

ANAS S.p.A.

anas Direzione Progettazione e Realizzazione Lavori

S.S. 38 - LOTTO 4: VARIANTE DI TIRANO DALLO SVINCOLO DI STAZZONA (COMPRESO) ALLO SVINCOLO DI LORETO (CON COLLEGAMENTO ALLA DOGANA DI POSCHIAVO)

S.S. 38 - LOTTO 4: NODO DI TIRANO -TRATTA "A" (SVINCOLO DI BIANZONE - SVINCOLO LA GANDA) E TRATTA "B" (SVINCOLO LA GANDA - CAMPONE IN TIRANO)

PROGETTO ESECUTIVO

L0032

L00 - RELAZIONI TOMBINATURE E MANUFATTI

RELAZIONE DI CALCOLO MURO LINEARE DI IMBOCCO E/O DI USCITA

CODICE PR	OGETTO	NOME FILE		REVISIONE	SCALA:	
PROGETTO	LIV. PROG. N. PROG.	L0032-T00TM00STRRE32_A	.dwg	REVIOIONE	SCALA.	
M I 3 2	4 E 1801	CODICE TOOTMOO	STRRE3	2 A		
С						
В						
Α	EMISSIONE		FEBBARIO 2019	ING. GIUSEPPE CRISÀ	ING. FABRIZIO BAJETTI	ING. VALERIO BAJETTI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

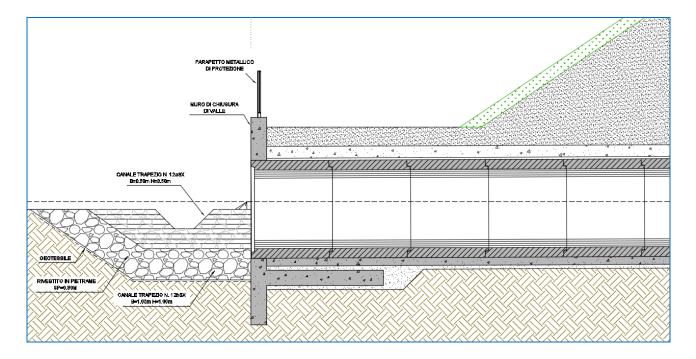
RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

SOMMARIO

1	PR	EMESSA	3
2	DE	SCRIZIONE DELLE OPERE	3
3	NO	PRMATIVA DI RIFERIMENTO	6
4	UN	IITA' DI MISURA	6
5	MA	ATERIALI	7
	5.1	Calcestruzzo	7
	5.1	.1 Calcestruzzo per opere di sottofondazione	7
	5.1	.2 Calcestruzzo per le opere strutturali	7
	5.2	Acciaio	8
	5.2	2.1 Acciaio per armatura lenta	8
	5.3	Calcolo dei copriferri minimi	9
6	CA	RATTERIZZAZIONE GEOTECNICA DEI TERRENI	11
7	ZO	NIZZAZIONE E CARATTERIZZAZIONE SISMICA	12
	7.1	Identificazione della località e dei parametri sismici generali	12
	7.2	Definizione della strategia progettuale	13
	7.3	Parametri di calcolo	15
	7.3	3.1 Parametri numerici sismici	15
	7.3	3.2 Categoria dei terreni di fondazione e categoria topografica	15
	7.3	3.3 Categoria dei terreni di fondazione e categoria topografica	15
	7.3	3.4 Fattori di struttura	16
	7.3	3.5 Definizione dello spettro di progetto	16
	7.4	Definizione dei coefficienti sismici di calcolo	19
8	AN	IALISI DEI CARICHI	20
	8.1	Peso proprio delle strutture in cemento armato	20
	8.2	Peso del terreno a tergo del muro	20
	8.3	Peso proprio del parapetto	20
	8.4	Carichi accidentali a tergo del muro	20
	8.5	Spinta dei terreni a tergo dell'opera di sostegno	20
	8.6	Spinta dei sovraccarichi a tergo dell'opera di sostegno	21
	8.7	Azione sismica	21
	8.7	'.1 Azione inerziale delle masse	21
	8.8	Sovraspinta dinamica dei terreni	22
9	CO	MBINAZIONI DI CARICO	23
	9.1	Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni quasi- permanenti	23
	9.2	Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni frequenti	23
	9.3	Combinazioni di carico allo Stato Limite di Esercizio – Combinazioni caratteristiche	23
	9.4	Combinazioni di carico allo Stato Limite Ultimo statiche	24
	9.5	Combinazione di carico sismiche	
	9.6	Definizione dei coefficienti di partecipazione e riepilogo delle combinazioni	25
10) MU	JRO TIPO 1 - VALUTAZIONE DELLE AZIONI SOLLECITANTI	
	10.1	Approcci normativi	
	10.2	Dati di input	28
	10.3	Azioni sollecitanti	
11	I MU	JRO TIPO 1 - VERIFICHE GEOTECNICHE	
	11.1	Condizione statica	
	11.2	Condizione sismica+	37

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

11.3	B Condizione sismica –	39
11.4	Riepilogo verifiche	41
12 N	IURO TIPO 1 - VERIFICHE STRUTTURALI	42
12.1	Verifiche allo Stato Limite Ultimo	42
12.2	Verifica allo Stato Limite di fessurazione	46
12.3		
	IURO TIPO 1 - VERIFICA DI STABILITA' GLOBALE	
14 N	IURO TIPO 2 - VALUTAZIONE DELLE AZIONI SOLLECITANTI	54
14.1	Approcci normativi	54
14.2	2 Dati di input	56
14.3		
15 M	IURO TIPO 2 - VERIFICHE GEOTECNICHE	62
15.1	Condizione statica	62
15.2	Condizione sismica+	65
15.3		
15.4	1 3	
16 M	IURO TIPO 2 - VERIFICHE STRUTTURALI	
16.1	Verifiche allo Stato Limite Ultimo	70
16.2		
16.3		
	IURO TIPO 2 - VERIFICA DI STABILITA' GLOBALE	
18 M	IURO TIPO 3 - VALUTAZIONE DELLE AZIONI SOLLECITANTI	
18.1	11	
18.2		
18.3		
	IURO TIPO 3 - VERIFICHE GEOTECNICHE	
19.1		
19.2		
19.3		
19.4		
	IURO TIPO 3 - VERIFICHE STRUTTURALI	
20.1		
20.2		
20.3		
21 M	IURO TIPO 3 - VERIFICA DI STABILITA' GLOBALE	108



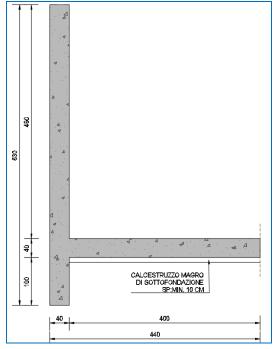
PREMESSA

La presente relazione di calcolo riporta la descrizione, il dimensionamento e le verifiche strutturali e geotecniche dei muri di testata (imbocco e sbocco) in cemento armato dei tombini nell'ambito del progetto esecutivo "S.S.38 – lotto 4: nodo di Tirano – Tratta A (svincolo di Bianzone – svincolo La Ganda) - Tratta B (svincolo La Ganda – Campone di Tirano)".

2 DESCRIZIONE DELLE OPERE

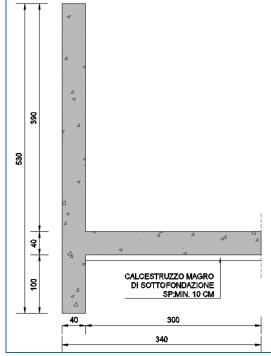
I muri di testata dei tombini presentano una sezione trasversale a "L" (non è presente alcun piede di valle) con un taglione scavato a sezione obbligata e sono interamente realizzati in cemento armato gettato in opera.

I muri di testata non sono rigidamente collegati con i conci di estremità del tombino prefabbricato (è presente esclusivamente una sigillatura in malta).



In via generale il presente progetto prevede al suo interno 3 tipologie essenziali di muri:

Tipologia 1



Le dimensioni della sezione trasversale sono di seguito riepilogate:

- Muro frontale in elevazione: 40 x 490 cm
- Zattera di fondazione: 400 x 40 cm

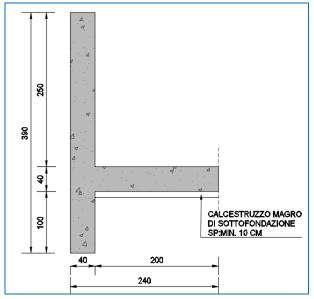
La fondazione è di tipo diretto.

Tipologia 2

Le dimensioni della sezione trasversale sono di seguito riepilogate:

- Muro frontale in elevazione: 40 x 390 cm
- Zattera di fondazione: 300 x 40 cm

La fondazione è di tipo diretto.



- Tipologia 3

Le dimensioni della sezione trasversale sono di seguito riepilogate:

- Muro frontale in elevazione: 40 x 250 cm
- Zattera di fondazione: 200 x 40 cm

La fondazione è di tipo diretto.

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

3 NORMATIVA DI RIFERIMENTO

La presente relazione è stata redatta in osservanza delle seguenti Normative Tecniche:

- Legge 05/01/1971 n.1086 → Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica
- Legge 02/02/1974 n. 64 → Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- **DM 17/01/2018** → Nuove Norme Tecniche per le Costruzioni
- UNI EN 1992-1 (Eurocodice 2 Parte 1) → Progettazione delle strutture in calcestruzzo -Regole generali
- UNI EN 1992-2 (Eurocodice 2 Parte 2) → Progettazione delle strutture in calcestruzzo Ponti
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2015 → Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- UNI EN 206-1:2006 → Calcestruzzo Specificazione, prestazione e conformità
- **UNI 11104** → Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 2016-1
- Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP. Linee guida sul calcestruzzo strutturale.

4 UNITA' DI MISURA

Nei calcoli è stato fatto uso delle seguenti unità di misura:

• per i carichi: kN/m², kN/m, kN

per i momenti: kNm
 per i tagli e sforzi normali: kN
 per le tensioni: N/mm²
 per le accelerazioni: m/sec²

MATERIALI 5

5.1 **C**ALCESTRUZZO

5.1.1 **C**ALCESTRUZZO PER OPERE DI SOTTOFONDAZIONE

Per le opere di sottofondazione è stato previsto un calcestruzzo con classe di resistenza C12/15 e classe di esposizione X0.

Tale calcestruzzo non ha valenza strutturale e quindi non se ne riportano le caratteristiche meccaniche.

5.1.2 **C**ALCESTRUZZO PER LE OPERE STRUTTURALI

Per le zattere di fondazione delle opere è stato previsto un calcestruzzo con classe di resistenza C28/35 e classe di esposizione XC2 con le seguenti caratteristiche meccaniche:

CLASSE DI RESISTENZA					
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA	VALOR	VALORE DI APPLICAZIONE	
Resistenza caratteristica cubica a compressione			R _{ck}	35,00	[N/mm ²]
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	29,05	[N/mm ²]
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f _{cm}	37,05	[N/mm ²]
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	16,46	[N/mm ²]
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	2,83	[N/mm ²]
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	1,98	[N/mm ²]
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,32	[N/mm ²]
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	17,43	[N/mm ²]
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	13,07	[N/mm ²]
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	32 588,11	[N/mm ²]
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	32 588,11	[N/mm ²]

Per le elevazioni di fondazione delle opere è stato previsto un calcestruzzo con classe di resistenza C32/40 e classe di esposizione XF2/XA1 con le seguenti caratteristiche meccaniche:

CLASSE DI RESISTENZA			C32/40		-
DESCRIZIONE CARATTERISTICA	FORMULA DI CALCOLO	RIF. CAP. NORMA	VALORE DI APPLICAZIONE		AZIONE
Resistenza caratteristica cubica a compressione		•	R _{ck}	40,00	[N/mm ²]
Resistenza caratteristica cilindrica a compressione	[0,83*Rck]	11.2.10.1	f _{ck}	33,20	[N/mm ²]
Resistenza cilindrica media a compressione a 28 gg	[fck+8]	11.2.10.1	f _{cm}	41,20	[N/mm ²]
Resistenza di calcolo a compressione	[acc*fck/Yc]	4.1.2.1.1.1	f _{cd}	18,81	[N/mm ²]
Resistenza media a trazione	[0,30*fck ^{2/3}]	11.2.10.2	f _{ctm}	3,10	[N/mm ²]
Resistenza caratteristica a trazione	[0,70*fctm]	11.2.10.2	f _{ctk}	2,17	[N/mm ²]
Resistenza di calcolo a trazione	[fctk/1,5]	4.1.2.1.1.2	f _{ctd}	1,45	[N/mm ²]
Tensione massima di compressione del cls in esercizio (rara)	[0,60*fck]	4.1.2.2.5.1	бс тах	19,92	[N/mm ²]
Tensione massima di compressione del cls in esercizio (quasi perm)	[0,45*fck]	4.1.2.2.5.1	бс тах	14,94	[N/mm ²]
Modulo elastico istantaneo	[Ec=Ecm]	C4.1.2.2.5	Ec	33.642,78	[N/mm ²]
Modulo elastico medio	[22.000*(fcm/10) ^{0,3}]	11.2.10.3	E _{cm}	33.642,78	[N/mm ²]

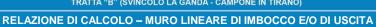
RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

5.2 ACCIAIO

5.2.1 ACCIAIO PER ARMATURA LENTA

Per le armature lente è stato previsto un acciaio del tipo **B450C**, con le seguenti caratteristiche meccaniche:

•	ft,k	=	540,00	N/mm ²	(resistenza caratteristica a rottura)
•	fy,k	=	450,00	N/mm ²	(tensione caratteristica di snervamento)
•	fy,d	=	391,30	N/mm ²	(tensione di snervamento di calcolo - γ _c =1,15)
•	Es	=	210.000,00	N/mm ²	(modulo elastico istantaneo)



5.3 CALCOLO DEI COPRIFERRI MINIMI – ZATTERA DI FONDAZIONE

Ai sensi delle prescrizioni di cui alla normativa vigente e con riferimento alla procedura di calcolo prevista dalla Circolare Applicativa (riferita alla normativa del 2008 ma a tutt'oggi valida) si riporta di seguito il calcolo del copriferro minimo inteso come ricoprimento delle barre:

Definizione della condiizoni ambientali (TABELLA 4.1.IV - Descrizione delle condizioni ambientali)						
Condizioni ambientali	Classe di esposizione	Classe di esposizione di progetto				
Ordinarie	X0,XC1,XC2,XC3,XF1	XC2 ▼				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	Condizioni ambientali di progetto				
Molto Aggressive	XD2, XD3, XS2, XS3, XA3, XF4	Ordinario				

Definizione della classi di resistenza rispetto alla Tabelle C4.1.IV						
Classe minima Cmin		Classe di resistenza del calcestruzzo		Classe di resis calcestru		
C25/30		Barre da c.a. elementi a p ▼		C28/35	▼	
Classe C0		Vita Nominale dell'opera		Produzioni sott	-	
C45/55		100 Anni ▼		NO	▼	

Determinazione del copriferro minimo (Tab. C4.1.IV)				
Copriferro minimo ai sensi della tabella e delle precisazioni di cui al capitolo C4.1.6.1.3	30	mm		
della Circolare Applicativa				
Tolleranza costruttiva	5	mm		
COPRIFERRO MINIMO DI PROGETTO	35	mm		

5.4 CALCOLO DEI COPRIFERRI MINIMI – ELEVAZIONI

Ai sensi delle prescrizioni di cui alla normativa vigente e con riferimento alla procedura di calcolo prevista dalla Circolare Applicativa (riferita alla normativa del 2008 ma a tutt'oggi valida) si riporta di seguito il calcolo del copriferro minimo inteso come ricoprimento delle barre:

Definizione della condiizoni ambientali (TABELLA 4.1.IV - Descrizione delle condizioni ambientali)						
Condizioni ambientali	Classe di esposizione	Classe di esposizione di progetto				
Ordinarie	X0,XC1,XC2,XC3,XF1	XF2 ▼				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	Condizioni ambientali di progetto				
Molto Aggressive	XD2, XD3, XS2, XS3, XA3, XF4	Aggressivo				

Definizione della classi di resistenza rispetto alla Tabelle C4.1.IV						
Classe minima Cmin	Classe di resistenza de	Classe di resistenza del				
C28/35	Calcestruzzo Barre da c.a. elementi a p	C32/40 ▼				
Classe C0	Vita Nominale dell'opera	Produzioni sottoposte a controllo qualità				
C45/55	100 Anni	NO 🔻				

Determinazione del copriferro minimo (Tab. C4.1.IV)					
Copriferro minimo ai sensi della tabella e delle precisazioni di cui al capitolo C4.1.6.1.3 della Circolare Applicativa	40	mm			
Tolleranza costruttiva	5	mm			
COPRIFERRO MINIMO DI PROGETTO	45	mm			

6

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

Ai sensi della relazione geologica e della relazione geotecnica, nonché in conformità con i profili geotecnici allegati al presente progetto esecutivo, il terreno di fondazione è schematizzato dalle seguenti unità litotecniche caratterizzate dai seguenti parametri geotecnici:

- **UNITÀ UG1** Depositi alluvionali recenti e stabilizzati

UNITÀ UG2-1 ConoidiUNITÀ UG2-2 Morene

UNITÀ UG3 Roccia cristallina intensamente fratturata

- UNITÀ UG4 Roccia cristallina (poco o moderatamente fratturata)

La falda si rinviene a circa -12,00 m dal p.c. e quindi non è interferente.

