

Anas SpA

Direzione Centrale Progettazione

CUP

F2602000340001

CIG

652449686B

GARA CA 08/15 - NUOVA SS 554 CAGLIARITANA ADEGUAMENTO DELL'ASSE ATTREZZATO URBANO ED ELIMINAZIONE DELLE INTERSEZIONI A RASO DAL KM 1+500 AL KM 11+850

Pregio tecnico

OFFERTA TECNICA

SVINCOLI SOTTOVIA

SOTTOVIA SU SVINCOLO SS125 - ramo A

Relazione di calcolo

ambientali

Cantierizzazione e fasi di lavoro

CODICE PROGET	то		CODICE	ELABORATO				SCALA	DATA
progetto	liv.	numero	campo 1	campo 2	campo 3	campo 4	rev		
D P C A 0 6	D	1501	V 0 8	S T 0 5	STR	RE01	A	-	21/04/16

CODICE ELABORATO DI OFFERTA

32.9

CONCORRENTE:

PROGETTISTA INDICATO COSTITUENDO R.T.P.

Capogruppo Mandataria R.T.P.

SWSTM

Mandante

Mandante

ING. FRANCESCA LEO

RESPONSABILE DELL'INTEGRAZIONE FRA LE PRESTAZIONI SPECIALISTICHE

Ing. Paolo Cucino

RESPONSABILE ELABORATO

Ing. Paolo Cucino

INDICE

1	PRE	EMESSA	3
	1.1	Inquadramento generale dell'intervento	3
2	OG	GETTO SPECIFICO DELLA RELAZIONE: SOVRASTRUTTURA	4
3	DO	CUMENTI DI RIFERIMENTO	6
	3.1	Normative di riferimento, raccomandazioni e linee guida	6
	3.1.	.1 Documenti di carattere generale	6
	3.1.	.2 Analisi sismica delle strutture	6
	3.1.	.3 Apparecchi d'appoggio	6
	3.1.	4 Strutture in acciaio e composte acciaio-calcestruzzo	6
	3.1.	5 Normative sui materiali	7
4	CAF	RATTERISTICHE DEI MATERIALI IMPIEGATI	7
	4.1	Calcestruzzo soletta impalcato	7
	4.2	Acciaio per armature strutture in c.a.	7
	4.3	Acciaio da carpenteria	7
5	DUF	RABILITÀ DELLE STRUTTURE IN CALCESTRUZZO ARMATO	8
	5.1	Soletta impalcato	8
6	CAF	RICHI DI PROGETTO E AZIONI DI CALCOLO	g
	6.1	Carichi permanenti strutturali	g
	6.2	Carichi permanenti portati	g
	6.3	Carichi variabili da traffico veicolare	9
	6.3.	1 Carichi verticali	9
	6.3.	2 Frenatura e avviamento	10
	6.3.	3 Forza centrifuga	10
	6.4	Ritiro	10
	6.5	Dilatazione termica	10
	6.6	Vento	10
	6.7	Azione Sismica	11
	6.7.	1 Classificazione dell'opera ai fini della valutazione dell'azione sismica	11
	6.7.	.2 Parametri sismici di riferimento	11

	6.8	Combinazione dei carichi	12
7	MET	ODI DI CALCOLO E CRITERI DI VERIFICA	13
8	ANA	LISI STRUTTURALE IMPALCATO	13
	8.1	Analisi per fasi	13
	8.2	Modellazione FEM	14
	8.2.1	Descrizione del modello	14
	8.2.2	2 Caratteristiche inerziali delle travi principali	15
	8.3	Risultati dell'analisi	21
	8.3.1	Momento Flettente implacato SLU: Fasi 1,2,3	21
	8.3.2	2 Taglio impalcato SLU: Fasi 1,2,3	22
9	VER	IFICHE IMPALCATO METALLICO	24
	9.1	Travi principali a sezione mista acciaio-calcestruzzo	24
	9.1.1	Verifiche di resistenza allo SLU	24
	9.1.2	Verifiche dei connettori di collegamento allo SLU	28
	9.1.3	B Deformabilità e contromonta	32
10	VFR	IFICA SOLETTA	34

1 PREMESSA

1.1 Inquadramento generale dell'intervento

La presente relazione di calcolo costituisce parte integrante del Progetto Definitivo "NUOVA SS 554 "CAGLIARITANA", adeguamento dell'asse attrezzato urbano ed eliminazione delle intersezioni a raso dal km 1+500 al km 11+850".

L'immagine riportata di seguito fornisce un inquadramento geografico dell'intervento con particolare riferimento all'oggetto specifico della relazione, il "Sottovia su svincolo SS 125 – ramo A".

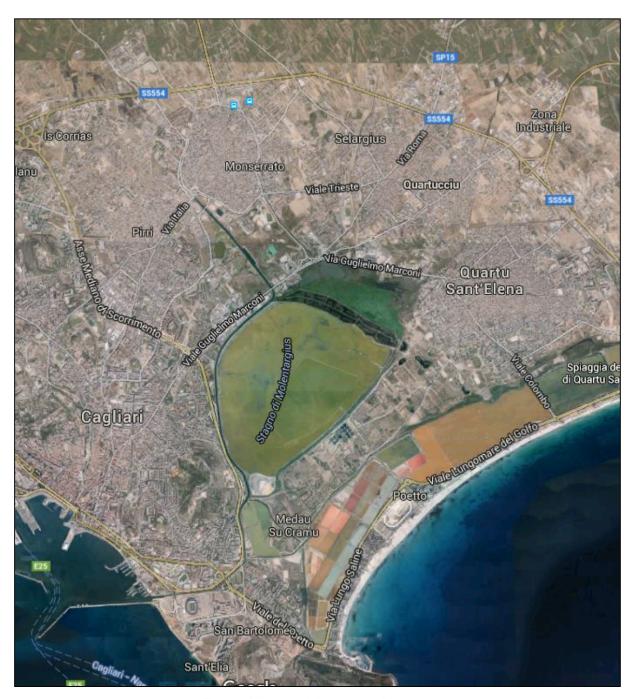


Figura 1 – Vista aerea dell'area oggetto di intervento

2 OGGETTO SPECIFICO DELLA RELAZIONE: SOVRASTRUTTURA

L' impalcato del "Sottovia su svincolo ss 125 – ramo A" costituisce l'oggetto della presente relazione. Il documento si pone l'obiettivo di descrivere nel dettaglio i criteri progettuali adottati e le verifiche svolte ai fini del dimensionamento strutturale dell'opera.

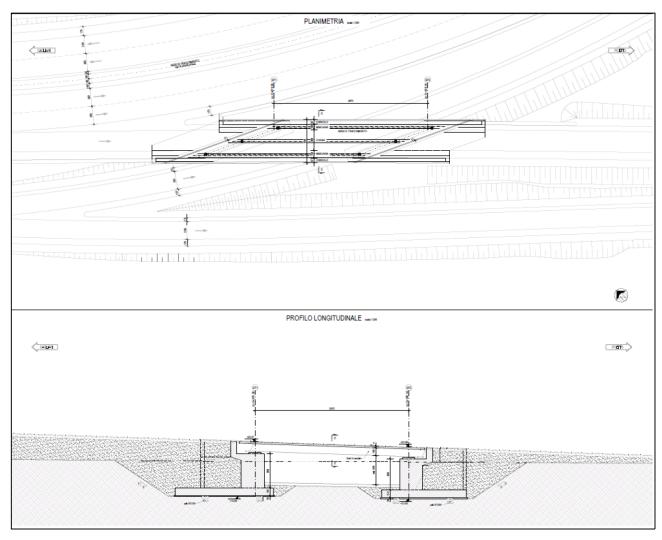
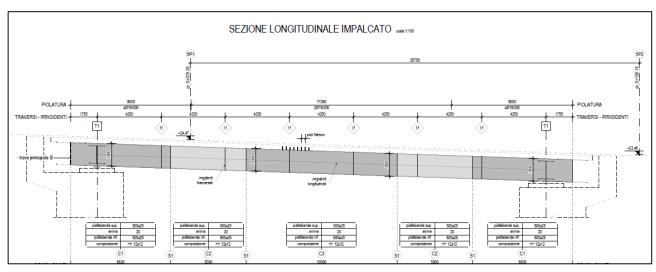


Figura 2 – Pianta e prospetto del ponte


L'impalcato del ponte si sviluppa su un'unica campata di 29.75 m, si vedano gli elaborati grafici allegati.

La sezione trasversale dell'impalcato si compone dalla sede stradale per una fascia centrale di 6.50 m, il settore rimanente comprende i due cordoli laterali (di larghezza pari a 0.97 m) risultando un ingombro complessivo pari a 8.44 m. La struttura portante di impalcato si realizza con travi composte acciaio-calcestruzzo. Nello specifico si hanno 3 travi principali ad altezza costante h=1.50 m a sezione variabile. Le medesime sono collegate trasversalmente da traversi che garantiscono la ripartizione del carico ortogonalmente all'asse longitudinale del ponte.

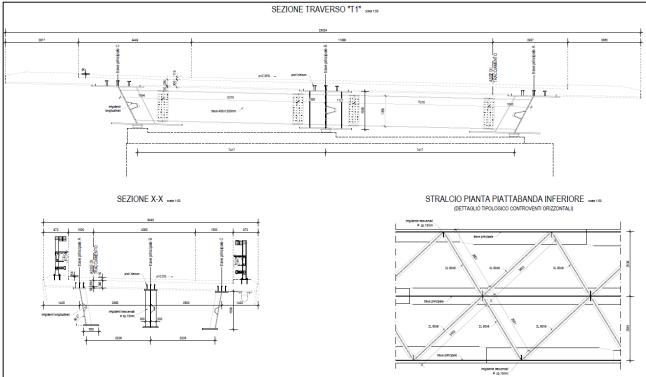


Figura 3 – Sezioni dell'impalcato

3 DOCUMENTI DI RIFERIMENTO

3.1 Normative di riferimento, raccomandazioni e linee guida

In accordo a quanto prescritto dall'art. 21 della Legge 5 novembre 1971 n.1086 (G.U. n.321 del 21.12.1971) per l'esecuzione delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica, nonché dall'art.1 della Legge 2 febbraio 1974 n.64 (G.U. n. 76 del 21.03.1974), nella progettazione di tutte le strutture trattate in questa relazione si fa riferimento alle normative, alle raccomandazioni ed alle linee guida di seguito proposte.

