

ANAS S.p.A.

anas Direzione Progettazione e Realizzazione Lavori

S.S. 38 - LOTTO 4: VARIANTE DI TIRANO DALLO SVINCOLO DI STAZZONA (COMPRESO) ALLO SVINCOLO DI LORETO (CON COLLEGAMENTO ALLA DOGANA DI POSCHIAVO)

S.S. 38 - LOTTO 4: NODO DI TIRANO TRATTA "A" (SVINCOLO DI BIANZONE - SVINCOLO LA GANDA)
E TRATTA "B" (SVINCOLO LA GANDA - CAMPONE IN TIRANO)

PROGETTO ESECUTIVO

IQ01

EMISSIONE

DESCRIZIONE

EMISSIONE A SEGUITO DI ISTRUTTORIA ANAS

В

Α

REV.

I - PROGETTO STRUTTURALE - OPERE D'ARTE MINORI IQ - MURO DI CONTRORIPA IN DX DA KM 4+884,97 A KM 5+055 RELAZIONE TECNICA E DI CALCOLO

NACCI

ING. FRANCO

NACCI

REDATTO

RANIERI

ING. FABRIZIO

BAJETTI

VERIFICATO

BAJETTI

ING. VALERIO

BAJETTI

APPROVATO

CODICE PROGETTO		NOME FILE IQ01 - P00OS05STRRE01_B	.dwg	REVISIONE	SCALA:	
MI32	LIV. PROG. N. PROG. 1801	CODICE POOOSO 5 STRRE01		1 B		-
		,				
С						
Р	EMISSIONE A SECULTO DI IS	FOLITTODIA ANIAC	EEDDDAIO 2020	ING. FRANCO	ING. GAETANO	ING. VALERIO

FEBBRAIO 2020

FEBBRAIO 2019

DATA

SOMMARIO

1	INTRO	DUZIONE	2
2	DESC	RIZIONE DELLE OPERE	2
3	UBICA	ZIONE DELL'OPERA	3
4	NORM	ATIVA DI RIFERIMENTO	3
5	UNITA	' DI MISURA	4
6	CARA	FTERISTICHE DEI MATERIALI	4
	6.1 Ca	lcestruzzo	
	6.1.1	Calcestruzzo per opere di sottofondazione	
	6.1.2	Calcestruzzo per FONDAZIONI ED ELEVAZIONI	4
	6.1.3	Caratteristiche del calcestruzzo ai fini della durabilità	5
	6.1.4	Verifiche allo stato limite di apertura delle fessure	5
	6.1.5	Copriferro	6
	6.2 Ac	ciaio	6
	6.2.1	Acciaio per barre di armatura lenta	6
7		FTERIZZAZIONE GEOTECNICA	
8		IOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO	
		a nominale	
		asse d'uso	
		riodo di riferimento per l'azione sismica	
9		DI DI ANALISI E CRITERI DI VERIFICA	
		etodo di analisi in condizioni sismiche	
10		SI DEI CARICHI	
		Carichi Permanenti g1	
	10.1.1	Peso proprio muro di sostegno	
		Carichi Permanenti non strutturali G2	
	10.2.1	Peso del riempimento a tergo dei muri	
	10.2.2	Peso del rivestimento in pietra	
	10.2.3	Spinta del terreno in condizioni statiche	
		Azioni Variabili Q	
		Sovraccarico sul terreno a monte	
11		RAMMI PER L'ANALISI AUTOMATICA	
		VALIDAZIONI DEL CALCOLO E CASI PROVA	
		ANALISI DELL'OPERA DI SOSTEGNO	
		Calcolo della spinta attiva con Coulomb	
		Calcolo della spinta attiva con Mononobe & Okabe	
		Carico uniforme sul terrapieno	
		Spinta attiva in condizioni sismiche	
40		Carico limite di fondazioni superficiali su terreni	
12		TATI DELLE VERIFICHE	
	12.1	ANALISI DI STABILITA'	48

INTRODUZIONE

La presente relazione è inserita nell'ambito del Progetto Esecutivo della progettazione della "SS 38 Lotto 4 Nodo di Tirano, Tratta A (Svincolo di Bianzone-Svincolo La Ganda) e Tratta B (Svincolo La Ganda-Campone di Tirano).

Nel presente documento si affrontano le problematiche progettuali dimensionamento e alla verifica del muro di sostegno in c.a. a mensola di controripa in dx dalla progressiva 4+884,97 km alla progressiva 5+055 km dell'asse principale.

DESCRIZIONE DELLE OPERE

Il muro di sostegno, della lunghezza complessiva di circa 169 metri, è composto da n. 17 tratti. I primi 16 tratti sono costituiti dal concio n. 1, l'ultimo tratto dal concio n. 2. Tutti i conci sono di altezza variabile; la variabilità di altezza nell'ambito dello stesso concio comporta una variabilità anche dello spessore alla base del muro; ciò per garantire per il paramento inclinato lato strada sempre lo stesso angolo di inclinazione pari a 6°. La verifica sarà condotta per la sezione di altezza massima. Si riportano le caratteristiche dei conci

- Concio n. 1 Muro di spessore variabile alla base da 92 a 97 cm, altezza variabile da 555 cm a 602 cm; zattera di fondazione di larghezza pari a 550 cm e altezza pari a 120 cm con piede di monte di larghezza pari a 400 cm e piede di valle di larghezza da 58 a 53 cm.
- Concio n. 2 Muro di spessore alla base da 92 a 96 cm, altezza variabile da 555 cm a 595 cm; zattera di fondazione di larghezza pari a 550 cm e altezza pari a 120 cm con piede di monte di larghezza pari a 400 cm e piede di valle di larghezza variabile da 58 a 54 cm.

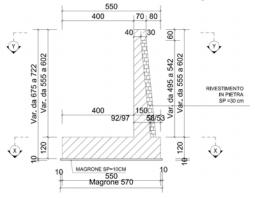


Fig. 1 Sezione trasversale del concio 1

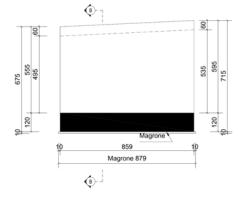


Fig. 2 Sezione longitudinale del concio n. 2

UBICAZIONE DELL'OPERA

Il muro tra le progressive 4+884,97 e 5+055,00 km è ubicato planimetricamente come mostrato nell'immagine successiva:

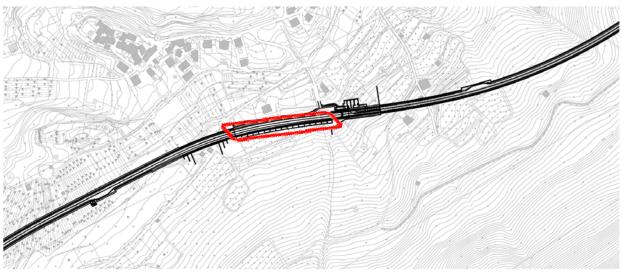


Fig. 3 Ubicazione dell'opera

NORMATIVA DI RIFERIMENTO

La presente relazione è stata redatta in osservanza delle seguenti Normative:

- Legge 05/01/1971 n.1086 → Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica
- Legge 02/02/1974 n. 64 → Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- **DM 17/01/2018** → Nuove Norme Tecniche per le Costruzioni
- Circolare n. 7 del 21/01/2019 /C.S.LL.PP. → Istruzioni per l'applicazione dell' "Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al DM 17/01/2018
- UNI EN 1992-1 (Eurocodice 2 Parte 1) → Progettazione delle strutture in calcestruzzo -Regole generali
- UNI EN 1992-2 (Eurocodice 2 Parte 2) → Progettazione delle strutture in calcestruzzo Ponti
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2015 → Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- UNI EN 206-1:2016 → Calcestruzzo Specificazione, prestazione e conformità
- UNI 11104:2014 → Calcestruzzo Specificazione, prestazione, produzione e conformità –
 Istruzioni complementari per l'applicazione della EN 206-1

Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP. Linee guida sul calcestruzzo strutturale

5 UNITA' DI MISURA

Nei calcoli è stato fatto uso delle seguenti unità di misura:

per i carichi: kN/m², kN/m, kN

per i momenti: kNm
 per i tagli e sforzi normali: kN
 per le tensioni: MPa
 per le accelerazioni: m/sec²

6 CARATTERISTICHE DEI MATERIALI

6.1 CALCESTRUZZO

6.1.1 CALCESTRUZZO PER OPERE DI SOTTOFONDAZIONE

Per le opere di sottofondazione è stato previsto un calcestruzzo con classe di resistenza C12/15 e classe di esposizione X0.

Tale calcestruzzo non ha valenza strutturale e quindi non se ne riportano le caratteristiche meccaniche.

6.1.2 CALCESTRUZZO PER FONDAZIONI ED ELEVAZIONI

Per le strutture di fondazione, interrate e contro-terra è stato previsto un calcestruzzo con classe di resistenza C30/37 con le seguenti caratteristiche meccaniche:

Fase finale	R_{ck}	=			37.00	MPa
Resistenza a compressione cilindrica	f_{ck}	=	0.83 x R _{ck}	=	30.71	MPa
Resistenza cilidrica media	f_{cm}	=	f _{ck} + 8	=	38.71	MPa
Modulo elastico	Ec	=	$22000x(f_{cm}/10)^{0.3}$	=	33019	MPa
Coefficiente parziale di sicurezza calcestruzzo	γс	=	1.5			
Coefficiente per le resistenze di lunga durata	α_{cc}	=	0.85			
Resistenza a compressione di calcolo	f_{cd}	=	$\alpha_{cc}xf_{ck}/\gamma_{c}$	=	17.40	MPa
Resistenza a trazione media	f_{ctm}	=	$0.30 \text{ x } f_{ck}^{2/3}$	=	2.94	MPa
Resistenza a trazione	f_{ctk}	=	$0.7 \times f_{ctm}$	=	2.06	MPa
Resistenza a trazione di calcolo	f_{ctd}	=	f_{ctk} / γ_c	=	1.37	MPa
S.L.E.	•					
Tensione limite di esercizio (comb. Rare)	σ_{cR}	=	$f_{ck}\times 0.60$	=	18.43	MPa
Tensione limite di esercizio (comb. Quasi Perm.)	σ_{cP}	=	$f_{ck}\times 0.45$	=	13.82	MPa
Classe di esposizione	XF3					
	•					

6.1.3 CARATTERISTICHE DEL CALCESTRUZZO AI FINI DELLA DURABILITÀ

Al fine di valutare le caratteristiche vincolanti delle miscele di calcestruzzo nei confronti della durabilità viene fatto riferimento alla norma EN 206-1 ed alla norma UNI 11104.

Di seguito viene riportata la classe di esposizione che risulta vincolante ai fini delle caratteristiche della miscela. Inoltre, sono riportati la classe di resistenza, la dimensione massima degli aggregati, la classe di consistenza ed il copriferro minimo delle armature, tenuto anche conto della Vita Nominale dell'opera $V_N = 100$ anni:

Calcestruzzo fondazioni e elevazioni:

Classe di esposizione XF3

Classe di resistenza caratteristica a compressione: C30/37

Dimensione max aggregati fondazioni: 32 mm Dimensione max aggregati elevazioni: 25 mm

Classe minima di consistenza: S4

Copriferro minimo: 50 mm

6.1.4 VERIFICHE ALLO STATO LIMITE DI APERTURA DELLE FESSURE

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Tab. 4.1.III – Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Per le opere della presente relazione si adotta quanto segue:

CLASSE DI ESPOSIZIONE XF3 Fondazione

Elevazione CLASSE DI ESPOSIZIONE XF3

Pertanto, nel caso in esame si ha:

Verifiche a fessurazione – condizioni ambientali aggressive – armatura poco sensibile:

Combinazione di azioni frequente: $wk \le w3 = 0.3 \text{ mm}$ Combinazione di azioni quasi permanente: $wk \le w2 = 0.2 \text{ mm}$

6.1.5 **COPRIFERRO**

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale è somma di due contributi, il copriferro minimo e la tolleranza di posizionamento.

Nel caso in oggetto si hanno i seguenti parametri:

- Classe di esposizione XF3
- Classe di resistenza caratteristica a compressione: C30/37
- Dimensione max aggregati: 25 mm
- Classe minima di consistenza: S4

Il valore del copriferro minimo è valutato secondo quanto riportato al punto C4.1.6.1.3 della Circolare n. 7. Nel caso in esame la classe di esposizione ambientale è aggressiva e si pone, come da tabella C4.1.IV un copriferro minimo pari a 30 mm. La tolleranza di posizionamento è pari a 10 mm. Inoltre, data la vita nominale della struttura pari a 100 anni, come da normativa, deve aggiungersi un copriferro aggiuntivo pari a 10 mm. Si ottiene pertanto un copriferro nominale pari a 50 mm.

Tabella C4.1.IV - Copriferri minimi in mm

			barre da c.a. barre da c.a. elementi a piastra altri elementi		cavi da c.a.p. elementi a piastra		cavi da c.a.p. altri elementi			
C _{min}	Co	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

6.2 **ACCIAIO**

6.2.1 **ACCIAIO PER BARRE DI ARMATURA LENTA**

Per le barre di armatura lenta è stato previsto un acciaio del tipo B450C, con le seguenti caratteristiche meccaniche:

•	$f_{t,k}$	=	540,00	MPa	(resistenza caratteristica a rottura)					
•	$f_{y,k}$	=	450,00	MPa	(tensione o	arat	teristica di sner	vam	ento)	
•	γs	=	1.15		(Coefficien	te pa	arziale di sicure	zza	acciaio)	
•	$f_{y,d} = f_{yk}/\gamma_s$	=	391.30	MPa	(tensione	di	snervamento	di	calcolo	-
	γ_c =1,15)									
•	Es	=	200.000,00	MPa	(modulo el	astic	o istantaneo)			
•	$\sigma_{sR} = f_{yk}/0.75$	5 =	337.50	MPa	(Tensione limite di esercizio per comb. Rare)			e)		

CARATTERIZZAZIONE GEOTECNICA

I parametri necessari a definire le caratteristiche del terreno ai fini del calcolo delle strutture sono ricavati dagli elaborati geologici e geotecnici.

In particolare, con riferimento agli allegati da 1 a 5 della relazione geologica di cui si riporta nella figura seguente uno stralcio, risulta che i terreni sono costituiti da Morene. Il sondaggio geognostico SP.4 risulta quello posto in prossimità dell'opera in progetto. La falda non interessa l'opera oggetto della presente relazione.

Morene

Sedimenti caotici misti a detrito di versante formati da sabbie, ghiaie e trovanti in matrice limoso-sabbiosa.

