POSTA DELLE CANNE S.r.I.

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN PARCO EOLICO RICADENTE NEI COMUNI DI ORTA NOVA E ORDONA (FG) IN LOCALITA' "POSTA DELLE CANNE" E "MASCITELLI"

ing. Danilo Pomponio

Tecnico

Via Napoli, 363/I - 70132 Bari - Italy www.bfpgroup.net - info@bfpgroup.net tel. (+39) 0805046361 - fax (+39) 0805619384

AZIENDA CON SISTEMA GESTIONE
UNI EN ISO 9001:2015
UNI EN ISO 14001:2015
OHSAS 18001:2007
CERTIFICATO DA CERTIQUALITY

Collaborazioni

ing. Milena Miglionico

ing. Antonio Crisafulli

ing. Tommaso Mancini

ing. Giovanna Scuderi ing. Dionisio Staffieri

ing. Giuseppe Federico Zingarelli

geom. Francesco Mangino geom. Claudio A. Zingarelli

Responsabile Commessa

ing. Danilo Pomponio

ELAE	BORATO	TITOLO	COMMES	SA	TI	POLOGIA	
			20053			D	
	/4 2	VALUTAZIONE RISORSA EOLICA E ANALISI DI	COI	DDICE ELABORATO			
\ \ \	/12	PRODUCIBILITA'	D	C2005	53D-V12		
REV	ISIONE	Tutte le informazioni tecniche contenute nel presente documento sono di proprietà	SOSTITUIS	SCE	SOST	TTUITO DA	
		esclusiva della Studio Tecnico BFP S.r.l e non possono essere riprodotte, divulgate o comunque utilizzate senza la sua preventiva autorizzazione scritta. All technical information					
	00	contained in this document is the exclusive property of Studio Tecnico BFP S.r.l. and may	NOME FI	LE	PAGINE		
`		neither be used nor disclosed without its prior written consent. (art. 2575 c.c.)	DC20053D-V1	2.doc	10 + copertina +allegato		
REV	DATA	MODIFICA	Elaborato	Contr	ollato	Approvato	
00	31/07/20	Emissione	Crisafulli	Miglio	onico	Pomponio	
01							
02							
03							
04					<u>-</u>		
05							
06							

INDICE

1.	PREMESSA	2
	OGGETTO	
3.	CARATTERISTICHE GENERALI DEL CAMPO EOLICO	2
4.	CARATTERISTICHE DELL'AEROGENERATORE	3
5.	CARATTERIZZAZIONE DEL SITO	4
	5.1 Orografia	
	5.2 Rugosità	6
6.	STRUMENTAZIONE DI MISURA	7
7.	METODO DI CALCOLO DELLA PRODUCIBILITÀ ELETTRICA DELL'AEROGENERATORE	8
	CONSIDERAZIONI E RISULTATI DEI CALCOLI DI PRODUCIBILITÀ	
9.	ALLEGATO: REPORT DI CALCOLO WINDPRO	. 10

1. PREMESSA

La presente relazione tecnica è relativa alla redazione del progetto per la realizzazione di un parco eolico proposto dalla società **POSTA DELLE CANNE S.r.I..**

La proposta progettuale è finalizzata alla realizzazione di un impianto eolico per la produzione di energia elettrica da fonte rinnovabile eolica, costituito da n. 10 aerogeneratori, ciascuno di potenza nominale pari a 5,6 MW per una potenza complessiva di 56,00 MW, da realizzarsi nella Provincia di Foggia, nel territorio comunale di Orta Nova e Ordona, in cui ricadono gli aerogeneratori e parte dell'elettrodotto esterno, mentre nel territorio comunale di Stornara ricade la restante parte dell'elettrodotto esterno e le opere di connessione alla RTN.

2. OGGETTO

Oggetto della presente è la valutazione della risorsa eolica e stima della producibilità elettrica relativa ad un nuovo impianto di produzione di energia elettrica da fonte eolica della potenza di 56 MW, equivalenti all'installazione di n. 10 aerogeneratori della potenza nominale pari a 5,6 MW, sito nel Comune di Orta Nova e Ordona (FG), con parte delle opere di connessione e la Sottostazione Elettrica nel territorio di Stornara (FG).

Gli impianti ed opere da eseguire sono quelli sinteticamente sotto raggruppati:

- rete di distribuzione interna a MT (30 kV) in cavo interrato per la interconnessione degli aerogeneratori costituenti il parco eolico e per la connessione degli stessi alla sottostazione di trasformazione AT/MT;
- sottostazione di trasformazione AT/MT sita nei pressi del punto di consegna AT;
- raccordo AT (150 kV) in cavo aereo dalla sottostazione di trasformazione al punto di consegna AT nella futura stazione TERNA da realizzare;
- rete di monitoraggio in fibra ottica tra le torri eoliche e la sottostazione.
- impianti di messa a terra.
- opere civili per l'installazione e l'esercizio del parco eolico.

3. CARATTERISTICHE GENERALI DEL CAMPO EOLICO

L'impianto eolico per la produzione di energia elettrica avrà le seguenti caratteristiche generali:

 nº 10 aerogeneratori della potenza massima di circa 5,6 MW ciascuno ed avente generatore di tipo asincrono, della VESTAS, con diametro del rotore pari a 150 m, altezza mozzo pari a 105 m, per un'altezza massima al tip (punta della pala) pari a 180 m, comprensivi al loro interno di cabine elettriche di trasformazione BT/MT;

- rete elettrica interrata a 30 kV per l'interconnessione tra gli aerogeneratori e la sottostazione;
- nº 1 sottostazione elettrica di trasformazione AT/MT nei pressi della nuova stazione elettrica (SE) Terna S.p.A. a 150 kV da realizzare nel Comune di Stornara (punto di consegna previsto);
- raccordo AT 150 kV in cavo aereo tra la sottostazione e il punto di consegna nella futura sottostazione TERNA, da ubicare nel Comune di Stornara;
- rete telematica di monitoraggio in fibra ottica per il controllo dell'impianto eolico mediante trasmissione dati via modem o satellitare.

4. CARATTERISTICHE DELL'AEROGENERATORE

In particolare, trattasi di aerogeneratori trifase con potenza massima di 5600 kW e tensione nominale di 690 V.