Il calcolo viene condotto nel rispetto delle Normative Nazionali, provvedendo ad integrare le informazioni in esse contenute, dove necessario, con le indicazioni proposte negli Eurocodici e nelle più accreditate normative Internazionali.

3.1.1 Documenti di carattere generale

A livello generale si sono utilizzati i seguenti riferimenti:

- D.M. 14.01.2008 "Norme tecniche per le costruzioni ";
- Circolare 02.02.2009 Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al Decreto Ministeriale 14 gennaio 2008 costruzioni e dei carichi e sovraccarichi";
- **Istruzione C.N.R. 10024/86** "Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo".

3.1.2 Analisi sismica delle strutture

Ad integrazione delle indicazioni proposte nel D.M. 14.01.2008, ove necessario, si è ritenuto opportuno riferirsi ai documenti di seguito indicati:

• EN 1998-1:2004 "Eurocode 8: Design of structures for earthquake resistance, Part 1: General rules, seismic actions and rules for buildings".

3.1.3 Apparecchi d'appoggio

Istruzione C.N.R. 10018/99 "Apparecchi di appoggio per le costruzioni: istruzioni per l'impiego".

3.1.4 Strutture in acciaio e composte acciaio-calcestruzzo

- Istruzione C.N.R. 10011/88 "Costruzioni di acciaio: istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione":
- Istruzione C.N.R. 10016/85 "Strutture composte di acciaio e calcestruzzo: istruzioni per l'impiego nelle costruzioni";
- Istruzione C.N.R. 10030/87 "Anime irrigidite di travi a parete piena";
- Eurocodice 3.1.1 "Progettazione delle strutture in acciaio Parte 1-1: Regole generali e regole per gli edifici":
- Eurocodice 4.1.1 "Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici";
- Eurocodice 4.2 "Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Ponti a struttura composta";

3.1.5 Normative sui materiali

- UNI EN 206-1 "Calcestruzzo: specificazione, prestazione, produzione e conformità";
- UNI EN 10025-2 "Prodotti laminati a caldo di acciai per impieghi strutturali, condizioni tecniche di fornitura di acciai non legati per impieghi strutturali";
- **UNI EN 10025-6** "Prodotti laminati a caldo di acciai per impieghi strutturali, condizioni tecniche di fornitura di acciai per impieghi strutturali con resistenza migliorata alla corrosione atmosferica".

4 CARATTERISTICHE DEI MATERIALI IMPIEGATI

I materiali utilizzati nella costruzione dovranno essere oggetto di prove certificanti la rispondenza fra i valori di progetto delle resistenze adottate nel calcolo e le caratteristiche meccaniche dei prodotti posti in opera. In particolare valgono le indicazioni di seguito presentate.

4.1 Calcestruzzo soletta impalcato

Per la soletta è stato previsto un calcestruzzo classe C32/40 il quale dovrà essere confezionato secondo i criteri proposti nel capitolato e dovrà garantire le seguenti caratteristiche meccaniche:

_	Decistores corattoristics aubica di calcala:	D . 40 MDa
•	Resistenza caratteristica cubica di calcolo:	$R_{ck} = 40 \text{ MPa}$

• Resistenza caratteristica cilindrica a 28gg:
$$f_{ck} = R_{ck} \times 0.83 = 33.20 \text{ MPa}$$

• Resistenza di calcolo calcestruzzo: $f_{cd} = \alpha f_{ck} / \gamma_c = 18.81 \text{ MPa}$

• Modulo di elasticità istantaneo:
$$E_{cm} = 33643 \text{ MPa}$$
• Coefficiente di dilatazione termica: $\alpha = 1.2 \text{ E} \cdot 0.5 \text{ °C}^{-1}$

Gli effetti della viscosità sono stati tenuti in conto riducendo il modulo elastico del calcestruzzo. In funzione dei parametri (U.R.= 75%; t_0 > 60 gg; h_0 > 600 mm) e della classe di calcestruzzo è stato calcolato il coefficiente di viscosità $\phi(\infty,t_0)$ =1.60. Pertanto i coefficienti di omogeneizzazione risultano:

•	Coeff. Di Omogeneizzazione a breve termine	n_{ST} = E_a / E_{cm} $=6.24$
•	Coeff. Di Omogeneizzazione a lungo termine	$n_{LT}=E_a/E_{cm}/(1+\phi)=16.23$

4.2 Acciaio per armature strutture in c.a.

Nella soletta dovranno essere poste barre nervate in acciaio **B450C** (secondo UNI EN 10080) controllato in stabilimento. Dovranno essere garantite la saldabilità e le caratteristiche meccaniche di seguito indicate:

•	Tensione caratteristica di snervamento:	f _{yk} ≥ 450 MPa
•	Resistenza di calcolo acciaio:	$f_{yd} = f_{yk}/\gamma_s = 391.3 \text{ MPa}$
•	Modulo elastico:	$E_a = 210000 \; \text{MPa}$

4.3 Acciaio da carpenteria

Per la carpenteria metallica è stata adottata la classe **S355**. Le caratteristiche meccaniche richieste per i prodotti utilizzati sono le seguenti:

Resistenza caratteristica a snervamento: f_{vk} = 355 MPa (t <= 40 mm)

Coefficiente di sicurezza: γ_a = 1.05

Modulo elastico: $E_S = 210000 \text{ MPa}$ Coefficiente di dilatazione: α = 1.2 E -05 °C⁻¹

Le viti ed i dadi impiegati nei giunti tra le membrature, dovranno essere conformi alle indicazioni proposte nelle UNI 3740, nelle UNI 5712 e nelle UNI 5713. In corrispondenza di ogni dado e di ogni testa dovranno essere inoltre disposte delle rosette in acciaio C 50 rinvenuto HRC 32-40, conformi alle caratteristiche dimensionali proposte nelle UNI 5714. I giunti realizzati sulla struttura, a seconda della posizione, manifestano un comportamento ad attrito o a taglio. In entrambi i casi si utilizzeranno **bulloni di classe 10.9**. I bulloni dovranno possedere un serraggio controllato e conforme a quanto indicato nel D.M. 0.9.01.1996 sia nelle unioni di tipo convenzionale che nelle unioni progettate per lavorare ad attrito. Le **saldature** dovranno essere eseguite secondo quanto indicato nelle CNR UNI 10011 e nel D.M. 0.9.01.1996, adottando le misure necessarie a garantire la corretta realizzazione sia delle saldature a cordone d'angolo che di quelle a completa penetrazione.

I **connettori a piolo** utilizzati per le travi composte acciaio-calcestruzzo dovranno infine essere conformi alle indicazioni riportate nelle normative EN ISO 13918 ed avere le seguenti caratteristiche meccaniche:

Classe di resistenza:
 S235J2G3+C450 (St 37-3k)

Resistenza caratteristica a rottura: f_{tk} > 450 MPa
 Resistenza caratteristica a snervamento: f_{vk} = 350 MPa

5 DURABILITÀ DELLE STRUTTURE IN CALCESTRUZZO ARMATO

Per garantire la durabilità delle strutture di calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dagli attacchi chimico-fisici.

Al fine di ottenere la prestazione richiesta in funzione delle condizioni ambientali, nonché per la definizione della relativa classe, si fa riferimento alle indicazioni contenute nelle Linee Guida sul calcestruzzo strutturale edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici ovvero alle norme UNI EN 206-1:2006 ed UNI 11104:2004.

5.1 Soletta impalcato

Si considera una classe di esposizione XC4+XD1:

- XC4: ciclicamente bagnato ed asciutto, superfici di calcestruzzo soggette al contatto con acqua, non nella classe di esposizione XC2;
- XD1: umidità moderata, superfici di calcestruzzo esposte a nebbia salina.

Tale classe di esposizione, secondo le prescrizioni normative, ricade nella condizione ambientale aggressiva. Ne consegue che, in ragione della vita nominale della strutture assunta pari a 100 anni, si dovrà garantire un copriferro netto pari a 45 mm in ottemperanza a quanto prescritto nella circolare C4.1.6.1.3.

Le verifiche di fessurazione dovranno garantire il soddisfacimento delle disuguaglianze di seguito riportate:

- Combinazione quasi permanente: $w_k \le w_1 = 0.2$ mm;
- Combinazione frequente: w_k ≤ w₁ = 0.3 mm.

6 CARICHI DI PROGETTO E AZIONI DI CALCOLO

6.1 Carichi permanenti strutturali

Il peso proprio della struttura è stato determinato sulla base dei pesi specifici relativi ai materiali impiegati. In particolare per l'acciaio si è assunto un valore pari a 7850 kg/m³ mentre per il calcestruzzo armato si è assunto un valore pari a 2500 kg/m³.

6.2 Carichi permanenti portati

I sovraccarichi permanenti portati derivano da tutti gli elementi di finitura e completamento necessari a garantire le caratteristiche funzionali dell'opera. Si individuano i seguenti contributi:

G_{Ringrosso,int} = 5.00 kN/m
 G_{Ringrosso,est} = 5.00 kN/m
 G_{Parapetto} = 2.00 kN/m
 G_{Guard-rail} = 1.50 kN/m
 G_{Sottoservizi} = 2.00 kN/m

• $G_{Pavimentazione}$ = 20 x 0.11 = 2.20 kN/m²

6.3 Carichi variabili da traffico veicolare

6.3.1 Carichi verticali

Le caratteristiche geometriche definite per la carreggiata comportano la necessità di considerare la presenza di **3 corsie convenzionali** di larghezza w_i = 3.00 m. I carichi considerati sono quelli definiti nel D.M. 14.01.2008 coerentemente alla classificazione dell'opera come **ponte di prima categoria**. Nello specifico, ai fini delle verifiche globali, lo schema di carico di tipo 1 risulta essere dimensionante per l'opera in oggetto. La seguente immagine fornisce i dati necessari ad individuare il convoglio "tipo" utilizzato nel calcolo.

