

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO INTERNAZIONALE E78 S.G.C. GROSSETO - FANO

ADEGUAMENTO A 4 CORSIE
NEL TRATTO GROSSETO - SIENA (S.S. 223 "DI PAGANICO")
DAL KM 41+600 AL KM 53+400 - LOTTO 9

PROGETTO ESECUTIVO

cod. **FI15**

ATI SINTAGMA - GDG - ICARIA PROGETTAZIONE: IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: IL GRUPPO DI PROGETTAZIONE: MANDATARIA: MANDANTI: Dott. Ing. Nando Granieri Ordine degli Ingegneri della Prov. di Perugia nº A351 Sintagma età di ingegneria Dott.Ing. Dott.Arch. N.Granieri Dott. Ing. D.Carlaccini Dott. Ing. V.Rotisciani Dott. Ing. Dott. Ing. S.Sacconi A.Rea V.De Gori N.Kamenicky V.Truffini Dott. Ing. F.Macchioni IL PROGETTISTA: Dott.Ing. C.Vischini Geom. A.Bracchini F.Durastanti Dott. Ing. Federico Durastanti Dott.Arch. Dott. Ing. Dott. Ina. V.Piunno Ordine degli Ingegneri della Prov. di Terni n° A844 Dott.Ing. Dott. Ing. C.Consorti Dott. Ing. G.Pulli Dott.Ing. C.Sugaroni E.Bartolocci Geom. F.Dominici Geom. Dott.Geol. G.Cerquiglini IL GEOLOGO: Geom. S.Scopetta L.Sbrenna Dott.Ing. Dott. Geol. Giorgio Cerquiglini E.Sellari Ordine dei Geologi della Regione Umbria n°108 Dott.Ing L.Dinelli L.Nani F.Pambianco Dott.Ing. II R.U.P. Dott.Ing. F.Berti Nulli Dott. Ing. Dott. Agr. Raffaele Franco Carso INGEGNERI DELLA PROVINCIA Sezion A PE ORDINE degli INGEGNERI IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE: INCEGNERE Dott. Ing. Filippo Pambianco Ordine degli Ingegneri della Prov. di Perugia n° A1373 DOTTORS INSEGNERE Federico MANDO GRANIERI **PROTOCOLLO** DATA SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE Provincia di TERNI SETTORE DELL'INFORMAZIONE

OPERE DI ATTRAVERSAMENTO IDRAULICO TOMBINO P15 Relazione di calcolo

CODICE PROGETTO PROGETTO LIV. PROG. N. PROG.		NOME FILE TOO—TM15—STR—RE01—A			REVISIONE	SCALA:	
LOFI	LOFI15 E 1901		CODICE ELAB. TOOTM15STRRE01			Α	-
Α	Emissione			28/02/2020	P. Castraberte	E.Bartolocci	N.Granieri
RFV	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

INDICE

1	PREMESSA	. 5
2	NORMATIVA DI RIFERIMENTO	. 6
3	UNITA' DI MISURA	. 7
4	CARATTERISTICHE DEI MATERIALI	. 8
4.	.1 CALCESTRUZZO	.8
	4.1.1 Getto in opera tombino	.8
4.	.2 ACCIAIO PER ARMATURE ORDINARIE	.8
4.	.3 COPRIFERRI MINIMI	.9
4.	.4 DURABILITÀ E PRESCRIZIONI SUI MATERIALI	.9
5	CARATTERIZZAZIONE GEOTECNICA	10
6	GEOMETRIA DELLA STRUTTURA	11
7	ANALISI DEI CARICHI	12
7.	.1 CONDIZIONI DI CARICO	12
	7.1.1 Peso proprio strutturale (g ₁)	12
	7.1.2 Carichi permanenti portati (g ₂)	12
	7.1.1 Spinta della terra in condizioni statiche (g ₃)	12
	7.1.2 Azioni della falda (g _{3_W})	13
	7.1.3 Variazioni termiche (q ₇)	14
	7.1.4 Ritiro (ε ₂)	14
	7.1.5 Azioni variabili da traffico	15
	7.1.6 Azione longitudinale di frenamento o di accelerazione (q ₃)	18

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	7.1.1 Spinta del sovraccarico sul rilevato (q _{1_SOVRASPINTA})	19
	7.1.2 Azioni sismiche (q ₆)	19
7.2	2 COMBINAZIONI DI CARICO	29
8	CRITERI DI VERIFICA	32
8.1	1 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO	32
	8.1.1 Verifica a fessurazione	32
	8.1.2 Verifica delle tensioni in esercizio	33
8.2	2 VERIFICHE AGLI STATI LIMITE ULTIMI	33
	8.2.1 Sollecitazioni flettenti	33
	8.2.2 Sollecitazioni taglianti	33
9	MODELLAZIONE STRUTTURALE	36
9.1	1 CODICE DI CALCOLO	36
9.2	2 MODELLO DI CALCOLO	36
	9.2.1 Interazione terreno-struttura	38
10	RISULTATI E ANALISI	40
10	0.1ANALISI DELLE SOLLECITAZIONI	40
10	0.2VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO	42
	10.2.1 Verifiche a taglio	42
	10.2.2 Armature di progetto	43
10	0.3VERIFICHE GEOTECNICHE	44
11	OPERE DI IMBOCCO E POZZETTI	45
11	0. ENE 9. IMP0000 E. OZZET I	

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11.2ANALI	SI DEI CARICHI4	6
11.2.1	Pesi propri strutturali (G _{k0})	6
11.2.2	Spinta del terreno in condizioni statiche (S _{Gk})	7
11.2.3	Carichi accidentali4	.7
11.2.4	Azioni derivanti dalla presenza della falda4	.7
11.2.5	Azioni termiche	.7
11.2.6	Carico idrostatico	7
11.3AZION	I SISMICHE (F _{SIS} , S _{SIS})	7
11.4SCHEM	1A RIEPILOGATIVO DEI CARICHI4	9
11.5COMB	INAZIONI DI CARICO4	9
11.6SOLLE	CITAZIONI E VERIFICHE5	2
11.6.1	Pareti5	2
11.6.2	Soletta di base5	7
11.6.3	Verifiche SLE5	9
11.7VERIFI	CA DELLA CAPACITÀ PORTANTE6	2
12 OPERE	DI SBOCCO-VASCA6	6
12.1ANALI	SI DEI CARICHI6	6
12.1.1	Peso Proprio6	6
12.1.2	Spinta della terra in condizioni statiche6	6
12.1.3	Spinta statica dell'acqua6	6
12.1.4	Spinta da sovraccarico accidentale6	6
12.1.5	Azione sismica6	7
12.1.6	Spinta delle terre in fase sismica6	7

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

12	2.2 COMB	INAZIONI DI CARICO	67
13	2.3MODE	LLAZIONE STRUTTURALE	70
	12.3.1	Codice di calcolo	70
	12.3.2	Modello di calcolo	70
	12.3.3	Interazione terreno-struttura	71
13	2.4RISUL	TATI E ANALISI	71
	12.4.1	ANALISI DELLE SOLLECITAZIONI	71
	12.4.2	VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO	74
	12.4.3	VERIFICHE GEOTECNICHE	74
13	ALLEGA	ATO:TABULATI DI CALCOLO TOMBINO	75
14	ALLEGA	ATO:TABULATO DI CALCOLO VASCA	. 174

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1 PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione esecutiva dell'ampliamento da 2 a 4 corsie dell'Itinerario internazionale E78 S.G.C. Grosseto – Fano, Lotto 9.

Oggetto della presente relazione sono le analisi e le verifiche statiche dell'opera di attraversamento idraulico P15.

Il tombino è costituito da una struttura scatolare realizzata in conglomerato cementizio gettato in opera, di dimensioni interne 2.50 x 2.00m, con soletta di copertura di spessore 0.30m, piedritti di spessore 0.30m e soletta di fondazione di spessore 0.30m.

Si rimanda agli elaborati grafici per ulteriori dettagli.

Le strutture sono progettate coerentemente con quanto previsto dalla normativa vigente, Norme Tecniche delle Costruzioni 2018 e Circolare Applicativa.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2 NORMATIVA DI RIFERIMENTO

Il progetto è stato redatto sulla base delle seguenti normative e standard progettuali:

- ➤ L. 1086 05.11.1971 "Norme per la disciplina delle opere in conglomerato cementizio armato normale e precompresso ed a struttura metallica";
- ➤ Legge n. 64 del 2 febbraio 1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
- Decreto Ministeriale del 17/01/2018 "Norme Tecniche per le Costruzioni";
- Circolare 21 gennaio 2019 n.7 " Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018":
- ➤ UNI EN 206-1:2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità":
- ➤ UNI 11104-2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1";
- ➤ UNI EN 1992-1-1 2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici";
- ➤ UNI EN 1993-1-1 2005: "Eurocodice 3 Progettazione delle strutture in acciaio";
- ➤ UNI-EN 1997-1 2005: "Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali";
- ➤ UNI-EN 1998-1 2005: "Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici";
- ➤ UNI-EN 1998-5 2005: "Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici";
- ➤ UNI EN 1537: "Esecuzione di lavori geotecnici speciali Tiranti di ancoraggio".

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3 UNITA' DI MISURA

Le unità di misura usate nella presente relazione sono:

> lunghezze [m]

> forze [kN]

momenti [kNm]tensioni [MPa]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4 CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

4.1.1 Getto in opera tombino

Per la realizzazione dello scatolare, si prevede l'utilizzo di calcestruzzo avente classe di resistenza 28/35 (Rck \geq 35.00 N/mm²) che presenta le seguenti caratteristiche:

Resistenza caratteristica a compressione (cilindrica)

 $f_{ck} = 0.83 \times R_{ck} = 29.05$ N/mm²

Resistenza media a compressione

 $f_{cm} = f_{ck} + 8 = 37.05$ N/mm²

Modulo elastico

 $E_{cm}=22000 \times (f_{cm}/10)^{0.3} = 32588 \text{ N/mm}^2$

Resistenza di calcolo a compressione

 $f_{cd} = a_{cc} \times f_{ck}/\gamma_c = 0.85 * f_{ck}/1.5 = 16.46$ N/mm²

Resistenza a trazione media

 $f_{ctm} = 0.30 \times f_{ck}^{2/3} = 2.83$ N/mm²

Resistenza a trazione

 $f_{ctk} = 0.7 \times f_{ctm} = 1.98$ N/mm²

Resistenza a trazione di calcolo

 $f_{ctd} = f_{ctk} / \gamma_c = 1.32$ N/mm²

Resistenza a compressione (comb. Rara)

 $\sigma_c = 0.60 \times f_{ck} = 17.43$ N/mm²

Resistenza a compressione (comb. Quasi permanente)

 $\sigma_c = 0.45 \times f_{ck} = 13.07 \text{ N/mm}^2$

4.2 Acciaio per armature ordinarie

Tensione caratteristica di rottura

Classe acciaio per armature ordinarie B450C

Tensione di snervamento caratteristica fyk≥ 450 MPa

Modulo di elasticità Ea=210000 MPa

MANDATARIA

ft ≥ 540 MPa

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.3 Copriferri minimi

Si riportano di seguito i copriferri minimi per le strutture in calcestruzzo armato:

Strutture di elevazione 4.0 cm Strutture di fondazione 4.0 cm

4.4 Durabilità e prescrizioni sui materiali

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Si adotta quanto segue:

Fondazione - Elevazione Classe di esposizione XC2

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5 CARATTERIZZAZIONE GEOTECNICA

Si riportano i parametri di resistenza e deformabilità assunti nel calcolo in accordo con i risultati dei sondaggi riportati nella relazione geotecnica.

Unità geotecniche		Unità geologiche		γ	c'	φ'	Z	Cu	E'	OCR									
				[kN/m³]	[kPa]	[°]	[m da p.c.]	[kPa]	[MPa]	[-]									
	Sabbia e		alluvioni fluviali				0÷2		5÷20										
Α	ghiaia	at, at2, at3 red	terrazzate 19. recenti e antiche	19.5	10÷20	25÷27	>2	ı	25÷50	-									
_	A:11:4:	Dla	Augilla a Dalamakini	20	10.25	28÷30	0÷20	150÷250	50÷120	3÷5									
В	B Argilliti	Pb	Argille a Palombini	20	10÷25	20730	>20	100÷200	100÷220	1.5÷3									
С	Calcare/Ghiaia	CV	Calcare Cavernoso	21	10÷15	34÷35	0÷10		40÷80										
	Calcale/Gillala	CV	Calcare Cavernoso	Carcare Cavernoso	carcare cuvernoso	Calcare cuvernoso	Calcule Cavellioso	21	10-13	34733	>10	-	60÷120	-					
	Dunania /Chinia	CNA	Dunnen di Cuntti	10		25.27	0÷20		50÷100										
D	Breccia/Ghiaia	CM	Brecce di Grotti	19	19	19	19	19	19	19	19	.9 0 3!	19 0 3		35÷37	>20	-	100÷200	-
_	A : !! - /! ! !	41 D- D	Depositi lacustri,		40.22	22.25	0÷20	400.200	40÷80	3÷5									
E Argille/Li	Argille/Limi	Argille/Limi dl, Pa, Ps argille e sabbie plioceniche	19.5	10÷30	10÷30 23÷25	>20	100÷200	80÷120	1.5÷3										

Tabella 1: Caratterizzazione geotecnica

La falda è posizonata al di sotto del piano di posa della fondazione e non interagisce con l'opera in esame.

Per il rilevato stradale sono state considerate le seguenti caratteristiche:

 γ = 19.00 kN/m³ peso di volume naturale

 $\varphi' = 35^{\circ}$ angolo di resistenza al taglio

c' = 0.00 kPa coesione drenata

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6 GEOMETRIA DELLA STRUTTURA

Nel seguito sarà esaminata una striscia di scatolare avente lunghezza 1.00m. Si riportano di seguito le dimensioni geometriche della sezione.

Spessore pacchetto stradale	H _{ps} =	0.75m
Spessore rinterro	$H_{rint} =$	2.80m
Spessore ricoprimento	$H_{ricop}=$	3.55m
Larghezza totale dello scatolare	L _{tot} =	3.10m
Larghezza utile dello scatolare	L _{int} =	2.50m
Larghezza mensola di fondazione sinistra	L _{msx} =	0.00m
Larghezza mensola di fondazione destra	$L_{mdx} =$	0.00m
Spessore della soletta di copertura	S _s =	0.30m
Spessore piedritti	S _p =	0.30m
Spessore ritto centrale	S _{pc} =	0.00m
Spessore della soletta di fondazione	S _f =	0.30m
Altezza libera dello scatolare	H _{int} =	2.00m
Altezza totale dello scatolare	H _{tot} =	2.60m
Quota falda da intradosso fondazione	H _w =	0.00m
Larghezza striscia di calcolo	b =	1.00m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono le condizioni di carico elementari assunte per l'analisi delle sollecitazioni e per le verifiche della struttura in esame. Tali condizioni di carico elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: $= 25 \text{ kN/m}^3;$ $= 18 \text{ kN/m}^3$. sovrastruttura stradale: γ_{ril}

7.1 Condizioni di carico

7.1.1 Peso proprio strutturale (g₁)

Il peso proprio delle solette e dei piedritti risulta:

Peso soletta superiore $P_{ss} = 25.00 \times 0.30 = 7.50$ kN/m Peso soletta inferiore $P_{si} = 25.00 \times 0.30 = 7.50$ kN/m Peso piedritti $P_D = 25.00 \times 0.30 = 7.50$ kN/m

7.1.2 Carichi permanenti portati (g₂)

7.1.2.1 Soletta superiore

Per la soletta superiore i carichi permanenti sono:

Pacchetto stradale 0.75 m 24.00 kN/mc = 18.00 kN/mq Χ Rinterro 2.80 m Х 20.00 kN/mc =56.00 kN/mg

Peso totale permanenti portati sulla soletta superiore: P_{ps} = 74.00 kN/m

Inoltre si considera, come carico concentrato nei nodi di connessione tra la soletta superiore e i piedritti, il carico permanente dovuto al peso della zona sovrastante la metà dello spessore del piedritto (la modellazione dello scatolare è stata fatta in asse piedritto):

Peso ricoprimento per metà spessore piedritto $P_{ps} =$ 11.10 kΝ

Spinta della terra in condizioni statiche (g₃)

La struttura è stata analizzata nella condizione di spinta a riposo.

MANDANTE

 $K_0 =$ 0.426

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

La pressione del terreno è stata calcolata come:

 $P = (P_b + h_{variabile} * \gamma_{terreno_piedritto}) * K_o$

al di sopra della falda

 $P = [P_b + h_{variabile} * (\gamma_{terreno_piedritto} - \gamma_w)] * K_o$

al di sotto della falda

per cui risulta quanto segue.

Pressione estradosso soletta superiore	$P_1 =$	31.56	kN/m
Pressione in asse soletta superiore	$P_2 =$	32.77	kN/m
Pressione in asse soletta inferiore	$P_3 =$	51.41	kN/m
Pressione intradosso soletta inferiore	P ₄ =	52.62	kN/m

Inoltre sono stati considerati, come carichi concentrati nei nodi della copertura e della fondazione, i contributi delle spinte del terreno esercitate su metà spessore della soletta di copertura e di fondazione.

Spinta semispessore soletta di copertura $P_{H.t.cop} = 4.82$ kN Spinta semispessore soletta di fondazione $P_{H.t.fond} = 7.80$ kN

Nella figura seguente si riportano i diagrammi di spinta del terreno agenti sui piedritti.

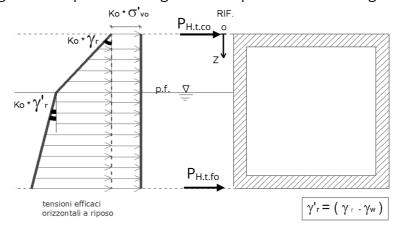


Figura 1 SPTSX

7.1.2 Azioni della falda (g_{3_W})

I valori delle spinte agenti sui piedritti, sono stati calcolati come:

$$P = z \times \gamma_w$$

per cui risulta:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Pressione in asse soletta inferiore $P_{w1} = 0.00$ kN/m Pressione intradosso soletta inferiore $P_{w2} = 0.00$ kN/m

Inoltre sono stati considerati, come carichi concentrati nei nodi della fondazione e dei piedritti, i seguenti contributi:

Spinta semispessore soletta di fondazione $P_{wf} = 0.00$ kΝ Sottopinta semispessore piedritti $P_{wp} = 0.00$ ΚN

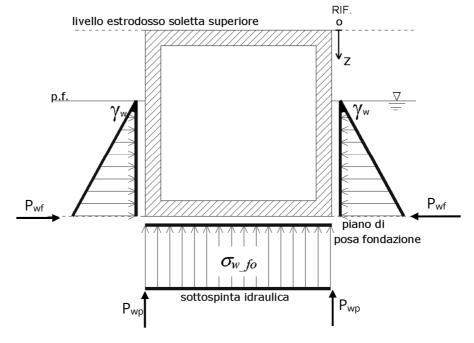


Figura 2 SPTW

7.1.3 Variazioni termiche (q₇)

Sono stati considerati gli effetti dovuti alle variazioni termiche. In particolare, è stata considerata sulla soletta superiore una variazione termica uniforme di ±15° C ed una variazione termica nello spessore, tra estradosso ed intradosso, pari a $\Delta Tv = \pm 5$ °C. Il valore applicato della variazione termica uniforme viene ridotto di 1/3 per considerare gli effetti viscosi del calcestruzzo, ed è quindi pari a ±5° C. Per il coefficiente di dilatazione termica si assume:

$$\alpha$$
 = 10 * 10⁻⁶ = 0.00001 °C⁻¹.

7.1.4 Ritiro (ϵ_2)

MANDATARIA

Il ritiro viene applicato mediante una variazione termica uniforme della copertura, in grado di produrre la stessa deformazione nel calcestruzzo.

MANDANTE

RELAZIONE DI CACOLO

I fenomeni di ritiro sono stati considerati agenti sulla sola soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente pari a:

$$\Delta T_{ritiro}$$
= -8.40 °C.

Di seguito i risultati delle analisi.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria, assumendo la dimensione convenzionale h_0 pari a $2 \times A_c/u$ ed un calcestruzzo 28/35.

Caratteristiche della sezione:

B = 1.00 m

H = 0.30 m

Caratteristiche del cls a tempo zero:

$$f_{cm} = f_{ck} + 8 = 37.05 \text{ N/mm}^2$$
 resistenza a compressione media

Deformazione da ritiro:

$$\varepsilon_{ca}(t=\infty) = -4.76E-05$$
 ritiro autogeno

$$\varepsilon_{cd}(t=\infty)=-1.83E-04$$
 ritiro per essiccamento

$$\varepsilon_r = \varepsilon_{ca} + \varepsilon_{cd} = -2.35E-04$$

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

$$\alpha \times \Delta T \times E_c = \varepsilon_r \times E_c / (1 + \varphi)$$

$$\Delta T = \varepsilon_r / [\alpha \times (1 + \phi)] = -2.35E-04/[1.00E-05 \times (1 + 1.8)] = -8.40^{\circ}C$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura.

7.1.5 Azioni variabili da traffico

In accordo con la normativa sui ponti stradali (paragrafo 5.1.3.3.5 delle NTC18), si considera sulla sede stradale l'azione da traffico dello schema di carico riportato di seguito:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

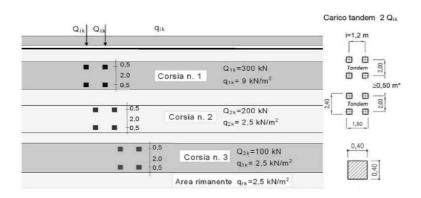


Figura 3 Schema di carico

Tabella 2 Intensità dei carichi Q_{ik} e q_{ik} per le diverse corsie

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Per la definizione delle corsie convenzionali si è fatto riferimento al paragrafo 5.1.3.3.2 delle NTC18.

Figura 4 Numerazione delle corsie convenzionali

Tabella 3 Numero e larghezza delle corsie

Larghezza della superfi- cie carrabile "w"	Numero di corsie con- venzionali	Larghezza di una corsia convenzionale [m]	Larghezza della zona rimanente [m]
w < 5,40 m	n _I = 1	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	n _l = 2	w/2	0
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 x n _l)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Nel presente caso risulta:

Larghezza della superficie carrabile	W	=	13.20	m
Numero di corsie convenzionali	n_{l}	=	4	-
Larghezza di una corsia convenzionale	L_{corsia}	=	3.00	m
Larghezza della zona rimanente	L_{rim}	=	1.20	m

La disposizione dei carichi accidentali è stata definita in modo da indurre le più sfavorevoli condizioni di sollecitazione.

7.1.5.1 Diffusione dei carichi accidentali

I sovraccarichi accidentali sono stati diffusi fino al piano medio della soletta superiore considerando:

- Diffusione 1:1
 - 1. all'interno della soletta in c.a.;
 - 2. nello strato relativo al pacchetto stradale.
- Diffusione 3:2
 - 1. nel terreno di ricoprimento.

La ripartizione dei carichi si effettua considerando per il carico isolato un'impronta quadrata di lato 0.4 m.

Si considera una larghezza di ripartizione trasversale massima pari alla larghezza della corsia di carico.

Si ottiene:

$$b_L = L_{1a} + I_L + d_{ps} + d_r + d_s = 7.13m$$
 Lunghezza di diffusione longitudinale

 $b_T = L_{1a} + I_T + d_{ps} + d_r + d_s = 7.93 \text{m} >= 3.00 \text{m}$ Lunghezza di diffusione trasversale

dove:

Lato impronta quadrata del carico isolato	L_{1a}	0.4	[m]
Interasse trasversale carichi isolati Q ₁	I_{T}	2	[m]
Interasse longitudinale carichi isolati Q ₁	IL	1.2	[m]
Diffusione nel pacchetto stradale	$d_{ps} = 2 \cdot H_{ps} \cdot (1:1)$	1.50	[m]
Diffusione nel rinterro	$d_r = 2 \cdot H_{r'} (2:3)$	3.73	[m]
Diffusione nella soletta	$d_s = 2 \cdot H_s/2 (1:1)$	0.30	[m]

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7.1.5.2 Carichi da traffico (ACC TRAFFICO)

Corsia convenzionale n°1

$$Q_{soletta} = \frac{2Q_{1k}}{b_L b_t} =$$
 28.04 kN/m

Corsia convenzionale n°2

$$Q_{soletta} = \frac{2Q_{1k}}{b_t b_t} = 18.69 \text{ kN/m}$$

Corsia convenzionale n°3

$$Q_{soletta} = \frac{2Q_{1k}}{b_L b_t} = 9.35 \text{ kN/m}$$

Parte rimanente

$$q_{soletta} = \frac{q_K w}{b_t} =$$
 2.50 kN/m

7.1.6 Azione longitudinale di frenamento o di accelerazione (q₃)

L'azione longitudinale di frenamento o di accelerazione si assume in funzione del carico verticale totale agente sulla 1° corsia convenzionale pari a:

$$180 \text{ kN} \le q_{\text{fren}} = 0.6(2Q_{1k}) + 0.1 \ q_{1k} \ w_1 \ L \le 900 \ \text{kN}$$
 (L_c = 2.80 m)

essendo w_1 la larghezza della corsia e L la lunghezza della zona caricata. La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata.

$$F_{fren} = 367.56 \text{ kN}$$

Successivamente si ripartisce la forza F_{fren} al livello del piano medio della soletta superiore ipotizzando che la diffusione interessi trasversalmente una lunghezza pari alla luce di calcolo del solettone superiore (L_c =2.80 m), ed una larghezza pari a b_T :

$$F_{\text{fren sol}} = F_{\text{fren}}/(b_T \cdot L_c) = 43.76 \text{ KN/m}$$

Inoltre è stata aggiunta, come carico concentrato nei nodi della soletta di copertura, la seguente forza:

Spinta semispessore soletta di copertura

 $Q_{fNODO} = 6.56 \text{ kN}$

Itinerario Internazionale E78 S.G.C. GROSSETO - FANO Adeguamento a 4 corsie nel tratto Grosseto - Siena (S.S. 223 "Di Paganico")

Dal km 41+600 al km 53+400 - Lotto 9

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

La spinta è applicata da sinistra verso destra per massimizzare gli effetti di sbilanciamento della struttura.

7.1.1 Spinta del sovraccarico sul rilevato (q₁ SOVRASPINTA)

Il sovraccarico accidentale agente sul terreno ai lati della struttura è posto pari rispettivamente a 20 kN/m².

$$P_{H.Q.ritti} = q_{traffico} K_0 =$$

Sono stati aggiunti, come carichi concentrati nei nodi della copertura e della fondazione per la spinta sul piedritto sinistro e per la spinta sul piedritto destro, le seguenti forze:

Spinta semispessore soletta di copertura

$$P_{H.O.cop} =$$

1.28 kΝ

Spinta semispessore soletta di fondazione

7.1.2 Azioni sismiche (q_6)

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del DM 17.1.2018.

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare nel DM 17.1.2018, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \le T \le T_C \longrightarrow S_{\alpha}(T) = a_{g} \cdot S \cdot \eta \cdot F_0$$

$$T_C \le T \le T_D \longrightarrow S_{\epsilon}(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_S \cdot S_T$$

 S_s : coefficiente di amplificazione stratigrafico;

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

 S_T : coefficiente di amplificazione topografica;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 a_g : accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = C_C \cdot T^*_C$$

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 ${\it C_{c}}$: coefficiente che tiene conto della categoria del terreno;

 T^*_{C} : periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{e}(T) = a_g \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v}$$

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{_e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

nelle quali:

 $S = S_S \times S_T$: con S_S pari sempre a 1 per lo spettro verticale;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale

La vita nominale di un'opera strutturale (V_N), è intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

	TIPI DI COSTRUZIONE	VitaNominale (VN)
1	Opere provvisorie- Opere provvisionali- Strutture in fase costruttiva	≤10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥50
3	Grandi opere, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥100

Per l'opera in oggetto si considera una vita nominale VN = **100** anni.

Classi D'uso

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Il Decreto Ministeriale del 17 gennaio 2018 prevede quattro categorie di classi d'uso riportate nel seguito:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si considera una Classe d'uso IV.

Periodo di Riferimento dell'Azione Sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R :

$$V_R = V_N \cdot C_U$$

Il valore del coefficiente d'uso Cu è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0.7	1	1.5	2

Pertanto per l'opera in oggetto il periodo di riferimento è pari a 100x2= 200 anni.

Stati limite e relative probabilità di superamento

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		P_{VR} : Probabilità di superamento nel periodo di riferimento V_R
Stati limite di esercizio	SLO	81%
Stati iiiiile di esercizio	SLD	63%
Stati limite ultimi	SLV	10%
Stati iiiiiite uitiiiii	SLC	5%

Accelerazione (ag), fattore (F₀) e periodo (T*c)

Ai fini del NTC 2018 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag: accelerazione orizzontale massima sul sito;

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R) , e quindi dalla vita nominale (VN) e dalla classe d'uso (C_u) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

I parametri adottati per il sito in esame (Long: 11.17748; Lat: 43.139470) risultano:

SLATO	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.085	2.481	0.260
SLD	201	0.104	2.479	0.264
SLV	1898	0.210	2.560	0.287
SLC	2475	0.226	2.575	0.289

Tabella 4: Valutazione dei parametri ag, Fo e T*c per i periodi di ritorno associati a ciascuno stato limite

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

I parametri ai quali si è fatto riferimento nella definizione dell'azione sismica di progetto, indicati nella tabella precedente, corrispondono, cautelativamente, a quei parametri che danno luogo al sisma di massima entità, fra tutti quelli individuati lungo le progressive dell'opera in progetto.

Sono stati presi in esame, secondo quanto previsto dal DM 17.1.2018 "Nuove Norme Tecniche per le Costruzioni", cap. 7.1, i seguenti Stati Limite sismici:

- SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)
- SLD: Stato Limite di Danno (Stato Limite di Esercizio)
- SLC: Stato Limite di Collasso (Stato Limite Ultimo)
- SLO: Stato Limite di Operatività (Stato Limite di Esercizio)

Le azioni sismiche relative allo stato limite di operatività (SLO) e allo stato limite di danno (SLD) non sono state considerate perché poco significative in relazione alle combinazioni di natura statica. Per quanto riguarda lo stato limite di collasso (SLC), questo è stato considerato per le combinazioni sismiche di verifica dei ritegni sismici; si faccia pertanto riferimento alle considerazioni presentate nelle rispettive relazioni di calcolo di impalcato.

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici e di progetto per il restante stato limite (SLV).

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata nella tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio V₅₃₀, ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 compresi tra 360 m/s e 800 m/s (ovvero Nspt,30>50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina)
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzanti da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15< Nspt,30<50 nei terreni a grana grossa e 70 <cu,30<250 a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""></cu,30<250>
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 inferiori a 180 m/s (ovvero Nspt,30<15 nei terreni a grana grossa e cu,30<70 kPa nei terreni a grana fina)
Cat. E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s)

Si considera una categoria B di suolo di fondazione.

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente.

Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

Categoria sottosuolo	S_S	Cc
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot (T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15·(T _C *) ^{-0,40}

Nel caso in esame (categoria di sottosuolo B) allo SLV risulta:

 $S_S = 1.18$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

 $C_{C} = 1.41$

Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella.

Categoria	Ubicazione dell'opera o dell'intervento	S _T
topografica	obicazione dell'opera o dell'intervento	
T1	-	1
T2	In corrispondenza della sommità del pendio	1.2
T3	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2
T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4

Nel caso in esame $S_T = 1$

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudo-statica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h \times W$ Forza sismica verticale $F_v = k_v \times W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

 $k_h = a_{max}/g$ $k_v = \pm 0.5 \times k_h$

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \psi_{2i} Q_{ki}$$

Dove nel caso specifico si assumerà, per i carichi dovuti al transito dei mezzi, ψ_{2i} = 0.2.

Pertanto avremo che:

Massa associata al peso proprio copertura G_1 = 7.50 kN/m Massa associata al carico permanente G_2 = 74.00 kN/m Massa traffico Q_k = 20.00 kN/m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

kN/m

Massa associata al peso proprio piedritti G_3 = 7.50 kN/m Massa associata al peso del setto centrale G_4 = 0.00 kN/m

7.1.2.1 Forze sismiche orizzontali (q_{6_orizz})

Forza orizzontale sulla soletta di copertura (carico orizzontale uniformemente distribuito applicato alla soletta di copertura):

$$F'_h = k_h (G_1 + G_2 + \psi_{2j} Q_{kj}) =$$
 21.20

Forza orizzontale sui piedritti (carico orizzontale uniformemente distribuito applicato ai piedritti):

$$F''_h = k_h G_p =$$
 1.86 kN/m

7.1.2.2 Forze sismiche verticali (q_{6_vert})

Per la forza sismica verticale avremo analogamente (carico verticale uniformemente distribuito applicato alla soletta di copertura):

Forza verticale sulla soletta di copertura:

$$F'_{v} = k_{v} (G_1 + G_2 + \psi_{2i} Q_{kj}) = 10.60$$
 kN/m

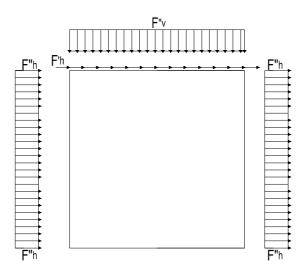


Figura 5: Forze sismiche agenti sulla struttura

7.1.2.3 Spinta delle terre in fase sismica

Le spinte delle terre sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$\Delta S_E = (a_{max}/g) \cdot y \cdot H^2 =$$

137.40

kN/m

con risultante applicata ad un'altezza pari ad H/2.

RELAZIONE DI CACOLO

7.2 Combinazioni di carico

Le azioni considerate sono le seguenti:

g1: peso proprio degli elementi strutturali;

g2: carichi permanenti portati;

g3: spinta delle terre;

ε2: ritiro e viscosità della soletta;

q1: carichi mobili;

q3: azione longitudinale di frenamento;

q4: azione centrifuga;

q5: azione trasversale del vento;

q6: azioni sismiche;

q7: azioni della temperatura

q8: azioni sui parapetti e urto di veicoli in svio.

Tali azioni sono combinate secondo il punto 5.1.3.12 delle NTC 2018.

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni:

> Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + ...$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

➤ Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

> Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Per le combinazioni di carico si è fatto riferimento al paragrafo 5.1.3.14 delle NTC18.

Si ripota la Tabella 5.1.V delle NTC18 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

Tabella 5 Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2· Υε3· Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Si riporta la Tabella 5.1.VI delle NTC18 in cui sono espressi i coefficienti di combinazione delle azioni:

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Tabella 6 Coefficienti di combinazione per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni	Coefficiente	Coefficiente	Coefficiente ψ ₂
	(Tab. 5.1.IV)	ψ ₀ di combi-	ψ ₁ (valori	(valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Nella combinazione sismica le azioni indotte dal traffico dei mezzi sono combinate con un coefficiente $\psi 2$ = 0.2 (paragrafo 5.1.3.12 del DM 17/01/2018) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

La risposta della struttura alle azioni sismiche è stata valutata mediante analisi dinamica lineare, valutando gli effetti sulla struttura tramite la seguente espressione:

 $E_1 + 0.3E_t + 0.3E_v$;

 $0.3E_1+E_t+0.3E_v$;

 $0.3E_1+0.3E_t+E_v$.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

CRITERI DI VERIFICA

Le verifiche di sicurezza sono state effettuate sulla base dei criteri definiti nelle vigenti norme tecniche - "Norme tecniche per le costruzioni" - DM 2018.

In particolare vengono effettuate le verifiche agli stati limite di servizio ed allo stato limite ultimo. Le combinazioni di carico considerate ai fini delle verifiche sono quelle indicate nei precedenti paragrafi.

