

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO INTERNAZIONALE E78 S.G.C. GROSSETO - FANO

ADEGUAMENTO A 4 CORSIE

NEL TRATTO GROSSETO - SIENA (S.S. 223 "DI PAGANICO")

DAL KM 41+600 AL KM 53+400 - LOTTO 9

PROGETTO ESECUTIVO

cod. **FI15**

ATI SINTAGMA - GDG - ICARIA PROGETTAZIONE: IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: IL GRUPPO DI PROGETTAZIONE: MANDATARIA: MANDANTI: Dott. Ing. Nando Granieri Ordine degli Ingegneri della Prov. di Perugia nº A351 Sintagma età di ingegneria Dott.Ing. Dott.Arch. N.Granieri Dott. Ing. D.Carlaccini Dott. Ing. V.Rotisciani S.Sacconi A.Rea V.De Gori Dott. Ing. N.Kamenicky V.Truffini Dott. Ing. F.Macchioni IL PROGETTISTA: Dott. Ing. Dott.Ing. C.Vischini Geom. A.Bracchini F.Durastanti Dott. Ing. Federico Durastanti Dott.Arch. V.Piunno Dott. Ing. Dott. Ina. Dott. Ing. G.Pulli Ordine degli Ingegneri della Prov. di Terni n° A844 Dott.Ing. Dott. Ing. C.Consorti Dott.Ing. C.Sugaroni E.Bartolocci Geom. F.Dominici Geom. Dott.Geol. G.Cerquiglini IL GEOLOGO: Geom. S.Scopetta L.Sbrenna Dott.Ing. Dott. Geol. Giorgio Cerquiglini E.Sellari Ordine dei Geologi della Regione Umbria n°108 Dott.Ing L.Dinelli L.Nani F.Pambianco Dott.Ing. II R.U.P. Dott.Ing F.Berti Nulli Dott. Ing. Dott. Agr. Raffaele Franco Carso INGEGNERI DELLA PROVINCIA Sezione A PE ORDINE degli INGEGNERI IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE: Dott. Ing. Filippo Pambianco INCEGNERE Ordine degli Ingegneri della Prov. di Perugia n° A1373 Federico DOTTORS INSEGNERE MANDO GRANIERI **PROTOCOLLO** DATA SETTORE CIVICE E AMBIENTALE SETTORE INDUSTRIALE SETTORE DELL'INFORMAZIONE Provincia di TERNI

OPERE DI ATTRAVERSAMENTO IDRAULICO TOMBINO P20 Relazione di calcolo opere provvisionali

CODICE PROGET	TO LIV. PROG. N. PROG.	NOME FILE	M20-STR-RE02			REVISIONE	SCALA:
LOFI	15 E 1901	CODICE ELAB.	T00TM20S	TRRE	0 2	Α	- N.Granieri
Α	Emissione			28/02/2020	P. Castraberte	E.Bartolocci	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

INDICE

1.	PREMESSA	. 2
2.	NORMATIVA DI RIFERIMENTO	. 3
3.	CARATTERISTICHE DEI MATERIALI	. 4
4.	CARATTERIZZAZIONE GEOTECNICA	. 5
5.	MODELLAZIONE NUMERICA	. 6
5.	.1 PROGRAMMI PER L'ANALISI AUTOMATICA	6
5.	.2 MODELLO DI CALCOLO	6
6.	ANALISI DEI CARICHI	. 8
6.	.1 CONDIZIONI DI CARICO ELEMENTARI	8
	6.1.1 Peso Proprio	8
	6.1.2 Spinta statica delle terre	8
	6.1.3 Spinta statica dell'acqua	10
	6.1.4 Spinta da sovraccarico accidentale	10
	6.1.5 Azione sismica	10
6.	.2 COMBINAZIONI DI CARICO	10
7.	ANALISI DEI RISULTATI	13
7.	.1 ANALISI DELLE SOLLECITAZIONI	13
7.	.2 ANALISI DEGLI SPOSTAMENTI	16
8.	VERIFICHE	17
8.	.1 VERIFICHE DI STABILITÀ GLOBALE	17
8.	.2 VERIFICHE GEOTECNICHE	18
8.	.3 VERIFICHE STRUTTURALI	18
9.	ALLEGATO	19

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1.PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione esecutiva dell'ampliamento da 2 a 4 corsie dell'Itinerario internazionale E78 S.G.C. Grosseto – Fano, Lotto 9.

Oggetto della presente relazione sono le analisi e le verifiche statiche delle opere provvisionali previste per la realizzazione del tombino P20, posto alla progressiva 49+200.54. Per sostenere lo scavo durante la fase di costruzione, si prevede la costruzione di una paratia di micropali di diametro Ø300, lunghezza 15m, posti ad interasse 0.40 m ed armati con un tubolare Ø 219.1 spessore 8mm. In sommità è prevista la realizzazione di un cordolo 50 cm x 50 cm.

Le strutture sono progettate coerentemente con quanto previsto dalla normativa vigente, Norme Tecniche delle Costruzioni 2018.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2.NORMATIVA DI RIFERIMENTO

Il progetto è stato redatto sulla base delle seguenti normative e standard progettuali:

- ➤ L. 1086 05.11.1971 "Norme per la disciplina delle opere in conglomerato cementizio armato normale e precompresso ed a struttura metallica".
- ➤ Legge n. 64 del 2 febbraio 1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- ➤ Decreto Ministeriale del 17/01/2018 "Norme Tecniche per le Costruzioni".
- ➤ UNI EN 206-1:2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità";
- ➤ UNI 11104-2016, "Calcestruzzo Parte 1: specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1";
- ➤ UNI EN 1992-1-1 2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici";
- ➤ UNI EN 1993-1-1 2005: "Eurocodice 3 Progettazione delle strutture in acciaio";
- ➤ UNI-EN 1997-1 2005: "Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali";
- ➤ UNI-EN 1998-1 2005: "Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici".
- ➤ UNI-EN 1998-5 2005: "Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- ➤ UNI EN 1537: "Esecuzione di lavori geotecnici speciali Tiranti di ancoraggio".

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3.CARATTERISTICHE DEI MATERIALI

Calcestruzzo per cordoli

Resistenza cubica caratteristica	R_{ck}	= 35.0	N/mm ²
Rapporto A/C		< 0.60	
Cemento per mc di impasto		= 300	Kg
Classe di esposizione		XC2	
Copriferro		35	mm

Acciaio per armatura B450C

Tensione caratteristica di snervamento	f_{yk}	≥ 450	N/mm ²
Tensione caratteristica di calcolo	f_{yd}	≥ 391.3	N/ mm ²
Modulo di elasticità	Es	= 210000	N/mm ²

Acciaio per carpenteria metallica

Tubolari micropali Acciaio S275

Malte e miscele per micropali

Classe di resistenza minima a compressione: C 25/30

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.CARATTERIZZAZIONE GEOTECNICA

Si riportano di seguito i parametri di resistenza e deformabilità dei terreni attraversati in accordo con la caratterizzazione geotecnica.