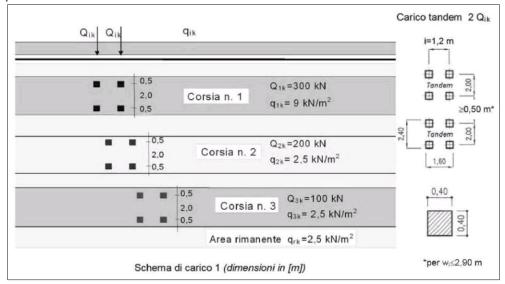


Figura 4 – Schema di carico 1 (D.M. 2008):

definizione del convoglio di calcolo per ponti stradali di prima categoria

6.3.2 Frenatura e avviamento

La forza di frenatura ed avviamento, come prescritto dalla normativa di riferimento, è funzione del carico verticale totale agente sulla prima corsia convenzionale. Di conseguenza la risultante considerata nel calcolo risulta essere la seguente: $q_3 = 0.6 (2 Q_{1k}) + 0.10 q_{1k} w_1 L = 0.6 (2 x 300) + 0.10 x 9 x 3 x 30 = 441 kN \le 900 kN$ La medesima si considera applicata all'estradosso della pavimentazione.

6.3.3 Forza centrifuga

L'impalcato presenta un raggio di curvatura R = ∞ m. Ne consegue che $Q_4 = 0$ kN

Il carico si applica a livello della pavimentazione ed agisce in direzione normale all'asse del ponte.

6.4 Ritiro

Il fenomeno del ritiro è stato valutato secondo quanto prescritto al punto 11.2.10.6 del D.M. 14.01.2008, tramite il calcolo della $\epsilon_{cd,\infty}$, la quale risulta pari a -273 ·10-6. Tale è assimilabile ad un delta termico equivalente

$$\Delta T_{rit} = \varepsilon_{cd.\infty} / \alpha = -273 \cdot 10^{-6} / 1.2 \cdot 10^{-5} = -22.75 \, ^{\circ}C$$

da associarsi al modulo elastico a lungo termine

$$E_{c} = E_{cm} / (1 + \phi) = 12940 \text{ MPa}$$

6.5 Dilatazione termica

In ottemperanza alle prescrizioni normative si considerano i seguenti carichi termici:

• Implacato acciaio-cls: gradiente termico differenziale acciaio-cls ± 5°C;

6.6 Vento

L'azione del vento è stata considerata applicando a tutte le superfici potenzialmente investite una pressione normale di 2.50 kN/m². L'area assunta a rappresentazione dei carichi transitanti, come richiesto dalla Normativa di riferimento, viene calcolata fissando una fascia di pertinenza di altezza pari a 3.00 m rispetto al livello definito dal piano viario. L'altezza massima dell'impalcato è pari a 1.80 m.

L'azione nominale porge:

$$f_{vento} = 2.50 \text{ x } (3+1.80) = 12.00 \text{ kN/m}$$

6.7 Azione Sismica

6.7.1 Classificazione dell'opera ai fini della valutazione dell'azione sismica

L'opera è classificata come **Tipo di costruzione 3** e si individua una **classe d'uso IV**. Pertanto i parametri che permettono di definire l'azione sismica di progetto sono i seguenti:

Vita nominale: VN = 100 anni
 Coefficiente d'uso: CU = 2.0

Periodo di riferimento per l'azione sismica:
 VR = VN x CU = 200 anni

6.7.2 Parametri sismici di riferimento

L'azione sismica di progetto si valuta con riferimento al sito individuando una **categoria B** di sottosuolo in classe topografica **T1**. Si riportano di seguito i parametri sismici di riferimento per i diversi stati limite previsti dalla norma.

Stato Limite	Tr [anni]	a _g [g]	Fo	Tc [*] [s]
SLO	120	0,033	2,756	0,31
SLD	201	0,039	2,82	0,322
SLV	1898	0,07	3,058	0,393
SLC	2475	0,075	3,09	0,401

Tabella 1 – Parametri sismici di riferimento

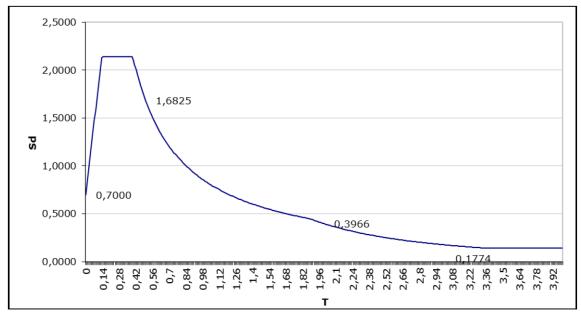


Figura 5 – Spettro di risposta allo SLV

6.8 Combinazione dei carichi

La determinazione dei valori delle sollecitazioni da utilizzare per l'esecuzione delle verifiche strutturali viene condotta facendo riferimento ai gruppi di azioni ed ai coefficienti di combinazione riportati nel D.M. 14.01.2008. La seguente tabella definisce i gruppi considerati:

		Carich	i sulla carreggia	ta		Carichi su marciapiedi e piste ciclabili
	Carichi verticali			Carichi orizzontali		
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 Ъ	Valore frequente				Valore caratteristico	
3 (7)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				
(*) Ponti di : (**) Da cons (***) Da con	3ª categoria siderare solo se richies siderare solo se si con	sto dal particola siderano veicoli	re progetto (ad es speciali	. ponti in zona	urbana)	

Tabella 2 – Definizione dei gruppi di azioni per i carichi variabili da traffico

I gruppi 3, 4 e 5 sono relativi alle sole verifiche locali. Si osserva inoltre come i gruppi di tipo 2a e 2b non siano certamente significativi ai fini del calcolo dell'implacato. Il dimensionamento delle strutture verrà dunque condotto con riferimento gruppo 1.

I coefficienti di combinazione da impiegare nella definizione delle azioni di progetto allo SLU e SLE sono riportati nelle seguenti tabelle:

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ _{e1}	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γ _{ε2} , γ _{ε3} , γ _{ε4}	0,00 1,20	0,00 1,20	0,00 1,00
(1) Equilibrio che non comvolga i parametri d	i deformabilità	e resistenza d	el terreno; a	ltrimenti si :	applicano i

valori di GEO

Tabella 3 – Coefficienti di fattorizzazione dei carichi allo SLU

Valori di GEO.

(O'Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano comprutamenti definiti si potramo adottare gli stessi coefficienti validi per le azioni permanenti.

(d) 1.00 per instabilità in strutture con precompressione esterna

(d) 1.00 per gliciti lecali.

²⁰ per effetti locali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q ₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Nava a-	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Tabella 4 – Coefficienti di combinazione delle azioni

7 METODI DI CALCOLO E CRITERI DI VERIFICA

Il calcolo delle sollecitazioni viene condotto facendo riferimento agli usuali metodi proposti dalle teorie della Scienza delle Costruzioni. Più precisamente le tipologie strutturali presentate, a seconda della complessità, sono analizzate impiegando schemi statici semplificati o modellazioni numeriche agli elementi finiti.

Il software impiegato nelle simulazioni è il codice **Straus 7** (release 2.4.6) prodotto dalla ditta **Strand7 Software - Sydney** e distribuito in Italia da HSH S.r.l. La validazione di tale prodotto deriva da una accreditata documentazione ("Verification Manual"), finalizzata ad attestare l'accuratezza delle soluzioni ottenute in relazione alla modellazione di problematiche fisiche con soluzioni analitiche note.

La verifica degli elementi costituenti le strutture descritte viene effettuata adottando il metodo agli stati limite.

8 ANALISI STRUTTURALE IMPALCATO

8.1 Analisi per fasi

L'analisi strutturale dell'impalcato si articola in tre modellazioni distinte ciascuna delle quali fa riferimento alle fasi di seguito illustrate:

<u>Fase I</u> – Le caratteristiche inerziali implementate sono relative alle sole travi metalliche. Si assegnano i carichi associati al peso proprio della carpenteria metallica e soletta in c.a. non ancora collaborante.

<u>Fase II</u> – Le proprietà inerziali delle travi sono quelle della sezione composta a lungo termine con coefficiente di omogeneizzazione n = 16.23. Si assegnano i carichi permanenti portati (cordoli, barriere, pavimentazioni, ...) e l'azione associata al ritiro del calcestruzzo.

<u>Fase III</u> – Le inerzie sono relative alla sezione composta a breve termine con coefficiente di n = 6.24. Si assegnano le azioni variabili da traffico previste dal D.M. 14.01.2008 per i ponti di prima categoria. Particolare attenzione è rivolta alla determinazione delle configurazioni di carico che massimizzano le sollecitazioni flettenti e taglianti nelle sezioni di verifica. Sono implementati i carichi termici coerentemente alle prescrizioni normative.

8.2 Modellazione FEM

Il calcolo delle sollecitazioni agenti nella struttura d'impalcato viene effettuato per mezzo di una **modellazione FEM 3D** condotta impiegando il software Straus7 (release 2.4.6).

8.2.1 Descrizione del modello

Le travi in carpenteria metallica sono state modellate impiegando elementi finiti di tipo "beam". Per la soletta sono stati implementati elementi "plate" ortotropi, tali per cui la medesima non interferisca con la rigidezza flessionale delle travi principali; essa funge da elemento ripartitore del carico in direzione trasversale.

Tale approccio consente di riprodurre in maniera attendibile il comportamento del sistema. In particolare valgono le seguenti considerazioni:

- La soletta manifesta esclusivamente un comportamento di ripartizione unidirezionale verso le travi e non ne influenza la rigidezza flessionale. Il modulo elastico assegnato, a seconda del caso, è quello a breve termine E_{cm} oppure quello a lungo termine E_{c∞}.
- Le **Travi** ricevono i carichi dagli elementi di soletta e presentano le caratteristiche inerziali equivalenti figlie della collaborazione tra acciaio e calcestruzzo (assegnate manualmente a seconda della natura dei carichi considerati).

