COMMITTENTE:

ALTA SORVEGLIANZA:

CUP: F81H91000000008

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA A.V. /A.C. TORINO – VENEZIA Tratta MILANO – VERONA Lotto funzionale Brescia – Verona

PROGETTO ESECUTIVO

dalla Unione Europea

FA36

FABBRICATO PC/PJ2 BRESCIA EST - PK 105+585
RELAZIONE DI CALCOLO BASAMENTO SERBATOIO GENERATORE

GENERAL CONTRACTOR		DIRETTORE LAVORI		
Consorzio Co Cepaw due II D	onsorzio Cepav due irettore del Consorzio (Ing. T. Tarseta)			
2 9 MAG 2020	(mg. m. Maranta)			
Data:		Data:		e e
COMMESSA LOTTO	FASE ENTE TIPO DOC	OPERA/DISCIPLINA	PROGR	REV
I N 0 R 1 2	E E 2 C L	F A 3 6 0 5	0 0 4	А
PROGETTAZIONE		QOBE,		IL PROGETTISTA
Rev. Descrizione	Redatto Data Verit	icato Data Progettista	Data II	ntegrated Design SRL
A Emissione	L. Porelli 08/05/20	orelli 08/05/20 N ROMA	RI 09/05/20	ntegrated Design SRL ng. Zate Porelli PRO Scritto Ordine ngegneri at Bologna
В.	20	23076		ngegneri di Bologna 1988/A
C		*		rata: 08/05/2020 ISTICA
CIG. 751447334A		File:INOR12	EE2CLFA36050	Sczione: A Sczione: A 10. 4825/A No. 4825/A No. 4825/A No. 4825/A No. 4825/A
* * * Propetto cofinguaristo	Stampato dal	Service		ofentale, industriale, den

di plottaggio ITALFERR S.p.A.

GENERAL CONTRACTOR

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL FA 36 05 004 A 2 di 26

1.	DOCUMENTAZIONE DI RIFERIMENTO	3
2.	DESCRIZIONE GENERALE	4
3.	NORMATIVA DI RIFERIMENTO	6
4.	MATERIALI	6
5.	DISEGNI DI PROGETTO	6
6.	VERIFICA AL GALLEGGIAMENTO	8
7.	VERIFICHE AGLI STATI LIMITE ULTIMO – SLU	9
7.1	VERIFICHE DI TIPO GEOTECNICO 1	9
7.2	VERIFICHE DI TIPO GEOTECNICO 2	13
7.3	VERIFICHE DI TIPO STRUTTURALE	17
7.3	.1 DESCRIZIONE	17
	.2 ANALISI DEI CARICHI	
	.3 MODELLO UNIFILARE	
	.4 MODELLO SOLIDO	
7.3	.5 SOLLECITAZIONI E VERIFICHE - SLU	20
7.3	.6 SOLLECITAZIONI E VERIFICHE - SLE	25

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL FA 36 05 004 A 3 di 26

1. DOCUMENTAZIONE DI RIFERIMENTO

CODICE									DESCRIZIONE				
INOR	12	Е	E2	Р	Α	FA	36	0	5	001	Planimetria generale e sezione con sistemazioni esterne		
INOR	12	Е	E2	Р	Α	FA	36	0	5	002	Planimetria rete fognaria		
INOR	12	Е	E2	Р	Α	FA	36	0	5	003	lanimetria polifore		
INOR	12	Ε	E2	Р	Α	FA	36	0	5	004	Planimetria tracciamento - Posizionamento piazzale, fabbricato, pozzetti, basamenti e fondazioni		
INOR	12	Е	E2	В	Z	FA	36	0	0	001	Particolari elementi costitutivi del piazzale e della strada di accesso		
INOR	12	Е	E2	В	Z	FA	36	0	5	001	Pozzetti polifore - Carpenteria, armatura e particolari 1 di 3		
INOR	12	Е	E2	В	С	FA	36	0	5	001	Pozzetti polifore - Carpenteria, armatura e particolari 2 di 3		
INOR	12	Е	E2	В	C	FA	36	0	5	002	Pozzetti polifore - Carpenteria, armatura e particolari 3 di 3		
INOR	12	Е	E2	В	Z	FA	36	0	5	002	ancello d'Ingresso e recinzioni tipo FS - Carpenteria, armatura e articolari		
INOR	12	Е	E2	В	Z	FA	36	0	5	003	Basamento generatore - Carpenteria, armatura e particolari		
INOR	12	Е	E2	В	С	FA	36	0	5	003	Basamento serbatoio generatore - Carpenteria, armatura e particolari		
INOR	12	Е	E2	С	L	FA	36	0	5	001	Relazione di calcolo pozzetti polifore		
INOR	12	Е	E2	С	L	FA	36	0	5	002	Relazione di calcolo cancello ingresso, recinzioni tipo FS e fondazioni		
INOR	12	Е	E2	С	L	FA	36	0	5	003	Relazione di calcolo basamento generatore		
INOR	12	Е	E2	С	L	FA	36	0	5	004	Relazione di calcolo basamento serbatoio generatore		
INOR	12	Е	E2	С	L	FA	36	0	0	001	Relazione di calcolo pavimentazioni stradali e di piazzale		
INOR	12	Е	E2	R	ı	FA	36	0	4	001	Relazione idraulica, calcolo smaltimento acque meteoriche ed impianto fognario		
INOR	12	Е	E2	В	C	FA	36	0	5	004	Caratteristiche fognature 1 di 3		
INOR	12	Е	E2	В	С	FA	36	0	5	005	Caratteristiche fognature 2 di 3		
INOR	12	Е	E2	В	С	FA	36	0	5	006	Caratteristiche fognature 3 di 3		
INOR	12	Е	E2	Р	Z	FA	36	0	7	001	Strada di Accesso al Piazzale - Planimetria, tracciamento, profilo longitudinale, sezione tipo, segnaletica		
INOR	12	Е	E2	w	9	FA	36	0	7	001	Strada di Accesso al Piazzale - Sezioni trasversali		
INOR	12	Ε	E2	R	0	FA	36	0	7	001	Strada di Accesso al Piazzale - Relazione descrittiva tracciato stradale		

Proaetto Lotto Codifica Documento Rev Foglio Doc. N. 4 di 26 INOR 12 E E2 CL FA 36 05 004

2. DESCRIZIONE GENERALE

La presente relazione contiene i calcoli di verifica e dimensionamento del serbatoio gasolio posto a servizio del generatore localizzato nel locale generatore dei fabbricati in linea tecnologici/tipologici per la linea ferroviaria nella tratta Brescia – Verona nell'ambito della progettazione definitiva della linea AV/AC Torino - Venezia.

La fondazione è di tipo diretto, realizzato con calcestruzzo gettato in opera.

Trattasi di fondazione superficiale soggetta alle azioni trasmesse dal traffico stradale.

Particolare attenzione, come richiesto, è posta onde evitare la trasmissione di vibrazioni che il traffico stradale potrebbe trasferire al serbatoio.