				γ	c'	φ'	z	Cu	Ε'	OCR							
Unità geotecniche		Unità geologiche		[kN/m³]	[kPa]	[°]	[m da p.c.]	[kPa]	[MPa]	[-]							
	Sabbia e		alluvioni fluviali				0÷2		5÷20								
A ghiaia		at, at2, at3	terrazzate recenti e antiche	19.5	10÷20	25÷27	>2	ı	25÷50	-							
_	A:II:4:	Dla	Augilla a Dalamahini	20	10÷25	20.20	0÷20	150÷250	50÷120	3÷5							
В	B Argilliti	Pb	Argille a Palombini	20	10+25	28÷30	>20	100÷200	100÷220	1.5÷3							
С	Calcare/Ghiaia	C) /	CV	CV	CV	CV	CV	CV	CV	Calcare Cavernoso	21	10÷15	34÷35	0÷10		40÷80	
	Calcal e/ Giliala	CV	Calcare Cavernoso	21	10-13	34733	>10	-	60÷120	-							
	Dunania /Chinin	CNA	Dunnen di Cuntti	10		25.27	0÷20		50÷100								
D	Breccia/Ghiaia	CM	Brecce di Grotti	19	0	35÷37	>20	-	100÷200	-							
_	A : !! - /! ! !	-11 D- D	Depositi lacustri,		40.22		0÷20	400.200	40÷80	3÷5							
E Argille/Limi		dl, Pa, Ps	argille e sabbie plioceniche	19.5 10÷30		23÷25	>20	100÷200	80÷120	1.5÷3							

Tabella 1: Caratterizzazione geotecnica

La quota della falda è posta a -0.50m dal fondo scavo provvisorio.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

5.MODELLAZIONE NUMERICA

5.1 Programmi per l'analisi automatica

Lo stato tenso-deformativo e le verifiche strutturali della paratia sono state sviluppate mediante il software di calcolo *PARATIEPLUS*.

5.2 Modello di calcolo

Lo stato tenso-deformativo è stato investigato mediante il software di calcolo PARATIE PLUS, programma non lineare agli elementi finiti per l'analisi di strutture di sostegno flessibili.

Si è considerato un comportamento piano nelle deformazioni, analizzando una striscia di parete di larghezza unitaria. La realizzazione dello scavo sostenuto da paratie è seguita in tutte le varie fasi attraverso un'analisi statica incrementale: ogni passo di carico coincide con una ben precisa configurazione caratterizzata da una quota di scavo, da un insieme di puntoni e tiranti applicati e da una ben precisa disposizione di carichi applicati.

Nella modellazione è implementata la seguente successione di step:

Step 1: Condizione Geostatica: realizzazione della paratia ed applicazione dei carichi relativi alla fase di costruzione.

Step 2: Scavo per il raggiungimento del fondo scavo provvisorio.

Nella definizione della quota di fondo scavo si è tenuto conto di quanto prescritto dalla normativa NTC 2018 § 6.5.2.2, approfondendo lo scavo del valore minimo tra il 10% dell'altezza massi ma di scavo e 0.50m.

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

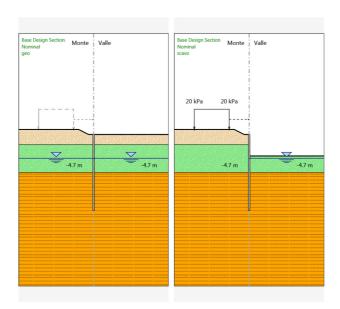


Tabella 2: stage di analisi

Per maggiori dettagli si rimanda agli allegati di calcolo.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6.ANALISI DEI CARICHI

6.1 Condizioni di carico elementari

6.1.1 Peso Proprio

Il peso proprio della struttura è calcolato in base alla geometria degli elementi strutturali e al peso specifico assunto per i materiali:

$$\gamma_{cls}$$
=25.0 kN/m³

6.1.2 Spinta statica delle terre

Nel modello di calcolo impiegato dal software di calcolo PARATIE, la spinta del terreno viene determinata investigando l'interazione statica tra terreno e la struttura deformabile a partire da uno stato di spinta a riposo del terreno sulla paratia.

I parametri che identificano il tipo di legge costitutiva possono essere distinti in due sottoclassi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo K_0 , il coefficiente di spinta attiva K_a e il coefficiente di spinta passiva K_p .

Il coefficiente di spinta a riposo fornisce lo stato tensionale presente in sito prima delle operazioni di scavo. Esso lega la tensione orizzontale efficace σ'_h a quella verticale σ'_v attraverso la relazione:

$$\sigma'_h = K_0 \cdot \sigma'_v$$

 K_0 dipende dalla resistenza del terreno, attraverso il suo angolo di attrito efficace ϕ' e dalla sua storia geologica. Si può assumere che:

$$K_0 = K_0^{NC} \cdot (OCR)^m$$

dove
 $K_0^{NC} = 1 - \text{sen } \phi'$

è il coefficiente di spinta a riposo per un terreno normalconsolidato (OCR=1). OCR è il grado di sovraconsolidazione e m è un parametro empirico, di solito compreso tra 0.4 e 0.7.

I coefficienti di spinta attiva e passiva sono forniti dalla teoria di Rankine per una parete liscia dalle seguenti espressioni:

$$K_a = \tan^2(45 - \phi'/2)$$

 $K_p = \tan^2(45 + \phi'/2)$

Per tener conto dell'angolo di attrito δ tra paratia e terreno il software PARATIE impiega per Ka e Kp la formulazione rispettivamente di Coulomb e Caquot – Kereisel.

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Formulazione di Coulomb per k_a

$$k_{a} = \frac{cos^{2}(\phi' - \beta)}{cos^{2}\beta \cdot cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{sen(\delta + \phi') \cdot sen(\phi' - i)}{cos(\beta + \delta) \cdot cos(\beta - i)}}\right]^{2}}$$

dove:

φ' è l'angolo di attrito del terreno

 β è l'angolo d'inclinazione del diaframma rispetto alla verticale

δ è l'angolo di attrito paratia-terreno

i è l'angolo d'inclinazione del terreno a monte della paratia rispetto all'orizzontale

Il valore limite della tensione orizzontale sarà pari a

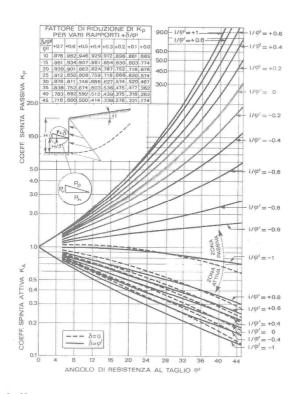
$$\sigma'_{h} = K_{a} \cdot \sigma'_{v} - 2 \cdot c' \cdot \sqrt{K_{a}}$$

$$\sigma'_{h} = K_{p} \cdot \sigma'_{v} + 2 \cdot c' \cdot \sqrt{K_{p}}$$

a seconda che il collasso avvenga in spinta attiva o passiva rispettivamente. c' è la coesione drenata del terreno.

Formulazione di Caquot – Kereisel per k_p

MANDATARIA



MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

6.1.3 Spinta statica dell'acqua

La spinta dell'acqua è proporzionale alla profondità a partire dalla quota di falda.

6.1.4 Spinta da sovraccarico accidentale

Il sovraccarico accidentale di superficie è assunto pari a 20 kPa, riproducente il traffico stradale attivo sull'eventuale carreggiata presente a tergo delle opere.

6.1.5 Azione sismica

L'azione sismica è stata omessa in quanto il progetto prevede un periodo di costruzione dell'opera in esame inferiore a 2 anni.

6.2 Combinazioni di carico

La verifica di stabilità globale del complesso opera di sostegno-terreno è stata effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I delle NTC 2018.