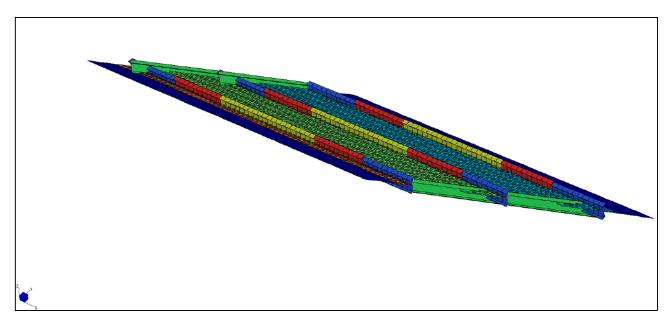


Figura 6 - Modello FEM 3D: vista d'insieme

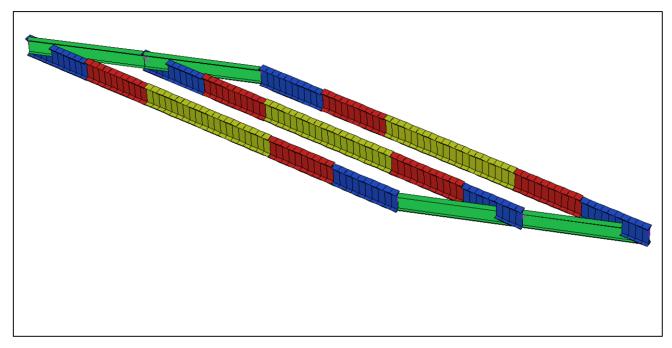


Figura 7 – Modello FEM 3D: travi principali

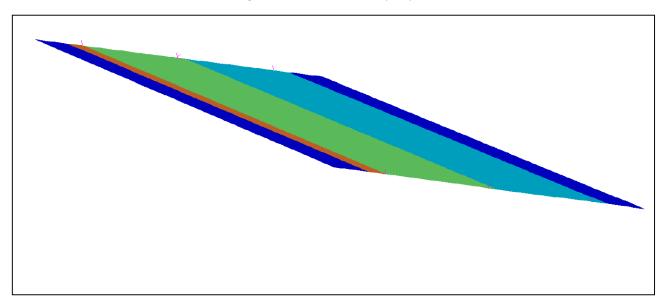


Figura 8 - Modello FEM 3D: soletta con individuazione delle corsie

8.2.2 Caratteristiche inerziali delle travi principali

Le travi principali composte acciaio-calcestruzzo si realizzano assemblando 3 tipologie di concio le cui proprietà inerziali a breve e lungo termine sono riportate di seguito in forma tabellare (con J_S e J_W si individuano i momenti d'inerzia rispettivamente nei piani forte e debole della sezione). Il sistema strutturale è isostatico.

La larghezza collaborante della soletta in calcestruzzo si valuta secondo le prescrizioni contenute nel DM 2008 e risulta pari a 2.60 m (spessore 30 cm). Di seguito si riportano le caratteristiche delle sezioni presenti.

CONCIO C1+

Caratteristiche geometriche della sezione

Soletta	b _{eff}	2.600	mm
	h _c	250	mm
	h _p	50	mm
'			_
Altezza totale	Н	1.500	mm
'			_
Ala sup	p ^{sup}	500	mm
	t _{f,sup}	25	mm
			_
Anima	h _w	1.450	mm
	t _w	20	mm
'			_
Ala inf	b _{inf}	500	mm
	t _{f,inf}	25	mm

Analisi in FASE 1 (il getto in cls non è ancora collaborante)

Riassunto dati geometrici dei piatti:

h _{tot}
[cm]
150,0

piatti componenti		A _{piatto}	У	$J_{f,s}$	$J_{f,w}$	Jt	
[cm]	[cm]	[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ⁴]	
50,0	2,5	125,0	1,3	65,1	26042	260,4	Ala inf
145,0	2,0	290,0	75,0	508104,2	97	386,7	Anima
50,0	2,5	125,0	148,8	65,1	26042	260,4	Ala sup

Riassunto dati geometrici intero profilo:

УG,s	As	$A_{v,web}$	A _{v,flanges}	Js	J _W	J _T	W ⁺ _{el,s}	W el,s
[cm]	[cm ²]	[cm ²]	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ³]
75,0	540,0	290,0	250,0	1.868.000,0	52.180,0	907,5	24.906,7	24.906,7

<u>Analisi elastica in FASE 2 e 3</u> (il getto in cls è maturato e collabora alla resistenza finale)

Caratteristiche soletta in calcestruzzo:

b _{eff}	h _c	h _p	h _{cls}	A _{cls,coll}	У _{G,c}	J _{cls,coll,1}	J _{cls,coll,2}
[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm ⁴]	[cm ⁴]
260,0	25,0	5,0	30,0	6.500,0	167,5	338.541,7	36.616.666,7

Rigidezza torsionale della sola soletta:

		_
a/b	10,40	
β	3,19	
J _{lt}	78.384,9	cm ⁴
J _{st}	203.800,8	cm ⁴

Caratteristiche della sezione composta per carichi di lunga durata:

n _{lt} 16,23

A _{tot}	УG,comp	J_S	J _W	S*	J _{t,trave}
[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ⁴]
940,5	114,4	3.856.414,1	2.308.382,2	21.270,9	0,0000000302

Caratteristiche della sezione composta per carichi di breve durata:

n _{st}	6,24
-----------------	------

A _{tot}	УG,comp	J _S	J_W	S*	J _{t,trave}
[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ⁴]
1.581,3	135,9	4.964.817,3	5.918.305,6	32.892,8	0,0

CONCIO C2+

Caratteristiche geometriche della sezione

Soletta	b _{eff}	2.600	mm
	h _c	250	mm
	h_p	50	mm
Altezza totale	Н	1.500	mm
Ala sup	b _{sup}	500	mm
	t _{f,sup}	25	mm
Anima	h _w	1.440	mm
	t _w	20	mm
Ala inf	b _{inf}	600	mm
	$t_{f,inf}$	35	mm
		·	_

Analisi in FASE 1 (il getto in cls non è ancora collaborante)

Riassunto dati geometrici dei piatti:

h _{tot}
[cm]
150,0

piatti componenti		A _{piatto}	у	$J_{f,s}$	J _{f,w}	Jt	
[cm]	[cm]	[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ⁴]	
60,0	3,5	210,0	1,8	214,4	63000	857,5	Ala inf
144,0	2,0	288,0	75,5	497664,0	96	384,0	Anima
50,0	2,5	125,0	148,8	65,1	26042	260,4	Ala sup

Riassunto dati geometrici intero profilo:

УG,s	As	$A_{v,web}$	A _{v,flanges}	Js	J _W	J_{T}	W ⁺ _{el,s}	W el,s
[cm]	[cm ²]	[cm ²]	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ³]
65,3	623,0	288,0	335,0	2.246.500,5	89.137,7	1.501,9	34.383,0	26.534,8

<u>Analisi elastica in FASE 2 e 3</u> (il getto in cls è maturato e collabora alla resistenza finale)

Caratteristiche soletta in calcestruzzo:

b _{eff}	h _c	h _p	h _{cls}	A _{cls,coll}	УG,c	J _{cls,coll,1}	J _{cls,coll,2}
[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm ⁴]	[cm ⁴]
260,0	25,0	5,0	30,0	6.500,0	167,5	338.541,7	36.616.666,7

Rigidezza torsionale della sola soletta:

a/b	10,40	
β	3,19	
J _{lt}	78.384,9	cm ⁴
J _{st}	203.800,8	cm ⁴

Caratteristiche della sezione composta per carichi di lunga durata:

n _{lt}	16,23
-----------------	-------

A _{tot}	УG,comp	J _S	J _W	S*	J _{t,trave}
[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ⁴]
1.023,5	105,3	4.811.799,2	2.345.339,8	24.905,8	0,0

Caratteristiche della sezione composta per carichi di breve durata:

n _{st}	6,24
-----------------	------

A _{tot}	УG,comp	J _S	J _W	S*	J _{t,trave}
[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ⁴]
1.664,3	129,3	6.369.095,0	5.955.263,3	39.822,4	0,0

CONCIO C3+

Caratteristiche geometriche della sezione

Soletta	b _{eff}	2.600	mm
	h _c	250	mm
	h _p	50	mm
•			
Altezza totale	Н	1.500	mm
'			
Ala sup	p ^{snb}	500	mm
	t _{f,sup}	25	mm
'			
Anima	h _w	1.435	mm
	t _w	20	mm
Ala inf	b _{inf}	650	mm
	t _{f,inf}	40	mm
			_

Analisi in FASE 1 (il getto in cls non è ancora collaborante)

Riassunto dati geometrici dei piatti:

h _{tot}
[cm]
150,0

piatti com	ponenti	A _{piatto}	У	$J_{f,s}$	$J_{f,w}$	J _t	
[cm]	[cm]	[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ⁴]	
65,0	4,0	260,0	2,0	346,7	91542	1386,7	Ala inf
143,5	2,0	287,0	75,8	492498,0	96	382,7	Anima
50,0	2,5	125,0	148,8	65,1	26042	260,4	Ala sup

Riassunto dati geometrici intero profilo:

У _{G,s}	As	A _{v,web}	A _{v,flanges}	Js	J _W	J _T	W ⁺ el,s	W el,s
[cm]	[cm ²]	[cm ²]	[cm ²]	[cm ⁴]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ³]
60,8	672,0	287,0	385,0	2.422.889,7	117.679,0	2.029,8	39.853,7	27.160,8

<u>Analisi elastica in FASE 2 e 3</u> (il getto in cls è maturato e collabora alla resistenza finale)

Caratteristiche soletta in calcestruzzo:

b _{eff}	h _c	h _p	h _{cls}	A _{cls,coll}	У _{G,c}	J _{cls,coll,1}	J _{cls,coll,2}
[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm ⁴]	[cm ⁴]
260,0	25,0	5,0	30,0	6.500,0	167,5	338.541,7	36.616.666,7

Rigidezza torsionale della sola soletta:

		_
a/b	10,40	
β	3,19	
J _{lt}	78.384,9	cm ⁴
J _{st}	203.800,8	cm ⁴

Caratteristiche della sezione composta per carichi di lunga durata:

n _{lt} 16,23

A _{tot}	УG,comp	J_S	J _W	S*	J _{t,trave}
[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ⁴]
1.072,5	100,6	5.301.032,3	2.373.881,2	26.777,3	0,0

Caratteristiche della sezione composta per carichi di breve durata:

n _{st}	6,24
-----------------	------

A _{tot}	УG,comp	J_{S}	J_W	S*	J _{t,trave}
[cm ²]	[cm]	[cm ⁴]	[cm ⁴]	[cm ³]	[cm ⁴]
1.713,3	125,6	7.127.501,7	5.983.804,6	43.581,5	0,0

8.3 Risultati dell'analisi

Di seguito si riportano i risultati delle analisi in termini di azioni interne nelle membrature maggiormente sollecitate.

