

Anas SpA Direzione Centrale Progettazione

F2602000340001 CIG

GIG 652449686B

GARA CA 08/15 - NUOVA SS 554 CAGLIARITANA

ADEGUAMENTO DELL'ASSE ATTREZZATO URBANO ED ELIMINAZIONE DELLE INTERSEZIONI A RASO DAL KM 1+500 AL KM 11+850

OFFERTA TECNICA

C-ASSE STRADALE PRINCIPALE URBANISTICA E PAESAGGIO

INSERIMENTO PAESAGGISTICO - AMBIENTALE

Inquinamento acustico: caratterizzazione del clima acustico ante operam e di taratura del modello (risultati dell'indagine fonometrica)

Cantierizzazione e fasi di lavoro	
CODICE	

CODICE PROGET	TO		CODICE	ELABORATO				SCALA	DATA	CODICE ELABORATO
progetto	liv.	numero	campo 1	campo 2	campo 3	campo 4	rev			DI OFFERTA
DPCA06	D	1501	ТОО	UP01	АМВ	RE04	В		05/11/2017	17.29

CONCORRENTE:

PROGETTISTA INDICATO COSTITUENDO R.T.P.

Capogruppo Mandataria R.T.P.

Mandante

Mandante

ING. FRANCESCA LEO

RESPONSABILE DELL'INTEGRAZIONE FRA LE PRESTAZIONI SPECIALISTICHE Ing. Paolo Cucino

Ing. Francesca Manganotti

RESPONSABILE ELABORATO

INDICE

1.		Monitoraggio	2
2.		ANALISI DEL CLIMA ACUSTICO ANTE OPERA	2
	2.1.	Scelta del modello di simulazione	2
	2.2.	Dati di input del modello	3
	2.3.	Input e taratura del modello di simulazione	4
	2.4.	Lo scenario ante operam	4

ALLEGATO – Monitoraggio Acustico

1. Monitoraggio

Con il fine di

- tarare del modello previsionale
- definire i livelli acustici ante operam

è stata effettuata un'apposita campagna di indagini sperimentali presso due postazioni della durata di 24 ore in continuo. Le metodologie di rilievo risultano idonee e documentare il clima acustico nelle 24 ore, e quindi di valutare il livello ambientale diurno (6:00 – 22:00) e notturno (22:00 – 6:00) da confrontare con i limiti di riferimento.

In tali punti è stata installata una postazione fonometrica e ne sono stati rilevati i parametri acustici descrittivi.

Le indagini fonometriche sono state finalizzate a diagnosticare il reale impatto dell'infrastruttura stradale in adeguamento, in postazioni prevalentemente esposte alle SS 554 e SS125 (infrastrutture stradale delle quali per l'appunto è previsto l'adeguamento), che definisce il clima acustico dell'area.

Di seguito si riporta l'elenco dei punti di misura sopra menzionati

Postazione	Durata	Strada	Ubicazione
20 092109 PV1 014	24 ore	SS554	SS554 Km 5+800 – Monserrato (CA)
20 092105 PV1 022	24 ore	SS125	SS125 Km 9+500 – Quartucciu (CA)

Le schede di monitoraggio, riportanti lo stralcio planimetrico con l'indicazione della postazione di misura, la catena di misura, l'evoluzione temporale dei livelli acquisiti, i dati di traffico e la documentazione fotografica, sono riportate in calce alla seguente relazione.

2. Analisi del clima acustico ante opera

2.1. Scelta del modello di simulazione

L'impatto prodotto dalle infrastrutture di trasporto può essere valutato con l'ausilio di appositi modelli matematici di simulazione.

Un modello si basa sulla schematizzazione del fenomeno attraverso una serie di ipotesi semplificative che riconducono qualsiasi caso complesso alla somma di casi semplici e noti.

Per la l'analisi dell'impatto acustico prodotto dal traffico è stato utilizzato il modello di simulazione SoundPLAN rel. 7.1.

Tale modello è sviluppato dalla Braunstein & Berndt GmbH/Soundplan LLC sulla base di norme e standard definiti dalle ISO da altri standards utilizzati localmente.

