)

 $m_l = (2 + L^* / B^*) / (1 + L^* / B^*) = 1.28$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

 $i_q = (1 - H/(N + B*L* c' cotg\phi'))^m$

 $i_{q} = 0.99$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.99$$

$$i_{\gamma}$$
 = (1 - H/(N + B*L* c' cotg $_{\phi}$ ')) $^{(m+1)}$

i, = 0.99

L H H H TI

R

$d_c,\,d_q,\,d_\gamma$: fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan₀' (1 - sen₀')² / B*
per D/B*> 1; d_q = 1 +(2 tan₀' (1 - sen₀')²) * arctan (D / B*)

$$d_c = d_q - (1 - d_q) / (N_c tan_{\phi})$$

$$d_c = 1.11$$

$$d_{y} = 1$$

$$d_{y} = 1.00$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

b_c , b_q , b_{γ} : fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan_{\phi}')^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f$$
 + β_p < 45°

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c tan_{\phi})$$

$$b_{x} = b_{0}$$

gc, gq, gy: fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f$$
 + β_p < 45°

$$g_a = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan_{\phi})$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 1996.36 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = 190.45$$
 (kN/m²)

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 867.98 \ge q = 190.45 (kN/m^2)$$

VERIFICA A SCORRIMENTO

Carico agente

$$Hd = 344.00$$
 (kN)

Azione Resistente

Sd = N
$$tan(\phi') + c' B^* L^*$$

Verifica di sicurezza allo scorrimento

Sd /
$$\gamma_R$$
 = 33115.62 ≥ Hd = 344.00 (kN)

Itinerario Internazionale E78 S.G.C. GROSSETO – FANO Adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "Di Paganico")

Dal km 41+600 al km 53+400 - Lotto 9

PROGETTO ESECUTIVO

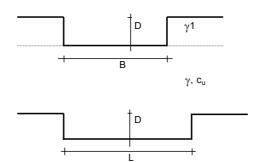
RELAZIONE DI CACOLO

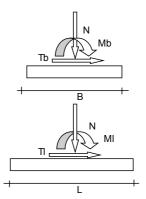
<u>Fondazioni Dirette</u> <u>Verifica in tensioni totali</u>

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)


 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

coefficienti parziali

	azi	oni	proprietà del terreno	resistenze	
Metodo di calcolo	permanenti	temporanee variabili	Cu	qlim	scorr
Stato Ottimite A1+M1+R3	1.30	1.50	1.00	2.30	1.10
SISMA	1.00	1.00	1.00	2.30	1.10
Definiti dal Progettista X	1.00	1.00	1.00	2.30	1.10

(Per fondazioni nastriformi L=100 m)

B = 29.00 (m)

L = 11.31 (m)

D = 4.00 (m)

Itinerario Internazionale E78 S.G.C. GROSSETO - FANO Adeguamento a 4 corsie nel tratto Grosseto - Siena (S.S. 223 "Di Paganico")

Dal km 41+600 al km 53+400 - Lotto 9

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Valore di progetto

AZIONI

			valori	di input	Valori di
			permanenti	temporanee	calcolo
ı	N	[kN]	62352.03		62352.03
	Mb	[kNm]	1622.00		1622.00
	MI	[kNm]	0.00		0.00
	Tb	[kN]	344.00		344.00
	TI	[kN]	0.00		0.00
	Н	[kN]	344.00	0.00	344.00

Peso unità di volume del terreno

γ1	=	20.00	(kN/mc)
γ	=	20.00	(kN/mc)

Valore caratteristico di resistenza del terreno

c_{u}	=	100.00	(kN/mq)	\mathbf{c}_{u}	=	100.00	(kN/mq)
e_B	=	0.03	(m)	B*	=	28.95	(m)
eı	=	0.00	(m)	l *	=	11 31	(m)

q : sovraccarico alla profondità D

$$q = 80.00 (kN/mq)$$

γ : peso di volume del terreno di fondazione

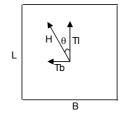
$$\gamma = 20.00 \, (kN/mc)$$

Nc : coefficiente di capacità portante

Nc = 2 +
$$\pi$$

s_c: fattori di forma

s_c =


i_c: <u>fattore di inclinazione del carico</u>

1.08

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) = 1.72$$

 $m_l = (2 + L^* / B^*) / (1 + L^* / B^*) = 1.28$
 $\theta = arctg(Tb/Tl) = 90.00$ (°)
 $m = 1.72$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B^*L^* c_u^*Nc))$$

 $i_c = 1.00$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*
per D/B*> 1; d_c = 1 + 0,4 arctan (D / B*)

$$d_c = 1.14$$

\mathbf{b}_{c} : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

gc: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 710.34 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 190.45 \text{ (kN/m}^2\text{)}$$

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R = 308.84 \ge q = 190.45 (kN/m^2)$$

VERIFICA A SCORRIMENTO

Carico agente

$$Hd = 344.00$$
 (kN)

Azione Resistente

$$Sd = cu B^* L^*$$

$$Sd = 32740.16$$
 (kN)

Verifica di sicurezza allo scorrimento

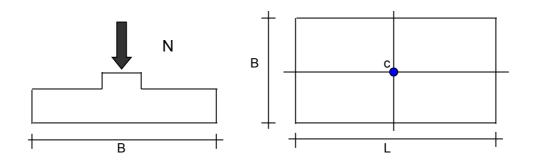
Sd /
$$\gamma_R$$
 = 29763.8 ≥ Hd = 344.00 (kN)

12.3 Valutazione dei cedimenti

Si esibisce di seguito il calcolo dei cedimenti in fondazione dell'opera in esame.

MANDATARIA

MANDANTE


PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

CEDIMENTI DI UNA FONDAZIONE RETTANGOLARE

LAVORO:

Sottopasso Stazione Acerra

Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

$$\Delta \sigma z i = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3)) + ((L/2)(B/2)z)/R_3)(1/R_1^2 + 1/R_2^2))$$

$$\Delta \sigma^{Xi} = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3))-((L/2)(B/2)z)/R_3R_1^2))$$

$$\Delta \sigma y^{i} = (q/2\pi)^{*}(tan^{-1}((L/2)(B/2))/(zR_{3}))-((L/2)(B/2)z)/R_{3}R_{2}^{2}))$$

R1 =
$$((L/2)^2 + z^2)^{0.5}$$

$$R2 = ((B/2)^2 + z^2)^{0.5}$$

R3 =
$$((L/2)^2 + (B/2)^2 + z^2)^{0.5}$$

$$\delta_{\text{tot}} = \Sigma \delta_{l} = \Sigma (((\Delta_{\sigma} z_{l} - v_{l} (\Delta_{\sigma} x_{l} + \Delta_{\sigma} y_{l})) \Delta z_{l} / E_{l})$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

DATI DI INPUT:

B = 29.00 (m) (Larghezza della Fondazione)
L = 11.31 (m) (Lunghezza della Fondazione)

N = 37866 (kN) (Carico Verticale Agente)

q = 115.45 (kN/mq) (Pressione Agente (q = N/(B*L)))

ns = 4 (-) (numero strati) (massimo 6)

Strato	Litologia	Spessore	da z _i	a z _{i+1}	∆zi	E	ν	δci
(-)	(-)	(m)	(m)	(m)	(m)	(kN/m ²)	(-)	(cm)
1	Pb	5.00	0.0	5.0	1.0	50000	0.25	0.77
2	Pb	5.00	5.0	10.0	1.0	70000	0.25	0.44
3	Pb	10.00	10.0	20.0	1.0	100000	0.25	0.36
4	Pb	10.00	20.0	30.0	1.0	160000	0.25	0.12
-			0.0	0.0	1.0			-
-			0.0	0.0	1.0			-

 $\delta_{ctot} = 1.69$ (cm)

Il cedimento totale risulta essere pari a **1.69cm**.

Di seguito si forniscono le tabelle di sintesi del calcolo effettuato.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Z	∆zi	Terreno	R1	R2	R3	Δσzi	Δσχί	Δσγί	Е	ν	δi	Σδί
(m)	(m)	(-)	(-)	(-)	(-)	(kN/m ²)	(kN/m ²)	(kN/m ²)	(kN/m^2)	(-)	(cm)	(cm)
0.00	1.0	1							50000	0.25		
1.00	1.0	1	5.68	14.51	15.57	108.58	95.65	100.74	50000	0.25	0.12	0.12
2.00	1.0	1	5.85	14.58	15.64	96.87	15.09	18.63	50000	0.25	0.18	0.30
3.00	1.0	1	6.18	14.71	15.76	88.59	8.54	13.69	50000	0.25	0.17	0.46
4.00	1.0	1	6.65	14.92	15.95	82.39	4.16	10.15	50000	0.25	0.16	0.62
5.00	1.0	1	7.23	15.18	16.20	76.96	1.40	7.60	50000	0.25	0.15	0.77
6.00	1.0	2	7.89	15.51	16.51	71.79	-0.27	5.71	70000	0.25	0.10	0.87
7.00	1.0	2	8.62	15.89	16.87	66.79	-1.25	4.28	70000	0.25	0.09	0.96
8.00	1.0	2	9.39	16.32	17.28	61.99	-1.78	3.18	70000	0.25	0.09	1.05
9.00	1.0	2	10.21	16.81	17.73	57.46	-2.05	2.32	70000	0.25	80.0	1.13
10.00	1.0	2	11.06	17.33	18.23	53.22	-2.15	1.66	70000	0.25	0.08	1.21
11.00	1.0	3	11.93	17.90	18.77	49.28	-2.16	1.14	100000	0.25	0.05	1.26
12.00	1.0	3	12.82	18.51	19.35	45.65	-2.10	0.73	100000	0.25	0.05	1.31
13.00	1.0	3	13.72	19.14	19.96	42.31	-2.02	0.42	100000	0.25	0.04	1.35
14.00	1.0	3	14.64	19.81	20.60	39.25	-1.92	0.17	100000	0.25	0.04	1.39
15.00	1.0	3	15.56	20.51	21.27	36.44	-1.81	-0.01	100000	0.25	0.04	1.42
16.00	1.0	3	16.50	21.22	21.97	33.87	-1.70	-0.16	100000	0.25	0.03	1.46
17.00	1.0	3	17.44	21.97	22.68	31.52	-1.60	-0.27	100000	0.25	0.03	1.49
18.00	1.0	3	18.39	22.73	23.42	29.36	-1.50	-0.35	100000	0.25	0.03	1.52
19.00	1.0	3	19.35	23.51	24.18	27.39	-1.40	-0.41	100000	0.25	0.03	1.55
20.00	1.0	3	20.30	24.30	24.95	25.58	-1.31	-0.45	100000	0.25	0.03	1.57
21.00	1.0	4	21.27	25.11	25.74	23.93	-1.23	-0.48	160000	0.25	0.02	1.59
22.00	1.0	4	22.23	25.93	26.54	22.41	-1.15	-0.50	160000	0.25	0.01	1.60
23.00	1.0	4	23.20	26.77	27.36	21.01	-1.08	-0.51	160000	0.25	0.01	1.62
24.00	1.0	4	24.17	27.61	28.19	19.73	-1.01	-0.51	160000	0.25	0.01	1.63
25.00	1.0	4	25.14	28.47	29.03	18.55	-0.95	-0.51	160000	0.25	0.01	1.64
26.00	1.0	4	26.12	29.33	29.87	17.47	-0.90	-0.51	160000	0.25	0.01	1.65
27.00	1.0	4	27.10	30.21	30.73	16.47	-0.85	-0.50	160000	0.25	0.01	1.66
28.00	1.0	4	28.08	31.09	31.60	15.55	-0.80	-0.49	160000	0.25	0.01	1.67
29.00	1.0	4	29.06	31.98	32.47	14.69	-0.75	-0.48	160000	0.25	0.01	1.68
30.00	1.0	4	30.04	32.87	33.35	13.90	-0.71	-0.47	160000	0.25	0.01	1.69

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

13 MURI DI IMBOCCO

Il muro in cemento armato a presidio del rilevato stradale presenta fondazioni di tipo diretto con le seguenti caratteristiche:

- paramento murario di altezza variabile da un minimo di 3.87 m fino ad un massimo di 6.93 m;
- Zattera di monte lunga 5.00m e zattera di valle lunga 0.50m;
- fondazione caratterizzata da spessore costante pari a 1.00m.

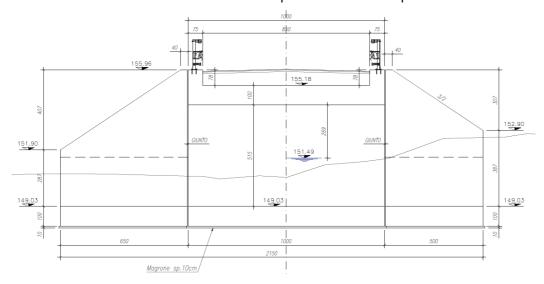


Figura 25 Sezione longitudinale

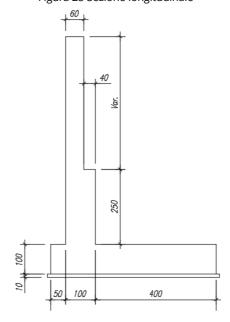


Figura 26 Sezione trasversale

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

14 CRITERI DI CALCOLO

Sono state effettuate le verifiche con riferimento ai seguenti stati limite:

- scorrimento sul piano di posa;
- collasso per carico limite del complesso fondazione-terreno;
- ribaltamento;
- stabilità globale del complesso opera di sostegno-terreno;
- raggiungimento della resistenza negli elementi strutturali.

14.1 VERIFICHE GEOTECNICHE

14.1.1 Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Deve quindi essere verificata la seguente diseguaglianza

$$M_s$$
---->= η_r
 M_r

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante. Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

A favore di sicurezza è stata trascurata la spinta passiva del terreno a valle.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

14.1.2 Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento risulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento Fr e la risultante delle forze che tendono a fare scorrere il muro Fs risulta maggiore di un determinato coefficiente di sicurezza η_{s}

Le forze che intervengono nella Fs sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δf l'angolo d'attrito terreno-fondazione, con ca l'adesione terreno-fondazione e con Br la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg\delta_f + c_a B_r$$

Per quanto riguarda l'angolo d'attrito terra-fondazione, δf , si assume un valore di δf pari all'angolo d'attrito del terreno di fondazione, trascurando il contributo della spinta passiva del terreno a valle.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

14.1.3 Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

dove R rappresenta la capacità portante ultima valutata con la teoria di Brinch-Hansen. Le espressioni di Hansen per il calcolo della capacità portante si differenziano a seconda se si è alla presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale

$$q_{ult} = \mathbf{c} \cdot N_{c} \cdot \mathbf{s}_{c} \cdot d_{c} \cdot i_{c} \cdot g_{c} \cdot b_{c} + q \cdot N_{q} \cdot \mathbf{s}_{q} \cdot d_{q} \cdot i_{q} \cdot g_{q} \cdot b_{q} + 0.5 \cdot B \cdot \gamma \cdot N_{\gamma} \cdot \mathbf{s}_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot g_{\gamma} \cdot b_{\gamma}$$

Caso di terreno puramente coesivo $\varphi = 0$

$$q_{ult} = 5.14 \cdot c \cdot (1 + s_c + d_c - i_c - g_c - b_c) + q$$

in cui dc, dq e dg sono i fattori di profondità, sc , sq e sg sono i fattori di forma, ic, iq e ig sono i fattori di inclinazione del carico, bc, bq e bg sono i fattori di inclinazione del piano di posa e gc, gq e gg sono fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori Nc , Nq , Ng sono espressi come:

$$\begin{split} N_q &= e^{\frac{\pi g}{\rho}} {}^{\phi} K_p \\ N_c &= \left(N_q - 1\right) c t g \phi \\ N_{\gamma} &= 1.5 \left(N_q - 1\right) t g \phi \end{split}$$

14.1.4 Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a hg. Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50. Si adotta per la verifica di stabilità globale il metodo di Bishop.

14.2 VERIFICHE STRUTTURALI

Le verifiche strutturali condotte sono le seguenti:

- > Verifiche di stato limite di esercizio
- Verifiche a fessurazione
- Verifica delle tensioni
- Verifiche di stato limite di ultimo
- Verifica a flessione
- Verifica a taglio

14.2.1 Verifiche allo stato limite ultimo (SLU+SLV)

14.2.1.1 Sollecitazioni flettenti

La verifica agli SLU è stata realizzata attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabola-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 (σ_{max} = 0.85×0.83×Rck/1.5);
- legame costitutivo dell'armatura d'acciaio elastico-perfettamente plastico con deformazione limite di rottura a 0.01 (σ_{max} = fyk / 1.15)

14.2.1.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con la seguente espressione:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d$$

$$k = 1 + (200/d)^{1/2} \le 2$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

 $v_{min} = 0.035 k^{3/2} f_{ck}^{1/2}$

dove:

d è l'altezza utile della sezione (in mm);

 ρ_1 = Asl /(bw ×d) è il rapporto geometrico di armatura longitudinale tesa ($\leq 0,02$);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0,2$ f_{cd});

b_w è la larghezza minima della sezione (in mm).

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione q dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le ctg\theta \le 2.5$$

La verifica di resistenza (SLU) è soddisfatta se è verificata la seguente relazione:

 $V_{Rd} \ge V_{Ed}$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

La resistenza di calcolo a "taglio trazione" dell'armatura trasversale è stata calcolata con la seguente relazione:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

La resistenza di calcolo a "taglio compressione" del calcestruzzo d'anima è stata calcolata con la seguente relazione:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$$

La resistenza al taglio della trave è la minore delle due relazioni sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

In cui:

d è l'altezza utile della sezione;

b_w è la larghezza minima della sezione;

 σ_{cp} è la tensione media di compressione della sezione;

A_{sw} è l'area dell'armatura trasversale;

S è interasse tra due armature trasversali consecutive;

lpha è è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della

trave;

 f_{cd} è la resistenza a compressione ridotta del calcestruzzo d'anima (f_{cd} =0.5 f_{cd});

 α è un coefficiente maggiorativo par ad 1 per membrature non compresse.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

14.2.2 Verifiche allo stato limite di esercizio (SLE)

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 10 Descrizione delle condizioni ambientali (Tab. 4.1.III delle NTC18)

Nel caso in esame, le condizioni ambientali sono sempre "ordinarie".

14.2.2.1 Verifica a fessurazione

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è pari a 0.4mm per la combinazione rara.

14.2.2.2 Verifica delle tensioni

I limiti tensionali considerati per i materiali sono relativi alla combinazione di carico quasi permanente e caratteristica.

Calcestruzzo:

Combinazione di azioni	Limite tensionale
Caratteristica (rara)	$\sigma_c \le 0.60 f_{ck}$
Quasi permanente	$\sigma_c <= 0.45 f_{ck}$

Acciaio:

Combinazione di azioni	Limite tensionale
Caratteristica (rara)	$\sigma_a \leq 0.80 \; f_{yk}$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

15 ANALISI DEI CARICHI

15.1 PESO PROPRIO

Il peso proprio della struttura è calcolato in base alla geometria degli elementi strutturali e al peso specifico assunto per i materiali:

 γ_{cls} =25.0 kN/m³

15.2 SPINTA STATICA DELLE TERRE

La spinta del terreno agente sulla struttura è stata calcolata attraverso la teoria di Culmann che adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea. I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb, il cui coefficiente di spinta attiva è di seguito riportata:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$K_{a} = \frac{\cos^{2}(\phi' - \alpha)}{\cos^{2}\alpha \cdot \cos(\alpha + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\phi' + \delta) \cdot \sin(\phi' - \beta)}{\cos(\alpha + \delta) \cdot \cos(\alpha - \beta)}}\right]^{2}}$$

dove:

- \triangleright α è l'inclinazione del paramento interno del muro rispetto alla verticale;
- \triangleright β è l'inclinazione del piano campagna rispetto all'orizzontale;
- φ è l'angolo d'attrito del terreno;
- > δ è l'angolo d'attrito terreno-struttura

15.3 SPINTA STATICA DELL'ACQUA

La spinta dell'acqua è proporzionale alla profondità a partire dalla quota di falda.

15.4 SPINTA DA SOVRACCARICO ACCIDENTALE

Il sovraccarico accidentale di superficie è assunto pari a 20 kPa, riproducente il traffico stradale attivo sull'eventuale carreggiata presente a tergo delle e un sovraccarico uniforme di 10 kPa, riproducente i mezzi d'opera di manutenzione immediatamente a tergo dell'opera.

15.5 COMBINAZIONI DI CARICO

La verifica di stabilità globale del complesso opera di sostegno-terreno è stata effettuata secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I delle NTC 2018 per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo. Le rimanenti verifiche sono state effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Nelle verifiche in condizioni sismiche si è controllato che la resistenza del sistema sia maggiore delle azioni, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto con i coefficienti parziali gR indicati nella tabella 7.11.III delle NTC 2018.

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni:

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + ...$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

dove:

$$E = \pm 1.00 \times E_Y \pm 0.30 \times E_Z \text{ oppure}$$
 $E = \pm 0.30 \times E_Y \pm 1.00 \times E_Z$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti. Si ripota la Tabella 5.2.V delle NTC18 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 17/01/2018)

Tab. 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

⁽ii) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Nella combinazione sismica le azioni indotte dal traffico stradale sono combinate con un coefficiente ψ_2 = 0.2 (paragrafo 5.1.3.12 del DM 17/01/2018) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {f \phi}'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	$c'_{\mathbf{k}}$	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	$c_{ m uk}$	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 11: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - NTC 2018)

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Tabella 12: Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno (Tabella 6.5.I – NTC

	. 1
COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

Tabella 13: Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo (Tabella 6.8.I - NTC 2018)

Verifica	Coefficiente parziale γ _R
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2

Tabella 14: Coefficienti parziali γ_R per le verifiche degli stati limite (SLV) dei muri di sostegno. (Tabella 7.11.III – NTC 2018)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

16 MODELLO DI CALCOLO

16.1 DATI

<u>Materiali</u>

Simbologia adottata

Indice materiale Descrizione del materiale Descr

Calcestruzzo armato Classe di resistenza del cls Classe di resistenza dell'acciaio

Peso specifico, espresso in [kN/mc] Resistenza caratteristica a compressione, espressa in [kPa] γ Rck

Modulo elastico, espresso in [kPa]

Coeff, di Poisson

Coeff. di omogenizzazione acciaio/cls ntc Coeff. di omogenizzazione cls teso/compresso

Calcestruzzo armato

n°	Descr	С	Α	γ	Rck	E	ν	n	ntc
				[kN/mc]	[kPa]	[kPa]			
1	C28/35	C28/35	B450C	24.5170	35000	32587986	0.30	15.00	0.50

Acciai

Descr	fyk	fuk	
	[kPa]	[kPa]	
B450C	450000	540000	

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto

ascissa del punto espressa in [m] ordinata del punto espressa in [m]

inclinazione del tratto espressa in [°]

n°	X	Y	Α
	[m]	[m]	[°]
1	0.00	0.00	0.000
2	15.00	0.00	0.000

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000 [°]

Geometria muro

Geometria paramento e fondazione

Lunghezza muro 10.00 [m]

Paramento

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Materiale Altezza paramento Altezza paramento libero Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno	C28/35 6.93 6.93 0.60 1.00 0.00 3.32	[m] [m] [m] [°]
Fondazione Materiale Lunghezza mensola di valle Lunghezza mensola di monte Lunghezza totale Inclinazione piano di posa Spessore Spessore magrone	C28/35 0.50 4.00 5.50 0.00 1.00 0.20	[m] [m] [m] [m] [m]

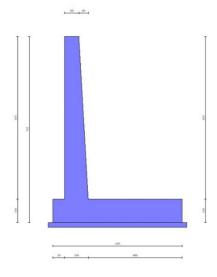


Fig. 1 - Sezione quotata del muro

Descrizione terreni

Parametri di resistenza

Simbologia adottata

Indice del terreno Descrizione terreno

Peso di volume del terreno espresso in [kN/mc]
Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [o] Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [kPa]

c_a Adesione terra-muro espressa in [kPa] Per calcolo portanza con il metodo di Bustamante-Doix

Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

Tensione tangenziale limite, espressa in [kPa]

n°	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]		[kPa]	
1	В	19.0000	19.0000	28.000	28.000	10	0			

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]		[kPa]	
2	RILEVATO STRADALE	19.0000	19.0000	35.000	0.000	0	0			

Parametri di deformabilità

Simbologia adottata

Indice del terreno Descr E Descrizione terreno

Modulo elastico, espresso in [kPa] Coeff. di Poisson Ed CR Modulo edometrico, espresso in [kPa] Rapporto di compressione

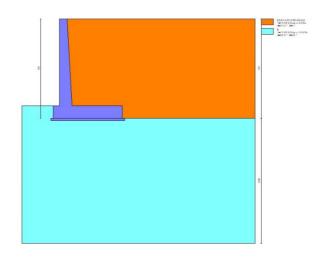
RR Rapporto di ricompressione OCR Grado di sovraconsolidazione

n°	Descr	E	ν	Ed	CR	RR	OCR
		[kPa]		[kPa]			
1	В	50000	0.200	0	0.000	0.000	1.000
2	RILEVATO STRADALE	0	0.000	0	0.000	0.000	1.000

Stratigrafia

Simbologia adottata

Indice dello strato
Spessore dello strato espresso in [m]


 $_{\text{Terreno}}^{\alpha}$ Inclinazione espressa in [°] Terreno dello strato

Per calcolo pali (solo se presenti)
Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm
Ks Coefficiente di spinta

Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato') KStsta, KStsis Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kw	Ks	Cesp	Kststa	Kstsis
	[m]	[°]		[Kg/cm³]				
1	7.93	0.000	RILEVATO STRADALE					
2	10.00	0.000	В					

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Fig. 2 - Stratigrafia

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

- Ascissa del punto di applicazione del carico concentrato espressa in [m] Componente orizzontale del carico concentrato espressa in [kN]
- Componente verticale del carico concentrato espressa in [kN]
- Fy M Xi
- Momento espresso in [kMm]
 Ascissa del punto iniziale del carico ripartito espressa in [m]
- Ascissa del punto finale del carico ripartito espressa in [m] Intensità del carico per x=Xi espressa in [kN] Intensità del carico per x=Xr espressa in [kN]

Condizione nº 1 (TRAFFICO STRADALE) - VARIABILE TF

Coeff. di combinazione $\Psi_0 = 0.75 - \Psi_1 = 0.75 - \Psi_2 = 0.00$

Carichi sul terreno

n°	Tipo	Х	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0.00	3.00	10.0000	10.0000

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018) + Circolare C.S.LL.PP. 21/01/2019 n.7

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto			Combinazioni statiche					Combinazioni sismiche		
			HYD	UPL	EQU	A1	A2	EQU	A1	A2	
Permanenti strutturali	Favorevoli	γG1,fav	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00	
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.00	1.10	1.30	1.35	1.00	1.00	1.00	1.00	
Permanenti non strutturali	Favorevoli	γG2,fav	0.00	0.80	0.80	0.80	0.80	0.00	0.00	0.00	
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00	
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Variabili	Sfavorevoli	γQ,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00	
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Variabili da traffico	Sfavorevoli	γQT,sfav	1.00	1.50	1.35	1.35	1.15	1.00	1.00	1.00	

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	oni statiche	Combinazioni sismiche		
		M1	M2	M1	M2	
Tangente dell'angolo di attrito	γtan(_φ ')	1.00	1.25	1.00	1.00	
Coesione efficace	үс'	1.00	1.25	1.00	1.00	
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00	
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00	

Coeff. parziali y_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Con	nbinazioni stat	iche	Combinazioni sismiche			
	R1	R1 R2 R3		R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Ribaltameno			1.15			1.00	
Stabilità fronte di scavo		1.10			1.20		

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{O1} Q_{k1} + \gamma_{O2} Q_{k2} + \gamma_{O3} Q_{k3} + ...$$

- Combinazione caratteristica, cosiddetta rara, impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + Q_{k1} + \Psi_{0,2} Q_{k2} + \Psi_{0,3} Q_{k3} + ...$$

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 \, + \, G_2 \, + \, \Psi_{1,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, ...$$

- Combinazione quasi permanente, impiegata per gli effetti di lungo periodo:

$$G_1 \, + \, G_2 \, + \, \Psi_{2,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, ...$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \Psi_{2,1} Q_{k1} + \Psi_{2,2} Q_{k2} + \Psi_{2,3} Q_{k3} + ...$$

I valori dei coeff. $\Psi_{0,j}$, $\Psi_{1,j}$, $\Psi_{2,j}$ sono definiti nelle singole condizioni variabili.par I valori dei coeff. γ_G e γ_Q , sono definiti nella tabella normativa.

In particolare si sono considerate le seguenti combinazioni:

Simbologia adottata

γ Coefficiente di partecipazione della condizione

Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.35		Sfavorevole
TRAFFICO STRADALE	1.35	1.00	Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
TRAFFICO STRADALE	1.00	0.20	Sfavorevole

Combinazione nº 3 - STR (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
TRAFFICO STRADALE	1.00	0.20	Sfavorevole

Combinazione nº 4 - GEO (A2-M2-R2)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
TRAFFICO STRADALE	1.15	1.00	Sfavorevole

Combinazione nº 5 - GEO (A2-M2-R2) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
TRAFFICO STRADALE	1.00	0.20	Sfavorevole

Combinazione nº 6 - GEO (A2-M2-R2) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
TRAFFICO STRADALE	1.00	0.20	Sfavorevole

Combinazione nº 7 - EQU (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
TRAFFICO STRADALE	1.35	1.00	Sfavorevole

Combinazione nº 8 - EQU (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
TRAFFICO STRADALE	1.00	0.20	Sfavorevole

Combinazione nº 9 - EQU (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
TRAFFICO STRADALE	1.00	0.20	Sfavorevole

Combinazione nº 10 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
TRAFFICO STRADALE	1.00	1.00	Sfavorevole

Combinazione nº 11 - SLEF

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Condizione	γ	Ψ	Effetto
TRAFFICO STRADALE	1.00	0.75	Sfavorevole

Combinazione nº 12 - SLEQ

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 13 - SLEQ H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 14 - SLEQ H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Dati sismici

Comune Provincia Regione

 Latitudine
 43.139470

 Longitudine
 11.177480

Indice punti di interpolazione 22721 - 22943 - 22944 - 22722

Vita nominale 100 anni Classe d'uso IV

Tipo costruzione Normali affollamenti

Vita di riferimento 200 anni

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	ag	[m/s ²]		2.060	1.020
Accelerazione al suolo	a _g /g	[%]		0.210	0.104
Massimo fattore amplificazione spettro orizzontale	F0			2.560	2.480
Periodo inizio tratto spettro a velocità costante	Tc*			0.287	0.264
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		В	1.185	1.200
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione βm	kh	kv
Ultimo	0.380	9.456	4.728
Ultimo - Ribaltamento	0.570	14.183	7.092
Esercizio	0.470	5.866	2.933

Forma diagramma incremento sismico Stessa forma del diagramma statico

Specifiche per le verifiche nelle combinazioni allo Stato Limite Ultimo (SLU)

	SLU	Eccezionale
Coefficiente di sicurezza calcestruzzo a compressione	1.50	1.00
Coefficiente di sicurezza acciaio	1.15	1.00
Fattore di riduzione da resistenza cubica a cilindrica	0.83	0.83

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	SLU	Eccezionale
Fattore di riduzione per carichi di lungo periodo	0.85	0.85
Coefficiente di sicurezza per la sezione	1.00	1.00

Specifiche per le verifiche nelle combinazioni allo Stato Limite di Esercizio (SLE)

Paramento e fondazione muro

Condizioni ambientali Ordinarie Armatura ad aderenza migliorata SI

Verifica a fessurazione

Sensibilità armatura Poco sensibile

Metodo di calcolo aperture delle fessure NTC 2018 - CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP.

Valori limite aperture delle fessure:

 $w_1 = 0.20$

 $w_2 = 0.30$

 $w_3 = 0.40$

Verifica delle tensioni

Valori limite delle tensioni nei materiali:

Combinazione	Calcestruzzo	Acciaio
Rara	0.60 fck	0.80 fyk
Frequente	1.00 fck	1.00 fyk
Quasi permanente	0.45 fck	1.00 fyk

16.2 RISULTATI PER COMBINAZIONE

Spinta e forze

Simbologia adottata

Indice della combinazione

Tipo azione

Inclinazione della spinta, espressa in [°]

Valore dell'azione, espressa in [kN]
Componente in direzione X ed Y dell'azione, espressa in [kN] Cx, Cy

Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	Cx	Cy	Px	PY
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	218.56	0.00	218.56	0.00	4.40	-5.29
	Peso/Inerzia muro			0.00	270.97/0.00	0.73	-5.58
	Peso/Inerzia terrapieno			0.00	593.64/0.00	2.29	-3.40
2	Spinta statica	161.89	0.00	161.89	0.00	4.40	-5.29
	Incremento di spinta sismica		39.44	39.44	0.00	4.40	-5.29
	Peso/Inerzia muro			25.62	270.97/12.81	0.73	-5.58
	Peso/Inerzia terrapieno			52.87	559.14/26.43	2.30	-3.41
3	Spinta statica	161.89	0.00	161.89	0.00	4.40	-5.29
	Incremento di spinta sismica		24.39	24.39	0.00	4.40	-5.29
	Peso/Inerzia muro			25.62	270.97/-12.81	0.73	-5.58
	Peso/Inerzia terrapieno			52.87	559.14/-26.43	2.30	-3.41
10	Spinta statica	161.89	0.00	161.89	0.00	4.40	-5.29
	Peso/Inerzia muro			0.00	270.97/0.00	0.73	-5.58
	Peso/Inerzia terrapieno			0.00	583.14/0.00	2.29	-3.40
11	Spinta statica	161.89	0.00	161.89	0.00	4.40	-5.29

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Ic	Α	V	I	Cx	Cy	Px	PY
		[kN]	[°]	[kN]	[kN]	[m]	[m]
	Peso/Inerzia muro			0.00	270.97/0.00	0.73	-5.58
	Peso/Inerzia terrapieno			0.00	575.64/0.00	2.29	-3.41
12	Spinta statica	161.89	0.00	161.89	0.00	4.40	-5.29
	Peso/Inerzia muro			0.00	270.97/0.00	0.73	-5.58
	Peso/Inerzia terrapieno			0.00	553.14/0.00	2.30	-3.41

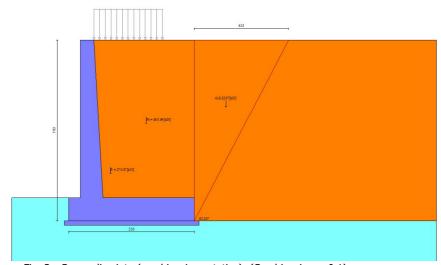


Fig. 3 - Cuneo di spinta (combinazione statica) (Combinazione n° 1)

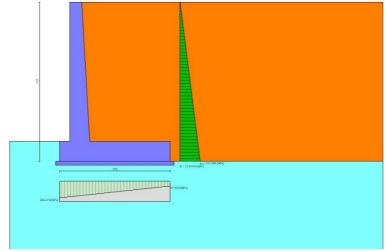


Fig. 4 - Diagramma delle pressioni (combinazione statica) (Combinazione nº 1)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

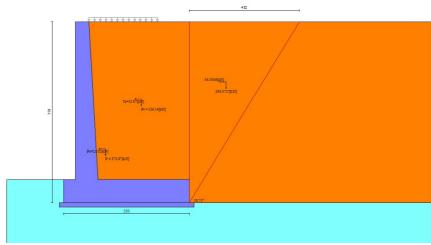


Fig. 5 - Cuneo di spinta (combinazione sismica) (Combinazione nº 2)

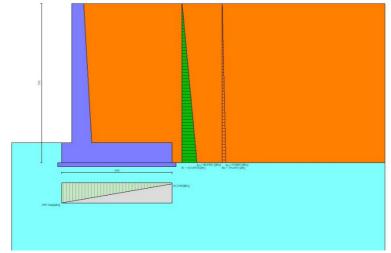


Fig. 6 - Diagramma delle pressioni (combinazione sismica) (Combinazione nº 2)

Risultanti globali

Simbologia adottata

Cmb N T Mr Indice/Tipo combinazione
Componente normale al piano di posa, espressa in [kN]

Componente parallela al piano di posa, espressa in [kN]
Componente parallela al piano di posa, espressa in [kN]
Momento ribaltante, espresso in [kNm]
Momento stabilizzante, espresso in [kNm]
Eccentricità risultante, espressa in [m] M_{s} ecc

Ic	N	Т	Mr	Ms	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
1 - STR (A1-M1-R3)	864.61	218.56	577.74	2505.57	0.521

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Ic	N	Т	Mr	Ms	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
2 - STR (A1-M1-R3)	869.36	279.82	831.35	2507.83	0.823
3 - STR (A1-M1-R3)	790.86	264.77	904.77	2394.62	0.867
4 - GEO (A2-M2-R2)	858.61	205.18	542.37	2486.28	0.487
5 - GEO (A2-M2-R2)	869.36	279.82	831.35	2507.83	0.823
6 - GEO (A2-M2-R2)	790.86	264.77	904.77	2394.62	0.867
7 - EQU (A1-M1-R3)	864.61	210.46	556.34	2505.57	0.496
8 - EQU (A1-M1-R3)	888.98	340.64	1037.93	2564.44	1.034
9 - EQU (A1-M1-R3)	771.24	318.61	1149.52	2394.62	1.137
10 - SLER	854.11	161.89	427.95	2471.80	0.358
11 - SLEF	846.61	161.89	427.95	2447.68	0.365
12 - SLEQ	824.11	161.89	427.95	2375.32	0.388
13 - SLEQ	848.28	234.14	675.09	2444.99	0.664
14 - SLEQ	799.94	224.70	719.81	2375.32	0.681

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Indice/Tipo combinazione Cmb

Sisma (H: componente orizzontale, V: componente verticale) Coeff. di sicurezza allo scorrimento

FSsco **FS**RIB Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite **FS**OLIM Coeff. di sicurezza a stabilità globale FSHYD Coeff, di sicurezza a sifonamento Coeff. di sicurezza a sollevamento

Cmb	Sismica	FS sco	FSRIB	FSQLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		2.103		2.804			
2 - STR (A1-M1-R3)	H + V	1.652		1.927			
3 - STR (A1-M1-R3)	H - V	1.588		1.983			
4 - GEO (A2-M2-R2)					1.678		
5 - GEO (A2-M2-R2)	H + V				1.763		
6 - GEO (A2-M2-R2)	H - V				1.756		
7 - EQU (A1-M1-R3)			4.504				
8 - EQU (A1-M1-R3)	H + V		2.471				
9 - EQU (A1-M1-R3)	H - V		2.083				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Resistenza allo scorrimento per attrito, espresso in [kN] Rpt Rps Resistenza passiva terreno antistante, espresso in [kN] Resistenza passiva sperone, espresso in [kN]

Rp Rt Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN]

Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN]

Carico parallelo al piano di posa, espresso in [kN] Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
1 - STR (A1-M1-R3)	459.72	0.00	0.00			459.72	218.56	2.103
2 - STR (A1-M1-R3) H + V	462.25	0.00	0.00			462.25	279.82	1.652
3 - STR (A1-M1-R3) H - V	420.51	0.00	0.00			420.51	264.77	1.588

Verifica a carico limite

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Simbologia adottata

Indice combinazione

Carico normale totale al piano di posa, espresso in [kN]

Qu carico limite del terreno, espresso in [kN] Portanza di progetto, espresso in [kN]

Qd FS Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
1 - STR (A1-M1-R3)	864.61	2424.67	1731.90	2.804
2 - STR (A1-M1-R3) H + V	869.36	1675.51	1396.26	1.927
3 - STR (A1-M1-R3) H - V	790.86	1568.11	1306.76	1.983

Dettagli calcolo portanza

Simbologia adottata

Indice combinazione Nc, Nq, N_Y Fattori di capacità portante ic, iq, i_Y Fattori di inclinazione del carico dc, dq, dγ Fattori di profondità del piano di posa gc, gq, g $_{\gamma}$ Fattori di inclinazione del profilo topografico bc, bq, b $_{\gamma}$ Fattori di inclinazione del piano di posa sc, sq, sγ Fattori di forma della fondazione

pc, pq, py Fattori di riduzione per punzonamento secondo Vesic Re Fattore di riduzione capacità portante per eccentricità

Fattore di riduzione capacità portante per eccentricità secondo Meyerhof

Ir, Irc Indici di rigidezza per punzonamento secondo Vesic

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN_Y viene moltiplicato rγ per questo fattore

Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m] Н Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°] Coesione del terreno medio, espresso in [kPa]

Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Vesic).

n°	Nc Nq Nγ	ic iq iγ	dc dq dγ	gc gq gγ	bc bq bγ	sc sq sγ	pc pq pγ	Ir	Irc	Re	Γγ
1	25.803	0.528	1.073	1.000	1.000					0.692	0.890
	14.720	0.560	1.054	1.000	1.000						
	16.717	0.418	1.000	1.000	1.000						
2	25.803	0.422	1.073	1.000	1.000					0.613	0.890
	14.720	0.462	1.054	1.000	1.000						
	16.717	0.313	1.000	1.000	1.000						
3	25.803	0.404	1.073	1.000	1.000					0.603	0.890
	14.720	0.444	1.054	1.000	1.000						
	16.717	0.296	1.000	1.000	1.000						

n°	D	B'	Н	γ	ф	С
	[m]	[m]	[m]	[°]	[kN/mc]	[kPa]
1	1.00	5.50	4.58	19.00	28.00	10
2	1.00	5.50	4.58	19.00	28.00	10
3	1.00	5.50	4.58	19.00	28.00	10

Verifica a ribaltamento

Simbologia adottata

Indice combinazione Ms

Momento stabilizzante, espresso in [kNm] Momento ribaltante, espresso in [kNm]

Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

n°	Ms	Mr	FS
	[kNm]	[kNm]	
7 - EQU (A1-M1-R3)	2505.57	556.34	4.504

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Ms	Mr	FS
	[kNm]	[kNm]	
8 - EQU (A1-M1-R3) H + V	2564.44	1037.93	2.471
9 - EQU (A1-M1-R3) H - V	2394.62	1149.52	2.083

Verifica stabilità globale muro + terreno

Simbologia adottata

Indice/Tipo combinazione
Centro superficie di scorrimento, espresso in [m]

R FS Raggio, espresso in [m] Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
4 - GEO (A2-M2-R2)	-1.50; 2.00	11.56	1.678
5 - GEO (A2-M2-R2) H + V	-1.50; 4.00	13.32	1.763
6 - GEO (Δ2-M2-R2) H - V	-1 50: 4 00	13 32	1 756

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

peso della striscia espresso in [kN] carico sulla striscia espresso in [kN] Qy

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kPa]

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kPa]

Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa] Tx; Ty

Combinazione nº 4 - GEO (A2-M2-R2)