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali.

Verifiche agli stati limite di esercizio

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Condizioni ambientali	Classe di esposizione		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

Tabella 7: Descrizione delle condizioni ambientali (Tab. 4.1.III delle NTC18)

8.1.1 Verifica a fessurazione

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.4 del DM 17.1.2018.

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture:

Gruppi di	opi di Condizioni Combinazione			Armatura		
esigenze	ambientali	di azioni	Sensibile		Poco sensibile	
esigenze			Stato limite	Wd	Stato limite	$\mathbf{w_d}$
	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$
ь	Aggregative	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$
	b Aggressive quasi permanente dec	decompressione	-	ap. fessure	$\leq w_1$	
	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
С		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

Tabella 8: Criteri di scelta dello stato limite di fessurazione - Tabella 4.1.IV del DM 17.1.2018

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Nella Tabella sopra riportata, w1=0.2mm, w2=0.3mm; w3=0.4mm.

8.1.2 Verifica delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti, di seguito riportati.

La massima tensione di compressione del calcestruzzo σ c, deve rispettare la limitazione seguente:

 σ_c < 0,60 f_{ck} per combinazione caratteristica (rara)

 σ_c < 0,45 f_{ck} per combinazione quasi permanente.

Per l'acciaio ordinario, la tensione massima σ_s per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

 σ_s < 0,80 f_{yk}

dove f_{yk} per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

8.2 Verifiche agli stati limite ultimi

8.2.1 Sollecitazioni flettenti

La verifica di resistenza (SLU) è stata condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabolo-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 ($\sigma_{max} = 0.85 \times 0.83 \times R_{ck}/1.5$);
- legame costitutivo dell'armatura d'acciaio elastico-perfattamente plastico con deformazione limite di rottura a 0.01 ($\sigma_{max} = f_{yk} / 1.15$)

8.2.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ek})^{1/3} / \gamma_e + 0.15 \cdot \sigma_{ep} \right\} \cdot b_w \cdot d \ge (v_{min} + 0.15 \cdot \sigma_{ep}) \cdot b_w d = (v_{min} + 0.$$

con:

 $k = 1 + (200/d)^{1/2} \le 2$

 $v_{min} = 0.035 k^{3/2} f_{ck}^{1/2}$

e dove:

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{sl} / (b_w \times d)$ è il rapporto geometrico di armatura longitudinale ($\leq 0,02$);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0,2 f_{cd}$);

b_w è la larghezza minima della sezione (in mm).

La resistenza a taglio VRd di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le ctg \ \theta \le 2.5$$

La verifica di resistenza (SLU) si pone con:

 $V_{Rd} \ge V_{Ed}$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è stata calcolata con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" è stata calcolata con:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

In cui:

d è l'altezza utile della sezione:

b_w è la larghezza minima della sezione;

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

S _{cp}	è la tensione media di compressione della sezione;
A_{sw}	è l'area dell'armatura trasversale;
S	è interasse tra due armature trasversali consecutive;
θ	è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;
$\mathbf{f'}_{cd}$	è la resistenza a compressione ridotta del calcestruzzo d'anima (f'_{cd} =0.5 f_{cd});
a	è un coefficiente maggiorativo, pari ad 1 per membrature non compresse.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9 MODELLAZIONE STRUTTURALE

9.1 CODICE DI CALCOLO

Il modello di calcolo è stato implementato tramite il software specifico SCAT 14.0 di Aztec Informatica.

9.2 MODELLO DI CALCOLO

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

La fondazione è schematizzata come una trave su suolo elastico alla Winkler non reagente a trazione, il calcolo della costante di sottofondo è riportata nel paragrafo 9.2.1.

Di seguito si riporta una descrizione del modello geometrico/geotecnico:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

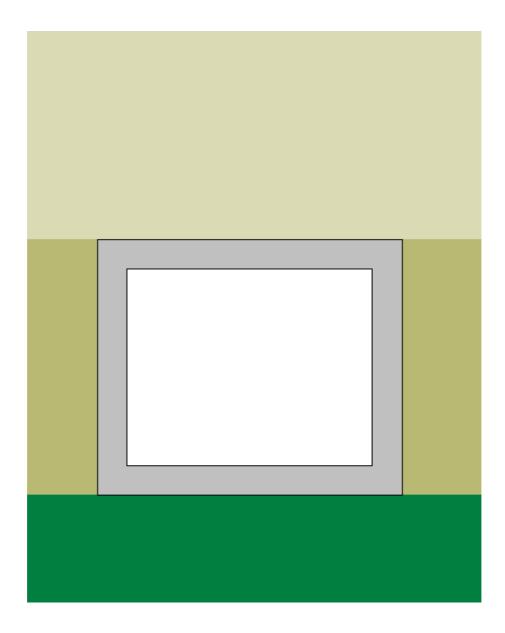


Figura 6 Modello geotecnico

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

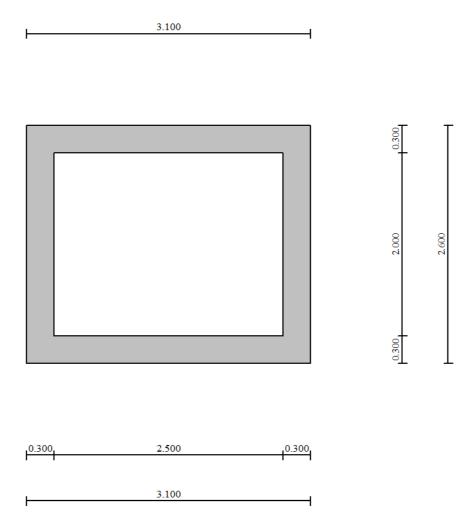


Figura 7 Modello geometrico

9.2.1 Interazione terreno-struttura

Nelle analisi strutturali, per la determinazione del coefficiente di sottofondo alla Winkler si è fatto riferimento alla seguente relazione (Vesic, 1965):

$$K = \frac{0.65E}{1 - v^2} \sqrt[12]{\frac{Eb^4}{(EJ)_{fond}}}$$

dove:

E = modulo elastico del terreno;

v = coefficiente di Poisson;

b = dimensione trasversale;

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

h = altezza; J = inerzia;

Ec = modulo elastico del calcestruzzo della fondazione.

Nel caso in esame K risulta pari a 16465 kN/mc. Tale rigidezza è stata applicata come beam support lungo l'elemento, in particolare considerando la striscia di calcolo pari ad 1m risulta 16465 kPa/m*1m = 16465 kN/m/m.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

10 RISULTATI E ANALISI

10.1 ANALISI DELLE SOLLECITAZIONI

Di seguito è riportato l'inviluppo delle sollecitazioni flettenti e taglianti dello stato limite ultimo. Le unità di misura adottate nei diagrammi seguenti sono kN-m.

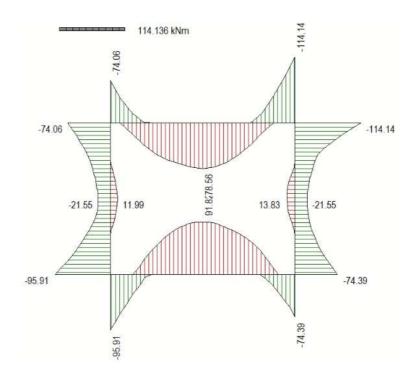


Figura 8 Inviluppo SLU/Sisma: Momenti flettenti

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

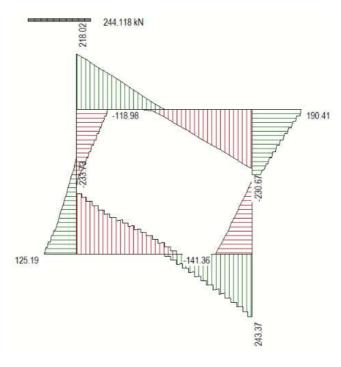


Figura 9 Inviluppo SLU/Sisma: sollecitazioni taglianti



Figura 10 Inviluppo SLU/Sisma: sforzo normale

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

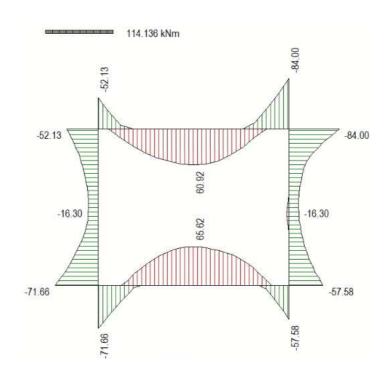


Figura 11 Inviluppo SLE Momenti flettenti

10.2 VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO

Le verifiche strutturali risultano soddisfatte allo stato limite ultimo e in esercizio per tutte le combinazioni di carico.

Per quanto riguarda il taglio il programma prevede sia la verifica per elementi non armati a taglio, sia quella per elementi dotati di apposita armatura a taglio, disponendo tuttavia ferri sagomati resistenti a taglio e non staffe o tiranti. Per questo motivo le verifiche a taglio vengono eseguite manualmente attraverso l'ausilio di fogli di calcolo strutturati ad hoc.

I criteri generali di verifica adottati dal Software, sono quelli esposti al paragrafo 9. Per i dettagli si rimanda i tabulati di calcolo in allegato.

10.2.1 Verifiche a taglio

SEZIONE

bw = 100 cm h = 30 cm c = 7.2 cm

d = h-c = 22.8 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

MATERIALI

fywd = 391.30MPa

Rck = 35 MPa

gc = 1.5

fck = 0.83xRck = 29.05 MPafcd = 0.85xfck/gc = 16.46 MPa

ARMATURE A TAGLIO

øst = 12

braccia = 5

 ϕ st2 = 0

braccia = 0

passo = 40 cm

(Asw / s) = 14.137 cm2 / m

a = 90 ° (90° staffe verticali)

Calcolo di cot q

 $\cot(q) = 3.73$

q= 15.03 °

IPOTESI 1<= cot q <= 2.5 Rottura bilanciata VRsd=VRcd

VRsd = 419.18(KN)

VRcd = 419.18(KN)

VRd = 419 (KN) min(VRsd, VRcd)

10.2.2 Armature di progetto

Il software esegue in automatico tutte le verifiche strutturali sia allo stato limite ultimo che allo stato limite

di esercizio.

Si riporta di seguito l'armatura degli elementi strutturali nelle sezioni di mezzeria e di incastro.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	SOLETTA SUPERIORE						
S _{max} [cm]	Armatura di forza tesa	Armatura di forza compressa	Ripartitori (esterni)	Spilli	Ricoprimento [mm]		
30	10Ø16	10Ø16	Ø12/20	Ø12/20x40	40		
	PIEDRITTI						
S _{max} [cm]	Armatura di forza tesa	Armatura di forza compressa	Ripartitori (esterni)	Spilli	Ricoprimento [mm]		
30	10Ø16	10Ø16	Ø12/20	Ø12/20x40	40		
	SOLETTA INFERIORE						
S _{max} [cm]	Armatura di forza tesa	Armatura di forza compressa	Ripartitori (esterni)	Spilli	Ricoprimento [mm]		
30	10Ø16	10Ø16	Ø12/20	Ø12/20x40	40		

Per i risultati delle verifiche si rimanda ai tabulati di calcolo riportati di seguito.

10.3 VERIFICHE GEOTECNICHE

Le verifiche geotecniche di capacità portante risultano soddisfatte per tutte le combinazioni di calcolo. Per i dettagli si rimanda ai tabultai di calcolo in allegato.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11 OPERE DI IMBOCCO e POZZETTI

Si riportano in questo capitolo le verifiche relative alla camera di imbocco e al pozzetto intermedio, dalle seguenti caratteristiche:

		IMBOCCO			
TIPO	H [m]	B [m]	L [m]	sp. PARETI [m]	sp. BASE [m]
CAMERETTA	3.4	2	3.5	0.3	0.3

		POZZET	TO INTERM	MEDIO	
TIPO	H [m]	B [m]	L [m]	sp. PARETI [m]	sp. BASE [m]
POZZETTO	5.65	2	3.5	0.3	0.3

11.1 Criteri di calcolo

Lo stato di sollecitazione della struttura viene desunto da un calcolo elettronico operante con un modello spaziale discretizzato con elementi finiti bidimensionali (shell element).

Nel modello è stata simulata l'interazione terreno/struttura operando con molle alla Winkler non reagenti a trazione. In corrispondenza del basamento è stata utilizzata la costante di sottofondo del terreno in sito mentre lungo le pareti, a contatto col terreno di rilevato, si è fatto riferimento ad una costante orizzontale valutata secondo la formula di Matlock e Reese (1956) variabile con la profondità. Considerando quindi un terreno di rilevato di tipo incoerente con un grado di addensamento elevato: $K_h = n_h z/d$

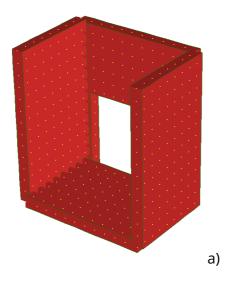
In cui z = profondità dal p.c.,

d = larghezza della struttura scatolare

 $n_h = A \gamma_t / 1.35$ (in cui A=1500 per il tipo di terreno considerato)

Per la modellazione ad elementi finiti è stato utilizzato il programma Straus.

La struttura è definita sulla base dei piani baricentrici degli elementi:



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

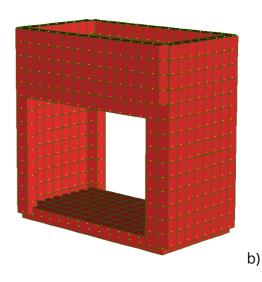


Figura 12 Camera di imbocco a) e pozzetto intermedio b)

Le verifiche delle sezioni sono state eseguite secondo il metodo agli Stati Limite.

Per gli stati limite di esercizio si effettuano le seguenti verifiche:

Verifica delle tensioni di esercizio

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio:

 σ_c < 0,60 f_{ck} per combinazione caratteristica (rara)

 σ_c < 0,45 f_{ck} per combinazione quasi permanente.

Tensione massima dell'acciaio in condizioni di esercizio:

 σ_s < 0,8 f_{yk} per combinazione caratteristica (rara)

Verifica a fessurazione

Si evidenziano nella tabella seguente i criteri di scelta dello stato limite di fessurazione:

Cumpai di	Conditioni	Combinazione	Armatura			
Gruppi di esigenze			Sensibile		Poco sensibile	
esigenze	ашисиан	di azioni	Stato limite	w _d	Stato limite	Wd
	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	$\leq w_3$
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$
В	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
С	wiono aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

 $w_1 = 0.2 \text{ mm}$ $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

11.2 ANALISI DEI CARICHI

11.2.1 Pesi propri strutturali (Gk0)

Si assume per il calcestruzzo armato una densità di peso pari a:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

 $\gamma_{cls} = 25 \text{ kN/m}^3$

11.2.2 Spinta del terreno in condizioni statiche (S_{Gk})

Si considera la spinta generata dai carichi permanenti agenti sui lati del pozzetto considerando il coefficiente di spinta a riposo: $k_0 = 1$ -sen $(\phi) = 0.426$

Pertanto il diagramma di spinta avrà forma triangolare ed a partire dal piano campagna termina in corrispondenza del piano medio della soletta di base del pozzetto.

$$\sigma = k_0 \times \gamma_t \times z$$

11.2.3 Carichi accidentali

Sul piano di campagna si considera agente un carico accidentale di intensità pari a 20 kN/m2 posizionato nelle condizioni più sfavorevoli.

11.2.4 Azioni derivanti dalla presenza della falda

La quota di falda per l'opera in esame è sufficientemente profonda, tale da poter assumere l'assenza di interferenze col regime di spinta dei terreni sulle strutture. Si esclude pertanto la possibilità che si attivino fenomeni di galleggiamento.

11.2.5 Azioni termiche

Dato che le opere in progetto sono completamente interrate non si considerano variazioni termiche apprezzabili nelle strutture.

11.2.6 Carico idrostatico

Il carico idrostatico derivante dalla presenza di acqua all'interno del pozzetto rimane sempre inferiore alle spinte agenti dall'esterno, poiché si intende adottare armature simmetriche lungo le pareti dell'opera, non si prevedono combinazioni di carico che contemplano tale azione.

Si considera comunque in alcune combinazioni di carico il peso dell'acqua contenuto all'interno del pozzetto.

11.3 Azioni sismiche (F_{SIS}, S_{SIS})

L'analisi in condizione sismica è eseguita con il metodo pseudo-statico, definendo l'azione sismica mediante una forza statica equivalente pari al prodotto delle masse per il coefficiente sismico.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Ammettendo che il terreno di riporto sia ben costipato, si ipotizza che lo scatolare si muova insieme al terreno. Di conseguenza il fattore di struttura q è posto pari a 1 e per l'opera in esame, considerata non dissipativa, non si applicano i particolari costruttivi inerenti la duttilità degli elementi.

$$F_{sis} = P * k_h$$
 $k_h = \beta_m a_{max}/g = 0.248$ $P = peso proprio$ $k = coefficiente sismico$

Dove

- βm = coefficiente di riduzione dell'accelerazione massima attesa al sito si pone cautelativamente pari a 1.
- a_{max} = accelerazione orizzontale massima attesa al sito;
- g = accelerazione di gravità.

l'accelerazione massima attesa al sito si valuta con la relazione:

$$a_{max} = S \cdot a_g = (S_S \cdot S_T) \cdot a_g$$

in cui

- S= coefficiente che comprende l'effetto dell'amplificazione stratigrafica (SS) e dell'amplificazione topografica (SS),
- a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Le masse soggette all'accelerazione sismica sono la massa propria della struttura e l'acqua in essa contenuta, quando presente.

Le pressioni sismiche esercitate dal terreno sulle pareti (in aggiunta a quelle statiche) sono calcolate sulla base del coefficiente sismico orizzontale k_h . Il diagramma di tali pressioni è considerato uniforme e di intensità costante pari a

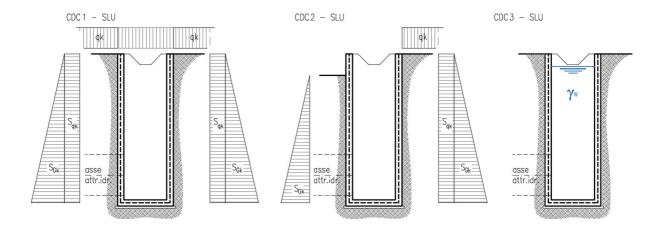
$$S_{sis} = k_h \cdot q_0 + k_h \cdot v \cdot H$$

in cui

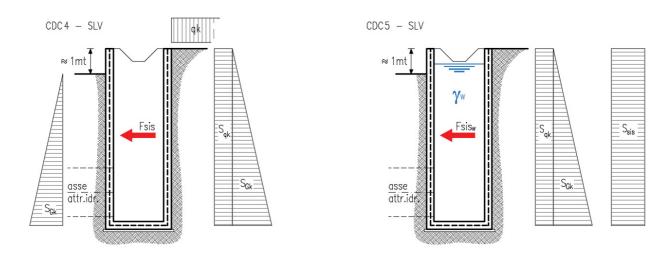
q₀ è la pressione prodotta dal sovraccarico sismico,

y è il peso di volume del terreno,

H è l'altezza del rinfianco.



PROGETTO ESECUTIVO


RELAZIONE DI CACOLO

11.4 Schema riepilogativo dei carichi

COMBINAZIONI CARICHI IN ESERCIZIO

COMBINAZIONI CARICHI IN CONDIZIONE SISMICA

11.5 Combinazioni di carico

Per le combinazioni di carico si è fatto riferimento al paragrafo 5.1.3.14 delle NTC18.

Si ripota la Tabella 5.1.V delle NTC18 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Tabella 9 Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε 1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2 [,] Υε3 [,] Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Si riporta la Tabella 5.1.VI delle NTC18 in cui sono espressi i coefficienti di combinazione delle azioni:

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Tabella 10 Coefficienti di combinazione per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente Ψ ₂ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Nella combinazione sismica le azioni indotte dal traffico dei mezzi sono combinate con un coefficiente $\psi 2$ = 0.2 (paragrafo 5.1.3.12 del DM 17/01/2018) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Per i vari stati limite sono state considerate le seguenti combinazioni:

- SLU
$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$$

- SLE caratt.
$$G_1 + G_2 + Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$$

- SLE freq.
$$G_1 + G_2 + \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$$

- SLE q.p.
$$G_1+G_2+\psi_{21}\cdot Q_{k1}+\sum_i\psi_{2i}\cdot Q_{ki}$$

- Sisma $E+G_1+G_2+\sum_i \psi_2 i \cdot Q_{ki}$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

ai seguenti carichi gravitazionali: $G_1+G_2+\sum_i\psi_2i\cdot Q_{ki}$

Per gli stati limite ultimi si fa riferimento all'Approccio 2 (A1+M1+R3), quindi utilizzando i valori unitari per i coefficienti geotecnici del terreno ed assumendo pari a 2.3 il coefficiente parziale $\square R$ per la verifica della capacità portante della fondazione.

11.6 SOLLECITAZIONI E VERIFICHE

11.6.1 Pareti

Per le pareti del pozzetto si prevede un'armatura tipica orizzontale composta da Φ 16/20 sia esternamente che internamente.

MOMENTI RESISTENTI

Dimensioni sezione

b [cm]	h [cm]
100	30

Armatura longitudinale

N.	As [cm²]	d [cm]
1	10.05	7.2
2	10.05	22.8

As1 = arm. Esterna

As2 = arm. Interna

MRd max M_{xRd} 94.95 kN m N/mm²

-15.87

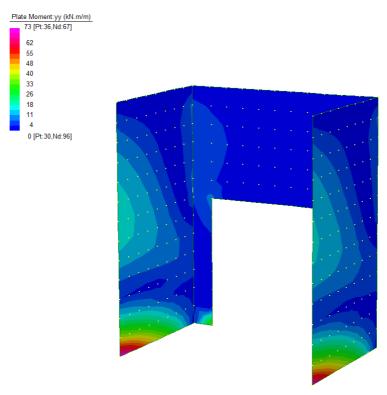
σς	391.3		N/mm ²
ε C	3.5		‰
E _S	11.89		‰
d	22.8		cm
x 5.	185	x/d	0.2274
		δ	0.7243

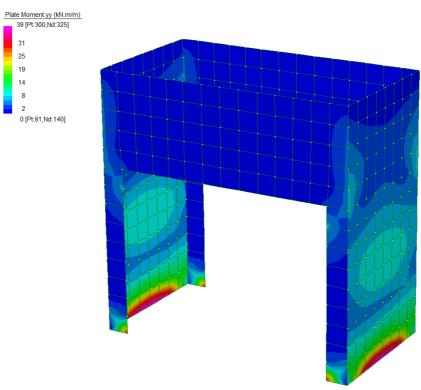
MRd min

M_{URA} 94.95

xnu			
σ _c	-15.87		N/mm ²
σς	391.3		N/mm ²
د د	3.5		%
E _S	11.89		%
d	22.8		cm
x 5.1	85	x/d	0.2274

]kN m





PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Diagramma momenti verticali (11) - INV SLU/SLV [kNm/m]

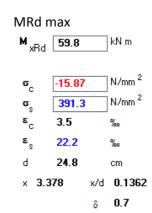
PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verticalmente si prevede un'armatura tipica composta da Φ 12/20 sia esternamente che internamente.

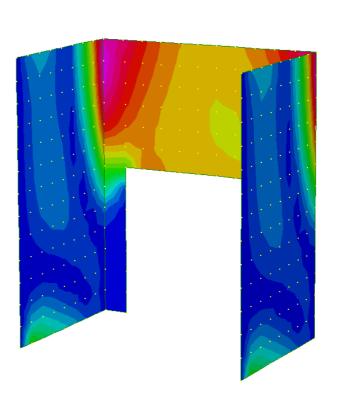
MOMENTI RESISTENTI

Dimensioni sezione


b [cm]	h [cm]
100	30

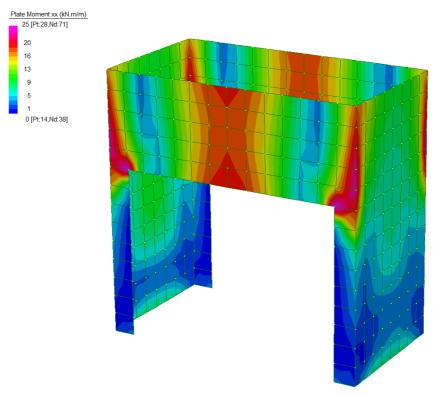
Armatura longitudinale

As [cm²]	d [cm]
5.65	5.2
5.65	24.8


As1 = arm. Esterna

As2 = arm. Interna

MRd	min		
M _{xRd}	-59.8		kN m
σ _c	-15.87		N/mm ²
σς	391.3		N/mm ²
σ _s ε	3.5		% o
8	22.2		%
d	24.8		cm
x 3.3	78	x/d	0.1362
		δ	0.7



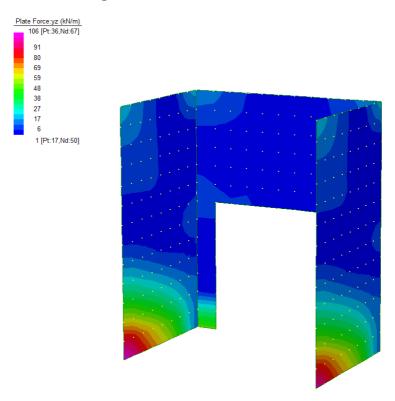
PROGETTO ESECUTIVO

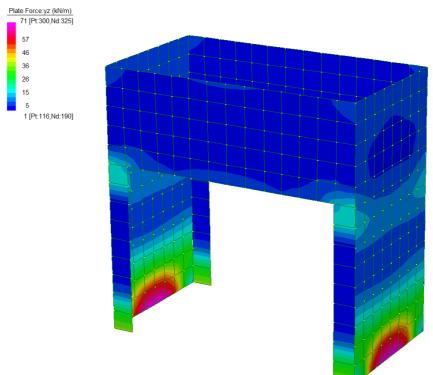
RELAZIONE DI CACOLO

TAGLIO RESISTENTE FUORI DAL PIANO DELLE PARETI (sezione non armata a taglio)

k	=	1.94		$1 + (200/d)^{1/2} \le 2$
vmin ρι	=	0.508 0.0044		$0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$
_{Ocp=} Ned/Ac=	=	0.0000	(Mpa)	
V_{Rd}	=	123.97	(KN)	

 $V_{Rd,c}$ = 123.97 kN > V_{sd} si dispongono spille 9 Φ 12 /mq





PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Diagramma sollecitazioni di taglio - INV SLU/SLV [kN/m]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

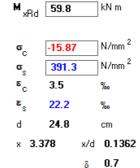
11.6.2 Soletta di base

Per la soletta si prevede un'armatura composta da Φ 12/20x20 superiore e inferiore.

MOMENTI RESISTENTI

Dimensioni sezione

b [cm]	h [cm]
100	30


Armatura longitudinale

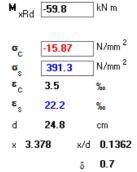
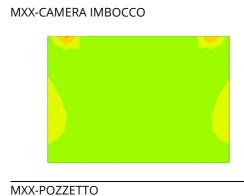
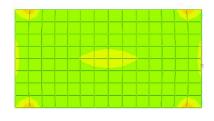
As [cm²]	d [cm]
5.65	5.2
5.65	24.8

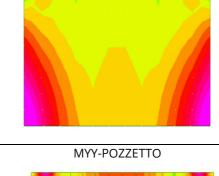
As1 = arm. superiore

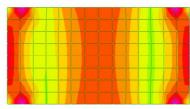
As2 = arm. inferiore

MRd max

MRd min

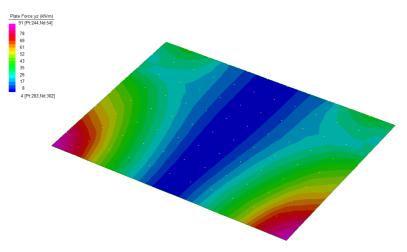

Diagramma momenti - INV SLU/SLV [kNm/m]



MYY-CAMERA IMBOCCO

58

PROGETTO ESECUTIVO


RELAZIONE DI CACOLO

TAGLIO RESISTENTE (sezione non armata a taglio)

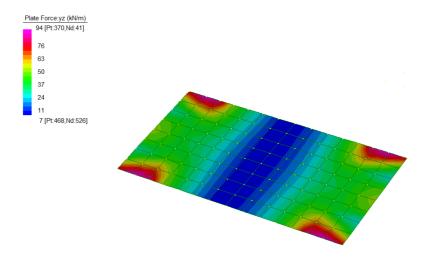
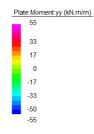

k vmin ρι	= = =	1.90 0.493 0.0023	$1 + (200/d)^{1/2} \le 2$ $0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$
$\sigma_{cp}=Ned/Ac=$	=	0.0000	(Mpa)
V_{Rd}	=	106.08	(KN)

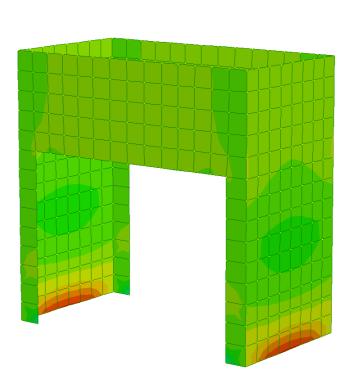
Diagramma sollecitazioni di taglio - INV SLU/SLV [kN/m]

V -CAMERA IMBOCCO

V-POZZETTO

MANDATARIA

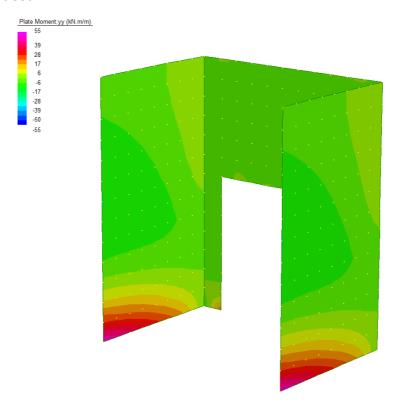

PROGETTO ESECUTIVO


RELAZIONE DI CACOLO

11.6.3 Verifiche SLE

Diagramma momenti - INV SLE combinazioni caratteristiche [kNm/m]

MYY-POZZETTO



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

MYY-CAMERA IMBOCCO

Lo stato tensionale, corrispondente a un valore di momento pari a 55kNm, nei materiali e l'ampiezza massima delle lesioni per la comb. rara soddisfano anche le limitazioni imposte per la combinazione quasi permanente.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Geometria della sezione		
Altezza della sezione	h	300 [mm]
Larghezza della sezione	b	1000 [mm]
Altezza utile della sezione	d	228 [mm]
Distanza tra asse armatura e lembo compresso	d'	72 [mm]
Ricoprimento dell'armatura	c	40 [mm]
Armatura tesa ordinaria		10 [11111]
Numero di ferri tesi presenti nella sezione		5 [-]
Diametro dei ferri tesi presenti nella sezione	n _{f.1}	16 [mm]
	φ _{f.1}	1005 [mm ²]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	1005 [mm-]
Armatura tesa di infittimento	l.,	0 1
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f,2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Carattariationa dai matariali		
Caratteristiche dei materiali Resistenza caratteristica cilindrica dal calcestruzzo	£	20 IVID-1
	f _{ck}	28 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	2.8 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	32308 [MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Modulo di elasticità dell'acciaio	Ę	206000 [MPa]
	_	,
DETERMINAZIONE DELL'AMPIEZZA DELLE FESSURE		
Tensione nell'armatura tesa considerando la sezione fessurata	σ_{s}	266.3 [MPa]
Asse neutro della sezione	X	69.62 [mm]
Tipo e durata dei carichi applicati		Lunga ▼
Coefficiente di omogeneizzazione	α_{e}	6.38 [-]
Area totale delle armature presenti nella zona tesa	A _s	1005 [mm ²]
Area efficace tesa di calcestruzzo	A _{c,eff.1}	180000 [mm²]
All ca critical cities and all called an azzo	Λ'c,eff.1 Δ	76793 [mm ²]
	A _{c,eff.2}	150000 [mm ²]
	A _{c,eff.3}	76793 [mm²]
	$A_{c,eff.min}$	70793 [11111]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	_	0.01309 [-]
Resistenza efficace media del calcestruzzo	ρ _{p,eff} f	2.8 [MPa]
Fattore di durata del carico	f _{ct,eff}	
	k _t	0.4 [-]
Differenza tra la deformazione nell'acciaio e nel cls	[E _{sm} -E _{cm}] _{min}	0.000776 [-]
	[ε _{sm} -ε _{cm} calc.	0.000848 [-]
	$[\varepsilon_{sm}$ - $\varepsilon_{cm}]$	0.000848 [-]
Chaziatura tra la harra (calcalata tra i hariaantri dai farri)		[mm]
Spaziatura tra le barre (calcolata tra i baricentri dei ferri)	S	200 [mm]
Diametro equivalente delle barre	$\phi_{\sf eq}$	16.00 [mm]
Spaziatura massima di riferimento	S _{max,rif}	240 [mm]
Coefficienti k per il calcolo dell'ampiezza di fessurazione	k ₁	0.800 [-]
	k ₂	0.500 [-]
	k ₃	3.400 [-]
	k_4	0.425 [-]
<u>Distanza massima tra le fessure</u>	S _{r,max.1}	344 [mm]
	S _{r,max.2}	299 [mm]
	S _{r,max}	344 [mm]
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	W _{k.lim}	0.30 [mm]
Ampiezza delle fessure (di calcolo)	$\mathbf{w}_{\mathbf{k}}$	0.29 [mm]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

11.7 VERIFICA DELLA CAPACITÀ PORTANTE

La capacità portante è stata calcolata attraverso l'espressione proposta da Brinch-Hansen, che nel caso generale risulta:

$$Q_{lim} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + \frac{1}{2} \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma \cdot$$

dove:

 γ = peso specifico del terreno di fondazione;

B = larghezza efficace della fondazione (depurata dell'eventuale eccentricità del carico B = Bf - 2e);

L = lunghezza efficace della fondazione (depurata dell'eventuale eccentricità del carico L = Lf - 2e);

D = profondità della fondazione;

c = coesione del terreno di fondazione;

φ = angolo di attrito dello strato di fondazione;

c_a = aderenza alla base della fondazione;

q = sovraccarico del terreno sovrastante il piano di fondazione;

 η = inclinazione del piano di posa della fondazione sull'orizzontale (η = 0 se orizzontale);

b = inclinazione della struttura;

H = componente orizzontale del carico trasmesso al piano di posa della fondazione;

V = componente verticale del carico trasmesso al piano di posa della fondazione.

I coefficienti Nc, Ng Ng sono i coefficienti di capacità portante

$$N_c = (N_q - 1) \cdot ctg\phi$$
;

$$N_q = tg^2 \left(45^o + \frac{\phi}{2}\right) \cdot e^{\left(\pi \cdot tg\phi\right)};$$

$$N_{\gamma} = 1.5 \cdot \left(N_{q} - 1\right) \cdot tg \varphi$$
 .

MANDATARIA

I coefficienti s_y, s_c, s_q sono i fattori di forma della fondazione

$$s_c = 1 + \frac{B}{L} \cdot \frac{N_q}{N_c}$$
;

$$s_q = 1 + \frac{B}{I} \cdot tg\phi$$
;

$$s_{\gamma} = 1 - 0.4 \cdot \frac{B}{I}$$
.

I coefficienti d_y, d_c, d_q sono i fattori di profondità del piano di posa della fondazione

$$d_c = 1 + 0.4 \cdot k ;$$

$$d_q = 1 + 2 \cdot k \cdot tg\phi \cdot (1 - \sin\phi)^2$$
;

$$d_{\nu} = 1$$
.