Grazie alla sua versatilità e ampiezza del campo applicativo, è all'attualità il Software più diffuso al mondo. In Italia è in uso a centri di ricerca, Università, Agenzie per l'Ambiente, ARPA, Comuni e decine di studi di consulenza

Il software SoundPLAN lavora in ambiente Windows 95/98/2000/NT/XP e consente la simulazione e previsione della propagazione nell'ambiente del rumore derivato da traffico veicolare, ferroviario, aeroportuale, da insediamenti industriali (sorgenti esterne ed interne) nonché il calcolo di barriere acustiche.

La peculiarità del modello SoundPLAN si basa sul metodo di calcolo per "raggi" (Ray Tracing). Il sistema di calcolo fa dipartire dal ricevitore una serie di raggi ciascuno dei quali analizza la geometria della sorgente e quella del territorio, le riflessioni e la presenza di schermi.

Studiando il metodo con maggior dettaglio si vede che ad ogni raggio che parte dal ricettore viene associata un porzione

di territorio e così, via via, viene coperto l'intero territorio

Quando un raggio incontra la sorgente, il modello calcola automaticamente il livello prodotto della parte intercettata. Pertanto sorgenti lineari come strade e ferrovie vengono discretizzate in tanti singoli punti sorgente ciascuno dei quali fornisce un contributo. La somma dei contributi associati ai vari raggi va quindi a costituire il livello di rumore prodotto dall'intera sorgente sul ricettore.

Il modello è quindi in grado di definire la propagazione del rumore sia su grandi aree, fornendone la mappatura, sia per singoli punti fornendo i livelli globali e la loro scomposizione direzionale.

I contributi forniti dai diversi raggi vengono infatti evidenziati nei diagrammi di output ove la lunghezza dei raggio è proporzionale al contributo in rumore fornito da quella direzione.

Quando un raggio incontra una superficie riflettente come la facciata di un edificio, il modello calcola le riflessioni multiple. A tal proposito l'operatore può stabilire il numero massimo di riflessioni che deve essere calcolato ovvero la soglia di attenuazione al di sotto della quale il calcolo deve essere interrotto.

Questa metodologia di calcolo consente quindi una particolare accuratezza nella valutazione della geometria del sito e risulta quindi molto preciso ed efficace in campo urbano, dove l'elevata densità di edifici, specie se di altezza elevata, genera riflessioni multiple che producono un innalzamento dei livelli sonori.

La possibilità di inserire i dati sulla morfologia dei territori, sui ricettori e sulle infrastrutture esistenti ed in progetto mediante cartografia tridimensionale consente di schematizzare i luoghi in maniera più che mai *realistica e dettagliata*.

Ciò a maggior ragione se si considera che, oltre alla conformazione morfologica, è possibile associare ad elementi naturali e antropici specifici comportamenti acustici.

Il modello prevede infatti l'inserimento di appositi coefficienti che tengono conto delle caratteristiche più o meno riflettenti delle facciate dei fabbricati o l'assorbimento dovuto alla presenza di aree boschive.

Il software non ha limiti nel numero di oggetti e sorgenti inseribili, ne limiti sulla dimensione dell'area trattabile.

L'inserimento dei dati può avvenire tramite mouse/tavola digitalizzatrice o tramite importazione da files in diversi formati. In particolare nel presente studio tra gli standard di calcolo implementati nel modello di calcolo è stato utilizzato quello indicato nell'allegato 2 del suddetto decreto e cioè il metodo di calcolo ufficiale francese NMPB-Routes-2008 (STRA-CERTU-LCPC-CSTB) citato nell' "Arretè du mai 1995 relatif au bruit des infrastructures routieres – Journal Officiel du 10 mai 1995 article 6" e della norma francese XPS 31 133.

Per quanto concerne le emissioni sono state utilizzate quelle pubblicate nel 2008 (Guide de Bruite) già implementati nella versione 7.1 di SoundPLAN.

2.2. Dati di input del modello

Per l'elaborazione del DGM (Digital Ground Model) sono stati implementati nel modello i seguenti elementi:

- Punti quota
- Curve di livello
- Bordi della carreggiata stradale
- Sommità e base di rilevati e trincee

Per le facciate dei fabbricati è stato utilizzato un fattore di *reflection loss* pari a 2 dB(A) corrispondente a facciate con balconi.

Per quanto concerne la sorgente sono stati inseriti l'asse di mezzeria e la larghezza delle carreggiate per l'individuazione

delle linee di emissione.