Le pale della macchina sono fissate su un mozzo e nell'insieme costituiscono il rotore che ha diametro massimo di 150 m: il mozzo a sua volta viene collegato ad un sistema di alberi e moltiplicatori di giri per permettere la connessione al generatore elettrico, da cui si dipartono i cavi elettrici di potenza, in bassa tensione verso il trasformatore BT/MT.

Tutti i componenti su menzionati, ad eccezione del rotore, sono ubicati in una cabina, detta navicella, la quale a sua volta, è posta su un supporto cuscinetto in modo da essere facilmente orientabile secondo la direzione del vento. L'intera navicella (realizzata in materiale plastico rinforzato con fibra di vetro) viene posta su di una torre tronco-conica tubolare.

Oltre ai componenti prima detti, vi è un sistema di controllo che esegue diverse funzioni:

- ✓ il controllo della potenza, che viene eseguito ruotando le pale intorno al proprio asse principale in maniera da aumentare o ridurre la superficie esposta al vento, in base al profilo delle pale;
- ✓ il controllo della navicella, detto controllo dell'imbardata, che serve ad inseguire la direzione del vento, ma che può essere anche utilizzato anche per il controllo della potenza;
- ✓ l'avviamento della macchina allorché è presente un vento di velocità sufficiente, e la fermata della macchina, quando vi è un vento di velocità superiore a quella massima per la quale la macchina è stata progettata.

La velocità del vento di avviamento è la minima velocità del vento che dà la potenza corrispondente al massimo rendimento aerodinamico del rotore. Quando la velocità del vento supera il valore corrispondente alla velocità di avviamento la potenza cresce al crescere della velocità del vento.

La potenza cresce fino alla velocità nominale e poi si mantiene costante fino alla velocità di *Cut-out wind speed* (fuori servizio).

Per ragioni di sicurezza a partire dalla velocità nominale la turbina si regola automaticamente e l'aerogeneratore fornirà la potenza nominale servendosi dei suoi meccanismi di controllo.

L'aerogeneratore si avvicinerà al valore della potenza nominale a seconda delle caratteristiche costruttive della turbina montata: passo fisso, passo variabile, velocità variabile, etc.

Tabella 1 – Scheda tecnica dell'aerogeneratore tipo

	Diametro max	150 m				
	Area spazzata max	17.671 m ²				
	Numero di pale	3				
ROTORE	Materiale	GRP (CRP) materiale plastico				
ROTORL	Materiale	rinforzato con fibra di vetro				
	Velocità nominale	13.6 giri/min				
	Senso di rotazione	orario				
	Posizione rotore	Sopra vento				
TRASMISSIONE	Potenza massima	5.600 kW				
SISTEMA	Tipo generatore	Asincrono a 4 poli, doppia				
ELETTRICO	Tipo generatore	alimentazione, collettore ad anelli				
	Classe di protezione	IP 54				
	Tensione di uscita	690 V				
	Frequenza	50 Hz				
TORRE IN ACCIAIO	Altezza al mozzo (in ogni caso non si	105 m				
TORRE IN ACCIAIO	supererà l'altezza complessiva di 150 m)	103 111				
	Numero segmenti	3				
SISTEMA DI	Tipo	Microprocessore				
CONTROLLO	TIPO	inici opi ocessore				
	Trasmissione segnale	Fibra ottica				
	Controllo remoto	PC-modem, interfaccia grafica				

5. CARATTERIZZAZIONE DEL SITO

5.1 Orografia

Il sito di interesse (in località Posta delle Canne) si trova a circa 3 km a Ovest rispetto al centro abitato di Orta Nova. Le quote altimetriche dell'area variano orientativamente tra 70 e 100 m s.l.m., con una orografia piuttosto piana e uniforme, caratterizzata dalla quasi assenza di alture

e avvallamenti. L'intera zona è caratterizzata quindi da una ottima ventosità, come in tutta la piana del Foggiano.

Di seguito alcune immagini rappresentative delle caratteristiche orografiche e di uso del suolo.

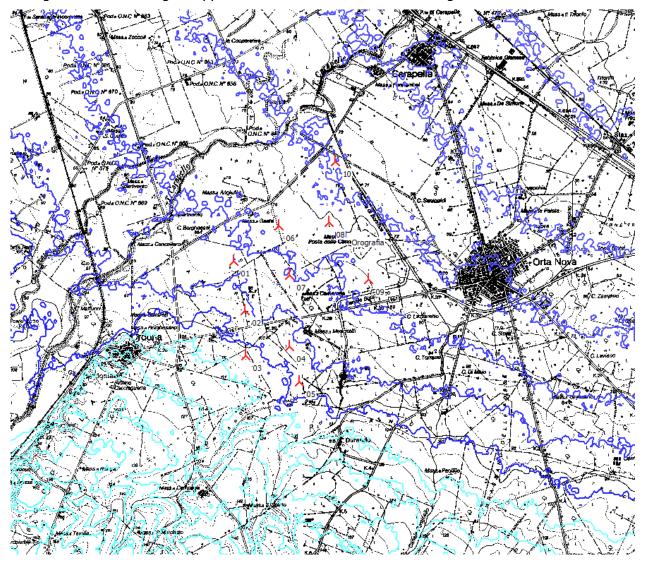


Figura 1 - Orografia del sito di installazione del parco eolico (curve di livello colorate, ogni 10 m).

Quote crescenti da NE verso SO, comprese tra 70 e 100 m per l'area di impianto

Figura 2 – Ubicazione del parco eolico su ortofoto, con curve di livello (ogni 10 m).

Le caratteristiche orografiche del sito lasciano presupporre una buona esposizione ai venti, condizionati dalla conformazione della piana, con eventuali correnti provenienti dalla costa a nordest.

5.2 Rugosità

Tutta l'area è caratterizzata dalla presenza di vasti seminativi, con consistente presenza di uliveti e vigne. Nell'ottica di elaborare uno studio preliminare, nel documento fornito è stata assunta una rugosità di base di classe 1,2 perimetrando però le zone alberate e soprattutto i centri abitati, assegnando valori di rugosità più elevati, compresi tra 2 e 3. Infatti in genere l'area di influenza dei valori di rugosità, ai fini delle stime anemologiche, è pari ad un raggio di circa 10 km dal sito di interesse.

6. STRUMENTAZIONE DI MISURA

La stazione anemometrica utilizzata per le valutazioni anemologiche del sito è installata a circa 5 km a sudest del sito di installazione dell'impianto eolico, nel comune di Orta Nova. Il punto di installazione si trova ad una quota intorno a 90 m s.l.m., ed ha caratteristiche del tutto paragonabili a quella del parco eolico.