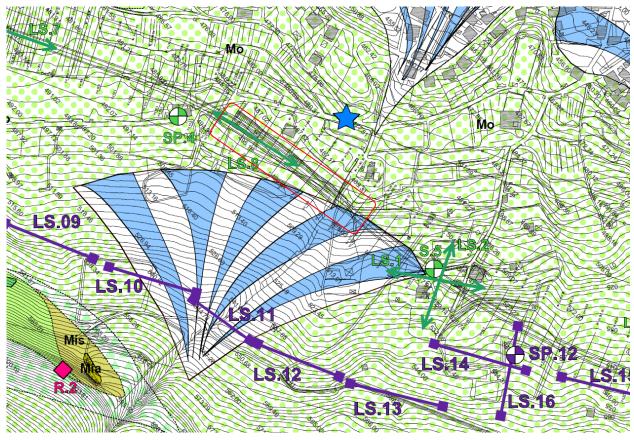


Figura 4: stralcio della carta geomorfologica con ubicazione dei sondaggi nel tratto di interesse

Nella seguente Tabella 5.14 della relazione geotecnica, sono riportati per le *Morene* i parametri geotecnici (Angolo di attrito φ , densità relativa DR, Modulo Elastico E, Modulo Edometrico E_d) ottenuti dalle prove SPT effettuate in foro. In particolare, per il sondaggio S.4 si ha:

Angolo di attrito medio

 $\varphi = 32,10^{\circ}$

Densità relativa media

DR = 43,92%

Modulo Elastico medio

 $E = 146,33 \text{ daN/cm}^2$

Modulo Edometrico medio

 $E_d = 119,08 \text{ daN/cm}^2$

Tabella 5.14 – Morene - Parametri geotecnici da prove SPT

Sondaggio	N'(60)	N(60)	Angolo di Attrito φ	Valore medio per sondaggio	Densità Relativa DR (%)	Valore medio per sondaggio	Modulo Elastico E (Kg/cm²)	Valore medio per sondaggio	Modulo edometrico Ed (Kg/cm²)	Valore medio per sondaggio
N°	Valori Nspt Normalizzati	Valori Nspt Normalizzati	Japanese National Railway		Railway Bazaraa (1962)		Jamiolkowski et Al. (!988)		Begemann (1974) (sabbie e ghiaie)	
SP.12	24,97	15,59	34,49		46,28		138,46		127,07	
SP.12	20,13	26,93	33,04		51,52]	234,22		122,23]
SP.12	21,71	32,13	33,51		54,13		276,49	297,58	123,81	121,34
SP.12	18,67	31,19	32,60		50,57		272,25		120,77	
SP.12	20,34	40,64	33,10	32,77	52,66	49,09	351,77		122,44	
SP.12	13,67	29,30	31,10		42,95]	263,56		115,77]
SP.12	11,61	26,46	30,48	39,33		241,41]	113,71]	
SP.12	18,46	44,42	32,54		49,21]	389,85		120,56]
SP.12	23,55	59,54	34,07		55,16		510,18		125,65	
S.4	18,77	15,59	32,63	32,10	44,45	43,92	139,47	146,33	120,87	119,08
S.4	15,20	17,06	31,56	32,10	43,39	45,92	153,20	140,55	117,30	119,08
S.5	18,77	15,59	32,63	34.08	44,45	51,98	139,47	205,74	120,87	125,71
S.5	28,46	32,32	35,54	34,08	59,52	01,98	272,02	200,74	130,56	120,71
8.6	9,39	7,80	29,82	33,98	31,43	49,72	73,28	207,94	111,49	125,37
8.6	37,15	42,19	38,14	33,98	68,01	49,72	342,60	207,94	139,25	120,37

Nella seguente Tabella 6.9, sempre estratta dalla relazione geotecnica, sono riportati per le *Morene* i valori caratteristici e di calcolo dell'angolo di attrito φ .

Tabella 6.9 - Morene - Valori caratteristici e di calcolo dell'angolo di attrito

Deministra	Sondaggio	Angolo di attrito	Valore carattaristico	Valore di calcolo	
Anno	N°	φ' (°)	φ' _c (°)	φ' _{cal} (°)	
	SP.12				
	SP.12				
	SP.12	-			
2002	SP.12	32,77	32,77	28,21	
	SP.12				
	5.4	32,10	32,10	27,55	
	5.4	32,10	32,10	27,55	
2009	S.5	34,08	34,08	20.52	
2009	5.5	54,08	34,08	29,53	
	5.6	33,98	33,98	29,43	
	S.6	33,98	33,96	29,43	
		Valori medi	33,23	28,68	

Per quanto riguarda l'angolo di attrito di calcolo (o di progetto) delle *Morene* per il muro oggetto della presente relazione si assumerà un valore φ = 28°.

Per quanto riguarda il peso di volume delle *Morene*, così come riportato nel paragrafo 6.2 della Relazione Geotecnica, si assumerà per il muro oggetto della presente relazione (falda assente) un valore γ = 19 kN/m³.

Per quanto riguarda la coesione efficace delle *Morene*, così come riportato nel paragrafo 6.2 della Relazione Geotecnica, si assumerà per il muro oggetto della presente relazione un valore $c' = 0 \text{ kN/m}^2$.

Pertanto, per il muro di sostegno oggetto della presente relazione si assumono i seguenti valori di progetto/calcolo:

 $\gamma = 19 \text{ kN/m}^3$

 Φ = 28°

c' = 0 kPa

8

VITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO

8.1 VITA NOMINALE

La vita nominale di progetto V_N di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I delle NTC2018. Tali valori possono saranno impiegati anche per definire le azioni dipendenti dal tempo.

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI			
1	Costruzioni temporanee e provvisorie	10		
2	Costruzioni con livelli di prestazioni ordinari	50		
3	Costruzioni con livelli di prestazioni elevati	100		

Nel caso in oggetto, l'opera ricade nella definizione di "Costruzioni con livelli di prestazioni

La vita nominale viene pertanto assunta: $V_N = 100$ anni.

8.2 **CLASSE D'USO**

II DM 17/01/2018 al punto 2.4.2 attribuisce alle costruzioni, in funzione della loro destinazione d'uso e quindi delle conseguenze di una interruzione di operatività o di un'eventuale collasso in conseguenza di un evento sismico, diverse classi d'uso. Nel caso in oggetto si fa riferimento alla Classe III: "Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso."

Il coefficiente d'uso risulta pertanto: $C_U = 1.5$.

8.3 PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U.

Per l'opera in progetto si ottiene pertanto il periodo di riferimento: $V_R = V_N \times C_U = 100 \times 1.5 =$ 150 anni.

METODI DI ANALISI E CRITERI DI VERIFICA

Così come previsto dalle NTC 2018 per l'opera di sostegno sono state effettuate le verifiche con riferimento ai seguenti stati limite:

- SLU di tipo geotecnico (GEO)
 - scorrimento sul piano di posa;
 - collasso per carico limite del complesso fondazione-terreno;
 - ribaltamento;

- stabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza strutturale della fondazione e del muro.

accertando che la condizione 6.2.1 delle NTC2018 sia stata soddisfatta per ogni stato limite considerato.

La verifica di stabilità globale del complesso opera di sostegno-terreno è stata effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I delle NTC 2018.

Le rimanenti verifiche sono state effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I delle NTC 2018.

Nella verifica a ribaltamento i coefficienti R3 della Tab. 6.5.I delle NTC 2018 sono stati applicati agli effetti delle azioni stabilizzanti.

Le tabelle che seguono, tratte dalle NTC 2018, introducono i coefficienti parziali utilizzati nella presente relazione.

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_{ extsf{F}}$ (o $\gamma_{ extsf{E}}$)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	$\gamma_{\rm G1}$	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2 (1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γοι

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	$c_{ m uk}$	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	γ_R = 1,15
Resistenza del terreno a valle	γ_R = 1,4

9.1 METODO DI ANALISI IN CONDIZIONI SISMICHE

L'analisi del muro in condizioni sismiche è stata eseguita mediante metodi pseudo-statici di cui al paragrafo 7.11.6.2.1 delle NTC2018.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale k_h e verticale k_v sono stati valutati mediante le espressioni

$$k_{h} = \beta_{m} \cdot \frac{a_{max}}{g}$$
 [7.11.6]

$$k_v = \pm 0.5 \cdot k_h$$
 [7.11.7]

dove

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

 γ = accelerazione di gravità.

L'accelerazione massima è stata valutata con la relazione

$$a_{\text{max}} = S \cdot a_{\text{g}} = (S_{\text{S}} \cdot S_{\text{T}}) \cdot a_{\text{g}}$$
 [7.11.8]

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_S), di cui al § 3.2.3.2 delle NTC 2018;

a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 $\beta_{\rm m}$ = 0.38 nelle verifiche allo stato limite ultimo (*SLV*)

 $\beta_{\rm m}$ = 0.47 nelle verifiche allo stato limite di esercizio (*SLD*).

Nel caso in questione si ha:

Sito in esame.

latitudine: 46,197944 longitudine: 10,142395

Classe: 3 Vita nominale: 100

Siti di riferimento

 Sito 1 ID: 9166
 Lat: 46,1879
 Lon: 10,1019
 Distanza: 3308,882

 Sito 2 ID: 9167
 Lat: 46,1899
 Lon: 10,1739
 Distanza: 2586,175

 Sito 3 ID: 8945
 Lat: 46,2398
 Lon: 10,1711
 Distanza: 5154,250

 Sito 4 ID: 8944
 Lat: 46,2379
 Lon: 10,0990
 Distanza: 5554,461

Parametri sismici

Categoria sottosuolo: B
Categoria topografica: T1
Periodo di riferimento: 150 anni

Coefficiente cu: 1,5

Operatività (SLO):

 Probabilità di superamento:
 81
 %

 Tr:
 90
 [anni]

 ag:
 0,043 g

 Fo:
 2,542

 Tc*:
 0,228 [s]

Danno (SLD):

 Probabilità di superamento:
 63
 %

 Tr:
 151
 [anni]

 ag:
 0,054 g

 Fo:
 2,540

 Tc*:
 0,243
 [s]

Salvaguardia della vita (SLV):

 Probabilità di superamento:
 10
 %

 Tr:
 1424 [anni]

 ag:
 0,119 g

 Fo:
 2,590

 Tc*:
 0,284 [s]

Prevenzione dal collasso (SLC):

 Probabilità di superamento:
 5
 %

 Tr:
 2475 [anni]

 ag:
 0,141 g

 Fo:
 2,619

 Tc*:
 0,290 [s]

Coefficienti Sismici Opere di sostegno NTC 2018

SLD:

Ss: 1,200 Cc: 1,460 St: 1,000 Kh: 0,030 Kv: 0,015 Amax: 0,634 Beta: 0,470

SLV:

Ss: 1,200 Cc: 1,410 St: 1,000 Kh: 0,054 Kv: 0,027 Amax: 1,399

Beta: 0,380

Poiché nel caso dell'opera oggetto della presenta relazione di calcolo trattasi di muri di sostegno liberi di traslare o di ruotare intorno al piede, si è assunto che l'incremento di spinta dovuta al sisma agisce nello stesso punto di quella statica (a 1/3 H).

10 ANALISI DEI CARICHI

10.1 CARICHI PERMANENTI G1

10.1.1 PESO PROPRIO MURO DI SOSTEGNO

Il peso proprio è calcolato in automatico dal software in funzione dei pesi di volume inseriti nel database e alla reale geometria degli elementi.

In particolare, il peso di volume del c.a. è stato assunto pari a 25 kN/m³

Per quanto riguarda il cordolo di sommità di dimensioni 60 cm x 70 cm, per la porzione non inserita nel modello di calcolo avente dimensioni 30 cm x 60 cm si è introdotto un carico lineare pari a:

Peso cordolo = $0.30 \text{ m x } 0.60 \text{ m x } 25 \text{ kN/m}^3 = 4.5 \text{ kN/m}$

e un momento torcente per unità di lunghezza pari a:

Momento cordolo = $4.5 \text{ kN/m} \times 0.15 \text{ m} = 0.68 \text{ kN}$

10.2 CARICHI PERMANENTI NON STRUTTURALI G2

10.2.1 PESO DEL RIEMPIMENTO A TERGO DEI MURI

Il peso proprio del riempimento è calcolato in automatico dal software in funzione dei pesi di volume inseriti e alla reale geometria.

In particolare, il peso di volume del materiale costituente il riempimento è stato assunto pari a 20 kN/m³.

10.2.2 PESO DEL RIVESTIMENTO IN PIETRA

Il rivestimento in pietra previsto in progetto ha uno spessore di 30 cm. Il peso di volume è stato assunto pari a 20 kN/m³. Essendo il rivestimento del muro alto 602 cm, il carico lineare corrispondente è pari a:

Peso rivestimento = $20 \text{ kN/m}^3 \text{ x } 0.30 \text{ m x } 6.02 \text{ m} = 36.00 \text{ kN/m}$ applicato sull'estradosso della fondazione a una distanza di 15 cm dal paramento rivestito.

10.2.3 SPINTA DEL TERRENO IN CONDIZIONI STATICHE

La spinta del terreno in condizioni statiche è stata calcolata mediante la teoria di Coulomb.

Per i riempimenti a tergo dei muri i parametri di progetto sono:

- Peso di volume γ = 20 kN/m³
- Angolo di attrito φ = 36 °
- Coesione c = 0

Nella presente relazione si è considerato un angolo di attrito pari a 35° e un angolo di attrito tra terreno e paramento pari a $2/3 \varphi$ ossia 23,3°.

10.3 AZIONI VARIABILI Q

10.3.1 SOVRACCARICO SUL TERRENO A MONTE

A favore di sicurezza, è stato inserito un carico accidentale sul terreno a tergo dei piedritti pari a 20.0 kPa solo per il tratto orizzontale di larghezza pari 200 cm

11 PROGRAMMI PER L'ANALISI AUTOMATICA

I software utilizzati sono:

1) MDC/2018 della Geostru-software

Versione: 2018.25.7.978

autore: ing. Filippo Catanzariti

produttore: Engsoft srl **distributore:** Engsoft srl

descrizione: software per il calcolo di opere di sostegno

Stato licenza: Vero

Codice attivazione: 5DYGC-URLKM-DT7KN-ASUD2

Stato attivazione: 11/07/2018

2) SLOPE/2018 della Geostru-software

Versione: 2018.29.6.1327 **autore**: ing. Filippo Catanzariti

produttore: Engsoft srl **distributore**: Engsoft srl

descrizione: software per le analisi di stabilità

Stato licenza: Vero

Codice attivazione: 00DMB-06LJK-0RIRT-74UKK

Stato attivazione: 24/05/2018

11.1 VALIDAZIONI DEL CALCOLO E CASI PROVA

MDC 2018/SLOPE 2018

I software GeoStru sono dotati di sistemi di controllo dei dati di input e di output molto sofisticati i quali sono in grado di rilevare errori gravi tali da non consentire le corrette elaborazioni.