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	17.86	0.00	9.90 - 0.75	73.336	29.256	0	0.0	
2	46.20	0.00	0.75	62.967	29.256	0	0.0	
3	64.48	0.00	0.75	55.584	29.256	0	0.0	
4	78.52	0.00	0.75	49.434	29.256	0	0.0	
5	89.93	0.00	0.75	43.990	29.256	0	0.0	
6	99.42	0.00	0.75	39.013	29.256	0	0.0	
7	107.41	0.00	0.75	34.367	29.256	0	0.0	
8	116.94	0.00	0.75	29.969	23.043	8	0.0	
9	123.95	0.00	0.75	25.758	23.043	8	0.0	
10	128.65	6.95	0.75	21.693	23.043	8	0.0	
11	132.49	8.63	0.75	17.740	23.043	8	0.0	
12	135.52	8.63	0.75	13.873	23.043	8	0.0	
13	133.65	8.63	0.75	10.070	23.043	8	0.0	
14	166.19	1.67	0.75	6.311	23.043	8	0.0	
15	39.98	0.00	0.75	2.580	23.043	8	0.0	
16	37.39	0.00	0.75	-1.141	23.043	8	0.0	
17	36.83	0.00	0.75	-4.866	23.043	8	0.0	
18	35.56	0.00	0.75	-8.612	23.043	8	0.0	
19	33.58	0.00	0.75	-12.396	23.043	8	0.0	
20	30.84	0.00	0.75	-16.236	23.043	8	0.0	
21	27.33	0.00	0.75	-20.153	23.043	8	0.0	
22	22.96	0.00	0.75	-24.171	23.043	8	0.0	
23	17.68	0.00	0.75	-28.321	23.043	8	0.0	
24	11.38	0.00	0.75	-32.641	23.043	8	0.0	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
25	3.90	0.00	-8.86 - 0.75	-36.650	23.043	8	0.0	

Combinazione nº 5 - GEO (A2-M2-R2) H + V

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	15.31	0.00	11.22 - 0.81	67.663	35.000	0	0.0	
2	41.45	0.00	0.81	59.835	35.000	0	0.0	
3	60.75	0.00	0.81	53.412	35.000	0	0.0	
4	76.19	0.00	0.81	47.864	35.000	0	0.0	
5	88.98	0.00	0.81	42.866	35.000	0	0.0	
6	99.78	0.00	0.81	38.248	35.000	0	0.0	
7	108.97	0.00	0.81	33.909	35.000	0	0.0	
8	116.80	0.00	0.81	29.782	35.000	0	0.0	
9	126.26	0.00	0.81	25.820	28.000	10	0.0	
10	133.52	0.00	0.81	21.987	28.000	10	0.0	
11	138.14	1.47	0.81	18.256	28.000	10	0.0	
12	141.85	1.63	0.81	14.603	28.000	10	0.0	
13	144.71	1.63	0.81	11.011	28.000	10	0.0	
14	161.25	1.27	0.81	7.462	28.000	10	0.0	
15	112.58	0.00	0.81	3.942	28.000	10	0.0	
16	37.45	0.00	0.81	0.436	28.000	10	0.0	
17	36.57	0.00	0.81	-3.068	28.000	10	0.0	
18	35.50	0.00	0.81	-6.583	28.000	10	0.0	
19	33.65	0.00	0.81	-10.123	28.000	10	0.0	
20	30.99	0.00	0.81	-13.704	28.000	10	0.0	
21	27.50	0.00	0.81	-17.340	28.000	10	0.0	
22	23.11	0.00	0.81	-21.049	28.000	10	0.0	
23	17.77	0.00	0.81	-24.855	28.000	10	0.0	
24	11.40	0.00	0.81	-28.781	28.000	10	0.0	
25	3.88	0.00	-9.13 - 0.81	-32.271	28.000	10	0.0	

Combinazione nº 6 - GEO (A2-M2-R2) H - V

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	15.31	0.00	11.22 - 0.81	67.663	35.000	0	0.0	
2	41.45	0.00	0.81	59.835	35.000	0	0.0	
3	60.75	0.00	0.81	53.412	35.000	0	0.0	
4	76.19	0.00	0.81	47.864	35.000	0	0.0	
5	88.98	0.00	0.81	42.866	35.000	0	0.0	
6	99.78	0.00	0.81	38.248	35.000	0	0.0	
7	108.97	0.00	0.81	33.909	35.000	0	0.0	
8	116.80	0.00	0.81	29.782	35.000	0	0.0	
9	126.26	0.00	0.81	25.820	28.000	10	0.0	
10	133.52	0.00	0.81	21.987	28.000	10	0.0	
11	138.14	1.47	0.81	18.256	28.000	10	0.0	
12	141.85	1.63	0.81	14.603	28.000	10	0.0	
13	144.71	1.63	0.81	11.011	28.000	10	0.0	
14	161.25	1.27	0.81	7.462	28.000	10	0.0	
15	112.58	0.00	0.81	3.942	28.000	10	0.0	
16	37.45	0.00	0.81	0.436	28.000	10	0.0	
17	36.57	0.00	0.81	-3.068	28.000	10	0.0	
18	35.50	0.00	0.81	-6.583	28.000	10	0.0	
19	33.65	0.00	0.81	-10.123	28.000	10	0.0	
20	30.99	0.00	0.81	-13.704	28.000	10	0.0	
21	27.50	0.00	0.81	-17.340	28.000	10	0.0	
22	23.11	0.00	0.81	-21.049	28.000	10	0.0	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	w	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
23	17.77	0.00	0.81	-24.855	28.000	10	0.0	
24	11.40	0.00	0.81	-28.781	28.000	10	0.0	
25	3.88	0.00	-9.13 - 0.81	-32.271	28.000	10	0.0	

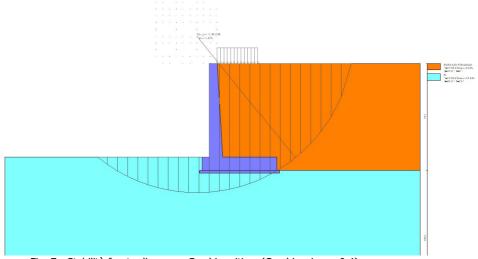


Fig. 7 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 4)

Cedimenti

Simbologia adottata

Ic

Indice combinazione
Punto di calcolo del cedimento, espressa in [m] X, Y

w dw Cedimento, espressa in [cm]
Cedimento differenziale, espressa in [cm]

Ic	X; Y	w	dw
	[m]	[cm]	[cm]
10	-1.10; -7.93	1.532	0.372
10	1.65; -7.93	2.009	0.849
10	4.40; -7.93	1.160	0.000
11	-1.10; -7.93	1.522	0.376
11	1.65; -7.93	1.991	0.845
11	4.40; -7.93	1.146	0.000
12	-1.10; -7.93	1.493	0.389
12	1.65; -7.93	1.938	0.834
12	4.40; -7.93	1.104	0.000

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.
Taglio, espresso in [kN]. Positivo se diretto da monte verso valle
Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	0.00	0.00	0.00
2	-0.10	1.46	0.43	0.02
3	-0.20	2.94	0.93	0.10
4	-0.30	4.43	1.51	0.23
5	-0.40	5.94	2.16	0.42
6	-0.50	7.46	2.88	0.69
7	-0.59	8.99	3.67	1.04
8	-0.69	10.54	4.54	1.47
9	-0.79	12.10	5.49	2.00
10	-0.89	13.67	6.50	2.63
11	-0.99	15.26	7.59	3.37
12	-1.09	16.86	8.76	4.22
13	-1.19	18.48	9.99	5.20
14	-1.29	20.11	11.30	6.31
15	-1.39	21.75	12.69	7.56
16	-1.49	23.41	14.14	8.95
17	-1.58	25.08	15.68	10.49
18	-1.68	26.77	17.28	12.20
19	-1.78	28.47	18.96	14.07
20	-1.88	30.19	20.71	16.12
21	-1.98	31.91	22.54	18.35
22	-2.08	33.66	24.44	20.77
23	-2.18	35.41	26.41	23.38
24	-2.28	37.18	28.45	26.20
25	-2.38	38.96	30.57	29.23
26	-2.48	40.76	32.77	32.48
27	-2.57	42.57	35.03	35.96
28	-2.67	44.40	37.37	39.66
29	-2.77	46.24	39.79	43.61
30	-2.87	48.09	42.27	47.81
31	-2.97	49.96	44.84	52.26
32	-3.07	51.84	47.47	56.98
33	-3.17	53.74	50.18	61.96
34	-3.27	55.65	52.96	67.22
35	-3.37	57.57	55.82	72.77
36	-3.46	59.51	58.74	78.61
37	-3.56	61.46	61.75	84.75
38	-3.66	63.42	64.82	91.19
39	-3.76	65.40	67.97	97.95
40	-3.86	67.39	71.19	105.03
41	-3.96	69.40	74.49	112.43
42	-4.06	71.42	77.86	120.18
43	-4.16	73.46	81.31	128.26
44	-4.26	75.50	84.82	136.70
45	-4.36	77.57	88.41	145.49
46	-4.46	79.64	92.08	154.65
47	-4.55	81.73	95.82	164.18
48	-4.65	83.84	99.63	174.09
49	-4.75	85.96	103.51	184.39
50	-4.85	88.09	107.47	195.09
51	-4.95	90.23	111.50	206.18
52	-5.05	92.39	115.61	217.68
53	-5.15	94.57	119.79	229.60
54	-5.25	96.76	124.04	241.95
55	-5.35	98.96	128.37	254.72
33	5.55	50.50	120.57	251.72

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
56	-5.45	101.17	132.76	267.93
57	-5.54	103.40	137.21	281.59
58	-5.64	105.65	141.71	295.70
59	-5.74	107.90	146.24	310.26
60	-5.84	110.18	150.80	325.27
61	-5.94	112.46	155.38	340.75
62	-6.04	114.76	159.98	356.68
63	-6.14	117.07	164.60	373.08
64	-6.24	119.40	169.25	389.95
65	-6.34	121.74	173.93	407.28
66	-6.43	124.10	178.65	425.09
67	-6.53	126.47	183.43	443.37
68	-6.63	128.85	188.28	462.13
69	-6.73	131.25	193.20	481.39
70	-6.83	133.66	198.20	501.15
71	-6.93	136.08	203.28	521.41

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	0.00	0.00	0.00
2	-0.10	1.46	0.23	0.01
3	-0.20	2.94	0.53	0.06
4	-0.30	4.43	0.90	0.14
5	-0.40	5.94	1.33	0.26
6	-0.50	7.46	1.84	0.44
7	-0.59	8.99	2.41	0.67
8	-0.69	10.54	3.05	0.97
9	-0.79	12.10	3.76	1.34
10	-0.89	13.67	4.54	1.78
11	-0.99	15.26	5.38	2.32
12	-1.09	16.86	6.30	2.94
13	-1.19	18.48	7.28	3.66
14	-1.29	20.11	8.33	4.49
15	-1.39	21.75	9.45	5.43
16	-1.49	23.41	10.64	6.49
17	-1.58	25.08	11.90	7.67
18	-1.68	26.77	13.22	8.99
19	-1.78	28.47	14.61	10.45
20	-1.88	30.19	16.08	12.05
21	-1.98	31.91	17.61	13.80
22	-2.08	33.66	19.21	15.72
23	-2.18	35.41	20.87	17.80
24	-2.28	37.18	22.61	20.06
25	-2.38	38.96	24.41	22.49
26	-2.48	40.76	26.29	25.12
27	-2.57	42.57	28.23	27.94
28	-2.67	44.40	30.24	30.95
29	-2.77	46.24	32.32	34.18
30	-2.87	48.09	34.46	37.62
31	-2.97	49.96	36.68	41.28
32	-3.07	51.84	38.96	45.17
33	-3.17	53.74	41.31	49.30
34	-3.27	55.65	43.73	53.66
35	-3.37	57.57	46.22	58.28
36	-3.46	59.51	48.78	63.15
37	-3.56	61.46	51.41	68.28
38	-3.66	63.42	54.10	73.68

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
39	-3.76	65.40	56.86	79.36
40	-3.86	67.39	59.69	85.32
41	-3.96	69.40	62.59	91.57
42	-4.06	71.42	65.56	98.11
43	-4.16	73.46	68.60	104.96
44	-4.26	75.50	71.70	112.12
45	-4.36	77.57	74.88	119.59
46	-4.46	79.64	78.12	127.39
47	-4.55	81.73	81.43	135.52
48	-4.65	83.84	84.81	143.99
49	-4.75	85.96	88.26	152.80
50	-4.85	88.09	91.77	161.96
51	-4.95	90.23	95.36	171.47
52	-5.05	92.39	99.01	181.36
53	-5.15	94.57	102.73	191.61
54	-5.25	96.76	106.52	202.24
55	-5.35	98.96	110.38	213.26
56	-5.45	101.17	114.30	224.67
57	-5.54	103.40	118.28	236.47
58	-5.64	105.65	122.32	248.68
59	-5.74	107.90	126.41	261.30
60	-5.84	110.18	130.56	274.33
61	-5.94	112.46	134.77	287.79
62	-6.04	114.76	139.05	301.67
63	-6.14	117.07	143.40	315.98
64	-6.24	119.40	147.81	330.73
65	-6.34	121.74	152.29	345.93
66	-6.43	124.10	156.85	361.59
67	-6.53	126.47	161.47	377.71
68	-6.63	128.85	166.16	394.29
69	-6.73	131.25	170.91	411.35
70	-6.83	133.66	175.74	428.89
71	-6.93	136.08	180.63	446.91

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	0.00	0.00	0.00
2	-0.10	1.46	0.23	0.01
3	-0.20	2.94	0.52	0.06
4	-0.30	4.43	0.87	0.13
5	-0.40	5.94	1.29	0.26
6	-0.50	7.46	1.77	0.43
7	-0.59	8.99	2.32	0.65
8	-0.69	10.54	2.92	0.94
9	-0.79	12.10	3.59	1.29
10	-0.89	13.67	4.33	1.72
11	-0.99	15.26	5.12	2.23
12	-1.09	16.86	5.98	2.83
13	-1.19	18.48	6.90	3.51
14	-1.29	20.11	7.89	4.30
15	-1.39	21.75	8.94	5.19
16	-1.49	23.41	10.05	6.20
17	-1.58	25.08	11.23	7.32
18	-1.68	26.77	12.47	8.57
19	-1.78	28.47	13.77	9.94
20	-1.88	30.19	15.14	11.46
21	-1.98	31.91	16.57	13.12

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
22	-2.08	33.66	18.06	14.92
23	-2.18	35.41	19.61	16.89
24	-2.28	37.18	21.23	19.01
25	-2.38	38.96	22.91	21.31
26	-2.48	40.76	24.66	23.78
27	-2.57	42.57	26.47	26.43
28	-2.67	44.40	28.34	29.26
29	-2.77	46.24	30.27	32.29
30	-2.87	48.09	32.27	35.52
31	-2.97	49.96	34.33	38.96
32	-3.07	51.84	36.46	42.61
33	-3.17	53.74	38.65	46.48
34	-3.27	55.65	40.90	50.57
35	-3.37	57.57	43.21	54.90
36	-3.46	59.51	45.59	59.46
37	-3.56	61.46	48.03	64.27
38	-3.66	63.42	50.54	69.33
39	-3.76	65.40	53.10	74.64
40	-3.86	67.39	55.73	80.22
41	-3.96	69.40	58.43	86.07
42	-4.06	71.42	61.18	92.19
43	-4.16	73.46	64.01	98.59
44	-4.26	75.50	66.89	105.29
45	-4.36	77.57	69.84	112.27
46	-4.46	77.57	72.85	112.27
47	-4.55	81.73	75.92	127.16
48	-4.65	83.84	79.06	135.06
49	-4.75	85.96	82.26	143.29
50	-4.85	88.09	85.52	151.85
51	-4.95			160.73
52		90.23	88.85	
53	-5.05 -5.15	92.39 94.57	92.24	169.96
54			95.69	179.53
55	-5.25	96.76	99.21	189.45
56	-5.35	98.96	102.78 106.42	199.73
	-5.45	101.17		210.37
57 58	-5.54 -5.64	103.40 105.65	110.11	221.38
59	-5.74	107.90	117.65	244.54
60	-5.84	110.18 112.46	121.50 125.40	256.69
	-5.94			269.23
62	-6.04	114.76	129.36	282.16
63 64	-6.14 -6.24	117.07	133.39	295.50
		119.40	137.48	309.25
65	-6.34	121.74	141.63	323.41
66	-6.43	124.10	145.84	337.99
67	-6.53	126.47	150.12	353.00
68	-6.63	128.85	154.47	368.44
69	-6.73	131.25	158.87	384.33
70 71	-6.83 -6.93	133.66	163.34	400.66 417.44
/1	-0.53	136.08	167.87	71/.74

Combinazione nº 10 - SLER

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	0.00	0.00	0.00
2	-0.10	1.46	0.32	0.02
3	-0.20	2.94	0.69	0.07
4	-0.30	4.43	1.12	0.17

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
5	-0.40	5.94	1.60	0.32
6	-0.50	7.46	2.13	0.52
7	-0.59	8.99	2.72	0.79
8	-0.69	10.54	3.37	1.12
9	-0.79	12.10	4.06	1.52
10	-0.89	13.67	4.82	1.99
11	-0.99	15.26	5.62	2.55
12	-1.09	16.86	6.49	3.20
13	-1.19	18.48	7.40	3.93
14			8.37	4.77
	-1.29	20.11		
15	-1.39	21.75	9.40	5.71
16	-1.49	23.41	10.48	6.76
17	-1.58	25.08	11.61	7.92
18	-1.68	26.77	12.80	9.20
19	-1.78	28.47	14.04	10.61
20	-1.88	30.19	15.34	12.15
21	-1.98	31.91	16.69	13.82
22	-2.08	33.66	18.10	15.64
23	-2.18	35.41	19.56	17.60
24	-2.28	37.18	21.08	19.72
25	-2.38	38.96	22.65	21.99
26	-2.48	40.76	24.27	24.43
27	-2.57	42.57	25.95	27.03
28	-2.67	44.40	27.68	29.81
29	-2.77	46.24	29.47	32.77
30	-2.87	48.09	31.31	35.91
31	-2.97	49.96	33.21	39.25
32	-3.07	51.84	35.16	42.78
33	-3.17	53.74	37.17	46.51
34	-3.27	55.65	39.23	50.45
35	-3.37	57.57	41.34	54.60
36	-3.46	59.51	43.51	58.97
37	-3.56	61.46	45.74	63.56
38	-3.66	63.42	48.02	68.38
39	-3.76	65.40	50.35	73.43
40	-3.86	67.39	52.74	78.72
41	-3.96	69.40	55.18	84.26
42	-4.06	71.42	57.68	90.05
43	-4.16	73.46	60.23	96.09
44	-4.26	75.10	62.83	102.40
45	-4.36		65.49	102.10
46	-4.46	77.57 79.64	68.21	115.81
47	-4.55	81.73	70.97	122.93
48	-4.65	83.84	73.80	130.34
49	-4.75	85.96	76.68	138.03
50	-4.85	88.09	79.61	146.01
51	-4.95	90.23	82.59	154.30
52	-5.05	92.39	85.64	162.89
53	-5.15	94.57	88.73	171.79
54	-5.25	96.76	91.88	181.00
55	-5.35	98.96	95.09	190.53
56	-5.45	101.17	98.34	200.40
57	-5.54	103.40	101.64	210.59
58	-5.64	105.65	104.97	221.12
59	-5.74	107.90	108.33	231.98
60	-5.84	110.18	111.70	243.18
61	-5.94	112.46	115.10	254.73
62	-6.04	114.76	118.50	266.62
63	-6.14	117.07	121.93	278.85

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	X	N	T	М
	[m]	[kN]	[kN]	[kNm]
64	-6.24	119.40	125.37	291.43
65	-6.34	121.74	128.83	304.36
66	-6.43	124.10	132.33	317.64
67	-6.53	126.47	135.88	331.28
68	-6.63	128.85	139.47	345.27
69	-6.73	131.25	143.11	359.64
70	-6.83	133.66	146.82	374.37
71	-6.93	136.08	150.58	389.47

Combinazione nº 11 - SLEF

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	0.00	0.00	0.00
2	-0.10	1.46	0.24	0.01
3	-0.20	2.94	0.54	0.06
4	-0.30	4.43	0.90	0.14
5	-0.40	5.94	1.31	0.26
6	-0.50	7.46	1.77	0.44
7	-0.59	8.99	2.29	0.66
8	-0.69	10.54	2.86	0.94
9	-0.79	12.10	3.48	1.29
10	-0.89	13.67	4.16	1.70
11	-0.99	15.26	4.90	2.19
12	-1.09	16.86	5.69	2.76
13	-1.19	18.48	6.53	3.42
14	-1.29	20.11	7.43	4.16
15	-1.39	21.75	8.38	5.01
16	-1.49	23.41	9.39	5.95
17	-1.58	25.08	10.45	7.00
18	-1.68	26.77	11.57	8.17
19	-1.78	28.47	12.74	9.45
20	-1.88	30.19	13.97	10.85
21	-1.98	31.91	15.25	12.39
22	-2.08	33.66	16.58	14.06
23	-2.18	35.41	17.97	15.87
24	-2.28	37.18	19.41	17.82
25	-2.38	38.96	20.91	19.92
26	-2.48	40.76	22.46	22.19
27	-2.57	42.57	24.07	24.61
28	-2.67	44.40	25.73	27.20
29	-2.77	46.24	27.44	29.96
30	-2.87	48.09	29.21	32.90
31	-2.97	49.96	31.04	36.02
32	-3.07	51.84	32.92	39.33
33	-3.17	53.74	34.85	42.84
34	-3.27	55.65	36.84	46.54
35	-3.37	57.57	38.88	50.45
36	-3.46	59.51	40.98	54.57
37	-3.56	61.46	43.13	58.91
38	-3.66	63.42	45.34	63.47
39	-3.76	65.40	47.60	68.25
40	-3.86	67.39	49.91	73.27
41	-3.96	69.40	52.28	78.53
42	-4.06	71.42	54.71	84.02
43	-4.16	73.46	57.18	89.77
44	-4.26	75.50	59.72	95.77
45	-4.36	77.57	62.30	102.03
46	-4.46	79.64	64.95	108.55

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

48 -4.65 83.84 70.39 122.4 49 -4.75 85.96 73.20 129.77 50 -4.85 88.09 76.06 137.41 51 -4.95 90.23 78.97 145.34 52 -5.05 92.39 81.94 153.56 53 -5.15 94.57 84.97 162.09 54 -5.25 96.76 88.04 170.93 55 -5.35 98.96 91.18 180.08 56 -5.45 101.17 94.36 189.55 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.47 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.73 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14	n°	Х	N	Т	М
48 -4.65 83.84 70.39 122.4 49 -4.75 85.96 73.20 129.77 50 -4.85 88.09 76.06 137.41 51 -4.95 90.23 78.97 145.34 52 -5.05 92.39 81.94 153.56 53 -5.15 94.57 84.97 162.09 54 -5.25 96.76 88.04 170.93 55 -5.35 98.96 91.18 180.08 56 -5.45 101.17 94.36 189.55 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.47 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.73 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14		[m]	[kN]	[kN]	[kNm]
49 -4.75 85.96 73.20 129.77 50 -4.85 88.09 76.06 137.41 51 -4.95 90.23 78.97 145.32 52 -5.05 92.39 81.94 153.56 53 -5.15 94.57 84.97 162.09 54 -5.25 96.76 88.04 170.93 55 -5.35 98.96 91.18 180.00 56 -5.45 101.17 94.36 189.53 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.47 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.73 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 <td>47</td> <td>-4.55</td> <td>81.73</td> <td>67.64</td> <td>115.35</td>	47	-4.55	81.73	67.64	115.35
50 -4.85 88.09 76.06 137.4; 51 -4.95 90.23 78.97 145.3; 52 -5.05 92.39 81.94 153.5; 53 -5.15 94.57 84.97 162.05 54 -5.25 96.76 88.04 170.93 55 -5.35 98.96 91.18 180.08 56 -5.45 101.17 94.36 189.55 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.47 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.72 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 </td <td>48</td> <td>-4.65</td> <td>83.84</td> <td>70.39</td> <td>122.42</td>	48	-4.65	83.84	70.39	122.42
51 -4.95 90.23 78.97 145.3 52 -5.05 92.39 81.94 153.56 53 -5.15 94.57 84.97 162.05 54 -5.25 96.76 88.04 170.93 55 -5.35 98.96 91.18 180.08 56 -5.45 101.17 94.36 189.53 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.47 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.73 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43<	49	-4.75	85.96	73.20	129.77
52 -5.05 92.39 81.94 153.56 53 -5.15 94.57 84.97 162.05 54 -5.25 96.76 88.04 170.93 55 -5.35 98.96 91.18 180.06 56 -5.45 101.17 94.36 189.53 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.47 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.73 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.	50	-4.85	88.09	76.06	137.41
53 -5.15 94.57 84.97 162.05 54 -5.25 96.76 88.04 170.93 55 -5.35 98.96 91.18 180.06 56 -5.45 101.17 94.36 189.53 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.47 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.73 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -	51	-4.95	90.23	78.97	145.34
54 -5.25 96.76 88.04 170.93 55 -5.35 98.96 91.18 180.08 56 -5.45 101.17 94.36 189.53 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.47 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.72 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.28 69 <td< td=""><td>52</td><td>-5.05</td><td>92.39</td><td>81.94</td><td>153.56</td></td<>	52	-5.05	92.39	81.94	153.56
55 -5.35 98.96 91.18 180.08 56 -5.45 101.17 94.36 189.55 57 -5.54 103.40 97.58 199.33 58 -5.64 105.65 100.84 209.43 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.73 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.26 69 -6.73 131.25 138.64 343.20	53	-5.15	94.57	84.97	162.09
56 -5.45 101.17 94.36 189.51 57 -5.54 103.40 97.58 199.31 58 -5.64 105.65 100.84 209.41 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.72 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.26 69 -6.73 131.25 138.64 343.20	54	-5.25	96.76	88.04	170.93
57 -5.54 103.40 97.58 199.3 58 -5.64 105.65 100.84 209.4 59 -5.74 107.90 104.13 219.9 60 -5.84 110.18 107.44 230.7 61 -5.94 112.46 110.77 241.8 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.26 69 -6.73 131.25 138.64 343.20	55	-5.35	98.96	91.18	180.08
58 -5.64 105.65 100.84 209.43 59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.73 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.28 69 -6.73 131.25 138.64 343.20	56	-5.45	101.17	94.36	189.55
59 -5.74 107.90 104.13 219.92 60 -5.84 110.18 107.44 230.72 61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.26 69 -6.73 131.25 138.64 343.20	57	-5.54	103.40	97.58	199.35
60 -5.84 110.18 107.44 230.7 61 -5.94 112.46 110.77 241.8 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.26 69 -6.73 131.25 138.64 343.20	58	-5.64	105.65	100.84	209.47
61 -5.94 112.46 110.77 241.83 62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.26 69 -6.73 131.25 138.64 343.20	59	-5.74	107.90	104.13	219.92
62 -6.04 114.76 114.11 253.29 63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.28 69 -6.73 131.25 138.64 343.20	60	-5.84	110.18	107.44	230.71
63 -6.14 117.07 117.48 265.08 64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.28 69 -6.73 131.25 138.64 343.20	61	-5.94	112.46	110.77	241.83
64 -6.24 119.40 120.88 277.22 65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.26 69 -6.73 131.25 138.64 343.20	62	-6.04	114.76	114.11	253.29
65 -6.34 121.74 124.33 289.70 66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.26 69 -6.73 131.25 138.64 343.20	63	-6.14	117.07	117.48	265.08
66 -6.43 124.10 127.83 302.54 67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.28 69 -6.73 131.25 138.64 343.20	64	-6.24	119.40	120.88	277.22
67 -6.53 126.47 131.38 315.73 68 -6.63 128.85 134.98 329.28 69 -6.73 131.25 138.64 343.20	65	-6.34	121.74	124.33	289.70
68 -6.63 128.85 134.98 329.28 69 -6.73 131.25 138.64 343.20	66	-6.43	124.10	127.83	302.54
69 -6.73 131.25 138.64 343.20	67	-6.53	126.47	131.38	315.73
	68	-6.63	128.85	134.98	329.28
	69	-6.73	131.25	138.64	343.20
70 -6.83 133.66 142.36 357.49	70	-6.83	133.66	142.36	357.49
71 -6.93 136.08 146.13 372.15	71	-6.93	136.08	146.13	372.15

Combinazione nº 12 - SLEQ

n°	X	N	T	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	0.00	0.00	0.00
2	-0.10	1.46	0.03	0.00
3	-0.20	2.94	0.11	0.02
4	-0.30	4.43	0.25	0.04
5	-0.40	5.94	0.44	0.09
6	-0.50	7.46	0.68	0.17
7	-0.59	8.99	0.98	0.27
8	-0.69	10.54	1.34	0.41
9	-0.79	12.10	1.75	0.60
10	-0.89	13.67	2.21	0.83
11	-0.99	15.26	2.73	1.12
12	-1.09	16.86	3.30	1.46
13	-1.19	18.48	3.93	1.87
14	-1.29	20.11	4.61	2.35
15	-1.39	21.75	5.34	2.90
16	-1.49	23.41	6.13	3.53
17	-1.58	25.08	6.98	4.25
18	-1.68	26.77	7.88	5.06
19	-1.78	28.47	8.83	5.96
20	-1.88	30.19	9.84	6.97
21	-1.98	31.91	10.90	8.09
22	-2.08	33.66	12.02	9.31
23	-2.18	35.41	13.19	10.66
24	-2.28	37.18	14.41	12.13
25	-2.38	38.96	15.69	13.73
26	-2.48	40.76	17.03	15.46
27	-2.57	42.57	18.42	17.34
28	-2.67	44.40	19.86	19.36
29	-2.77	46.24	21.36	21.53

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
30	-2.87	48.09	22.91	23.85
31	-2.97	49.96	24.52	26.34
32	-3.07	51.84	26.18	29.00
33	-3.17	53.74	27.90	31.83
34	-3.27	55.65	29.67	34.83
35	-3.37	57.57	31.50	38.02
36	-3.46	59.51	33.38	41.40
37	-3.56	61.46	35.31	44.97
38	-3.66	63.42	37.30	48.75
39	-3.76	65.40	39.34	52.73
40	-3.86	67.39	41.44	56.91
41	-3.96	69.40	43.59	61.32
42	-4.06	71.42	45.80	65.95
43	-4.16	73.46	48.06	70.80
44	-4.26	75.50	50.38	75.89
45	-4.36	77.57	52.75	81.21
46	-4.46	79.64	55.17	86.78
47	-4.55	81.73	57.65	92.59
48	-4.65	83.84	60.18	98.66
49	-4.75	85.96	62.77	104.99
50	-4.85	88.09	65.41	111.59
51	-4.95	90.23	68.11	118.45
52	-5.05	92.39	70.86	125.59
53	-5.15	94.57	73.67	133.01
54	-5.25	96.76	76.53	140.72
55	-5.35	98.96	79.44	148.72
56	-5.45	101.17	82.41	157.02
57	-5.54	103.40	85.44	165.62
58	-5.64	105.65	88.52	174.53
59	-5.74	107.90	91.65	183.76
60	-5.84	110.18	94.84	193.30
61	-5.94	112.46	98.08	203.17
62	-6.04	114.76	101.38	213.37
63	-6.14	117.07	104.73	223.90
64	-6.24	119.40	108.13	234.78
65	-6.34	121.74	111.59	246.00
66	-6.43	124.10	115.11	257.58
67	-6.53	126.47	118.67	269.51
68	-6.63	128.85	122.30	281.80
69	-6.73	131.25	125.98	294.46
70	-6.83	133.66	129.71	307.50
71	-6.93	136.08	133.49	320.91

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

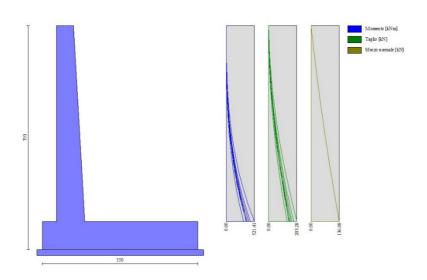


Fig. 8 - Paramento (Inviluppo)

Fondazione

Combinazione nº 1 - STR (A1-M1-R3)

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-1.10	0.00	0.00	0.00
2	-1.02	0.00	18.38	0.77
3	-0.93	0.00	36.54	3.06
4	-0.85	0.00	54.47	6.85
5	-0.77	0.00	72.18	12.13
6	-0.68	0.00	89.66	18.88
7	-0.60	0.00	106.92	27.07
8	0.40	0.00	-313.10	-799.39
9	0.50	0.00	-311.13	-767.22
10	0.60	0.00	-308.84	-735.28
11	0.70	0.00	-306.22	-703.57
12	0.80	0.00	-303.28	-672.15
13	0.90	0.00	-300.01	-641.04
14	1.00	0.00	-296.42	-610.27
15	1.10	0.00	-292.50	-579.87
16	1.20	0.00	-288.26	-549.88
17	1.30	0.00	-283.69	-520.34
18	1.40	0.00	-278.80	-491.26
19	1.50	0.00	-273.59	-462.70
20	1.60	0.00	-268.05	-434.66
21	1.70	0.00	-262.18	-407.20
22	1.80	0.00	-255.99	-380.35
23	1.90	0.00	-249.48	-354.12
24	2.00	0.00	-242.64	-328.57
25	2.10	0.00	-235.47	-303.72
26	2.20	0.00	-227.98	-279.59
27	2.30	0.00	-220.17	-256.24
28	2.40	0.00	-212.03	-233.68
29	2.50	0.00	-203.57	-211.95
30	2.60	0.00	-194.78	-191.08

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
31	2.70	0.00	-185.67	-171.11
32	2.80	0.00	-176.23	-152.07
33	2.90	0.00	-166.47	-133.98
34	3.00	0.00	-156.41	-116.91
35	3.10	0.00	-147.35	-101.72
36	3.20	0.00	-137.96	-87.45
37	3.30	0.00	-128.25	-74.14
38	3.40	0.00	-118.21	-61.81
39	3.50	0.00	-107.85	-50.51
40	3.60	0.00	-97.17	-40.25
41	3.70	0.00	-86.16	-31.08
42	3.80	0.00	-74.82	-23.03
43	3.90	0.00	-63.17	-16.13
44	4.00	0.00	-51.18	-10.41
45	4.10	0.00	-38.87	-5.90
46	4.20	0.00	-26.24	-2.65
47	4.30	0.00	-13.28	-0.67
48	4.40	0.00	0.00	0.00

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-1.10	0.00	0.00	0.00
2	-1.02	0.00	22.76	0.95
3	-0.93	0.00	45.16	3.78
4	-0.85	0.00	67.20	8.47
5	-0.77	0.00	88.88	14.97
6	-0.68	0.00	110.21	23.27
7	-0.60	0.00	131.17	33.33
8	0.40	0.00	-152.66	-580.11
9	0.50	0.00	-158.82	-564.39
10	0.60	0.00	-164.47	-548.08
11	0.70	0.00	-169.60	-531.23
12	0.80	0.00	-174.21	-513.90
13	0.90	0.00	-178.31	-496.13
14	1.00	0.00	-181.89	-477.97
15	1.10	0.00	-184.96	-459.48
16	1.20	0.00	-187.52	-440.72
17	1.30	0.00	-189.56	-421.72
18	1.40	0.00	-191.08	-402.54
19	1.50	0.00	-192.09	-383.24
20	1.60	0.00	-192.58	-363.86
21	1.70	0.00	-192.56	-344.46
22	1.80	0.00	-192.02	-325.09
23	1.90	0.00	-190.97	-305.79
24	2.00	0.00	-189.40	-286.63
25	2.10	0.00	-187.31	-267.65
26	2.20	0.00	-184.72	-248.90
27	2.30	0.00	-181.60	-230.44
28	2.40	0.00	-177.97	-212.32
29	2.50	0.00	-173.83	-194.59
30	2.60	0.00	-169.17	-177.29
31	2.70	0.00	-163.99	-160.49
32	2.80	0.00	-158.30	-144.23
33	2.90	0.00	-152.10	-128.57
34	3.00	0.00	-145.38	-113.55
35	3.10	0.00	-138.35	-99.36
36	3.20	0.00	-130.80	-85.90

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
37	3.30	0.00	-122.73	-73.22
38	3.40	0.00	-114.15	-61.37
39	3.50	0.00	-105.05	-50.40
40	3.60	0.00	-95.44	-40.37
41	3.70	0.00	-85.31	-31.33
42	3.80	0.00	-74.67	-23.33
43	3.90	0.00	-63.51	-16.42
44	4.00	0.00	-51.84	-10.64
45	4.10	0.00	-39.65	-6.06
46	4.20	0.00	-26.95	-2.73
47	4.30	0.00	-13.73	-0.69
48	4.40	0.00	0.00	0.00

Combinazione nº 3 - STR (A1-M1-R3) H - V

Х	N	Т	М
[m]	[kN]	[kN]	[kNm]
-1.10	0.00	0.00	0.00
-1.02	0.00	21.09	0.88
-0.93	0.00	41.84	3.51
-0.85	0.00	62.24	7.84
-0.77	0.00	82.31	13.87
-0.68	0.00	102.03	21.55
-0.60	0.00	121.40	30.86
0.40	0.00	-203.39	-670.30
0.50	0.00	-207.87	-649.60
0.60	0.00	-211.85	-628.46
0.70	0.00	-215.35	-606.96
0.80	0.00	-218.34	-585.13
0.90	0.00	-220.85	-563.03
1.00	0.00	-222.86	-540.70
1.10	0.00	-224.37	-518.19
1.20	0.00	-225.40	-495.56
1.30	0.00	-225.92	-472.85
1.40	0.00	-225.96	-450.11
1.50	0.00	-225.50	-427.39
1.60	0.00	-224.54	-404.75
1.70	0.00	-223.09	-382.22
1.80	0.00	-221.15	-359.87
1.90	0.00	-218.71	-337.73
2.00	0.00	-215.78	-315.86
2.10	0.00	-212.36	-294.31
2.20	0.00	-208.44	-273.12
2.30	0.00	-204.02	-252.36
2.40	0.00	-199.11	-232.06
2.50	0.00	-193.71	-212.27
2.60	0.00	-187.82	-193.05
2.70	0.00	-181.43	-174.44
2.80	0.00	-174.54	-156.50
2.90	0.00	-167.16	-139.27
3.00	0.00	-159.30	-122.81
3.10	0.00	-151.13	-107.28
3.20	0.00	-142.47	-92.60
3.30	0.00	-133.31	-78.80
3.40	0.00	-123.66	-65.95
3.50	0.00	-113.52	-54.09
3.60	0.00	-102.88	-43.26
3.70	0.00	-91.75	-33.53
3.80	0.00	-80.13	-24.93
	[m] -1.10 -1.02 -0.93 -0.85 -0.77 -0.68 -0.60 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70	[m] [kN] -1.10 0.00 -1.02 0.00 -0.93 0.00 -0.85 0.00 -0.68 0.00 -0.60 0.00 0.40 0.00 0.50 0.00 0.60 0.00 0.70 0.00 0.80 0.00 1.00 0.00 1.10 0.00 1.20 0.00 1.30 0.00 1.50 0.00 1.50 0.00 1.80 0.00 1.90 0.00 2.10 0.00 2.20 0.00 2.30 0.00 2.40 0.00 2.50 0.00 2.60 0.00 2.70 0.00 2.80 0.00 2.90 0.00 3.00 0.00 2.80 0.00 3.20 0.00 3.	[m] [kN] [kN] -1.10 0.00 0.00 -1.02 0.00 21.09 -0.93 0.00 41.84 -0.85 0.00 62.24 -0.77 0.00 82.31 -0.68 0.00 102.03 -0.60 0.00 220.33 0.50 0.00 -207.87 0.60 0.00 -211.85 0.70 0.00 -215.35 0.80 0.00 -218.34 0.90 0.00 -220.85 1.00 0.00 -222.86 1.10 0.00 -224.37 1.20 0.00 -225.92 1.40 0.00 -225.92 1.40 0.00 -225.92 1.50 0.00 -225.92 1.60 0.00 -224.54 1.70 0.00 -221.15 1.90 0.00 -218.71 2.00 0.00 -215.78 2.10

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
43	3.90	0.00	-68.01	-17.52
44	4.00	0.00	-55.40	-11.34
45	4.10	0.00	-42.29	-6.45
46	4.20	0.00	-28.69	-2.90
47	4.30	0.00	-14.59	-0.73
48	4.40	0.00	0.00	0.00

Combinazione nº 10 - SLER

n°	X	N	т	М
	[m]	[kN]	[kN]	[kNm]
1	-1.10	0.00	0.00	0.00
2	-1.02	0.00	15.87	0.66
3	-0.93	0.00	31.58	2.64
4	-0.85	0.00	47.14	5.92
5	-0.77	0.00	62.55	10.49
6	-0.68	0.00	77.81	16.34
7	-0.60	0.00	92.91	23.46
8	0.40	0.00	-95.95	-309.39
9	0.50	0.00	-97.49	-299.01
10	0.60	0.00	-98.82	-288.49
11	0.70	0.00	-99.93	-277.85
12	0.80	0.00	-100.81	-267.11
13	0.90	0.00	-101.48	-256.30
14	1.00	0.00	-101.92	-245.43
15	1.10	0.00	-102.15	-234.52
16	1.20	0.00	-102.15	-223.60
17	1.30	0.00	-101.94	-212.69
18	1.40	0.00	-101.50	-201.82
19	1.50	0.00	-100.84	-191.00
20	1.60	0.00	-99.97	-180.26
21	1.70	0.00	-98.87	-169.61
22	1.80	0.00	-97.55	-159.09
23	1.90	0.00	-96.02	-148.71
24	2.00	0.00	-94.26	-138.49
25	2.10	0.00	-92.28	-128.46
26	2.20	0.00	-90.08	-118.64
27	2.30	0.00	-87.66	-109.05
28	2.40	0.00	-85.02	-99.71
29	2.50	0.00	-82.17	-90.65
30	2.60	0.00	-79.09	-81.88
31	2.70	0.00	-75.79	-73.44
32	2.80	0.00	-72.27	-65.33
33	2.90	0.00	-68.53	-57.59
34	3.00	0.00	-64.58	-50.25
35	3.10	0.00	-61.40	-43.94
36	3.20	0.00	-58.00	-37.97
37	3.30	0.00	-54.38	-32.35
38	3.40	0.00	-50.54	-27.10
39	3.50	0.00	-46.47	-22.25
40	3.60	0.00	-42.19	-17.82
41	3.70	0.00	-37.69	-13.82
42	3.80	0.00	-32.97	-10.29
43	3.90	0.00	-28.02	-7.24
44	4.00	0.00	-22.86	-4.69
45	4.10	0.00	-17.47	-2.67
46	4.20	0.00	-11.87	-1.20
47	4.30	0.00	-6.05	-0.30
48	4.40	0.00	0.00	0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Combinazione nº 11 - SLEF