Le rimanenti verifiche sono state effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti:

DESIGN GROUP

Combinazione 1: (A1+M1+R1)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II, con i coefficienti γ_R del gruppo R1 pari all'unità.

In particolare nelle verifiche nei confronti di stati limite ultimi geotecnici, si è considerato lo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno. Le analisi sono state condotte con la Combinazione 2 (A2+M2+R1), nella quale i parametri di resistenza del terreno sono ridotti tramite i coefficienti parziali del gruppo M2, i coefficienti γ_R sulla resistenza globale (R1) sono unitari e le sole azioni variabili sono amplificate con i coefficienti del gruppo A2.

Nelle verifiche nei confronti di stati limite per raggiungimento della resistenza negli elementi strutturali, le analisi sono state svolte utilizzando la Combinazione 1 (A1+M1+R1), nella quale i coefficienti sui parametri di resistenza del terreno (M1) e sulla resistenza globale del sistema (R1) sono unitari, mentre le azioni permanenti e variabili sono amplificate mediante i coefficienti parziali del gruppo A1.

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti Gı	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ_{G1}

Tabella 3- Coefficienti parziali per le azioni o per l'effetto delle azioni (Tab. 6.2.I NTC2018)

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γc	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 4– Coefficienti parziali per i parametri geotecnici del terreno (Tab.6.2.II NTC2018)

COEFFICIENTE	R2
$\gamma_{\rm R}$	1,1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Tabella 5: Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo (Tabella 6.8.I – NTC 2018)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7. ANALISI DEI RISULTATI

7.1 Analisi delle sollecitazioni

Nei paragrafi seguenti si riportano i risultati delle analisi condotte per i diversi modelli implementati, con le indicazioni dei valori massimi delle sollecitazioni flettenti e taglianti e delle rispettive profondità. I valori riportati sono relativi all'analisi al metro lineare.

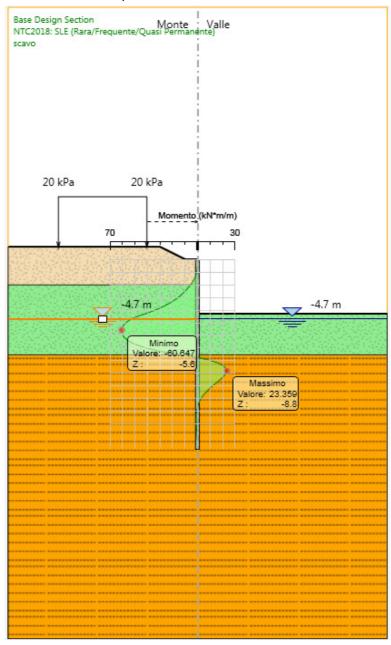


Figura 1: Modello SLE: Inviluppo Diagramma del Momento

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

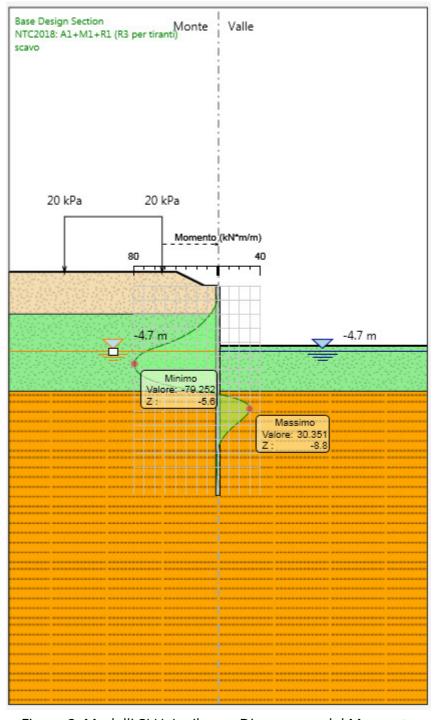


Figura 2: Modelli SLU: Inviluppo Diagramma del Momento

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

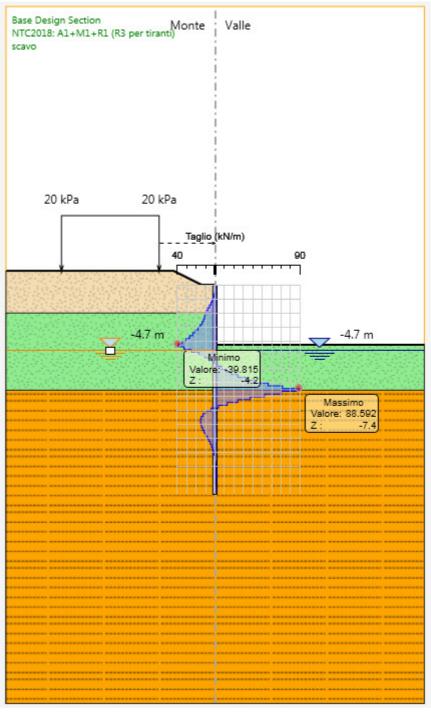


Figura 3: Modelli SLU: Inviluppo Diagramma del Taglio

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

7.2 Analisi degli spostamenti

Di seguito si forniscono le indicazioni dei valori massimi degli spostamenti.

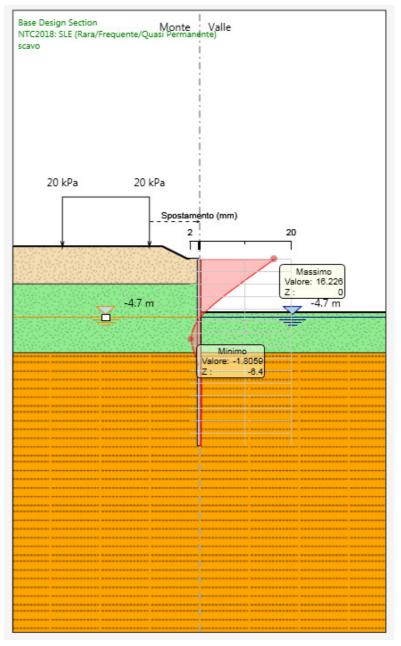


Figura 4: Modello SLE: Inviluppo degli spostamenti

Lo spostamento massimo risulta pari a 16mm.

MANDATARIA

MANDANTE

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

8. **VERIFICHE**

8.1 Verifiche di stabilità globale

In accordo alle NTC 2018, le verifiche di stabilità globale dell'insieme terreno-opera in condizioni statiche sono state condotte secondo l'Approccio 1 – combinazione 2 (A2 + M2 + R2), tenendo conto dei coefficienti parziali riportati alle tabelle 6.2.I, 6.2.II e 6.8.1 delle suddette NTC. Le verifiche in presenza di azioni sismiche sono state eseguite ponendo pari a 1 i coefficienti parziali sulle azioni e sui parametri geotecnici e considerando la variazione della spinta delle terre per effetto dell'accelerazione sismica (§ 7.11.1 NTC 2018).

Le analisi sono state condotte mediante il programma Paratie Plus, applicando il metodo di Bishop. I risultati ottenuti presentano, lungo tutte le superfici di scivolamento analizzate, dei coefficienti di sicurezza conformi a quanto richiesto dalle NTC, con valore minimo pari a 3.64, come illustrato nella figura seguente con riferimento alla configurazione più gravosa, che si manifesta in fase sismica.

