

Anas SpA

Direzione Centrale Progettazione

F2602000340001

CIG

652449686B

GARA CA 08/15 - NUOVA SS 554 CAGLIARITANA ADEGUAMENTO DELL'ASSE ATTREZZATO URBANO ED ELIMINAZIONE DELLE INTERSEZIONI A RASO DAL KM 1+500 AL KM 11+850

OFFERTA TECNICA

ASSE STRADALE PRINCIPALE PONTI

PONTE RIO SALIUS DEVIATO - km 5+300

Relazione di calcolo

Caratteristiche ambientali

	ntierizza	
6	e fasi di	lavoro

CODICE PROGET	ТО		CODICE	ELABORATO				SCALA	DATA	
progetto	liv.	numero	campo 1	campo 2	campo 3	campo 4	rev			
DPCA06	D	1501	T 0 0	P O 0 1	STR	RE01	С	-	07/12/2017	

CODICE ELABORATO DI OFFERTA

10.1

CONCORRENTE:

PROGETTISTA INDICATO COSTITUENDO R.T.P.

Capogruppo Mandataria R.T.P.

SWS[™]

Mandante

Mandante

ASTALDI

ING. FRANCESCA LEO

RESPONSABILE DELL'INTEGRAZIONE FRA LE PRESTAZIONI SPECIALISTICHE

Ing. Paolo Cucino

RESPONSABILE ELABORATO

Ing. Paolo Cucino

INDICE

1	PRE	MESSA	4
	1.1	Inquadramento generale dell'intervento	4
	1.2	Oggetto specifico della relazione	6
2	DOC	CUMENTI DI RIFERIMENTO	7
	2.1	Normative di riferimento, raccomandazioni, linee guida	7
	2.2	Elaborati	8
	2.3	Bibliografia	8
3	CAR	ATTERISTICHE DEI MATERIALI	9
	3.1	Conglomerato cementizio	9
	3.1.1	Pali	9
	3.1.2	2 Elevazioni Spalle	9
	3.1.3	B Fondazioni (Platee Spalle)	9
	3.1.4	Conglomerato cementizio per le travi prefabbricate	10
	3.1.5	Conglomerato cementizio per traversi e soletta	10
	3.2	Acciaio per barre di armatura	10
	3.3	acciaio armonico per precompressione	11
	3.4	Durabilità delle strutture in conglomerato cementizio armato	11
4	CAR	IICHI DI PROGETTO DELL'IMPALCATO	13
	4.1	Carichi permanenti strutturali	13
	4.2	Carichi permanenti portati	13
	4.3	Carichi variabili da traffico veicolare	13
	4.3.1	Carichi verticali	13
	4.3.2	2 Frenatura e avviamento	14
	4.3.3	B Azioni sui parapetti	14
	4.4	Ritiro	14
	4.5	Dilatazione termica	14
	4.6	Vento	15
	4.7	Azione Sismica	15
	4.7.1	Classificazione dell'opera ai fini della valutazione dell'azione sismica	15

	4.7.2	2	Parametri sismici di riferimento	.15
	4.8	С	ombinazione dei carichi	. 16
5	CAF	RAT	TERIZZAZIONE GEOTECNICA DEL TERRENO	. 18
ô	APP	AF	ECCHI DI APPOGGIO, GIUNTI DI DILATAZIONE	. 19
7	SOL	ET.	TA FLOTTANTE	.21
8	ANA	LIS	SI STRUTTURALE DELLE SPALLE	.23
	8.1	G	eometria delle spalle	. 23
	8.2	M	odello agli elementi finiti	.25
	8.3	Α	nalisi dei carichi della spalla	27
	8.3.	1	Peso proprio delle strutture	.27
	8.3.2	2	Peso proprio terreno imbarcato	27
	8.3.3	3	Spinte orizzontali dovute al terreno	27
	8.3.4	4	Carico stradale accidentale	.28
	8.3.	5	Caratterizzazione sismica	29
	8.3.6	ô	Spinta sismica inerziale delle strutture	.29
	8.3.	7	Spinta sismica del terreno	29
	8.3.8	8	Carichi sismici derivanti dall'impalcato	.30
	8.3.9	9	Carichi statici derivanti dall'impalcato	.31
	8.4	С	ombinazioni di carico	.33
9	RIS	UL	TATI DELLE ANALISI E VERIFICA DELLE SPALLE	.38
	9.1	R	isultati delle analisi	.38
	9.2	٧	erifiche di sicurezza	.41
10	DES	CF	RIZIONE DELLE OPERE SPECIALI	45
11	ANA	LIS	SI DEI CARICHI	45
12	CAL	.CC	LO DELLA CAPACITA' PORTANTE	.46
	12.1	M	ETODO DI CALCOLO	.46
	12.2	С	APACITA' PORTANTE PALI	47
13	VER	RIFI	CHE PALI	51
	13.1	٧	ERIFICA CAPACITA' PORTANTE VERTICALE – SPALLE	.51
	13.2	٧	ERIFICA DELL'INSTABILITA' ELASTICA DEI PALI	.51
	13.3	٧	ERIFICA STRUTTURALE E DEI CEDIMENTI DEI PALI	.52

13.4	REP	ORT ELABORAZIONE DATI E RISULTATI	55
13.4	.1	Pali per spalle	57

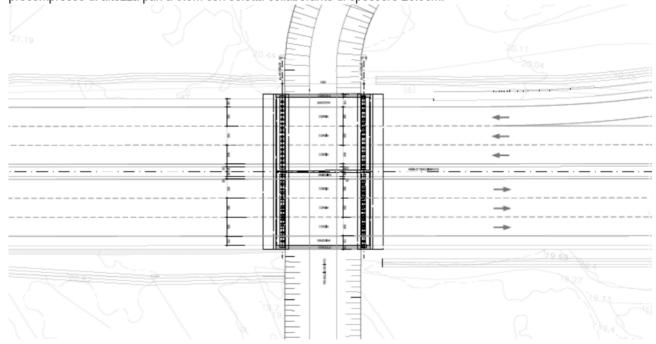
PREMESSA 1

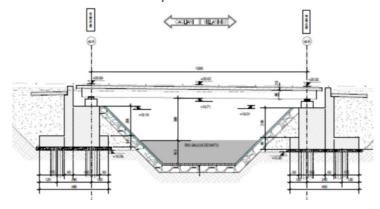
1.1 Inquadramento generale dell'intervento

Nella presente relazione si riportano le verifiche strutturali delle sottostrutture relative ai manufatti: ponte su Rio Salius deviato al km. 5+300 (PO-01) della nuova SS554 "Cagliaritana" adeguamento dell'asse attrezzato urbano ed eliminazione delle intersezioni a raso dal km 1+500 al km 11+850 per la progettazione definitiva.

L'immagine riportata di seguito fornisce un inquadramento geografico degli interventi.

Figura 1 – Vista dell'area oggetto dell'intervento




1.2 Oggetto specifico della relazione

Oggetto della presente relazione sono le verifiche strutturali delle sottostrutture del manufatto PO-01.

Il documento si pone l'obiettivo di descrivere i criteri progettuali adottati e le verifiche svolte ai fini del dimensionamento strutturale dell'opere. L'impalcato, costituito da due ponti affiancati di andamento rettilineo, si sviluppa su di una campata unica di lunghezza pari a circa 15.00m. La sezione trasversale di ogni ponte ha larghezza di 14.15m con una pavimentazione larga 12.75m. La struttura portante è costituita da travi a T rovescio adiacenti di in calcestruzzo armato precompresso di altezza pari a 0.5m con soletta collaborante di spessore 20.0cm.

Le spalle sono realizzate da una struttura in calcestruzzo armato di lunghezza 28.70m, su cui poggiano entrambi gli impalcati, e altezza massima 4.25m. La fondazione, una platea di spessore 0.8m e dimensioni 28.7x4.80m, è appoggiata su 16 pali di diametro 0.8m posti ad interasse di 2.40x3.75m. In questo caso, per ragioni esecutive di getto, il fusto si fonde con il paraghiaia generando un blocco in calcestruzzo pieno di dimensioni 2.25x2.06m

2 DOCUMENTI DI RIFERIMENTO

2.1 Normative di riferimento, raccomandazioni, linee guida

Il calcolo viene condotto nel rispetto delle Normative Nazionali, provvedendo, dove necessario, ad integrare le informazioni in esse contenute con le indicazioni proposte negli Eurocodici e nelle più accreditate normative Internazionali:

Il calcolo viene condotto nel rispetto delle Normative Nazionali, provvedendo, dove necessario, ad integrare le informazioni in esse contenute con le indicazioni proposte negli Eurocodici e nelle più accreditate normative Internazionali:

- [1] LEGGE 5 novembre 1971, n. 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- [2] LEGGE 2 febbraio 1974, n.64: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- [3] D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni";
- [4] Circolare 02.02.2009 n°617/C.S.LL.PP. "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni" di cui al Decreto Ministeriale 14 gennaio 2008;

Ad integrazione delle indicazioni proposte dal D.M. 14.01.2008, dove necessario, si è ritenuto opportuno riferirsi ai documenti di seguito indicati:

- [5] C.N.R. U.N.I. 10018 85: "Apparecchi di appoggio in gomma e PTEF nelle costruzioni Istruzioni per il calcolo e l'impiego."
- [6] D. M. LL.PP. 04/05/1990: "Aggiornamento delle norme tecniche per la progettazione, la esecuzione e il collaudo dei ponti stradali."
- [7] Circ. LL. PP. 25/02/1991: "Istruzioni relative alla normativa tecnica dei ponti stradali."
- [8] D. M. LL. PP. 14/02/1992: "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche."
- [9] D.M.LL.PP.09/01/1996: "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento, normale e precompresso e per le strutture metalliche."
- [10] Circ.LL.PP.15/10/1996: "Istruzioni per l'applicazione delle «Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento, normale e precompresso e per le strutture metalliche» di cui al decreto ministeriale 9 gennaio 1996."
- [11] D.M.LL.PP.14/01/2008: "Approvazione delle nuove norme tecniche per le costruzioni"
- [12] EN 1992-1-1: 2005 "Eurocodice 2: Progettazione delle strutture di calcestruzzo, Parte 1-1: Regole generali e regole per gli edifici".
- [13] EN 1997-1: 2005 "Eurocodice 7: Progettazione geotecnica, Parte 1: Regole generali".
- [14] EN 1998-1: 2005 "Eurocodice 8: Progettazione delle strutture per la resistenza sismica, Parte 1: Regole generali, azioni sismiche e regole per gli edifici".
- [15] EN 1998-5: 2005 "Eurocodice 8: Progettazione delle strutture per la resistenza sismica, Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".

- [16] UNI EN 206-1 "Calcestruzzo: specificazione, prestazione, produzione e conformità";
- [17] UNI EN 11104: 03.2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità, Istruzioni complementari per l'applicazione della EN 206-1".

La caratterizzazione geotecnica e sismica dei terreni interessati dal tracciato sono state redatte in conformità a dette Norme, analogamente le verifiche geotecniche delle opere previste nel progetto.

Raccomandazioni e specifiche

- A.G.I. Associazione Geotecnica Italiana "Linee guida aspetti geotecnici della progettazione in zona sismica"
 (2005);
- A.G.I. Associazione Geotecnica Italiana "Raccomandazioni sui Pali di Fondazione" (1984);
- A.I.C.A.P., AGI Ancoraggi nei terreni e nelle rocce raccomandazioni

2.2 Elaborati

Tutti gli elaborati grafici di progetto definitivo.

2.3 Bibliografia

- [10] Geotecnica, R. Lancellotta, ed. Zanichelli;
- [11] Fondazioni, C. Viggiani, ed. Hevelius;
- [12] Single piles and pile groups under lateral loading, L. C. Reese, A. A. Balkema Publisheres.

3 CARATTERISTICHE DEI MATERIALI

I materiali utilizzati nella costruzione dovranno essere oggetto di prove certificanti la rispondenza fra i valori di progetto delle resistenze adottate nel calcolo e le caratteristiche meccaniche dei prodotti posti in opera. In particolare valgono le indicazioni di seguito presentate.

3.1 Conglomerato cementizio

3.1.1 Pali

Nell'esecuzione delle opere di fondazione è previsto l'impiego dei seguenti materiali:

- Pali trivellati di fondazione:
 - o Iniezione con classe di calcestruzzo min C25/30 tipo SCC
 - Acciaio d'armatura B450C

ftk = 5400 kg/cm2 fyk = 4500 kg/cm2 fyd = fyk / 1.15 = 3913 kg/cm2 Copriferro min 10 cm

3.1.2 Elevazioni Spalle

Per le strutture di elevazione quali i muri delle spalle è stato previsto un calcestruzzo classe C35/45 il quale dovrà essere confezionato secondo i criteri proposti nel capitolato e dovrà garantire le seguenti caratteristiche meccaniche:

Resistenza caratteristica cubica di calcolo: Rck = 45 MPa
 Resistenza caratteristica cilindrica a 28gg: fck=35 MPa

• Resistenza di calcolo a compressione: fcd = α fck/ γ c = 19.8 MPa

Resistenza media a trazione (Elementi Inflessi): fctm =3.21 MPa
 Modulo di elasticità istantaneo: Ecm = 34077 MPa

3.1.3 Fondazioni (Platee Spalle)

Per le strutture di fondazione quali le platee delle spalle, la fondazione dell'arco e i plinti delle pile è stato previsto un calcestruzzo classe C25/30 il quale dovrà essere confezionato secondo i criteri proposti nel capitolato e dovrà garantire le seguenti caratteristiche meccaniche:

Resistenza caratteristica cubica di calcolo:
 Resistenza caratteristica cilindrica a 28gg:
 fck=25 MPa

• Resistenza di calcolo a compressione: fcd = α fck/ γ c =14.17 MPa

Resistenza media a trazione (Elementi Inflessi): fctm =2.56 MPa
 Resistenza caratteristica a trazione: fctk =1.98 MPa

Modulo di elasticità istantaneo:

Ecm = 31476 MPa

3.1.4 Conglomerato cementizio per le travi prefabbricate

•	Resistenza caratteristica cubica a compressione	R_{ck}	≥	550 Kg/cm ²
•	Resistenza caratteristica cilindrica a compressione (f_{ck} = 0,83 R_{ck}) f_{ck}	≥	456,5 K	(g/cm²
•	Resistenza media cilindrica a compressione $(f_{cm} = 80 + f_{ck})$	\mathbf{f}_{cm}	≥	536,5 Kg/cm ²
•	Resistenza media a trazione semplice (assiale) $(f_{ctm} = 0.30 \text{ fck2/3})$	\mathbf{f}_{ctm}	≥	- 38,32 Kg/cm ²
•	Resistenza caratteristica a trazione semplice (assiale) $(f_{ctk} = 0.70 f_{ctm})$	\mathbf{f}_{ctk}	≥	- 26,82 Kg/cm ²
•	Resistenza media a trazione per flessione $(f_{cfm} = 1,20 f_{ctm})$ f_{cfm}	≥	- 45,98	Kg/cm ²
•	Resistenza caratteristica a trazione per flessione(f_{cfk} = 0,70 f_{cfm})	\mathbf{f}_{ctk}	≥	- 32,19 Kg/cm ²
•	Modulo di elasticità secante (E _{cm} = 22 000 [0,1 f _{cm}]0,3)	E _{cm}	= 364 1	61 Kg/cm ²
•	Deformazione ultima di contrazione	ϵ_{uk}	=	0,35 %
•	Tensione limite di compressione di esercizio (Comb. Rara: σ_c < 0,60 f _{ck})	$\sigma_{\text{c, R}}$	=	273,90 Kg/cm ²
•	Tensione limite di compressione di esercizio (Comb. QP: σ_c < 0,45 f_{ck})	$\sigma_{\text{c, QP}}$	=	205,43 Kg/cm ²
3.1	.5 Conglomerato cementizio per traversi e soletta			
	,			
•	Resistenza caratteristica cubica a compressione	R_{ck}	≥	350 Kg/cm2
•	Resistenza caratteristica cilindrica a compressione (fck = 0,83 Rck)	\mathbf{f}_{ck}	≥	290,5 Kg/cm2
•	Resistenza media cilindrica a compressione (fcm = 80 + fck)	f_{cm}	≥	370,5 Kg/cm2
•	Resistenza media a trazione semplice (assiale) (fctm = 0,30 fck2/3)	\mathbf{f}_{ctm}	≥	- 28,35 Kg/cm2
•	Resistenza caratteristica a trazione semplice (assiale) (fctk = 0,70 fctm)f _{ctk}	≥	- 19,85 Kg/cm2
•	Resistenza media a trazione per flessione (fcfm = 1,20 fctm)	\mathbf{f}_{cfm}	≥	- 34,02 Kg/cm2
•	Resistenza caratteristica a trazione per flessione(fcfk = 0,70 fcfm)	\mathbf{f}_{ctk}	≥	- 23,81 Kg/cm2
•	Modulo di elasticità secante (Ecm = 22 000 [0,1 fcm]0,3)	E_{cm}	= 325 8	81 Kg/cm2
•	Deformazione ultima di contrazione ultima = 0,35 %			
•	Tensione limite di compressione di esercizio (Comb. Rara: 戊 < 0,60 fck)	ℂ, R	=	174,30 Kg/cm2
•	Tensione limite di compressione di esercizio (Comb. QP: ℂc < 0,45 fck)	©c, QP	=	130,73 Kg/cm2

3.2 Acciaio per barre di armatura

Nella strutture in c.a. dovranno essere poste barre nervate in acciaio B450C (secondo UNI EN 10080) controllato in stabilimento. Dovranno essere garantite la saldabilità e le caratteristiche meccaniche di seguito indicate:

Tensione caratteristica di snervamento: fyk ≥ 450 MPa

Resistenza di calcolo acciaio: fyd = fyk/γs =391.3 MPa

Modulo elastico: Ea = 210000 MPa

3.3 acciaio armonico per precompressione

Trefoli tipo standard per pre-tensione ($A_t = 1,39 \text{ cm}^2$) a basso rilassamento (trefoli stabilizzati):

•	Tensione caratteristica di rottura	\mathbf{f}_{ptk}	≥	18 600 Kg/cm2
•	Tensione all'1% di deformazione sotto carico	$\mathbf{f}_{p(1)k}$	≥	16 700 Kg/cm2
•	Modulo di elasticità	E_P	=	1 950 000 Kg/cm2
•	Deformazione ultima	ϵ_{uk}	=	3,50 %
•	Rilassamento a 1000 ore	ρ_{1000}	≥	2,50 %
•	Tensione iniziale alla tesatura (min{0,9 $f_{p(1)k};0,8\;f_{ptk}})$	σ_{pi}	=	14 880 Kg/cm2
•	Tensione massima in esercizio (0,8 f _{p(1)k})	σ_{pi}	=	13 360 Kg/cm2

3.4 Durabilità delle strutture in conglomerato cementizio armato

Per garantire la durabilità delle strutture di calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dagli attacchi chimico-fisici.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2006 ed UNI 11104:2004.

La tabella seguente indica, con riferimento alle sottostrutture e alle fondazioni in oggetto, la vita nominale, la classe di esposizione (*Tabella 2*) e la classe di calcestruzzo, di ciascuna opera.

PONTI	VN [anni]	Classe d'uso	Classe esp.	Materiale	Copriferro [cm]
Elevazioni pile	100	IV	XF4	C35/45	6.0
Elevazioni spalle	100	IV	XF4	C35/45	6.0
Fondazioni spalle e pile	100	IV	XC2	C25/30	5.0

Tabella 1 – Dimensionamento del copriferro

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 2 – Descrizione delle condizioni ambientali (tab.4.1.III NTC2008)

I valori del copriferro sopra indicati sono maggiori rispetto ai valori minimi suggeriti in normativa (*Tabella 3*) poiché tengono conto sia della vita utile delle opere che delle tolleranze di posa delle armature.

Cmin	Со	Ambiente	C≥Co	Cmin <c< co<="" th=""></c<>
C28/35	C40/50	ordinario	20	25
C28/35	C40/50	aggressivo	30	35
C35/45	C45/55	molto aggressivo	40	45

Tabella 3 – -Copriferri minimi in mm (tab.C4.1.IV NTC 2008)

Le verifiche di fessurazione dovranno garantire il soddisfacimento delle disuguaglianze di seguito riportate:

Combinazione quasi permanente: $wk \le w1 = 0.2 \text{ mm}$;

Il dimensionamento degli elementi strutturali dell'opera viene eseguito definendo i seguenti parametri:

•	Classe d'uso:	Classe IV;
•	Classe di resistenza delle travi prefabbricate in c.a.p.	C45/55
•	Classe di resistenza dei traversi e della soletta in c.a.v.	C28/35
•	Condizioni ambientali:	Ordinarie;
•	Classe di esposizione per travi prefabbricate in c.a.p.:	XC3;

Classe di esposizione per traversi e soletta:

XC3;

4 CARICHI DI PROGETTO DELL'IMPALCATO

Si riportano di seguito i carichi di progetto dell'impalcato per la determinazione degli scarichi sugli appoggi delle spalle.

Lo schema di vincolo prevede l'utilizzo di appoggi che consentono spostamenti lenti longitudinali su un lato mentre li blocchino sull'altro. Gli spostamenti trasversali sono bloccati su entrambe le spalle.

4.1 Carichi permanenti strutturali

Il peso proprio della struttura è stato determinato sulla base dei pesi specifici relativi ai materiali impiegati. In particolare per l'acciaio si è assunto un valore pari a 7850 kg/m³ mentre per il calcestruzzo armato si è assunto un valore pari a 2500 kg/m³.

4.2 Carichi permanenti portati

I sovraccarichi permanenti portati derivano da tutti gli elementi di finitura e completamento necessari a garantire le caratteristiche funzionali dell'opera. Si individuano i seguenti contributi:

G_{Ringrossi} = 1.12 kN/m
 G_{Guard-rail} = 1.50 kN/m
 G_{veletta} = 2 kN/m
 G_{Sottoservizi} = 1.5 kN/m

G_{Pavimentazione} = 0.11m x 22kN/m³= 2.42 kN/m²

4.3 Carichi variabili da traffico veicolare

4.3.1 Carichi verticali

Le caratteristiche geometriche definite per la carreggiata comportano la necessità di considerare la presenza di **4 corsie convenzionali** di larghezza w_i = 3.00 m e una parte rimanente di 0.75m. I carichi considerati sono quelli definiti nel D.M. 14.01.2008 coerentemente alla classificazione dell'opera come **ponte di prima categoria**. Nello specifico, ai fini delle verifiche globali, lo schema di carico di tipo 1 risulta essere dimensionante per l'opera in oggetto. La seguente immagine fornisce i dati necessari ad individuare il convoglio "tipo" utilizzato nel calcolo.

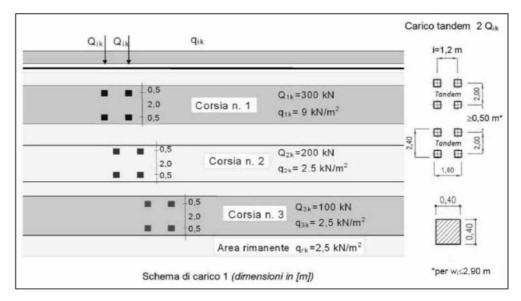


Figura 2 – Schema di carico 1 (D.M. 2008): definizione del convoglio di calcolo per ponti stradali di prima categoria

4.3.2 Frenatura e avviamento

La forza di frenatura ed avviamento, come prescritto dalla normativa di riferimento, è funzione del carico verticale totale agente sulla prima corsia convenzionale. Di conseguenza la risultante considerata nel calcolo risulta essere la seguente:

$$q_3 = 0.6 (2 Q_{1k}) + 0.10 q_{1k} w_1 L = 0.6 (2 \times 300) + 0.10 \times 9 \times 3.00 \times (17.5 \text{ m}) = 407 \text{ kN} \le 900 \text{ kN} \rightarrow 407 \text{ kN}$$

La medesima si considera applicata all'estradosso della pavimentazione.

4.3.3 Azioni sui parapetti

Si tiene conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN. Essa deve essere considerata agente trasversalmente 100 mm sotto la sommità dell'elemento o 1,0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo. La forza in oggetto si applica su una linea lunga 0.5m.