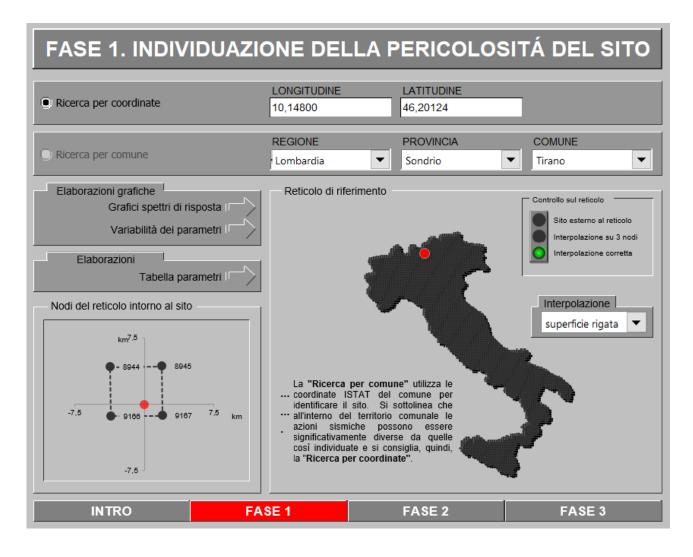
Il terreno spingente è costituito da materiale idoneo per la costruzione del rilevato, caratterizzato dai seguenti parametri geotecnici:

Peso per unità di volume: γ = 20,00 kN/m³
 Angolo di attrito interno: φ = 37,00°
 Coesione efficace: c' = 0,00 kN/m²

A favore di sicurezza i calcoli e le verifiche sono stati effettuati considerando il terreno di fondazione di tipo **UG2-2**:

Peso per unità di volume: γ = 20,00 kN/m³
 Angolo di attrito interno: φ = 33,00°

• Coesione efficace: c' = 0,00 kN/m²



ZONIZZAZIONE E CARATTERIZZAZIONE SISMICA

IDENTIFICAZIONE DELLA LOCALITÀ E DEI PARAMETRI SISMICI GENERALI

L'area oggetto del presente intervento ricade all'interno del territorio del Comune di Tirano sito nella provincia di Sondrio.

7.2 DEFINIZIONE DELLA STRATEGIA PROGETTUALE

In riferimento al D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni", le opere sono progettate (in funzione dell'importanza strategica dell'infrastruttura) secondo i seguenti parametri:

• Vita Nominale dell'opera:

100 anni

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

Ш

	TIPI DI COSTRUZIONI			
1	Costruzioni temporanee e provvisorie	10		
2	Costruzioni con livelli di prestazioni ordinari	50		
3	Costruzioni con livelli di prestazioni elevati	100		

Classe d'uso dell'opera:

2.4.2. CLASSI D'USO

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad i-tinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Coefficiente di utilizzo dell'opera: 1,5

Tab. 2.4.II – Valori del coefficiente d'uso C_U						
CLASSE D'USO	I	п	Ш	IV		
COEFFICIENTE C _U	0,7	1,0	1,5	2,0		

Vita di riferimento dell'opera:
 150 anni

2.4.3. PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto V_N per il coefficiente d'uso C_U :

$$V_R = V_N \cdot C_U \tag{2.4.1}$$

RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

Qui di seguito si riporta la sintesi delle scelte progettuali adottati con i tempi di ritorno dell'azione sismica identificati in funzione del singolo stato limite.

7.3 PARAMETRI DI CALCOLO

7.3.1 PARAMETRI NUMERICI SISMICI

Nella tabella successiva sono riportati i parametri numerici sismici per i periodi di ritorno associati ai diversi Stati Limite:

SLATO	T _R	ag	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	181	0,056	2,557	0,251
SLD	302	0,068	2,565	0,264
SLV	2475	0,136	2,625	0,292
SLC	2475	0,136	2,625	0,292

7.3.2 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Ai sensi di quanto riportato nella Relazione Geotecnica e nei Profili geotecnici allegati al presente progetto esecutivo il terreno di fondazione è classificato simicamente come di categoria B.

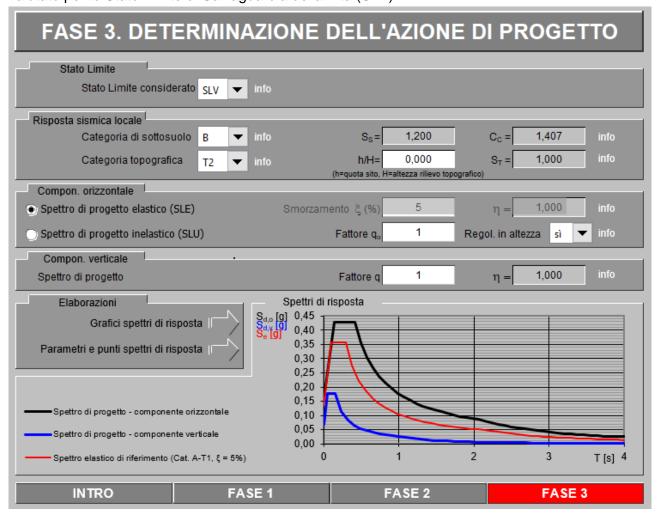
Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.				
Categoria	Caratteristiche della superficie topografica			
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.			
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.			
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.			
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.			
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.			

7.3.3 CATEGORIA DEI TERRENI DI FONDAZIONE E CATEGORIA TOPOGRAFICA

Considerando che il territorio si presenta essenzialmente pianeggiante e privo di significati salti di quota la categoria topografica del sito è stata assunta pari a categoria T2.

Tab. 3.2.III – Categorie topografiche				
Categoria	Caratteristiche della superficie topografica			
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°			
T2	Pendii con inclinazione media i > 15°			
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°			
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°			

7.3.4 FATTORI DI STRUTTURA


A favore di sicurezza e visto il fatto che le opere in esame sono opere interrate, il calcolo e le verifiche sono state effettuate in campo elastico.

Il fattore di struttura è stato pertanto posto pari a q = 1,00.

Lo spettro di progetto adottato sarà pertanto identico allo spettro elastico.

7.3.5 DEFINIZIONE DELLO SPETTRO DI PROGETTO

Nell'immagine successiva è riportata la determinazione dei parametri dello spettro di risposta valutato per lo Stato Limite di Salvaguardia della Vita (SLV):

RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

Nella tabella successiva sono riportati analiticamente i parametri sismici ed i valori delle accelerazioni normalizzate in funzione del periodo di vibrazione:

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a。	0,136_g
F _o	2,625
T _C	0,292 s
Ss	1,200
C _C	1,407
S _T	1,000
q	1,000

Parametri dipendenti

S	1,200
η	1,000
T _B	0,137 s
T _C	0,411 s
Tp	2, 144 s

Espressioni dei parametri dipendenti

$$S = S_c \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_n = T_c / 3$$
 (NTC-07 Eq. 3.2.8)

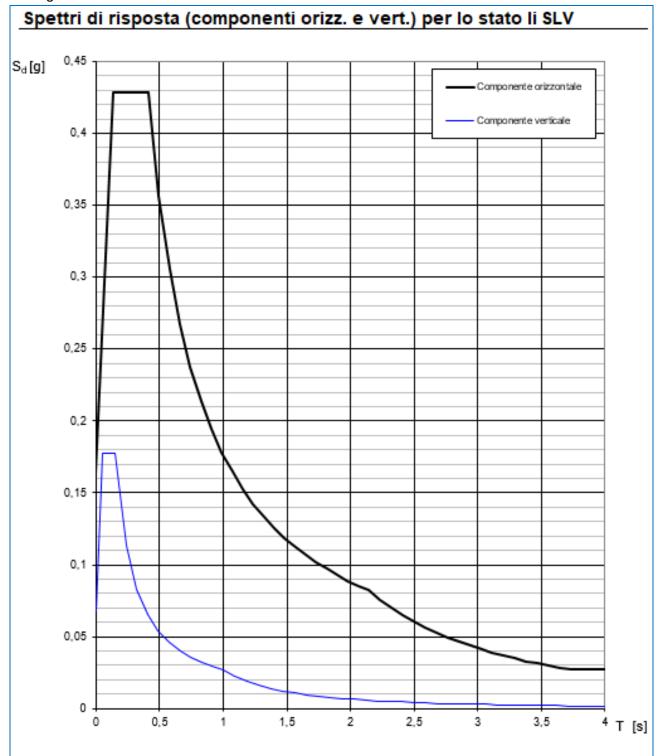
$$T_c = C_c \cdot T_c^t$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4.0 \cdot a_a / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \\ S_c(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_7(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)


Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,163
T₀◀	0,137	0,428
Tc◀	0,411	0,428
	0,494	0,357
	0,576	0,306
	0,659	0,267
	0,741	0,238
	0,824	0,214
	0,906	0,194
	0,989	0,178
	1,071	0,164
	1,154	0,153
	1,236	0,142
	1,319	0,134
	1,401	0,126
	1,484	0,119
	1,566	0,112
	1,649	0,107
	1,731	0,102
	1,814	0,097
	1,896	0,093
	1,979	0,089
_	2,061	0,085
T₀◀─	2,144	0,082
	2,232	0,076
	2,321	0,070
	2,409	0,065
	2,497	0,061
	2,586	0,056
	2,674	0,053
	2,763	0,049
	2,851	0,046
	2,939	0,044
	3,028	0,041
	3,116	0,039
	3,205	0,037
	3,293	0,035
	3,381	0,033
	3,470	0,031
	3,558	0,030
	3,646	0,028
	3,735	0,027
	3,823	0,027
	3,912	0,027
	4,000	0,027

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

Nell'immagine successiva è riportato il diagramma dello spettro di risposta per lo Stato Limite di Salvaguardia della Vita:

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

7.4 DEFINIZIONE DEI COEFFICIENTI SISMICI DI CALCOLO

Il coefficiente sismico orizzontale è determinato mediante la seguente relazione:

$$k_{h} = \beta_{m} \cdot \frac{a_{\text{max}}}{g}$$

dove:

 a_{max} → accelerazione orizzontale massima attesa al sito valutata mediante la seguente formulazione:

$$a_{\text{max}} = S \cdot a_g/g = S_S \cdot S_T \cdot a_g/g = 1,20 \cdot 1,00 \cdot 0,136 = 0,163$$

g → accelerazione di gravità

Il muro di sostegno può essere considerato come libero di ruotare intorno al piede. Il coefficiente β_m viene pertanto determinato secondo quanto previsto dal D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni" – par. 7.11.6.2.1:

Il coefficiente β_m assume un valore pari a:

• 0,38 per le verifiche strutturali e geotecniche a carico limite e scorrimento. I coefficienti sismici in direzione orizzontale e verticale risultano dunque pari a: $K_h=0,062$

 $K_v = 0.031$

N_V=0,031

Il coefficiente β_m assume un valore pari a:

0,57 per le verifiche geotecniche a ribaltamento
 I coefficienti sismici in direzione orizzontale e verticale risultano dunque pari a:

 $K_h = 0.093$

 $K_v = 0.0465$

8 ANALISI DEI CARICHI

8.1 PESO PROPRIO DELLE STRUTTURE IN CEMENTO ARMATO

Il peso per unità di volume delle strutture in cemento armato è assunto pari a $\gamma_{ca} = 25,0$ kN/m³.

8.2 PESO DEL TERRENO A TERGO DEL MURO

Il peso del terreno a tergo del muro (gravante sulla zattera di fondazione) è stato assunto pari $\gamma = 20,00 \text{ kN/m}^3$.

8.3 PESO PROPRIO DEL PARAPETTO

Al di sopra della sommità delle pareti verticali è stata prevista la posa in opera di un parapetto metallico, il cui peso per unità di lunghezza è stato assunto pari a p = 0,20 kN/m.

8.4 CARICHI ACCIDENTALI A TERGO DEL MURO

A favore di sicurezza e per tener conto della eventuale presenza di mezzi d'opera leggeri in fase di manutenzione si considera un carico accidentale a tergo del muro (gravante sulla zattera di fondazione) pari a $\mathbf{q} = \mathbf{5,00} \ \mathbf{kN/m^2}$.

8.5 SPINTA DEI TERRENI A TERGO DELL'OPERA DI SOSTEGNO

La spinta del terreno sulle pareti laterali dell'opera è stata calcolata mediante la seguente relazione:

$$S_t = \frac{1}{2} \cdot \gamma \cdot k \cdot H^2$$

dove:

- y è il peso per unità di volume del terreno
- k è il coefficiente di spinta del terreno
- H è l'altezza complessiva dello strato di terreno

Il valore del coefficiente di spinta attiva del terreno viene determinato mediante la formulazione analitica di Coulomb:

$$k_{a} = \frac{sen^{2}(\beta + \varphi)}{sen^{2}\beta \cdot sen(\beta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon)}{sen(\beta - \delta) \cdot sen(\beta + \varepsilon)}}\right]}$$

con:

- Φ = angolo di attrito interno
- β = inclinazione del paramento di monte rispetto all'orizzontale $\beta = 0^{\circ}$
- δ = angolo di attrito terra muro
- ε = inclinazione del terreno di monte rispetto all'orizzontale

Il punto di applicazione della spinta è posto a 1/3 dell'altezza del singolo strato di terreno.

8.6 SPINTA DEI SOVRACCARICHI A TERGO DELL'OPERA DI SOSTEGNO

La spinta attiva dovuta ai sovraccarichi viene valutata mediante la seguente relazione:

$$S_a = q \cdot k \cdot H$$

dove:

q è l'entità del sovraccarico agente

- sovraccarichi accidentali → q = 5,00 kN/m²

Sono stati considerati i seguenti sovraccarichi agenti:

Il valore del coefficiente di spinta attiva del terreno viene determinato mediante la formulazione analitica di Coulomb:

$$-k_{a} = \frac{sen^{2}(\beta + \varphi)}{sen^{2}\beta \cdot sen(\beta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon)}{sen(\beta - \delta) \cdot sen(\beta + \varepsilon)}}\right]}$$

con:

- φ = angolo di attrito interno
- β = inclinazione del paramento di monte rispetto β = 0°
- δ = angolo di attrito terra muro
- ε = inclinazione del terreno di monte rispetto all'orizzontale

Il punto di applicazione della spinta è posto a 1/3 dell'altezza del singolo strato di terreno. Non sono previsti carichi permanenti sul terreno a tergo dell'opera di sostegno.

8.7 AZIONE SISMICA

Le sollecitazioni agenti sulla struttura in fase sismica vengono determinate attraverso un'analisi pseudo-statica, secondo quanto riportato nel DM 17.01.2018 "Nuove norme tecniche per le costruzioni", paragrafo 7.11.6.

8.7.1 AZIONE INERZIALE DELLE MASSE

Le azioni inerziali, orizzontali e verticali, dovute alle accelerazioni subite in fase sismica dalle masse degli elementi strutturali e del terreno vengono valutate moltiplicando il peso degli elementi strutturali per i coefficienti sismici orizzontale k_h e verticale k_v .

8.8 SOVRASPINTA DINAMICA DEI TERRENI

L'azione di spinta attiva dei terreni in fase sismica (spinta statica + sovraspinta dinamica) viene valutata mediante la seguente relazione:

$$E_d = \frac{1}{2} \cdot \gamma \cdot (1 \pm k_v) \cdot k_{aE} \cdot h^2 + E_{ws}$$

dove:

- y è il peso per unità di volume del terreno
- k_v è il coefficiente sismico verticale
- k_{aE} è il coefficiente di spinta attiva dinamica valutato mediante la formulazione di Mononobe Okabe:

$$k_{aE} = \frac{sen^{2}(\psi + \varphi - \vartheta)}{\cos\vartheta \cdot sen^{2}\psi \cdot sen(\psi - \vartheta - \delta) \cdot \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \beta - \vartheta)}{sen(\varphi - \vartheta - \delta) \cdot sen(\psi + \beta)}}\right]}$$

- h è l'altezza della struttura soggetta alla spinta del terreno
- E_{ws} è l'eventuale spinta idrostatica (opera in presenza di falda)

L'angolo θ che compare nelle due formulazioni di Mononobe-Okabe vale:

$$\mathcal{G} = \frac{k_h}{1 \mp k_v}$$

9 COMBINAZIONI DI CARICO

9.1 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI QUASI-PERMANENTI

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche quasi permanenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{ki} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

9.2 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI FREQUENTI

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche frequenti allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + \psi_{11} \cdot Q_{k1} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{1i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori frequenti

9.3 COMBINAZIONI DI CARICO ALLO STATO LIMITE DI ESERCIZIO – COMBINAZIONI CARATTERISTICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche caratteristiche allo Stato Limite di Esercizio, ottenute tramite la relazione generale:

$$F_d = \sum G_{kj} + Q_{k1} + \sum (\psi_{0i} \cdot Q_{ki})$$

dove:

- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

9.4 COMBINAZIONI DI CARICO ALLO STATO LIMITE ULTIMO STATICHE

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.5.3. Sulla base di ciò sono state individuate le combinazioni di carico statiche allo Stato Limite Ultimo, ottenute tramite la relazione generale:

$$F_d = \sum_{j=1}^m \left(\gamma_{Gj} \cdot G_{kj} \right) + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{0i} \cdot \gamma_{Qi} \cdot Q_{ki} \right)$$

dove:

- γ_G e γ_Q rappresentano i coefficienti parziali di amplificazione dei carichi
- G_{ki} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{k1} rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione
- Qki rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici

I coefficienti di amplificazione dei carichi per le combinazioni di carico, secondo il D.M. 174.01.2018 "Nuove norme tecniche per le costruzioni", par. 2.6, tabella 2.6.1, sono riepilogati nelle seguenti tabelle:

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\rm F}$			
Contribing and the Contribing and the Contribing and the Contribing and the Contribution and	Favorevoli	24	0,9	1,0	1,0
Carichi permanenti G ₁	Sfavorevoli	ΥG1	1,1	1,3	1,0
Contribit to the state of the s	Favorevoli		0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	Y _{G2}	1,5	1,5	1,3
A-iii-bili O	Favorevoli	Yα	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli		1,5	1,5	1,3

Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Le verifiche di tipo geotecnico sono state effettuate secondo l'approccio 2 (A1-M1-R3) del D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni", cap.6.

I coefficienti di riduzione dei parametri geotecnici e delle resistenze verranno esplicitati negli specifici paragrafi relativi alle verifiche di carattere geotecnico.

9.5 COMBINAZIONE DI CARICO SISMICHE

In fase sismica è state ipotizzate un'unica combinazione di carico allo Stato Limite di Salvaguardia ottenuta tramite la relazione generale:

$$F_d = E + \sum G_{kj} + \sum (\psi_{2i} \cdot Q_{ki})$$

dove:

- E rappresenta il carico sismico
- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente
- Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile
- Ψ_{2i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori quasi permanenti

9.6 DEFINIZIONE DEI COEFFICIENTI DI PARTECIPAZIONE E RIEPILOGO DELLE COMBINAZIONI

La definizione dei coefficienti di partecipazione ψ dei carichi elementari e la definizione compiuta delle combinazioni di carico considerate per il dimensionamento e le verifiche sono riportati all'interno dei singoli capitoli successivi di valutazione delle azioni sollecitanti (strutturali e geotecniche).