I coefficienti i_y, i_c, i_q sono i fattori di inclinazione del carico

$$i_c = i_q - \frac{1 - i_q}{N_q - 1};$$

$$i_{q} = \left(1 - \frac{0.5 \cdot H}{V + B \cdot L \cdot c_{a} \cdot ctg\phi}\right)^{5} ;$$

$$i_{\gamma} = \left(1 - \frac{0.7 \cdot H}{V + B \cdot L \cdot c_{a} \cdot ctg\varphi}\right)^{5} \quad \bullet$$

I coefficienti gy, gc, gq sono i fattori di inclinazione del piano campagna;

$$g_c = 1 - \frac{\beta^o}{147^o} = 1$$
; $g_q = (1 - 0.5 \cdot tg\beta)^5 = 1$; $g_{\gamma} = g_q$

I coefficienti b_y, b_c, b_q sono i fattori di inclinazione della base della fondazione;

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

$$b_c=1-rac{\eta^o}{147^o}; \quad b_q=e^{(-2\cdot\eta\cdot tg\phi)}; \quad b_\gamma=e^{(-2.7\cdot\eta\cdot tg\phi)}$$

dove:

$$k = \frac{D}{B_f}$$
 (se $\frac{D}{B_f} \le 1$); $k = arctg\left(\frac{D}{B_f}\right)$ (se $\frac{D}{B_f} > 1$)

Si riportano nella tabella seguente le caratteristiche geometriche e geotecniche della fondazione.

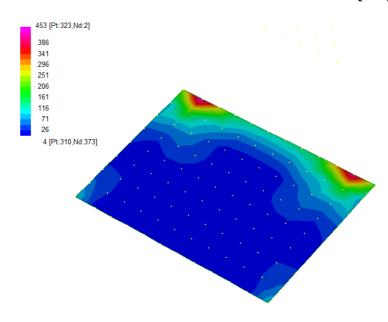
$$B = 2.60 \text{ m}$$
 $\phi = 25 ^{\circ}$ $C = 10 \text{ kPa}$ $C = 5.65 \text{ m}$ $C = 19.5 \text{ kN/m}^{\frac{1}{2}}$

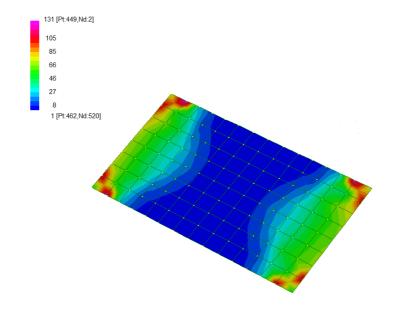
Per la fondazione in esame risulta una pressione limite:

CARICO LIMITE

$$q_{lim} = 2074 \text{ kPa}$$

MANDATARIA




PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

DIAGRAMMI DELLE PRESSIONI SUL TERRENO – CAMERA IMBOCCO [kPa]

DIAGRAMMI DELLE PRESSIONI SUL TERRENO – POZZETTO [kPa]

MAX PRESSIONE SUL TERRENO

$$\sigma_{max}$$
 = 450 kPa $~q_{lim}$ / σ_{max} = 4.61 > γ_{R} = 2.3

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

12 OPERE DI SBOCCO-VASCA

Si riportano di seguito le caratteristiche geometriche dell'opera di sbocco, caratterizzata da una sezione a U in CLS:

SBOCCO					
TIPO H _{MAX} [m] B [m] L [m] sp. PARETI [m] sp. BASE [m]					
VASCA	3.17	4.58	3	0.3	0.4

12.1 ANALISI DEI CARICHI

12.1.1 Peso Proprio

Il peso proprio della struttura è calcolato in base alla geometria degli elementi strutturali e al peso specifico assunto per i materiali:

$$\gamma_{cls}$$
=25.0 kN/m³

12.1.2 Spinta della terra in condizioni statiche

La struttura è stata analizzata nella condizione di spinta a riposo.

$$K_0 = 0.426$$

La pressione del terreno è stata calcolata come:

$$P = (P_b + h_{variabile} * \gamma_{terreno_piedritto}) * K_o$$

al di sopra della falda

$$P = [P_b + h_{variabile} * (\gamma_{terreno_piedritto} - \gamma_w)] * K_o$$

al di sotto della falda

12.1.3 Spinta statica dell'acqua

La spinta dell'acqua è proporzionale alla profondità a partire dalla quota di falda.

12.1.4 Spinta da sovraccarico accidentale

Il sovraccarico accidentale di superficie è assunto pari a 10 kPa, riproducente i mezzi d'opera di manutenzione immediatamente a tergo dell'opera.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

12.1.5 Azione sismica

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudo-statica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h \times W$ Forza sismica verticale $F_v = k_v \times W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

$$k_h = a_{max}/g = 0.249$$

 $k_v = \pm 0.5 \times k_h = 0.12$

12.1.6 Spinta delle terre in fase sismica

Le spinte delle terre sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = (a_{max}/g) \cdot \gamma \cdot H^2$$

con risultante applicata ad un'altezza pari ad H/2.

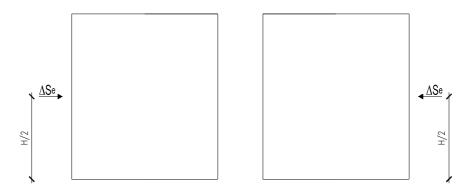


Figura 13: Spinta sismica del terreno secondo la teoria di Wood

12.2 COMBINAZIONI DI CARICO

La verifica di stabilità globale del complesso opera di sostegno-terreno è stata effettuata secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.Il per le azioni e i parametri geotecnici e nella Tab.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6.8.I delle NTC 2018 per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo. Le rimanenti verifiche sono state effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Nelle verifiche in condizioni sismiche si è controllato che la resistenza del sistema sia maggiore delle azioni, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto con i coefficienti parziali gR indicati nella tabella 7.11.III delle NTC 2018.

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni:

> Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

➤ Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.30 \times E_{Z}$$
 oppure $E = \pm 0.30 \times E_{Y} \pm 1.00 \times E_{Z}$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti. Si ripota la Tabella 5.2.V delle NTC18 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 17/01/2018)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2 [,] Υε3 [,] Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

^{(4) 1,20} per effetti locali

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	$c'_{\mathbf{k}}$	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	$c_{ m uk}$	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 11: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - NTC 2018)

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Tabella 12: Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno (Tabella 6.5.I – NTC 2018)

COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

⁽a) Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

 $^{^{(3)}}$ 1,30 per instabilità in strutture con precompressione esterna

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Tabella 13: Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo (Tabella 6.8.I - NTC 2018)

Verifica	Coefficiente parziale γR
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2

Tabella 14: Coefficienti parziali γ_R per le verifiche degli stati limite (SLV) dei muri di sostegno. (Tabella 7.11.III – NTC 2018)

12.3 MODELLAZIONE STRUTTURALE

12.3.1 Codice di calcolo

Il modello di calcolo è stato implementato tramite il software specifico SCAT 14.0 di Aztec Informatica.

12.3.2 Modello di calcolo

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

La fondazione è schematizzata come una trave su suolo elastico alla Winkler non reagente a trazione, il calcolo della costante di sottofondo è riportata nel paragrafo 9.2.1.

Di seguito si riporta una descrizione del modello geometrico/geotecnico:

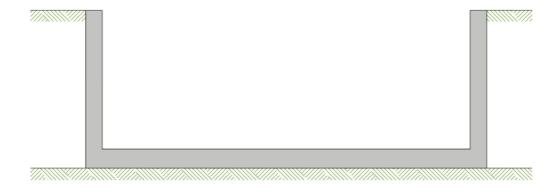


Figura 14 Modello geotecnico

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

12.3.3 Interazione terreno-struttura

Nelle analisi strutturali, per la determinazione del coefficiente di sottofondo alla Winkler si è fatto riferimento alla seguente relazione (Vesic, 1965):

$$K = \frac{0.65E}{1 - v^2} 12 \sqrt{\frac{Eb^4}{(EJ)_{fond}}}$$

dove:

E = modulo elastico del terreno;

v = coefficiente di Poisson;

b = dimensione trasversale;

h = altezza;

J = inerzia;

Ec = modulo elastico del calcestruzzo della fondazione.

12.4 RISULTATI E ANALISI

12.4.1 ANALISI DELLE SOLLECITAZIONI

Di seguito è riportato l'inviluppo delle sollecitazioni flettenti e taglianti dello stato limite ultimo. Le unità di misura adottate nei diagrammi seguenti sono kN-m.

MANDATARIA

PROGETTO ESECUTIVO

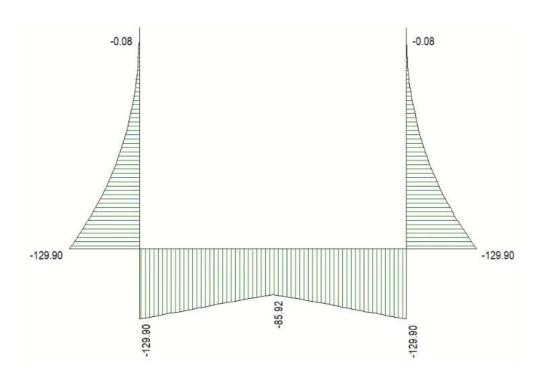


Figura 15 Inviluppo SLU/Sisma: Momenti flettenti

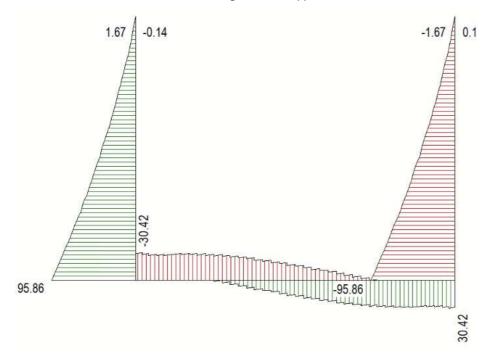


Figura 16 Inviluppo SLU/Sisma: sollecitazioni taglianti

PROGETTO ESECUTIVO

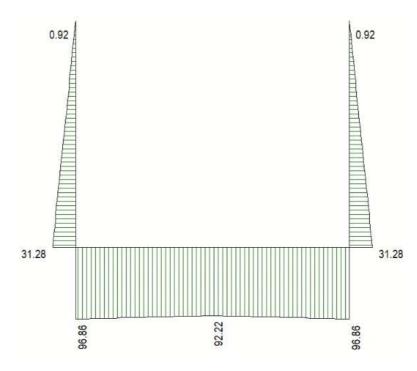


Figura 17 Inviluppo SLU/Sisma: sforzo normale

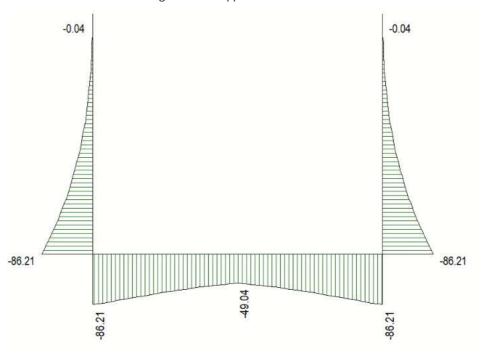


Figura 18 Inviluppo SLE Momenti flettenti

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

12.4.2 VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO

Le verifiche strutturali risultano soddisfatte allo stato limite ultimo e in esercizio per tutte le combinazioni di carico.

I criteri generali di verifica adottati dal Software, sono quelli esposti al paragrafo 9. Per i dettagli si rimanda i tabulati di calcolo in allegato.

12.4.3 VERIFICHE GEOTECNICHE

Le verifiche geotecniche di capacità portante risultano soddisfatte per tutte le combinazioni di calcolo. Per i dettagli si rimanda ai tabultai di calcolo in allegato.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

13 ALLEGATO:TABULATI DI CALCOLO TOMBINO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Geometria scatolare

Descrizione:	Scatolare semplice	
Altezza esterna	2.60	[m]
Larghezza esterna	3.10	[m]
Lunghezza mensola di fondazione sinistra	0.00	[m]
Lunghezza mensola di fondazione destra	0.00	[m]
Spessore piedritto sinistro	0.30	[m]
Spessore piedritto destro	0.30	[m]
Spessore fondazione	0.30	[m]
Spessore traverso	0.30	[m]

Caratteristiche strati terreno

<u>Strato di ricoprimento</u>		
Descrizione	Terreno di ricoprimento	
Spessore dello strato	3.55	[m]
Peso di volume	20.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Coesione	0	[kPa]
Strato di rinfianco		
Descrizione	Terreno di rinfianco	
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Angolo di attrito terreno struttura	0.00	[°]
Coesione	0	[kPa]
Costante di Winkler	10000	[kPa/m]
<u>Strato di base</u>		
Descrizione	Terreno di base	
Peso di volume	19.5000	[kN/mc]
Peso di volume saturo	19.5000	[kN/mc]
Angolo di attrito	25.00	[°]
Angolo di attrito terreno struttura	25.00	[°]
Coesione	10	[kPa]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Costante di Winkler 15564 [kPa/m]
Tensione limite 810 [kPa]

Caratteristiche materiali utilizzati

Materiale calcestruzzo

R _{ck} calcestruzzo	37000	[kPa]
Peso specifico calcestruzzo	24.5170	[kN/mc]
Modulo elastico E	32532520	[kPa]
Tensione di snervamento acciaio	450000	[kPa]
Coeff. omogeneizzazione cls teso/compresso (n')	0.50	
Coeff. omogeneizzazione acciaio/cls (n)	15.00	
Coefficiente dilatazione termica	0.0000120	

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

X ascissa del punto di applicazione dei carichi verticali concentrati

Y ordinata del punto di applicazione dei carichi orizzontali concentrati

F_v componente Y del carico concentrato

F_x componente X del carico concentrato

M momento

Forze distribuite

 $\begin{array}{lll} X_{lr} & \text{Ascisse del punto iniziale e finale per carichi distribuiti verticali} \\ Y_{lr} & \text{Yf} & \text{ordinate del punto iniziale e finale per carichi distribuiti orizzontali} \\ V_{nl} & \text{componente normale del carico distribuito nel punto iniziale} \\ V_{nf} & \text{componente normale del carico distribuito nel punto finale} \\ V_{tl} & \text{componente tangenziale del carico distribuito nel punto iniziale} \\ V_{tf} & \text{componente tangenziale del carico distribuito nel punto finale} \\ D_{te} & \text{variazione termica lembo esterno espressa in gradi centigradi} \\ \end{array}$

variazione termica lembo interno espressa in gradi centigradi

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico n° 7 (ACC)

Condizione di carico n° 8 (FRENATURA/AVVIAMENTO)

Condizione di carico n° 9 (CENTRIFUGA)

Distr Traverso $X_i = 0.00$ $X_f = 2.10$ $V_{ni} = 0.00$ $V_{nf} = 0.00$ $V_{ti} = 0.00$ $V_{ti} = 0.00$

Condizione di carico n° 10 (TERMICA UNIFORME)

Term Traverso D_{te} = 15.00 D_{ti} = 15.00

Condizione di carico n° 11 (RITIRO)

Term Traverso D_{te} = -8.55 D_{ti} = -8.55

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ_c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

 $V_{Rd}\text{=}[0.18*k*(100.0*\rho_{l}*fck)^{1/3}/\gamma_{c}+0.15*\sigma_{cp}]*bw*d>(vmin+0.15*\sigma_{cp})*b_{w}*d$

 V_{Rsd} =0.9*d* A_{sw} /s*fyd*(ctg α +ctg θ)*sin α

 $V_{Rcd}=0.9*d*b_w*\alpha_c*fcd'*(ctg(\theta)+ctg(\alpha)/(1.0+ctg\theta^2)$

con:

d altezza utile sezione [mm] b_w larghezza minima sezione [mm]

 σ_{cp} tensione media di compressione [N/mmq]

 $\begin{array}{ll} \rho_l & \quad \text{rapporto geometrico di armatura} \\ A_{sw} & \quad \text{area armatuta trasversale [mmq]} \end{array}$

s interasse tra due armature trasversali consecutive [mm]

 α_c coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd k=1+(200/d)^{1/2}

vmin=0.035*k^{3/2}*fck^{1/2}

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente poco aggressivo

 $\begin{array}{ll} \text{Limite tensioni di compressione nel calcestruzzo (comb. rare)} & 0.60 \, f_{ck} \\ \text{Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.)} & 0.45 \, f_{ck} \\ \text{Limite tensioni di trazione nell'acciaio (comb. rare)} & 0.80 \, f_{yk} \\ \end{array}$

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure w1=0.20 w2=0.30 w3=0.40

Metodo di calcolo aperture delle fessure:

- Eurocodice 2 (Ed. 1991)

Resistenza a trazione per Flessione

<u>Verifiche secondo</u>:

Norme Tecniche 2018 - Approccio 2

Copriferro sezioni 0.0720 [m]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Descrizione combinazioni di carico

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2018

Simbologia adottata

γ_{G1sfav} Coefficiente parziale sfavorevole sulle azioni permanenti γ_{G1fav} Coefficiente parziale favorevole sulle azioni permanenti

 $\gamma_{\text{G2/sfav}}$ Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali $\gamma_{\text{G2/fav}}$ Coefficiente parziale favorevole sulle azioni permanenti non strutturali

 γ_Q Coefficiente parziale sulle azioni variabili

 $\gamma_{\text{tanh'}}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione drenata γ_{cu} Coefficiente parziale di riduzione della coesione non drenata γ_{qu} Coefficiente parziale di riduzione del carico ultimo

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.35	1.00
Permanenti non strutturali	Favorevole	γ _{G2fav}	0.00	0.00
Permanenti non strutturali	Sfavorevole	γ _{G2sfav}	1.50	1.30
Variabili	Favorevole	γ Qifav	0.00	0.00
Variabili	Sfavorevole	γ_{Qisfav}	1.50	1.30
Variabili da traffico	Favorevole	γ_{Qfav}	0.00	0.00
Variabili da traffico	Sfavorevole	γ_{Qsfav}	1.35	1.25
Termici	Favorevole	$\gamma_{\epsilon fav}$	0.00	0.00
Termici	Sfavorevole	$\gamma_{\epsilon s fav}$	1.20	1.20

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	γtanφ'	1.00	1.25
Coesione efficace	γc'	1.00	1.25
Resistenza non drenata	γcu	1.00	1.40
Resistenza a compressione uniassiale	γ_{qu}	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:				
Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.00	1.00
Permanenti	Favorevole	γ _{G2fav}	0.00	0.00
Permanenti	Sfavorevole	γG2sfav	1.00	1.00
Variabili	Favorevole	γQifav	0.00	0.00
Variabili	Sfavorevole	γQisfav	1.00	1.00
Variabili da traffico	Favorevole	γQfav	0.00	0.00
Variabili da traffico	Sfavorevole	γQsfav	1.00	1.00
Termici	Favorevole	γεfav	0.00	0.00
Termici	Sfavorevole	$\gamma_{\epsilon s fav}$	1.00	1.00
Coefficienti parziali per i parametri ge	otecnici del terreno:			
Parametri			M1	M2
Tangente dell'angolo di attrito		$\gamma_{tan\phi'}$	1.00	1.00
Coesione efficace		γ _{c'}	1.00	1.00
Resistenza non drenata		γcu	1.00	1.00
Resistenza a compressione uniassiale		γ_{qu}	1.00	1.00
Peso dell'unità di volume		γ_{γ}	1.00	1.00

Combinazione nº 1 SLU (Approccio 2)

	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
ACC	Sfavorevole	1.35	1.00	1.35
RITIRO	Sfavorevole	1.20	1.00	1.20
TERMICA UNIFORME	Sfavorevole	1.50	1.00	1.50

Combinazione nº 2 SLU (Approccio 2)

	Effetto	γ	Ψ	c
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
ACC	Sfavorevole	1.35	0.75	1.01

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

FRENATURA/AVVIAMENTO	Sfavorevole	1.35	1.00	1.35
TERMICA UNIFORME	Sfavorevole	1.50	0.60	0.90
RITIRO	Sfavorevole	1.20	1.00	1.20
Millio	Sidvorevole	1.20	1.00	1.20
Combinazione n° 3 SLU (App	proccio 2)			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
ACC	Sfavorevole	1.35	0.75	1.01
TERMICA UNIFORME	Sfavorevole	1.50	1.00	1.50
RITIRO	Sfavorevole	1.20	1.00	1.20
Combinazione n° 4 SLU (App	proccio 2)			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
ACC	Sfavorevole	1.35	0.75	1.01
TERMICA UNIFORME	Sfavorevole	1.50	0.60	0.90
RITIRO	Sfavorevole	1.20	1.00	1.20
0.5.011.44	' 2) C'			
Combinazione n° 5 SLU (App	proccio 2) - Sisma Vert. positivo)Tr	6
Dana Danasia	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole Sfavorevole	1.00	1.00	1.00
Spinta terreno destra TERMICA UNIFORME		1.00	1.00	1.00
RITIRO	Sfavorevole Sfavorevole	1.00	1.00 1.00	1.00 1.00
Sisma da sinistra	Sfavorevole	1.00		
Sistila da Sitilstra	Stavorevole	1.00	1.00	1.00
Combinazione nº 6 SI I I (Ann	proccio 2) - Sisma Vert. negativo			
COMBINAZIONE II O SEO (App	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
TERMICA UNIFORME	Sfavorevole	1.00	1.00	1.00
RITIRO	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

PROGETTO ESECUTIVO

Combinazione n° 7 SLU (Appre	occio 2) - Sisma Vert. positivo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
ACC	Sfavorevole	1.00	0.75	0.75
TERMICA UNIFORME	Sfavorevole	1.00	0.60	0.60
RITIRO	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 8 SLU (Appre	occio 2) - Sisma Vert, negativo			
comomazione ir o seo (Appri	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
ACC	Sfavorevole	1.00	0.75	0.75
TERMICA UNIFORME	Sfavorevole	1.00	0.60	0.60
RITIRO	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 9 SLE (Quasi	i <u>Permanente)</u> Effetto		Ψ	c
Peso Proprio	Sfavorevole	γ 1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spirita terreno destra	Siavorevoie	1.00	1.00	1.00
Combinazione n° 10 SLE (Freq	<u>uente)</u>			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
ACC	Sfavorevole	1.00	0.75	0.75
Combinazione n° 11 SLE (Freq	juente)			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Combinazione n° 12 SLE (Frequent	<u>:e)</u>			
	Effetto	γ	Ψ	c
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
TERMICA UNIFORME	Sfavorevole	1.00	0.50	0.50
Combinazione n° 13 SLE (Frequent			\w.	
Dana Buannia	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
RITIRO	Sfavorevole	1.00	1.00	1.00
Combinazione n° 14 SLE (Rara)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
ACC	Sfavorevole	1.00	1.00	1.00
TERMICA UNIFORME	Sfavorevole	1.00	0.60	0.60
RITIRO	Sfavorevole	1.00	1.00	1.00
Cambinariana no 45 CLE (Dana)				
Combinazione n° 15 SLE (Rara)	Effetto		Ψ	С
Peso Proprio	Sfavorevole	γ 1.00	Ψ 1.00	1.00
•	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
FRENATURA/AVVIAMENTO	Sfavorevole	1.00	1.00	1.00
ACC	Sfavorevole	1.00	0.75	0.75
TERMICA UNIFORME	Sfavorevole	1.00	0.60	0.60
RITIRO	Sfavorevole	1.00	1.00	1.00
KITIKO	Stavorevole	1.00	1.00	1.00
Combinazione nº 16 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
TERMICA UNIFORME	Sfavorevole	1.00	1.00	1.00

PROGETTO ESECUTIVO

ACC RITIRO	Sfavorevole Sfavorevole	1.00 1.00	0.75 1.00	0.75 1.00
Combinazione nº 17 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
RITIRO	Sfavorevole	1.00	1.00	1.00
ACC	Sfavorevole	1.00	0.75	0.75
TERMICA UNIFORME	Sfavorevole	1.00	0.60	0.60

PROGETTO ESECUTIVO

PROGETTO ESECUTIVO

Analisi della combinazione n° 1
Analisi della combinazione n° 2
Analisi della combinazione n° 3
Analisi della combinazione n° 4
Analisi della combinazione n° 5
Analisi della combinazione n° 6
Analisi della combinazione n° 7
Analisi della combinazione n° 8
Analisi della combinazione n° 9
Analisi della combinazione n° 10
Analisi della combinazione n° 11

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Analisi della combinazione n°	12
Analisi della combinazione n°	13
Analisi della combinazione n°	14
Analisi della combinazione n°	15
Analisi della combinazione n°	16
Analisi della combinazione n°	17

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti

Spostamenti fondazione (Combinazione nº 1)

ս _y [m]	u _x [m]	X [m]
0.01222	0.00001	0.15
0.01162	0.00001	0.88
0.01136	0.00000	1.55
0.01162	-0.00001	2.22
0.01222	-0.00001	2.95

Spostamenti traverso (Combinazione nº 1)

X [m]	u _x [m]	ս _y [m]
0.15	-0.00019	0.01227
0.84	-0.00010	0.01273
1.55	0.00000	0.01298
2.27	0.00010	0.01272
2.95	0.00019	0.01227

Spostamenti piedritto sinistro (Combinazione nº 1)

Y [m]	u _x [m]	ս _ջ [m]
0.15	0.00001	0.01222
1.30	-0.00036	0.01224
2.45	-0.00019	0.01227

Spostamenti piedritto destro (Combinazione nº 1)

ս _y [m]	u _x [m]	Y [m]
0.01222	-0.00001	0.15
0.01224	0.00036	1.30
0.01227	0.00019	2.45

Spostamenti fondazione (Combinazione nº 2)

u _y [m]	u _x [m]	X [m]
0.00524	0.00093	0.15
0.00798	0.00092	0.88
0.01061	0.00091	1.55

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.22	0.00090	0.01368
2.95	0.00089	0.01737

Spostamenti traverso (Combinazione nº 2)

ս _y [m]	u _x [m]	X [m]
0.00529	0.01171	0.15
0.00872	0.01173	0.84
0.01196	0.01175	1.55
0.01481	0.01177	2.27
0.01742	0.01178	2.95

Spostamenti piedritto sinistro (Combinazione nº 2)

ս _ջ [m]	u _x [m]	Y [m]
0.00524	0.00093	0.15
0.00527	0.00610	1.30
0.00529	0.01171	2.45

Spostamenti piedritto destro (Combinazione nº 2)

ս _ջ [m]	u _x [m]	Y [m]
0.01737	0.00089	0.15
0.01740	0.00644	1.30
0.01742	0.01178	2.45

Spostamenti fondazione (Combinazione n° 3)

u _y [m]	u _x [m]	X [m]
0.01138	0.00001	0.15
0.01082	0.00001	0.88
0.01058	0.00000	1.55
0.01082	-0.00001	2.22
0.01138	-0.00001	2.95

Spostamenti traverso (Combinazione nº 3)

ս _y [m]	u _x [m]	X [m]
0.01143	-0.00019	0.15
0.01185	-0.00010	0.84
0.01208	0.00000	1.55

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.27	0.00010	0.01184
2.95	0.00019	0.01143

Spostamenti piedritto sinistro (Combinazione nº 3)

ս _y [m]	u _x [m]	Y [m]
0.01138	0.00001	0.15
0.01140	-0.00034	1.30
0.01143	-0.00019	2.45

Spostamenti piedritto destro (Combinazione nº 3)

ս _y [m]	u _x [m]	Y [m]
0.01138	-0.00001	0.15
0.01140	0.00034	1.30
0.01143	0.00019	2.45

Spostamenti fondazione (Combinazione nº 4)

u _y [m]	u _x [m]	X [m]
0.01135	0.00001	0.15
0.01083	0.00001	0.88
0.01059	0.00000	1.55
0.01083	-0.00001	2.22
0.01135	-0.00001	2.95

Spostamenti traverso (Combinazione nº 4)

X [m]	u _x [m]	u _y [m]
0.15	-0.00004	0.01140
0.84	-0.00002	0.01185
1.55	0.00000	0.01209
2.27	0.00002	0.01185
2.95	0.00004	0.01140

Spostamenti piedritto sinistro (Combinazione nº 4)

Y [m]	u _x [m]	u _y [m]
0.15	0.00001	0.01135

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.30	-0.00027	0.01138
2.45	-0.00004	0.01140

Spostamenti piedritto destro (Combinazione nº 4)

ս _ջ [m]	u _x [m]	Y [m]
0.01135	-0.00001	0.15
0.01138	0.00027	1.30
0.01140	0.00004	2.45

Spostamenti fondazione (Combinazione nº 5)

ս _ջ [m]	u _x [m]	X [m]
0.00640	0.00430	0.15
0.00634	0.00430	0.88
0.00636	0.00429	1.55
0.00661	0.00428	2.22
0.00699	0.00427	2.95

Spostamenti traverso (Combinazione nº 5)

X [m]	u _x [m]	ս _ջ [m]
0.15	0.00472	0.00643
0.84	0.00477	0.00672
1.55	0.00481	0.00697
2.27	0.00486	0.00702
2.95	0.00491	0.00702

Spostamenti piedritto sinistro (Combinazione nº 5)

ս _ջ [m]	u _x [m]	Y [m]
0.00640	0.00430	0.15
0.00642	0.00452	1.30
0.00643	0.00472	2.45

Spostamenti piedritto destro (Combinazione nº 5)

ս _y [m]	u _x [m]	Y [m]
0.00699	0.00427	0.15
0.00701	0.00460	1.30
0.00702	0.00491	2.45

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti fondazione (Combinazione nº 6)

X [m]	u _x [m]	ս _y [m]
0.15	0.00431	0.00596
0.88	0.00430	0.00591
1.55	0.00429	0.00594
2.22	0.00429	0.00618
2.95	0.00428	0.00655

Spostamenti traverso (Combinazione nº 6)

u _y [m]	u _x [m]	X [m]
0.00599	0.00473	0.15
0.00627	0.00477	0.84
0.00651	0.00482	1.55
0.00657	0.00487	2.27
0.00658	0.00491	2.95

Spostamenti piedritto sinistro (Combinazione nº 6)

u _y [m]	u _x [m]	Y [m]
0.00596	0.00431	0.15
0.00597	0.00454	1.30
0.00599	0.00473	2.45

Spostamenti piedritto destro (Combinazione nº 6)

ս _y [m]	u _x [m]	Y [m]
0.00655	0.00428	0.15
0.00656	0.00459	1.30
0.00658	0.00491	2.45

Spostamenti fondazione (Combinazione nº 7)

X [m]	u _x [m]	u _y [m]
0.15	-0.00536	0.00892
0.88	-0.00537	0.00843
1.55	-0.00538	0.00811
2.22	-0.00539	0.00807

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.95	-0.00540	0.00813
2.93	-0.00340	0.00013

Spostamenti traverso (Combinazione nº 7)

ս _ջ [m]	u _x [m]	X [m]
0.00896	-0.00607	0.15
0.00899	-0.00608	0.84
0.00893	-0.00609	1.55
0.00859	-0.00609	2.27
0.00817	-0.00610	2.95

Spostamenti piedritto sinistro (Combinazione nº 7)

u _y [m]	u _x [m]	Y [m]
0.00892	-0.00536	0.15
0.00894	-0.00574	1.30
0.00896	-0.00607	2.45

Spostamenti piedritto destro (Combinazione nº 7)

ս _y [m]	u _x [m]	Y [m]
0.00813	-0.00540	0.15
0.00815	-0.00575	1.30
0.00817	-0.00610	2.45

Spostamenti fondazione (Combinazione nº 8)

ս _ջ [m]	u _x [m]	X [m]
0.00848	-0.00537	0.15
0.00801	-0.00538	0.88
0.00769	-0.00539	1.55
0.00764	-0.00539	2.22
0.00769	-0.00540	2.95

Spostamenti traverso (Combinazione nº 8)

X [m]	u _x [m]	u _y [m]
0.15	-0.00608	0.00851
0.84	-0.00609	0.00854
1.55	-0.00609	0.00847
2.27	-0.00610	0.00813

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.95 -0.00610 0.00772

Spostamenti piedritto sinistro (Combinazione nº 8)

Y [m]	u _x [m]	ս _y [m]
0.15	-0.00537	0.00848
1.30	-0.00573	0.00850
2.45	-0.00608	0.00851

Spostamenti piedritto destro (Combinazione nº 8)

ս _y [m]	u _x [m]	Y [m]
0.00769	-0.00540	0.15
0.00771	-0.00576	1.30
0.00772	-0.00610	2.45

Spostamenti fondazione (Combinazione nº 9)

u _y [m]	u _x [m]	X [m]
0.00654	0.00001	0.15
0.00625	0.00000	0.88
0.00612	0.00000	1.55
0.00625	0.00000	2.22
0.00654	-0.00001	2.95

Spostamenti traverso (Combinazione nº 9)

ս _ջ [m]	u _x [m]	X [m]
0.00657	0.00001	0.15
0.00682	0.00000	0.84
0.00695	0.00000	1.55
0.00681	0.00000	2.27
0.00657	-0.00001	2.95

Spostamenti piedritto sinistro (Combinazione nº 9)

ս _y [m]	u _x [m]	Y [m]
0.00654	0.00001	0.15
0.00655	-0.00013	1.30

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.45	0.00001	0.00657

Spostamenti piedritto destro (Combinazione nº 9)

u _y [m]	u _x [m]	Y [m]
0.00654	-0.00001	0.15
0.00655	0.00013	1.30
0.00657	-0.00001	2.45

Spostamenti fondazione (Combinazione nº 10)

u _y [m]	u _x [m]	X [m]
0.00840	0.00001	0.15
0.00802	0.00000	0.88
0.00785	0.00000	1.55
0.00802	0.00000	2.22
0.00840	-0.00001	2.95

Spostamenti traverso (Combinazione nº 10)

$X[m]$ $u_x[m]$ u_y	[m]
0.15 0.00001 0.00	844
0.84 0.00000 0.00	878
1.55 0.00000 0.00	896
2.27 0.00000 0.00	878
2.95 -0.00001 0.00	844

Spostamenti piedritto sinistro (Combinazione nº 10)

ս _ջ [m]	u _x [m]	Y [m]
0.00840	0.00001	0.15
0.00842	-0.00018	1.30
0.00844	0.00001	2.45

Spostamenti piedritto destro (Combinazione nº 10)

ս _ջ [m]	u _x [m]	Y [m]
0.00840	-0.00001	0.15
0.00842	0.00018	1.30
0.00844	-0.00001	2.45

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti fondazione (Combinazione nº 11)

ս _y [m]	u _x [m]	X [m]
0.00654	0.00001	0.15
0.00625	0.00000	0.88
0.00612	0.00000	1.55
0.00625	0.00000	2.22
0.00654	-0.00001	2.95

Spostamenti traverso (Combinazione nº 11)

u _y [m]	u _x [m]	X [m]
0.00657	0.00001	0.15
0.00682	0.00000	0.84
0.00695	0.00000	1.55
0.00681	0.00000	2.27
0.00657	-0.00001	2.95

Spostamenti piedritto sinistro (Combinazione nº 11)

ս _ջ [m]	u _x [m]	Y [m]
0.00654	0.00001	0.15
0.00655	-0.00013	1.30
0.00657	0.00001	2.45

Spostamenti piedritto destro (Combinazione nº 11)

ս _y [m]	u _x [m]	Y [m]
0.00654	-0.00001	0.15
0.00655	0.00013	1.30
0.00657	-0.00001	2.45

Spostamenti fondazione (Combinazione nº 12)