4.4 Ritiro

Il fenomeno del ritiro è stato valutato secondo quanto prescritto al punto 11.2.10.6 del D.M. 14.01.2008, tramite il calcolo della $\epsilon_{cs,\infty}$, la quale risulta pari a -400 ·10-6.

4.5 Dilatazione termica

In ottemperanza alle prescrizioni normative (NTC08 sezione 5.2.2.5.2) si considerano i seguenti carichi termici:

- Variazione termica uniforme: ΔT=±15°C. Con la medesima (amplificata del 50 %) sono stati computati gli spostamenti associati a giunti di dilatazione e dispositivi di appoggio;
- Variazione termica non uniforme: gradiente di temperatura di 5°C fra estradosso ed intradosso di impalcato con verso da determinare caso per caso al fine di massimizzare le sollecitazioni. Il medesimo determina uno stato di coazione nella struttura.

4.6 Vento

L'azione del vento è stata considerata applicando a tutte le superfici potenzialmente investite una pressione normale di 2.50 kN/m². L'area assunta a rappresentazione dei carichi transitanti, come richiesto dalla Normativa di riferimento, vien calcolata fissando una fascia di pertinenza di altezza pari a 3.00 m rispetto al livello definito dal piano viario. L'altezza dell'impalcato è pari a 1.0m.

Sono di seguito riportati i calcoli delle azioni caratteristiche.

$$f_{vento} = 2.50 \text{ x } (1.0+3.0) = 10.0 \text{ kN/m}$$

Si è poi considerata la situazione di ponte scarico:

$$f_{\text{vento,ponte scarico}} = 2.50 \text{ x } (1.0) = 2.5 \text{ kN/m}$$

4.7 Azione Sismica

4.7.1 Classificazione dell'opera ai fini della valutazione dell'azione sismica

L'opera è classificata come **Tipo di costruzione 3** e si individua una **classe d'uso IV**. Pertanto i parametri che permettono di definire l'azione sismica di progetto sono i seguenti:

• Vita nominale: VN = 100 anni

Coefficiente d'uso:
 CU = 2.0

Periodo di riferimento per l'azione sismica:
 VR = VN x CU = 200 anni

4.7.2 Parametri sismici di riferimento

L'azione sismica di progetto si valuta con riferimento al sito individuando una **categoria C** di sottosuolo in classe topografica **T1**. Si riportano di seguito i parametri sismici di riferimento per i diversi stati limite previsti dalla norma.

Stato limite	Pvr(%)	Tr(anni)	Ag/g	Fo	Tc*(sec)
SLO	Default (81)	120	0.0333	2.757	0.31
SLD	Default (63)	201	0.0393	2.817	0.322
SLV	Default (10)	1898	0.0703	3.059	0.393
SLC	Default (5)	2475	0.0747	3.093	0.401

Tabella 4 – Parametri sismici di riferimento

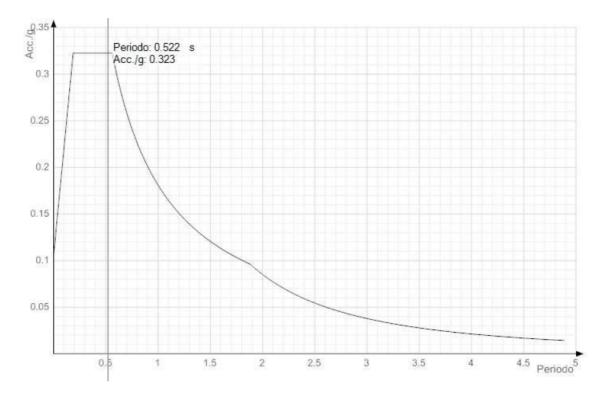


Figura 3 – Spettro di risposta allo SLV

4.8 Combinazione dei carichi

La determinazione dei valori delle sollecitazioni da utilizzare per l'esecuzione delle verifiche strutturali viene condotta facendo riferimento ai gruppi di azioni ed ai coefficienti di combinazione riportati nel D.M. 14.01.2008. La seguente tabella definisce i gruppi considerati:

		Carich	i sulla carreggia	ta		Carichi su marciapiedi e piste ciclabili
	Carichi verticali		Carichi orizz	ontali	Carichi verticali	
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q4	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				
(*) Ponti di 3 (**) Da cons (***) Da cons	3º categoria iderare solo se richies iderare solo se si con	sto dal particolar siderano veicoli	re progetto (ad es speciali	. ponti in zona	urbana)	

Tabella 5 – Definizione dei gruppi di azioni per i carichi variabili da traffico

I gruppi 3, 4 e 5 sono relativi alle sole verifiche locali. Si osserva inoltre come i gruppi di tipo 2a e 2b non siano certamente significativi ai fini del calcolo dell'implacato.

I coefficienti di combinazione da impiegare nella definizione delle azioni di progetto allo SLU e SLE sono riportati nelle seguenti tabelle:

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	$\gamma_{\rm G1}$	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ _{ε1}	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽d) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 6 – Coefficienti di fattorizzazione dei carichi allo SLU

Vaiori di GEO.

(2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna (4) 1,20 per effetti locali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente \equip ₁ (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q5	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Neve q5	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Tabella 7 – Coefficienti di combinazione delle azioni

5 CARATTERIZZAZIONE GEOTECNICA DEL TERRENO

La seguente relazione di calcolo è stata eseguita in ottemperanza alle seguenti disposizioni legislative.

Tenendo presente quanto scritto nella relazione geologica, i parametri caratteristici utilizzati per le verifiche sono i seguenti:

Terreno

peso di volume γ = 1900 kg/m3

angolo d'attrito $\phi = 25^{\circ} \div 30^{\circ}$

Marne di Gesturi fratturate: spessore medio 3÷4 m

peso di volume γ = 2000 kg/m3

angolo d'attrito $\phi = 37^{\circ}$

Marne di Gesturi: base a profondità variabile

peso di volume γ = 2100 kg/m3

angolo d'attrito $\phi = 40^{\circ}$

Tali parametri dovranno essere verificati in fase di esecuzione per controllare la validità delle ipotesi fatte. Se durante gli scavi e/o perforazioni si riscontrassero sostanziali variazioni sulle caratteristiche del terreno sarà compito dell'impresa e del DLL valutare se le ipotesi di calcolo sono ancora valide ed intervenire di conseguenza.

APPARECCHI DI APPOGGIO, GIUNTI DI DILATAZIONE

Di seguito si riporta la pianta dei citati dispositivi congiuntamente alle tabelle riportanti:

- Le specifiche tecniche;
- Le azioni di progetto allo stato limite ultimo SLU e allo stato limite di salvaguardia della vita SLV;
- Gli spostamenti nominali computati considerando il contributo delle deformazioni termiche e da ritiro. Si precisa come le deformazioni termiche uniformi ΔT=±15°C siano state amplificate del 50% in osservanza di quanto prescritto nelle NTC08 alla sezione 5.2.2.5.2.

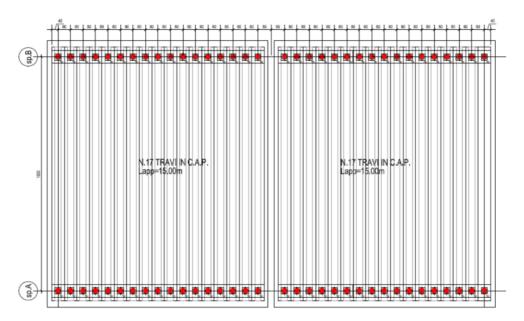


Figura 4 – Pianta appoggi e giunti.

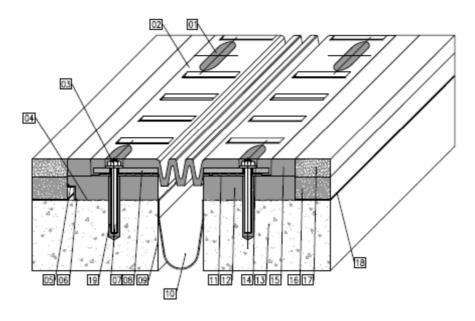

TYPE	EF 50-3			
Fzd	500	[kN]		
Fxy	30	[kN]		
ved	18,7	[mm]		
Ko	1,61	[kN/mm]		
Kv	264	[kN/mm]		
n	3	[n]		
ti	7	[mm]		
ts	2	[n]		
ts	2	[mm]	TABELLA CARICHI APPOGGI	
axb	150x250	[mm]	Nv,SLU =	286 kN
XxY	170x340	[mm]	NL,SLU =	18 kN
Fpe	55	[mm]	NT,SLU = Nv,SLV =	8 kN
hp	15	[mm]	NLSLV =	104 kN 11 kN
nzan			NT,SLV =	33 kN
n	2		spostamenti longitudinali positivi (Δl +) =	+2,0 mm
tpo	1	[mm]	spostamenti longitudinali negativi (ΔI -) =	-6,0 mm
i	295	[mm]	spostamenti longitudinali (corsa totale) -	8,0 mm
Htot	55	[mm]		
W	14	[ka]	Quantità longitudinali	68

Figura 5 – Dispositivi d'appoggio elastomerici: specifiche tecniche e sollecitazioni.

GIUNTO DI DILATAZIONE FUORISCALA DETTAGLIO GIUNTO (± 10mm)

POS.	DESCRIZIONE - DIMENSIONI	MATERIALE
01	Sigillatura	EPOBLOCK ME sigillante
02	Elemento modulare	Gomma
03	Dado di fissaggio M12	Classe 8 EN 20898
04	Bocciardatura e mano d'attacco	Primer P 150
05	Profilo di drenaggio a "L"	UNI 8317 X5 ChNi 1810
06	Stuccatura	-
07	Barra filettata M12x160	Accidio classe B7
80	Piatto vulcanizzato	S235JR EN 10025
09	Stesa e rasatura stucco pareti vert.	-
10	Scossalina raccolta acque = 1,2 mm	Hypalon
11	Stuccatura	-
12	Malta predosata	-
13	Testata soletta	_
14	Randella	-
15	Massetto laterale	Malta di resina EPOBLOCK ME
16	Bynder	_
17	Manto d'usura	-
18	Impermeabilizzazione impalcato	-
19	Resina di ancoraggio	Primer P 150
20	Zanca di ancoraggio multidirezionale	S355J2G3 EN 10025
21	Tirafondo	Fe B 44 K

Lunghezza =	+2,0mm / -6,0mm (corsa totale 15,0mm)
Quantità	4

Figura 6 – Giunti di dilatazione(G): specifiche tecniche e spostamenti.

7 SOLETTA FLOTTANTE

La soletta flottante ha uno sviluppo longitudinale di 5 m e si modella per mezzo di elementi beam di sezione 25x100 cm² in calcestruzzo C32/40.

L'appoggio sul paraghiaia si implementa come vincolo a terra fisso, mentre l'interazione con il terreno si simula per mezzo di molle alla Winkler lineari di rigidezza K = 10000 kN/m³.

Si considerano i carichi:

- G1 peso proprio: q_{G1} = 25*0.25 = 6.25 kN/m;
- G2 pavimentazione: q_{pav} = 2.20 kN/m;
- G2 terreno: q_{terr} = 2.00 ÷ 15.20 kN/m;
- Q traffico: q_{traff} = 60.00 kN/m.

Di seguito si riportano le verifiche nella sezione maggiormente sollecitata.

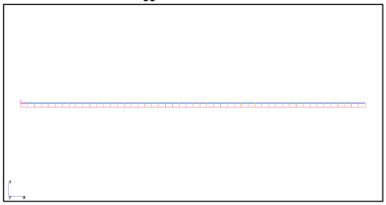


Figura 7 – Soletta flottante: modello FEM

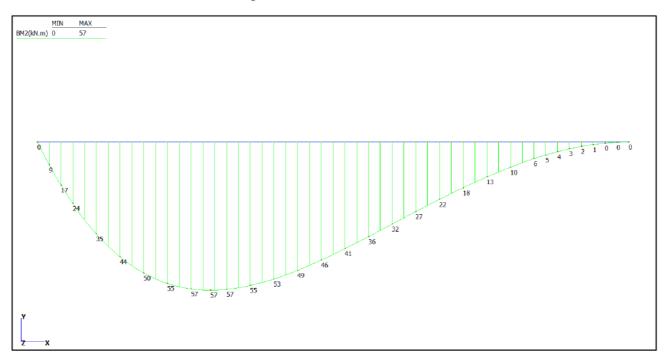


Figura 8 – SLU: momento flettente

INPUT		1		OUTPUT	•		
SOLLECITAZIONI DI	/EDIEICA			VERIFICHE IN ESER	CIZIO		
SOLLECT ALIONI DI	LKIFICA			VERIFICIE IN ESER	CIZIO		
Combinazione	N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]	Verifica Tensionale			σlimit
SLE Quasi Permanente	0.0	6.0	-	Calcestruzzo SLE Quasi Permanente	σ_c [Mpa] =	1.04	14.400
SLE Frequents	0.0	33.0	-	Calcestruzzo SLE Rara	σ_c [Mpa] =	7.47	19.200
SLE Rare		43.0	-	Acciaio SLE Rara	σ _s [Mpa] =	245.38	360.00
SLU		57.0	93.0				
SLI	7 0.0	0.0	0.0	Verifica di fessurazione			w limi
				Combinazione SLE Quasi permanente	w _d [mm] =	0.000	0.200
				Combinazione SLE Frequente	w _d [mm] =	0.181	0.300
CARATTERISTICHE GEOMETRICHE	DELLA SEZ	IONE IN C.	A.	VERIFICA DI RESISTENZA	A TAGLI	0	
Coomotado della contana				Collegiand and Alexandria			
Geometria della sezione		R [cm]	100	Sollecitazioni di progetto Taglio sollecitante = may Taglio (SLII SLV)		Ver LPNU	93.0
Base (ortogonale al Taglio) Altezza (parallela al Taglio)		B [cm] H [cm]	25	Taglio sollecitante = max Taglio(SLU,SLV) Sforzo Normale concomitante al massimo taglio		V _{Sd} [kN] N _{Sd} [kN]	0.0
Altezza (paranena ar ragno) Altezza utile della sezione		d [cm]	20	Sjorzo Normale Concomitante di massimo digito		1420 [1414]	0.0
Area di calcestruzzo		A _c [cm ²]	2500	Verifica di resistenza in assenza di armatura specifica			
		ne tem 1		Resistenza di progetto senza armatura specifica		V _{Rd1} [KN]	119.95
				Coefficiente di sicurezza		V _{Rd1} /V _{Sd}	1.29
Armatura longitudinale tesa	1° STRATO	2° STRATO	3° STRATO				
Numero Barre n	5	0	0	Verifica di resistenza dell'armatura specifica			
Diametro ϕ [mm]	16	0	0	CoTan(θ) di progetto		cotan(θ)	2.5
Posizione dal lembo esterno c [cm]	5.3	0.0	0.0	Resistenza a taglio delle bielle compresse in cls		V _{Rd2} (θ) [KN]	-
Area strato As [cm ²]	10.05	0.00	0.00	Resistenza a taglio dell'armatura		V _{Rd3} (θ) [KN]	-
Rapporto di armatura ρ [%]		0.510%		Resistenza a taglio dei armatura Resistenza a taglio di progetto Coefficiente di sicurezza		V _{Rd} [KN]	-
				Coefficiente di sicurezza		V _{Rd} /V _{Sd}	-
Armatura longitudinale compressa	1° STRATO		3° STRATO	AMERICA DA DEGLOSSIVIZA A DE	DOGO DI D	COLONID	
Numero Barre n	5	0	0	VERIFICA DI RESISTENZA A PR	ESSO-FLE	SSIONE	
Diametro ∅[mm] Posizione dal lembo esterno c' [cm]		0.0	0.0	Collecterioni di propotto		SLU	SLV
		0.00	0.00	Sollecitazioni di progetto Momento sollecitante	M FlaNoral	57.0	0.0
Area strato As' [cm² Rapporto di armatura p' [%]	10.03	0.510%	0.00	Sforzo Normale concomitante	M _{Sd} [kNm] N _{Sd} [kN]	0.0	0.0
rupporto di di madara		0.01070		Solzo Horman Concommuna	risa [mri]	0.0	0.0
Armatura trasversale	1º TIPO	2° TIPO	3° TIPO	Verifica di resistenza in termini di momento		SLU	SLV
Diametro ϕ [mm]		0	0	Momento resistente	M _{Rd} [kNm]	78.3	78.3
Numero bracci n _{bi}	2.5	0	0	Coefficiente di sicurezza	M_{Rd}/M_{Sd}	1.37	#DIV/0
Passo s _w [cm		0	0				
Inclinazione α [deg]		90	90	Verifica di resistenza in termini di sforzo normale		SLU	SLV
Area armatura a metro A_{SW}/S_W [cm ² /m] 0.00	0.00	0.00	Sforzo normale resistente Coefficiente di sicurezza	N _{Rd} [kN] N _{Rd} /N _{Sd}	-	
				Coefficiente al sicurezza	N _{Rd} /N _{Sd}		
CARATTERISTICHE REOLOGIC	HE DEI MA	TERIALI		Dominio di resisten	za M-N		
G				200			-
Concrete Pasistanas subiss a compressione	_	DCV	40	150			-
Resistenza cubica a compressione		fck [Mpa]	32.00				-
Resistenza cilindrica caratteristica a compressione Resistenza cilindrica media a compressione		f _{cm} [Mpa]	40.00	100			-
Resistenza cilinarica media a compressione Resistenza media a trazione per flessione		f _{ctm} [Mpa]	3.02	/	>		-
Resistenza caratteristica a trazione per flessione		f _{ctk} [Mpa]	2.12	E // da			-
Resistenza di progetto a compressione		f _{cd} [Mpa]	18.13	₹ -2000 -1000 0 1000 2000 300	0 4000	5000 6000	-
Resistenza di progetto delle bielle compresse		f _{cd'} [Mpa]	9.49	× 100	/		
Acciaio				-150			-
Resistenza di progetto a snervamento		f _{yd} [Mpa]	391.30	-190			
				250 N [kN]			-

8 ANALISI STRUTTURALE DELLE SPALLE

Il calcolo delle sollecitazioni viene condotto facendo riferimento agli usuali metodi proposti dalle teorie della Scienza delle Costruzioni. Più precisamente le tipologie strutturali presentate, a seconda della complessità, sono analizzate impiegando schemi statici semplificati o modellazioni numeriche agli elementi finiti.

Il software impiegato nelle simulazioni è il codice SismiCad 12.7 prodotto dalla Concrete srl, via della Pieve 19, 38121 Padova. La validazione di tale prodotto deriva da una accreditata documentazione ("Validazione Software"), finalizzata ad attestare l'accuratezza delle soluzioni ottenute in relazione alla modellazione di problematiche fisiche con soluzioni analitiche note.

La verifica degli elementi costituenti le strutture descritte viene dunque effettuata adottando la filosofia proposta nel metodo agli stati limite, sia per gli elementi in calcestruzzo armato che per gli elementi in acciaio.

Il modello delle spalle del ponte è stato condotto in modo disaccoppiato da quello dell'impalcato. Nella fattispecie si sono realizzati modelli tridimensionali, sia per fornire le sollecitazioni globali all'intradosso della fondazione, utili per la verifica geotecnica della fondazione, che per le verifiche strutturali della spalla stessa.

8.1 Geometria delle spalle

Di seguito si riportano le piante e le sezioni di carpenteria maggiormente rappresentative delle spalle che, per conformazione geometrica del terreno risultano simili sia in dimensioni sia in forma da cui si è scelto di studiare il comportamento della spalla più sollecitata.

Dal punto di vista geometrico la spalla ha dimensioni in pianta della fondazione di 28.70x4.80 ed elevazione (da estradosso fondazione a testa paraghiaia) massima di 4.25m.

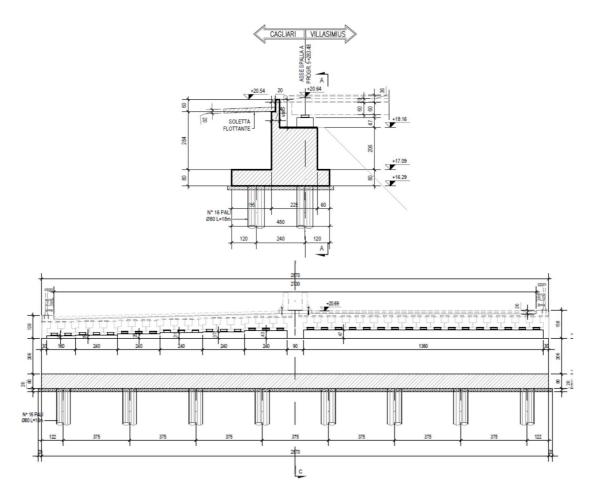


Figura 9: Sezione di carpenteria - Spalla tipo

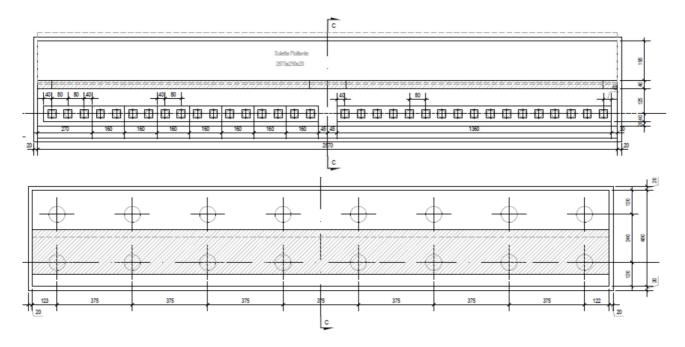


Figura 10: Pianta carpenteria - Spalla tipo

8.2 Modello agli elementi finiti

Il modello delle spalle è stato implementato con elementi bidimensionali (plate) in modo più congruente possibile alla geometria reale.

Gli elementi della spalla sono classificati in:

- Fusto: Muro frontale della spalla su cui appoggia direttamente l'impalcato.
- Paraghiaia: Proseguimento del fusto con disassamento rispetto allo stesso e diminuzione dello spessore.
- Muri di risvolto o muri d'ala: Muri disposti parallelamente alla carreggiata e collegati con il fusto. Hanno la funzione di contenere il cono di rilevato a tergo fusto.
- Platea di fondazione sia essa diretta o su pali.

È stato quindi realizzato un unico modello comprensivo di:

- Elevazioni (fusto, paraghiaia e muri di risvolto) in cui vengono rappresentati tutte le componenti strutturali della spalla con elementi bidimensionali "plate" di opportuno spessore;
- Platea di fondazione rappresentata anch'essa con elementi "plate" vincolata a terra da appoggi fissi posizionati in corrispondenza dei pali. Vista la particolare conformazione del terreno in situ, a vantaggio di sicurezza, si trascura l'effetto della fondazione superficiale offerta alla platea considerando il solo effetto vincolante dei pali.

Il modello, per come implementato, permette sia di valutare le azioni agenti sui pali di fondazione in modo tale che i geotecnici possano fare le verifiche di portanza e quindi confermare la geometria stessa della spalla, sia di calcolare le sollecitazioni agenti sulle elevazioni e sulla platea con lo scopo di effettuare le verifiche strutturali.

Si considera l'asse x di direzione parallela all'asse longitudinale d'impalcato e con verso interno al terreno imbarcato della spalla e si considera l'asse z di direzione verticale posto verso l'alto.

Si riportano ora alcune immagini rappresentative della modellazione 3D.

Spalla tipo

In particolare si possono notare i diversi spessori assegnati agli elementi plate, qui di seguito riassunti:

Paraghiaia: s = 0.40m
 Fusto (fuso con paraghiaia): s = 2.25m
 Fondazione: s = 0.8 m

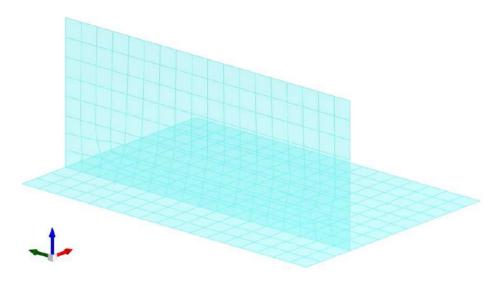


Figura 11: Modello con platea - Vista tridimensionale fronte - Spalla tipo

8.3 Analisi dei carichi della spalla

Si indicano nel seguito i carichi elementari applicati al modello.