L'affidabilità dei codici utilizzati è stata testata attraverso la risoluzione manuale di alcuni schemi semplici della struttura e la risoluzione di alcuni test di validazione che si trovano sul sito del produttore: http://www.geostru.eu/it/validazione-codici-di-calcolo/.

11.2 ANALISI DELL'OPERA DI SOSTEGNO

11.3 CALCOLO DELLA SPINTA ATTIVA CON COULOMB

Il calcolo della spinta attiva con il metodo di *Coulomb* è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura nell'ipotesi di parete ruvida.

Per terreno omogeneo ed asciutto il diagramma delle pressioni si presenta lineare con distribuzione:

$$P_{_t} = K_{_a} \cdot \gamma_{_t} \cdot z$$

La spinta St è applicata ad 1/3 H di valore

$$S_{t} = \frac{1}{2} \gamma_{t} \cdot H^{2} \cdot K_{a}$$

Avendo indicato con:

$$K_{_{a}} = \frac{\sin^{2}(\beta - \phi)}{\sin^{2}\beta \cdot \sin(\beta + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi - \epsilon)}{\sin(\beta + \delta) \cdot \sin(\beta - \epsilon)}}\right]^{2}}$$

Valori limite di Ka:

 $\delta < (\beta - \phi - \epsilon)$ secondo Muller-Breslau

γt= Peso unità di volume del terreno;

β= Inclinazione della parete interna rispetto al piano orizzontale passante per il piede;

φ= Angolo di resistenza al taglio del terreno;

 δ = Angolo di attrito terra-muro;

ε= inclinazione del piano campagna rispetto al piano orizzontale, positiva se antioraria;

H= Altezza della parete.

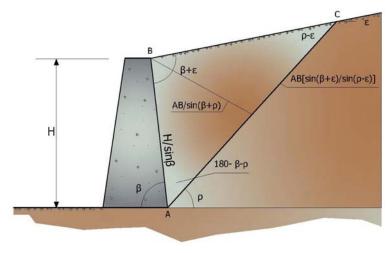


Fig. 5 Cuneo di rottura usato per la derivazione dell'equazione di Coulomb relativa alla pressione attiva.

Se $\epsilon = \delta = 0$ ϵ $\beta = 90$ ° (muro con parete verticale liscia e terrapieno con superficie orizzontale) la spinta St si semplifica nella forma:

$$S_{t} = \frac{\gamma \cdot H^{2}}{2} \frac{\left(1 - sin\phi\right)}{\left(1 + sin\phi\right)} = \frac{\gamma \cdot H^{2}}{2} tan^{2} \left(45 - \frac{\phi}{2}\right)$$

che coincide con l'equazione di Rankine per il calcolo della spinta attiva del terreno con terrapieno orizzontale.

In effetti Rankine adottò essenzialmente le stesse ipotesi fatte da Coulomb, ad eccezione del fatto che trascurò l'attrito terra-muro e la presenza di coesione. Nella sua formulazione generale l'espressione di Ka di Rankine si presenta come segue:

$$K_{_{a}} = cos\epsilon \frac{cos\epsilon - \sqrt{cos^{2}\epsilon - cos^{2}\phi}}{cos\epsilon + \sqrt{cos^{2}\epsilon - cos^{2}\phi}}$$

11.4 CALCOLO DELLA SPINTA ATTIVA CON MONONOBE & OKABE

Il calcolo della spinta attiva con il metodo di *Mononobe & Okabe* riguarda la valutazione della spinta in condizioni sismiche con il metodo pseudo-statico. Esso è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura in una configurazione fittizia di calcolo nella quale l'angolo ϵ di inclinazione del piano campagna rispetto al piano orizzontale, e l'angolo β di inclinazione della parete interna rispetto al piano orizzontale passante per il piede, vengono aumentati di una quantità ϑ tale che:

$$\tan 9 = \left(\frac{k_h}{1 \pm k_h}\right)$$

con kh coefficiente sismico orizzontale e kv verticale.

Calcolo coefficienti sismici

Nelle verifiche, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni (NTC 2018):

$$k_h = \beta_m \cdot \left(\frac{a_{max}}{g}\right); k_v = \pm 0.5 \cdot k_h$$

dove

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (SS) e dell'amplificazione topografica (ST), di cui al § 3.2.3.2 delle NTC 2018;

ag = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 β m = 0.38 nelle verifiche allo stato limite ultimo (SLV)

 β m = 0.47 nelle verifiche allo stato limite di esercizio (SLD).

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (§ 7.11.1) e utilizzando valori di βm incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

11.5 CARICO UNIFORME SUL TERRAPIENO

Un carico Q, uniformemente distribuito sul piano campagna induce delle pressioni costanti pari a:

$$P_{q} = K_{a} \cdot Q \cdot \frac{\sin\beta}{\sin(\beta + \epsilon)}$$

Per integrazione, una spinta pari a Sq:

MANDANTI:

$$S_{q} = K_{a} \cdot Q \cdot H \frac{\sin\beta}{\sin(\beta + \epsilon)}$$

Con punto di applicazione ad H/2, avendo indicato con Ka il coefficiente di spinta attiva secondo *Muller-Breslau*.

11.6 SPINTA ATTIVA IN CONDIZIONI SISMICHE

In presenza di sisma la forza di calcolo esercitata dal terrapieno sul muro è data da:

$$E_{d} = \frac{1}{2} \gamma \cdot (1 \pm k_{v}) \cdot KH^{2} + E_{ws} + E_{wd}$$

Dove:

H= Altezza muro;

kv= Coefficiente sismico verticale;

γ= Peso per unità di volume del terreno;

K= Coefficienti di spinta attiva totale (statico + dinamico);

E_{ws}= Spinta idrostatica dell'acqua;

E_{wd}= Spinta idrodinamica.

Per terreni impermeabili la spinta idrodinamica $E_{wd} = 0$, ma viene effettuata una correzione sulla valutazione dell'angolo ϑ della formula di Mononobe & Okabe così come di seguito:

$$tg \mathcal{G} = \frac{\gamma_{sat}}{\gamma_{sat} - \gamma_{w}} \frac{k_{h}}{1 \mp k_{v}}$$

11.7 CARICO LIMITE DI FONDAZIONI SUPERFICIALI SU TERRENI

VESIC - Analisi a breve termine

Affinché la fondazione di un muro possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale deve essere soddisfatta la seguente disuguaglianza:

$$V_d \leq R$$

Dove V_d è il carico di progetto, normale alla base della fondazione, comprendente anche il peso del muro; mentre R_d è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici.

Nella valutazione analitica del carico limite di progetto R_d si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine. Il carico limite di progetto in condizioni non drenate si calcola come:

$$\frac{R}{A'} \le (2+\pi) \cdot c_u \cdot s_c \cdot i_c \cdot d_c + q$$

Dove

A' = B'*L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico.

c_u= Coesione non drenata;

q= Pressione litostatica totale sul piano di posa;

s_c= Fattore di forma;

$$s_c = 0.2 \cdot \left(\frac{B'}{L'} \right)$$
 per fondazioni rettangolari, il valore di s_c viene assunto pari ad 1 per fondazioni nastriformi

d_c= Fattore di profondità;

$$d_c = 0.4 \cdot K \text{ con } K = \frac{D}{B} \text{ se } \frac{D}{B} \le 1 \text{ altrimenti} K = \arctan \frac{D}{B}$$

i_c= Fattore correttivo per l'inclinazione del carico dovuta ad un carico H;

MANDANTI:

$$i_c = 1 - \frac{2H}{A_f \cdot c_a \cdot N_c}$$

A_f= Area efficace della fondazione;

c_a= Aderenza alla base, pari alla coesione o ad una sua frazione.

VESIC - Analisi a lungo termine

Per le condizioni drenate il carico limite di progetto è calcolato come segue.

$$\frac{R}{A'} \! \leq \! c! \cdot N_c \cdot s_c \cdot i_c \cdot d_c + q! \cdot N_q \cdot s_q \cdot i_q \cdot d_q + 0.5 \cdot \gamma! B! \cdot N_\gamma \cdot s_\gamma \cdot i_\gamma \cdot d_\gamma$$

Dove:

$$\begin{split} N_{q} &= e^{\pi tan\phi'}tan^{2}\bigg(45 + \frac{\varphi'}{2}\bigg)\\ N_{c} &= \Big(N_{q} - 1\Big) \cdot cot\varphi'\\ N_{\gamma} &= 2 \cdot \Big(N_{q} + 1\Big) \cdot tan\varphi' \end{split}$$

Fattori di forma

$$\begin{aligned} s_{_{q}} &= 1 + \left(\frac{B'}{L'}\right) \cdot \tan \varphi' \\ s_{_{\gamma}} &= 1 - 0.4 \cdot \left(\frac{B'}{L'}\right) \end{aligned} \qquad \text{per forma rettangolare} \\ &= \frac{N_{_{q}}}{B'} \cdot \frac{B'}{B'}$$

 $s_{\rm c} = 1 + \frac{N_{\rm q}}{N_{\rm c}} \cdot \frac{B'}{L'}$ per forma rettangolare, quadrata o circolare

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a B'

$$\begin{split} &i_{q} = \left(1 - \frac{H}{V + A_{f} \cdot c_{a} \cot \varphi'}\right)^{m} \\ &i_{\gamma} = \left(1 - \frac{H}{V + A_{f} \cdot c_{a} \cot \varphi'}\right)^{m+1} \\ &i_{c} = i_{q} - \frac{1 - i_{q}}{N_{c} \cdot \tan \varphi'} \\ &m = \frac{2 + \frac{B'}{L'}}{1 + \frac{B'}{L'}} \end{split}$$

Fattori di profondità

$$d_{e} = 1 + 0.4K$$

$$d_{q} = 1 + 2\tan\phi \cdot (1 - \sin\phi) \cdot K$$

$$con K = \frac{D}{B} se \frac{D}{B} \le 1 \text{ altrimenti} K = arctan \frac{D}{B}$$
 $d_{\varphi} = 1$

Sollecitazioni muro

Per il calcolo delle sollecitazioni il muro è stato discretizzato in n-tratti in funzione delle sezioni significative e per ogni tratto sono state calcolate le spinte del terreno (valutate secondo un piano di rottura passante per il paramento lato monte), le risultanti delle forze orizzontali e verticali e le forze inerziali.

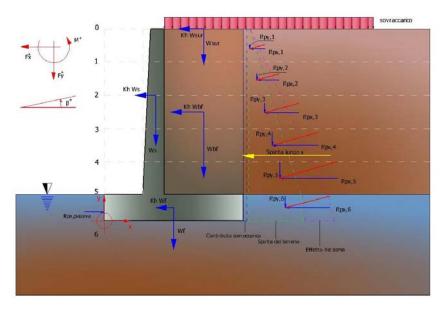


Fig. 6 Schema delle forze agenti su un muro e convenzioni sui segni

Calcolo delle spinte per le verifiche globali

Le spinte sono state valutate ipotizzando un piano di rottura passante per l'estradosso della mensola di fondazione lato monte, tale piano è stato discretizzato in *n-tratti*.

Convenzione segni

Forze verticali positive se dirette dall'alto verso il basso; Forze orizzontali positive se dirette da monte verso valle;

positive se antiorarie; Coppie Angoli positivi se antiorari.

12 RISULTATI DELLE VERIFICHE

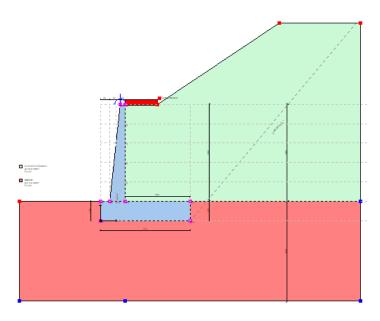


Fig. 7 Modello di calcolo

Dati generali

Lat./Long. [WGS84] 46,197037/10,141344

Normativa GEO NTC 2018 NTC 2018 Normativa STR Spinta Mononobe & Okabe [M.O. 1929]

Dati generali muro

Altezza muro 602,0 cm Spessore testa muro 30,0 cm Risega muro lato valle 67,0 cm Risega muro lato monte 0.0 cm Sporgenza mensola a valle 56,0 cm Sporgenza mensola a monte 400,0 cm Svaso mensola a valle 0,0 cm Altezza estremità mensola a valle 120,0 cm 120,0 cm Altezza estremità mensola a monte

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie Classe d'uso: Classe III Vita nominale: 100,0 [anni] Vita di riferimento: 150,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: В T1 Categoria topografica:

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	90,0	0,42	2,54	0,23
S.L.D.	151,0	0,53	2,54	0,24
S.L.V.	1424,0	1,17	2,59	0,28
S.L.C.	2475,0	1,38	2,62	0,29

Coefficienti sismici orizzontali e verticali

Classe III Opera:

S.L.	amax	beta	kh	kv
Stato limite	[m/s²]	[-]	[-]	[sec]
S.L.O.	0,504	1,0	0,0514	0,0257
S.L.D.	0,636	0,47	0,0305	0,0152
S.L.V.	1,404	0,38	0,0544	0,0272
S.L.C.	1,656	1,0	0,1689	0,0844

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Conglomerati

Congionioran							
Nr.	Classe	fck,cubi	Ec	fck	fcd	fctd	fctm
	Calcestruzzo	[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]
1	C20/25	24,52	29960	19,61	11,33	1,03	2,21
2	C25/30	29,42	31470	24,52	14,16	1,19	2,56
3	C28/35	34,32	32300	27,46	15,86	1,28	2,76
4	C40/50	50,01	35219,99	39,23	19,83	1,49	3,2
5	C30/37	37	33019	30	17,4	1,37	2,94

Acciai:

Nr.	Classe	Es	fyk	fyd	ftk	ftd	ep_tk	epd_ult	ß1*ß2	ß1*ß2
	acciaio	[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]	. –	. –	iniziale	finale
1	B450C	200000	450	391,3	540	391,3	.075	.0675	1	0,5
2	B450C*	200000	450	391,3	540	450	.075	.0675	1	0,5
3	B450C**	200000	450	391,3	458,3	398,5	.012	.01	1	0,5
4	S235H	210000	240	208,7	360	208,7	0,012	0,01	1	0,5
5	S275H	210000	280	243,5	430	243,5	0,012	0,01	1	0,5