A tal scopo il basamento è costituito da una camera interrata a cui è ancorato su fondo il serbatoio cilindrico in vetroresina atto a contenere il gasolio.

Tale camera, a serbatoi installato, verrà riempita di sabbia e sormontata da un chiusino poggiante sulle pareti laterali e non a contatto con la sabbia, per le operazioni di carico e verifica dei riempimenti di combustibile.

Con tale accorgimento i carichi stradali verranno assorbite dal manufatto in cemento senza interessare il serbatoio, va notato che la struttura in c.a. del chiusino deve essere prefabbricata per permettere la posa in opera del serbatoio e l'asportazione in caso di manutenzioni straordinarie.

Il basamento è praticamente una vasca con forma di un parallelepipedo sormontata dal pozzetto.

A favore della sicurezza, si è considerato che un angolo del chiusino sia interessato da un'impronta stradale del peso complessivo di 20000 Kg.

Il terreno è stato considerato come un mezzo continuo e isotropo a comportamento rigidoplastico. Per il calcolo della resistenza di progetto ci si è riferiti alla soluzione di "Terzaghi" nella soluzione generale di "Brinch-Hansen"

In conformità alle NTC-2008 le verifiche di sicurezza agli stati limiti indicano i coefficienti di sicurezza da applicare alle azioni (A), alle caratteristiche dei materiali (M) e alle resistenze (R) per le verifiche agli SLU di tipo geotecnico e strutturale.

Le verifiche seguono in forma tabellare gli schemi previsti dalla normativa:

Approccio 1:

combinazione 1: A1+M1+R1 combinazione 2: A2+M2+R2

GENERAL CONTRACTOR

 Progetto
 Lotto
 Codifica Documento
 Rev.
 Foglio

 Doc. N.
 INOR
 12
 E E2 CL FA 36 05 004
 A
 5 di 26

Approccio 2:

A1+M1+M3

Parametri di riferimento:

- $a_g / g = 0.2678$
- $\phi = 26^{\circ}$
- $y_t = 1600 \text{ dN/mc}$
- $F_0 = 2.2$
- Sommità di un pendio T₂
- S_t = 1,2
- V _{amm.} = 100 anni
- Classe 4
- Categoria del terreno C
- $S_s = 1,35$
- $S = S_s \times S_t = 1,62$
- $S \times a_g / g = 0.43$
- $\beta = 0.28$
- $K_h = 0.28 \times 0.43 = 0.12$
- $K_v = 0.60$
- $K_{ae} = tg^2 (45-28/2) = 0.361$ spinta attiva
- $K_0 = 1 \text{sen } 28 = 0,53 \text{ spinta passiva}$

Il basamento verrà verificato al galleggiamento, soggetto al carico variabile stradale e in alternativa al carico permanente non strutturale del riempimento con sabbia.

	Progetto	Lotto	Codifica Documento	Rev.	Foglio
Doc. N.	INOR	12	E E2 CL FA 36 05 004	Α	6 di 26

3. NORMATIVA DI RIFERIMENTO

- **D.M. 14 gennaio 2008** Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche
- Circ. n 617 del 02 febbraio 2009
- EC7 e EC8

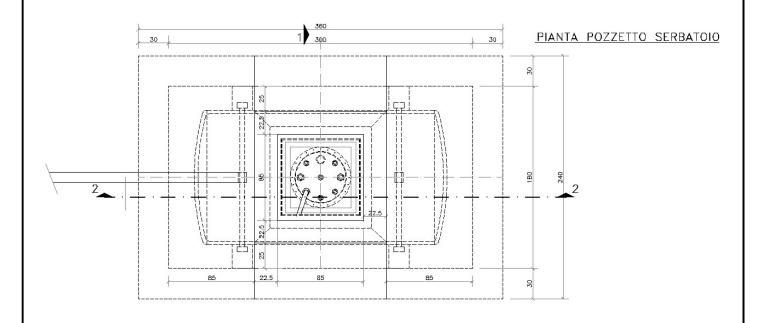
4. MATERIALI

Calcestruzzo: C25/30

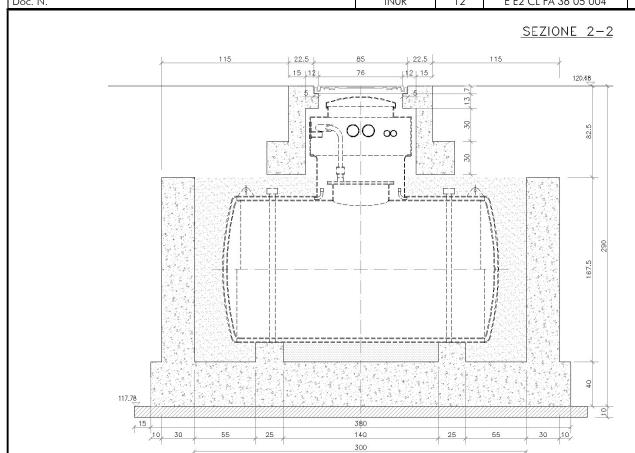
R_{CK}30

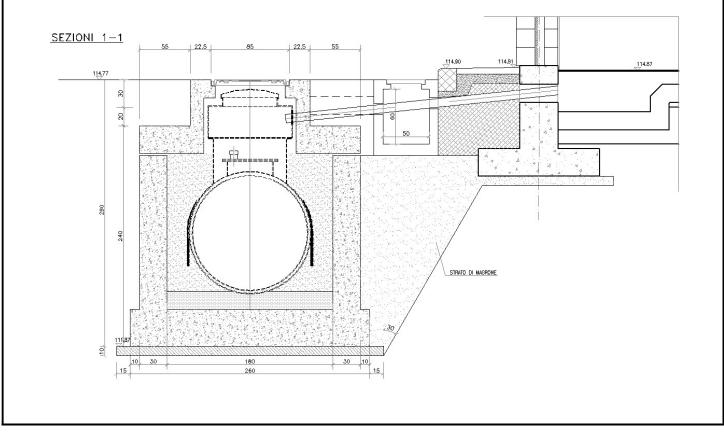
Ferro:

B 450 C

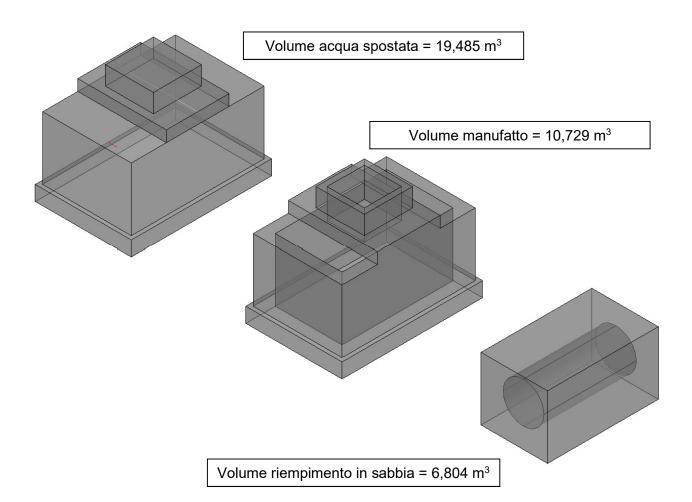

Terreno:

Peso = 1600 daN/m^3


Angolo di attrito interno = 26°


Coesione nulla in considerazione di un terreno rimaneggiato

5. DISEGNI DI PROGETTO



Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. INOR 12 E E2 CL FA 36 05 004 A 8 di 26

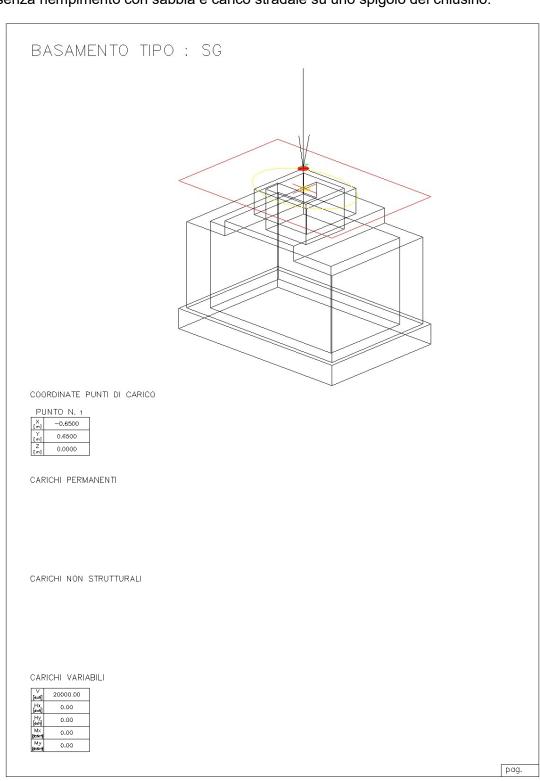
6. VERIFICA AL GALLEGGIAMENTO

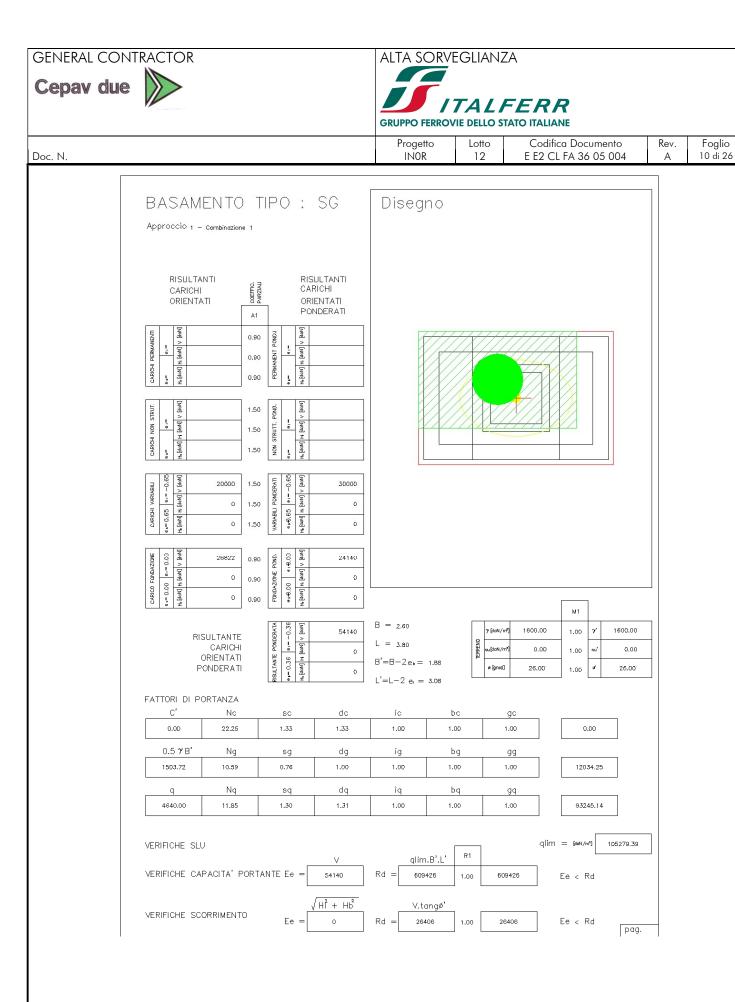
Peso acqua spostata = 19,485 x 1000 = 19485 daN

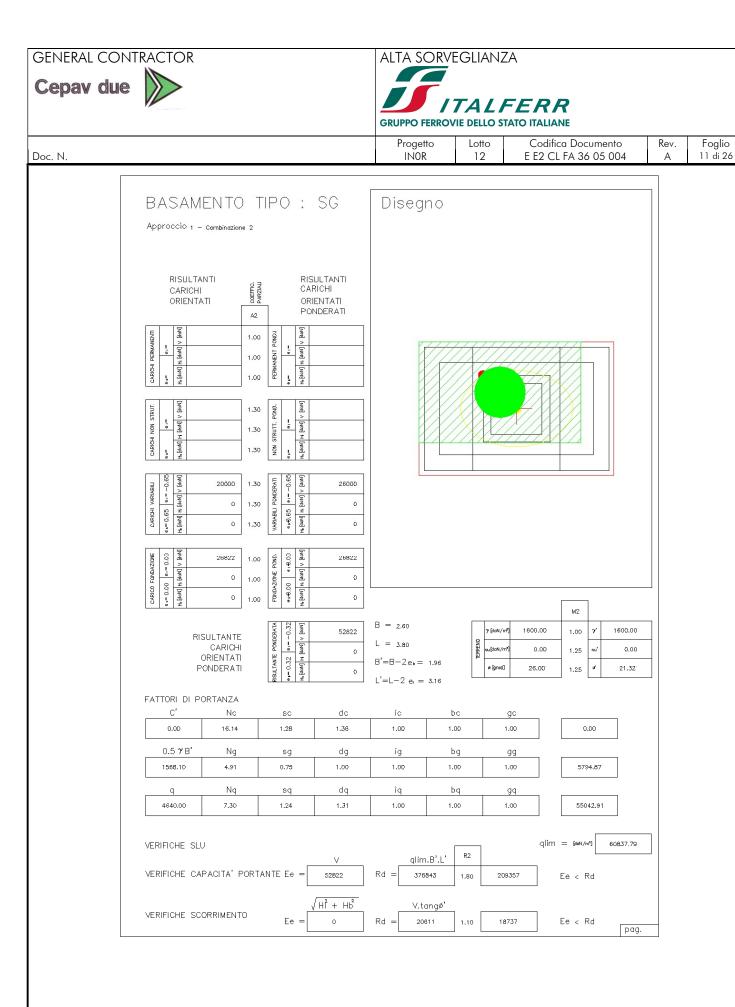
Peso manufatto = $10,729 \times 2500 = 26820 \text{ daN}$

