

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO INTERNAZIONALE E78 S.G.C. GROSSETO - FANO

ADEGUAMENTO A 4 CORSIE

NEL TRATTO GROSSETO - SIENA (S.S. 223 "DI PAGANICO")

DAL KM 41+600 AL KM 53+400 - LOTTO 9

PROGETTO ESECUTIVO

cod. **FI15**

ATI SINTAGMA - GDG - ICARIA PROGETTAZIONE: IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: IL GRUPPO DI PROGETTAZIONE: MANDATARIA: MANDANTI: Dott. Ing. Nando Granieri Ordine degli Ingegneri della Prov. di Perugia nº A351 Sintagma età di ingegneria Dott.Ing. N.Granieri Dott. Ing. D.Carlaccini Dott. Ing. V.Rotisciani S.Sacconi A.Rea V.De Gori Dott. Ing. Dott.Arch. N.Kamenicky V.Truffini Dott. Ing. F.Macchioni IL PROGETTISTA: Dott. Ing. Dott.Ing. C.Vischini Geom. A.Bracchini F.Durastanti Dott. Ing. Federico Durastanti Dott.Arch. Dott. Ing. Dott. Ina. V.Piunno Dott. Ing. Ordine degli Ingegneri della Prov. di Terni n° A844 Dott.Ing. Dott. Ing. C.Consorti G.Pulli Dott.Ing. E.Bartolocci C.Sugaroni Geom. F.Dominici Geom. Dott.Geol. G.Cerquiglini IL GEOLOGO: Geom. S.Scopetta L.Sbrenna Dott.Ing. Dott. Geol. Giorgio Cerquiglini E.Sellari Ordine dei Geologi della Regione Umbria n°108 Dott.Ing L.Dinelli L.Nani F.Pambianco Dott.Ing. II R.U.P. Dott.Ing. F.Berti Nulli Dott. Ing. Dott. Agr. Raffaele Franco Carso INGEGNERI DELLA PROVINCIA Sezion A P ORDINE degli INGEGNERI IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE: INCEGNERE Dott. Ing. Filippo Pambianco Ordine degli Ingegneri della Prov. di Perugia n° A1373 DOTTORS INSEGNERE Federico MANDO GRANIERI **PROTOCOLLO** DATA SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE Provincia di TERNI SETTORE DELL'INFORMAZIONE

OPERE DI ATTRAVERSAMENTO IDRAULICO PONTICELLO S 15 sec - Fosso Maceratano Relazione di calcolo impalcato

CODICE PROGET PROGETTO	TO LIV. PROG. N. PROG.	NOME FILE TOO-OI16-STR-RE02-A			REVISIONE	SCALA:		
LOFI		CODICE TOOOI 16 STRRE02		Α	-			
Α	Emissione			28/02/2020	P. Castraberte	E.Bartolocci	N.Granieri	
RE\/	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

INDICE

Ί.	PKEME55A	೨
2.	DESCRIZIONE DELL'OPERA	
3.	NORMATIVA DI RIFERIMENTO	
4.	CARATTERISTICHE DEI MATERIALI	
	ANALISI DEI CARICHI E CONDIZIONI DI CARICO	
	.1 CARICHI PERMANENTI STRUTTURALI G ₁	
	.2 CARICHI PERMANENTI NON STRUTTURALI G ₂	
	.3 SPINTA DELLE TERRE G₃ ERRORE. IL SEGNALIBRO NON È DEFIN	
	.4 CARICHI ACCIDENTALI Q ₁	
	.5 INCREMENTO DINAMICO IN PRESENZA DI DISCONTINUITÀ STRUTTURALI Q2	
	.6 AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE Q₃	
	.7 AZIONE CENTRIFUGA Q ₄	
	.1 AZIONE DEL VENTO Q ₅ ERRORE. IL SEGNALIBRO NON È DEFIN	
	.2 AZIONI SISMICHE Q ₇	
5.	.3 EFFETTI REOLOGICI (RITIRO, VISCOSITÀ) ε2	24
	5.3.1 Viscosità del calcestruzzo	
	5.3.2 Ritiro	27
5.	.4 EFFETTI TERMICI ε ₃	30
6.	COMBINAZIONI DI CARICO	. 32
7.	MODELLAZIONE NUMERICA	34
8.	CRITERI DI VERIFICA	35
8.	.1 STATI LIMITE DI ESERCIZIO	35
	8.1.1 Stato Limite delle tensioni in esercizio - procedimento di calcolo	35
	8.1.2 Stato limite di fessurazione travi prefabbricate	35
	8.1.3 Stato Limite di deformazione	
8.	.2 STATI LIMITE ULTIMI	
	8.2.1 Stato Limite Ultimo per sollecitazioni flettenti	37

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	8.2.2 Stato Limite Ultimo per sollecitazioni taglianti e torcenti	38
	8.2.3 Stato Limite Ultimo per scorrimento tra i getti	39
9.	ANALISI DEI RISULTATI: SOLLECITAZIONI E VERIFICHE IMPALCATO	40
9.	1 VERIFICA DELLE SEZIONI	40
	9.1.1 Unità di misura	40
	9.1.2 Modello di calcolo	40
	9.1.3 Verifica sezione X=500.00 - Sezione d'appoggio	41
	9.1.4 Verifica sezione X=10500.00 - Sezione mezzeria	51

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione esecutiva dell'ampliamento da 2 a 4 corsie dell'Itinerario internazionale E78 S.G.C. Grosseto – Fano, Lotto 9.

La presente relazione afferisce ai calcoli e alle verifiche strutturali dell'impalcato in c.a. in semplice appoggio, caratterizzante il ponticello idraulico S15sec di larghezza 21.60m agli appoggi, situato sulla strada secondaria comunale 2, alla prog. 47+976.33, realizzato da paratie di pali di diametro 1200mm ed interasse 1.5 m.

Le strutture sono state progettate coerentemente con quanto previsto dalla normativa vigente, "Norme Tecniche per le Costruzioni" - DM 17.1.2018 e Circolare n.7 Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al DM 17.1.2018.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.DESCRIZIONE DELL'OPERA

L'impalcato dell'opera in oggetto è costituito da 6 travi prefabbricate in c.a. accostate, di lunghezza 21.20m, solidarizzate da una soletta superiore in c.a. gettata in opera, di spessore pari a 0.25m. Le travi, del tipo a T rovescia, disposte secondo un interasse di 1.20m, presentano altezza pari a 1.20m, larghezza della suola di 1.20m e uno spessore dell'anima di 0.15m. La larghezza complessiva dell'impalcato è pari a 7.50m.

L'impalcato è interessato dall'attraversamento di una strada il cui asse risulta parallelo a quello dell'impalcato stesso.

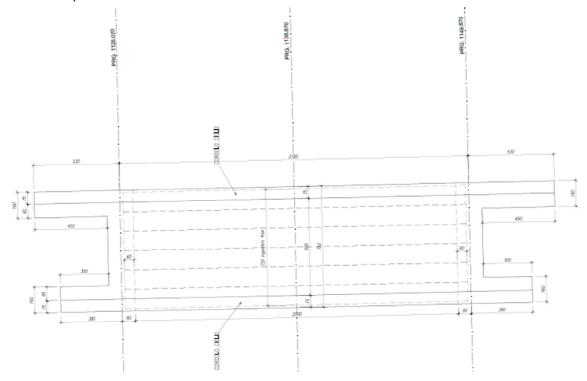


Figura 1 Pianta impalcato

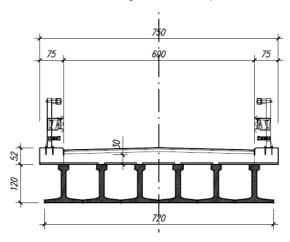


Figura 2 Sezione trasversale in asse

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3.NORMATIVA DI RIFERIMENTO

Il progetto è stato redatto sulla base delle seguenti normative e standard progettuali:

- L. 1086 05.11.1971 "Norme per la disciplina delle opere in conglomerato" cementizio armato normale e precompresso ed a struttura metallica".
- Legge n. 64 del 2 febbraio 1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- ➤ Decreto Ministeriale del 17/01/2018 "Norme Tecniche per le Costruzioni".
- ➤ UNI EN 206-1:2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità":
- ➤ UNI 11104-2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità - Istruzioni complementari per l'applicazione della EN 206-1";
- ➤ UNI EN 1992-1-1 2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo - Parte 1-1: Regole generali e regole per gli edifici";
- ➤ UNI EN 1993-1-1 2005: "Eurocodice 3 Progettazione delle strutture in acciaio";
- ➤ UNI-EN 1997-1 2005: "Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali";
- ➤ UNI-EN 1998-1 2005: "Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici".
- ➤ UNI-EN 1998-5 2005: "Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.CARATTERISTICHE DEI MATERIALI

Calcestruzzo per soletta gettata in opera C35/45

Resistenza cubica caratteristica	R_c	40.0	N/mm ²
	k		
Rapporto A/C		0.60	
Cemento per mc di impasto		300	Kg
Classe di esposizione		XC2	
Copriferro		40	mm

Calcestruzzo per travi prefabbricate in C.A.P C45/55

Resistenza cubica caratteristica	R_{ck}	55.0	N/mm ²
Rapporto A/C		0.50	
Cemento per mc di impasto		340	Kg
Classe di esposizione		XC4+XD1	
Copriferro		35 mm	

Acciaio per armatura B450C

Tensione caratteristica di snervamento	f_{yk}	450	N/mm ²
Tensione caratteristica di calcolo	f_{yd}	391.3	N/ mm ²
Modulo di elasticità	Es	210000	N/mm ²

Acciaio per trefoli

Trefoli	0.6	ıı .
Area del trefolo	139	mm^2
Resistenza caratteristica a trazione f_{ptk}	1860	MPa
Resistenza a trazione allo 0.1% f _{p(1)k}	1670	MPa

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5.ANALISI DEI CARICHI E CONDIZIONI DI CARICO

Si riporta di seguito l'analisi delle condizioni di carico elementari relative all'impalcato in esame.