X [m]	u _x [m]	ս _ջ [m]
0.15	0.00001	0.00656
0.88	0.00000	0.00625
1.55	0.00000	0.00611
2.22	0.00000	0.00625
2.95	-0.00001	0.00656

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti traverso (Combinazione nº 12)

ս _ջ [m]	u _x [m]	X [m]
0.00659	-0.00012	0.15
0.00681	-0.00006	0.84
0.00694	0.00000	1.55
0.00681	0.00006	2.27
0.00659	0.00012	2.95

Spostamenti piedritto sinistro (Combinazione nº 12)

u _y [m]	u _x [m]	Y [m]
0.00656	0.00001	0.15
0.00657	-0.00019	1.30
0.00659	-0.00012	2.45

Spostamenti piedritto destro (Combinazione nº 12)

Y [m]	u _x [m]	u _y [m]
0.15	-0.00001	0.00656
1.30	0.00019	0.00657
2.45	0.00012	0.00659

Spostamenti fondazione (Combinazione nº 13)

ս _y [m]	u _x [m]	X [m]
0.00652	0.00001	0.15
0.00625	0.00000	0.88
0.00613	0.00000	1.55
0.00625	0.00000	2.22
0.00652	-0.00001	2.95

Spostamenti traverso (Combinazione nº 13)

X [m]	u _x [m]	ս _y [m]
0.15	0.00015	0.00655
0.84	0.00008	0.00682
1.55	0.00000	0.00696
2.27	-0.00008	0.00682
2.95	-0.00015	0.00655

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti piedritto sinistro (Combinazione nº 13)

ս _y [m]	u _x [m]	Y [m]
0.00652	0.00001	0.15
0.00653	-0.00006	1.30
0.00655	0.00015	2.45

Spostamenti piedritto destro (Combinazione nº 13)

u _y [m]	u _x [m]	Y [m]
0.00652	-0.00001	0.15
0.00653	0.00006	1.30
0.00655	-0.00015	2.45

Spostamenti fondazione (Combinazione nº 14)

u _y [m]	u _x [m]	X [m]
0.00903	0.00001	0.15
0.00861	0.00001	0.88
0.00842	0.00000	1.55
0.00861	-0.00001	2.22
0.00903	-0.00001	2.95

Spostamenti traverso (Combinazione nº 14)

X [m]	u _x [m]	ս _ջ [m]
0.15	0.00000	0.00907
0.84	0.00000	0.00944
1.55	0.00000	0.00963
2.27	0.00000	0.00943
2.95	0.00000	0.00907

Spostamenti piedritto sinistro (Combinazione nº 14)

ս _y [m]	u _x [m]	Y [m]
0.00903	0.00001	0.15
0.00905	-0.00020	1.30
0.00907	0.00000	2.45

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti piedritto destro (Combinazione nº 14)

u _y [m]	u _x [m]	Y [m]
0.00903	-0.00001	0.15
0.00905	0.00020	1.30
0.00907	0.00000	2.45

Spostamenti fondazione (Combinazione nº 15)

u _y [m]	u _x [m]	X [m]
0.00387	0.00070	0.15
0.00591	0.00069	0.88
0.00786	0.00068	1.55
0.01014	0.00068	2.22
0.01287	0.00067	2.95

Spostamenti traverso (Combinazione nº 15)

u _y [m]	u _x [m]	X [m]
0.00390	0.00873	0.15
0.00645	0.00873	0.84
0.00886	0.00873	1.55
0.01097	0.00872	2.27
0.01291	0.00872	2.95

Spostamenti piedritto sinistro (Combinazione nº 15)

ս _y [m]	u _x [m]	Y [m]
0.00387	0.00070	0.15
0.00389	0.00455	1.30
0.00390	0.00873	2.45

Spostamenti piedritto destro (Combinazione nº 15)

Y [m]	u _x [m]	u _y [m]
0.15	0.00067	0.01287
1.30	0.00477	0.01289
2.45	0.00872	0.01291

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti fondazione (Combinazione nº 16)

ս _y [m]	u _x [m]	X [m]
0.00842	0.00001	0.15
0.00802	0.00000	0.88
0.00784	0.00000	1.55
0.00802	0.00000	2.22
0.00842	-0.00001	2.95

Spostamenti traverso (Combinazione nº 16)

ս _ջ [m]	u _x [m]	X [m]
0.00846	-0.00010	0.15
0.00878	-0.00005	0.84
0.00895	0.00000	1.55
0.00877	0.00005	2.27
0.00846	0.00010	2.95

Spostamenti piedritto sinistro (Combinazione nº 16)

u _y [m	u _x [m]	Y [m]
0.00842	0.00001	0.15
0.00844	-0.00023	1.30
0.00846	-0.00010	2.45

Spostamenti piedritto destro (Combinazione nº 16)

ս _y [m]	u _x [m]	Y [m]
0.00842	-0.00001	0.15
0.00844	0.00023	1.30
0.00846	0.00010	2.45

Spostamenti fondazione (Combinazione nº 17)

X [m]	u _x [m]	ս _y [m]
0.15	0.00001	0.00841
0.88	0.00000	0.00802
1.55	0.00000	0.00785
2.22	0.00000	0.00802
2.95	-0.00001	0.00841

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti traverso (Combinazione nº 17)

X [m]	u _x [m]	ս _y [m]
0.15	0.00000	0.00844
0.84	0.00000	0.00878
1.55	0.00000	0.00896
2.27	0.00000	0.00878
2.95	0.00000	0.00844

Spostamenti piedritto sinistro (Combinazione nº 17)

u _y [m]	u _x [m]	Y [m]
0.00841	0.00001	0.15
0.00842	-0.00018	1.30
0.00844	0.00000	2.45

Spostamenti piedritto destro (Combinazione nº 17)

ս _y [m]	u _x [m]	Y [m]
0.00841	-0.00001	0.15
0.00842	0.00018	1.30
0.00844	0.00000	2.45

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni

Sollecitazioni fondazione (Combinazione nº 1)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-74.3934	-233.7291	95.6390
0.88	53.8741	-104.5390	95.6390
1.55	91.8180	8.4970	95.6390
2.22	53.8741	121.9284	95.6390
2.95	-74.3934	233.7291	95,6390

Sollecitazioni traverso (Combinazione nº 1)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-74.0585	218.0211	86.8446
0.84	38.8294	111.2353	86.8446
1.55	78.5563	0.0000	86.8446
2.27	37.6286	-112.9038	86.8446
2.95	-74.0585	-218.0211	86.8446

Sollecitazioni piedritto sinistro (Combinazione nº 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-74.3934	95.6661	240.8587
1.30	-21.5498	-2.2481	229.4399
2.45	-74.0585	-86.4622	218.0211

Sollecitazioni piedritto destro (Combinazione nº 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-74.3934	-95.6661	240.8587
1.30	-21.5498	2.2481	229.4399
2.45	-74.0585	86.4622	218.0211

Sollecitazioni fondazione (Combinazione nº 2)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-95.9054	-190.1821	113.4682
0.88	21.8440	-119.4487	113.4682
1.55	77.4386	-27.0623	113.4682

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.22	62.4364	95.4065	113.4682
2.95	-58.0454	243.3731	113.4682

Sollecitazioni traverso (Combinazione nº 2)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-29.7631	170.4056	48.1638
0.84	53.4100	72.1826	88.7101
1.55	68.4278	-30.1330	130.9458
2.27	8.9356	-133.9834	173.8150
2.95	-114.1355	-230.6717	213.7278

Sollecitazioni piedritto sinistro (Combinazione n° 2)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-95.9054	115.2997	193.2432
1.30	-15.8384	26.3356	181.8244
2.45	-29.7631	-48.1638	170.4056

Sollecitazioni piedritto destro (Combinazione nº 2)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-58.0454	-111.7011	253.5093
1.30	3.2552	19.2427	242.0905
2.45	-114.1355	190.4080	230.6717

Sollecitazioni fondazione (Combinazione nº 3)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-68.8851	-216.7365	89.3783
0.88	50.0701	-96.9128	89.3783
1.55	85.2584	7.9146	89.3783
2.22	50.0701	113.1091	89.3783
2.95	-68.8851	216.7365	89.3783

Sollecitazioni traverso (Combinazione nº 3)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-68.4738	200.5386	80.5171
0.84	35.3620	102.3156	80.5171
1.55	71.9033	0.0000	80.5171

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.27	34.2575	-103.8504	80.5171
2.95	-68.4738	-200.5386	80.5171

Sollecitazioni piedritto sinistro (Combinazione nº 3)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-68.8851	89.4037	223.3762
1.30	-19.6473	-2.2046	211.9574
2.45	-68.4738	-80.1330	200.5386

Sollecitazioni piedritto destro (Combinazione nº 3)

Y [m]	M [kNm]	V [kN]	N [kN]	
0.15 1.30	-68.8851 -19.6473	-89.4037 2.2046	223.3762	
			211.9574	
2.45	-68.4738	80.1330	200.5386	

Sollecitazioni fondazione (Combinazione nº 4)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-71.4690	-216.7496	91.1918
0.88	47.5375	-97.0006	91.1918
1.55	82.7609	7.9230	91.1918
2.22	47.5375	113.2022	91.1918
2.95	-71.4690	216.7496	91.1918

Sollecitazioni traverso (Combinazione nº 4)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-65.6232	200.5386	76.7770
0.84	38.2125	102.3156	76.7770
1.55	74.7538	0.0000	76.7770
2.27	37.1081	-103.8504	76.7770
2.95	-65.6232	-200.5386	76.7770

Sollecitazioni piedritto sinistro (Combinazione nº 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-71.4690	91.2177	223.3762

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.30	-19.9999	0.0396	211.9574
2.45	-65.6232	-76.6910	200.5386

Sollecitazioni piedritto destro (Combinazione nº 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-71.4690	-91.2177	223.3762
1.30	-19.9999	-0.0396	211.9574
2.45	-65.6232	76.6910	200.5386

Sollecitazioni fondazione (Combinazione nº 5)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-51.8139	-125.7487	101.4072
0.88	18.2221	-58.6140	102.7376
1.55	40.4363	2.1395	103.9694
2.22	21.4344	64.4827	105.2012
2.95	-47.3645	126.4320	106.5316

Sollecitazioni traverso (Combinazione nº 5)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-45.9497	110.4648	97.6984
0.84	11.1610	56.1081	98.9534
1.55	31.0163	-0.5134	100.2606
2.27	9.8109	-57.9843	101.5875
2.95	-47.3872	-111.4916	102.8228

Sollecitazioni piedritto sinistro (Combinazione nº 5)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-51.8139	109.9246	129.4862
1.30	10.8098	0.7556	119.9755
2.45	-45.9497	-97.6984	110.4648

Sollecitazioni piedritto destro (Combinazione nº 5)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-47.3645	-98.0732	130.5130
1.30	8.8416	3.3990	121.0023
2.45	-47.3872	93.1092	111.4916

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni fondazione (Combinazione nº 6)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-49.8814	-119.2389	100.7439
0.88	16.5539	-55.7586	102.0743
1.55	37.7062	1.8223	103.3061
2.22	19.7718	60.9819	104.5379
2.95	-45.4218	119.9175	105.8683

Sollecitazioni traverso (Combinazione nº 6)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-45.5173	107.9049	98.3507
0.84	10.2683	54.8032	99.6057
1.55	29.6583	-0.5111	100.9129
2.27	8.9356	-56.6552	102.2397
2.95	-46.9485	-108.9272	103.4751

Sollecitazioni piedritto sinistro (Combinazione nº 6)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-49.8814	109.2723	122.7170
1.30	11.9923	0.1033	115.3110
2.45	-45.5173	-98.3507	107.9049

Sollecitazioni piedritto destro (Combinazione nº 6)

M [kNm]	V [kN]	N [kN]
-45.4218	-97.3986	123.7393
10.0123	4.0475	116.3332
-46.9485	93.7498	108.9272
	-45.4218 10.0123	-45.4218 -97.3986 10.0123 4.0475

Sollecitazioni fondazione (Combinazione nº 7)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-63.0184	-164.2655	135.8004
0.88	26.2990	-70.9318	134.4701
1.55	50.8882	9.6442	133.2382
2.22	21.8980	88.5315	132.0064

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.95	-69.1768	163.4812	130.6761

Sollecitazioni traverso (Combinazione nº 7)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-60.5776	150.4510	130.3651
0.84	17.4281	77.0657	129.1101
1.55	45.1740	0.6228	127.8029
2.27	17.4993	-76.9669	126.4761
2.95	-58.8339	-149.2055	125.2407

Sollecitazioni piedritto sinistro (Combinazione nº 7)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-63.0184	125.1908	169.4724
1.30	9.7921	-2.8041	159.9617
2.45	-60.5776	-118.3420	150.4510

Sollecitazioni piedritto destro (Combinazione nº 7)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-69.1768	-141.3614	168.2269
1.30	12.6428	-2.7028	158.7162
2.45	-58.8339	125.2407	149.2055

Sollecitazioni fondazione (Combinazione nº 8)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-61.0756	-157.7510	135.1372
0.88	24.6364	-68.0686	133.8068
1.55	48.1581	9.3355	132.5750
2.22	20.2299	85.0383	131.3431
2.95	-67.2442	156.9714	130.0128

Sollecitazioni traverso (Combinazione nº 8)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-60.1389	147.8865	131.0174
0.84	16.5387	75.7562	129.7624
1.55	43.8161	0.6205	128.4552
2.27	16.6207	-75.6423	127.1283

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.95 -58.4015 -146.6456 125.8930

Sollecitazioni piedritto sinistro (Combinazione nº 8)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-61.0756	124.5161	162.6986
1.30	10.9628	-3.4525	155.2926
2.45	-60.1389	-118.9826	147.8865

Sollecitazioni piedritto destro (Combinazione nº 8)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-67.2442	-140.7091	161.4576
1.30	13.8253	-2.0506	154.0516
2.45	-58.4015	125.8930	146.6456

Sollecitazioni fondazione (Combinazione nº 9)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-41.3884	-122.7975	54.1206
0.88	26.0842	-54.9287	54.1206
1.55	46.0615	4.5768	54.1206
2.22	26.0842	64.2798	54.1206
2.95	-41.3884	122,7975	54.1206

Sollecitazioni traverso (Combinazione nº 9)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-35.4391	109.6971	41.8254
0.84	21.3604	55.9679	41.8254
1.55	41.3489	0.0000	41.8254
2.27	20.7562	-56.8075	41.8254
2.95	-35.4391	-109.6971	41.8254

Sollecitazioni piedritto sinistro (Combinazione nº 9)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-41.3884	54.1360	126.6139
1.30	-10.6810	0.7245	118.1555

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.45	-35.4391	-41.8254	109.6971

Sollecitazioni piedritto destro (Combinazione nº 9)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-41.3884	-54.1360	126.6139
1.30	-10.6810	-0.7245	118.1555
2.45	-35.4391	41.8254	109.6971

Sollecitazioni fondazione (Combinazione nº 10)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-53.6290	-160.5588	68.0331
0.88	34.5376	-71.8757	68.0331
1.55	60.6384	5.8711	68.0331
2.22	34.5376	83.8783	68.0331
2.95	-53.6290	160.5588	68.0331

Sollecitazioni traverso (Combinazione nº 10)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-47.8496	148.5471	55.8902
0.84	29.0658	75.7894	55.8902
1.55	56.1334	0.0000	55.8902
2.27	28.2476	-76.9262	55.8902
2.95	-47.8496	-148.5471	55.8902

Sollecitazioni piedritto sinistro (Combinazione nº 10)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-53.6290	68.0524	165.4639
1.30	-14.9088	0.6278	157.0055
2.45	-47.8496	-55.8902	148.5471

Sollecitazioni piedritto destro (Combinazione nº 10)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-53.6290	-68.0524	165.4639
1.30	-14.9088	-0.6278	157.0055
2.45	-47.8496	55.8902	148.5471

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni fondazione (Combinazione nº 11)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-41.3884	-122.7975	54.1206
0.88	26.0842	-54.9287	54.1206
1.55	46.0615	4.5768	54.1206
2.22	26.0842	64.2798	54.1206
2.95	-41.3884	122.7975	54.1206

Sollecitazioni traverso (Combinazione nº 11)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-35.4391	109.6971	41.8254
0.84	21.3604	55.9679	41.8254
1.55	41.3489	0.0000	41.8254
2.27	20.7562	-56.8075	41.8254
2.95	-35.4391	-109.6971	41.8254

Sollecitazioni piedritto sinistro (Combinazione nº 11)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-41.3884	54.1360	126.6139
1.30	-10.6810	0.7245	118.1555
2.45	-35,4391	-41.8254	109.6971

Sollecitazioni piedritto destro (Combinazione nº 11)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-41.3884	-54.1360	126.6139
1.30	-10.6810	-0.7245	118.1555
2.45	-35.4391	41.8254	109.6971

Sollecitazioni fondazione (Combinazione nº 12)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-39.2351	-122.7866	52.6093
0.88	28.1947	-54.8555	52.6093
1.55	48.1427	4.5698	52.6093
2.22	28.1947	64.2023	52.6093
2.95	-39.2351	122.7866	52.6093

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni traverso (Combinazione nº 12)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-37.8146	109.6971	44.9303
0.84	18.9849	55.9679	44.9303
1.55	38.9735	0.0000	44.9303
2.27	18.3807	-56.8075	44.9303
2.95	-37.8146	-109.6971	44.9303

Sollecitazioni piedritto sinistro (Combinazione nº 12)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-39.2351	52.6243	126.6139
1.30	-10.3872	-1.1456	118.1555
2.45	-37.8146	-44.6937	109.6971

Sollecitazioni piedritto destro (Combinazione nº 12)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-39.2351	-52.6243	126.6139
1.30	-10.3872	1.1456	118.1555
2.45	-37.8146	44.6937	109.6971

Sollecitazioni fondazione (Combinazione nº 13)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-43.8535	-122.8100	55.8707
0.88	23.6679	-55.0124	55.8707
1.55	43.6787	4.5848	55.8707
2.22	23.6679	64.3686	55.8707
2.95	-43.8535	122.8100	55.8707

Sollecitazioni traverso (Combinazione nº 13)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-32.7489	109.6971	38.8517
0.84	24.0506	55.9679	38.8517
1.55	44.0391	0.0000	38.8517
2.27	23.4464	-56.8075	38.8517
2.95	-32.7489	-109.6971	38.8517

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni piedritto sinistro (Combinazione nº 13)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-43.8535	55.8866	126.6139
1.30	-10.9945	2.8853	118.1555
2.45	-32.7489	-38.8517	109.6971

Sollecitazioni piedritto destro (Combinazione nº 13)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-43.8535	-55.8866	126.6139
1.30	-10.9945	-2.8853	118.1555
2.45	-32.7489	38.8517	109.6971

Sollecitazioni fondazione (Combinazione nº 14)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-57.5800	-173.1452	72.5799
0.88	37.4820	-77.5204	72.5799
1.55	65.6222	6.3021	72.5799
2.22	37.4820	90.4064	72.5799
2.95	-57.5800	173.1452	72.5799

Sollecitazioni traverso (Combinazione nº 14)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-52.1290	161.4971	60.7507
0.84	31.4917	82.3965	60.7507
1.55	60.9190	0.0000	60.7507
2.27	30.6022	-83.6325	60.7507
2.95	-52.1290	-161.4971	60.7507

Sollecitazioni piedritto sinistro (Combinazione nº 14)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-57.5800	72.6005	178.4139
1.30	-16.3004	0.4833	169.9555
2.45	-52.1290	-60.7507	161.4971

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni piedritto destro (Combinazione nº 14)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-57.5800	-72.6005	178.4139
1.30	-16.3004	-0.4833	169.9555
2.45	-52.1290	60.7507	161.4971

Sollecitazioni fondazione (Combinazione nº 15)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-71.6634	-140.8573	84.5704
0.88	15.5746	-88.5338	84.5704
1.55	56.7921	-20.0917	84.5704
2.22	45.6997	70.6642	84.5704
2.95	-43.5533	180.3008	84.5704

Sollecitazioni traverso (Combinazione nº 15)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-21.4268	126.2011	35.1368
0.84	40.1655	53.4433	65.1710
1.55	51.2717	-22.3461	96.4568
2.27	7.1850	-99.2723	128.2118
2.95	-83.9958	-170.8932	157.7768

Sollecitazioni piedritto sinistro (Combinazione nº 15)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-71.6634	85.9473	143.1178
1.30	-11.7334	20.0479	134.6595
2.45	-21.4268	-35.1368	126.2011

Sollecitazioni piedritto destro (Combinazione nº 15)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-43.5533	-83.2416	187.8099
1.30	2.4056	13.7936	179.3516
2 45	-83 9958	140 5233	170 8932

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni fondazione (Combinazione nº 16)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-51.7772	-160.5494	66.7334
0.88	36.3526	-71.8128	66.7334
1.55	62.4283	5.8651	66.7334
2.22	36.3526	83.8116	66.7334
2.95	-51.7772	160.5494	66.7334

Sollecitazioni traverso (Combinazione nº 16)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-49.8925	148.5471	58.5549
0.84	27.0228	75.7894	58.5549
1.55	54.0905	0.0000	58.5549
2.27	26.2047	-76.9262	58.5549
2.95	-49.8925	-148.5471	58.5549

Sollecitazioni piedritto sinistro (Combinazione nº 16)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-51.7772	66.7524	165.4639
1.30	-14.6561	-0.9806	157.0055
2.45	-49.8925	-58.3571	148.5471

Sollecitazioni piedritto destro (Combinazione nº 16)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-51.7772	-66.7524	165.4639
1.30	-14.6561	0.9806	157.0055
2.45	-49.8925	58.3571	148.5471

Sollecitazioni fondazione (Combinazione nº 17)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-53.4998	-160.5581	67.9424
0.88	34.6642	-71.8713	67.9424
1.55	60.7633	5.8707	67.9424
2.22	34.6642	83.8736	67.9424
2.95	-53.4998	160.5581	67.9424

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni traverso (Combinazione nº 17)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-47.9922	148.5471	56.0624
0.84	28.9232	75.7894	56.0624
1.55	55.9908	0.0000	56.0624
2.27	28.1051	-76.9262	56.0624
2.95	-47.9922	-148.5471	56.0624

Sollecitazioni piedritto sinistro (Combinazione nº 17)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-53.4998	67.9617	165.4639
1.30	-14.8911	0.5155	157.0055
2.45	-47.9922	-56.0624	148.5471

Sollecitazioni piedritto destro (Combinazione nº 17)

Y [m]	M [kNm]	V [kN]	N [kN]
0.15	-53.4998	-67.9617	165.4639
1.30	-14.8911	-0.5155	157.0055
2.45	-47.9922	56.0624	148.5471

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Pressioni terreno

Pressioni sul terreno di fondazione (Combinazione nº 1)

n] σ _t [kPa]
5	190
8	181
5	177
2	181
5	190

Pressioni sul terreno di fondazione (Combinazione n° 2)

X [m]	σ_t [kPa]
0.15	82
0.88	124
1.55	165
2.22	213
2.95	270

Pressioni sul terreno di fondazione (Combinazione n° 3)

n] σ _t	[kPa]
15	177
38	168
55	165
22	168
95	177

Pressioni sul terreno di fondazione (Combinazione n° 4)

X [m]	σ_t [kPa]
0.15	177
0.88	168
1.55	165
2.22	168
2.95	177

Pressioni sul terreno di fondazione (Combinazione n° 5)

X [m]	σ _t [kPa]
0.15	100
0.88	99
1.55	99

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.22	103
2.95	109

Pressioni sul terreno di fondazione (Combinazione n° 6)

σ _t [kPa]	X [m]
93	0.15
92	0.88
92	1.55
96	2.22
102	2.95

Pressioni sul terreno di fondazione (Combinazione nº 7)

X [m]	σ_t [kPa]
0.15	139
0.88	131
1.55	126
2.22	126
2.95	127

Pressioni sul terreno di fondazione (Combinazione n° 8)

σ _t [kPa]	X [m]
132	0.15
125	0.88
120	1.55
119	2.22
120	2.95

Pressioni sul terreno di fondazione (Combinazione nº 9)

σ _t [kPa]	X [m]
102	0.15
97	0.88
95	1.55
97	2.22
102	2.95

Pressioni sul terreno di fondazione (Combinazione n° 10)

X [m]	σ _t [kPa]
0.15	131
0.88	125

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.55	122
2.22	125
2.95	131

Pressioni sul terreno di fondazione (Combinazione n° 11)

X [m]	σ _t [kPa]
0.15	102
0.88	97
1.55	95
2.22	97
2.95	102

Pressioni sul terreno di fondazione (Combinazione nº 12)

σ _t [kPa]	X [m]
102	0.15
97	0.88
95	1.55
97	2.22
102	2.95

Pressioni sul terreno di fondazione (Combinazione nº 13)

X [m]	σ _t [kPa]
0.15	101
0.88	97
1.55	95
2.22	97
2.95	101

Pressioni sul terreno di fondazione (Combinazione nº 14)

σ_t [kPa]	X [m]
140	0.15
134	0.88
131	1.55
134	2.22
140	2 95

Pressioni sul terreno di fondazione (Combinazione nº 15)

X [m]	σ _t [kPa]
0.15	60

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

0.88	92
1.55	122
2.22	158
2.95	200

Pressioni sul terreno di fondazione (Combinazione nº 16)

X [m]	σ _t [kPa]
0.15	131
0.88	125
1.55	122
2.22	125
2.95	131

Pressioni sul terreno di fondazione (Combinazione n° 17)

X [m]	σ _t [kPa]
0.15	131
0.88	125
1.55	122
2.22	125
2.95	131

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

- N° Indice sezione
- X Ascissa/Ordinata sezione, espresso in m
- M Momento flettente, espresso in kNm
- V Taglio, espresso in kN
- N Sforzo normale, espresso in kN
- N_u Sforzo normale ultimo, espressa in kN
- Mu Momento ultimo, espressa in kNm
- A_{fi} Area armatura inferiore, espresse in mq
- A_{fs} Area armatura superiore, espresse in mq
- CS Coeff. di sicurezza sezione
- V_{Rd} Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN
- $V_{\it Rcd}$ Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN
- V_{Rsd} Aliquota taglio assorbita armature trasversali, espressa in kN
- A_{sw} Area armature trasversali nella sezione, espressa in mq

Verifica sezioni fondazione [Combinazione nº 1 - SLU (Approccio 2)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	Mu	A_{fi}	A_{fs}	CS
1	0.15	74.39 (74.39)	95.64	289.04	224.83	0.002614	0.002011	3.02
2	0.88	-53.87 (-75.33)	95.64	250.03	-196.92	0.002011	0.002212	2.61
3	1.55	-91.82 (-91.82)	95.64	186.71	-179.25	0.002011	0.002011	1.95
4	2.22	-53.87 (-78.89)	95.64	237.50	-195.92	0.002011	0.002212	2.48
5	2.95	74.39 (74.39)	95.64	289.04	224.83	0.002614	0.002011	3.02

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	-233.73	0.00	256.12	895.34	1.096
2	0.88	0.000000	-104.54	171.17	0.00	0.00	1.637
3	1.55	0.000000	8.50	171.17	0.00	0.00	20.144
4	2.22	0.000000	121.93	171.17	0.00	0.00	1.404
5	2.95	0.000201	233.73	0.00	256.12	895.34	1.096

Verifica sezioni traverso [Combinazione nº 1 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

N°	X	M	N	N_u	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	-74.06 (-74.06)	86.84	228.93	-195.23	0.002011	0.002212	2.64
2	0.84	38.83 (61.65)	86.84	260.98	185.28	0.002011	0.002011	3.01
3	1.55	78.56 (78.56)	86.84	199.29	180.27	0.002011	0.002011	2.29
4	2.27	37.63 (60.80)	86.84	285.35	199.76	0.002212	0.002011	3.29
5	2.95	-74.06 (-74.06)	86.84	261.08	-222.65	0.002011	0.002614	3.01

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	218.02	0.00	256.12	893.88	1.175
2	0.84	0.000000	111.24	170.16	0.00	0.00	1.530
3	1.55	0.000000	0.00	170.16	0.00	0.00	100.000
4	2.27	0.000000	-112.90	170.16	0.00	0.00	1.507
5	2.95	0.000201	-218.02	0.00	256.12	893.88	1.175

<u>Verifica sezioni piedritto sinistro [Combinazione nº 1 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

Ν°	X	M	N	N_{u}	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	-74.39 (-74.39)	240.86	720.82	-222.64	0.002011	0.002011	2.99
2	1.30	-21.55 (-22.01)	229.44	2937.39	-281.80	0.002011	0.002011	12.80
3	2.45	-74.06 (-74.39)	218.02	631.12	-215.35	0.002011	0.002011	2.89

Verifiche taglio

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	95.67	187.72	0.00	0.00	1.962
2	1.30	0.000000	-2.25	186.42	0.00	0.00	82.923
3	2.45	0.000000	-86.46	185.12	0.00	0.00	2.141

Verifica sezioni piedritto destro [Combinazione nº 1 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_u	A_{fi}	\mathbf{A}_{fs}	CS
1	0.15	-74.39 (-74.39)	240.86	720.82	-222.64	0.002011	0.002011	2.99
2	1.30	-21.55 (-22.01)	229.44	2937.39	-281.80	0.002011	0.002011	12.80
3	2.45	-74.06 (-74.39)	218.02	631.15	-215.36	0.002212	0.002011	2.89

Verifiche taglio

N°	Х	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-95.67	187.72	0.00	0.00	1.962
2	1.30	0.000000	2.25	186.42	0.00	0.00	82.923
3	2.45	0.000201	86.46	0.00	256.12	915.54	2.962

<u>Verifica sezioni fondazione [Combinazione nº 2 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	N_u	M_u	A_{fi}	\mathbf{A}_{fs}	CS
1	0.15	95.91 (95.91)	113.47	263.66	222.85	0.002614	0.002011	2.32
2	0.88	-21.84 (-46.35)	113.47	538.80	-220.12	0.002011	0.002212	4.75
3	1.55	-77.44 (-81.24)	113.47	258.50	-185.08	0.002011	0.002011	2.28
4	2.22	-62.44 (-81.24)	113.47	278.20	-199.19	0.002011	0.002212	2.45
5	2.95	58.05 (95.91)	113.47	263.66	222.85	0.002614	0.002011	2.32

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	-190.18	0.00	256.12	898.28	1.347
2	0.88	0.000000	-119.45	173.20	0.00	0.00	1.450
3	1.55	0.000000	-27.06	173.20	0.00	0.00	6.400
4	2.22	0.000000	95.41	173.20	0.00	0.00	1.815
5	2.95	0.000201	243.37	0.00	256.12	898.28	1.052

Verifica sezioni traverso [Combinazione nº 2 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	$N_{\rm u}$	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	-29.76 (-64.73)	48.16	139.95	-188.08	0.002011	0.002212	2.91
2	0.84	53.41 (68.22)	88.71	238.56	183.46	0.002011	0.002011	2.69
3	1.55	68.43 (71.52)	130.95	352.88	192.75	0.002011	0.002011	2.69
4	2.27	8.94 (36.43)	173.82	1317.09	276.04	0.002212	0.002011	7.58
5	2.95	-114.14 (-114.14)	213.73	443.62	-236.91	0.002011	0.002614	2.08

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	170.41	0.00	256.12	887.50	1.503
2	0.84	0.000000	72.18	170.38	0.00	0.00	2.360
3	1.55	0.000000	-30.13	175.19	0.00	0.00	5.814
4	2.27	0.000000	-133.98	180.08	0.00	0.00	1.344
5	2.95	0.000201	-230.67	0.00	256.12	914.83	1.110

<u>Verifica sezioni piedritto sinistro [Combinazione nº 2 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	N_{u}	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	-95.91 (-95.91)	193.24	395.32	-196.20	0.002011	0.002011	2.05
2	1.30	-15.84 (-21.24)	181.82	2519.31	-294.33	0.002011	0.002011	13.86
3	2.45	-29.76 (-39.65)	170.41	1067.09	-248.27	0.002011	0.002011	6.26

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	115.30	182.29	0.00	0.00	1.581
2	1.30	0.000000	26.34	180.99	0.00	0.00	6.873
3	2.45	0.000000	-48.16	179.69	0.00	0.00	3.731

Verifica sezioni piedritto destro [Combinazione nº 2 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

Ν°	Х	М	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.15	-58.05 (-80.97)	253.51	689.00	-220.05	0.002011	0.002011	2.72
2	1.30	3.26 (4.18)	242.09	5490.99	94.78	0.002011	0.002011	22.68
3	2.45	-114.14 (-114.14)	230.67	396.84	-196.35	0.002212	0.002011	1.72

Verifiche taglio

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-111.70	189.16	0.00	0.00	1.693
2	1.30	0.000000	19.24	187.86	0.00	0.00	9.763
3	2.45	0.000201	190.41	0.00	256.12	917.63	1.345

Verifica sezioni fondazione [Combinazione nº 3 - SLU (Approccio 2)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	М	N	N_u	M_u	A_{fi}	\mathbf{A}_{fs}	CS
1	0.15	68.89 (68.89)	89.38	292.02	225.06	0.002614	0.002011	3.27
2	0.88	-50.07 (-69.96)	89.38	251.77	-197.06	0.002011	0.002212	2.82
3	1.55	-85.26 (-85.26)	89.38	188.02	-179.36	0.002011	0.002011	2.10
4	2.22	-50.07 (-73.28)	89.38	239.11	-196.05	0.002011	0.002212	2.68
5	2.95	68.89 (68.89)	89.38	292.02	225.06	0.002614	0.002011	3.27

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	-216.74	0.00	256.12	894.30	1.182
2	0.88	0.000000	-96.91	170.45	0.00	0.00	1.759
3	1.55	0.000000	7.91	170.45	0.00	0.00	21.537
4	2.22	0.000000	113.11	170.45	0.00	0.00	1.507
5	2.95	0.000201	216.74	0.00	256.12	894.30	1.182

Verifica sezioni traverso [Combinazione nº 3 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche i	presso-flessione

N°	X	М	N	$N_{\rm u}$	M_{u}	${\sf A}_{\sf fi}$	A_{fs}	CS
1	0.15	-68.47 (-68.47)	80.52	229.63	-195.29	0.002011	0.002212	2.85
2	0.84	35.36 (56.36)	80.52	265.20	185.63	0.002011	0.002011	3.29
3	1.55	71.90 (71.90)	80.52	202.13	180.50	0.002011	0.002011	2.51
4	2.27	34.26 (55.57)	80.52	289.99	200.13	0.002212	0.002011	3.60
5	2.95	-68.47 (-68.47)	80.52	261.88	-222.71	0.002011	0.002614	3.25

Verifiche taglio

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	200.54	0.00	256.12	892.84	1.277
2	0.84	0.000000	102.32	169.44	0.00	0.00	1.656
3	1.55	0.000000	0.00	169.44	0.00	0.00	100.000
4	2.27	0.000000	-103.85	169.44	0.00	0.00	1.632
5	2.95	0.000201	-200.54	0.00	256.12	892.84	1.277

<u>Verifica sezioni piedritto sinistro [Combinazione nº 3 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	$N_{\rm u}$	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	-68.89 (-68.89)	223.38	722.36	-222.76	0.002011	0.002011	3.23
2	1.30	-19.65 (-20.10)	211.96	2962.98	-280.98	0.002011	0.002011	13.98
3	2.45	-68.47 (-68.89)	200.54	625.64	-214.91	0.002011	0.002011	3.12

Verifiche taglio

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	89.40	185.73	0.00	0.00	2.077
2	1.30	0.000000	-2.20	184.43	0.00	0.00	83.657
3	2.45	0.000000	-80.13	183.13	0.00	0.00	2.285