8.3.1 Momento Flettente implacato SLU: Fasi 1,2,3

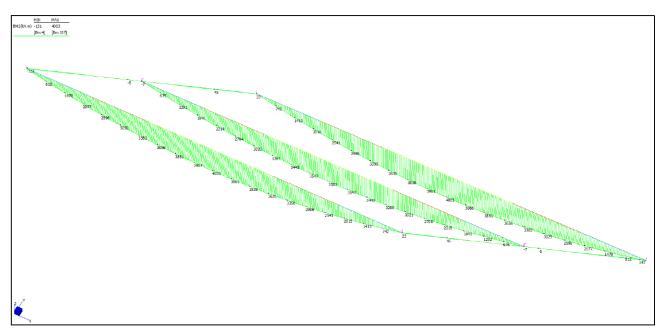


Figura 9: Fase 1: momento flettente impalcato

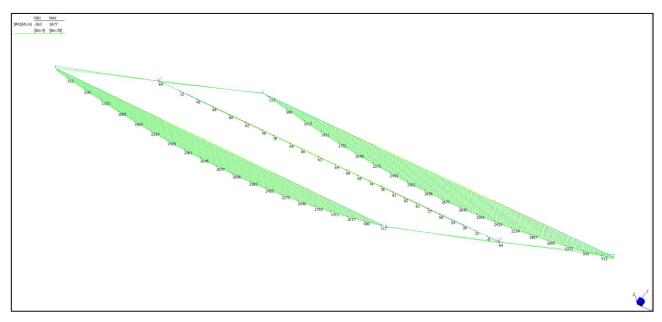


Figura 10: Fase 2: momento flettente impalcato

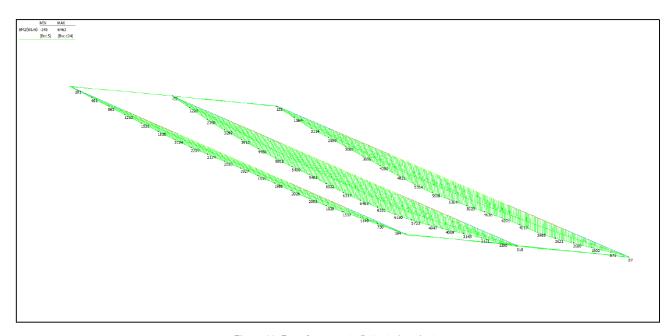


Figura 11: Fase 3: momento flettente impalcato

8.3.2 Taglio impalcato SLU: Fasi 1,2,3

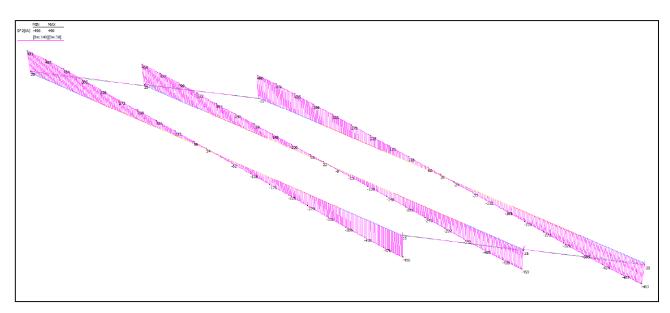


Figura 12: Fase 1: taglio impalcato

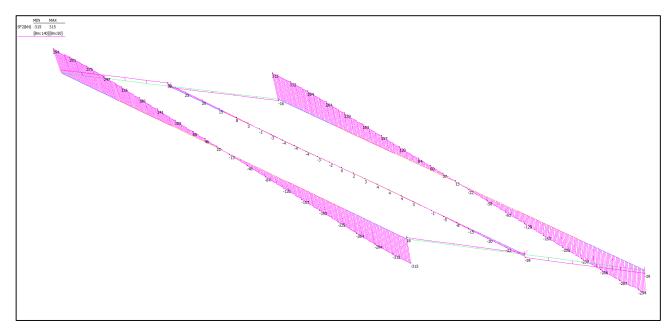


Figura 13: Fase 2: taglio impalcato

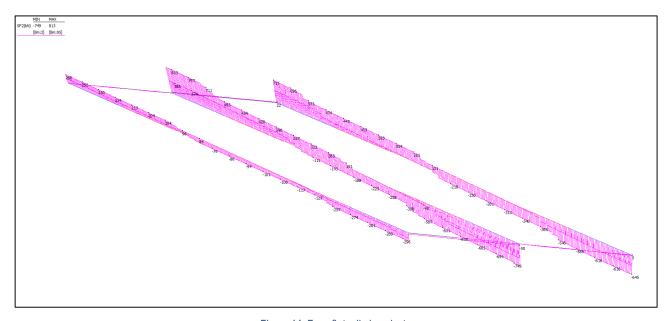


Figura 14: Fase 3: taglio impalcato

9 VERIFICHE IMPALCATO METALLICO

9.1 Travi principali a sezione mista acciaio-calcestruzzo

Nella presente sezione si riportano le verifiche strutturali maggiormente significative in riferimento alle travi principali composte acciaio-calcestruzzo

La snellezza delle sezioni di verifica inibisce il calcolo plastico, si opera quindi in campo elastico. Si verifica che le tensioni ideali di Von Mises, coerenti con la storia di carico della membratura, siano inferiori o al limite uguali alla tensione di snervamento di progetto dell'acciaio.

9.1.1 Verifiche di resistenza allo SLU

CONCIO C1+

Caratteristiche dei materiali impiegati

Acciaio S	355	N/mm ²	
	γa	1,05]
	f _{yd} (t<16 mm)	339	N/mm ²
	Norma Ref	NTC 2008	1
	Ea	210.000	N/mm ²
	Ga	80.769	N/mm ²
	Ota	1,2E-05	/°C
			-
Cls R _{ck}	40,00	N/mm ²	
	fok	33,20	N/mm ²
	γο	1,50	
	f _{od}	18,81	N/mm ²
	Norma Ref	NTC 2008	1
	E _c	33.643	N/mm ²
	G _c	14.018	N/mm ²
	Sa.	273,0	E-06
	фа	1,60	1
	n _{st}	6,24	
	n _{it}	16,23	
	0.0	1.0F-05	/°C

a.2) Caratteristiche geometriche della sezione

			_
Soletta	b _{eff}	2.600	mm
	h _c	250	mm
	h_p	50	mm
Altezza totale	Н	1.500	mm
Ala sup	b _{sup}	500	mm
	$t_{f,sup}$	25	mm
Anima	h _w	1.450	mm
	t _w	20	mm
Ala inf	b _{inf}	500	mm
	t _{f,inf}	25	mm

a.3) Pesi dei materiali utilizzati

Acciaio	ρα	7850,00	kg/mo
Cls	ρο	2500,00	kg/mc

Sollecitazioni analisi elastica (fattorizzate)

Fase 1	M_1	2.235,0	KNm
	V ₁	491,0	KN
	N ₁	0,0	KN
Fase 2	ΔM_2	1.573,0	KNm
	ΔV_2	315,0	KN
	ΔN_2	0,0	KN
	N ₂	0,0	KN
Fase 3	ΔM_3	5.263,0	KNm
	ΔV_3	1.152,0	KN
	ΔN_3	0,0	KN
	N ₃	0,0	KN

a.5) Sollecitazioni analisi plastica

Coeff	γG	1,00	
	γα	1,00	
	fattori di co	mbinazione	
Fase 1	M_{sd}	2235,0	KNm
	N _{sd}	0,0	KN
	V _{sd}	491,0	KN
Somma fasi	M _{sd}	9071,0	KNm
	N _{sd}	0,0	KN
	V _{sd}	1958.0	KN

Verifica di resistenza (Criterio di Von Mises)

	Acciaio				Soletta	
	Flangia inf	Anima		Flangia Sup	Calces	truzzo
	$\sigma_{s,inf}$	o _{id,s,inf,anima}	റ് _{id,s,sup,anim} a	$\sigma_{\!s,sup}$	$\sigma_{\mathrm{e,inf}}$	$\sigma_{ m c,sup}$
	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²
σ_{id}	280,47	297,74	-162,29	-119,19	-3,29	-9,14
f _{yk}	355	355	355	355	-	-
f _{sd} & f _{ad}	338,10	338,10	-338,10	-338,10	-18,81	-18,81
Tasso di lavoro	83%	88%	48%	35%	17%	49%

CONCIO C2+

Caratteristiche dei materiali impiegati

		_	
Acciaio S	355	N/mm ²	_
	γa	1,05	
	fyd (t<16 mm)	339	N/mm ²
	Norma Ref	NTC 2008	
	Ea	210.000	N/mm ²
	Ga	80.769	N/mm ²
	Œa	1,2E-05	/°C

Clo P	40,00	N/mm ²	
Cls R _{ck}	40,00	IN/IIIIII	_
	f ck	33,20	N/mm ²
	γο	1,50]
	f cd	18,81	N/mm ²
	Norma Ref	NTC 2008	
	Ec	33.643	N/mm ²
	Gc	14.018	N/mm ²
	Esr	273,0	E-06
	фсг	1,60	
	n _{st}	6,24	
	n _{it}	16,23]
	αc	1,0E-05	/°C

Sollecitazioni analisi elastica (fattorizzate)

Fase 1	M ₁	3.532,0	KNm
	V ₁	349,0	KN
	N ₁	0,0	KN
Fase 2	ΔM_2	2.424,0	KNm
	ΔV_2	240,0	KN
	ΔN_2	0,0	KN
	N_2	0,0	KN
Fase 3	ΔM_3	6.058,0	KNm
	ΔV_3	635,0	KN
	ΔN_3	0,0	KN
	No	0.0	KN

a.2) Caratteristiche geometriche della sezione

Soletta	b _{eff}	2.600	mm
	h _c	250	mm
	h _p	50	mm
Altezza totale	Н	1.500	mm
Ala sup	p ^{snb}	500	mm
	t _{f,sup}	25	mm
Anima	h _w	1.440	mm
	t _w	20	mm
			_
A (- : £	h.	600	mm
Ala inf	b _{inf}	000	
Ala Int	t _{f,inf}	35	mm

a.3) <u>Pesi dei materiali utilizzati</u>

Acciaio	ρa	7850,00	kg/mc
Cls	ρε	2500,00	kg/mc

a.5) Sollecitazioni analisi plastica

Coeff	γG	1,00	
	γα	1,00	
	fattori di co	ombinazione	
			_
Fase 1	M_{sd}	3532,0	KNn
	N _{sd}	0,0	KN
	V _{sd}	349,0	KN
Somma fasi	M_{sd}	12014,0	KNn
	N _{sd}	0,0	KN
	V_{sd}	1224,0	KN