5.1CARICHI PERMANENTI STRUTTURALI G1

I carichi permanenti strutturali sono valutati sulla base della geometria degli elementi costituenti la struttura e del peso specifico dei diversi materiali. Si assume γ =25kN/m³ per il calcestruzzo. Si riportano di seguito i dati considerati per il calcolo del peso proprio degli elementi strutturali di impalcato:

CARICHI PERMANENTI STRUTTURALI G1			
Peso specifico cls	γ	25.00	kN/m³
Larghezza impalcato	В	7.50	m
Luce trave	L	21.20	m
Numero di travi	n	6	
Interasse travi	i	1.20	m
Area sezione trave in mezzeria	Am	0.35	m^2
Area sezione trave appoggio	Aa	0.35	m^2
Peso Proprio Trave (sez. appoggio)	p_{g1a}	8.75	kN/m
Peso Proprio Trave (sez. mezzeria)	p _{g1m}	8.75	kN/m
Spessore soletta impalcato*	Ss	0.25	m
Larghezza soletta impalcato	Ls	7.50	m
Area sezione trasversale	A _{sez}	1.88	m^2
Peso delle predalles (sp=5cm)	p _{predalles}	1.25	kN/m ²
Peso Proprio soletta per trave	p _{g1,2}	9.31	kN/m
Peso Proprio soletta Impalcato	P _{g1,2}	46.88	kN/m

5.2CARICHI PERMANENTI NON STRUTTURALI G2

Sono considerati carichi permanenti non strutturali i carichi non rimovibili durante il normale esercizio della costruzione. Si riportano di seguito i dati considerati per il calcolo del peso proprio degli elementi non strutturali.

CARICHI PERMANENTI NON STRUTTURALI G2			
Peso specifico pacchetto stradale (ricoprimento+pavimentazione)	γ	24.00	kN/m³
Spessore medio pacchetto rilevato stradale	Spm	0.34	m
Larghezza carreggiata	Lc	6.00	m
Spessore marciapiedi	S _m	0.15	m
Larghezza marciapiedi (DX+SX)	Lm	0.75	
Barriera antiproiezione+parapetto	pv	3.50	kN/m
Sicurvia	ps	2.00	kN/m
Carichi permanenti portati	Pg2,2 tot	56.55	kN/m
Carichi permanenti portati (per trave)	Pg2,2 tot	9.43	kN/m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5.3CARICHI ACCIDENTALI Q1

Si prendono in esame nel presente paragrafo le azioni variabili da traffico.

Nella prima fase di carico (analisi a breve termine) si è considerato un sovraccarico accidentale pari a 5kPa relativo alla presenza dei mezzi d'opera o d'accatastamento di materiale di cantiere.

CARICHI ACCIDENTALI DI CANTIERE			
Sovraccarico accidentale in fase di cantiere	q_1	5.00	kN/m²
Sovraccarico accidentale in fase di cantiere (per trave)	q 1,BT	4.00	kN/m

A lungo termine, i carichi accidentali mobili presi in considerazione sono quelli indicati dalla normativa per ponti di prima categoria (par. 5.1.3.3 – DM 17.1.2018). Tali azioni, comprensive degli effetti dinamici, sono definite dai seguenti schemi di carico convenzionali e disposte su corsie convenzionali. In particolare, lo Schema di Carico 1 è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m e da carichi uniformemente distribuiti come mostrato nella Figura riportata di seguito.

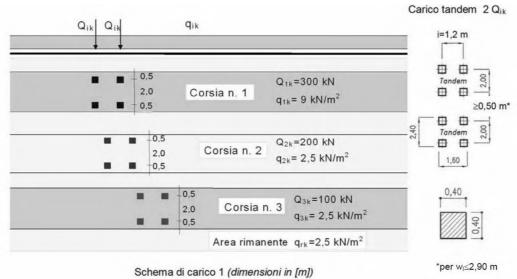


Figura 3: Schema di carico 1 per la definizione delle azioni variabili da traffico - carichi Q_{ik} e q_{ik}

Posizione	Carico asse Qik [kN]	$q_{ik}[kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Figura 4: Intensità dei carichi Qik e qik per le diverse corsie

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Il numero delle colonne di carichi mobili da considerare nel calcolo dei ponti di prima categoria è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, nonché gli eventuali marciapiedi non protetti e di altezza inferiore a 20 cm, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3,00 m.

Larghezza di carreggiata	Numero di corsie	Larghezza di una corsia	Larghezza della zona
"w"	convenzionali	convenzionale [m]	rimanente [m]
w < 5,40 m	$n_l = 1$	3,00	(w-3,00)
$5,4 \le w \le 6,0 \text{ m}$	$n_l = 2$	w/2	0
6,0 m≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 x n _l)

Figura 5: Numero e larghezza delle corsie - Tabella 5.1.I del DM 17.1.18

In accordo con la Tabella sopra riportata, per l'impalcato in esame la larghezza della carreggiata è compatibile con la presenza di due colonne di carico.

Per dedurre le sollecitazioni sulla trave indotte dai carichi accidentali stradali di esercizio è stato utilizzato il metodo di Courbon, considerando un comportamento infinitamente rigido dell'impalcato.

5.4 INCREMENTO DINAMICO IN PRESENZA DI DISCONTINUITÀ STRUTTURALI \mathbf{Q}_2

I carichi mobili valutati nel paragrafo precedente includono gli effetti dinamici per pavimentazioni di media rugosità. Non si registrano, nel caso in esame, casi particolari che rendano necessario considerare un coefficiente dinamico addizionale Q₂.

5.5AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE Q3

La forza di frenamento o di accelerazione Q_3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale, per i ponti di prima categoria, a:

$$180 \text{ kN} \le q_3 = 0.6 (2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$

essendo w_i la larghezza della corsia e L la lunghezza della zona caricata.

La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

5.6AZIONE CENTRIFUGA Q₄

L'azione centrifuga corrispondente ad ogni colonna di carico risulta funzione dei raggi di curvatura come mostrato nel prospetto seguente:

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

94 [IdN]
0,2 Q _v
40 Q,/R
0

 $Q_v = \Sigma 2 \cdot Q_{ik}$ = carico totale degli assi tandem dello schema di carico 1.

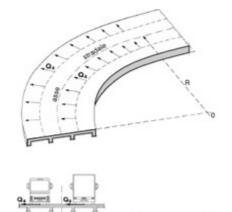


Figura 6: Valori caratteristici delle forze centrifughe - Tabella 5.1.III del DM 17.1.2018

Il carico concentrato Q₄, applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte.

L'azione in oggetto non risulta dimensionante per la verifica degli elementi strutturali di impalcato.

5.7AZIONE DEL VENTO Q₅

Il vento agente trasversalmente all'opera, oltre ad interessare la stessa, agisce sulla sagoma longitudinale dei carichi transitanti, come riportano le Norme Tecniche per le Costruzioni 2018 al paragrafo 3.3.

Si sintetizzano di seguito i dati utili per il calcolo dell'azione del vento, in accordo con quanto prescritto nel DM 17.1.2018:

- Zona 3
- Suolo riconducibile a una Classe di Rugosità D
- Tempo di ritorno: 50 anni
- Categoria di Esposizione II

Si ottiene:

Velocità base di riferimento

 $v_b = 27 \text{ m/s}$

Velocità di riferimento

 $v_r = 29.06 \text{ m/s}$

Pressione cinetica di riferimento

 $q_r = 0.50 \rho v_r^2 = 0.50 \cdot 1.25 \cdot 29.06^2 = 456.29 \text{ N/m}^2$

dove:

 ρ = 1.25 Kg/m³ densità dell'aria

Coefficiente dinamico

 $c_d = 1$

Coefficiente topografico

 $c_{t} = 1$

Coefficiente di esposizione

$$\begin{aligned} c_e(z) &= k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0) \right] & \text{per } z \ge z_{\text{min}} \\ c_e(z) &= c_e(z_{\text{min}}) & \text{per } z < z_{\text{min}} \end{aligned}$$

k _r	z ₀ [m]	z _{min} [m]
0.19	0.05	4.00

Il coefficiente di forma è calcolato secondo la norma CNR DT207/2008:

Coefficiente di forma impalcato CNR DT-207/2008 PAR. G.10.3 - G11

larghezza impalcato	d=	7.5 m
altezza impalcato	h=	4.6 m
altezza carichi mobili esposti al vento	hf=	3 m
altezza totale esposta al vento	htot=b	7.6 m
	d/b=	0.99

se d/b≥2

$$c_{fx} = \frac{1.85}{d/htot} - 0.10$$
 2\leq d/b\leq 5

$$c_{fx} = \frac{1.35}{d/htot}$$

$$d/b > 5$$

se d/b<2

Nel caso di azione del vento sugli elementi di sezione rettangolare

c _{fx} =2		0.1≤d/b≤0.2
c _{fx} =0.73 log (d/b)+3.16		0.2≤d/b≤0.7
c _{fx} =-1.64 log (d/b)+2.15	2.16	0.7≤d/b≤5
c_{fx} =-0.33 log (d/b)+1.23		5≤d/b≤10
$C_{f_{V}}=0.9$		10 <d h<50<="" td=""></d>

dove d e b sono le dimensioni del rettangolo nella direzione parallela

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

e ortogonale alla direzione del vento

Pressione del vento

 $\mathbf{p} = q_r c_e c_p c_d c_t = 456.29 \times 1.83 \times 1 \times 2.16 \times 1 = 1.82 \text{ kN/m}^2$

In favore di sicurezza si considera una pressione del vento pari a 2.50 kN/m²

L'azione del vento viene assimilata a un carico orizzontale statico con direzione perpendicolare all'asse del ponte. Tale azione agisce sulla proiezione nel piano verticale delle superfici degli elementi strutturali del ponte direttamente investite e su una parete rettangolare continua verticale alta 3,00 m, che convenzionalmente rappresenta i carichi che transitano sul ponte, come mostrato nella Figura riportata di seguito.