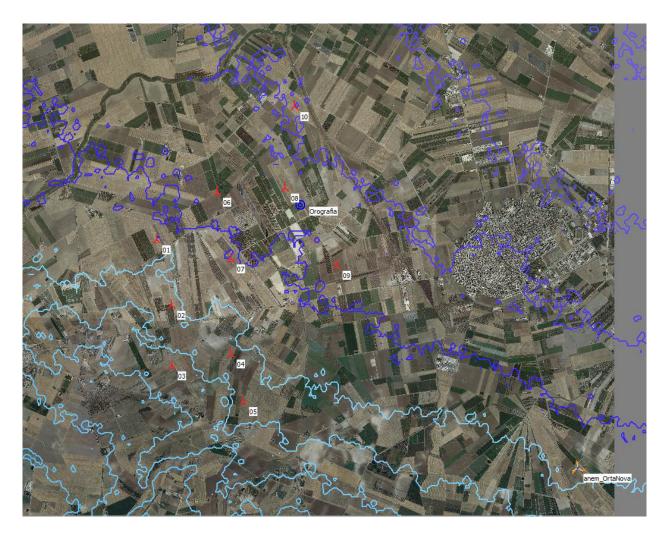


Figura 3 – Inquadramento dell'ubicazione dell'anemometro su ortofoto

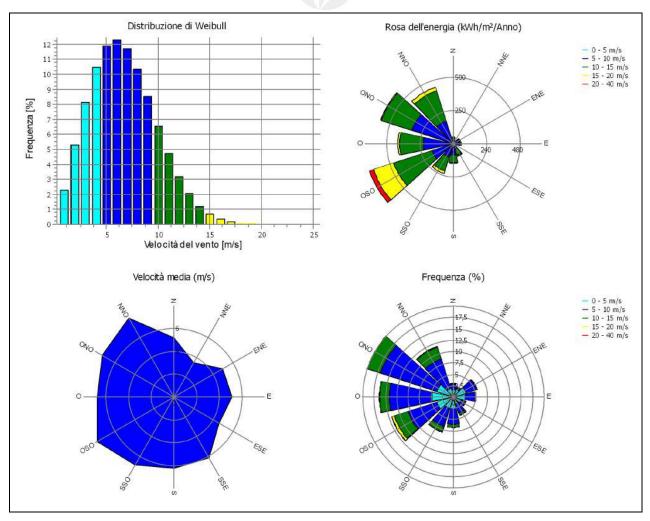
Come si può notare dall'ortofoto, anche per quanto riguarda la rugosità il sito dell'anemometro ha caratteristiche del tutto analoghe a quelle dell'impianto eolico in oggetto.

Anemometro Orta Nova	
Località	"Grassano delle Fosse"
Quota s.l.m.	90 m
Anemometri	50 m, 40 m, 30 m
Banderuole	50 m, 30 m
Periodo di osservazione	Novembre 2009 – ottobre 2010

Gli anemometri risultano dotati di relativi certificati di calibrazione.

La finestra temporale di osservazione rispetta le variazioni stagionali e permette una corretta valutazione delle caratteristiche del sito, oltre che l'estrapolazione del vento imperturbato ("geostrofico").

Come ulteriore validazione dei dati, sono state consultate le mappe dell'Atlante Eolico interattivo curato da RSE (Ricerca Sistema Energetico, organo del GSE), che riportano per il sito in oggetto, velocità medie di circa 6-7 m/s ad una altezza di 100 m dal suolo, ed una corrispondente producibilità specifica approssimata pari a circa 2500 ore equivalenti annue.


7. METODO DI CALCOLO DELLA PRODUCIBILITÀ ELETTRICA DELL'AEROGENERATORE

Le elaborazioni, a partire dai dati di vento registrati, sono state svolte mediante l'uso del software WindPro 3.3, che si avvale a sua volta del modello di calcolo WAsP; questo permette di elaborare, a partire dai dati rilevati da un anemometro e da informazioni relative alle specifiche puntuali dell'area analizzata, il vento *geostrofico*, ovvero quel vento che si realizza alla sommità dello strato limite atmosferico, dove il flusso risulta imperturbato dai fenomeni di attrito dovuti alla superficie terrestre.

L'analisi della velocità del vento geostrofico costituisce il percorso obbligato al fine di studiare i fenomeni eolici dell'area in oggetto. La stima della distribuzione della velocità del vento a livello geostrofico permette infatti di ricostruire, sempre utilizzando il modello di calcolo WASP, la distribuzione della velocità al suolo e a vari livelli, in funzione di vari valori di rugosità attribuibili al territorio, ovvero delle mappe climatologiche dei venti caratteristici. Ciò si ottiene in pratica applicando proprio al vento geostrofico le caratteristiche orografiche, di rugosità e le caratteristiche puntuali dell'area di studio.

Per rendere più attendibili le elaborazioni statistiche, è stata effettuata una correlazione del campione di dati registrati in circa un anno solare, con degli archivi decennali accessibili attraverso il software WindPro, consentendo di correggere la serie di dati applicando dei coefficienti che tengono conto delle tendenze su banche dati a lungo termine.

Di seguito i grafici rappresentativi della statistica anemologica applicata ad un punto baricentrico dell'area di studio. I venti prevalenti sono nel quadrante nordovest, ma i venti provenienti dal quadrante sudovest, seppur meno frequenti, hanno una potenzialità energetica anche superiore a quelli prevalenti.