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-1.10	0.00	0.00	0.00
2	-1.02	0.00	15.81	0.66
3	-0.93	0.00	31.47	2.63
4	-0.85	0.00	46.97	5.90
5	-0.77	0.00	62.31	10.45
6	-0.68	0.00	77.51	16.28
7	-0.60	0.00	92.54	23.37
8	0.40	0.00	-95.66	-310.15
9	0.50	0.00	-97.35	-299.97
10	0.60	0.00	-98.82	-289.64
11	0.70	0.00	-100.06	-279.17
12	0.80	0.00	-101.08	-268.58
13	0.90	0.00	-101.88	-257.91
14	1.00	0.00	-102.46	-247.16
15	1.10	0.00	-102.81	-236.37
16	1.20	0.00	-102.94	-225.56
17	1.30	0.00	-102.85	-214.74
18	1.40	0.00	-102.54	-203.94
19	1.50	0.00	-102.00	-193.19
20	1.60	0.00	-101.24	-182.50
21	1.70	0.00	-100.26	-171.89
22	1.80	0.00	-99.05	-161.40
23	1.90	0.00	-97.62	-151.04
24	2.00	0.00	-95.97	-140.83
25	2.10	0.00	-94.10	-130.80
26	2.20	0.00	-92.00	-120.97
27	2.30	0.00	-89.68	-111.36
28	2.40	0.00	-87.14	-101.99
29	2.50	0.00	-84.37	-92.89
30	2.60	0.00	-81.38	-84.07
31	2.70	0.00	-78.17	-75.57
32	2.80	0.00	-74.74	-67.39
33	2.90	0.00	-71.08	-59.58
34	3.00	0.00	-67.21	-52.14
35	3.10	0.00	-63.86	-45.59
36	3.20	0.00	-60.29	-39.38
37	3.30	0.00	-56.49	-33.54
38	3.40	0.00	-52.47	-28.09
39	3.50	0.00	-48.22	-23.05
40	3.60	0.00	-43.76	-18.45
41	3.70	0.00	-39.07	-14.31
42	3.80	0.00	-34.15	-10.65
43	3.90	0.00	-29.02	-7.49
44	4.00	0.00	-23.66	-4.85
45	4.10	0.00	-18.08	-2.76
46	4.20	0.00	-12.28	-1.24
47	4.30	0.00	-6.25	-0.31
48	4.40	0.00	0.00	0.00

Combinazione nº 12 - SLEQ

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-1.10	0.00	0.00	0.00
2	-1.02	0.00	15.64	0.65
3	-0.93	0.00	31.12	2.60

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
4	-0.85	0.00	46.44	5.84
5	-0.77	0.00	61.60	10.34
6	-0.68	0.00	76.60	16.10
7	-0.60	0.00	91.44	23.10
8	0.40	0.00	-94.79	-312.45
9	0.50	0.00	-96.92	-302.86
10	0.60	0.00	-98.81	-293.07
11	0.70	0.00	-100.47	-283.11
12	0.80	0.00	-101.90	-272.99
13	0.90	0.00	-103.10	-262.73
14	1.00	0.00	-104.07	-252.37
15	1.10	0.00	-104.81	-241.93
16	1.20	0.00	-105.32	-231.42
17	1.30	0.00	-105.60	-220.87
18	1.40	0.00	-105.65	-210.31
19	1.50	0.00	-105.47	-199.75
20	1.60	0.00	-105.06	-189.22
21	1.70	0.00	-104.41	-178.74
22	1.80	0.00	-103.54	-168.34
23	1.90	0.00	-102.44	-158.04
24	2.00	0.00	-101.11	-147.86
25	2.10	0.00	-99.54	-137.83
26	2.20	0.00	-97.75	-127.96
27	2.30	0.00	-95.72	-118.29
28	2.40	0.00	-93.47	-108.83
29	2.50	0.00	-90.98	-99.60
30	2.60	0.00	-88.27	-90.64
31	2.70	0.00	-85.32	-81.96
32	2.80	0.00	-82.15	-73.58
33	2.90	0.00	-78.74	-65.53
34	3.00	0.00	-75.10	-57.84
35	3.10	0.00	-71.24	-50.52
36	3.20	0.00	-67.14	-43.60
37	3.30	0.00	-62.81	-37.10
38	3.40	0.00	-58.25	-31.05
39	3.50	0.00	-53.46	-25.46
40	3.60	0.00	-48.44	-20.36
41	3.70	0.00	-43.20	-15.78
42	3.80	0.00	-37.72	-11.73
43	3.90	0.00	-32.01	-8.24
44	4.00	0.00	-26.07	-5.34
45	4.10	0.00	-19.89	-3.04
46	4.20	0.00	-13.49	-1.36
47	4.30	0.00	-6.86	-0.35
48	4.40	0.00	0.00	0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

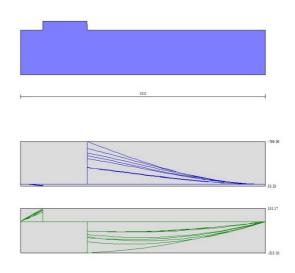


Fig. 9 - Fondazione (Inviluppo)

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

n° indice sezione Y ordinata sezione espressa in [m]

B larghezza sezione espresso in [cm]
H altezza sezione espresso in [cm]
Afi area ferri inferiori espresso in [cmq]
Afs area ferri superiori espresso in [cmq]
M momento agente espressa in [kNm]
N sforzo normale agente espresso in [kNm]
Nu sforzo normale ultimo espresso in [kNm]

fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	60	20.11	31.42	0.00	0.00	0.00	0.00	100000.000
2	-0.10	100	61	20.11	31.42	0.02	1.46	152.52	9839.59	6724.347
3	-0.20	100	61	20.11	31.42	0.10	2.94	325.23	9996.44	3399.581
4	-0.30	100	62	20.11	31.42	0.23	4.43	488.42	9562.69	2157.823
5	-0.40	100	62	20.11	31.42	0.42	5.94	637.42	8967.75	1510.555
6	-0.50	100	63	20.11	31.42	0.69	7.46	774.17	8367.50	1122.290
7	-0.59	100	63	20.11	31.42	1.04	8.99	896.89	7773.15	864.770
8	-0.69	100	64	20.11	31.42	1.47	10.54	1005.56	7200.53	683.449
9	-0.79	100	65	20.11	31.42	2.00	12.10	1101.60	6663.99	550.907
10	-0.89	100	65	20.11	31.42	2.63	13.67	1187.35	6173.42	451.565
11	-0.99	100	66	20.11	31.42	3.37	15.26	1262.27	5719.17	374.785
12	-1.09	100	66	20.11	31.42	4.22	16.86	1330.09	5311.49	314.989

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
13	-1.19	100	67	20.11	31.42	5.20	18.48	1387.72	4930.73	266.828
14	-1.29	100	67	20.11	31.42	6.31	20.11	1436.77	4579.11	227.708
15	-1.39	100	68	20.11	31.42	7.56	21.75	1439.04	4142.67	190.432
16	-1.49	100	69	20.11	31.42	8.95	23.41	1428.21	3736.46	159.594
17	-1.58	100	69	20.11	31.42	10.49	25.08	1411.54	3374.07	134.507
18	-1.68	100	70	20.11	31.42	12.20	26.77	1389.87	3050.02	113.930
19	-1.78	100	70	20.11	31.42	14.07	28.47	1362.65	2757.00	96.835
20	-1.88	100	71	20.11	31.42	16.12	30.19	1337.40	2504.46	82.970
21	-1.98	100	71	20.11	31.42	18.35	31.91	1311.19	2280.55	71.461
22	-2.08	100	72	20.11	31.42	20.77	33.66	1284.57	2081.80	61.857
23	-2.18	100	73	20.11	31.42	23.38	35.41	1263.59	1913.65	54.041
24	-2.28	100	73	20.11	31.42	26.20	37.18	1241.83	1762.22	47.396
25	-2.38	100	74	20.11	31.42	29.23	38.96	1216.98	1622.19	41.632
26	-2.48	100	74	20.11	31.42	32.48	40.76	1196.84	1501.99	36.847
27	-2.57	100	75	20.11	31.42	35.96	42.57	1180.50	1397.78	32.832
28	-2.67	100	76	20.11	31.42	39.66	44.40	1167.26	1306.61	29.428
29	-2.77	100	76	20.11	31.42	43.61	46.24	1153.69	1223.16	26.453
30	-2.87	100	77	20.11	31.42	47.81	48.09	1141.35	1148.09	23.872
31	-2.97	100	77	20.11	31.42	52.26	49.96	1131.15	1081.32	21.644
32	-3.07	100	78	20.11	31.42	56.98	51.84	1122.76	1021.56	19.705
33	-3.17	100	78	20.11	31.42	61.96	53.74	1115.92	967.79	18.010
34	-3.27	100	79	20.11	31.42	67.22	55.65	1110.41	919.18	16.518
35	-3.37	100	80	20.11	31.42	72.77	57.57	1106.07	875.03	15.200
36	-3.46	100	80	20.11	31.42	78.61	59.51	1102.73	834.77	14.028
37	-3.56	100	81	20.11	31.42	84.75	61.46	1100.29	797.93	12.984
38	-3.66	100	81	20.11	31.42	91.19	63.42	1098.63	764.10	12.048
39	-3.76	100	82	20.11	31.42	97.95	65.40	1097.66	732.93	11.207
40	-3.86 -3.96	100	82 83	20.11	31.42 31.42	105.03	67.39 69.40	1097.32	704.14	9.762
42	-3.96	100	84	20.11	31.42	112.43 120.18	71.42	1097.53 1098.24	677.47 652.70	9.762
43	-4.16	100	84	20.11	31.42	128.26	73.46	1098.24	629.63	8.572
44	-4.16	100	85	20.11	31.42	136.70	75.50	1100.98	608.12	8.054
45	-4.36	100	85	20.11	31.42	145.49	77.57	1102.92	588.00	7.581
46	-4.46	100	86	20.11	31.42	154.65	79.64	1105.20	569.16	7.146
47	-4.55	100	86	20.11	31.42	164.18	81.73	1107.78	551.48	6.747
48	-4.65	100	87	20.11	31.42	174.09	83.84	1110.65	534.85	6.380
49	-4.75	100	88	20.11	31.42	184.39	85.96	1113.78	519.20	6.040
50	-4.85	100	88	20.11	31.42	195.09	88.09	1117.15	504.43	5.726
51	-4.95	100	89	20.11	31.42	206.18	90.23	1120.73	490.49	5.436
52	-5.05	100	89	20.11	31.42	217.68	92.39	1124.52	477.30	5.166
53	-5.15	100	90	20.11	31.42	229.60	94.57	1128.50	464.80	4.915
54	-5.25	100	90	20.11	31.42	241.95	96.76	1132.66	452.96	4.681
55	-5.35	100	91	20.11	31.42	254.72	98.96	1136.98	441.71	4,464
56	-5.45	100	92	20.11	31.42	267.93	101.17	1141.45	431.02	4.260
57	-5.54	100	92	20.11	31.42	281.59	103.40	1146.06	420.85	4.070
58	-5.64	100	93	20.11	31.42	295.70	105.65	1150.81	411.16	3.892
59	-5.74	100	93	20.11	31.42	310.26	107.90	1155.69	401.94	3.725
60	-5.84	100	94	20.11	31.42	325.27	110.18	1160.68	393.15	3.568
61	-5.94	100	94	20.11	31.42	340.75	112.46	1165.80	384.76	3.421
62	-6.04	100	95	20.11	31.42	356.68	114.76	1171.02	376.77	3.283
63	-6.14	100	96	20.11	31.42	373.08	117.07	1176.35	369.14	3.153
64	-6.24	100	96	20.11	31.42	389.95	119.40	1181.78	361.86	3.031
65	-6.34	100	97	20.11	31.42	407.28	121.74	1187.26	354.89	2.915
66	-6.43	100	97	20.11	31.42	425.09	124.10	1192.35	348.09	2.805
67	-6.53	100	98	20.11	31.42	443.37	126.47	1197.53	341.58	2.701
68	-6.63	100	98	20.11	31.42	462.13	128.85	1202.78	335.35	2.603
69	-6.73	100	99	20.11	31.42	481.39	131.25	1208.11	329.38	2.510
70	-6.83	100	100	20.11	31.42	501.15	133.66	1213.52	323.65	2.421
71	-6.93	100	100	20.11	31.42	521.41	136.08	1218.98	318.14	2.338

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	60	20.11	31.42	0.00	0.00	0.00	0.00	100000.000
2	-0.10	100	61	20.11	31.42	0.01	1.46	86.62	9810.01	6704.130
3	-0.20	100	61	20.11	31.42	0.06	2.94	190.14	9935.87	3378.984
4	-0.30	100	62	20.11	31.42	0.14	4.43	311.11	10069.45	2272.172
5	-0.40	100	62	20.11	31.42	0.26	5.94	437.08	9917.54	1670.541
6	-0.50	100	63	20.11	31.42	0.44	7.46	555.91	9480.58	1271.581
7	-0.59	100	63	20.11	31.42	0.67	8.99	674.07	9038.44	1005.535
8	-0.69	100	64	20.11	31.42	0.97	10.54	787.73	8573.63	813.779
9	-0.79	100	65	20.11	31.42	1.34	12.10	894.85	8096.68	669.346
10	-0.89	100	65	20.11	31.42	1.78	13.67	995.02	7625.51	557.781
11	-0.99	100	66	20.11	31.42	2.32	15.26	1087.56	7166.52	469.632
12	-1.09	100	66	20.11	31.42	2.94	16.86	1170.96	6717.45	398.367
13	-1.19	100	67	20.11	31.42	3.66	18.48	1248.75	6302.20	341.046
14	-1.29	100	67	20.11	31.42	4.49	20.11	1318.71	5907.41	293.762
15	-1.39	100	68	20.11	31.42	5.43	21.75	1384.74	5548.93	255.076
16	-1.49	100	69	20.11	31.42	6.49	23.41	1440.33	5198.01	222.020
17	-1.58	100	69	20.11	31.42	7.67	25.08	1493.12	4882.03	194.622
18	-1.68	100	70	20.11	31.42	8.99	26.77	1512.66	4504.98	168.279
19	-1.78	100	70	20.11	31.42	10.45	28.47	1513.09	4124.18	144.855
20	-1.88	100	71	20.11	31.42	12.05	30.19	1502.79	3765.01	124.730
21	-1.98	100	71	20.11	31.42	13.80	31.91	1484.66	3432.29	107.551
22	-2.08	100	72	20.11	31.42	15.72	33.66	1465.84	3138.25	93.247
23	-2.18	100	73	20.11	31.42	17.80	35.41	1439.26	2862.84	80.846
24	-2.28	100	73	20.11	31.42	20.06	37.18	1415.29	2623.42	70.558
25	-2.38	100	74	20.11	31.42	22.49	38.96	1391.06	2409.54	61.839
26	-2.48	100	74	20.11	31.42	25.12	40.76	1364.22	2213.88	54.312
27	-2.57	100	75	20.11	31.42	27.94	42.57	1342.67	2046.23	48.063
28	-2.67	100	76	20.11	31.42	30.95	44.40	1324.56	1899.90	42.791
29	-2.77	100	76	20.11	31.42	34.18	46.24	1297.98	1755.92	37.975
30	-2.87	100	77	20.11	31.42	37.62	48.09	1276.12	1631.35	33.921
31	-2.97	100	77	20.11	31.42	41.28	49.96	1258.13	1522.61	30.477
32	-3.07	100	78	20.11	31.42	45.17	51.84	1243.33	1426.92	27.525
33	-3.17	100	78	20.11	31.42	49.30	53.74	1230.16	1340.97	24.955
34	-3.27	100	79	20.11	31.42	53.66	55.65	1215.80	1260.74	22.656
35	-3.37	100	80	20.11	31.42	58.28	57.57	1203.73	1189.10	20.655
36	-3.46	100	80	20.11	31.42	63.15	59.51	1193.61	1124.78	18.902
37	-3.56	100	81	20.11	31.42	68.28	61.46	1185.17	1066.75	17.358
38	-3.66	100	81	20.11	31.42	73.68	63.42	1178.18	1014.14	15.990
39	-3.76	100	82	20.11	31.42	79.36	65.40	1172.45	966.25	14.774
40	-3.86	100	82	20.11	31.42	85.32	67.39	1167.84	922.49	13.688
41	-3.96	100	83	20.11	31.42	91.57	69.40	1164.20	882.37	12.714
42	-4.06	100	84	20.11	31.42	98.11	71.42	1161.42	845.46	11.838
43	-4.16	100	84	20.11	31.42	104.96	73.46	1159.41	811.41	11.046
44	-4.26	100	85	20.11	31.42	112.12	75.50	1158.10	779.90	10.329
45	-4.36	100	85	20.11	31.42	119.59	77.57	1157.40	750.67	9.678
46	-4.46	100	86	20.11	31.42	127.39	79.64	1157.25	723.49	9.084
47	-4.55	100	86	20.11	31.42	135.52	81.73	1157.61	698.16	8.542 8.04E
48	-4.65	100	87	20.11	31.42	143.99	83.84	1158.42	674.51	8.045
49	-4.75	100	88	20.11	31.42	152.80	85.96	1159.65	652.36	7.590
50	-4.85	100	88	20.11	31.42	161.96	88.09	1161.25	631.61	7.170
51	-4.95	100	89	20.11	31.42	171.47	90.23	1163.20	612.11	6.784
52	-5.05	100	89	20.11	31.42	181.36	92.39	1165.47	593.76	6.426
53	-5.15	100	90	20.11	31.42	191.61	94.57	1168.03	576.47	6.096
54 55	-5.25 -5.35	100	90	20.11	31.42 31.42	202.24 213.26	96.76 98.96	1170.86 1173.93	560.16 544.74	5.789 5.505
55	-5.35	100	91	20.11	31.42	213.20	90.90	11/3.93	344.74	5,505

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
56	-5.45	100	92	20.11	31.42	224.67	101.17	1177.24	530.14	5.240
57	-5.54	100	92	20.11	31.42	236.47	103.40	1180.76	516.31	4.993
58	-5.64	100	93	20.11	31.42	248.68	105.65	1184.48	503.20	4.763
59	-5.74	100	93	20.11	31.42	261.30	107.90	1188.39	490.74	4.548
60	-5.84	100	94	20.11	31.42	274.33	110.18	1192.47	478.91	4.347
61	-5.94	100	94	20.11	31.42	287.79	112.46	1196.71	467.65	4.158
62	-6.04	100	95	20.11	31.42	301.67	114.76	1201.11	456.93	3.982
63	-6.14	100	96	20.11	31.42	315.98	117.07	1205.64	446.71	3.816
64	-6.24	100	96	20.11	31.42	330.73	119.40	1210.32	436.95	3.659
65	-6.34	100	97	20.11	31.42	345.93	121.74	1215.11	427.63	3.513
66	-6.43	100	97	20.11	31.42	361.59	124.10	1220.03	418.72	3.374
67	-6.53	100	98	20.11	31.42	377.71	126.47	1225.06	410.19	3.243
68	-6.63	100	98	20.11	31.42	394.29	128.85	1230.19	402.01	3.120
69	-6.73	100	99	20.11	31.42	411.35	131.25	1235.42	394.18	3.003
70	-6.83	100	100	20.11	31.42	428.89	133.66	1240.18	386.49	2.892
71	-6.93	100	100	20.11	31.42	446.91	136.08	1245.01	379.10	2.786

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Υ	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0.00	100	60	20.11	31.42	0.00	0.00	0.00	0.00	100000.000
2	-0.10	100	61	20.11	31.42	0.01	1.46	86.04	9809.75	6703.953
3	-0.20	100	61	20.11	31.42	0.06	2.94	187.80	9934.82	3378.626
4	-0.30	100	62	20.11	31.42	0.13	4.43	305.76	10067.05	2271.632
5	-0.40	100	62	20.11	31.42	0.26	5.94	429.42	9952.91	1676.499
6	-0.50	100	63	20.11	31.42	0.43	7.46	545.17	9531.58	1278.421
7	-0.59	100	63	20.11	31.42	0.65	8.99	660.59	9109.94	1013.489
8	-0.69	100	64	20.11	31.42	0.94	10.54	771.40	8659.55	821.934
9	-0.79	100	65	20.11	31.42	1.29	12.10	876.91	8204.39	678.250
10	-0.89	100	65	20.11	31.42	1.72	13.67	976.32	7754.51	567.216
11	-0.99	100	66	20.11	31.42	2.23	15.26	1067.37	7304.52	478.676
12	-1.09	100	66	20.11	31.42	2.83	16.86	1151.30	6872.08	407.537
13	-1.19	100	67	20.11	31.42	3.51	18.48	1229.11	6465.26	349.870
14	-1.29	100	67	20.11	31.42	4.30	20.11	1299.61	6077.42	302.216
15	-1.39	100	68	20.11	31.42	5.19	21.75	1365.87	5721.83	263.024
16	-1.49	100	69	20.11	31.42	6.20	23.41	1424.50	5381.45	229.855
17	-1.58	100	69	20.11	31.42	7.32	25.08	1477.47	5063.15	201.843
18	-1.68	100	70	20.11	31.42	8.57	26.77	1522.86	4758.88	177.763
19	-1.78	100	70	20.11	31.42	9.94	28.47	1527.30	4372.71	153.584
20	-1.88	100	71	20.11	31.42	11.46	30.19	1522.40	4010.31	132.857
21	-1.98	100	71	20.11	31.42	13.12	31.91	1514.69	3685.25	115.477
22	-2.08	100	72	20.11	31.42	14.92	33.66	1493.67	3368.33	100.084
23	-2.18	100	73	20.11	31.42	16.89	35.41	1477.33	3097.79	87.481
24	-2.28	100	73	20.11	31.42	19.01	37.18	1449.87	2835.30	76.257
25	-2.38	100	74	20.11	31.42	21.31	38.96	1428.28	2611.94	67.033
26	-2.48	100	74	20.11	31.42	23.78	40.76	1404.26	2407.55	59.063
27	-2.57	100	75	20.11	31.42	26.43	42.57	1379.31	2222.21	52.196
28	-2.67	100	76	20.11	31.42	29.26	44.40	1359.17	2062.24	46.447
29	-2.77	100	76	20.11	31.42	32.29	46.24	1342.28	1921.92	41.565
30	-2.87	100	77	20.11	31.42	35.52	48.09	1316.76	1782.61	37.066
31	-2.97	100	77	20.11	31.42	38.96	49.96	1295.67	1661.41	33.255
32	-3.07	100	78	20.11	31.42	42.61	51.84	1278.22	1555.08	29.997
33	-3.17	100	78	20.11	31.42	46.48	53.74	1263.80	1461.10	27.190
34	-3.27	100	79	20.11	31.42	50.57	55.65	1251.76	1377.29	24.751
35	-3.37	100	80	20.11	31.42	54.90	57.57	1237.48	1297.65	22.541
36	-3.46	100	80	20.11	31.42	59.46	59.51	1225.42	1226.31	20.608
37	-3.56	100	81	20.11	31.42	64.27	61.46	1215.27	1162.07	18.909

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
38	-3.66	100	81	20.11	31.42	69.33	63.42	1206.75	1103.95	17.406
39	-3.76	100	82	20.11	31.42	74.64	65.40	1199.66	1051.13	16.072
40	-3.86	100	82	20.11	31.42	80.22	67.39	1193.81	1002.94	14.882
41	-3.96	100	83	20.11	31.42	86.07	69.40	1189.06	958.81	13.816
42	-4.06	100	84	20.11	31.42	92.19	71.42	1185.28	918.26	12.857
43	-4.16	100	84	20.11	31.42	98.59	73.46	1182.35	880.90	11.992
44	-4.26	100	85	20.11	31.42	105.29	75.50	1180.19	846.36	11.209
45	-4.36	100	85	20.11	31.42	112.27	77.57	1178.72	814.35	10.499
46	-4.46	100	86	20.11	31.42	119.56	79.64	1177.86	784.61	9.852
47	-4.55	100	86	20.11	31.42	127.16	81.73	1177.57	756.92	9.261
48	-4.65	100	87	20.11	31.42	135.06	83.84	1177.77	731.07	8.720
49	-4.75	100	88	20.11	31.42	143.29	85.96	1178.43	706.90	8.224
50	-4.85	100	88	20.11	31.42	151.85	88.09	1179.51	684.25	7.768
51	-4.95	100	89	20.11	31.42	160.73	90.23	1180.97	662.99	7.347
52	-5.05	100	89	20.11	31.42	169.96	92.39	1182.78	642.99	6.959
53	-5.15	100	90	20.11	31.42	179.53	94.57	1184.91	624.16	6.600
54	-5.25	100	90	20.11	31.42	189.45	96.76	1187.34	606.40	6.267
55	-5.35	100	91	20.11	31.42	199.73	98.96	1190.03	589.62	5.958
56	-5.45	100	92	20.11	31.42	210.37	101.17	1192.98	573.74	5.671
57	-5.54	100	92	20.11	31.42	221.38	103.40	1196.17	558.71	5.403
58	-5.64	100	93	20.11	31.42	232.77	105.65	1199.57	544.45	5.153
59	-5.74	100	93	20.11	31.42	244.54	107.90	1203.18	530.92	4.920
60	-5.84	100	94	20.11	31.42	256.69	110.18	1206.97	518.07	4.702
61	-5.94	100	94	20.11	31.42	269.23	112.46	1210.95	505.84	4.498
62	-6.04	100	95	20.11	31.42	282.16	114.76	1215.09	494.20	4.306
63	-6.14	100	96	20.11	31.42	295.50	117.07	1219.39	483.11	4.127
64	-6.24	100	96	20.11	31.42	309.25	119.40	1223.84	472.53	3.957
65	-6.34	100	97	20.11	31.42	323.41	121.74	1228.42	462.42	3.798
66	-6.43	100	97	20.11	31.42	337.99	124.10	1233.13	452.76	3.648
67	-6.53	100	98	20.11	31.42	353.00	126.47	1237.96	443.52	3.507
68	-6.63	100	98	20.11	31.42	368.44	128.85	1242.90	434.66	3.373
69	-6.73	100	99	20.11	31.42	384.33	131.25	1247.95	426.17	3.247
70	-6.83	100	100	20.11	31.42	400.66	133.66	1253.10	418.03	3.128
71	-6.93	100	100	20.11	31.42	417.44	136.08	1258.28	410.19	3.014

Fondazione

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-1.10	100	100	31.42	31.42	0.00	0.00	0.00	0.00	
										100000.000
2	-1.02	100	100	0.00	0.00	0.77	0.00	0.00	0.00	0.000
3	-0.93	100	100	31.42	31.42	3.06	0.00	1080.18	0.00	353.267
4	-0.85	100	100	31.42	31.42	6.85	0.00	1080.18	0.00	157.654
5	-0.77	100	100	31.42	31.42	12.13	0.00	1080.18	0.00	89.046
6	-0.68	100	100	31.42	31.42	18.88	0.00	1080.18	0.00	57.226
7	-0.60	100	100	31.42	31.42	27.07	0.00	1080.18	0.00	39.906
8	0.40	100	100	31.42	31.42	-799.39	0.00	-1080.18	0.00	1.351
9	0.50	100	100	31.42	31.42	-767.22	0.00	-1080.18	0.00	1.408
10	0.60	100	100	31.42	31.42	-735.28	0.00	-1080.18	0.00	1.469
11	0.70	100	100	31.42	31.42	-703.57	0.00	-1080.18	0.00	1.535
12	0.80	100	100	31.42	31.42	-672.15	0.00	-1080.18	0.00	1.607
13	0.90	100	100	31.42	31.42	-641.04	0.00	-1080.18	0.00	1.685
14	1.00	100	100	31.42	31.42	-610.27	0.00	-1080.18	0.00	1.770
15	1.10	100	100	31.42	31.42	-579.87	0.00	-1080.18	0.00	1.863
16	1.20	100	100	31.42	31.42	-549.88	0.00	-1080.18	0.00	1.964

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
17	1.30	100	100	31.42	31.42	-520.34	0.00	-1080.18	0.00	2.076
18	1.40	100	100	31.42	31.42	-491.26	0.00	-1080.18	0.00	2.199
19	1.50	100	100	31.42	31.42	-462.70	0.00	-1080.18	0.00	2.335
20	1.60	100	100	31.42	31.42	-434.66	0.00	-1080.18	0.00	2.485
21	1.70	100	100	31.42	31.42	-407.20	0.00	-1080.18	0.00	2.653
22	1.80	100	100	31.42	31.42	-380.35	0.00	-1080.18	0.00	2.840
23	1.90	100	100	31.42	31.42	-354.12	0.00	-1080.18	0.00	3.050
24	2.00	100	100	31.42	31.42	-328.57	0.00	-1080.18	0.00	3.288
25	2.10	100	100	31.42	31.42	-303.72	0.00	-1080.18	0.00	3.557
26	2.20	100	100	31.42	31.42	-279.59	0.00	-1080.18	0.00	3.863
27	2.30	100	100	31.42	31.42	-256.24	0.00	-1080.18	0.00	4.216
28	2.40	100	100	31.42	31.42	-233.68	0.00	-1080.18	0.00	4.622
29	2.50	100	100	31.42	31.42	-211.95	0.00	-1080.18	0.00	5.096
30	2.60	100	100	31.42	31.42	-191.08	0.00	-1080.18	0.00	5.653
31	2.70	100	100	31.42	31.42	-171.11	0.00	-1080.18	0.00	6.313
32	2.80	100	100	31.42	31.42	-152.07	0.00	-1080.18	0.00	7.103
33	2.90	100	100	31.42	31.42	-133.98	0.00	-1080.18	0.00	8.062
34	3.00	100	100	31.42	31.42	-116.91	0.00	-1080.18	0.00	9.239
35	3.10	100	100	31.42	31.42	-101.72	0.00	-1080.18	0.00	10.619
36	3.20	100	100	31.42	31.42	-87.45	0.00	-1080.18	0.00	12.352
37	3.30	100	100	31.42	31.42	-74.14	0.00	-1080.18	0.00	14.570
38	3.40	100	100	31.42	31.42	-61.81	0.00	-1080.18	0.00	17.475
39	3.50	100	100	31.42	31.42	-50.51	0.00	-1080.18	0.00	21.387
40	3.60	100	100	31.42	31.42	-40.25	0.00	-1080.18	0.00	26.835
41	3.70	100	100	31.42	31.42	-31.08	0.00	-1080.18	0.00	34.751
42	3.80	100	100	31.42	31.42	-23.03	0.00	-1080.18	0.00	46.899
43	3.90	100	100	31.42	31.42	-16.13	0.00	-1080.18	0.00	66.968
44	4.00	100	100	31.42	31.42	-10.41	0.00	-1080.18	0.00	103.768
45	4.10	100	100	31.42	31.42	-5.90	0.00	-1080.18	0.00	182.954
46	4.20	100	100	31.42	31.42	-2.65	0.00	-1080.18	0.00	408.279
47	4.30	100	100	31.42	31.42	-0.67	0.00	-1080.18	0.00	1619.860
48	4.40	100	100	31.42	31.42	0.00	0.00	0.00	0.00	100000.000

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Y	В	Н	Afi	Afs	M	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-1.10	100	100	31.42	31.42	0.00	0.00	0.00	0.00	100000.000
2	-1.02	100	100	0.00	0.00	0.95	0.00	0.00	0.00	0.000
3	-0.93	100	100	31.42	31.42	3.78	0.00	1080.18	0.00	285.546
4	-0.85	100	100	31.42	31.42	8.47	0.00	1080.18	0.00	127.580
5	-0.77	100	100	31.42	31.42	14.97	0.00	1080.18	0.00	72.145
6	-0.68	100	100	31.42	31.42	23.27	0.00	1080.18	0.00	46.419
7	-0.60	100	100	31.42	31.42	33.33	0.00	1080.18	0.00	32.409
8	0.40	100	100	31.42	31.42	-580.11	0.00	-1080.18	0.00	1.862
9	0.50	100	100	31.42	31.42	-564.39	0.00	-1080.18	0.00	1.914
10	0.60	100	100	31.42	31.42	-548.08	0.00	-1080.18	0.00	1.971
11	0.70	100	100	31.42	31.42	-531.23	0.00	-1080.18	0.00	2.033
12	0.80	100	100	31.42	31.42	-513.90	0.00	-1080.18	0.00	2.102
13	0.90	100	100	31.42	31.42	-496.13	0.00	-1080.18	0.00	2.177
14	1.00	100	100	31.42	31.42	-477.97	0.00	-1080.18	0.00	2.260
15	1.10	100	100	31.42	31.42	-459.48	0.00	-1080.18	0.00	2.351
16	1.20	100	100	31.42	31.42	-440.72	0.00	-1080.18	0.00	2.451
17	1.30	100	100	31.42	31.42	-421.72	0.00	-1080.18	0.00	2.561
18	1.40	100	100	31.42	31.42	-402.54	0.00	-1080.18	0.00	2.683
19	1.50	100	100	31.42	31.42	-383.24	0.00	-1080.18	0.00	2.819
20	1.60	100	100	31.42	31.42	-363.86	0.00	-1080.18	0.00	2.969

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
21	1.70	100	100	31.42	31.42	-344.46	0.00	-1080.18	0.00	3.136
22	1.80	100	100	31.42	31.42	-325.09	0.00	-1080.18	0.00	3.323
23	1.90	100	100	31.42	31.42	-305.79	0.00	-1080.18	0.00	3.532
24	2.00	100	100	31.42	31.42	-286.63	0.00	-1080.18	0.00	3.769
25	2.10	100	100	31.42	31.42	-267.65	0.00	-1080.18	0.00	4.036
26	2.20	100	100	31.42	31.42	-248.90	0.00	-1080.18	0.00	4.340
27	2.30	100	100	31.42	31.42	-230.44	0.00	-1080.18	0.00	4.687
28	2.40	100	100	31.42	31.42	-212.32	0.00	-1080.18	0.00	5.087
29	2.50	100	100	31.42	31.42	-194.59	0.00	-1080.18	0.00	5.551
30	2.60	100	100	31.42	31.42	-177.29	0.00	-1080.18	0.00	6.093
31	2.70	100	100	31.42	31.42	-160.49	0.00	-1080.18	0.00	6.731
32	2.80	100	100	31.42	31.42	-144.23	0.00	-1080.18	0.00	7.489
33	2.90	100	100	31.42	31.42	-128.57	0.00	-1080.18	0.00	8.402
34	3.00	100	100	31.42	31.42	-113.55	0.00	-1080.18	0.00	9.513
35	3.10	100	100	31.42	31.42	-99.36	0.00	-1080.18	0.00	10.872
36	3.20	100	100	31.42	31.42	-85.90	0.00	-1080.18	0.00	12.575
37	3.30	100	100	31.42	31.42	-73.22	0.00	-1080.18	0.00	14.753
38	3.40	100	100	31.42	31.42	-61.37	0.00	-1080.18	0.00	17.602
39	3.50	100	100	31.42	31.42	-50.40	0.00	-1080.18	0.00	21.431
40	3.60	100	100	31.42	31.42	-40.37	0.00	-1080.18	0.00	26.754
41	3.70	100	100	31.42	31.42	-31.33	0.00	-1080.18	0.00	34.474
42	3.80	100	100	31.42	31.42	-23.33	0.00	-1080.18	0.00	46.302
43	3.90	100	100	31.42	31.42	-16.42	0.00	-1080.18	0.00	65.803
44	4.00	100	100	31.42	31.42	-10.64	0.00	-1080.18	0.00	101.489
45	4.10	100	100	31.42	31.42	-6.06	0.00	-1080.18	0.00	178.126
46	4.20	100	100	31.42	31.42	-2.73	0.00	-1080.18	0.00	395.741
47	4.30	100	100	31.42	31.42	-0.69	0.00	-1080.18	0.00	1563.291
48	4.40	100	100	31.42	31.42	0.00	0.00	0.00	0.00	100000.000

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-1.10	100	100	31.42	31.42	0.00	0.00	0.00	0.00	100000.000
2	-1.02	100	100	0.00	0.00	0.88	0.00	0.00	0.00	0.000
3	-0.93	100	100	31.42	31.42	3.51	0.00	1080.18	0.00	308.121
4	-0.85	100	100	31.42	31.42	7.84	0.00	1080.18	0.00	137.691
5	-0.77	100	100	31.42	31.42	13.87	0.00	1080.18	0.00	77.877
6	-0.68	100	100	31.42	31.42	21.55	0.00	1080.18	0.00	50.117
7	-0.60	100	100	31.42	31.42	30.86	0.00	1080.18	0.00	34.997
8	0.40	100	100	31.42	31.42	-670.30	0.00	-1080.18	0.00	1.611
9	0.50	100	100	31.42	31.42	-649.60	0.00	-1080.18	0.00	1.663
10	0.60	100	100	31.42	31.42	-628.46	0.00	-1080.18	0.00	1.719
11	0.70	100	100	31.42	31.42	-606.96	0.00	-1080.18	0.00	1.780
12	0.80	100	100	31.42	31.42	-585.13	0.00	-1080.18	0.00	1.846
13	0.90	100	100	31.42	31.42	-563.03	0.00	-1080.18	0.00	1.919
14	1.00	100	100	31.42	31.42	-540.70	0.00	-1080.18	0.00	1.998
15	1.10	100	100	31.42	31.42	-518.19	0.00	-1080.18	0.00	2.085
16	1.20	100	100	31.42	31.42	-495.56	0.00	-1080.18	0.00	2.180
17	1.30	100	100	31.42	31.42	-472.85	0.00	-1080.18	0.00	2.284
18	1.40	100	100	31.42	31.42	-450.11	0.00	-1080.18	0.00	2.400
19	1.50	100	100	31.42	31.42	-427.39	0.00	-1080.18	0.00	2.527
20	1.60	100	100	31.42	31.42	-404.75	0.00	-1080.18	0.00	2.669
21	1.70	100	100	31.42	31.42	-382.22	0.00	-1080.18	0.00	2.826
22	1.80	100	100	31.42	31.42	-359.87	0.00	-1080.18	0.00	3.002
23	1.90	100	100	31.42	31.42	-337.73	0.00	-1080.18	0.00	3.198
24	2.00	100	100	31.42	31.42	-315.86	0.00	-1080.18	0.00	3.420

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
25	2.10	100	100	31.42	31.42	-294.31	0.00	-1080.18	0.00	3.670
26	2.20	100	100	31.42	31.42	-273.12	0.00	-1080.18	0.00	3.955
27	2.30	100	100	31.42	31.42	-252.36	0.00	-1080.18	0.00	4.280
28	2.40	100	100	31.42	31.42	-232.06	0.00	-1080.18	0.00	4.655
29	2.50	100	100	31.42	31.42	-212.27	0.00	-1080.18	0.00	5.089
30	2.60	100	100	31.42	31.42	-193.05	0.00	-1080.18	0.00	5.595
31	2.70	100	100	31.42	31.42	-174.44	0.00	-1080.18	0.00	6.192
32	2.80	100	100	31.42	31.42	-156.50	0.00	-1080.18	0.00	6.902
33	2.90	100	100	31.42	31.42	-139.27	0.00	-1080.18	0.00	7.756
34	3.00	100	100	31.42	31.42	-122.81	0.00	-1080.18	0.00	8.796
35	3.10	100	100	31.42	31.42	-107.28	0.00	-1080.18	0.00	10.069
36	3.20	100	100	31.42	31.42	-92.60	0.00	-1080.18	0.00	11.665
37	3.30	100	100	31.42	31.42	-78.80	0.00	-1080.18	0.00	13.707
38	3.40	100	100	31.42	31.42	-65.95	0.00	-1080.18	0.00	16.379
39	3.50	100	100	31.42	31.42	-54.09	0.00	-1080.18	0.00	19.971
40	3.60	100	100	31.42	31.42	-43.26	0.00	-1080.18	0.00	24.968
41	3.70	100	100	31.42	31.42	-33.53	0.00	-1080.18	0.00	32.219
42	3.80	100	100	31.42	31.42	-24.93	0.00	-1080.18	0.00	43.332
43	3.90	100	100	31.42	31.42	-17.52	0.00	-1080.18	0.00	61.665
44	4.00	100	100	31.42	31.42	-11.34	0.00	-1080.18	0.00	95.232
45	4.10	100	100	31.42	31.42	-6.45	0.00	-1080.18	0.00	167.357
46	4.20	100	100	31.42	31.42	-2.90	0.00	-1080.18	0.00	372.279
47	4.30	100	100	31.42	31.42	-0.73	0.00	-1080.18	0.00	1472.399
48	4.40	100	100	31.42	31.42	0.00	0.00	0.00	0.00	100000.000

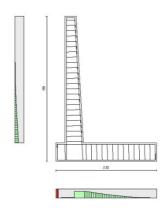


Fig. 10 - Paramento (Inviluppo)

Verifiche a taglio

Simbologia adottata

indice sezione

ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm]

area ferri a taglio espresso in [cmq] inclinazione delle bielle compresse, θ inclinazione del puntoni di calcestruzzo

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

V_{Rcd}

resistenza di progetto a 'taglio compressione' espressa in [kN] resistenza di progetto a 'taglio trazione' espressa in [kN] resistenza di progetto a 'taglio trazione' espressa in [kN] resistenza di progetto a taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio (A_{SW}>0.0) V_{Rd}=min(V_{Rcd}, V_{Rsd}). taglio agente espressa in [kN] V_{Rd}

FS fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

Combinazione nº 1 - STR (A1-M1-R3)

n°	Y	В	Н	Asw	S	cotθ	VRcd	VRsd	V Rd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	60	0.00	0.00		0.00	0.00	313.78	0.00	100.000
2	-0.10	100	61	0.00	0.00		0.00	0.00	315.60	0.43	736.928
3	-0.20	100	61	0.00	0.00		0.00	0.00	317.41	0.93	340.926
4	-0.30	100	62	0.00	0.00		0.00	0.00	319.22	1.51	211.774
5	-0.40	100	62	0.00	0.00		0.00	0.00	321.03	2.16	148.876
6	-0.50	100	63	0.00	0.00		0.00	0.00	322.83	2.88	112.156
7	-0.59	100	63	0.00	0.00		0.00	0.00	324.62	3.67	88.357
8	-0.69	100	64	0.00	0.00		0.00	0.00	326.42	4.54	71.848
9	-0.79	100	65	0.00	0.00		0.00	0.00	328.20	5.49	59.827
10	-0.89	100	65	0.00	0.00		0.00	0.00	329.99	6.50	50.751
11	-0.99	100	66	0.00	0.00		0.00	0.00	331.77	7.59	43.700
12	-1.09	100	66	0.00	0.00		0.00	0.00	333.55	8.76	38.096
13	-1.19	100	67	0.00	0.00		0.00	0.00	335.32	9.99	33.558
14	-1.29	100	67	0.00	0.00		0.00	0.00	337.09	11.30	29.823
15	-1.39	100	68	0.00	0.00		0.00	0.00	338.86	12.69	26.709
16	-1.49	100	69	0.00	0.00		0.00	0.00	340.62	14.14	24.081
17	-1.58	100	69	0.00	0.00		0.00	0.00	342.38	15.68	21.841
18	-1.68	100	70	0.00	0.00		0.00	0.00	344.13	17.28	19.914
19	-1.78	100	70	0.00	0.00		0.00	0.00	345.88	18.96	18.244
20	-1.88	100	71	0.00	0.00		0.00	0.00	347.63	20.71	16.785
21	-1.98	100	71	0.00	0.00		0.00	0.00	349.38	22.54	15.503
22	-2.08	100	72	0.00	0.00		0.00	0.00	351.12	24.44	14.370
23	-2.18	100	73	0.00	0.00		0.00	0.00	352.86	26.41	13.362
24	-2.28	100	73	0.00	0.00		0.00	0.00	354.60	28.45	12.462
25	-2.38	100	74	0.00	0.00		0.00	0.00	356.33	30.57	11.655
26	-2.48	100	74	0.00	0.00		0.00	0.00	358.06	32.77	10.928
27	-2.57	100	75	0.00	0.00		0.00	0.00	359.79	35.03	10.270
28	-2.67	100	76	0.00	0.00		0.00	0.00	361.52	37.37	9.673
29	-2.77	100	76	0.00	0.00		0.00	0.00	363.24	39.79	9.130
30	-2.87	100	77	0.00	0.00		0.00	0.00	364.96	42.27	8.633
31	-2.97	100	77	0.00	0.00		0.00	0.00	366.68	44.84	8.178
32	-3.07	100	78	0.00	0.00		0.00	0.00	368.39	47.47	7.761
33	-3.17	100	78	0.00	0.00		0.00	0.00	370.11	50.18	7.376
34	-3.27	100	79	0.00	0.00		0.00	0.00	371.82	52.96	7.021
35	-3.37	100	80	0.00	0.00		0.00	0.00	373.53	55.82	6.692
36	-3.46	100	80	0.00	0.00		0.00	0.00	375.23	58.74	6.388
37	-3.56	100	81	0.00	0.00		0.00	0.00	376.94	61.75	6.105
38	-3.66	100	81	0.00	0.00		0.00	0.00	378.64	64.82	5.841
39	-3.76	100	82	0.00	0.00		0.00	0.00	380.34	67.97	5.596
40	-3.86	100	82	0.00	0.00		0.00	0.00	382.03	71.19	5.366
41	-3.96	100	83	0.00	0.00		0.00	0.00	383.73	74.49	5.151
42	-4.06	100	84	0.00	0.00		0.00	0.00	385.42	77.86	4.950
43	-4.16	100	84	0.00	0.00		0.00	0.00	387.11	81.31	4.761
44	-4.26	100	85	0.00	0.00		0.00	0.00	388.80	84.82	4.584
45	-4.36	100	85	0.00	0.00		0.00	0.00	390.49	88.41	4.417
46	-4.46	100	86	0.00	0.00		0.00	0.00	392.18	92.08	4.259
47	-4.55	100	86	0.00	0.00		0.00	0.00	393.86	95.82	4.111
48	-4.65	100	87	0.00	0.00		0.00	0.00	395.54	99.63	3.970
49	-4.75	100	88	0.00	0.00		0.00	0.00	397.22	103.51	3.837
1.7	1.73	100	00	0.00	0.00		0.00	0.00	331.22	103.31	5.057