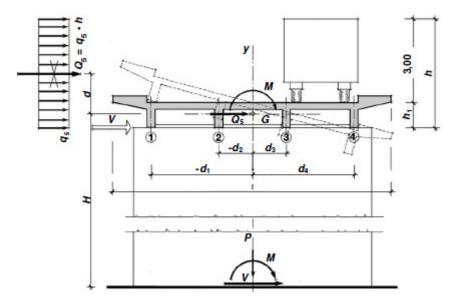


Figura 7: Direzione dell'azione del vento sul ponte

Vento trasmesso dall'impalcato a ponte carico

Il carico trasversale, per unità di lunghezza, è pari a:

 $q_{vento1} = (H_{trave} + H_{soletta}) \cdot p$

 $q_{vento2} = (H_{carico}) \cdot p$

dove:

q_{vento1} è il carico trasversale dovuto al vento sull'impalcato;

q_{vento2} è il carico trasversale dovuto al vento sulla superficie trasversale dei carichi transitanti, che da normativa si assimila ad una parete rettangolare continua dell'altezza di 3m a partire dal piano stradale.

Le risultanti trasversali totali indotte dal vento sull'impalcato, sono pari a:

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$T_{trasv1} = q_{vento1} * L$$
 $T_{trasv2} = q_{vento2} * L$
 $T_{trasv_ponte\ carico} = (T_{trasv1} + T_{trasv2})$

Il baricentro dell'azione del vento rispetto a quota estradosso sottostrutture risulta pari a:

$$e_{v1} = d + [(H_{trave} + H_{soletta})/2]$$

$$e_{v2} = d + (H_{trave} + H_{soletta}) + (3m / 2)$$

dove:

d = distanza tra intradosso trave e estradosso sottostrutture (in metri).

L'impalcato trasmette quindi alla sottostruttura un momento pari a:

$$M_{vento_ponte\ carico} = T_{trasv1} \cdot e_{v1} + T_{trasv2} \cdot e_{v2}$$

Vento trasmesso dall'impalcato a ponte scarico

Il carico trasversale, per unità di lunghezza, è pari a:

$$q_{vento1} = (H_{trave} + H_{soletta} + H_{barriera}) \cdot p$$

dove:

q_{vento1} è il carico trasversale dovuto al vento sull'impalcato e sulla barriera di protezione.

La risultante trasversale totale indotta dal vento sull'impalcato, risulta pari a:

$$T_{trasv1} = q_{vento1} * L$$

$$T_{trasv_ponte\ scarico} = T_{trasv1}$$

Il baricentro dell'azione del vento rispetto a quota estradosso sottostruttura risulta pari a:

$$e_{v1} = d + [(H_{trave} + H_{soletta} + H_{barriera})/2]$$

L'impalcato trasmette quindi alla sottostruttura un momento pari a:

 $M_{vento_ponte\ scarico} = T_{trasv1} \cdot e_{v1}$

VENTO			
Altezza massima del terreno rispetto a piano carrabile	z	4.60	m
Pressione cinetica	qь	456.29	N/m^2
Altezza totale impalcato	H _{tot}	1.72	m
Coefficiente di forma c_p = 1.4 secondo p.to C3.3.10.4.1-NTC08 - con ϕ =1	Cp	2.16	-
Parametro per il coefficiente di esposizione	k r	0.20	-
Parametro per il coefficiente di esposizione	Z ₀	0.10	m
Coefficiente di topografia	Ct	1.00	-
Calcolo di q _{v,1}			
Altezza di riferimento	z	2.88	m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Coefficiente di esposizione	Ce	1.800	
Pressione del vento in 1	q _{v,1}	1.77	kN/m²
Calcolo di q _{v,2}			
Altezza di riferimento	z	3.74	m
Coefficiente di esposizione	Ce	1.800	
Pressione del vento in 2	q v,1	1.77	kN/m ²
Calcolo di q _{v,3}			
Altezza di riferimento	z	4.60	m
Coefficiente di esposizione	Ce	1.850	
Pressione del vento in 3	q _{v,1}	1.82	kN/m ²

Forza totale agente	F _{tot}	3.07	kN/m
Pressione media agente sull'intera superficie	p _{media}	1.79	kN/m²
Forza sul lato direttamente esposto all'azione del vento	F _{wk1}	4.30	kN/m
Momento rispetto al baricentro dell'impalcato	M ₁	-0.95	kNm/m

5.8AZIONI SISMICHE Q₇

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del DM 17.1.2018.

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare nel DM 17.1.2018, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{e}(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0$$

$$T_C \le T \le T_D \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_{\scriptscriptstyle S} \cdot S_{\scriptscriptstyle T}$$
 .

Itinerario Internazionale E78 S.G.C. GROSSETO – FANO

Adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "Di Paganico")

Dal km 41+600 al km 53+400 – Lotto 9

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

 S_s : coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 $^{\it F_0}$: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 a_g : accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = C_C \cdot T^*_C$$

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 ${\it C_{\it C}}$: coefficiente che tiene conto della categoria del terreno;

 T^*_{C} : periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{e}(T) = a_g \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{\mathfrak{g}}(T) = a_{\mathfrak{g}} \cdot S \cdot \eta \cdot F_{\mathfrak{g}}$$

$$T_C \le T \le T_D \longrightarrow S_{\epsilon}(T) = a_g \cdot S \cdot \eta \cdot F_{\nu} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

nelle quali:

 $S = S_S \times S_T$: con S_S pari sempre a 1 per lo spettro verticale;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η =1 per ξ =5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale

La vita nominale di un'opera strutturale (V_N), è intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

	TIPI DI COSTRUZIONE	VitaNominale
	TIFT DI COSTRUZIONE	(VN)
1	Opere provvisorie- Opere provvisionali- Strutture in fase costruttiva	≤10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	>50
_	contenute o di importanza normale	250
2	Grandi opere, opere infrastrutturali e dighe di grandi dimensioni o di	>100
3	importanza strategica	2100

Per l'opera in oggetto si considera una vita nominale VN = **100** anni.

Classi D'uso

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Il Decreto Ministeriale del 17 gennaio 2018 prevede quattro categorie di classi d'uso riportate nel seguito:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si considera una Classe d'uso IV.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Periodo di Riferimento dell'Azione Sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R :

$$V_R = V_N \cdot C_U$$

Il valore del coefficiente d'uso Cu è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0.7	1	1.5	2

Pertanto per l'opera in oggetto il periodo di riferimento è pari a 100x2= 200 anni.

Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		$P_{\text{VR}}\!\!:$ Probabilità di superamento nel periodo di riferimento V_{R}
Stati limite di esercizio	SLO	81%
Stati iiiTiite di esercizio	SLD	63%
Stati limite ultimi	SLV	10%
Stati milite ditimi	SLC	5%

Accelerazione (a_g), fattore (F_0) e periodo (T_c^*)

Ai fini del NTC 2018 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag: accelerazione orizzontale massima sul sito;

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

MSintagma

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R), e quindi dalla vita nominale (VN) e dalla classe d'uso (C_u) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

SLATO	T _R	ag	F。	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.085	2.481	0.260
SLD	201	0.104	2.479	0.264
SLV	1898	0.210	2.560	0.287
SLC	2475	0.226	2.575	0.289

Tabella 1: Valutazione dei parametri ag, F₀ e T^{*}_C per i periodi di ritorno associati a ciascuno stato limite

I parametri ai quali si è fatto riferimento nella definizione dell'azione sismica di progetto, indicati nella tabella precedente, corrispondono, cautelativamente, a quei parametri che danno luogo al sisma di massima entità, fra tutti quelli individuati lungo le progressive dell'opera in progetto.

Sono stati presi in esame, secondo quanto previsto dal DM 17.1.2018 "Nuove Norme Tecniche per le Costruzioni", cap. 7.1, i seguenti Stati Limite sismici:

- SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)
- SLD: Stato Limite di Danno (Stato Limite di Esercizio)
- SLC: Stato Limite di Collasso (Stato Limite Ultimo)
- SLO: Stato Limite di Operatività (Stato Limite di Esercizio)

Le azioni sismiche relative allo stato limite di operatività (SLO) e allo stato limite di danno (SLD) non sono state considerate perché poco significative in relazione alle combinazioni di natura statica. Per quanto riguarda lo stato limite di collasso (SLC), questo è stato considerato per le combinazioni sismiche di verifica dei ritegni sismici; si faccia pertanto riferimento alle considerazioni presentate nelle rispettive relazioni di calcolo di impalcato.

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici e di progetto per il restante stato limite (SLV).

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata nella

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio V_{s30} , ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 compresi tra 360 m/s e 800 m/s (ovvero Nspt,30>50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina)
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzanti da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15< Nspt,30<50 nei terreni a grana grossa e 70 <cu,30<250 a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""></cu,30<250>
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 inferiori a 180 m/s (ovvero Nspt,30<15 nei terreni a grana grossa e cu,30<70 kPa nei terreni a grana fina)
Cat. E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s)

Si considera una **categoria B** di suolo di fondazione.