10

MURO TIPO 1 - VALUTAZIONE DELLE AZIONI SOLLECITANTI

10.1 **APPROCCI NORMATIVI**

Nelle verifiche di sicurezza allo Stato Limite Ultimo, in accordo con quanto riportato nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 6.5.3.1.1., le verifiche geotecniche e strutturali devono essere effettuate secondo l'Approccio 2, combinazione dei coefficienti parziali A1+M1+R3, tenendo conto dei seguenti valori dei coefficienti parziali:

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

(I) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti 🛭 γG1

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi^{'}}$	1,0	1,25
Coesione efficace	c' _k	γċ	1,0	1,25
Resistenza non drenata	c _{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

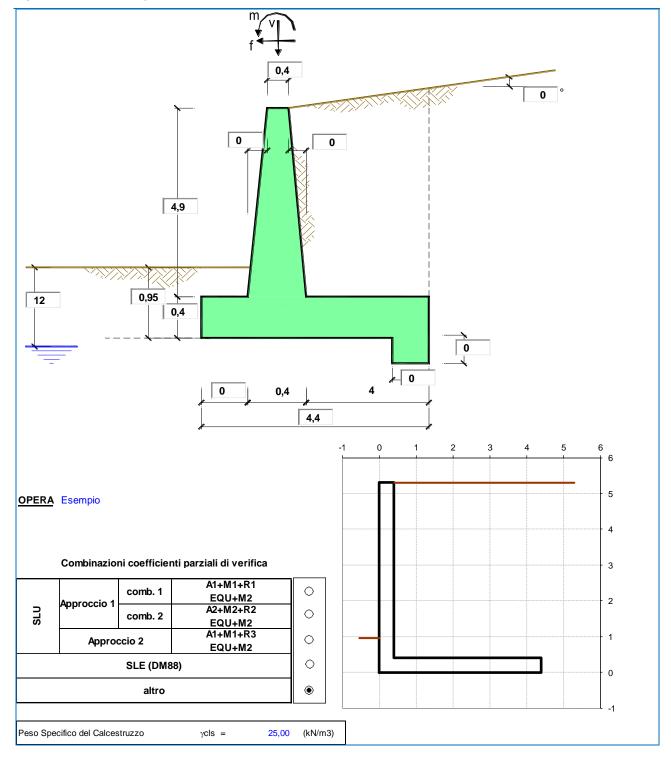
Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

Nelle verifiche di sicurezza allo Stato Limite di salvaguardia della Vita, in accordo con quanto riportato nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 7.11.6.2.2., si pongono pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e si impiegano le resistenze di progetto con i coefficienti parziali indicati in tabella 7.11.III:

Tab. 7.11.III - Coefficienti parziali ya per le verifiche degli stati limite (SLV) dei muri di sostegno.

Verifica	Coefficiente parziale γ _R
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2



10.2 **DATI DI INPUT**

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

Coefficienti Statici:

Carichi	Effetto	Coeff. Parziale	EQU	A1 (STR)	A2 (GEO)	SLE	altro
Permanenti	favorevole	2/-	0,90	1,00	1,00	1,00	1,00
remanenti	sfavorevole	γg	1,10	1,30	1,00	1,00	1,30
Variabili	favorevole		0,00	0,00	0,00	0,00	0,00
Vanabili	sfavorevole	γα	1,50	1,50	1,30	1,00	1,50

Parametro		Coeff. Parziale	M1	M2	SLE	altro
angolo d'attrito	tan φ' _k	$\gamma_{\phi'}$	1,00	1,25	1,00	1,00
coesione	c' _k	γc'	1,00	1,25	1,00	1,00
resistenza non drenata	C _{uk}	γ _{cu}	1,00	1,40	1,00	1,00
peso unità di volume	γ	γ_{γ}	1,00	1,00	1,00	1,00

Verifica	Coeff. Parziale	R1	R2	R3	SLE	altro
Capacità portante fondazione		1,00	1,00	1,40	2,00	1,40
Scorrimento	γR	1,00	1,00	1,10	1,30	1,10
Ribaltamento		1,00	1,00	1,00	1,50	1,15

Coefficienti Sismici:

Verifica	Coeff. Parziale	R1	R2	R3	SLE	altro
Capacità portante fondazione		1,00	1,00	1,40	2,00	1,20
Scorrimento	γR	1,00	1,00	1,10	1,30	1,00
Ribaltamento	7	1,00	1,00	1,00	1,50	1,00

RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

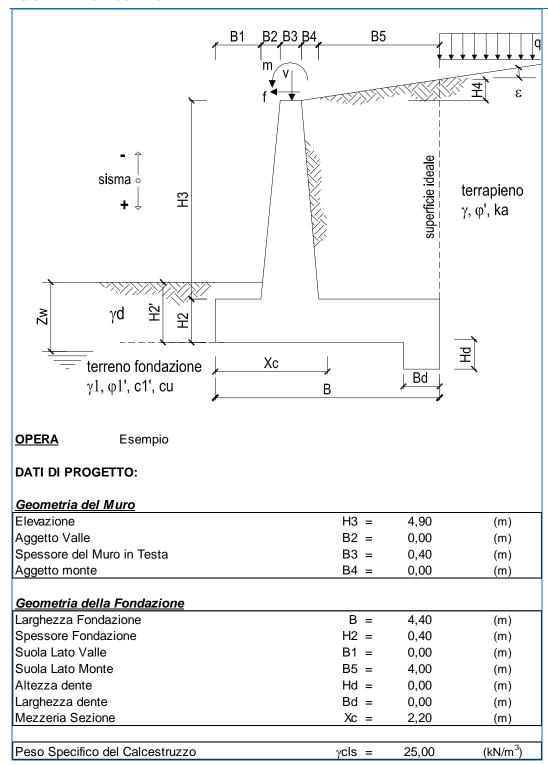
Dati geotecnici e sismici per le verifiche strutturali e geotecniche a carico limite e scorrimento:

					valori cara	tteristici	valori di	progetto
<u>Dati</u> (<u>Geotecnici</u>				SLE	Ī	STR/GEO	EQU
Dati Terrapieno	Angolo di attrito del terrapieno		(°)	φ'	37,0	0	37,00	37,00
Dati rapie	Peso Unità di Volume del terrapieno		(kN/m ³)	γ'	20,0	0	20,00	20,00
Ter	Angolo di attrito terreno-superficie ideale		(°)	δ	24,6	7	24,67	24,67
Dati Terreno Fondazione	Condizioni			drenat	te 🔘 Non	Drenate		
daz	Coesione Terreno di Fondazione		(kPa)	c1'	0,00)	0,00	0,00
Fon	Angolo di attrito del Terreno di Fondazione		(°)	φ1'	33,0	0	33,00	33,00
OLI	Peso Unità di Volume del Terreno di Fondazione		(kN/m ³)	γ1	20,0	0	20,00	20,00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m ³)	γd	20,0	0	20,00	20,00
Ξ	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)	Hs	8,80)		
Da	Modulo di deformazione		(kN/m^2)	Е	2102	25		
							7	
	Accelerazione sismica			a _g /g	0,136	(-)		
	Coefficiente Amplificazione Stratigrafico			Ss	1,2	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico			S _T	1	(-)		
Sis	Coefficiente di riduzione dell'accelerazione massima			β_s	0,38	(-)		
ati	Coefficiente sismico orizzontale			kh	0,062016	(-)		
	Coefficiente sismico verticale			kv	0,0310	(-)	4	
	Muro libero di traslare o ruotare			•	si 🔘	no		
		ſ	SL	E	STR/G	EO	EQ	ıU
	Coeff. di Spinta Attiva Statico	ka	0,226		0,226		0,226	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0,260		0,260		0,260	
efficient Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0,262		0,262		0,262	
effic Spi	Coeff. Di Spinta Passiva	kp	3,392		3,392		3,392	
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	3,280		3,280		3,280	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	3,272		3,272		3,272	

Dati geotecnici e sismici per le verifiche geotecniche a ribaltamento:

					valori cara	tteristici	valori di	progetto
Dati (<u>Geotecnici</u>				SLE	Ī	STR/GEO	EQU
i eno	Angolo di attrito del terrapieno	('	')	φ'	37,0	00	37,00	37,00
Dati Terrapieno	Peso Unità di Volume del terrapieno	(kN/m	3)	γ'	20,0	00	20,00	20,00
	Angolo di attrito terreno-superficie ideale	('	')	δ	24,6	57	24,67	24,67
Dati Terreno Fondazione	Condizioni		•	drenat	te O Non	Drenate		
ıdaz	Coesione Terreno di Fondazione	(kPa	ı)	c1'	0,0	0	0,00	0,00
For	Angolo di attrito del Terreno di Fondazione	(')	φ1'	33,0	00	33,00	33,00
ous	Peso Unità di Volume del Terreno di Fondazione	(kN/m	3)	γ1	20,0	00	20,00	20,00
erre	Peso Unità di Volume del Rinterro della Fondazione	(kN/m	3)	γd	20,0	00	20,00	20,00
Ξ. H	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	8,8	0		
۵	Modulo di deformazione	(kN/m	2)	Е	2102	25		
	T						1	
	Accelerazione sismica			a _g /g	0,136	(-)		
	Coefficiente Amplificazione Stratigrafico			Ss	1,2	(-)		
Ë.	Coefficiente Amplificazione Topografico			S _T	1	(-)		
Sis	Coefficiente di riduzione dell'accelerazione massima			β_s	0,57	(-)		
Dati Sismici	Coefficiente sismico orizzontale			kh	0,093024	(-)		
_	Coefficiente sismico verticale		Г	kv	0,0465	(-)	_	
	Muro libero di traslare o ruotare			•) si 🔘) no		
			LE	I	STR/G	EO.	l EG	N.I.
	Cooff di Chinto Attiun Station	<u> </u>	T			, LO	 	
ਰ	Coeff. di Spinta Attiva Statico ka				0,226		0,226	
arti:	Coeff. Di Spinta Attiva Sismica sisma + kas-	1 '			0,278		0,278	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma - kas	1 '			0,283		0,283	
oef S	Coeff. Di Spinta Passiva k	1			3,392		3,392	
O	Coeff. Di Spinta Passiva Sismica sisma + kps-				3,225		3,225	
	Coeff. Di Spinta Passiva Sismica sisma - kps	- 3,208			3,208		3,208	

<u>Calcestruzzo</u>				<u>Acciaio</u>
classe cls C28	/35 ▼			tipo di acciaio B450C ▼
Rck		35	(MPa)	
fck		28	(MPa)	fyk = 450 (MPa)
fcm		36	(MPa)	
Ec		32308	(MPa)	γ s = 1,15
$\alpha_{\tt cc}$		0,85		
γС		1,50		$fyd = fyk / \gamma s / \gamma E = 391,30 $ (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$		15,87	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30*f_{ck}^{2/3}$		2,77	(MPa)	$\varepsilon_{VS} = 0.19\%$
σ_{c} σ_{f}	11 260	Мра Мра		coefficiente omogeneizzazione acciaio n = 15
				<u>Copriferro</u> (distanza asse armatura-bordo)
condizioni sismiche	44	Mno		6 00 (am)
σ _c	11	Мра		c = 6,00 (cm)
	11 260	Mpa Mpa		
σ _c				Copriferro minimo di normativa (ricoprimento armatu
σ _c				
σ _c	260 ertura dell	Mpa l <u>e fessure</u>		Copriferro minimo di normativa (ricoprimento armatu
G _C G _f	260	Mpa l <u>e fessure</u>	0,3 mm	<u>Copriferro minimo di normativa</u> (ricoprimento armaturo c _{min} = 2,50 (cm)



10.3 **AZIONI SOLLECITANTI**

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

FORZE VERTICALI									
- Peso del Mu	ro (Pm)		SLE	STR/GEO	EQU				
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0,00	0,00	0,00				
Pm2 =	(B3*H3*ycls)	(kN/m)	49,00	49,00	49,00				
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0,00	0,00	0,00				
Pm4 =	(B*H2*γcls)	(kN/m)	44,00	44,00	44,00				
Pm5 =	(Bd*Hd*γcls)	(kN/m)	0,00	0,00	0,00				
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	93,00	93,00	93,00				
- Peso del terr	eno e sovr. perm. sulla scarpa di monte del muro (Pt)								
Pt1 =	(B5*H3*γ')	(kN/m)	392,00	392,00	392,00				
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0,00	0,00	0,00				
Pt3 =	(B4*H3*γ')/2	(kN/m)	0,00	0,00	0,00				
Sovr =	qp * (B4+B5)	(kN/m)	240,00	312,00	312,00				
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	632,00	704,00	704,00				
- Sovraccarico	accidentale sulla scarpa di monte del muro								
Sovr acc. Stat	q * (B4+B5)	(kN/m)	20	30					
Sovr acc. Sisr	n qs * (B4+B5)	(kN/m)	0						

Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	632,00	704,00	704,00
- Sovraccarico	o accidentale sulla scarpa di monte del muro				
Sovr acc. Sta	t q * (B4+B5)	(kN/m)	20	30	
Sovr acc. Sisi	m qs * (B4+B5)	(kN/m)	0		
MOMENTI D	ELLE FORZE VERT. RISPETTO AL PIEDE DI VAL	LE DEL MURO		1 1	
- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0,00	0,00	0,00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	9,80	9,80	9,80
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0,00	0,00	0,00
Mm4 =	Pm4*(B/2)	(kNm/m)	96,80	96,80	96,80
Mm5 = Mm =	Pm5*(B - Bd/2) Mm1 + Mm2 + Mm3 + Mm4 +Mm5	(kNm/m) (kNm/m)	0,00 106,60	0,00 106,60	0,00 106,60
WIIII =	IVIIII + IVIIII2 + IVIIII3 + IVIIII4 +IVIIII3	(KINIII/III)	100,00	100,00	100,00
	sovr. perm. sulla scarpa di monte del muro	(1.1. ()	0.40.00		
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	940,80	940,80	940,80
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0,00	0,00	0,00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0,00	0,00	0,00
Msovr = Mt =	Sovr*(B1+B2+B3+1/2*(B4+B5)) Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	576,00 1516,80	748,80	748,80
ivit =	IVILI + IVILZ + IVILS + IVISOVI	(kNm/m)	1310,00	1689,60	1689,60
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Sta	t *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	48	72	
Sovr acc. Sisi	m *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0		
	MURO E DEL TERRAPIENO				
	ontale e verticale del muro (Ps)				
Ps h=	Pm*kh	(kN/m)		5,77	
Ps v=	Pm*kv	(kN/m)		2,88	
- Inerzia orizz	ontale e verticale del terrapieno a tergo del muro (Pt	s)			
Ptsh =	Pt*kh	(kN/m)		43,66	
Ptsv =	Pt*kv	(kN/m)		21,83	
	prizzontale di momento dovuto all'inerzia del muro (N			0.00	
MPs1 h= MPs2 h=	kh*Pm1*(H2+H3/3) kh*Pm2*(H2 + H3/2)	(kNm/m)		0,00 8,66	
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m) (kNm/m)			
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		0,00 0,55	
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)		0,00	
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		9,21	
IVIFS II=	INITS ITINIT SETINIT SETINIT SETINIT SE	(KINIII/III)		9,21	
	verticale di momento dovuto all'inerzia del muro (MP				
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0,00	
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		0,30	
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0,00	
MPs4 V=	kv*Pm4*(B/2)	(kNm/m)		3,00	
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0,00	
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		3,31	
- Incremento	orizzontale di momento dovuto all'inerzia del terrapie	, ,			
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)		69,28	
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)		0,00	
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)		0,00	
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)		69,28	
- Incremento	verticale di momento dovuto all'inerzia del terrapieno	(MPts v)			
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		29,17	
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0,00	
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0,00	
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		29.17	

MPts v=

MPts1 + MPts2 + MPts3

(kNm/m)

29,17

MURO TIPO 1 - VERIFICHE GEOTECNICHE 11

11.1 **CONDIZIONE STATICA**

CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	63,40	82,41	82,41
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	71,77	93,30	93,30
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	5,98	8,97	8,97
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	57,61	74,89	74,89
Sqh perm =	Sq perm*cosδ	(kN/m)	65,22	84,79	84,79
Sqh acc =	Sq acc*cosδ	(kN/m)	5,44	8,15	8,15
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	26,46	34,39	34,39
Sqv perm=	Sq perm*senδ	(kN/m)	29,95	38,94	38,94
Sqvacc =	Sq acc*senδ	(kN/m)	2,50	3,74	3,74
- Spinta passi	va sul dente				
Sp=½*g1'*Hd2	^{2*} ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0,00	0,00	0,00

MOMENTI DE	ELLA SPINTA DEL TERRENO E DEL SOVRACO	SARICO	SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	101,78	132,31	132,31
MSt2 =	Stv*B	(kNm/m)	116,41	151,34	151,34
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	172,83	224,68	224,68
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	14,40	21,60	21,60
MSq2 perm=	Sqv perm*B	(kNm/m)	131,79	171,32	171,32
MSq2 acc =	Sqv acc*B	(kNm/m)	10,98	16,47	16,47
$MSp = \gamma 1'*I$	Hd ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0,00	0,00	0,00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0,00	0,00	0,00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	0,04	0,04	0,04

VERIFICA ALLO SCORRIMENTO (STR/GEO)

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	874,28	904,28	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sqh + f - Sp	167,83	167,83	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \sum M$	1756,77	1828,77	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
$M = Xc^*N - MM$	166,63	160,63	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic	+ q ₀ *Nq*iq +	0,5*γ1*Β*Νγ*ίγ				
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.			0,00 33,00 20,00		(kPa) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante			19,00		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza ec	uivalente		0,19 4,02	0,18 4,04	(m) (m)
I valori di Nc, N	lq e Ng sono s	tati valutati con le espressioni si	uggerite da Vesic (197	7 5)		
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tg$ $N\gamma = 2^{*}(Nq + 1)$ $Lyalori di ic. iq.$	g(φ'))*tg(φ')	 (1 in cond. nd) (2+π in cond. nd) (0 in cond. nd) valutati con le espressioni suggi 	erite da Vesic (1975)	26,09 38,64 35,19		(-) (-) (-)
$iq = (1 - T/(N + ic = iq - (1 - iq))/i\gamma = (1 - T/(N + ic + i$	B*c'cotgφ')) ^m /(Nq - 1)	(1 in cond. nd)		0,65 0,64 0,53	0,66 0,64 0,53	(-) (-) (-)
(fondazione nas	striforme m = 2	2)				
qlim	(carico limite	unitario)		1069,74	1074,86	(kN/m ²)
EC corios li	i4	C alim*D*/N	Nmin	4,92	>	4.4