Verifica sezioni piedritto destro [Combinazione nº 3 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.15	-68.89 (-68.89)	223.38	722.36	-222.76	0.002011	0.002011	3.23
2	1.30	-19.65 (-20.10)	211.96	2962.98	-280.98	0.002011	0.002011	13.98
3	2.45	-68.47 (-68.89)	200.54	625.66	-214.92	0.002212	0.002011	3.12

Verifiche taglio

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-89.40	185.73	0.00	0.00	2.077
2	1.30	0.000000	2.20	184.43	0.00	0.00	83.657
3	2.45	0.000201	80.13	0.00	256.12	912.66	3.196

<u>Verifica sezioni fondazione [Combinazione nº 4 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	N_{u}	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	71.47 (71.47)	91.19	286.63	224.64	0.002614	0.002011	3.14
2	0.88	-47.54 (-67.44)	91.19	268.25	-198.39	0.002011	0.002212	2.94
3	1.55	-82.76 (-82.76)	91.19	198.57	-180.21	0.002011	0.002011	2.18
4	2.22	-47.54 (-70.77)	91.19	254.19	-197.26	0.002011	0.002212	2.79
5	2.95	71.47 (71.47)	91.19	286.63	224.64	0.002614	0.002011	3.14

Verifiche taglio

N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	-216.75	0.00	256.12	894.60	1.182
2	0.88	0.000000	-97.00	170.66	0.00	0.00	1.759
3	1.55	0.000000	7.92	170.66	0.00	0.00	21.540
4	2.22	0.000000	113.20	170.66	0.00	0.00	1.508
5	2.95	0.000201	216.75	0.00	256.12	894.60	1.182

Verifica sezioni traverso [Combinazione nº 4 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	N_{u}	M_{u}	A_{fi}	\mathbf{A}_{fs}	CS
1	0.15	-65.62 (-65.62)	76.78	228.36	-195.18	0.002011	0.002212	2.97
2	0.84	38.21 (59.21)	76.78	237.82	183.40	0.002011	0.002011	3.10
3	1.55	74.75 (74.75)	76.78	183.86	179.02	0.002011	0.002011	2.39
4	2.27	37.11 (58.42)	76.78	259.85	197.71	0.002212	0.002011	3.38
5	2.95	-65.62 (-65.62)	76.78	260.43	-222.59	0.002011	0.002614	3.39

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	200.54	0.00	256.12	892.22	1.277
2	0.84	0.000000	102.32	169.02	0.00	0.00	1.652
3	1.55	0.000000	0.00	169.02	0.00	0.00	100.000
4	2.27	0.000000	-103.85	169.02	0.00	0.00	1.628
5	2.95	0.000201	-200.54	0.00	256.12	892.22	1.277

<u>Verifica sezioni piedritto sinistro [Combinazione nº 4 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Χ	M	N	N_{u}	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	-71.47 (-71.47)	223.38	687.36	-219.92	0.002011	0.002011	3.08
2	1.30	-20.00 (-20.01)	211.96	2973.12	-280.65	0.002011	0.002011	14.03
3	2.45	-65.62 (-71.47)	200.54	596.34	-212.53	0.002011	0.002011	2.97

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	91.22	185.73	0.00	0.00	2.036
2	1.30	0.000000	0.04	184.43	0.00	0.00	4660.918
3	2.45	0.000000	-76.69	183.13	0.00	0.00	2.388

Verifica sezioni piedritto destro [Combinazione nº 4 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.15	-71.47 (-71.47)	223.38	687.36	-219.92	0.002011	0.002011	3.08
2	1.30	-20.00 (-20.01)	211.96	2973.12	-280.65	0.002011	0.002011	14.03
3	2.45	-65.62 (-71.47)	200.54	596.38	-212.54	0.002212	0.002011	2.97

Verifiche taglio

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-91.22	185.73	0.00	0.00	2.036
2	1.30	0.000000	-0.04	184.43	0.00	0.00	4660.918
3	2.45	0.000201	76.69	0.00	256.12	912.66	3.340

<u>Verifica sezioni fondazione [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Χ	М	N	N_u	M_u	A_{fi}	\mathbf{A}_{fs}	CS
1	0.15	51.81 (51.81)	101.41	467.27	238.75	0.002614	0.002011	4.61
2	0.88	-18.22 (-30.25)	102.74	823.86	-242.57	0.002011	0.002212	8.02
3	1.55	-40.44 (-40.44)	103.97	533.27	-207.40	0.002011	0.002011	5.13
4	2.22	-21.43 (-34.67)	105.20	709.62	-233.84	0.002011	0.002212	6.75
5	2.95	47.36 (51.81)	106.53	495.40	240.95	0.002614	0.002011	4.65

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	-125.75	0.00	256.12	896.29	2.037
2	0.88	0.000000	-58.61	171.98	0.00	0.00	2.934
3	1.55	0.000000	2.14	172.12	0.00	0.00	80.446
4	2.22	0.000000	64.48	172.26	0.00	0.00	2.671
5	2.95	0.000201	126.43	0.00	256.12	897.14	2.026

Verifica sezioni traverso [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

	CI .
Variticha	presso-flessione
VEHILLIE	DI 6330-H633IOH6

N°	X	М	N	N_u	M_u	${\sf A_{fi}}$	A_{fs}	CS
1	0.15	-45.95 (-47.39)	97.70	436.95	-211.94	0.002011	0.002212	4.47
2	0.84	11.16 (22.67)	98.95	1091.10	250.02	0.002011	0.002011	11.03
3	1.55	31.02 (31.02)	100.26	719.28	222.51	0.002011	0.002011	7.17
4	2.27	9.81 (21.71)	101.59	1281.63	273.88	0.002212	0.002011	12.62
5	2.95	-47.39 (-47.39)	102.82	528.42	-243.53	0.002011	0.002614	5.14

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	110.46	0.00	256.12	895.68	2.319
2	0.84	0.000000	56.11	171.54	0.00	0.00	3.057
3	1.55	0.000000	-0.51	171.69	0.00	0.00	334.423
4	2.27	0.000000	-57.98	171.85	0.00	0.00	2.964
5	2.95	0.000201	-111.49	0.00	256.12	896.52	2.297

<u>Verifica sezioni piedritto sinistro [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	M_{u}	A_{fi}	A_{fs}	cs
1	0.15	-51.81 (-51.81)	129.49	514.50	-205.88	0.002011	0.002011	3.97
2	1.30	10.81 (10.81)	119.98	3077.29	277.26	0.002011	0.002011	25.65
3	2.45	-45.95 (-51.81)	110.46	423.09	-198.45	0.002011	0.002011	3.83

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	109.92	175.03	0.00	0.00	1.592
2	1.30	0.000000	0.76	173.94	0.00	0.00	230.205
3	2.45	0.000000	-97.70	172.86	0.00	0.00	1.769

Verifica sezioni piedritto destro [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	М	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.15	-47.36 (-47.39)	130.51	582.16	-211.37	0.002011	0.002011	4.46
2	1.30	8.84 (8.84)	121.00	3547.71	259.23	0.002011	0.002011	29.32
3	2.45	-47.39 (-47.39)	111.49	477.34	-202.88	0.002212	0.002011	4.28

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-98.07	175.14	0.00	0.00	1.786
2	1.30	0.000000	3.40	174.06	0.00	0.00	51.208
3	2.45	0.000201	93.11	0.00	256.12	897.95	2.751

<u>Verifica sezioni fondazione [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Χ	M	N	N_u	$M_{\rm u}$	A_{fi}	\mathbf{A}_{fs}	CS
1	0.15	49.88 (49.88)	100.74	485.00	240.14	0.002614	0.002011	4.81
2	0.88	-16.55 (-28.00)	102.07	905.59	-248.37	0.002011	0.002212	8.87
3	1.55	-37.71 (-37.71)	103.31	578.24	-211.06	0.002011	0.002011	5.60
4	2.22	-19.77 (-32.29)	104.54	773.85	-238.99	0.002011	0.002212	7.40
5	2.95	45.42 (49.88)	105.87	514.57	242.45	0.002614	0.002011	4.86

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	-119.24	0.00	256.12	896.18	2.148
2	0.88	0.000000	-55.76	171.90	0.00	0.00	3.083
3	1.55	0.000000	1.82	172.04	0.00	0.00	94.410
4	2.22	0.000000	60.98	172.18	0.00	0.00	2.823
5	2.95	0.000201	119.92	0.00	256.12	897.03	2.136

<u>Verifica sezioni traverso [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Variticha	presso-flessione
v ei iiiciie	DI COOLLICOOLUIC

N°	X	М	N	N_{u}	$M_{\rm u}$	${\sf A}_{\sf fi}$	\mathbf{A}_{fs}	CS
1	0.15	-45.52 (-46.95)	98.35	445.40	-212.61	0.002011	0.002212	4.53
2	0.84	10.27 (21.51)	99.61	1188.87	256.79	0.002011	0.002011	11.94
3	1.55	29.66 (29.66)	100.91	771.37	226.71	0.002011	0.002011	7.64
4	2.27	8.94 (20.56)	102.24	1396.69	280.89	0.002212	0.002011	13.66
5	2.95	-46.95 (-46.95)	103.48	538.47	-244.32	0.002011	0.002614	5.20

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	107.90	0.00	256.12	895.78	2.374
2	0.84	0.000000	54.80	171.62	0.00	0.00	3.132
3	1.55	0.000000	-0.51	171.77	0.00	0.00	336.056
4	2.27	0.000000	-56.66	171.92	0.00	0.00	3.034
5	2.95	0.000201	-108.93	0.00	256.12	896.63	2.351

<u>Verifica sezioni piedritto sinistro [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

Ν°	х	М	N	N_{u}	M_{u}	A_{fi}	A_{fs}	cs
1	0.15	-49.88 (-49.88)	122.72	504.50	-205.07	0.002011	0.002011	4.11
2	1.30	11.99 (11.99)	115.31	2763.22	287.37	0.002011	0.002011	23.96
3	2.45	-45.52 (-49.88)	107.90	430.62	-199.06	0.002011	0.002011	3.99

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	109.27	174.25	0.00	0.00	1.595
2	1.30	0.000000	0.10	173.41	0.00	0.00	1678.136
3	2.45	0.000000	-98.35	172.57	0.00	0.00	1.755

<u>Verifica sezioni piedritto destro [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_u	A_{fi}	${\sf A}_{\sf fs}$	CS
1	0.15	-45.42 (-46.95)	123.74	550.28	-208.78	0.002011	0.002011	4.45
2	1.30	10.01 (10.01)	116.33	3178.23	273.54	0.002011	0.002011	27.32
3	2.45	-46.95 (-46.95)	108.93	469.19	-202.22	0.002212	0.002011	4.31

Verifiche taglio

N°	Х	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-97.40	174.37	0.00	0.00	1.790
2	1.30	0.000000	4.05	173.53	0.00	0.00	42.872
3	2.45	0.000201	93.75	0.00	256.12	897.53	2.732

<u>Verifica sezioni fondazione [Combinazione nº 7 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	N_u	M_u	A_{fi}	${f A}_{\sf fs}$	CS
1	0.15	63.02 (69.18)	135.80	468.95	238.88	0.002614	0.002011	3.45
2	0.88	-26.30 (-40.85)	134.47	790.67	-240.22	0.002011	0.002212	5.88
3	1.55	-50.89 (-50.89)	133.24	545.67	-208.41	0.002011	0.002011	4.10
4	2.22	-21.90 (-40.06)	132.01	791.73	-240.29	0.002011	0.002212	6.00
5	2.95	69.18 (69.18)	130.68	448.19	237.26	0.002614	0.002011	3.43

Verifiche taglio

N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	-164.27	0.00	256.12	901.97	1.559
2	0.88	0.000000	-70.93	175.59	0.00	0.00	2.476
3	1.55	0.000000	9.64	175.45	0.00	0.00	18.193
4	2.22	0.000000	88.53	175.31	0.00	0.00	1.980
5	2.95	0.000201	163.48	0.00	256.12	901.12	1.567

Verifica sezioni traverso [Combinazione nº 7 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

	CI .
Variticha	presso-flessione
VEHILLIE	DI 6330-H633IOH6

N°	X	M	N	$N_{\rm u}$	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	-60.58 (-60.58)	130.37	460.09	-213.79	0.002011	0.002212	3.53
2	0.84	17.43 (33.24)	129.11	923.63	237.81	0.002011	0.002011	7.15
3	1.55	45.17 (45.17)	127.80	602.73	213.05	0.002011	0.002011	4.72
4	2.27	17.50 (33.29)	126.48	957.55	252.06	0.002212	0.002011	7.57
5	2.95	-58.83 (-60.58)	125.24	498.68	-241.21	0.002011	0.002614	3.98

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	150.45	0.00	256.12	901.07	1.702
2	0.84	0.000000	77.07	174.98	0.00	0.00	2.271
3	1.55	0.000000	0.62	174.83	0.00	0.00	280.739
4	2.27	0.000000	-76.97	174.68	0.00	0.00	2.270
5	2.95	0.000201	-149.21	0.00	256.12	900.22	1.717

<u>Verifica sezioni piedritto sinistro [Combinazione nº 7 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	M_{u}	${\sf A}_{\sf fi}$	A_{fs}	cs
1	0.15	-63.02 (-63.02)	169.47	564.60	-209.95	0.002011	0.002011	3.33
2	1.30	9.79 (9.79)	159.96	3939.81	241.18	0.002011	0.002011	24.63
3	2.45	-60.58 (-63.02)	150.45	485.99	-203.56	0.002011	0.002011	3.23

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	125.19	179.58	0.00	0.00	1.434
2	1.30	0.000000	-2.80	178.50	0.00	0.00	63.657
3	2.45	0.000000	-118.34	177.42	0.00	0.00	1.499

Verifica sezioni piedritto destro [Combinazione nº 7 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

	cı .
Variticha	presso-flessione
v ei iiiciie	DI 6330-H63310H6

N°	Х	М	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.15	-69.18 (-69.18)	168.23	497.26	-204.48	0.002011	0.002011	2.96
2	1.30	12.64 (12.64)	158.72	3352.94	267.08	0.002011	0.002011	21.13
3	2.45	-58.83 (-69.18)	149.21	429.17	-198.98	0.002212	0.002011	2.88

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-141.36	179.44	0.00	0.00	1.269
2	1.30	0.000000	-2.70	178.36	0.00	0.00	65.989
3	2.45	0.000201	125.24	0.00	256.12	904.18	2.045

Verifica sezioni fondazione [Combinazione nº 8 - SLU (Approccio 2) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	N_u	M_{u}	A_{fi}	${f A}_{\sf fs}$	CS
1	0.15	61.08 (67.24)	135.14	482.14	239.91	0.002614	0.002011	3.57
2	0.88	-24.64 (-38.60)	133.81	846.31	-244.17	0.002011	0.002212	6.32
3	1.55	-48.16 (-48.16)	132.57	581.82	-211.35	0.002011	0.002011	4.39
4	2.22	-20.23 (-37.68)	131.34	852.69	-244.62	0.002011	0.002212	6.49
5	2.95	67.24 (67.24)	130.01	460.61	238.23	0.002614	0.002011	3.54

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	-157.75	0.00	256.12	901.86	1.624
2	0.88	0.000000	-68.07	175.52	0.00	0.00	2.579
3	1.55	0.000000	9.34	175.38	0.00	0.00	18.786
4	2.22	0.000000	85.04	175.24	0.00	0.00	2.061
5	2.95	0.000201	156.97	0.00	256.12	901.01	1.632

Verifica sezioni traverso [Combinazione nº 8 - SLU (Approccio 2) - Sisma Vert. negativo]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

	CI .
Variticha	presso-flessione
VEHILLIE	DI 6330-H633IOH6

N°	X	M	N	N_u	M_u	${\sf A_{fi}}$	\mathbf{A}_{fs}	CS
1	0.15	-60.14 (-60.14)	131.02	466.97	-214.35	0.002011	0.002212	3.56
2	0.84	16.54 (32.08)	129.76	977.77	241.75	0.002011	0.002011	7.54
3	1.55	43.82 (43.82)	128.46	631.41	215.38	0.002011	0.002011	4.92
4	2.27	16.62 (32.14)	127.13	1012.30	255.94	0.002212	0.002011	7.96
5	2.95	-58.40 (-60.14)	125.89	506.16	-241.79	0.002011	0.002614	4.02

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000201	147.89	0.00	256.12	901.18	1.732
2	0.84	0.000000	75.76	175.06	0.00	0.00	2.311
3	1.55	0.000000	0.62	174.91	0.00	0.00	281.887
4	2.27	0.000000	-75.64	174.76	0.00	0.00	2.310
5	2.95	0.000201	-146.65	0.00	256.12	900.33	1.747

<u>Verifica sezioni piedritto sinistro [Combinazione nº 8 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

Ν°	х	M	N	N_{u}	M_{u}	A_{fi}	\mathbf{A}_{fs}	CS
1	0.15	-61.08 (-61.08)	162.70	557.81	-209.40	0.002011	0.002011	3.43
2	1.30	10.96 (10.96)	155.29	3624.53	255.87	0.002011	0.002011	23.34
3	2.45	-60.14 (-61.08)	147.89	494.59	-204.26	0.002011	0.002011	3.34

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	124.52	178.81	0.00	0.00	1.436
2	1.30	0.000000	-3.45	177.97	0.00	0.00	51.547
3	2.45	0.000000	-118.98	177.12	0.00	0.00	1.489

Verifica sezioni piedritto destro [Combinazione nº 8 - SLU (Approccio 2) - Sisma Vert. negativo]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	N_u	M_u	A_{fi}	\mathbf{A}_{fs}	CS
1	0.15	-67.24 (-67.24)	161.46	489.44	-203.84	0.002011	0.002011	3.03
2	1.30	13.83 (13.83)	154.05	3085.93	276.94	0.002011	0.002011	20.03
3	2.45	-58.40 (-67.24)	146.65	434.95	-199.45	0.002212	0.002011	2.97

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	\mathbf{V}_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-140.71	178.67	0.00	0.00	1.270
2	1.30	0.000000	-2.05	177.83	0.00	0.00	86.720
3	2.45	0.000201	125.89	0.00	256.12	903.76	2.034

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche combinazioni SLE

Simbologia adottata ed unità di misura

- N° Indice sezione
- X Ascissa/Ordinata sezione, espresso in m
- M Momento flettente, espresso in kNm
- V Taglio, espresso in kN
- N Sforzo normale, espresso in kN
- A_{fi} Area armatura inferiore, espressa in mq
- A_{fs} Area armatura superiore, espressa in mq
- $\sigma_{\!f\!i}$ Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in kPa
- $\sigma_{\!f\!s}$ Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in kPa
- $\sigma_{\!\scriptscriptstyle C}$ Tensione nel calcestruzzo, espresse in kPa
- au_{c} Tensione tangenziale nel calcestruzzo, espresse in kPa
- A_{sw} Area armature trasversali nella sezione, espressa in mq

Verifica sezioni fondazione [Combinazione nº 9 - SLE (Quasi Permanente)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	41.39	54.12	0.002614	0.002011	18162	72163	3990
2	0.88	-26.08	54.12	0.002011	0.002212	48409	12015	2660
3	1.55	-46.06	54.12	0.002011	0.002011	103787	17084	4858
4	2.22	-26.08	54.12	0.002011	0.002212	48409	12015	2660
5	2.95	41.39	54.12	0.002614	0.002011	18162	72163	3990

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000201	-122.80	-634
2	0.88	0.000000	-54.93	-283
3	1.55	0.000000	4.58	24
4	2.22	0.000000	64.28	332
5	2.95	0.000201	122.80	634

Verifica sezioni traverso [Combinazione nº 9 - SLE (Quasi Permanente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Veri	fiche pres	sso-flessione						
N°	X	М	N	${\sf A}_{\sf fi}$	${\sf A}_{\sf fs}$	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-35.44	41.83	0.002011	0.002212	73109	13998	3613
2	0.84	21.36	41.83	0.002011	0.002011	9229	43857	2249
3	1.55	41.35	41.83	0.002011	0.002011	14795	94912	4362
4	2.27	20.76	41.83	0.002212	0.002011	9472	38806	2117
5	2 95	-35 44	41 83	0.002011	0.002614	62678	15245	3414

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.15	0.000201	109.70	566
2	0.84	0.000000	55.97	289
3	1.55	0.000000	0.00	0
4	2.27	0.000000	-56.81	-293
5	2.95	0.000201	-109.70	-566

Verifica sezioni piedritto sinistro [Combinazione nº 9 - SLE (Quasi Permanente)]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-41.39	126.61	0.002011	0.002011	73599	21255	4336
2	1.30	-10.68	118.16	0.002011	0.002011	2529	9981	1050
3	2.45	-35.44	109.70	0.002011	0.002011	62705	18291	3712

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.15	0.000000	54.14	279
2	1.30	0.000000	0.72	4
3	2.45	0.000000	-41.83	-216

Verifica sezioni piedritto destro [Combinazione nº 9 - SLE (Quasi Permanente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche	presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-41.39	126.61	0.002011	0.002011	73599	21255	4336
2	1.30	-10.68	118.16	0.002011	0.002011	2529	9981	1050
3	2.45	-35.44	109.70	0.002212	0.002011	62880	17950	3684

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-54.14	-279
2	1.30	0.000000	-0.72	-4
3	2.45	0.000201	41.83	216

Verifica sezioni fondazione [Combinazione n° 10 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Χ	М	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	53.63	68.03	0.002614	0.002011	23392	93916	5169
2	0.88	-34.54	68.03	0.002011	0.002212	64930	15649	3523
3	1.55	-60.64	68.03	0.002011	0.002011	137461	22234	6396
4	2.22	-34.54	68.03	0.002011	0.002212	64930	15649	3523
5	2.95	53.63	68.03	0.002614	0.002011	23392	93916	5169

Verifiche taglio

Ν°	Х	A_{sw}	V	$ au_c$
1	0.15	0.000201	-160.56	-828
2	0.88	0.000000	-71.88	-371
3	1.55	0.000000	5.87	30
4	2.22	0.000000	83.88	433
5	2 95	0.000201	160 56	828

Verifica sezioni traverso [Combinazione nº 10 - SLE (Frequente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

84742

20544

4609

erifiche pre	esso-flession	<u>ne</u>					
° X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
0.15	-47.85	55.89	0.002011	0.002212	98847	18856	4879
0.84	29.07	55.89	0.002011	0.002011	12480	59937	3060
1.55	56.13	55.89	0.002011	0.002011	20013	129078	5922
2.27	28.25	55.89	0.002212	0.002011	12817	53048	2881
	° X 0.15 0.84 1.55	• X M 0.15 -47.85 0.84 29.07 1.55 56.13	0.15 -47.85 55.89 0.84 29.07 55.89 1.55 56.13 55.89	X M N A _{fi} 0.15 -47.85 55.89 0.002011 0.84 29.07 55.89 0.002011 1.55 56.13 55.89 0.002011	X M N A _{fi} A _{fs} 0.15 -47.85 55.89 0.002011 0.002212 0.84 29.07 55.89 0.002011 0.002011 1.55 56.13 55.89 0.002011 0.002011	N A _{fi} A _{fs} σ _{fs} 0.15 -47.85 55.89 0.002011 0.002212 98847 0.84 29.07 55.89 0.002011 0.002011 12480 1.55 56.13 55.89 0.002011 0.002011 20013	N A _{fi} A _{fs} σ _{fs} σ _{fs} 0.15 -47.85 55.89 0.002011 0.002212 98847 18856 0.84 29.07 55.89 0.002011 0.002011 12480 59937 1.55 56.13 55.89 0.002011 0.002011 20013 129078

55.89 0.002011 0.002614

Verifiche taglio

2.95

N°	Х	A_{sw}	V	τ _c
1	0.15	0.000201	148.55	766
2	0.84	0.000000	75.79	391
3	1.55	0.000000	0.00	0
4	2.27	0.000000	-76.93	-397
5	2.95	0.000201	-148.55	-766

-47.85

Verifica sezioni piedritto sinistro [Combinazione nº 10 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-53.63	165.46	0.002011	0.002011	95021	27641	5617
2	1.30	-14.91	157.01	0.002011	0.002011	4525	13626	1467
3	2.45	-47.85	148.55	0.002011	0.002011	84557	24728	5011

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	68.05	351
2	1.30	0.000000	0.63	3
3	2.45	0.000000	-55.89	-288

Verifica sezioni piedritto destro [Combinazione nº 10 - SLE (Frequente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	CI .
verifiche	presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	-53.63	165.46	0.002011	0.002011	95021	27641	5617
2	1.30	-14.91	157.01	0.002011	0.002011	4525	13626	1467
3	2.45	-47.85	148.55	0.002212	0.002011	84793	24267	4973

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-68.05	-351
2	1.30	0.000000	-0.63	-3
3	2.45	0.000201	55.89	288

Verifica sezioni fondazione [Combinazione n° 11 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	41.39	54.12	0.002614	0.002011	18162	72163	3990
2	0.88	-26.08	54.12	0.002011	0.002212	48409	12015	2660
3	1.55	-46.06	54.12	0.002011	0.002011	103787	17084	4858
4	2.22	-26.08	54.12	0.002011	0.002212	48409	12015	2660
5	2.95	41.39	54.12	0.002614	0.002011	18162	72163	3990

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000201	-122.80	-634
2	0.88	0.000000	-54.93	-283
3	1.55	0.000000	4.58	24
4	2.22	0.000000	64.28	332
5	2.95	0.000201	122.80	634

Verifica sezioni traverso [Combinazione nº 11 - SLE (Frequente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Veri	fiche pres	sso-flessione						
N°	X	М	N	${\sf A}_{\sf fi}$	${\sf A}_{\sf fs}$	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-35.44	41.83	0.002011	0.002212	73109	13998	3613
2	0.84	21.36	41.83	0.002011	0.002011	9229	43857	2249
3	1.55	41.35	41.83	0.002011	0.002011	14795	94912	4362
4	2.27	20.76	41.83	0.002212	0.002011	9472	38806	2117
5	2 95	-35 44	41 83	0.002011	0.002614	62678	15245	3414

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.15	0.000201	109.70	566
2	0.84	0.000000	55.97	289
3	1.55	0.000000	0.00	0
4	2.27	0.000000	-56.81	-293
5	2.95	0.000201	-109.70	-566

Verifica sezioni piedritto sinistro [Combinazione nº 11 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-41.39	126.61	0.002011	0.002011	73599	21255	4336
2	1.30	-10.68	118.16	0.002011	0.002011	2529	9981	1050
3	2.45	-35.44	109.70	0.002011	0.002011	62705	18291	3712

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	54.14	279
2	1.30	0.000000	0.72	4
3	2.45	0.000000	-41.83	-216

<u>Verifica sezioni piedritto destro [Combinazione nº 11 - SLE (Frequente)]</u>

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche p	oresso-flessione
-------------	------------------

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-41.39	126.61	0.002011	0.002011	73599	21255	4336
2	1.30	-10.68	118.16	0.002011	0.002011	2529	9981	1050
3	2.45	-35.44	109.70	0.002212	0.002011	62880	17950	3684

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-54.14	-279
2	1.30	0.000000	-0.72	-4
3	2.45	0.000201	41.83	216

Verifica sezioni fondazione [Combinazione n° 12 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	39.24	52.61	0.002614	0.002011	17306	68152	3783
2	0.88	-28.19	52.61	0.002011	0.002212	53679	12563	2876
3	1.55	-48.14	52.61	0.002011	0.002011	109497	17540	5078
4	2.22	-28.19	52.61	0.002011	0.002212	53679	12563	2876
5	2.95	39.24	52.61	0.002614	0.002011	17306	68152	3783

Verifiche taglio

N°	Χ	\mathbf{A}_{sw}	V	$ au_{c}$
1	0.15	0.000201	-122.79	-634
2	0.88	0.000000	-54.86	-283
3	1.55	0.000000	4.57	24
4	2.22	0.000000	64.20	331
5	2.95	0.000201	122.79	634

Verifica sezioni traverso [Combinazione nº 12 - SLE (Frequente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verif	fiche pres	sso-flessione						
N°	X	М	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-37.81	44.93	0.002011	0.002212	77939	14959	3856
2	0.84	18.98	44.93	0.002011	0.002011	8789	37025	1996
3	1.55	38.97	44.93	0.002011	0.002011	14386	88038	4111
4	2.27	18.38	44.93	0.002212	0.002011	8948	32564	1874
5	2.95	-37.81	44.93	0.002011	0.002614	66820	16287	3643

Verifiche taglio

N°	Х	A_{sw}	V	το
1	0.15	0.000201	109.70	566
2	0.84	0.000000	55.97	289
3	1.55	0.000000	0.00	0
4	2.27	0.000000	-56.81	-293
5	2.95	0.000201	-109.70	-566

Verifica sezioni piedritto sinistro [Combinazione nº 12 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-39.24	126.61	0.002011	0.002011	68155	20617	4106
2	1.30	-10.39	118.16	0.002011	0.002011	2076	9829	1022
3	2.45	-37.81	109.70	0.002011	0.002011	68719	18990	3965

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	52.62	272
2	1.30	0.000000	-1.15	-6
3	2.45	0.000000	-44.69	-231

Verifica sezioni piedritto destro [Combinazione nº 12 - SLE (Frequente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche p	oresso-flessione
-------------	------------------

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-39.24	126.61	0.002011	0.002011	68155	20617	4106
2	1.30	-10.39	118.16	0.002011	0.002011	2076	9829	1022
3	2.45	-37.81	109.70	0.002212	0.002011	68905	18633	3936

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-52.62	-272
2	1.30	0.000000	1.15	6
3	2.45	0.000201	44.69	231

Verifica sezioni fondazione [Combinazione n° 13 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	43.85	55.87	0.002614	0.002011	19144	76750	4227
2	0.88	-23.67	55.87	0.002011	0.002212	42381	11382	2413
3	1.55	-43.68	55.87	0.002011	0.002011	97248	16562	4606
4	2.22	-23.67	55.87	0.002011	0.002212	42381	11382	2413
5	2.95	43.85	55.87	0.002614	0.002011	19144	76750	4227

Verifiche taglio

N°	X	A_{sw}	V	$ au_c$
1	0.15	0.000201	-122.81	-634
2	0.88	0.000000	-55.01	-284
3	1.55	0.000000	4.58	24
4	2.22	0.000000	64.37	332
5	2.95	0.000201	122.81	634

Verifica sezioni traverso [Combinazione nº 13 - SLE (Frequente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Veril	fiche pres	so-flessione						
N°	Х	M	N	${\sf A}_{\sf fi}$	${\sf A}_{\sf fs}$	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-32.75	38.85	0.002011	0.002212	67512	12950	3339
2	0.84	24.05	38.85	0.002011	0.002011	9756	51476	2534
3	1.55	44.04	38.85	0.002011	0.002011	15298	102560	4646
4	2.27	23.45	38.85	0.002212	0.002011	10091	45769	2391
5	2.95	-32.75	38.85	0.002011	0.002614	57880	14102	3155

Verifiche taglio

N°	Х	A_{sw}	V	τ _c
1	0.15	0.000201	109.70	566
2	0.84	0.000000	55.97	289
3	1.55	0.000000	0.00	0
4	2.27	0.000000	-56.81	-293
5	2.95	0.000201	-109.70	-566

Verifica sezioni piedritto sinistro [Combinazione nº 13 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-43.85	126.61	0.002011	0.002011	79842	21979	4598
2	1.30	-10.99	118.16	0.002011	0.002011	3032	10141	1081
3	2.45	-32.75	109.70	0.002011	0.002011	55908	17491	3425

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	55.89	288
2	1.30	0.000000	2.89	15
3	2.45	0.000000	-38.85	-200

Verifica sezioni piedritto destro [Combinazione nº 13 - SLE (Frequente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche	presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-43.85	126.61	0.002011	0.002011	79842	21979	4598
2	1.30	-10.99	118.16	0.002011	0.002011	3032	10141	1081
3	2.45	-32.75	109.70	0.002212	0.002011	56070	17168	3398

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-55.89	-288
2	1.30	0.000000	-2.89	-15
3	2.45	0.000201	38.85	200

Verifica sezioni fondazione [Combinazione n° 14 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	57.58	72.58	0.002614	0.002011	25084	100927	5550
2	0.88	-37.48	72.58	0.002011	0.002212	70753	16893	3823
3	1.55	-65.62	72.58	0.002011	0.002011	149028	23977	6922
4	2.22	-37.48	72.58	0.002011	0.002212	70753	16893	3823
5	2.95	57.58	72.58	0.002614	0.002011	25084	100927	5550

Verifiche taglio

Ν°	Х	\mathbf{A}_{sw}	V	$ au_c$
1	0.15	0.000201	-173.15	-893
2	0.88	0.000000	-77.52	-400
3	1.55	0.000000	6.30	33
4	2.22	0.000000	90.41	466
5	2.95	0.000201	173.15	893

Verifica sezioni traverso [Combinazione nº 14 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Veri	<u>ifiche pres</u>	so-flessione						
N°	X	M	N	${\sf A}_{\sf fi}$	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-52.13	60.75	0.002011	0.002212	107720	20532	5315
2	0.84	31.49	60.75	0.002011	0.002011	13537	64890	3316
3	1.55	60.92	60.75	0.002011	0.002011	21727	140058	6426
4	2.27	30.60	60.75	0.002212	0.002011	13899	57423	3121
5	2.95	-52.13	60.75	0.002011	0.002614	92348	22372	5021

Verifiche taglio

N°	Х	A_{sw}	V	τ _c
1	0.15	0.000201	161.50	833
2	0.84	0.000000	82.40	425
3	1.55	0.000000	0.00	0
4	2.27	0.000000	-83.63	-432
5	2.95	0.000201	-161.50	-833

Verifica sezioni piedritto sinistro [Combinazione nº 14 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-57.58	178.41	0.002011	0.002011	101835	29732	6030
2	1.30	-16.30	169.96	0.002011	0.002011	5172	14832	1604
3	2.45	-52.13	161.50	0.002011	0.002011	92201	26915	5459

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	72.60	375
2	1.30	0.000000	0.48	2
3	2.45	0.000000	-60.75	-313

Verifica sezioni piedritto destro [Combinazione nº 14 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche	presso-flessione

N°	Х	М	N	${\sf A}_{\sf fi}$	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	-57.58	178.41	0.002011	0.002011	101835	29732	6030
2	1.30	-16.30	169.96	0.002011	0.002011	5172	14832	1604
3	2.45	-52.13	161.50	0.002212	0.002011	92459	26414	5419

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-72.60	-375
2	1.30	0.000000	-0.48	-2
3	2.45	0.000201	60.75	313

Verifica sezioni fondazione [Combinazione n° 15 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	71.66	84.57	0.002614	0.002011	30828	126746	6904
2	0.88	-15.57	84.57	0.002011	0.002212	17573	10537	1567
3	1.55	-56.79	84.57	0.002011	0.002011	123386	22476	5986
4	2.22	-45.70	84.57	0.002011	0.002212	87167	20312	4661
5	2.95	43.55	84.57	0.002614	0.002011	20950	70553	4212

Verifiche taglio

N°	X	A_{sw}	V	$ au_{c}$
1	0.15	0.000201	-140.86	-727
2	0.88	0.000000	-88.53	-457
3	1.55	0.000000	-20.09	-104
4	2.22	0.000000	70.66	365
5	2.95	0.000201	180.30	930

Verifica sezioni traverso [Combinazione nº 15 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

40055

8121

Verif	fiche pres	sso-flessione						
N°	Х	M	N	A_{fi}	${\sf A}_{\sf fs}$	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-21.43	35.14	0.002011	0.002212	41912	9195	2185
2	0.84	40.17	65.17	0.002011	0.002011	16315	85894	4233
3	1.55	51.27	96.46	0.002011	0.002011	21852	106269	5399
4	2.27	7.19	128.21	0.002212	0.002011	8565	2008	773