8.3.1 Peso proprio delle strutture

Il software di calcolo agli elementi finiti tiene già autonomamente in conto del peso proprio degli elementi strutturali per mezzo del loro peso specifico. Nella fattispecie la struttura è tutta composta di calcestruzzo armato e il suo peso specifico è pari a:

 γ_{cls} =25 kN/m³

8.3.2 Peso proprio terreno imbarcato

Tale carico corrisponde al carico in platea dovuto al peso proprio del terreno di riempimento all'interno della spalla. Il carico è stato applicato come carico uniforme sulla platea.

p.p._{terr} =
$$\gamma_{terr}$$
 x h_{terr} = 20kN/m³ x 4.25m = 85 kN/m²

8.3.3 Spinte orizzontali dovute al terreno

I parametri del terreno utilizzati per il calcolo delle spinte sono i seguenti:

 γ_{ter} =20 kN/m³

Ø=35°

c'=0 kPa

 $k_0 = (1-\sin(\emptyset)) = 0.426$

per quanto riguarda la spinta del terreno di riporto esterno al fusto si tiene conto di un coefficiente di spinta ridotto e pari 0.5k₀.

Con tali dati si può calcolare la spinta triangolare:

q=γ_{ter} k_{a0} y

La seguente immagine rappresenta l'applicazione del carico del terreno sugli elementi verticali e del terreno imbarcato dalla fondazione.

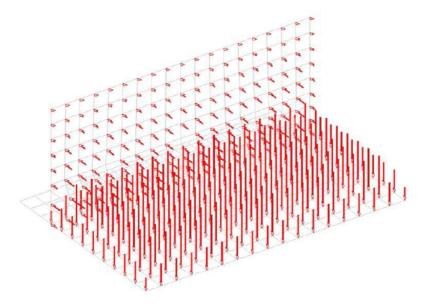


Figura 12: Carico del terreno

8.3.4 Carico stradale accidentale

Il sovraccarico accidentale viene assunto pari al carico veicolare presente nelle diverse carreggiate e corsie di marcia presente a monte e a valle delle strutture. Per quanto riguarda le colonne di carico viene applicato un carico uniforme verticale pari a:

mentre per quanto riguarda il mezzo pesante si applica un carico uniforme sulla superficie del paraghiaia ottenuto considerando che il mezzo pesante abbia una impronta di carico di 3.0x2.0m e sia applicato a su di una larghezza di 3.0metri. Tale valore viene assunto quinti pari a:

 $q_{MP} = 2Qi / (2.0x3.0) x k_0$

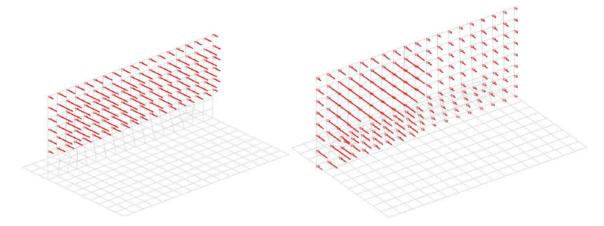


Figura 13: Carico accidentale del mezzo pesante e della colonna di carico

8.3.5 Caratterizzazione sismica

La progettazione sismica fa riferimento ai seguenti dati:

Vita nominale:
 VN = 100 anni

Coefficiente d'uso: Cu = 2.

Periodo di riferimento per l'azione sismica:
 VR = VN x Cu = 200 anni

Categoria del suolo: CCategoria topografica: T1

Per lo stato limite di riferimento per le verifiche strutturali e geotecniche SLV si ha:

 $a_0=0.07g$; S=1.5; ST=1.0

8.3.6 Spinta sismica inerziale delle strutture

La spinta sismica dovuta all'inerzia della struttura è implementata all'interno del software assegnando accelerazione pari a $a_{max}(SLV)$ nelle varie direzione, in seguito opportunamente combinate.

 $a_{max}(SLV)=0.105 g$

8.3.7 Spinta sismica del terreno

Tale spinta deve essere differenziata in due tipologie di carico:

- Forza inerziale sismica del suolo imbarcato;
- Sovraspinta sismica del terreno.

8.3.7.1 Forza inerziale sismica del suolo imbarcato

La prima tipologia è rappresentata dal terreno imbarcato. In questo caso si ipotizza che il terreno si muova solidalmente alla spalla e che quindi venga mobilitata l'intera sua massa: tale valore non comporta incremento di sollecitazioni sui muri in quanto il terreno imbarcato si muove solidamente all'elevazione della spalla.

8.3.7.2 Sovraspinta sismica del terreno.

La sovraspinta sismica è stata determinata secondo la teoria di Wood.

La sovraspinta rettangolare sismica è quindi calcolata attraverso la seguente formulazione:

$$\Delta P = \gamma_{terr} x a_{max(SLV)} x H = 20 kN/m^3 x 0.105 x 4.25 m = 8.93 kN/m^2$$

Si riporta di seguito in modello della sovraspinta applicata al fusto.

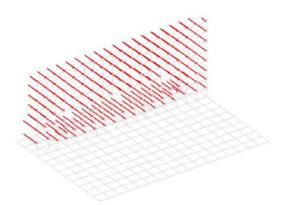


Figura 14: Sovraspinta sismica di Wood sul fusto

8.3.8 Carichi sismici derivanti dall'impalcato

I carichi derivanti dall'impalcato sono applicati in corrispondenza di ciascuno degli elementi di appoggio.

I carichi da applicare in tale punto derivano dall'analisi dell'impalcato. Per maggiori dettagli a riguardo si rimanda alla relazione di calcolo specifica.

Il carico verticale dovuto ai pesi propri e ai pesi permanenti del singolo impalcato valgono:

$$G_{tot} = 3537.3 \text{ kN}$$

Lo schema di vincolo prevede l'utilizzo di appoggi che consentono spostamenti lenti longitudinali su un lato mentre li blocchino sull'altro. Gli spostamenti trasversali sono bloccati su entrambe le spalle.

Pertanto, con lo schema di vincolo adottato, il movimento longitudinale dell'impalcato e di una delle spalle avviene all'unisono mentre l'altra spalla risulta indipendente in direzione longitudinale ma non in direzione trasversale. L'azione longitudinale pertanto viene calcolata con la formulazione:

$$S_{SLV} = a_{max-SLV} \times G_{tot} = 371.4 \text{ kN}$$

Che in direzione trasversale risulta pari a:

$$S_{1SLV} = a_{max-SLV} x G_{tot} / 2 = 185.7 kN$$

Nell'immagine seguente si può vedere la modalità di applicazione del carico.

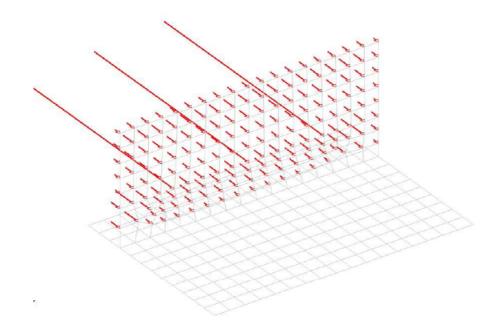


Figura 15: Azione orizzontale sismica da impalcato

8.3.9 Carichi statici derivanti dall'impalcato

I carichi derivanti dall'impalcato sono applicati in corrispondenza di ciascuno degli elementi di appoggio. I carichi sono stati applicati ripartendo equamente fra gli appoggi tutto il carico gravante su ciascun impalcato.

I carichi da applicare in tale punto derivano dall'analisi dell'impalcato nelle varie combinazioni. Per maggiori dettagli a riguardo si rimanda alla relazione di calcolo specifica.

8.3.9.1 Carichi verticali

Gli scarichi verticali del singolo ponte sono pertanto:

p.p. = $6.0 \times 14.15 \times 17.5/2$ = 742.9 kN

p soletta = 25 x 0.2 x 14.15 x 17.5/2 = <u>619.1 kN</u>

con un totale di peso proprio su ciascuna spalla di = 1362.0 kN

i pesi portati

GRingrossi = $0.15m \times 25 \times 0.75 \times 17.5/2 \times 2 = 49.2 \text{ kN}$

GGuard-rail = $1.50 \times 17.5/2 \times 2$ = 26.25 kN

GSottoservizi&veletta = 3.5 x 17.5/2 x 2 = 61.25 kN

GPavimentazione = 0.11 m x 22 x 12.75 x 17.5/2 = 270.0 kN

con un totale di peso portato su ciascuna spalla di 406.7 kN

i carichi accidentali da traffico, considerando una careggiata da 12.75m, prevedono la presenza di 4 corsie convenzionali da 3.0m cadauna:

Q=
$$2x300 + 2x200 + 2x100 + [9.0 \times 3.00 + 2.50x(3.0+3.0+3.0+0.75)] \times 17.5/2 = 1649.5 \text{ kN}$$

8.3.9.2 Vento derivante dall'impalcato

L'azione del vento è stata considerata applicando a tutte le superfici potenzialmente investite una pressione normale di 2.50 kN/m².

Azione orizzontale del vento:

$$N_{\text{tot,vento}} = 2.5 \text{ kN/m}^2 \text{ x L}_{\text{tot}} \text{ x h}_{\text{tot}} = 2.5 \text{ kN/m}^2 \text{ x (17.5) x (1.0m + 3m)} = 175 \text{ kN}$$

Tale forza si ripartisce tra le due spalle.

Ntot, vento, spalla = Ntot, vento/2 = 87.5 kN

8.3.9.3 Frenatura derivante dall'impalcato

La forza di frenatura ed avviamento, come prescritto dalla normativa di riferimento, è funzione del carico verticale totale agente sulla prima corsia convenzionale. Di conseguenza la risultante considerata nel calcolo risulta essere la seguente:

$$q3 = 0.6 (2 Q1k) + 0.10 q1k w1 L = 0.6 (2 x 300) + 0.10 x 9 x 3.0 x (17.5 m) = 407 kN \le 900 kN \rightarrow 407 kN$$

La medesima si considera applicata all'estradosso della pavimentazione.

8.4 Combinazioni di carico

La determinazione dei valori delle sollecitazioni da utilizzare per l'esecuzione delle verifiche strutturali viene condotta facendo riferimento ai gruppi di azioni ad ai coefficienti di combinazione riportati nel D.M 14.01.2008.

Si riportano di seguito i coefficienti di combinazione per i diversi SL considerati.

Descr.	Pesi strutturali	Perm. Str.	Neve	Vento	MPk _ponte	MPf+Hk _ponte	MPk _terra	MPf+Hk _terra	MPk _ponte	MPf+Hk _ponte	MPk _terra	MPf+H _terra
SLU-1	1	0	0	0	0	0	0	1,35	0	0	0	1 25
SLU-2	1	0		0	0	0	0		0	0		1,35
SLU-3	1	0	0	0	0	0	1,35	0	0	0	1,35	0
SLU-4	1	0	0	0	0	1,35	0	0	0	1,35	0	0
SLU-5	1	0	0	0	1,35	0	0	0	1,35	0	0	0
SLU-6	1	0	0	0,9	0	0	0	1,35	0	0	0	1,35
SLU-7	1	0	0	0,9	0	0	1,35	0	0	0	1,35	0
SLU-8	1	0	0	0,9	0	1,35	0	0	0	1,35	0	0
SLU-9	1	0	0	0,9	1,35	0	0	0	1,35	0	0	0
SLU-10	1	0	0	1,5	0	0	0	0	0	0	0	0
SLU-11	1	0	0	1,5	0	0	0	1,0125	0	0	0	0,54
SLU-12	i	0	0	1,5	0	0	1,0125	0	0	0	0,54	0,04
		0	0		0				0	0,54		
SLU-13	1			1,5		1,0125	0	0			0	0
SLU-14	1	0	0	1,5	1,0125	0	0	0	0,54	0	0	0
SLU-15	1	0	1,5	0	0	0	0	0	0	0	0	0
SLU-16	1	0	1,5	0	0	0	0	1,0125	0	0	0	0,54
SLU-17	1	0	1,5	0	0	0	1,0125	0	0	0	0,54	0
SLU-18	1	0	1,5	0	0	1,0125	0	0	0	0,54	0	0
SLU-19	1	0	1,5	0	1,0125	0	0	0	0,54	0	0	0
SLU-20	1	0	1,5	0,9	0	0	0	0	0	0	0	0
SLU-21	1	0	1,5	0,9	0	0	0	1,0125	0	0	0	0,54
SLU-22	1	0	1,5	0,9	0	0	1,0125	0	0	0	0,54	0
SLU-23	1	0	1,5	0,9	0	1,0125	0	0	0	0,54	0	0
SLU-24	1	0	1,5	0,9	1,0125	0	0	0	0,54	0	0	0
SLU-25	1	1,5	0	0	0	0	0	0	0	0	0	0
SLU-26	1	1,5	0	0	0	0	0	1,35	0	0	0	1,35
SLU-27	1	1,5	0	0	0	0	1,35	0	0	0	1,35	0
SLU-28	1	1,5	0	0	0	1,35	0	0	0	1,35	0	0
SLU-29	1	1,5	0	0	1,35	0	0	0	1,35	0	0	0
SLU-30	1	1,5	0	0,9	0	0	0	1,35	0	0	0	1,35
LU-31	1	1,5	0	0,9	0	0	1,35	0	0	0	1,35	0
			0		0			0	0			0
SLU-32	1	1,5		0,9		1,35	0			1,35	0	
LU-33	1	1,5	0	0,9	1,35	0	0	0	1,35	0	0	0
SLU-34	1	1,5	0	1,5	0	0	0	0	0	0	0	0
SLU-35	1	1,5	0	1,5	0	0	0	1,0125	0	0	0	0,54
SLU-36	1	1,5	0	1,5	0	0	1,0125	0	0	0	0,54	0
SLU-37	1	1,5	0	1,5	0	1,0125	0	0	0	0,54	0	0
SLU-38	1	1,5	0	1,5	1,0125	0	0	0	0,54	0	0	0
SLU-39	1	1,5	1,5	0	0	0	0	0	0	0	0	0
SLU-40	1	1,5	1,5	0	0	0	0	1,0125	0	0	0	0,54
SLU-41	1	1,5	1,5	0	0	0	1,0125	0	0	0	0,54	0
SLU-42	1	1,5	1,5	0	0	1,0125	0	0	0	0,54	0	0
SLU-43	1	1,5	1,5	0	1,0125	0	0	0	0,54	0	0	0
SLU-44	1	1,5	1,5	0,9	0	0	0	0	0	0	0	0
SLU-45	1	1,5	1,5	0,9	0	0	0	1,0125	0	0	0	0,54
SLU-46	1	1,5	1,5	0,9	0	0	1,0125	0	0	0	0,54	0
SLU-47	1	1,5	1,5	0,9	0	1,0125	0	0	0	0,54	0	0
SLU-48	1	1,5	1,5	0,9	1,0125	0	0	0	0,54	0	0	0
							0	0			0	0
SLU-49	1,35	0	0	0	0	0			0	0		
SLU-50	1,35	0	0	0	0	0	0	1,35	0	0	0	1,35
SLU-51	1,35	0	0	0	0	0	1,35	0	0	0	1,35	0
SLU-52	1,35	0	0	0	0	1,35	0	0	0	1,35	0	0
SLU-53	1,35	0	0	0	1,35	0	0	0	1,35	0	0	0
SLU-54	1,35	0	0	0,9	0	0	0	1,35	0	0	0	1,35
SLU-55	1,35	0	0	0,9	0	0	1,35	0	0	0	1,35	0
SLU-56	1,35	0	0	0,9	0	1,35	0	0	0	1,35	0	0
LU-57	1,35	0	0	0,9	1,35	0	0	0	1,35	0	0	0
SLU-58	1,35	0	0	1,5	0	0	0	0	0	0	0	0
SLU-59	1,35	0	0	1,5	0	0	0	1,0125	0	0	0	0,54
SLU-60	1,35	0	0	1,5	0	0	1,0125	0	0	0	0,54	0
SLU-61	1,35	0	0	1,5	0	1,0125	0	0	0	0,54	0	0
SLU-62	1,35	0	0	1,5	1,0125	0	0	0	0,54	0	0	0
LU-63	1,35	0	1,5	0	0	0	0	0	0	0	0	0
LU-64	1,35	0	1,5	0	0	0	0	1,0125	0	0	0	0,54
LU-65	1,35	0	1,5	0	0	0	1,0125	0	0	0	0,54	0,54
		0		0	0	1,0125	0	0	0		0,54	0
LU-66	1,35		1,5							0,54		
LU-67	1,35	0	1,5	0	1,0125	0	0	0	0,54	0	0	0
LU-68	1,35	0	1,5	0,9	0	0	0	0	0	0	0	0
LU-69	1,35	0	1,5	0,9	0	0	0	1,0125	0	0	0	0,54
LU-70	1,35	0	1,5	0,9	0	0	1,0125	0	0	0	0,54	0
LU-71	1,35	0	1,5	0,9	0	1,0125	0	0	0	0,54	0	0
LU-72	1,35	0	1,5	0,9	1,0125	0	0	0	0,54	0	0	0
LU-73	1,35	1,5	0	0	0	0	0	0	0	0	0	0
LU-74	1,35	1,5	0	0	0	0	0	1,35	0	0	0	1,35
LU-75	1,35	1,5	0	0	0	0	1,35	0	0	0	1,35	0
LU-76	1,35	1,5	0	0	0	1,35	0	0	0	1,35	0	0
LU-77	1,35	1,5	0	0	1,35	0	0	0	1,35	0	0	0
LU-78	1,35	1,5	0	0,9	0	0	0	1,35	0	0	0	1,35
LU-79	1,35	1,5	0	0,9	0	0	1,35	0	0	0	1,35	0
LU-80	1,35	1,5	0	0,9	0	1,35	0	0	0	1,35	0	0
LU-81	1,35	1,5	0	0,9	1,35	0	0	0	1,35	0	0	0
LU-82	1,35	1,5	0	1,5	0	0	0	0	0	0	0	0
			0		0	0	0	1,0125	0	0	0	0,54
LU-83	1,35	1,5		1,5								
LU-84	1,35	1,5	0	1,5	0	0	1,0125	0	0	0	0,54	0
LU-85	1,35	1,5	0	1,5	0	1,0125	0	0	0	0,54	0	0
LU-86	1,35	1,5	0	1,5	1,0125	0	0	0	0,54	0	0	0
LU-87	1,35	1,5	1,5	0	0	0	0	0	0	0	0	0
LU-88	1,35	1,5	1,5	0	0	0	0	1,0125	0	0	0	0,54
LU-89	1,35			0	0	0	1,0125	0	0	0	0,54	0,5
		1,5	1,5									
LU-90	1,35	1,5	1,5	0	0	1,0125	0	0	0	0,54	0	0
LU-91	1,35	1,5	1,5	0	1,0125	0	0	0	0,54	0	0	0
LU-92	1,35	1,5	1,5	0,9	0	0	0	0	0	0	0	0
LU-93	1,35	1,5	1,5	0,9	0	0	0	1,0125	0	0	0	0,54
LU-94	1,35	1,5	1,5	0,9	0	0	1,0125	0	0	0	0,54	0
		1,5	1,5	0,9	0	1,0125	0	0	0	0,54	0	0
LU-95	1,35			-,-	_	.,	0	_	-	-,		

GEO-1	1	1	0	0	0	0	0	0	0	0	0	0
GEO-2	1	1	0	0	0	0	0	1,15	0	0	0	1,15
GEO-3	1	1	0	0	0	0	1,15	0	0	0	1,15	0
GEO-4	1	1	0	0	0	1,15	0	0	0	1,15	0	0
GEO-5	1	1	0	0	1,15	0	0	0	1,15	0	0	0
GEO-6	1	1	0	0,9	0	0	0	1,15	0	0	0	1,15
GEO-7	1	1	0	0,9	0	0	1,15	0	0	0	1,15	0
GEO-8	1	1	0	0,9	0	1,15	0	0	0	1,15	0	0
GEO-9	1	1	0	0,9		0	0	0		0	0	0
					1,15				1,15			
GEO-10	1	1	0	1,3	0	0	0	0	0	0	0	0
GEO-11	1	1	0	1,3	0	0	0	0,8625	0	0	0	0,46
GEO-12	1	1	0	1,3	0	0	0,8625	0	0	0	0,46	0
GEO-13	1	1	0	1,3	0	0,8625	0	0	0	0,46	0	0
GEO-14	1	1	0	1,3	0,8625	0	0	0	0,46	0	0	0
GEO-15	1	1	1,3	Ó	0	0	0	0	0	0	0	0
GEO-16	1	1	1,3	0	0	0	0	0,8625	0	0	0	0,46
GEO-17	1	1	1,3	0	0	0	0,8625	0	0	0	0.46	0
GEO-18	1	1	1,3	0	0	0,8625	0	0	0	0,46	0	0
GEO-19	1	1	1,3	0	0,8625	0	0	0	0,46	0	0	0
GEO-20	1	1	1,3	0,9	0	0	0	0	0	0	0	0
GEO-21	1	1	1,3	0,9	0	0	0	0,8625	0	0	0	0,46
3EO-22	1	1	1,3	0,9	0	0	0,8625	0	0	0	0,46	0
GEO-23	1	1	1,3	0,9	0	0,8625	0	0	0	0,46	0	0
GEO-24	1	1	1,3	0,9	0,8625	0	0	0	0,46	0	0	0
GEO-25	1	1,3	0	0	0	0	0	0	0	0	0	0
GEO-26	1	1,3	0	0	0	0	0	1,15	0	0	0	1,15
GEO-27	1	1,3	0	0	0	0	1,15	0	0	0	1,15	0
GEO-28	1	1,3	0	0	0	1,15	0	0	0	1,15	0	0
GEO-29	1	1,3	0	0	1,15	0	0	0	1,15	0	0	0
3EO-30	1	1,3	0	0,9	0	0	0	1,15	0	0	0	1,15
GEO-31	1	1,3	0	0,9	0	0	1,15	0	0	0	1,15	0
GEO-32	1	1,3	0	0,9	0	1,15	0	0	0	1,15	0	0
3EO-33	1	1,3	0	0,9	1,15	0	0	0	1,15	0	0	0
GEO-34	1	1,3	0	1,3	0	0	0	0	0	0	0	0
3EO-35	1	1,3	0	1,3	0	0	0	0,8625	0	0	0	0,46
GEO-36	1	1,3	0	1,3	0	0	0,8625	0	0	0	0,46	0
3EO-37	1	1,3	0	1,3	0	0,8625	0	0	0	0,46	0	0
GEO-38	1	1,3	0	1,3	0,8625	0,0020	0	0	0,46	0,40	0	0
GEO-39	1		1,3			0	0	0		0	0	0
		1,3		0	0				0			
GEO-40	1	1,3	1,3	0	0	0	0	0,8625	0	0	0	0,46
3EO-41	1	1,3	1,3	0	0	0	0,8625	0	0	0	0,46	0
3EO-42	1	1,3	1,3	0	0	0,8625	0	0	0	0,46	0	0
GEO-43	1	1,3	1,3	0	0,8625	0	0	0	0.46	0	0	0
SEO-44	1	1,3	1,3	0,9	0	0	0	0	0	0	0	0
GEO-45	1		1,3	0,9	0	0	0	0,8625	0	0	0	0,46
		1,3										
GEO-46	1	1,3	1,3	0,9	0	0	0,8625	0	0	0	0,46	0
GEO-47	1	1,3	1,3	0,9	0	0,8625	0	0	0	0,46	0	0
GEO-48	1	1,3	1,3	0,9	0,8625	0	0	0	0,46	0	0	0
3EO-49	1	1	0	0	0	0	0	0	0	0	0	0
GEO-50	1	1	0	0	0	0	0	1,15	0	0	0	1,15
GEO-51	1	1	0	0	0	0	1,15	0	0	0	1,15	0
GEO-52	1	1	0	0	0	1,15	0	0	0	1,15	0	0
GEO-53	1	1	0	0	1,15	0	0	0	1,15	0	0	0
3EO-54	1	1	0	0,9	0	0	0	1,15	0	0	0	1,15
GEO-55	1	1	0	0,9	0	0	1,15	0	0	0	1,15	0
3EO-56	1	1	0	0,9	0	1,15	0	0	0	1,15	0	0
3EO-57	1	1	0	0,9	1,15	0	0	0	1,15	0	0	0
GEO-58	1	1	0	1,3	0	0	0	0	0	0	0	0
3EO-59	1	1	0	1,3	0	0	0	0,8625	0	0	0	0,46
3EO-60	1	1	0	1,3	0	0	0,8625	0	0	0	0.46	0
GEO-61	1	1	0	1,3	0	0,8625	0	0	0	0,46	0	0
GEO-62	1	1	0	1,3	0,8625	0	0	0	0,46	0	0	0
GEO-63	1	1	1,3	0	0	0	0	0	0	0	0	0
3EO-64	1	1	1,3	0	0	0	0	0,8625	0	0	0	0,46
GEO-65	1	1	1,3	0	0	0	0,8625	0	0	0	0,46	0
3EO-66	1	1	1,3	0	0	0,8625	0	0	0	0,46	0	0
SEO-67	1	1	1,3	0	0,8625	0,0023	0	0	0,46	0,40	0	0
GEO-68	1	1		0.9	0,8625	0	0	0	0,40	0	0	0
			1,3									0,46
SEO-69	1	1	1,3	0,9	0	0	0	0,8625	0	0	0	
SEO-70	1	1	1,3	0,9	0	0	0,8625	0	0	0	0,46	0
SEO-71	1	1	1,3	0,9	0	0,8625	0	0	0	0,46	0	0
SEO-72	1	1	1,3	0,9	0,8625	0	0	0	0,46	0	0	0
SEO-73	1	1,3	0	0	0	0	0	0	0	0	0	0
SEO-74	1	1,3	0	0	0	0	0	1,15	0	0	0	1,15
EO-75	1	1,3	0	0	0	0	1,15	0	0	0	1,15	0
SEO-76	1	1,3	0	0	0	1,15	0	0	0	1,15	0	0
	1		0	0	1,15	0	0	0	1,15	0	0	0
SEO-77		1,3										
SEO-78	1	1,3	0	0,9	0	0	0	1,15	0	0	0	1,15
EO-79	1	1,3	0	0,9	0	0	1,15	0	0	0	1,15	0
EO-80	1	1,3	0	0,9	0	1,15	0	0	0	1,15	0	0
SEO-81	1	1,3	0	0,9	1,15	0	0	0	1,15	0	0	0
EO-82	1	1,3	0	1,3	0	0	0	0	0	0	0	0
EO-83	i		0		0	0	0	0,8625	0	0	0	0,46
		1,3		1,3								
EO-84	1	1,3	0	1,3	0	0	0,8625	0	0	0	0,46	0
EO-85	1	1,3	0	1,3	0	0,8625	0	0	0	0,46	0	0
SEO-86	1	1,3	0	1,3	0,8625	0	0	0	0,46	0	0	0
EO-87	1	1,3	1,3	0	0	0	0	0	0	0	0	0
SEO-88	1	1,3	1,3	0	0	0	0	0,8625	0	0	0	0,46
SEO-89	1	1,3	1,3	0	0	0	0,8625	0	0	0	0,46	0
SEO-90	1	1,3	1,3	0	0	0,8625	0	0	0	0,46	0	0
SEO-91	1	1,3	1,3	0	0,8625	0	0	0	0,46	0	0	0
SEO-92	1	1,3	1,3	0,9	0	0	0	0	0	0	0	0
SEO-93	1	1,3	1,3	0,9	0	0	0	0,8625	0	0	0	0,46
SEO-94	1	1,3	1,3	0,9	0	0	0,8625	0,0025	0	0	0,46	0,40
	1				0				0			
	11	1,3	1,3 1,3	0,9	0,8625	0,8625	0	0	0,46	0,46	0	0
GEO-95 GEO-96	1	1,3								0	0	0