Lo standard di calcolo utilizzato si nota che è stato utilizzato quello di cui alle norme francesi NMPB-Routes-2008, mentre per l'assorbimento dell'aria la valutazione è stata effettuata secondo quanto previsto dalla ISO 9613.

I parametri di calcolo utilizzati sono i seguenti:

- Ordine delle riflessioni da considerare pari a 3
- Massimo raggio di ricerca pari a 1000 m
- Massima distanza per riflessione da ricettore pari a 200 m
- Massima distanza per riflessione da sorgente pari a 50 m
- Coefficiente assorbimento terreno (ground factor) = 0,5
- condizioni meteo favorevoli alla propagazione del suono: 25% periodo diurno, 50% periodo notturno

L'applicazione del modello previsionale per il calcolo dei valori di emissione ha richiesto quindi l'acquisizione dei dati sulle caratteristiche dei flussi di traffico sul tronco stradale e delle relative velocità.

Tali dati sono quelli derivati dalle misure condotte in sede di campagna di monitoraggio (vedi paragrafo 2 Monitoraggio). I flussi veicolari sono stati inseriti come valori medi orari dei mezzi leggeri (autovetture, roulotte, furgoni, etc.) e di pesanti (autoarticolati, veicolo con massa superiore a 2,8 t).

2.3. Input e taratura del modello di simulazione

Il modello di simulazione, per lo scenario ante operam ha analizzato il traffico all'attualità dello studio trasportistico. Per la distribuzione dei flussi nei periodi di riferimento diurno e notturno si è assunta quella riscontrata in sede di monitoraggio, durante le misure in continuo di 24 ore (vedi paragrafo 1 - Monitoraggio).

L'affidabilità delle tecniche previsionali utilizzate è stata verificata utilizzando i dati a disposizione ottenuti attraverso le misurazioni effettuate durante le misura sopra menzionate.

Il confronto tra i dati misurati e l'output del modello sono riportati nella tabella seguente.

Punto	Strada	Leq Diurno misurato	Leq Diurno calcolato	Δ Leq D	Leq Notturno misurato	Leq Notturno calcolato	∆ Leq N
		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
20 092109 PV1 014	SS554	68,5	69,8	+1,3	64,2	64,0	-0,2
20 092105 PV1 022	SS125	58,9	59,1	+0,2	52,8	51,9	-0,9

Gli scostamenti tra dati derivati dalle misure in campo e dati calcolati con l'ausilio del modello di simulazione risultano contenuti (con scarto quadratico medio pari a 0,8 dB(A)).

2.4. Lo scenario ante operam

Per la caratterizzazione del territorio si sono analizzati una serie di dati quali: la destinazione d'uso, l'urbanizzazione esistente (quantificata in termini di densità abitativa), le attività economiche prevalenti, la rete di trasporto, tenendo nel contempo presenti gli sviluppi previsti dagli strumenti di pianificazione dei Comuni. Tali informazioni sono state tratte dalla interpretazione dei rilievi aerofotogrammetrici, da indagini bibliografiche e da sopralluoghi in campo.

Sull'elaborato *Inquinamento acustico: planimetria di localizzazione dei ricettori censiti e degli interventi di mitigazione,* (scala 1:5.000), cod. DPCA06-D-1501-T00-UP-01-AMB-CO-03-04-B, oltre alla planimetria di progetto dell'infrastruttura, le fasce di pertinenza acustica delle varie infrastrutture viarie, l'ubicazione delle barriere antirumore, è riportata graficamente la destinazione d'uso di ciascun edificio censito (edifici residenziali, scuole, non abitativi), il codice di riferimento.

Il clima acustico ante operam è graficamente descritto nell'elaborato presente nel SIA *Rumore: clima acustico stato attuale* (diurno, cod. DPCA06-D-1501-T00-IA-03-AMB-PP-14-15-B e notturno, cod. DPCA06-D-1501-T00-IA-03-AMB-PP-16-17-B), ove vengono riportate le mappe isofoniche.

Nell'Allegato 2 al SIA Componente Rumore - Tabulati di calcolo, cod. DPCA06-D-1501-T00-IA-03-AMB-RE-03-B, per ciascun ricettore simulato, sono riportate le caratteristiche del ricettore (quali il codice di riferimento, il piano abitativo), i rispettivi limiti di riferimento (determinati dalla fascia di appartenenza del ricettore o dalla sua classificazione come sensibile e dal numero di sorgenti significative), e i livelli sonori diurni e notturni stimati, per ciascuno scenario considerato.