-84.00 157.78 0.002011 0.002614 137098

Verifiche taglio

2.95

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000201	126.20	651
2	0.84	0.000000	53.44	276
3	1.55	0.000000	-22.35	-115
4	2.27	0.000000	-99.27	-512
5	2.95	0.000201	-170.89	-882

Verifica sezioni piedritto sinistro [Combinazione nº 15 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-71.66	143.12	0.002011	0.002011	146431	31178	7543
2	1.30	-11.73	134.66	0.002011	0.002011	2210	11148	1154
3	2.45	-21.43	126.20	0.002011	0.002011	24002	14919	2192

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	85.95	443
2	1.30	0.000000	20.05	103
3	2.45	0.000000	-35.14	-181

Verifica sezioni piedritto destro [Combinazione nº 15 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche	presso-flessione

Ν°	Х	М	N	${\sf A}_{\sf fi}$	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-43.55	187.81	0.002011	0.002011	64319	26104	4522
2	1.30	2.41	179.35	0.002011	0.002011	8542	6391	636
3	2.45	-84.00	170.89	0.002212	0.002011	171228	36070	8783

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-83.24	-430
2	1.30	0.000000	13.79	71
3	2.45	0.000201	140.52	725

Verifica sezioni fondazione [Combinazione nº 16 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Χ	М	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	51.78	66.73	0.002614	0.002011	22655	90467	4991
2	0.88	-36.35	66.73	0.002011	0.002212	69463	16119	3708
3	1.55	-62.43	66.73	0.002011	0.002011	142371	22625	6585
4	2.22	-36.35	66.73	0.002011	0.002212	69463	16119	3708
5	2.95	51.78	66.73	0.002614	0.002011	22655	90467	4991

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	$ au_{c}$
1	0.15	0.000201	-160.55	-828
2	0.88	0.000000	-71.81	-371
3	1.55	0.000000	5.87	30
4	2.22	0.000000	83.81	432
5	2.95	0.000201	160.55	828

Verifica sezioni traverso [Combinazione nº 16 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

88305

21440

4806

Verif	iche pres	sso-flessione						
N°	Х	М	N	A_{fi}	${\sf A}_{\sf fs}$	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-49.89	58.55	0.002011	0.002212	103002	19682	5087
2	0.84	27.02	58.55	0.002011	0.002011	12105	54058	2843
3	1.55	54.09	58.55	0.002011	0.002011	19662	123167	5706
4	2.27	26.20	58.55	0.002212	0.002011	12369	47676	2672

58.55 0.002011 0.002614

Verifiche taglio

2.95

N°	Х	A_{sw}	V	$ au_c$
1	0.15	0.000201	148.55	766
2	0.84	0.000000	75.79	391
3	1.55	0.000000	0.00	0
4	2.27	0.000000	-76.93	-397
5	2.95	0.000201	-148.55	-766

-49.89

Verifica sezioni piedritto sinistro [Combinazione nº 16 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-51.78	165.46	0.002011	0.002011	90339	27093	5420
2	1.30	-14.66	157.01	0.002011	0.002011	4105	13499	1442
3	2.45	-49.89	148.55	0.002011	0.002011	89727	25330	5229

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	66.75	344
2	1.30	0.000000	-0.98	-5
3	2.45	0.000000	-58.36	-301

Verifica sezioni piedritto destro [Combinazione nº 16 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche	presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-51.78	165.46	0.002011	0.002011	90339	27093	5420
2	1.30	-14.66	157.01	0.002011	0.002011	4105	13499	1442
3	2.45	-49.89	148.55	0.002212	0.002011	89973	24855	5190

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-66.75	-344
2	1.30	0.000000	0.98	5
3	2.45	0.000201	58.36	301

Verifica sezioni fondazione [Combinazione n° 17 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	53.50	67.94	0.002614	0.002011	23341	93675	5157
2	0.88	-34.66	67.94	0.002011	0.002212	65246	15682	3536
3	1.55	-60.76	67.94	0.002011	0.002011	137804	22261	6409
4	2.22	-34.66	67.94	0.002011	0.002212	65246	15682	3536
5	2.95	53.50	67.94	0.002614	0.002011	23341	93675	5157

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	$ au_c$
1	0.15	0.000201	-160.56	-828
2	0.88	0.000000	-71.87	-371
3	1.55	0.000000	5.87	30
4	2.22	0.000000	83.87	433
5	2.95	0.000201	160.56	828

Verifica sezioni traverso [Combinazione nº 17 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

<u>Verif</u>	fiche pres	sso-flessione						
N°	Х	М	N	${\sf A}_{\sf fi}$	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-47.99	56.06	0.002011	0.002212	99140	18913	4893
2	0.84	28.92	56.06	0.002011	0.002011	12453	59530	3045
3	1.55	55.99	56.06	0.002011	0.002011	19987	128669	5907
4	2.27	28.11	56.06	0.002212	0.002011	12785	52676	2866
5	2 95	-47 99	56.06	0.002011	0.002614	84993	20606	4623

Verifiche taglio

N°	Х	A_{sw}	V	το
1	0.15	0.000201	148.55	766
2	0.84	0.000000	75.79	391
3	1.55	0.000000	0.00	0
4	2.27	0.000000	-76.93	-397
5	2.95	0.000201	-148.55	-766

Verifica sezioni piedritto sinistro [Combinazione nº 17 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-53.50	165.46	0.002011	0.002011	94695	27603	5603
2	1.30	-14.89	157.01	0.002011	0.002011	4495	13617	1465
3	2.45	-47.99	148.55	0.002011	0.002011	84917	24770	5026

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	67.96	351
2	1.30	0.000000	0.52	3
3	2.45	0.000000	-56.06	-289

Verifica sezioni piedritto destro [Combinazione nº 17 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	-53.50	165.46	0.002011	0.002011	94695	27603	5603
2	1.30	-14.89	157.01	0.002011	0.002011	4495	13617	1465
3	2.45	-47.99	148.55	0.002212	0.002011	85154	24308	4989

Verifiche taglio

N°	Х	A_{sw}	V	το
1	0.15	0.000000	-67.96	-351
2	1.30	0.000000	-0.52	-3
3	2.45	0.000201	56.06	289

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche fessurazione

Simbologia adottata ed unità di misura

N° Indice sezione

X_i Ascissa/Ordinata sezione, espresso in m

M_p Momento, espresse in kNm

M_n Momento, espresse in kNm

w_k Ampiezza fessure, espresse in mm

w_{lim} Apertura limite fessure, espresse in mm

s Distanza media tra le fessure, espresse in mm

ε_{sm} Deformazione nelle fessure, espresse in [%]

Verifica fessurazione fondazione [Combinazione nº 9 - SLE (Quasi Permanente)]

N°	X	A_{fi}	A_{fs}	Мр	Mn	М	W	\mathbf{W}_{lim}	S _m	€sm
1	0.15	0.002614	0.002011	50.65	-49.23	41.39	0.00	0.30	0.00	0.000
2	0.88	0.002011	0.002212	49.18	-49.66	-26.08	0.00	0.30	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-46.06	0.00	0.30	0.00	0.000
4	2.22	0.002011	0.002212	49.18	-49.66	-26.08	0.00	0.30	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	41.39	0.00	0.30	0.00	0.000

<u>Verifica fessurazione traverso [Combinazione nº 9 - SLE (Quasi Permanente)]</u>

NIO	v		^	Me	Ma	8.4		***	_	_
N°	^	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{w}_{lim}	S _m	€sm
1	0.15	0.002011	0.002212	49.18	-49.66	-35.44	0.00	0.30	0.00	0.000
2	0.84	0.002011	0.002011	49.15	-49.15	21.36	0.00	0.30	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	41.35	0.00	0.30	0.00	0.000
4	2.27	0.002212	0.002011	49.66	-49.18	20.76	0.00	0.30	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-35.44	0.00	0.30	0.00	0.000

<u>Verifica fessurazione piedritto sinistro [Combinazione nº 9 - SLE (Quasi Permanente)]</u>

N°	X	A_{fi}	A_{fs}	Мр	Mn	M	w	\mathbf{W}_{lim}	S _m	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-41.39	0.00	0.30	0.00	0.000
2	1.30	0.002011	0.002011	49.15	-49.15	-10.68	0.00	0.30	0.00	0.000
3	2.45	0.002011	0.002011	49.15	-49.15	-35.44	0.00	0.30	0.00	0.000

Verifica fessurazione piedritto destro [Combinazione nº 9 - SLE (Quasi Permanente)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N°	х	A_{fi}	A_fs	Мр	Mn	М	w	\mathbf{w}_{lim}	S _m	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-41.39	0.00	0.30	0.00	0.000
2	1.30	0.002011	0.002011	49.15	-49.15	-10.68	0.00	0.30	0.00	0.000
3	2.45	0.002212	0.002011	49.66	-49.18	-35.44	0.00	0.30	0.00	0.000
Ve	rifica f	essurazion	e fondazion	e [Combinazi	one n° 10 - SLE	(Frequente)]				
N°	X	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	S _m	€sm
1	0.15	0.002614	0.002011	50.65	-49.23	53.63	0.06	0.40	160.18	0.022
2	0.88	0.002011	0.002212	49.18	-49.66	-34.54	0.00	0.40	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-60.64	0.14	0.40	193.24	0.042
4	2.22	0.002011	0.002212	49.18	-49.66	-34.54	0.00	0.40	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	53.63	0.06	0.40	160.18	0.022
Ve	rifica f	essurazion	e traverso [0	Combinazion	e n° 10 - SLE (Fr	equente)]				
N°	Х	Afi	A_{fs}	Мр	Mn	М	w	W _{lim}	Sm	€ _{sm}
1	0.15	0.002011	0.002212	49.18	-49.66	-47.85	0.00	0.40	0.00	0.000
2	0.84	0.002011	0.002011	49.15	-49.15	29.07	0.00	0.40	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	56.13	0.12	0.40	193.24	0.036
4	2.27	0.002212	0.002011	49.66	-49.18	28.25	0.00	0.40	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-47.85	0.00	0.40	0.00	0.000
Ve	rifica f	essurazion	e piedritto s	inistro [Coml	binazione n° 10	- SLE (Freque	nte)]			
N°	х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	S _m	c
1	0.15	0.002011	0.002011	49.15	-49.15	-53.63	0.04	0.40	193.24	ε _{sm} 0.011
2	1.30	0.002011	0.002011	49.15	-49.15	-14.91	0.00	0.40	0.00	0.000
3	2.45	0.002011	0.002011	49.15	-49.15	-47.85	0.00	0.40	0.00	0.000
J	2.43	0.002011	0.002011	49.13	-49.13	-47.03	0.00	0.40	0.00	0.000
Ve	rifica f	essurazion	e piedritto d	lestro [Comb	inazione nº 10 -	SLE (Frequen	<u>ite)]</u>			
N°	Х	A _{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	€ _{sm}
1	0.15	0.002011	0.002011	49.15	-49.15	-53.63	0.04	0.40	193.24	0.011
2		0.002011	0.002011	49.15	-49.15	-14.91	0.00	0.40	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3	2.45	0.002212	0.002011	49.66	-49.18	-47.85	0.00	0.40	0.00	0.000
Ve	rifica f	essurazion	<u>e fondazion</u>	e [Combinazi	one n° 11 - SLE	(Frequente)]				
N°	Х	A _{fi}	A_fs	Мр	Mn	М	w	W _{lim}	Sm	€ _{sm}
1	0.15	0.002614	0.002011	50.65	-49.23	41.39	0.00	0.40	0.00	0.000
2	0.88	0.002011	0.002212	49.18	-49.66	-26.08	0.00	0.40	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-46.06	0.00	0.40	0.00	0.000
4	2.22	0.002011	0.002212	49.18	-49.66	-26.08	0.00	0.40	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	41.39	0.00	0.40	0.00	0.000
<u>Ve</u>	rifica f	<u>essurazion</u>	e traverso [Combinazion	e n° 11 - SLE (Fr	equente)]				
N°	х	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	ε _{sm}
1	0.15	0.002011	0.002212	49.18	-49.66	-35.44	0.00	0.40	0.00	0.000
2	0.84	0.002011	0.002011	49.15	-49.15	21.36	0.00	0.40	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	41.35	0.00	0.40	0.00	0.000
4	2.27	0.002212	0.002011	49.66	-49.18	20.76	0.00	0.40	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-35.44	0.00	0.40	0.00	0.000
Ve	rifica f	essurazion	e piedritto s	sinistro [Coml	binazione n° 11	- SLE (Fregue	nte)]			
			•	-		•	.			
N°	X	\mathbf{A}_{fi}	\mathbf{A}_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	S _m	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-41.39	0.00	0.40	0.00	0.000
2	1.30	0.002011	0.002011	49.15	-49.15	-10.68	0.00	0.40	0.00	0.000
3	2.45	0.002011	0.002011	49.15	-49.15	-35.44	0.00	0.40	0.00	0.000
<u>Ve</u>	rifica f	essurazion	e piedritto (destro [Comb	inazione nº 11 -	SLE (Frequen	<u>te)]</u>			
B I O	v			B. 4	B.S				_	
N°		A _{fi} 0.002011	A _{fs} 0.002011	Mp	Mn	M -41.39	w	W _{lim}	S _m	€ _{sm}
1	0.15		0.002011	49.15	-49.15		0.00	0.40	0.00	0.000
2	1.30	0.002011 0.002212	0.002011	49.15 49.66	-49.15	-10.68	0.00	0.40	0.00	0.000
3	2.45	0.002212	0.002011	49.66	-49.18	-35.44	0.00	0.40	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Varifica faccurations	fondazione [Combinazione	0 nº 12 CLE /Eroguonto\1

N°	Х	${f A}_{{\sf fi}}$	\mathbf{A}_{fs}	Мр	Mn	M	w	\mathbf{w}_{lim}	S _m	€sm
1	0.15	0.002614	0.002011	50.65	-49.23	39.24	0.00	0.40	0.00	0.000
2	0.88	0.002011	0.002212	49.18	-49.66	-28.19	0.00	0.40	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-48.14	0.00	0.40	0.00	0.000
4	2.22	0.002011	0.002212	49.18	-49.66	-28.19	0.00	0.40	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	39.24	0.00	0.40	0.00	0.000

Verifica fessurazione traverso [Combinazione nº 12 - SLE (Frequente)]

N°	Y	A_{fi}	A_{fs}	Мp	Mn	М	w	W _{lim}	Sm	
	^	All	Ats	wp	IVIII	141	**	wilm	Jm	€sm
1	0.15	0.002011	0.002212	49.18	-49.66	-37.81	0.00	0.40	0.00	0.000
2	0.84	0.002011	0.002011	49.15	-49.15	18.98	0.00	0.40	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	38.97	0.00	0.40	0.00	0.000
4	2.27	0.002212	0.002011	49.66	-49.18	18.38	0.00	0.40	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-37.81	0.00	0.40	0.00	0.000

Verifica fessurazione piedritto sinistro [Combinazione nº 12 - SLE (Frequente)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	Sm	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-39.24	0.00	0.40	0.00	0.000
2	1.30	0.002011	0.002011	49.15	-49.15	-10.39	0.00	0.40	0.00	0.000
3	2.45	0.002011	0.002011	49.15	-49.15	-37.81	0.00	0.40	0.00	0.000

Verifica fessurazione piedritto destro [Combinazione nº 12 - SLE (Frequente)]

N°	Х	${\sf A}_{\sf fi}$	\mathbf{A}_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	S _m	€ _{sm}
1	0.15	0.002011	0.002011	49.15	-49.15	-39.24	0.00	0.40	0.00	0.000
2	1.30	0.002011	0.002011	49.15	-49.15	-10.39	0.00	0.40	0.00	0.000
3	2 45	0.002212	0.002011	49 66	-49 18	-37 81	0.00	0.40	0.00	0.000

Verifica fessurazione fondazione [Combinazione nº 13 - SLE (Frequente)]

N°	X	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	Sm	€sm
1	0.15	0.002614	0.002011	50.65	-49.23	43.85	0.00	0.40	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	0.88	0.002011	0.002212	49.18	-49.66	-23.67	0.00	0.40	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-43.68	0.00	0.40	0.00	0.000
4	2.22	0.002011	0.002212	49.18	-49.66	-23.67	0.00	0.40	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	43.85	0.00	0.40	0.00	0.000

Verifica fessurazione traverso [Combinazione nº 13 - SLE (Frequente)]

N°	X	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	Sm	€sm
1	0.15	0.002011	0.002212	49.18	-49.66	-32.75	0.00	0.40	0.00	0.000
2	0.84	0.002011	0.002011	49.15	-49.15	24.05	0.00	0.40	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	44.04	0.00	0.40	0.00	0.000
4	2.27	0.002212	0.002011	49.66	-49.18	23.45	0.00	0.40	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-32.75	0.00	0.40	0.00	0.000

<u>Verifica fessurazione piedritto sinistro [Combinazione nº 13 - SLE (Frequente)]</u>

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	\mathbf{w}_{lim}	S _m	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-43.85	0.00	0.40	0.00	0.000
2	1.30	0.002011	0.002011	49.15	-49.15	-10.99	0.00	0.40	0.00	0.000
3	2.45	0.002011	0.002011	49.15	-49.15	-32.75	0.00	0.40	0.00	0.000

Verifica fessurazione piedritto destro [Combinazione nº 13 - SLE (Frequente)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	\mathbf{W}_{lim}	S _m	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-43.85	0.00	0.40	0.00	0.000
2	1.30	0.002011	0.002011	49.15	-49.15	-10.99	0.00	0.40	0.00	0.000
3	2.45	0.002212	0.002011	49.66	-49.18	-32.75	0.00	0.40	0.00	0.000

Verifica fessurazione fondazione [Combinazione nº 14 - SLE (Rara)]

N°	X	\mathbf{A}_{fi}	\mathbf{A}_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	S _m	€sm
1	0.15	0.002614	0.002011	50.65	-49.23	57.58	0.07	100.00	160.18	0.027
2	0.88	0.002011	0.002212	49.18	-49.66	-37.48	0.00	100.00	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-65.62	0.16	100.00	193.24	0.049
4	2.22	0.002011	0.002212	49.18	-49.66	-37.48	0.00	100.00	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	57.58	0.07	100.00	160.18	0.027

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica fessurazione traverso [Combinazione nº 14 - SLE (Rara)]

N°	Х	${\sf A}_{\sf fi}$	\mathbf{A}_{fs}	Мр	Mn	M	w	\mathbf{w}_{lim}	\mathbf{S}_{m}	€ _{sm}
1	0.15	0.002011	0.002212	49.18	-49.66	-52.13	0.08	100.00	180.22	0.025
2	0.84	0.002011	0.002011	49.15	-49.15	31.49	0.00	100.00	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	60.92	0.15	100.00	193.24	0.043
4	2.27	0.002212	0.002011	49.66	-49.18	30.60	0.00	100.00	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-52.13	0.06	100.00	160.18	0.021

Verifica fessurazione piedritto sinistro [Combinazione nº 14 - SLE (Rara)]

N°	Χ	A_fi	A_{fs}	Мр	Mn	М	w	\mathbf{w}_{lim}	S _m	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-57.58	0.06	100.00	193.24	0.016
2	1.30	0.002011	0.002011	49.15	-49.15	-16.30	0.00	100.00	0.00	0.000
3	2.45	0.002011	0.002011	49.15	-49.15	-52.13	0.03	100.00	193.24	0.009

Verifica fessurazione piedritto destro [Combinazione nº 14 - SLE (Rara)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	\mathbf{W}_{lim}	Sm	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-57.58	0.06	100.00	193.24	0.016
2	1.30	0.002011	0.002011	49.15	-49.15	-16.30	0.00	100.00	0.00	0.000
3	2.45	0.002212	0.002011	49.66	-49.18	-52.13	0.03	100.00	193.24	0.009

Verifica fessurazione fondazione [Combinazione nº 15 - SLE (Rara)]

N°	Х	${\sf A}_{\sf fi}$	${\sf A}_{\sf fs}$	Мр	Mn	М	w	\mathbf{w}_{lim}	S _m	€ sm
1	0.15	0.002614	0.002011	50.65	-49.23	71.66	0.12	100.00	160.18	0.044
2	0.88	0.002011	0.002212	49.18	-49.66	-15.57	0.00	100.00	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-56.79	0.11	100.00	193.24	0.032
4	2.22	0.002011	0.002212	49.18	-49.66	-45.70	0.00	100.00	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	43.55	0.00	100.00	0.00	0.000

Verifica fessurazione traverso [Combinazione nº 15 - SLE (Rara)]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	€sm
1	0.15	0.002011	0.002212	49.18	-49.66	-21.43	0.00	100.00	0.00	0.000
2	0.84	0.002011	0.002011	49.15	-49.15	40.17	0.00	100.00	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	51.27	0.07	100.00	193.24	0.020
4	2.27	0.002212	0.002011	49.66	-49.18	7.19	0.00	100.00	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-84.00	0.14	100.00	160.18	0.050
Ve	rifica f	essurazion	e piedritto s	inistro [Com	binazione n° 15	5 - SLE (Rara)]				
N°	X	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	Sm	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-71.66	0.16	100.00	193.24	0.047
2	1.30	0.002011	0.002011	49.15	-49.15	-11.73	0.00	100.00	0.00	0.000
3	2.45	0.002011	0.002011	49.15	-49.15	-21.43	0.00	100.00	0.00	0.000
<u>Ve</u>	rifica f	<u>essurazion</u>	e piedritto c	lestro [Comb	inazione nº 15	- SLE (Rara)]				
N°	х	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	Sm	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-43.55	0.00	100.00	0.00	0.000
2	1.30	0.002011	0.002011	49.15	-49.15	2.41	0.00	100.00	0.00	0.000
3	2.45	0.002212	0.002011	49.66	-49.18	-84.00	0.21	100.00	193.24	0.063

<u>Verifica fessurazione fondazione [Combinazione nº 16 - SLE (Rara)]</u>

N°	X	${\sf A}_{\sf fi}$	\mathbf{A}_{fs}	Мр	Mn	M	w	\mathbf{W}_{lim}	\mathbf{S}_{m}	€sm
1	0.15	0.002614	0.002011	50.65	-49.23	51.78	0.05	100.00	160.18	0.020
2	0.88	0.002011	0.002212	49.18	-49.66	-36.35	0.00	100.00	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-62.43	0.15	100.00	193.24	0.045
4	2.22	0.002011	0.002212	49.18	-49.66	-36.35	0.00	100.00	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	51.78	0.05	100.00	160.18	0.020

Verifica fessurazione traverso [Combinazione nº 16 - SLE (Rara)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	W	W _{lim}	Sm	€sm
1	0.15	0.002011	0.002212	49.18	-49.66	-49.89	0.07	100.00	180.22	0.022
2	0.84	0.002011	0.002011	49.15	-49.15	27.02	0.00	100.00	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3	1.55	0.002011	0.002011	49.15	-49.15	54.09	0.11	100.00	193.24	0.032
4	2.27	0.002212	0.002011	49.66	-49.18	26.20	0.00	100.00	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-49.89	0.00	100.00	0.00	0.000

Verifica fessurazione piedritto sinistro [Combinazione nº 16 - SLE (Rara)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	S _m	ϵ_{sm}
1	0.15	0.002011	0.002011	49.15	-49.15	-51.78	0.02	100.00	193.24	0.007
2	1.30	0.002011	0.002011	49.15	-49.15	-14.66	0.00	100.00	0.00	0.000
3	2.45	0.002011	0.002011	49.15	-49.15	-49.89	0.02	100.00	193.24	0.006

Verifica fessurazione piedritto destro [Combinazione nº 16 - SLE (Rara)]

ı	N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	S _m	€sm
	1 (0.15	0.002011	0.002011	49.15	-49.15	-51.78	0.02	100.00	193.24	0.007
2	2 1	1.30	0.002011	0.002011	49.15	-49.15	-14.66	0.00	100.00	0.00	0.000
	3 2	2.45	0.002212	0.002011	49.66	-49.18	-49.89	0.02	100.00	193.24	0.007

<u>Verifica fessurazione fondazione [Combinazione nº 17 - SLE (Rara)]</u>

N°	X	A_{fi}	A_{fs}	Мр	Mn	M	w	W _{lim}	Sm	€sm
1	0.15	0.002614	0.002011	50.65	-49.23	53.50	0.06	100.00	160.18	0.022
2	0.88	0.002011	0.002212	49.18	-49.66	-34.66	0.00	100.00	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	-60.76	0.14	100.00	193.24	0.042
4	2.22	0.002011	0.002212	49.18	-49.66	-34.66	0.00	100.00	0.00	0.000
5	2.95	0.002614	0.002011	50.65	-49.23	53.50	0.06	100.00	160.18	0.022

<u>Verifica fessurazione traverso [Combinazione nº 17 - SLE (Rara)]</u>

N°	Χ	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	S _m	€ _{sm}
1	0.15	0.002011	0.002212	49.18	-49.66	-47.99	0.00	100.00	0.00	0.000
2	0.84	0.002011	0.002011	49.15	-49.15	28.92	0.00	100.00	0.00	0.000
3	1.55	0.002011	0.002011	49.15	-49.15	55.99	0.12	100.00	193.24	0.036
4	2.27	0.002212	0.002011	49.66	-49.18	28.11	0.00	100.00	0.00	0.000
5	2.95	0.002011	0.002614	49.23	-50.65	-47.99	0.00	100.00	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica fessurazione piedritto sinistro [Combinazione nº 17 - SLE (Rara)]

ı	N°	Χ	A_{fi}	A_{fs}	Мр	Mn	M	w	\mathbf{W}_{lim}	S _m	€sm
	1	0.15	0.002011	0.002011	49.15	-49.15	-53.50	0.04	100.00	193.24	0.011
	2	1.30	0.002011	0.002011	49.15	-49.15	-14.89	0.00	100.00	0.00	0.000
3	3	2.45	0.002011	0.002011	49.15	-49.15	-47.99	0.00	100.00	0.00	0.000

Verifica fessurazione piedritto destro [Combinazione nº 17 - SLE (Rara)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	W _{lim}	Sm	€sm
1	0.15	0.002011	0.002011	49.15	-49.15	-53.50	0.04	100.00	193.24	0.011
2	1.30	0.002011	0.002011	49.15	-49.15	-14.89	0.00	100.00	0.00	0.000
3	2.45	0.002212	0.002011	49.66	-49.18	-47.99	0.00	100.00	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Inviluppo spostamenti nodali

Inviluppo spostamenti fondazione

u _{Ymax} [m]	u _{Ymin} [m]	u _{Xmax} [m]	u _{Xmin} [m]	X [m]
0.012216	0.003873	0.004309	-0.005366	0.15
0.011620	0.005909	0.004302	-0.005376	0.88
0.011356	0.005939	0.004294	-0.005386	1.55
0.013685	0.006182	0.004287	-0.005395	2.22
0.017367	0.006517	0.004279	-0.005404	2.88

Inviluppo spostamenti traverso

u _{Ymax} [r	u _{Ymin} [m]	u _{Xmax} [m]	u _{Xmin} [m]	X [m]
0.0122	0.003905	0.011711	-0.006081	0.15
0.01273	0.006268	0.011733	-0.006086	0.84
0.01298	0.006509	0.011753	-0.006092	1.55
0.01480	0.006566	0.011770	-0.006097	2.27
0.01742	0.006545	0.011783	-0.006102	2.95

Inviluppo spostamenti piedritto sinistro

Y [m]	u _{Xmin} [m]	u _{xmax} [m]	u _{Ymin} [m]	u _{Ymax} [m]
0.15	-0.005366	0.004309	0.003873	0.012216
1.30	-0.005737	0.006105	0.003889	0.012243
2.45	-0.006081	0.011711	0.003905	0.012270

Inviluppo spostamenti piedritto destro

u _{Ymax} [m]	u _{Ymin} [m]	u _{Xmax} [m]	u _{Xmin} [m]	Y [m]
0.017367	0.006517	0.004279	-0.005404	0.15
0.017396	0.006532	0.006444	-0.005763	1.30
0.017424	0.006545	0.011783	-0.006102	2.45

Inviluppo sollecitazioni nodali

Inviluppo sollecitazioni fondazione

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

X [m]	M _{min} [kNm]	M _{max} [kNm]	V _{min} [kN]	V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
0.15	-95.91	-39.24	-233.73	-119.24	52.61	135.80
0.88	15.57	53.87	-119.45	-54.86	52.61	134.47
1.55	37.71	91.82	-27.06	9.64	52.61	133.24
2.22	19.77	62.44	60.98	121.93	52.61	132.01
2.95	-74.39	-39.24	119.92	243.37	52.61	130.68

Inviluppo sollecitazioni traverso

X [m]	M _{min} [kNm]	M _{max} [kNm]	V_{min} [kN]	V _{max} [kN]	N_{min} [kN]	$N_{\text{max}}\left[kN\right]$
0.15	-74.06	-21.43	107.90	218.02	35.14	131.02
0.84	10.27	53.41	53.44	111.24	38.85	129.76
1.55	29.66	78.56	-30.13	0.62	38.85	130.95
2.27	7.19	37.63	-133.98	-56.66	38.85	173.82
2.95	-114.14	-32.75	-230.67	-108.93	38.85	213.73

Inviluppo sollecitazioni piedritto sinistro

N_{max} [kN]	N_{min} [kN]	V _{max} [kN]	V_{min} [kN]	M _{max} [kNm]	M _{min} [kNm]	Y [m]
240.86	122.72	125.19	52.62	-39.24	-95.91	0.15
229.44	115.31	26.34	-3.45	11.99	-21.55	1.30
218.02	107.90	-35.14	-118.98	-21.43	-74.06	2.45

Inviluppo sollecitazioni piedritto destro

N _{max} [kN]	N _{min} [kN]	V_{max} [kN]	V _{min} [kN]	M _{max} [kNm]	M _{min} [kNm]	Y [m]
253.51	123.74	-52.62	-141.36	-39.24	-74.39	0.15
242.09	116.33	19.24	-2.89	13.83	-21.55	1.30
230.67	108.93	190.41	38.85	-32.75	-114.14	2.45

Inviluppo pressioni terreno

Inviluppo pressioni sul terreno di fondazione

X [m]	σ _{tmin} [kPa]	σ_{tmax} [kPa]
0.15	60	190
0.88	92	181
1.55	92	177
2.22	96	213
2.95	101	270

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Х	A_{fi}	A_{fs}	CS
0.15	0.002614	0.002011	2.32
0.88	0.002011	0.002212	2.61
1.55	0.002011	0.002011	1.95
2.22	0.002011	0.002212	2.45
2.95	0.002614	0.002011	2.32

Х	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
0.15	0.00	256.12	895.34	0.000201
0.88	171.17	0.00	0.00	0.000000
1.55	171.17	0.00	0.00	0.000000
2.22	171.17	0.00	0.00	0.000000
2.95	0.00	256.12	895.34	0.000201

Verifica sezioni traverso (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

X	${\sf A}_{\sf fi}$	A_{fs}	CS
0.15	0.002011	0.002212	2.64
0.84	0.002011	0.002011	2.69
1.55	0.002011	0.002011	2.29
2.27	0.002212	0.002011	3.29
2.95	0.002011	0.002614	2.08

X	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
0.15	0.00	256.12	893.88	0.000201
0.84	170.16	0.00	0.00	0.000000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.55	170.16	0.00	0.00	0.000000
2.27	170.16	0.00	0.00	0.000000
2.95	0.00	256.12	893.88	0.000201

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Υ	A_{fi}	A_{fs}	CS
0.15	0.002011	0.002011	2.05
1.30	0.002011	0.002011	12.80
2.45	0.002011	0.002011	2.89

Υ	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
0.15	187.72	0.00	0.00	0.000000
1.30	186.42	0.00	0.00	0.000000
2.45	185.12	0.00	0.00	0.000000

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

CS	A_{fs}	A_{fi}	Υ
2.72	0.002011	0.002011	0.15
12.80	0.002011	0.002011	1.30
1.72	0.002011	0.002212	2.45

A_{sw}	V_{Rcd}	V_{Rsd}	V_{Rd}	Υ
0.000000	0.00	0.00	187.72	0.15
0.000000	0.00	0.00	186.42	1.30
0.000201	915.54	256.12	0.00	2.45

Inviluppo verifiche stato limite esercizio (SLE)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Х	A_{fi}	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0.15	0.002614	0.002011	6904	126746	30828
0.88	0.002011	0.002212	3823	16893	70753
1.55	0.002011	0.002011	6922	23977	149028
2.22	0.002011	0.002212	4661	20312	87167
2.95	0.002614	0.002011	5550	100927	25084

A_{sw}	$ au_{c}$	Χ
0.000201	-893	0.15
0.000000	-457	0.88
0.000000	-104	1.55
0.000000	466	2.22
0.000201	930	2.95

Verifica sezioni traverso (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Х	A_{fi}	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0.15	0.002011	0.002212	5315	20532	107720
0.84	0.002011	0.002011	4233	85894	16315
1.55	0.002011	0.002011	6426	140058	21852
2.27	0.002212	0.002011	3121	57423	13899
2.95	0.002011	0.002614	8121	40055	137098

X	$ au_{c}$	A_{sw}
0.15	833	0.000201
0.84	425	0.000000
1.55	-115	0.000000
2.27	-512	0.000000
2.95	-882	0.000201

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Υ	A_{fi}	A_{fs}	σ_{c}	σ _{fi}	σ_{fs}
0.15	0.002011	0.002011	7543	31178	146431
1.30	0.002011	0.002011	1604	14832	5172
2.45	0.002011	0.002011	5459	26915	92201

Υ	$ au_{c}$	A_{sw}
0.15	443	0.000000
1.30	103	0.000000
2.45	-313	0.000000

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

σ_{fs}	σ _{fi}	σ_{c}	A_{fs}	A_{fi}	Υ
101835	29732	6030	0.002011	0.002011	0.15
8542	14832	1604	0.002011	0.002011	1.30
171228	36070	8783	0.002011	0.002212	2.45

A_{sw}	$ au_{c}$	Y
0.000000	-430	0.15
0.000000	71	1.30
0.000201	725	2.45

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche geotecniche

Simbologia adottata

IC Indice della combinazione

Nc, Nq, N_g Fattori di capacità portante

Nc, Nq, N_g Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

QU Portanza ultima del terreno, espressa in [kPa] Portanza ultima del terreno, espressa in [kN]/m QV Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC	Nc	Nq	Νγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	Q_Y FS
1	20.72	10.66	6.76	31.19	14.90	6.53	2303	7138.41	509.5214.01
2	20.72	10.66	6.76	9.55	5.49	1.67	673	2086.21	474.55 4.40
3	20.72	10.66	6.76	31.19	14.90	6.53	2303	7138.41	474.5515.04
4	20.72	10.66	6.76	29.87	14.32	6.76	2227	6904.56	474.55 14.55
5	20.72	10.66	6.76	6.04	3.97	1.00	561	1738.78	283.16 6.14
6	20.72	10.66	6.76	5.14	3.57	0.85	500	1550.56	264.49 5.86
7	20.72	10.66	6.76	6.32	4.09	1.05	579	1796.04	360.86 4.98
8	20.72	10.66	6.76	5.62	3.78	0.93	532	1648.33	342.19 4.82

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

14 ALLEGATO:TABULATO DI CALCOLO VASCA

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Geometria scatolare

Descrizione:	Scatolare tipo vasca	
Altezza esterna	3.35	[m]
Larghezza esterna	4.10	[m]
Lunghezza mensola di fondazione sinistra	0.00	[m]
Lunghezza mensola di fondazione destra	0.00	[m]
Spessore piedritto sinistro	0.30	[m]
Spessore piedritto destro	0.30	[m]
Spessore fondazione	0.40	[m]