Descr.	Pesi strutturali	Perm. Str.	Neve	Vento	MPk _ponte	MPf+Hk _ponte	MPk _terra	MPf+Hk _terra	MPk _ponte	MPf+Hk _ponte	MPk _terra	MPf+H
EQU-1	0,9	0	0	0	0	0	0	0	0	0	0	0
EQU-2	0,9	0	0	0	0	0	0	1,35	0	0	0	1,35
EQU-3	0,9	0	0	0	0	0	1,35	0	0	0	1,35	0
EQU-4	0,9	0	0	0	0	1,35	0	0	0	1,35	0	0
EQU-5	0,9	0	0	0	1,35	0	0	0	1,35	0	0	0
QU-6	0,9	0	0	0,9	0	0	0	1,35	0	0	0	1,35
QU-7	0,9	0	0	0,9	0	0	1,35	0	0	0	1,35	0
EQU-8	0,9	0	0	0,9	0	1,35	0	0	0	1,35	0	0
QU-9	0,9	0	0	0,9	1,35	0	0	0	1,35	0	0	0
QU-10	0,9	0	0	1,5	0	0	0	0	0	0	0	0
QU-11	0,9	0	0	1,5	0	0	0	1,0125	0	0	0	0,54
QU-12	0,9	0	0	1,5	0	0	1,0125	0	0	0	0,54	0,04
		0	0		0				0	0,54		
EQU-13	0,9			1,5		1,0125	0	0			0	0
QU-14	0,9	0	0	1,5	1,0125	0	0	0	0,54	0	0	0
QU-15	0,9	0	1,5	0	0	0	0	0	0	0	0	0
QU-16	0,9	0	1,5	0	0	0	0	1,0125	0	0	0	0,54
QU-17	0,9	0	1,5	0	0	0	1,0125	0	0	0	0,54	0
QU-18	0,9	0	1,5	0	0	1,0125	0	0	0	0,54	0	0
QU-19	0,9	0	1,5	0	1,0125	0	0	0	0,54	0	0	0
QU-20	0,9	0	1,5	0,9	0	0	0	0	0	0	0	0
QU-21	0,9	0	1,5	0,9	0	0	0	1,0125	0	0	0	0.54
QU-22	0,9	0	1,5	0,9	0	0	1,0125	0	0	0	0,54	0,04
QU-23	0,9	0	1,5	0,9	0	1,0125	0	0	0	0,54	0	0
QU-24	0,9	0	1,5	0,9	1,0125	0	0	0	0,54	0	0	0
QU-25	0,9	1,5	0	0	0	0	0	0	0	0	0	0
QU-26	0,9	1,5	0	0	0	0	0	1,35	0	0	0	1,35
QU-27	0,9	1,5	0	0	0	0	1,35	0	0	0	1,35	0
QU-28	0,9	1,5	0	0	0	1,35	0	0	0	1,35	0	0
QU-29	0,9	1,5	0	0	1,35	0	0	0	1,35	0	0	0
QU-29	0,9	1,5	0	0,9	0	0	0	1,35	0	0	0	1,35
EQU-31	0,9	1,5	0	0,9	0	0	1,35	0	0	0	1,35	0
QU-32	0,9	1,5	0	0,9	0	1,35	0	0	0	1,35	0	0
QU-33	0,9	1,5	0	0,9	1,35	0	0	0	1,35	0	0	0
QU-34	0,9	1,5	0	1,5	0	0	0	0	0	0	0	0
QU-35	0,9	1,5	0	1,5	0	0	0	1,0125	0	0	0	0,54
QU-36	0,9	1,5	0	1,5	0	0	1,0125	0	0	0	0,54	0
EQU-37	0,9	1,5	0	1,5	0	1,0125	0	0	0	0,54	0	0
QU-38	0,9	1,5	0	1,5	1,0125	0	0	0	0,54	0	0	0
QU-39	0,9	1,5	1,5	0	0	0	0	0	0	0	0	0
QU-40	0,9	1,5	1,5	0	0	0	0	1,0125	0	0	0	0,54
QU-41	0,9	1,5	1,5	0	0	0	1,0125	0	0	0	0,54	0
QU-42	0,9	1,5	1,5	0	0	1,0125	0	0	0	0,54	0	0
QU-43	0,9	1,5	1,5	0	1,0125	0	0	0	0,54	0	0	0
QU-44	0,9	1,5	1,5	0,9	0	0	0	0	0	0	0	0
QU-45	0,9	1,5	1,5	0,9	0	0	0	1,0125	0	0	0	0,54
EQU-46	0,9	1,5	1,5	0,9	0	0	1,0125	0	0	0	0,54	0
EQU-47	0,9	1,5	1,5	0,9	0	1,0125	0	0	0	0,54	0	0
EQU-48	0,9	1,5	1,5	0,9	1,0125	0	0	0	0,54	0	0	0
EQU-49	1,1	0	0	0	0	0	0	0	0	0	0	0
EQU-50	1,1	0	0	0	0	0	0	1,35	0	0	0	1,35
QU-51	1,1	0	0	0	0	0	1,35	0	0	0	1,35	0
QU-52	1,1	0	0	0	0	1,35	0	0	0	1,35	0	0
QU-53	1,1	0	0	0	1,35	0	0	0	1,35	0	0	0
QU-54	1,1	0	0	0,9	0	0	0	1,35	0	0	0	1,35
			0		0	0		0		0		
QU-55	1,1	0		0,9			1,35		0	_	1,35	0
EQU-56	1,1	0	0	0,9	0	1,35	0	0	0	1,35	0	0
QU-57	1,1	0	0	0,9	1,35	0	0	0	1,35	0	0	0
QU-58	1,1	0	0	1,5	0	0	0	0	0	0	0	0
QU-59	1,1	0	0	1,5	0	0	0	1,0125	0	0	0	0,54
QU-60	1,1	0	0	1,5	0	0	1,0125	0	0	0	0,54	0
QU-61	1,1	0	0	1,5	0	1,0125	0	0	0	0,54	0	0
QU-62	1,1	0	0	1,5	1,0125	0	0	0	0,54	0,54	0	0
									-			
QU-63	1,1	0	1,5	0	0	0	0	0	0	0	0	0
QU-64	1,1	0	1,5	0	0	0	0	1,0125	0	0	0	0,54
QU-65	1,1	0	1,5	0	0	0	1,0125	0	0	0	0,54	0
QU-66	1,1	0	1,5	0	0	1,0125	0	0	0	0,54	0	0
QU-67	1,1	0	1,5	0	1,0125	0	0	0	0,54	0	0	0
QU-68	1,1	0	1,5	0,9	0	0	0	0	0	0	0	0
QU-69	1,1	0	1,5	0,9	0	0	0	1,0125	0	0	0	0,54
QU-70	1,1	0	1,5	0,9	0	0	1,0125	0	0	0	0,54	0,01
QU-71	1,1	0	1,5	0,9	0	1,0125	0	0	0	0,54	0,34	0
		0			1,0125	0	0	0	0,54	0,54	0	0
QU-72	1,1		1,5	0,9								
QU-73	1,1	1,5	0	0	0	0	0	0	0	0	0	0
QU-74	1,1	1,5	0	0	0	0	0	1,35	0	0	0	1,35
QU-75	1,1	1,5	0	0	0	0	1,35	0	0	0	1,35	0
QU-76	1,1	1,5	0	0	0	1,35	0	0	0	1,35	0	0
QU-77	1,1	1,5	0	0	1,35	0	0	0	1,35	0	0	0
QU-78	1,1	1,5	0	0,9	0	0	0	1,35	0	0	0	1,35
QU-79	1,1	1,5	0	0,9	0	0	1,35	0	0	0	1,35	0
QU-80	1,1	1,5	0	0,9	0	1,35	0	0	0	1,35	0	0
QU-81	1,1	1,5	0	0,9	1,35	0	0	0	1,35	0	0	0
QU-82	1,1	1,5	0	1,5	0	0	0	0	0	0	0	0
QU-83	1,1	1,5	0	1,5	0	0	0	1,0125	0	0	0	0,54
QU-84	1,1	1,5	0	1,5	0	0	1,0125	0	0	0	0,54	0
QU-85	1,1	1,5	0	1,5	0	1,0125	0	0	0	0,54	0	0
QU-86	1,1	1,5	0	1,5	1,0125	0	0	0	0,54	0	0	0
QU-87	1,1	1,5	1,5	0	0	0	0	0	0	0	0	0
	1,1	1,5	1,5	0	0	0	0	1,0125	0	0	0	0,54
QU-88	1,1	1,5	1,5	0	0	0	1,0125	0	0	0	0,54	0
QU-88 QU-89	4.4	1,5	1,5	0	0	1,0125	0	0	0	0,54	0	0
QU-88 QU-89	1,1		1,5	0	1,0125	0	0	0	0,54	0	0	0
QU-88 QU-89 QU-90									-,			
QU-88 QU-89 QU-90 QU-91	1,1	1,5		0.0	0	0	0	0	0	0	0	Λ
QU-88 QU-89 QU-90 QU-91 QU-92	1,1 1,1	1,5	1,5	0,9	0	0	0	0	0	0	0	0
QU-88 QU-89 QU-90 QU-91 QU-92 QU-93	1,1 1,1 1,1	1,5 1,5	1,5 1,5	0,9	0	0	0	1,0125	0	0	0	0,54
QU-88 QU-89 QU-90 QU-91	1,1 1,1	1,5	1,5									0 0,54 0

Descr.	Pesi strutturali	Perm. Str.	Neve	Vento	MPk ponte	MPf+Hk ponte	MPk terra	MPf+Hk terra	MPk ponte	MPf+Hk ponte	MPk terra	MPf+Hk terra
Rara 1	1	1	0	0	0	0	0	0	0	0	0	0
Rara 2	1	1	0	0	0	0	0	1	0	0	0	1
Rara 3	1	1	0	0	0	0	1	0	0	0	1	0
Rara 4	1	1	0	0	0	1	0	0	0	1	0	0
Rara 5	1	1	0	0	1	0	0	0	1	0	0	0
Rara 6	1	1	0	0,6	0	0	0	1	0	0	0	1
Rara 7	1	1	0	0,6	0	0	1	0	0	0	1	0
Rara 8	1	1	0	0,6	0	1	0	0	0	1	0	0
Rara 9	1	1	0	0,6	1	0	0	0	1	0	0	0
Rara 10	1	1	0	1	0	0	0	0	0	0	0	0
Rara 11	1	1	0	1	0	0	0	0,75	0	0	0	0,4
Rara 12	1	1	0	1	0	0	0,75	0	0	0	0,4	0
Rara 13	1	1	0	1	0	0,75	0	0	0	0,4	0	0
Rara 14	1	1	0	1	0,75	0	0	0	0,4	0	0	0
Rara 15	1	1	1	0	0	0	0	0	0	0	0	0
Rara 16	1	1	1	0	0	0	0	0,75	0	0	0	0,4
Rara 17	1	1	1	0	0	0	0,75	0	0	0	0,4	0
Rara 18	1	1	1	0	0	0,75	0	0	0	0,4	0	0
Rara 19	1	1	1	0	0,75	0	0	0	0,4	0	0	0
Rara 20	1	1	1	0,6	0	0	0	0	0	0	0	0
Rara 21	1	1	1	0,6	0	0	0	0,75	0	0	0	0,4
Rara 22	1	1	1	0,6	0	0	0,75	0	0	0	0,4	0
Rara 23	1	1	1	0,6	0	0,75	0	0	0	0,4	0	0
Rara 24	1	1	1	0,6	0,75	0	0	0	0,4	0	0	0
Frequente 1	1	1	0	0	0	0	0	0	0	0	0	0
Frequente 2	1	1	0	0,2	0	0	0	0	0	0	0	0
Q. P. 1	1	1	0	0	0	0	0	0	0	0	0	0

Descr.		Perm. Str.	Neve	Vento	MPk	MPf+Hk	MPk	MPf+Hk	MPk	MPf+Hk	MPk	MPf+Hk	Sisma X	Sisma X			Ecc X per		Terreno	Terreno
	strutturali				ponte	ponte	terra	terra	ponte	ponte	terra	terra	SLV	SLV	SLV	Sis X SLV	Sis Y SLV	Sism X SLV	Sism Y SLV	Sism Z SLV
SLV 1	1	1	0	0	0	0	0	0	0	0	0	0	-1	-0,3	0	-1	0,3	-1	-0,3	0
SLV 2	1	1	0	0	0	0	0	0	0	0	0	0	-1	-0,3	0	1	-0,3	-1	-0,3	0
SLV 3	1	1	0	0	0	0	0	0	0	0	0	0	-1	0,3	0	-1	0,3	-1	0,3	0
SLV 4	1	1	0	0	0	0	0	0	0	0	0	0	-1	0,3	0	1	-0.3	-1	0.3	0
SLV 5	1	1	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0	-0,3	1	-0,3	-1	0
SLV 6	1	1	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0	0,3	-1	-0,3	-1	0
SLV 7	1	1	0	0	0	0	0	0	0	0	0	0	-0,3	1	0	-0,3	1	-0,3	1	0
SLV 8	1	1	0	0	0	0	0	0	0	0	0	0	-0,3	1	0	0,3	-1	-0.3	1	0
SLV 9	1	1	0	0	0	0	0	0	0	0	0	0	0.3	-1	0	-0.3	1	0.3	-1	0
SLV 10	1	1	0	0	0	0	0	0	0	0	0	0	0,3	-1	0	0,3	-1	0.3	-1	0
SLV 11	1	1	0	0	0	0	0	0	0	0	0	0	0.3	1	0	-0.3	1	0.3	1	0
SLV 12	1	1	0	0	0	0	0	0	0	0	0	0	0,3	1	0	0,3	-1	0,3	1	0
SLV 13	1	1	0	0	0	0	0	0	0	0	0	0	1	-0.3	0	-1	0,3	1	-0.3	0
SLV 14	1	1	0	0	0	0	0	0	0	0	0	0	1	-0.3	0	1	-0.3	1	-0,3	0
SLV 15	1	1	0	0	0	0	0	0	0	0	0	0	1	0.3	0	-1	0,3	1	0.3	0
SLV 16	1	1	0	0	0	0	0	0	0	0	0	0	1	0.3	0	1	-0.3	1	0.3	0

Ai fini della modellazione, per consentire la combinazione delle diverse condizioni di carico, si sono considerate 4 possibili condizioni di carico variabile dell'impalcato e del terreno a monte. Ognuna di esse esclude la presenza dell'altra.

- MPk_ponte: indica la presenza del mezzo pesante sull'impalcato (e quindi sul terreno a monte della spalla è presente la sola colonna di carico);
- MPf+Hk_ponte: indica la presenza del mezzo pensante e dell'azione frenante orizzontale sull'impalcato (a monte della spalla è presente la sola colonna di carico);
- MPk_terra: indica che il mezzo pesante è a monte della spalla (quindi sull'impalcato è presente la sola colonna di carico);
- MPf+Hk_terra: indica la presenza del mezzo pesante a monte spalla con colonna di carico su impalcato e relativa azione orizzontale di frenatura.

9 RISULTATI DELLE ANALISI E VERIFICA DELLE SPALLE

9.1 Risultati delle analisi

Di seguito si riportano alcune immagini riassuntive dello stato di sollecitazione dei diversi elementi strutturali costituenti la spalla.

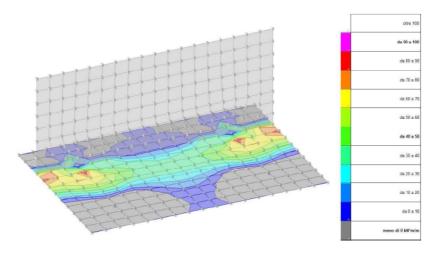


Figura 16: Sollecitazioni elementi orizzontali Mxx,max

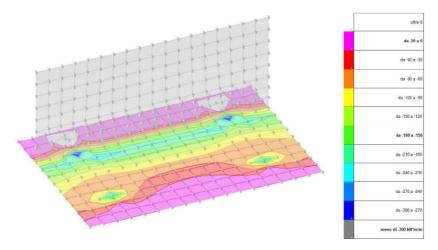


Figura 17: Sollecitazioni elementi orizzontali Mxx,min

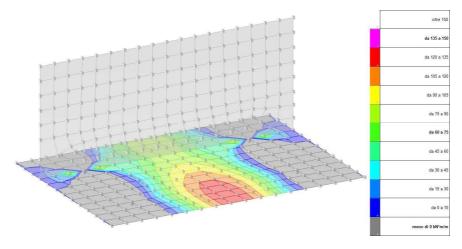


Figura 18: Sollecitazioni elementi orizzontali Myy,max

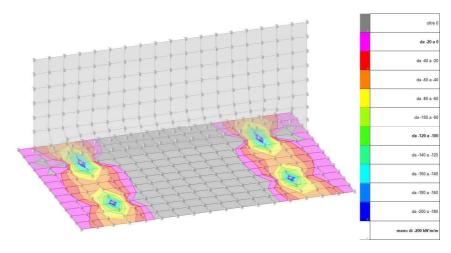


Figura 19: Sollecitazioni elementi orizzontali Myy,min

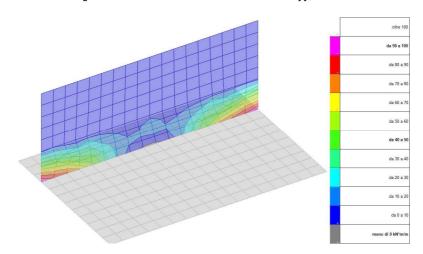


Figura 20: Sollecitazioni elementi verticali Mzz,max

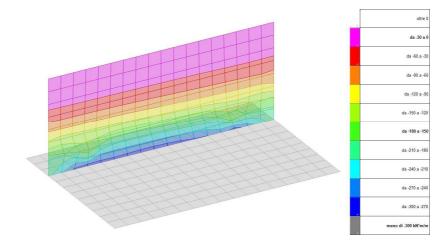


Figura 21: Sollecitazioni elementi verticali Mzz,min

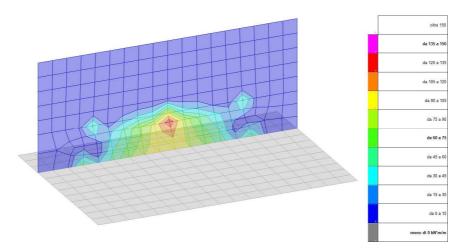


Figura 22: Sollecitazioni elementi verticali Moo,max

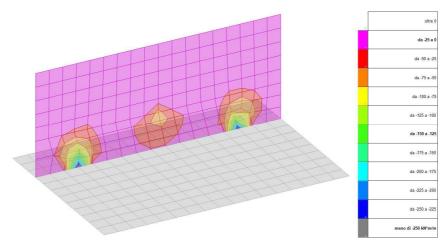


Figura 23: Sollecitazioni elementi verticali Moo,min

9.2 Verifiche di sicurezza

Di seguito si riportano le verifiche di sicurezza esportate dal programma di calcolo relative ai nodi maggiormente sollecitati.