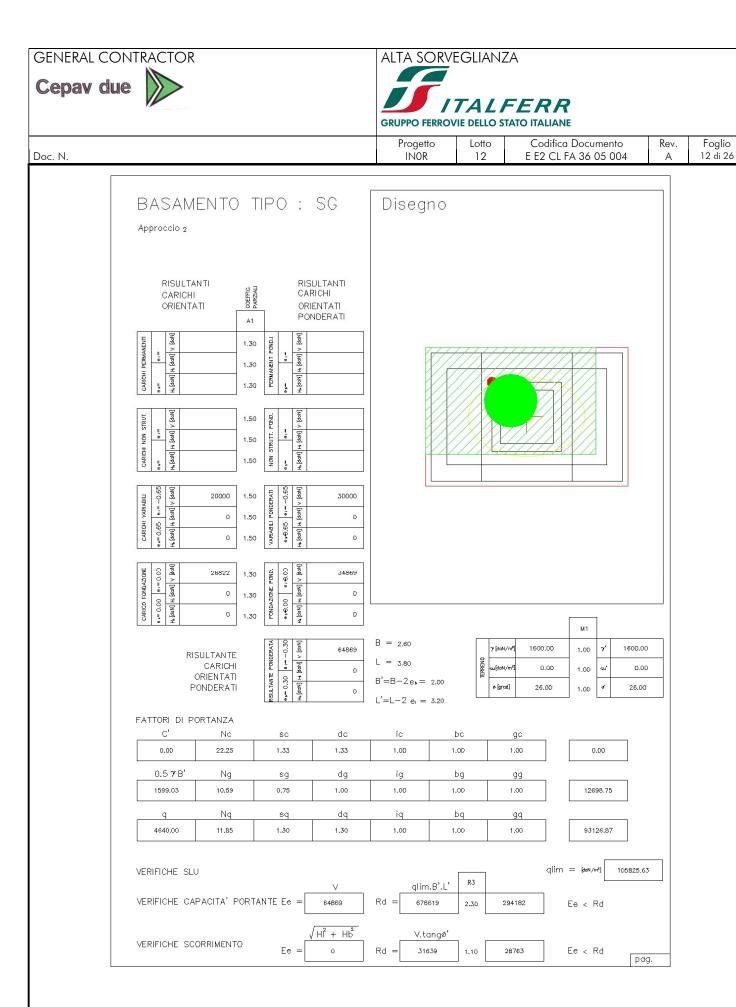
Peso sabbia = $6,804 \times 1800 = 12250 \text{ daN}$

Peso totale manufatto e sabbia = 39070 daN > 2 x 19485 = 38970 daN

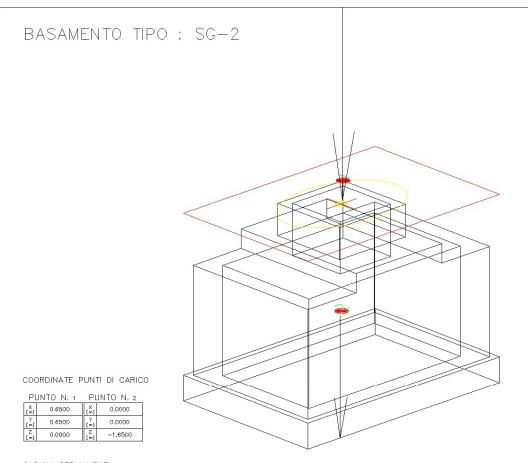

Verifica soddisfatta!




7. VERIFICHE AGLI STATI LIMITE ULTIMO - SLU


7.1 VERIFICHE DI TIPO GEOTECNICO 1

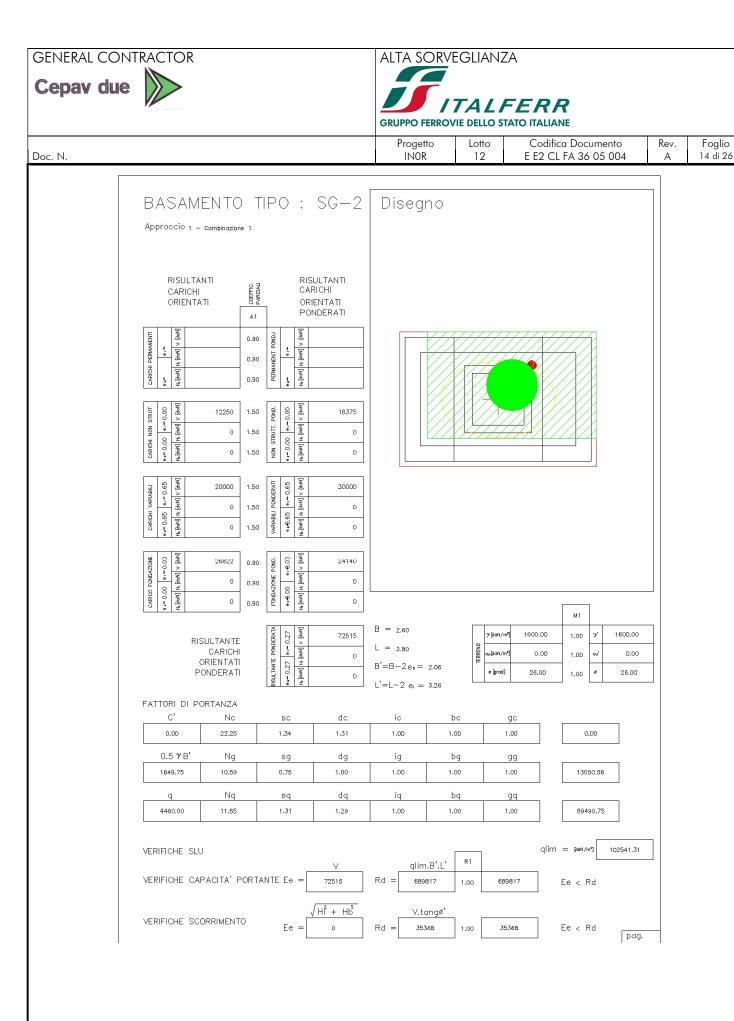
Condizione senza riempimento con sabbia e carico stradale su uno spigolo del chiusino.