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Asw	S	cotθ	VRcd	VRsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
50	-4.85	100	88	0.00	0.00		0.00	0.00	398.90	107.47	3.712
51	-4.95	100	89	0.00	0.00		0.00	0.00	400.58	111.50	3.593
52	-5.05	100	89	0.00	0.00		0.00	0.00	402.25	115.61	3.479
53	-5.15	100	90	0.00	0.00		0.00	0.00	403.93	119.79	3.372
54	-5.25	100	90	0.00	0.00		0.00	0.00	405.60	124.04	3.270
55	-5.35	100	91	0.00	0.00		0.00	0.00	407.27	128.37	3.173
56	-5.45	100	92	0.00	0.00		0.00	0.00	408.94	132.76	3.080
57	-5.54	100	92	0.00	0.00		0.00	0.00	410.61	137.21	2.993
58	-5.64	100	93	0.00	0.00		0.00	0.00	412.28	141.71	2.909
59	-5.74	100	93	0.00	0.00		0.00	0.00	413.94	146.24	2.831
60	-5.84	100	94	0.00	0.00		0.00	0.00	415.60	150.80	2.756
61	-5.94	100	94	0.00	0.00		0.00	0.00	417.27	155.38	2.685
62	-6.04	100	95	0.00	0.00		0.00	0.00	418.93	159.98	2.619
63	-6.14	100	96	0.00	0.00		0.00	0.00	420.59	164.60	2.555
64	-6.24	100	96	0.00	0.00		0.00	0.00	422.25	169.25	2.495
65	-6.34	100	97	0.00	0.00		0.00	0.00	423.91	173.93	2.437
66	-6.43	100	97	0.00	0.00		0.00	0.00	425.56	178.65	2.382
67	-6.53	100	98	0.00	0.00		0.00	0.00	427.22	183.43	2.329
68	-6.63	100	98	0.00	0.00		0.00	0.00	428.87	188.28	2.278
69	-6.73	100	99	0.00	0.00		0.00	0.00	430.53	193.20	2.228
70	-6.83	100	100	0.00	0.00		0.00	0.00	432.18	198.20	2.180
71	-6.93	100	100	0.00	0.00		0.00	0.00	433.83	203.28	2.134

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Υ	В	Н	Asw	s	cotθ	V Rcd	V Rsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	60	0.00	0.00		0.00	0.00	313.78	0.00	100.000
2	-0.10	100	61	0.00	0.00		0.00	0.00	315.60	0.23	1371.073
3	-0.20	100	61	0.00	0.00		0.00	0.00	317.41	0.53	599.425
4	-0.30	100	62	0.00	0.00		0.00	0.00	319.22	0.90	355.743
5	-0.40	100	62	0.00	0.00		0.00	0.00	321.03	1.33	240.845
6	-0.50	100	63	0.00	0.00		0.00	0.00	322.83	1.84	175.773
7	-0.59	100	63	0.00	0.00		0.00	0.00	324.62	2.41	134.768
8	-0.69	100	64	0.00	0.00		0.00	0.00	326.42	3.05	107.044
9	-0.79	100	65	0.00	0.00		0.00	0.00	328.20	3.76	87.325
10	-0.89	100	65	0.00	0.00		0.00	0.00	329.99	4.54	72.750
11	-0.99	100	66	0.00	0.00		0.00	0.00	331.77	5.38	61.645
12	-1.09	100	66	0.00	0.00		0.00	0.00	333.55	6.30	52.975
13	-1.19	100	67	0.00	0.00		0.00	0.00	335.32	7.28	46.065
14	-1.29	100	67	0.00	0.00		0.00	0.00	337.09	8.33	40.464
15	-1.39	100	68	0.00	0.00		0.00	0.00	338.86	9.45	35.856
16	-1.49	100	69	0.00	0.00		0.00	0.00	340.62	10.64	32.017
17	-1.58	100	69	0.00	0.00		0.00	0.00	342.38	11.90	28.782
18	-1.68	100	70	0.00	0.00		0.00	0.00	344.13	13.22	26.030
19	-1.78	100	70	0.00	0.00		0.00	0.00	345.88	14.61	23.668
20	-1.88	100	71	0.00	0.00		0.00	0.00	347.63	16.08	21.624
21	-1.98	100	71	0.00	0.00		0.00	0.00	349.38	17.61	19.843
22	-2.08	100	72	0.00	0.00		0.00	0.00	351.12	19.21	18.282
23	-2.18	100	73	0.00	0.00		0.00	0.00	352.86	20.87	16.905
24	-2.28	100	73	0.00	0.00		0.00	0.00	354.60	22.61	15.684
25	-2.38	100	74	0.00	0.00		0.00	0.00	356.33	24.41	14.596
26	-2.48	100	74	0.00	0.00		0.00	0.00	358.06	26.29	13.622
27	-2.57	100	75	0.00	0.00		0.00	0.00	359.79	28.23	12.746
28	-2.67	100	76	0.00	0.00		0.00	0.00	361.52	30.24	11.956
29	-2.77	100	76	0.00	0.00		0.00	0.00	363.24	32.32	11.240
30	-2.87	100	77	0.00	0.00		0.00	0.00	364.96	34.46	10.590
31	-2.97	100	77	0.00	0.00		0.00	0.00	366.68	36.68	9.997
32	-3.07	100	78	0.00	0.00		0.00	0.00	368.39	38.96	9.455

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Asw	S	cote	V Rcd	V Rsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
33	-3.17	100	78	0.00	0.00		0.00	0.00	370.11	41.31	8.959
34	-3.27	100	79	0.00	0.00		0.00	0.00	371.82	43.73	8.502
35	-3.37	100	80	0.00	0.00		0.00	0.00	373.53	46.22	8.081
36	-3.46	100	80	0.00	0.00		0.00	0.00	375.23	48.78	7.692
37	-3.56	100	81	0.00	0.00		0.00	0.00	376.94	51.41	7.333
38	-3.66	100	81	0.00	0.00		0.00	0.00	378.64	54.10	6.999
39	-3.76	100	82	0.00	0.00		0.00	0.00	380.34	56.86	6.689
40	-3.86	100	82	0.00	0.00		0.00	0.00	382.03	59.69	6.400
41	-3.96	100	83	0.00	0.00		0.00	0.00	383.73	62.59	6.130
42	-4.06	100	84	0.00	0.00		0.00	0.00	385.42	65.56	5.879
43	-4.16	100	84	0.00	0.00		0.00	0.00	387.11	68.60	5.643
44	-4.26	100	85	0.00	0.00		0.00	0.00	388.80	71.70	5.422
45	-4.36	100	85	0.00	0.00		0.00	0.00	390.49	74.88	5.215
46	-4.46	100	86	0.00	0.00		0.00	0.00	392.18	78.12	5.020
47	-4.55	100	86	0.00	0.00		0.00	0.00	393.86	81.43	4.837
48	-4.65	100	87	0.00	0.00		0.00	0.00	395.54	84.81	4.664
49	-4.75	100	88	0.00	0.00		0.00	0.00	397.22	88.26	4.501
50	-4.85	100	88	0.00	0.00		0.00	0.00	398.90	91.77	4.347
51	-4.95	100	89	0.00	0.00		0.00	0.00	400.58	95.36	4.201
52	-5.05	100	89	0.00	0.00		0.00	0.00	402.25	99.01	4.063
53	-5.15	100	90	0.00	0.00		0.00	0.00	403.93	102.73	3.932
54	-5.25	100	90	0.00	0.00		0.00	0.00	405.60	106.52	3.808
55	-5.35	100	91	0.00	0.00		0.00	0.00	407.27	110.38	3.690
56	-5.45	100	92	0.00	0.00		0.00	0.00	408.94	114.30	3.578
57	-5.54	100	92	0.00	0.00		0.00	0.00	410.61	118.28	3.471
58	-5.64	100	93	0.00	0.00		0.00	0.00	412.28	122.32	3.370
59	-5.74	100	93	0.00	0.00		0.00	0.00	413.94	126.41	3.275
60	-5.84	100	94	0.00	0.00		0.00	0.00	415.60	130.56	3.183
61	-5.94	100	94	0.00	0.00		0.00	0.00	417.27	134.77	3.096
62	-6.04	100	95	0.00	0.00		0.00	0.00	418.93	139.05	3.013
63	-6.14	100	96	0.00	0.00		0.00	0.00	420.59	143.40	2.933
64	-6.24	100	96	0.00	0.00		0.00	0.00	422.25	147.81	2.857
65	-6.34	100	97	0.00	0.00		0.00	0.00	423.91	152.29	2.783
66	-6.43	100	97	0.00	0.00		0.00	0.00	425.56	156.85	2.713
67	-6.53	100	98	0.00	0.00		0.00	0.00	427.22	161.47	2.646
68	-6.63	100	98	0.00	0.00		0.00	0.00	428.87	166.16	2.581
69	-6.73	100	99	0.00	0.00		0.00	0.00	430.53	170.91	2.519
70	-6.83	100	100	0.00	0.00		0.00	0.00	432.18	175.74	2.459
71	-6.93	100	100	0.00	0.00		0.00	0.00	433.83	180.63	2.402

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Y	В	Н	Asw	S	cotθ	VRcd	VRsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	0.00	100	60	0.00	0.00		0.00	0.00	313.78	0.00	100.000
2	-0.10	100	61	0.00	0.00		0.00	0.00	315.60	0.23	1386.761
3	-0.20	100	61	0.00	0.00		0.00	0.00	317.41	0.52	611.452
4	-0.30	100	62	0.00	0.00		0.00	0.00	319.22	0.87	365.283
5	-0.40	100	62	0.00	0.00		0.00	0.00	321.03	1.29	248.616
6	-0.50	100	63	0.00	0.00		0.00	0.00	322.83	1.77	182.233
7	-0.59	100	63	0.00	0.00		0.00	0.00	324.62	2.32	140.225
8	-0.69	100	64	0.00	0.00		0.00	0.00	326.42	2.92	111.719
9	-0.79	100	65	0.00	0.00		0.00	0.00	328.20	3.59	91.377
10	-0.89	100	65	0.00	0.00		0.00	0.00	329.99	4.33	76.298
11	-0.99	100	66	0.00	0.00		0.00	0.00	331.77	5.12	64.779
12	-1.09	100	66	0.00	0.00		0.00	0.00	333.55	5.98	55.765
13	-1.19	100	67	0.00	0.00		0.00	0.00	335.32	6.90	48.567
14	-1.29	100	67	0.00	0.00		0.00	0.00	337.09	7.89	42.721
15	-1.39	100	68	0.00	0.00		0.00	0.00	338.86	8.94	37.903

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Υ	В	н	Asw	S	cotθ	VRcd	VRsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
16	-1.49	100	69	0.00	0.00		0.00	0.00	340.62	10.05	33.883
17	-1.58	100	69	0.00	0.00		0.00	0.00	342.38	11.23	30.491
18	-1.68	100	70	0.00	0.00		0.00	0.00	344.13	12.47	27.601
19	-1.78	100	70	0.00	0.00		0.00	0.00	345.88	13.77	25.118
20	-1.88	100	71	0.00	0.00		0.00	0.00	347.63	15.14	22.967
21	-1.98	100	71	0.00	0.00		0.00	0.00	349.38	16.57	21.091
22	-2.08	100	72	0.00	0.00		0.00	0.00	351.12	18.06	19.445
23	-2.18	100	73	0.00	0.00		0.00	0.00	352.86	19.61	17.991
24	-2.28	100	73	0.00	0.00		0.00	0.00	354.60	21.23	16.701
25	-2.38	100	74	0.00	0.00		0.00	0.00	356.33	22.91	15.551
26	-2.48	100	74	0.00	0.00		0.00	0.00	358.06	24.66	14.521
27	-2.57	100	75	0.00	0.00		0.00	0.00	359.79	26.47	13.594
28	-2.67	100	76	0.00	0.00		0.00	0.00	361.52	28.34	12.757
29	-2.77	100	76	0.00	0.00		0.00	0.00	363.24	30.27	11.998
30	-2.87	100	77	0.00	0.00		0.00	0.00	364.96	32.27	11.309
31	-2.97	100	77	0.00	0.00		0.00	0.00	366.68	34.33	10.680
32	-3.07	100	78	0.00	0.00		0.00	0.00	368.39	36.46	10.104
33	-3.17	100	78	0.00	0.00		0.00	0.00	370.11	38.65	9.577
34	-3.27	100	79	0.00	0.00		0.00	0.00	371.82	40.90	9.091
35	-3.37	100	80	0.00	0.00		0.00	0.00	373.53	43.21	8.644
36	-3.46	100	80	0.00	0.00		0.00	0.00	375.23	45.59	8.231
37	-3.56	100	81	0.00	0.00		0.00	0.00	376.94	48.03	7.848
38	-3.66	100	81	0.00	0.00		0.00	0.00	378.64	50.54	7.493
39	-3.76	100	82	0.00	0.00		0.00	0.00	380.34	53.10	7.162
40	-3.86	100	82	0.00	0.00		0.00	0.00	382.03	55.73	6.855
41	-3.96	100	83	0.00	0.00		0.00	0.00	383.73	58.43	6.568
42	-4.06	100	84	0.00	0.00		0.00	0.00	385.42	61.18	6.299
43	-4.16	100	84	0.00	0.00		0.00	0.00	387.11	64.01	6.048
44	-4.26	100	85	0.00	0.00		0.00	0.00	388.80	66.89	5.813
45	-4.36	100	85	0.00	0.00		0.00	0.00	390.49	69.84	5.592
46	-4.46	100	86	0.00	0.00		0.00	0.00	392.18	72.85	5.384
47	-4.55	100	86	0.00	0.00		0.00	0.00	393.86	75.92	5.188
48	-4.65	100	87	0.00	0.00		0.00	0.00	395.54	79.06	5.003
49	-4.75	100	88	0.00	0.00		0.00	0.00	397.22	82.26	4.829
50	-4.85	100	88	0.00	0.00		0.00	0.00	398.90	85.52	4.664
51	-4.95	100	89	0.00	0.00		0.00	0.00	400.58	88.85	4.509
52	-5.05	100	89	0.00	0.00		0.00	0.00	402.25	92.24	4.361
53	-5.15	100	90	0.00	0.00		0.00	0.00	403.93	95.69	4.221
54	-5.25	100	90	0.00	0.00		0.00	0.00	405.60	99.21	4.089
55	-5.35	100	91	0.00	0.00		0.00	0.00	407.27	102.78	3.962
56	-5.45	100	92	0.00	0.00		0.00	0.00	408.94	106.42	3.843
57	-5.54	100	92	0.00	0.00		0.00	0.00	410.61	110.11	3.729
58	-5.64	100	93	0.00	0.00		0.00	0.00	412.28	113.86	3.621
59	-5.74	100	93	0.00	0.00		0.00	0.00	413.94	117.65	3.518
60	-5.84	100	94	0.00	0.00		0.00	0.00	415.60	121.50	3.421
61	-5.94	100	94	0.00	0.00		0.00	0.00	417.27	125.40	3.328
62	-6.04	100	95	0.00	0.00		0.00	0.00	418.93	129.36	3.238
63	-6.14	100	96	0.00	0.00		0.00	0.00	420.59	133.39	3.153
64	-6.24	100	96	0.00	0.00		0.00	0.00	422.25	137.48	3.071
65	-6.34	100	97	0.00	0.00		0.00	0.00	423.91	141.63	2.993
66	-6.43	100	97	0.00	0.00		0.00	0.00	425.56	145.84	2.918
67	-6.53	100	98	0.00	0.00		0.00	0.00	427.22	150.12	2.846
68	-6.63	100	98	0.00	0.00		0.00	0.00	428.87	154.47	2.776
69	-6.73	100	99	0.00	0.00		0.00	0.00	430.53	158.87	2.710
70	-6.83	100	100	0.00	0.00		0.00	0.00	432.18	163.34	2.646
71	-6.93	100	100	0.00	0.00		0.00	0.00	433.83	167.87	2.584

Fondazione

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Combinazione nº 1 - STR (A1-M1-R3)

n°	Υ	В	н	Asw	s	cotθ	VRcd	VRsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-1.10	100	100	0.00	0.00		0.00	0.00	442.84	0.00	100.000
2	-1.02	100	100	0.00	0.00		0.00	0.00	312.92	-18.38	17.022
3	-0.93	100	100	0.00	0.00		0.00	0.00	442.84	-36.54	12.119
4	-0.85	100	100	0.00	0.00		0.00	0.00	442.84	-54.47	8.129
5	-0.77	100	100	0.00	0.00		0.00	0.00	442.84	-72.18	6.135
6	-0.68	100	100	0.00	0.00		0.00	0.00	442.84	-89.66	4.939
7	-0.60	100	100	0.00	0.00		0.00	0.00	442.84	-106.92	4.142
8	0.40	100	100	0.00	0.00		0.00	0.00	442.84	-313.10	1.414
9	0.50	100	100	0.00	0.00		0.00	0.00	442.84	-311.13	1.423
10	0.60	100	100	0.00	0.00		0.00	0.00	442.84	-308.84	1.434
11	0.70	100	100	0.00	0.00		0.00	0.00	442.84	-306.22	1.446
12	0.80	100	100	0.00	0.00		0.00	0.00	442.84	-303.28	1.460
13	0.90	100	100	0.00	0.00		0.00	0.00	442.84	-300.01	1.476
14	1.00	100	100	0.00	0.00		0.00	0.00	442.84	-296.42	1.494
15	1.10	100	100	0.00	0.00		0.00	0.00	442.84	-290.42	1.514
16	1.10	100	100	0.00	0.00		0.00	0.00	442.84	-292.50	1.514
17											
17	1.30	100	100	0.00	0.00		0.00	0.00	442.84	-283.69	1.561
	1.40	100	100	0.00	0.00		0.00	0.00	442.84	-278.80	1.588
19	1.50	100	100	0.00	0.00		0.00	0.00	442.84	-273.59	1.619
20	1.60	100	100	0.00	0.00		0.00	0.00	442.84	-268.05	1.652
21	1.70	100	100	0.00	0.00		0.00	0.00	442.84	-262.18	1.689
22	1.80	100	100	0.00	0.00		0.00	0.00	442.84	-255.99	1.730
23	1.90	100	100	0.00	0.00		0.00	0.00	442.84	-249.48	1.775
24	2.00	100	100	0.00	0.00		0.00	0.00	442.84	-242.64	1.825
25	2.10	100	100	0.00	0.00		0.00	0.00	442.84	-235.47	1.881
26	2.20	100	100	0.00	0.00		0.00	0.00	442.84	-227.98	1.942
27	2.30	100	100	0.00	0.00		0.00	0.00	442.84	-220.17	2.011
28	2.40	100	100	0.00	0.00		0.00	0.00	442.84	-212.03	2.089
29	2.50	100	100	0.00	0.00		0.00	0.00	442.84	-203.57	2.175
30	2.60	100	100	0.00	0.00		0.00	0.00	442.84	-194.78	2.274
31	2.70	100	100	0.00	0.00		0.00	0.00	442.84	-185.67	2.385
32	2.80	100	100	0.00	0.00		0.00	0.00	442.84	-176.23	2.513
33	2.90	100	100	0.00	0.00		0.00	0.00	442.84	-166.47	2.660
34	3.00	100	100	0.00	0.00		0.00	0.00	442.84	-156.41	2.831
35	3.10	100	100	0.00	0.00		0.00	0.00	442.84	-147.35	3.005
36	3.20	100	100	0.00	0.00		0.00	0.00	442.84	-137.96	3.210
37	3.30	100	100	0.00	0.00		0.00	0.00	442.84	-128.25	3.453
38	3.40	100	100	0.00	0.00		0.00	0.00	442.84	-118.21	3.746
39	3.50	100	100	0.00	0.00		0.00	0.00	442.84	-107.85	4.106
40	3.60	100	100	0.00	0.00		0.00	0.00	442.84	-97.17	4.557
41	3.70	100	100	0.00	0.00		0.00	0.00	442.84	-86.16	5.140
42	3.80	100	100	0.00	0.00		0.00	0.00	442.84	-74.82	5.918
43	3.90	100	100	0.00	0.00		0.00	0.00	442.84	-63.17	7.011
44	4.00	100	100	0.00	0.00		0.00	0.00	442.84	-51.18	8.652
45	4.10	100	100	0.00	0.00		0.00	0.00	442.84	-38.87	11.392
46	4.20	100	100	0.00	0.00		0.00	0.00	442.84	-26.24	16.876
47	4.30	100	100	0.00	0.00		0.00	0.00	442.84	-13.28	33.340
48	4.40	100	100	0.00	0.00		0.00	0.00	442.84	0.00	100.000
UT	טדיב	100	100	0.00	0.00		0.00	0.00	HZ.01	0.00	100.000

Combinazione nº 2 - STR (A1-M1-R3) H + V

n°	Υ	В	Н	Asw	S	cotθ	VRcd	VRsd	V Rd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-1.10	100	100	0.00	0.00		0.00	0.00	442.84	0.00	100.000
2	-1.02	100	100	0.00	0.00		0.00	0.00	312.92	-22.76	13.751
3	-0.93	100	100	0.00	0.00		0.00	0.00	442.84	-45.16	9.807

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Asw	S	cote	VRcd	V _{Rsd}	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
4	-0.85	100	100	0.00	0.00		0.00	0.00	442.84	-67.20	6.590
5	-0.77	100	100	0.00	0.00		0.00	0.00	442.84	-88.88	4.982
6	-0.68	100	100	0.00	0.00		0.00	0.00	442.84	-110.21	4.018
7	-0.60	100	100	0.00	0.00		0.00	0.00	442.84	-131.17	3.376
8	0.40	100	100	0.00	0.00		0.00	0.00	442.84	-152.66	2.901
9	0.50	100	100	0.00	0.00		0.00	0.00	442.84	-158.82	2.788
10	0.60	100	100	0.00	0.00		0.00	0.00	442.84	-164.47	2.693
11	0.70	100	100	0.00	0.00		0.00	0.00	442.84	-169.60	2.611
12	0.80	100	100	0.00	0.00		0.00	0.00	442.84	-174.21	2.542
13	0.90	100	100	0.00	0.00		0.00	0.00	442.84	-178.31	2.484
14	1.00	100	100	0.00	0.00		0.00	0.00	442.84	-181.89	2.435
15	1.10	100	100	0.00	0.00		0.00	0.00	442.84	-184.96	2.394
16	1.20	100	100	0.00	0.00		0.00	0.00	442.84	-187.52	2.362
17	1.30	100	100	0.00	0.00		0.00	0.00	442.84	-189.56	2.336
18	1.40	100	100	0.00	0.00		0.00	0.00	442.84	-191.08	2.318
19	1.50	100	100	0.00	0.00		0.00	0.00	442.84	-192.09	2.305
20	1.60	100	100	0.00	0.00		0.00	0.00	442.84	-192.58	2.300
21	1.70	100	100	0.00	0.00		0.00	0.00	442.84	-192.56	2.300
22	1.80	100	100	0.00	0.00		0.00	0.00	442.84	-192.02	2.306
23	1.90	100	100	0.00	0.00		0.00	0.00	442.84	-190.97	2.319
24	2.00	100	100	0.00	0.00		0.00	0.00	442.84	-189.40	2.338
25	2.10	100	100	0.00	0.00		0.00	0.00	442.84	-187.31	2.364
26	2.20	100	100	0.00	0.00		0.00	0.00	442.84	-184.72	2.397
27	2.30	100	100	0.00	0.00		0.00	0.00	442.84	-181.60	2.439
28	2.40	100	100	0.00	0.00		0.00	0.00	442.84	-177.97	2.488
29	2.50	100	100	0.00	0.00		0.00	0.00	442.84	-173.83	2.548
30	2.60	100	100	0.00	0.00		0.00	0.00	442.84	-169.17	2.618
31	2.70	100	100	0.00	0.00		0.00	0.00	442.84	-163.99	2.700
32	2.80	100	100	0.00	0.00		0.00	0.00	442.84	-158.30	2.797
33	2.90	100	100	0.00	0.00		0.00	0.00	442.84	-152.10	2.912
34	3.00	100	100	0.00	0.00		0.00	0.00	442.84	-145.38	3.046
35	3.10	100	100	0.00	0.00		0.00	0.00	442.84	-138.35	3.201
36	3.20	100	100	0.00	0.00		0.00	0.00	442.84	-130.80	3.386
38	3.30 3.40	100 100	100	0.00	0.00		0.00	0.00	442.84 442.84	-122.73 -114.15	3.608 3.880
39	3.40	100	100	0.00	0.00		0.00	0.00	442.84	-114.15	4.215
40	3.60	100	100	0.00	0.00		0.00	0.00	442.84	-105.05	4.215
41	3.70	100	100	0.00	0.00		0.00	0.00	442.84	-95. 44 -85.31	5.191
41	3.70	100	100	0.00	0.00		0.00	0.00	442.84	-85.31 -74.67	5.191
43	3.90	100	100	0.00	0.00		0.00	0.00	442.84	-63.51	6.972
43	4.00	100	100	0.00	0.00		0.00	0.00	442.84	-51.84	8.542
45	4.00	100	100	0.00	0.00		0.00	0.00	442.84	-39.65	11.168
45	4.10	100	100	0.00	0.00		0.00	0.00	442.84	-39.65	16.431
47	4.20	100	100	0.00	0.00		0.00	0.00	442.84	-20.95	32.246
48	4.40	100	100	0.00	0.00		0.00	0.00	442.84	0.00	100.000
70	UF.F	100	100	0.00	0.00		0.00	0.00	772.04	0.00	100.000

Combinazione nº 3 - STR (A1-M1-R3) H - V

n°	Y	В	Н	Asw	S	cotθ	VRcd	VRsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
1	-1.10	100	100	0.00	0.00		0.00	0.00	442.84	0.00	100.000
2	-1.02	100	100	0.00	0.00		0.00	0.00	312.92	-21.09	14.836
3	-0.93	100	100	0.00	0.00		0.00	0.00	442.84	-41.84	10.584
4	-0.85	100	100	0.00	0.00		0.00	0.00	442.84	-62.24	7.115
5	-0.77	100	100	0.00	0.00		0.00	0.00	442.84	-82.31	5.380
6	-0.68	100	100	0.00	0.00		0.00	0.00	442.84	-102.03	4.341
7	-0.60	100	100	0.00	0.00		0.00	0.00	442.84	-121.40	3.648
8	0.40	100	100	0.00	0.00		0.00	0.00	442.84	-203.39	2.177
9	0.50	100	100	0.00	0.00		0.00	0.00	442.84	-207.87	2.130

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Asw	S	cote	V Rcd	VRsd	VRd	Т	FS
	[m]	[cm]	[cm]	[cmq]	[cm]		[kN]	[kN]	[kN]	[kN]	
10	0.60	100	100	0.00	0.00		0.00	0.00	442.84	-211.85	2.090
11	0.70	100	100	0.00	0.00		0.00	0.00	442.84	-215.35	2.056
12	0.80	100	100	0.00	0.00		0.00	0.00	442.84	-218.34	2.028
13	0.90	100	100	0.00	0.00		0.00	0.00	442.84	-220.85	2.005
14	1.00	100	100	0.00	0.00		0.00	0.00	442.84	-222.86	1.987
15	1.10	100	100	0.00	0.00		0.00	0.00	442.84	-224.37	1.974
16	1.20	100	100	0.00	0.00		0.00	0.00	442.84	-225.40	1.965
17	1.30	100	100	0.00	0.00		0.00	0.00	442.84	-225.92	1.960
18	1.40	100	100	0.00	0.00		0.00	0.00	442.84	-225.96	1.960
19	1.50	100	100	0.00	0.00		0.00	0.00	442.84	-225.50	1.964
20	1.60	100	100	0.00	0.00		0.00	0.00	442.84	-224.54	1.972
21	1.70	100	100	0.00	0.00		0.00	0.00	442.84	-223.09	1.985
22	1.80	100	100	0.00	0.00		0.00	0.00	442.84	-221.15	2.002
23	1.90	100	100	0.00	0.00		0.00	0.00	442.84	-218.71	2.025
24	2.00	100	100	0.00	0.00		0.00	0.00	442.84	-215.78	2.052
25	2.10	100	100	0.00	0.00		0.00	0.00	442.84	-212.36	2.085
26	2.20	100	100	0.00	0.00		0.00	0.00	442.84	-208.44	2.125
27	2.30	100	100	0.00	0.00		0.00	0.00	442.84	-204.02	2.171
28	2.40	100	100	0.00	0.00		0.00	0.00	442.84	-199.11	2.224
29	2.50	100	100	0.00	0.00		0.00	0.00	442.84	-193.71	2.286
30	2.60	100	100	0.00	0.00		0.00	0.00	442.84	-187.82	2.358
31	2.70	100	100	0.00	0.00		0.00	0.00	442.84	-181.43	2.441
32	2.80	100	100	0.00	0.00		0.00	0.00	442.84	-174.54	2.537
33	2.90	100	100	0.00	0.00		0.00	0.00	442.84	-167.16	2.649
34	3.00	100	100	0.00	0.00		0.00	0.00	442.84	-159.30	2.780
35	3.10	100	100	0.00	0.00		0.00	0.00	442.84	-151.13	2.930
36	3.20	100	100	0.00	0.00		0.00	0.00	442.84	-142.47	3.108
37	3.30	100	100	0.00	0.00		0.00	0.00	442.84	-133.31	3.322
38	3.40	100	100	0.00	0.00		0.00	0.00	442.84	-123.66	3.581
39	3.50	100	100	0.00	0.00		0.00	0.00	442.84	-113.52	3.901
40	3.60	100	100	0.00	0.00		0.00	0.00	442.84	-102.88	4.304
41	3.70	100	100	0.00	0.00		0.00	0.00	442.84	-91.75	4.826
42	3.80	100	100	0.00	0.00		0.00	0.00	442.84	-80.13	5.527
43	3.90	100	100	0.00	0.00		0.00	0.00	442.84	-68.01	6.512
44	4.00	100	100	0.00	0.00		0.00	0.00	442.84	-55.40	7.994
45	4.10	100	100	0.00	0.00		0.00	0.00	442.84	-42.29	10.472
46	4.20	100	100	0.00	0.00		0.00	0.00	442.84	-28.69	15.438
47	4.30	100	100	0.00	0.00		0.00	0.00	442.84	-14.59	30.353
48	4.40	100	100	0.00	0.00		0.00	0.00	442.84	0.00	100.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

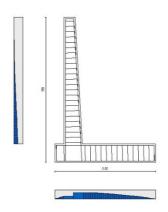


Fig. 11 - Paramento (Inviluppo)

Verifica delle tensioni

Simbologia adottata

indice sezione

n° Y B ordinata sezione, espressa in [m] larghezza sezione, espresso in [cm] altezza sezione, espresso in [cm] area ferri inferiori, espresso in [cmq] area ferri superiori, espresso in [cmq] Afi Afs M N momento agente, espressa in [kNm] sforzo normale agente, espressa in [kN]

tensione di compressione nel cls, espressa in [kPa] tensione nei ferri inferiori, espressa in [kPa] tensione nei ferri superiori, espressa in [kPa] σfi

Combinazioni SLER

Paramento

Combinazione nº 10 - SLER

Tensione massima di compressione nel calcestruzzo 17430 Tensione massima di trazione dell'acciaio 360000

n°	Y	В	Н	Afi	Afs	М	N	σC	ofi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	60	20.11	31.42	0.00	0.00	0	0	0
2	-0.10	100	61	20.11	31.42	0.02	1.46	2	28	36
3	-0.20	100	61	20.11	31.42	0.07	2.94	5	51	78
4	-0.30	100	62	20.11	31.42	0.17	4.43	9	67	126
5	-0.40	100	62	20.11	31.42	0.32	5.94	13	77	180
6	-0.50	100	63	20.11	31.42	0.52	7.46	18	79	242
7	-0.59	100	63	20.11	31.42	0.79	8.99	23	74	311
8	-0.69	100	64	20.11	31.42	1.12	10.54	29	60	388
9	-0.79	100	65	20.11	31.42	1.52	12.10	36	36	474
10	-0.89	100	65	20.11	31.42	1.99	13.67	44	7	573

[kPa]

[kPa]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
11	-0.99	100	66	20.11	31.42	2.55	15.26	53	77	686
12	-1.09	100	66	20.11	31.42	3.20	16.86	64	181	813
13	-1.19	100	67	20.11	31.42	3.93	18.48	76	325	957
14	-1.29	100	67	20.11	31.42	4.77	20.11	90	515	1117
15	-1.39	100	68	20.11	31.42	5.71	21.75	105	757	1292
16	-1.49	100	69	20.11	31.42	6.76	23.41	122	1051	1483
17	-1.58	100	69	20.11	31.42	7.92	25.08	141	1402	1689
18	-1.68	100	70	20.11	31.42	9.20	26.77	161	1810	1910
19	-1.78	100	70	20.11	31.42	10.61	28.47	182	2276	2145
20	-1.88	100	71	20.11	31.42	12.15	30.19	205	2802	2396
21	-1.98	100	71	20.11	31.42	13.82	31.91	230	3389	2662
22	-2.08	100	72	20.11	31.42	15.64	33.66	256	4037	2943
23	-2.18	100	73	20.11	31.42	17.60	35.41	284	4747	3239
24	-2.28	100	73	20.11	31.42	19.72	37.18	313	5521	3550
25 26	-2.38	100	74 74	20.11	31.42	21.99 24.43	38.96 40.76	344 376	6359 7263	3876 4219
27	-2.48 -2.57	100	75	20.11	31.42 31.42	27.03	42.57	410	8232	4576
28	-2.57	100	76	20.11	31.42	27.03	44.40	446	9269	4950
29	-2.77	100	76	20.11	31.42	32.77	46.24	483	10373	5340
30	-2.77	100	70	20.11	31.42	35.91	48.09	521	11547	5746
31	-2.97	100	77	20.11	31.42	39.25	49.96	561	12790	6168
32	-3.07	100	78	20.11	31.42	42.78	51.84	603	14103	6607
33	-3.17	100	78	20.11	31.42	46.51	53.74	646	15487	7063
34	-3.27	100	79	20.11	31.42	50.45	55.65	691	16944	7535
35	-3.37	100	80	20.11	31.42	54.60	57.57	737	18473	8023
36	-3.46	100	80	20.11	31.42	58.97	59.51	785	20075	8529
37	-3.56	100	81	20.11	31.42	63.56	61.46	834	21752	9052
38	-3.66	100	81	20.11	31.42	68.38	63.42	885	23503	9591
39	-3.76	100	82	20.11	31.42	73.43	65.40	938	25330	10148
40	-3.86	100	82	20.11	31.42	78.72	67.39	992	27233	10722
41	-3.96	100	83	20.11	31.42	84.26	69.40	1048	29213	11314
42	-4.06	100	84	20.11	31.42	90.05	71.42	1105	31270	11922
43	-4.16	100	84	20.11	31.42	96.09	73.46	1164	33406	12548
44	-4.26	100	85	20.11	31.42	102.40	75.50	1224	35619	13192
45	-4.36	100	85	20.11	31.42	108.97	77.57	1286	37912	13853
46	-4.46	100	86	20.11	31.42	115.81	79.64	1349	40285	14531
47	-4.55	100	86	20.11	31.42	122.93	81.73	1414	42738	15227
48	-4.65	100	87	20.11	31.42	130.34	83.84	1481	45271	15941
49	-4.75	100	88	20.11	31.42	138.03	85.96	1549	47886	16672
50	-4.85	100	88	20.11	31.42	146.01	88.09	1619	50582	17421
51	-4.95	100	89	20.11	31.42	154.30	90.23	1690	53360	18188
52	-5.05	100	89	20.11	31.42	162.89	92.39	1763	56221	18973
53	-5.15	100	90	20.11	31.42	171.79	94.57	1837	59165	19775
54	-5.25	100	90	20.11	31.42	181.00	96.76	1913	62193	20594
55	-5.35	100	91	20.11	31.42	190.53	98.96	1990	65304	21432
56	-5.45	100	92	20.11	31.42	200.40	101.17	2069	68499	22287
57	-5.54	100	92	20.11	31.42	210.59	103.40	2150	71779	23160
58 59	-5.64 -5.74	100	93	20.11	31.42 31.42	221.12	105.65	2231	75143 78590	24051 24959
60	-5.74	100	93	20.11	31.42	231.98	107.90	2315 2399	82119	25883
61	-5.84	100	94	20.11	31.42	243.18 254.73	110.18 112.46	2399	85730	26825
62	-6.04	100	95	20.11	31.42	266.62	114.76	2573	89422	27782
63	-6.14	100	96	20.11	31.42	278.85	117.07	2662	93192	28756
64	-6.24	100	96	20.11	31.42	291.43	119.40	2752	97041	29745
65	-6.34	100	97	20.11	31.42	304.36	121.74	2843	100968	30750
66	-6.43	100	97	20.11	31.42	317.64	124.10	2935	104971	31769
67	-6.53	100	98	20.11	31.42	331.28	126.47	3029	109051	32804
68	-6.63	100	98	20.11	31.42	345.27	128.85	3124	113209	33854
69	-6.73	100	99	20.11	31.42	359.64	131.25	3220	117443	34919

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
70	-6.83	100	100	20.11	31.42	374.37	133.66	3318	121756	35999
71	-6.93	100	100	20.11	31.42	389.47	136.08	3416	126148	37094

Fondazione

Combinazione nº 10 - SLER

Tensione massima di compressione nel calcestruzzo 17430 [kPa] Tensione massima di trazione dell'acciaio 360000 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-1.10	100	100	31.42	31.42	0.00	0.00	0	0	0
2	-1.02	100	100	0.00	0.00	0.66	0.00	0	0	0
3	-0.93	100	100	31.42	31.42	2.64	0.00	21	988	216
4	-0.85	100	100	31.42	31.42	5.92	0.00	48	2216	485
5	-0.77	100	100	31.42	31.42	10.49	0.00	85	3926	859
6	-0.68	100	100	31.42	31.42	16.34	0.00	132	6115	1337
7	-0.60	100	100	31.42	31.42	23.46	0.00	190	8777	1919
8	0.40	100	100	31.42	31.42	-309.39	0.00	2505	25316	115761
9	0.50	100	100	31.42	31.42	-299.01	0.00	2421	24467	111879
10	0.60	100	100	31.42	31.42	-288.49	0.00	2336	23607	107944
11	0.70	100	100	31.42	31.42	-277.85	0.00	2249	22736	103963
12	0.80	100	100	31.42	31.42	-267.11	0.00	2162	21857	99944
13	0.90	100	100	31.42	31.42	-256.30	0.00	2075	20972	95897
14	1.00	100	100	31.42	31.42	-245.43	0.00	1987	20083	91829
15	1.10	100	100	31.42	31.42	-234.52	0.00	1899	19190	87748
16	1.20	100	100	31.42	31.42	-223.60	0.00	1810	18297	83663
17	1.30	100	100	31.42	31.42	-212.69	0.00	1722	17404	79582
18	1.40	100	100	31.42	31.42	-201.82	0.00	1634	16514	75513
19	1.50	100	100	31.42	31.42	-191.00	0.00	1546	15629	71465
20	1.60	100	100	31.42	31.42	-180.26	0.00	1459	14750	67445
21	1.70	100	100	31.42	31.42	-169.61	0.00	1373	13879	63462
22	1.80	100	100	31.42	31.42	-159.09	0.00	1288	13018	59524
23	1.90	100	100	31.42	31.42	-148.71	0.00	1204	12168	55640
24	2.00	100	100	31.42	31.42	-138.49	0.00	1121	11332	51818
25	2.10	100	100	31.42	31.42	-128.46	0.00	1040	10512	48065
26	2.20	100	100	31.42	31.42	-118.64	0.00	960	9708	44390
27	2.30	100	100	31.42	31.42	-109.05	0.00	883	8923	40802
28	2.40	100	100	31.42	31.42	-99.71	0.00	807	8159	37308
29	2.50	100	100	31.42	31.42	-90.65	0.00	734	7418	33918
30	2.60	100	100	31.42	31.42	-81.88	0.00	663	6700	30638
31	2.70	100	100	31.42	31.42	-73.44	0.00	595	6009	27478
32	2.80	100	100	31.42	31.42	-65.33	0.00	529	5346	24445
33	2.90	100	100	31.42	31.42	-57.59	0.00	466	4712	21548
34	3.00	100	100	31.42	31.42	-50.25	0.00	407	4111	18800
35	3.10	100	100	31.42	31.42	-43.94	0.00	356	3596	16442
36	3.20	100	100	31.42	31.42	-37.97	0.00	307	3107	14208
37	3.30	100	100	31.42	31.42	-32.35	0.00	262	2647	12105
38	3.40	100	100	31.42	31.42	-27.10	0.00	219	2218	10141
39	3.50	100	100	31.42	31.42	-22.25	0.00	180	1821	8326
40	3.60	100	100	31.42	31.42	-17.82	0.00	144	1458	6666
41	3.70	100	100	31.42	31.42	-13.82	0.00	112	1131	5171
42	3.80	100	100	31.42	31.42	-10.29	0.00	83	842	3849
43	3.90	100	100	31.42	31.42	-7.24	0.00	59	592	2707
44	4.00	100	100	31.42	31.42	-4.69	0.00	38	384	1755
45	4.10	100	100	31.42	31.42	-2.67	0.00	22	219	999