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente.

Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Categoria sottosuolo	Ss	Cc
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot (T_C^*)^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	1,25·(T _C *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Nel caso in esame (categoria di sottosuolo B) allo SLV risulta:

 $S_S = 1.185$

 $C_C = 1.412$

Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_™ riportati nella seguente tabella.

Categoria	Ubicazione dell'opera o dell'intervento	
topografica	Obicazione dell'opera o dell'intervento	S⊤
T1	-	1
T2	In corrispondenza della sommità del pendio	1.2
T3	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2
T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4

Nel caso in esame $S_T = 1$

Spettri di progetto

Di seguito si forniscono gli spettri di risposta elastici per lo SLV, con le tabelle dei rispettivi parametri.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

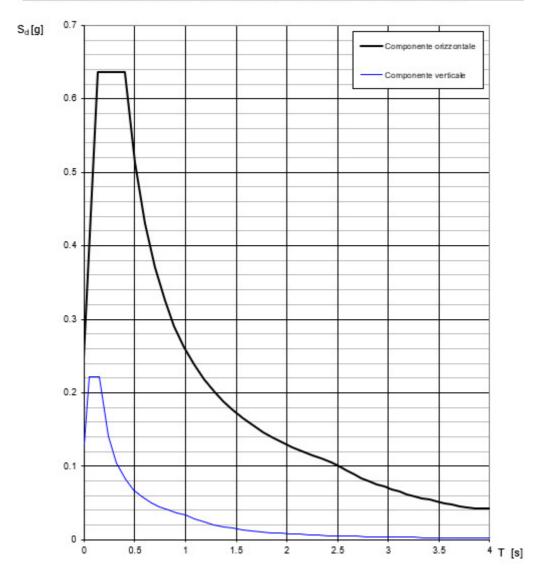


Figura 8: Spettri di risposta _SLV (Componente orizzontale e verticale)

Itinerario Internazionale E78 S.G.C. GROSSETO – FANO Adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "Di Paganico")

Dal km 41+600 al km 53+400 - Lotto 9

PROGETTO ESECUTIVO RELAZIONE DI CACOLO

Parametri e punti dello spettro di risposta orizzontale per lo stato lir&LV

(NTC-00F- 22F)

Parametri indipendenti

STATOLIMITE	SLV		
a,	0.210 q		
F.	2.560		
T _c '	0.287 s		
Ss	1.185		
ů	1.412		
S⊤	1.000		
q	1.000		

Parametri dipendenti

S	1.185
η	1.000
Τp	0.135 s
Tc	0.405 s
Τp	2.440 s

Espressioni dei parametri dipendenti

S=S _i ·S _i	(1110-00 Eq. 3.2.3)
$\eta = \sqrt{10.(5+\xi)} \ge 0.55$, $\eta = 1/q$	(NTC-08Eq. 3.2.6; §. 3.2.3.5
$T_{\rm B} = T_{\rm C}/3$	(NTC-07Eq.3.2.8)
$\mathbf{T}_{c} = \mathbf{C}_{c} \cdot \mathbf{T}_{c}^{r}$	(NTC-07Eq.3.2.7)
T _D = 4,0-a _o /g+1,6	(NTC-07Eq.3.2.9)

Espressioni dello spettro di risposta (NTC-08E4.3.2.4

$$\begin{split} 0 & \leq T < T_B \\ & S_L(T) = a_{_{\rm R}} \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_c(T) = a_{_{\rm R}} \cdot S \cdot \eta \cdot F_o \\ & T_C \leq T < T_D \\ & S_L(T) = a_{_{\rm R}} \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \\ & S_c(T) = a_{_{\rm R}} \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Las pottra di praqotta $S_4(T)$ per le verifiche aqli Stati Limite Ultimi à attenuta dalle expressioni della spottra elartica $S_*(T)$ sartituenda q con 1/q, dave q à il fattare distruttura. (NTC-08 § 3.2.3.5)

Punti dell<u>o spettro di risposta</u>

aeli	o spettro	di risposta
J	T [s]	Se [g]
	0.000	0.249
To≠	0.135	0.637
Tc◀	0.405	0.637
	0.502	0.514
	0.599	0.431
	0.696	0.371
	0.793	0.326
	0.890	0.290
	0.987	0.262
	1.084	0.238
	1.181	0.219
	1.277	0.202
	1.374	0.188
	1.471	0.176
	1.568	0.165
	1.665	0.155
	1.762	0.147
	1.859	0.139
	1.956	0.132
	2.053	0.126
	2.149	0.120
- 1	2.246	0.115
	2.343	0.110
Tp◀	2.440	0.106
- 1	2.514	0.100
- 1	2.589	0.094
- 1	2.663	0.089
- 1	2.737	0.084
- 1	2.812	0.080
ا ہے۔	2.886	0.076
.2.4)	2.960	0.072
ł	3.034	0.068
H	3.109 3.183	0.062
ŀ	3.257	0.059
ŀ	3.332	0.057
ŀ	3.406	0.054
ŀ	3.480	0.052
ŀ	3.554	0.050
ŀ	3.629	0.048
ŀ	3.703	0.046
ı	3.777	0.044
l	3.851	0.042
		0.042
[3.926	0.046
	3.926 4.000	0.042

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5.9 EFFETTI REOLOGICI (RITIRO, VISCOSITÀ) ε2

5.9.1Viscosità del calcestruzzo

Gli effetti della viscosità del calcestruzzo sono stati valutati impiegando i coefficienti indicati nell'appendice B dell'UNI EN1992-1-1.

La deformazione viscosa del calcestruzzo al tempo infinito per una tensione costante applicata all'età t₀ del calcestruzzo, è data da:

$$\varepsilon_{cc}(\infty, t_0) = \phi(\infty, t_0) (s_c/E_c)$$

dove il coefficiente di viscosità $\phi(\infty, t_0)$ al generico tempo t è calcolato con la seguente relazione:

$$\phi(\infty, t_0) = \phi_0 \beta_c (t, t_0)$$

Essendo:

- Φ_0 il coefficiente nominale di viscosità;
- $\beta c(t,t_0)$ è un coefficiente atto a descrivere l'evoluzione della viscosità nel tempo dopo l'applicazione del carico.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Si riporta di seguito il valore dei fattori impiegati per la determinazione del coefficiente normale di viscosità per la trave prefabbricata:

VISCOSITA' DEL CALCESTRUZZO per TRAVE PREFABBRICATA			
Resistenza caratteristica cilindrica a 28 giorni TRAVE	f _{ck}	45.65	N/mm ²
Valore medio della resistenza cilindrica	f _{cm}	53.65	N/mm²
Umidità ambiente relativa, in percentuale	RH	70	%
Dimensione fittizia	h ₀	590	mm
Coefficiente atto a prendere in conto l'influenza della resistenza del calcestruzzo	α_1	0.742	-
Coefficiente atto a prendere in conto l'influenza della resistenza del calcestruzzo	α_2	0.918	-
Coefficiente atto a prendere in conto l'influenza della resistenza del calcestruzzo	α3	0.808	-
Coefficiente che tiene conto dell'effetto dell'umidità sul coeff. Viscoso	фкн	1.24	-
Coefficiente che tiene conto dell'effetto della resistenza sul coeff. Viscoso	β (f _{cm})	2.29	-
Età del calcestruzzo in giorni al momento dell'applicazione del carico	to	7	gg
Coefficiente che considera dell'effetto dell'età del cls all'applicazione del carico	β(t ₀)	0.63	-
Coefficiente nominale di viscosità	фо	1.81	-
Coefficiente dipendente dall'umidità relativa e dalla dim. Fittizia	βн	1125	-
Età calcestruzzo in giorni al momento considerato	t	150	gg
Coefficiente atto a descrivere l'evoluzione della viscosità nel tempo	βс	0.52	-
Coefficiente di viscosità	Φ	0.94	-
Effetto del tipo di cemento sul coeff. di viscosità	t _{0corretto}	12.11	gg
Coefficiente che considera dell'effetto dell'età del cls all'applicazione del carico	β(t 0)	0.57	-
Coefficiente nominale di viscosità	Φ_0	1.63	-
Coefficiente di viscosità TRAVE PREFABBRICATA	$\Phi_{(t,t0)}$	0.85	-

In seguito alle deformazioni viscose della trave prefabbricata si hanno delle perdite di precompressione pari a:

$$\Delta \sigma_c = \mathsf{E}_s \cdot \varepsilon_{cc}(\infty, \mathsf{t}_0)$$

dove:

- \bullet ϵ_{cc} la deformazione per viscosità, valutata in corrispondenza dell'armatura di precompressione
- E_s il modulo elastico dell'acciaio da precompressione, pari a 195000 MPa
- $\Delta \sigma_c$ la perdita di tensione dell'armatura di precompressione.

Dato che nel calcolo si considerano le differenti fasi costruttive dell'impalcato, si valutano le cadute di tensione dovute a carichi applicati a diversi istanti t₀, in vari tempi t.

In particolare si considera:

- l'effetto della viscosità della trave prefabbricata al getto della soletta, considerando un coefficiente φ(150,7);
- l'effetto della viscosità della trave prefabbricata al tempo ∞ , considerando un coefficiente di viscosità dato dalla differenza tra il valore di ϕ_0 e il valore di $\phi(150,7)$.

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Di seguito si fornisce l'elenco dei parametri utili per la determinazione del coefficiente normale di viscosità della soletta.