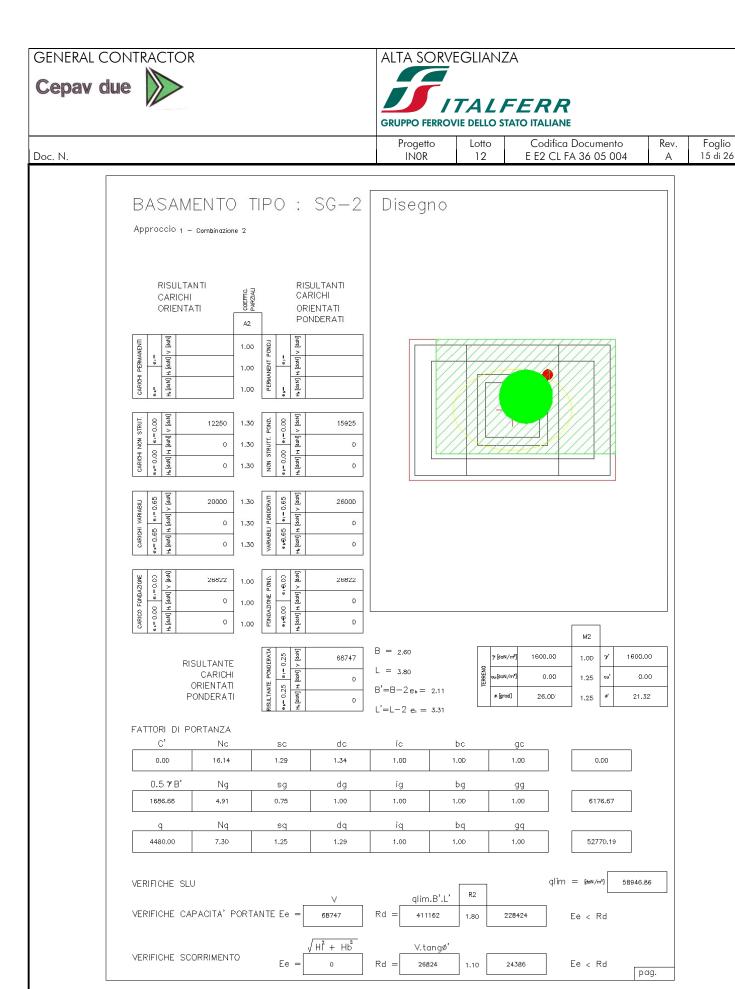


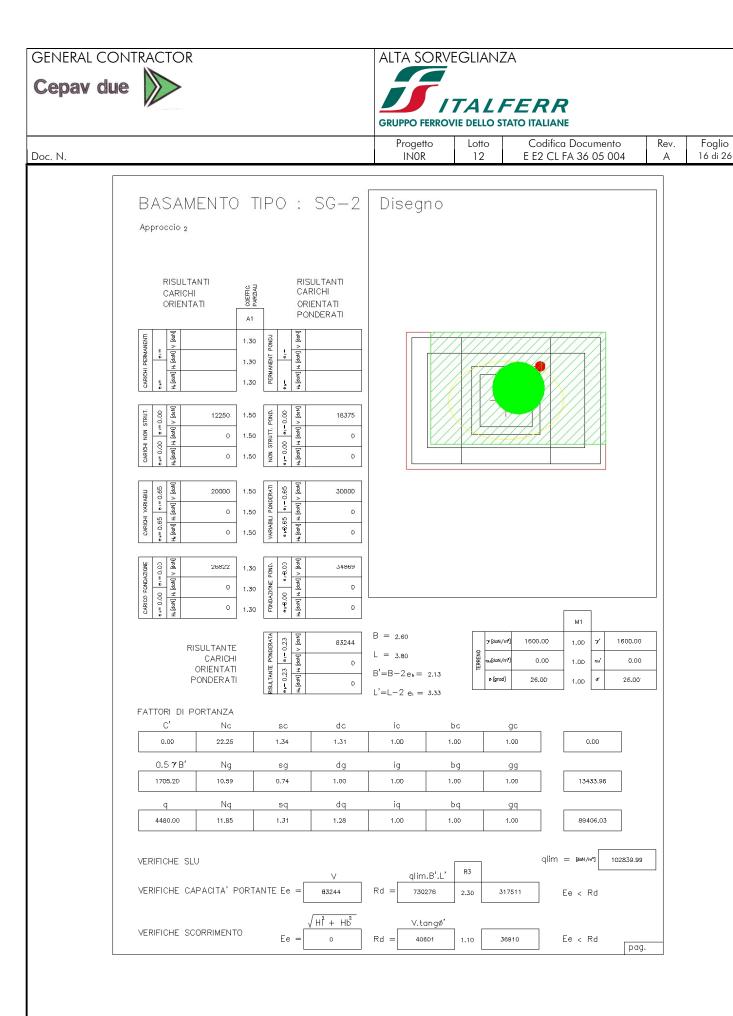
7.2 VERIFICHE DI TIPO GEOTECNICO 2

Condizione con riempimento di sabbia e carico stradale su uno spigolo del chiusino.

CARICHI PERMANENTI

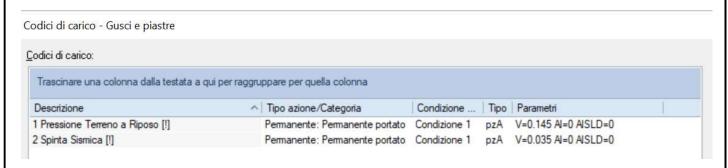

CARICHI NON STRUTTURALI


(dan)	12250.00
Hx	0.00
Hy [deN]	0.00
Mx BaNm]	0.00
My Bahm]	0.00

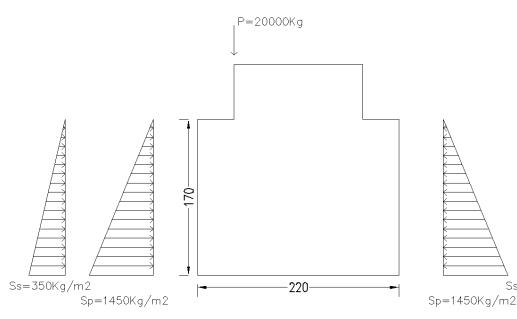

CARICHI VARIABILI

[daN]	20000.00
Hx [daN]	0.00
Hy [deN]	0.00
Mx (bann)	0.00
My (bonn)	0.00

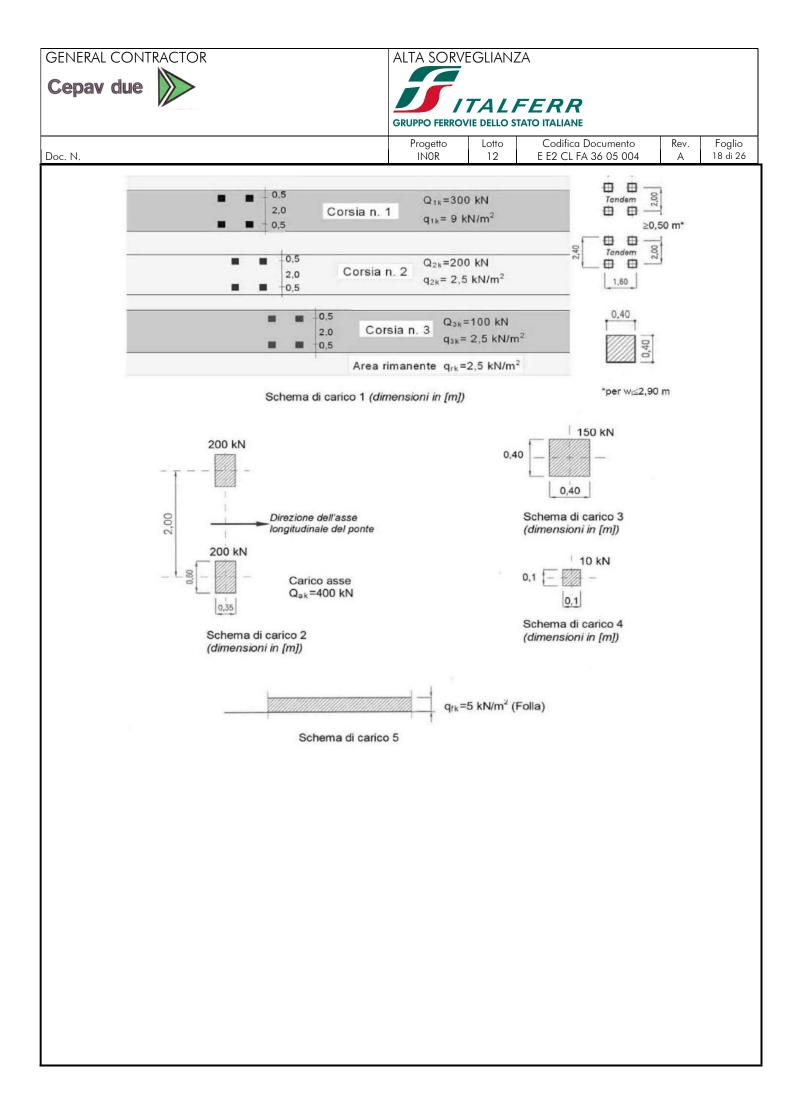
pag.