Il codice riportato nel tabulato di calcolo è composto da 13 cifre: le prime 6 cifre indicano il codice ISTAT del comune di appartenza (6 numeri), la settima e l'ottava indicano il codice della strada/intersezione tra due strade¹, infine, gli ultimi 5 numeri individuano il codice progressivo del ricettore.

Il Codice dei Comuni (ISTAT 2008) è:

- per il Comune di Cagliari: 092009

- per il Comune di Quartu S. Elena: 092051

per il Comune di Selargius: 092068
per il Comune di Quartucciu: 092105

Il Codice delle strade/interezioni è:

- per la strada SS131dir: CE

- per la strada SS387: EK

- per la strada SS554: FV

- per la strada SS125: BR

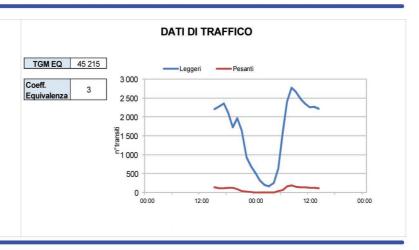
- per l'intersezione tra la SS387 e la SS554: Q9

- per l'intersezione tra la SS554 e la SS131dir: XD

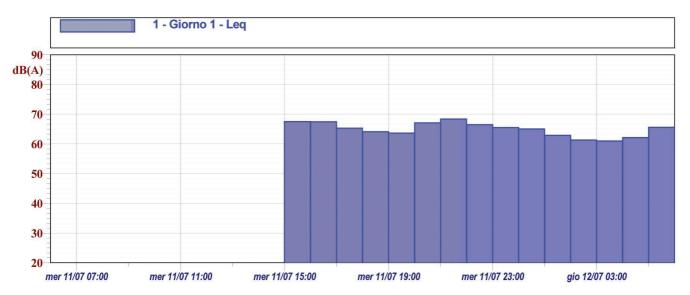
Dall'analisi degli elaborati sopra descritti si evince come il rumore indotto dal traffico della infrastruttura in adeguamento, all'attualità, produce superamenti dai limiti di norma in corrispondenza di ricettori abitativi e scolastici.

¹ L'area di intersezione tra due strade è la superficie compresa tra le fasce di pertinenza acustica delle due infrastrutture

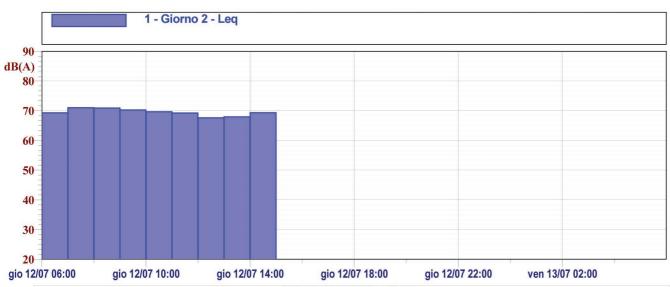
MONITORAGGIO ACUSTICO


CODICE PUNTO: 20 09210	9 PV1 014	Coordinate X,Y = 32S 511651 4346295				
Tipo di rilievo: Sorgente Prin	cipale di durata 24h	Infrastruttura: SS 554				
Regione: Sardegna	Provincia: Cagliari	Indirizzo: SS554 Km 5+800 - Monserrato				
Data inizio: 11/07/2012	Ora Inizio: 15:00:00	Durata [s]: 86400.0	Strumento: NTI XL2			
Data fine: 12/07/2012	Ora fine: 15:00:00	Operatore: Ing. Alessandro Zenti T.C. 12 907 ///				
Altezza microfono (m): 4	Distanza microfono (m): 21	Note:	Mound of the			

DOCUMENTAZIONE FOTOGRAFICA E SINTESI DELLE ELABORAZIONI


DATI	ACUSTICI	
DMA 29/11/2000	LAeq 06-22	68.5
	LAeq 22-06	64.2
	LAeq 06-20	68.6
D.LGS	LAeq 20-22	67.8
194/2005	LAeq 22-06	64.2
	LDEN	71.6