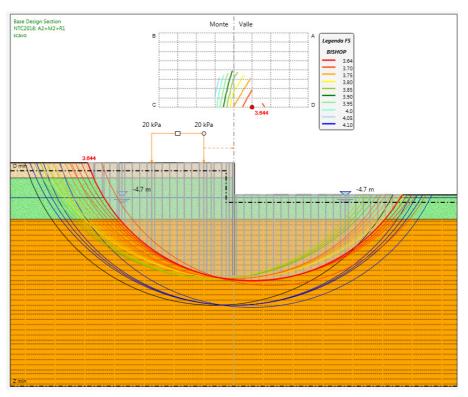


Figura 5: Risultati dell'analisi di stabilità globale

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

8.2 Verifiche geotecniche

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Max. Rapporto Spinte (Efficace/Passiva): 0.17

Combinazione A2+M2+R1

8.3 Verifiche strutturali

Si riporta di seguito la verifica nella condizione più gravosa. Per maggiori dettagli si rimanda agli allegati di calcolo.

Max. momento (assoluto) [kNm/m]	79.25	Z = -5.6 m
Max. taglio [kN/m]	88.59	Z = -7.6 m

Massimo sfruttamento in flessione $0.339 \quad Z = -5.6 \text{ m}$ Massimo sfruttamento a taglio $0.069 \quad Z = -7.4 \text{ m}$

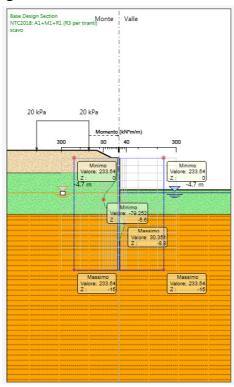


Figura 6: Modello SLU: Verifica flessionale

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

9.ALLEGATO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

1. Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota: 2 m OCR: 1

Tipo : HORIZONTAL Quota : -2 m

OCR:1

Tipo: HORIZONTAL Quota: -7.5 m

OCR:1

Strato di Terreno Terrer	o γ dry	γ sat	ø' (øcvøp c' Su	Modulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rvo	Rvc	Ku	Kvc	Kur
	kN/m	³kN/m	3 0	° ° kPa kPa		kPa	kPa	kPa	kPak	N/m³	kN/m³l	kN/m³
1 Rileva	to 19	19	35	0	Constant	15000	45000					
2 A2	19.5	19.5	25	10	Constant	25000	75000					
3 D1	19	19	35	0	Constant	50000	150000)				

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

2. Descrizione Pareti

X:0 m

Quota in alto: 0 m Quota di fondo: -15 m Muro di sinistra

Sezione: Micropalo

Area equivalente: 0.0377625858137518 m

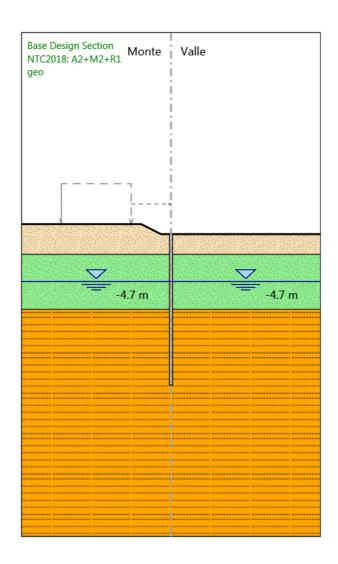
Inerzia equivalente: 0.0002 m⁴/m Materiale calcestruzzo: C25/30 Tipo sezione: Tangent

Spaziatura: 0.4 m Diametro: 0.3 m Efficacia: 1

Sezione: CHS219.1*8 Tipo sezione: O Spaziatura: 0.4 m

Materiale acciaio: S275

Spessore: 0.008 m Diametro: 0.2191 m



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3. Fasi di Calcolo

3.1. geo

geo

Scavo

Muro di sinistra

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Irregolare)

(-15;1) (-3;1) (-1;0) (0;0)

Linea di scavo di destra (Orizzontale)

0 m

Falda acquifera

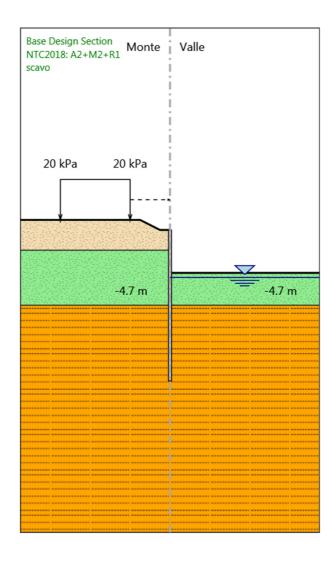
Falda di sinistra : -4.7 m Falda di destra : -4.7 m

Elementi strutturali

Paratia : WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -15 m Sezione : Micropalo



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3.2. scavo

scavo

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -4.25 m

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Linea di scavo di sinistra (Irregolare)

(-15;1)

(-3;1)

(-1;0)

(0;0)

Linea di scavo di destra (Orizzontale)

-4.25 m

Falda acquifera

Falda di sinistra : -4.7 m Falda di destra : -4.7 m

Carichi

Carico lineare in superficie: ACCIDENTALE

X iniziale : -11 m X finale : -4 m

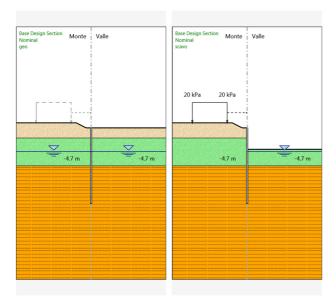
Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -15 m Sezione : Micropalo



PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

3.3. Tabella Configurazione Stage (Nominal)

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4. Descrizione Coefficienti Design Assumption

Coefficienti A

Nome	Carichi Permanenti Sfavorevoli (F_dead_loa d_unfavour)	Favorevoli (F_dead_lo	Sfavorevoli (F_live_load	(F_live_loa	Sismico (F_seis	oni Acqua	ni Acqua Lato	Perman	Perman enti	Carichi Variabili Destabili zzanti (F_UPL_	Permane nti Destabili	Perman enti Stabilizz	Variabili Destabili
						. –	. –	(F_UPL_ GDStab)	. –		(F_HYD_ GDStab)	· -	QDStab)
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	_GStab) γGstb	γQdst	γGdst	_GStab) γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SLE (Rara/Frequ ente/Quasi Permanente)	1	1	1	1	0	1	1	1	1	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
NTC2018: A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1

Coefficienti M

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γς	γcu	γqu	γγ
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1

Coefficienti R

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	<pre>Kp) (F_Soil_Res_walls)</pre>	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE	1	1	1	1
(Rara/Frequente/Quasi				
Permanente)				
NTC2018: A1+M1+R1 (R3 per	1	1.2	1.1	1
tiranti)				
NTC2018: A2+M2+R1	1	1.2	1.1	1

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.1. Risultati NTC2018: SLE (Rara/Frequente/Quasi Permanente)