Figura 4 Grafici relativi alla statistica anemologica applicata al sito di installazione del parco eolico in oggetto, elaborati mediante software WindPro 3.3

A questo punto, una volta inserita nel modello di calcolo la curva di potenza relativa all'aerogeneratore scelto e i valori assunti dal coefficiente *Ct (thrust coefficient)*, è stata calcolata la **producibilità annua** di energia elettrica dell'impianto in particolare con probabilità P50% (ossia valori di produzione annua con probabilità del 50% di essere superati), tenendo conto delle seguenti considerazioni:

- le previsioni legate alla meteorologia sono basate su considerazioni probabilistiche, ed in qualsiasi caso non potranno dare risultati certi al 100%;
- il risultato di una modellizzazione di un fenomeno reale dipende fortemente dal modo di tradurre in algoritmi dei fenomeni complessi, oltre che dalla accuratezza dei dati inseriti come input e da come vengono scelte alcune costanti;

è utile quindi far riferimento ad uno scenario di "peggiore ipotesi", nella quale siano stati inseriti dei fattori di sicurezza, o incertezza, tali da ridurre il valore calcolato ad un limite inferiore di producibilità, nel caso in oggetto una riduzione del 10%, tenendo conto di:

- incertezze legate al calcolo dell'energia elettrica generata da un aerogeneratore (curva di potenza garantita generalmente fino al 97%);
- incertezza legata alla disponibilità tecnica delle macchine (97%);
- incertezza sulla qualità dei dati anemometrici;
- incertezza sui dati misurati ad un'altezza diversa da quella del mozzo dell'aerogeneratore (estrapolazione verticale);
- incertezze legate alle condizioni di ventosità nelle aree adiacenti al palo anemometrico (estrapolazione orizzontale);
- incertezza sul modello di simulazione WAsP;
- incertezza legata alla complessità orografica del territorio.

La simulazione mediante software WindPro 3.3 porta in conto anche le perdite che si hanno a causa della vicinanza tra le turbine, a causa delle modifiche provocate dalla presenza di queste nella vena fluida che le attraversa; queste perdite, definite come perdite per effetto scia, sono dovute al fatto che alle spalle del rotore la velocità del vento risulta rallentata, in quanto il rotore ha catturato parte dell'energia cinetica per trasformarla in energia meccanica. Venendo a contatto con la corrente indisturbata poi, il flusso di vento riprende gradualmente le proprie caratteristiche di velocità, quindi maggiore è la distanza tra le turbine migliore è il rendimento.

8. CONSIDERAZIONI E RISULTATI DEI CALCOLI DI PRODUCIBILITÀ

Il sito scelto per l'installazione del parco eolico presenta venti prevalenti, in termini di frequenza e velocità media, provenienti dai quadranti tra Sudovest e Nordovest, con la presenza di venti con alto potenziale energetico in particolare nel quadrante Sudovest.

Per l'aerogeneratore scelto, particolarmente performante grazie all'ampio rotore (**Vestas** 5,6 MW con diametro rotorico 150 m, altezza al mozzo 105 m), si stima una producibilità annua lorda pari a circa 2924 ore equivalenti (ossia 2924 MWh/MW per anno), o pari a circa **2632 ore equivalenti**, considerando una riduzione del 10% per le approssimazioni cautelative descritte nei paragrafi precedenti.

Naturalmente questi risultati preliminari sono lievemente variabili in funzione dello stato di evoluzione tecnologica del generatore scelto, al momento dell'acquisto.

9. ALLEGATO: REPORT DI CALCOLO WINDPRO

Si riporta in allegato il report di calcolo di producibilità mediante software WindPro 3.3.

Studio Tecnico BFP s.r.l.

Via Napoli 363/I IT-70123 Bari +39 080 5046361

Antonio Crisafulli / crisafulli@studiobfp.com

05/08/2020 12:15/3.3.294

PARK - Risultato principale

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50

N.O. Jensen (RISØ/EMD)

Wake calculation performed in UTM (north)-WGS84 Zona: 33

At the site centre the difference between grid north and true north is: 0.4°

Power curve correction method
New windPRO method (adjusted IEC method, improved to match turbine control) < RECOMMENDED> Air density calculation method Height dependend, temperature from climate station

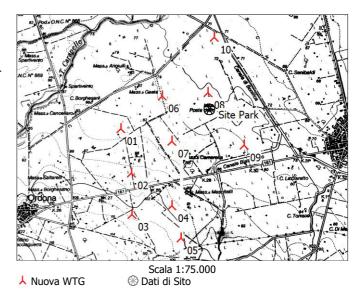
Station: FOGGIA ITALY V3 2014

Base temperature: 15,5 °C at 101,0 m

Base pressure: 1013.3 hPa at 0.0 m

Air density for Site center in key hub height: $77.4 \text{ m} + 105.0 \text{ m} = 1,199 \text{ kg/m}^3 -> 97.9 \%$ of Std Relative humidity: 0.0 %

Parametri del modello di scia


0,075 DTU default onshore Wake decay constant

Omnidirectional displacement height from objects

Impostazioni calcolo scie Angolo [°] Velocità del vento [m/s] Angolo [°] Velocità del vento [ı
inizio fine passo inizio fine passo
0,5 360,0 1,0 0,5 30,5 1,0

Statistica del Vento IT_OrtaNova-MCP-WindIndex-ERA5_Zapponeta.wws

Versione WAsP WAsP 10 RVEA0151.dll 1, 5, 5, 0

Risultati chiave a 105,0 m sopra il terreno

Terrain UTM (north)-WGS84 Zona: 33

Easting Northing Nome Oggetto

Dati di Sito

Site Park 556.245 4.575.956 Site Park WASP (WASP 10 RVEA0151.dll 1, 5, 5, 0)

Energia del vento Velocità media Rugosità equivalente

[kWh/m²] [m/s]

2.742 1,5

Produzione annuale stimata del parco eolico

					Risultati¤)			
Combinazione di WTG	Risultato	Risultato-10,0%	Lordo	Wake loss	Fattore di capacità	Media	Ore equivalenti	Velocità media
	PARK		(senza perdite)			per WTG		al mozzo
	[MWh/anno]	[MWh/anno]	[MWh/anno]	[%]	[%]	[MWh/anno]	[Ore/anno]	[m/s]
Parco eolico	163.776,7	147.399,0	172.180,9	4,9	30,0	14.739,9	2.632	6,7
a) Basato su Risultato-10,0%								

Energia annuale calcolata per ciascuna delle 10 nuove WTG, per un totale di 56,0 MW nominali installati

	Tipo o	li WTG					Curva di	potenza	Produzione a	annuale		
Statisti	a Valida	Prod.	Tipo	Potenza	Diametro	Altezza	Creata	Nome	Risultato	Risultato-10,0%	Wake	Free
			generatore	nominale	rotore	mozzo	da				loss	mean
												wind
												speed
				[kW]	[m]	[m]			[MWh/anno]	[MWh/anno]	[%]	[m/s]
01 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	16.766,9	15.090	2,3	6,72
02 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	16.738,9	15.065	3,3	6,75
03 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	17.124,6	15.412	1,5	6,77
04 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	15.728,0	14.155	8,5	6,73
05 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	15.960,5	14.364	6,5	6,71
06 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	16.548,5	14.894	4,2	6,74
07 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	15.899,6	14.310	7,1	6,71
08 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	16.215,3	14.594	5,8	6,73
09 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	15.918,6	14.327	7,1	6,72
10 Site Pa	k Sì	VESTAS	V150-5.6-5.600	5.600	150,0	105,0	EMD	Level 0 - Calculated - Modes 0/0-0S - 05-2019	16.875,7	15.188	2,5	6,75

Posizione delle WTG

UTM (north)-WGS84 Zona: 33 Easting Northing Z Dati/Descrizione

		[m]
01 Nuova	554.494 4.575.57	8 80,4 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (6)
02 Nuova	554.699 4.574.69	93,2 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (7)
03 Nuova	554.715 4.573.88) 103,6 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (8)
04 Nuova	555.508 4.574.04	93,4 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (9)

continua alla pagina successiva...