6 S355H 210000 360 313 510 360 0,012 0,01 1	0,5	1	0,01	0,012	360	510	313	360	210000	S355H	6
---	-----	---	------	-------	-----	-----	-----	-----	--------	-------	---

Materiali impiegati realizzazione muro C30/37 B450C

Copriferro, Elevazione5,0 cmCopriferro, Fondazione5,0 cmCopriferro, Dente di fondazione5,0 cm

Stratigrafi a

	Ns	Spessore strato (cm)	Inclinazion e dello strato. (°)		Angolo di resistenza a taglio (°)		Angolo di attrito terra muro (°)	Presenza di falda (Si/No)	Litologia	Descrizion e
	1	602	0	20,00	35	0,00	23	No		RILEVATO STRADAL E
Ī	2	620	0	19,00	28	0,00	20	No		MORENE

Carichi concentrati

Descrizione	Posizione x	Posizione y	Fx	Fy	Mz
	(cm)	(cm)	(kN/m)	(kN/m)	(kNm/m)
Rivestimento in	95,0	120,0	0,0	48,0	0,0
pietra					
Peso cordolo	123,0	722,0	0,0	4,5	0,68

Carichi distribuiti

Descrizione	Ascissa iniziale (cm)	Ascissa finale (cm)	Valore iniziale (kPa)	Valore finale (kPa)	Profondità (cm)
Traffico stradale	0,0	200,0	20,0	20,0	-510,0

FATTORI DI COMBINAZIONE

Scorrimento A1+M1+R3

Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,30
3	Peso terreno mensola	1,00
4	Spinta falda	0,00
5	Spinta sismica in x	0,00
6	Spinta sismica in y	0,00
7	Traffico stradale	1,50
8	Rivestimento in pietra	1,00
9	Peso cordolo	1,30

Nr.	Parametro	Coefficienti parziali
1	Tangente angolo res. taglio	1
2	Coesione efficace	1
3	Resistenza non drenata	1
4	Peso unità volume	1

Nr.	Verifica	Coefficienti resistenze
1	Carico limite	1,4
2	Scorrimento	1,1
3	Partecipazione spinta passiva	1,4
	Ribaltamento	1 15

A_Unitari+M1+RSLV

/_Omtaniiniini		
Nr.	Azioni	Fattore combinazione
1	Peso muro	1,00
2	Spinta terreno	1,00
3	Peso terreno mensola	1,00
4	Spinta falda	0,00
5	Spinta sismica in x	1,00
6	Spinta sismica in y	1,00

		7	Traffico stradale		0,20
		8	Rivestimento in pietra		1,00
		9	Peso cordolo		1,00
		1	1		,
	Nr.		Parametro	Coefficienti parziali	
		1	Tangente angolo res. taglio		1
		2	Coesione efficace		1
		3	Resistenza non drenata		1
		4	Peso unità volume		1
			Verifica	Coefficienti resistenze	
		1	Carico limite	Coefficienti resistenze	1,2
		2	Scorrimento		1,2
		3	Partecipazione spinta passiva		1,2
			Ribaltamento		1
SLE 5					
	Nr.		Azioni	Fattore combinazione	
		1	Peso muro		1,00
		2	Spinta terreno		1,00
		3	Peso terreno mensola		1,00
		4	Spinta falda		1,00
		5	Spinta sismica in x		0,00
		6	Spinta sismica in y		0,00
		7	Traffico stradale		1,00
		8	Rivestimento in pietra		1,00
		9	Peso cordolo		1,00
	Nr.		Parametro	Coefficienti parziali	
	INI.	1	Tangente angolo res. taglio	Coefficienti parziali	1
		2	Coesione efficace		1
		3	Resistenza non drenata		1
		4	Peso unità volume		1
		•	r des arma verame		•
	Nr.		Verifica	Coefficienti resistenze	
		1	Carico limite	-	1
		2	Scorrimento		1
		3	Partecipazione spinta passiva		1
			Ribaltamento		0
SLE 6					
	Nr.	4	Azioni	Fattore combinazione	4.00
		1	Peso muro		1,00
		2	Spinta terreno		1,00
		3	Peso terreno mensola Spinta falda		1,00
		5	Spinta sismica in x		1,00 1,00
		6	Spinta sismica in x Spinta sismica in y		1,00
		7	Traffico stradale		1,00
		8	Rivestimento in pietra		1,00
		9	Peso cordolo		1,00
		<u> </u>	1 000 0014010		.,00
			Parametro	Coefficienti parziali	
	Nr.				
	Nr.	1		Coomorona paraisa	1
	Nr.	2	Tangente angolo res. taglio Coesione efficace		1
	Nr.	2	Tangente angolo res. taglio Coesione efficace Resistenza non drenata	Coomoran parameter	1 1
	Nr.	2	Tangente angolo res. taglio Coesione efficace		1 1
		2	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume	·	
	Nr.	3 4	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica	Coefficienti resistenze	1 1 1
		2 3 4	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica Carico limite	·	1 1
		2 3 4	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica Carico limite Scorrimento	·	1 1 1 1
		2 3 4	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica Carico limite Scorrimento Partecipazione spinta passiva	·	1 1 1 1 1
		2 3 4	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica Carico limite Scorrimento	·	1 1 1 1 1 1
01.5.7		2 3 4	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica Carico limite Scorrimento Partecipazione spinta passiva	·	1 1 1 1 1
SLE 7	Nr.	2 3 4	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica Carico limite Scorrimento Partecipazione spinta passiva Ribaltamento	Coefficienti resistenze	1 1 1 1 1
SLE 7		2 3 4	Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica Carico limite Scorrimento Partecipazione spinta passiva	·	1 1

	2	Spinta terreno		1,00
	3	Peso terreno mensola Spinta falda		1,00
	5	Spinta sismica in x		1,00
	6	Spinta sismica in y		1,00
	7	Traffico stradale		0,50
	8	Rivestimento in pietra		1,00
	9	Peso cordolo		1,00
Nr.		Parametro	Coefficienti parziali	
INI.	1	Tangente angolo res. taglio	Coefficienti parziali	
	2	Coesione efficace		
	3	Resistenza non drenata		
	4	Peso unità volume		
Nr.		Verifica	Coefficienti resistenze	
141.	1	Carico limite	COEfficienti resistenze	
	2	Scorrimento		
	3	Partecipazione spinta passiva		
		Ribaltamento		(
SLD				
Nr.		Azioni	Fattore combinazione	
	1	Peso muro		1,00
	2	Spinta terreno		1,0
	3	Peso terreno mensola		1,00
	4	Spinta falda		1,0
	5 6	Spinta sismica in x Spinta sismica in y		1,00
	7	Traffico stradale		0,2
	8	Rivestimento in pietra		1,0
	9	Peso cordolo		1,00
Nie		Dorometro	Coefficienti perzieli	
Nr.	1	Parametro Tangente angolo res. taglio	Coefficienti parziali	1
	2	Coesione efficace		-
	3	Resistenza non drenata		
	4	Peso unità volume		
Nr.		Verifica	Coefficienti resistenze	
INI.	1	Carico limite	COEfficienti resistenze	
	2	Scorrimento		
	3	Partecipazione spinta passiva		
		Ribaltamento		(
A_unitari+M1+RSLV+Beta (+509	%)			
Nr.	,,,,	Azioni	Fattore combinazione	
	1	Peso muro		1,00
	2	Spinta terreno		1,0
	3	Peso terreno mensola		1,00
	4	Spinta falda		1,0
	5 6	Spinta sismica in x Spinta sismica in y		1,0
	7	Traffico stradale		0,20
	8	Rivestimento in pietra		1,00
	9	Peso cordolo		1,0
Nie		Dorometro	Coofficienti namiali	
Nr.	1	Parametro Tangente angolo res. taglio	Coefficienti parziali	
	2	Coesione efficace		
	3	Resistenza non drenata		
	4	Peso unità volume		
Nr		Verifica	Coefficienti registenzo	
Nr.	1	Verifica Carico limite	Coefficienti resistenze	1.3
Nr.	1 2 3	Verifica Carico limite Scorrimento	Coefficienti resistenze	1,2

		Ribaltamento		
arico limite A1+M1+R3				
Nr.		Azioni	Fattore combinazione	
	1	Peso muro		1,:
	2	Spinta terreno		1,
	3	Peso terreno mensola		1,
	4	Spinta falda		0,
	5	Spinta sismica in x		0,
	6	Spinta sismica in y		0,
	7	Traffico stradale		1,
	8	Rivestimento in pietra		1,
	9	Peso cordolo		1,
		5	0 10 11	
Nr.	4	Parametro Tanganta ang tangka	Coefficienti parziali	
	1	Tangente angolo res. taglio		
	2	Coesione efficace		
	3	Resistenza non drenata		
	4	Peso unità volume		
Nr.		Verifica	Coefficienti resistenze	
	1	Carico limite		
		Scorrimento		
	2	Scorrimento Partecipazione spinta passiva		
		Scorrimento Partecipazione spinta passiva Ribaltamento		
haltamanta Ad IMI I D2	2	Partecipazione spinta passiva		1,
	2	Partecipazione spinta passiva Ribaltamento	Fattore combinazione	
paltamento A1+M1+R3 Nr.	3	Partecipazione spinta passiva Ribaltamento Azioni	Fattore combinazione	1
	2 3	Partecipazione spinta passiva Ribaltamento Azioni Peso muro	Fattore combinazione	1
	2 3 1 2	Partecipazione spinta passiva Ribaltamento Azioni Peso muro Spinta terreno	Fattore combinazione	1 1 1
	1 2 3 3	Partecipazione spinta passiva Ribaltamento Azioni Peso muro Spinta terreno Peso terreno mensola	Fattore combinazione	1 1 1 1
	1 2 3 4	Partecipazione spinta passiva Ribaltamento Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda	Fattore combinazione	1 1 1 1 0
	1 2 3 4 5	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x	Fattore combinazione	1 1 1 1 0
	1 2 3 4 5 6	Partecipazione spinta passiva Ribaltamento Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y	Fattore combinazione	1 1 1 1 0 0
	2 3 1 2 3 4 5 6 7	Partecipazione spinta passiva Ribaltamento Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale	Fattore combinazione	1 1 1 1 0 0
	1 2 3 4 5 6	Partecipazione spinta passiva Ribaltamento Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y	Fattore combinazione	1 1 1 0 0 0 1
Nr.	2 3 1 2 3 4 5 6 7	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo		1 1 1 1 0 0 0
	2 3 1 2 3 4 5 6 7 8 9	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro	Fattore combinazione Coefficienti parziali	1 1 1 1 0 0 0 1
Nr.	2 3 1 2 3 4 5 6 7 8 9	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro Tangente angolo res. taglio		1 1 1 1 0 0 0
Nr.	2 3 1 2 3 4 5 6 7 8 9	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro Tangente angolo res. taglio Coesione efficace		1 1 1 1 0 0 0
Nr.	2 3 3 1 2 3 4 5 6 7 8 9	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro Tangente angolo res. taglio Coesione efficace Resistenza non drenata		1 1 1 1 0 0 0 1
Nr.	2 3 1 2 3 4 5 6 7 8 9	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro Tangente angolo res. taglio Coesione efficace		1 1 1 1 0 0 0
Nr.	2 3 3 1 2 3 4 5 6 7 8 9	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume	Coefficienti parziali	1 1 1 1 0 0 0
Nr.	2 3 3 1 2 3 4 5 6 7 8 9	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica		1 1 1 1 1 0 0 0 0 1 1
Nr.	2 3 1 2 3 4 5 6 7 8 9	Partecipazione spinta passiva Ribaltamento Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica Carico limite	Coefficienti parziali	1 1 1 1 1 0 0 0 0 1 1
Nr.	2 3 3 1 2 3 4 5 6 7 8 9	Azioni Peso muro Spinta terreno Peso terreno mensola Spinta falda Spinta sismica in x Spinta sismica in y Traffico stradale Rivestimento in pietra Peso cordolo Parametro Tangente angolo res. taglio Coesione efficace Resistenza non drenata Peso unità volume Verifica	Coefficienti parziali	1 1 1 1 0 0 0

Scorrimento A1+M1+R3 [GEO+STR]

CALCOLO SPINTE

Discretizzazione terreno

Qi	Quota iniziale strato (cm);
Qf	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (°);
Note	Nelle note viene riportata la presenza della falda

Qi Qf G Eps Fi ß Note Delta С

722,0	601,6	20,0	22,43	35,0	23,0	0,0	0,0
601,6	481,2	20,0	22,43	35,0	23,0	0,0	0,0
481,2	360,8	20,0	22,43	35,0	23,0	0,0	0,0
360,8	240,4	20,0	22,43	35,0	23,0	0,0	0,0
240,4	120,0	20,0	22,43	35,0	23,0	0,0	0,0

Coefficienti di spinta ed inclinazioni

Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Coefficiente di incremento dinamico. Dk

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Componenti secondo x e y del coefficiente di incremento dinamico. Dkx, Dky

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0

Spinte risultanti e punto di applicazione

Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	722,0	601,6	17,17	7,29	654,92	654,92	
2	601,6	481,2	28,94	12,28	537,32	537,32	
3	481,2	360,8	40,71	17,28	418,1	418,1	
4	360,8	240,4	52,48	22,28	298,35	298,35	
5	240,4	120,0	64,26	27,27	178,36	178,36	

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Peso del muro (kN); Forza inerziale (kN);

Хр, Үр Coordinate baricentro dei pesi (cm);

Quota	Px	Ру	Хр	Yp	
601,6	0,0	10,84	136,4	658,1	
481,2	0,0	25,62	132,6	589,2	
360,8	0,0	44,38	128,6	517,2	
240,4	0,0	67,05	124,5	443,3	
120,0	0,0	93,73	120,3	368,1	

Sollecitazioni sul muro

Origine ordinata minima del muro (cm). Quota Forza in direzione x (kN); Fx Fy Forza in direzione y (kN); M Momento (kNm);

Н Altezza sezione di calcolo (cm);

Quota	Fx	Fy	M	Н	
601,6	17,17	23,97	8,72	43,4	
481,2	46,11	51,04	40,55	56,8	
360,8	86,82	87,08	110,61	70,2	
240,4	139,3	132,03	232,13	83,6	

120,0 203,56 185,98 418,38 97,0

Armature - Verifiche sezioni (S.L.U.)

Afv Area dei ferri lato valle.

Afm Area dei ferri lato monte.