4.1.1. Tabella Spostamento NTC2018: SLE (Rara/Frequente/Quasi Permanente) - LEFT Stage: geo

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permaner	nte) Tipo Risultato: Spostamer	nto Muro: LEFT
Stage	Z (m)	Spostamento (mm)
geo	0	0
geo	-0.2	0
geo	-0.4	0
geo	-0.6	0
geo	-0.8	0
geo	-1	0
geo	-1.2	0
geo	-1.4	0
geo	-1.6	0
geo	-1.8	0
geo	-2	0
geo	-2.2	0
geo	-2.4	0
geo	-2.6	0
geo	-2.8	0
geo	-3	0
geo	-3.2	0
geo	-3.4	0
geo	-3.6	0
geo	-3.8	0
geo	-4	0
geo	-4.2	0
geo	-4.4	0
geo	-4.6	0
geo	-4.8	0
geo	-5	0
geo	-5.2	0
geo	-5.4	0
geo	-5.6	0
geo	-5.8	0
	-5.8 -6	0
geo		
geo	-6.2	0
geo	-6.4	0
geo	-6.6	0
geo	-6.8	0
geo	-7 7.2	0
geo	-7.2	0
geo	-7.4	0
geo	-7.6	0
geo	-7.8	0
geo	-8	0
geo	-8.2	0
geo	-8.4	0
geo	-8.6	0
geo	-8.8	0
geo	-9	0
geo	-9.2	0
geo	-9.4	0
geo	-9.6	0
geo	-9.8	0
geo	-10	0
geo	-10.2	0

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanent	e) Tipo Risultato: Spostament	o Muro: LEFT
Stage	Z (m)	Spostamento (mm)
geo	-10.4	0
geo	-10.6	0
geo	-10.8	0
geo	-11	0
geo	-11.2	0
geo	-11.4	0
geo	-11.6	0
geo	-11.8	0
geo	-12	0
geo	-12.2	0
geo	-12.4	0
geo	-12.6	0
geo	-12.8	0
geo	-13	0
geo	-13.2	0
geo	-13.4	0
geo	-13.6	0
geo	-13.8	0
geo	-14	0
geo	-14.2	0
geo	-14.4	0
geo	-14.6	0
geo	-14.8	0
geo	-15	0

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.1.2. Tabella Risultati Paratia NTC2018: SLE (Rara/Frequente/Quasi Permanente) - Left Wall - Stage: geo

esign Assumption: NTC2018: SLE (Rara/Frequente/Quasi Perman			
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
geo	0	0	0
geo	-0.2	0	0
geo	-0.4	0	0
geo	-0.6	0	0
geo	-0.8	0	0
geo	-1	0	0
geo	-1.2	0	0
geo	-1.4	0	0
geo	-1.6	0	0
geo	-1.8	0	0
geo	-2	0	0
geo	-2.2	0	0
geo	-2.4	0	0
geo	-2.6	0	0
geo	-2.8	0	0
geo	-3	0	0
geo	-3.2	0	0
geo	-3.4	0	0
geo	-3.6	0	0
geo	-3.8	0	0
geo	-4	0	0
geo	-4.2	0	0
geo	-4.4	0	0
geo	-4.6	0	0
geo	-4.8	0	0
geo	-5 5.2	0	0
geo	-5.2	0	0
geo	-5.4	0	0
geo	-5.6	0	0
geo	-5.8	0	0
geo	-6	0	0
geo	-6.2	0	0
geo	-6.4	0	0
geo	-6.6 -6.8	0	0 0
geo	-6.8 -7	0	
geo	-7 -7.2	0 0	0 0
geo	-7.2 -7.4	0	0
geo	-7.4 -7.6	0	0
geo	-7.6 -7.8	0	0
geo	-7.8 -8	0	0
geo geo	-8.2	0	0
geo	-8.2 -8.4	0	0
	-8.4 -8.6	0	0
geo	-8.8	0	0
geo	-8.8 -9	0	0
geo geo	-9.2	0	0
geo	-9.2 -9.4	0	0
geo	-9.4 -9.6	0	0
geo	-9.8	0	0
geo	-10	0	0
geo	-10.2	0	0
geo	-10.2	0	0
geo	-10.4	0	0
geo	-10.8	0	0
860	-10.0	U	U

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permaner	nte) Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m)Taglio (kN/m)
geo	-11	0	0
geo	-11.2	0	0
geo	-11.4	0	0
geo	-11.6	0	0
geo	-11.8	0	0
geo	-12	0	0
geo	-12.2	0	0
geo	-12.4	0	0
geo	-12.6	0	0
geo	-12.8	0	0
geo	-13	0	0
geo	-13.2	0	0
geo	-13.4	0	0
geo	-13.6	0	0
geo	-13.8	0	0
geo	-14	0	0
geo	-14.2	0	0
geo	-14.4	0	0
geo	-14.6	0	0
geo	-14.8	0	0
geo	-15	0	0

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.1.3. Tabella Spostamento NTC2018: SLE (Rara/Frequente/Quasi Permanente) - LEFT Stage: scavo

esign Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permaner		
Stage	Z (m)	Spostamento (mm)
scavo	0	16.23
scavo	-0.2	15.47
scavo	-0.4	14.72
scavo	-0.6	13.97
scavo	-0.8	13.22
scavo	-1	12.47
scavo	-1.2	11.72
scavo	-1.4	10.97
scavo	-1.6	10.22
scavo	-1.8	9.48
scavo	-2	8.73
scavo	-2.2	8
scavo	-2.4	7.27
scavo	-2.6	6.55
scavo	-2.8	5.84
scavo	-3	5.14
scavo	-3.2	4.45
scavo	-3.4	3.78
scavo	-3.6	3.14
scavo	-3.8	2.51
scavo	-4	1.91
scavo	-4.2	1.34
scavo	-4.4	0.81
scavo	-4.6	0.32
scavo	-4.8	-0.13
scavo	-5	-0.52
scavo	-5.2	-0.87
scavo	-5.4	-1.16
scavo	-5.6	-1.4
scavo	-5.8	-1.58
scavo	-6	-1.71
scavo	-6.2	-1.78
scavo	-6.4	-1.81
scavo	-6.6	-1.78
scavo	-6.8	-1.71
scavo	-7	-1.59
scavo	-7.2	-1.44
scavo	-7.4	-1.27
scavo	-7.6	-1.07
scavo	-7.8	-0.87
scavo	-8	-0.67
scavo	-8.2	-0.48
scavo	-8.4	-0.3
scavo	-8.6	-0.15
scavo	-8.8	-0.01
scavo	-9	0.1
scavo	-9.2	0.2
scavo	-9.4	0.27
scavo	-9.6	0.33
scavo	-9.8	0.38
scavo	-10	0.41
scavo	-10.2	0.43
scavo	-10.4	0.44
scavo	-10.6	0.44
scavo	-10.8	0.44
Scaro	10.0	J. TT

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanent	te) Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento (mm)
scavo	-11	0.44
scavo	-11.2	0.43
scavo	-11.4	0.42
scavo	-11.6	0.41
scavo	-11.8	0.4
scavo	-12	0.39
scavo	-12.2	0.38
scavo	-12.4	0.37
scavo	-12.6	0.37
scavo	-12.8	0.36
scavo	-13	0.36
scavo	-13.2	0.35
scavo	-13.4	0.35
scavo	-13.6	0.34
scavo	-13.8	0.34
scavo	-14	0.34
scavo	-14.2	0.34
scavo	-14.4	0.33
scavo	-14.6	0.33
scavo	-14.8	0.33
scavo	-15	0.33

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

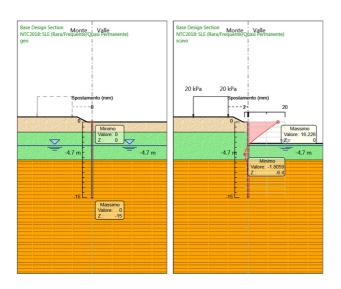
4.1.4. Tabella Risultati Paratia NTC2018: SLE (Rara/Frequente/Quasi Permanente) - Left Wall -Stage: scavo