Verifica di resistenza (Criterio di Von Mises)

	Acciaio			Soletta		
	Flangia inf	Anim	na	Flangia Sup	Calces	truzzo
	$\sigma_{s,inf}$	Gid,s,infanima	o _{id,s,sup,anima}	$\sigma_{\!s,sup}$	$\sigma_{ m c,inf}$	$\sigma_{ m c,sup}$
	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²
σ_{id}	278,72	278,05	-183,22	-175,35	-4,55	-10,05
f _{yk}	355	355	355	355	-	-
f _{sd} & f _{ad}	338,10	338,10	-338,10	-338,10	-18,81	-18,81
Tasso di lavoro	82%	82%	54%	52%	24%	53%

CONCIO C3+

Caratteristiche dei materiali impiegati

355	N/mm ²	_
γα	1,05	
f _{yd} (t<16 mm)	339	N/mm ²
Norma Ref	NTC 2008	
E_a	210.000	N/mm ²
G_a	80.769	N/mm ²
Œa	1,2E-05	/°C
	γ_a f _{yd} (t<16 mm) Norma Ref E _a G _a	γa 1,05 fyd (t<16 mm)

		-	
$Cls\ R_{ck}$	40,00	N/mm ²	
	f ck	33,20	N/mm ²
	γο	1,50	
	f cd	18,81	N/mm ²
	Norma Ref	NTC 2008	
	Ec	33.643	N/mm ²
	Gc	14.018	N/mm ²
	Esr	273,0	E-06
	фсг	1,60	
	n _{st}	6,24	
	n _{it}	16,23	
	αε	1,0E-05	/°C

Soletta	b _{eff}	2.600	mm
	h _c	250	mm
	h _p	50	mm
Altezza totale	Н	1.500	mm
Ala sup	p ^{snb}	500	mm
	t _{f,sup}	25	mm
Anima	h _w	1.435	mm
	t _w	20	mm
			_
Ala inf	b _{inf}	650	mm
	$t_{f,inf}$	40	mm

a.2) Caratteristiche geometriche della sezione

a.3) Pesi dei materiali utilizzati

Acciaio	ρa	7850,00	kg/mc
Cls	ρε	2500,00	kg/mc

Sollecitazioni analisi elastica (fattorizzate)

Fase 1	M ₁	3.928,0	KNm
	V ₁	170,0	KN
	N ₁	0,0	KN
Fase 2	ΔM_2	2.676,0	KNm
	ΔV_2	121,0	KN
	ΔN_2	0,0	KN
	N ₂	0,0	KN
Fase 3	ΔM_3	6.500,0	KNm
	ΔV_3	514,0	KN
	ΔN_3	0,0	KN
	N ₃	0,0	KN

a.5) Sollecitazioni analisi plastica

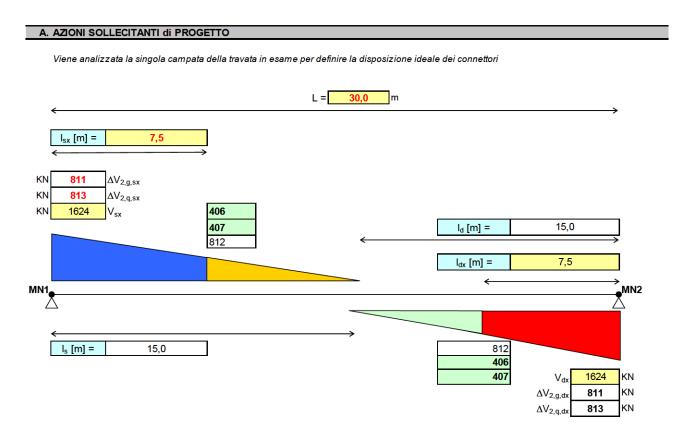
Coeff	γG	1,00
	γα	1,00
	fattori di co	mbinazione

ase 1	M_{sd}	3928,0	KNm
	N _{sd}	0,0	KN
	V _{sd}	170,0	KN

Somma fasi	M _{sd}	13104,0	KNm
	N _{sd}	0,0	KN
	V_{sd}	805,0	KN

Verifica di resistenza (Criterio di Von Mises)

	Acciaio			Soletta		
	Flangia inf	Anima I		Flangia Sup	Calces	truzzo
	$\sigma_{s,inf}$	Gid,s,infanima	⊙ _{id,s,sup,anima}	$\sigma_{\!s,sup}$	$\sigma_{ m c,inf}$	$\sigma_{ m e,sup}$
	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²
σ_{id}	263,95	256,44	-190,45	-191,74	-5,09	-10,41
f _{yk}	355	355	355	355	-	-
f _{sd} & f _{ad}	338,10	338,10	-338,10	-338,10	-18,81	-18,81
Tasso di lavoro	78%	76%	56%	57%	27%	55%



9.1.2 Verifiche dei connettori di collegamento allo SLU

Al fine di garantire la trasmissione delle mutue azioni fra acciaio e calcestruzzo si impiegano pioli Nelson aventi diametro pari a 19 mm. In ragione delle snellezza locale dei piatti costituenti le sezioni si opera adottando un approccio di tipo elastico. Il calcolo è stato sviluppato con riferimento ad un andamento simmetrico del diagramma del taglio settato sul massimo sforzo.

Tratto d'estremità

B. CARATTERISTICHE della CONNESSIONE

Caratteristiche meccaniche del calcestruzzo di soletta:

Cls R_{ck}

40	N/mm ²	_
fck	33	N/mm ²
γο	1,50	
fcd	18,81	N/mm ²
E _{cm}	33.643	N/mm ²

Si ipotizza una connessione a completo ripristino di resistenza:

Pioli

Nelson		
fu	450	N/mm ²
t _{min}	9,5	mm
d _{pl}	19	mm
h _{pl,min}	76	mm
h _{min}	57	mm
h _{pl}	200	mm
duttili		

resistenza compatibile

minimo spessore della lamiera compatibile con il connettore diametro dei connettori minima altezza per connettore duttile minima altezza per connettore altezza adottata per il connettore

Determinazione della resistenza della connessione:

P_{Rd}	58,76	ΚN
k _d	0,80	
k _l	1,00	
β	0,90	
N _{fila}	4	
P _{Rd,tot}	235	KN

coefficiente di penalizzazione per effetti dinamici coefficiente riduttivo (solo in presenza di lamiera grecata) coefficiente riduttivo in zona tesa fessurata numero di connettori su di una fila

Momenti statici a breve e lungo termine per sezione interamente reagente:

S*q	33.715.150	mm ³
S*g	22.180.506	mm ³
J_q	50.450.590.107	mm ⁴
J_g	39.421.612.668	mm ⁴
As	54.000	mm ²
$A_{id,q}$	166.143	mm ²
$A_{id,g}$	97.132	mm ²

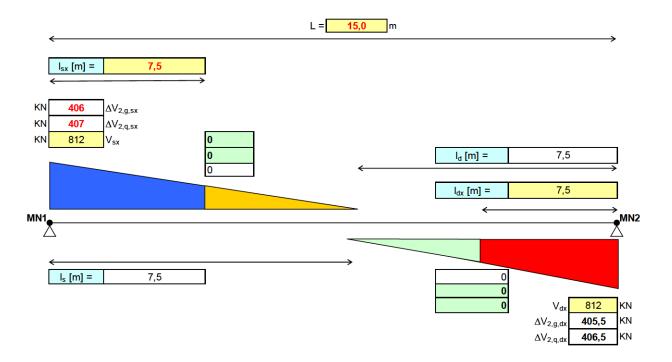
33.715.150	mm^3
22.180.506	mm^3
50.450.590.107	mm ⁴
39.421.612.668	mm ⁴
54.000	mm^2
166.143	$\rm mm^2$
97.132	mm^2

Infittimento SX

N _{term}	0	kN
N _{rit}	0	kN
b _{eff}	2.800	mm
L _{trave}	30.000	mm
b	1400	mm
K	0,0030	mm ² /N
l _s	3182	mm
$\Delta q_{sd,rit}$	0	N/mm
q _{sd,sx}	1000	N/mm
İ _{sx}	200	mm
	verificato	
s.l.u.	s.l.e.	
0,85	0,57	

In	fitti	me	nto	DΧ

N _{term&rit}	0	kN
N _{rit}	0	kN
b _{eff}	2800	mm
L _{trave}	30000	mm
b	1400	mm
K	0,003	mm²/l
l _s	3182	mm
$\Delta q_{sd,rit}$	0	N/mm
q _{sd,sx}	1000	N/mm
İ _{sx}	200	mm
verific	ato	
s.l.u.	s.l.e.	
0,85	0,57	



Tratto intermedio

A. AZIONI SOLLECITANTI di PROGETTO

Viene analizzata la singola campata della travata in esame per definire la disposizione ideale dei connettori

B. CARATTERISTICHE della CONNESSIONE

Caratteristiche meccaniche del calcestruzzo di soletta:

Cls R_{ck}

40	N/mm ²	_
fck	33	N/mm ²
γc	1,50	
fcd	18,81	N/mm ²
E _{cm}	33.643	N/mm ²

Si ipotizza una connessione a completo ripristino di resistenza:

Pioli

Nelson		_
fu	450	N/mm ²
t _{min}	9,5	mm
d _{pl}	19	mm
h _{pl,min}	76	mm
h _{min}	57	mm
h _{pl}	200	mm
duttili		

resistenza compatibile

minimo spessore della lamiera compatibile con il connettore diametro dei connettori minima altezza per connettore duttile minima altezza per connettore altezza adottata per il connettore

Determinazione della resistenza della connessione:

P_{Rd}	58,76	KN
k _d	0,80	
k _l	1,00	
β	0,90	
N _{fila}	2	
P _{Rd,tot}	118	KN

coefficiente di penalizzazione per effetti dinamici coefficiente riduttivo (solo in presenza di lamiera grecata) coefficiente riduttivo in zona tesa fessurata numero di connettori su di una fila

Momenti statici a breve e lungo termine per sezione interamente reagente:

S*q	33.715.150	mm ³
S*g	22.180.506	mm ³
J_q	50.450.590.107	mm ⁴
J_{g}	39.421.612.668	mm ⁴
A_s	54.000	mm ²
$A_{id,q}$	166.143	mm ²
$A_{id,g}$	97.132	mm²

33.715.150	mm ³
22.180.506	mm³
50.450.590.107	mm ⁴
39.421.612.668	mm ⁴
54.000	mm²
166.143	mm²
97.132	mm²

Infittimento SX

0	kN
0	kN
2.800	mm
30.000	mm
1400	mm
0,0030	mm ² /N
3182	mm
0	N/mm
500	N/mm
200	mm
verificato	
s.l.e.	
0,57	
	0 2.800 30.000 1400 0,0030 3182 0 500 200 verificato s.l.e.