VISCOSITA' DEL CALCESTRUZZO per SOLETTA			
Resistenza caratteristica cilindrica a 28 giorni SOLETTA	f _{ck}	33.2	N/mm ²
Valore medio della resistenza cilindrica	f _{cm}	41.2	N/mm ²
Umidità ambiente relativa, in percentuale	RH	70	%
Dimensione fittizia	h ₀	500	mm
Coefficiente atto a prendere in conto l'influenza della resistenza del calcestruzzo	α_1	0.892	-
Coefficiente atto a prendere in conto l'influenza della resistenza del calcestruzzo	α_2	0.968	-
Coefficiente atto a prendere in conto l'influenza della resistenza del calcestruzzo	α3	0.922	-
Coefficiente che tiene conto dell'effetto dell'umidità sul coeff. Viscoso	фкн	1.33	-
Coefficiente che tiene conto dell'effetto della resistenza sul coeff. Viscoso	β (f _{cm})	2.62	-
Età del calcestruzzo in giorni al momento dell'applicazione del carico	t ₀	7	g g
Coefficiente che considera dell'effetto dell'età del cls all'applicazione del carico	β(t ₀)	0.63	-
Coefficiente nominale di viscosità	фо	2.20	-
Coefficiente dipendente dall'umidità relativa e dalla dim. Fittizia	βн	1012.94	-
Età calcestruzzo in giorni al momento considerato	t	27375	gg
Coefficiente atto a descrivere l'evoluzione della viscosità nel tempo	βс	0.99	-
Coefficiente di viscosità	Φ	2.18	-
Effetto del tipo di cemento sul coeff. Di viscosità	t _{0corretto}	12.11	g g
Coefficiente che considera dell'effetto dell'età del cls all'applicazione del carico	β(t 0)	0.57	-
Coefficiente nominale di viscosità	Φ_0	1.99	-
Coefficiente di viscosità SOLETTA	$\Phi_{(t,t0)}$	1.97	-

Il valore dedotto del coefficiente di viscosità per la soletta è relativo al tempo di 27375 giorni, corrispondente a un'età di 100 anni, pari alla vita nominale della struttura.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5.9.2Ritiro

Per il calcolo del ritiro finale del calcestruzzo si fa riferimento a quanto riportato di seguito.

Si considera che la trave prefabbricata al momento del getto della soletta abbia esaurito il 100% del proprio ritiro. Con riferimento alla normativa italiana, la deformazione totale da ritiro si può valutare come:

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$$

con:

 ε_{cd} = deformazione per ritiro da essiccamento

 ε_{ca} = deformazione per ritiro autogeno

Il valore medio a tempo infinito della deformazione per ritiro da essiccamento risulta pari a:

$$\varepsilon_{cd} = K_h * \varepsilon_{c0}$$

con:

 $K_h = f(h_0)$

 h_0 =dimensione fittizia in (mm) = 2Ac/u

Ac = area della sezione in cls perpendicolare alla direzione di massima contrazione

u = perimetro della sezione in cls esposto all'aria

Il parametro K_h è stato valutato facendo riferimento al prospetto riportato di seguito, per interpolazione lineare.

h ₀ (mm)	$\mathbf{k_h}$
100	1,0
200	0,85
300	0,75
≥500	0,70

Figura 9: Valori di K_h – Tabella 11.2.Vb del DM 17.1.2018

Relativamente a ε_{c0} , considerando un'umidità relativa di circa il 70% e una resistenza caratteristica cilindrica del cls risulta, per interpolazione lineare, facendo riferimento al prospetto riportato di seguito:

Deformazione da ritiro per essiccamento (in ‰)						in ‰)
fck	Umidità Relativa (in %)					
	20	40	60	80	90	100
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00

MSintagma

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Figura 10: Valori di ϵ_{c0} – Tabella 11.2.Va del DM 17.1.2018

Risulta dunque per la trave:

DEFORMAZIONE DA RITIRO TRAVE PREFABBRICATA			
Area sez. cls trave	Ac	0.354	m²
Perimetro sez. cls esposto all'aria	u	1.2	m
Dimensione fittizia	h ₀	0.59	m
Parametro f(h ₀) (vd Tab. 11.2.Vb)	K _h	0.70	-
PER DOPPIA INTERPOLAZIONE LINEARE SU Tab. 11.2.Va:	ı		
ϵ_{c0} a U.R. 80% (deformazione da ritiro per essiccamento)			
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ASCISSA 1	f _{ck1}	40	N/mm²
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ASCISSA 2	f _{ck2}	60	N/mm²
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ORDINATA 1 (IN VAL. ASS.)	ε _{c01}	0.24	-
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ORDINATA 2 (IN VAL. ASS.)	ε _{c02}	0.19	-
Rck TRAVE	R _{ck}	55	N/mm²
fck TRAVE	f _{ck}	45.65	N/mm²
	ε _{c0} (fck _{TRAVE} ;U.R.80%	0.226	‰
ϵ_{c0} a U.R. 60% (deformazione da ritiro per essiccamento)			
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ASCISSA 1	f _{ck1}	40	N/mm²
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ASCISSA 2	f _{ck2}	60	N/mm²
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ORDINATA 1 (IN VAL. ASS.)	€ _{c01}	0.38	-
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ORDINATA 2 (IN VAL. ASS.)	ϵ_{c02}	0.30	-
Rck TRAVE	R _{ck}	55	N/mm²
fck TRAVE	f _{ck}	45.65	N/mm²
	ε _{c0} (fck _{TRAVE} ;U.R.60%	0.357	‰
ϵ_{c0} a $$ U.R. 70% (deformazione da ritiro per essiccamento)			
	ε _{c0} (fck _{TRAVE} ;U.R.70%	0.292	‰
Deformazione da ritiro per essiccamento f(fck,UR) Tab.11.2.Va	ε _{c0}	0.00029	_
Deform. media per ritiro da essiccamento (t=∞)	Ecd	0.00020	_
Resistenza caratteristica cubica cls	Rck	55	N/mm ²
Resistenza caratteristica cilindrica cls	f _{ck}	45.65	N/mm ²
Deform. media per ritiro autogeno (t=∞)	Eca	0.0000891	-
Deformazione totale da ritiro	Ecs	0.000293	-

Risulta per la soletta:

DEFORMAZIONE DA RITIRO SOLETTA			
Area sez. cls	A _c	3.213	m ²
Perimetro sez. cls esposto all'aria	u	12.85	m
Dimensione fittizia	h_0	0.50	m
Parametro f(h ₀) (vd Tab. 11.2.Vb)	K _h	0.7	-

PER DOPPIA INTERPOLAZIONE LINEARE SU Tab. 11.2.Va:

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$\underline{\epsilon}_{c0}$ a U.R. 80% (deformazione da ritiro per essiccamento)			
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ASCISSA 1	f _{ck1}	20	N/mm²
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ASCISSA 2	f _{ck2}	40	N/mm²
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ORDINATA 1 (IN VAL. ASS.)	ε _{c01}	0.30	-
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ORDINATA 2 (IN VAL. ASS.)	ε _{c02}	0.24	-
Rck TRAVE	R _{ck}	40	N/mm²
fck TRAVE	f _{ck}	33.2	N/mm²
	ϵ_{c0} (fck _{TRAVE} ;U.R.80%)	0.260	‰
ϵ_{c0} a U.R. 60% (deformazione da ritiro per essiccamento)			
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ASCISSA 1	f _{ck1}	20	N/mm²
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ASCISSA 2	f _{ck2}	40	N/mm²
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ORDINATA 1 (IN VAL. ASS.)	ε _{c01}	0.49	-
VALORI NOTI DA TAB. 11.2.Va (estremi della retta) ORDINATA 2 (IN VAL. ASS.)	ε _{c02}	0.38	-
Rck TRAVE	R _{ck}	40	N/mm²
fck TRAVE	f _{ck}	33.2	N/mm²
	ε _{c0} (fck _{TRAVE} ;U.R.60%)	0.417	‰
ϵ_{c0} a U.R. 70% (deformazione da ritiro per essiccamento)			
	ε _{c0} (fck _{TRAVE} ;U.R.70%)	0.339	‰
	-		
Deformazione da ritiro per essiccamento f(f _{ck} , UR) Tab.11.2.Va	ε _{c0}	0.00034	-
Deform. media per ritiro da essiccamento (t=∞)	$\epsilon_{\sf cd}$	0.00024	-
Resistenza caratteristica cubica cls	R _{ck}	40	N/mm²
Resistenza caratteristica cilindrica cls	f _{ck}	33.2	N/mm²
Deform. media per ritiro autogeno (t=∞)	ε _{ca}	0.0000580	-
Deformazione totale da ritiro	€ _{cs}	0.000295	-

Il ritiro della soletta è contrastato dalla presenza delle travi prefabbricate. Se la soletta fosse libera di deformarsi subirebbe l'accorciamento ε_{cs} soletta valutato in precedenza.

Supponendo che la presenza delle travi prefabbricate impedisca totalmente tale deformazione ne consegue una forza di trazione nella soletta pari a:

$$N_{rit} = \varepsilon_{cs,soletta} E_{c,soletta} A_{soletta}$$

Tale forza si traduce in una azione assiale di compressione e in un momento flettente agenti sulla sezione mista omogenizzata trave+soletta. Il momento nasce per equilibrare la coppia costituita dalla forza di trazione nella soletta e la forza di compressione agente sulla sezione intera, ed è quindi calcolata considerando un braccio pari alla distanza tra il baricentro della soletta e il baricentro della sezione trave+soletta.