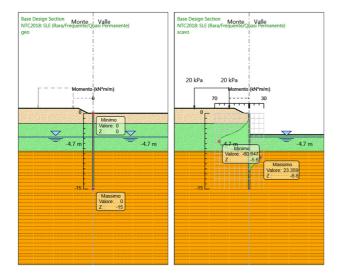
sign Assumption: NTC2018: SLE (Rara/Frequente/Quasi Perma			
Stage	Z (m)	Momento (kN*m/r	m) Taglio (kN/m)
scavo	0	0	0
scavo	-0.2	0	0
scavo	-0.4	-0.04	-0.18
scavo	-0.6	-0.14	-0.52
scavo	-0.8	-0.35	-1.04
scavo	-1	-0.7	-1.74
scavo	-1.2	-1.22	-2.61
scavo	-1.4	-1.95	-3.65
scavo	-1.6	-2.92	-4.87
scavo	-1.8	-4.17	-6.26
scavo	-2	-5.74	-7.83
scavo	-2.2	-7.37	-8.17
scavo	-2.4	-9.13	-8.8
scavo	-2.6	-11.07	-9.7
scavo	-2.8	-13.25	-10.88
scavo	-3	-15.72	-12.34
scavo	-3.2	-18.53	-14.08
scavo	-3.4	-21.75	-16.1
scavo	-3.6	-25.43	-18.4
scavo	-3.8	-29.62	-20.97
scavo	-4	-34.39	-23.83
scavo	-4.2	-39.78	-26.96
scavo	-4.4	-45.86	-30.38
scavo	-4.6	-50.95	-25.48
scavo	-4.8	-54.87	-19.6
scavo	-5	-57.59	-13.58
scavo	-5.2	-59.34	-8.78
scavo	-5.4	-60.32	-4.9
scavo	-5.6	-60.65	-1.61
scavo	-5.8	-60.36	1.41
scavo	-6	-59.45	4.59
scavo	-6.2	-57.8	8.22
scavo	-6.4	-55.28	12.62
scavo	-6.6	-51.67	18.04
scavo	-6.8	-46.73	24.72
scavo	-7	-40.15	32.88
scavo	-7.2	-31.61	42.71
scavo	-7.4	-20.72	54.41
scavo	-7.6	-7.1	68.1
scavo	-7.8	3.63	53.66
scavo	-8	11.64	40.06
scavo	-8.2	17.29	28.26
scavo	-8.4	20.93	18.17
scavo	-8.6	22.85	9.64
scavo	-8.8	23.36	2.52
scavo	-9	22.68	-3.38
scavo	-9.2	21.18	-7.54
scavo	-9.4	19.14	-10.2
scavo	-9.6	16.8	-11.67
scavo	-9.8	14.36	-12.21
scavo	-10	11.95	-12.05
scavo	-10.2	9.67	-11.41
	-10.4	7.58	-10.43
\$(.400)			±0. - 0
scavo scavo	-10.6	5.73	-9.25

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente) Risultati Paratia Muro: LEFT				
Stage	Z (m)	Momento (kN*m/ı	m) Taglio (kN/m)	
scavo	-11	2.8	-6.7	
scavo	-11.2	1.7	-5.47	
scavo	-11.4	0.84	-4.34	
scavo	-11.6	0.17	-3.32	
scavo	-11.8	-0.31	-2.43	
scavo	-12	-0.65	-1.67	
scavo	-12.2	-0.86	-1.05	
scavo	-12.4	-0.97	-0.54	
scavo	-12.6	-1	-0.15	
scavo	-12.8	-0.97	0.15	
scavo	-13	-0.89	0.36	
scavo	-13.2	-0.79	0.5	
scavo	-13.4	-0.68	0.58	
scavo	-13.6	-0.55	0.62	
scavo	-13.8	-0.43	0.61	
scavo	-14	-0.32	0.58	
scavo	-14.2	-0.21	0.52	
scavo	-14.4	-0.12	0.43	
scavo	-14.6	-0.06	0.33	
scavo	-14.8	-0.02	0.21	
scavo	-15	0	0.08	

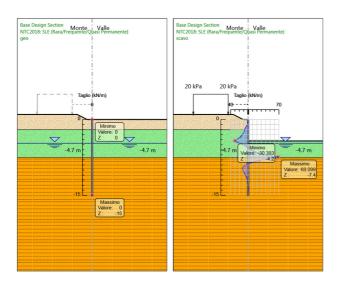


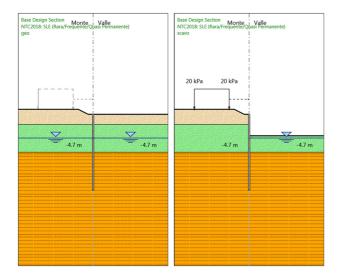


PROGETTO ESECUTIVO

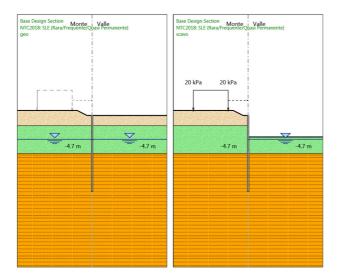
RELAZIONE DI CACOLO

4.1.5. Tabella Grafici dei Risultati





PROGETTO ESECUTIVO



PROGETTO ESECUTIVO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.2. Risultati NTC2018: A1+M1+R1 (R3 per tiranti)

4.2.1. Tabella Risultati Paratia NTC2018: A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: geo

Design Assumption: NTC2018: A1+M1+R1 (R3 pe	r tiranti) Risultati Paratia	Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m
geo	0	0	0
geo	-0.2	0	0
geo	-0.4	0	0
geo	-0.6	0	0
geo	-0.8	0	0
geo	-1	0	0
geo	-1.2	0	0
geo	-1.4	0	0
geo	-1.6	0	0
geo	-1.8	0	0
geo	-2	0	0
geo	-2.2	0	0
geo	-2.4	0	0
geo	-2.6	0	0
geo	-2.8	0	0
geo	-3	0	0
geo	-3.2	0	0
geo	-3.4	0	0
geo	-3.6	0	0
geo	-3.8	0	0
geo	-4	0	0
geo	-4.2	0	0
geo	-4.4	0	0
geo	-4.6	0	0
geo	-4.8	0	0
geo	-5	0	0
geo	-5.2	0	0
geo	-5.4	0	0
geo	-5.6	0	0
geo	-5.8	0	0
geo	-6	0	0
geo	-6.2	0	0
geo	-6.4	0	0
geo	-6.6	0	0
geo	-6.8	0	0
geo	-7	0	0
geo	-7.2	0	0
geo	-7.4	0	0
geo	-7.6	0	0
geo	-7.8	0	0
geo	-8	0	0
geo	-8.2	0	0
geo	-8.4	0	0
geo	-8.6	0	0
geo	-8.8	0	0
geo	-9	0	0
geo	-9.2	0	0
geo	-9.4	0	0
geo	-9.6	0	0
geo	-9.8	0	0
geo	-10	0	0
geo	-10.2	0	0
geo	-10.4	0	0