INQUADRAMENTO DEL PUNTO DI MISURA



ANDAMENTO DEI LIVELLI ORARI NELLE 24H - GIORNO DI MISURA 1


	TABELLA DEI LIVELLI ORARI										
Data	Ora	Leq	Data	Ora	Leq	Data	Ora	Leq	Data	Ora	Leq
mer 11/0	07 15:00:00	67.5 dBA	mer 11/0	7 21:00:00	68.4 dBA	gio 12/07	03:00:00	61.0 dBA			_
mer 11/0	07 16:00:00	67.5 dBA	mer 11/0	7 22:00:00	66.5 dBA	gio 12/07	04:00:00	62.2 dBA			
mer 11/0	07 17:00:00	65.4 dBA	mer 11/0	7 23:00:00	65.5 dBA	gio 12/07	05:00:00	65.6 dBA			
mer 11/0	07 18:00:00	64.1 dBA	gio 12/07	7 00:00:00	65.1 dBA	ŭ					
mer 11/0	07 19:00:00	63.6 dBA	gio 12/07	7 01:00:00	62.9 dBA						
mer 11/0	07 20:00:00	67.1 dBA			61.3 dBA						

ANDAMENTO DEI LIVELLI ORARI NELLE 24H - GIORNO DI MISURA 2

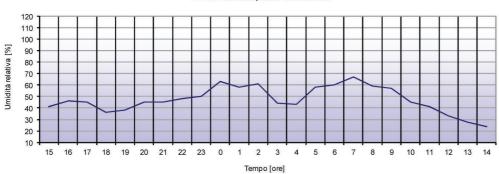
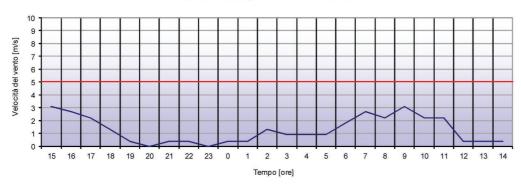
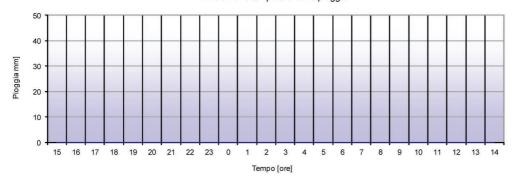
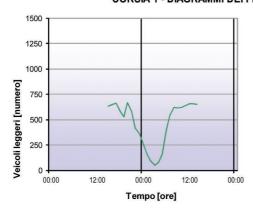


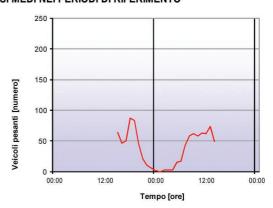
	TABELLA DEI LIVELLI ORARI										
Data	Ora	Leq	Data	Ora	Leq	Data	Ora	Leq	Data	Ora	Leq
gio 12/0	7 06:00:00	69.3 dBA	gio 12/07	12:00:00	67.6 dBA						
gio 12/0	7 07:00:00	71.0 dBA	gio 12/07	13:00:00	68.0 dBA						
gio 12/0	7 08:00:00	70.9 dBA	gio 12/07	14:00:00	69.4 dBA						
gio 12/0	7 09:00:00	70.3 dBA									
gio 12/0	7 10:00:00	69.7 dBA									
gio 12/0	7 11:00:00	69.2 dBA									


DATI METEOROLOGICI



Evoluzione temporale della velocità del vento

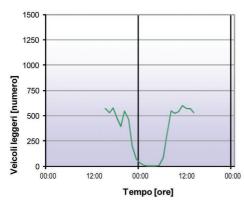




DATI DI TRAFFICO

DIREZIONE 1 - Est CORSIA 1 - DIAGRAMMI DEI FLUSSI MEDI NEI PERIODI DI RIFERIMENTO

CORSIA 1 - TABELLE DEI FLUSSI ORARI MEDI


VALUTAZIONE AI SENSI DM 29/11/2000

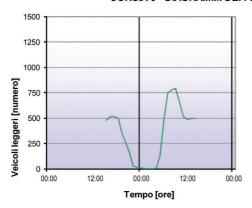
			the second second		
Data	157.0	COLI GERI	VEICOLI PESANTI		
	D	N	D	N	
11/07/2012	4 302	1 579	398	43	
12/07/2012	5 407	0	487	0	
/IEDIA veh/h	607	197	55	5	