Si noti che, poiché la deformazione da ritiro considerata è quella a t=∞, il valore della tensione nella soletta è calcolato considerando un modulo elastico della soletta ridotto per simulare l'effetto della viscosità della soletta stessa.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

In particolare $E_{c, \text{ soletta } \infty} = E_{c, \text{ soletta } 28}/(1+\phi)$

SOLLECITAZIONI DA RITIRO			
Deformazione totale da ritiro in soletta	&cs	0.000295	-
Effetto della viscosità a t infinito	Φ	1.97	
Modulo elastico soletta	E _{c,soletta}	33643	N/mm ²
Modulo elastico soletta a tempo infinito	E _{c,soletta∞}	11343	N/mm ²
Area sez. cls	Ac	0.200	m^2
Sforzo assiale di compressione su una trave	N _{RIT}	670	kN
Distanza del baricentro della soletta dall'intradosso della trave	y G,soletta	0.725	m
Distanza tra baricentro soletta e baricentro trave+soletta	е	-0.15	m
	-		
Momento agente sulla trave per effetto del ritiro	M _{RIT}	-97	kNm

5.10EFFETTI TERMICI ε₃

Relativamente alle variazioni termiche sono state considerate le seguenti distorsioni termiche, in seconda fase:

- variazione termica uniforme per gli elementi strutturali +/-15°C
- gradiente termico tra soletta e trave prefabbricata (uniforme sulla soletta) +/-5°C

Secondo considerazioni analoghe a quelle fatte nel paragrafo precedente per il ritiro, la deformazione della soletta dovuta ad effetti termici è contrastata in seconda fase dalla presenza delle travi prefabbricate. Supponendo che la presenza delle travi prefabbricate impedisca totalmente tale deformazione ne consegue una forza di trazione/compressione (nel caso di contrazione/dilatazione termica) nella soletta pari a:

 $N_{\Delta T} = \alpha E_{c, \text{soletta}} A_{\text{soletta}} \Delta T$

Tale forza si traduce in una azione assiale di compressione/trazione e in un momento flettente agenti sulla sezione mista omogenizzata trave+soletta, tendente le fibre inferiori/superiori. Il momento nasce per equilibrare la coppia costituita dalla forza nella soletta e la forza uguale e di segno opposto agente sulla sezione intera, ed è quindi calcolata considerando un braccio pari alla distanza tra il baricentro della soletta e il baricentro della sezione trave+soletta. Nel prospetto di seguito, la sintesi del calcolo effettuato.

EFFETTI TERMICI		
Spessore soletta	s	0.25 m
Variazione termica	ΔΤ	15.0 °C
Coefficiente di dilatazione termica del calcestruzzo	αт	0.00001 _{1/°C}
Deformazione termica	ε	0.00015 _

MANDATARIA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Modulo elastico soletta	E _{soletta}	33643	N/mm2
Tensione soletta	σ	5.05	N/mm2
Area soletta collaborante	Ac	200000	mm2
Sforzo assiale in soletta	N _{tot} soletta	1009	kN
Sforzo normale eccentrico sulla sezione composta	N _{tot} trave composta	1009	kN
Distanza tra baricentro soletta e quello della sezione composta	d	-0.15	m
Momento flettente sulla sezione composta	M trave composta	-146	kNm

Itinerario Internazionale E78 S.G.C. GROSSETO – FANO Adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "Di Paganico")

Dal km 41+600 al km 53+400 - Lotto 9

PROGETTO ESECUTIVO RELAZIONE DI CACOLO

6. COMBINAZIONI DI CARICO

Le combinazioni delle azioni sono state definite in accordo con quanto riportato al par. 2.5.3 del DM 17.1.2018:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio
 (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qj} e quelli dei coefficienti di combinazione Ψ_{ij} sono stati desunti dal par. 5.1.3.14 del DM 17.1.2018, relativo al capitolo sui 'Ponti stradali'. Di seguito si riportano le Tabelle di riferimento.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti \mathbf{g}_1 e \mathbf{g}_3	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	You	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Ye1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Ye2 Ye3 Ye4	0,00 1,20	0,00 1,20	0,00 1,00

Figura 11: Valori dei coefficienti parziali di sicurezza – Tabella 5.1.V del DM 17.1.2018

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente \$\psi_0\$ di combi- nazione	Coefficiente \(\psi_1\) (valori frequenti)	Coefficiente Ψ_2 (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
IVEVE	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Figura 12: Valori dei coefficienti P per le azioni variabili – Tabella 5.1.VI del DM 17.1.2018

Sulla base dei criteri esposti sopra, si riportano nei prospetti di seguito i coefficienti dedotti per le combinazioni di carico più gravose tra quelle adottate nell'analisi strutturale, per i diversi stati limite.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	SLE_rara1	SLE_rara2	SLE_rara3	SLE_freq.1	SLE_freq.2	SLE_freq.3	SLE_qp1	SLU1	SLU2	SLU3
G1-G3	1	1	1	1	1	1	1	1.35	1.35	1.35
G2	1	1	1	1	1	1	1	1.5	1.5	1.5
Q1	1	0.75	0.75	0.75	0	0	0	1.35	1.35X0.75	1.35X0.75
ε2	1	1	1	1	1	1	1	1.2X1	1.2	1.2x1
ε3	0.6	0.6	1	0.5	0.5	0.6	0.5	1.5X0.6	1.5x0.6	1.5

I casi di carico che figurano nelle combinazioni sopra riportate, fanno riferimento alle seguenti azioni:

G₁: peso proprio degli elementi strutturali

G₂: carichi permanenti portati

G₃: spinta delle terre

Q₁: carichi mobili

ε₂: effetti reologici (ritiro, viscosità)

ε₃: variazioni termiche uniformi e differenziali

7. MODELLAZIONE NUMERICA

Le travi presentano una lunghezza di 21.20m.

Si sono considerate due fasi di calcolo: la fase 1 in cui si considera reagente la sola trave prefabbricata, sottoposta al peso proprio e al getto della soletta; la fase 2 in cui si considera reagente la sezione mista (trave prefabbricata+soletta collaborante), soggetta alle sollecitazioni indotte dai sovraccarichi permanenti (peso ricoprimento+pacchetto stradale) e dal carico accidentale. In sintesi:

Fase 1: trave sottoposta al peso proprio, ai carichi dovuti ai getti della soletta e ai carichi accidentali di cantiere;

Fase 2: travi+soletta solidarizzate, sottoposte ai sovraccarichi permanenti e ai carichi accidentali di esercizio.

Gli effetti del ritiro si considerano assorbiti al 50% dalla trave prefabbricata e al 50% dalla sezione mista.

Per dedurre le sollecitazioni sulla trave indotte dai carichi accidentali stradali di esercizio è stato utilizzato il metodo di Courbon, considerando un comportamento infinitamente rigido dell'impalcato.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

8. CRITERI DI VERIFICA

Le verifiche di sicurezza sono state effettuate sulla base dei criteri definiti nelle vigenti norme tecniche - "Norme tecniche per le costruzioni"- DM 17.1.2018 .

In particolare vengono effettuate le verifiche agli stati limite di servizio, riguardanti gli stati tensionale, di fessurazione e di deformazione, ed allo stato limite ultimo. Le combinazioni di carico considerate ai fini delle verifiche sono quelle indicate nei precedenti paragrafi.

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali.

8.1 STATI LIMITE DI ESERCIZIO

8.1.1 Stato Limite delle tensioni in esercizio - procedimento di calcolo

Per valutare lo stato tensionale nelle sezioni di verifica distingueremo le seguenti fasi:

PRIMA FASE

- a) al manifestarsi della precompressione
- b) prima del getto in opera
- c) subito dopo il getto in opera

SECONDA FASE

- d) impalcato scarico
- e) impalcato carico

In tutte le fasi la determinazione dello stato tensionale degli elementi da verificare avviene in base alla combinazione caratteristica (rara) :

$$S = G_1 + G_2 + P + Q$$

dove:

G₁ = permanenti strutturali

G₂ = permanenti non strutturali

P = precompressione

Q = azioni variabili

8.1.2 Stato limite di fessurazione travi prefabbricate

Per garantire la durabilità della struttura il calcolo di verifica tensionale agli Stati Limite di esercizio viene condotto con opportune limitazioni che preservano le travi principali da una eccessiva fessurazione.

A questo scopo, facendo riferimento alla normativa (tab. 4.1.IV) ed adottando le limitazioni relative alle armature *sensibili* nel caso di ambiente molto aggressivo, andrebbero verificate

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

le seguenti condizioni:

classi di esposizione	comb. rare	comb. frequenti	comb. quasi perm.	
XD2,XD3,XS2,XS3,XA3,XF4	<nessuna verifica=""></nessuna>	formazione fessure	decompressione	

Per una maggiore tutela della durabilità dell'opera vengono invece rispettate nelle verifiche le seguenti limitazioni:

classi di esposizione	comb. rare	comb. frequenti	comb. quasi perm.
XD2,XD3,XS2,XS3,XA3,XF4	formazione fessure	decompressione	<nessuna verifica=""></nessuna>
$\sigma_{traz.} \le f_{ctm}/1.2$			

8.1.3 Stato Limite di deformazione

Viene valutata l'entità delle deformazioni significative degli elementi inflessi nelle varie fasi.

La valutazione di tali deformazioni viene fatta assumendo per il modulo elastico del calcestruzzo il valore:

 $E_{travi} = 36416.11$

 $E_{\text{soletta}} = 33642.78$

e, per determinare gli effetti sotto l'azione dei carichi permanenti, viene assunto un coefficiente di viscosità pari a:

$$\varphi_{inf} = 2.3$$

L'effetto della viscosità viene poi ridotto moltiplicando tutte le deformazioni conseguenti per il valore 0.5.

Le frecce calcolate sono positive se rappresentano uno spostamento verso l'alto, negative se verso il basso.