7.3 VERIFICHE DI TIPO STRUTTURALE

7.3.1 DESCRIZIONE


La presente relazione di calcolo si riferisce alla progettazione e verifica del basamento serbatoio generatore.

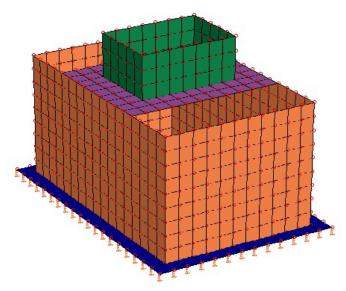
7.3.2 ANALISI DEI CARICHI

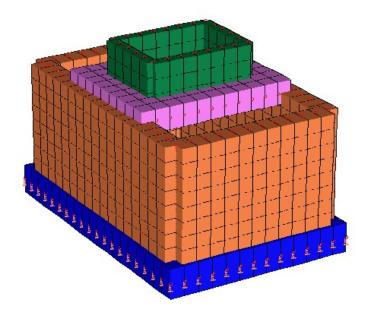

Il basamento è stato caricato lateralmente dalle spinte statiche e dinamiche del terreno e verticalmente da un sovraccarico derivante dal passaggio degli automezzi.

Ss=350Kg/m2

$$Sp = 1600 \cdot 1.70 \cdot 0.53 = 1450 \frac{Kg}{m^2}$$

 $Ss = 1600 \cdot 1.70 \cdot 0.12 = 350 \frac{Kg}{m^2}$
 $P = 20000Kg$

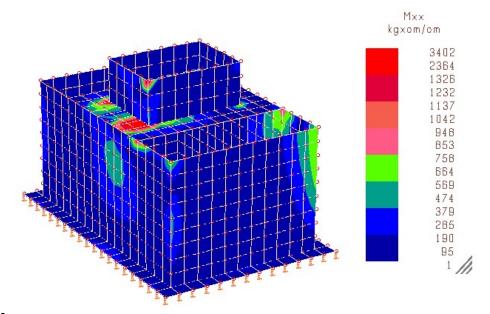


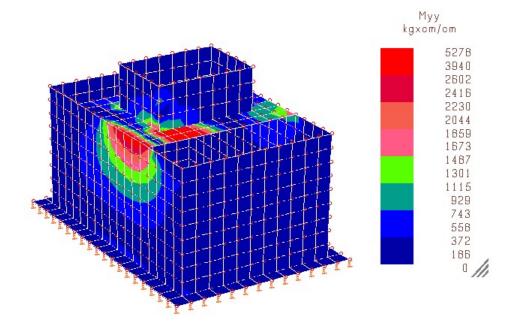

7.3.3 MODELLO UNIFILARE

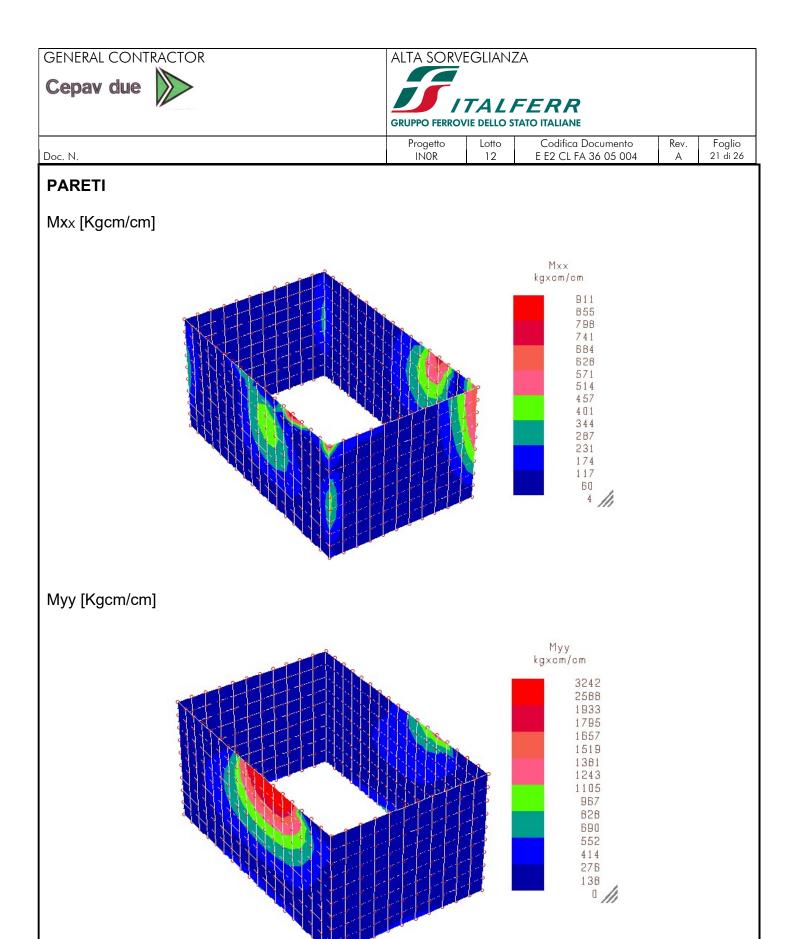
Tramite il software di calcolo MasterSap è stato definito un modello strutturale, dove le sezioni laterali e sovrastanti sono riconducibili a gusci e piastre, mentre la sezione alla base a fondazioni su suolo elastico.

Gli elementi gusci hanno uno spessore pari a 30 cm.