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	M	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
46	4.20	100	100	31.42	31.42	-1.20	0.00	10	98	450
47	4.30	100	100	31.42	31.42	-0.30	0.00	2	25	114
48	4.40	100	100	31.42	31.42	0.00	0.00	0	0	0

Combinazioni SLEF

<u>Paramento</u>

Combinazione nº 11 - SLEF

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio 29050 450000 [kPa] [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σс	σfi	ofs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	60	20.11	31.42	0.00	0.00	0	0	0
2	-0.10	100	61	20.11	31.42	0.01	1.46	2	29	36
3	-0.20	100	61	20.11	31.42	0.06	2.94	5	53	76
4	-0.30	100	62	20.11	31.42	0.14	4.43	9	72	121
5	-0.40	100	62	20.11	31.42	0.26	5.94	12	85	172
6	-0.50	100	63	20.11	31.42	0.44	7.46	17	92	229
7	-0.59	100	63	20.11	31.42	0.66	8.99	22	91	292
8	-0.69	100	64	20.11	31.42	0.94	10.54	27	84	363
9	-0.79	100	65	20.11	31.42	1.29	12.10	33	69	442
10	-0.89	100	65	20.11	31.42	1.70	13.67	40	44	529
11	-0.99	100	66	20.11	31.42	2.19	15.26	48	2	627
12	-1.09	100	66	20.11	31.42	2.76	16.86	57	66	739
13	-1.19	100	67	20.11	31.42	3.42	18.48	67	165	866
14	-1.29	100	67	20.11	31.42	4.16	20.11	79	302	1008
15	-1.39	100	68	20.11	31.42	5.01	21.75	93	483	1165
16	-1.49	100	69	20.11	31.42	5.95	23.41	108	713	1338
17	-1.58	100	69	20.11	31.42	7.00	25.08	125	995	1527
18	-1.68	100	70	20.11	31.42	8.17	26.77	143	1331	1731
19	-1.78	100	70	20.11	31.42	9.45	28.47	163	1724	1949
20	-1.88	100	71	20.11	31.42	10.85	30.19	184	2174	2182
21	-1.98	100	71	20.11	31.42	12.39	31.91	207	2683	2430
22	-2.08	100	72	20.11	31.42	14.06	33.66	231	3252	2693
23	-2.18	100	73	20.11	31.42	15.87	35.41	256	3881	2970
24	-2.28	100	73	20.11	31.42	17.82	37.18	284	4572	3262
25	-2.38	100	74	20.11	31.42	19.92	38.96	312	5326	3569
26	-2.48	100	74	20.11	31.42	22.19	40.76	343	6142	3892
27	-2.57	100	75	20.11	31.42	24.61	42.57	374	7024	4229
28	-2.67	100	76	20.11	31.42	27.20	44.40	407	7970	4582
29	-2.77	100	76	20.11	31.42	29.96	46.24	442	8982	4951
30	-2.87	100	77	20.11	31.42	32.90	48.09	478	10061	5335
31	-2.97	100	77	20.11	31.42	36.02	49.96	516	11209	5735
32	-3.07	100	78	20.11	31.42	39.33	51.84	556	12424	6151
33	-3.17	100	78	20.11	31.42	42.84	53.74	596	13709	6584
34	-3.27	100	79	20.11	31.42	46.54	55.65	639	15065	7032
35	-3.37	100	80	20.11	31.42	50.45	57.57	683	16491	7497
36	-3.46	100	80	20.11	31.42	54.57	59.51	728	17989	7979
37	-3.56	100	81	20.11	31.42	58.91	61.46	775	19560	8477
38	-3.66	100	81	20.11	31.42	63.47	63.42	824	21204	8992
39	-3.76	100	82	20.11	31.42	68.25	65.40	874	22922	9523
40	-3.86	100	82	20.11	31.42	73.27	67.39	925	24714	10072
41	-3.96	100	83	20.11	31.42	78.53	69.40	979	26582	10637

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	σС	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
42	-4.06	100	84	20.11	31.42	84.02	71.42	1033	28526	11220
43	-4.16	100	84	20.11	31.42	89.77	73.46	1090	30546	11820
44	-4.26	100	85	20.11	31.42	95.77	75.50	1147	32643	12436
45	-4.36	100	85	20.11	31.42	102.03	77.57	1207	34818	13070
46	-4.46	100	86	20.11	31.42	108.55	79.64	1268	37072	13722
47	-4.55	100	86	20.11	31.42	115.35	81.73	1330	39404	14390
48	-4.65	100	87	20.11	31.42	122.42	83.84	1394	41816	15076
49	-4.75	100	88	20.11	31.42	129.77	85.96	1459	44307	15780
50	-4.85	100	88	20.11	31.42	137.41	88.09	1526	46879	16501
51	-4.95	100	89	20.11	31.42	145.34	90.23	1595	49532	17239
52	-5.05	100	89	20.11	31.42	153.56	92.39	1665	52266	17995
53	-5.15	100	90	20.11	31.42	162.09	94.57	1737	55082	18768
54	-5.25	100	90	20.11	31.42	170.93	96.76	1810	57980	19559
55	-5.35	100	91	20.11	31.42	180.08	98.96	1884	60962	20367
56	-5.45	100	92	20.11	31.42	189.55	101.17	1960	64026	21194
57	-5.54	100	92	20.11	31.42	199.35	103.40	2038	67173	22037
58	-5.64	100	93	20.11	31.42	209.47	105.65	2117	70403	22898
59	-5.74	100	93	20.11	31.42	219.92	107.90	2198	73716	23776
60	-5.84	100	94	20.11	31.42	230.71	110.18	2280	77111	24671
61	-5.94	100	94	20.11	31.42	241.83	112.46	2363	80586	25582
62	-6.04	100	95	20.11	31.42	253.29	114.76	2448	84140	26510
63	-6.14	100	96	20.11	31.42	265.08	117.07	2534	87774	27453
64	-6.24	100	96	20.11	31.42	277.22	119.40	2621	91486	28413
65	-6.34	100	97	20.11	31.42	289.70	121.74	2710	95276	29388
66	-6.43	100	97	20.11	31.42	302.54	124.10	2800	99145	30378
67	-6.53	100	98	20.11	31.42	315.73	126.47	2891	103092	31384
68	-6.63	100	98	20.11	31.42	329.28	128.85	2983	107119	32406
69	-6.73	100	99	20.11	31.42	343.20	131.25	3077	111225	33443
70	-6.83	100	100	20.11	31.42	357.49	133.66	3172	115412	34497
71	-6.93	100	100	20.11	31.42	372.15	136.08	3268	119679	35566

Fondazione

Combinazione nº 11 - SLEF

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio 29050 [kPa] 450000 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σC	σfi	ofs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-1.10	100	100	31.42	31.42	0.00	0.00	0	0	0
2	-1.02	100	100	0.00	0.00	0.66	0.00	0	0	0
3	-0.93	100	100	31.42	31.42	2.63	0.00	21	984	215
4	-0.85	100	100	31.42	31.42	5.90	0.00	48	2208	483
5	-0.77	100	100	31.42	31.42	10.45	0.00	85	3912	855
6	-0.68	100	100	31.42	31.42	16.28	0.00	132	6092	1332
7	-0.60	100	100	31.42	31.42	23.37	0.00	189	8743	1912
8	0.40	100	100	31.42	31.42	-310.15	0.00	2511	25379	116047
9	0.50	100	100	31.42	31.42	-299.97	0.00	2428	24546	112239
10	0.60	100	100	31.42	31.42	-289.64	0.00	2345	23700	108372
11	0.70	100	100	31.42	31.42	-279.17	0.00	2260	22844	104454
12	0.80	100	100	31.42	31.42	-268.58	0.00	2174	21977	100494
13	0.90	100	100	31.42	31.42	-257.91	0.00	2088	21104	96499
14	1.00	100	100	31.42	31.42	-247.16	0.00	2001	20225	92479
15	1.10	100	100	31.42	31.42	-236.37	0.00	1914	19342	88441
16	1.20	100	100	31.42	31.42	-225.56	0.00	1826	18457	84394
17	1.30	100	100	31.42	31.42	-214.74	0.00	1738	17571	80347

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
18	1.40	100	100	31.42	31.42	-203.94	0.00	1651	16688	76307
19	1.50	100	100	31.42	31.42	-193.19	0.00	1564	15808	72283
20	1.60	100	100	31.42	31.42	-182.50	0.00	1477	14933	68283
21	1.70	100	100	31.42	31.42	-171.89	0.00	1392	14066	64316
22	1.80	100	100	31.42	31.42	-161.40	0.00	1307	13207	60390
23	1.90	100	100	31.42	31.42	-151.04	0.00	1223	12359	56514
24	2.00	100	100	31.42	31.42	-140.83	0.00	1140	11524	52694
25	2.10	100	100	31.42	31.42	-130.80	0.00	1059	10703	48941
26	2.20	100	100	31.42	31.42	-120.97	0.00	979	9899	45262
27	2.30	100	100	31.42	31.42	-111.36	0.00	902	9112	41666
28	2.40	100	100	31.42	31.42	-101.99	0.00	826	8346	38161
29	2.50	100	100	31.42	31.42	-92.89	0.00	752	7601	34755
30	2.60	100	100	31.42	31.42	-84.07	0.00	681	6879	31457
31	2.70	100	100	31.42	31.42	-75.57	0.00	612	6183	28274
32	2.80	100	100	31.42	31.42	-67.39	0.00	546	5515	25216
33	2.90	100	100	31.42	31.42	-59.58	0.00	482	4875	22291
34	3.00	100	100	31.42	31.42	-52.14	0.00	422	4267	19510
35	3.10	100	100	31.42	31.42	-45.59	0.00	369	3730	17058
36	3.20	100	100	31.42	31.42	-39.38	0.00	319	3222	14734
37	3.30	100	100	31.42	31.42	-33.54	0.00	272	2744	12549
38	3.40	100	100	31.42	31.42	-28.09	0.00	227	2299	10510
39	3.50	100	100	31.42	31.42	-23.05	0.00	187	1886	8626
40	3.60	100	100	31.42	31.42	-18.45	0.00	149	1510	6904
41	3.70	100	100	31.42	31.42	-14.31	0.00	116	1171	5354
42	3.80	100	100	31.42	31.42	-10.65	0.00	86	871	3984
43	3.90	100	100	31.42	31.42	-7.49	0.00	61	613	2801
44	4.00	100	100	31.42	31.42	-4.85	0.00	39	397	1815
45	4.10	100	100	31.42	31.42	-2.76	0.00	22	226	1033
46	4.20	100	100	31.42	31.42	-1.24	0.00	10	102	465
47	4.30	100	100	31.42	31.42	-0.31	0.00	3	26	118
48	4.40	100	100	31.42	31.42	0.00	0.00	0	0	0

Combinazioni SLEQ

Paramento

Combinazione nº 12 - SLEQ

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio 13073 [kPa] 450000 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	0.00	100	60	20.11	31.42	0.00	0.00	0	0	0
2	-0.10	100	61	20.11	31.42	0.00	1.46	2	30	34
3	-0.20	100	61	20.11	31.42	0.02	2.94	5	59	69
4	-0.30	100	62	20.11	31.42	0.04	4.43	7	86	106
5	-0.40	100	62	20.11	31.42	0.09	5.94	10	109	146
6	-0.50	100	63	20.11	31.42	0.17	7.46	13	129	189
7	-0.59	100	63	20.11	31.42	0.27	8.99	17	145	236
8	-0.69	100	64	20.11	31.42	0.41	10.54	21	156	288
9	-0.79	100	65	20.11	31.42	0.60	12.10	25	161	345
10	-0.89	100	65	20.11	31.42	0.83	13.67	30	161	407
11	-0.99	100	66	20.11	31.42	1.12	15.26	35	154	476
12	-1.09	100	66	20.11	31.42	1.46	16.86	41	141	551
13	-1.19	100	67	20.11	31.42	1.87	18.48	47	121	634

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Afi	Afs	М	N	σc	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
14	-1.29	100	67	20.11	31.42	2.35	20.11	54	93	723
15	-1.39	100	68	20.11	31.42	2.90	21.75	62	54	822
16	-1.49	100	69	20.11	31.42	3.53	23.41	71	6	933
17	-1.58	100	69	20.11	31.42	4.25	25.08	81	92	1058
18	-1.68	100	70	20.11	31.42	5.06	26.77	92	211	1197
19	-1.78	100	70	20.11	31.42	5.96	28.47	105	369	1353
20	-1.88	100	71	20.11	31.42	6.97	30.19	120	572	1524
21	-1.98	100	71	20.11	31.42	8.09	31.91	136	825	1711
22	-2.08	100	72	20.11	31.42	9.31	33.66	154	1131	1914
23	-2.18	100	73	20.11	31.42	10.66	35.41	173	1494	2132
24	-2.28	100	73	20.11	31.42	12.13	37.18	194	1914	2365
25	-2.38	100	74	20.11	31.42	13.73	38.96	216	2394	2612
26	-2.48	100	74	20.11	31.42	15.46	40.76	240	2933	2874
27	-2.57	100	75	20.11	31.42	17.34	42.57	265	3534	3151
28	-2.67	100	76	20.11	31.42	19.36	44.40	292	4196	3442
29	-2.77	100	76	20.11	31.42	21.53	46.24	320	4920	3748
30	-2.87	100	77	20.11	31.42	23.85	48.09	349	5708	4068
31	-2.97	100	77	20.11	31.42	26.34	49.96	380	6558	4402
32	-3.07	100	78	20.11	31.42	29.00	51.84	413	7474	4752
33	-3.17	100	78	20.11	31.42	31.83	53.74	446	8454	5116
34	-3.27	100	79	20.11	31.42	34.83	55.65	482	9501	5496
35	-3.37	100	80	20.11	31.42	38.02	57.57	519	10613	5891
36	-3.46	100	80	20.11	31.42	41.40	59.51	557	11794	6301
37	-3.56	100	81	20.11	31.42	44.97	61.46	596	13043	6726
38	-3.66	100	81	20.11	31.42	48.75	63.42	638	14360	7167
39	-3.76	100	82	20.11	31.42	52.73	65.40	680	15747	7624
40	-3.86	100	82	20.11	31.42	56.91	67.39	724	17205	8097
41	-3.96	100	83	20.11	31.42	61.32	69.40	770	18733	8586
42	-4.06	100	84	20.11	31.42	65.95	71.42	817	20333	9091
43	-4.16	100	84	20.11	31.42	70.80	73.46	866	22006	9612
44	-4.26	100	85	20.11	31.42	75.89	75.50	916	23752	10150
45	-4.36	100	85	20.11	31.42	81.21	77.57	968	25571	10704
46	-4.46	100	86	20.11	31.42	86.78	79.64	1021	27465	11274
47	-4.55	100	86	20.11	31.42	92.59	81.73	1075	29434	11861
48	-4.65	100	87	20.11	31.42	98.66	83.84	1131	31479	12464
49	-4.75	100	88	20.11	31.42	104.99	85.96	1189	33600	13085
50	-4.85	100	88	20.11	31.42	111.59	88.09	1248	35797	13722
51	-4.95	100	89	20.11	31.42	118.45	90.23	1308	38072	14375
52	-5.05	100	89	20.11	31.42	125.59	92.39	1370	40425	15046
53	-5.15	100	90	20.11	31.42	133.01	94.57	1434	42856	15734
54	-5.25	100	90	20.11	31.42	140.72	96.76	1499	45367	16438
55	-5.35	100	91	20.11	31.42	148.72	98.96	1566	47956	17160
56	-5.45	100	92	20.11	31.42	157.02	101.17	1634	50626	17898
57	-5.54	100	92	20.11	31.42	165.62	103.40	1703	53376	18654
58	-5.64	100	93	20.11	31.42	174.53	105.65	1774	56207	19427
59	-5.74	100	93	20.11	31.42	183.76	107.90	1846	59119	20217
60	-5.84	100	94	20.11	31.42	193.30	110.18	1920	62113	21024
61	-5.94	100	94	20.11	31.42	203.17	112.46	1996	65189	21848
62	-6.04	100	95	20.11	31.42	213.37	114.76	2072	68348	22689
63	-6.14	100	96	20.11	31.42	223.90	117.07	2151	71589	23548
64	-6.24	100	96	20.11	31.42	234.78	119.40	2231	74915	24424
65	-6.34	100	97	20.11	31.42	246.00	121.74	2312	78323	25317
66	-6.43	100	97	20.11	31.42	257.58	124.10	2394	81816	26227
67	-6.53	100	98	20.11	31.42	269.51	124.10	2479	85394	27154
68	-6.63	100	98	20.11	31.42	281.80	128.85	2564	89056	28099
69	-6.73	100	99	20.11	31.42	294.46	131.25	2651	92804	29061
70	-6.83	100	100	20.11	31.42	307.50	133.66	2739	96637	30040
71	-6.93	100	100	20.11	31.42	320.91	136.08	2829	100556	31036
/1	-0.53	100	100	20.11	31.72	320.91	130.00	2023	100330	21020

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Fondazione

Combinazione nº 12 - SLEQ

Tensione massima di compressione nel calcestruzzo 13073 [kPa] Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	Y	В	Н	Afi	Afs	М	N	σС	σfi	σfs
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	-1.10	100	100	31.42	31.42	0.00	0.00	0	0	0
2	-1.02	100	100	0.00	0.00	0.65	0.00	0	0	0
3	-0.93	100	100	31.42	31.42	2.60	0.00	21	974	213
4	-0.85	100	100	31.42	31.42	5.84	0.00	47	2183	477
5	-0.77	100	100	31.42	31.42	10.34	0.00	84	3868	846
6	-0.68	100	100	31.42	31.42	16.10	0.00	130	6023	1317
7	-0.60	100	100	31.42	31.42	23.10	0.00	187	8643	1890
8	0.40	100	100	31.42	31.42	-312.45	0.00	2529	25567	116906
9	0.50	100	100	31.42	31.42	-302.86	0.00	2452	24782	113319
10	0.60	100	100	31.42	31.42	-293.07	0.00	2373	23981	109657
11	0.70	100	100	31.42	31.42	-283.11	0.00	2292	23166	105928
12	0.80	100	100	31.42	31.42	-272.99	0.00	2210	22338	102141
13	0.90	100	100	31.42	31.42	-262.73	0.00	2127	21499	98305
14	1.00	100	100	31.42	31.42	-252.37	0.00	2043	20651	94428
15	1.10	100	100	31.42	31.42	-241.93	0.00	1959	19796	90520
16	1.20	100	100	31.42	31.42	-231.42	0.00	1873	18936	86588
17	1.30	100	100	31.42	31.42	-220.87	0.00	1788	18073	82641
18	1.40	100	100	31.42	31.42	-210.31	0.00	1703	17209	78688
19	1.50	100	100	31.42	31.42	-199.75	0.00	1617	16345	74738
20	1.60	100	100	31.42	31.42	-189.22	0.00	1532	15483	70799
21	1.70	100	100	31.42	31.42	-178.74	0.00	1447	14626	66879
22	1.80	100	100	31.42	31.42	-168.34	0.00	1363	13775	62988
23	1.90	100	100	31.42	31.42	-158.04	0.00	1279	12932	59134
24	2.00	100	100	31.42	31.42	-147.86	0.00	1197	12099	55325
25	2.10	100	100	31.42	31.42	-137.83	0.00	1116	11278	51571
26	2.20	100	100	31.42	31.42	-127.96	0.00	1036	10471	47879
27	2.30	100	100	31.42	31.42	-118.29	0.00	958	9679	44259
28	2.40	100	100	31.42	31.42	-108.83	0.00	881	8905	40719
29	2.50	100	100	31.42	31.42	-99.60	0.00	806	8150	37267
30	2.60	100	100	31.42	31.42	-90.64	0.00	734	7417	33913
31	2.70	100	100	31.42	31.42	-81.96	0.00	663	6706	30665
32	2.80	100	100	31.42	31.42	-73.58	0.00	596	6021	27531
33	2.90	100	100	31.42	31.42	-65.53	0.00	531	5362	24520
34	3.00	100	100	31.42	31.42	-57.84	0.00	468	4733	21642
35	3.10	100	100	31.42	31.42	-50.52	0.00	409	4134	18903
36	3.20	100	100	31.42	31.42	-43.60	0.00	353	3568	16314
37	3.30	100	100	31.42	31.42	-37.10	0.00	300	3036	13882
38	3.40	100	100	31.42	31.42	-31.05	0.00	251	2540	11616
39	3.50	100	100	31.42	31.42	-25.46	0.00	206	2083	9525
40	3.60	100	100	31.42	31.42	-20.36	0.00	165	1666	7618
41	3.70	100	100	31.42	31.42	-15.78	0.00	128	1291	5903
42	3.80	100	100	31.42	31.42	-11.73	0.00	95	960	4389
43	3.90	100	100	31.42	31.42	-8.24	0.00	67	674	3084
44	4.00	100	100	31.42	31.42	-5.34	0.00	43	437	1997
45	4.10	100	100	31.42	31.42	-3.04	0.00	25	248	1136
46	4.20	100	100	31.42	31.42	-1.36	0.00	11	112	511
47	4.30	100	100	31.42	31.42	-0.35	0.00	3	28	129
48	4.40	100	100	31.42	31.42	0.00	0.00	0	0	0

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica a fessurazione

Simbologia adottata

indice sezione ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm] area ferri zona tesa espresso in [cmq] Aeff M area efficace espressa in [cmq] momento agente espressa in [kNm]

Mpf momento di prima fessurazione espressa in [kNm]

deformazione espresso in %

Sm spaziatura tra le fessure espressa in [mm] apertura delle fessure espressa in [mm]

Combinazioni SLER

Paramento

Combinazione nº 10 - SLER

Apertura limite fessure w_{lim}=0.40

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0.00	100	60	0.00	0.00	0.00	0.00			0.000
2	-0.10	100	61	0.00	0.00	0.02	27.51	0.000000	0.00	0.000
3	-0.20	100	61	0.00	0.00	0.07	67.29	0.000000	0.00	0.000
4	-0.30	100	62	0.00	0.00	0.17	127.82	0.000000	0.00	0.000
5	-0.40	100	62	0.00	0.00	0.32	227.73	0.000000	0.00	0.000
6	-0.50	100	63	0.00	0.00	0.52	417.82	0.000000	0.00	0.000
7	-0.59	100	63	0.00	0.00	0.79	902.75	0.000000	0.00	0.000
8	-0.69	100	64	0.00	0.00	1.12	4432.61	0.000000	0.00	0.000
9	-0.79	100	65	0.00	0.00	1.52	2458.65	0.000000	0.00	0.000
10	-0.89	100	65	31.42	1850.00	1.99	1143.66	0.000000	0.00	0.000
11	-0.99	100	66	31.42	1850.00	2.55	814.17	0.000000	0.00	0.000
12	-1.09	100	66	31.42	1850.00	3.20	666.43	0.000000	0.00	0.000
13	-1.19	100	67	31.42	1850.00	3.93	583.89	0.000000	0.00	0.000
14	-1.29	100	67	31.42	1850.00	4.77	532.12	0.000000	0.00	0.000
15	-1.39	100	68	31.42	1850.00	5.71	497.30	0.000000	0.00	0.000
16	-1.49	100	69	31.42	1850.00	6.76	472.81	0.000000	0.00	0.000
17	-1.58	100	69	31.42	1850.00	7.92	455.09	0.000000	0.00	0.000
18	-1.68	100	70	31.42	1850.00	9.20	442.04	0.000000	0.00	0.000
19	-1.78	100	70	31.42	1850.00	10.61	432.37	0.000000	0.00	0.000
20	-1.88	100	71	31.42	1850.00	12.15	425.20	0.000000	0.00	0.000
21	-1.98	100	71	31.42	1850.00	13.82	419.95	0.000000	0.00	0.000
22	-2.08	100	72	31.42	1850.00	15.64	416.20	0.000000	0.00	0.000
23	-2.18	100	73	31.42	1850.00	17.60	413.66	0.000000	0.00	0.000
24	-2.28	100	73	31.42	1850.00	19.72	412.09	0.000000	0.00	0.000
25	-2.38	100	74	31.42	1850.00	21.99	411.32	0.000000	0.00	0.000
26	-2.48	100	74	31.42	1850.00	24.43	411.23	0.000000	0.00	0.000
27	-2.57	100	75	31.42	1850.00	27.03	411.71	0.000000	0.00	0.000
28	-2.67	100	76	31.42	1850.00	29.81	412.68	0.000000	0.00	0.000
29	-2.77	100	76	31.42	1850.00	32.77	414.06	0.000000	0.00	0.000
30	-2.87	100	77	31.42	1850.00	35.91	415.81	0.000000	0.00	0.000
31	-2.97	100	77	31.42	1850.00	39.25	417.88	0.000000	0.00	0.000
32	-3.07	100	78	31.42	1850.00	42.78	420.23	0.000000	0.00	0.000
33	-3.17	100	78	31.42	1850.00	46.51	422.84	0.000000	0.00	0.000
34	-3.27	100	79	31.42	1850.00	50.45	425.67	0.000000	0.00	0.000
35	-3.37	100	80	31.42	1850.00	54.60	428.71	0.000000	0.00	0.000
36	-3.46	100	80	31.42	1850.00	58.97	431.93	0.000000	0.00	0.000
37	-3.56	100	81	31.42	1850.00	63.56	435.32	0.000000	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
38	-3.66	100	81	31.42	1850.00	68.38	438.86	0.000000	0.00	0.000
39	-3.76	100	82	31.42	1850.00	73.43	442.55	0.000000	0.00	0.000
40	-3.86	100	82	31.42	1850.00	78.72	446.37	0.000000	0.00	0.000
41	-3.96	100	83	31.42	1850.00	84.26	450.31	0.000000	0.00	0.000
42	-4.06	100	84	31.42	1850.00	90.05	454.37	0.000000	0.00	0.000
43	-4.16	100	84	31.42	1850.00	96.09	458.53	0.000000	0.00	0.000
44	-4.26	100	85	31.42	1850.00	102.40	462.80	0.000000	0.00	0.000
45	-4.36	100	85	31.42	1850.00	108.97	467.16	0.000000	0.00	0.000
46	-4.46	100	86	31.42	1850.00	115.81	471.60	0.000000	0.00	0.000
47	-4.55	100	86	31.42	1850.00	122.93	476.14	0.000000	0.00	0.000
48	-4.65	100	87	31.42	1850.00	130.34	480.75	0.000000	0.00	0.000
49	-4.75	100	88	31.42	1850.00	138.03	485.44	0.000000	0.00	0.000
50	-4.85	100	88	31.42	1850.00	146.01	490.21	0.000000	0.00	0.000
51	-4.95	100	89	31.42	1850.00	154.30	495.04	0.000000	0.00	0.000
52	-5.05	100	89	31.42	1850.00	162.89	499.95	0.000000	0.00	0.000
53	-5.15	100	90	31.42	1850.00	171.79	504.92	0.000000	0.00	0.000
54	-5.25	100	90	31.42	1850.00	181.00	509.95	0.000000	0.00	0.000
55	-5.35	100	91	31.42	1850.00	190.53	515.04	0.000000	0.00	0.000
56	-5.45	100	92	31.42	1850.00	200.40	520.20	0.000000	0.00	0.000
57	-5.54	100	92	31.42	1850.00	210.59	525.41	0.000000	0.00	0.000
58	-5.64	100	93	31.42	1850.00	221.12	530.67	0.000000	0.00	0.000
59	-5.74	100	93	31.42	1850.00	231.98	536.00	0.000000	0.00	0.000
60	-5.84	100	94	31.42	1850.00	243.18	541.37	0.000000	0.00	0.000
61	-5.94	100	94	31.42	1850.00	254.73	546.81	0.000000	0.00	0.000
62	-6.04	100	95	31.42	1850.00	266.62	552.29	0.000000	0.00	0.000
63	-6.14	100	96	31.42	1850.00	278.85	557.82	0.000000	0.00	0.000
64	-6.24	100	96	31.42	1850.00	291.43	563.41	0.000000	0.00	0.000
65	-6.34	100	97	31.42	1850.00	304.36	569.05	0.000000	0.00	0.000
66	-6.43	100	97	31.42	1850.00	317.64	574.73	0.000000	0.00	0.000
67	-6.53	100	98	31.42	1850.00	331.28	580.47	0.000000	0.00	0.000
68	-6.63	100	98	31.42	1850.00	345.27	586.25	0.000000	0.00	0.000
69	-6.73	100	99	31.42	1850.00	359.64	592.07	0.000000	0.00	0.000
70	-6.83	100	100	31.42	1850.00	374.37	597.95	0.000000	0.00	0.000
71	-6.93	100	100	31.42	1850.00	389.47	603.86	0.000000	0.00	0.000

Fondazione

Combinazione nº 10 - SLER

Apertura limite fessure w_{lim} =0.40

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	-1.10	100	100	0.00	0.00	0.00	0.00			0.000
2	-1.02	100	100	0.00	0.00	0.66	0.00			0.000
3	-0.93	100	100	31.42	1850.00	2.64	574.87	0.000000	0.00	0.000
4	-0.85	100	100	31.42	1850.00	5.92	574.87	0.000000	0.00	0.000
5	-0.77	100	100	31.42	1850.00	10.49	574.87	0.000000	0.00	0.000
6	-0.68	100	100	31.42	1850.00	16.34	574.87	0.000000	0.00	0.000
7	-0.60	100	100	31.42	1850.00	23.46	574.87	0.000000	0.00	0.000
8	0.40	100	100	31.42	1850.00	-309.39	-574.87	0.000000	0.00	0.000
9	0.50	100	100	31.42	1850.00	-299.01	-574.87	0.000000	0.00	0.000
10	0.60	100	100	31.42	1850.00	-288.49	-574.87	0.000000	0.00	0.000
11	0.70	100	100	31.42	1850.00	-277.85	-574.87	0.000000	0.00	0.000
12	0.80	100	100	31.42	1850.00	-267.11	-574.87	0.000000	0.00	0.000
13	0.90	100	100	31.42	1850.00	-256.30	-574.87	0.000000	0.00	0.000
14	1.00	100	100	31.42	1850.00	-245.43	-574.87	0.000000	0.00	0.000
15	1.10	100	100	31.42	1850.00	-234.52	-574.87	0.000000	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
16	1.20	100	100	31.42	1850.00	-223.60	-574.87	0.000000	0.00	0.000
17	1.30	100	100	31.42	1850.00	-212.69	-574.87	0.000000	0.00	0.000
18	1.40	100	100	31.42	1850.00	-201.82	-574.87	0.000000	0.00	0.000
19	1.50	100	100	31.42	1850.00	-191.00	-574.87	0.000000	0.00	0.000
20	1.60	100	100	31.42	1850.00	-180.26	-574.87	0.000000	0.00	0.000
21	1.70	100	100	31.42	1850.00	-169.61	-574.87	0.000000	0.00	0.000
22	1.80	100	100	31.42	1850.00	-159.09	-574.87	0.000000	0.00	0.000
23	1.90	100	100	31.42	1850.00	-148.71	-574.87	0.000000	0.00	0.000
24	2.00	100	100	31.42	1850.00	-138.49	-574.87	0.000000	0.00	0.000
25	2.10	100	100	31.42	1850.00	-128.46	-574.87	0.000000	0.00	0.000
26	2.20	100	100	31.42	1850.00	-118.64	-574.87	0.000000	0.00	0.000
27	2.30	100	100	31.42	1850.00	-109.05	-574.87	0.000000	0.00	0.000
28	2.40	100	100	31.42	1850.00	-99.71	-574.87	0.000000	0.00	0.000
29	2.50	100	100	31.42	1850.00	-90.65	-574.87	0.000000	0.00	0.000
30	2.60	100	100	31.42	1850.00	-81.88	-574.87	0.000000	0.00	0.000
31	2.70	100	100	31.42	1850.00	-73.44	-574.87	0.000000	0.00	0.000
32	2.80	100	100	31.42	1850.00	-65.33	-574.87	0.000000	0.00	0.000
33	2.90	100	100	31.42	1850.00	-57.59	-574.87	0.000000	0.00	0.000
34	3.00	100	100	31.42	1850.00	-50.25	-574.87	0.000000	0.00	0.000
35	3.10	100	100	31.42	1850.00	-43.94	-574.87	0.000000	0.00	0.000
36	3.20	100	100	31.42	1850.00	-37.97	-574.87	0.000000	0.00	0.000
37	3.30	100	100	31.42	1850.00	-32.35	-574.87	0.000000	0.00	0.000
38	3.40	100	100	31.42	1850.00	-27.10	-574.87	0.000000	0.00	0.000
39	3.50	100	100	31.42	1850.00	-22.25	-574.87	0.000000	0.00	0.000
40	3.60	100	100	31.42	1850.00	-17.82	-574.87	0.000000	0.00	0.000
41	3.70	100	100	31.42	1850.00	-13.82	-574.87	0.000000	0.00	0.000
42	3.80	100	100	31.42	1850.00	-10.29	-574.87	0.000000	0.00	0.000
43	3.90	100	100	31.42	1850.00	-7.24	-574.87	0.000000	0.00	0.000
44	4.00	100	100	31.42	1850.00	-4.69	-574.87	0.000000	0.00	0.000
45	4.10	100	100	31.42	1850.00	-2.67	-574.87	0.000000	0.00	0.000
46	4.20	100	100	31.42	1850.00	-1.20	-574.87	0.000000	0.00	0.000
47	4.30	100	100	31.42	1850.00	-0.30	-574.87	0.000000	0.00	0.000
48	4.40	100	100	0.00	0.00	0.00	0.00			0.000

Combinazioni SLEF

<u>Paramento</u>

Combinazione nº 11 - SLEF

Apertura limite fessure w_{lim}=0.40

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0.00	100	60	0.00	0.00	0.00	0.00			0.000
2	-0.10	100	61	0.00	0.00	0.01	21.27	0.000000	0.00	0.000
3	-0.20	100	61	0.00	0.00	0.06	51.04	0.000000	0.00	0.000
4	-0.30	100	62	0.00	0.00	0.14	93.96	0.000000	0.00	0.000
5	-0.40	100	62	0.00	0.00	0.26	158.90	0.000000	0.00	0.000
6	-0.50	100	63	0.00	0.00	0.44	265.30	0.000000	0.00	0.000
7	-0.59	100	63	0.00	0.00	0.66	465.23	0.000000	0.00	0.000
8	-0.69	100	64	0.00	0.00	0.94	961.25	0.000000	0.00	0.000
9	-0.79	100	65	0.00	0.00	1.29	4062.36	0.000000	0.00	0.000
10	-0.89	100	65	0.00	0.00	1.70	2932.50	0.000000	0.00	0.000
11	-0.99	100	66	0.00	0.00	2.19	1272.86	0.000000	0.00	0.000
12	-1.09	100	66	31.42	1850.00	2.76	886.19	0.000000	0.00	0.000
13	-1.19	100	67	31.42	1850.00	3.42	716.16	0.000000	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
14	-1.29	100	67	31.42	1850.00	4.16	621.96	0.000000	0.00	0.000
15	-1.39	100	68	31.42	1850.00	5.01	563.08	0.000000	0.00	0.000
16	-1.49	100	69	31.42	1850.00	5.95	523.50	0.000000	0.00	0.000
17	-1.58	100	69	31.42	1850.00	7.00	495.63	0.000000	0.00	0.000
18	-1.68	100	70	31.42	1850.00	8.17	475.38	0.000000	0.00	0.000
19	-1.78	100	70	31.42	1850.00	9.45	460.39	0.000000	0.00	0.000
20	-1.88	100	71	31.42	1850.00	10.85	449.18	0.000000	0.00	0.000
21	-1.98	100	71	31.42	1850.00	12.39	440.76	0.000000	0.00	0.000
22	-2.08	100	72	31.42	1850.00	14.06	434.49	0.000000	0.00	0.000
23	-2.18	100	73	31.42	1850.00	15.87	429.89	0.000000	0.00	0.000
24	-2.28	100	73	31.42	1850.00	17.82	426.63	0.000000	0.00	0.000
25	-2.38	100	74	31.42	1850.00	19.92	424.45	0.000000	0.00	0.000
26	-2.48	100	74	31.42	1850.00	22.19	423.16	0.000000	0.00	0.000
27	-2.57		75	31.42	1850.00	24.61				
		100					422.61	0.000000	0.00	0.000
28	-2.67	100	76	31.42	1850.00	27.20	422.69	0.000000	0.00	0.000
29	-2.77	100	76	31.42	1850.00	29.96	423.31	0.000000	0.00	0.000
30	-2.87	100	77	31.42	1850.00	32.90	424.38	0.000000	0.00	0.000
31	-2.97	100	77	31.42	1850.00	36.02	425.86	0.000000	0.00	0.000
32	-3.07	100	78	31.42	1850.00	39.33	427.69	0.000000	0.00	0.000
33	-3.17	100	78	31.42	1850.00	42.84	429.82	0.000000	0.00	0.000
34	-3.27	100	79	31.42	1850.00	46.54	432.24	0.000000	0.00	0.000
35	-3.37	100	80	31.42	1850.00	50.45	434.90	0.000000	0.00	0.000
36	-3.46	100	80	31.42	1850.00	54.57	437.78	0.000000	0.00	0.000
37	-3.56	100	81	31.42	1850.00	58.91	440.86	0.000000	0.00	0.000
38	-3.66	100	81	31.42	1850.00	63.47	444.12	0.000000	0.00	0.000
39	-3.76	100	82	31.42	1850.00	68.25	447.55	0.000000	0.00	0.000
40	-3.86	100	82	31.42	1850.00	73.27	451.14	0.000000	0.00	0.000
41	-3.96	100	83	31.42	1850.00	78.53	454.86	0.000000	0.00	0.000
42	-4.06	100	84	31.42	1850.00	84.02	458.72	0.000000	0.00	0.000
43	-4.16	100	84	31.42	1850.00	89.77	462.70	0.000000	0.00	0.000
44	-4.26	100	85	31.42	1850.00	95.77	466.79	0.000000	0.00	0.000
45	-4.36	100	85	31.42	1850.00	102.03	471.00	0.000000	0.00	0.000
46	-4.46	100	86	31.42	1850.00	108.55	475.30	0.000000	0.00	0.000
47	-4.55	100	86	31.42	1850.00	115.35	479.69	0.000000	0.00	0.000
48	-4.65	100	87	31.42	1850.00	122.42	484.18	0.000000	0.00	0.000
49	-4.75	100	88	31.42	1850.00	129.77	488.75	0.000000	0.00	0.000
50	-4.85	100	88	31.42	1850.00	137.41	493.41	0.000000	0.00	0.000
51	-4.95	100	89	31.42	1850.00	145.34	498.14	0.000000	0.00	0.000
52	-5.05	100	89	31.42	1850.00	153.56	502.94	0.000000	0.00	0.000
53	-5.15	100	90	31.42	1850.00	162.09	507.82	0.000000	0.00	0.000
54	-5.25	100	90	31.42	1850.00	170.93	512.77	0.000000	0.00	0.000
55		100	91	31.42	1850.00			0.000000	0.00	
	-5.35					180.08	517.78			0.000
56	-5.45	100	92	31.42	1850.00	189.55	522.85	0.000000	0.00	0.000
57	-5.54	100	92	31.42	1850.00	199.35	527.99	0.000000	0.00	0.000
58	-5.64	100	93	31.42	1850.00	209.47	533.19	0.000000	0.00	0.000
59	-5.74	100	93	31.42	1850.00	219.92	538.45	0.000000	0.00	0.000
60	-5.84	100	94	31.42	1850.00	230.71	543.76	0.000000	0.00	0.000
61	-5.94	100	94	31.42	1850.00	241.83	549.13	0.000000	0.00	0.000
62	-6.04	100	95	31.42	1850.00	253.29	554.56	0.000000	0.00	0.000
63	-6.14	100	96	31.42	1850.00	265.08	560.04	0.000000	0.00	0.000
64	-6.24	100	96	31.42	1850.00	277.22	565.58	0.000000	0.00	0.000
65	-6.34	100	97	31.42	1850.00	289.70	571.16	0.000000	0.00	0.000
66	-6.43	100	97	31.42	1850.00	302.54	576.80	0.000000	0.00	0.000
67	-6.53	100	98	31.42	1850.00	315.73	582.49	0.000000	0.00	0.000
68	-6.63	100	98	31.42	1850.00	329.28	588.23	0.000000	0.00	0.000
69	-6.73	100	99	31.42	1850.00	343.20	594.01	0.000000	0.00	0.000
70	-6.83	100	100	31.42	1850.00	357.49	599.84	0.000000	0.00	0.000
	-6.93	100	100	31.42	1850.00	372.15	605.72	0.000000	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Fondazione

Combinazione nº 11 - SLEF

Apertura limite fessure w_{lim} =0.40

n°	Υ	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	<i>[%]</i>	[mm]	[mm]
1	-1.10	100	100	0.00	0.00	0.00	0.00			0.000
2	-1.02	100	100	0.00	0.00	0.66	0.00			0.000
3	-0.93	100	100	31.42	1850.00	2.63	574.87	0.000000	0.00	0.000
4	-0.85	100	100	31.42	1850.00	5.90	574.87	0.000000	0.00	0.000
5	-0.77	100	100	31.42	1850.00	10.45	574.87	0.000000	0.00	0.000
6	-0.68	100	100	31.42	1850.00	16.28	574.87	0.000000	0.00	0.000
7	-0.60	100	100	31.42	1850.00	23.37	574.87	0.000000	0.00	0.000
8	0.40	100	100	31.42	1850.00	-310.15	-574.87	0.000000	0.00	0.000
9	0.50	100	100	31.42	1850.00	-299.97	-574.87	0.000000	0.00	0.000
10	0.60	100	100	31.42	1850.00	-289.64	-574.87	0.000000	0.00	0.000
11	0.70	100	100	31.42	1850.00	-279.17	-574.87	0.000000	0.00	0.000
12	0.80	100	100	31.42	1850.00	-268.58	-574.87	0.000000	0.00	0.000
13	0.90	100	100	31.42	1850.00	-257.91	-574.87	0.000000	0.00	0.000
14	1.00	100	100	31.42	1850.00	-247.16	-574.87	0.000000	0.00	0.000
15	1.10	100	100	31.42	1850.00	-236.37	-574.87	0.000000	0.00	0.000
16	1.20	100	100	31.42	1850.00	-225.56	-574.87	0.000000	0.00	0.000
17	1.30	100	100	31.42	1850.00	-214.74	-574.87	0.000000	0.00	0.000
18	1.40	100	100	31.42	1850.00	-203.94	-574.87	0.000000	0.00	0.000
19	1.50	100	100	31.42	1850.00	-193.19	-574.87	0.000000	0.00	0.000
20	1.60	100	100	31.42	1850.00	-182.50	-574.87	0.000000	0.00	0.000
21	1.70	100	100	31.42	1850.00	-171.89	-574.87 -574.87	0.000000	0.00	0.000
23	1.80	100	100	31.42	1850.00	-161.40			0.00	0.000
	1.90	100	100	31.42	1850.00	-151.04	-574.87	0.000000	0.00	0.000
24	2.00	100	100	31.42	1850.00	-140.83	-574.87	0.000000	0.00	0.000
25	2.10	100	100	31.42	1850.00	-130.80	-574.87	0.000000	0.00	0.000
26	2.20	100	100	31.42	1850.00	-120.97	-574.87	0.000000	0.00	0.000
27	2.30	100	100	31.42	1850.00	-111.36	-574.87	0.000000	0.00	0.000
28	2.40	100	100	31.42	1850.00	-101.99	-574.87	0.000000	0.00	0.000
29	2.50	100	100	31.42	1850.00	-92.89	-574.87	0.000000	0.00	0.000
30	2.60	100	100	31.42	1850.00	-84.07	-574.87	0.000000	0.00	0.000
31	2.70	100	100	31.42	1850.00	-75.57	-574.87	0.000000	0.00	0.000
32	2.80	100	100	31.42	1850.00	-67.39	-574.87	0.000000	0.00	0.000
33	2.90	100	100	31.42	1850.00	-59.58	-574.87	0.000000	0.00	0.000
34	3.00	100	100	31.42	1850.00	-52.14	-574.87	0.000000	0.00	0.000
35	3.10	100	100	31.42	1850.00	-45.59	-574.87	0.000000	0.00	0.000
36	3.20	100	100	31.42	1850.00	-39.38	-574.87	0.000000	0.00	0.000
37	3.30	100	100	31.42	1850.00	-33.54	-574.87	0.000000	0.00	0.000
38	3.40	100	100	31.42	1850.00	-28.09	-574.87	0.000000	0.00	0.000
39	3.50	100	100	31.42	1850.00	-23.05	-574.87	0.000000	0.00	0.000
40	3.60	100	100	31.42	1850.00	-18.45	-574.87	0.000000	0.00	0.000
41	3.70	100	100	31.42	1850.00	-14.31	-574.87	0.000000	0.00	0.000
42	3.80	100	100	31.42	1850.00	-10.65	-574.87	0.000000	0.00	0.000
43	3.90	100	100	31.42	1850.00	-7.49	-574.87	0.000000	0.00	0.000
44	4.00	100	100	31.42	1850.00	-4.85	-574.87	0.000000	0.00	0.000
45	4.10	100	100	31.42	1850.00	-2.76	-574.87	0.000000	0.00	0.000
46	4.20	100	100	31.42	1850.00	-1.24	-574.87	0.000000	0.00	0.000
47	4.30	100	100	31.42	1850.00	-0.31	-574.87	0.000000	0.00	0.000
48	4.40	100	100	0.00	0.00	0.00	0.00			0.000