FS carico limite

Nmax

4,81

1,4

F = qlim*B*/N

RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

VERIFICA AL RIBALTAMENTO (EQU)

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 1796,24 (kNm/m)

Momento ribaltante (Mr)

MSt + MSq + Mfext1+ Mfext2 + MSp 39,47 (kNm/m)

45,51 Fs ribaltamento Ms/Mr 1,15

11.2 **CONDIZIONE SISMICA+**

CONDIZIONE SISMICA +

SPINTE DEL 1 - Spinta condiz	TERRENO E DEL SOVRACCARICO ione sismica +	Γ	SLE	STR/GEO	EQU
•	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	63,40	63,40	63,40
Sst1 sism =	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas ⁺ -Sst1 stat	(kN/m)	11,82	11,82	11,82
Ssq1 perm=	= qp*(H2+H3+H4+Hd)*kas ⁺		82,58	82,58	82,58
Ssq1 acc =			0,00	0,00	0,00
0341 400 =	q5 (HZTHOTHATHA) Ka5	(kN/m)	0,00	0,00	0,00
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	57,61	57,61	57,61
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	10,74	10,74	10,74
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	75,05	75,05	75,05
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0,00	0,00	0,00
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	26,46	26,46	26,46
	Sst1 sism*senδ	(kN/m)	4,93	4,93	4,93
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	34,47	34,47	34,47
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiva	o cul donto				
	a sui dente Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0,00	0,00	0,00
ορ- <i>/2 /</i> [(11κγ)	17. (1.1.1.4) Apr 1.27.1.4	(11.4.11.)	0,00	0,00	0,00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARI	со	SLE	STR/CEO	FOLL
- Condizione si	smica +		SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	101,78	101,78	101,78
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	18,97	18,97	18,97
MSst2 stat =	Sst1v stat* B	(kNm/m)	116,41	116,41	116,41
MSst2 sism =	Sst1v sism* B	(kNm/m)	21,70	21,70	21,70
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	198,88	198,88	198,88
MSsq2 =	Ssq1v*B	(kNm/m)	151,65	151,65	151,65
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0,00	
Mfext2 =	$(fp+fs)^*(H3 + H2)$	(kNm/m)		0,00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0,04	
VERIFICA AI	LO SCORRIMENTO				
VEIXII IOA AL	LO GOGINIMIENTO				
Risultante forze			045 77	(L.N.L/)	
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		815,77	(kN/m)	
Risultante forze T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		192,82	(kN/m)	
Coefficiente di a	attrito alla base (f) tgφl΄		0,65	(-)	
Eo -					4 4
Fs =	(N*f + Sp) / T		2,75	>	1,1

Risultante forze verticali (N)	Nmin	Nmax			
N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	815,77	815,77	(kN/m)		
Risultante forze orizzontali (T)					
T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp	192,82		(kN/m)		
Risultante dei momenti rispetto al piede di valle (MM)					
$MM = \Sigma M$	1547,56	1547,56	(kNm/m)		
Momento rispetto al baricentro della fondazione (M)					
$M = Xc^*N - MM$	247,13	247,13	(kNm/m)		

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

$qlim = c'Nc*ic + q_0*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$

FS carico li	mite F = glim*B*/N	4,11	>	1 4		
qlim	(carico limite unitario)	883,57	883,57	(kN/m ²)		
(fondazione nastriforme m = 2)						
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}	0,45	0,45	(-)		
iq = (1 - T/(N + ic = iq - (1 - iq)/(N + ic = iq - (1 - iq)/(N + ic = iq - (1 - iq)/(N + ic = iq - iq)/(N + ic = iq)/(N + ic = iq - iq)/(N + ic = iq - iq)/(N + ic = iq - iq)/(N + ic = iq)/(N + ic = iq - iq - iq)/(N + ic = iq - iq	,	0,58 0,57	0,58 0,57	(-) (-)		
I valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)						
$N\gamma = 2^*(Nq + 1)$	*tg(φ') (0 in cond. nd)	35,19		(-)		
Nc = (Nq - 1)/tg	$g(\phi)$ (2+ π in cond. nd)	38,64		(-)		
$Nq = tg^2(45 + q)$	$(5/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd)	26,09		(-)		
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite da Vesic (197	5)				
B*= B - 2e	larghezza equivalente	3,79	3,79	(m)		
e = M / N	eccentricità	0,30	0,30	(m)		
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	19,00		(kN/m^2)		
γ1	peso unità di volume terreno fondaz.	20,00		(kN/m ³)		
φ1′	angolo di attrito terreno di fondaz.	33,00		(°)		
c1'	coesione terreno di fondaz.	0.00		(kN/mg)		

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Mm + Mt + Mfext3 1796,24 (kNm/m)

F = qlim*B*/N

Momento ribaltante (Mr)

FS carico limite

100,67 (kNm/m) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts

17,84 Ms / Mr 1,15 Fr

Nmax

4,11

1,4

11.3 CONDIZIONE SISMICA -

CONDIZIONE SISMICA-

COLUTE SE	TERRENO E DEL COVERACOARIOS	г	1	Т	1
- Spinta condiz	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
•	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	63,40	63,40	63,40
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas⁻-Sst1 stat	(kN/m)	7,93	7,93	7,93
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	83,33	83,33	83,33
	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	0,00	0,00	0,00
Ssq1 acc =	qs (n2+n3+n4+nu) kas	(KIN/III)	0,00	0,00	0,00
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	57,61	57,61	57,61
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	7,20	7,20	7,20
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	75,72	75,72	75,72
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0,00	0,00	0,00
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	26,46	26,46	26,46
	Sst1 sism*senδ	(kN/m)	3,31	3,31	3,31
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	34,78	34,78	34,78
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
•	•	, ,			
 Spinta passiv 					
$Sp=\frac{1}{2}*\gamma_1'(1-kv)$	Hd ² *kps¯+(2*c ₁ '*kps¯ ^{0.5} +γ1' (1-kv) kps¯*H2')*Hd	(kN/m)	0,00	0,00	0,00
		_			
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARIO Smica -	co	SLE	STR/GEO	EQU
Gorial Elorio Gi	0.11100			I	
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	101,78	101,78	101,78
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	12,73	12,73	12,73
MSst2 stat =	Sst1v stat* B	(kNm/m)	116,41	116,41	116,41
MSst2 sism =	Sst1v sism* B	(kNm/m)	14,56	14,56	14,56
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	200,67	200,67	200,67
MSsq2 =	Ssq1v*B	(kNm/m)	153,01	153,01	153,01
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ⁺ *H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0,00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0,00	
Mfext3 =	$(vp+vs)^*(B1 +B2 + B3/2)$	(kNm/m)		0,04	
VERIFICA AL	LO SCORRIMENTO				
Discultants form	a continuit (AI)				
Risultante forze N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		765,03	(kN/m)	
Risultante forze	e orizzontali (T)				
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		189,97	(kN/m)	
Coefficiente di	attrito alla base (f)				
f =	tgo1'		0,65	(-)	
Fs =	(N*f + Sp) / T		2,62	>	1,1

Risu	Risultante forze verticali (N)			Nmax	
Ν	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	765,03	765,03	(kN/m)
Risu	Itante forz	re orizzontali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	189,97		(kN/m)
Risu	Itante dei	momenti rispetto al piede di valle (MM)			
MM	=	Σ M	1481,28	1481,28	(kNm/m)
Momento rispetto al baricentro della fondazione (M)					
М	=	Xc*N - MM	201,78	201,78	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0,00 33,00 20,00		(kN/mq) (°) (kN/m³)			
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	19,00		(kN/m^2)			
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0,26 3,87	0,26 3,87	(m) (m)			
I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)							
$Nq = tg^{2}(45 + c)$ $Nc = (Nq - 1)/tc$ $N\gamma = 2*(Nq + 1)$	$g(\phi')$ (2+ π in cond. nd)	26,09 38,64 35,19		(-) (-) (-)			

I valori di ic, iq e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)

$iq = (1 - T/(N + B*c'cotg\phi'))^m$	(1 in cond. nd)	0,57	0,57 (-	-)
ic = iq - (1 - iq)/(Nq - 1)		0,55	0,55 (-	-)
$i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}$		0,42	0,42 (-	-)

(fondazione nastriforme m = 2)

qlim (carico limite unitario) 858,86 (kN/m²)

FS carico limite	F = qlim*B*/ N	Nmin	4,35	>	1 4
		Nmax	4,35	>	1,4

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 1796,24 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 200,46 (kNm/m)

Fr = Ms/Mr > 1,15

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

11.4 RIEPILOGO VERIFICHE

Coefficienti di sicurezza

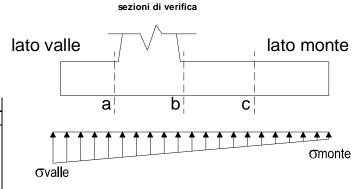
	Scorrimento	Ribaltamento	Carico limite
Statico	3,38	45,51	4,81
Sismico	2,62	8,96	4,11

MURO TIPO 1 - VERIFICHE STRUTTURALI 12

12.1 **VERIFICHE ALLO STATO LIMITE ULTIMO**

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

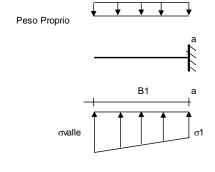

 σ valle = N / A + M / Wgg

 σ monte = N / A - M / Wgg

A = 1.0*B4,40 (m²)

 $Wgg = 1.0*B^2/6$ 3,23 (m³)

	N	М	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	874,28	166,63	250,34	147,06
	904,28	160,63	255,30	155,73
sisma+	815,77	247,13	261,99	108,81
	815,77	247,13	261,99	108,81
sisma-	765,03	201,78	236,41	111,33
	765,03	201,78	236,41	111,33


Mensola Lato Valle

Peso Proprio. PP = 10,00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1±kv)$

	σvalle	σ1	Ма	Va
caso	[kN/m ²]	$[kN/m^2]$	[kNm]	[kN]
statico	250,34	250,34	0,00	0,00
Statico	255,30	255,30	0,00	0,00
sisma+	261,99	261,99	0,00	0,00
	261,99	261,99	0,00	0,00
sisma-	236,41	236,41	0,00	0,00
	236,41	236,41	0,00	0,00

b -

b -

σ2

Stv+Stq

pm

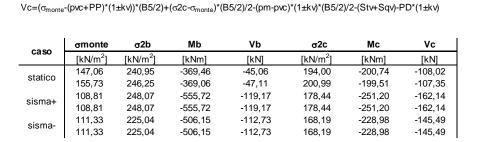
lpn

omonte

B5 - B5/2

Peso del Terrapieno

Mensola Lato Monte


 (kN/m^2) PP 10.00 peso proprio soletta fondazione PD 0,00 (kN/m) peso proprio dente

		Nmin	N max stat	N max sism	
pm	=	176,00	183,50	176,00	(kN/m^2)
pvb	=	176,00	183,50	176,00	(kN/m^2)
pvc	=	176,00	183,50	176,00	(kN/m ²)

 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Mc = (\sigma_{monte} - (pvc + PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma_{2}c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(1\pm kv)^*(B5/2)^2/3 + (\sigma_{2}c - \sigma_{monte})^*(B5/2)^2/6 - (pm - pvc)^*(B5/2)^2/3 + (\sigma_{2}c - \sigma_{monte})^*(B5/2)^2/3 + (\sigma_{2}c - \sigma_{monte})^2/3 + (\sigma_{2}c - \sigma_{monte})^2/$ $-(Stv+Sqv)^*(B5/2)-PD^*(1\pm kv)^*(B5/2-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

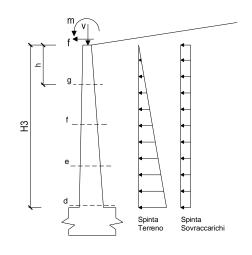
 $Mt \ sism = \frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^2 * h/2 \quad o * h/3$

= $\frac{1}{2}$ Ka_{orizz}*q*h²

 $M_{ext} = m+f^*h$ $M_{inerzia} = \Sigma P m_i^* b_i^* k h$

= v

 $N_{pp+inerzia} = \Sigma Pm_i^*(1\pm kv)$


Vt stat = $\frac{1}{2}$ Ka_{orizz}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

Vq = Ka_{orizz}*q*h

 V_{ext} = f

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	104,56	210,51	0,00	315,07	0,20	49,00	49,20
е-е	3,68	44,11	118,41	0,00	162,53	0,20	36,75	36,95
f-f	2,45	13,07	52,63	0,00	65,70	0,20	24,50	24,70
g-g	1,23	1,63	13,16	0,00	14,79	0,20	12,25	12,45

sezione	h	Vt	Vq	V_{ext}	V_{tot}
Sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	64,02	85,92	0,00	149,94
e-e	3,68	36,01	64,44	0,00	100,45
f-f	2,45	16,00	42,96	0,00	58,97
g-g	1,23	4,00	21,48	0,00	25,48

condizione sismica +

sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	$N_{pp+inerzia}$	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	80,43	16,50	169,99	0,00	7,45	274,36	0,20	50,52	50,72
e-e	3,68	33,93	6,96	95,62	0,00	4,19	140,70	0,20	37,89	38,09
f-f	2,45	10,05	2,06	42,50	0,00	1,86	56,48	0,20	25,26	25,46
g-g	1,23	1,26	0,26	10,62	0,00	0,47	12,60	0,20	12,63	12,83

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	49,24	10,10	69,38	0,00	3,04	131,77
e-e	3,68	27,70	5,68	52,04	0,00	2,28	87,70
f-f	2,45	12,31	2,52	34,69	0,00	1,52	51,05
g-g	1,23	3,08	0,63	17,35	0,00	0,76	21,81

condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	$M_{inerzia}$	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	80,43	11,07	171,52	0,00	7,45	270,47	0,20	47,48	47,68
е-е	3,68	33,93	4,67	96,48	0,00	4,19	139,27	0,20	35,61	35,81
f-f	2,45	10,05	1,38	42,88	0,00	1,86	56,18	0,20	23,74	23,94
g-g	1,23	1,26	0,17	10,72	0,00	0,47	12,62	0,20	11,87	12,07

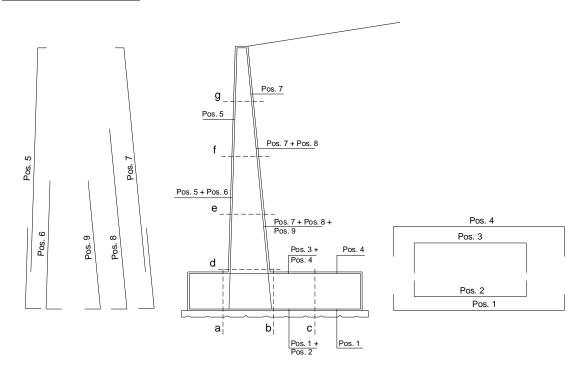
sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	49,24	6,78	70,01	0,00	3,04	129,07
е-е	3,68	27,70	3,81	52,51	0,00	2,28	86,30
f-f	2,45	12,31	1,69	35,00	0,00	1,52	50,53
g-g	1,23	3,08	0,42	17,50	0,00	0,76	21,76

L'armatura del paramento verticale del muro è prevista come segue:

- armatura verticale (armatura di forza):
 - Ø20/20 esterni
 - Ø26/20 interni (lato terreno)
- armatura longitudinale di ripartizione:
 - Ø20/20 esterni
 - Ø20/20 interni

Non è prevista alcuna specifica armatura a taglio. Verranno tuttavia disposte spille di legatura Ø10/40x40.

Il copriferro netto minimo è assunto pari a 45 mm.


L'armatura della zattera di fondazione del muro è prevista come segue:

- armatura in direzione trasversale:
 - Ø26/10 superiori
 - Ø20/20 inferiori
- armatura in direzione longitudinale:
- Ø26/10 superiori
- Ø20/20 inferiori

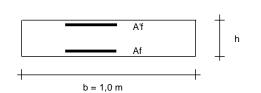
Non è prevista alcuna specifica armatura a taglio. Verranno tuttavia disposti dei cavallotti Ø16/80x40.

Il copriferro netto minimo è assunto pari a 40 mm.

SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	
1 2 3 4	5,0 0,0 10,0 10,0	20 20 26 26		5 6 7 8	5,0 0,0 10,0 0,0	20 20 26 20		Calcola
				9	0,0	20		



RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

VERIFICHE

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-6-7-8-9
е-е	pos 5-6-7-8-9
f-f	pos 5-7-8
g-g	pos 5-7

Sez.	М	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	0,00	0,00	0,40	106,19	15,71	195,03
b - b	-555,72	0,00	0,40	106,19	15,71	801,87
C - C	-251,20	0,00	0,40	53,09	15,71	587,95
d - d	315,07	49,20	0,40	53,09	15,71	592,21
е -е	162,53	36,95	0,40	53,09	15,71	591,17
f - f	65,70	24,70	0,40	53,09	15,71	590,11
g - g	14,79	12,45	0,40	53,09	15,71	589,05

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

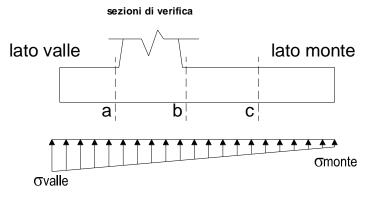
Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- =
a - a	0,00	0,40	275,81	16	80	40	21,8	188,09	Armatura a taglio non necessaria
b - b	119,17	0,40	275,81	16	80	40	21,8	188,09	Armatura a taglio non necessaria
C - C	162,14	0,40	253,98	16	80	40	21,8	188,09	Armatura a taglio non necessaria
d - d	149,94	0,40	260,25	10	40	20	21,8	293,88	Armatura a taglio non necessaria
e -e	100,45	0,40	258,69	10	40	40	21,8	146,94	Armatura a taglio non necessaria
f - f	58,97	0,40	257,13	10	40	40	21,8	146,94	Armatura a taglio non necessaria
g - g	25,48	0,40	255,56	10	40	40	21,8	146,94	Armatura a taglio non necessaria

12.2 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

VERIFICA A FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

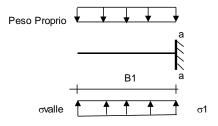

 σ valle = N / A + M / Wgg

 σ monte = N / A - M / Wgg

 $A = 1.0*B = 4,40 (m^2)$

 $Wgg = 1.0*B^2/6 = 3,23 (m^3)$

	N	М	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
Freq.	783,48	129,20	218,10	138,02
	798,48	126,20	220,58	142,36
0.0	781,61	122,51	215,61	139,67
Q.P.	781,61	122,51	215,61	139,67



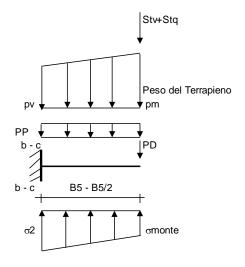
Mensola Lato Valle

Peso Proprio. PP = 10,00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

	σvalle	σ1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
Freq.	218,10	218,10	0,00
гіец.	220,58	220,58	0,00
Q.P.	215,61	215,61	0,00
Q.P.	215,61	215,61	0,00

Mensola Lato Monte

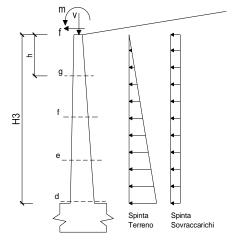

 $PP = 10,00 \text{ (kN/m}^2)$ peso proprio soletta fondazione PD = 0,00 (kN/m) peso proprio dente

Nmin N max Freq N max QP 158,00 161,75 158,00 (kN/m^2) pm (kN/m^2) pvb 158,00 161,75 158,00 (kN/m^2) 158,00 161,75 158,00 pvc

$$\label{eq:mbeta} \begin{split} Mb &= (\sigma_{monte} - (pvb + PP))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*B5^2/3 + \\ &- (Stv + Sqv)^*B5 - PD^*(B5 - Bd/2) + Msp + Sp^*H2/2 \end{split}$$

 $\begin{aligned} Mc = &(\sigma_{monte}^{-}(pvc+PP))^{*}(B5/2)^{2}/2 + (\sigma^{2}c^{-}\sigma_{monte})^{*}(B5/2)^{2}/6 - (pm^{-}pvc)^{*}(B5/2)^{2}/3 + \\ &- (Stv+Sqv)^{*}(B5/2) - PD^{*}(B5/2 - Bd/2) + Msp + Sp^{*}H2/2 \end{aligned}$

	σmonte	σ2b	Mb	σ2 c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
Erog	138,02	210,82	-278,80	174,42	-152,25
Freq.	142,36	213,47	-278,60	177,92	-151,63
Q.P.	139,67	208,70	-268,19	174,19	-146,47
Q.P.	139,67	208,70	-268,19	174,19	-146,47



 N_{ext}

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

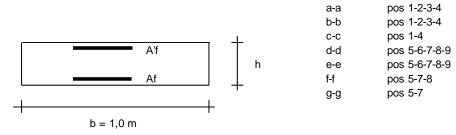
Azioni sulla parete e Sezioni di Calcolo

= $\frac{1}{2}$ Ka_{orizz.}* γ *h²*h/3 Mq = $\frac{1}{2}$ Ka_{orizz}*q*h² = m+f*h $M_{\text{ext}} \\$

condizione Frequente

sezione	h	Mt	Mq	M_{ext}	M _{tot}	N_{ext}	N_{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	80,43	156,96	0,00	237,39	0,20	49,00	49,20
e-e	3,68	33,93	88,29	0,00	122,22	0,20	36,75	36,95
f-f	2,45	10,05	39,24	0,00	49,29	0,20	24,50	24,70
g-g	1,23	1,26	9,81	0,00	11,07	0,20	12,25	12,45

condizione Quasi Permanente


	Condizione Quasi Fermanente										
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}			
36210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]			
d-d	4,90	80,43	147,73	0,00	228,16	0,20	49,00	49,20			
e-e	3,68	33,93	83,10	0,00	117,03	0,20	36,75	36,95			
f-f	2,45	10,05	36,93	0,00	46,99	0,20	24,50	24,70			
g-g	1.23	1.26	9.23	0.00	10.49	0.20	12.25	12.45			

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

VERIFICHE

condizione Frequente

Sez.	М	N	h	Af	A'f	σα	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	0,00	0,00	0,40	106,19	15,71	0,00	0,00	0,000	0,300
b - b	-278,80	0,00	0,40	106,19	15,71	8,81	95,46	0,073	0,300
c - c	-152,25	0,00	0,40	53,09	15,71	5,72	100,09	0,082	0,300
d - d	237,39	49,20	0,40	53,09	15,71	9,02	151,94	0,138	0,300
e -e	122,22	36,95	0,40	53,09	15,71	4,67	77,23	0,058	0,300
f - f	49,29	24,70	0,40	53,09	15,71	1,90	30,32	0,019	0,300
g - g	11,07	12,45	0,40	53,09	15,71	0,44	6,23	0,004	0,300

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

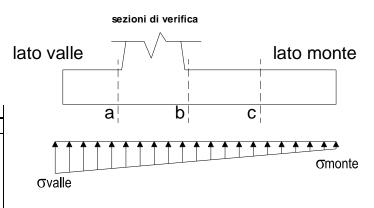
Sez.	М	N	h	Af	A'f	σα	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	0,00	0,00	0,40	106,19	15,71	0,00	0,00	0,000	0,200
b - b	-268,19	0,00	0,40	106,19	15,71	8,47	91,83	0,069	0,200
C - C	-146,47	0,00	0,40	53,09	15,71	5,50	96,29	0,078	0,200
d - d	228,16	49,20	0,40	53,09	15,71	8,68	145,86	0,131	0,200
e -e	117,03	36,95	0,40	53,09	15,71	4,48	73,81	0,054	0,200
f - f	46,99	24,70	0,40	53,09	15,71	1,82	28,80	0,019	0,200
g - g	10,49	12,45	0,40	53,09	15,71	0,42	5,85	0,004	0,200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

12.3 VERIFICHE TENSIONI

VERIFICHE TENSIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

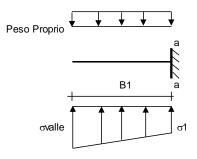

Reazione del terreno

ovalle = N/A + M/Wggomonte = N/A - M/Wgg

 $A = 1.0^*B$ = 4,40 (m²)

 $Wgg = 1.0*B^2/6 = 3,23 (m^3)$

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	784,11	134,17	219,79	136,62
	804,11	130,17	223,09	142,41
cicmou	815,77	247,13	261,99	108,81
sisma+	815,77	247,13	261,99	108,81
sisma-	765,03	201,78	236,41	111,33
SISIIId-	765,03	201,78	236,41	111,33



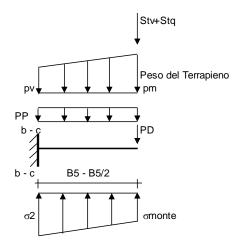
Mensola Lato Valle

Peso Proprio. PP = 10,00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

caso	σvalle	σ1	Ma
Caso	[kN/m ²]	[kN/m ²]	[kNm]
statico	219,79	219,79	0,00
Statico	223,09	223,09	0,00
sisma+	261,99	261,99	0,00
SiSiliat	261,99	261,99	0,00
sisma-	236,41	236,41	0,00
	236,41	236,41	0,00

Mensola Lato Monte


PP	=	10,00	(kN/m^2)	peso proprio soletta fondazione
PD	=	0,00	(kN/m)	peso proprio dente

		Nmin	N max stat N ı	max sism	
pm	=	158,00	163,00	158,00	(kN/m^2)
pvb	=	158,00	163,00	158,00	(kN/m^2)
pvc	=	158,00	163,00	158,00	(kN/m^2)

$$\begin{split} Mb = &(\sigma_{monte}\text{-}(pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + \\ &- (Stv + Sqv)^*B5 - PD^*(1 \pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

$$\begin{split} \text{Mc} = & (\sigma_{monte} - (\text{pvc} + \text{PP})^* (1 \pm \text{kv}))^* (\text{B5/2})^2 / 2 + (\sigma_2 \text{c} - \sigma_{monte})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (1 \pm \text{kv})^* (\text{B5/2})^2 / 3 + \\ & - (\text{Stv} + \text{Sqv})^* (\text{B5/2}) - \text{PD}^* (1 \pm \text{kv})^* (\text{B5/2} - \text{Bd/2}) - \text{PD}^* \text{kh}^* (\text{Hd} + \text{H2/2}) + \text{Msp} + \text{Sp}^* + \text{H2/2} \end{split}$$

	σmonte	σ2b	Mb	σ2c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
statico	136,62	212,23	-285,02	174,43	-155,36
	142,41	215,76	-284,75	179,08	-154,54
sisma+	108,81	248,07	-407,25	178,44	-214,09
SiSilia+	108,81	248,07	-407,25	178,44	-214,09
	111,33	225,04	-366,62	168,19	-194,10
sisma-	111,33	225,04	-366,62	168,19	-194,10

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

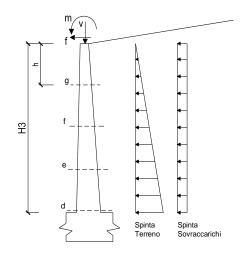
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

 $Mt \ sism = \frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^2 * h/2 \quad o * h/3$

 $Mq = \frac{1}{2} Ka_{orizz} *q*h^2$


 $M_{ext} = m+f^*h$

 $M_{inerzia} = \Sigma Pm_i^*b_i^*kh$

(solo con sisma)

 $N_{ext} = v$

N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$

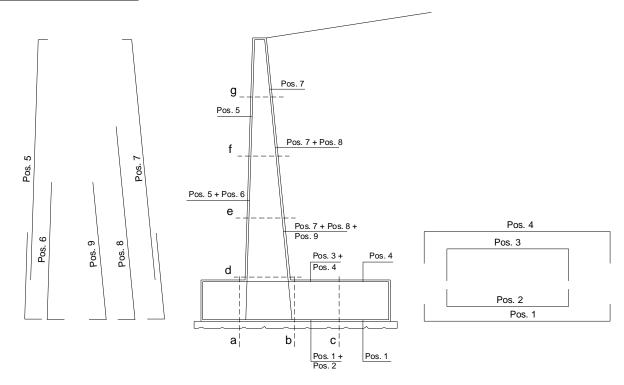
condizione statica

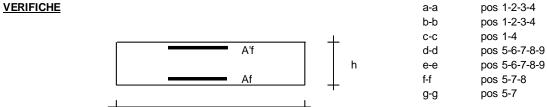
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}		
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]		
d-d	4,90	80,43	160,04	0,00	240,47	0,20	49,00	49,20		
e-e	3,68	33,93	90,02	0,00	123,95	0,20	36,75	36,95		
f-f	2,45	10,05	40,01	0,00	50,06	0,20	24,50	24,70		
g-g	1,23	1,26	10,00	0,00	11,26	0,20	12,25	12,45		

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N_{ext}	N _{pp+inerzia}	N _{tot}
[m]	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	80,43	16,50	169,99	0,00	7,45	274,36	0,20	50,52	50,72
e-e	3,68	33,93	6,96	95,62	0,00	4,19	140,70	0,20	37,89	38,09
f-f	2,45	10,05	2,06	42,50	0,00	1,86	56,48	0,20	25,26	25,46
g-g	1,23	1,26	0,26	10,62	0,00	0,47	12,60	0,20	12,63	12,83

condizione sismica -


				COTIGIZ		u -				
sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}
36210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4,90	80,43	11,07	171,52	0,00	7,45	270,47	0,20	47,48	47,68
e-e	3,68	33,93	4,67	96,48	0,00	4,19	139,27	0,20	35,61	35,81
f-f	2,45	10,05	1,38	42,88	0,00	1,86	56,18	0,20	23,74	23,94
a-a	1.23	1.26	0.17	10.72	0.00	0.47	12.62	0.20	11.87	12.07

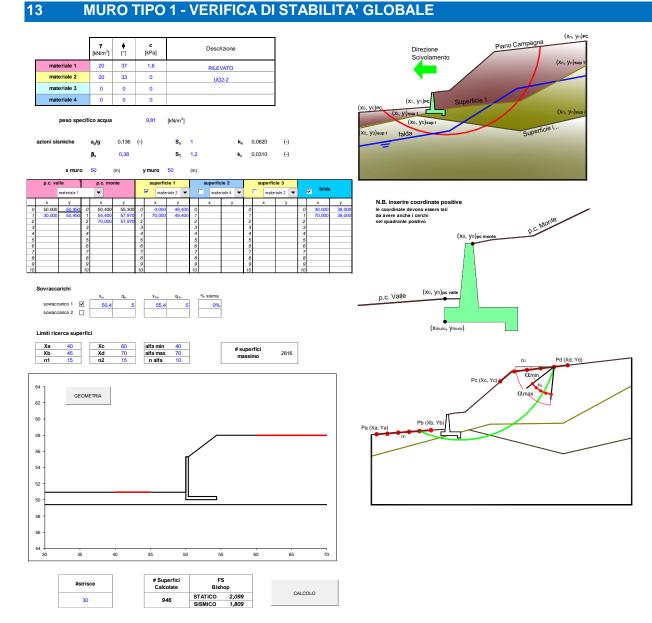


SCHEMA DELLE ARMATURE

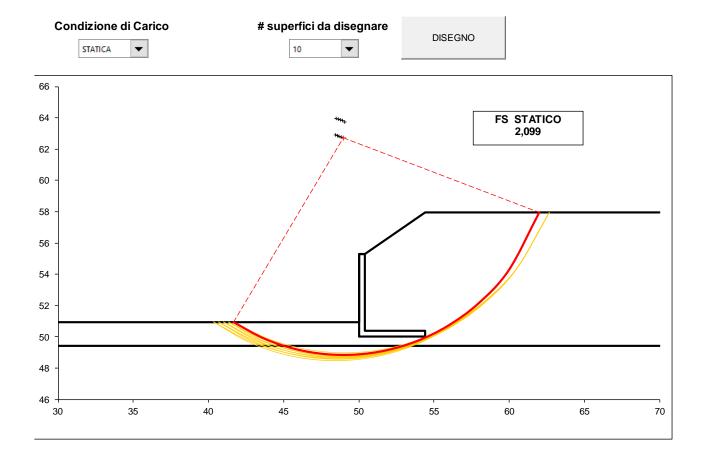
ARMATURE

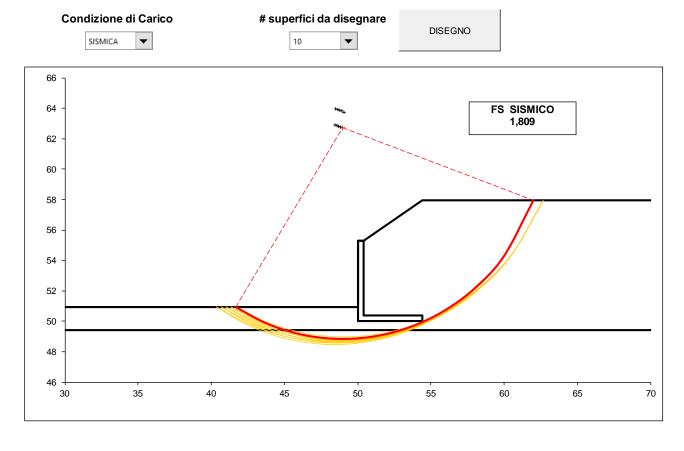
pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	
1	5,0	20		5	5,0	20		0-11-
2	0,0	20	닏ㅣ	6	0,0	20		Calcola
3	10,0	26	Ш	7	10,0	26		
4	10,0	26		8	0,0	20	님	
			I	9	0,0	20	Ш	
VEDIEIOU	_							

Condizione Statica


Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	0,00	0,00	0,40	106,19	15,71	0,00	0,00
b - b	-285,02	0,00	0,40	106,19	15,71	9,00	97,59
C - C	-155,36	0,00	0,40	53,09	15,71	5,83	102,13
d - d	240,47	49,20	0,40	53,09	15,71	9,14	153,96
e -e	123,95	36,95	0,40	53,09	15,71	4,74	78,37
f - f	50,06	24,70	0,40	53,09	15,71	1,93	30,82
g - g	11,26	12,45	0,40	53,09	15,71	0,45	6,36

b = 1,0 m





MURO TIPO 1 - VERIFICA DI STABILITA' GLOBALE

ARKE'

14

MURO TIPO 2 - VALUTAZIONE DELLE AZIONI SOLLECITANTI

14.1 **APPROCCI NORMATIVI**

Nelle verifiche di sicurezza allo Stato Limite Ultimo, in accordo con quanto riportato nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 6.5.3.1.1., le verifiche geotecniche e strutturali devono essere effettuate secondo l'Approccio 2, combinazione dei coefficienti parziali A1+M1+R3, tenendo conto dei seguenti valori dei coefficienti parziali:

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)	
Carichi permanenti Gı	Favorevole	γ _{G1}	0,9	1,0	1,0	
	Sfavorevole		1,1	1,3	1,0	
Carichi permanenti G2(1)	Favorevole	γ ₆₂	0,8	0,8	0,8	
	Sfavorevole		1,5	1,5	1,3	
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0	
	Sfavorevole		1,5	1,5	1,3	

[🕮] Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti 🛭 γG1

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi^{'}}$	1,0	1,25
Coesione efficace	c′ _k	γċ	1,0	1,25
Resistenza non drenata	c _{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

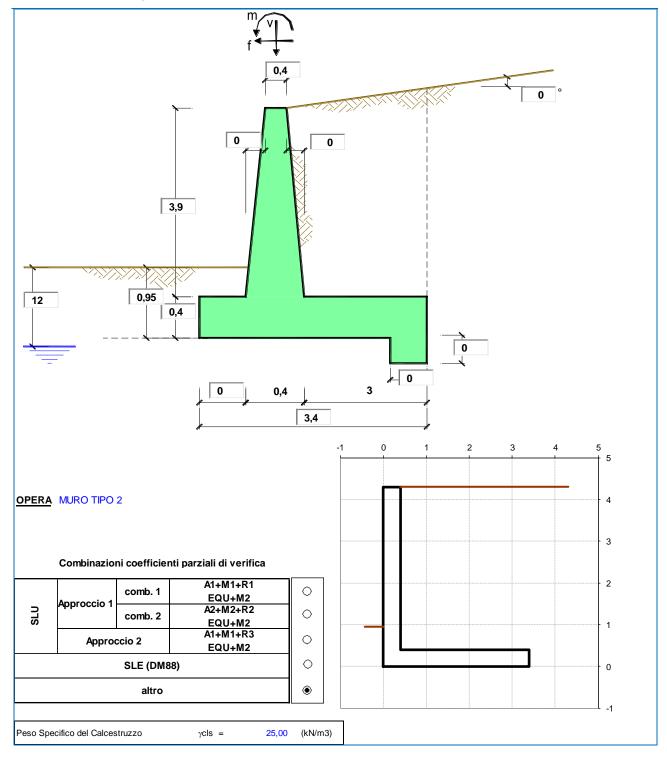
Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

Nelle verifiche di sicurezza allo Stato Limite di salvaguardia della Vita, in accordo con quanto riportato nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 7.11.6.2.2., si pongono pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e si impiegano le resistenze di progetto con i coefficienti parziali indicati in tabella 7.11.III:

Tab. 7.11.III - Coefficienti parziali ya per le verifiche degli stati limite (SLV) dei muri di sostegno.