Infittimento DX

		_
N _{term&rit}	0	kN
N _{rit}	0	kN
b _{eff}	2800	mm
L _{trave}	30000	mm
b	1400	mm
K	0,003	mm ² /N
l _s	3182	mm
$\Delta q_{sd,rit}$	0	N/mm
q _{sd,sx}	500	N/mm
İ _{sx}	200	mm
verific	ato	J
s.l.u.	s.l.e.]
0,85	0,57	

9.1.3 Deformabilità e contromonta

Si analizza la risposta della struttura in termini deformativi andando a definire le contromonte da assegnare alle travi principali.

Le frecce massime per la campata in combinazione SLE rara sono sintetizzate nella seguente tabella.

FRECCE N	CAMPATA	
	- 1	56
FASE	Ш	23
	Ш	32

Tabella 5: Frecce massime nelle varie fasi

Di seguito si riportano le deformate in combinazione SLE rara.

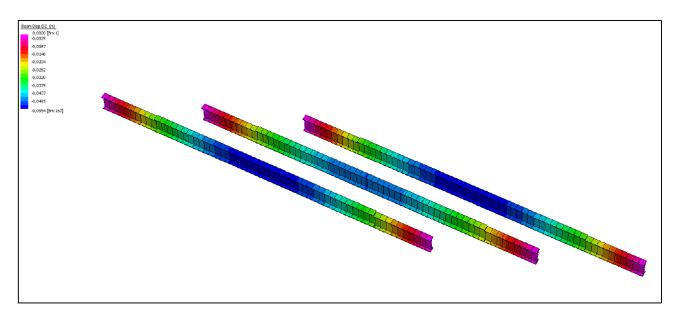


Figura 15: Fase 1 deformata SLE rara

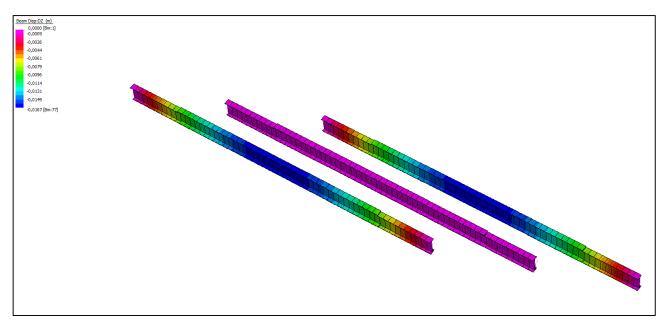


Figura 16: Fase 2 deformata SLE rara

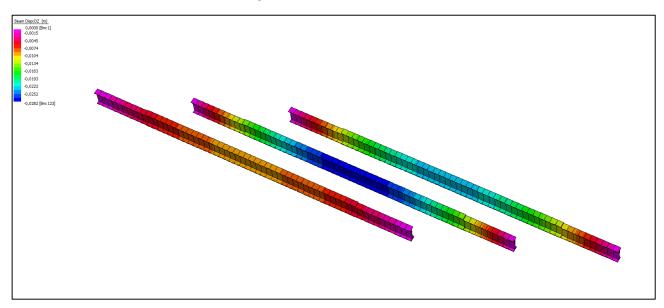


Figura 17: Fase 3 deformata SLE rara

La contromonta viene definita in maniera tale da compensare la totalità dei carichi permanenti ed il 20% dei carichi variabili. Si ha quindi:

 $f_{perm} = 56 + 23 = 79 \text{ mm}$

 $f_{var} = 32 \text{ mm}$

Contromonta = $79 + 0.20 \times 32 = 85.4 \text{ mm} \rightarrow \text{Si assumono } 90 \text{ mm}$

10 VERIFICA SOLETTA

Il calcolo delle sollecitazioni nella soletta di impalcato si effettua modellando la medesima come trave continua di sezione 100x30 cm². I carichi mobili da traffico veicolare sono stati applicati previa analisi delle rispettive linee di influenza. Ciò ha consentito di massimizzare le sollecitazioni nelle sezioni significative ai fini del dimensionamento della struttura. Di seguito se ne riportano le verifiche.

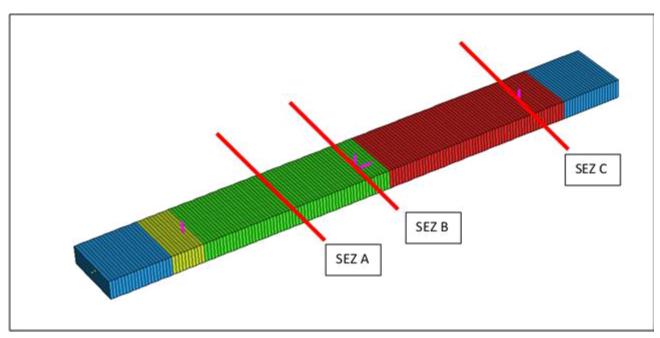


Figura 18: Individuazione delle sezioni di verifica

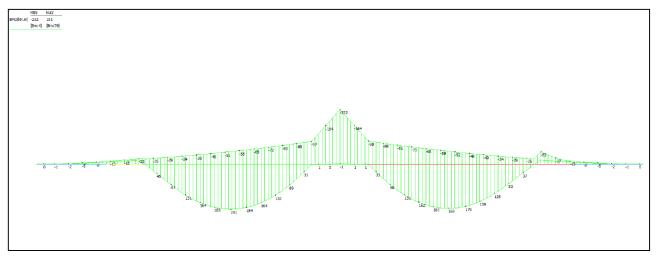


Figura 19: Inviluppo del momento flettente

INPUT					OUTPUT VERIFICHE IN ESERCIZIO			
SOLLECITAZIONI DI VERIFICA								
JOLLE	CITAZIONI DI V	LKIITCA			VERIFICIE!	V ESERCIZIO		
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]	Verifica Tensionale			σlimi
SL	E Quasi Permanente	0,0	5,0	-	Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	0,40	< 14.4
	SLE Frequente	0,0	107,0	-	Calcestruzzo SLE Rara	σ _c [Mpa] =	11,28	< 19.2
	SLE Rara	0,0	142,0	-	Acciaio SLE Rara	σ _s [Mpa] =	218,34	< 360
	SLU	0,0	191,0	0,0				
	SLV	-	-	-	Verifica di fessurazione			w limi
					Combinazione SLE Quasi permanente	w _d [mm] =	0,005	< 0,2
					Combinazione SLE Frequente	w _d [mm] =	0,120	< 0,3
CARATTERISTICHE (GEOMETRICHE I	DELLA SEZ	IONE IN C.	A.	VERIFICA DI RESI	STENZA A TAGLI	0	
Geometria della sezione					Sollecitazioni di progetto			
Base (ortogonale al Taglio)			B [cm]	100	Taglio sollecitante = max Taglio(SLU,SLV)		V _{Sd} [kN]	0,0
Altezza (parallela al Taglio)			H [cm]	30	Sforzo Normale concomitante al massimo taglio		N _{Sd} [kN]	0,0
Altezza utile della sezione			d [cm]	25				
Area di calcestruzzo			A _c [cm ²]	3000	Verifica di resistenza in assenza di armatura s	pecifica		
					Resistenza di progetto senza armatura specifica		V _{Rd1} [KN]	193,0
					Coefficiente di sicurezza		V _{Rd1} /V _{Sd}	-
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO				
Numero Barre	n	10	0	0	Verifica di resistenza dell'armatura specifica			
Diametro	φ[mm]	20	0	0	CoTan(θ) di progetto		cotan(θ)	2,5
Posizione dal lembo esterno	c [cm]	5,5	0,0	0,0	Resistenza a taglio delle bielle compresse in cls		V _{Rd2} (θ) [KN]	-
Area strato	As [cm ²]	31,42	0,00	0,00	Resistenza a taglio dell'armatura		$V_{Rd3}(\theta)$ [KN]	-
Rapporto di armatura	ρ [%]		1,282%		Resistenza a taglio di progetto		V _{Rd} [KN]	-
					Coefficiente di sicurezza		V_{Rd}/V_{Sd}	-
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO				
Numero Barre	n	5	0	0	VERIFICA DI RESISTENZ	A A PRESSO-FLE	SSIONE	
Diametro	φ[mm]	16	0	0				
Posizione dal lembo esterno	c' [cm]	5,3	0,0	0,0	Sollecitazioni di progetto		SLU	SLV
Area strato	As' [cm ²]	10,05	0,00	0,00	Momento sollecitante	M _{Sd} [kNm]	191,0	-
Rapporto di armatura	ρ' [%]		0,410%		Sforzo Normale concomitante	N _{Sd} [kN]	0,0	-
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO	Verifica di resistenza in termini di momento	14 8 25 2	SLU	SLV
Diametro	φ[mm]	0	0	0	Momento resistente	M _{Rd} [kNm]	260,4	-
Numero bracci	n _{bi}	2,5	0	0	Coefficiente di sicurezza	M_{Rd}/M_{Sd}	1,36	-
Passo	s _w [cm]	20	0	0	Vontilles di medetenne in termini di eferri	-ala	CLU	CI II
Inclinazione	α [deg]	90	90	0,00	Verifica di resistenza in termini di sforzo norm		SLU -	SLV
Area armatura a metro	A_{sw}/s_w [cm ² /m]	0,00	0,00	0,00	Sforzo normale resistente Coefficiente di sicurezza	N _{Rd} [kN] N _{Rd} /N _{Sd}		- :
CARATTERISTIC	CHE REOLOGICH	E DEI MA	FERIALI		400 Dominio di	resistenza M-N		
Concrete					300	$\overline{}$		
Resistenza cubica a compressione			RCK	40				
Resistenza cilindrica caratteristica a c	ompressione		f _{ck} [Mpa]	32,00)			
Resistenza cilindrica media a compres	sione		f _{cm} [Mpa]	40,00	100	\ \		
Resistenza media a trazione per flessio	ne		f _{ctm} [Mpa]	3,02		\ \ \ \ \		
Resistenza caratteristica a trazione pe	r flessione		f _{ctk} [Mpa]	2,12	₽		\	
Resistenza di progetto a compressione			f _{cd} [Mpa]	18,13	-4000 -2000 0 20	00 4000 60	0008 000	
Resistenza di progetto delle bielle comp			f _{cd'} [Mpa]	9,49	≥ 100			
					-200			
Acciaio			f .[Mno]	301 20				-
Resistenza di progetto a snervamento			f _{yd} [Mpa]	391,30	-300			-