Combinazioni SLEQ

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

<u>Paramento</u>

Combinazione nº 12 - SLEQ

Apertura limite fessure w_{lim} =0.30

n°	Υ	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	<i>[%]</i>	[mm]	[mm]
1	0.00	100	60	0.00	0.00	0.00	0.00			0.000
2	-0.10	100	61	0.00	0.00	0.00	4.32	0.000000	0.00	0.000
3	-0.20	100	61	0.00	0.00	0.02	11.67	0.000000	0.00	0.000
4	-0.30	100	62	0.00	0.00	0.04	22.64	0.000000	0.00	0.000
5	-0.40	100	62	0.00	0.00	0.09	38.12	0.000000	0.00	0.000
6	-0.50	100	63	0.00	0.00	0.17	59.54	0.000000	0.00	0.000
7	-0.59	100	63	0.00	0.00	0.27	89.24	0.000000	0.00	0.000
8	-0.69	100	64	0.00	0.00	0.41	131.10	0.000000	0.00	0.000
9	-0.79	100	65	0.00	0.00	0.60	192.14	0.000000	0.00	0.000
10	-0.89	100	65	0.00	0.00	0.83	286.20	0.000000	0.00	0.000
11	-0.99	100	66	0.00	0.00	1.12	445.10	0.000000	0.00	0.000
12	-1.09	100	66	0.00	0.00	1.46	761.29	0.000000	0.00	0.000
13	-1.19	100	67	0.00	0.00	1.87	1663.93	0.000000	0.00	0.000
14	-1.29	100	67	0.00	0.00	2.35	20969.58	0.000000	0.00	0.000
15	-1.39	100	68	0.00	0.00	2.90	2578.58	0.000000	0.00	0.000
16	-1.49	100	69	31.42	1850.00	3.53	1361.66	0.000000	0.00	0.000
17	-1.58	100	69	31.42	1850.00	4.25	987.46	0.000000	0.00	0.000
18	-1.68	100	70		1850.00			0.000000		0.000
19	-1.78	100	70	31.42 31.42	1850.00	5.06 5.96	807.92 703.87	0.000000	0.00	0.000
_										
20	-1.88	100	71	31.42	1850.00	6.97	636.93	0.000000	0.00	0.000
21	-1.98	100	71	31.42	1850.00	8.09	590.95	0.000000	0.00	0.000
22	-2.08	100	72	31.42	1850.00	9.31	557.98	0.000000	0.00	0.000
23	-2.18	100	73	31.42	1850.00	10.66	533.62	0.000000	0.00	0.000
24	-2.28	100	73	31.42	1850.00	12.13	515.27	0.000000	0.00	0.000
25	-2.38	100	74	31.42	1850.00	13.73	501.28	0.000000	0.00	0.000
26	-2.48	100	74	31.42	1850.00	15.46	490.55	0.000000	0.00	0.000
27	-2.57	100	75	31.42	1850.00	17.34	482.32	0.000000	0.00	0.000
28	-2.67	100	76	31.42	1850.00	19.36	476.06	0.000000	0.00	0.000
29	-2.77	100	76	31.42	1850.00	21.53	471.37	0.000000	0.00	0.000
30	-2.87	100	77	31.42	1850.00	23.85	467.95	0.000000	0.00	0.000
31	-2.97	100	77	31.42	1850.00	26.34	465.59	0.000000	0.00	0.000
32	-3.07	100	78	31.42	1850.00	29.00	464.12	0.000000	0.00	0.000
33	-3.17	100	78	31.42	1850.00	31.83	463.38	0.000000	0.00	0.000
34	-3.27	100	79	31.42	1850.00	34.83	463.28	0.000000	0.00	0.000
35	-3.37	100	80	31.42	1850.00	38.02	463.73	0.000000	0.00	0.000
36	-3.46	100	80	31.42	1850.00	41.40	464.65	0.000000	0.00	0.000
37	-3.56	100	81	31.42	1850.00	44.97	465.99	0.000000	0.00	0.000
38	-3.66	100	81	31.42	1850.00	48.75	467.70	0.000000	0.00	0.000
39	-3.76	100	82	31.42	1850.00	52.73	469.73	0.000000	0.00	0.000
40	-3.86	100	82	31.42	1850.00	56.91	472.05	0.000000	0.00	0.000
41	-3.96	100	83	31.42	1850.00	61.32	474.63	0.000000	0.00	0.000
42	-4.06	100	84	31.42	1850.00	65.95	477.45	0.000000	0.00	0.000
43	-4.16	100	84	31.42	1850.00	70.80	480.48	0.000000	0.00	0.000
44	-4.26	100	85	31.42	1850.00	75.89	483.70	0.000000	0.00	0.000
45	-4.36	100	85	31.42	1850.00	81.21	487.11	0.000000	0.00	0.000
46	-4.46	100	86	31.42	1850.00	86.78	490.68	0.000000	0.00	0.000
47	-4.55	100	86	31.42	1850.00	92.59	494.40	0.000000	0.00	0.000
48	-4.65	100	87	31.42	1850.00	98.66	498.26	0.000000	0.00	0.000
49	-4.75	100	88	31.42	1850.00	104.99	502.26	0.000000	0.00	0.000
50	-4.85	100	88	31.42	1850.00	111.59	506.37	0.000000	0.00	0.000
51	-4.95	100	89	31.42	1850.00	118.45	510.61	0.000000	0.00	0.000
52	-5.05	100	89	31.42	1850.00	125.59	514.95	0.000000	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
53	-5.15	100	90	31.42	1850.00	133.01	519.39	0.000000	0.00	0.000
54	-5.25	100	90	31.42	1850.00	140.72	523.93	0.000000	0.00	0.000
55	-5.35	100	91	31.42	1850.00	148.72	528.56	0.000000	0.00	0.000
56	-5.45	100	92	31.42	1850.00	157.02	533.28	0.000000	0.00	0.000
57	-5.54	100	92	31.42	1850.00	165.62	538.08	0.000000	0.00	0.000
58	-5.64	100	93	31.42	1850.00	174.53	542.96	0.000000	0.00	0.000
59	-5.74	100	93	31.42	1850.00	183.76	547.92	0.000000	0.00	0.000
60	-5.84	100	94	31.42	1850.00	193.30	552.95	0.000000	0.00	0.000
61	-5.94	100	94	31.42	1850.00	203.17	558.05	0.000000	0.00	0.000
62	-6.04	100	95	31.42	1850.00	213.37	563.22	0.000000	0.00	0.000
63	-6.14	100	96	31.42	1850.00	223.90	568.45	0.000000	0.00	0.000
64	-6.24	100	96	31.42	1850.00	234.78	573.75	0.000000	0.00	0.000
65	-6.34	100	97	31.42	1850.00	246.00	579.11	0.000000	0.00	0.000
66	-6.43	100	97	31.42	1850.00	257.58	584.53	0.000000	0.00	0.000
67	-6.53	100	98	31.42	1850.00	269.51	590.01	0.000000	0.00	0.000
68	-6.63	100	98	31.42	1850.00	281.80	595.55	0.000000	0.00	0.000
69	-6.73	100	99	31.42	1850.00	294.46	601.13	0.000000	0.00	0.000
70	-6.83	100	100	31.42	1850.00	307.50	606.78	0.000000	0.00	0.000
71	-6.93	100	100	31.42	1850.00	320.91	612.47	0.000000	0.00	0.000

Fondazione

Combinazione nº 12 - SLEQ

Apertura limite fessure w_{lim} =0.30

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	-1.10	100	100	0.00	0.00	0.00	0.00			0.000
2	-1.02	100	100	0.00	0.00	0.65	0.00			0.000
3	-0.93	100	100	31.42	1850.00	2.60	574.87	0.000000	0.00	0.000
4	-0.85	100	100	31.42	1850.00	5.84	574.87	0.000000	0.00	0.000
5	-0.77	100	100	31.42	1850.00	10.34	574.87	0.000000	0.00	0.000
6	-0.68	100	100	31.42	1850.00	16.10	574.87	0.000000	0.00	0.000
7	-0.60	100	100	31.42	1850.00	23.10	574.87	0.000000	0.00	0.000
8	0.40	100	100	31.42	1850.00	-312.45	-574.87	0.000000	0.00	0.000
9	0.50	100	100	31.42	1850.00	-302.86	-574.87	0.000000	0.00	0.000
10	0.60	100	100	31.42	1850.00	-293.07	-574.87	0.000000	0.00	0.000
11	0.70	100	100	31.42	1850.00	-283.11	-574.87	0.000000	0.00	0.000
12	0.80	100	100	31.42	1850.00	-272.99	-574.87	0.000000	0.00	0.000
13	0.90	100	100	31.42	1850.00	-262.73	-574.87	0.000000	0.00	0.000
14	1.00	100	100	31.42	1850.00	-252.37	-574.87	0.000000	0.00	0.000
15	1.10	100	100	31.42	1850.00	-241.93	-574.87	0.000000	0.00	0.000
16	1.20	100	100	31.42	1850.00	-231.42	-574.87	0.000000	0.00	0.000
17	1.30	100	100	31.42	1850.00	-220.87	-574.87	0.000000	0.00	0.000
18	1.40	100	100	31.42	1850.00	-210.31	-574.87	0.000000	0.00	0.000
19	1.50	100	100	31.42	1850.00	-199.75	-574.87	0.000000	0.00	0.000
20	1.60	100	100	31.42	1850.00	-189.22	-574.87	0.000000	0.00	0.000
21	1.70	100	100	31.42	1850.00	-178.74	-574.87	0.000000	0.00	0.000
22	1.80	100	100	31.42	1850.00	-168.34	-574.87	0.000000	0.00	0.000
23	1.90	100	100	31.42	1850.00	-158.04	-574.87	0.000000	0.00	0.000
24	2.00	100	100	31.42	1850.00	-147.86	-574.87	0.000000	0.00	0.000
25	2.10	100	100	31.42	1850.00	-137.83	-574.87	0.000000	0.00	0.000
26	2.20	100	100	31.42	1850.00	-127.96	-574.87	0.000000	0.00	0.000
27	2.30	100	100	31.42	1850.00	-118.29	-574.87	0.000000	0.00	0.000
28	2.40	100	100	31.42	1850.00	-108.83	-574.87	0.000000	0.00	0.000
29	2.50	100	100	31.42	1850.00	-99.60	-574.87	0.000000	0.00	0.000
30	2.60	100	100	31.42	1850.00	-90.64	-574.87	0.000000	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
31	2.70	100	100	31.42	1850.00	-81.96	-574.87	0.000000	0.00	0.000
32	2.80	100	100	31.42	1850.00	-73.58	-574.87	0.000000	0.00	0.000
33	2.90	100	100	31.42	1850.00	-65.53	-574.87	0.000000	0.00	0.000
34	3.00	100	100	31.42	1850.00	-57.84	-574.87	0.000000	0.00	0.000
35	3.10	100	100	31.42	1850.00	-50.52	-574.87	0.000000	0.00	0.000
36	3.20	100	100	31.42	1850.00	-43.60	-574.87	0.000000	0.00	0.000
37	3.30	100	100	31.42	1850.00	-37.10	-574.87	0.000000	0.00	0.000
38	3.40	100	100	31.42	1850.00	-31.05	-574.87	0.000000	0.00	0.000
39	3.50	100	100	31.42	1850.00	-25.46	-574.87	0.000000	0.00	0.000
40	3.60	100	100	31.42	1850.00	-20.36	-574.87	0.000000	0.00	0.000
41	3.70	100	100	31.42	1850.00	-15.78	-574.87	0.000000	0.00	0.000
42	3.80	100	100	31.42	1850.00	-11.73	-574.87	0.000000	0.00	0.000
43	3.90	100	100	31.42	1850.00	-8.24	-574.87	0.000000	0.00	0.000
44	4.00	100	100	31.42	1850.00	-5.34	-574.87	0.000000	0.00	0.000
45	4.10	100	100	31.42	1850.00	-3.04	-574.87	0.000000	0.00	0.000
46	4.20	100	100	31.42	1850.00	-1.36	-574.87	0.000000	0.00	0.000
47	4.30	100	100	31.42	1850.00	-0.35	-574.87	0.000000	0.00	0.000
48	4.40	100	100	0.00	0.00	0.00	0.00			0.000

16.3 RISULTATI PER INVILUPPO

Spinta e forze

Simbologia adottata

Ic Indice della combinazione

Tipo azione
Inclinazione della spinta, espressa in [°]

Valore dell'azione, espressa in [kN]
Componente in direzione X ed Y dell'azione, espressa in [kN]
Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m] Cx, Cy Px, Py

Ic	A	V	I	Cx	CY	Px	PY
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	218.56	0.00	218.56	0.00	4.40	-5.29
	Peso/Inerzia muro			0.00	270.97/0.00	0.73	-5.58
	Peso/Inerzia terrapieno			0.00	593.64/0.00	2.29	-3.40

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

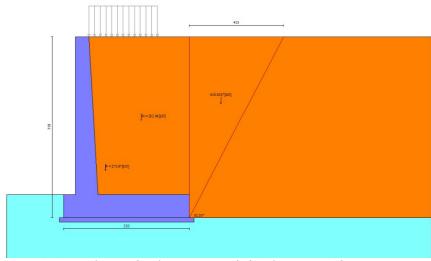


Fig. 12 - Cuneo di spinta (combinazione statica) (Combinazione nº 1)

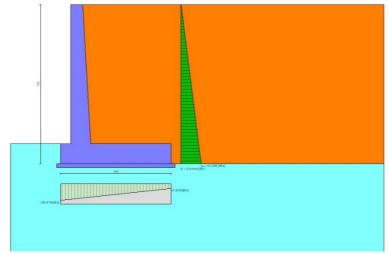


Fig. 13 - Diagramma delle pressioni (combinazione statica) (Combinazione nº 1)

Risultanti globali

Simbologia adottata

Indice/Tipo combinazione
Componente normale al piano di posa, espressa in [kN]

Cmb N T Mr

Componente parallela al piano di posa, espressa in [kN]
Componente parallela al piano di posa, espressa in [kN]
Momento ribaltante, espresso in [kNm]
Momento stabilizzante, espresso in [kNm]
Eccentricità risultante, espressa in [m] M_{s} ecc

Ic	N	Т	Mr	Ms	ecc	
	[kN]	[kN]	[kNm]	[kNm]	[m]	
1 - STR (A1-M1-R3)	864.61	218.56	577.74	2505.57	0.521	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Ic	N	Т	Mr	Ms	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
2 - STR (A1-M1-R3)	869.36	279.82	831.35	2507.83	0.823
3 - STR (A1-M1-R3)	790.86	264.77	904.77	2394.62	0.867
4 - GEO (A2-M2-R2)	858.61	205.18	542.37	2486.28	0.487
5 - GEO (A2-M2-R2)	869.36	279.82	831.35	2507.83	0.823
6 - GEO (A2-M2-R2)	790.86	264.77	904.77	2394.62	0.867
7 - EQU (A1-M1-R3)	864.61	210.46	556.34	2505.57	0.496
8 - EQU (A1-M1-R3)	888.98	340.64	1037.93	2564.44	1.034
9 - EQU (A1-M1-R3)	771.24	318.61	1149.52	2394.62	1.137
10 - SLER	854.11	161.89	427.95	2471.80	0.358
11 - SLEF	846.61	161.89	427.95	2447.68	0.365
12 - SLEQ	824.11	161.89	427.95	2375.32	0.388
13 - SLEQ	848.28	234.14	675.09	2444.99	0.664
14 - SLEQ	799.94	224.70	719.81	2375.32	0.681

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Indice/Tipo combinazione Cmb

Sisma (H: componente orizzontale, V: componente verticale) Coeff. di sicurezza allo scorrimento

FSsco **FS**RIB Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite **FS**OLIM Coeff. di sicurezza a stabilità globale FSHYD Coeff, di sicurezza a sifonamento Coeff. di sicurezza a sollevamento

Cmb	Sismica	FS sco	FSRIB	FSQLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		2.103		2.804			
2 - STR (A1-M1-R3)	H + V	1.652		1.927			
3 - STR (A1-M1-R3)	H - V	1.588		1.983			
4 - GEO (A2-M2-R2)					1.678		
5 - GEO (A2-M2-R2)	H + V				1.763		
6 - GEO (A2-M2-R2)	H - V				1.756		
7 - EQU (A1-M1-R3)			4.504				
8 - EQU (A1-M1-R3)	H + V		2.471				
9 - EQU (A1-M1-R3)	H - V		2.083				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione n°

Resistenza allo scorrimento per attrito, espresso in [kN] Rpt Rps Resistenza passiva terreno antistante, espresso in [kN] Resistenza passiva sperone, espresso in [kN]

Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN]

Rp Rt Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN]

Carico parallelo al piano di posa, espresso in [kN] Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	T	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
3 - STR (A1-M1-R3) H - V	420.51	0.00	0.00			420.51	264.77	1.588

Verifica a carico limite

Simbologia adottata

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n° N Indice combinazione

Carico normale totale al piano di posa, espresso in [kN]

Qu Qd FS carico limite del terreno, espresso in [kN] Portanza di progetto, espresso in [kN]

Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
2 - STR (A1-M1-R3) H + V	869.36	1675.51	1396.26	1.927

Dettagli calcolo portanza

Simbologia adottata

Indice combinazione Nc, Nq, N_Y Fattori di capacità portante ic, iq, i_Y Fattori di inclinazione del carico ic, iq, iγ Fattori di inclinazione del carico dc, dq, dγ Fattori di profondità del piano di posa gc, gq, g $_{\gamma}$ Fattori di inclinazione del profilo topografico bc, bq, b $_{\gamma}$ Fattori di inclinazione del piano di posa Fattori di forma della fondazione

pc, pq, py Fattori di riduzione per punzonamento secondo Vesic Re Fattore di riduzione capacità portante per eccentricità secondo Meyerhof

Ir, Irc Indici di rigidezza per punzonamento secondo Vesic

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN₇ viene moltiplicato

per questo fattore

Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m] Н Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°] Coesione del terreno medio, espresso in [kPa]

Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Vesic).

n°	Nc Nq Nγ	ic iq iγ	dc dq dγ	gc gq gγ	bc bq bγ	sc sq sγ	pc pq Pγ	Ir	Irc	Re	ľγ
2	25.803	0.422	1.073	1.000	1.000					0.613	0.890
	14.720	0.462	1.054	1.000	1.000						
	16.717	0.313	1.000	1.000	1.000						

n°	D	B'	Н	γ	ф	С
	[m]	[m]	[m]	[°]	[kN/mc]	[kPa]
2	1.00	5.50	4.58	19.00	28.00	10

Verifica a ribaltamento

Simbologia adottata

Indice combinazione

Ms Momento stabilizzante, espresso in [kNm] Momento ribaltante, espresso in [kNm]

FS Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)
La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

n°	Ms	Mr	FS
	[kNm]	[kNm]	
9 - EQU (A1-M1-R3) H - V	2394.62	1149.52	2.083

Verifica stabilità globale muro + terreno

Simbologia adottata

Indice/Tipo combinazione

Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m] FS Fattore di sicurezza

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Ic	С	R	FS
	[m]	[m]	
4 - GEO (A2-M2-R2)	-1.50; 2.00	11.56	1.678

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)
W peso della striscia espresso in [kN

peso della striscia espresso in [kN] carico sulla striscia espresso in [kN] Qy

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [kPa]

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kPa]

Tx; Ty Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa]

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	17.86	0.00	9.90 - 0.75	73.336	29.256	0	0.0	
2	46.20	0.00	0.75	62.967	29.256	0	0.0	
3	64.48	0.00	0.75	55.584	29.256	0	0.0	
4	78.52	0.00	0.75	49.434	29.256	0	0.0	
5	89.93	0.00	0.75	43.990	29.256	0	0.0	
6	99.42	0.00	0.75	39.013	29.256	0	0.0	
7	107.41	0.00	0.75	34.367	29.256	0	0.0	
8	116.94	0.00	0.75	29.969	23.043	8	0.0	
9	123.95	0.00	0.75	25.758	23.043	8	0.0	
10	128.65	6.95	0.75	21.693	23.043	8	0.0	
11	132.49	8.63	0.75	17.740	23.043	8	0.0	
12	135.52	8.63	0.75	13.873	23.043	8	0.0	
13	133.65	8.63	0.75	10.070	23.043	8	0.0	
14	166.19	1.67	0.75	6.311	23.043	8	0.0	
15	39.98	0.00	0.75	2.580	23.043	8	0.0	
16	37.39	0.00	0.75	-1.141	23.043	8	0.0	
17	36.83	0.00	0.75	-4.866	23.043	8	0.0	
18	35.56	0.00	0.75	-8.612	23.043	8	0.0	
19	33.58	0.00	0.75	-12.396	23.043	8	0.0	
20	30.84	0.00	0.75	-16.236	23.043	8	0.0	
21	27.33	0.00	0.75	-20.153	23.043	8	0.0	
22	22.96	0.00	0.75	-24.171	23.043	8	0.0	
23	17.68	0.00	0.75	-28.321	23.043	8	0.0	
24	11.38	0.00	0.75	-32.641	23.043	8	0.0	
25	3.90	0.00	-8.86 - 0.75	-36.650	23.043	8	0.0	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Fig. 14 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 4)

Cedimenti

Simbologia adottata

Ic Indice combinazione

Punto di calcolo del cedimento, espressa in [m] Cedimento, espressa in [cm] Cedimento differenziale, espressa in [cm]

dw

Ic	X; Y	w	dw
	[m]	[cm]	[cm]
10	-1.10; -7.93	1.532	0.372
10	1.65; -7.93	2.009	0.849
10	4.40; -7.93	1.160	0.000

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.
Taglio, espresso in [kN]. Positivo se diretto da monte verso valle
Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

n°	X	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.10	1.46	1.46	0.03	0.43	0.00	0.02
3	-0.20	2.94	2.94	0.11	0.93	0.02	0.10
4	-0.30	4.43	4.43	0.25	1.51	0.04	0.23
5	-0.40	5.94	5.94	0.44	2.16	0.09	0.42
6	-0.50	7.46	7.46	0.68	2.88	0.17	0.69
7	-0.59	8.99	8.99	0.98	3.67	0.27	1.04
8	-0.69	10.54	10.54	1.34	4.54	0.41	1.47
9	-0.79	12.10	12.10	1.75	5.49	0.60	2.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	Nmin	Nmax	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
10	-0.89	13.67	13.67	2.21	6.50	0.83	2.63
11	-0.99	15.26	15.26	2.73	7.59	1.12	3.37
12	-1.09	16.86	16.86	3.30	8.76	1.46	4.22
13	-1.19	18.48	18.48	3.93	9.99	1.87	5.20
14	-1.29	20.11	20.11	4.61	11.30	2.35	6.31
15	-1.39	21.75	21.75	5.34	12.69	2.90	7.56
16	-1.49	23.41	23.41	6.13	14.14	3.53	8.95
17	-1.58	25.08	25.08	6.98	15.68	4.25	10.49
18	-1.68	26.77	26.77	7.88	17.28	5.06	12.20
19	-1.78	28.47	28.47	8.83	18.96	5.96	14.07
20	-1.88	30.19	30.19	9.84	20.71	6.97	16.12
21	-1.98	31.91	31.91	10.90	22.54	8.09	18.35
22	-2.08	33.66	33.66	12.02	24.44	9.31	20.77
23	-2.18	35.41	35.41	13.19	26.41	10.66	23.38
24	-2.28	37.18	37.18	14.41	28.45	12.13	26.20
25	-2.38	38.96	38.96	15.69	30.57	13.73	29.23
26	-2.48	40.76	40.76	17.03	32.77	15.46	32.48
27	-2.57	42.57	42.57	18.42	35.03	17.34	35.96
28	-2.67	44.40	44.40	19.86	37.37	19.36	39.66
29	-2.77	46.24	46.24	21.36	39.79	21.53	43.61
30	-2.87	48.09	48.09	22.91	42.27	23.85	47.81
31	-2.97	49.96	49.96	24.52	44.84	26.34	52.26
32	-3.07	51.84	51.84	26.18	47.47	29.00	56.98
33	-3.17	53.74	53.74	27.90	50.18	31.83	61.96
34	-3.27	55.65	55.65	29.67	52.96	34.83	67.22
35	-3.37	57.57	57.57	31.50	55.82	38.02	72.77
36	-3.46	59.51	59.51	33.38	58.74	41.40	78.61
37	-3.56	61.46	61.46	35.31	61.75	44.97	84.75
38	-3.66	63.42	63.42	37.30	64.82	48.75	91.19
39	-3.76	65.40	65.40	39.34	67.97	52.73	97.95
40	-3.86	67.39	67.39	41.44	71.19	56.91	105.03
41	-3.96	69.40	69.40	43.59	74.49	61.32	112.43
42	-4.06	71.42	71.42	45.80	77.86	65.95	120.18
43	-4.16	73.46	73.46	48.06	81.31	70.80	128.26
44	-4.26	75.50	75.50	50.38	84.82	75.89	136.70
45	-4.36	77.57	77.57	52.75	88.41	81.21	145.49
46	-4.46	79.64	79.64	55.17	92.08	86.78	154.65
47	-4.55	81.73	81.73	57.65	95.82	92.59	164.18
48	-4.65	83.84	83.84 85.96	60.18	99.63	98.66	174.09 184.39
	-4.75	85.96		62.77	103.51	104.99	
50 51	-4.85 -4.95	88.09 90.23	88.09 90.23	65.41 68.11	107.47 111.50	111.59 118.45	195.09 206.18
52	-5.05	92.39	92.39	70.86	115.61	125.59	217.68
53	-5.15	94.57	94.57	73.67	119.79	133.01	229.60
54	-5.25	96.76	96.76	76.53	124.04	140.72	241.95
55	-5.35	98.96	98.96	79.44	128.37	148.72	254.72
56	-5.45	101.17	101.17	82.41	132.76	157.02	267.93
57	-5.54	103.40	103.40	85.44	137.21	165.62	281.59
58	-5.64	105.65	105.65	88.52	141.71	174.53	295.70
59	-5.74	107.90	107.90	91.65	146.24	183.76	310.26
60	-5.84	110.18	110.18	94.84	150.80	193.30	325.27
61	-5.94	112.46	112.46	98.08	155.38	203.17	340.75
62	-6.04	114.76	114.76	101.38	159.98	213.37	356.68
63	-6.14	117.07	117.07	104.73	164.60	223.90	373.08
64	-6.24	119.40	119.40	108.13	169.25	234.78	389.95
65	-6.34	121.74	121.74	111.59	173.93	246.00	407.28
66	-6.43	124.10	124.10	115.11	178.65	257.58	425.09
67	-6.53	126.47	126.47	118.67	183.43	269.51	443.37
68	-6.63	128.85	128.85	122.30	188.28	281.80	462.13

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	X	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
69	-6.73	131.25	131.25	125.98	193.20	294.46	481.39
70	-6.83	133.66	133.66	129.71	198.20	307.50	501.15
71	-6.93	136.08	136.08	133.49	203.28	320.91	521.41

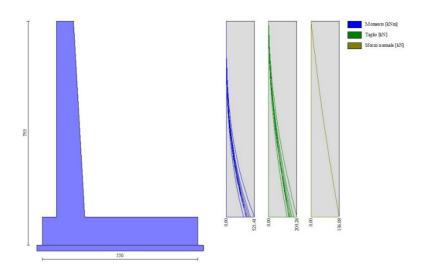


Fig. 15 - Paramento

Fondazione

n°	X	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-1.10	0.00	0.00	0.00	0.00	0.00	0.00
2	-1.02	0.00	0.00	15.64	22.76	0.65	0.95
3	-0.93	0.00	0.00	31.12	45.16	2.60	3.78
4	-0.85	0.00	0.00	46.44	67.20	5.84	8.47
5	-0.77	0.00	0.00	61.60	88.88	10.34	14.97
6	-0.68	0.00	0.00	76.60	110.21	16.10	23.27
7	-0.60	0.00	0.00	91.44	131.17	23.10	33.33
8	0.40	0.00	0.00	-313.10	-94.79	-799.39	-309.39
9	0.50	0.00	0.00	-311.13	-96.92	-767.22	-299.01
10	0.60	0.00	0.00	-308.84	-98.81	-735.28	-288.49
11	0.70	0.00	0.00	-306.22	-99.93	-703.57	-277.85
12	0.80	0.00	0.00	-303.28	-100.81	-672.15	-267.11
13	0.90	0.00	0.00	-300.01	-101.48	-641.04	-256.30
14	1.00	0.00	0.00	-296.42	-101.92	-610.27	-245.43
15	1.10	0.00	0.00	-292.50	-102.15	-579.87	-234.52
16	1.20	0.00	0.00	-288.26	-102.15	-549.88	-223.60
17	1.30	0.00	0.00	-283.69	-101.94	-520.34	-212.69
18	1.40	0.00	0.00	-278.80	-101.50	-491.26	-201.82
19	1.50	0.00	0.00	-273.59	-100.84	-462.70	-191.00
20	1.60	0.00	0.00	-268.05	-99.97	-434.66	-180.26
21	1.70	0.00	0.00	-262.18	-98.87	-407.20	-169.61
22	1.80	0.00	0.00	-255.99	-97.55	-380.35	-159.09
23	1.90	0.00	0.00	-249.48	-96.02	-354.12	-148.71
24	2.00	0.00	0.00	-242.64	-94.26	-328.57	-138.49
25	2.10	0.00	0.00	-235.47	-92.28	-303.72	-128.46

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
26	2.20	0.00	0.00	-227.98	-90.08	-279.59	-118.64
27	2.30	0.00	0.00	-220.17	-87.66	-256.24	-109.05
28	2.40	0.00	0.00	-212.03	-85.02	-233.68	-99.71
29	2.50	0.00	0.00	-203.57	-82.17	-212.27	-90.65
30	2.60	0.00	0.00	-194.78	-79.09	-193.05	-81.88
31	2.70	0.00	0.00	-185.67	-75.79	-174.44	-73.44
32	2.80	0.00	0.00	-176.23	-72.27	-156.50	-65.33
33	2.90	0.00	0.00	-167.16	-68.53	-139.27	-57.59
34	3.00	0.00	0.00	-159.30	-64.58	-122.81	-50.25
35	3.10	0.00	0.00	-151.13	-61.40	-107.28	-43.94
36	3.20	0.00	0.00	-142.47	-58.00	-92.60	-37.97
37	3.30	0.00	0.00	-133.31	-54.38	-78.80	-32.35
38	3.40	0.00	0.00	-123.66	-50.54	-65.95	-27.10
39	3.50	0.00	0.00	-113.52	-46.47	-54.09	-22.25
40	3.60	0.00	0.00	-102.88	-42.19	-43.26	-17.82
41	3.70	0.00	0.00	-91.75	-37.69	-33.53	-13.82
42	3.80	0.00	0.00	-80.13	-32.97	-24.93	-10.29
43	3.90	0.00	0.00	-68.01	-28.02	-17.52	-7.24
44	4.00	0.00	0.00	-55.40	-22.86	-11.34	-4.69
45	4.10	0.00	0.00	-42.29	-17.47	-6.45	-2.67
46	4.20	0.00	0.00	-28.69	-11.87	-2.90	-1.20
47	4.30	0.00	0.00	-14.59	-6.05	-0.73	-0.30
48	4.40	0.00	0.00	0.00	0.00	0.00	0.00

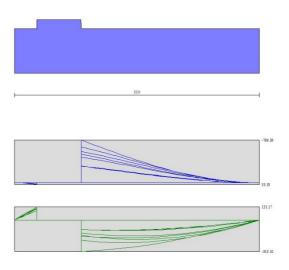


Fig. 16 - Fondazione

Verifiche strutturali

Verifiche a flessione

<u>Elementi calcolati a trave</u> Simbologia adottata

n° indice sezione Y ordinata sezione espressa in [m]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

larghezza sezione espresso in [cm] altezza sezione espressa in [cm] area ferri inferiori espresso in [cmq] area ferri superiori espressa in [cmq] B H Afi Afs M N Mu momento agente espressa in [kNm] inoriento agente espressa in [kNi] sforzo normale agente espressa in [kN] momento ultimi espresso in [kNm] sforzo normale ultimo espressa in [kN] fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente) Nu FS

Paramento

n°	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	60	20.11	31.42	0.00	0.00	0.00	0.00	100000.000
2	100	61	20.11	31.42	0.01	1.46	86.04	9809.75	6703.953
3	100	61	20.11	31.42	0.06	2.94	187.80	9934.82	3378.626
4	100	62	20.11	31.42	0.23	4.43	488.42	9562.69	2157.823
5	100	62	20.11	31.42	0.42	5.94	637.42	8967.75	1510.555
6	100	63	20.11	31.42	0.69	7.46	774.17	8367.50	1122.290
7	100	63	20.11	31.42	1.04	8.99	896.89	7773.15	864.770
8	100	64	20.11	31.42	1.47	10.54	1005.56	7200.53	683.449
9	100	65	20.11	31.42	2.00	12.10	1101.60	6663.99	550.907
10	100	65	20.11	31.42	2.63	13.67	1187.35	6173.42	451.565
11	100	66	20.11	31.42	3.37	15.26	1262.27	5719.17	374.785
12	100	66	20.11	31.42	4.22	16.86	1330.09	5311.49	314.989
13	100	67	20.11	31.42	5.20	18.48	1387.72	4930.73	266.828
14	100	67	20.11	31.42	6.31	20.11	1436.77	4579.11	227.708
15	100	68	20.11	31.42	7.56	21.75	1439.04	4142.67	190.432
16	100	69	20.11	31.42	8.95	23.41	1428.21	3736.46	159.594
17	100	69	20.11	31.42	10.49	25.08	1411.54	3374.07	134.507
18	100	70	20.11	31.42	12.20	26.77	1389.87	3050.02	113.930
19	100	70	20.11	31.42	14.07	28.47	1362.65	2757.00	96.835
20	100	71	20.11	31.42	16.12	30.19	1337.40	2504.46	82.970
21	100	71	20.11	31.42	18.35	31.91	1311.19	2280.55	71.461
22	100	72	20.11	31.42	20.77	33.66	1284.57	2081.80	61.857
23	100	73	20.11	31.42	23.38	35.41	1263.59	1913.65	54.041
24	100	73	20.11	31.42	26.20	37.18	1241.83	1762.22	47.396
25	100	74	20.11	31.42	29.23	38.96	1216.98	1622.19	41.632
26	100	74	20.11	31.42	32.48	40.76	1196.84	1501.99	36.847
27	100	75	20.11	31.42	35.96	42.57	1180.50	1397.78	32.832
28	100	76	20.11	31.42	39.66	44.40	1167.26	1306.61	29.428
29	100	76	20.11	31.42	43.61	46.24	1153.69	1223.16	26.453
30	100	77	20.11	31.42	47.81	48.09	1141.35	1148.09	23.872
31	100	77	20.11	31.42	52.26	49.96	1131.15	1081.32	21.644
32	100	78	20.11	31.42	56.98	51.84	1122.76	1021.56	19.705
33	100	78	20.11	31.42	61.96	53.74	1115.92	967.79	18.010
34	100	79	20.11	31.42	67.22	55.65	1110.41	919.18	16.518
35	100	80	20.11	31.42	72.77	57.57	1106.07	875.03	15.200
36	100	80	20.11	31.42	78.61	59.51	1102.73	834.77	14.028
37	100	81	20.11	31.42	84.75	61.46	1100.29	797.93	12.984
38	100	81	20.11	31.42	91.19	63.42	1098.63	764.10	12.048
39	100	82	20.11	31.42	97.95	65.40	1097.66	732.93	11.207
40	100	82	20.11	31.42	105.03	67.39	1097.32	704.14	10.448
41	100	83	20.11	31.42	112.43	69.40	1097.53	677.47	9.762
42	100	84	20.11	31.42	120.18	71.42	1098.24	652.70	9.139
43	100	84	20.11	31.42	128.26	73.46	1099.41	629.63	8.572
44	100	85	20.11	31.42	136.70	75.50	1100.98	608.12	8.054
45	100	85	20.11	31.42	145.49	77.57	1102.92	588.00	7.581
46	100	86	20.11	31.42	154.65	79.64	1105.20	569.16	7.146
47	100	86	20.11	31.42	164.18	81.73	1107.78	551.48	6.747

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
48	100	87	20.11	31.42	174.09	83.84	1110.65	534.85	6.380
49	100	88	20.11	31.42	184.39	85.96	1113.78	519.20	6.040
50	100	88	20.11	31.42	195.09	88.09	1117.15	504.43	5.726
51	100	89	20.11	31.42	206.18	90.23	1120.73	490.49	5.436
52	100	89	20.11	31.42	217.68	92.39	1124.52	477.30	5.166
53	100	90	20.11	31.42	229.60	94.57	1128.50	464.80	4.915
54	100	90	20.11	31.42	241.95	96.76	1132.66	452.96	4.681
55	100	91	20.11	31.42	254.72	98.96	1136.98	441.71	4.464
56	100	92	20.11	31.42	267.93	101.17	1141.45	431.02	4.260
57	100	92	20.11	31.42	281.59	103.40	1146.06	420.85	4.070
58	100	93	20.11	31.42	295.70	105.65	1150.81	411.16	3.892
59	100	93	20.11	31.42	310.26	107.90	1155.69	401.94	3.725
60	100	94	20.11	31.42	325.27	110.18	1160.68	393.15	3.568
61	100	94	20.11	31.42	340.75	112.46	1165.80	384.76	3.421
62	100	95	20.11	31.42	356.68	114.76	1171.02	376.77	3.283
63	100	96	20.11	31.42	373.08	117.07	1176.35	369.14	3.153
64	100	96	20.11	31.42	389.95	119.40	1181.78	361.86	3.031
65	100	97	20.11	31.42	407.28	121.74	1187.26	354.89	2.915
66	100	97	20.11	31.42	425.09	124.10	1192.35	348.09	2.805
67	100	98	20.11	31.42	443.37	126.47	1197.53	341.58	2.701
68	100	98	20.11	31.42	462.13	128.85	1202.78	335.35	2.603
69	100	99	20.11	31.42	481.39	131.25	1208.11	329.38	2.510
70	100	100	20.11	31.42	501.15	133.66	1213.52	323.65	2.421
71	100	100	20.11	31.42	521.41	136.08	1218.98	318.14	2.338

Fondazione

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	100	31.42	31.42	0.00	0.00	0.00	0.00	100000.000
2	100	100	0.00	0.00	0.77	0.00	0.00	0.00	0.000
3	100	100	31.42	31.42	3.78	0.00	1080.18	0.00	285.546
4	100	100	31.42	31.42	8.47	0.00	1080.18	0.00	127.580
5	100	100	31.42	31.42	14.97	0.00	1080.18	0.00	72.145
6	100	100	31.42	31.42	23.27	0.00	1080.18	0.00	46.419
7	100	100	31.42	31.42	33.33	0.00	1080.18	0.00	32.409
8	100	100	31.42	31.42	-799.39	0.00	-1080.18	0.00	1.351
9	100	100	31.42	31.42	-767.22	0.00	-1080.18	0.00	1.408
10	100	100	31.42	31.42	-735.28	0.00	-1080.18	0.00	1.469
11	100	100	31.42	31.42	-703.57	0.00	-1080.18	0.00	1.535
12	100	100	31.42	31.42	-672.15	0.00	-1080.18	0.00	1.607
13	100	100	31.42	31.42	-641.04	0.00	-1080.18	0.00	1.685
14	100	100	31.42	31.42	-610.27	0.00	-1080.18	0.00	1.770
15	100	100	31.42	31.42	-579.87	0.00	-1080.18	0.00	1.863
16	100	100	31.42	31.42	-549.88	0.00	-1080.18	0.00	1.964
17	100	100	31.42	31.42	-520.34	0.00	-1080.18	0.00	2.076
18	100	100	31.42	31.42	-491.26	0.00	-1080.18	0.00	2.199
19	100	100	31.42	31.42	-462.70	0.00	-1080.18	0.00	2.335
20	100	100	31.42	31.42	-434.66	0.00	-1080.18	0.00	2.485
21	100	100	31.42	31.42	-407.20	0.00	-1080.18	0.00	2.653
22	100	100	31.42	31.42	-380.35	0.00	-1080.18	0.00	2.840
23	100	100	31.42	31.42	-354.12	0.00	-1080.18	0.00	3.050
24	100	100	31.42	31.42	-328.57	0.00	-1080.18	0.00	3.288
25	100	100	31.42	31.42	-303.72	0.00	-1080.18	0.00	3.557
26	100	100	31.42	31.42	-279.59	0.00	-1080.18	0.00	3.863
27	100	100	31.42	31.42	-256.24	0.00	-1080.18	0.00	4.216
28	100	100	31.42	31.42	-233.68	0.00	-1080.18	0.00	4.622