Caratteristiche strati terreno

<u>Strato di rinfianco</u>		
Descrizione	Terreno di rinfianco	
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Angolo di attrito terreno struttura	0.00	[°]
Coesione	0	[kPa]
Costante di Winkler	10000	[kPa/m]
<u>Strato di base</u>		
Descrizione	Terreno di base	
Peso di volume	19.5000	[kN/mc]
Peso di volume saturo	19.5000	[kN/mc]
Angolo di attrito	25.00	[°]
Angolo di attrito terreno struttura	25.00	[°]
Coesione	10	[kPa]
Costante di Winkler	15564	[kPa/m]
Tensione limite	810	[kPa]

Caratteristiche materiali utilizzati

Materiale calcestruzzo

 R_{ck} calcestruzzo 37000 [kPa] Peso specifico calcestruzzo 24.5170 [kN/mc]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Modulo elastico E	32532520	[kPa]
Tensione di snervamento acciaio	450000	[kPa]
Coeff. omogeneizzazione cls teso/compresso (n')	0.50	
Coeff. omogeneizzazione acciaio/cls (n)	15.00	
Coefficiente dilatazione termica	0.0000120	

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

X ascissa del punto di applicazione dei carichi verticali concentrati

Y ordinata del punto di applicazione dei carichi orizzontali concentrati

 F_y componente Y del carico concentrato

F_x componente X del carico concentrato

M momento

Forze distribuite

X_i, X_f ascisse del punto iniziale e finale per carichi distribuiti verticali

 ${
m Y_{ir}}\ {
m Y_{f}}$ ordinate del punto iniziale e finale per carichi distribuiti orizzontali

 $V_{ni} \qquad \text{componente normale del carico distribuito nel punto iniziale} \\$

V_{nf} componente normale del carico distribuito nel punto finale

 V_{ti} componente tangenziale del carico distribuito nel punto iniziale V_{tf} componente tangenziale del carico distribuito nel punto finale

D_{te} variazione termica lembo esterno espressa in gradi centigradi

D_{ti} variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Condizione di carico n° 7 (ACC)

Distr	Terreno	$X_i = 4.10$	$X_f = 7.10$	$V_{ni} = 10.00$	$V_{nf} = 10.00$
Distr	Terreno	$X_i = -3.00$	$X_f = 0.00$	$V_{ni} = 10.00$	$V_{nf} = 10.00$

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ _c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd} = [0.18*k*(100.0*\rho_{l}*fck)^{1/3}/\gamma_{c} + 0.15*\sigma_{cp}]*bw*d > (vmin+0.15*\sigma_{cp})*b_{w}*d$

 V_{Rsd} =0.9*d* A_{sw} /s*fyd*(ctg α +ctg θ)*sin α

 $V_{\text{Rcd}}\text{=}0.9\text{*}d\text{*}b_{\text{w}}\text{*}\alpha_{\text{c}}\text{*}\text{fcd'*}(\text{ctg}(\theta)\text{+}\text{ctg}(\alpha)\text{/}(1.0\text{+}\text{ctg}\theta^2)$

con:

d altezza utile sezione [mm] b_w larghezza minima sezione [mm]

 σ_{cp} tensione media di compressione [N/mmq]

 $\begin{array}{ll} \rho_{l} & \text{rapporto geometrico di armatura} \\ A_{sw} & \text{area armatuta trasversale [mmq]} \end{array}$

s interasse tra due armature trasversali consecutive [mm]

 α_{c} coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd k=1+(200/d)^{1/2}

vmin=0.035*k^{3/2}*fck^{1/2}

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente poco aggressivo

Limite tensioni di compressione nel calcestruzzo (comb. rare)

 $0.60\,f_{ck}$

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.) $0.45 f_{ck}$ Limite tensioni di trazione nell'acciaio (comb. rare) $0.80 f_{vk}$

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure w1=0.20 w2=0.30 w3=0.40

Metodo di calcolo aperture delle fessure:

- NTC 2018 - C4.1.2.2.4.5

Resistenza a trazione per Flessione

<u>Verifiche secondo</u>:

Norme Tecniche 2018 - Approccio 2

Copriferro sezioni 0.0720 [m]

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Descrizione combinazioni di carico

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2018

Simbologia adottata

 $\gamma_{\rm G1sfav}$ Coefficiente parziale sfavorevole sulle azioni permanenti $\gamma_{\rm G1fav}$ Coefficiente parziale favorevole sulle azioni permanenti

 $\gamma_{\text{G2/sfav}}$ Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali $\gamma_{\text{G2/fav}}$ Coefficiente parziale favorevole sulle azioni permanenti non strutturali

 γ_Q Coefficiente parziale sulle azioni variabili

 $\gamma_{\text{tanh'}}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione drenata γ_{cu} Coefficiente parziale di riduzione della coesione non drenata γ_{qu} Coefficiente parziale di riduzione del carico ultimo

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.35	1.00
Permanenti non strutturali	Favorevole	γ _{G2fav}	0.00	0.00
Permanenti non strutturali	Sfavorevole	γ _{G2sfav}	1.50	1.30
Variabili	Favorevole	γ Qifav	0.00	0.00
Variabili	Sfavorevole	γ_{Qisfav}	1.50	1.30
Variabili da traffico	Favorevole	γ_{Qfav}	0.00	0.00
Variabili da traffico	Sfavorevole	γ_{Qsfav}	1.35	1.25
Termici	Favorevole	γεfav	0.00	0.00
Termici	Sfavorevole	γεsfav	1.20	1.20

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	γtanφ'	1.00	1.25
Coesione efficace	γc'	1.00	1.25
Resistenza non drenata	γcu	1.00	1.40
Resistenza a compressione uniassiale	γ_{qu}	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le azioni	o per l'effetto delle azioni:			
Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.00	1.00
Permanenti	Favorevole	γG2fav	0.00	0.00
Permanenti	Sfavorevole	γG2sfav	1.00	1.00
Variabili	Favorevole	γQifav	0.00	0.00
Variabili	Sfavorevole	γQisfav	1.00	1.00
Variabili da traffico	Favorevole	γQfav	0.00	0.00
Variabili da traffico	Sfavorevole	γ̈Qsfav	1.00	1.00
Termici	Favorevole	γεfav	0.00	0.00
Termici	Sfavorevole	$\gamma_{\epsilon s fav}$	1.00	1.00
Coefficienti parziali per i parame	etri geotecnici del terreno:			
Parametri			M1	M2
Tangente dell'angolo di attrito		γ _{tanφ'}	1.00	1.00
Coesione efficace		γ _{c'}	1.00	1.00
Resistenza non drenata		γcu	1.00	1.00
Resistenza a compressione unia	ssiale	γ_{qu}	1.00	1.00
Peso dell'unità di volume		γ_{γ}	1.00	1.00

Combinazione n° 1 SLU (Approccio 2)

Effetto	γ	Ψ	c
Sfavorevole	1.35	1.00	1.35
Sfavorevole	1.35	1.00	1.35
Sfavorevole	1.35	1.00	1.35
	Sfavorevole Sfavorevole	Sfavorevole 1.35 Sfavorevole 1.35	Sfavorevole 1.35 1.00 Sfavorevole 1.35 1.00

Combinazione n° 2 SLU (Approccio 2)

	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.35	1.00	1.35
Spinta terreno sinistra	Sfavorevole	1.35	1.00	1.35
Spinta terreno destra	Sfavorevole	1.35	1.00	1.35
ACC	Sfavorevole	1.50	1.00	1.50

Combinazione n° 3 SLU (Approccio 2) - Sisma Vert. positivo

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
6 1:	. 2) 6: 1/			
Combinazione n° 4 SLU (A	pproccio 2) - Sisma Vert. negativo		\ \	6
Dana Duamia	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 5 SLU (A	approccio 2) - Sisma Vert. positivo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 6 SLU (A	pproccio 2) - Sisma Vert. negativo			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 7 SLE (Q	uussi Pormanonto)			
COMBINAZIONE II 7 SEL (Q	Effetto	^	Ψ	С
Peso Proprio	Sfavorevole	γ 1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spirita terrerio destra	Stavorevole	1.00	1.00	1.00
Combinazione n° 8 SLE (Fi	<u>requente)</u>			
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
ACC	Sfavorevole	1.00	0.75	0.75

Combinazione n° 9 SLE (Rara)

Itinerario Internazionale E78 S.G.C. GROSSETO – FANO Adeguamento a 4 corsie nel tratto Grosseto – Siena (S.S. 223 "Di Paganico") Dal km 41+600 al km 53+400 – Lotto 9

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

COMBINAZIONE II 9 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
ACC	Sfavorevole	1.00	1.00	1.00
Combinazione nº 10 SLE (Qua	<u>si Permanente) - Sisma Vert. po</u>	<u>ositivo</u>		
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 11 SLE (Qua	<u>si Permanente) - Sisma Vert. ne</u>	<u>egativo</u>		
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 12 SLE (Qua	<u>si Permanente) - Sisma Vert. po</u>	<u>ositivo</u>		
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 13 SLE (Qua	<u>si Permanente) - Sisma Vert. ne</u>	<u>egativo</u>		
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Analisi della combinazione n° 1
Analisi della combinazione n° 2
Analisi della combinazione n° 3
Analisi della combinazione n° 4
Analisi della combinazione n° 5
Analisi della combinazione n° 6
Analisi della combinazione n° 7
Analisi della combinazione n° 8
Analisi della combinazione n° 9
Analisi della combinazione n° 10
Analisi della combinazione nº 11

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Analisi della combinazione n° 12

Analisi della combinazione n° 13

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti

Spostamenti fondazione (Combinazione nº 1)

u _y [m]	u _x [m]	X [m]
0.00168	0.00001	0.15
0.00194	0.00000	1.08
0.00201	0.00000	2.05
0.00194	0.00000	3.02
0.00168	-0.00001	3.95

Spostamenti piedritto sinistro (Combinazione nº 1)

Y [m]	u _x [m]	ս _y [m]
0.20	0.00001	0.00168
1.78	0.00123	0.00169
3.35	0.00281	0.00169

Spostamenti piedritto destro (Combinazione nº 1)

ս _y [m]	u _x [m]	Y [m]
0.00168	-0.00001	0.20
0.00169	-0.00123	1.78
0.00169	-0.00281	3.35

Spostamenti fondazione (Combinazione nº 2)

X [m]	u _x [m]	ս _ջ [m]
0.15	0.00001	0.00147
1.08	0.00001	0.00196
2.05	0.00000	0.00212
3.02	-0.00001	0.00196
3.95	-0.00001	0.00147

Spostamenti piedritto sinistro (Combinazione nº 2)

Y [m]	u _x [m]	ս _ջ [m]
0.20	0.00001	0.00147

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.78	0.00215	0.00148
3.35	0.00496	0.00148

Spostamenti piedritto destro (Combinazione nº 2)

ս _y [m]	u _x [m]	Y [m]
0.00147	-0.00001	0.20
0.00148	-0.00215	1.78
0.00148	-0.00496	3.35

Spostamenti fondazione (Combinazione nº 3)

u _y [m]	u _x [m]	X [m]
-0.00020	0.00336	0.15
0.00108	0.00336	1.08
0.00187	0.00335	2.05
0.00222	0.00334	3.02
0.00218	0.00334	3.95

Spostamenti piedritto sinistro (Combinazione nº 3)

u _y [m]	u _x [m]	Y [m]
-0.00020	0.00336	0.20
-0.00019	0.00754	1.78
-0.00019	0.01284	3.35

Spostamenti piedritto destro (Combinazione nº 3)

ս _y [m]	u _x [m]	Y [m]
0.00218	0.00334	0.20
0.00218	0.00206	1.78
0.00218	0.00033	3.35

Spostamenti fondazione (Combinazione nº 4)

([m] u	ı _x [m]	u _y [m]
0.15 0.0	00336	-0.00072
1.08 0.0	00335	0.00065
2.05 0.0	00334	0.00150
3.02 0.0	00334	0.00189

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3.95 0.00333 0.00185

Spostamenti piedritto sinistro (Combinazione nº 4)

u _y [m]	u _x [m]	Y [m]
-0.00072	0.00336	0.20
-0.00072	0.00768	1.78
-0.00071	0.01314	3.35

Spostamenti piedritto destro (Combinazione nº 4)

ս _ջ [m]	u _x [m]	Y [m]
0.00185	0.00333	0.20
0.00186	0.00206	1.78
0.00186	0.00034	3.35

Spostamenti fondazione (Combinazione nº 5)

ս _ջ [m]	u _x [m]	X [m]
0.00218	-0.00334	0.15
0.00222	-0.00334	1.08
0.00187	-0.00335	2.05
0.00108	-0.00336	3.02
-0.00020	-0.00336	3.95

Spostamenti piedritto sinistro (Combinazione nº 5)

ս _y [m]	u _x [m]	Y [m]
0.00218	-0.00334	0.20
0.00218	-0.00206	1.78
0.00218	-0.00033	3.35

Spostamenti piedritto destro (Combinazione nº 5)

ս _ջ [m]	u _x [m]	Y [m]
-0.00020	-0.00336	0.20
-0.00019	-0.00754	1.78
-0.00019	-0.01284	3.35

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti fondazione (Combinazione nº 6)

ս _ջ [m]	u _x [m]	X [m]
0.00185	-0.00333	0.15
0.00189	-0.00334	1.08
0.00150	-0.00334	2.05
0.00065	-0.00335	3.02
-0.00072	-0.00336	3.95

Spostamenti piedritto sinistro (Combinazione nº 6)

u _y [m]	u _x [m]	Y [m]
0.00185	-0.00333	0.20
0.00186	-0.00206	1.78
0.00186	-0.00034	3.35

Spostamenti piedritto destro (Combinazione nº 6)

u _y [m]	u _x [m]	Y [m]
-0.00072	-0.00336	0.20
-0.00072	-0.00768	1.78
-0.00071	-0.01314	3.35

Spostamenti fondazione (Combinazione nº 7)

X [m]	u _x [m]	ս _ջ [m]
0.15	0.00001	0.00125
1.08	0.00000	0.00143
2.05	0.00000	0.00149
3.02	0.00000	0.00143
3.95	-0.00001	0.00125

Spostamenti piedritto sinistro (Combinazione nº 7)

ս _y [m]	u _x [m]	Y [m]
0.00125	0.00001	0.20
0.00125	0.00091	1.78
0.00125	0.00208	3.35

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti piedritto destro (Combinazione nº 7)

u _y [m]	u _x [m]	Y [m]
0.00125	-0.00001	0.20
0.00125	-0.00091	1.78
0.00125	-0.00208	3.35

Spostamenti fondazione (Combinazione nº 8)

ս _y [m]	u _x [m]	X [m]
0.00114	0.00001	0.15
0.00144	0.00000	1.08
0.00154	0.00000	2.05
0.00144	0.00000	3.02
0.00114	-0.00001	3.95

Spostamenti piedritto sinistro (Combinazione nº 8)

Y [m]	u _x [m]	ս _y [m]
0.20	0.00001	0.00114
1.78	0.00137	0.00114
3.35	0.00316	0.00115

Spostamenti piedritto destro (Combinazione nº 8)

u _y [m]	u _x [m]	Y [m]
0.00114	-0.00001	0.20
0.00114	-0.00137	1.78
0.00115	-0.00316	3.35

Spostamenti fondazione (Combinazione nº 9)

X [m]	u _x [m]	ս _y [m]
0.15	0.00001	0.00111
1.08	0.00000	0.00145
2.05	0.00000	0.00156
3.02	0.00000	0.00145
3.95	-0.00001	0.00111

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Spostamenti piedritto sinistro (Combinazione nº 9)

ս _ջ [m]	u _x [m]	Y [m]
0.00111	0.00001	0.20
0.00111	0.00152	1.78
0.00111	0.00351	3 35

Spostamenti piedritto destro (Combinazione nº 9)

ս _y [m]	u _x [m]	Y [m]
0.00111	-0.00001	0.20
0.00111	-0.00152	1.78
0.00111	-0.00351	3.35

Spostamenti fondazione (Combinazione nº 10)

ս _ջ [m]	u _x [m]	X [m]
0.00038	0.00195	0.15
0.00117	0.00195	1.08
0.00167	0.00194	2.05
0.00191	0.00194	3.02
0.00191	0.00193	3.95

Spostamenti piedritto sinistro (Combinazione nº 10)

ս _y [m]	u _x [m]	Y [m]
0.00038	0.00195	0.20
0.00038	0.00460	1.78
0.00038	0.00796	3.35

Spostamenti piedritto destro (Combinazione nº 10)

u _y [m]	u _x [m]	Y [m]
0.00191	0.00193	0.20
0.00191	0.00115	1.78
0.00191	0.00008	3.35

Spostamenti fondazione (Combinazione nº 11)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

u _y [m]	u _x [m]	X [m]
0.00018	0.00196	0.15
0.00100	0.00196	1.08
0.00150	0.00195	2.05
0.00174	0.00195	3.02
0.00172	0.00194	3.95

Spostamenti piedritto sinistro (Combinazione nº 11)

Y [m]	u _x [m]	ս _չ [m]
0.20	0.00196	0.00018
1.78	0.00465	0.00018
3.35	0.00804	0.00019

Spostamenti piedritto destro (Combinazione nº 11)

u _y [m]	u _x [m]	Y [m]
0.00172	0.00194	0.20
0.00172	0.00113	1.78
0.00172	0.00004	3.35

Spostamenti fondazione (Combinazione nº 12)

ս _ջ [m]	u _x [m]	X [m]
0.00191	-0.00193	0.15
0.00191	-0.00194	1.08
0.00167	-0.00194	2.05
0.00117	-0.00195	3.02
0.00038	-0.00195	3.95

Spostamenti piedritto sinistro (Combinazione nº 12)

ս _y [m]	u _x [m]	Y [m]
0.00191	-0.00193	0.20
0.00191	-0.00115	1.78
0.00191	-0.00008	3.35

Spostamenti piedritto destro (Combinazione nº 12)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

ս _y [m]	u _x [m]	Y [m]
0.00038	-0.00195	0.20
0.00038	-0.00460	1.78
0.00038	-0.00796	3.35

Spostamenti fondazione (Combinazione nº 13)

u _y [m]	u _x [m]	X [m]
0.00172	-0.00194	0.15
0.00174	-0.00195	1.08
0.00150	-0.00195	2.05
0.00100	-0.00196	3.02
0.00018	-0.00196	3.95

Spostamenti piedritto sinistro (Combinazione nº 13)

u _y [m]	u _x [m]	Y [m]
0.00172	-0.00194	0.20
0.00172	-0.00113	1.78
0.00172	-0.00004	3.35

Spostamenti piedritto destro (Combinazione nº 13)

u _y [m]	u _x [m]	Y [m]
0.00018	-0.00196	0.20
0.00018	-0.00465	1.78
0.00019	-0.00804	3.35

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni

Sollecitazioni fondazione (Combinazione nº 1)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-57.0184	-30.2942	54.2505
1.08	-34.2642	-15.6996	54.2505
2.05	-25.8288	1.5202	54.2505
3.02	-34.2642	18.6276	54.2505
3.95	-57.0184	30.2942	54.2505

Sollecitazioni piedritto sinistro (Combinazione nº 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-57.0184	54.2701	31.2776
1.78	-7.1385	13.5688	15.6388
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 1)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-57.0184	-54.2701	31.2776
1.78	-7.1385	-13.5688	15.6388
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 2)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-88.7523	-30.4185	74.3918
1.08	-65.1804	-16.8656	74.3918
2.05	-56.0664	1.6003	74.3918
3.02	-65.1804	19.8287	74.3918
3.95	-88.7523	30.4185	74.3918

Sollecitazioni piedritto sinistro (Combinazione n° 2)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-88.7523	74.4186	31.2776

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.78	-15.0720	23.6430	15.6388
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 2)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-88.7523	-74.4186	31.2776
1.78	-15.0720	-23.6430	15.6388
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 3)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-129.8970	-26.0511	87.5691
1.08	-102.9935	-28.1748	89.8331
2.05	-79.7792	-15.3121	92.2055
3.02	-73.1828	5.7391	94.5779
3.95	-87.2019	24.7810	96.8418

Sollecitazioni piedritto sinistro (Combinazione nº 3)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-129.8970	95.8579	26.0510
1.78	-27.2031	37.8799	13.0255
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 3)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-87.2019	-88.6194	26.0510
1.78	-6.7454	-17.8850	13.0255
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 4)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-129.8970	-20.2861	87.5863
1.08	-107.7928	-25.1972	89.8503
2.05	-85.9219	-15.9643	92.2227
3.02	-77.5013	2.1940	94.5951

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3.95 -87.3061 19.2047 96.8590

Sollecitazioni piedritto sinistro (Combinazione nº 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-129.8970	95.8579	20.2861
1.78	-27.2031	37.8799	10.1431
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-87.3061	-88.6537	20.2861
1.78	-6.7638	-17.9305	10.1431
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 5)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-87.2019	-24.7810	96.8418
1.08	-73.1828	-2.3748	94.5779
2.05	-79.7792	18.1481	92.2055
3.02	-102.9935	29.8130	89.8331
3.95	-129.8970	26.0511	87.5691

Sollecitazioni piedritto sinistro (Combinazione nº 5)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-87.2019	88.6194	26.0510
1.78	-6.7454	17.8850	13.0255
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 5)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-129.8970	-95.8579	26.0510
1.78	-27.2031	-37.8799	13.0255
3.35	0.0000	0.0000	0.0000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni fondazione (Combinazione nº 6)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-87.3061	-19.2047	96.8590
1.08	-77.5013	0.6634	94.5951
2.05	-85.9219	18.2413	92.2227
3.02	-107.7928	26.1760	89.8503
3.95	-129.8970	20.2861	87.5863

Sollecitazioni piedritto sinistro (Combinazione nº 6)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-87.3061	88.6537	20.2861
1.78	-6.7638	17.9305	10.1431
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 6)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-129.8970	-95.8579	20.2861
1.78	-27.2031	-37.8799	10.1431
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 7)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-42.2358	-22.4402	40.1856
1.08	-25.3809	-11.6293	40.1856
2.05	-19.1325	1.1261	40.1856
3.02	-25.3809	13.7982	40.1856
3.95	-42.2358	22.4402	40.1856

Sollecitazioni piedritto sinistro (Combinazione nº 7)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-42.2358	40.2000	23.1686
1.78	-5.2878	10.0509	11.5843
3.35	0.0000	0.0000	0.0000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni piedritto destro (Combinazione nº 7)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-42.2358	-40.2000	23.1686
1.78	-5.2878	-10.0509	11.5843
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 8)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-58.1028	-22.5023	50.2562
1.08	-40.8390	-12.2123	50.2562
2.05	-34.2512	1.1661	50.2562
3.02	-40.8390	14.3988	50.2562
3.95	-58.1028	22.5023	50.2562

Sollecitazioni piedritto sinistro (Combinazione nº 8)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-58.1028	50.2743	23.1686
1.78	-9.2545	15.0881	11.5843
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 8)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-58.1028	-50.2743	23.1686
1.78	-9.2545	-15.0881	11.5843
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 9)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-63.3918	-22.5230	53.6131
1.08	-45.9917	-12.4067	53.6131
2.05	-39.2908	1.1795	53.6131
3.02	-45.9917	14.5989	53.6131
3.95	-63.3918	22.5230	53.6131

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Sollecitazioni piedritto sinistro (Combinazione nº 9)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-63.3918	53.6324	23.1686
1.78	-10.5767	16.7671	11.5843
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 9)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-63.3918	-53.6324	23.1686
1.78	-10.5767	-16.7671	11.5843
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 10)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-86.2116	-24.3954	63.3144
1.08	-63.3783	-21.7614	64.4501
2.05	-46.4613	-9.6069	65.6402
3.02	-43.9943	7.8565	66.8303
3.95	-58.3882	23.5007	67.9661

Sollecitazioni piedritto sinistro (Combinazione nº 10)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-86.2116	68.1211	24.6146
1.78	-16.2817	24.0115	12.3073
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 10)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-58.3882	-63.2065	24.6146
1.78	-4.2422	-9.6102	12.3073
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 11)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-86.2116	-21.6165	63.2870
1.08	-65.3310	-20.5347	64.4228
2.05	-49.0441	-9.7773	65.6129
3.02	-45.8703	6.3006	66.8030
3.95	-58.2781	20.7183	67.9387

Sollecitazioni piedritto sinistro (Combinazione nº 11)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-86.2116	68.1211	21.7226
1.78	-16.2817	24.0115	10.8613
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 11)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-58.2781	-63.1518	21.7226
1.78	-4.2408	-9.5955	10.8613
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 12)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-58.3882	-23.5007	67.9661
1.08	-43.9943	-4.9645	66.8303
2.05	-46.4613	12.1380	65.6402
3.02	-63.3783	23.5385	64.4501
3.95	-86.2116	24.3954	63.3144

Sollecitazioni piedritto sinistro (Combinazione nº 12)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-58.3882	63.2065	24.6146
1.78	-4.2422	9.6102	12.3073
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 12)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-86.2116	-68.1211	24.6146
1.78	-16.2817	-24.0115	12.3073
3.35	0.0000	0.0000	0.0000

Sollecitazioni fondazione (Combinazione nº 13)

X [m]	M [kNm]	V [kN]	N [kN]
0.15	-58.2781	-20.7183	67.9387
1.08	-45.8703	-3.6713	66.8030
2.05	-49.0441	12.0537	65.6129
3.02	-65.3310	22.0446	64.4228
3.95	-86.2116	21.6165	63.2870

Sollecitazioni piedritto sinistro (Combinazione nº 13)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-58.2781	63.1518	21.7226
1.78	-4.2408	9.5955	10.8613
3.35	0.0000	0.0000	0.0000

Sollecitazioni piedritto destro (Combinazione nº 13)

Y [m]	M [kNm]	V [kN]	N [kN]
0.20	-86.2116	-68.1211	21.7226
1.78	-16.2817	-24.0115	10.8613
3.35	0.0000	0.0000	0.0000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Pressioni terreno

Pressioni sul terreno di fondazione (Combinazione nº 1)

] σ _t [l	kPa]
5	26
3	30
5	31
2	30
5	26

Pressioni sul terreno di fondazione (Combinazione n° 2)

X [m]	σ_t [kPa]
0.15	23
1.08	30
2.05	33
3.02	30
3.95	23

Pressioni sul terreno di fondazione (Combinazione n° 3)

σ _t [kPa]	X [m]
0	0.15
17	1.08
29	2.05
35	3.02
34	3.95

Pressioni sul terreno di fondazione (Combinazione n° 4)

σ _t [kPa]	X [m]
0	0.15
10	1.08
23	2.05
29	3.02
29	3.95

Pressioni sul terreno di fondazione (Combinazione n° 5)

X [m]	σ_t [kPa]
0.15	34
1.08	35
2.05	29

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3.02	17
3.95	C

Pressioni sul terreno di fondazione (Combinazione n° 6)

X [m]	σ _t [kPa]
0.15	29
1.08	29
2.05	23
3.02	10
3.95	0

Pressioni sul terreno di fondazione (Combinazione nº 7)

σ _t [kPa]	X [m]
19	0.15
22	1.08
23	2.05
22	3.02
19	3.95

Pressioni sul terreno di fondazione (Combinazione n° 8)

X [m]	σ _t [kPa]
0.15	18
1.08	22
2.05	24
3.02	22
3.95	18

Pressioni sul terreno di fondazione (Combinazione nº 9)

σ _t [kPa]	X [m]
17	0.15
23	1.08
24	2.05
23	3.02
17	3.95

Pressioni sul terreno di fondazione (Combinazione n° 10)

X [m]	σ _t [kPa]
0.15	6
1.08	18

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.05	26
3.02	30
3.95	30

Pressioni sul terreno di fondazione (Combinazione n° 11)

X [m]	σ_t [kPa]
0.15	3
1.08	16
2.05	23
3.02	27
3.95	27

Pressioni sul terreno di fondazione (Combinazione nº 12)

σ _t [kPa]	X [m]
30	0.15
30	1.08
26	2.05
18	3.02
6	3.95

Pressioni sul terreno di fondazione (Combinazione nº 13)

X [m]	σ _t [kPa]
0.15	27
1.08	27
2.05	23
3.02	16
3.95	3

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

N° Indice sezione

X Ascissa/Ordinata sezione, espresso in m

M Momento flettente, espresso in kNm

V Taglio, espresso in kN

N Sforzo normale, espresso in kN

N_u Sforzo normale ultimo, espressa in kN

Mu Momento ultimo, espressa in kNm

A_{fi} Area armatura inferiore, espresse in mq

A_{fs} Area armatura superiore, espresse in mq

CS Coeff. di sicurezza sezione

 V_{Rd} Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN

 $V_{\it Rcd}$ Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN

V_{Rsd} Aliquota taglio assorbita armature trasversali, espressa in kN

A_{sw} Area armature trasversali nella sezione, espressa in mq

Verifica sezioni fondazione [Combinazione nº 1 - SLU (Approccio 2)]

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	X	М	N	N_{u}	M_{u}	A_{fi}	A_{fs}	cs
1	0.15	57.02 (57.02)	54.25	262.09	275.46	0.002011	0.002011	4.83
2	1.08	34.26 (38.90)	54.25	411.72	295.21	0.002011	0.002011	7.59
3	2.05	25.83 (26.28)	54.25	683.54	331.09	0.002011	0.002011	12.60
4	3.02	34.26 (39.76)	54.25	400.81	293.77	0.002011	0.002011	7.39
5	3.95	57.02 (57.02)	54.25	262.09	275.46	0.002011	0.002011	4.83

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-30.29	194.49	0.00	0.00	6.420
2	1.08	0.000000	-15.70	194.49	0.00	0.00	12.388
3	2.05	0.000000	1.52	194.49	0.00	0.00	127.935
4	3.02	0.000000	18.63	194.49	0.00	0.00	10.441
5	3.95	0.000000	30.29	194.49	0.00	0.00	6.420

Verifica sezioni piedritto sinistro [Combinazione nº 1 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Altezza sezione H = 0.3000 m

Verifiche	presso-flessione

N°	X	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.20	-57.02 (-57.02)	31.28	94.21	-171.73	0.002011	0.002011	3.01
2	1.78	-7.14 (-9.92)	15.64	296.57	-188.17	0.002011	0.002011	18.96
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	\mathbf{V}_{Rcd}	FS
1	0.20	0.000000	54.27	163.83	0.00	0.00	3.019
2	1.78	0.000000	13.57	162.05	0.00	0.00	11.943
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

<u>Verifica sezioni piedritto destro [Combinazione nº 1 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	М	N	N_{u}	$M_{\rm u}$	${\sf A}_{\sf fi}$	A_{fs}	CS
1	0.20	-57.02 (-57.02)	31.28	94.21	-171.73	0.002011	0.002011	3.01
2	1.78	-7.14 (-9.92)	15.64	296.57	-188.17	0.002011	0.002011	18.96
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	-54.27	163.83	0.00	0.00	3.019
2	1.78	0.000000	-13.57	162.05	0.00	0.00	11.943
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

<u>Verifica sezioni fondazione [Combinazione n° 2 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

 N° X M N N_{u} M_{u} A_{fi} A_{fs} CS

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	0.15	88.75 (88.75)	74.39	227.01	270.83	0.002011	0.002011	3.05
2	1.08	65.18 (70.16)	74.39	296.96	280.07	0.002011	0.002011	3.99
3	2.05	56.07 (56.54)	74.39	383.54	291.49	0.002011	0.002011	5.16
4	3.02	65.18 (71.03)	74.39	292.72	279.51	0.002011	0.002011	3.93
5	3.95	88.75 (88.75)	74.39	227.01	270.83	0.002011	0.002011	3.05

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-30.42	196.96	0.00	0.00	6.475
2	1.08	0.000000	-16.87	196.96	0.00	0.00	11.678
3	2.05	0.000000	1.60	196.96	0.00	0.00	123.079
4	3.02	0.000000	19.83	196.96	0.00	0.00	9.933
5	3.95	0.000000	30.42	196.96	0.00	0.00	6.475

<u>Verifica sezioni piedritto sinistro [Combinazione nº 2 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	M_{u}	${\sf A}_{\sf fi}$	\mathbf{A}_{fs}	CS
1	0.20	-88.75 (-88.75)	31.28	59.53	-168.92	0.002011	0.002011	1.90
2	1.78	-15.07 (-19.92)	15.64	137.57	-175.26	0.002011	0.002011	8.80
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	74.42	163.83	0.00	0.00	2.201
2	1.78	0.000000	23.64	162.05	0.00	0.00	6.854
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

<u>Verifica sezioni piedritto destro [Combinazione nº 2 - SLU (Approccio 2)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

 N° X M N N_{u} M_{u} A_{fi} A_{fs} CS

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	0.20	-88.75 (-88.75)	31.28	59.53	-168.92	0.002011	0.002011	1.90
2	1.78	-15.07 (-19.92)	15.64	137.57	-175.26	0.002011	0.002011	8.80
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	-74.42	163.83	0.00	0.00	2.201
2	1.78	0.000000	-23.64	162.05	0.00	0.00	6.854
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

Verifica sezioni fondazione [Combinazione n° 3 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	129.90 (129.90)	87.57	178.24	264.40	0.002011	0.002011	2.04
2	1.08	102.99 (111.31)	89.83	217.57	269.59	0.002011	0.002011	2.42
3	2.05	79.78 (84.30)	92.21	307.91	281.51	0.002011	0.002011	3.34
4	3.02	73.18 (74.88)	94.58	365.12	289.06	0.002011	0.002011	3.86
5	3.95	87.20 (94.52)	96.84	285.39	278.54	0.002011	0.002011	2.95

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-26.05	198.58	0.00	0.00	7.623
2	1.08	0.000000	-28.17	198.86	0.00	0.00	7.058
3	2.05	0.000000	-15.31	199.15	0.00	0.00	13.006
4	3.02	0.000000	5.74	199.45	0.00	0.00	34.752
5	3.95	0.000000	24.78	199.72	0.00	0.00	8.060

<u>Verifica sezioni piedritto sinistro [Combinazione nº 3 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

 N° X M N N_{u} M_{u} A_{fi} A_{fs} CS

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	0.20	-129.90 (-129.90)	26.05	33.45	-166.80	0.002011	0.002011	1.28
2	1.78	-27.20 (-34.98)	13.03	63.01	-169.20	0.002011	0.002011	4.84
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	95.86	163.23	0.00	0.00	1.703
2	1.78	0.000000	37.88	161.75	0.00	0.00	4.270
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

Verifica sezioni piedritto destro [Combinazione nº 3 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	N_{u}	M_u	A_{fi}	A_{fs}	CS
1	0.20	-87.20 (-87.20)	26.05	50.24	-168.16	0.002011	0.002011	1.93
2	1.78	-6.75 (-10.42)	13.03	228.40	-182.64	0.002011	0.002011	17.54
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	Χ	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	-88.62	163.23	0.00	0.00	1.842
2	1.78	0.000000	-17.88	161.75	0.00	0.00	9.044
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

<u>Verifica sezioni fondazione [Combinazione nº 4 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	Х	М	N	N_{u}	M_{u}	A_{fi}	A_{fs}	CS
1	0.15	129.90 (129.90)	87.59	178.28	264.40	0.002011	0.002011	2.04
2	1.08	107.79 (115.23)	89.85	209.36	268.50	0.002011	0.002011	2.33
3	2.05	85.92 (90.63)	92.22	283.11	278.24	0.002011	0.002011	3.07
4	3.02	77.50 (78.15)	94.60	347.00	286.67	0.002011	0.002011	3.67