Legenda simboli

nod.: nodo del modello FEM

sez.: tipo di sezione (o = orizzontale, v = verticale)

B: base della sezione H: altezza della sezione

Af+: area di acciaio dal lato B (inferiore per le piastre))

Af-: area di acciaio dal lato A (superiore per le piastre))

c+: copriferro dal lato B (inferiore per le piastre))

c-: copriferro dal lato A (superiore per le piastre))

sc: tensione sul calcestruzzo in esercizio

comb ; c: combinazione di carico c.s.: coefficiente di sicurezza

N: sforzo normale di calcolo

M: momento flettente di calcolo

Mu: momento flettente ultimo

Nu: sforzo normale ultimo

sf: tensione sull'acciaio in esercizio

Wk: apertura caratteristica delle fessure

Sm: distanza media fra le fessure

st: sigma a trazione nel calcestruzzo in condizioni non fessurate

fck: resistenza caratteristica cilindrica del calcestruzzo

fcd: resistenza a compressione di calcolo del calcestruzzo

fctd: resistenza a trazione di calcolo del calcestruzzo

Hcr: altezza critica

q.Hcr: *quota della sezione alla altezza critica

hw: altezza della parete lw: lunghezza della parete

n.p.: numero di piani hs: altezza dell'interpiano

Mxd: momento di progetto attorno all'asse x (fuori piano) Myd: momento di progetto attorno all'asse y (nel piano)

NEd: sforzo normale di progetto

MEd: Momento flettente di progetto di progetto

VEd: sforzo di taglio di progetto

Ngrav.: sforzo normale dovuto ai carichi gravitazionali

NReale.: sforzo normale derivante dall'analisi

VRcd: resistenza a taglio dovuta alle bielle di calcestruzzo

epsilon: coefficiente di maggiorazione del taglio derivante dall'analisi

alfaS: MEd/(VEd*Iw) formula 7.4.15

At: area tesa di acciaio

roh: rapporto tra area della sezione orizzotale dell'armatura di anima e l'area della sezione di calcestruzzo rov: rapporto tra area della sezione verticale dell'armatura di anima e l'area della sezione di calcestruzzo

VRsd: resistenza a taglio della sezione con armature

Somma(Asj)- Ai: somma delle aree delle barre verticali che attraversano la superficie di scorrimento

csi: altezza della parte compressa normalizzata all'altezza della sezione

Vdd: contributo dell'effetto spinotto delle armature verticali

Vfd: contributo della resistenza per attrito

Vid: contributo delle armature inclinate presenti alla base

VRd,s: valore di progetto della resistenza a taglio nei confronti dello scorrimento

M01: momento flettente inferiore per verifica instabilità M02: momento flettente superiore per verifica instabilità etot: eccentricità complessiva EC2 12.6.5.2 (12.12)

Fi: coefficiente riduttivo EC2 12.6.5.2 (12.11) 10: lunghezza libera di inflessione

beta: coefficiente EC2 12.6.5.1 (12.9)

Nrd: resistenza di progetto EC2 12.6.5.2 (12.10)

I,lim: snellezza limite EC2 12.6.5.1 (4)

At: area di calcestruzzo del traverso in parete con blocco cassero in legno

Vr,cls: resistenza a taglio in assenza di armatura orizzontale in parete con blocco cassero in legno

Mu: momento resistente ultimo del singolo traverso in parete con blocco cassero in legno

Hp: resistenza a trazione dell'elemento teso in parete con blocco cassero in legno

R: fattore di efficienza in parete con blocco cassero in legno

Vr,s: contributo alla resistenza a taglio della armatura orizzontale in parete con blocco cassero in legno

Vrd: resistenza a taglio per trazione del diagonale in parete con blocco cassero in legno

I: luce netta della trave di collegamento

h: altezza della trave di collegamento

b: spessore della trave di collegamento

d: altezza utile della trave di collegamento

Asi: area complessiva della armatura a X

M,plast: momenti resistenti della trave a filo appoggio

T,plast: sforzi di taglio nella trave derivanti da gerarchia delle resistenze

Fondazione

Valori in daN, cm C25/30: rck 300 fyk 4500

Verif:	ica di st	tato	limite	ultim	10													
nod	sez B	H	Af+	Af-	C+	C-	C.S.	comb	N	M		Nu	Mu					
51	0 100	80	10.1	15.7	8.4	8.7	1.511	SLU-77	-980 -:	2863763	_	1480 -432	5872					
	v 100	80	10.1	15.7	6.8	7.0	1.108	SLU-75	2420 -	3851408		2681 -426	7285					
205	0 100	80	10.1	15.7	8.4	8.7	1.490	SLU-81	-650 -	2891724		-968 -430	7940					
	v 100	80	10.1	15.7	6.8	7.0	1.133	SLU-79	2809 -	3751795		3182 -424	9339					
Combin	nazione :	rara																
nod	sez B	H	Af+	Af-	C+	C-	sc c	N	M	sf	C	N	M	Wk (mm)	Wlim	st !	Sm (mm)	C
51	0 100	80	10.1	15.7	8.4	8.7	-38.5 5 ra	-2.05E04	-2.12E06	2019.1	5 ra	-7.33E02	-2.11E06	0.00	999.00	18.9	0.0	1 ra
	v 100	80	10.1	15.7	6.8	7.0	-48.4 3 ra	1.77E03	-2.85E06	2733.2	3 ra	1.77E03	-2.85E06	0.47	999.00	0.0	616.8	3 ra
205	0 100	80	10.1	15.7	8.4	8.7	-39.0 9 ra	-2.12E04	-2.15E06	2044.2	9 ra	-5.14E02	-2.13E06	0.00	999.00	19.1	0.0	1 ra
	v 100	80	10.1	15.7	6.8	7.0	-47.1 7 ra	2.04E03	-2.77E06	2671.4	7 ra	2.04E03	-2.77E06	0.00	999.00	25.2	0.0	1 ra
Combin	nazione :	frequ	iente															
nod	sez B	H	Af+	Af-	C+	C-	SC C	N	M	sf	C	N	M	Wk (mm)	Wklim	st	Sm (mm)	C
51	0 100	80	10.1	15.7	8.4	8.7	-26.1 1 fr	-1.02E03	-1.45E06	1372.7	1 fr	-1.02E03	-1.45E06	0.00	0.40	13.0	0.0	1 fr
	v 100	80	10.1	15.7	6.8	7.0	-15.2 1 fr	2.13E03	-9.04E05	916.1	1 fr	2.13E03	-9.04E05	0.00	0.40	8.4	0.0	1 fr
205	0 100	80	10.1	15.7	8.4	8.7	-26.2 2 fr	-1.44E04	-1.45E06	1380.6	2 fr	-9.82E02	-1.46E06	0.00	0.40	13.0	0.0	1 fr
	v 100	80	10.1	15.7	6.8	7.0	-15.2 2 fr	2.15E03	-9.05E05	918.4	2 fr	2.15E03	-9.05E05	0.00	0.40	8.4	0.0	1 fr
Combin	nazione d	quasi	perma	nente														
nod	sez B	H	Af+	Af-	C+	C-	SC C	N	M	sf	C	N	M	Wk (mm)	Wklim	st	Sm (mm)	C
51	0 100	80	10.1	15.7	8.4	8.7	-26.1 1 q.	-1.02E03	-1.45E06	1372.7	1 q.	-1.02E03	-1.45E06	0.00	0.30	13.0	0.0	1 q.
	v 100	80	10.1	15.7	6.8	7.0	-15.2 1 q.	2.13E03	-9.04E05	916.1	1 q.	2.13E03	-9.04E05	0.00	0.30	8.4	0.0	1 q.
205							-26.1 1 q.											1 q.
	v 100	80	10.1	15.7	6.8	7.0	-15.2 1 q.	2.09E03	-9.03E05	914.6	1 q.	2.09E03	-9.03E05	0.00	0.30	8.4	0.0	1 q.

Fusto

Parete fra le coordinate in pianta (-30;0) (-30;690) da quota -80 a quota 100 Valori in daN, cm C35/45: rck 450 fyk 4500

Verifi	.ca	di st	tato	limite	ultim	0														
nod	sez	В	H	Af+	Af-	C+	C-	C.S		comb	N	M		Nu	Mu					
51	0	100	200	22.6	22.6	9.6	9.6	16.78	1	SLU-77	-212343	-924856	-356	3422-1552	0430					
	v	100	200	22.6	22.6	7.2	7.2	6.39	1	SLU-75	7116	-1960263	4	5475-1252	7400					
103	0	100	200	22.6	22.6	9.6	9.6	3.15	4	SLU-55	21012	-3286485	6	6277-1036	6490					
	v	100	200	22.6	22.6	7.2	7.2	6.29	9	SLU-80	19351	812045	12	1894 511	5236					
690								89.99		SLU-81	-39597	-247113	-356	3422-2223	8140					
	v	50	200	9.0	9.0	7.2	7.2	3.13	4	SLU-82	22196	37285	6	9564 11	6854					
Combin	azio	one :	rara																	
nod	sez	В	H	Af+	Af-	C+	C-	SC	C	N	Г	M sf	C	. N	M	Wk (mm)	Wlim	st S	Sm (mm)	C
51	0	100	200	22.6	22.6	9.6	9.6	-9.4 3	ra	-1.24E05	-2.47E0	6 -100.3	5 ra	-1.56E05	-6.85E05	0.00	999.00	0.0	0.0	1 ra
	v	100	200	22.6	22.6	7.2	7.2	-4.0 7	ra	4.97E03	-1.46E0	6 460.4	3 ra	5.17E03	-1.45E06	0.00	999.00	2.4	0.0	1 ra
103	0	100	200	22.6	22.6	9.6	9.6	-6.0 3	ra	1.45E04	-2.42E0	6 916.5	7 ra	1.50E04	-2.42E06	0.00	999.00	4.2	0.0	1 ra
	v	100	200	22.6	22.6	7.2	7.2	0.0 1	ra	1.01E04	2.23E0	5 456.6	8 ra	1.42E04	6.01E05	0.00	999.00	1.6	0.0	1 ra
690	0	100	200	22.6	22.6	9.6	9.6	-2.3 7	ra	-2.34E04	-8.62E0	5 -17.7	9 ra	-2.91E04	-1.83E05	0.00	999.00	0.1	0.0	1 ra
	v	50	200	9.0	9.0	7.2	7.2	0.0 1	ra	4.70E03	-5.58E0	4 1029.2	10 r	1.82E04	-4.39E04	0.00	999.00	1.9	0.0	1 ra
Combin	azio	one :	frequ	iente																
nod	sez	В	H	Af+	Af-	C+	C-	SC	C	N	I .	M sf	C	. N	M	Wk (mm)	Wklim	st	Sm (mm)	C
51														-1.00E05				0.0	0.0	1 fr
	V	100	200	22.6	22.6	7.2	7.2	-2.0 1	fr	-2.37E04	-5.96E0	5 221.1	1 fr	4.25E03	-5.36E05	0.00	0.20	1.0	0.0	1 fr
103	0	100	200	22.6	22.6	9.6	9.6	0.0 1	fr	1.15E04	-8.29E0	5 459.9	2 fr	1.16E04	-8.29E05	0.00	0.20	1.8	0.0	1 fr
														1.03E04						1 fr
690														-1.98E04						1 fr
	v	50	200	9.0	9.0	7.2	7.2	0.0 1	fr	4.70E03	-5.58E0	4 384.3	1 fr	6.32E03	-5.86E04	0.00	0.20	0.8	0.0	1 fr
Combin	azio	one (quasi	perma	nente															
nod	sez	В	Н	Af+	Af-	C+	C-	SC	C	N		M sf	C	. N	M	Wk (mm)	Wklim	st	Sm (mm)	C
51	0	100	200	22.6	22.6	9.6	9.6	-5.5 1	q.	-1.00E05	-5.07E0	5 -63.2	1 q.	-1.00E05	-5.07E05	0.00	0.20	0.0	0.0	1 q.
	V	100	200	22.6	22.6	7.2	7.2	-2.0 1	q.	-2.37E04	-5.96E0	5 221.1	1 q.	4.25E03	-5.36E05	0.00	0.20	1.0	0.0	1 q.
103	0	100	200	22.6	22.6	9.6	9.6	0.0 1	q.	1.15E04	-8.29E0	5 456.6	1 q.	1.15E04	-8.29E05	0.00	0.20	1.8	0.0	1 q.
														1.01E04						1 q.
690														-1.97E04						1 q.
	V	50	200	9.0	9.0	7.2	7.2	0.0 1	q.	4.70E03	-5.58E0	4 384.3	1 q.	6.32E03	-5.86E04	0.00	0.20	0.8	0.0	1 q.

Paraghiaia

Parete fra le coordinate in pianta (-30;0) (-30;690) da quota 100 a quota 290 Valori in daN, cm C35/45: rck 450 fyk 4500

Verifi	ca d	di st	ato	limite	ultim	10													
nod	sez	В	H	Af+	Af-	C+	C-	C.S.	comb	N	M		Nu	Mu					
674	0	50	40	2.3	4.0	7.8	8.0	1.041	EQU-3	-6235	-622917	-	6492 -64	3653					
	v	50	40	2.3	2.3	6.6	6.6	8.459	SLU-51	124	-36843		1052 -31	1648					
683	0	100	40	5.7	15.7	7.8	7.9	1.097	SLU-75	35918 -	1189101	3	9395 -1304	1203					
	v	50	40	2.3	2.3	6.6	6.6	15.739	SLU-81	-22641	-7957	-35	6342 -12	5234					
684	0	100	40	5.7	15.7	7.8	7.9	1.200	SLU-79	28707 -	1155865	3	4459 -138	7491					
	v	50	40	2.3	2.3	6.6	6.6	17.568	SLU-81	-20284	-7680	-35	6342 -134	1918					
Combin																			
nod		1200	H	Af+	Af-		C-											Sm (mm)	
674	_	50	40	2.3				-82.9 3 ra											
		50		2.3				-5.8 7 ra											
683		100						-54.5 7 ra											
		50	40	2.3				-9.0 7 ra										0.0 1	
684	0	100	40	5.7	15.7	7.8	7.9	-54.3 3 ra	2.05E04	-8.56E05	2647.6	7 ra	2.10E04	-8.56E05	0.209	999.00	0.0	238.6 7	ra
	v	50	40	2.3	2.3	6.6	6.6	-8.4 7 ra	-1.20E04	-3.66E04	-103.7	9 ra	-1.49E04	-5.70E03	0.009	999.00	0.0	0.0 1	ra
Combin			-																
		В	H	Af+			C-	sc c										Sm (mm)	
674		50		2.3				-6.5 2 fr								0.20		0.0 1	
		50		2.3				-0.5 2 fr								0.20		0.0 1	
683		100	40	5.7												0.20		0.0 1	
		50	40	2.3				-5.3 1 fr								0.20			
684		100						0.0 1 fr								0.20			
	V	50	40	2.3	2.3	6.6	6.6	-4.9 2 fr	-9.68E03	-3.17E03	-67.9	2 fr	-9.68E03	-3.17E03	0.00	0.20	0.0	0.0 1	fr
		-		perma															
		В			Af-		C-											Sm (mm)	
674		50		2.3				-6.5 1 q.											-
		50		2.3				-0.5 1 q.								0.20			-
683		100						0.0 1 q.											
		50		2.3				-5.3 1 q.								0.20			
684		100						0.0 1 q.								0.20			
	V	50	40	2.3	2.3	6.6	6.6	-4.8 1 q.	-9.50E03	-3.17E03	-66.6	1 q.	-9.50E03	-3.17E03	0.00	0.20	0.0	0.0 1	q.

10 DESCRIZIONE DELLE OPERE SPECIALI

Per gli elevati carichi trasmessi dai plinti di fondazione sono necessarie fondazioni profonde costituite da pali di grande diametro della lunghezza variabile per trasferire i carichi allo strato inferiore di buone caratteristiche geotecniche.

I pali trivellati vengono realizzati con asportazione del terreno e sua sostituzione con calcestruzzo armato mediante attrezzatura adeguata a qualsiasi tipo di terreno da attraversare con l'ausilio del rivestimento provvisorio (incamiciatura) totale del foro.

Il diametro medio reso dei pali è di circa 800 mm e la lunghezza di perforazione è variabile.

L'armatura dei pali è costituita da una gabbia di armatura formata da correnti φ24 mm e da staffe spiroidali φ10 mm in acciaio B450C e giuntate a 10 m.

L'iniezione dei pali viene eseguita con calcestruzzo SCC tipo min C25/30 fino al completo getto del palo.

Per i particolari esecutivi si rimanda alle tavole grafiche dettagliate.

Nella tabella seguente si riportano le dimensioni e le armature impiegate per i diversi pali di fondazione. La porzione superiore di ciascun palo, di lunghezza pari a 10 metri, è armata in maniera differente rispetto alla porzione inferiore, oltre 10 metri.

				arma	atura porzion	e superiore	arı	matura porzio	ne inferiore
pooi	ziono.	ø pali	L pali	Lsup	correnti	staffe	Linf	correnti	staffe
posia	posizione		[m]	[m]	correnti	spiroidali	[m]	correnti	spiroidali
spalla	SP1	0.8	18	10	24ø24	ø12/10	8	24ø24	ø10/20
spalla	SP2	0.8	18	10	24ø24	ø12/10	8	24ø24	ø10/20

11 ANALISI DEI CARICHI

Di seguito si riportano i carichi prevalenti per i pali.

La distribuzione dei carichi sui pali, è stata determinata facendo riferimento alla seguente espressione:

$$N_{(i)} = \frac{N}{n} \pm \frac{M_y}{\sum_{i=1}^{n} x_i^2} * x_i \pm \frac{M_x}{\sum_{i=1}^{n} y_i^2} * y_i$$

dove "N_i" è il carico che agisce sul palo i-esimo mentre le grandezze "x_i", "y_i" rappresentano le coordinate del palo rispetto al baricentro della fondazione.

Condizione	Carico normale	Taglio T
	Kg	kg
SLU-STR	350000	22000
SLE-RARA	260000	17000
SLV	200000	42000

12 CALCOLO DELLA CAPACITA' PORTANTE

12.1 METODO DI CALCOLO

Le verifiche della capacità portante dei pali di fondazione sono state eseguite con il metodo degli stati limite secondo l'approccio 2 che prevede la sola combinazione A1+M1+R3 per le verifiche sia di tipo strutturale che di tipo geotecnico (cap. 6.4.3.1 delle NTC 2008) con i coefficienti riportati nelle tabelle seguenti.

Carichi	Effetto	Coefficiente parziale γ _F (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	Vox	0.9	1.0	1.0
remanent	Sfavorevole	γ _{G1}	1.1	1.3	1.0
Permanenti non	Favorevole	VG2	0.0	0.0	0.0
strutturali	Sfavorevole	γG2	1.5	1.5	1.3
Variabili	Favorevole	Vo:	0.0	0.0	0.0
Variabili	Sfavorevole	Y Qi	1.5	1.5	1.3

Coefficienti parziali per le azioni (Tab. 6.2.I NTC 2008)

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tan φ' _k	γ_{ϕ} .	1.0	1.25
Coesione efficace	C'k	Yc'	1.0	1.25
Resistenza non drenata	Cuk	Ycu	1.0	1.4
Peso unità volume	γ	Yy	1.0	1.0

Coefficienti parziali per i parametri geotecnici del terreno (Tab. 6.2.II NTC 2008)

Resistenza	Simbolo	F	Pali infiss	i	Pa	ali trivella	ti	Pali e	elica cont	inua
	γ R	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	Υþ	1.0	1.45	1.15	1.0	1.7	1.35	1.0	1.6	1.3
Laterale compr.	Ϋ́s	1.0	1.45	1.15	1.0	1.45	1.15	1.0	1.45	1.15
Totale	γt	1.0	1.45	1.15	1.0	1.6	1.30	1.0	1.55	1.25
Laterale traz.	γ st	1.0	1.6	1.25	1.0	1.6	1.25	1.0	1.6	1.25

Coefficienti parziali da applicare alle resistenze caratteristiche (Tab. 6.4.II NTC 2008)

	,						
N° verticali indagate	1	2	3	4	5	7	≥10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Fattori di correlazione in funzione del numero di verticali indagate

12.2 CAPACITA' PORTANTE PALI

Il carico limite di un palo Q_{lim} viene convenzionalmente diviso in due parti, la resistenza alla punta P e la resistenza laterale S:

$$Q_{\lim} = P + S = \frac{\pi d^2}{4} p + \pi d \int_0^L s \times dz$$

dove con p si indica la resistenza unitaria alla punta, con s la resistenza tangenziale unitaria all'interfaccia laterale paloterreno, con d il diametro e con L la lunghezza del palo.

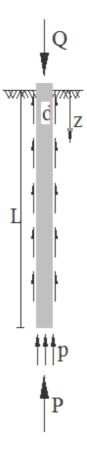


Figura 24 - Carico limite palo Qlim = P + S

La suddivisione è convenzionale perché gli sforzi laterali e quelli di punta vengono mobilitati con cedimenti diversi; pertanto non è detto che siano contemporaneamente agenti le resistenze massime P e S quando il palo va a rottura.

Nel nostro caso il calcolo è stato eseguito anche secondo quanto previsto dalle Raccomandazioni AGI sui pali di fondazione.

Le varie teorie esistenti conducono a relazioni fra Ng e φ' notevolmente diverse.

Sistematiche ricerche condotte da Kerisel ('61) e Vesic ('67) mostrano che la resistenza alla punta non cresce linearmente con la profondità, ma, al contrario, si mantiene costante al di sotto di una profondità critica; sia il valore di Ppu che la profondità critica aumentano con l'aumentare di ϕ '.

Una spiegazione di questo andamento è stata proposta da Vesic ('77), secondo il quale la rottura alla punta avviene secondo il meccanismo presentato nella figura seguente.

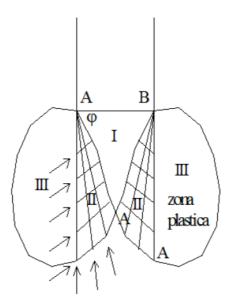


Figura 25 – Meccanismo di rottura alla punta secondo Vesic

La pressione di confinamento esercitata dalla zona III sulla zona II viene posta pari a quella necessaria ad espandere una cavità sferica in un mezzo elasto-platico; ed è per questo che egli assume il coefficiente η .

Berezantzev et al. ('61) postulano l'esistenza di una sorta d'effetto silo, come illustrato nella figura seguente, per il quale la tensione verticale σv ' sarebbe minore della tensione litostatica; il coefficiente N_q risulta funzione decrescente del rapporto L/d, oltre che funzione crescente dell'angolo d'attrito.

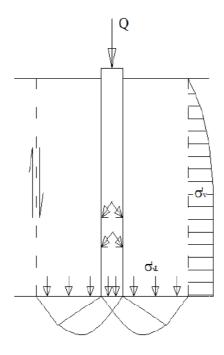


Figura 26 - Effetto silo

Per quanto riguarda il valore di ϕ ' da assumere nel calcolo della resistenza alla punta, esso dovrà considerare la densità relativa e il livello di tensione. Se invece ci si basa sullo stato limite di servizio, Berezantzev ('65) propone di utilizzare nel progetto il valore dello sforzo alla punta in corrispondenza del quale si verificano le prime deformazioni plastiche.

Tale sforzo, che provocherebbe cedimenti compresi fra 0.06d e 0.1d, può essere valutato con l'espressione relativa alla completa plasticizzazione, nella quale, però, i valori di N_q sono sostituiti dai valori di N_q * significativamente minori dei primi:

$$P_{pu} = A_p N_q * \sigma_v$$

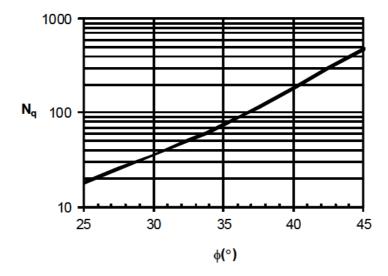


Figura 27 – Valori generali di Nq (Berezantzev)

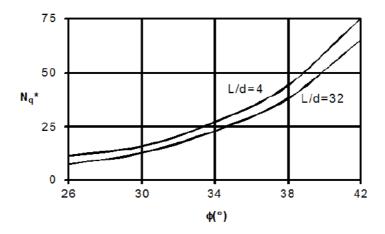


Figura 28 – Valori di Nq* (Berezantzev ridotto)

Si riporta di seguito il calcolo della capacità portante a compressione dei pali trivellati (metodi di Tomlinson, Burland e Berezantzev) per le spalle.