Nu Sforzo normale ultimo (kN);

Mu Momento flettente ultimo (kNm);

Vrd Resistenza a taglio senza armature trasversali Vrd (kN);

Vwd Resistenza a taglio piegati (kN);

Sic. VT min{Vrd; Vwd}/Vsdu Vsdu Taglio di calcolo (kN);

Afv	Afm	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø16 (20,11)	10Ø16 (20,11)	24,66	280,11	S	203,23	0,0	11,61
10Ø16 (20,11)	10Ø16 (20,11)	52,08	391,03	S	237,05	0,0	5,04
10Ø16 (20,11)	10Ø20 (31,42)	88,96	765,83	S	310,45	0,0	3,51
10Ø16 (20,11)	10Ø20 (31,42)	134,57	946,21	S	345,89	0,0	2,44
10Ø16 (20,11)	10Ø20 (31,42)	189,61	1135,77	S	380,84	0,0	1,83

VERIFICHE GLOBALI

Piano di rottura passante per (xr1,yr1) = (555,0/0,0) Piano di rottura passante per (xr2,yr2) = (555,0/887,1) Centro di rotazione (xro,yro) = (0,0/0,0)

Discretizzazione terreno

Qi	Quota iniziale strato (cm);
Qf	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (°)

ß Angolo perpendicolare al paramento lato monte (°) Note Nelle note viene riportata la presenza della falda

Qi	Qf	G	Eps	Fi	Delta	С	ß	Note
887,1	722,0	20,0	22,43	35,0	23,0	0,0	0,0	
722,0	601,6	20,0	22,43	35,0	23,0	0,0	0,0	
601,6	481,2	20,0	22,43	35,0	23,0	0,0	0,0	
481,2	360,8	20,0	22,43	35,0	23,0	0,0	0,0	
360,8	240,4	20,0	22,43	35,0	23,0	0,0	0,0	
240,4	120,0	20,0	22,43	35,0	23,0	0,0	0,0	
120,0	0,0	19,0	0,0	28,0	20,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

µ Angolo di direzione della spinta.
 Ka Coefficiente di spinta attiva.
 Kd Coefficiente di spinta dinamica.
 Dk Coefficiente di incremento dinamico.

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
20,0	0,32	0,0	0,0	0,3	0,11	0,0	0,0

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Ordinata punto di applicazione risultante spinta (cm); Z(Rpx) Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	887,1	722,0	26,54	11,26	793,07	793,07	
2	722,0	601,6	33,31	14,14	658,25	658,25	
3	601,6	481,2	45,08	19,14	538,78	538,78	
4	481,2	360,8	56,85	24,13	418,92	418,92	
5	360,8	240,4	68,63	29,13	298,88	298,88	
6	240,4	120,0	80,4	34,13	178,73	178,73	
7	120,0	0,0	90,94	37,62	58,82	58,96	

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Ordinata punto di applicazione risultante spinta (cm); Z(Rpy)

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	120,0	0,0	0,0	0,0	0,0	0,0	

Sollecitazioni total i

Fx Forza in direzione x (kN); Forza in direzione y (kN); Fy M Momento (kNm);

	Fx	Fy	M
Spinta terreno	401,75	169,55	372,07
Carichi esterni	0,0	53,85	-51,91
Peso muro	0,0	93,73	-112,75
Peso fondazione	0,0	163,28	-453,1
Sovraccarico	0,0	120,0	-426,0
Terr. fondazione	0,0	547,64	-1987,93
	401,75	1148,05	-2659,63

Momento stabilizzante -3973,61 kNm Momento ribaltante 1313,98 kNm

Verifica alla traslazione

Sommatoria forze orizzontali 401,75 kN Sommatoria forze verticali 1148,05 kN Coefficiente di attrito 0,53 0,0 kPa Adesione -360,0° Angolo piano di scorrimento Forze normali al piano di scorrimento 1148,05 kN Forze parall. al piano di scorrimento 401,75 kN Resistenza terreno 610,43 kN Coeff. sicurezza traslazione Csd 1,38 Traslazione verificata Csd>1

Verifica al ribaltamento

Momento stabilizzante -3973,61 kNm Momento ribaltante 1313,98 kNm

Coeff. sicurezza ribaltamento Csv Muro verificato a ribaltamento Csv>1

2,63

Carico limite verticale VESIC

Somma forze in direzione x (Fx)	401,75 kN	
Somma forze in direzione y (Fy)	1148,05 kN	
Somma momenti	-2659,63 kNm	
Larghezza fondazione	555,0 cm	
Lunghezza	11500,0 cm	
Eccentricità su B	45,84 cm	
Peso unità di volume	19,0 KN/m³	
Angolo di resistenza al taglio	28,0 °	
Coesione	0,0 kPa	
Terreno sulla fondazione	120,0 cm	
Peso terreno sul piano di posa	20,0 KN/m³	
Nq	14,72	
Nc	25,8	
Ng	16,72	
Fattori di forma		
sq	1,02	
SC	1,02	
sg	0,98	
Inclinazione carichi		
iq	0,43	
ic	0,39	
ig	0,28	
Fattori di profondità		
dq	1,08	
dc	1,1	
dg	1,0	
Carico limite verticale (Qlim)	1711,0 kN	
Fattore sicurezza (Csq=Qlim/Fy)	1,06	

Carico limite verificato Csq>1

Tensioni sul terreno

Ascissa centro sollecitazione Larghezza della fondazione	231,66 cm 555,0 cm	•		
x = 0,0 cm x = 555,0 cm	309,36 104,36 kPa	kPa		

MENSOLA A VALLE

Xprogr.	Ascissa progressiva (cm);
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
Н	Altezza sezione (cm);

Xprogr.	Fx	Fy	М	Н	
58,0	0,0	-156,15	-45,8	120,0	

Armature - Verifiche sezioni (S.L.U .)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
	D • • • • • • • • • • • • • • • • • • •

Resistenza a taglio senza armature trasversali Vrd (kN);

Vwd Resistenza a taglio piegati (kN);

Sic. VT min{Vrd; Vwd}/Vsdu

Vsdu	Taglio di calcolo (kN);
------	-------------------------

Afi	Afs	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø22 (38,01)	10Ø22 (38,01)	0,01	1624,25	S	422,86	0,0	2,66

MENSOLA A MONTE

Xprogr.	Ascissa progressiva (cm);
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
Н	Altezza sezione (cm):

Xprogr.	Fx	Fy	М	Н	
155,0	90,94	241,97	-1064,69	120,0	

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);

Vrd Resistenza a taglio senza armature trasversali Vrd (kN);

Vwd Resistenza a taglio piegati (kN);

Sic. VT min{Vrd; Vwd}/Vsdu Vsdu Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø22 (38,01)	10Ø22 (38,01)	92,5	1668,85	S	436,2	0,0	1,77

A_Unitari+M1+RSLV [GEO+STR]

Coefficiente sismico orizzontale Kh Coefficiente sismico verticale Kv 0,0272

CALCOLO SPINTE

Discretizzazione terreno

Qı	Quota iniziale strato (cm);
Qf	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);

ß Angolo perpendicolare al paramento lato monte (°);

Note Nelle note viene riportata la presenza della falda

Qi	Qf	G	Eps	Fi	Delta	С	ß	Note
722,0	601,6	20,0	20,92	35,0	23,0	0,0	0,0	
601,6	481,2	20,0	20,92	35,0	23,0	0,0	0,0	
481,2	360,8	20,0	20,92	35,0	23,0	0,0	0,0	
360,8	240,4	20,0	20,92	35,0	23,0	0,0	0,0	
240,4	120,0	20,0	20,92	35,0	23,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

μ	Angolo di direzione della spinta.
Ka	Coefficiente di spinta attiva.
Kd	Coefficiente di spinta dinamica.
Dk	Coefficiente di incremento dinamico

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Ordinata punto di applicazione risultante spinta (cm); Z(Rpx) Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	722,0	601,6	14,89	6,32	657,2	657,2	
2	601,6	481,2	21,71	9,22	538,25	538,25	
3	481,2	360,8	28,54	12,11	418,6	418,6	
4	360,8	240,4	35,37	15,01	298,66	298,66	
5	240,4	120,0	42,19	17,91	178,58	178,58	

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Peso del muro (kN); Forza inerziale (kN);

Coordinate baricentro dei pesi (cm);

G	Quota	Px	Ру	Хр	Yp
6	601,6	0,59	10,84	136,4	658,1
4	181,2	1,39	25,62	132,6	589,2
3	360,8	2,41	44,38	128,6	517,2
2	240,4	3,65	67,05	124,5	443,3
•	120,0	5,1	93,73	120,3	368,1

Sollecitazioni sul muro

Quota Origine ordinata minima del muro (cm). Forza in direzione x (kN); Fx Fy Forza in direzione y (kN); Μ Momento (kNm); Н Altezza sezione di calcolo (cm);

Quota	Fx	Fy	М	Н	
601,6	15,48	21,66	8,05	43,4	
481,2	38,0	45,66	35,41	56,8	
360,8	67,56	76,53	91,37	70,2	
240,4	104,16	114,22	183,75	83,6	
120,0	147,8	158,8	320,38	97,0	

Armature - Verifiche sezioni (S.L.U.)

Afv Area dei ferri lato valle. Area dei ferri lato monte. Afm Nu Sforzo normale ultimo (kN); Mu Momento flettente ultimo (kNm); Vrd Resistenza a taglio senza armature trasversali Vrd (kN); Resistenza a taglio piegati (kN); Vwd Sic. VT min{Vrd; Vwd}/Vsdu Vsdu Taglio di calcolo (kN);

Afv Afm Vrd Sic. VT Nu Mu Ver. Vwd

10Ø16 (20,11)	10Ø16 (20,11)	22,25	279,71	S	202,92	0,0	12,86
10Ø16 (20,11)	10Ø16 (20,11)	46,67	389,83	S	236,3	0,0	6,1
10Ø16 (20,11)	10Ø20 (31,42)	78,17	763,0	S	308,95	0,0	4,48
10Ø16 (20,11)	10Ø20 (31,42)	116,46	940,44	S	343,33	0,0	3,23
10Ø16 (20,11)	10Ø20 (31,42)	161,97	1125,42	S	376,9	0,0	2,5

VERIFICHE GLOBALI

Piano di rottura passante per (xr1,yr1) = (555,0/0,0) Piano di rottura passante per (xr2,yr2) = (555,0/887,1)Centro di rotazione (xro,yro) = (0,0/0,0)

Discretizzazione terreno

Qi	Quota iniziale strato (cm);
Qf	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (°);
Note	Nelle note viene riportata la presenza della falda

Qi	Qf	G	Eps	Fi	Delta	С	ß	Note
874,9	722,0	20,0	20,92	35,0	23,0	0,0	0,0	
722,0	601,6	20,0	20,92	35,0	23,0	0,0	0,0	
601,6	481,2	20,0	20,92	35,0	23,0	0,0	0,0	
481,2	360,8	20,0	20,92	35,0	23,0	0,0	0,0	
360,8	240,4	20,0	20,92	35,0	23,0	0,0	0,0	
240,4	120,0	20,0	20,92	35,0	23,0	0,0	0,0	
120,0	0,0	19,0	0,0	28,0	20,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

μ	Angolo di direzione della spinta.
Ka	Coefficiente di spinta attiva.
Kd	Coefficiente di spinta dinamica.
Dk	Coefficiente di incremento dinamico.
Kax, Kay	Componenti secondo x e y del coefficiente di spinta attiva.
Dkx, Dky	Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
23,0	0,33	0,39	0,07	0,3	0,13	0,07	0,03
20,0	0,32	0,36	0,05	0,3	0,11	0,05	0,02

Spinte risultanti e punto di applicazione

Quota inizio strato.

	Rpx, Rpy Z(Rpx)	Quota inizio strato. Quota inizio strato. Componenti della spinta nella zona j-esima (kN); Ordinata punto di applicazione risultante spinta (cm); Ordinata punto di applicazione risultante spinta (cm);					
	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	874,9	722,0	24,78	10,42	792,79	792,74	
2	722,0	601,6	27,26	11,5	659,29	659,27	
3	601,6	481,2	34,09	14,39	539,39	539,38	

4	481,2	360,8	40,91	17,29	419,33	419,32
5	360,8	240,4	47,74	20,19	299,17	299,16
6	240,4	120,0	54,56	23,09	178,94	178,94
7	120,0	0,0	61,17	25,58	58,86	59,0

Spinte risultanti e punto di applicazione

Quota inizio strato. Qf Quota inizio strato.

Componenti della spinta nella zona j-esima (kN); Rpx, Rpy Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	120,0	0,0	0,0	0,0	0,0	0,0	

Sollecitazioni total i

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN); M Momento (kNm);

	Fx	Fy	M
Spinta terreno	290,51	122,46	328,41
Carichi esterni	0,0	52,5	-50,46
Peso muro	5,1	93,73	-93,99
Peso fondazione	8,88	163,28	-447,77
Sovraccarico	0,87	16,0	-48,85
Terr. fondazione	29,53	542,76	-1831,48
	334,89	990,73	-2144,13

Momento stabilizzante -3320,94 kNm Momento ribaltante 1176,81 kNm

Verifica alla traslazione

Sommatoria forze orizzontali	334,89 kN		
Sommatoria forze verticali	990,73 kN		
Coefficiente di attrito	0,53		
Adesione	0,0	kPa	
Angolo piano di scorrimento	-360,0 °		
Forze normali al piano di scorrimento	990,73 kN		
Forze parall. al piano di scorrimento	334,89 kN		
Resistenza terreno	526,78 kN		
Coeff. sicurezza traslazione Csd	1,57		
Traslazione verificata Csd>1			

Verifica al ribaltamento

Momento stabilizzante -3320,94 kNm Momento ribaltante 1176,81 kNm Coeff, sicurezza ribaltamento Csv 2,82 Muro verificato a ribaltamento Csv>1

Carico limite verticale VESIC

Somma forze in direzione x (Fx) 334,89 kN Somma forze in direzione y (Fy) 990,73 kN Somma momenti -2144,13 kNm Larghezza fondazione 555,0 cm Lunghezza 11500,0 cm 61,08 cm Eccentricità su B Peso unità di volume 19,0 KN/m³ Angolo di resistenza al taglio 28,0°

Coesione	0,0 kPa
Terreno sulla fondazione	120,0 cm
Peso terreno sul piano di posa	20,0 KN/m³
Nq	14,72
Nc	25,8
Ng	16,72
Fattori di forma	
sq	1,02
SC	1,02
sg	0,98
Inclinazione carichi	
iq	0,44
ic	0,4
ig	0,29
Fattori di profondità	
dq	1,08
dc	1,11
dg	1,0
Carico limite verticale (Qlim)	1614,28 kN
Fattore sicurezza (Csq=Qlim/Fy)	1,36

Carico limite verificato Csq>1

Tensioni sul terreno

Ascissa centro sollecitazione Larghezza della fondazione	216,42 cm 555,0 cm		_
x = 0,0 cm x = 555,0 cm	296,38 60,64 kPa	kPa	

MENSOLA A VALLE

Xprogr. Fx Fy M H	Forza in dir	, .			
Xprogr.	Fx	Fy	М	Н	

7,01091.		. ,	•••	••	
58,0	0,0	-147,7	-43,49	120,0	

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vrd	Resistenza a taglio senza armature trasversali Vrd (kN);
Vwd	Resistenza a taglio piegati (kN);
Sic. VT	min{Vrd; Vwd}/Vsdu
Vsdu	Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø22 (38,01)	10Ø22 (38,01)	0,01	1624,25	S	422,86	0,0	2,81

MENSOLA A MONTE

Xprogr.	Ascissa progressiva (cm);
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
Н	Altezza sezione (cm);

Xprogr.	Fx	Fy	М	Н	
155,0	61,17	216,54	-945,94	120,0	

Armature - Verifiche sezioni (S.L.U.)