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
29	100	100	31.42	31.42	-212.27	0.00	-1080.18	0.00	5.089
30	100	100	31.42	31.42	-193.05	0.00	-1080.18	0.00	5.595
31	100	100	31.42	31.42	-174.44	0.00	-1080.18	0.00	6.192
32	100	100	31.42	31.42	-156.50	0.00	-1080.18	0.00	6.902
33	100	100	31.42	31.42	-139.27	0.00	-1080.18	0.00	7.756
34	100	100	31.42	31.42	-122.81	0.00	-1080.18	0.00	8.796
35	100	100	31.42	31.42	-107.28	0.00	-1080.18	0.00	10.069
36	100	100	31.42	31.42	-92.60	0.00	-1080.18	0.00	11.665
37	100	100	31.42	31.42	-78.80	0.00	-1080.18	0.00	13.707
38	100	100	31.42	31.42	-65.95	0.00	-1080.18	0.00	16.379
39	100	100	31.42	31.42	-54.09	0.00	-1080.18	0.00	19.971
40	100	100	31.42	31.42	-43.26	0.00	-1080.18	0.00	24.968
41	100	100	31.42	31.42	-33.53	0.00	-1080.18	0.00	32.219
42	100	100	31.42	31.42	-24.93	0.00	-1080.18	0.00	43.332
43	100	100	31.42	31.42	-17.52	0.00	-1080.18	0.00	61.665
44	100	100	31.42	31.42	-11.34	0.00	-1080.18	0.00	95.232
45	100	100	31.42	31.42	-6.45	0.00	-1080.18	0.00	167.357
46	100	100	31.42	31.42	-2.90	0.00	-1080.18	0.00	372.279
47	100	100	31.42	31.42	-0.73	0.00	-1080.18	0.00	1472.399
48	100	100	31.42	31.42	0.00	0.00	0.00	0.00	
									100000.000

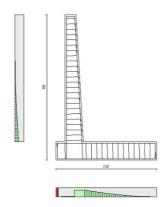


Fig. 17 - Paramento (Inviluppo)

Verifiche a taglio

Simbologia adottata

indice sezione ordinata sezione espressa in [m] Is Y B larghezza sezione espresso in [cm] H Asw altezza sezione espressa in [cm] area ferri a taglio espresso in [cmq]

 $\begin{array}{c} cotg\theta \\ V_{Rcd} \end{array}$

area terri a taglio espresso in [cmq] inclinazione dei puntoni di calcestruzzo resistenza di progetto a 'taglio compressione' espressa in [kN] resistenza di progetto a 'taglio trazione' espressa in [kN] resistenza di progetto a taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio (Asw>0.0) VRd=min(VRcd, VRsd). taglio agente espressa in [kN] V_{Rd}

T FS fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Paramento

n°	В	Н	Asw	cotθ	VRcd	VRsd	VRd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	60	0.00		0.00	0.00	313.78	0.00	100.000
2	100	61	0.00		0.00	0.00	315.60	0.43	736.928
3	100	61	0.00		0.00	0.00	317.41	0.93	340.926
4	100	62	0.00		0.00	0.00	319.22	1.51	211.774
5	100	62	0.00		0.00	0.00	321.03	2.16	148.876
6	100	63	0.00		0.00	0.00	322.83	2.88	112.156
7	100	63	0.00		0.00	0.00	324.62	3.67	88.357
8	100	64	0.00		0.00	0.00	326.42	4.54	71.848
9	100	65	0.00		0.00	0.00	328.20	5.49	59.827
10	100	65	0.00		0.00	0.00	329.99	6.50	50.751
11	100	66	0.00		0.00	0.00	331.77	7.59	43.700
12	100	66	0.00		0.00	0.00	333.55	8.76	38.096
13	100	67	0.00		0.00	0.00	335.32	9.99	33.558
14	100	67	0.00		0.00	0.00	337.09	11.30	29.823
15	100	68	0.00		0.00	0.00	338.86	12.69	26.709
16	100	69	0.00		0.00	0.00	340.62	14.14	24.081
17	100	69	0.00		0.00	0.00	342.38	15.68	21.841
18	100	70	0.00		0.00	0.00	344.13	17.28	19.914
19	100	70	0.00		0.00	0.00	345.88	18.96	18.244
20	100	71	0.00		0.00	0.00	347.63	20.71	16.785
21	100	71	0.00		0.00	0.00	349.38	22.54	15.503
22	100	72	0.00		0.00	0.00	351.12	24.44	14.370
23	100	73	0.00		0.00	0.00	352.86	26.41	13.362
24	100	73	0.00		0.00	0.00	354.60	28.45	12.462
25	100	74	0.00		0.00	0.00	356.33	30.57	11.655
26	100	74	0.00		0.00	0.00	358.06	32.77	10.928
27	100	75	0.00		0.00	0.00	359.79	35.03	10.270
28	100	76	0.00		0.00	0.00	361.52	37.37	9.673
29	100	76	0.00		0.00	0.00	363.24	39.79	9.130
30	100	77	0.00		0.00	0.00	364.96	42.27	8.633
31	100	77	0.00		0.00	0.00	366.68	44.84	8.178
32	100	78	0.00		0.00	0.00	368.39	47.47	7.761
33	100	78	0.00		0.00	0.00	370.11	50.18	7.376
34	100	79	0.00		0.00	0.00	371.82	52.96	7.021
35	100	80	0.00		0.00	0.00	373.53	55.82	6.692
36	100	80	0.00		0.00	0.00	375.23	58.74	6.388
37	100	81	0.00		0.00	0.00	376.94	61.75	6.105
38	100	81	0.00		0.00	0.00	378.64	64.82	5.841
39	100	82	0.00		0.00	0.00	380.34	67.97	5.596
40	100	82	0.00		0.00	0.00	382.03	71.19	5.366
41	100	83	0.00		0.00	0.00	383.73	74.49	5.151
42	100	84	0.00		0.00	0.00	385.42	77.86	4.950
43	100	84	0.00		0.00	0.00	387.11	81.31	4.761
44	100	85	0.00		0.00	0.00	388.80	84.82	4.584
45	100	85	0.00		0.00	0.00	390.49	88.41	4.417
46	100	86	0.00		0.00	0.00	392.18	92.08	4.259
47	100	86	0.00		0.00	0.00	393.86	95.82	4.111
48	100	87	0.00		0.00	0.00	395.54	99.63	3.970
49	100	88	0.00		0.00	0.00	397.22	103.51	3.837
50	100	88	0.00		0.00	0.00	398.90	107.47	3.712
51	100	89	0.00		0.00	0.00	400.58	111.50	3.593
52	100	89	0.00		0.00	0.00	402.25	115.61	3.479
53	100	90	0.00		0.00	0.00	403.93	119.79	3.372
54	100	90	0.00		0.00	0.00	405.60	124.04	3.270
55	100	91	0.00		0.00	0.00	407.27	128.37	3.173
33	100	51	0.00		0.00	0.00	107.127	220.57	5.175

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Asw	cotθ	VRcd	VRsd	V Rd	T	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
56	100	92	0.00		0.00	0.00	408.94	132.76	3.080
57	100	92	0.00		0.00	0.00	410.61	137.21	2.993
58	100	93	0.00		0.00	0.00	412.28	141.71	2.909
59	100	93	0.00		0.00	0.00	413.94	146.24	2.831
60	100	94	0.00		0.00	0.00	415.60	150.80	2.756
61	100	94	0.00		0.00	0.00	417.27	155.38	2.685
62	100	95	0.00		0.00	0.00	418.93	159.98	2.619
63	100	96	0.00		0.00	0.00	420.59	164.60	2.555
64	100	96	0.00		0.00	0.00	422.25	169.25	2.495
65	100	97	0.00		0.00	0.00	423.91	173.93	2.437
66	100	97	0.00		0.00	0.00	425.56	178.65	2.382
67	100	98	0.00		0.00	0.00	427.22	183.43	2.329
68	100	98	0.00		0.00	0.00	428.87	188.28	2.278
69	100	99	0.00		0.00	0.00	430.53	193.20	2.228
70	100	100	0.00		0.00	0.00	432.18	198.20	2.180
71	100	100	0.00		0.00	0.00	433.83	203.28	2.134

Fondazione

n°	В	Н	Asw	cotθ	VRcd	VRsd	VRd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	100	0.00		0.00	0.00	442.84	0.00	100.000
2	100	100	0.00		0.00	0.00	312.92	-22.76	13.751
3	100	100	0.00		0.00	0.00	442.84	-45.16	9.807
4	100	100	0.00		0.00	0.00	442.84	-67.20	6.590
5	100	100	0.00		0.00	0.00	442.84	-88.88	4.982
6	100	100	0.00		0.00	0.00	442.84	-110.21	4.018
7	100	100	0.00		0.00	0.00	442.84	-131.17	3.376
8	100	100	0.00		0.00	0.00	442.84	-313.10	1.414
9	100	100	0.00		0.00	0.00	442.84	-311.13	1.423
10	100	100	0.00		0.00	0.00	442.84	-308.84	1.434
11	100	100	0.00		0.00	0.00	442.84	-306.22	1.446
12	100	100	0.00		0.00	0.00	442.84	-303.28	1.460
13	100	100	0.00		0.00	0.00	442.84	-300.01	1.476
14	100	100	0.00		0.00	0.00	442.84	-296.42	1.494
15	100	100	0.00		0.00	0.00	442.84	-292.50	1.514
16	100	100	0.00		0.00	0.00	442.84	-288.26	1.536
17	100	100	0.00		0.00	0.00	442.84	-283.69	1.561
18	100	100	0.00		0.00	0.00	442.84	-278.80	1.588
19	100	100	0.00		0.00	0.00	442.84	-273.59	1.619
20	100	100	0.00		0.00	0.00	442.84	-268.05	1.652
21	100	100	0.00		0.00	0.00	442.84	-262.18	1.689
22	100	100	0.00		0.00	0.00	442.84	-255.99	1.730
23	100	100	0.00		0.00	0.00	442.84	-249.48	1.775
24	100	100	0.00		0.00	0.00	442.84	-242.64	1.825
25	100	100	0.00		0.00	0.00	442.84	-235.47	1.881
26	100	100	0.00		0.00	0.00	442.84	-227.98	1.942
27	100	100	0.00		0.00	0.00	442.84	-220.17	2.011
28	100	100	0.00		0.00	0.00	442.84	-212.03	2.089
29	100	100	0.00		0.00	0.00	442.84	-203.57	2.175
30	100	100	0.00		0.00	0.00	442.84	-194.78	2.274
31	100	100	0.00		0.00	0.00	442.84	-185.67	2.385
32	100	100	0.00		0.00	0.00	442.84	-176.23	2.513
33	100	100	0.00		0.00	0.00	442.84	-167.16	2.649
34	100	100	0.00		0.00	0.00	442.84	-159.30	2.780
35	100	100	0.00		0.00	0.00	442.84	-151.13	2.930
36	100	100	0.00		0.00	0.00	442.84	-142.47	3.108

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Asw	cote	VRcd	VRsd	V Rd	T	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
37	100	100	0.00		0.00	0.00	442.84	-133.31	3.322
38	100	100	0.00		0.00	0.00	442.84	-123.66	3.581
39	100	100	0.00		0.00	0.00	442.84	-113.52	3.901
40	100	100	0.00		0.00	0.00	442.84	-102.88	4.304
41	100	100	0.00		0.00	0.00	442.84	-91.75	4.826
42	100	100	0.00		0.00	0.00	442.84	-80.13	5.527
43	100	100	0.00		0.00	0.00	442.84	-68.01	6.512
44	100	100	0.00		0.00	0.00	442.84	-55.40	7.994
45	100	100	0.00		0.00	0.00	442.84	-42.29	10.472
46	100	100	0.00		0.00	0.00	442.84	-28.69	15.438
47	100	100	0.00		0.00	0.00	442.84	-14.59	30.353
48	100	100	0.00		0.00	0.00	442.84	0.00	100.000

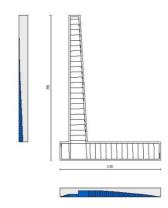


Fig. 18 - Paramento (Inviluppo)

Verifica delle tensioni

Simbologia adottata

indice sezione ordinata sezione, espressa in [m] ordinada sezione, espressa in [m] larghezza sezione, espresso in [cm] altezza sezione, espressa in [cm] area ferri inferiori, espressa in [cmq] area ferri superiori, espressa in [cmq] momento agente, espressa in [kNm] В Afi Afs

sforzo normale agente, espressa in [kN] tensione di compressione nel cls, espressa in [kPa] σC tensione nei ferri inferiori, espressa in [kPa] tensione nei ferri superiori, espressa in [kPa]

Combinazioni SLER

Paramento

Tensione massima di compressione nel calcestruzzo 17430 [kPa] Tensione massima di trazione dell'acciaio 360000 [kPa]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	ос	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	60	20.11	31.42	0.00	0.00	0 (10)	0 (10)	0 (10)
2	100	61	20.11	31.42	0.02	1.46	2 (10)	28 (10)	36 (10)
3	100	61	20.11	31.42	0.07	2.94	5 (10)	51 (10)	78 (10)
4	100	62	20.11	31.42	0.17	4.43	9 (10)	67 (10)	126 (10)
5	100	62	20.11	31.42	0.32	5.94	13 (10)	77 (10)	180 (10)
6	100	63	20.11	31.42	0.52	7.46	18 (10)	79 (10)	242 (10)
7	100	63	20.11	31.42	0.79	8.99	23 (10)	74 (10)	311 (10)
8	100	64	20.11	31.42	1.12	10.54	29 (10)	60 (10)	388 (10)
9	100	65	20.11	31.42	1.52	12.10	36 (10)	36 (10)	474 (10)
10	100	65	20.11	31.42	1.99	13.67	44 (10)	7 (10)	573 (10)
11	100	66	20.11	31.42	2.55	15.26	53 (10)	77 (10)	686 (10)
12	100	66	20.11	31.42	3.20	16.86	64 (10)	181 (10)	813 (10)
13	100	67	20.11	31.42	3.93	18.48	76 (10)	325 (10)	957 (10)
14	100	67	20.11	31.42	4.77	20.11	90 (10)	515 (10)	1117 (10)
15	100	68	20.11	31.42	5.71	21.75	105 (10)	757 (10)	1292 (10)
16	100	69	20.11	31.42	6.76	23.41	122 (10)	1051 (10)	1483 (10)
17	100	69	20.11	31.42	7.92	25.08	141 (10)	1402 (10)	1689 (10)
18	100	70	20.11	31.42	9.20	26.77	161 (10)	1810 (10)	1910 (10)
19	100	70	20.11	31.42	10.61	28.47	182 (10)	2276 (10)	2145 (10)
20	100	71	20.11	31.42	12.15	30.19	205 (10)	2802 (10)	2396 (10)
21	100	71	20.11	31.42	13.82	31.91	230 (10)	3389 (10)	2662 (10)
22	100	72	20.11	31.42	15.64	33.66	256 (10)	4037 (10)	2943 (10)
23	100	73	20.11	31.42	17.60	35.41	284 (10)	4747 (10)	3239 (10)
24	100	73	20.11	31.42	19.72	37.18	313 (10)	5521 (10)	3550 (10)
25	100	74	20.11	31.42	21.99	38.96	344 (10)	6359 (10)	3876 (10)
26	100	74	20.11	31.42	24.43	40.76	376 (10)	7263 (10)	4219 (10)
27	100	75	20.11	31.42	27.03	42.57	410 (10)	8232 (10)	4576 (10)
28	100	76	20.11	31.42	29.81	44.40	446 (10)	9269 (10)	4950 (10)
29	100	76	20.11	31.42	32.77	46.24	483 (10)	10373 (10)	5340 (10)
30	100	77	20.11	31.42	35.91	48.09	521 (10)	11547 (10)	5746 (10)
31	100	77	20.11	31.42	39.25	49.96	561 (10)	12790 (10)	6168 (10)
32	100	78	20.11	31.42	42.78	51.84	603 (10)	14103 (10)	6607 (10)
33	100	78	20.11	31.42	46.51	53.74	646 (10)	15487 (10)	7063 (10)
34	100	79	20.11	31.42	50.45	55.65	691 (10)	16944 (10)	7535 (10)
35	100	80	20.11	31.42	54.60	57.57	737 (10)	18473 (10)	8023 (10)
36	100	80	20.11	31.42	58.97	59.51	785 (10)	20075 (10)	8529 (10)
37	100	81	20.11	31.42	63.56	61.46	834 (10)	21752 (10)	9052 (10)
38	100	81	20.11	31.42	68.38	63.42	885 (10)	23503 (10)	9591 (10)
39	100	82	20.11	31.42	73.43	65.40	938 (10)	25330 (10)	10148 (10)
40	100	82	20.11	31.42	78.72	67.39	992 (10)	27233 (10)	10722 (10)
41	100	83	20.11	31.42	84.26	69.40	1048 (10)	29213 (10)	11314 (10)
42	100	84	20.11	31.42	90.05	71.42	1105 (10)	31270 (10)	11922 (10)
43	100	84	20.11	31.42	96.09	73.46	1164 (10)	33406 (10)	12548 (10)
44	100	85	20.11	31.42	102.40	75.50	1224 (10)	35619 (10)	13192 (10)
45	100	85	20.11	31.42	108.97	77.57	1286 (10)	37912 (10)	13853 (10)
46	100	86	20.11	31.42	115.81	79.64	1349 (10)	40285 (10)	14531 (10)
47	100	86	20.11	31.42	122.93	81.73	1414 (10)	42738 (10)	15227 (10)
48	100	87	20.11	31.42	130.34	83.84	1481 (10)	45271 (10)	15941 (10)
49	100	88	20.11	31.42	138.03	85.96	1549 (10)	47886 (10)	16672 (10)
50	100	88	20.11	31.42	146.01	88.09	1619 (10)	50582 (10)	17421 (10)
51	100	89	20.11	31.42	154.30	90.23	1690 (10)	53360 (10)	18188 (10)
52	100	89	20.11	31.42	162.89	92.39	1763 (10)	56221 (10)	18973 (10)
53	100	90	20.11	31.42	171.79	94.57	1837 (10)	59165 (10)	19775 (10)
54	100	90	20.11	31.42	181.00	96.76	1913 (10)	62193 (10)	20594 (10)
55	100	91	20.11	31.42	190.53	98.96	1990 (10)	65304 (10)	21432 (10)
56	100	92	20.11	31.42	200.40	101.17	2069 (10)	68499 (10)	22287 (10)
57	100	92	20.11	31.42	210.59	103.40	2150 (10)	71779 (10)	23160 (10)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
58	100	93	20.11	31.42	221.12	105.65	2231 (10)	75143 (10)	24051 (10)
59	100	93	20.11	31.42	231.98	107.90	2315 (10)	78590 (10)	24959 (10)
60	100	94	20.11	31.42	243.18	110.18	2399 (10)	82119 (10)	25883 (10)
61	100	94	20.11	31.42	254.73	112.46	2485 (10)	85730 (10)	26825 (10)
62	100	95	20.11	31.42	266.62	114.76	2573 (10)	89422 (10)	27782 (10)
63	100	96	20.11	31.42	278.85	117.07	2662 (10)	93192 (10)	28756 (10)
64	100	96	20.11	31.42	291.43	119.40	2752 (10)	97041 (10)	29745 (10)
65	100	97	20.11	31.42	304.36	121.74	2843 (10)	100968 (10)	30750 (10)
66	100	97	20.11	31.42	317.64	124.10	2935 (10)	104971 (10)	31769 (10)
67	100	98	20.11	31.42	331.28	126.47	3029 (10)	109051 (10)	32804 (10)
68	100	98	20.11	31.42	345.27	128.85	3124 (10)	113209 (10)	33854 (10)
69	100	99	20.11	31.42	359.64	131.25	3220 (10)	117443 (10)	34919 (10)
70	100	100	20.11	31.42	374.37	133.66	3318 (10)	121756 (10)	35999 (10)
71	100	100	20.11	31.42	389.47	136.08	3416 (10)	126148 (10)	37094 (10)

Fondazione

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio 17430 360000 [kPa] [kPa]

n°	В	Н	Afi	Afs	М	N	σC	ofi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	100	31.42	31.42	0.00	0.00	0 (10)	0 (10)	0 (10)
2	100	100	0.00	0.00	0.66	0.00	0 (10)	0 (10)	0 (10)
3	100	100	31.42	31.42	2.64	0.00	21 (10)	988 (10)	216 (10)
4	100	100	31.42	31.42	5.92	0.00	48 (10)	2216 (10)	485 (10)
5	100	100	31.42	31.42	10.49	0.00	85 (10)	3926 (10)	859 (10)
6	100	100	31.42	31.42	16.34	0.00	132 (10)	6115 (10)	1337 (10)
7	100	100	31.42	31.42	23.46	0.00	190 (10)	8777 (10)	1919 (10)
8	100	100	31.42	31.42	-309.39	0.00	2505 (10)	25316 (10)	115761 (10)
9	100	100	31.42	31.42	-299.01	0.00	2421 (10)	24467 (10)	111879 (10)
10	100	100	31.42	31.42	-288.49	0.00	2336 (10)	23607 (10)	107944 (10)
11	100	100	31.42	31.42	-277.85	0.00	2249 (10)	22736 (10)	103963 (10)
12	100	100	31.42	31.42	-267.11	0.00	2162 (10)	21857 (10)	99944 (10)
13	100	100	31.42	31.42	-256.30	0.00	2075 (10)	20972 (10)	95897 (10)
14	100	100	31.42	31.42	-245.43	0.00	1987 (10)	20083 (10)	91829 (10)
15	100	100	31.42	31.42	-234.52	0.00	1899 (10)	19190 (10)	87748 (10)
16	100	100	31.42	31.42	-223.60	0.00	1810 (10)	18297 (10)	83663 (10)
17	100	100	31.42	31.42	-212.69	0.00	1722 (10)	17404 (10)	79582 (10)
18	100	100	31.42	31.42	-201.82	0.00	1634 (10)	16514 (10)	75513 (10)
19	100	100	31.42	31.42	-191.00	0.00	1546 (10)	15629 (10)	71465 (10)
20	100	100	31.42	31.42	-180.26	0.00	1459 (10)	14750 (10)	67445 (10)
21	100	100	31.42	31.42	-169.61	0.00	1373 (10)	13879 (10)	63462 (10)
22	100	100	31.42	31.42	-159.09	0.00	1288 (10)	13018 (10)	59524 (10)
23	100	100	31.42	31.42	-148.71	0.00	1204 (10)	12168 (10)	55640 (10)
24	100	100	31.42	31.42	-138.49	0.00	1121 (10)	11332 (10)	51818 (10)
25	100	100	31.42	31.42	-128.46	0.00	1040 (10)	10512 (10)	48065 (10)
26	100	100	31.42	31.42	-118.64	0.00	960 (10)	9708 (10)	44390 (10)
27	100	100	31.42	31.42	-109.05	0.00	883 (10)	8923 (10)	40802 (10)
28	100	100	31.42	31.42	-99.71	0.00	807 (10)	8159 (10)	37308 (10)
29	100	100	31.42	31.42	-90.65	0.00	734 (10)	7418 (10)	33918 (10)
30	100	100	31.42	31.42	-81.88	0.00	663 (10)	6700 (10)	30638 (10)
31	100	100	31.42	31.42	-73.44	0.00	595 (10)	6009 (10)	27478 (10)
32	100	100	31.42	31.42	-65.33	0.00	529 (10)	5346 (10)	24445 (10)
33	100	100	31.42	31.42	-57.59	0.00	466 (10)	4712 (10)	21548 (10)
34	100	100	31.42	31.42	-50.25	0.00	407 (10)	4111 (10)	18800 (10)
35	100	100	31.42	31.42	-43.94	0.00	356 (10)	3596 (10)	16442 (10)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	σc	ofi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
36	100	100	31.42	31.42	-37.97	0.00	307 (10)	3107 (10)	14208 (10)
37	100	100	31.42	31.42	-32.35	0.00	262 (10)	2647 (10)	12105 (10)
38	100	100	31.42	31.42	-27.10	0.00	219 (10)	2218 (10)	10141 (10)
39	100	100	31.42	31.42	-22.25	0.00	180 (10)	1821 (10)	8326 (10)
40	100	100	31.42	31.42	-17.82	0.00	144 (10)	1458 (10)	6666 (10)
41	100	100	31.42	31.42	-13.82	0.00	112 (10)	1131 (10)	5171 (10)
42	100	100	31.42	31.42	-10.29	0.00	83 (10)	842 (10)	3849 (10)
43	100	100	31.42	31.42	-7.24	0.00	59 (10)	592 (10)	2707 (10)
44	100	100	31.42	31.42	-4.69	0.00	38 (10)	384 (10)	1755 (10)
45	100	100	31.42	31.42	-2.67	0.00	22 (10)	219 (10)	999 (10)
46	100	100	31.42	31.42	-1.20	0.00	10 (10)	98 (10)	450 (10)
47	100	100	31.42	31.42	-0.30	0.00	2 (10)	25 (10)	114 (10)
48	100	100	31.42	31.42	0.00	0.00	0 (10)	0 (10)	0 (10)

Combinazioni SLEF

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio 29050 450000 [kPa] [kPa]

n°	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	60	20.11	31.42	0.00	0.00	0 (11)	0 (11)	0 (11)
2	100	61	20.11	31.42	0.01	1.46	2 (11)	29 (11)	36 (11)
3	100	61	20.11	31.42	0.06	2.94	5 (11)	53 (11)	76 (11)
4	100	62	20.11	31.42	0.14	4.43	9 (11)	72 (11)	121 (11)
5	100	62	20.11	31.42	0.26	5.94	12 (11)	85 (11)	172 (11)
6	100	63	20.11	31.42	0.44	7.46	17 (11)	92 (11)	229 (11)
7	100	63	20.11	31.42	0.66	8.99	22 (11)	91 (11)	292 (11)
8	100	64	20.11	31.42	0.94	10.54	27 (11)	84 (11)	363 (11)
9	100	65	20.11	31.42	1.29	12.10	33 (11)	69 (11)	442 (11)
10	100	65	20.11	31.42	1.70	13.67	40 (11)	44 (11)	529 (11)
11	100	66	20.11	31.42	2.19	15.26	48 (11)	0 (1)	627 (11)
12	100	66	20.11	31.42	2.76	16.86	57 (11)	66 (11)	739 (11)
13	100	67	20.11	31.42	3.42	18.48	67 (11)	165 (11)	866 (11)
14	100	67	20.11	31.42	4.16	20.11	79 (11)	302 (11)	1008 (11)
15	100	68	20.11	31.42	5.01	21.75	93 (11)	483 (11)	1165 (11)
16	100	69	20.11	31.42	5.95	23.41	108 (11)	713 (11)	1338 (11)
17	100	69	20.11	31.42	7.00	25.08	125 (11)	995 (11)	1527 (11)
18	100	70	20.11	31.42	8.17	26.77	143 (11)	1331 (11)	1731 (11)
19	100	70	20.11	31.42	9.45	28.47	163 (11)	1724 (11)	1949 (11)
20	100	71	20.11	31.42	10.85	30.19	184 (11)	2174 (11)	2182 (11)
21	100	71	20.11	31.42	12.39	31.91	207 (11)	2683 (11)	2430 (11)
22	100	72	20.11	31.42	14.06	33.66	231 (11)	3252 (11)	2693 (11)
23	100	73	20.11	31.42	15.87	35.41	256 (11)	3881 (11)	2970 (11)
24	100	73	20.11	31.42	17.82	37.18	284 (11)	4572 (11)	3262 (11)
25	100	74	20.11	31.42	19.92	38.96	312 (11)	5326 (11)	3569 (11)
26	100	74	20.11	31.42	22.19	40.76	343 (11)	6142 (11)	3892 (11)
27	100	75	20.11	31.42	24.61	42.57	374 (11)	7024 (11)	4229 (11)
28	100	76	20.11	31.42	27.20	44.40	407 (11)	7970 (11)	4582 (11)
29	100	76	20.11	31.42	29.96	46.24	442 (11)	8982 (11)	4951 (11)
30	100	77	20.11	31.42	32.90	48.09	478 (11)	10061 (11)	5335 (11)
31	100	77	20.11	31.42	36.02	49.96	516 (11)	11209 (11)	5735 (11)
32	100	78	20.11	31.42	39.33	51.84	556 (11)	12424 (11)	6151 (11)
33	100	78	20.11	31.42	42.84	53.74	596 (11)	13709 (11)	6584 (11)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
34	100	79	20.11	31.42	46.54	55.65	639 (11)	15065 (11)	7032 (11)
35	100	80	20.11	31.42	50.45	57.57	683 (11)	16491 (11)	7497 (11)
36	100	80	20.11	31.42	54.57	59.51	728 (11)	17989 (11)	7979 (11)
37	100	81	20.11	31.42	58.91	61.46	775 (11)	19560 (11)	8477 (11)
38	100	81	20.11	31.42	63.47	63.42	824 (11)	21204 (11)	8992 (11)
39	100	82	20.11	31.42	68.25	65.40	874 (11)	22922 (11)	9523 (11)
40	100	82	20.11	31.42	73.27	67.39	925 (11)	24714 (11)	10072 (11)
41	100	83	20.11	31.42	78.53	69.40	979 (11)	26582 (11)	10637 (11)
42	100	84	20.11	31.42	84.02	71.42	1033 (11)	28526 (11)	11220 (11)
43	100	84	20.11	31.42	89.77	73.46	1090 (11)	30546 (11)	11820 (11)
44	100	85	20.11	31.42	95.77	75.50	1147 (11)	32643 (11)	12436 (11)
45	100	85	20.11	31.42	102.03	77.57	1207 (11)	34818 (11)	13070 (11)
46	100	86	20.11	31.42	108.55	79.64	1268 (11)	37072 (11)	13722 (11)
47	100	86	20.11	31.42	115.35	81.73	1330 (11)	39404 (11)	14390 (11)
48	100	87	20.11	31.42	122.42	83.84	1394 (11)	41816 (11)	15076 (11)
49	100	88	20.11	31.42	129.77	85.96	1459 (11)	44307 (11)	15780 (11)
50	100	88	20.11	31.42	137.41	88.09	1526 (11)	46879 (11)	16501 (11)
51	100	89	20.11	31.42	145.34	90.23	1595 (11)	49532 (11)	17239 (11)
52	100	89	20.11	31.42	153.56	92.39	1665 (11)	52266 (11)	17995 (11)
53	100	90	20.11	31.42	162.09	94.57	1737 (11)	55082 (11)	18768 (11)
54	100	90	20.11	31.42	170.93	96.76	1810 (11)	57980 (11)	19559 (11)
55	100	91	20.11	31.42	180.08	98.96	1884 (11)	60962 (11)	20367 (11)
56	100	92	20.11	31.42	189.55	101.17	1960 (11)	64026 (11)	21194 (11)
57	100	92	20.11	31.42	199.35	103.40	2038 (11)	67173 (11)	22037 (11)
58	100	93	20.11	31.42	209.47	105.65	2117 (11)	70403 (11)	22898 (11)
59	100	93	20.11	31.42	219.92	107.90	2198 (11)	73716 (11)	23776 (11)
60	100	94	20.11	31.42	230.71	110.18	2280 (11)	77111 (11)	24671 (11)
61	100	94	20.11	31.42	241.83	112.46	2363 (11)	80586 (11)	25582 (11)
62	100	95	20.11	31.42	253.29	114.76	2448 (11)	84140 (11)	26510 (11)
63	100	96	20.11	31.42	265.08	117.07	2534 (11)	87774 (11)	27453 (11)
64	100	96	20.11	31.42	277.22	119.40	2621 (11)	91486 (11)	28413 (11)
65	100	97	20.11	31.42	289.70	121.74	2710 (11)	95276 (11)	29388 (11)
66	100	97	20.11	31.42	302.54	124.10	2800 (11)	99145 (11)	30378 (11)
67	100	98	20.11	31.42	315.73	126.47	2891 (11)	103092 (11)	31384 (11)
68	100	98	20.11	31.42	329.28	128.85	2983 (11)	107119 (11)	32406 (11)
69	100	99	20.11	31.42	343.20	131.25	3077 (11)	111225 (11)	33443 (11)
70	100	100	20.11	31.42	357.49	133.66	3172 (11)	115412 (11)	34497 (11)
71	100	100	20.11	31.42	372.15	136.08	3268 (11)	119679 (11)	35566 (11)

Fondazione

Tensione massima di compressione nel calcestruzzo 29050 Tensione massima di trazione dell'acciaio 450000

n°	В	Н	Afi	Afs	М	N	σc	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	100	31.42	31.42	0.00	0.00	0 (11)	0 (11)	0 (11)
2	100	100	0.00	0.00	0.66	0.00	0 (11)	0 (11)	0 (11)
3	100	100	31.42	31.42	2.63	0.00	21 (11)	984 (11)	215 (11)
4	100	100	31.42	31.42	5.90	0.00	48 (11)	2208 (11)	483 (11)
5	100	100	31.42	31.42	10.45	0.00	85 (11)	3912 (11)	855 (11)
6	100	100	31.42	31.42	16.28	0.00	132 (11)	6092 (11)	1332 (11)
7	100	100	31.42	31.42	23.37	0.00	189 (11)	8743 (11)	1912 (11)
8	100	100	31.42	31.42	-310.15	0.00	2511 (11)	25379 (11)	116047 (11)
9	100	100	31.42	31.42	-299.97	0.00	2428 (11)	24546 (11)	112239 (11)
10	100	100	31.42	31.42	-289.64	0.00	2345 (11)	23700 (11)	108372 (11)
11	100	100	31.42	31.42	-279.17	0.00	2260 (11)	22844 (11)	104454 (11)

[kPa] [kPa]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	σС	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
12	100	100	31.42	31.42	-268.58	0.00	2174 (11)	21977 (11)	100494 (11)
13	100	100	31.42	31.42	-257.91	0.00	2088 (11)	21104 (11)	96499 (11)
14	100	100	31.42	31.42	-247.16	0.00	2001 (11)	20225 (11)	92479 (11)
15	100	100	31.42	31.42	-236.37	0.00	1914 (11)	19342 (11)	88441 (11)
16	100	100	31.42	31.42	-225.56	0.00	1826 (11)	18457 (11)	84394 (11)
17	100	100	31.42	31.42	-214.74	0.00	1738 (11)	17571 (11)	80347 (11)
18	100	100	31.42	31.42	-203.94	0.00	1651 (11)	16688 (11)	76307 (11)
19	100	100	31.42	31.42	-193.19	0.00	1564 (11)	15808 (11)	72283 (11)
20	100	100	31.42	31.42	-182.50	0.00	1477 (11)	14933 (11)	68283 (11)
21	100	100	31.42	31.42	-171.89	0.00	1392 (11)	14066 (11)	64316 (11)
22	100	100	31.42	31.42	-161.40	0.00	1307 (11)	13207 (11)	60390 (11)
23	100	100	31.42	31.42	-151.04	0.00	1223 (11)	12359 (11)	56514 (11)
24	100	100	31.42	31.42	-140.83	0.00	1140 (11)	11524 (11)	52694 (11)
25	100	100	31.42	31.42	-130.80	0.00	1059 (11)	10703 (11)	48941 (11)
26	100	100	31.42	31.42	-120.97	0.00	979 (11)	9899 (11)	45262 (11)
27	100	100	31.42	31.42	-111.36	0.00	902 (11)	9112 (11)	41666 (11)
28	100	100	31.42	31.42	-101.99	0.00	826 (11)	8346 (11)	38161 (11)
29	100	100	31.42	31.42	-92.89	0.00	752 (11)	7601 (11)	34755 (11)
30	100	100	31.42	31.42	-84.07	0.00	681 (11)	6879 (11)	31457 (11)
31	100	100	31.42	31.42	-75.57	0.00	612 (11)	6183 (11)	28274 (11)
32	100	100	31.42	31.42	-67.39	0.00	546 (11)	5515 (11)	25216 (11)
33	100	100	31.42	31.42	-59.58	0.00	482 (11)	4875 (11)	22291 (11)
34	100	100	31.42	31.42	-52.14	0.00	422 (11)	4267 (11)	19510 (11)
35	100	100	31.42	31.42	-45.59	0.00	369 (11)	3730 (11)	17058 (11)
36	100	100	31.42	31.42	-39.38	0.00	319 (11)	3222 (11)	14734 (11)
37	100	100	31.42	31.42	-33.54	0.00	272 (11)	2744 (11)	12549 (11)
38	100	100	31.42	31.42	-28.09	0.00	227 (11)	2299 (11)	10510 (11)
39	100	100	31.42	31.42	-23.05	0.00	187 (11)	1886 (11)	8626 (11)
40	100	100	31.42	31.42	-18.45	0.00	149 (11)	1510 (11)	6904 (11)
41	100	100	31.42	31.42	-14.31	0.00	116 (11)	1171 (11)	5354 (11)
42	100	100	31.42	31.42	-10.65	0.00	86 (11)	871 (11)	3984 (11)
43	100	100	31.42	31.42	-7.49	0.00	61 (11)	613 (11)	2801 (11)
44	100	100	31.42	31.42	-4.85	0.00	39 (11)	397 (11)	1815 (11)
45	100	100	31.42	31.42	-2.76	0.00	22 (11)	226 (11)	1033 (11)
46	100	100	31.42	31.42	-1.24	0.00	10 (11)	102 (11)	465 (11)
47	100	100	31.42	31.42	-0.31	0.00	3 (11)	26 (11)	118 (11)
48	100	100	31.42	31.42	0.00	0.00	0 (11)	0 (11)	0 (11)

Combinazioni SLEQ

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo 13073 [kPa] Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	В	Н	Afi	Afs	М	N	σС	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	60	20.11	31.42	0.00	0.00	0 (12)	0 (12)	0 (12)
2	100	61	20.11	31.42	0.00	1.46	2 (12)	30 (12)	34 (12)
3	100	61	20.11	31.42	0.02	2.94	5 (12)	59 (12)	69 (12)
4	100	62	20.11	31.42	0.04	4.43	7 (12)	86 (12)	106 (12)
5	100	62	20.11	31.42	0.09	5.94	10 (12)	109 (12)	146 (12)
6	100	63	20.11	31.42	0.17	7.46	13 (12)	129 (12)	189 (12)
7	100	63	20.11	31.42	0.27	8.99	17 (12)	145 (12)	236 (12)
8	100	64	20.11	31.42	0.41	10.54	21 (12)	156 (12)	288 (12)
9	100	65	20.11	31.42	0.60	12.10	25 (12)	161 (12)	345 (12)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	σc	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
10	100	65	20.11	31.42	0.83	13.67	30 (12)	161 (12)	407 (12)
11	100	66	20.11	31.42	1.12	15.26	35 (12)	154 (12)	476 (12)
12	100	66	20.11	31.42	1.46	16.86	41 (12)	141 (12)	551 (12)
13	100	67	20.11	31.42	1.87	18.48	47 (12)	121 (12)	634 (12)
14	100	67	20.11	31.42	2.35	20.11	54 (12)	93 (12)	723 (12)
15	100	68	20.11	31.42	2.90	21.75	62 (12)	54 (12)	822 (12)
16	100	69	20.11	31.42	3.53	23.41	71 (12)	6 (12)	933 (12)
17	100	69	20.11	31.42	4.25	25.08	81 (12)	92 (12)	1058 (12)
18	100	70	20.11	31.42	5.06	26.77	92 (12)	211 (12)	1197 (12)
19	100	70	20.11	31.42	5.96	28.47	105 (12)	369 (12)	1353 (12)
20	100	71	20.11	31.42	6.97	30.19	120 (12)	572 (12)	1524 (12)
21	100	71	20.11	31.42	8.09	31.91	136 (12)	825 (12)	1711 (12)
22	100	72	20.11	31.42	9.31	33.66	154 (12)	1131 (12)	1914 (12)
23	100	73	20.11	31.42	10.66	35.41	173 (12)	1494 (12)	2132 (12)
24	100	73	20.11	31.42	12.13	37.18	194 (12)	1914 (12)	2365 (12)
25	100	74	20.11	31.42	13.73	38.96	216 (12)	2394 (12)	2612 (12)
26	100	74	20.11	31.42	15.46	40.76	240 (12)	2933 (12)	2874 (12)
27	100	75	20.11	31.42	17.34	42.57	265 (12)	3534 (12)	3151 (12)
28	100	76	20.11	31.42	19.36	44.40	292 (12)	4196 (12)	3442 (12)
29	100	76	20.11	31.42	21.53	46.24	320 (12)	4920 (12)	3748 (12)
30	100	77	20.11	31.42	23.85	48.09	349 (12)	5708 (12)	4068 (12)
31	100	77	20.11	31.42	26.34	49.96	380 (12)	6558 (12)	4402 (12)
32	100	78	20.11	31.42	29.00	51.84	413 (12)	7474 (12)	4752 (12)
33	100	78	20.11	31.42	31.83	53.74	446 (12)	8454 (12)	5116 (12)
34	100	79	20.11	31.42	34.83	55.65	482 (12)	9501 (12)	5496 (12)
35	100	80	20.11	31.42	38.02	57.57	519 (12)	10613 (12)	5891 (12)
36	100	80 81	20.11	31.42 31.42	41.40 44.97	59.51 61.46	557 (12)	11794 (12)	6301 (12)
38	100	81	20.11	31.42	48.75	63.42	596 (12) 638 (12)	13043 (12) 14360 (12)	6726 (12) 7167 (12)
39	100	82	20.11	31.42	52.73	65.40	680 (12)	15747 (12)	7624 (12)
40	100	82	20.11	31.42	56.91	67.39	724 (12)	17205 (12)	8097 (12)
41	100	83	20.11	31.42	61.32	69.40	770 (12)	18733 (12)	8586 (12)
42	100	84	20.11	31.42	65.95	71.42	817 (12)	20333 (12)	9091 (12)
43	100	84	20.11	31.42	70.80	73.46	866 (12)	22006 (12)	9612 (12)
44	100	85	20.11	31.42	75.89	75.50	916 (12)	23752 (12)	10150 (12)
45	100	85	20.11	31.42	81.21	77.57	968 (12)	25571 (12)	10704 (12)
46	100	86	20.11	31.42	86.78	79.64	1021 (12)	27465 (12)	11274 (12)
47	100	86	20.11	31.42	92.59	81.73	1075 (12)	29434 (12)	11861 (12)
48	100	87	20.11	31.42	98.66	83.84	1131 (12)	31479 (12)	12464 (12)
49	100	88	20.11	31.42	104.99	85.96	1189 (12)	33600 (12)	13085 (12)
50	100	88	20.11	31.42	111.59	88.09	1248 (12)	35797 (12)	13722 (12)
51	100	89	20.11	31.42	118.45	90.23	1308 (12)	38072 (12)	14375 (12)
52	100	89	20.11	31.42	125.59	92.39	1370 (12)	40425 (12)	15046 (12)
53	100	90	20.11	31.42	133.01	94.57	1434 (12)	42856 (12)	15734 (12)
54	100	90	20.11	31.42	140.72	96.76	1499 (12)	45367 (12)	16438 (12)
55	100	91	20.11	31.42	148.72	98.96	1566 (12)	47956 (12)	17160 (12)
56	100	92	20.11	31.42	157.02	101.17	1634 (12)	50626 (12)	17898 (12)
57	100	92	20.11	31.42	165.62	103.40	1703 (12)	53376 (12)	18654 (12)
58	100	93	20.11	31.42	174.53	105.65	1774 (12)	56207 (12)	19427 (12)
59	100	93	20.11	31.42	183.76	107.90	1846 (12)	59119 (12)	20217 (12)
60	100	94	20.11	31.42	193.30	110.18	1920 (12)	62113 (12)	21024 (12)
61	100	94	20.11	31.42	203.17	112.46	1996 (12)	65189 (12)	21848 (12)
62	100	95	20.11	31.42	213.37	114.76	2072 (12)	68348 (12)	22689 (12)
63	100	96	20.11	31.42	223.90	117.07	2151 (12)	71589 (12) 74915 (12)	23548 (12)
64	100	96 97	20.11	31.42 31.42	234.78 246.00	119.40 121.74	2231 (12) 2312 (12)	78323 (12)	24424 (12) 25317 (12)
66	100	97	20.11	31.42	257.58	121.74	2394 (12)	81816 (12)	25317 (12)
67	100	98	20.11	31.42	269.51	124.10	2479 (12)	85394 (12)	26227 (12) 27154 (12)
68	100	98	20.11	31.42	281.80	128.85	2564 (12)	89056 (12)	28099 (12)
00	100	50	20.11	J1. 12	201.00	120.03	2301 (12)	05050 (12)	25055 (12)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
69	100	99	20.11	31.42	294.46	131.25	2651 (12)	92804 (12)	29061 (12)
70	100	100	20.11	31.42	307.50	133.66	2739 (12)	96637 (12)	30040 (12)
71	100	100	20.11	31.42	320.91	136.08	2829 (12)	100556 (12)	31036 (12)