Parametri geotecnici

	profe	ondità				valori med	di				
strati [']	inizio	fine	γ.toat	γ."	φ!media	Cu media	o' _{kinizio}	σ' _X fine	σ' _{K.B.V.O.ta}		
	m	B	kg/m³	kg/m³	(°)	kg/cm ²	kg/m²	kg/m ²	kg/m ²		
1	3,00	10,00	1900	1000	30	0,00	5700	19000	0		
2	10,00	15,00	2000	1000	30	0.00	19000	29000	0		
3	15,00	17,00	2000	1000	37	0,00	29000	33000	0		
4	17,00	20,50	2100	1000	40	0.00	33000	40350	40350		
5											
6											

Capacità portante laterale di calcolo

							capacità p	ortante Q _{et}
strati	spessore	σ' _{kimedia}	Alat	$\mu = tg \phi$	ĸ	α	incoerenti	coerenti'
	m	kg/m²	cm ²				kg	kg
1	7	12350	175840	0,58	0,00	1,00	0	0
2	5	24000	125600	0,58	0.40	1,00	69572	0
3	2	31000	50240	0.75	0.40	1.00	46913	0
4	3.5	36675	87920	0.84	0.40	1.00	108148	0
5	\P							
6	•							

	Sondaggi	Spalle	Lunghezza	Diametro	Peso Palo	σ'v (punta)	φ (pur	nta) N*o	Q _{cpunta} , calc	Q _{clat, calc}	ξ3	ξ4
	[n°]	[ID]	[m]	[m]	[kg]	[kg/m2]	[°]		[kg]	[kg]		
PO1	1	SP1-SP2	18	0,8	22619	40350	40	37	750439	224633	1,7	-
Сар	LIMITE ULTIMI - COM vacità portante lateral vacità portante punta	e caratteris caratteristic	tica ca (Q _{cpunta,k} = 0	= Q _{clat,cal} / ča D _{opunta,cal} / ča	441434						
_ `	acità portante lateral acità portante di pun				$Q_{counta,k} / \gamma_s$							
Сар	acità portante di pro	getto	$Q_{c,d} = Q_c$	_{elat,d} + Q _{cpur}	_{nta,d} - 1,3xP _p	412485						
Сар	acità portante di pro	getto assun	ta		Q _{c,d} =	412485						

Si ottengono le capacità portanti di seguito ricapitolate:

spalla SP1 e SP2

Pali **∮800 mm L=18 m**

Capacità portante limite (SLU: A1+M1+R3): Q_{lim,compr} = 412.485 kg

I pali devono essere posti ad una distanza uno dall'altro di almeno 3÷3.5 diametri. Tuttavia, si può affermare che l'efficienza della palificata, in terreni incoerenti, risulta non minore dell'unità (da esperienze condotte – Vesic, 1968).

Nel progetto, si potrà assumere E = 1 e la capacità portante totale diviene:

13 VERIFICHE PALI

13.1 VERIFICA CAPACITA' PORTANTE VERTICALE – SPALLE

Sul palo più sollecitato graverà un carico verticale massimo di:

 E_d = 350.000 kg < Q_{lim} = 412.485 kg (SLU)

 E_d = 200.000 kg < Q_{lim} = 412.485 kg (SLV)

13.2 VERIFICA DELL'INSTABILITA' ELASTICA DEI PALI

I pali di fondazione hanno un rapporto massimo L/d pari a 20-22.5. La snellezza di questi pali trivellati è molto limitata per cui si omette la verifica dell'instabilità dell'equilibrio elastico in quanto non significativa ed ampiamente soddisfatta.

13.3 VERIFICA STRUTTURALE E DEI CEDIMENTI DEI PALI

Per la verifica strutturale della sezione dei pali trivellati e per la verifica dei cedimenti verticali e degli spostamenti laterali dei pali di fondazione sono state considerate tre combinazioni di carico per ciascun diametro del palo: una allo SLV e una allo SLU per le verifiche strutturali ed una allo SLE per gli spostamenti.

Di seguito si riportano i risultati maggiormente significativi per le principali situazioni.

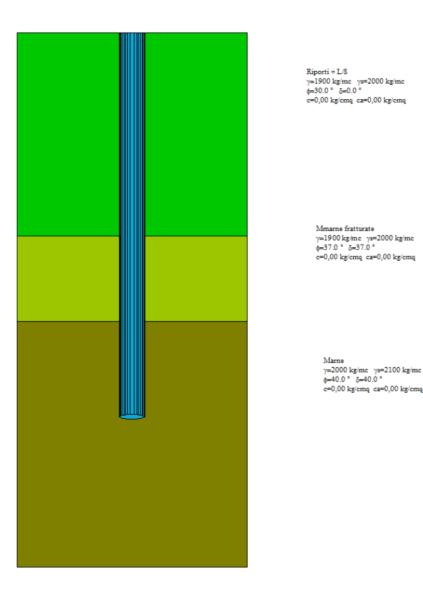


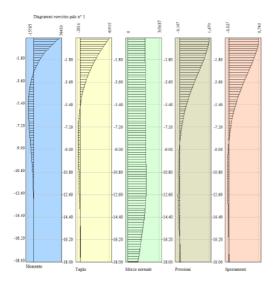
Figura 29 - Schema generale di calcolo

Palo diametro 800 mm per SPALLA SP1 e SP2

combinazione SLU (per verifica strutturale) Vmax = 350.000 kg

Hmax = 22.000 kg

combinazione SLE (per verifica spostamento) Vmax = 260.000 kg



Hmax = 17.000 kg

combinazione SLV (per verifica strutturale) Vmax = 200.000 kg

Hmax = 42.000 kg

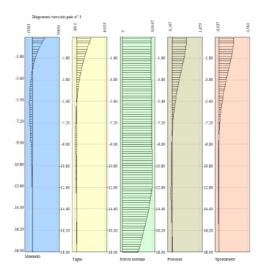


Figura 30 – Diagrammi delle sollecitazioni, combinazione SLV e SLU

Il diagramma seguente riporta le sollecitazioni agenti sulla sezione del palo che risulta essere verificata.

L'armatura è formata da correnti $24\phi24$ mm e staffe $\phi12/10$ per i primi 10 m e da $24\phi24$ mm e staffe $\phi10/20$ per la parte inferiore.

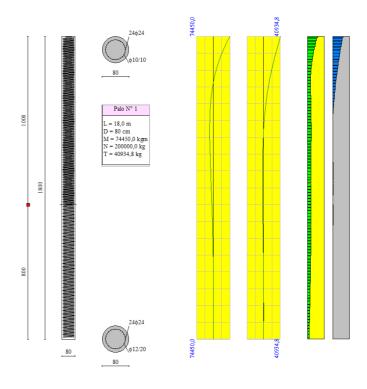


Figura 31 – Diagrammi sollecitazioni massime sull'armatura

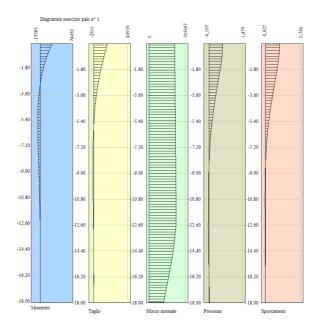


Figura 32 – Diagrammi delle sollecitazioni, combinazione SLE

Il cedimento massimo del palo di diametro 800 mm è di circa 0.77 cm mentre lo spostamento laterale massimo in testa è di 0.30 cm. Le deformazioni laterali proseguono fino a circa 1200 cm dal plinto di fondazione e il valore dello spostamento massimo è inferiore allo 0.1% di questa lunghezza.

13.4 REPORT ELABORAZIONE DATI E RISULTATI

Richiami teorici

Analisi del palo soggetto a forze orizzontali (Portanza trasversale)

La resistenza limite laterale di un palo è determinata dal minimo valore fra il carico orizzontale necessario per produrre il collasso del terreno lungo il fusto del palo ed il carico orizzontale necessario per produrre la plasticizzazione del palo. Il primo meccanismo (plasticizzazione del terreno) si verifica nel caso di pali molto rigidi in terreni poco resistenti (meccanismo di palo corto) mentre il secondo meccanismo si verifica nel caso di pali aventi rigidezze non eccessive rispetto al terreno di infissione (meccanismo di palo lungo o intermedio). Nel modello di terreno alla Winkler il terreno viene schematizzato come una serie di molle elastiche indipendenti fra di loro. Le molle che schematizzano il terreno vengono caratterizzate tramite una costante di rigidezza elastica, K_h, espressa in Kg/cm²/cm che rappresenta la pressione (in Kg/cm²) che bisogna applicare per ottenere lo spostamento di 1 cm. La determinazione di questa costante può essere fatta o tramite prove di carico su piastra o mediante metodi analitici (convenzionali). La variazione della costante di Winkler con la profondità dipende dal tipo di terreno in cui il palo è immerso. Ad esempio nel caso di terreni coesivi in condizioni non drenate K_h assume un valore costante con la profondità mentre nel caso di terreni incoerenti la variazione di K_h è di tipo lineare (crescente con la profondità). In generale l'espressione di K_h assume una forma binomia del tipo:

$$K_h(z) = A + B z^n$$

Per l'analisi di pali caricati trasversalmente si utilizza il modello di Winkler. Il palo viene suddiviso in un determinato numero (100) di elementi tipo trave aventi area ed inerzia pari a quella della sezione trasversale del palo. In corrispondenza di ogni nodo di separazione fra i vari elementi viene inserita una molla orizzontale di opportuna rigidezza che schematizza il terreno. Il comportamento delle molle che schematizzano il terreno non è infinitamente elastico ma è di tipo elastoplastico. La singola molla reagisce fino ad un valore limite di spostamento o di reazione; una volta che è stato superato tale limite la molle non offre ulteriori incrementi di resistenza (diagramma tipo elastoplastico perfetto). Indicando con dy_e la lunghezza del tratto di influenza della molla, con D il diametro del palo la molla avrà una rigidezza pari a:

$$K_m = dy_e D K_k$$

La resistenza limite del terreno rappresenta il valore limite di resistenza che il terreno può esplicare quando il palo è soggetto ad un carico orizzontale. La resistenza limite pu=pu(z) dipende dalle caratteristiche del terreno e dalla geometria del palo. In terreni puramente coesivi (c=cu, ø=0) la resistenza cresce dal valore 0 in sommità fino ad un valore limite in corrispondenza di una profondità pari a circa 3 diametri. Il valore limite in tal caso è variabile fra 8 e 12 cu. Nel caso di terreni dotati di attrito e coesione la resistenza limite ad una generica profondità z è rappresentata dalla relazione (Brinch Hansen):

$$P_u = q K_{pq} + c K_{pc}$$

dove:

D diametro del palo

Q pressione geostatica alla profondità z

C coesione alla profondità z

 K_{pq} , K_{pc} coefficienti funzione dell'angolo di attrito del terreno \emptyset e del rapporto z/D.

Broms ha eseguito l'analisi considerando il caso sia di palo vincolato in testa che di palo libero immerso in un mezzo omogeneo. Nel caso di terreni coesivi Broms assume in questo caso un diagramma di resistenza nullo fino ad una profondità pari a 1,5D e poi valore costante pari a 9c_u D.

Nel caso di terreni incoerenti Broms assume che la resistenza laterale sia variabile con la profondità dal valore 0 (in testa) fino al valore 3 σ_v K_p D (alla base) essendo K_p il coefficiente di resistenza passiva espresso da K_p =tan₂(45° + \emptyset /2).

Calcolo dei cedimenti verticali dei pali

Il calcolo dei cedimenti viene condotto con il metodo degli elementi finiti.

Determinata la portanza laterale e di punta del palo lo stesso viene discretizzato in n elementi tipo trave aventi area ed inerzia corrispondenti alla sezione trasversale del palo e lunghezza pari ad le. Vengono disposte, inoltre, lungo il fusto del palo una serie di molle (una per ogni elemento), coassiali al palo stesso, aventi rigidezza opportuna. Una ulteriore molla viene disposta alla base del palo. Le suddette molle hanno un comportamento elastoplastico. In particolare le molle lungo il fusto saranno in grado di reagire linearmente fino a quando la pressione in corrispondenza di esse non raggiunge il valore limite dell'aderenza palo terreno. Una volta raggiunto tale valore le molle non saranno più in grado di fornire ulteriore resistenza. La molla posta alla base del palo avrà invece una resistenza limite pari alla portanza di punta del palo stesso. Per la determinazione delle rigidezze delle molle si assume uno spostamento di riferimento pari a ΔY =0.500.

La rigidezza della generica molla, posta a profondità z rispetto al piano campagna sarà data da

$$R_{l} = \frac{(c_{a} + \sigma_{h}K_{s}tg\delta)\pi D I_{e}}{\Delta Y}$$

In questa espressione c_a è l'aderenza palo terreno, σ_h è la pressione orizzontale alla profondità z, δ è l'angolo d'attrito palo terreno, Ks è il coefficiente di spinta e D è il diametro del palo.

Indicando con Q_p la portanza alla punta del palo, la rigidezza della molla posta alla base dello stesso è data da:

$$R_p = \frac{Q_p}{\Delta Y}$$

Il processo di soluzione è, naturalmente, di tipo iterativo: a partire da un carico iniziale N₀ si determinano gli spostamenti assiali e quindi le reazioni delle molle. La reazione della molla dovrà essere corretta per tener conto di eventuali plasticizzazioni rispettando le equazioni di equilibrio per ogni passo di carico. Il carico iniziale verrà allora incrementato di

un passo opportuno ΔN e si ripeterà il procedimento. Il processo iterativo termina quando tutte le molle risultano plasticizzate.

13.4.1 Pali per spalle

Dati

Geometria della fondazione

Simbologia adottata

Descr	Descrizione del palo
Frm	Forma del palo ((C)=Costante, (R)=Rastremato)
Χ	Ascissa del baricentro del palo espressa in [m]
Υ	Ordinata del baricentro del palo espressa in [m]
D	Diametro del palo espresso in [cm]
L	Lunghezza del palo espressa in [m]

Descr	Frm	X	γ	D	L
		[m]	[m]	[cm]	[m]
Palo 1200	(C)	0,00	0,00	80,00	18,00

Materiali palo

Calcestruzzo

Tipo	C25/30	
Resistenza caratteristica a compressione Rck	305,91	[kg/cmq]
Peso specifico	2500,00	[kg/mc]
Coeff. di omogeneizzazione	15,00	
Tipo	B450C	
Tensione caratteristica di snervamento	4588 65	[ka/cma]

Caratteristiche pali

Pali in c.a.

Acciaio

Armatura con ferri longitudinali e spirale

Vincolo in testa di tipo INCASTRO

Tipo di palo TRIVELLATO

Contributo sia della portanza laterale sia della portanza di punta

Descrizione terreni e falda

Simbologia adottata

Descrizione Descrizione terreno

γ	Peso di volume del terreno espresso in [kg/mc]
Y sat	Peso di volume saturo del terreno espresso in [kg/mc]
Ø	Angolo di attrito interno del terreno espresso in gradi
δ	Angolo di attrito palo-terreno espresso in gradi
С	Coesione del terreno espressa in [kg/cmq]
ca	Adesione del terreno espressa in [kg/cmq]
Ø _{min} , med	Angolo di attrito interno del terreno minimo e medio espresso in gradi
$\delta_{\text{min}},\delta_{\text{med}}$	Angolo di attrito palo-terreno minimo e medio espresso in gradi
$\mathbf{C}_{\text{min}},\mathbf{C}_{\text{med}}$	Coesione del terreno minima e media espressa in [kg/cmq]
ca _{min} , ca _{med}	Adesione del terreno minima e media espressa in [kg/cmq]

Parametri caratteristici

Descrizione	у	γsat	ф	δ	С	ca
	[kg/mc]	[kg/mc]	[°]	[°]	[kg/cmq]	[kg/cmq]
Riporti + L/S	1900,0	2000,0	30,00	0,00	0,000	0,000
Mmarne fratturate	1900,0	2000,0	37,00	37,00	0,000	0,000
Marne	2000,0	2100,0	40,00	40,00	0,000	0,000

Descrizione stratigrafia

Simbologia adottata

NI		On		100	111/10		ro	•
N	u		ш	ica	uvu	51	ıa	w

Z1 Quota dello strato in corrispondenza del punto di sondaggio n°1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio n°2 espressa in [m]

Z3 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno Terreno dello strato

Kw Costante di Winkler espressa in Kg/cm2/cm

Ks Coefficiente di spinta

α Coefficiente di espansione laterale

nº	Z1	Z2	Z3	Terreno	Kw	Ks	α
	[m]	[m]	[m]		[kg/cmq/cm]		
1	-12,5	-12,5	-9,5	Riporti + L/S	2.00	0.10	1.00
2	-14,5	-14,5	-13,5	Mmarne fratturate	5.00	0.40	1.00
3	-25,0	-25,0	-25,0	Marne	5.00	0.50	1.00

<u>Normativa</u>

N.T.C. 2008 - Approccio 2

PALI DI FONDAZIONE

CARICHI VERTICALI. Coefficienti parziali yR per le verifiche dei pali

Pali trivellati

		R1	R2	R3
Punta	γb	1.00	1.70	1.35
Laterale compressione	γs	1.00	1.45	1.15
Totale compressione	γt	1.00	1.60	1.30
Laterale trazione	γst	1.00	1.60	1.25

CARICHI TRASVERSALI. Coefficienti parziali y₁ per le verifiche dei pali.

	R1	R2	R3
γτ	1.00	1.60	1.30

Coefficienti di riduzione per la determinazione della resistenza caratteristica dei pali

Numero di verticali indagate 10 ξ_3 =1.40 ξ_4 =1.21

Condizioni di carico

Le condizioni di carico definite rappresentano le combinazioni di calcolo

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

fnd Indice della fondazione

N_{TOT} Sforzo normale totale espressa in [kg]

My_{TOT} Momento in direzione Y espresso in [kgm]

T_{TOT} Forza di taglio espressa in [kg]

Condizione n° 1 - Condizione SLV - STR - A1-M1-R3

Fondazione	Итот	Мутот	Тхтот	
	[kg]	[kgm]	[kg]	
Palo 800	200000,0	0,0	42000,0	

Condizione n° 2 - Condizione SLU - STR - A1-M1-R3

Fondazione	Nтот	Мутот	Тхтот
	[kg]	[kgm]	[kg]
Palo 800	350000,0	0,0	22000,0

Condizione n° 3 - Condizione SLE

Fondazione	Nтот	Мутот	Тхтот
	[kg]	[kgm]	[kg]
Palo 800	260000,0	0,0	17000,0

Descrizione combinazioni di carico

Simbologia adottata

Y Coefficiente di partecipazione della condizione

Ψ Coefficiente di combinazione della condizione

Combinazione n° 1 - STR - A1-M1-R3

Combinazione n° 2 - STR - A1-M1-R3

Cond	γ	Ψ
Condizione SLU	1.00	1.00

Combinazione n° 3 - SLE

Cond	γ	Ψ
Condizione SLE	1.00	1.00

Opzioni di calcolo

E' stato richiesto di correggere l'angolo di attrito in funzione del tipo di palo (Trivellato/Infisso).

E' stata impostata una pressione a piano campagna pari a 0,47 [kg/cmq]

Verifica della portanza trasversale

Costante di Winkler orizzontale definita da STRATO

Criterio di rottura palo-terreno: Pressione limite

Cedimento verticale in testa ai pali

Per il calcolo dei cedimenti è stato utilizzato il metodo degli Elementi Finiti.

Spostamento limite attrito laterale: 0,50 [cm]

Spostamento limite punta: 1,00 [cm]

RISULTATI

Verifica della portanza trasversale

Simbologia adottata

cmb Identificativo della combinazione

Tu Taglio resistente ultimo in testa al palo, espresso in [kg]

Tx Taglio agente in testa al palo, espresso in [kg]

η=Tu/Tx Coeff. di sicurezza per carichi orizzontali

cmb	b Tu T		η
	[kg]	[kg]	
1	57566	42000	1,371
2	57619	22000	2,619

Cedimento verticale in testa ai pali

Simbologia adottata

cmb Identificativo della combinazione

w Cedimento in testa al palo, espresso in [cm]

u Spostamento orizzontale in testa al palo, espresso in [cm]

cmb	w	u
	[cm]	[cm]
1	0,5714	0,7397
2	1,2533	0,3875

cmb	w	u
	[cm]	[cm]
3	0,7667	0,2994

Spostamenti e pressioni in esercizio

Simbologia adottata

Nr. Identificativo sezione palo

Y ordinata palo espressa in [cm]

Ue spostamento in esercizio espresso in [cm]

Pe pressione in esercizio espressa in [kg/cmq]

Combinazione n° 3

nº	Υ	Ue	Pe	n°	Υ	Ue	Pe	n°	Υ	Ue	Pe
	[m]	[cm]	[kg/cmq]		[m]	[cm]	[kg/cmq]		[m]	[cm]	[kg/cmq]
1	0,00	0,2994	0,599	2	0,18	0,2987	0,597	3	0,36	0,2965	0,593
4	0,54	0,2931	0,586	5	0,72	0,2886	0,577	6	0,90	0,2832	0,566
7	1,08	0,2768	0,554	8	1,26	0,2698	0,540	9	1,44	0,2620	0,524
10	1,62	0,2538	0,508	11	1,80	0,2451	0,490	12	1,98	0,2360	0,472
13	2,16	0,2267	0,453	14	2,34	0,2171	0,434	15	2,52	0,2074	0,415
16	2,70	0,1977	0,395	17	2,88	0,1879	0,376	18	3,06	0,1781	0,356
19	3,24	0,1684	0,337	20	3,42	0,1588	0,318	21	3,60	0,1494	0,299
22	3,78	0,1401	0,280	23	3,96	0,1311	0,262	24	4,14	0,1222	0,244
25	4,32	0,1137	0,227	26	4,50	0,1054	0,211	27	4,68	0,0974	0,195
28	4,86	0,0897	0,179	29	5,04	0,0823	0,165	30	5,22	0,0752	0,150
31	5,40	0,0684	0,137	32	5,58	0,0620	0,124	33	5,76	0,0559	0,112
34	5,94	0,0501	0,100	35	6,12	0,0446	0,089	36	6,30	0,0394	0,079
37	6,48	0,0346	0,069	38	6,66	0,0300	0,060	39	6,84	0,0258	0,052
40	7,02	0,0218	0,044	41	7,20	0,0181	0,036	42	7,38	0,0147	0,029
43	7,56	0,0116	0,023	44	7,74	0,0087	0,017	45	7,92	0,0061	0,012
46	8,10	0,0037	0,007	47	8,28	0,0015	0,003	48	8,46	-0,0005	-0,001
49	8,64	-0,0022	-0,004	50	8,82	-0,0038	-0,008	51	9,00	-0,0052	-0,010
52	9,18	-0,0064	-0,013	53	9,36	-0,0074	-0,015	54	9,54	-0,0083	-0,017
55	9,72	-0,0091	-0,018	56	9,90	-0,0097	-0,019	57	10,08	-0,0102	-0,020
58	10,26	-0,0105	-0,021	59	10,44	-0,0108	-0,022	60	10,62	-0,0110	-0,022
61	10,80	-0,0111	-0,022	62	10,98	-0,0111	-0,022	63	11,16	-0,0110	-0,022
64	11,34	-0,0109	-0,022	65	11,52	-0,0107	-0,021	66	11,70	-0,0104	-0,021
67	11,88	-0,0102	-0,020	68	12,06	-0,0098	-0,020	69	12,24	-0,0095	-0,019
70	12,42	-0,0091	-0,018	71	12,60	-0,0087	-0,043	72	12,78	-0,0082	-0,041
73	12,96	-0,0078	-0,039	74	13,14	-0,0073	-0,037	75	13,32	-0,0069	-0,034
76	13,50	-0,0064	-0,032	77	13,68	-0,0060	-0,030	78	13,86	-0,0055	-0,028
79	14,04	-0,0051	-0,025	80	14,22	-0,0046	-0,023	81	14,40	-0,0042	-0,021
82	14,58	-0,0038	-0,019	83	14,76	-0,0034	-0,017	84	14,94	-0,0030	-0,015
85	15,12	-0,0026	-0,013	86	15,30	-0,0022	-0,011	87	15,48	-0,0018	-0,009
88	15,66	-0,0015	-0,007	89	15,84	-0,0011	-0,006	90	16,02	-0,0008	-0,004
91	16,20	-0,0004	-0,002	92	16,38	-0,0001	0,000	93	16,56	0,0003	0,001
94	16,74	0,0006	0,003	95	16,92	0,0009	0,005	96	17,10	0,0012	0,006
97	17,28	0,0016	0,008	98	17,46	0,0019	0,009	99	17,64	0,0022	0,011
100	17,82	0,0025	0,013	101	18,00	0,0028	0,014	102			-

Sollecitazioni

Simbologia adottata

Nr. Identificativo sezione

Y ordinata della sezione a partire dalla testa positiva verso il basso (in [m])

N sforzo normale espresso in [kg]

T taglio espresso in [kg]

M momento espresso in [kgm]