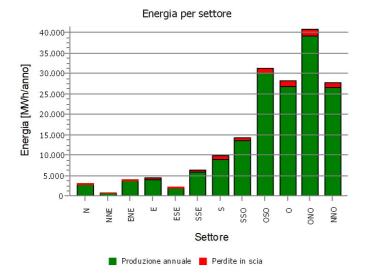
Studio Tecnico BFP s.r.l. Via Napoli 363/I IT-70123 Bari +39 080 5046361 Antonio Crisafulli / crisafulli@studiobfp.com 05/08/2020 12:15/3.3.294

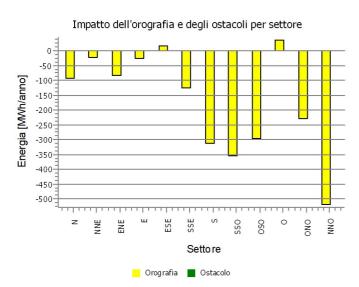
PARK - Risultato principale

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50

...continua dalla pagina precedente

	UTM (no	rth)-WGS8	4 Zona: 33
	Easting	Northing	Z Dati/Descrizione
			[m]
05 Nuova	555.687	4.573.409	97,3 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (10)
06 Nuova	555.310	4.576.223	77,0 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (1)
07 Nuova	555.502	4.575.326	80,0 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (2)
08 Nuova	556.222	4.576.287	73,0 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (3)
09 Nuova	556.929	4.575.253	79,5 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (4)
10 Nuova	556.339	4.577.384	70,0 VESTAS V150-5.6 5600 150.0 !O! hub: 105,0 m (TOT: 180,0 m) (5)


Utente autorizzato:


Studio Tecnico BFP s.r.l.
Via Napoli 363/I
IT-70123 Bari
+39 080 5046361
Antonio Crisafulli / crisafulli@studiobfp.com
Redato II:
05/08/2020 12:15/3.3.294

PARK - Analisi della produzione

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50WTG: Tutte le WTG nuove, densità dell'aria variabile con la posizione della WTG: 1,196 kg/m³ - 1,200 kg/m³ Analisi direzionale

Settore		0 N	1 NNE	2 ENE	3 E	4 ESE	5 SSE	6 S	7 SSO	8 OSO	90	10 ONO	11 NNO	Totale
Energia basata sulla rugosità	[MWh]	3.147,6	757,7	4.035,3	4.377,4	2.003,5	6.383,0	10.114,0	14.633,8	31.506,0	28.045,8	40.946,1	28.237,9	174.188,2
+Incremento dovuto all'orografia	[MWh]	-92,0	-23,0	-83,5	-23,8	17,1	-126,4	-313,5	-355,3	-295,0	36,0	-228,4	-519,3	-2.007,2
-Perdite dovute alle scie	[MWh]	302,7	63,0	288,2	295,4	105,0	333,1	947,1	700,5	1.140,5	1.429,9	1.527,6	1.271,2	8.404,3
Energia risultante	[MWh]	2.752,9	671,7	3.663,6	4.058,2	1.915,6	5.923,6	8.853,3	13.577,9	30.070,5	26.651,9	39.190,1	26.447,5	163.776,7
Energia specifica	[kWh/m ²]													927
Energia specifica	[kWh/kW]													2.925
Incremento dovuto all'orografia	[%]	-2,9	-3,0	-2,1	-0,5	0,9	-2,0	-3,1	-2,4	-0,9	0,1	-0,6	-1,8	-1,15
Perdite dovute alle scie	[%]	9,9	8,6	7,3	6,8	5,2	5,3	9,7	4,9	3,7	5,1	3,8	4,6	4,88
Utilizzazione	[%]	33,1	37,0	40,0	40,0	39,9	34,3	34,8	33,7	26,5	36,6	38,6	33,9	33,9
Tempo di operatività	[Ore/anno]	250	185	456	413	245	356	559	673	1.189	1.365	1.678	974	8.342
Ore equivalenti	[Ore/anno]	49	12	65	72	34	106	158	242	537	476	700	472	2.925

Studio Tecnico BFP s.r.l. Via Napoli 363/I

IT-70123 Bari +39 080 5046361

Antonio Crisafulli / crisafulli@studiobfp.com

05/08/2020 12:15/3.3.294

PARK - Analisi della curva di potenza

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50WTG: 06 - VESTAS V150-5.6 5600 150.0 !O!, Altezza mozzo: 105,0 m

Nome: Level 0 - Calculated - Modes 0/0-0S - 05-2019

Fonte: Manufacturer

Data fonte Creata da Soglia di blocco Controllo della potenza Tipo di curva Ct Tipo di generatore Potenza specifica Creato Redatto kW/m² [m/s] 06/05/2019 **EMD** 21/06/2019 23/07/2019 25,0 Pitch Definito dall'utente Variable 0,32 Document no. 0081-5059 V03.

Confronto con curva HP - Nota: per densità dell'aria standard e parametro Weibull k = 2

V media	[m/s]	5	6	7	8	9	10
Valore HP Pitch, variable speed (2013)	[MWh]	9.030	13.836	18.526	22.735	26.307	29.180
VESTAS V150-5.6 5600 150.0 !O! Level 0 - Calculated - Modes 0/0-0S - 05-2019	[MWh]	9.190	14.101	18.834	22.954	26.263	28.704
Valore di controllo	[%]	-2	-2	-2	-1	0	2

La tabella mostra il confronto con la produzione annuale di energia calcolata sulla base delle semplici "curve HP", che assumono che tutte le WTG abbiano prestazioni simili - solo la potenza specifica

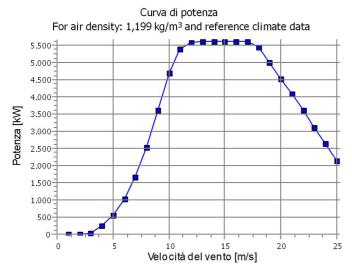
(kW/m^2), la velocità singola/duale o stallo/pitch influenzano i valori calcolati. La produzione è intesa senza le perdite di scia.