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5	3.95	87.31 (92	2.98) 96.86	290.94	279.27	0.002011	0.002011	3.00
<u>Verif</u>	iche tag	<u>ilio</u>						
N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}		FS
1	0.15	0.000000	-20.29	198.59	0.00	0.00		9.789
2	1.08	0.000000	-25.20	198.86	0.00	0.00		7.892
3	2.05	0.000000	-15.96	199.16	0.00	0.00		12.475
4	3.02	0.000000	2.19	199.45	0.00	0.00		90.905
5	3.95	0.000000	19.20	199.73	0.00	0.00		10.400

Verifica sezioni piedritto sinistro [Combinazione nº 4 - SLU (Approccio 2) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.20	-129.90 (-129.90)	20.29	25.95	-166.19	0.002011	0.002011	1.28
2	1.78	-27.20 (-34.98)	10.14	48.73	-168.04	0.002011	0.002011	4.80
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	\mathbf{V}_{Rcd}	FS
1	0.20	0.000000	95.86	162.58	0.00	0.00	1.696
2	1.78	0.000000	37.88	161.42	0.00	0.00	4.261
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

<u>Verifica sezioni piedritto destro [Combinazione nº 4 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	M_{u}	\mathbf{A}_{fi}	A_{fs}	CS
1	0.20	-87.31 (-87.31)	20.29	38.86	-167.24	0.002011	0.002011	1.92
2	1.78	-6.76 (-10.44)	10.14	173.02	-178.14	0.002011	0.002011	17.06
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche taglio	Ver	ifich	ne t	ag	lio
------------------	-----	-------	------	----	-----

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	-88.65	162.58	0.00	0.00	1.834
2	1.78	0.000000	-17.93	161.42	0.00	0.00	9.003
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

<u>Verifica sezioni fondazione [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_{u}	\mathbf{A}_{fi}	A_{fs}	CS
1	0.15	87.20 (94.52)	96.84	285.39	278.54	0.002011	0.002011	2.95
2	1.08	73.18 (73.88)	94.58	371.02	289.84	0.002011	0.002011	3.92
3	2.05	79.78 (85.14)	92.21	304.38	281.05	0.002011	0.002011	3.30
4	3.02	102.99 (111.79)	89.83	216.52	269.45	0.002011	0.002011	2.41
5	3.95	129.90 (129.90)	87.57	178.24	264.40	0.002011	0.002011	2.04

Verifiche taglio

N°	Х	\mathbf{A}_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-24.78	199.72	0.00	0.00	8.060
2	1.08	0.000000	-2.37	199.45	0.00	0.00	83.984
3	2.05	0.000000	18.15	199.15	0.00	0.00	10.974
4	3.02	0.000000	29.81	198.86	0.00	0.00	6.670
5	3.95	0.000000	26.05	198.58	0.00	0.00	7.623

<u>Verifica sezioni piedritto sinistro [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	М	N	N_{u}	M_{u}	${f A}_{\sf fi}$	A_{fs}	CS
1	0.20	-87.20 (-87.20)	26.05	50.24	-168.16	0.002011	0.002011	1.93
2	1.78	-6.75 (-10.42)	13.03	228.40	-182.64	0.002011	0.002011	17.54
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche taglio

Ν°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	88.62	163.23	0.00	0.00	1.842
2	1.78	0.000000	17.88	161.75	0.00	0.00	9.044
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

Verifica sezioni piedritto destro [Combinazione nº 5 - SLU (Approccio 2) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_u	${\sf A}_{\sf fi}$	A_{fs}	CS
1	0.20	-129.90 (-129.90)	26.05	33.45	-166.80	0.002011	0.002011	1.28
2	1.78	-27.20 (-34.98)	13.03	63.01	-169.20	0.002011	0.002011	4.84
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	Χ	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	-95.86	163.23	0.00	0.00	1.703
2	1.78	0.000000	-37.88	161.75	0.00	0.00	4.270
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

<u>Verifica sezioni fondazione [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	X	М	N	N_u	$M_{\rm u}$	A_{fi}	${\sf A}_{\sf fs}$	CS
1	0.15	87.31 (92.98)	96.86	290.94	279.27	0.002011	0.002011	3.00
2	1.08	77.50 (77.70)	94.60	349.40	286.99	0.002011	0.002011	3.69
3	2.05	85.92 (91.31)	92.22	280.71	277.92	0.002011	0.002011	3.04
4	3.02	107.79 (115.52)	89.85	208.78	268.43	0.002011	0.002011	2.32
5	3.95	129.90 (129.90)	87.59	178.28	264.40	0.002011	0.002011	2.04

Verifiche taglio

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

N°	X	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.15	0.000000	-19.20	199.73	0.00	0.00	10.400
2	1.08	0.000000	0.66	199.45	0.00	0.00	300.643
3	2.05	0.000000	18.24	199.16	0.00	0.00	10.918
4	3.02	0.000000	26.18	198.86	0.00	0.00	7.597
5	3.95	0.000000	20.29	198.59	0.00	0.00	9.789

Verifica sezioni piedritto sinistro [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	N_{u}	M_{u}	A_{fi}	\mathbf{A}_{fs}	CS
1	0.20	-87.31 (-87.31)	20.29	38.86	-167.24	0.002011	0.002011	1.92
2	1.78	-6.76 (-10.44)	10.14	173.02	-178.14	0.002011	0.002011	17.06
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	Χ	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	88.65	162.58	0.00	0.00	1.834
2	1.78	0.000000	17.93	161.42	0.00	0.00	9.003
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

<u>Verifica sezioni piedritto destro [Combinazione nº 6 - SLU (Approccio 2) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	N_u	M_{u}	${\sf A}_{\sf fi}$	${\sf A}_{\sf fs}$	CS
1	0.20	-129.90 (-129.90)	20.29	25.95	-166.19	0.002011	0.002011	1.28
2	1.78	-27.20 (-34.98)	10.14	48.73	-168.04	0.002011	0.002011	4.80
3	3.35	0.00 (0.00)	0.00	0.00	0.00	0.002011	0.002011	1000.00

Verifiche taglio

N°	Х	A_{sw}	V	V_{Rd}	V_{Rsd}	V_{Rcd}	FS
1	0.20	0.000000	-95.86	162.58	0.00	0.00	1.696

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	1.78	0.000000	-37.88	161.42	0.00	0.00	4.261
3	3.35	0.000000	0.00	160.26	0.00	0.00	100.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche combinazioni SLE

Simbologia adottata ed unità di misura

- N° Indice sezione
- X Ascissa/Ordinata sezione, espresso in m
- M Momento flettente, espresso in kNm
- V Taglio, espresso in kN
- N Sforzo normale, espresso in kN
- A_{fi} Area armatura inferiore, espressa in mq
- A_{fs} Area armatura superiore, espressa in mq
- $\sigma_{\!f\!i}$ Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in kPa
- $\sigma_{\!\scriptscriptstyle C}$ Tensione nel calcestruzzo, espresse in kPa
- au_{c} Tensione tangenziale nel calcestruzzo, espresse in kPa
- A_{sw} Area armature trasversali nella sezione, espressa in mq

Verifica sezioni fondazione [Combinazione nº 7 - SLE (Quasi Permanente)]

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	42.24	40.19	0.002011	0.002011	13819	63204	2365
2	1.08	25.38	40.19	0.002011	0.002011	9215	34088	1426
3	2.05	19.13	40.19	0.002011	0.002011	7470	23350	1076
4	3.02	25.38	40.19	0.002011	0.002011	9215	34088	1426
5	3.95	42.24	40.19	0.002011	0.002011	13819	63204	2365

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-22.44	-80
2	1.08	0.000000	-11.63	-42
3	2.05	0.000000	1.13	4
4	3.02	0.000000	13.80	49
5	3.95	0.000000	22.44	80

Verifica sezioni piedritto sinistro [Combinazione nº 7 - SLE (Quasi Permanente)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche	presso-flessione
VEHILLIE	pi e330-11e331011e

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.20	-42.24	23.17	0.002011	0.002011	102020	13520	4456
2	1.78	-5.29	11.58	0.002011	0.002011	10546	2378	556
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.20	0.000000	40.20	207
2	1.78	0.000000	10.05	52
3	3.35	0.000000	0.00	0

<u>Verifica sezioni piedritto destro [Combinazione nº 7 - SLE (Quasi Permanente)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.20	-42.24	23.17	0.002011	0.002011	102020	13520	4456
2	1.78	-5.29	11.58	0.002011	0.002011	10546	2378	556
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.20	0.000000	-40.20	-207
2	1.78	0.000000	-10.05	-52
3	3.35	0.000000	0.00	0

Verifica sezioni fondazione [Combinazione nº 8 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ _{fi}	σ_{c}
1	0.15	58.10	50.26	0.002011	0.002011	18714	88185	3252

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	1.08	40.84	50.26	0.002011	0.002011	14023	58328	2291
3	2.05	34.25	50.26	0.002011	0.002011	12217	46956	1924
4	3.02	40.84	50.26	0.002011	0.002011	14023	58328	2291
5	3.95	58.10	50.26	0.002011	0.002011	18714	88185	3252

Verifiche taglio

N°	Х	\mathbf{A}_{sw}	V	το
1	0.15	0.000000	-22.50	-81
2	1.08	0.000000	-12.21	-44
3	2.05	0.000000	1.17	4
4	3.02	0.000000	14.40	52
5	3.95	0.000000	22.50	81

<u>Verifica sezioni piedritto sinistro [Combinazione nº 8 - SLE (Frequente)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.20	-58.10	23.17	0.002011	0.002011	142616	17880	6130
2	1.78	-9.25	11.58	0.002011	0.002011	20670	3489	976
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.20	0.000000	50.27	259
2	1.78	0.000000	15.09	78
3	3.35	0.000000	0.00	0

<u>Verifica sezioni piedritto destro [Combinazione nº 8 - SLE (Frequente)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.20	-58.10	23.17	0.002011	0.002011	142616	17880	6130

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	1.78	-9.25	11.58	0.002011	0.002011	20670	3489	976
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.20	0.000000	-50.27	-259
2	1.78	0.000000	-15.09	-78
3	3.35	0.000000	0.00	0

Verifica sezioni fondazione [Combinazione nº 9 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	Х	М	N	A_{fi}	\mathbf{A}_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	63.39	53.61	0.002011	0.002011	20345	96512	3547
2	1.08	45.99	53.61	0.002011	0.002011	15621	66414	2580
3	2.05	39.29	53.61	0.002011	0.002011	13789	54840	2206
4	3.02	45.99	53.61	0.002011	0.002011	15621	66414	2580
5	3.95	63.39	53.61	0.002011	0.002011	20345	96512	3547

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	τ _c
1	0.15	0.000000	-22.52	-81
2	1.08	0.000000	-12.41	-45
3	2.05	0.000000	1.18	4
4	3.02	0.000000	14.60	52
5	3.95	0.000000	22.52	81

<u>Verifica sezioni piedritto sinistro [Combinazione nº 9 - SLE (Rara)]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.20	-63.39	23.17	0.002011	0.002011	156149	19333	6688

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	1.78	-10.58	11.58	0.002011	0.002011	24049	3855	1116
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.20	0.000000	53.63	277
2	1.78	0.000000	16.77	87
3	3.35	0.000000	0.00	0

Verifica sezioni piedritto destro [Combinazione nº 9 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.20	-63.39	23.17	0.002011	0.002011	156149	19333	6688
2	1.78	-10.58	11.58	0.002011	0.002011	24049	3855	1116
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.20	0.000000	-53.63	-277
2	1.78	0.000000	-16.77	-87
3	3.35	0.000000	0.00	0

Verifica sezioni fondazione [Combinazione nº 10 - SLE (Quasi Permanente) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	Х	М	N	${\sf A_{fi}}$	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	86.21	63.31	0.002011	0.002011	27093	133624	4820
2	1.08	63.38	64.45	0.002011	0.002011	20980	93826	3551
3	2.05	46.46	65.64	0.002011	0.002011	16431	64306	2609
4	3.02	43.99	66.83	0.002011	0.002011	15818	59765	2472
5	3.95	58.39	67.97	0.002011	0.002011	19826	84339	3275

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche taglio

N°	X	\mathbf{A}_{sw}	V	$ au_{c}$
1	0.15	0.000000	-24.40	-88
2	1.08	0.000000	-21.76	-78
3	2.05	0.000000	-9.61	-34
4	3.02	0.000000	7.86	28
5	3.95	0.000000	23.50	84

Verifica sezioni piedritto sinistro [Combinazione nº 10 - SLE (Quasi Permanente) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.20	-86.21	24.61	0.002011	0.002011	214161	25719	9096
2	1.78	-16.28	12.31	0.002011	0.002011	38450	5489	1718
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.20	0.000000	68.12	352
2	1.78	0.000000	24.01	124
3	3.35	0.000000	0.00	0

Verifica sezioni piedritto destro [Combinazione nº 10 - SLE (Quasi Permanente) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.20	-58.39	24.61	0.002011	0.002011	142969	18079	6161
2	1.78	-4.24	12.31	0.002011	0.002011	7709	2130	445
3	3 35	0.00	0.00	0.002011	0.002011	0	0	0

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.20	0.000000	-63.21	-326
2	1.78	0.000000	-9.61	-50
3	3.35	0.000000	0.00	0

Verifica sezioni fondazione [Combinazione nº 11 - SLE (Quasi Permanente) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.15	86.21	63.29	0.002011	0.002011	27092	133631	4820
2	1.08	65.33	64.42	0.002011	0.002011	21509	97210	3660
3	2.05	49.04	65.61	0.002011	0.002011	17138	68770	2753
4	3.02	45.87	66.80	0.002011	0.002011	16333	63007	2576
5	3.95	58.28	67.94	0.002011	0.002011	19794	84155	3269

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.15	0.000000	-21.62	-78
2	1.08	0.000000	-20.53	-74
3	2.05	0.000000	-9.78	-35
4	3.02	0.000000	6.30	23
5	3.95	0.000000	20.72	74

Verifica sezioni piedritto sinistro [Combinazione nº 11 - SLE (Quasi Permanente) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.20	-86.21	21.72	0.002011	0.002011	214918	25477	9095
2	1.78	-16.28	10.86	0.002011	0.002011	38826	5370	1718
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche taglio

N°	Х	A_{sw}	V	τ_{c}
1	0.20	0.000000	68.12	352
2	1.78	0.000000	24.01	124
3	3.35	0.000000	0.00	0

Verifica sezioni piedritto destro [Combinazione nº 11 - SLE (Quasi Permanente) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.20	-58.28	21.72	0.002011	0.002011	143442	17808	6149
2	1.78	-4.24	10.86	0.002011	0.002011	8064	2024	445
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.20	0.000000	-63.15	-326
2	1.78	0.000000	-9.60	-50
3	3.35	0.000000	0.00	0

<u>Verifica sezioni fondazione [Combinazione nº 12 - SLE (Quasi Permanente) - Sisma Vert. positivo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	58.39	67.97	0.002011	0.002011	19826	84339	3275
2	1.08	43.99	66.83	0.002011	0.002011	15818	59765	2472
3	2.05	46.46	65.64	0.002011	0.002011	16431	64306	2609
4	3.02	63.38	64.45	0.002011	0.002011	20980	93826	3551
5	3.95	86.21	63.31	0.002011	0.002011	27093	133624	4820

Verifiche taglio

 N° X A_{sw} V au_c

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	0.15	0.000000	-23.50	-84
2	1.08	0.000000	-4.96	-18
3	2.05	0.000000	12.14	44
4	3.02	0.000000	23.54	84
5	3.95	0.000000	24.40	88

Verifica sezioni piedritto sinistro [Combinazione nº 12 - SLE (Quasi Permanente) - Sisma Vert. positivo]

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.20	-58.39	24.61	0.002011	0.002011	142969	18079	6161
2	1.78	-4.24	12.31	0.002011	0.002011	7709	2130	445
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.20	0.000000	63.21	326
2	1.78	0.000000	9.61	50
3	3.35	0.000000	0.00	0

Verifica sezioni piedritto destro [Combinazione nº 12 - SLE (Quasi Permanente) - Sisma Vert. positivo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.20	-86.21	24.61	0.002011	0.002011	214161	25719	9096
2	1.78	-16.28	12.31	0.002011	0.002011	38450	5489	1718
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_{c}$
1	0.20	0.000000	-68.12	-352
2	1.78	0.000000	-24.01	-124

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3 3.35 0.000000 0.00 0

Verifica sezioni fondazione [Combinazione nº 13 - SLE (Quasi Permanente) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.15	58.28	67.94	0.002011	0.002011	19794	84155	3269
2	1.08	45.87	66.80	0.002011	0.002011	16333	63007	2576
3	2.05	49.04	65.61	0.002011	0.002011	17138	68770	2753
4	3.02	65.33	64.42	0.002011	0.002011	21509	97210	3660
5	3.95	86.21	63.29	0.002011	0.002011	27092	133631	4820

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.15	0.000000	-20.72	-74
2	1.08	0.000000	-3.67	-13
3	2.05	0.000000	12.05	43
4	3.02	0.000000	22.04	79
5	3.95	0.000000	21.62	78

<u>Verifica sezioni piedritto sinistro [Combinazione nº 13 - SLE (Quasi Permanente) - Sisma Vert. negativo]</u>

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

N°	Х	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.20	-58.28	21.72	0.002011	0.002011	143442	17808	6149
2	1.78	-4.24	10.86	0.002011	0.002011	8064	2024	445
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	\mathbf{A}_{sw}	V	τ _c
1	0.20	0.000000	63.15	326
2	1 78	0.000000	9.60	50

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3 3.35 0.000000 0.00 0

Verifica sezioni piedritto destro [Combinazione nº 13 - SLE (Quasi Permanente) - Sisma Vert. negativo]

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Verifiche presso-flessione

Ν°	X	М	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.20	-86.21	21.72	0.002011	0.002011	214918	25477	9095
2	1.78	-16.28	10.86	0.002011	0.002011	38826	5370	1718
3	3.35	0.00	0.00	0.002011	0.002011	0	0	0

Verifiche taglio

N°	Х	A_{sw}	V	$ au_c$
1	0.20	0.000000	-68.12	-352
2	1.78	0.000000	-24.01	-124
3	3 35	0.000000	0.00	0

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche fessurazione

Simbologia adottata ed unità di misura

N° Indice sezione

X_i Ascissa/Ordinata sezione, espresso in m

M_p Momento, espresse in kNm

M_n Momento, espresse in kNm

w_k Ampiezza fessure, espresse in mm

w_{lim} Apertura limite fessure, espresse in mm

s Distanza media tra le fessure, espresse in mm

 ε_{sm} Deformazione nelle fessure, espresse in [%]

Verifica fessurazione fondazione [Combinazione nº 7 - SLE (Quasi Permanente)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	W _{lim}	S _m	€sm
1	0.15	0.002011	0.002011	87.93	-87.93	42.24	0.00	0.30	0.00	0.000
2	1.08	0.002011	0.002011	87.93	-87.93	25.38	0.00	0.30	0.00	0.000
3	2.05	0.002011	0.002011	87.93	-87.93	19.13	0.00	0.30	0.00	0.000
4	3.02	0.002011	0.002011	87.93	-87.93	25.38	0.00	0.30	0.00	0.000
5	3.95	0.002011	0.002011	87.93	-87.93	42.24	0.00	0.30	0.00	0.000

<u>Verifica fessurazione piedritto sinistro [Combinazione nº 7 - SLE (Quasi Permanente)]</u>

N°	X	A_{fi}	${\sf A}_{\sf fs}$	Мр	Mn	M	w	\mathbf{w}_{lim}	S _m	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-42.24	0.00	0.30	0.00	0.000
2	1.77	0.002011	0.002011	49.15	-49.15	-5.29	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

<u>Verifica fessurazione piedritto destro [Combinazione nº 7 - SLE (Quasi Permanente)]</u>

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	\mathbf{W}_{lim}	Sm	ε _{sm}
1	0.20	0.002011	0.002011	49.15	-49.15	-42.24	0.00	0.30	0.00	0.000
2	1.77	0.002011	0.002011	49.15	-49.15	-5.29	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

Verifica fessurazione fondazione [Combinazione n° 8 - SLE (Frequente)]

N° X A_{fi} A_{fs} Mp Mn M w w_{lim} s_m ϵ_{sm}

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1	0.15	0.002011	0.002011	87.93	-87.93	58.10	0.00	0.40	0.00	0.000
2	1.08	0.002011	0.002011	87.93	-87.93	40.84	0.00	0.40	0.00	0.000
3	2.05	0.002011	0.002011	87.93	-87.93	34.25	0.00	0.40	0.00	0.000
4	3.02	0.002011	0.002011	87.93	-87.93	40.84	0.00	0.40	0.00	0.000
5	3.95	0.002011	0.002011	87.93	-87.93	58.10	0.00	0.40	0.00	0.000

Verifica fessurazione piedritto sinistro [Combinazione nº 8 - SLE (Frequente)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	W	\mathbf{W}_{lim}	Sm	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-58.10	0.07	0.40	100.11	0.041
2	1.77	0.002011	0.002011	49.15	-49.15	-9.25	0.00	0.40	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.40	0.00	0.000

<u>Verifica fessurazione piedritto destro [Combinazione nº 8 - SLE (Frequente)]</u>

N°	Х	A_fi	A_{fs}	Мр	Mn	М	W	W_{lim}	S _m	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-58.10	0.07	0.40	100.11	0.041
2	1.77	0.002011	0.002011	49.15	-49.15	-9.25	0.00	0.40	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.40	0.00	0.000

Verifica fessurazione fondazione [Combinazione nº 9 - SLE (Rara)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	€sm
1	0.15	0.002011	0.002011	87.93	-87.93	63.39	0.00	100.00	0.00	0.000
2	1.08	0.002011	0.002011	87.93	-87.93	45.99	0.00	100.00	0.00	0.000
3	2.05	0.002011	0.002011	87.93	-87.93	39.29	0.00	100.00	0.00	0.000
4	3.02	0.002011	0.002011	87.93	-87.93	45.99	0.00	100.00	0.00	0.000
5	3.95	0.002011	0.002011	87.93	-87.93	63.39	0.00	100.00	0.00	0.000

<u>Verifica fessurazione piedritto sinistro [Combinazione nº 9 - SLE (Rara)]</u>

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	W _{lim}	Sm	€ _{sm}
1	0.20	0.002011	0.002011	49.15	-49.15	-63.39	0.08	100.00	100.11	0.045
2	1.77	0.002011	0.002011	49.15	-49.15	-10.58	0.00	100.00	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	100.00	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica fessurazione piedritto destro [Combinazione nº 9 - SLE (Rara)]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	W	\mathbf{W}_{lim}	S _m	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-63.39	0.08	100.00	100.11	0.045
2	1.77	0.002011	0.002011	49.15	-49.15	-10.58	0.00	100.00	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	100.00	0.00	0.000

Verifica fessurazione fondazione [Combinazione nº 10 - SLE (Quasi Permanente) - Sisma Vert. positivo]

N°	X	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	€ _{sm}
1	0.15	0.002011	0.002011	87.93	-87.93	86.21	0.00	0.30	0.00	0.000
2	1.08	0.002011	0.002011	87.93	-87.93	63.38	0.00	0.30	0.00	0.000
3	2.05	0.002011	0.002011	87.93	-87.93	46.46	0.00	0.30	0.00	0.000
4	3.02	0.002011	0.002011	87.93	-87.93	43.99	0.00	0.30	0.00	0.000
5	3.95	0.002011	0.002011	87.93	-87.93	58.39	0.00	0.30	0.00	0.000

Verifica fessurazione piedritto sinistro [Combinazione nº 10 - SLE (Quasi Permanente) - Sisma Vert. positivo]

N°	Χ	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	Sm	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-86.21	0.12	0.30	100.11	0.068
2	1.77	0.002011	0.002011	49.15	-49.15	-16.28	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

Verifica fessurazione piedritto destro [Combinazione nº 10 - SLE (Quasi Permanente) - Sisma Vert. positivo]

N°	Х	A_fi	A_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	S _m	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-58.39	0.07	0.30	100.11	0.041
2	1.77	0.002011	0.002011	49.15	-49.15	-4.24	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

Verifica fessurazione fondazione [Combinazione nº 11 - SLE (Quasi Permanente) - Sisma Vert. negativo]

Ν°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	W _{lim}	Sm	€sm
1	0.15	0.002011	0.002011	87.93	-87.93	86.21	0.00	0.30	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2	1.08	0.002011	0.002011	87.93	-87.93	65.33	0.00	0.30	0.00	0.000
3	2.05	0.002011	0.002011	87.93	-87.93	49.04	0.00	0.30	0.00	0.000
4	3.02	0.002011	0.002011	87.93	-87.93	45.87	0.00	0.30	0.00	0.000
5	3.95	0.002011	0.002011	87.93	-87.93	58.28	0.00	0.30	0.00	0.000

Verifica fessurazione piedritto sinistro [Combinazione nº 11 - SLE (Quasi Permanente) - Sisma Vert. negativo]

N°	Χ	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	Sm	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-86.21	0.12	0.30	100.11	0.069
2	1.77	0.002011	0.002011	49.15	-49.15	-16.28	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

<u>Verifica fessurazione piedritto destro [Combinazione nº 11 - SLE (Quasi Permanente) - Sisma Vert. negativo]</u>

N°	Χ	A_fi	A_{fs}	Мр	Mn	M	w	\mathbf{W}_{lim}	S _m	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-58.28	0.07	0.30	100.11	0.041
2	1.77	0.002011	0.002011	49.15	-49.15	-4.24	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

Verifica fessurazione fondazione [Combinazione nº 12 - SLE (Quasi Permanente) - Sisma Vert. positivo]

N°	X	A_{fi}	A_{fs}	Мр	Mn	M	w	W _{lim}	Sm	€sm
1	0.15	0.002011	0.002011	87.93	-87.93	58.39	0.00	0.30	0.00	0.000
2	1.08	0.002011	0.002011	87.93	-87.93	43.99	0.00	0.30	0.00	0.000
3	2.05	0.002011	0.002011	87.93	-87.93	46.46	0.00	0.30	0.00	0.000
4	3.02	0.002011	0.002011	87.93	-87.93	63.38	0.00	0.30	0.00	0.000
5	3.95	0.002011	0.002011	87.93	-87.93	86.21	0.00	0.30	0.00	0.000

Verifica fessurazione piedritto sinistro [Combinazione nº 12 - SLE (Quasi Permanente) - Sisma Vert. positivo]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	\mathbf{W}_{lim}	S _m	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-58.39	0.07	0.30	100.11	0.041
2	1.77	0.002011	0.002011	49.15	-49.15	-4.24	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica fessurazione piedritto destro [Combinazione nº 12 - SLE (Quasi Permanente) - Sisma Vert. positivo]

N°	Х	${f A}_{\sf fi}$	\mathbf{A}_{fs}	Мр	Mn	М	w	\mathbf{w}_{lim}	S _m	€ _{sm}
1	0.20	0.002011	0.002011	49.15	-49.15	-86.21	0.12	0.30	100.11	0.068
2	1.77	0.002011	0.002011	49.15	-49.15	-16.28	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

Verifica fessurazione fondazione [Combinazione nº 13 - SLE (Quasi Permanente) - Sisma Vert. negativo]

N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{W}_{lim}	Sm	€sm
1	0.15	0.002011	0.002011	87.93	-87.93	58.28	0.00	0.30	0.00	0.000
2	1.08	0.002011	0.002011	87.93	-87.93	45.87	0.00	0.30	0.00	0.000
3	2.05	0.002011	0.002011	87.93	-87.93	49.04	0.00	0.30	0.00	0.000
4	3.02	0.002011	0.002011	87.93	-87.93	65.33	0.00	0.30	0.00	0.000
5	3.95	0.002011	0.002011	87.93	-87.93	86.21	0.00	0.30	0.00	0.000

<u>Verifica fessurazione piedritto sinistro [Combinazione nº 13 - SLE (Quasi Permanente) - Sisma Vert. negativo]</u>

N°	Х	${\sf A}_{\sf fi}$	A_{fs}	Мр	Mn	М	w	\mathbf{w}_{lim}	\mathbf{S}_{m}	€ _{sm}
1	0.20	0.002011	0.002011	49.15	-49.15	-58.28	0.07	0.30	100.11	0.041
2	1.77	0.002011	0.002011	49.15	-49.15	-4.24	0.00	0.30	0.00	0.000
3	3 35	0.002011	0.002011	49 15	-49 15	0.00	0.00	0.30	0.00	0.000

Verifica fessurazione piedritto destro [Combinazione nº 13 - SLE (Quasi Permanente) - Sisma Vert. negativo]

N	, X	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{w}_{lim}	Sm	€sm
1	0.20	0.002011	0.002011	49.15	-49.15	-86.21	0.12	0.30	100.11	0.069
2	1.77	0.002011	0.002011	49.15	-49.15	-16.28	0.00	0.30	0.00	0.000
3	3.35	0.002011	0.002011	49.15	-49.15	0.00	0.00	0.30	0.00	0.000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Inviluppo spostamenti nodali

Inviluppo spostamenti fondazione

u _{Ymax} [m]	u _{Ymin} [m]	u _{Xmax} [m]	u _{Xmin} [m]	X [m]
0.002176	-0.000718	0.003365	-0.003338	0.15
0.002223	0.000647	0.003359	-0.003345	1.08
0.002115	0.001488	0.003352	-0.003352	2.05
0.002223	0.000647	0.003345	-0.003359	3.02
0.002176	-0.000718	0.003338	-0.003365	3.88

Inviluppo spostamenti piedritto sinistro

u _{Ymax} [m]	u _{Ymin} [m]	u _{Xmax} [m]	u _{Xmin} [m]	Y [m]
0.002176	-0.000718	0.003365	-0.003338	0.20
0.002179	-0.000716	0.007684	-0.002061	1.78
0.002180	-0.000715	0.013145	-0.000344	3.35

Inviluppo spostamenti piedritto destro

u _{Ymax} [m]	u _{Ymin} [m]	u _{xmax} [m]	u _{Xmin} [m]	Y [m]
0.002176	-0.000718	0.003338	-0.003365	0.20
0.002179	-0.000716	0.002061	-0.007684	1.78
0.002180	-0.000715	0.000344	-0.013145	3.35

Inviluppo sollecitazioni nodali

Inviluppo sollecitazioni fondazione

X [m]	M _{min} [kNm]	M _{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
0.15	-129.90	-42.24	-30.42	-19.20	40.19	96.86
1.08	-107.79	-25.38	-28.17	0.66	40.19	94.60
2.05	-85.92	-19.13	-15.96	18.24	40.19	92.22
3.02	-107.79	-25.38	2.19	29.81	40.19	94.60
3.95	-129.90	-42.24	19.20	30.42	40.19	96.86

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Inviluppo sollecitazioni piedritto sinistro

n [kN] N _m	N _{min} [kN	V _{max} [kN]	V _{min} [kN]	M _{max} [kNm]	M _{min} [kNm]	Y [m]
20.29	20.29	95.86	40.20	-42.24	-129.90	0.20
10.14	10.14	37.88	9.60	-4.24	-27.20	1.78
0.00	0.00	0.00	0.00	0.00	0.00	3.35

Inviluppo sollecitazioni piedritto destro

N_{max} [kN]	N_{min} [kN]	V _{max} [kN]	V_{min} [kN]	M _{max} [kNm]	M _{min} [kNm]	Y [m]
31.28	20.29	-40.20	-95.86	-42.24	-129.90	0.20
15.64	10.14	-9.60	-37.88	-4.24	-27.20	1.78
0.00	0.00	0.00	0.00	0.00	0.00	3.35

Inviluppo pressioni terreno

Inviluppo pressioni sul terreno di fondazione

σ _{tmax} [kPa]	σ _{tmin} [kPa]	X [m]
34	0	0.15
35	10	1.08
33	23	2.05
35	10	3.02
34	0	3.95

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Х	A_{fi}	A_{fs}	CS
0.15	0.002011	0.002011	2.04
1.08	0.002011	0.002011	2.33
2.05	0.002011	0.002011	3.04
3.02	0.002011	0.002011	2.32
3.95	0.002011	0.002011	2.04

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Χ	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
0.15	194.49	0.00	0.00	0.000000
1.08	194.49	0.00	0.00	0.000000
2.05	194.49	0.00	0.00	0.000000
3.02	194.49	0.00	0.00	0.000000
3.95	194.49	0.00	0.00	0.000000

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

CS	A_{fs}	A_{fi}	Υ
1.28	0.002011	0.002011	0.20
4.80	0.002011	0.002011	1.78
1000.00	0.002011	0.002011	3.35

Υ	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
0.20	163.83	0.00	0.00	0.000000
1.78	162.05	0.00	0.00	0.000000
3.35	160.26	0.00	0.00	0.000000

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

CS	A_{fs}	A_{fi}	Υ
1.28	0.002011	0.002011	0.20
4.80	0.002011	0.002011	1.78
1000.00	0.002011	0.002011	3.35

Υ	V_{Rd}	V_{Rsd}	V_{Rcd}	\mathbf{A}_{sw}
0.20	163.83	0.00	0.00	0.000000
1.78	162.05	0.00	0.00	0.000000
3.35	160.26	0.00	0.00	0.000000

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Inviluppo verifiche stato limite esercizio (SLE)

Verifica sezioni fondazione (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.4000 m

Х	A_{fi}	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}
0.15	0.002011	0.002011	4820	133631	27093
1.08	0.002011	0.002011	3660	97210	21509
2.05	0.002011	0.002011	2753	68770	17138
3.02	0.002011	0.002011	3660	97210	21509
3.95	0.002011	0.002011	4820	133631	27093

X	$ au_{c}$	A_{sw}
0.15	-88	0.000000
1.08	-78	0.000000
2.05	44	0.000000
3.02	84	0.000000
3.95	88	0.000000

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione B = 100 cm Altezza sezione H = 0.3000 m

Υ	A_{fi}	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0.20	0.002011	0.002011	9096	25719	214918
1.78	0.002011	0.002011	1718	5489	38826
3.35	0.002011	0.002011	0	0	0

A _{sw}	$ au_{c}$	Y
0.000000	352	0.20
0.000000	124	1.78
0.000000	0	3.35

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifica sezioni piedritto destro (Inviluppo)

Base sezione B = 100 cmAltezza sezione H = 0.3000 m

σ_{fs}	σ_{fi}	σ_{c}	A_{fs}	A_{fi}	Υ
214918	25719	9096	0.002011	0.002011	0.20
38826	5489	1718	0.002011	0.002011	1.78
0	0	0	0.002011	0.002011	3.35

A_{sw}	$ au_{c}$	Υ
0.000000	-352	0.20
0.000000	-124	1.78
0.000000	0	3.35

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Verifiche geotecniche

Simbologia adottata

IC Indice della combinazione

Nc, Nq, N_g Fattori di capacità portante

Nc, Nq, N_g Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

QU Portanza ultima del terreno, espressa in [kPa] Portanza ultima del terreno, espressa in [kN]/m QV Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC Nc	Nq	Νγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	\mathbf{Q}_{Y} FS
1 20.72	10.66	6.76	29.30	14.09	6.76	2461	10088.46	112.8689.39
2 20.72	10.66	6.76	29.30	14.09	6.76	2461	10088.46	112.8689.39
3 20.72	10.66	6.76	0.03	1.33	0.16	145	594.20	94.00 6.32
4 20.72	10.66	6.76	-1.84	0.52	0.02	38	154.94	73.20 2.12
5 20.72	10.66	6.76	0.03	1.33	0.16	145	594.20	94.00 6.32
6 20.72	10.66	6.76	-1.84	0.52	0.02	38	154.94	73.20 2.12