7.3.4 MODELLO SOLIDO

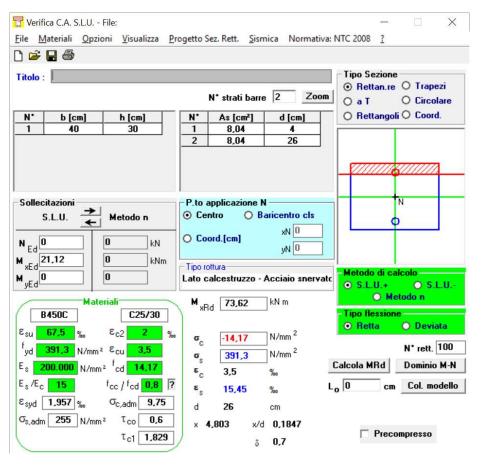


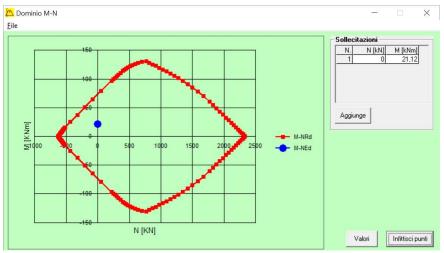

7.3.5 SOLLECITAZIONI E VERIFICHE - SLU


CHIUSINO IN GHISA

Mxx [Kgcm/cm]

My_Y [Kgcm/cm]

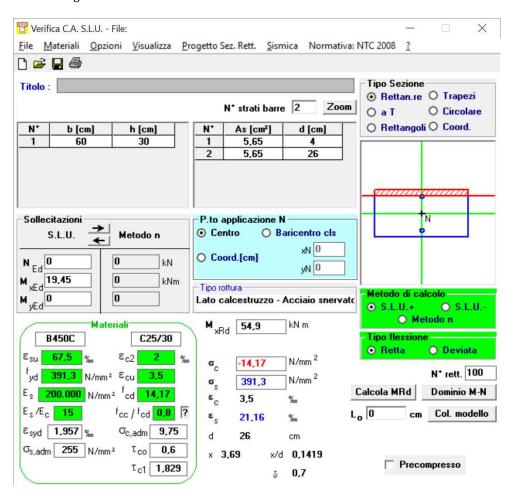


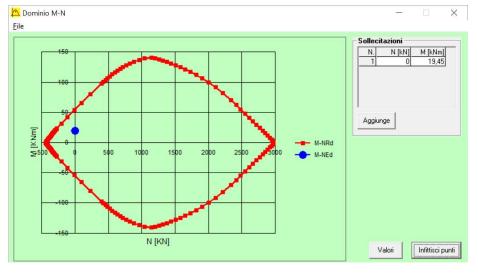

VERIFICHE

MOMENTO FLETTENTE PARTICOLARE CHIUSINO

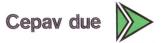
Per le verifiche a Momento Flettente verranno utilizzati dei ferri longitudinali 4φ16 mm superiormente e inferiormente.

 $Med = 5278 \cdot 40 = 211120 \, Kgcm$





MOMENTO FLETTENTE PARETI


Per le verifiche a Momento Flettente verranno utilizzati dei ferri longitudinali 5φ12 mm superiormente e inferiormente.

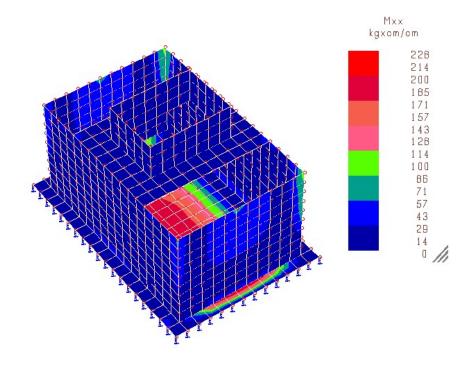
 $Med = 3242 \cdot 60 = 194520 \, Kgcm$

GENERAL CONTRACTOR

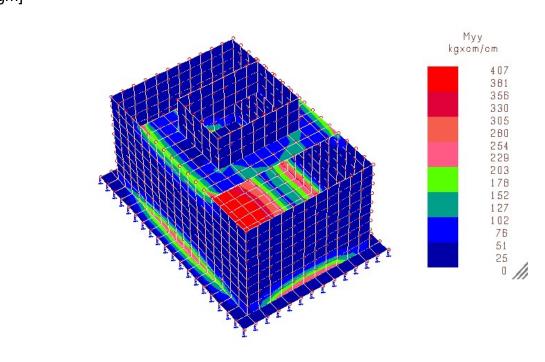
ProgettoLottoCodifica DocumentoRev.FoglioDoc. N.INOR12E E2 CL FA 36 05 004A24 di 26

TAGLIO PARTICOLARE CHIUSINO

 $Ted = 20000 \ x \ 1.5 = 30000 \ Kg$


VERIFICA A 7	ΓAGLIO (el	ementi trav	ve con arm	atura tr	asversale resistente a	taglio)	
MATERIALI		Calcestruz	ZO	c25/30	f _{ck} =	250	kg/cmq
					f _{cd} =	142	kg/cmq
		Acciaio		B450C	f _{yk} =	4500	kg/cmq
					f _{yd} =	3913	kg/cmq
SEZIONE		Sezione re	ttangolare		B =	15	cm
					H =	80	cm
					copriferro =	4	cm
					altezza utile d =	76	cm
SOLLECITAZIO	ONE TAGLIA	ANTE			Taglio V _{Ed} =	30000	kg
					Sforzo normale =	0	kg
					$\sigma_{\sf cp}$ =	0	kg/cmq
					αc =	1,00	
ANGOLO θ (inclinazione bielle compi			mpresse)		θ =	45	0
ANGOLO α	inclinazion	e armatura	trasversa	le)	α =	90	•
ARMATURA T	RMATURA TRASVERSALE				Diametro Φ =	12	mm
					Passo =	20,0	cm
					Bracci =	2	
					Asw =	2,3	cmq
					Ast,min =	225,0	mmq/m
					Ast,eff =	1130,94	mmq/m
					Ast,min < Ast,eff	VERIFICATO	
					Passo staffe < 0,8d	VERIFICATO	
					Passo staffe <33cm	VERIFICATO	
TAGLIO RESIS	TENTE ARI	MATURA			VRsd =	30.269,85	kg
TAGLIO RESIS	STENTE CAL	CESTRUZZ	0		VRcd =	30.154,23	kg
Minimo Tagli	o Resistent	te			VRd =	30.154,23	kg
Verifica		VRd =	30.154	>	VEd =	30.000	VERIFICATO

7.3.6 SOLLECITAZIONI E VERIFICHE - SLE


Condizione di carico Frequente

M_{xx} [Kgcm/cm]

Condizione di carico Quasi Permanente

Mz [Kgm]

Progetto Lotto Codifica Documento Rev. Foglio
Doc. N. 12 E E2 CL FA 36 05 004 A 26 di 26