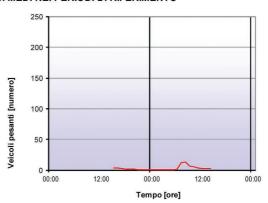
VALUTAZIONE AI SENSI D.LGS 194/2005

VALUTALIONE AI CENTI D. LOC 154/2005										
Data	VEIC	OLI LEG	GERI	VEIC	OLI PES	ANTI				
	D	S	N	D	S	N				
11/07/2012	3 051	1 251	1 579	331	67	43				
12/07/2012	5 407	0	0	487	0	0				
MEDIA veh/h	604	626	197	58	34	5				

CORSIA 2 - DIAGRAMMI DEI FLUSSI MEDI NEI PERIODI DI RIFERIMENTO

CORSIA 2 - TABELLE DEI FLUSSI ORARI MEDI


VALUTAZIONE AI SENSI DM 29/11/2000										
Data	VEIC LEG		VEICOLI PESANTI							
	D	N	D	N						
11/07/2012	3 547	332	36	8						
12/07/2012	4 283	0	37	0						
MEDIA veh/h	489	42	5	1						

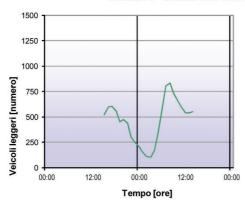

· ·	LUIALIC	INE AI O	LINGI D.I	-00 104	2000	
Data	VEIC	OLI LEG	GERI	VEICOLI PESANTI		
	D	S	N	D	D S	
11/07/2012	2 536	1 011	332	32	4	8
12/07/2012	4 283	0	0	37	0	0
MEDIA veh/h	487	506	42	5	2	1

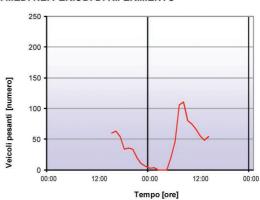
DATI DI TRAFFICO

DIREZIONE 2 - Ovest

CORSIA 3 - DIAGRAMMI DEI FLUSSI MEDI NEI PERIODI DI RIFERIMENTO

CORSIA 3 - TABELLE DEI FLUSSI ORARI MEDI


VALUTAZIONE AI SENSI DM 29/11/2000


0.000	100 0000	0.00	0.00 000				
D	N	D	N				
2 789	202	18	8				
5 466		53					
516	25	4	1				
	2 789 5 466	2 789 202 5 466	LEGGERI PES. D N D 2 789 202 18 5 466 53				

VALUTAZIONE AI SENSI D.LGS 194/2005

¥7-1		VALSTALISTE AI SERSI B.ESS 154/2000								
Data	VEICOLI LEGGERI			VEICOLI PESANTI						
	D	D S N		D	S	N				
11/07/2012	2 368	421	202	15	3	8				
12/07/2012	5 466			53						
MEDIA veh/h	560	211	25	5	2	1				

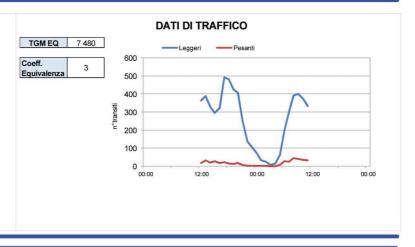
CORSIA 4 - DIAGRAMMI DEI FLUSSI MEDI NEI PERIODI DI RIFERIMENTO

CORSIA 4 - TABELLE DEI FLUSSI ORARI MEDI

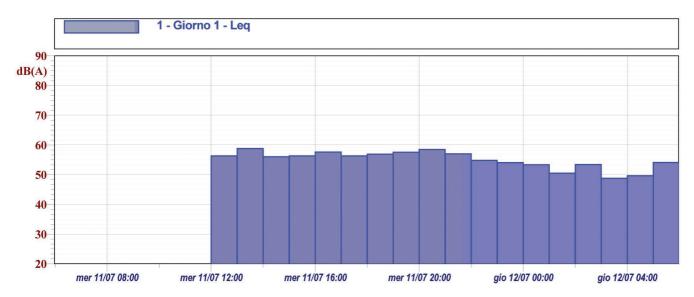
VALUTAZIONE ALSENSI DM 29/11/2000

VALUTAZIO	JINE AI S	ENSI D	VI 29/11/	2000
Data	VEIC LEG	COLI GERI	VEIO PES	A Committee of the Comm
	D	N	D	N
11/07/2012	3 639	1 617	301	44
12/07/2012	5 824		643	
MEDIA veh/h	591	202	59	6