Combinazione n° 1

nº	γ	М	T	N	nº	Υ	М	T	N
	[m]	[kgm]	[kg]	[kg]		[m]	[kgm]	[kg]	[kg]
1	0,00	74450,03	40934,83	200000,00	2	0,00	67081,76	38809,81	200226,19
3	0,36	60095,99	36699,99	200452,39	4	0,36	53490,00	34614,24	200678,58
5	0,72	47259,43	32560,46	200904,78	6	0,72	41398,55	30545,63	201130,97
7	1,08	35900,34	28575,85	201357,17	8	1,08	30756,68	26656,42	201583,36
9	1,44	25958,53	24791,89	201809,56	10	1,44	21495,99	22986,10	202035,75
11	1,80	17358,49	21242,21	202261.95	12	1,80	13534,89	19562,80	202488,14
13	2,16	10013,59	17949,87	202714,34	14	2,16	6782,61	16404,91	202940,53
15	2,52	3829,73	14928,91	203166,73	16	2,52	1142,52	13522,45	203392,92
17	2,88	-1291,52	12185,71	203619,11	18	2,88	-3484,95	10918,49	203845,31
19	3,24	-5450,27	9720,30	204071,50	20	3,24	-7199,93	8590,33	204297,70
21	3,60	-8746,19	7527,53	204523,89	22	3,60	-10101,14	6530,62	204750,09
23	3,96	-11276,66	5598,10	204976,28	24	3,96	-12284,31	4728,32	205202,48
25	4,32	-13135,41	3919,48	205428,67	26	4,32	-13840,92	3169,63	205654,87
27	4,68	-14411,45	2476,75	205881,06	28	4,68	-14857,27	1838,71	206107,26
29	5,04	-15188,24	1253,33	206333,45	30	5,04	-15413,83	718,36	206559,65
31	5,40	-15543,14	231,54	206785,84	32	5,40	-15584,82	-209,42	207012,03
33	5,76	-15547,12	-606,81	207238,23	34	5,76	-15437,90	-962,93	207464,42
35	6,12	-15264,57	-1280,05	207690,62	36	6,12	-15034,16	-1560,43	207916,81
37	6,48	-14753,28	-1806,26	208143,01	38	6,48	-14428,15	-2019,73	208369,20
39	6,84	-14064,60	-2202,97	208595,40	40	6,84	-13668,07	-2358,05	208821,59
41	7,20	-13243,62	-2486,97	209047,79	42	7,20	-12795,96	-2591,70	209273,98
43	7,56	-12329,46	-2674,11	209500,18	44	7,56	-11848,12	-2736,03	209726,37
45	7,92	-11355,63	-2779,21	209300,10	46	7,92	-10855,37	-2805,31	210178,76
47	8,28	-10350,42	-2815,93	210404,95	48	8,28	-9843,55	-2812,60	210631,15
49	8,64	-9337,28	-2796,78	210404,93	50	8,64	-8833,86	-2769,84	211083,54
51	9,00	-8335,29	-2733,08	211309,73	52	9,00	-7843,34	-2687,73	211535,93
53	9,36	-7359,55	-2634,94	211762,12	54	9,36	-6885,26	-2575,81	211988,32
55	9,72	-6421,61	-2511,34	212214,51	56	9,72			
57	10,08	-5529,92	-2311,34	212214,31	58	10,08	-5969,57 -5103,30	-2442,49 -2295,08	212440,71 212893,10
59					60				
	10,44	-4690,19	-2218,10	213119,29	62	10,44	-4290,93	-2139,87	213345,49
61	10,80 11,16	-3905,75	-2061,02 -1903,74	213571,68	64	10,80	-3534,77	-1982,14	213797,87
65	11,16	-3177,98	-1903,74	214024,07 214476,46	66	11,16 11,52	-2835,31 -2191,54	-1826,30 -1675,90	214250,26
67		-2506,58			68				214702,65
	11,88	-1889,87	-1603,63	214928,85		11,88	-1601,22	-1533,71	215155,04
69 71	12,24 12,60	-1325,15	-1466,37	215381,24	70	12,24	-1061,21	-1401,80	215607,43
		-808,88	-1247,72	214529,86	72	12,60	-584,29	-1101,27	212387,44
73	12,96	-386,06	-962,67	210216,96	74	12,96	-212,78	-832,06	208018,40
75	13,32	-63,01	-709,52	205791,78	76	13,32	64,70	-595,07	203537,09
77	13,68	171,81	-488,70	201254,34	78	13,68	259,78	-390,35	198943,51
79	14,04	330,04	-299,91	196604,62	80	14,04	384,03	-217,26	194237,66
81	14,40	423,13	-142,27	191842,63	82	14,40	448,74	-74,79	188956,52
83	14,76	462,20	-14,64	185454,15	84	14,76	464,84	38,35	181910,66
85	15,12	457,94	84,34	178326,04	86	15,12	442,75	123,50	174700,29
87	15,48	420,52	156,00	171033,43	88	15,48	392,44	181,99	167325,44
89	15,84	359,69	201,61	163576,32	90	15,84	323,40	215,00	159786,08
91	16,20	284,70	222,27	155954,72	92	16,20	244,69	223,53	152082,23
93	16,56	204,45	218,88	148168,62	94	16,56	165,06	208,38	144213,89
95	16,92	127,55	192,10	140218,03	96	16,92	92,97	170,08	136181,05
97	17,28	62,36	142,36	132102,94	98	17,28	36,73	108,97	127983,71
99	17,64	17,12	69,90	123823,36	100	17,64	4,53	25,19	119621,88
101	18,00	0,00	25,19	115379,28	102				

Combinazione n° 2

nº	γ	М	T	N	n°	γ	М	T	N
	[m]	[kgm]	[kg]	[kg]		[m]	[kgm]	[kg]	[kg]
1	0,00	38997,63	21442,06	350000,00	2	0,00	35138,06	20328,95	350226,19
3	0,36	31478,85	19223,80	350452,39	4	0,36	28018,57	18131,27	350678,58
5	0,72	24754,94	17055,48	350904,78	6	0,72	21684,95	16000,09	351130,97
7	1,08	18804,94	14968,30	351357,17	8	1,08	16110,64	13962,89	351583,36
9	1,44	13597,32	12986,23	351809,56	10	1,44	11259,80	12040,34	352035,75
11	1,80	9092,54	11126,87	352261,95	12	1,80	7089,70	10247,18	352488,14
13	2,16	5245,21	9402,31	352714,34	14	2,16	3552,80	8593,05	352940,53
15	2,52	2006,05	7819,90	353166,73	16	2,52	598,46	7083,19	353392,92

n°	Y	М	Т	N	n°	Υ	М	Т	N
	[m]	[kgm]	[kg]	[kg]		[m]	[kgm]	[kg]	[kg]
17	2,88	-676,51	6382,99	353619,11	18	2,88	-1825,45	5719,21	353845,31
19	3,24	-2854,91	5091,59	354071,50	20	3,24	-3771,39	4499,70	354297,70
21	3,60	-4581,34	3942,99	354523,89	22	3,60	-5291,08	3420,80	354750,09
23	3,96	-5906,82	2932,34	354976,28	24	3,96	-6434,64	2476,74	355202,48
25	4,32	-6880,45	2053,06	355428,67	26	4,32	-7250,00	1660,28	355654,87
27	4,68	-7548,86	1297,35	355881,06	28	4,68	-7782,38	963,13	356107,26
29	5,04	-7955,74	656,50	356333,45	30	5,04	-8073,91	376,28	356559,65
31	5,40	-8141,64	121,28	356785,84	32	5,40	-8163,48	-109,69	357012,03
33	5,76	-8143,73	-317,85	357238,23	34	5,76	-8086,52	-504,39	357464,42
35	6,12	-7995,73	-670,50	357690,62	36	6,12	-7875,04	-817,37	357916,81
37	6,48	-7727,91	-946,14	358143,01	38	6,48	-7557,60	-1057,96	358369,20
39	6,84	-7367,17	-1153,94	358595,40	40	6,84	-7159,46	-1235,17	358821,59
41	7,20	-6937,13	-1302,70	359047,79	42	7,20	-6702,65	-1357,56	359273,98
43	7,56	-6458,29	-1400,73	359500,18	44	7,56	-6206,16	-1433,16	359726,37
45	7,92	-5948,19	-1455,78	359952,57	46	7,92	-5686,15	-1469,45	360178,76
47	8,28	-5421,65	-1475,01	360404,95	48	8,28	-5156,15	-1473,27	360631,15
49	8,64	-4890,96	-1464,98	360857,34	50	8,64	-4627,26	-1450,87	361083,54
51	9,00	-4366,11	-1431,61	361309,73	52	9,00	-4108,42	-1407,86	361535,93
53	9,36	-3855,00	-1380,21	361762,12	54	9,36	-3606,56	-1349,23	361988,32
55	9,72	-3363,70	-1315,46	362214,51	56	9,72	-3126,92	-1279,40	362440,71
57	10,08	-2896,63	-1241,50	362666,90	58	10,08	-2673,16	-1202,19	362893,10
59	10,44	-2456,76	-1161,86	363119,29	60	10,44	-2247,63	-1120,88	363345,49
61	10,80	-2045,87	-1079,58	363571,68	62	10,80	-1851,55	-1038,26	363797,87
63	11,16	-1664,66	-997,20	364024,07	64	11,16	-1485,16	-956,63	364250,26
65	11,52	-1312,97	-916,79	364476,46	66	11,52	-1147,95	-877,85	364702,65
67	11,88	-989,93	-840,00	364928,85	68	11,88	-838,73	-803,37	365155,04
69	12,24	-694,13	-768,10	365381,24	70	12,24	-555,87	-734,28	365607,43
71	12,60	-423,70	-653,57	363651,39	72	12,60	-306,06	-576,86	359913,01
73	12,96	-202,22	-504,25	356127,65	74	12,96	-111,46	-435,84	352295,31
75	13,32	-33,01	-371,65	348416,00	76	13,32	33,89	-311,71	344489,70
77	13,68	90,00	-255,99	340516,42	78	13,68	136,07	-204,47	336496,17
79	14,04	172,88	-157,09	332428,93	80	14,04	201,16	-113,80	328314,71
81	14,40	221,64	-74,52	324153,52	82	14,40	235,06	-39,17	319170,35
83	14,76	242,11	-7,67	313155,69	84	14,76	243,49	20,09	307072,19
85	15,12	239,87	44,18	300919,87	86	15,12	231,92	64,69	294698,70
87	15,48	220,27	81,71	288408,71	88	15,48	205,57	95,33	282049,88
89	15,84	188,41	105,60	275622,22	90	15,84	169,40	112,62	269125,73
91	16,20	149,13	116,43	262560,40	92	16,20	128,17	117,09	255926,24
93	16,56	107,10	114,65	249223,25	94	16,56	86,46	109,15	242451,42
95	16,92	66,81	100,62	235610,76	96	16,92	48,70	89,09	228701,27
97	17,28	32,66	74,57	221722,95	98	17,28	19,24	57,08	214675,79
99	17,64	8,97	36,62	207559,80	100	17,64	2,37	13,19	200374,97
101	18,00	0,00	13,19	193121,32	102				

Combinazione n° 3

n°	Y	М	Т	N	n°	Υ	М	Т	N
	[m]	[kgm]	[kg]	[kg]		[m]	[kgm]	[kg]	[kg]
1	0,00	30134,54	16568,86	260000,00	2	0,00	27152,14	15708,73	260226,19
3	0,36	24324,57	14854,76	260452,39	4	0,36	21650,71	14010,53	260678,58
5	0,72	19128,82	13179,24	260904,78	6	0,72	16756,56	12363,71	261130,97
7	1,08	14531,09	11566,41	261357,17	8	1,08	12449,13	10789,50	261583,36
9	1,44	10507,02	10034,81	261809,56	10	1,44	8700,76	9303,90	262035,75
11	1,80	7026,06	8598,04	262261,95	12	1,80	5478,41	7918,28	262488,14
13	2,16	4053,12	7265,43	262714,34	14	2,16	2745,34	6640,08	262940,53
15	2,52	1550,13	6042,65	263166,73	16	2,52	462,45	5473,37	263392,92
17	2,88	-522,76	4932,31	263619,11	18	2,88	-1410,57	4419,39	263845,31
19	3,24	-2206,06	3934,41	264071,50	20	3,24	-2914,26	3477,04	264297,70
21	3,60	-3540,12	3046,86	264523,89	22	3,60	-4088,56	2643,35	264750,09
23	3,96	-4564,36	2265,90	264976,28	24	3,96	-4972,22	1913,84	265202,48
25	4,32	-5316,71	1586,46	265428,67	26	4,32	-5602,28	1282,95	265654,87
27	4,68	-5833,21	1002,49	265881,06	28	4,68	-6013,66	744,24	266107,26
29	5,04	-6147,62	507,30	266333,45	30	5,04	-6238,93	290,77	266559,65
31	5,40	-6291,27	93,72	266785,84	32	5,40	-6308,14	-84,76	267012,03
33	5,76	-6292,88	-245,61	267238,23	34	5,76	-6248,67	-389,76	267464,42
35	6,12	-6178,52	-518,12	267690,62	36	6,12	-6085,25	-631,60	267916,81
37	6,48	-5971,57	-731,11	268143,01	38	6,48	-5839,97	-817,51	268369,20
39	6,84	-5692,82	-891,68	268595,40	40	6,84	-5532,31	-954,45	268821,59
41	7,20	-5360,51	-1006,63	269047,79	42	7,20	-5179,32	-1049,02	269273,98
43	7,56	-4990,50	-1082,38	269500,18	44	7,56	-4795,67	-1107,44	269726,37

nº	γ	М	T	N	nº	γ	М	T	N
	[m]	[kgm]	[kg]	[kg]		[m]	[kgm]	[kg]	[kg]
45	7,92	-4596,33	-1124,92	269952,57	46	7,92	-4393,84	-1135,48	270178,76
47	8,28	-4189,46	-1139,78	270404,95	48	8,28	-3984,30	-1138,44	270631,15
49	8,64	-3779,38	-1132,03	270857,34	50	8,64	-3575,61	-1121,13	271083,54
51	9,00	-3373,81	-1106,25	271309,73	52	9,00	-3174,68	-1087,89	271535,93
53	9,36	-2978,86	-1066,52	271762,12	54	9,36	-2786,89	-1042,59	271988,32
55	9,72	-2599,22	-1016,50	272214,51	56	9,72	-2416,26	-988,63	272440,71
57	10,08	-2238,30	-959,34	272666,90	58	10,08	-2065,62	-928,96	272893,10
59	10,44	-1898,41	-897,80	273119,29	60	10,44	-1736,80	-866,14	273345,49
61	10,80	-1580,90	-834,22	273571,68	62	10,80	-1430,74	-802,29	273797,87
63	11,16	-1286,33	-770,56	274024,07	64	11,16	-1147,63	-739,22	274250,26
65	11,52	-1014,57	-708,43	274476,46	66	11,52	-887,05	-678,34	274702,65
67	11,88	-764,95	-649,09	274928,85	68	11,88	-648,11	-620,79	275155,04
69	12,24	-536,37	-593,53	275381,24	70	12,24	-429,54	-567,40	275607,43
71	12,60	-327,40	-505,03	274178,47	72	12,60	-236,50	-445,75	271397,67
73	12,96	-156,26	-389,65	268581,23	74	12,96	-86,13	-336,78	265729,17
75	13,32	-25,51	-287,19	262841,47	76	13,32	26,19	-240,86	259918,14
77	13,68	69,54	-197,81	256959,17	78	13,68	105,15	-158,00	253964,57
79	14,04	133,59	-121,39	250934,34	80	14,04	155,44	-87,94	247868,48
81	14,40	171,27	-57,59	244766,99	82	14,40	181,63	-30,27	241042,06
83	14,76	187,08	-5,92	236534,77	84	14,76	188,15	15,52	231975,27
85	15,12	185,35	34,14	227363,57	86	15,12	179,21	49,99	222699,66
87	15,48	170,21	63,14	217983,54	88	15,48	158,85	73,66	213215,21
89	15,84	145,59	81,60	208394,68	90	15,84	130,90	87,02	203521,94
91	16,20	115,24	89,97	198596,99	92	16,20	99,04	90,48	193619,83
93	16,56	82,76	88,59	188590,47	94	16,56	66,81	84,34	183508,90
95	16,92	51,63	77,75	178375,12	96	16,92	37,63	68,84	173189,14
97	17,28	25,24	57,62	167950,94	98	17,28	14,87	44,11	162660,54
99	17,64	6,93	28,29	157317,93	100	17,64	1,84	10,19	151923,12
101	18,00	0,00	10,19	146476,09	102				

Sollecitazioni limiti

Simbologia adottata

Nr. Identificativo sezione

Y ordinata della sezione a partire dalla testa positiva verso il basso (in [m])

Nr sforzo normale espresso in [kg]

Tr taglio espresso in [kg]

Mr momento espresso in [kgm]

nº	γ	Mr	Tr	Nr	nº	γ	Mr	Tr	Nr
	[m]	[kgm]	[kg]	[kg]		[m]	[kgm]	[kg]	[kg]
1	0,00	102030,82	57566,45	369773,96	2	0,00	102030,82	57566,45	369773,96
3	0,36	82362,25	50301,65	369773,96	4	0,36	82362,25	50301,65	369773,96
5	0,72	64768,27	44627,61	369773,96	6	0,72	64768,27	44627,61	369773,96
7	1,08	49199,43	39165,96	369773,96	8	1,08	49199,43	39165,96	369773,96
9	1,44	35573,25	33979,41	369773,96	10	1,44	35573,25	33979,41	369773,96
11	1,80	23786,19	29114,00	369773,96	12	1,80	23786,19	29114,00	369773,96
13	2,16	13719,49	24601,36	369773,96	14	2,16	13719,49	24601,36	369773,96
15	2,52	5244,16	20460,71	369773,96	16	2,52	5244,16	20460,71	369773,96
17	2,88	-1774,70	16700,79	369773,96	18	2,88	-1774,70	16700,79	369773,96
19	3,24	-7474,35	13321,66	369773,96	20	3,24	-7474,35	13321,66	369773,96
21	3,60	-11991,37	10316,23	369773,96	22	3,60	-11991,37	10316,23	369773,96
23	3,96	-15459,26	7671,75	369773,96	24	3,96	-15459,26	7671,75	369773,96
25	4,32	-18006,51	5371,05	369773,96	26	4,32	-18006,51	5371,05	369773,96
27	4,68	-19755,10	3393,68	369773,96	28	4,68	-19755,10	3393,68	369773,96
29	5,04	-20819,42	1716,90	369773,96	30	5,04	-20819,42	1716,90	369773,96
31	5,40	-21305,53	316,50	369773,96	32	5,40	-21305,53	316,50	369773,96
33	5,76	-21310,69	-832,49	369773,96	34	5,76	-21310,69	-832,49	369773,96
35	6,12	-20923,14	-1755,17	369773,96	36	6,12	-20923,14	-1755,17	369773,96
37	6,48	-20222,11	-2476,33	369773,96	38	6,48	-20222,11	-2476,33	369773,96
39	6,84	-19277,98	-3019,99	369773,96	40	6,84	-19277,98	-3019,99	369773,96
41	7,20	-18152,53	-3409,18	369773,96	42	7,20	-18152,53	-3409,18	369773,96
43	7,56	-16899,39	-3665,61	369773,96	44	7,56	-16899,39	-3665,61	369773,96
45	7,92	-15564,50	-3809,59	369773,96	46	7,92	-15564,50	-3809,59	369773,96

nº	Υ	Mr	Tr	Nr	nº	γ	Mr	Tr	Nr
	[m]	[kgm]	[kg]	[kg]		[m]	[kgm]	[kg]	[kg]
47	8,28	-14186,61	-3859,87	369773,96	48	8,28	-14186,61	-3859,87	369773,96
49	8,64	-12797,89	-3833,57	369773,96	50	8,64	-12797,89	-3833,57	369773,96
51	9,00	-11424,45	-3746,21	369773,96	52	9,00	-11424,45	-3746,21	369773,96
53	9,36	-10087,01	-3611,66	369773,96	54	9,36	-10087,01	-3611,66	369773,96
55	9,72	-8801,41	-3442,21	369773,96	56	9,72	-8801,41	-3442,21	369773,96
57	10,08	-7579,20	-3248,64	369773,96	58	10,08	-7579,20	-3248,64	369773,96
59	10,44	-6428,21	-3040,23	369773,96	60	10,44	-6428,21	-3040,23	369773,96
61	10,80	-5353,03	-2824,91	369773,96	62	10,80	-5353,03	-2824,91	369773,96
63	11,16	-4355,52	-2609,32	369773,96	64	11,16	-4355,52	-2609,32	369773,96
65	11,52	-3435,27	-2398,89	369773,96	66	11,52	-3435,27	-2398,89	369773,96
67	11,88	-2590,01	-2197,95	369773,96	68	11,88	-2590,01	-2197,95	369773,96
69	12,24	-1816,00	-2009,81	369773,96	70	12,24	-1816,00	-2009,81	369773,96
71	12,60	-1108,40	-1710,11	365861,80	72	12,60	-1108,40	-1710,11	365861,80
73	12,96	-528,89	-1319,40	357897,56	74	12,96	-528,89	-1319,40	357897,56
75	13,32	-86,13	-972,41	349746,78	76	13,32	-86,13	-972,41	349746,78
77	13,68	235,70	-669,76	341409,46	78	13,68	235,70	-669,76	341409,46
79	14,04	452,55	-410,99	332885,60	80	14,04	452,55	-410,99	332885,60
81	14,40	580,11	-194,93	324175,20	82	14,40	580,11	-194,93	324175,20
83	14,76	633,64	-19,99	311785,06	84	14,76	633,64	-19,99	311785,06
85	15,12	627,77	115,66	299121,61	86	15,12	627,77	115,66	299121,61
87	15,48	576,47	213,87	286184,85	88	15,48	576,47	213,87	286184,85
89	15,84	493,06	276,38	272974,78	90	15,84	493,06	276,38	272974,78
91	16,20	390,26	304,69	259491,40	92	16,20	390,26	304,69	259491,40
93	16,56	280,26	300,04	245734,70	94	16,56	280,26	300,04	245734,70
95	16,92	174,84	263,32	231704,70	96	16,92	174,84	263,32	231704,70
97	17,28	85,47	195,14	217401,38	98	17,28	85,47	195,14	217401,38
99	17,64	23,46	95,82	202824,74	100	17,64	23,46	95,82	202824,74
101	18,00	0,00	34,52	0,00	102				

Descrizione armature

Il progetto e la verifica delle armature sono stati effettuati con il metodo degli stati limite ultimi.

Nei primi 10,00 [m] l'armatura longitudinale è costituita da 24 ø24 mentre l'armatura trasversale è costituita da staffe ø10 / 10 [cm].

A partire dalla quota di 10,00 [m] l'armatura longitudinale è costituita da 24 ø24 mentre l'armatura trasversale è costituita da staffe ø10 / 20 [cm].