Verifica	Coefficiente parziale γ _R
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2



14.2 **DATI DI INPUT**

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

Coefficienti Statici:

Carichi	Effetto	Coeff. Parziale	EQU	A1 (STR)	A2 (GEO)	SLE	altro
Permanenti	favorevole	2/-	0,90	1,00	1,00	1,00	1,00
remanenti	sfavorevole	γ̈G	1,10	1,30	1,00	1,00	1,30
Variabili	favorevole		0,00	0,00	0,00	0,00	0,00
v anabili	sfavorevole	γα	1,50	1,50	1,30	1,00	1,50

Parametro		Coeff. Parziale	M1	M2	SLE	altro
angolo d'attrito	tan φ' _k	$\gamma_{\phi'}$	1,00	1,25	1,00	1,00
coesione	c' _k	γc'	1,00	1,25	1,00	1,00
resistenza non drenata	C _{uk}	γ _{cu}	1,00	1,40	1,00	1,00
peso unità di volume	γ	γ_{γ}	1,00	1,00	1,00	1,00

Verifica	Coeff. Parziale	R1	R2	R3	SLE	altro
Capacità portante fondazione		1,00	1,00	1,40	2,00	1,40
Scorrimento	γR	1,00	1,00	1,10	1,30	1,10
Ribaltamento		1,00	1,00	1,00	1,50	1,15

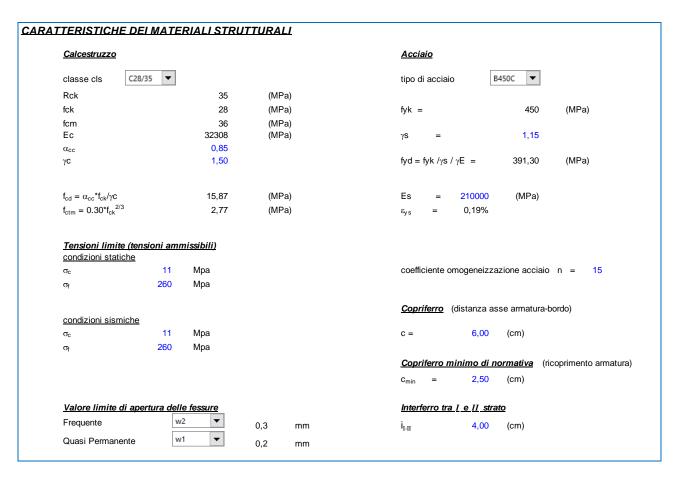
Coefficienti Sismici:

Verifica	Coeff. Parziale	R1	R2	R3	SLE	altro
Capacità portante fondazione		1,00	1,00	1,40	2,00	1,20
Scorrimento	γR	1,00	1,00	1,10	1,30	1,00
Ribaltamento	7	1,00	1,00	1,00	1,50	1,00

RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

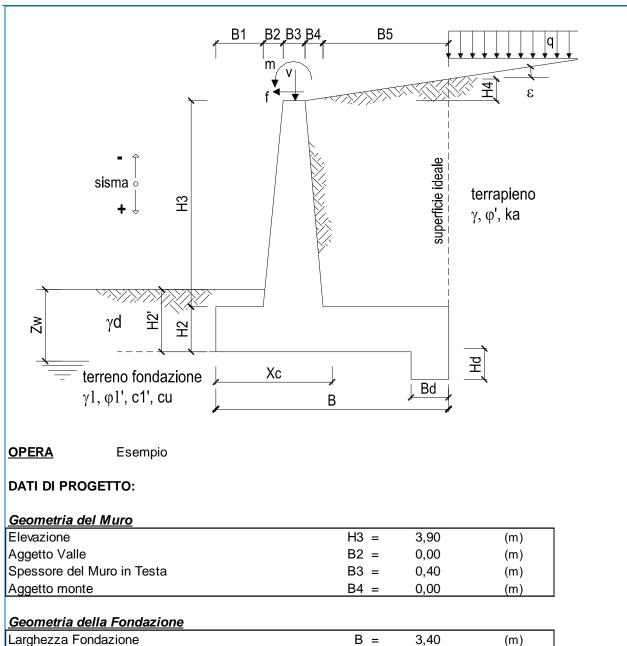
Dati geotecnici e sismici per le verifiche strutturali e geotecniche a carico limite e scorrimento:

						valori caratt	eristici	valori di	progetto
Dati (<u>Geotecnici</u>					SLE		STR/GEO	EQU
Dati Terrapieno	Angolo di attrito del terrapieno		(°)		φ'	37,00)	37,00	37,00
Dati rapie	Peso Unità di Volume del terrapieno		(kN/m ³)		γ'	20,00)	20,00	20,00
Ter	Angolo di attrito terreno-superficie ideale		(°)		δ	24,67	•	24,67	24,67
Dati Terreno Fondazione	Condizioni			⊚ dr	enat	e O Non D	Orenate		
ıdaz	Coesione Terreno di Fondazione		(kPa)		c1'	0,00		0,00	0,00
PG	Angolo di attrito del Terreno di Fondazione		(°)		φ1'	33,00)	33,00	33,00
ous	Peso Unità di Volume del Terreno di Fondazione		(kN/m^3)		γ1	20,00)	20,00	20,00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m^3)		γd	20,00)	20,00	20,00
Ξ	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	8,80			
Da	Modulo di deformazione		(kN/m ²)		Ε	21025			
	Accelerazione sismica				/~	0.126	()	1	
				а	_g /g	0,136	(-)		
. <u>5</u>	Coefficiente Amplificazione Stratigrafico				Ss	1,2	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico				S _T	1	(-)		
Š	Coefficiente di riduzione dell'accelerazione massima				βs	0,38	(-)		
Dati	Coefficiente sismico orizzontale				kh	0,062016	(-)		
_	Coefficiente sismico verticale				kv	0,0310	(-)	ł	
	Muro libero di traslare o ruotare				•) si	no		
			SL	.E	I	STR/GE	E O	EG	NU
	Coeff. di Spinta Attiva Statico	ka C	0,226			0,226		0,226	
<u>.</u> <u>a</u>	Coeff. Di Spinta Attiva Sismica sisma + ka		0,260			0,260		0,260	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma - ka),262			0,262		0,262	
effic Spii	·		3,392			3,392		3,392	
Ö	Coeff. Di Spinta Passiva Sismica sisma + kp	• 1	3,280			3,280		3,280	
			3,272			3,272		3,272	



Dati geotecnici e sismici per le verifiche geotecniche a ribaltamento:

			valori cara	tteristici	valori di	progetto			
Dati (<u>Geotecnici</u>					SLE		STR/GEO	EQU
eno	Angolo di attrito del terrapieno		(°)		φ'	37,0	0	37,00	37,00
Dati Terrapieno	Peso Unità di Volume del terrapieno		(kN/m ³)		γ'	20,0	0	20,00	20,00
Ter	Angolo di attrito terreno-superficie ideale		(°)		δ	24,6	7	24,67	24,67
Dati Terreno Fondazione	Condizioni			•	drenat	e O Non	Drenate		
ıdaz	Coesione Terreno di Fondazione		(kPa)		c1'	0,0)	0,00	0,00
Fon	Angolo di attrito del Terreno di Fondazione		(°)		φ1'	33,0	0	33,00	33,00
OĽ.	Peso Unità di Volume del Terreno di Fondazione		(kN/m^3)		γ1	20,0	0	20,00	20,00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m^3)		γd	20,0	0	20,00	20,00
i ∓	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	8,80)		
Da	Modulo di deformazione		(kN/m^2)		Е	2102	25		
								1	
	Accelerazione sismica				a _g /g	0,136	(-)		
	Coefficiente Amplificazione Stratigrafico				S_S	1,2	(-)		
mic	Coefficiente Amplificazione Topografico				S_T	1	(-)		
Sis	Coefficiente di riduzione dell'accelerazione massima				β_s	0,57	(-)		
Dati Sismici	Coefficiente sismico orizzontale				kh	0,093024	(-)		
	Coefficiente sismico verticale				kv	0,0465	(-)		
	Muro libero di traslare o ruotare				•) si) no		
		Г	SL		1	STR/G	\	EG	<u> </u>
	Ocean di Occidenta Author Oceania	1					BEU		(0
ق	Coeff. di Spinta Attiva Statico	ka	0,226			0,226		0,226	
Coefficienti di Spinta		as+	0,278			0,278		0,278	
efficient Spinta	· ·	kas-	0,283			0,283		0,283	
oeff	Coeff. Di Spinta Passiva	kp	3,392			3,392		3,392	
Ō	1	ps+	3,225			3,225		3,225	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	3,208			3,208		3,208	



14.3 **AZIONI SOLLECITANTI**

Geometria della Fondazione
Larghezza Fondazione
Spaceara Fondaziona

Mezzeria Sezione

H2 =0,40 Spessore Fondazione (m) Suola Lato Valle B1 = 0,00 (m) Suola Lato Monte B5 =3,00 (m) Altezza dente Hd =0,00 (m) Larghezza dente Bd =0,00 (m)

Peso S	pecifico del Calcestruzzo	γcls =	25,00	(kN/m³)

Xc =

1,70

(m)

RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

FORZE VERTICALI

FUNZE VENT	ICALI	_			
- Peso del Mu	ro (Pm)		SLE	STR/GEO	EQU
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0,00	0,00	0,00
Pm2 =	(B3*H3*γcls)	(kN/m)	39,00	39,00	39,00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0,00	0,00	0,00
Pm4 =	(B*H2*γcls)	(kN/m)	34,00	34,00	34,00
Pm5 =	(Bd*Hd*γcIs)	(kN/m)	0,00	0,00	0,00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	73,00	73,00	73,00
- Peso del terr	eno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*γ')	(kN/m)	234,00	234,00	234,00
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0,00	0,00	0,00
Pt3 =	(B4*H3*γ')/2	(kN/m)	0,00	0,00	0,00
Sovr =	qp * (B4+B5)	(kN/m)	180,00	234,00	234,00
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	414,00	468,00	468,00
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	q * (B4+B5)	(kN/m)	15	22,5	
	n qs * (B4+B5)	(kN/m)	0	,-	

Sovr acc. Si	ism qs * (B4+B5)	(kN/m)	0		
MOMENTI	DELLE FORZE VERT. RISPETTO AL PIEDE DI VALI	F DFL MURO			
- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0,00	0,00	0,00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	7,80	7,80	7,80
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0,00	0,00	0,00
Mm4 =	Pm4*(B/2)	(kNm/m)	57,80	57,80	57,80
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0,00	0,00	0,00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	65,60	65,60	65,60
•	e sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	444,60	444,60	444,60
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0,00	0,00	0,00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0,00	0,00	0,00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	342,00	444,60	444,60
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	786,60	889,20	889,20
	co accidentale sulla scarpa di monte del muro				
Sovr acc. St	tat *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	28,5	42,75	
	ism *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0	,	
INEDZIA D	EL MUDO E DEL TERRADIENO				
	EL MURO E DEL TERRAPIENO zontale e verticale del muro (Ps)				
Ps h=	Pm*kh	(kN/m)		4,53	
Ps v=	Pm*kv	(kN/m)		2,26	
- Inerzia oriz	zontale e verticale del terrapieno a tergo del muro (Pts	-)			
Ptsh =	Pt*kh	•		20.02	
Ptsv =	Pt*kv	(kN/m) (kN/m)		29,02 14,51	
				,-	
IncrementoMPs1 h=	 o orizzontale di momento dovuto all'inerzia del muro (M kh*Pm1*(H2+H3/3) 	IPs h) (kNm/m)		0,00	
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)		5,68	
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)		0,00	
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		0,42	
MPs5 h=					
	-kh*Pm5*(Hd/2)	(kNm/m)		0,00	
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		6,11	
Incremente	o verticale di momento dovuto all'inerzia del muro (MPs				
MPs1 v=	kv*Pm1*(B1+2/3*B2)	•		0.00	
	,	(kNm/m)		0,00	
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		0,24	
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0,00	
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)		1,79	
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0,00	
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		2,03	
	o orizzontale di momento dovuto all'inerzia del terrapier	. ,			
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)		34,10	
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)		0,00	
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)		0,00	
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)		34,10	
- Incremento	o verticale di momento dovuto all'inerzia del terrapieno	(MPts v)			
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		13,79	
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0,00	
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0,00	
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		13,79	
to v=	31 - 111 (02 - 111 (00	(13.411/111)		10,70	

15 **MURO TIPO 2 - VERIFICHE GEOTECNICHE**

15.1 **CONDIZIONE STATICA**

CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5* ₇ '*(H2+H3+H4+Hd) ² *ka	(kN/m)	41,73	54,25	54,25
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	58,23	75,70	75,70
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	4,85	7,28	7,28
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	37,92	49,30	49,30
Sqh perm =	Sq perm*cosδ	(kN/m)	52,91	68,79	68,79
Sqh acc =	Sq acc*cosδ	(kN/m)	4,41	6,61	6,61
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	17,42	22,64	22,64
Sqv perm=	Sq perm*senδ	(kN/m)	24,30	31,59	31,59
Sqvacc =	Sq acc*senδ	(kN/m)	2,03	3,04	3,04
- Spinta passi	va sul dente				
Sp=½*g1'*Hd2	^{2*} ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0,00	0,00	0,00

MOMENTI DE	MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO			STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	54,35	70,66	70,66
MSt2 =	Stv*B	(kNm/m)	59,21	76,98	76,98
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	113,77	147,90	147,90
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	9,48	14,22	14,22
MSq2 perm=	Sqv perm*B	(kNm/m)	82,62	107,41	107,41
MSq2 acc =	Sqv acc*B	(kNm/m)	6,89	10,33	10,33
$MSp = \gamma 1'*I$	-ld ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0,00	0,00	0,00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0,00	0,00	0,00
Mfext3 =	$(vp+v)^*(B1 +B2 + B3/2)$	(kNm/m)	0,04	0,04	0,04

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Fs	scorr.	(N*f + Sp) / T	3,12	>	1,1
Coef f	fficiente di =	attrito alla base (f) tgφ1'	0,65	(-)	
Risu T	ltante forz =	e orizzontali (T) Sth + Sqh + f	124,70	(kN/m)	
Risu N	ltante forz =	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	598,47	(kN/m)	

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	598,47	620,97	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sqh + f - Sp	124,70	124,70	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \Sigma M$	916,77	959,52	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
$M = Xc^*N - MM$	100,62	96,12	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic	+ q ₀ *Nq*iq + 0,5*γ1*Β*Nγ*iγ			
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0,00 33,00 20,00		(kPa) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	19,00		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0,17 3,06	0,15 3,09	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tg$ $N\gamma = 2*(Nq + 1)$		26,09 38,64 35,19		(-) (-) (-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + iq))$		0,63 0,61 0,50	0,64 0,61 0,50	(-) (-) (-)
(fondazione nas	striforme m = 2)			
qlim	(carico limite unitario)	845,50	851,45	(kN/m ²)

STUDIO CORONA

FS carico limite

F = qlim*B*/N

Nmin

Nmax

4,33

4,24

1,4

RELAZIONE DI CALCOLO - MURO LINEARE DI IMBOCCO E/O DI USCITA

VERIFICA AL RIBALTAMENTO (EQU)

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 954,84 (kNm/m)

Momento ribaltante (Mr)

MSt + MSq + Mfext1+ Mfext2 + MSp 38,07 (kNm/m)