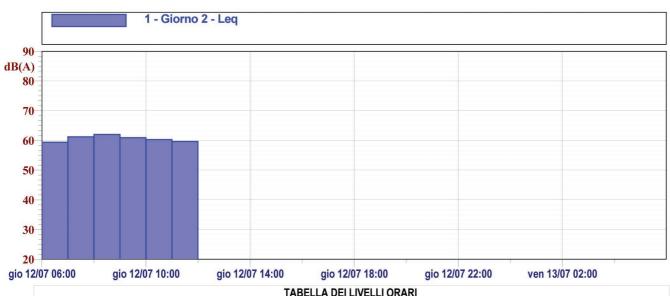
Data	VEICOLI LEGGERI			VEICOLI PESANTI			
	D	S	N	D	S	N	
11/07/2012	2 725	914	1 617	247	54	24	
12/07/2012	5 824			54			
MEDIA veh/h	611	457	202	22	27	3	


CODICE PUNTO: 20 09210	95 PV1 022	Coordinate X,Y = 32S 516900 4345713				
Tipo di rilievo: Sorgente Prin	cipale di durata 24h	Infrastruttura: SS 125				
Regione: Sardegna	Provincia: Cagliari	Indirizzo: SS125 km9+50	00 - Quartuccio			
Data inizio: 11/07/2012	Ora Inizio: 12:00:00	Durata [s]: 86400.0	Strumento: NTI XL2			
Data fine: 12/07/2012	Ora fine: 12:00:00	Operatore: Ing. Alessandre	o Zenti T.C. 12 907 / / / / / /			
Altezza microfono (m): 4	Distanza microfono (m): 53	Note:	Mound of the			

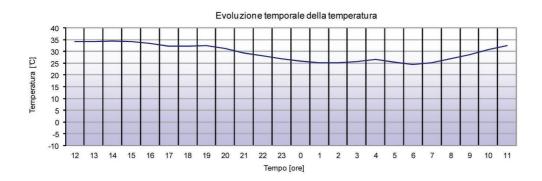
DOCUMENTAZIONE FOTOGRAFICA E SINTESI DELLE ELABORAZIONI


DATI ACUSTICI					
DMA	LAeq 06-22	58.9			
29/11/2000	LAeq 22-06	52.8			
	LAeq 06-20	59.0			
D.LGS	LAeq 20-22	57.8			
194/2005	LAeq 22-06	52.8			
	LDEN	61.0			

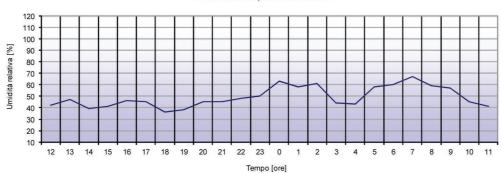
INQUADRAMENTO DEL PUNTO DI MISURA



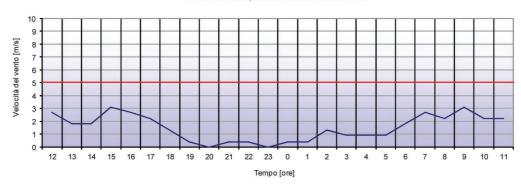
ANDAMENTO DEI LIVELLI ORARI NELLE 24H - GIORNO DI MISURA 1