Soletta Sezione B **INPUT OUTPUT** SOLLECITAZIONI DI VERIFICA VERIFICHE IN ESERCIZIO Combinazione N_{Sd} [kN] M_{Sd} [kNm] V_{Sd} [kN] Verifica Tensionale σlimit SLE Quasi Permanente Calcestruzzo SLE Quasi Permanente σ_c [Mpa] = 1,35 < 14.4 17,0 0,0 Calcestruzzo SLE Rara 13,74 < 19.2 SLE Frequente 0,0 130,0 $\sigma_c [Mpa] =$ SLE Rara 173.0 Acciaio SLE Rara 266,01 σ_s [Mpa] = < 360 0,0 SLU 232,0 343,0 0,0 SLV Verifica di fessurazione w limit Combinazione SLE Quasi permanente w_d [mm] = 0,017 < 0,2 Combinazione SLE Frequente w_d [mm] = 0,159 < 0,3 CARATTERISTICHE GEOMETRICHE DELLA SEZIONE IN C.A. VERIFICA DI RESISTENZA A TAGLIO Geometria della sezione Sollecitazioni di progetto B [cm] 100 Taglio sollecitante = max Taglio(SLU,SLV) V_{Sd} [kN] 343,0 Base (ortogonale al Taglio) Altezza (parallela al Taglio) 30 Sforzo Normale concomitante al massimo taglio N_{Sd} [kN] H [cm] 0,0 Altezza utile della sezione 25 d [cm] Area di calcestruzzo Ac [cm2] 3000 Verifica di resistenza in assenza di armatura specifica Resistenza di progetto senza armatura specifica V_{Rd1} [KN] 193.02 Coefficiente di sicurezza V_{Rd1}/V_{Sd} 0,56 Armatura longitudinale tesa 1° STRATO 2° STRATO 3° STRATO Numero Barre 0 Verifica di resistenza dell'armatura specifica Diametro 20 0 CoTan(θ) di progetto cotan(θ) 2,5 φ[mm] Posizione dal lembo esterno 0,0 0,0 Resistenza a taglio delle bielle compresse in cls V_{Rd2}(θ) [KN] 721 5,5 c [cm] 0,00 0,00 Resistenza a taalio dell'armatura V_{Rd3}(θ) [KN] 390 Area strato As [cm²] 31,42 1,282% 390 Rapporto di armatura ρ [%] Resistenza a taglio di progetto V_{Rd} [KN] Coefficiente di sicurezza V_{Rd}/V_{Sd} 1,14 Armatura longitudinale compressa 1° STRATO 2° STRATO 3° STRATO VERIFICA DI RESISTENZA A PRESSO-FLESSIONE Numero Barre 5 0 0 Diametro φ[mm] 16 0 0 Posizione dal lembo esterno c' [cm] 5,3 0,0 0,0 Sollecitazioni di progetto SLV 10,05 0,00 0,00 Momento sollecitante M_{Sd} [kNm] 232,0 Area strato As' [cm²] Rapporto di armatura 0,410% Sforzo Normale concomitante N_{Sd} [kN] 0,0 ρ'[%] SLU 1° TIPO 2° TIPO 3° TIPO SLV Armatura trasversale Verifica di resistenza in termini di momento Diametro φ[mm] 12 0 0 Momento resistente M_{Rd} [kNm] 260.4 Numero bracci 0 0 Coefficiente di sicurezza M_{Rd}/M_{Sd} 1,12 Passo s_w [cm] 25 0 0 Inclinazione α [deg] 90 90 90 Verifica di resistenza in termini di sforzo normale SLU SLV 18,10 0,00 0,00 Sforzo normale resistente N_{Rd} [kN] Area armatura a metro A_{sw}/s_w [cm²/m] N_{Rd}/N_{Sd} Dominio di resistenza M-N CARATTERISTICHE REOLOGICHE DEI MATERIALI Concrete Resistenza cubica a compressione RCK 40 Resistenza cilindrica caratteristica a compressione f_{ck} [Mpa] 32,00 Resistenza cilindrica media a compression f_{cm} [Mpa] 40,00 100 Resistenza media a trazione per flessione f_{ctm} [Mpa] 3,02 2,12 Resistenza caratteristica a trazione per flessione f_{ctk} [Mpa] -2000 2000 4000 Resistenza di progetto a compressione 18,13 fcd [Mpa] Resistenza di progetto delle bielle compresse fcd' [Mpa] 9,49 Acciaio Resistenza di progetto a snervamento 391.30 f_{yd} [Mpa] -300 N [kN]

Soletta Sezione C **INPUT OUTPUT** SOLLECITAZIONI DI VERIFICA VERIFICHE IN ESERCIZIO Combinazione N_{Sd} [kN] M_{Sd} [kNm] V_{Sd} [kN] Verifica Tensionale σlimit SLE Quasi Permanente Calcestruzzo SLE Quasi Permanente σ_c [Mpa] = 2,00 < 14.4 17,0 0,0 Calcestruzzo SLE Rara 4,71 < 19.2 SLE Frequente 0,0 34,0 $\sigma_c [Mpa] =$ SLE Rara Acciaio SLE Rara 180,04 40.0 σ_s [Mpa] = < 360 0,0 SLU 53,0 326,0 0,0 SLV Verifica di fessurazione w limit Combinazione SLE Quasi permanente w_d [mm] = 0,083 < 0,2 Combinazione SLE Frequente w_d [mm] = 0,166 < 0,3 CARATTERISTICHE GEOMETRICHE DELLA SEZIONE IN C.A VERIFICA DI RESISTENZA A TAGLIO Geometria della sezione Sollecitazioni di progetto B [cm] 100 Taglio sollecitante = max Taglio(SLU,SLV) V_{Sd} [kN] 326,0 Base (ortogonale al Taglio) Altezza (parallela al Taglio) Sforzo Normale concomitante al massimo taglio N_{Sd} [kN] H [cm] 30 0,0 Altezza utile della sezione 25 d [cm] Area di calcestruzzo Ac [cm2] 3000 Verifica di resistenza in assenza di armatura specifica Resistenza di progetto senza armatura specifica V_{Rd1} [KN] 132 49 Coefficiente di sicurezza V_{Rd1}/V_{Sd} 0,41 Armatura longitudinale tesa 1° STRATO 2° STRATO 3° STRATO Numero Barre 0 Verifica di resistenza dell'armatura specifica Diametro 16 0 CoTan(θ) di progetto cotan(θ) 2,5 φ[mm] Posizione dal lembo esterno 0,0 0,0 Resistenza a taglio delle bielle compresse in cls V_{Rd2}(θ) [KN] 727 5,3 c [cm] 0,00 0,00 Resistenza a taalio dell'armatura V_{Rd3}(θ) [KN] 394 Area strato As [cm²] 10,05 0.407% 394 Rapporto di armatura ρ [%] Resistenza a taglio di progetto V_{Rd} [KN] Coefficiente di sicurezza V_{Rd}/V_{Sd} 1,21 Armatura longitudinale compressa 1° STRATO 2° STRATO 3° STRATO VERIFICA DI RESISTENZA A PRESSO-FLESSIONE Numero Barre 5 0 0 Diametro φ[mm] 16 0 0 Posizione dal lembo esterno c' [cm] 5,3 0,0 0,0 Sollecitazioni di progetto SLV 10,05 0,00 0,00 Momento sollecitante M_{Sd} [kNm] 53,0 Area strato As' [cm²] Rapporto di armatura 0,407% Sforzo Normale concomitante N_{Sd} [kN] 0,0 ρ'[%] 1° TIPO 2° TIPO 3° TIPO SLU SLV Armatura trasversale Verifica di resistenza in termini di momento Diametro φ[mm] 12 0 0 Momento resistente M_{Rd} [kNm] 97.9 Numero bracci 0 0 Coefficiente di sicurezza M_{Rd}/M_{Sd} 1,85 Passo s_w [cm] 25 0 0 Inclinazione α [deg] 90 90 90 Verifica di resistenza in termini di sforzo normale SLU SLV 18,10 0,00 0,00 Sforzo normale resistente N_{Rd} [kN] Area armatura a metro A_{sw}/s_w [cm²/m] N_{Rd}/N_{Sd} Dominio di resistenza M-N CARATTERISTICHE REOLOGICHE DEI MATERIALI 300 Concrete 200 Resistenza cubica a compressione RCK 40 Resistenza cilindrica caratteristica a compressione f_{ck} [Mpa] 32,00 Resistenza cilindrica media a compression f_{cm} [Mpa] 40,00 Resistenza media a trazione per flessione f_{ctm} [Mpa] 3,02 2,12 Resistenza caratteristica a trazione per flessione f_{ctk} [Mpa] 2000 3000 4000 Resistenza di progetto a compressione f_{cd} [Mpa] 18,13 Resistenza di progetto delle bielle compresse f_{cd'} [Mpa] 9,49 Acciaio -200 Resistenza di progetto a snervamento 391.30 fyd [Mpa]

N [kN]