8.1.3.1Prima fase

	accorciamento	rotaz. testata	rotaz. testata	freccia in
	[mm]	sinistra [GRAD]	destra [GRAD]	mezzeria [mm]
al taglio trefoli	-8.4956	0.20230	-0.20230	19.7101
prima del getto in opera	-12.3099	0.24406	-0.24406	24.6438
al getto soletta	-12.3099	0.16872	-0.16872	16.8351
dopo maturazione	-12.3452	0.16909	-0.16909	16.8597

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

8.1.3.2Seconda fase

Spostamenti X in asse appoggi [mm]:

	dopo maturazione	postesi e		
	soletta	cambio vincoli	t=inf.	
SP1	0.0000	0.0000	0.0000	
SP2	0.0000	0.0000	-4.3287	

Rotazioni in asse appoggi [GRAD]:

	dopo maturazione	postesi e		
	soletta	cambio vincoli	t=inf.	
SP1	0.00000	0.00000	0.20517	
SP2	0.00000	0.00000	-0.20517	

Frecce in mezzeria [mm]:

campata		dopo maturazione	postesi e	t=inf.	t=inf.
	Х	soletta	cambio vincoli	comb. rara max	comb. rara min
1	10500.00	16.8597	16.8597	26.1306	26.1306

8.2 STATI LIMITE ULTIMI

8.2.1 Stato Limite Ultimo per sollecitazioni flettenti

Il calcolo dei momenti ultimi delle sezioni viene eseguito tenendo conto del diagramma σ – ϵ parabola-rettangolo per il calcestruzzo, con deformazione limite pari a -0.0035 in compressione, e deformazione indefinita a trazione con tensione nulla (sezione fessurata).

Per gli acciai si utilizza un diagramma tensioni-deformazioni linearmente elastico fino alla tensione di rottura e lineare orizzontale fino alla deformazione 0.01, sia in trazione che in compressione.

Si rimanda al capitolo dei materiali per i valori dei moduli elastici e delle tensioni di calcolo.

Nel calcolo del momento ultimo si tiene conto del delta di deformazione ϵ_{sp} dell'acciaio da precompressione rispetto agli altri materiali.

MSintagma

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

8.2.2 Stato Limite Ultimo per sollecitazioni taglianti e torcenti

Per valutare i tagli e momenti torcenti resistenti viene utilizzata la formulazione indicata dalle norme:

 $V_{Rd} = [0.18/\gamma_c \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{1/3} + 0.15 \cdot \sigma_{cp}] \cdot b_w \cdot d$ (taglio ultimo in assenza di armatura trasversale)

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot 0.5 \cdot f_{cd} \cdot (cotan\alpha + cotan\theta) / (1 + cotan^2\theta)$ (taglio ultimo per rottura delle bielle compresse)

 $V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot (cotan\alpha + cotan\theta) \cdot sin\alpha$ (taglio ultimo per rottura delle staffe)

 $T_{Rcd} = 2 \cdot A_k \cdot 0.5 \cdot f_{cd} \cdot \cot n\theta / (1 + \cot n^2 \theta)$ (momento torcente ultimo per rottura delle bielle compresse)

 $T_{Rsd} = 2 \cdot A_k \cdot (A_{sw,parete}/s) \cdot f_{vd} \cdot \cot n\theta$ (momento torcente ultimo per rottura delle staffe)

Dove:

d: altezza utile della sezione

b_w: larghezza minima della sezione

Asw: area armatura trasversale nella sezione

A_{sw,parete}: area armatura trasversale minima nelle pareti

s: passo staffe

 α : inclinazione risp. all'orizzontale delle armature trasversali (90 [deg])

 θ : inclinazione bielle compresse in cls

 α_c : coeff. maggiorativo dovuto alla presenza dello sforzo assiale

A_{sl}: area acciaio in zona tesa

 $k = 1 + (200/d)^{1/2}$

 $\sigma_{cp} = N_{Ed}/A_{cls}$

 $\rho_I = A_{sI}/(b_w \cdot d)$

Ak: area racchiusa dalla fibra media del profilo periferico della sezione

MANDANTE

Nel modello a traliccio a rottura si considerano inclinate a 45 [deg] le bielle compresse di calcestruzzo in sezioni non precompresse, mentre si tiene conto dell'effetto benefico della

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

precompressione valutando una minore inclinazione delle bielle in base alla tensione principale di trazione presente nella sezione a quota baricentrica.

L'inclinazione così determinata viene comunque limitata come indicato nelle norme citate.

8.2.3 Stato Limite Ultimo per scorrimento tra i getti

Viene calcolato lo sforzo di scorrimento di progetto S_{Edi} tra il calcestruzzo delle travi prefabbricate e quello gettato in opera, e viene confrontato con quello ultimo di interfaccia S_{Rdi} , utilizzando le indicazioni della normativa EN1991-1-1-6.2.5

$$S_{Edi} = \beta \cdot V_{Ed}/z$$

in cui:

- β è il rapporto tra la forza longitudinale nell'ultimo getto di calcestruzzo e la forza longitudinale totale in zona compressa o tesa, entrambe calcolate nella sezione considerata, assunto = 1.0
 - V_{Ed} è la forza di taglio trasversale di 2ª fase
 - z è il braccio della coppia interna della sezione composta

$$S_{Rdi} = b_i \cdot (c \cdot f_{ctd} + \mu \cdot \sigma_n) + A_{sw} / s \cdot f_{yd} \cdot \mu \qquad \leq 0.5 \cdot b_i \cdot \nu \cdot f_{cd}$$

in cui:

Larghezza superficie contatto / spess. tot. anime	b _i /b _w	1.000	[-]
Fattore di coesione tra le superfici	С	0.350	[-]
Resistenza a trazione di progetto	f_{ctd}	3.10	[N/mm²]
Coefficiente di attrito tra le superfici	μ	0.600	[-]
Compressione normale alle superfici di contatto	σ_{n}	0.14	[N/mm²]
Area complessiva staffa di collegamento	A_{sw}	<variabile></variabile>	[mm²]
Passo staffe di collegamento	S	<variabile></variabile>	[mm]
Resistenza calcestruzzo più debole	f_{cd}	18.81	[N/mm²]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.ANALISI DEI RISULTATI: SOLLECITAZIONI E VERIFICHE IMPALCATO

SOLLECITAZIONI SLE		TAGLIO	MOMENTO	SFORZO NORMALE
	SOLLECITAZIONI SLE		(kNm)	(kN)
	PESO PROPRIO	93	-	-
	GETTO SOLETTA	99	-	-
APPOGGIO	ACCIDENTALI CANTIERE	42	-	-
00	SOVRACCARICHI PERMANENTI	100	-	-
APF	ACCIDENTALI ESERCIZIO	502	-	-
	RITIRO	-	-49	-335
	EFFETTI TERMICI	-	± -146	Ŧ 1009
	PESO PROPRIO	-	492	-
	GETTO SOLETTA	-	523	-
MEZZERIA	ACCIDENTALI CANTIERE	-	225	-
ZZE	SOVRACCARICHI PERMANENTI	-	530	-
ME	ACCIDENTALI ESERCIZIO	-	1590	-
	RITIRO	-	-49	-335
	EFFETTI TERMICI	-	± -146	Ŧ 1009

9.1VERIFICA DELLE SEZIONI

9.1.1Unità di misura

Ove non sia diversamente specificato, le grandezze contenute nella presente relazione sono espresse nelle seguenti unità di misura:

lunghezza	[mm]
forza	[N]
angolo	[GRAD]

I diametri delle barre di armatura lenta sono sempre espressi in [mm], i diametri dei trefoli di precompressione sono invece espressi in [inch] (= 25.4 [mm]).

9.1.2 Modello di calcolo

Il codice di calcolo TCAP riceve le combinazioni di carico della struttura dal programma di calcolo delle sollecitazioni ed esegue le verifiche nelle situazioni agli Stati Limite Ultimi e agli Stati Limite di Esercizio inserendo nelle combinazioni l'effetto della precompressione.

Per valutare l'effetto della precompressione nelle varie sezioni viene assunto un modello di calcolo appropriato che riproduce le condizioni iperstatiche della struttura reale.

MSintagma

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

La struttura è considerata lineare e rettilinea, soggetta a deformazione longitudinale assiale generata dalla precompressione e deformazione trasversale per inflessione nel piano verticale. Essa viene schematizzata come una struttura a telaio piano che discretizza i tratti a sezione (e quindi baricentro) costante con aste orizzontali e i tratti a geometria variabile con aste inclinate.

Le forze di precompressione sono rappresentate da forze longitudinali e da coppie di trasporto delle forze stesse alla quota del baricentro locale.

Per il calcolo dei momenti flettenti resistenti a rottura viene utilizzata la procedura FindLim ed. TCAP/1.0 05/10 - SIGMAcSOFT che tiene conto, oltre al contributo del calcestruzzo, del contributo delle armature lente (stesso stato deformativo del calcestruzzo) e del contributo delle armature di precompressione nello stato deformativo effettivo (pretensione).

9.1.3Verifica sezione - Sezione d'appoggio

9.1.3.1Prima fase: sola trave

Sezione di calcestruzzo:

n.	Y	Z	
1	-600.00	0.00	prefabb.:
2	-600.00	80.00	non reag.trazione
3	-160.00	180.00	
4	-160.00	1200.00	
5	160.00	1200.00	
6	160.00	180.00	
7	600.00	80.00	
8	600.00	0.00	
9	600.00	0.00	
10	600.00	0.00	
11	600.00	0.00	
12	600.00	0.00	
13	-600.00	0.00	
14	600.00	0.00	
15	600.00	0.00	
16	600.00	0.00	

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n.	Y	Z	
17	600.00	0.00	
18	600.00	0.00	
19	600.00	0.00	
20	600.00	0.00	fine prefabb.