25,08 Fs ribaltamento Ms/Mr 1,15

15.2 **CONDIZIONE SISMICA+**

CONDIZIONE SISMICA+

	TERRENO E DEL SOVRACCARICO	Γ	SLE	STR/GEO	EQU
- Spinta condiz		(1.11/.)			
	0,5*y'*(H2+H3+H4+Hd) ² *ka	(kN/m)	41,73	41,73	41,73
	0,5*y'*(1+kv)*(H2+H3+H4+Hd) ² *kas ⁺ -Sst1 stat	(kN/m)	7,78	7,78	7,78
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	67,00	67,00	67,00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0,00	0,00	0,00
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	37,92	37,92	37,92
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	7,07	7,07	7,07
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	60,89	60,89	60,89
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0,00	0,00	0,00
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	17,42	17,42	17,42
Sst1v sism =	Sst1 sism*senδ	(kN/m)	3,25	3,25	3,25
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	27,96	27,96	27,96
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiv	a sul dente				
	1 Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0,00	0,00	0,00
MOMENTI DE - Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica +	СО	SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	54,35	54,35	54,35
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	10,13	10,13	10,13
MSst2 stat =	Sst1v stat* B	(kNm/m)	59,21	59,21	59,21
MSst2 sism =	Sst1v sism* B	(kNm/m)	11,04	11,04	11,04
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	130,91	130,91	130,91
MSsq2 =	Ssq1v*B	(kNm/m)	95,07	95,07	95,07
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
	OVUTI ALLE FORZE ESTERNE				
	mp+ms	(kNm/m)		0,00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0,00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0,04	
VERIFICA AL	LO SCORRIMENTO				
Risultante forze				/L B L / _ ^	
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		552,60	(kN/m)	
Risultante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		139,43	(kN/m)	
ı =	03(111 + 034111 + 11 + 13 + 13 11 + 1311		103,40	(KIW/III)	
Coefficiente di	attrito alla base (f)				
f =	tgφl'		0,65	(-)	
Fs =	(N*f + Sp) / T		2,57	>	1,1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante	forze verticali (N)	Nmin	Nmax	
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	552,60	552,60	(kN/m)
Risultante	forze orizzontali (T)			
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	139,43		(kN/m)
Risultante	dei momenti rispetto al piede di valle (MM)			
MM =	Σ M	797,78	797,78	(kNm/m)
Momento r	ispetto al baricentro della fondazione (M)			
M =	Xc*N - MM	141,64	141,64	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim^B^/ N	nin 3,67	>	1,4
qlim	(carico limite unitario)	701,80	701,80	(kN/m^2)
(fondazione nas	striforme m = 2)			
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}	0,42	0,42	(-)
iq = (1 - T/(N + ic = iq - (1 - iq))	3 177	0,56 0,54	0,56 0,54	(-) (-)
•	e iγ sono stati valutati con le espressioni suggerite da Ves	,	0.50	()
$N\gamma = 2^*(Nq + 1)$	*tg(φ') (0 in cond. nd)	35,	19	(-)
Nc = (Nq - 1)/tg	,	38,0		(-)
$Nq = tg^2(45 + q)$	$(3/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd)	26.0)9	(-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite da \	Vesic (1975)		
B*= B - 2e	larghezza equivalente	2,89	2,89	(m)
e = M / N	eccentricità	0,26	0,26	(m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	19,0	00	(kN/m^2)
γ1	peso unità di volume terreno fondaz.	20,0	00	(kN/m ³)
φ1′	angolo di attrito terreno di fondaz.	33,0		(«)
c1'	coesione terreno di fondaz.	0.0	0	(kN/mg)
•	10 1 1 -7-1			

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Mm + Mt + Mfext3 954,84 (kNm/m)

Momento ribaltante (Mr)

MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 68,64 (kNm/m)

13,91 Fr Ms / Mr 1,15

3,67

Nmax

15.3 CONDIZIONE SISMICA -

CONDIZIONE SISMICA-

CRINTE DEL TERRENO E DEL COVERACCARICO	Г	Т	Т	1
SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta condizione sismica -		SLE	STR/GEO	EQU
Sst1 stat = $0.5^*\gamma'^*(H2+H3+H4+Hd)^{2*}ka$	(kN/m)	41,73	41,73	41,73
Sst1 sism = $0.5^*\gamma''(1-kv)^*(H2+H3+H4+Hd)^{2*}kas^{-}-Sst1$ stat	(kN/m)	5,22	5,22	5,22
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	67,61	67,61	67,61
	(kN/m)	0,00	0,00	0,00
$Ssq1 acc = qs*(H2+H3+H4+Hd)*kas^{-}$	(KIN/III)	0,00	0,00	0,00
- Componente orizzontale condizione sismica -				
Sst1h stat = Sst1 stat* $\cos \delta$	(kN/m)	37,92	37,92	37,92
Sst1h sism = Sst1 sism* $\cos \delta$	(kN/m)	4,74	4,74	4,74
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	61,44	61,44	61,44
Ssq1h acc= Ssq1 acc*cosδ	(kN/m)	0,00	0,00	0,00
- Componente verticale condizione sismica -				
Sst1v stat = Sst1 stat*sen δ	(kN/m)	17,42	17,42	17,42
Sst1v sism = Sst1 sism*senδ	(kN/m)	2,18	2,18	2,18
Ssq1v perm= Ssq1 perm*senδ	(kN/m)	28,21	28,21	28,21
Ssq1v acc= Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
	, ,			
- Spinta passiva sul dente				
Sp= $\frac{1}{2}$ * γ_1 '(1-kv) Hd ^{2*} kps ⁻ +(2*c ₁ '*kps ^{-0.5} + γ 1' (1-kv) kps ^{-*} H2')*Hd	(kN/m)	0,00	0,00	0,00
MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARI	СО	SLE	STR/GEO	EQU
- Condizione sismica -	L			
MSst1 stat = Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	54,35	54,35	54,35
MSst1 sism= Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	6,80	6,80	6,80
MSst2 stat = Sst1v stat* B	(kNm/m)	59,21	59,21	59,21
MSst2 sism = Sst1v sism* B	(kNm/m)	7,40	7,40	7,40
MSsq1 = Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	132,09	132,09	132,09
MSsq2 = Ssq1v * B	(kNm/m)	95,93	95,93	95,93
MSp = γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
	,			
MOMENTI DOVUTI ALLE FORZE ESTERNE				
MOMENTI DOVUTI ALLE FORZE ESTERNE	(kNm/m)		0.00	
Mfext1 = mp+ms $ Mfext2 = (fp+fs)*(H3 + H2)$	(kNm/m)		0,00 0,00	
$Mfext3 = (vp+vs)^*(B1 + B2 + B3/2)$	(kNm/m)		0,00	
(vp+vs) (b1+b2+b5/2)	(KINIII/III)		0,04	
VEDICICA ALLO SCODDIMENTO				
VERIFICA ALLO SCORRIMENTO				
Risultante forze verticali (N)				
N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		518,23	(kN/m)	
			. ,	
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		137,65	(kN/m)	
. – Ostin + Osym + ip + is +i s ii + i tsii		107,00	(13.111)	
Coefficiente di attrito alla base (f)				
$f = tg\phi 1'$		0,65	(-)	

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forz	e verticali (N)	Nmin	Nmax				
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	518,23	518,23	(kN/m)			
Risultante forz	e orizzontali (T)						
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	137,65		(kN/m)			
Risultante dei	momenti rispetto al piede di valle (MM)						
MM =	Σ M	765,52	765,52	(kNm/m)			
Momento rispetto al baricentro della fondazione (M)							
M =	Xc*N - MM	115,48	115,48	(kNm/m)			

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1'	coesione terreno di fondaz.	0,00		(kN/mq)			
φ1′	angolo di attrito terreno di fondaz.	33,00		(°)			
γ1	peso unità di volume terreno fondaz.	20,00		(kN/m ³)			
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	19,00		(kN/m^2)			
e = M / N	eccentricità	0,22	0,22	(m)			
B*= B - 2e	larghezza equivalente	2,95	2,95	(m)			
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)						
$Nq = tg^2(45 + q)$	$(5/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd)	26,09		(-)			
Nc = (Nq - 1)/tg	$g(\varphi')$ (2+ π in cond. nd)	38,64		(-)			
$N\gamma = 2^*(Nq + 1)$)*tg(φ') (0 in cond. nd)	35,19		(-)			
I valori di ic, iq e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)							
iq = (1 - T/(N +	$B*c'\cot g_{\phi}())^m$ (1 in cond. nd)	0,54	0,54	(-)			
ic = iq - (1 - iq)	/(Nq - 1)	0,52	0,52	(-)			
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}	0,40	0,40	(-)			
(fondazione nastriforme m = 2)							
qlim	(carico limite unitario)	679,10	679,10	(kN/m^2)			

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Mm + Mt + Mfext3 954,84 (kNm/m)

F = qlim*B*/N

Momento ribaltante (Mr)

FS carico limite

MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 117,32 (kNm/m)

8,14 Ms / Mr 1,15 Fr

Nmin

Nmax

3,87

3,87

RELAZIONE DI CALCOLO – MURO LINEARE DI IMBOCCO E/O DI USCITA

15.4 RIEPILOGO VERIFICHE

Coefficienti di sicurezza

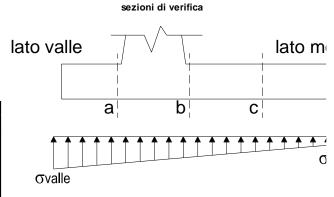
	Scorrimento	<u>Ribaltamento</u>	Carico limite
Statico	3,12	25,08	4,24
Sismico	2,44	8,14	3,67

16 MURO TIPO 2 - VERIFICHE STRUTTURALI

16.1 VERIFICHE ALLO STATO LIMITE ULTIMO

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

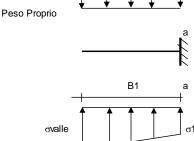

 σ valle = N / A + M / Wgg

omonte = N / A - M / Wgg

 $A = 1.0^*B = 3,40$ (m²)

 $Wgg = 1.0*B^2/6 = 1,93 (m^3)$

caso	N	М	σvalle	σmonte
Caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	598,47	100,62	228,25	123,79
	620,97	96,12	232,53	132,75
oiomoı	552,60	141,64	236,05	89,01
sisma+	552,60	141,64	236,05	89,01
sisma-	518,23	115,48	212,36	92,48
	518,23	115,48	212,36	92,48


Mensola Lato Valle

Peso Proprio. PP = 10,00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

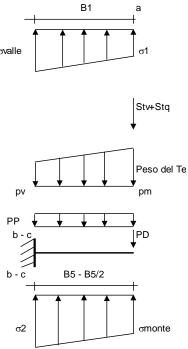
 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1\pm kv)$

	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	228,25	228,25	0,00	0,00
Statico	232,53	232,53	0,00	0,00
sisma+	236,05	236,05	0,00	0,00
SiSilia+	236,05	236,05	0,00	0,00
sisma-	212,36	212,36	0,00	0,00
	212,36	212,36	0,00	0,00

Mensola Lato Monte

PP	=	10,00 (kN/m ²)	peso proprio soletta fondazione
PD	=	0,00 (kN/m)	peso proprio dente

			•	•	
		Nmin	N max stat	N max sism	
pm	=	156,00	163,50	156,00	(kN/m^2)
pvb	=	156,00	163,50	156,00	(kN/m^2)
nvc	_	156 00	163 50	156.00	(kN/m^2)


 $\label{eq:monte-pvb+PP} $$ Mb=(\sigma_{monte}(pvb+PP)^*(1\pm kv))^*B5^2/2+(\sigma_{2b}-\sigma_{monte})^*B5^2/6-(pm-pvb))^*(1\pm kv)^*B5^2/3+(Stv+Sqv)^*B5-PD^*(1\pm kv)^*(B5-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2) $$ $$ Msp+Sp^*H2/2$$ $$ Msp+Sp^*H2/2$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}} \cdot (pvc + PP)^* (1 \pm kv))^* (B5/2)^2 / 2 + (\sigma 2c - \sigma_{\text{monte}})^* (B5/2)^2 / 6 - (pm - pvc)^* (1 \pm kv)^* (B5/2)^2 / 3 + - (Stv + Sqv)^* (B5/2) - PD^* (1 \pm kv)^* (B5/2 - Bd/2) - PD^* kh^* (Hd + H2/2) + Msp + Sp^* H2/2 \end{aligned}$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm-pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

	σmonte	σ2b	Mb	Vb	σ2 c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	123,79	215,96	-223,49	-45,64	169,88	-116,10	-86,02
statico	132,75	220,79	-223,13	-47,46	176,77	-115,24	-85,38
sisma+	89,01	218,75	-320,88	-100,43	153,88	-141,01	-123,18
	89,01	218,75	-320,88	-100,43	153,88	-141,01	-123,18
sisma-	92,48	198,26	-292,42	-94,26	145,37	-128,79	-110,70
	92,48	198,26	-292,42	-94,26	145,37	-128,79	-110,70

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm k v)^* h^{2*} h/3$

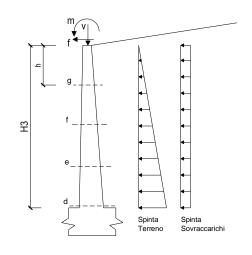
 $Mt \ sism = \frac{1}{2} * \gamma * (Kas_{orizz.} * (1 \pm kv) - Ka_{orizz.}) * h^2 * h/2 \quad o * h/3$

 $Mq = \frac{1}{2} Ka_{orizz} *q*h^2$

 $\begin{aligned} M_{ext} &= m + f^*h \\ M_{inerzia} &= \Sigma P m_i^* b_i^* k h \end{aligned}$

 $N_{ext} = v$

N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$


Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

 $Vq = Ka_{orizz}^*q^*h$

 $V_{ext} = f$

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
Sezione -	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3,90	52,72	133,36	0,00	186,08	0,20	39,00	39,20
e-e	2,93	22,24	75,01	0,00	97,25	0,20	29,25	29,45
f-f	1,95	6,59	33,34	0,00	39,93	0,20	19,50	19,70
g-g	0,98	0,82	8,33	0,00	9,16	0,20	9,75	9,95

sezione	h	Vt	Vq	V_{ext}	V _{tot}
SEZIONE	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3,90	40,55	68,39	0,00	108,94
e-e	2,93	22,81	51,29	0,00	74,10
f-f	1,95	10,14	34,19	0,00	44,33
g-g	0,98	2,53	17,10	0,00	19,63

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	$M_{inerzia}$	M _{tot}	N _{ext}	$N_{pp+inerzia}$	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3,90	40,55	8,32	107,69	0,00	4,72	161,28	0,20	40,21	40,41
e-e	2,93	17,11	3,51	60,57	0,00	2,65	83,84	0,20	30,16	30,36
f-f	1,95	5,07	1,04	26,92	0,00	1,18	34,21	0,20	20,10	20,30
g-g	0,98	0,63	0,13	6,73	0,00	0,29	7,79	0,20	10,05	10,25

sezione	h	Vt stat	Vt sism	Vq	$V_{\rm ext}$	$V_{inerzia}$	V_{tot}	
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	3,90	31,19	6,40	55,22	0,00	2,42	95,24	
e-e	2,93	17,55	3,60	41,42	0,00	1,81	64,38	
f-f	1,95	7,80	1,60	27,61	0,00	1,21	38,22	
g-g	0,98	1,95	0,40	13,81	0,00	0,60	16,76	

condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	$M_{inerzia}$	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3,90	40,55	5,58	108,66	0,00	4,72	159,51	0,20	37,79	37,99
e-e	2,93	17,11	2,35	61,12	0,00	2,65	83,24	0,20	28,34	28,54
f-f	1,95	5,07	0,70	27,16	0,00	1,18	34,11	0,20	18,90	19,10
g-g	0,98	0,63	0,09	6,79	0,00	0,29	7,81	0,20	9,45	9,65

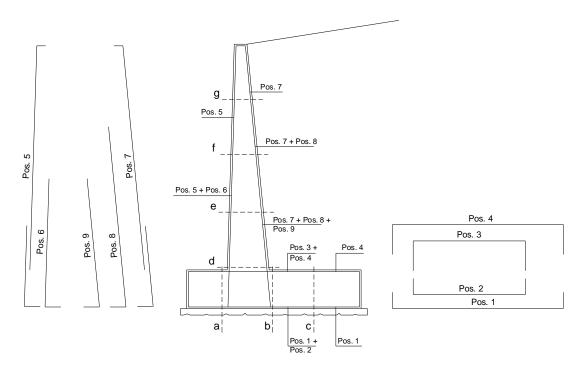
sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}	
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	3,90	31,19	4,29	55,72	0,00	2,42	93,63	
e-e	2,93	17,55	2,41	41,79	0,00	1,81	63,57	
f-f	1,95	7,80	1,07	27,86	0,00	1,21	37,94	
g-g	0,98	1,95	0,27	13,93	0,00	0,60	16,75	

L'armatura del paramento verticale del muro è prevista come segue:

- armatura verticale (armatura di forza):
 - Ø16/20 esterni
 - Ø20/10 interni (lato terreno)
- armatura longitudinale di ripartizione:
 - Ø16/20 esterni
 - Ø16/20 interni

Non è prevista alcuna specifica armatura a taglio. Verranno tuttavia disposte spille di legatura Ø10/40x40.

Il copriferro netto minimo è assunto pari a 45 mm.


L'armatura della zattera di fondazione del muro è prevista come segue:

- armatura in direzione trasversale:
 - Ø20/10 superiori
 - Ø16/20 inferiori
- armatura in direzione longitudinale:
- Ø16/20 superiori
- Ø16/20 inferiori

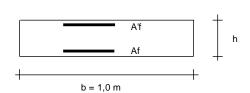
Non è prevista alcuna specifica armatura a taglio. Verranno tuttavia disposti dei cavallotti Ø16/80x40.

Il copriferro netto minimo è assunto pari a 40 mm.