VERIFICHE

VERIFICA FESS	URAZIONE SE	ZIONE RET	TANGOLARE PR	ESSOINELESSA		I	
MATERIALI	ONAZIONE SE	Calcestruzzo		25/30	f _{ck} =	250	kg/cmq
177712117121		COICCSCIULL		25/50	f _{cd} =		kg/cmq
					f _{ctm} =		kg/cmq
					E _{cm} =	314.758	
		Acciaio		B450C			kg/cmq
		Acciaio		D430C	f _{yk} =		kg/cmq
					f _{yd} = E _s =		
		Coofficients	di omogenizzazi	000	-	2.100.000	
SEZIONE			ona compressa	one	n = B =		cm
SEZIONE		Larghezza zo			B' =	60	
					H =		cm
					copriferro =	4	cm
					altezza utile d =	36	cm
Armatura As (zo) =	12	Numero	5	5,65	cmq
Armatura A's (z	ona compr.)	Φ =	12	Numero	5	5,65	cmq
		15 01 640160	EDECLIENTE		66		ı .
SOLLECITAZION	II - CONDIZION	E DI CARICO	FREQUENTE	N/	Sforzo normale = lomento flettente =		kg kgm
				IV	Eccentricità =	13700,0	
					Eccentricita =	13700,0	CIII
				Distanza centro di press	ione-bordo trave =	13680,00000	cm
POSIZIONE ASSE	E NEUTRO -EQ	UAZIONE DI	TERZO GRADO				
Coefficienti equ	ıazione di 3° gı	rado (Ax ³ +Bx	2+Cx+D=0)				
A =		B =	410400,00	C =	2322150,0		-46486392,0
	1,00		41040,00		232215,0		-4648639,2
Valore x (Carda	no) =	8,2	cm	1,56E-03		0	
Tanalas e est	l.	<u> </u>		len famen			
Tensione nell'ac Tensione nell'ac				kg/cmq kg/cmq			
Tensione nell'ad				kg/cmq			
. Showne hell de				₀ ,q			
SOLLECITAZION	II - CONDIZION	IE QUASI PER	RMANENTE		Sforzo normale =	1	kg
				M	omento flettente =	163	kgm
					Eccentricità =	16300,0	cm
				Distanza centro di press	ione-bordo trave =	16280,0	cm
POSIZIONE ASSE							
Coefficienti equ					2762050.0		55200202.0
A =	10,00	B =	488400,00 48840,00	C =	2762850,0	D =	-55300392,0 -5530039,2
Valore x (Carda		8,2		0,004869416	276285,0	0	
valore x (carda	1107 -	0,2	CIII	0,004003410			
Tensione nel ca	lcestruzzo σc	=	1,7	kg/cmq			
Tensione nell'ad				kg/cmq			
Tensione nell'ad	cciaio compre	sso σs =	13	kg/cmq			
VERIFICA A FESS				Candiniana di maina		A	
Condizioni amb Ordinarie => Ins		2110	A	Condizione di carico Frequente		Apertura delle fessi w2 (mm)=	
Aggressive => in				Quasi permanente		w2 (mm)=	0,30 0,20
Molto Aggressiv		MA		Quasi permanente		WI (IIIII)-	0,20
CONDIZIONE DI	CARICO FREQ	UENTE					
$\alpha_e = E_s/E_{cm} =$							
Ricrca di h _{c,eff} :		(H-x)/3	h/2				
valore minimo		10,6	20,0	h _{c,eff} =			
Ac, eff =		cmq		ρeff =	0,0094		
Durata delle azi	ioni:	Breve durat		L	Kt =	0,4	
K1 =	0.8	Lunga durat Barre ad. M		K3 =	3.4		
K1 =		Flessione	igiiOi ata		0,425		
Dilatazione med				K4 -	0, 123		
ε _{sm} =	-5,17E-04		0,6*σ _s /E _s =	2,1E-05	ε _{sm} =	2,1E-05	
$\Delta_{s,max} =$	13,6				~sm		
-5,IIIdX	0,0048	<	0,3	Verificato per c.d.c. freq	uente		
w.=	2,2210		-,-	,			
w _d =		l l			i e		
w _d =	CARICO QUAS	SI PERMANEI	NTE				
_	CARICO QUAS		NTE				
CONDIZIONE DI	7		NTE h/2				
CONDIZIONE DI $\alpha_e = E_s/E_{cm} =$	7 2,5*(H-d)			h _{c,eff} =	10,0	cm	
CONDIZIONE DI $\alpha_e = E_s/E_{cm} =$ Ricrca di $h_{c,eff}$:	7 2,5*(H-d) 10,0	(H-x)/3	h/2	h _{c,eff} = peff =	10,0		
CONDIZIONE DI α _e = E _s /E _{cm} = Ricrca di h _{c,eff} : valore minimo	7 2,5*(H-d) 10,0 600	(H-x)/3 10,6 cmq Breve durat	h/2 20,0 a => B	ρeff =			
CONDIZIONE DI α _e = E _s /E _{cm} = Ricrca di h _{c,eff} : valore minimo Ac, eff = Durata delle azi	7 2,5*(H-d) 10,0 600 ioni:	(H-x)/3 10,6 cmq Breve durat Lunga durat	h/2 20,0 a => B a => L	ρeff = · L	0,009 Kt =		
CONDIZIONE DI $\alpha_e = E_s/E_{cm} = Ricrca di h_{c,eff:}$ valore minimo Ac, eff = Durata delle azi	7 2,5*(H-d) 10,0 600 ioni:	(H-x)/3 10,6 cmq Breve durat Lunga durat Barre ad. M	h/2 20,0 a => B a => L	ρeff = · L K3 =	0,009 Kt =		
CONDIZIONE DI $\alpha_e = E_s/E_{cm} =$ Ricrca di h _{c,eff} : valore minimo Ac, eff = Durata delle azi K1 = K2 =	7 2,5*(H-d) 10,0 600 ioni: 0,8 0,5	(H-x)/3 10,6 cmq Breve durat Lunga durat Barre ad. M Flessione	h/2 20,0 a => B a => L	ρeff = · L K3 =	0,009 Kt =		
CONDIZIONE DI $\alpha_e = E_y/E_{cm} =$ Ricrca di h _{c,eff} : valore minimo Ac, eff = Durata delle azi K1 = K2 = Dilatazione med	7 2,5*(H-d) 10,0 600 ioni: 0,8 0,5 dia dell'acciaio	(H-x)/3 10,6 cmq Breve durat Lunga durat Barre ad. M Flessione	h/2 20,0 a => B a => L igliorata	ρeff = L K3 = K4 =	0,009 Kt = 3,4 0,425	0,4	
CONDIZIONE DI	7 2,5*(H-d) 10,0 600 ioni: 0,8 0,5 dia dell'acciaio -5,10E-04	(H-x)/3 10,6 cmq Breve durat Lunga durat Barre ad. M Flessione	h/2 20,0 a => B a => L	ρeff = · L K3 =	0,009 Kt =		
CONDIZIONE DI $\alpha_e = E_y/E_{cm} =$ Ricrca di h _{c,eff} : valore minimo Ac, eff = Durata delle azi K1 = K2 = Dilatazione med	7 2,5*(H-d) 10,0 600 ioni: 0,8 0,5 dia dell'acciaio -5,10E-04	(H-x)/3 10,6 cmq Breve durat Lunga durat Barre ad. M Flessione	h/2 20,0 a => B a => L igliorata	ρeff = L K3 = K4 =	0,009 Kt = 3,4 0,425 ε _{sm} =	0,4	