Afi Area dei ferri inferiori. Area dei ferri superiori. Afs Nu Sforzo normale ultimo (kN); Mu Momento flettente ultimo (kNm);

Resistenza a taglio senza armature trasversali Vrd (kN); Vrd

Vwd Resistenza a taglio piegati (kN);

Sic. VT min{Vrd; Vwd}/Vsdu Taglio di calcolo (kN); Vsdu

Afi	Afs	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø22 (38,01)	10Ø22 (38,01)	62,2	1654,27	S	431,83	0.0	1,96

A_unitari+M1+RSLV+Beta (+50%) [GEO]

Coefficiente sismico orizzontale Kh 0.0811 Coefficiente sismico verticale Kv 0,0416

CALCOLO SPINTE

Discretizzazione terreno

Qi Quota iniziale strato (cm); Quota finale strato Qf G Peso unità di volume (KN/m3); Inclinazione dello strato. (°); Eps Angolo di resistenza a taglio (°); Fi Delta Angolo attrito terra muro; Coesione (kPa): С

ß Angolo perpendicolare al paramento lato monte (°); Note Nelle note viene riportata la presenza della falda

Fi Qi Qf G Eps Delta ß Note С 722,0 601,6 20,0 20,16 35,0 23,0 0,0 0,0 601,6 481,2 20,0 20,16 35,0 23,0 0,0 0,0 360,8 20,16 23,0 481,2 20,0 35,0 0,0 0,0 360,8 240,4 20,16 23,0 0,0 20,0 35,0 0,0 240,4 120,0 20,0 20,16 35,0 23,0 0,0 0,0

Coefficienti di spinta ed inclinazioni

Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Dk Coefficiente di incremento dinamico.

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Componenti secondo x e y del coefficiente di incremento dinamico. Dkx, Dky

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Componenti della spinta nella zona j-esima (kN); Rpx, Rpy Ordinata punto di applicazione risultante spinta (cm); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy)

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	722,0	601,6	30,34	12,88	660,69	660,69	
2	601,6	481,2	33,7	14,3	540,4	540,4	
3	481,2	360,8	37,06	15,73	420,09	420,09	
4	360,8	240,4	40,42	17,16	299,77	299,77	
5	240,4	120,0	43,78	18,59	179,43	179,43	

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Peso del muro (kN); Ρx Forza inerziale (kN);

Xp, Yp Coordinate baricentro dei pesi (cm);

Quota	Px	Ру	Хр	Yp	
601,6	1,32	10,84	136,4	658,1	
481,2	3,12	25,62	132,6	589,2	
360,8	5,4	44,38	128,6	517,2	
240,4	8,16	67,05	124,5	443,3	
120,0	11,4	93,73	120,3	368,1	

Sollecitazioni sul muro

Quota	Origine ordinata minima del muro (cm).
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
Н	Altezza sezione di calcolo (cm);

Quota	Fx	Fy	M	Н	
601,6	31,65	28,21	16,68	43,4	
481,2	67,15	57,3	70,21	56,8	
360,8	106,49	91,79	166,22	70,2	
240,4	149,68	131,62	308,85	83,6	
120,0	196,7	176,88	502,32	97,0	

VERIFICHE GLOBALI

Piano di rottura passante per (xr1,yr1) = (555,0/0,0) Piano di rottura passante per (xr2,yr2) = (555,0/887,1) Centro di rotazione (xro,yro) = (0,0/0,0)

Discretizzazione terreno

Qf	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (°);
Note	Nelle note viene riportata la presenza della falda

Quota iniziale strato (cm);

Qi	Qf	G	Eps	Fi	Delta	С	ß	Note
868,9	722,0	20,0	20,16	35,0	23,0	0,0	0,0	
722,0	601,6	20,0	20,16	35,0	23,0	0,0	0,0	
601,6	481,2	20,0	20,16	35,0	23,0	0,0	0,0	
481,2	360,8	20,0	20,16	35,0	23,0	0,0	0,0	
360,8	240,4	20,0	20,16	35,0	23,0	0,0	0,0	

240,4	120,0	20,0	20,16	35,0	23,0	0,0	0,0
120,0	0.0	19,0	0.0	28,0	20.0	0,0	0.0

Coefficienti di spinta ed inclinazioni

Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Κd Coefficiente di spinta dinamica. Coefficiente di incremento dinamico. Dk

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,32	0,49	0,2	0,3	0,13	0,18	— 0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
23,0	0,32	0,49	0,2	0,3	0,13	0,18	0,08
20,0	0,32	0,42	0,12	0,3	0,11	0,12	0,04

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Ordinata punto di applicazione risultante spinta (cm); Z(Rpx) Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	868,9	722,0	49,21	20,65	794,2	794,19	
2	722,0	601,6	44,06	18,51	661,03	661,03	
3	601,6	481,2	47,42	19,94	540,69	540,68	
4	481,2	360,8	50,79	21,36	420,34	420,33	
5	360,8	240,4	54,15	22,79	299,98	299,97	
6	240,4	120,0	57,51	24,22	179,61	179,61	
7	120,0	0,0	61,22	25,52	59,17	59,28	

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Quota inizio strato. Qf

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Ordinata punto di applicazione risultante spinta (cm); Z(Rpy)

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	120,0	0,0	0,0	0,0	0,0	0,0	

Sollecitazioni total i

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN); Μ Momento (kNm);

Fx Fy Μ Spinta terreno 364,36 152,99 604,8 Carichi esterni 0,0 52,5 -50,46 Peso muro 11,4 93,73 -70,78 Peso fondazione 19,86 163,28 -441,19 Sovraccarico 1,95 16,0 -39,1765,73 540,36 Terr. fondazione -1655,4463,3 1018,86 -1652,2

Momento stabilizzante -3480,08 kNm Momento ribaltante 1827,88 kNm

Verifica al ribaltamento

Momento stabilizzante	-3480,08 kNm	
Momento ribaltante	1827,88 kNm	
Coeff. sicurezza ribaltamento Csv	1,9	
Muro verificato a ribaltamento Csv>1		

MENSOLA A VALLE

Xprogr. Fx Fy M H	Forza in Forza in Momento	progressiva (cn direzione x (kN direzione y (kN o (kNm); sezione (cm);	l);		
Xprogr.	Fx	Fy	M	Н	
58.0	0.0	-211 39	-62 67	120.0	

MENSOLA A MONTE

Xprogr. Fx Fy M H	Forza in Forza in Momento	progressiva (cr direzione x (kN direzione y (kN o (kNm); sezione (cm);	1);		
Xprogr.	Fx	Fy	М	Н	
155,0	61,22	1048,23	-1885,1	120,0	

Carico limite A1+M1+R3 [GEO+STR]

CALCOLO SPINTE

Discretizzazione terreno

Qi

Qt	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (°);
Note	Nelle note viene riportata la presenza della falda

Quota iniziale strato (cm);

Qi	Qf	G	Eps	Fi	Delta	С	ß	Note
722,0	601,6	20,0	22,43	35,0	23,0	0,0	0,0	
601,6	481,2	20,0	22,43	35,0	23,0	0,0	0,0	
481,2	360,8	20,0	22,43	35,0	23,0	0,0	0,0	
360,8	240,4	20,0	22,43	35,0	23,0	0,0	0,0	

35,0

Coefficienti di spinta ed inclinazioni

120,0

μ	Angolo di direzione della spinta.
Ka	Coefficiente di spinta attiva.
Kd	Coefficiente di spinta dinamica.
Dk	Coefficiente di incremento dinamico.

20,0

22,43

360,8 240,4

23,0

0,0

0,0

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0

Spinte risultanti e punto di applicazione

Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	722,0	601,6	17,17	7,29	654,92	654,92	
2	601,6	481,2	28,94	12,28	537,32	537,32	
3	481,2	360,8	40,71	17,28	418,1	418,1	
4	360,8	240,4	52,48	22,28	298,35	298,35	
5	240,4	120,0	64,26	27,27	178,36	178,36	

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Peso del muro (kN); Рx Forza inerziale (kN);

Xp, Yp Coordinate baricentro dei pesi (cm);

Q	(uota	Px	Ру	Хр	Yp
6	601,6	0,0	14,09	136,4	658,1
4	81,2	0,0	33,31	132,6	589,2
3	860,8	0,0	57,69	128,6	517,2
2	240,4	0,0	87,17	124,5	443,3
1	20,0	0,0 1	21,85	120,3	368,1

Sollecitazioni sul muro

Origine ordinata minima del muro (cm). Quota Forza in direzione x (kN); Fx

Forza in direzione y (kN); Fy Momento (kNm); Μ

Altezza sezione di calcolo (cm); Н

Quota	Fx	Fy	М	Н	
601,6	17,17	27,22	8,62	43,4	
481,2	46,11	58,73	40,09	56,8	
360,8	86,82	100,39	109,45	70,2	
240,4	139,3	152,15	229,86	83,6	
120,0	203,56	214,1	414,5	97,0	

Armature - Verifiche sezioni (S.L.U.)

Afv Area dei ferri lato valle. Afm Area dei ferri lato monte. Nu Sforzo normale ultimo (kN); Mu Momento flettente ultimo (kNm);

Resistenza a taglio senza armature trasversali Vrd (kN); Vrd

Vwd Resistenza a taglio piegati (kN);

Sic. VT min{Vrd; Vwd}/Vsdu Taglio di calcolo (kN); Vsdu

Afv	Afm	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø16 (20,11)	10Ø16 (20,11)	27,92	280,63	S	203,67	0,0	11,63
10Ø16 (20,11)	10Ø16 (20,11)	60,02	392,77	S	238,12	0,0	5,06
10Ø16 (20,11)	10Ø20 (31,42)	102,26	769,32	S	312,34	0,0	3,53
10Ø16 (20,11)	10Ø20 (31,42)	154,91	952,68	S	348,78	0,0	2,46
10Ø16 (20,11)	10Ø20 (31,42)	218,22	1146,45	S	384,92	0,0	1,85

VERIFICHE GLOBALI

Piano di rottura passante per (xr1,yr1) = (555,0/0,0) Piano di rottura passante per (xr2,yr2) = (555,0/887,1) Centro di rotazione (xro,yro) = (0,0/0,0)

Discretizzazione terreno

Qi	Quota iniziale strato (cm);
Qf	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fİ	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (°);
Note	Nelle note viene riportata la presenza della falda

	Qi	Qf	G	Eps	Fi	Delta	С	ß	Note
•	887,1	722,0	20,0	22,43	35,0	23,0	0,0	0,0	
	722,0	601,6	20,0	22,43	35,0	23,0	0,0	0,0	
	601,6	481,2	20,0	22,43	35,0	23,0	0,0	0,0	
	481,2	360,8	20,0	22,43	35,0	23,0	0,0	0,0	
	360,8	240,4	20,0	22,43	35,0	23,0	0,0	0,0	
	240,4	120,0	20,0	22,43	35,0	23,0	0,0	0,0	
	120.0	0.0	19.0	0.0	28.0	20.0	0.0	0.0	

Coefficienti di spinta ed inclinazioni

μ	Angolo di direzione della spinta.
г Ка	Coefficiente di spinta attiva.
Kd	Coefficiente di spinta dinamica.
Dk	Coefficiente di incremento dinamico.
Kax. Kav	Componenti secondo x e v del coefficiente

del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
20,0	0,32	0,0	0,0	0,3	0,11	0,0	0,0

Spinte risultanti e punto di applicazione

Quota inizio strato.

Qi

Qf	Quota inizio strato.
Rpx, Rpy	Componenti della spinta nella zona j-esima (kN);
Z(Rpx)	Ordinata punto di applicazione risultante spinta (cm);
Z(Rpy)	Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1 2	887,1 722,0	722,0 601,6	26,54 33,31	11,26 14,14	793,07 658,25	793,07 658,25	

3	601,6	481,2	45,08	19,14	538,78	538,78
4	481,2	360,8	56,85	24,13	418,92	418,92
5	360,8	240,4	68,63	29,13	298,88	298,88
6	240,4	120,0	80,4	34,13	178,73	178,73
7	120,0	0,0	90,94	37,62	58,82	58,96

Spinte risultanti e punto di applicazione

Qi	Quota inizio strato.
Qf	Quota inizio strato.