PROGETTO ESECUTIVO

Design Assumption: NTC2018: A1+M1+R1 (R3 per tira	ınti) Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m) Taglio (kN/m
geo	-10.6	0	0
geo	-10.8	0	0
geo	-11	0	0
geo	-11.2	0	0
geo	-11.4	0	0
geo	-11.6	0	0
geo	-11.8	0	0
geo	-12	0	0
geo	-12.2	0	0
geo	-12.4	0	0
geo	-12.6	0	0
geo	-12.8	0	0
geo	-13	0	0
geo	-13.2	0	0
geo	-13.4	0	0
geo	-13.6	0	0
geo	-13.8	0	0
geo	-14	0	0
geo	-14.2	0	0
geo	-14.4	0	0
geo	-14.6	0	0
geo	-14.8	0	0
geo	-15	0	0

PROGETTO ESECUTIVO

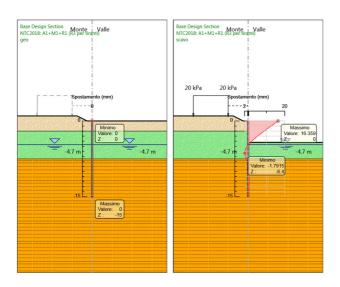
RELAZIONE DI CACOLO

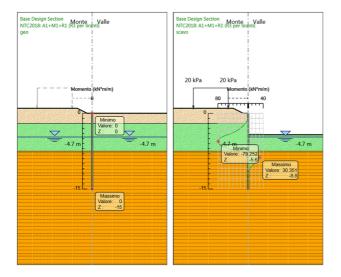
4.2.2. Tabella Risultati Paratia NTC2018: A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: scavo

2 (m) 0 -0.2 -0.4 -0.6 -0.8	Momento (kN*m/m 0 0 -0.05	n) Taglio (kN/m) 0 0
-0.2 -0.4 -0.6	0	
-0.4 -0.6		0
-0.6	-0.05	
		-0.23
-0.8	-0.18	-0.68
	-0.46	-1.36
-1	-0.91	-2.27
-1.2	-1.59	-3.4
	-2.54	-4.76
	-3.81	-6.35
	-5.44	-8.16
	-7.48	-10.21
	-9.62	-10.67
	-11.92	-11.5
-2.6	-14.46	-12.69
	-17.3	-14.24
-3	-20.54	-16.16
-3.2	-24.22	-18.44
-3.4	-28.44	-21.09
-3.6	-33.26	-24.11
-3.8	-38.76	-27.48
-4	-45.01	-31.23
-4.2	-52.07	-35.33
-4.4	-60.03	-39.82
-4.6	-66.71	-33.36
-4.8	-71.84	-25.66
-5	-75.38	-17.68
-5.2	-77.64	-11.33
-5.4	-78.88	-6.2
-5.6	-79.25	-1.86
-5.8	-78.83	2.11
-6	-77.58	6.26
-6.2	-75.38	10.98
-6.4	-72.04	16.68
-6.6	-67.3	23.7
-6.8	-60.83	32.35
-7	-52.25	42.93
-7.2	-41.11	55.68
-7.4	-26.94	70.85
-7.6	-9.22	88.59
-7.8	4.73	69.75
-8	15.14	52.08
-8.2	22.49	36.73
-8.4		23.6
		12.5
-8.8		3.22
		-4.49
-9.2		-9.85
		-13.28
-9.6	21.79	-15.17
		-15.85
		-15.65
		-14.81
		-13.53
		-12
		-10.35
		-8.69
	-1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6 -2.8 -3 -3.2 -3.4 -3.6 -3.8 -4 -4.2 -4.4 -4.6 -4.8 -5 -5.2 -5.4 -5.6 -5.8 -6 -6.2 -6.4 -6.6 -6.8 -7 -7.2 -7.4 -7.6 -7.8 -8 -8.2 -8.4 -8.6 -8.8 -9 -9.2 -9.4	-1.4

PROGETTO ESECUTIVO

Design Assumption: NTC2018: A1+M1+R1 (R3 per tire	anti) Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/r	m) Taglio (kN/m)
scavo	-11.2	2.2	-7.09
scavo	-11.4	1.07	-5.62
scavo	-11.6	0.22	-4.3
scavo	-11.8	-0.41	-3.14
scavo	-12	-0.85	-2.16
scavo	-12.2	-1.12	-1.35
scavo	-12.4	-1.26	-0.7
scavo	-12.6	-1.3	-0.19
scavo	-12.8	-1.26	0.19
scavo	-13	-1.16	0.47
scavo	-13.2	-1.03	0.65
scavo	-13.4	-0.88	0.76
scavo	-13.6	-0.72	0.8
scavo	-13.8	-0.56	0.8
scavo	-14	-0.41	0.75
scavo	-14.2	-0.27	0.67
scavo	-14.4	-0.16	0.56
scavo	-14.6	-0.08	0.43
scavo	-14.8	-0.02	0.28
scavo	-15	0	0.1

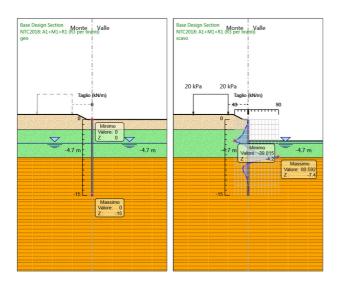


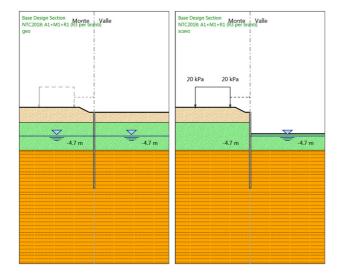


PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

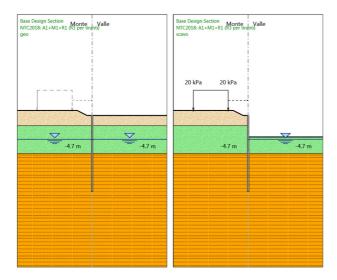
4.2.3. Tabella Grafici dei Risultati





PROGETTO ESECUTIVO

RELAZIONE DI CACOLO



PROGETTO ESECUTIVO

PROGETTO ESECUTIVO

RELAZIONE DI CACOLO

4.3. Risultati NTC2018: A2+M2+R1

4.3.1. Tabella Risultati Paratia NTC2018: A2+M2+R1 - Left Wall - Stage: geo

Design Assumption: NTC2018: A2+M2+R2	1 Risultati Parati	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m)	Taglio (kN/m)
_	0	0	0
geo	-0.2	0	0
geo	-0.2 -0.4	0	0
geo	-0.4 -0.6	0	0
geo	-0.8	0	0
geo	-0.8 -1	0	0
geo	-1 -1.2	0	0
geo	-1.4	0	0
geo	-1.4	0	0
geo	-1.8	0	0
geo	-1.8 -2	0	0
geo	-2.2	0	0
geo	-2.4	0	0
geo	-2.6	0	0
geo	-2.8	0	0
geo	-2.o -3		0
geo	-3 -3.2	0 0	0
geo	-3.2 -3.4		
geo	-3.4 -3.6	0 0	0 0
geo			
geo	-3.8 -4	0 0	0 0
geo	-4 -4.2	0	0
geo	-4.2 -4.4	0	0
geo	-4.4 -4.6	0	0
geo	-4.8	0	0
geo	-4.0 -5	0	0
geo	-5.2	0	0
geo	-5.2 -5.4	0	0
geo	-5.4 -5.6	0	0
geo	-5.8	0	0
geo	-5.8 -6	0	0
geo	-6.2	0	0
geo	-6.4	0	0
geo	-6.6	0	0
geo	-6.8	0	0
geo	-0.8 -7	0	0
geo	-7.2	0	0
geo	-7.2 -7.4	0	0
geo	-7.4 -7.6	0	0
geo	-7.8	0	0
geo	-7.8 -8	0	0
geo	-8.2	0	0
geo	-8.4	0	0
geo	-8.6	0	0
geo geo	-8.8	0	0
geo	-6.6 -9	0	0
	-9.2	0	0
geo geo	-9.2 -9.4	0	0
	-9.4 -9.6	0	0
geo	-9.6 -9.8	0	0
geo	-9.8 -10	0	0
geo	-10.2	0	0
geo	-10.2	0	0
geo	-10.4	U	U