Verifica armature pali

Simbologia adottata

Y ordinata della sezione a partire dalla testa positiva verso il basso espressa in [m]

CS coefficiente di sicurezza

M momento agente, espresso in [kgm]

N sforzo normale agente, espresso in [kg]

Mu momento ultimo, espresso in [kgm]

Nu sforzo normale ultimo, espresso in [kg]

T taglio agente, espresso in [kg]

V_{Rd} taglio resistente, espresso in [kg]

Verifiche a presso-flessione

Combinazione n° 1

Y	Af	М	N	Mu	Nu	CS
[m]	[cmq]	[kgm]	[kg]	[kgm]	[kg]	
0,00	108,57	74450	200000	118897	319401	1.60
0,18	108,57	67082	200226	118214	352845	1.76
0,36	108,57	60096	200452	116247	387748	1.93
0,54	108,57	53490	200679	113550	426008	2.12
0,72	108,57	47259	200905	110475	469640	2.34
0,90	108,57 108,57	41399 35900	201131	106532 101883	517576 571437	2.57 2.84
1,08	108,57	30757	201537	96027	629374	3.12
1,44	108,57	25959	201810	89022	692084	3.43
1,62	108,57	21496	202036	80499	756587	3.74
1,80	108,57	17358	202262	70509	821569	4.06
1,98	108,57	13535	202488	59175	885286	4.37
2,16	108,57	10014	202714	46787	947149	4.67
2,34	108,57	6783	202941	33344	997686	4.92
2,52	108,57	3830	203167	18769	995720	4.90
2,70	108,57	1143	203393	5583	993941	4.89
2,88	108,57	-1292	203619	6305	994038	4.88
3,06	108,57	-3485	203845	17019	995484	4.88
3,24 3,42	108,57 108,57	-5450 -7200	204072 204298	26622 35169	996779 997933	4.88 4.88
3,60	108,57	-8746	204236	41574	972174	4.75
3,78	108,57	-10101	204750	46738	947386	4.63
3,96	108,57	-11277	204976	50981	926679	4.52
4,14	108,57	-12284	205202	54459	909702	4.43
4,32	108,57	-13135	205429	57270	895666	4.36
4,50	108,57	-13841	205655	59472	883666	4.30
4,68	108,57	-14411	205881	61197	874263	4.25
4,86	108,57	-14857	206107	62507	867127	4.21
5,04	108,57	-15188	206333	63451	861983	4.18
5,22	108,57	-15414	206560	64071	858605	4.16
5,40	108,57	-15543	206786	64402	856801	4.14
5,58 5,76	108,57 108,57	-15585 -15547	207012 207238	64474 64314	856406 857281	4.14 4.14
5,94	108,57	-15438	207256	63943	859303	4.14
6,12	108,57	-15265	207691	63381	862364	4.15
6,30	108,57	-15034	207917	62646	866370	4.17
6,48	108,57	-14753	208143	61753	871233	4.19
6,66	108,57	-14428	208369	60718	876878	4.21
6,84	108,57	-14065	208595	59552	883231	4.23
7,02	108,57	-13668	208822	58268	890227	4.26
7,20	108,57	-13244	209048	56878	897805	4.29
7,38	108,57	-12796	209274	55356	905324	4.33
7,56	108,57	-12329 -11848	209500 209726	53743 52055	913195 921436	4.36 4.39
7,74	108,57 108,57	-11356	209720	50301	929999	4.43
8,10	108,57	-10855	210179	48489	938839	4.47
8,28	108,57	-10350	210405	46631	947912	4.51
8,46	108,57	-9844	210631	44729	957115	4.54
8,64	108,57	-9337	210857	42793	966357	4.58
8,82	108,57	-8834	211084	40833	975707	4.62
9,00	108,57	-8335	211310	38859	985128	4.66
9,18	108,57	-7843	211536	36877	994586	4.70
9,36	108,57	-7360	211762	34680	997867	4.71
9,54	108,57 108,57	-6885 -6422	211988 212215	32400 30177	997559 997259	4.71 4.70
9,90	108,57	-5970	212441	28015	996967	4.69
10,08	108,57	-5530	212667	25917	996684	4.69
10,26	108,57	-5103	212893	23885	996410	4.68
10,44	108,57	-4690	213119	21922	996145	4.67
10,62	108,57	-4291	213345	20030	995890	4.67
10,80	108,57	-3906	213572	18208	995644	4.66
10,98	108,57	-3535	213798	16457	995408	4.66
11,16	108,57	-3178	214024	14777	995181	4.65
11,34	108,57	-2835	214250	13167	994964	4.64
11,52	108,57	-2507	214476	11626	994756	4.64
11,70	108,57	-2192	214703	10152	994557	4.63
11,88 12,06	108,57 108,57	-1890 -1601	214929 215155	8743 7399	994367 994186	4.63 4.62
12,06	108,57	-1601 -1325	215155	6116	994188	4.62
12,27	100,37	1323	213301	0110	22 1013	1.02

Υ	Af	М	N	Mu	Nu	CS
[m]	[cmq]	[kgm]	[kg]	[kgm]	[kg]	
12,42	108,57	-1061	215607	4892	993848	4.61
12,60	108,57	-809	214530	3747	993693	4.63
12,78	108,57	-584	212387	2733	993556	4.68
12,96	108,57	-386	210217	1824	993434	4.73
13,14	108,57	-213	208018	1016	993325	4.78
13,32	108,57	-63	205792	304	993229	4.83
13,50	108,57	65	203537	316	993230	4.88
13,68	108,57	172	201254	848	993302	4.94
13,86	108,57	260	198944	1297	993363	4.99
14,04	108,57	330	196605	1668	993413	5.05
14,22	108,57	384	194238	1964	993453	5.11
14,40	108,57	423	191843	2191	993483	5.18
14,58	108,57	449	188957	2359	993506	5.26
14,76	108,57	462	185454	2476	993522	5.36
14,94	108,57	465	181911	2539	993530	5.46
15,12	108,57	458	178326	2551	993532	5.57
15,30	108,57	443	174700	2518	993527	5.69
15,48	108,57	421	171033	2443	993517	5.81
15,66	108,57	392	167325	2330	993502	5.94
15,84	108,57	360	163576	2185	993482	6.07
16,02	108,57	323	159786	2011	993459	6.22
16,20	108,57	285	155955	1814	993432	6.37
16,38	108,57	245	152082	1598	993403	6.53
16,56	108,57	204	148169	1371	993373	6.70
16,74	108,57	165	144214	1137	993341	6.89
16,92	108,57	128	140218	904	993310	7.08
17,10	108,57	93	136181	678	993279	7.29
17,28	108,57	62	132103	469	993251	7.52
17,46	108,57	37	127984	285	993226	7.76
17,64	108,57	17	123823	137	993206	8.02
17,82	108,57	5	119622	38	993193	8.30
18,00	108,57	0	115379	0	993188	8.61

Combinazione n° 2

Y	Af	М	N	Mu	Nu	CS
[m]	[cmq]	[kgm]	[kg]	[kgm]	[kg]	
0,00	108,57	38998	350000	82561	740978	2.12
0,18	108,57	35138	350226	77745	774894	2.21
0,36	108,57	31479	350452	72590	808142	2.31
0,54	108,57	28019	350679	67227	841405	2.40
0,72	108,57	24755	350905	61543	872380	2.49
0,90	108,57	21685	351131	55782	903243	2.57
1,08	108,57	18805	351357	49883	932035	2.65
1,26	108,57	16111	351583	44014	960527	2.73
1,44	108,57	13597	351810	38197	988288	2.81
1,62	108,57	11260	352036	31905	997492	2.83
1,80	108,57	9093	352262	25726	996659	2.83
1,98	108,57	7090	352488	20031	995890	2.83
2,16	108,57	5245	352714	14799	995184	2.82
2,34	108,57	3553	352941	10011	994538	2.82
2,52	108,57	2006	353167	5646	993949	2.81
2,70	108,57	598	353393	1682	993415	2.81
2,88	108,57	-677	353619	1901	993444	2.81
3,06	108,57	-1825	353845	5127	993879	2.81
3,24	108,57	-2855	354072	8017	994269	2.81
3,42	108,57	-3771	354298	10587	994616	2.81
3,60	108,57	-4581	354524	12857	994922	2.81
3,78	108,57	-5291	354750	14843	995190	2.81
3,96	108,57	-5907	354976	16564	995422	2.80
4,14	108,57	-6435	355202	18036	995621	2.80
4,32	108,57	-6880	355429	19277	995788	2.80
4,50	108,57	-7250	355655	20302	995927	2.80
4,68	108,57	-7549	355881	21128	996038	2.80
4,86	108,57	-7782	356107	21769	996125	2.80
5,04	108,57	-7956	356333	22242	996188	2.80
5,22	108,57	-8074	356560	22559	996231	2.79
5,40	108,57	-8142	356786	22734	996255	2.79
5,58	108,57	-8163	357012	22781	996261	2.79
5,76	108,57	-8144	357238	22711	996252	2.79

Υ	Af	М	N	Mu	Nu	CS
[m]	[cmq]	[kgm]	[kg]	[kgm]	[kg]	
5,94	108,57	-8087	357464	22537	996228	2.79
6,12	108,57	-7996	357691	22269	996192	2.79
6,30	108,57	-7875	357917	21918	996145	2.78
6,48	108,57	-7728	358143	21493	996088	2.78
6,66	108,57	-7558	358369	21005	996022	2.78
6,84	108,57	-7367	358595	20461	995948	2.78
7,02	108,57	-7159	358822	19870	995869	2.78
7,20	108,57	-6937	359048	19239	995783	2.77
7,38	108,57	-6703	359274	18576	995694	2.77
7,56	108,57	-6458	359500	17886	995601	2.77
7,74	108,57	-6206	359726	17175	995505	2.77
7,92	108,57	-5948	359953	16449	995407	2.77
8,10	108,57	-5686	360179	15713	995308	2.76
8,28	108,57	-5422	360405	14971	995208	2.76
8,46	108,57	-5156	360631	14228	995107	2.76
8,64	108,57	-4891	360857	13486	995007	2.76
8,82	108,57	-4627	361084	12750	994908	2.76
9,00	108,57	-4366	361310	12021	994810	2.75
9,18	108,57	-4108	361536	11304	994713	2.75
9,36	108,57	-3855	361762	10599	994618	2.75
9,54	108,57	-3607	361988	9909	994524	2.75
9,72	108,57	-3364	362215	9235	994434	2.75
9,90	108,57	-3127	362441	8579	994345	2.74
10,08	108,57	-2897	362667	7941	994259	2.74
10,26	108,57	-2673	362893	7323	994176	2.74
10,44	108,57	-2457	363119	6726	994095	2.74
10,62	108,57	-2248	363345	6149	994017	2.74
10,80	108,57	-2046	363572	5593 5058	993942	2.73
10,98	108,57	-1852	363798		993870	2.73
11,16	108,57	-1665	364024	4545 4052	993801 993734	2.73 2.73
11,34	108,57	-1485	364250 364476	3580	993734	
11,52 11,70	108,57 108,57	-1313 -1148	364703	3128	993610	2.73 2.72
11,70	108,57	-990	364929	2695	993551	2.72
12,06	108,57	-839	365155	2282	993496	2.72
12,24	108,57	-694	365381	1887	993442	2.72
12,42	108,57	-556	365607	1510	993391	2.72
12,60	108,57	-424	363651	1157	993344	2.72
12,78	108,57	-306	359913	845	993302	2.76
12,96	108,57	-202	356128	564	993264	2.79
13,14	108,57	-111	352295	314	993230	2.82
13,32	108,57	-33	348416	94	993200	2.85
13,50	108,57	34	344490	98	993201	2.88
13,68	108,57	90	340516	263	993223	2.92
13,86	108,57	136	336496	402	993242	2.95
14,04	108,57	173	332429	517	993257	2.99
14,22	108,57	201	328315	609	993270	3.03
14,40	108,57	222	324154	679	993279	3.06
14,58	108,57	235	319170	732	993286	3.11
14,76	108,57	242	313156	768	993291	3.17
14,94	108,57	243	307072	788	993294	3.23
15,12	108,57	240	300920	792	993294	3.30
15,30	108,57	232	294699	782	993293	3.37
15,48	108,57	220	288409	759	993290	3.44
15,66	108,57	206	282050	724	993285	3.52
15,84	108,57	188	275622	679	993279	3.60
16,02	108,57	169	269126	625	993272	3.69
16,20	108,57	149	262560	564	993264	3.78
16,38	108,57	128	255926	497	993255	3.88
16,56	108,57	107	249223	427	993245	3.99
16,74	108,57	86	242451	354	993235	4.10
16,92	108,57	67	235611	282	993226	4.22
17,10	108,57	49	228701	211	993216	4.34
17,28	108,57	33	221723	146	993207	4.48
17,46	108,57	19	214676	89	993200	4.63
17,64	108,57	9	207560	43	993193	4.79
17,82	108,57	2	200375	12	993189	4.96
18,00	108,57	0	193121	0	993188	5.14

Verifiche a taglio

Combinazione n° 1

γ	cote	T	VRcd	VRsd	VRd	CS
[m]		[kg]	[kg]	[kg]	[kg]	
0,00	2.50	40935	73567	65672	65672	1.60
0,18	2.50	38810	73567	65672	65672	1.69
0,36	2.50	36700	73567	65672	65672	1.79
0,54	2.50	34614	73567	65672	65672	1.90
0,72	2.50	32560	73567	65672	65672	2.02
0,90	2.50	30546	73567	65672	65672	2.15
1,08	2.50	28576	73567	65672	65672	2.30
1,26	2.50	26656	73567	65672	65672	2.46
1,44	2.50	24792	73567	65672	65672	2.65
1,62	2.50	22986	73567	65672	65672	2.86
1,80	2.50	21242	73567	65672	65672	3.09
1,98	2.50	19563	73567	65672	65672	3.36
2,16	2.50	17950	73567	65672	65672	3.66
2,34	2.50	16405	73567	65672	65672	4.00
2,52	2.50	14929	73567	65672	65672	4.40
2,70	2.50	13522	73567	65672	65672	4.86
2,88	2.50	12186	73567	65672	65672	5.39
3,06	2.50	10918	73567	65672	65672	6.01
3,24	2.50	9720	73567	65672	65672	6.76
3,42	2.50	8590	73567	65672	65672	7.64
3,60	2.50	7528	73567	65672	65672	8.72
3,78	2.50	6531	73567	65672	65672	10.06
3,96	2.50	5598	73567	65672	65672	11.73
4,14	2.50	4728	73567	65672	65672	13.89
4,32	2.50	3919	73567	65672	65672	16.70
4,50	2.50	3170	73567	65672	65672	20.72
4,68	2.50	2477	73567	65672	65672	26.52
4,86	2.50	1839	73567	65672	65672	35.72
5,04	2.50	1253	73567	65672	65672	52.40
5,22	2.50	718	73567	65672	65672	91.42
5,40	2.50	232	73567	65672	65672	283.63
5,58	2.50	-209	73567	65672	65672	313.59
5,76	2.50	-607	73567	65672	65672	108.22
5,94	2.50	-963	73567	65672	65672	68.20
6,12	2.50	-1280	73567	65672	65672	51.30
6,30	2.50	-1560	73567	65672	65672	42.09
6,48	2.50	-1806	73567	65672	65672	36.36
6,66	2.50	-2020	73567	65672	65672	32.5
6,84	2.50	-2203	73567	65672	65672	29.8
7,02	2.50	-2358	73567	65672	65672	27.85
7,20	2.50	-2487	73567	65672	65672	26.4
7,38	2.50	-2592	73567	65672	65672	25.3
7,56	2.50	-2674	73567	65672	65672	24.5
7,74	2.50	-2736	73567	65672	65672	24.00
7,92	2.50	-2779	73567	65672	65672	23.63
8,10	2.50	-2805	73567	65672	65672	23.4
8,28	2.50	-2816	73567	65672	65672	23.32
8,46	2.50	-2813	73567	65672	65672	23.3
8,64	2.50	-2797	73567	65672	65672	23.48
8,82	2.50	-2770	73567	65672	65672	23.7
9,00	2.50	-2733	73567	65672	65672	24.0
9,18	2.50	-2688	73567	65672	65672	24.4
9,36	2.50	-2635	73567	65672	65672	24.9
9,54	2.50	-2576	73567	65672	65672	25.5
9,72	2.50	-2511	73567	65672	65672	26.1
9,90	2.50	-2442	73567	65672	65672	26.8
10,08	2.50	-2370	73567	32836	32836	13.8
10,26	2.50	-2295	73567	32836	32836	14.3
10,44	2.50	-2218	73567	32836	32836	14.8
10,62	2.50	-2140	73567	32836	32836	15.3
10,80	2.50	-2061	73567	32836	32836	15.9
10,98	2.50	-1982	73567	32836	32836	16.5
11,16	2.50	-1904	73567	32836	32836	17.2
11,34	2.50	-1826	73567	32836	32836	17.9
11,52	2.50	-1750	73567	32836	32836	18.7
11,70	2.50	-1676	73567	32836	32836	19.5
11,88	2.50	-1604	73567	32836	32836	20.4
12,06	2.50	-1534	73567	32836	32836	21.4
	2.50	-1466	73567	32836	32836	22.3

γ	cote	T	VRcd	VRsd	VRd	CS
[m]		[kg]	[kg]	[kg]	[kg]	
12,42	2.50	-1402	73567	32836	32836	23.42
12,60	2.50	-1248	73567	32836	32836	26.32
12,78	2.50	-1101	73567	32836	32836	29.82
12,96	2.50	-963	73567	32836	32836	34.11
13,14	2.50	-832	73567	32836	32836	39.46
13,32	2.50	-710	73567	32836	32836	46.28
13,50	2.50	-595	73567	32836	32836	55.18
13,68	2.50	-489	73567	32836	32836	67.19
13,86	2.50	-390	73567	32836	32836	84.12
14,04	2.50	-300	73567	32836	32836	109.49
14,22	2.50	-217	73567	32836	32836	151.13
14,40	2.50	-142	73567	32836	32836	230.79
14,58	2.50	-75	73567	32836	32836	439.06
14,76	2.50	-15	73567	32836	32836	2243.51
14,94	2.50	38	73567	32836	32836	856.23
15,12	2.50	84	73567	32836	32836	389.33
15,30	2.50	124	73567	32836	32836	265.88
15,48	2.50	156	73567	32836	32836	210.49
15,66	2.50	182	73567	32836	32836	180.43
15,84	2.50	202	73567	32836	32836	162.87
16,02	2.50	215	73567	32836	32836	152.73
16,20	2.50	222	73567	32836	32836	147.73
16,38	2.50	224	73567	32836	32836	146.89
16,56	2.50	219	73567	32836	32836	150.02
16,74	2.50	208	73567	32836	32836	157.58
16,92	2.50	192	73567	32836	32836	170.93
17,10	2.50	170	73567	32836	32836	193.06
17,28	2.50	142	73567	32836	32836	230.65
17,46	2.50	109	73567	32836	32836	301.34
17,64	2.50	70	73567	32836	32836	469.72
17,82	2.50	25	73567	32836	32836	1303.70
18,00	2.50	25	73567	32836	32836	1303.70

Combinazione n° 2

Y	cote	T	VRcd	VRsd	VRd	CS
[m]		[kg]	[kg]	[kg]	[kg]	
0,00	1.70	21442	44773	44742	44742	2.09
0,18	1.70	20329	44711	44680	44680	2.20
0,36	1.70	19224	44650	44619	44619	2.32
0,54	1.70	18131	44588	44557	44557	2.46
0,72	1.69	17055	44526	44495	44495	2.61
0,90	1.69	16000	44464	44433	44433	2.78
1,08	1.69	14968	44402	44372	44372	2.96
1,26	1.69	13963	44340	44310	44310	3.17
1,44	1.68	12986	44278	44247	44247	3.41
1,62	1.68	12040	44216	44185	44185	3.67
1,80	1.68	11127	44154	44123	44123	3.97
1,98	1.68	10247	44091	44061	44061	4.30
2,16	1.67	9402	44029	43998	43998	4.68
2,34	1.67	8593	43966	43936	43936	5.11
2,52	1.67	7820	43903	43873	43873	5.61
2,70	1.67	7083	43841	43810	43810	6.19
2,88	1.67	6383	43778	43748	43748	6.85
3,06	1.66	5719	43715	43685	43685	7.64
3,24	1.66	5092	43652	43622	43622	8.57
3,42	1.66	4500	43589	43559	43559	9.68
3,60	1.66	3943	43526	43495	43495	11.03
3,78	1.65	3421	43462	43432	43432	12.70
3,96	1.65	2932	43399	43369	43369	14.79
4,14	1.65	2477	43335	43305	43305	17.48
4,32	1.65	2053	43272	43242	43242	21.06
4,50	1.64	1660	43208	43178	43178	26.01
4,68	1.64	1297	43144	43114	43114	33.23
4,86	1.64	963	43081	43051	43051	44.70
5,04	1.64	657	43017	42987	42987	65.48
5,22	1.63	376	42952	42923	42923	114.07
5,40	1.63	121	42888	42859	42859	353.37
5,58	1.63	-110	42824	42794	42794	390.12
5,76	1.63	-318	42760	42730	42730	134.43

γ	cote	T	VRcd	VRsd	VRd	CS
[m]		[kg]	[kg]	[kg]	[kg]	
5,94	1.62	-504	42695	42666	42666	84.59
6,12	1.62	-671	42631	42601	42601	63.54
6,30	1.62	-817	42566	42537	42537	52.04
6,48	1.62	-946	42501	42472	42472	44.89
6,66	1.61	-1058	42437	42407	42407	40.08
6,84	1.61	-1154 -1235	42372 42307	42342 42277	42342	36.69 34.23
7,02 7,20	1.61	-1233	42307	42217	42277 42212	32.40
7,38	1.60	-1358	42176	42147	42147	31.05
7,56	1.60	-1401	42111	42082	42082	30.04
7,74	1.60	-1433	42045	42016	42016	29.32
7,92	1.60	-1456	41980	41951	41951	28.82
8,10	1.59	-1469	41914	41885	41885	28.50
8,28	1.59	-1475	41849	41820	41820	28.35
8,46	1.59	-1473	41783	41754	41754	28.34
8,64	1.59	-1465	41717	41688	41688	28.46
8,82	1.58	-1451	41651	41622	41622	28.69
9,00	1.58	-1432	41585	41556	41556	29.03
9,18 9,36	1.58 1.58	-1408 -1380	41518 41452	41489 41423	41489 41423	29.47 30.01
9,54	1.57	-1349	41385	41357	41357	30.65
9,72	1.57	-1315	41319	41290	41290	31.39
9,90	1.57	-1279	41252	41224	41224	32.22
10,08	2.43	-1241	31951	31929	31929	25.72
10,26	2.43	-1202	31908	31886	31886	26.52
10,44	2.42	-1162	31865	31843	31843	27.41
10,62	2.42	-1121	31821	31799	31799	28.37
10,80	2.42	-1080	31778	31756	31756	29.42
10,98	2.41	-1038	31735	31713	31713	30.54
11,16	2.41	-997	31691	31669	31669	31.76
11,34	2.41	-957	31648	31626	31626	33.06
11,52 11,70	2.40	-917 -878	31604 31561	31583 31539	31583 31539	34.45 35.93
11,70	2.40	-840	31517	31495	31495	37.49
12,06	2.39	-803	31473	31452	31452	39.15
12,24	2.39	-768	31430	31408	31408	40.89
12,42	2.39	-734	31386	31364	31364	42.71
12,60	2.42	-654	31763	31741	31741	48.57
12,78	2.47	-577	32471	32449	32449	56.25
12,96	2.50	-504	33404	32836	32836	65.12
13,14	2.50	-436	34628	32836	32836	75.34
13,32	2.50	-372	35867	32836	32836	88.35
13,50	2.50	-312	37120	32836	32836	105.34
13,68 13,86	2.50	-256 -204	38389 39673	32836 32836	32836 32836	128.27 160.59
14,04	2.50	-157	40972	32836	32836	209.02
14,22	2.50	-114	42286	32836	32836	288.53
14,40	2.50	-75	43615	32836	32836	440.60
14,58	2.50	-39	45206	32836	32836	838.20
14,76	2.50	-8	47127	32836	32836	4283.06
14,94	2.50	20	49070	32836	32836	1634.62
15,12	2.50	44	51035	32836	32836	743.27
15,30	2.50	65	53021	32836	32836	507.58
15,48	2.50	82	55030	32836	32836	401.84
15,66	2.50	95	57061	32836	32836	344.46
15,84 16,02	2.50 2.50	106 113	59113 61188	32836 32836	32836 32836	310.93 291.57
16,20	2.50	116	63285	32836	32836	282.03
16,38	2.50	117	65403	32836	32836	280.43
16,56	2.50	115	67544	32836	32836	286.40
16,74	2.50	109	69707	32836	32836	300.83
16,92	2.50	101	71891	32836	32836	326.32
17,10	2.50	89	73567	32836	32836	368.57
17,28	2.50	75	73567	32836	32836	440.33
17,46	2.50	57	73567	32836	32836	575.29
17,64	2.50	37	73567	32836	32836	896.74
17,82	2.50	13	73567	32836	32836	2488.88
18,00	2.50	13	73567	32836	32836	2488.88