Componenti della spinta nella zona j-esima (kN); Rpx, Rpy Ordinata punto di applicazione risultante spinta (cm); Z(Rpx) Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	120,0	0,0	0,0	0,0	0,0	0,0	

Sollecitazioni total i

Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);

	Fx	Fy	M
Spinta terreno	401,75	169,55	372,07
Carichi esterni	0,0	68,25	-65,59
Peso muro	0,0	121,85	-146,58
Peso fondazione	0,0	212,27	-589,04
Sovraccarico	0,0	120,0	-426,0
Terr. fondazione	0,0	711,93	-2584,31
	401,75	1403,85	-3439,45

Momento stabilizzante -4753,43 kNm Momento ribaltante 1313,98 kNm

Verifica alla traslazione

Sommatoria forze orizzontali	401,75 kN	
Sommatoria forze verticali	1403,85 kN	
Coefficiente di attrito	0,53	
Adesione	0,0	kPa
Angolo piano di scorrimento	-360,0 °	
Forze normali al piano di scorrimento	1403,85 kN	
Forze parall. al piano di scorrimento	401,75 kN	
Resistenza terreno	746,44 kN	
Coeff. sicurezza traslazione Csd	1,69	
Traslazione verificata Csd>1		

Verifica al ribaltamento

Momento stabilizzante	-4753,43 kNm	
Momento ribaltante	1313,98 kNm	
Coeff. sicurezza ribaltamento Csv	3,15	
Muro verificato a ribaltamento Csv>1		

Carico limite verticale VESIC

Somma forze in direzione x (Fx)	401,75 kN	
Somma forze in direzione y (Fy)	1403,85 kN	
Somma momenti	-3439,45 kNm	
Larghezza fondazione	555,0 cm	
Lunghezza	11500,0 cm	
Eccentricità su B	32,5 cm	
Peso unità di volume	19,0 KN/m³	

Angolo di resistenza al taglio	28,0 °
Coesione	0,0 kPa
Terreno sulla fondazione	120,0 cm
Peso terreno sul piano di posa	20,0 KN/m ³
Nq	14,72
Nc	25,8
Ng	16,72
Fattori di forma	
sq	1,02
sc	1,02
sg	0,98
Inclinazione carichi	
iq	0,52
ic	0,48
ig	0,37
Fattori di profondità	
dq	1,07
dc	1,1
dg	1,0
Carico limite verticale (Qlim)	2363,76 kN
Fattore sicurezza (Csq=Qlim/Fy)	1,2

Carico limite verificato Csq>1

Tensioni sul terreno

Ascissa centro sollecitazione	245,0 cm		
Larghezza della fondazione	555,0 cm		
x = 0.0 cm	341,81	kPa	
x = 555.0 cm	164,08 kPa		

MENSOLA A VALLE

Xprogr. Fx Fy M H	Ascissa progressiva (cm); Forza in direzione x (kN); Forza in direzione y (kN); Momento (kNm); Altezza sezione (cm);				
Xprogr.	Fx	Fy	М	Н	
58,0	0,0	-170,68	-50,08	120,0	

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vrd	Resistenza a taglio senza armature trasversali Vrd (kN);
Vwd	Resistenza a taglio piegati (kN);
Sic. VT	min{Vrd; Vwd}/Vsdu
Vsdu	Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø22 (38,01)	10Ø22 (38,01)	0,01	1624,25	S	422,86	0,0	2,43

MENSOLA A MONTE

Xprogr.	Ascissa progressiva (cm);
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);

H /	Altezza sezione	(cm)	;
-----	-----------------	------	---

Xprogr.	Fx	Fy	М	Н	
155,0	90,94	77,67	-709,96	120,0	

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.	
Afs	Area dei ferri superiori.	
Nu	Sforzo normale ultimo (kN);	
Mu	Momento flettente ultimo (kNm);	

Resistenza a taglio senza armature trasversali Vrd (kN); Vrd

Vwd Resistenza a taglio piegati (kN);

Sic. VT min{Vrd; Vwd}/Vsdu Vsdu Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø22 (38,01)	10Ø22 (38,01)	92,5	1668,85	S	436,2	0,0	5,51

Ribaltamento A1+M1+R3 [GEO+STR]

CALCOLO SPINTE

Discretizzazione terreno

Qı	Quota iniziale strato (cm);
Qf	Quota finale strato
G	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (°);
Note	Nelle note viene riportata la presenza della falda

	Qi	Qf	G	Eps	Fi	Delta	С	ß	Note
-	722,0	601,6	20,0	22,43	35,0	23,0	0,0	0,0	
	601,6	481,2	20,0	22,43	35,0	23,0	0,0	0,0	
	481,2	360,8	20,0	22,43	35,0	23,0	0,0	0,0	
	360,8	240,4	20,0	22,43	35,0	23,0	0,0	0,0	
	240.4	120.0	20.0	22.43	35.0	23.0	0.0	0.0	

Coefficienti di spinta ed inclinazioni

μ	Angolo di direzione della spinta.
Ka	Coefficiente di spinta attiva.
Kd	Coefficiente di spinta dinamica.
Dk	Coefficiente di incremento dinamico

Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

	μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23	3,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
	3,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23	3,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
	3,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
	3,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN);

Ordinata punto di applicazione risultante spinta (cm); Z(Rpx) Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	722,0	601,6	17,17	7,29	654,92	654,92	
2	601,6	481,2	28,94	12,28	537,32	537,32	
3	481,2	360,8	40,71	17,28	418,1	418,1	
4	360,8	240,4	52,48	22,28	298,35	298,35	
5	240,4	120,0	64,26	27,27	178,36	178,36	

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Peso del muro (kN); Px Forza inerziale (kN);

Xp, Yp Coordinate baricentro dei pesi (cm);

 Quota	Px	Ру	Хр	Yp
601,6	0,0	10,84	136,4	658,1
481,2	0,0	25,62	132,6	589,2
360,8	0,0	44,38	128,6	517,2
240,4	0,0	67,05	124,5	443,3
120,0	0,0	93,73	120,3	368,1

Sollecitazioni sul muro

Quota	Origine ordinata minima del muro (cm).
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
Н	Altezza sezione di calcolo (cm):

Quota	Fx	Fy	M	Н	
601,6	17,17	23,97	8,72	43,4	
481,2	46,11	51,04	40,55	56,8	
360,8	86,82	87,08	110,61	70,2	
240,4	139,3	132,03	232,13	83,6	
120,0	203,56	185,98	418,38	97,0	

Armature - Verifiche sezioni (S.L.U.)

Afv	Area dei ferri lato valle.
Afm	Area dei ferri lato monte.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vrd	Resistenza a taglio senza armature trasversali Vrd (kN);
Vwd	Resistenza a taglio piegati (kN);
Sic. VT	min{Vrd; Vwd}/Vsdu
Vsdu	Taglio di calcolo (kN);

Afv	Afm	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø16 (20,11)	10Ø16 (20,11)	24,66	280,11	S	203,23	0,0	11,61
10Ø16 (20,11)	10Ø16 (20,11)	52,08	391,03	S	237,05	0,0	5,04
10Ø16 (20,11)	10Ø20 (31,42)	88,96	765,83	S	310,45	0,0	3,51
10Ø16 (20,11)	10Ø20 (31,42)	134,57	946,21	S	345,89	0,0	2,44
10Ø16 (20,11)	10Ø20 (31,42)	189,61	1135,77	S	380,84	0,0	1,83

VERIFICHE GLOBALI

Piano di rottura passante per (xr1,yr1) = (555,0/0,0) Piano di rottura passante per (xr2,yr2) = (555,0/887,1)Centro di rotazione (xro,yro) = (0,0/0,0)

Discretizzazione terreno

Qi Quota iniziale strato (cm);

Qf Quota finale strato

G Peso unità di volume (KN/m3); Eps Inclinazione dello strato. (°); Angolo di resistenza a taglio (°); Fi Delta Angolo attrito terra muro;

Coesione (kPa); С

ß Angolo perpendicolare al paramento lato monte (°); Note Nelle note viene riportata la presenza della falda

Qi	Qf	G	Eps	Fi	Delta	С	ß	Note
887,1	722,0	20,0	22,43	35,0	23,0	0,0	0,0	
722,0	601,6	20,0	22,43	35,0	23,0	0,0	0,0	
601,6	481,2	20,0	22,43	35,0	23,0	0,0	0,0	
481,2	360,8	20,0	22,43	35,0	23,0	0,0	0,0	
360,8	240,4	20,0	22,43	35,0	23,0	0,0	0,0	
240,4	120,0	20,0	22,43	35,0	23,0	0,0	0,0	
120,0	0,0	19,0	0,0	28,0	20,0	0,0	0,0	

Coefficienti di spinta ed inclinazioni

Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Coefficiente di spinta dinamica. Kd Dk Coefficiente di incremento dinamico.

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
23,0	0,34	0,0	0,0	0,31	0,13	0,0	0,0
20,0	0,32	0,0	0,0	0,3	0,11	0,0	0,0

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Quota inizio strato. Qf

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Ordinata punto di applicazione risultante spinta (cm); Z(Rpy)

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	887,1	722,0	26,54	11,26	793,07	793,07	
2	722,0	601,6	33,31	14,14	658,25	658,25	
3	601,6	481,2	45,08	19,14	538,78	538,78	
4	481,2	360,8	56,85	24,13	418,92	418,92	
5	360,8	240,4	68,63	29,13	298,88	298,88	
6	240,4	120,0	80,4	34,13	178,73	178,73	
7	120,0	0,0	90,94	37,62	58,82	58,96	

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Ordinata punto di applicazione risultante spinta (cm); Z(Rpx) Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

> Qi Qf Rpx Rpy z(Rpx) z(Rpy)

1 120,0 0,0 0,0 0,0 0,0 0,0

Sollecitazioni total i

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

M Momento (kNm);

	Fx	Fy	M
Spinta terreno	401,75	169,55	372,07
Carichi esterni	0,0	44,25	-42,79
Peso muro	0,0	93,73	-112,75
Peso fondazione	0,0	163,28	-453,1
Sovraccarico	0,0	120,0	-426,0
Terr. fondazione	0,0	547,64	-1987,93
	401,75	1138,45	-2650,51

Momento stabilizzante -3964,49 kNm Momento ribaltante 1313,98 kNm

Verifica alla traslazione

Sommatoria forze orizzontali	401,75 kN	
Sommatoria forze verticali	1138,45 kN	
Coefficiente di attrito	0,53	
Adesione	0,0	kPa
Angolo piano di scorrimento	-360,0 °	
Forze normali al piano di scorrimento	1138,45 kN	
Forze parall. al piano di scorrimento	401,75 kN	
Resistenza terreno	605,33 kN	
Coeff. sicurezza traslazione Csd	1,37	
Traslazione verificata Csd>1	, -	

Verifica al ribaltamento

Momento stabilizzante	-3964,49 kNm	
Momento ribaltante	1313,98 kNm	
Coeff. sicurezza ribaltamento Csv	2,62	
Muro verificato a ribaltamento Csv>1		

Carico limite verticale VESIC

Somma forze in direzione x (Fx)	401,75 kN	
Somma forze in direzione y (Fy)	1138,45 kN	
Somma momenti	-2650,51 kNm	
Larghezza fondazione	555,0 cm	
Lunghezza	11500,0 cm	
Eccentricità su B	44,68 cm	
Peso unità di volume	19,0 KN/m³	
Angolo di resistenza al taglio	28,0 °	
Coesione	0,0 kPa	
Terreno sulla fondazione	120,0 cm	
Peso terreno sul piano di posa	20,0 KN/m³	
Ng	14,72	
Nc	25.8	
Ng	16,72	
Fattori di forma	•	
sq	1,02	
sc	1,02	
sg	0,98	
Inclinazione carichi	•	
iq	0,43	
ic	0,38	
ig	0,28	
Fattori di profondità	-, -	
1		

dq	1,08
dc	1,1
dg	1,0
Carico limite verticale (Qlim)	1704,49 kN
Fattore sicurezza (Csq=Qlim/Fy)	1,07

Carico limite verificato Csq>1

Tensioni sul terreno

Ascissa centro sollecitazione Larghezza della fondazione	232,82 cm 555,0 cm		
x = 0,0 cm x = 555,0 cm	304,21 106,04 kPa	kPa	

MENSOLA A VALLE

Xprogr. Fx Fy M H	Forza in Forza in Momento	progressiva (cn direzione x (kN direzione y (kN o (kNm); sezione (cm);	l);			
Xprogr.	Fx	Fy	М	Н		
58.0	0.0	-153 38	-44 99	120.0		

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vrd	Resistenza a taglio senza armature trasversali Vrd (kN);
Vwd	Resistenza a taglio piegati (kN);
Sic. VT	min{Vrd; Vwd}/Vsdu
Vsdu	Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø22 (38,01)	10Ø22 (38,01)	0,01	1624,25	S	422,86	0,0	2,7

MENSOLA A MONTE

Xprogr. Fx Fy M H	Forza in o Forza in o Momento	orogressiva (c direzione x (kl direzione y (kl o (kNm); ezione (cm);	N);			
Xprogr.	Fx	Fy	М	Н		
155,0	90,94	245,07	-1064,35	120,0		

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vrd	Resistenza a taglio senza armature trasversali Vrd (kN);
Vwd	Resistenza a taglio piegati (kN);
Sic. VT	min{Vrd; Vwd}/Vsdu
Vsdu	Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vrd	Vwd	Sic. VT
10Ø22 (38,01)	10Ø22 (38,01)	92,5	1668,85	S	436,2	0,0	1,75

Verifica fessurazione

SLE 5 [Rara]

Elevazione								
Verifica	Apertura	Apertura	Distanza	Area Cls	Verifica			SigmaF Max
fessurazione	fessure	fessure	fessure	efficace	tensioni	C(+compr.)	daN/cm²	daN/cm²
	mm	Limite	mm	cm2	Normali	daN/cm²		
		mm			daN/cm²			
Si	0,003		256,421	840	Si	2,63	183,55	43,69
Si	0,019		311,902	1250	Si	7,51	183,55	203,15
Si	0,026		271,282	1250	Si	12,46	183,55	322,86
Si	0,047		271,282	1250	Si	19,48	183,55	587,38
Si	0,074		271,282	1250	Si	27,47	183,55	927,53

Fondazione v	alle							
Verifica	Apertura	Apertura	Distanza	Area Cls	Verifica	Sigma	SigmaC Lim	SigmaF Max
fessurazione	fessure	fessure	fessure	efficace	tensioni	C(+compr.)	daN/cm²	daN/cm²
	mm	Limite	mm	cm2	Normali	daN/cm²		
		mm			daN/cm²			
Si	0,007		255,583	1250	Si	1,95	183,55	94,04

Fondazione n	nonte							
Verifica	Apertura	Apertura	Distanza	Area Cls	Verifica	Sigma	SigmaC Lim	SigmaF Max
fessurazione	fessure	fessure	fessure	efficace	tensioni	C(+compr.)	daN/cm²	daN/cm²
	mm	Limite	mm	cm2	Normali	daN/cm²		
		mm			daN/cm²			
Si	0,146	-	255,583	1250	Si	41,13	183,55	1868,69

SLE 6 [Frequente]

Elevazione								
Verifica	Apertura	Apertura	Distanza	Area Cls	Verifica	Sigma	SigmaC Lim	SigmaF Max
fessurazione	fessure	fessure	fessure	efficace	tensioni	C(+compr.)	daN/cm²	daN/cm²
	mm	Limite	mm	cm2	Normali	daN/cm²		
		mm			daN/cm²			
Si	0,003	0,300	256,421	840	Si	2,63	183,55	43,69
Si	0,019	0,300	311,902	1250	Si	7,51	183,55	203,15
Si	0,026	0,300	271,282	1250	Si	12,46	183,55	322,86
Si	0,047	0,300	271,282	1250	Si	19,48	183,55	587,38
Si	0,074	0,300	271,282	1250	Si	27,47	183,55	927,53

Fondazione v	alle							
Verifica	Apertura	Apertura	Distanza	Area Cls	Verifica	Sigma	SigmaC Lim	SigmaF Max
fessurazione	fessure	fessure	fessure	efficace	tensioni	C(+compr.)	daN/cm²	daN/cm²
	mm	Limite	mm	cm2	Normali	daN/cm²		
		mm			daN/cm²			
Si	0,007	0,300	255,583	1250	Si	1,95	183,55	94,04

Fondazione m	nonte							
Verifica	Apertura	Apertura	Distanza	Area Cls	Verifica	Sigma	SigmaC Lim	SigmaF Max
fessurazione	fessure	fessure	fessure	efficace	tensioni	C(+compr.)	daN/cm²	daN/cm²
	mm	Limite	mm	cm2	Normali	daN/cm²		
		mm			daN/cm²			
Si	0,176	0,300	255,583	1250	Si	41,13	183,55	1868,69

SLE 7 [Quasi perm.]