Α	J _f	Zg
498400.000	71214460809.7022	477.93

<nessuna armatura di precompressione pretesa>

Armature lente longitudinali:

n.	Z	area	
1	394.00	226.195	2Ø12
2	594.00	226.195	2Ø12
3	794.00	226.195	2Ø12
4	994.00	226.195	2Ø12
5	1164.00	452.389	4Ø12
6	54.50	1256.637	armatura longit. appoggio 4Ø20

Sezione ideale (n=15.000)	A_{id}	$oldsymbol{J}_{f,id}$	$Z_{g,id}$
	537607.076	79172082920.1628	477.04

Sollecitazioni	$M_{esterno}$
prima del getto in opera	0.00
dopo getto 2a fase	83666590.16

9.1.3.1.1 Tensioni nei materiali in prima fase

Tensioni sul calcestruzzo	σ e,max	O i,max
prima del getto in opera	0.00	0.00
dopo getto 2a fase	-1.47	0.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Tensioni sugli acciai	σ_{sp}	O long,ma	pos.	O _{long,mi}	pos.
		x		n	
prima del getto in opera	0.00	0.00	S0/S1/S2	0.00	S0/S1/S2
dopo getto 2a fase	0.00	33.63		-19.54	

9.1.3.1.2 Verifica a rottura per flessione dopo getto 2a fase

Presollecitazione armature pretese : $\varepsilon_{\text{sp,z=0.00}}$ =0.00000

fless.	Z asse neutro	Mr	Esup	Zεsup	Einf	$Z_{\epsilon inf}$
(+)	1052.36	692136977.49	-0.00147	1200.0 0	0.01000	50.00
(-)	62.65	-439520533.85	0.01000	1164.0 0	-0.00057	0.00

 $M_{d,max} = 108766567.21 < 692136977.49 K_r = 6.364$

9.1.3.1.3 Verifica a rottura per taglio dopo getto 2a fase

Calcestruzzo:	θ	bw	Staffe:	Asw
	[GRAD]			
	50.000	150.00		2.41903

d	K	\mathbf{A}_{sl}	ρι	$\sigma_{\sf cp}$	α_{c}
1164.00	1.415	1935.22	0.0111	0.00	1.000
		I			

V_{Rd}	V_{Rsd}	V_{Rcd}
109616.24	1015795.74	1016237.47

 $V_{Ed,max} = 211861.76 < 1015795.74$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.1.3.2Seconda fase: trave + getto in opera

9.1.3.2.1 dopo cambio vincoli

- scassero / cambio vincoli

Sezione di calcestruzzo:

n	Y	Z	
1	-600.00	0.00	prefabb.:
2	-600.00	80.00	non reag.trazione
3	-160.00	180.00	
4	-160.00	1200.00	
5	160.00	1200.00	
6	160.00	180.00	
7	600.00	80.00	
8	600.00	0.00	
9	600.00	0.00	
1 0	600.00	0.00	
1	600.00	0.00	
1 2	600.00	0.00	
1 3	-600.00	0.00	
1 4	600.00	0.00	
1 5	600.00	0.00	
1 6	600.00	0.00	
1 7	600.00	0.00	
1 8	600.00	0.00	
1 9	600.00	0.00	
2	600.00	0.00	fine prefabb.

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n	Y	Z	
0			
2 1	-600.00	0.00	
2	-600.00	1200.00	getto in opera
2 3	-600.00	1450.00	(m=0.924)
2 4	600.00	1450.00	non reag.trazione
2 5	600.00	1200.00	
2 6	-600.00	1200.00	

Α	J _f	Zg
775552.94	200454724740	780.64
7	.1570	

<nessuna armatura di precompressione pretesa>

Armature lente longitudinali:

1	Z	area	
	394.00	226.195	2Ø12
2	594.00	226.195	2Ø12
3	794.00	226.195	2Ø12
2	994.00	226.195	2Ø12
Ē	1164.00	452.389	4Ø12
E	1382.00	678.584	Ø12/20 SUPERIORE 6Ø12
7	50.00	1256.637	armatura longit. appoggio 4Ø20

Sezione ideale (n=15.000)	\mathbf{A}_{id}	$\mathbf{J}_{f,id}$	$Z_{g,id}$
	824938.78	2159290557	773.10

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sezione ideale (n=15.000)	A _{id}	$\mathbf{J}_{f,id}$	$Z_{g,id}$
	4	35.9460	

Sollecitazioni e frecce:

	N	М	V	freccia
cambio vincoli	0.00	0.00	0.00	0.0000

Tensioni sul calcestruzzo dopo 28gg dal getto + scassero/cambio vincoli :

	σ _{e,max}	σ i,max
trave prefabbricata	-1.47	0.00
getto in opera	0.00	0.00

Cadute di tensione da maturazione soletta a t=inf. :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{sp}/\sigma_{spi}$
ritiro cls	48. 9%	28.58	1.9%
rilassamento acciaio	32. 6%	30.58	2.1%
viscosità cls	100 .0%	145.90	9.8%

9.1.3.2.2 Verifiche in esercizio

9.1.3.2.2.1Verifica tensionale

Sezione di calcestruzzo:

n.	Y	Z	
1	-600.00	0.00	prefabb.:
2	-600.00	80.00	non reag.trazione
3	-160.00	180.00	
4	-160.00	1200.00	
5	160.00	1200.00	
6	160.00	180.00	
7	600.00	80.00	
8	600.00	0.00	

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n.	Υ	Z	
9	600.00	0.00	
10	600.00	0.00	
11	600.00	0.00	
12	600.00	0.00	
13	-600.00	0.00	
14	600.00	0.00	
15	600.00	0.00	
16	600.00	0.00	
17	600.00	0.00	
18	600.00	0.00	
19	600.00	0.00	
20	600.00	0.00	fine prefabb.
21	-600.00	0.00	
22	-600.00	1200.00	getto in opera
23	-600.00	1450.00	(m=0.924)
24	600.00	1450.00	non reag.trazione
25	600.00	1200.00	
26	-600.00	1200.00	

Α	Jf	Zg
775552.947	200454724740.1570	780.64

<nessuna armatura di precompressione pretesa>

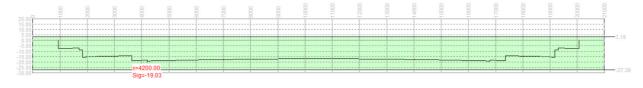
Armature lente longitudinali:

n.	Z	area	
1	394.00	226.195	20
2	594.00	226.195	20
3	794.00	226.195	20
4	994.00	226.195	20
5	1164.00	452.389	40
6	1382.00	678.584	Ø12/20 SUPERIORE 60

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

n	Z	Z area	
7	50.00	1256.637	armatura longit. appoggio 4Ø20


Sezione ideale (n=15.000)	\mathbf{A}_{id}	$\mathbf{J}_{f,id}$	$\mathbf{Z}_{g,id}$
	824938.784	215929055735.9460	773.10

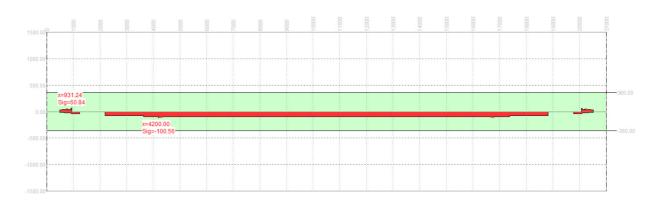
Tensioni sul cls - TR120-*modif.*:

	$\sigma_{\text{e,max}}$	σ _{e,min}	σ _{i,max}	σ i,min
dopo maturazione getto in opera	-1.47	-1.47	0.00	0.00
t=infsenza carichi	-1.47	-1.47	0.00	0.00
t=infSLE Rare	0.00	0.00	0.00	-7.47
t=infSLE Quasi Permanenti	0.00	0.00	0.00	0.00

Tensioni sul cls - getto in opera:

	$\sigma_{\text{e,max}}$	$\sigma_{e,min}$	$\sigma_{i,max}$	$\sigma_{i,min}$
dopo maturazione getto in opera	0.00	0.00	0.00	0.00
t=infsenza carichi	0.00	0.00	0.00	0.00
t=infSLE Rare	0.00	0.00	0.00	0.00
t=infSLE Quasi Permanenti	0.00	0.00	0.00	0.00

Tensioni sugli acciai	σsp	σ sl,max		pos.	σ sl,min	pos.
dopo maturazione getto in opera	0.00	57.38			-19.54	
t=infsenza carichi	0.00	57.38			-19.54	
t=infSLE Rare	0.00	523.39	*	Ø12/20 SUPERIORE	-90.25	
t=infSLE Quasi Permanenti	0.00	0.00			0.00	



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.1.3.2.2.2Verifica a rottura per flessione t=inf.

presollecitazione nelle armature di precompressione :

	Z cavo risult.	$\Delta \epsilon_{\sf sp}$
S0/S1/S2/S3/S4	0.00	0.00000

fless.	Z asse neutro	Mr	Esup	Zεsup	Einf	$Z_{\epsilon inf}$
(+)	1361.82	733696370.74	-0.00067	1450.00	0.01000	50.00
(-)	60.87	-512303118.38	0.01000	1382.00	-0.00046	0.00

 $M_{d,max} = 286307367.21 < 733696370.74 K_r = 2.563$

 $M_{d,min} = -67858909.84 > -512303118.38 K_r = 7.550$

ERROR: undefined OFFENDING COMMAND: translateWidth

[1.0 0.0 0.0 1.0 0.0 0.0] 17 46

/mx