PROGETTO ESECUTIVO

Design Assumption: NTC2018: A2+M2+	R1 Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n)Taglio (kN/m)
geo	-10.6	0	0
geo	-10.8	0	0
geo	-11	0	0
geo	-11.2	0	0
geo	-11.4	0	0
geo	-11.6	0	0
geo	-11.8	0	0
geo	-12	0	0
geo	-12.2	0	0
geo	-12.4	0	0
geo	-12.6	0	0
geo	-12.8	0	0
geo	-13	0	0
geo	-13.2	0	0
geo	-13.4	0	0
geo	-13.6	0	0
geo	-13.8	0	0
geo	-14	0	0
geo	-14.2	0	0
geo	-14.4	0	0
geo	-14.6	0	0
geo	-14.8	0	0
geo	-15	0	0

PROGETTO ESECUTIVO

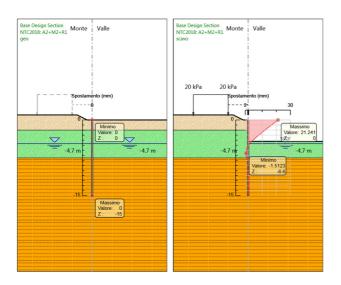
RELAZIONE DI CACOLO

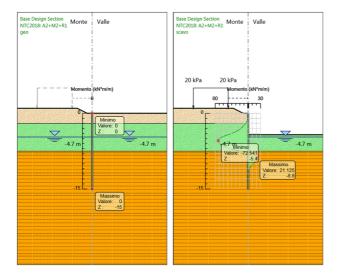
4.3.2. Tabella Risultati Paratia NTC2018: A2+M2+R1 - Left Wall - Stage: scavo

esign Assumption: NTC2018: A2+M2+R1	Kisuitati Para	tia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n)Taglio (kN/m)
scavo	0	0	0
scavo	-0.2	0	0
scavo	-0.4	-0.04	-0.18
scavo	-0.6	-0.14	-0.53
scavo	-0.8	-0.35	-1.05
scavo	-1	-0.7	-1.75
scavo	-1.2	-1.23	-2.62
scavo	-1.4	-1.96	-3.67
scavo	-1.6	-2.94	-4.9
scavo	-1.8	-4.2	-6.3
scavo	-2	-5.77	-7.88
scavo	-2.2	-7.52	-8.71
scavo	-2.4	-9.48	-9.83
scavo	-2.6	-11.73	-11.23
scavo	-2.8	-14.31	-12.91
scavo	-3	-17.28	-14.87
scavo	-3.2	-20.71	-17.11
scavo	-3.4	-24.64	-19.64
scavo	-3.6	-29.13	-22.45
scavo	-3.8	-34.23	-25.54
scavo	-4	-40.02	-28.91
scavo	-4.2	-46.53	-32.56
scavo	-4.4	-53.83	-36.51
scavo	-4.6	-60.36	-32.64
scavo	-4.8	-65.62	-26.31
scavo	-5	-69.36	-18.71
scavo	-5.2	-71.64	-11.41
scavo	-5.4	-72.54	-4.49
scavo	-5.6	-72.32	1.1
scavo	-5.8	-71.16	5.78
scavo	-6	-69.17	9.95
scavo	-6.2	-66.38	13.98
scavo	-6.4	-62.71	18.33
scavo	-6.6	-58.04	23.35
scavo	-6.8	-52.17	29.34
scavo	-7	-44.85	36.62
scavo	-7.2	-35.76	45.42
scavo	-7.4	-24.57	55.95
scavo	-7.6	-10.9	68.35
scavo	-7.8	-0.01	54.45
scavo	-8	8.22	41.18
scavo	-8.2	14.14	29.59
scavo	-8.4	18.07	19.63
scavo	-8.6	20.3	11.18
scavo	-8.8	21.12	4.1
scavo	-9	20.78	-1.71
scavo	-9.2 0.4	19.62	-5.83 8 F 6
scavo	-9.4	17.9	-8.56 10.16
scavo	-9.6	15.87	-10.16
scavo	-9.8 10	13.7	-10.87
scavo	-10	11.51	-10.92
scavo	-10.2	9.42	-10.48
scavo	-10.4	7.48	-9.69 8.60
scavo	-10.6	5.74	-8.69
scavo	-10.8	4.23	-7.57
scavo	-11	2.94	-6.43

PROGETTO ESECUTIVO

Design Assumption: NTC2018: A2+M2+R2	1 Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n)Taglio (kN/m)
scavo	-11.2	1.88	-5.31
scavo	-11.4	1.03	-4.26
scavo	-11.6	0.36	-3.31
scavo	-11.8	-0.13	-2.47
scavo	-12	-0.48	-1.75
scavo	-12.2	-0.71	-1.14
scavo	-12.4	-0.84	-0.65
scavo	-12.6	-0.89	-0.26
scavo	-12.8	-0.88	0.04
scavo	-13	-0.83	0.27
scavo	-13.2	-0.75	0.42
scavo	-13.4	-0.64	0.51
scavo	-13.6	-0.53	0.56
scavo	-13.8	-0.42	0.57
scavo	-14	-0.31	0.55
scavo	-14.2	-0.21	0.5
scavo	-14.4	-0.12	0.42
scavo	-14.6	-0.06	0.33
scavo	-14.8	-0.02	0.21
scavo	-15	0	0.08

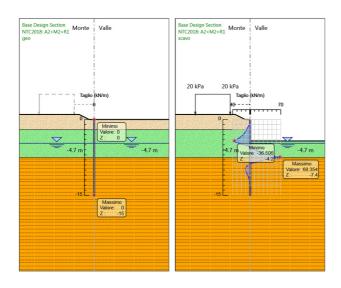


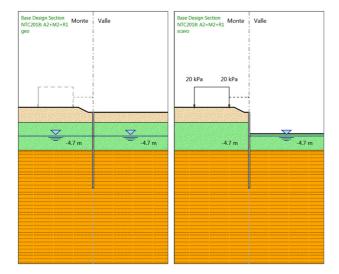


PROGETTO ESECUTIVO

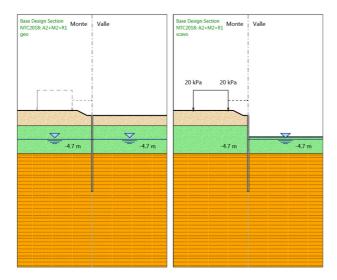
RELAZIONE DI CACOLO

4.3.3. Tabella Grafici dei Risultati





PROGETTO ESECUTIVO



PROGETTO ESECUTIVO