			OLL 1	[Quasi peri							
Elevazione											
Verifica	Apertura	Apertura	Distanza	Area Cls	Verifica	Sigma	SigmaC Lim	SigmaF Max			
fessurazione	fessure	fessure	fessure	efficace	tensioni	C(+compr.)	daN/cm²	daN/cm²			
	mm	Limite	mm	cm2	Normali	daN/cm²					
		mm			daN/cm²						
Si	0,001	0,200	241,421	729	Si	1,79	137,66	21,09			
Si	0,011	0,200	307,019	1214	Si	5,35	137,66	123,62			
Si	0,018	0,200	271,282	1250	Si	9,54	137,66	226,48			

Si	0,035	0,200	271,282	1250	Si	15,60	137,66	443,27
Si	0,059	0,200	271,282	1250	Si	22,71	137,66	733,96

Fondazione valle

Verifica fessurazione	Apertura fessure	Apertura fessure	Distanza fessure	Area Cls efficace	Verifica tensioni	Sigma C(+compr.)	SigmaC Lim daN/cm²	SigmaF Max daN/cm²
	mm	Limite	mm	cm2	Normali	daN/cm²		
		mm			daN/cm²			
Si	0,006	0,200	255,583	1250	Si	1,77	137,66	85,29

Fondazione monte

Verifica fessurazione	Apertura fessure mm	Apertura fessure Limite mm	Distanza fessure mm	Area Cls efficace cm2	Verifica tensioni Normali daN/cm²	Sigma C(+compr.) daN/cm²	SigmaC Lim daN/cm²	SigmaF Max daN/cm²	
Si	0,145	0,200	255,583	1250	Si	35,88	137,66	1621,61	

SLD [Frequente]

Elevazione

Verifica fessurazione	Apertura fessure mm	Apertura fessure Limite mm	Distanza fessure mm	Area Cls efficace cm2	Verifica tensioni Normali daN/cm²	Sigma C(+compr.) daN/cm²	SigmaC Lim daN/cm²	SigmaF Max daN/cm²
Si	0,003	0,300	255,220	831	Si	2,48	183,55	40,19
Si	0,017	0,300	311,902	1250	Si	6,92	183,55	182,97
Si	0,023	0,300	271,282	1250	Si	11,38	183,55	289,28
Si	0,042	0,300	271,282	1250	Si	17,67	183,55	523,88
Si	0,066	0,300	271,282	1250	Si	24,80	183,55	824,49

Fondazione valle

Verifica fessurazione	Apertura fessure mm	Apertura fessure Limite	Distanza fessure mm	Area Cls efficace cm2	Verifica tensioni Normali	Sigma C(+compr.) daN/cm²	SigmaC Lim daN/cm²	SigmaF Max daN/cm²
		mm			daN/cm²			
Si	0,007	0,300	255,583	1250	Si	2,00	183,55	96,14

Fondazione monte

Verifica fessurazione	Apertura fessure mm	Apertura fessure Limite mm	Distanza fessure mm	Area Cls efficace cm2	Verifica tensioni Normali daN/cm²	Sigma C(+compr.) daN/cm²	SigmaC Lim daN/cm²	SigmaF Max daN/cm²
Si	0,183	0,300	255,583	1250	Si	42,15	183,55	1928,53

12.1 ANALISI DI STABILITA'

Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

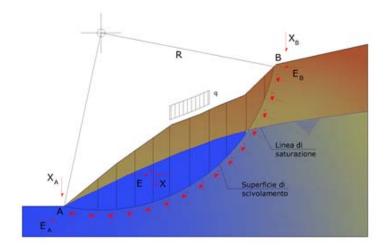
Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è

praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:

- 1. Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (φ), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- 2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.


Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (τ) e confrontate con la resistenza disponibile (τ f), valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.).

Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.

Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a n, il problema presenta le seguenti incognite:

- n valori delle forze normali Ni agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio Ti;
- (n-1) forze normali Ei agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali Xi agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle Ei;
- (n-1) valori della coordinata che individua il punto di applicazione delle Xi;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2).

Mentre le equazioni a disposizione sono:

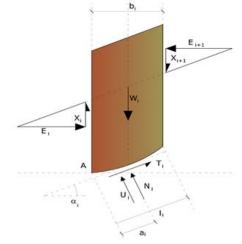
- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

$$i = (6n-2)-(4n) = 2n-2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che Ni sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite.


I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.

Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_y = 0$$
, $\sum M_0 = 0$ Criterialirottura

$$F = \frac{{\Sigma \left\{ {{c_i} \times {b_i} + \left({{W_i} - {u_i} \times {b_i} + \Delta {X_i}} \right) \times \tan {\phi _i}} \right\} \times \frac{{\sec {\alpha _i}}}{{1 + \tan {\alpha _i} \times \tan {\phi _i} \mathbin{/} F}}}}{{\Sigma {W_i} \times {\sin {\alpha _i}}}}$$

I valori di F e di ΔX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre $\Delta X = 0$ ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.

Analisi di stabilità dei pendii con: BISHOP (1955)

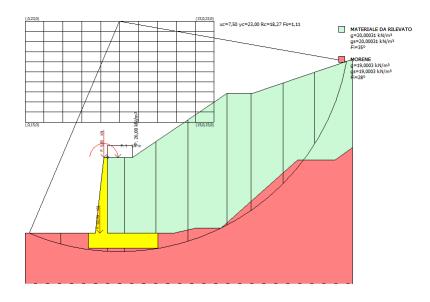


Fig. 8 Modello di calcolo in condizioni statiche

Calcolo eseguito secondo	NTC 2018
Numero di strati	2,0
Numero dei conci	10,0
Grado di sicurezza ritenuto accettabile	1,1
Coefficiente parziale resistenza	1,0
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata
Superficie di forma circolare	

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	0,0 m
Ordinata vertice sinistro inferiore yi	15,0 m
Ascissa vertice destro superiore xs	15,0 m
Ordinata vertice destro superiore ys	23,0 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0
Numero di celle lungo y	10,0

Vertici profilo

Nr	X	у
	(m)	(m)
1	0,0	6,2
2	5,0	6,2
3	5,56	6,2
4	6,53	12,22
5	6,53	12,22
6	8,53	12,22
7	16,03	17,28
8	18,03	17,28
9	26,0	20,0

Vertici strato1

N	X	у
	(m)	(m)
1	0,0	6,2
2	6,53	6,2
3	11,82	6,2
4	13,55	6,62
5	15,55	6,62
6	21,6	12,02
7	24,6	12,02
8	26,0	13,0

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili 1,3 1,3 Favorevoli: Permanenti, variabili 1,0 0,0 ______

Coefficienti parziali per i parametri geotecnici del terreno

______ Tangente angolo di resistenza al taglio 1,25 Coesione efficace 1,25 Coesione non drenata 1,4 Riduzione parametri geotecnici terreno Si

Stratigrafia

•							
Strato	Coesione	Coesione non	Angolo	Peso unità di	Peso saturo	Litologia	
	(kN/m^2)	drenata	resistenza al	volume	(kN/m³)		
		(kN/m²)	taglio	(kN/m³)			
			(°)				
1	0		35	20,00031	20,00031	MATERIALE	
						DA	
						RILEVATO	
2	0		28	19,0003	19,0003	MORENE	

Carichi concentrati

N°	X	у	Fx	Fy	M
	(m)	(m)	(kN)	(kN)	(kN m)
1	5,95	6,2	0	62,40099	0
2	6,23	12,22	0	5,850093	0,884014

Carichi distribuiti

N°	хi	yi	xf	yf	Carico esterno
	(m)	(m)	(m)	(m)	(kN/m^2)
1	6,53	12,22	8,530001	12,22	26,00041

Risultati analisi pendio [NTC 2018]

______ Fs minimo individuato 1,11 Ascissa centro superficie 7,5 m Ordinata centro superficie 23,0 m Raggio superficie 18,27 m

xc = 7,50 yc = 23,00 Rc = 18,268 Fs=1,106

Nr.	В	Alfa	Li	Wi	Kh•Wi	Kv•Wi	С	Fi	Ui	N'i	Ti
	m	(°)	m	(kN)	(kN)	(kN)	(kN/m^2)	(°)	(kN)	(kN)	(kN)
1	2,52	-18,9	2,66	23,1	0,0	0,0	0,0	23,0	0,0	28,1	10,8
2	3,69	-8,9	3,73	155,82	0,0	0,0	0,0	23,0	0,0	167,8	64,5
3	1,34	-0,9	1,35	234,35	0,0	0,0	0,0	23,0	0,0	235,9	90,7
4	2,52	5,1	2,53	407,17	0,0	0,0	0,0	23,0	0,0	395,1	151,9
5	2,52	13,2	2,58	456,23	0,0	0,0	0,0	23,0	0,0	429,9	165,3
6	3,12	22,5	3,38	629,87	0,0	0,0	0,0	23,0	0,0	588,1	226,1
7	1,91	31,3	2,24	376,98	0,0	0,0	0,0	23,0	0,0	357,7	137,5
8	2,52	40,0	3,29	435,99	0,0	0,0	0,0	23,0	0,0	430,4	165,5
9	2,52	51,5	4,05	351,58	0,0	0,0	0,0	23,0	0,0	380,9	146,4
10	2,52	68,9	7,0	187,65	0,0	0,0	0,0	29,3	0,0	225,6	114,2

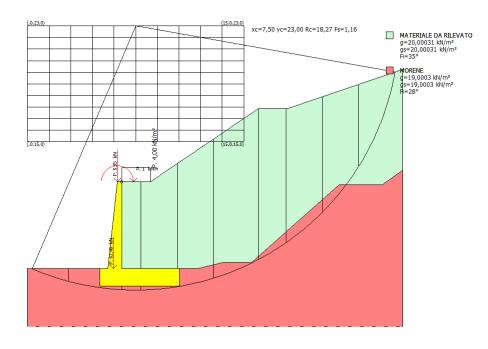


Fig. 9 Modello di calcolo in condizioni sismiche

Calcolo eseguito secondo	NTC 2018
Numero di strati	2,0
Numero dei conci	10,0
Grado di sicurezza ritenuto accettabile	1,1
Coefficiente parziale resistenza	1,0
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata
Superficie di forma circolare	

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	0,0 m
Ordinata vertice sinistro inferiore yi	15,0 m
Ascissa vertice destro superiore xs	15,0 m
Ordinata vertice destro superiore ys	23,0 m
Passo di ricerca	10,0
Numero di celle lungo x	10,0

Numero di celle lungo y 10,0 ______

Sisma

Coefficiente azione sismica orizzontale 0,054

Coefficiente azione sismica verticale 0,027 ______

Vertici profilo

Nr	X	у
	(m)	(m)
1	0,0	6,2
2	5,0	6,2
3	5,56	6,2
4	6,53	12,22
5	6,53	12,22
6	8,53	12,22
7	16,03	17,28
8	18,03	17,28
9	26,0	20,0

Vertici strato1

N	X	у
	(m)	(m)
1	0,0	6,2
2	6,53	6,2
3	11,82	6,2
4	13,55	6,62
5	15,55	6,62
6	21,6	12,02
7	24,6	12,02
8	26,0	13,0

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili 1,0 0,2 Favorevoli: Permanenti, variabili 1,0 0,0

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio 1,25 Coesione efficace 1.25 Coesione non drenata 1,4 Riduzione parametri geotecnici terreno No

Stratigrafia

	Strato	Coesione	Coesione non	Angolo	Peso unità di	Peso saturo	Litologia	
		(kN/m²)	drenata	resistenza al	volume	(kN/m³)		
			(kN/m²)	taglio	(kN/m³)			
				(°)				
Ī	1	0		35	20,00031	20,00031	MATERIALE	
							DA	
							RILEVATO	

2	0	28	19,0003	19,0003	MORENE	

Carichi concentrati

N°	х		Fx	Fy	M	
	(m)	(m)	(kN)	(kN)	(kNm)	
1	5,95	6,2	0	62,40099	0	
2	6,23	12,22	0	5,850093	0,884014	

Carichi distribuiti

N°	xi (m)	yi (m)	xf (m)	yf (m)	Carico esterno (kN/m²)
1	6,53	12,22	8,530001	12,22	4

Risultati analisi pendio [NTC 2018]

Fs minimo individuato 1,16
Ascissa centro superficie 7,5 m
Ordinata centro superficie 23,0 m
Raggio superficie 18,27 m

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

xc = 7,50 yc = 23,00 Rc = 18,268 Fs=1,155

Nr.	B m	Alfa (°)	Li m	Wi (kN)	Kh•Wi (kN)	Kv•Wi (kN)	c (kN/m²)	Fi (°)	Ui (kN)	N'i (kN)	Ti (kN)
1	2,52	-18,9	2,66	23,1	1,25	0,62	0,0	28,0	0,0	29,0	13,4
2	3,69	-8,9	3,73	155,82	8,41	4,21	0,0	28,0	0,0	170,0	78,2
3	1,34	-0,9	1,35	204,76	11,06	5,53	0,0	28,0	0,0	206,3	95,0
4	2,52	5,1	2,53	392,76	21,21	10,6	0,0	28,0	0,0	378,7	174,3
5	2,52	13,2	2,58	456,23	24,64	12,32	0,0	28,0	0,0	423,0	194,7
6	3,12	22,5	3,38	629,87	34,01	17,01	0,0	28,0	0,0	572,6	263,5
7	1,91	31,3	2,24	376,98	20,36	10,18	0,0	28,0	0,0	344,8	158,7
8	2,52	40,0	3,29	435,99	23,54	11,77	0,0	28,0	0,0	410,6	189,0
9	2,52	51,5	4,05	351,58	18,99	9,49	0,0	28,0	0,0	357,9	164,7
10	2,52	68,9	7,0	187,65	10,13	5,07	0,0	35,0	0,0	202,9	123,0