For further details, ask at the Danish Energy Agency for project report J.nr. 51171/00-0016 or see windPRO manual chapter 3.5.2.

Il metodo è descritto nel rapporto EMD "20 Detailed Case Studies comparing Project Design Calculations and actual Energy Productions for Wind Energy Projects worldwide", gennaio 2003.

Usare la tabella per valutare se la curva di potenza data è ragionevole - se il valore di controllo è inferiore a -5%, la curva di potenza è probabilmente troppo ottimistica a causa dell'incertezza sulla sua

Curva di potenza


Dati originali dal Catalogo WTG, Densità dell'aria: 1,225 kg/m³

Velocità del vento [m/s]	Potenza [kW]	Ce	Velocità del vento [m/s]	Curva Ct	
3,0	42,0	0,14	3,0	0,88	
3,5	138,0		3,5	0,84	
4,0	252,0		4,0	0,81	
4,5	393,0		4,5	0,80	
5,0	567,0		5,0	0,79	
5,5	780,0		5,5	0,79	
6,0	1.039,0		6,0	0,79	
6,5	1.345,0		6,5	0,80	
7,0	1.704,0		7,0	0,80	
7,5	2.114,0	0,46	7,5	0,80	
8,0	2.579,0		8,0	0,80	
8,5	3.102,0		8,5	0,80	
9,0	3.673,0		9,0	0,78	
9,5	4.250,0		9,5	0,74	
10,0	4.781,0		10,0	0,69	
10,5	5.183,0		10,5	0,61	
11,0	5.452,0		11,0	0,53	
11,5	5.553,0		11,5	0,46	
12,0	5.586,0		12,0	0,39	
12,5	5.598,0		12,5	0,34	
13,0	5.600,0		13,0	0,30	
13,5	5.600,0		13,5	0,26 0,23	
14,0 14,5	5.600,0		14,0 14,5	0,23	
15,0	5.600,0 5.600,0		15,0	0,21	
15,5	5.600,0		15,5	0,15	
16,0	5.600,0		16,0	0,15	
16,5	5.600,0		16,5	0,13	
17,0	5.597,0		17,0	0,13	
17,5	5.562,0		17,5	0,12	
18,0	5.428,0		18,0	0,11	
18,5	5.222,0		18,5	0,09	
19,0	4.993,0		19,0	0,08	
19,5	4.760,0		19,5	0,07	
20,0	4.532,0	0,05	20,0	0,07	
20,5	4.301,0	0,05	20,5	0,06	
21,0	4.069,0		21,0	0,05	
21,5	3.838,0		21,5	0,05	
22,0	3.600,0		22,0	0,04	
22,5	3.352,0		22,5	0,04	
23,0	3.114,0		23,0	0,03	
23,5	2.871,0		23,5	0,03	
24,0	2.635,0		24,0	0,03	
24,5	2.380,0		24,5	0,02	
25,0	2.122,0	0,01	25,0	0,02	

Potenza, efficienza ed energia vs. velocità del vento

Dati usati nel calcolo, Densità dell'aria: 1,199 kg/m³ New windPRO method (adjusted IEC method, improved to match turbine control) < RECOMMENDED>

Velocità del vento	Potenza	Ce	Intervallo	Energia	Energia cumulata	Frazione del totale
[m/s]	[kW]		[m/s]	[MWh]	[MWh]	[%]
1,0	0,0	0,00	0,50- 1,50	0,0	0,0	0,0
2,0	0,0	0,00	1,50- 2,50	0,0	0,0	0,0
3,0	37,8	0,13	2,50- 3,50	51,4	51,4	0,3
4,0	245,3	0,36	3,50- 4,50	231,4	282,8	1,7
5,0	554,2			572,1	854,9	5,2
6,0	1.016,1	0,44	5,50- 6,50	1.070,5	1.925,3	11,6
7,0	1.667,0	0,46	6,50- 7,50	1.666,0	3.591,3	21,7
8,0	2.523,6			2.227,5	5.818,9	35,2
9,0	3.590,2	0,46	8,50- 9,50	2.583,3	8.402,1	50,8
10,0	4.681,7	0,44	9,50-10,50	2.546,1	10.948,3	66,2
11,0	5.385,9	0,38	10,50-11,50	2.082,7	13.031,0	78,7
12,0	5.575,8	0,30	11,50-12,50	1.439,8	14.470,8	87,4
13,0	5.599,3	0,24	12,50-13,50	892,2	15.363,0	92,8
14,0	5.600,0	0,19	13,50-14,50	522,1	15.885,2	96,0
15,0	5.600,0	0,16	14,50-15,50	296,3	16.181,5	97,8
16,0	5.600,0	0,13	15,50-16,50	166,4	16.347,8	98,8
17,0	5.598,4	0,11	16,50-17,50	93,5	16.441,3	99,4
18,0	5.428,0	0,09	17,50-18,50	51,8	16.493,1	99,7
19,0	4.993,0	0,07	18,50-19,50	27,5	16.520,7	99,8
20,0	4.532,0	0,05	19,50-20,50	14,3	16.535,0	99,9
21,0	4.069,0	0,04	20,50-21,50	7,3	16.542,3	100,0
22,0	3.600,0	0,03	21,50-22,50	3,6	16.545,9	100,0
23,0	3.114,0	0,02	22,50-23,50	1,7	16.547,5	100,0
24,0	2.635,0	0,02	23,50-24,50	0,8	16.548,3	100,0
25,0	2.122,0	0,01	24,50-25,50	0,2	16.548,5	100,0

Curve Ce e Ct For air density: 1,199 kg/m³ and reference climate data 0,5 0,4 0,8 0.3 0.6 0,4 0,2 0,1 0 0 0 25 Velocità del vento [m/s]

Studio Tecnico BFP s.r.l.