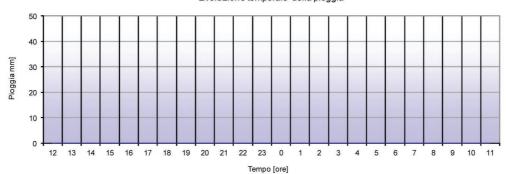

	TABELLA DEI LIVELLI ORARI										
Data	Ora	Leq	Data	Ora	Leq	Data	Ora	Leq	Data	Ora	Leq
mer 11/0	7 12:00:00	56.3 dBA	mer 11/07	18:00:00	57.0 dBA	gio 12/07	00:00:00	53.4 dBA			
mer 11/0	7 13:00:00	58.8 dBA	mer 11/07	19:00:00	57.6 dBA	gio 12/07	01:00:00	50.5 dBA			
mer 11/0	7 14:00:00	56.0 dBA	mer 11/07	20:00:00	58.5 dBA	gio 12/07	02:00:00	53.4 dBA			
mer 11/0	7 15:00:00	56.3 dBA	mer 11/07	21:00:00	57.0 dBA	gio 12/07	03:00:00	48.8 dBA			
mer 11/0	7 16:00:00	57.6 dBA	mer 11/07	22:00:00	54.8 dBA	gio 12/07	04:00:00	49.6 dBA			
mer 11/0	7 17:00:00	56.3 dBA	mer 11/07	23:00:00	54.1 dBA	gio 12/07	05:00:00	54.1 dBA			

ANDAMENTO DEI LIVELLI ORARI NELLE 24H - GIORNO DI MISURA 2

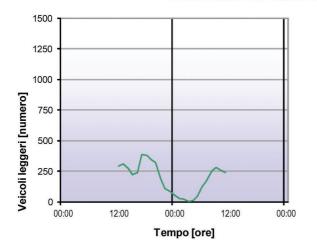


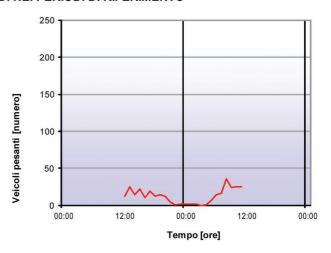
Data	Ora	Leq	Data	Ora	Leq	Data	Ora	Leq	Data	Ora	Leq
gio 12/0	7 06:00:00	59.4 dBA									
gio 12/0	7 07:00:00	61.2 dBA									
gio 12/0	7 08:00:00	62.0 dBA									
gio 12/0	7 09:00:00	61.0 dBA									
gio 12/0	7 10:00:00	60.3 dBA									
aio 12/0	7 11:00:00	59.7 dBA									


DATI METEOROLOGICI


Evoluzione temporale dell'umidità

Evoluzione temporale della velocità del vento





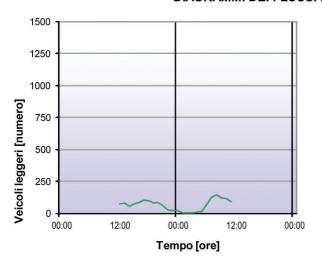
DATI DI TRAFFICO

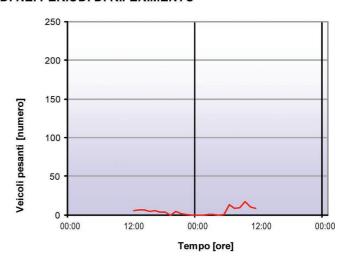
DIREZIONE 1 - Nord DIAGRAMMI DEI FLUSSI MEDI NEI PERIODI DI RIFERIMENTO

TABELLE DEI FLUSSI ORARI MEDI

VALUTAZIONE AI SENSI DM 29/11/2000

Data		COLI GERI	VEICOLI PESANTI		
	D	N	D	N	
11/07/2012	2 961	354	146	17	
12/07/2012	1 330	0	140	0	
MEDIA voh/h	268	11	18	2	


		J. S.		
MEDIA veh/h	268	44	18	2


Data	VEIC	OLI LEG	GERI	VEICOLI PESANTI		
	D	S	N	D	S	N
11/07/2012	2 445	516	354	129	17	17
12/07/2012	1 330	0	0	140	0	0

MEDIA veh/h	270	250	44	10	0	2
WEDIA VEII/II	210	250	44	19	9	

DATI DI TRAFFICO

DIREZIONE 2 - Sud DIAGRAMMI DEI FLUSSI MEDI NEI PERIODI DI RIFERIMENTO

TABELLE DEI FLUSSI ORARI MEDI

VALUTAZIONE AI SENSI DM 29/11/2000

		VEICOLI PESANTI		
D	N	D	N	
797	105	46	4	
667	0	69	0	
	LEG D 797		LEGGERI PES. D N D 797 105 46	

MEDIA veh/h 92	13	7	1
----------------	----	---	---

Data	VEICOLI LEGGERI			VEICOLI PESANTI		
	D	S	N	D	S	N
11/07/2012	655	142	105	39	7	4
12/07/2012	667	0	0	69	0	0

MEDIA veh/h 94	71	13	8	4	1
----------------	----	----	---	---	---