Fondazione

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio 13073 450000 [kPa] [kPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	100	31.42	31.42	0.00	0.00	0 (12)	0 (12)	0 (12)
2	100	100	0.00	0.00	0.65	0.00	0 (12)	0 (12)	0 (12)
3	100	100	31.42	31.42	2.60	0.00	21 (12)	974 (12)	213 (12)
4	100	100	31.42	31.42	5.84	0.00	47 (12)	2183 (12)	477 (12)
5	100	100	31.42	31.42	10.34	0.00	84 (12)	3868 (12)	846 (12)
6	100	100	31.42	31.42	16.10	0.00	130 (12)	6023 (12)	1317 (12)
7	100	100	31.42	31.42	23.10	0.00	187 (12)	8643 (12)	1890 (12)
8	100	100	31.42	31.42	-312.45	0.00	2529 (12)	25567 (12)	116906 (12)
9	100	100	31.42	31.42	-302.86	0.00	2452 (12)	24782 (12)	113319 (12)
10	100	100	31.42	31.42	-293.07	0.00	2373 (12)	23981 (12)	109657 (12)
11	100	100	31.42	31.42	-283.11	0.00	2292 (12)	23166 (12)	105928 (12)
12	100	100	31.42	31.42	-272.99	0.00	2210 (12)	22338 (12)	102141 (12)
13	100	100	31.42	31.42	-262.73	0.00	2127 (12)	21499 (12)	98305 (12)
14	100	100	31.42	31.42	-252.37	0.00	2043 (12)	20651 (12)	94428 (12)
15	100	100	31.42	31.42	-241.93	0.00	1959 (12)	19796 (12)	90520 (12)
16	100	100	31.42	31.42	-231.42	0.00	1873 (12)	18936 (12)	86588 (12)
17	100	100	31.42	31.42	-220.87	0.00	1788 (12)	18073 (12)	82641 (12)
18	100	100	31.42	31.42	-210.31	0.00	1703 (12)	17209 (12)	78688 (12)
19	100	100	31.42	31.42	-199.75	0.00	1617 (12)	16345 (12)	74738 (12)
20	100	100	31.42	31.42	-189.22	0.00	1532 (12)	15483 (12)	70799 (12)
21	100	100	31.42	31.42	-178.74	0.00	1447 (12)	14626 (12)	66879 (12)
22	100	100	31.42	31.42	-168.34	0.00	1363 (12)	13775 (12)	62988 (12)
23	100	100	31.42	31.42	-158.04	0.00	1279 (12)	12932 (12)	59134 (12)
24	100	100	31.42	31.42	-147.86	0.00	1197 (12)	12099 (12)	55325 (12)
25	100	100	31.42	31.42	-137.83	0.00	1116 (12)	11278 (12)	51571 (12)
26	100	100	31.42	31.42	-127.96	0.00	1036 (12)	10471 (12)	47879 (12)
27	100	100	31.42	31.42	-118.29	0.00	958 (12)	9679 (12)	44259 (12)
28	100	100	31.42	31.42	-108.83	0.00	881 (12)	8905 (12)	40719 (12)
29	100	100	31.42	31.42	-99.60	0.00	806 (12)	8150 (12)	37267 (12)
30	100	100	31.42	31.42	-90.64	0.00	734 (12)	7417 (12)	33913 (12)
31	100	100	31.42	31.42	-81.96	0.00	663 (12)	6706 (12)	30665 (12)
32	100	100	31.42	31.42	-73.58	0.00	596 (12)	6021 (12)	27531 (12)
33	100	100	31.42	31.42	-65.53	0.00	531 (12)	5362 (12)	24520 (12)
34	100	100	31.42	31.42	-57.84	0.00	468 (12)	4733 (12)	21642 (12)
35	100	100	31.42	31.42	-50.52	0.00	409 (12)	4134 (12)	18903 (12)
36	100	100	31.42	31.42	-43.60	0.00	353 (12)	3568 (12)	16314 (12)
37	100	100	31.42	31.42	-37.10	0.00	300 (12)	3036 (12)	13882 (12)
38	100	100	31.42	31.42	-31.05	0.00	251 (12)	2540 (12)	11616 (12)
39	100	100	31.42	31.42	-25.46	0.00	206 (12)	2083 (12)	9525 (12)
40	100	100	31.42	31.42	-20.36	0.00	165 (12)	` ` ` `	7618 (12)
41	100	100	31.42	31.42	-20.36	0.00		1666 (12) 1291 (12)	, ,
42	100	100	31.42	31.42	-15.78	0.00	128 (12)	` ` ` `	5903 (12)
42							95 (12)	960 (12)	4389 (12)
	100	100	31.42	31.42	-8.24	0.00	67 (12)	674 (12)	3084 (12)
44	100	100	31.42	31.42	-5.34	0.00	43 (12)	437 (12)	1997 (12)
45	100	100	31.42	31.42	-3.04	0.00	25 (12)	248 (12)	1136 (12)
46	100	100	31.42	31.42	-1.36	0.00	11 (12)	112 (12)	511 (12)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
47	100	100	31.42	31.42	-0.35	0.00	3 (12)	28 (12)	129 (12)
48	100	100	31.42	31.42	0.00	0.00	0 (12)	0 (12)	0 (12)

Verifica a fessurazione

Simbologia adottata

ordinata sezione
ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espressa in [cm]
area ferri zona tesa espresso in [cmq] B H Aeff M area efficace espressa in [cmq] momento agente espressa in [kNm]

Mpf momento di prima fessurazione espressa in [kNm]

deformazione espresso in % spaziatura tra le fessure espressa in [mm] Sm apertura delle fessure espressa in [mm]

Combinazioni SLER

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.40

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	60	0.00	0.00	0.00	0.00			0.000 (10)
2	100	61	0.00	0.00	0.02	27.51	0.000000	0.00	0.000 (10)
3	100	61	0.00	0.00	0.07	67.29	0.000000	0.00	0.000 (10)
4	100	62	0.00	0.00	0.17	127.82	0.000000	0.00	0.000 (10)
5	100	62	0.00	0.00	0.32	227.73	0.000000	0.00	0.000 (10)
6	100	63	0.00	0.00	0.52	417.82	0.000000	0.00	0.000 (10)
7	100	63	0.00	0.00	0.79	902.75	0.000000	0.00	0.000 (10)
8	100	64	0.00	0.00	1.12	4432.61	0.000000	0.00	0.000 (10)
9	100	65	0.00	0.00	1.52	2458.65	0.000000	0.00	0.000 (10)
10	100	65	31.42	1850.00	1.99	1143.66	0.000000	0.00	0.000 (10)
11	100	66	31.42	1850.00	2.55	814.17	0.000000	0.00	0.000 (10)
12	100	66	31.42	1850.00	3.20	666.43	0.000000	0.00	0.000 (10)
13	100	67	31.42	1850.00	3.93	583.89	0.000000	0.00	0.000 (10)
14	100	67	31.42	1850.00	4.77	532.12	0.000000	0.00	0.000 (10)
15	100	68	31.42	1850.00	5.71	497.30	0.000000	0.00	0.000 (10)
16	100	69	31.42	1850.00	6.76	472.81	0.000000	0.00	0.000 (10)
17	100	69	31.42	1850.00	7.92	455.09	0.000000	0.00	0.000 (10)
18	100	70	31.42	1850.00	9.20	442.04	0.000000	0.00	0.000 (10)
19	100	70	31.42	1850.00	10.61	432.37	0.000000	0.00	0.000 (10)
20	100	71	31.42	1850.00	12.15	425.20	0.000000	0.00	0.000 (10)
21	100	71	31.42	1850.00	13.82	419.95	0.000000	0.00	0.000 (10)
22	100	72	31.42	1850.00	15.64	416.20	0.000000	0.00	0.000 (10)
23	100	73	31.42	1850.00	17.60	413.66	0.000000	0.00	0.000 (10)
24	100	73	31.42	1850.00	19.72	412.09	0.000000	0.00	0.000 (10)
25	100	74	31.42	1850.00	21.99	411.32	0.000000	0.00	0.000 (10)
26	100	74	31.42	1850.00	24.43	411.23	0.000000	0.00	0.000 (10)
27	100	75	31.42	1850.00	27.03	411.71	0.000000	0.00	0.000 (10)
28	100	76	31.42	1850.00	29.81	412.68	0.000000	0.00	0.000 (10)
29	100	76	31.42	1850.00	32.77	414.06	0.000000	0.00	0.000 (10)
30	100	77	31.42	1850.00	35.91	415.81	0.000000	0.00	0.000 (10)
31	100	77	31.42	1850.00	39.25	417.88	0.000000	0.00	0.000 (10)
32	100	78	31.42	1850.00	42.78	420.23	0.000000	0.00	0.000 (10)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
33	100	78	31.42	1850.00	46.51	422.84	0.000000	0.00	0.000 (10)
34	100	79	31.42	1850.00	50.45	425.67	0.000000	0.00	0.000 (10)
35	100	80	31.42	1850.00	54.60	428.71	0.000000	0.00	0.000 (10)
36	100	80	31.42	1850.00	58.97	431.93	0.000000	0.00	0.000 (10)
37	100	81	31.42	1850.00	63.56	435.32	0.000000	0.00	0.000 (10)
38	100	81	31.42	1850.00	68.38	438.86	0.000000	0.00	0.000 (10)
39	100	82	31.42	1850.00	73.43	442.55	0.000000	0.00	0.000 (10)
40	100	82	31.42	1850.00	78.72	446.37	0.000000	0.00	0.000 (10)
41	100	83	31.42	1850.00	84.26	450.31	0.000000	0.00	0.000 (10)
42	100	84	31.42	1850.00	90.05	454.37	0.000000	0.00	0.000 (10)
43	100	84	31.42	1850.00	96.09	458.53	0.000000	0.00	0.000 (10)
44	100	85	31.42	1850.00	102.40	462.80	0.000000	0.00	0.000 (10)
45	100	85	31.42	1850.00	108.97	467.16	0.000000	0.00	0.000 (10)
46	100	86	31.42	1850.00	115.81	471.60	0.000000	0.00	0.000 (10)
47	100	86	31.42	1850.00	122.93	476.14	0.000000	0.00	0.000 (10)
48	100	87	31.42	1850.00	130.34	480.75	0.000000	0.00	0.000 (10)
49	100	88	31.42	1850.00	138.03	485.44	0.000000	0.00	0.000 (10)
50	100	88	31.42	1850.00	146.01	490.21	0.000000	0.00	0.000 (10)
51	100	89	31.42	1850.00	154.30	495.04	0.000000	0.00	0.000 (10)
52	100	89	31.42	1850.00	162.89	499.95	0.000000	0.00	0.000 (10)
53	100	90	31.42	1850.00	171.79	504.92	0.000000	0.00	0.000 (10)
54	100	90	31.42	1850.00	181.00	509.95	0.000000	0.00	0.000 (10)
55	100	91	31.42	1850.00	190.53	515.04	0.000000	0.00	0.000 (10)
56	100	92	31.42	1850.00	200.40	520.20	0.000000	0.00	0.000 (10)
57	100	92	31.42	1850.00	210.59	525.41	0.000000	0.00	0.000 (10)
58	100	93	31.42	1850.00	221.12	530.67	0.000000	0.00	0.000 (10)
59	100	93	31.42	1850.00	231.98	536.00	0.000000	0.00	0.000 (10)
60	100	94	31.42	1850.00	243.18	541.37	0.000000	0.00	0.000 (10)
61	100	94	31.42	1850.00	254.73	546.81	0.000000	0.00	0.000 (10)
62	100	95	31.42	1850.00	266.62	552.29	0.000000	0.00	0.000 (10)
63	100	96	31.42	1850.00	278.85	557.82	0.000000	0.00	0.000 (10)
64	100	96	31.42	1850.00	291.43	563.41	0.000000	0.00	0.000 (10)
65	100	97	31.42	1850.00	304.36	569.05	0.000000	0.00	0.000 (10)
66	100	97	31.42	1850.00	317.64	574.73	0.000000	0.00	0.000 (10)
67	100	98	31.42	1850.00	331.28	580.47	0.000000	0.00	0.000 (10)
68	100	98	31.42	1850.00	345.27	586.25	0.000000	0.00	0.000 (10)
69	100	99	31.42	1850.00	359.64	592.07	0.000000	0.00	0.000 (10)
70	100	100	31.42	1850.00	374.37	597.95	0.000000	0.00	0.000 (10)
71	100	100	31.42	1850.00	389.47	603.86	0.000000	0.00	0.000 (10)

Fondazione

Apertura limite fessure w_{lim}=0.40

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	100	0.00	0.00	0.00	0.00			0.000 (10)
2	100	100	0.00	0.00	0.66	0.00			0.000 (10)
3	100	100	31.42	1850.00	2.64	574.87	0.000000	0.00	0.000 (10)
4	100	100	31.42	1850.00	5.92	574.87	0.000000	0.00	0.000 (10)
5	100	100	31.42	1850.00	10.49	574.87	0.000000	0.00	0.000 (10)
6	100	100	31.42	1850.00	16.34	574.87	0.000000	0.00	0.000 (10)
7	100	100	31.42	1850.00	23.46	574.87	0.000000	0.00	0.000 (10)
8	100	100	31.42	1850.00	-309.39	-574.87	0.000000	0.00	0.000 (10)
9	100	100	31.42	1850.00	-299.01	-574.87	0.000000	0.00	0.000 (10)
10	100	100	31.42	1850.00	-288.49	-574.87	0.000000	0.00	0.000 (10)
11	100	100	31.42	1850.00	-277.85	-574.87	0.000000	0.00	0.000 (10)
12	100	100	31.42	1850.00	-267.11	-574.87	0.000000	0.00	0.000 (10)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
13	100	100	31.42	1850.00	-256.30	-574.87	0.000000	0.00	0.000 (10)
14	100	100	31.42	1850.00	-245.43	-574.87	0.000000	0.00	0.000 (10)
15	100	100	31.42	1850.00	-234.52	-574.87	0.000000	0.00	0.000 (10)
16	100	100	31.42	1850.00	-223.60	-574.87	0.000000	0.00	0.000 (10)
17	100	100	31.42	1850.00	-212.69	-574.87	0.000000	0.00	0.000 (10)
18	100	100	31.42	1850.00	-201.82	-574.87	0.000000	0.00	0.000 (10)
19	100	100	31.42	1850.00	-191.00	-574.87	0.000000	0.00	0.000 (10)
20	100	100	31.42	1850.00	-180.26	-574.87	0.000000	0.00	0.000 (10)
21	100	100	31.42	1850.00	-169.61	-574.87	0.000000	0.00	0.000 (10)
22	100	100	31.42	1850.00	-159.09	-574.87	0.000000	0.00	0.000 (10)
23	100	100	31.42	1850.00	-148.71	-574.87	0.000000	0.00	0.000 (10)
24	100	100	31.42	1850.00	-138.49	-574.87	0.000000	0.00	0.000 (10)
25	100	100	31.42	1850.00	-128.46	-574.87	0.000000	0.00	0.000 (10)
26	100	100	31.42	1850.00	-118.64	-574.87	0.000000	0.00	0.000 (10)
27	100	100	31.42	1850.00	-109.05	-574.87	0.000000	0.00	0.000 (10)
28	100	100	31.42	1850.00	-99.71	-574.87	0.000000	0.00	0.000 (10)
29	100	100	31.42	1850.00	-90.65	-574.87	0.000000	0.00	0.000 (10)
30	100	100	31.42	1850.00	-81.88	-574.87	0.000000	0.00	0.000 (10)
31	100	100	31.42	1850.00	-73.44	-574.87	0.000000	0.00	0.000 (10)
32	100	100	31.42	1850.00	-65.33	-574.87	0.000000	0.00	0.000 (10)
33	100	100	31.42	1850.00	-57.59	-574.87	0.000000	0.00	0.000 (10)
34	100	100	31.42	1850.00	-50.25	-574.87	0.000000	0.00	0.000 (10)
35	100	100	31.42	1850.00	-43.94	-574.87	0.000000	0.00	0.000 (10)
36	100	100	31.42	1850.00	-37.97	-574.87	0.000000	0.00	0.000 (10)
37	100	100	31.42	1850.00	-32.35	-574.87	0.000000	0.00	0.000 (10)
38	100	100	31.42	1850.00	-27.10	-574.87	0.000000	0.00	0.000 (10)
39	100	100	31.42	1850.00	-22.25	-574.87	0.000000	0.00	0.000 (10)
40	100	100	31.42	1850.00	-17.82	-574.87	0.000000	0.00	0.000 (10)
41	100	100	31.42	1850.00	-13.82	-574.87	0.000000	0.00	0.000 (10)
42	100	100	31.42	1850.00	-10.29	-574.87	0.000000	0.00	0.000 (10)
43	100	100	31.42	1850.00	-7.24	-574.87	0.000000	0.00	0.000 (10)
44	100	100	31.42	1850.00	-4.69	-574.87	0.000000	0.00	0.000 (10)
45	100	100	31.42	1850.00	-2.67	-574.87	0.000000	0.00	0.000 (10)
46	100	100	31.42	1850.00	-1.20	-574.87	0.000000	0.00	0.000 (10)
47	100	100	31.42	1850.00	-0.30	-574.87	0.000000	0.00	0.000 (10)
48	100	100	0.00	0.00	0.00	0.00			0.000 (10)

Combinazioni SLEF

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.40

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	60	0.00	0.00	0.00	0.00			0.000 (11)
2	100	61	0.00	0.00	0.01	21.27	0.000000	0.00	0.000 (11)
3	100	61	0.00	0.00	0.06	51.04	0.000000	0.00	0.000 (11)
4	100	62	0.00	0.00	0.14	93.96	0.000000	0.00	0.000 (11)
5	100	62	0.00	0.00	0.26	158.90	0.000000	0.00	0.000 (11)
6	100	63	0.00	0.00	0.44	265.30	0.000000	0.00	0.000 (11)
7	100	63	0.00	0.00	0.66	465.23	0.000000	0.00	0.000 (11)
8	100	64	0.00	0.00	0.94	961.25	0.000000	0.00	0.000 (11)
9	100	65	0.00	0.00	1.29	4062.36	0.000000	0.00	0.000 (11)
10	100	65	0.00	0.00	1.70	2932.50	0.000000	0.00	0.000 (11)
11	100	66	0.00	0.00	2.19	1272.86	0.000000	0.00	0.000 (11)
12	100	66	31.42	1850.00	2.76	886.19	0.000000	0.00	0.000 (11)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
13	100	67	31.42	1850.00	3.42	716.16	0.000000	0.00	0.000 (11)
14	100	67	31.42	1850.00	4.16	621.96	0.000000	0.00	0.000 (11)
15	100	68	31.42	1850.00	5.01	563.08	0.000000	0.00	0.000 (11)
16	100	69	31.42	1850.00	5.95	523.50	0.000000	0.00	0.000 (11)
17	100	69	31.42	1850.00	7.00	495.63	0.000000	0.00	0.000 (11)
18	100	70	31.42	1850.00	8.17	475.38	0.000000	0.00	0.000 (11)
19	100	70	31.42	1850.00	9.45	460.39	0.000000	0.00	0.000 (11)
20	100	71	31.42	1850.00	10.85	449.18	0.000000	0.00	0.000 (11)
21	100	71	31.42	1850.00	12.39	440.76	0.000000	0.00	0.000 (11)
22	100	72	31.42	1850.00	14.06	434.49	0.000000	0.00	0.000 (11)
23	100	73	31.42	1850.00	15.87	429.89	0.000000	0.00	0.000 (11)
24	100	73	31.42	1850.00	17.82	426.63	0.000000	0.00	0.000 (11)
25	100	74	31.42	1850.00	19.92	424.45	0.000000	0.00	0.000 (11)
26	100	74	31.42	1850.00	22.19	423.16	0.000000	0.00	0.000 (11)
27	100	75	31.42	1850.00	24.61	422.61	0.000000	0.00	0.000 (11)
28	100	76	31.42	1850.00	27.20	422.69	0.000000	0.00	0.000 (11)
29	100	76	31.42	1850.00	29.96	423.31	0.000000	0.00	0.000 (11)
30	100	77	31.42	1850.00	32.90	424.38	0.000000	0.00	0.000 (11)
31	100	77	31.42	1850.00	36.02	425.86	0.000000	0.00	0.000 (11)
32	100	78	31.42	1850.00	39.33	427.69	0.000000	0.00	0.000 (11)
33	100	78	31.42	1850.00	42.84	429.82	0.000000	0.00	0.000 (11)
34	100	79	31.42	1850.00	46.54	432.24	0.000000	0.00	0.000 (11)
35	100	80	31.42	1850.00	50.45	434.90	0.000000	0.00	0.000 (11)
36	100	80	31.42	1850.00	54.57	437.78	0.000000	0.00	0.000 (11)
37	100	81	31.42	1850.00	58.91	440.86	0.000000	0.00	0.000 (11)
38	100	81	31.42	1850.00	63.47	444.12	0.000000	0.00	0.000 (11)
39	100	82	31.42	1850.00	68.25	447.55	0.000000	0.00	0.000 (11)
40	100	82	31.42	1850.00	73.27	451.14	0.000000	0.00	0.000 (11)
41	100	83	31.42	1850.00	78.53	454.86	0.000000	0.00	0.000 (11)
42	100	84	31.42	1850.00	84.02	458.72	0.000000	0.00	0.000 (11)
43	100	84	31.42	1850.00	89.77	462.70	0.000000	0.00	0.000 (11)
44	100	85	31.42	1850.00	95.77	466.79	0.000000	0.00	0.000 (11)
45	100	85	31.42	1850.00	102.03	471.00	0.000000	0.00	0.000 (11)
46	100	86	31.42	1850.00	108.55	475.30	0.000000	0.00	0.000 (11)
47	100	86	31.42	1850.00	115.35	479.69	0.000000	0.00	0.000 (11)
48	100	87	31.42	1850.00	122.42	484.18	0.000000	0.00	0.000 (11)
49	100	88	31.42	1850.00	129.77	488.75	0.000000	0.00	0.000 (11)
50	100	88	31.42	1850.00	137.41	493.41	0.000000	0.00	0.000 (11)
51	100	89	31.42	1850.00	145.34	498.14	0.000000	0.00	0.000 (11)
52	100	89	31.42	1850.00	153.56	502.94	0.000000	0.00	0.000 (11)
53	100	90	31.42	1850.00	162.09	507.82	0.000000	0.00	0.000 (11)
54	100	90	31.42	1850.00	170.93	512.77	0.000000	0.00	0.000 (11)
55	100	91	31.42	1850.00	180.08	517.78	0.000000	0.00	0.000 (11)
56	100	92	31.42	1850.00	189.55	522.85	0.000000	0.00	0.000 (11)
57	100	92	31.42	1850.00	199.35	527.99	0.000000	0.00	0.000 (11)
58	100	93	31.42	1850.00	209.47	533.19	0.000000	0.00	0.000 (11)
59	100	93	31.42	1850.00	219.92	538.45	0.000000	0.00	0.000 (11)
60	100	94	31.42	1850.00	230.71	543.76	0.000000	0.00	0.000 (11)
61	100	94	31.42	1850.00	241.83	549.13	0.000000	0.00	0.000 (11)
62	100	95	31.42	1850.00	253.29	554.56	0.000000	0.00	0.000 (11)
63	100	96	31.42	1850.00	265.08	560.04	0.000000	0.00	0.000 (11)
64	100	96	31.42	1850.00	277.22	565.58	0.000000	0.00	0.000 (11)
65	100	97	31.42	1850.00	289.70	571.16	0.000000	0.00	0.000 (11)
66	100	97	31.42	1850.00	302.54	576.80	0.000000	0.00	0.000 (11)
67	100	98	31.42	1850.00	315.73	582.49	0.000000	0.00	0.000 (11)
68	100	98	31.42	1850.00	329.28	588.23	0.000000	0.00	0.000 (11)
69	100	99	31.42	1850.00	343.20	594.01	0.000000	0.00	0.000 (11)
70	100	100	31.42	1850.00	357.49	599.84	0.000000	0.00	0.000 (11)
71	100	100	31.42	1850.00	372.15	605.72	0.000000	0.00	0.000 (11)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Fondazione

Apertura limite fessure w_{lim}=0.40

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	100	0.00	0.00	0.00	0.00			0.000 (11)
2	100	100	0.00	0.00	0.66	0.00			0.000 (11)
3	100	100	31.42	1850.00	2.63	574.87	0.000000	0.00	0.000 (11)
4	100	100	31.42	1850.00	5.90	574.87	0.000000	0.00	0.000 (11)
5	100	100	31.42	1850.00	10.45	574.87	0.000000	0.00	0.000 (11)
6	100	100	31.42	1850.00	16.28	574.87	0.000000	0.00	0.000 (11)
7	100	100	31.42	1850.00	23.37	574.87	0.000000	0.00	0.000 (11)
8	100	100	31.42	1850.00	-310.15	-574.87	0.000000	0.00	0.000 (11)
9	100	100	31.42	1850.00	-299.97	-574.87	0.000000	0.00	0.000 (11)
10	100	100	31.42	1850.00	-289.64	-574.87	0.000000	0.00	0.000 (11)
11	100	100	31.42	1850.00	-279.17	-574.87	0.000000	0.00	0.000 (11)
12	100	100	31.42	1850.00	-268.58	-574.87	0.000000	0.00	0.000 (11)
13	100	100	31.42	1850.00	-257.91	-574.87	0.000000	0.00	0.000 (11)
14	100	100	31.42	1850.00	-247.16	-574.87	0.000000	0.00	0.000 (11)
15	100	100	31.42	1850.00	-236.37	-574.87	0.000000	0.00	0.000 (11)
16	100	100	31.42	1850.00	-225.56	-574.87	0.000000	0.00	0.000 (11)
17	100	100	31.42	1850.00	-223.30	-574.87	0.000000	0.00	0.000 (11)
									, ,
18	100	100	31.42	1850.00	-203.94	-574.87	0.000000	0.00	0.000 (11)
19	100	100	31.42	1850.00	-193.19	-574.87	0.000000	0.00	0.000 (11)
20	100	100	31.42	1850.00	-182.50	-574.87	0.000000	0.00	0.000 (11)
21	100	100	31.42	1850.00	-171.89	-574.87	0.000000	0.00	0.000 (11)
22	100	100	31.42	1850.00	-161.40	-574.87	0.000000	0.00	0.000 (11)
23	100	100	31.42	1850.00	-151.04	-574.87	0.000000	0.00	0.000 (11)
24	100	100	31.42	1850.00	-140.83	-574.87	0.000000	0.00	0.000 (11)
25	100	100	31.42	1850.00	-130.80	-574.87	0.000000	0.00	0.000 (11)
26	100	100	31.42	1850.00	-120.97	-574.87	0.000000	0.00	0.000 (11)
27	100	100	31.42	1850.00	-111.36	-574.87	0.000000	0.00	0.000 (11)
28	100	100	31.42	1850.00	-101.99	-574.87	0.000000	0.00	0.000 (11)
29	100	100	31.42	1850.00	-92.89	-574.87	0.000000	0.00	0.000 (11)
30	100	100	31.42	1850.00	-84.07	-574.87	0.000000	0.00	0.000 (11)
31	100	100	31.42	1850.00	-75.57	-574.87	0.000000	0.00	0.000 (11)
32	100	100	31.42	1850.00	-67.39	-574.87	0.000000	0.00	0.000 (11)
33	100	100	31.42	1850.00	-59.58	-574.87	0.000000	0.00	0.000 (11)
34	100	100	31.42	1850.00	-52.14	-574.87	0.000000	0.00	0.000 (11)
35	100	100	31.42	1850.00	-45.59	-574.87	0.000000	0.00	0.000 (11)
36	100	100	31.42	1850.00	-39.38	-574.87	0.000000	0.00	0.000 (11)
37	100	100	31.42	1850.00	-33.54	-574.87	0.000000	0.00	0.000 (11)
38	100	100	31.42	1850.00	-28.09	-574.87	0.000000	0.00	0.000 (11)
39	100	100	31.42	1850.00	-23.05	-574.87	0.000000	0.00	0.000 (11)
40	100	100	31.42	1850.00	-18.45	-574.87	0.000000	0.00	0.000 (11)
41	100	100	31.42	1850.00	-14.31	-574.87	0.000000	0.00	0.000 (11)
42	100	100	31.42	1850.00	-10.65	-574.87	0.000000	0.00	0.000 (11)
43	100	100	31.42	1850.00	-7.49	-574.87	0.000000	0.00	0.000 (11)
44	100	100	31.42	1850.00	-4.85	-574.87	0.000000	0.00	0.000 (11)
45	100	100	31.42	1850.00	-2.76	-574.87	0.000000	0.00	0.000 (11)
46	100	100	31.42	1850.00	-1.24	-574.87	0.000000	0.00	0.000 (11)
47	100	100	31.42	1850.00	-0.31	-574.87	0.000000	0.00	0.000 (11)
48	100	100	0.00	0.00	0.00	0.00			0.000 (11)

Combinazioni SLEQ

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

<u>Paramento</u>

Apertura limite fessure w_{lim} =0.30

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	60	0.00	0.00	0.00	0.00			0.000 (12)
2	100	61	0.00	0.00	0.00	4.32	0.000000	0.00	0.000 (12)
3	100	61	0.00	0.00	0.02	11.67	0.000000	0.00	0.000 (12)
4	100	62	0.00	0.00	0.04	22.64	0.000000	0.00	0.000 (12)
5	100	62	0.00	0.00	0.09	38.12	0.000000	0.00	0.000 (12)
6	100	63	0.00	0.00	0.17	59.54	0.000000	0.00	0.000 (12)
7	100	63	0.00	0.00	0.27	89.24	0.000000	0.00	0.000 (12)
8	100	64	0.00	0.00	0.41	131.10	0.000000	0.00	0.000 (12)
9	100	65	0.00	0.00	0.60	192.14	0.000000	0.00	0.000 (12)
10	100	65	0.00	0.00	0.83	286.20	0.000000	0.00	0.000 (12)
11	100	66	0.00	0.00	1.12	445.10	0.000000	0.00	0.000 (12)
12	100	66	0.00	0.00	1.46	761.29	0.000000	0.00	0.000 (12)
13	100	67	0.00	0.00	1.87	1663.93	0.000000	0.00	0.000 (12)
14	100	67	0.00	0.00	2.35	20969.58	0.000000	0.00	0.000 (12)
15	100	68	0.00	0.00	2.90	2578.58	0.000000	0.00	0.000 (12)
16	100	69	31.42	1850.00	3.53	1361.66	0.000000	0.00	0.000 (12)
17	100	69	31.42	1850.00	4.25	987.46	0.000000	0.00	0.000 (12)
18	100	70	31.42	1850.00	5.06	807.92	0.000000	0.00	0.000 (12)
19	100	70	31.42	1850.00	5.96	703.87	0.000000	0.00	0.000 (12)
20	100	71	31.42	1850.00	6.97	636.93	0.000000	0.00	0.000 (12)
21	100	71	31.42	1850.00	8.09	590.95	0.000000	0.00	0.000 (12)
22	100	72	31.42	1850.00	9.31	557.98	0.000000	0.00	0.000 (12)
23	100	73	31.42	1850.00	10.66	533.62	0.000000	0.00	0.000 (12)
24	100	73	31.42	1850.00	12.13	515.27	0.000000	0.00	0.000 (12)
25	100	74	31.42	1850.00	13.73	501.28	0.000000	0.00	0.000 (12)
26	100	74	31.42	1850.00	15.46	490.55	0.000000	0.00	0.000 (12)
27	100	75	31.42	1850.00	17.34	482.32	0.000000	0.00	0.000 (12)
28	100	76	31.42	1850.00	19.36	476.06	0.000000	0.00	0.000 (12)
29	100	76	31.42	1850.00	21.53	471.37	0.000000	0.00	0.000 (12)
30	100	77	31.42	1850.00	23.85	467.95	0.000000	0.00	0.000 (12)
31	100	77	31.42	1850.00	26.34	465.59	0.000000	0.00	0.000 (12)
32	100	78	31.42	1850.00	29.00	464.12	0.000000	0.00	0.000 (12)
33	100	78	31.42	1850.00	31.83	463.38	0.000000	0.00	0.000 (12)
34	100	79	31.42	1850.00	34.83	463.28	0.000000	0.00	0.000 (12)
35	100	80	31.42	1850.00	38.02	463.73	0.000000	0.00	0.000 (12)
36	100	80	31.42	1850.00	41.40	464.65	0.000000	0.00	0.000 (12)
37	100	81	31.42	1850.00	44.97	465.99	0.000000	0.00	0.000 (12)
38	100	81	31.42	1850.00	48.75	467.70	0.000000	0.00	0.000 (12)
39	100	82	31.42	1850.00	52.73	469.73	0.000000	0.00	0.000 (12)
40	100	82	31.42	1850.00	56.91	472.05	0.000000	0.00	0.000 (12)
41	100	83	31.42	1850.00	61.32	474.63	0.000000	0.00	0.000 (12)
42	100	84	31.42	1850.00	65.95	477.45	0.000000	0.00	0.000 (12)
43	100	84	31.42	1850.00	70.80	480.48	0.000000	0.00	0.000 (12)
44	100	85	31.42	1850.00	75.89	483.70	0.000000	0.00	0.000 (12)
45	100	85	31.42	1850.00	81.21	487.11	0.000000	0.00	0.000 (12)
46	100	86	31.42	1850.00	86.78	490.68	0.000000	0.00	0.000 (12)
47	100	86	31.42	1850.00	92.59	494.40	0.000000	0.00	0.000 (12)
48	100	87	31.42	1850.00	98.66	498.26	0.000000	0.00	0.000 (12)
49	100	88	31.42	1850.00	104.99	502.26	0.000000	0.00	0.000 (12)
50	100	88	31.42	1850.00	111.59	506.37	0.000000	0.00	0.000 (12)
51	100	89	31.42	1850.00	111.59	510.61	0.000000	0.00	0.000 (12)
52		89	31.42	1850.00	125.59	510.61	0.000000	0.00	0.000 (12)
	100						0.000000		
53	100	90	31.42	1850.00	133.01	519.39		0.00	0.000 (12)
54	100	90	31.42	1850.00	140.72	523.93	0.000000	0.00	0.000 (12)
55	100	91	31.42	1850.00	148.72	528.56	0.000000	0.00	0.000 (1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
56	100	92	31.42	1850.00	157.02	533.28	0.000000	0.00	0.000 (12)
57	100	92	31.42	1850.00	165.62	538.08	0.000000	0.00	0.000 (12)
58	100	93	31.42	1850.00	174.53	542.96	0.000000	0.00	0.000 (12)
59	100	93	31.42	1850.00	183.76	547.92	0.000000	0.00	0.000 (12)
60	100	94	31.42	1850.00	193.30	552.95	0.000000	0.00	0.000 (12)
61	100	94	31.42	1850.00	203.17	558.05	0.000000	0.00	0.000 (12)
62	100	95	31.42	1850.00	213.37	563.22	0.000000	0.00	0.000 (12)
63	100	96	31.42	1850.00	223.90	568.45	0.000000	0.00	0.000 (12)
64	100	96	31.42	1850.00	234.78	573.75	0.000000	0.00	0.000 (12)
65	100	97	31.42	1850.00	246.00	579.11	0.000000	0.00	0.000 (12)
66	100	97	31.42	1850.00	257.58	584.53	0.000000	0.00	0.000 (12)
67	100	98	31.42	1850.00	269.51	590.01	0.000000	0.00	0.000 (12)
68	100	98	31.42	1850.00	281.80	595.55	0.000000	0.00	0.000 (12)
69	100	99	31.42	1850.00	294.46	601.13	0.000000	0.00	0.000 (12)
70	100	100	31.42	1850.00	307.50	606.78	0.000000	0.00	0.000 (12)
71	100	100	31.42	1850.00	320.91	612.47	0.000000	0.00	0.000 (12)

Fondazione

Apertura limite fessure w_{lim}=0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	100	0.00	0.00	0.00	0.00			0.000 (12)
2	100	100	0.00	0.00	0.65	0.00			0.000 (12)
3	100	100	31.42	1850.00	2.60	574.87	0.000000	0.00	0.000 (12)
4	100	100	31.42	1850.00	5.84	574.87	0.000000	0.00	0.000 (12)
5	100	100	31.42	1850.00	10.34	574.87	0.000000	0.00	0.000 (12)
6	100	100	31.42	1850.00	16.10	574.87	0.000000	0.00	0.000 (12)
7	100	100	31.42	1850.00	23.10	574.87	0.000000	0.00	0.000 (12)
8	100	100	31.42	1850.00	-312.45	-574.87	0.000000	0.00	0.000 (12)
9	100	100	31.42	1850.00	-302.86	-574.87	0.000000	0.00	0.000 (12)
10	100	100	31.42	1850.00	-293.07	-574.87	0.000000	0.00	0.000 (12)
11	100	100	31.42	1850.00	-283.11	-574.87	0.000000	0.00	0.000 (12)
12	100	100	31.42	1850.00	-272.99	-574.87	0.000000	0.00	0.000 (12)
13	100	100	31.42	1850.00	-262.73	-574.87	0.000000	0.00	0.000 (12)
14	100	100	31.42	1850.00	-252.37	-574.87	0.000000	0.00	0.000 (12)
15	100	100	31.42	1850.00	-241.93	-574.87	0.000000	0.00	0.000 (12)
16	100	100	31.42	1850.00	-231.42	-574.87	0.000000	0.00	0.000 (12)
17	100	100	31.42	1850.00	-220.87	-574.87	0.000000	0.00	0.000 (12)
18	100	100	31.42	1850.00	-210.31	-574.87	0.000000	0.00	0.000 (12)
19	100	100	31.42	1850.00	-199.75	-574.87	0.000000	0.00	0.000 (12)
20	100	100	31.42	1850.00	-189.22	-574.87	0.000000	0.00	0.000 (12)
21	100	100	31.42	1850.00	-178.74	-574.87	0.000000	0.00	0.000 (12)
22	100	100	31.42	1850.00	-168.34	-574.87	0.000000	0.00	0.000 (12)
23	100	100	31.42	1850.00	-158.04	-574.87	0.000000	0.00	0.000 (12)
24	100	100	31.42	1850.00	-147.86	-574.87	0.000000	0.00	0.000 (12)
25	100	100	31.42	1850.00	-137.83	-574.87	0.000000	0.00	0.000 (12)
26	100	100	31.42	1850.00	-127.96	-574.87	0.000000	0.00	0.000 (12)
27	100	100	31.42	1850.00	-118.29	-574.87	0.000000	0.00	0.000 (12)
28	100	100	31.42	1850.00	-108.83	-574.87	0.000000	0.00	0.000 (12)
29	100	100	31.42	1850.00	-99.60	-574.87	0.000000	0.00	0.000 (12)
30	100	100	31.42	1850.00	-90.64	-574.87	0.000000	0.00	0.000 (12)
31	100	100	31.42	1850.00	-81.96	-574.87	0.000000	0.00	0.000 (12)
32	100	100	31.42	1850.00	-73.58	-574.87	0.000000	0.00	0.000 (12)
33	100	100	31.42	1850.00	-65.53	-574.87	0.000000	0.00	0.000 (12)
34	100	100	31.42	1850.00	-57.84	-574.87	0.000000	0.00	0.000 (12)
35	100	100	31.42	1850.00	-50.52	-574.87	0.000000	0.00	0.000 (12)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
36	100	100	31.42	1850.00	-43.60	-574.87	0.000000	0.00	0.000 (12)
37	100	100	31.42	1850.00	-37.10	-574.87	0.000000	0.00	0.000 (12)
38	100	100	31.42	1850.00	-31.05	-574.87	0.000000	0.00	0.000 (12)
39	100	100	31.42	1850.00	-25.46	-574.87	0.000000	0.00	0.000 (12)
40	100	100	31.42	1850.00	-20.36	-574.87	0.000000	0.00	0.000 (12)
41	100	100	31.42	1850.00	-15.78	-574.87	0.000000	0.00	0.000 (12)
42	100	100	31.42	1850.00	-11.73	-574.87	0.000000	0.00	0.000 (12)
43	100	100	31.42	1850.00	-8.24	-574.87	0.000000	0.00	0.000 (12)
44	100	100	31.42	1850.00	-5.34	-574.87	0.000000	0.00	0.000 (12)
45	100	100	31.42	1850.00	-3.04	-574.87	0.000000	0.00	0.000 (12)
46	100	100	31.42	1850.00	-1.36	-574.87	0.000000	0.00	0.000 (12)
47	100	100	31.42	1850.00	-0.35	-574.87	0.000000	0.00	0.000 (12)
48	100	100	0.00	0.00	0.00	0.00			0.000 (12)

16.4 ELENCO FERRI

Simbologia adottata

n° nf D Indice del ferro

numero ferri diametro ferro espresso in [mm] Lunghezza ferro espresso in [m] Peso ferro espresso in [kN]

Paramento

H _{max} [m]	S _{max} [m]	Armatura di forza tesa	Armatura di forza compressa	Ripartitori (esterni)	Spilli	Ricoprimento [mm]
6.93	1.00	10Ø20	10Ø16	Ø12/10	Ø12/20x40cm	40

n°	Tipo	nf	D	L	Pf	Pgf	Vcls
			[mm]	[m]	[kN]	[kN]	[mc]
1	Diritto inferiore	10	16.00	7.33	0.1134	1.1343	
2	Diritto superiore	10	20.00	2.12	0.0512	0.5124	
3	Diritto superiore	10	20.00	7.46	0.1803	1.8034	
4	Diritto inferiore	10	16.00	1.88	0.0291	0.2907	
5	Ripartitore	48	12.00	1.00	0.0087	0.4179	
6	Gancio	28	12.00	0.77	0.0067	0.1874	
	Totale al metro					4.5899	5.55

Fondazione

S _{fond} [m	Armatura di forza tesa	Armatura di forza compressa	Ripartitori (esterni)	Spilli	Ricoprimento [mm]
1.00	10 Ø 20	10Ø20	Ø12/10	Ø12/20x20cm	40

n°	Tipo	nf	D	L	Pf	Pgf	Vcls
			[mm]	[m]	[kN]	[kN]	[mc]
1 D	iritto superiore	10	20.00	6.53	0.1580	1.5802	
2 D	iritto inferiore	10	20.00	6.53	0.1580	1.5802	
3 R	ipartitore	31	12.00	1.00	0.0087	0.2699	
4 G	ancio	18	12.00	0.97	0.0085	0.1521	
T-	otale al metro					3.7172	5.50