Via Napoli 363/I IT-70123 Bari +39 080 5046361

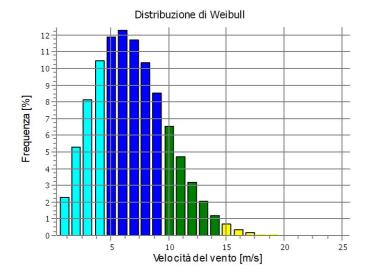
Antonio Crisafulli / crisafulli@studiobfp.com

05/08/2020 12:15/3.3.294

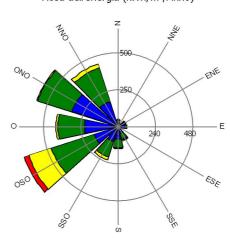
PARK - Analisi dei Dati di vento

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50Dati di vento: Site Park - Site Park; Altezza mozzo: 105,0

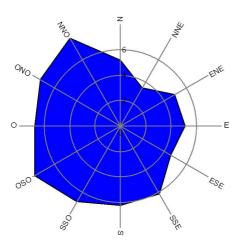
Coordinate del sito

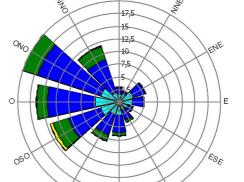

UTM (north)-WGS84 Zone: 33 Est: 556.245 Nord: 4.575.956 Statistica del Vento

IT_OrtaNova-MCP-WindIndex-ERA5_Zapponeta.wws


Parametri Weibull

Sito attuale


	Dito attauic			
Settore	Parametro A	Velocità del vento	Parametro k	Frequenza
	[m/s]	[m/s]		[%]
0 N	5,78	5,15	1,740	3,0
1 NNE	3,92	3,48	1,822	2,2
2 ENE	5,54	4,92	2,490	5,5
3 E	5,75	5,10	2,424	4,9
4 ESE	5,15	4,56	2,104	2,9
5 SSE	6,97	6,17	2,064	4,2
6 S	7,04	6,24	2,275	6,7
7 SSO	7,74	6,85	2,275	8,1
8 OSO	8,79	7,78	2,076	14,3
90	7,60	6,75	2,549	16,4
10 ONO	8,19	7,32	3,127	20,0
11 NNO	8,92	7,96	2,924	11,7
Tutti	7,61	6,74	2,260	100,0


Rosa dell'energia (kWh/m²/Anno)

Velocità media (m/s)

- 0 - 5 m/s - 5 - 10 m/s - 10 - 15 m/s - 15 - 20 = '

- 15 - 20 m/s - 20 - 40 m/s

Utente autorizzato

Studio Tecnico BFP s.r.l. Via Napoli 363/I IT-70123 Bari +39 080 5046361 Antonio Crisafulli / crisafulli@studiobfp.com Redato II: 05/08/2020 12:15/3.3.294

PARK - Curva di potenza del parco

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50

Potenza														
Velocità	WTG	WTG	N	NNE	ENE	Е	ESE	SSE	S	SSO	OSO	0	ONO	NNO
del	libere	in												
vento		parco												
[m/s]	[kW]	[kW]	[kW]	[kW]										
0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3,5	1.329	1.127	972	1.114	1.133	1.134	1.188	1.121	971	1.126	1.129	1.134	1.187	1.121
4,5	3.833	3.496	3.242	3.469	3.507	3.513	3.598	3.484	3.247	3.491	3. 4 98	3.512	3.597	3.482
5,5	7.621	7.017	6.568	6.962	7.034	7.046	7.199	6.994	6.575	7.002	7.019	7.045	7.197	6.991
6,5	13.147	12.120	11.362	12.029	12.147	12.172	12.428	12.084	11.377	12.096	12.121	12.169	12.425	12.079
7,5	20.671	19.073	17.892	18.930	19.115	19.155	19.549	19.017	17.914	19.036	19.074	19.150	19.545	19.009
8,5	30.315	28.044	26.353	27.839	28.108	28.158	28.728	27.965	26.380	27.991	28.051	28.151	28.722	27.955
9,5	41.523	38.872	36.791	38.680	38.964	38.991	39.683	38.793	36.817	38.838	38.906	38.985	39.677	38.783
10,5	50.938	49.126	47.474	49.111	49.224	49.178	49.706	49.090	47.486	49.190	49.202	49.179	49.702	49.083
11,5	55.239	54.756	54.207	54.820	54.801	54.755	54.916	54.748	54.210	54.833	54.804	54.756	54.916	54.747
12,5	55.939	55.898	55.849	55.904	55.901	55.897	55.911	55.898	55.852	55.905	55.901	55.897	55.911	55.897
13,5	56.000	55.999	55.998	56.000	55.999	55.999	55.999	55.999	55.998	56.000	55.999	55.999	55.999	55.999
14,5	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000
15,5	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000
16,5	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000	56.000
17,5	55.620	55.688	55.738	55.699	55.688	55.684	55.669	55.689	55.734	55.689	55.688	55.684	55.669	55.691
18,5	52.220	52.406	52.557	52.417	52.399	52.398	52.348	52.411	52.555	52.406	52.403	52.398	52.349	52.412
19,5	47.600	47.771	47.910	47.782	47.765	47.764	47.718	47.776	47.908	47.771	47.768	47.764	47.719	47.777
20,5	43.010	43.151	43.265	43.160	43.146	43.145	43.108	43.155	43.264	43.151	43.149	43.145	43.108	43.156
21,5	38.380	38.497	38.592	38.504	38.493	38.492	38.461	38.500	38.590	38.497	38.495	38.492	38.461	38.501
22,5	33.520	33.623	33.706	33.629	33.619	33.618	33.591	33.626	33.704	33.623	33.621	33.618	33.591	33.626
23,5	28.710	28.791	28.857	28.796	28.788	28.788	28.766	28.794	28.856	28.792	28.790	28.788	28.767	28.794
24,5	23.800	23.867	23.921	23.871	23.864	23.864	23.846	23.869	23.920	23.867	23.866	23.864	23.846	23.869
25,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Descrizione:

La curva di potenza del parco è simile alla curva di potenza di una WTG, nel senso che quando una data velocità del vento si manifesta "di fronte al parco" con la stessa velocità nell'intera area del parco eolico (prima dell' effetto del parco stesso), allora la produzione complessiva può essere data dalla curva di potenza del parco. Si può anche dire: la curva di potenza del parco include le perdite da allineamento, ma NON include le variazioni date dal terreno alla velocità del vento entro l' area del parco. Measuring a park power curve is not as simple as measuring a WTG power curve due to the fact that the park power curve depends on the wind direction and that the same wind speed normally will not appear for the entire park area at the same time (only in very flat non-complex terrain). The idea with this version of the park power curve is not to use it for validation based on measurements. This would require at least 2 measurement masts at two sides of the park, unless only a few direction sectors should be tested, AND non complex terrain (normally only useable off shore). Another park power curve version for complex terrain is available in windPRO.

La curva di potenza del parco può essere usata per:

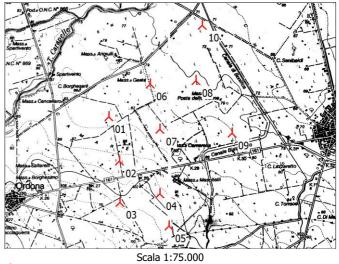
- 1. Sistemi di previsione, basati su più dati di vento approssimativi; la curva di potenza del parco sarebbe un modo efficace di ottenere il legame tra la velocità (e la direzione) del vento e la potenza.
- direzione) del vento e la potenza.

 2. Costruzione delle curve di durata, che descrivono quanto spesso un dato output di potenza si presenta. La curva di potenza del parco può essere usata insieme con la distribuzione media del vento sull'area del parco eolico all'altezza del mozzo. Tale distribuzione può eventualmente essere ottenuta dai parametri Weibull per ogni posizione delle WTG. Questi si trovano nel menu di stampa "Risultato su file", in "Risultato del Parco", che può essere salvato su file o copiato e incollato in Excel.
- 3. Calcolo dell'Indice di Vento basato sulla produzione del parco (v. sotto).
- 4. Stima della produzione attesa di una centrale eolica esistente sulla base di misure in almeno due siti ai lati della centrale. The masts must be used for obtaining the free wind speed. The free wind speed is used in the simulation of expected energy production with the PARK power curve. This procedure will only work suitable in non complex terrains. For complex terrain another park power curve calculation is available in windPRO (PPV-model).

Nota:

Nel menu " Risultato su file" è disponibile anche l' opzione " Velocità del vento entro il parco eolico". Essa può essere utilizzata per estrarre (e.g. con Excel) le perdite indotte dalle scie sulla velocità del vento misurata.

Studio Tecnico BFP s.r.l.


05/08/2020 12:15/3.3.294

Via Napoli 363/I IT-70123 Bari +39 080 5046361 Antonio Crisafulli / crisafulli@studiobfp.com

PARK - Distanze tra le WTG

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50

Dist	alize ti	a ic wio			
	Z	WTG più vicina	Z	Distanza	Distanza in
				orizzontale	Diametri Rotore
	[m]		[m]	[m]	
01	80,4	02	93,2	904	6,0
02	93,2	03	103,6	818	5,5
03	103,6	04	93,4	810	5,4
04	93,4	05	97,3	661	4,4
05	97,3	04	93,4	661	4,4
06	77,0	08	73,0	914	6,1
07	80,0	06	77,0	917	6,1
80	73,0	06	77,0	914	6,1
09	79,5	08	73,0	1.253	8,4
10	70,0	08	73,0	1.103	7,4
Min	70,0		73,0	661	4,4
Max	103.6		103.6	1.253	8.4

Progetto

Ortanova Posta delle Canne 2020

Utente autorizzato:

Studio Tecnico BFP s.r.l.

Via Napoli 363/I IT-70123 Bari +39 080 5046361

Antonio Crisafulli / crisafulli@studiobfp.com

05/08/2020 12:15/3.3.294

PARK - Info Statistica di Vento

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50

Dati per il calcolo della Statistica del Vento

File C:\Users\Cris\Documents\WindPRO Data\Projects\Ortanova Posta delle Canne 2020\IT_OrtaNova-MCP-WindIndex-ERA5_Zapponeta.wws

Nome OrtaNova-MCP-WI-ERA5_Zapponeta

Paese Italy Fonte USER

Coordinate mast UTM (north)-WGS84 Zone: 33 Est: 560.203 Nord: 4.572.548

 Creato
 19/02/2019

 Redatto
 19/02/2019

 Settori
 12

 Versione WASP
 WASP 10 3.1.633

Altezza di dislocamento Nessuna

Commenti

From MCP

Corrected with 0,94

Ulteriori informazioni sulla Statistica

Altezza di misura (s.l.s.) 50,0 m Quota del mast di misura (s.l.m.) 85,0 m

Informazioni sulla correzione di lungo periodo

Metodo Wind Index MCP

Fonte dati ERA5_N41.451975_E015.840000 (13)

Distanza dal mast di sito 19,5 km
Dati di lungo termine dal 01/01/2004
al 01/01/2019
Dati contemporanei dal 12/11/2009
al 19/07/2010
Numero di dati contemporanei 5974

Numero di dati contemporanei5974Intervallo di registrazione utilizzato60 minutiPercentuale di dati contemporanei utilizzati100,0 %

Numero di anni con dati di lungo periodo15,0 anniNumero di mesi con dati contemporanei8,2 mesi

Test di correlazione basato su Indici di Vento mensili

Curva di potenza usata per l'Indice di Vento VESTAS V150-4.2 4200 150.0 !O!

Soglia di accettazione disponibilità dati (per mese) 60 %
Numero di indici mensili 8
r^2 - indice di vento 0,8975
r - indice di vento 0,9474
s - indice di vento 8,2167

Commento

Per ottenere un risultato corretto, la Statistica del Vento deve essere stata calcolata con lo STESSO modello e parametrizzazione selezionati in questo calcolo. Versioni di WASP precedenti alla 10.0 non presentano variazioni sostanziali, ma nelle versioni successive le modifiche applicate hanno effetto sulla Statistica del Vento. Analogamente, WASP CFD deve sempre utilizzare Statistiche di Vento calcolate con WASP CFD.

Studio Tecnico BFP s.r.l. Via Napoli 363/I IT-70123 Bari +39 080 5046361 Antonio Crisafulli / crisafulli@studiobfp.com 05/08/2020 12:15/3.3.294

PARK - Mappa

Calcolo: Posta delle canne_2020_rev02_Producibilita_P50

250 500 750 1000m Mappa: Ortofoto_Puglia_2016, Scala di stampa 1:25.000, Centro mappa UTM (north)-WGS84 Zone: 33 Est: 555.712 Nord: 4.575.397 Nuova WTG
 Nuova W