SCHEMA DELLE ARMATURE

ARMATURE

	pos	n°/ml	ф	II strato	pos	n°/ml	φ	II strato	
•	1 2	5,0 0,0	20		5 6	5,0 0,0	20 0		
	4	0,0 10,0	20		8	10,0 0,0 0,0	0		Calcola



VERIFICHE

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-6-7-8-9
e-e	pos 5-6-7-8-9
f-f	pos 5-7-8
g-g	pos 5-7

Sez.	М	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	0,00	0,00	0,40	31,42	15,71	194,97
b - b	-320,88	0,00	0,40	31,42	15,71	367,28
c - c	-141,01	0,00	0,40	31,42	15,71	367,28
d - d	186,08	39,20	0,40	31,42	15,71	372,56
е -е	97,25	29,45	0,40	31,42	15,71	371,25
f - f	39,93	19,70	0,40	31,42	15,71	369,94
g - g	9,16	9,95	0,40	31,42	15,71	368,62

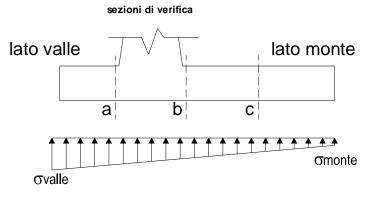
(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	0,00	0,40	213,22	16	80	40	21,8	188,09	Armatura a taglio non necessaria
b - b	100,43	0,40	213,22	16	80	40	21,8	188,09	Armatura a taglio non necessaria
c - c	123,18	0,40	213,22	16	80	40	21,8	188,09	Armatura a taglio non necessaria
d - d	108,94	0,40	218,22	10	40	20	21,8	293,88	Armatura a taglio non necessaria
е -е	74,10	0,40	216,98	10	40	40	21,8	146,94	Armatura a taglio non necessaria
f - f	44,33	0,40	215,73	10	40	40	21,8	146,94	Armatura a taglio non necessaria
g - g	19,63	0,40	214,49	10	40	40	21,8	146,94	Armatura a taglio non necessaria

16.2 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

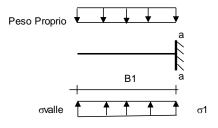

 σ valle = N / A + M / Wgg

 σ monte = N / A - M / Wgg

$$A = 1.0^*B = 3,40 \text{ (m}^2)$$

$$Wgg = 1.0*B^2/6 = 1,93 (m^3)$$

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
Lrss	530,43	77,73	196,36	115,66
Freq.	541,68	75,48	198,50	120,14
Q.P.	528,92	73,20	193,56	117,57
Q.P.	528,92	73,20	193,56	117,57



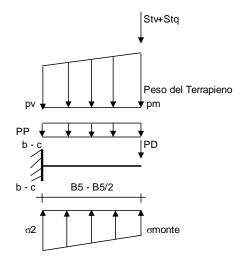
Mensola Lato Valle

Peso Proprio. PP = 10,00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

	σvalle	σ1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
Freq.	196,36	196,36	0,00
гіец.	198,50	198,50	0,00
Q.P.	193,56	193,56	0,00
Q.P.	193,56	193,56	0,00

Mensola Lato Monte

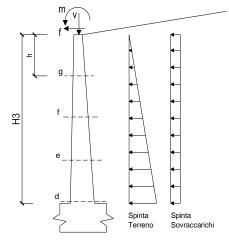

PP	=	10,00	(kN/m^2)	peso proprio soletta fondazione
PD	=	0,00	(kN/m)	peso proprio dente

		Nmin N	max Freq	N max QP	
pm	=	138,00	141,75	138,00	(kN/m^2)
pvb	=	138,00	141,75	138,00	(kN/m^2)
pvc	=	138,00	141,75	138,00	(kN/m^2)

$$\begin{split} Mb = &(\sigma_{monte}\text{-}(pvb+PP))*B5^2/2 + (\sigma 2b - \sigma_{monte})*B5^2/6 - (pm-pvb))*B5^2/3 + \\ &- (Stv+Sqv)*B5-PD*(B5-Bd/2) + Msp+Sp*H2/2 \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{monte} - (\text{pvc+PP}))^* (\text{B5/2})^2 / 2 + (\sigma_2 \text{c} - \sigma_{monte})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (\text{B5/2})^2 / 3 + \\ & - (\text{Stv+Sqv})^* (\text{B5/2}) - \text{PD}^* (\text{B5/2-Bd/2}) + \text{Msp+Sp*H2/2} \end{aligned}$

caso	σmonte	σ2b	Mb	σ2c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
Freq.	115,66	186,86	-168,42	151,26	-87,88
гіец.	120,14	189,28	-168,24	154,71	-87,45
Q.P.	117,57	184,62	-161,51	151,09	-84,24
Q.F.	117,57	184,62	-161,51	151,09	-84,24



CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

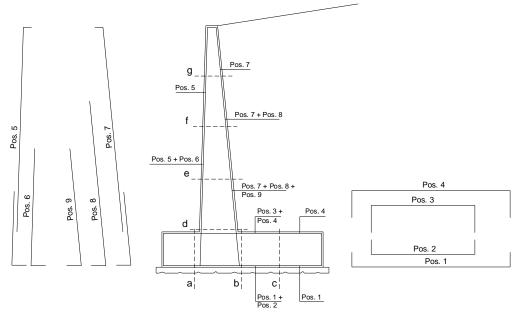
= $\frac{1}{2}$ Ka_{orizz.}* γ *h²*h/3 Mt Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²

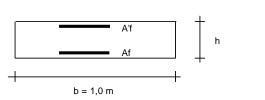
= m+f*h $M_{\text{ext}} \\$ N_{ext}

condizione Frequente

	001141210110 1 1 0 0 4 0 1110							
sezione	h	Mt	Mq	M_{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
36210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3,90	40,55	99,43	0,00	139,99	0,20	39,00	39,20
e-e	2,93	17,11	55,93	0,00	73,04	0,20	29,25	29,45
f-f	1,95	5,07	24,86	0,00	29,93	0,20	19,50	19,70
g-g	0,98	0,63	6,21	0,00	6,85	0,20	9,75	9,95

condizione Quasi Permanente


			00114121011	o				
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
36210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3,90	40,55	93,58	0,00	134,14	0,20	39,00	39,20
е-е	2,93	17,11	52,64	0,00	69,75	0,20	29,25	29,45
f-f	1,95	5,07	23,40	0,00	28,47	0,20	19,50	19,70
g-g	0,98	0,63	5,85	0,00	6,48	0,20	9,75	9,95


SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	
1	5,0	20		5	5,0	20		
2	0,0	0		6	0,0	0		0-11-
3	0,0	0		7	10,0	20		Calcola
4	10,0	20		8	0,0	0		
			l	9	0,0	0		

b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-6-7-8-9
е-е	pos 5-6-7-8-9
f-f	pos 5-7-8
a-a	nos 5-7

a-a

pos 1-2-3-4

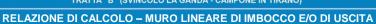
condizione Frequente

Sez.	М	N	h	Af	A'f	σα	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	0,00	0,00	0,40	31,42	15,71	0,00	0,00	0,000	0,300
b - b	-168,42	0,00	0,40	31,42	15,71	7,42	182,20	0,183	0,300
C - C	-87,88	0,00	0,40	31,42	15,71	3,87	95,07	0,073	0,300
d - d	139,99	39,20	0,40	31,42	15,71	6,24	145,52	0,136	0,300
e -e	73,04	29,45	0,40	31,42	15,71	3,27	74,60	0,057	0,300
f - f	29,93	19,70	0,40	31,42	15,71	1,35	29,43	0,022	0,300
g - g	6,85	9,95	0,40	31,42	15,71	0,32	5,94	0,004	0,300

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

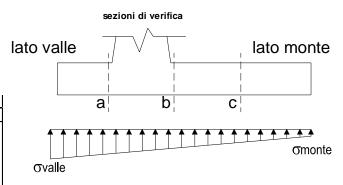
condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	o c	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	0,00	0,00	0,40	31,42	15,71	0,00	0,00	0,000	0,200
b - b	-161,51	0,00	0,40	31,42	15,71	7,12	174,74	0,173	0,200
C - C	-84,24	0,00	0,40	31,42	15,71	3,71	91,13	0,070	0,200
d - d	134,14	39,20	0,40	31,42	15,71	5,99	139,19	0,128	0,200
е -е	69,75	29,45	0,40	31,42	15,71	3,13	71,04	0,054	0,200
f - f	28,47	19,70	0,40	31,42	15,71	1,29	27,85	0,021	0,200
g - g	6,48	9,95	0,40	31,42	15,71	0,30	5,55	0,004	0,200


(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

16.3 VERIFICHE TENSIONI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

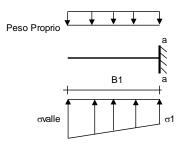

Reazione del terreno

 $\text{ovalle} = N / A + M / Wgg \\
 \text{omonte} = N / A - M / Wgg$

 $A = 1.0*B = 3,40 (m^2)$

 $Wgg = 1.0*B^2/6 = 1,93 (m^3)$

	N	М	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m²]
statico	530,94	80,96	198,18	114,14
statico	545,94	77,96	201,04	120,11
sisma+	552,60	141,64	236,05	89,01
515111a+	552,60	141,64	236,05	89,01
sisma-	518,23	115,48	212,36	92,48
	518,23	115,48	212,36	92,48



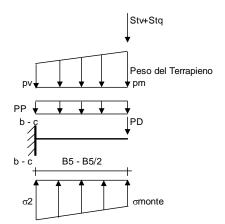
Mensola Lato Valle

Peso Proprio. PP = 10,00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

	σvalle	σ1	Ma		
caso	[kN/m ²]	[kN/m ²]	[kNm]		
statico	198,18	198,18	0,00		
Statico	201,04	201,04	0,00		
sisma+	236,05	236,05	0,00		
sisma+	236,05	236,05	0,00		
alama	212,36	212,36	0,00		
sisma-	212,36	212,36	0.00		

Mensola Lato Monte


 $\begin{array}{llll} \mbox{PP} & = & 10,00 & (\mbox{kN/m}^2) & \mbox{peso proprio soletta fondazione} \\ \mbox{PD} & = & 0,00 & (\mbox{kN/m}) & \mbox{peso proprio dente} \end{array}$

Nmin N max stat N max sism 138,00 143,00 138,00 (kN/m^2) pm pvb 138,00 143,00 138,00 (kN/m^2) 138,00 138,00 143,00 (kN/m^2) pvc

$$\begin{split} Mb = & (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + \\ & - (Stv + Sqv)^*B5 - PD^*(1 \pm kv)^*(B5 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{split}$$

$$\begin{split} \text{Mc} = & (\sigma_{monte^-}(pvc+PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1\pm kv)^*(B5/2)^2/3 + \\ & - (Stv+Sqv)^*(B5/2) - PD^*(1\pm kv)^*(B5/2-Bd/2) - PD^*kh^*(Hd+H2/2) + Msp+Sp^*H2/2 \end{split}$$

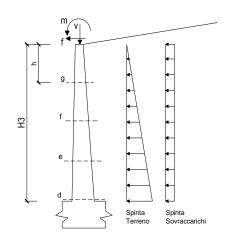
	σmonte	σ2b	Mb	σ2c	Mc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
statico	114,14	188,29	-172,37	151,22	-89,80
	120,11	191,51	-172,13	155,81	-89,23
_!	89,01	218,75	-237,36	153,88	-120,13
sisma+	89,01	218,75	-237,36	153,88	-120,13
-!	92,48	198,26	-213,94	145,37	-109,17
sisma-	92,48	198,26	-213,94	145,37	-109,17

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

 $Mt \ sism = \frac{1}{2} * \gamma * (Kas_{orizz.}*(1\pm kv)-Ka_{orizz.})*h^{2*}h/2 \quad o *h/3$


Mq = $\frac{1}{2}$ Ka_{orizz}*q*h²

 $M_{ext} = m+f^*h$

 $M_{inerzia} = \Sigma P m_i^* b_i^* kh$ (solo con sisma)

 $N_{ext} = v$

N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$

condizione statica

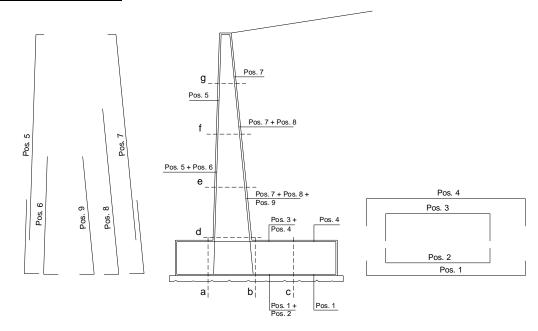
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
002.00	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3,90	40,55	101,38	0,00	141,94	0,20	39,00	39,20
е-е	2,93	17,11	57,03	0,00	74,14	0,20	29,25	29,45
f-f	1,95	5,07	25,35	0,00	30,42	0,20	19,50	19,70
g-g	0,98	0,63	6,34	0,00	6,97	0,20	9,75	9,95

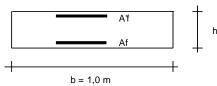
condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	3,90	40,55	8,32	107,69	0,00	4,72	161,28	0,20	40,21	40,41
e-e	2,93	17,11	3,51	60,57	0,00	2,65	83,84	0,20	30,16	30,36
f-f	1,95	5,07	1,04	26,92	0,00	1,18	34,21	0,20	20,10	20,30
g-g	0,98	0,63	0,13	6,73	0,00	0,29	7,79	0,20	10,05	10,25

condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}		
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]		
d-d	3,90	40,55	5,58	108,66	0,00	4,72	159,51	0,20	37,79	37,99		
e-e	2,93	17,11	2,35	61,12	0,00	2,65	83,24	0,20	28,34	28,54		
f-f	1,95	5,07	0,70	27,16	0,00	1,18	34,11	0,20	18,90	19,10		
g-g	0,98	0,63	0,09	6,79	0,00	0,29	7,81	0,20	9,45	9,65		




SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	5,0	20		5	5,0	20	
2	0,0	0		6	0,0	0	
3	0,0	0		7	10,0	20	_
4	10,0	20		8	0,0	0	
				9	0.0	0	

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-6-7-8-9
e-e	pos 5-6-7-8-9
f-f	pos 5-7-8
g-g	pos 5-7

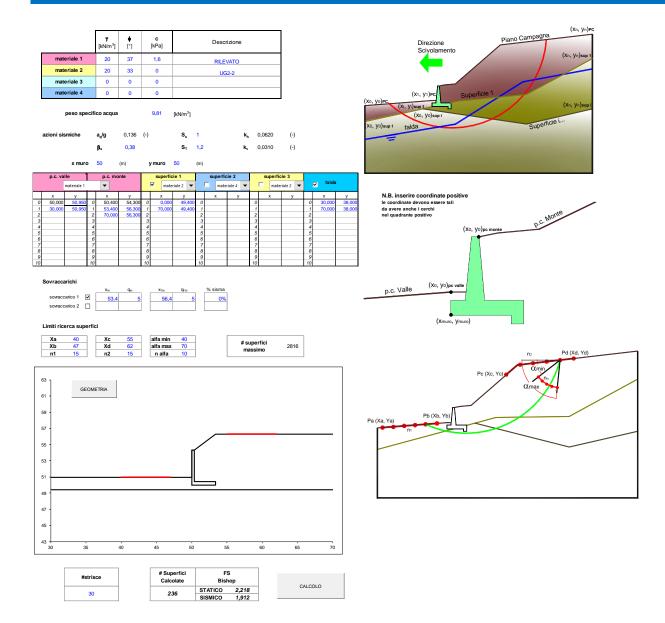
Condizione Statica

COHGIZIO	ie Statica						
Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	0,00	0,00	0,40	31,42	15,71	0,00	0,00
b - b	-172,37	0,00	0,40	31,42	15,71	7,60	186,48
c - c	-89,80	0,00	0,40	31,42	15,71	3,96	97,15
d - d	141,94	39,20	0,40	31,42	15,71	6,33	147,63
е -е	74,14	29,45	0,40	31,42	15,71	3,32	75,79
f - f	30,42	19,70	0,40	31,42	15,71	1,38	29,95
g - g	6,97	9,95	0,40	31,42	15,71	0,32	6,07

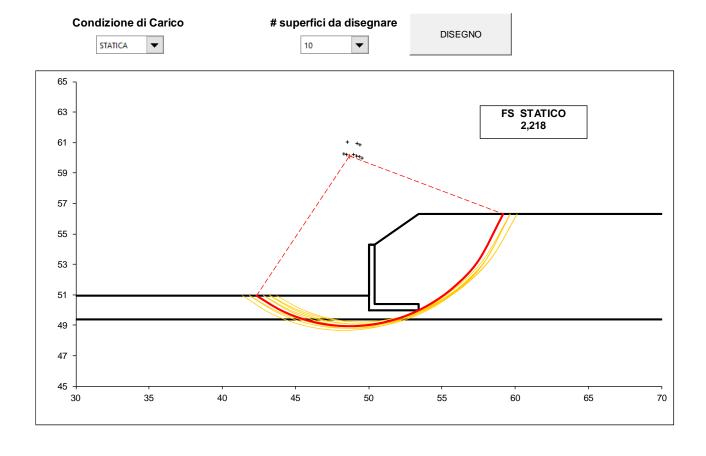
Condizione Sismica

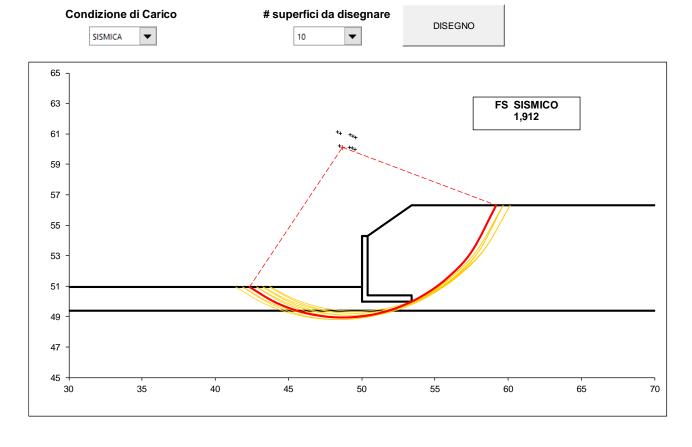
Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	0,00	0,00	0,40	31,42	15,71	0,00	0,00
b - b	-237,36	0,00	0,40	31,42	15,71	10,46	256,79
C - C	-120,13	0,00	0,40	31,42	15,71	5,30	129,97
d - d	161,28	37,99	0,40	31,42	15,71	7,18	168,73
e -e	83,84	28,54	0,40	31,42	15,71	3,75	86,40
f - f	34,21	19,10	0,40	31,42	15,71	1,54	34,14
g - g	7,81	9,65	0,40	31,42	15,71	0,36	7,02

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)



17


MURO TIPO 2 - VERIFICA DI STABILITA' GLOBALE



18 **MURO TIPO 3 - VALUTAZIONE DELLE AZIONI SOLLECITANTI**

18.1 **APPROCCI NORMATIVI**

Nelle verifiche di sicurezza allo Stato Limite Ultimo, in accordo con quanto riportato nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 6.5.3.1.1., le verifiche geotecniche e strutturali devono essere effettuate secondo l'Approccio 2, combinazione dei coefficienti parziali A1+M1+R3, tenendo conto dei seguenti valori dei coefficienti parziali:

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti Gı	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ ₆₂	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

[🕪] Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti 🛭 үст

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi^{'}}$	1,0	1,25
Coesione efficace	c′ _k	γċ	1,0	1,25
Resistenza non drenata	c _{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

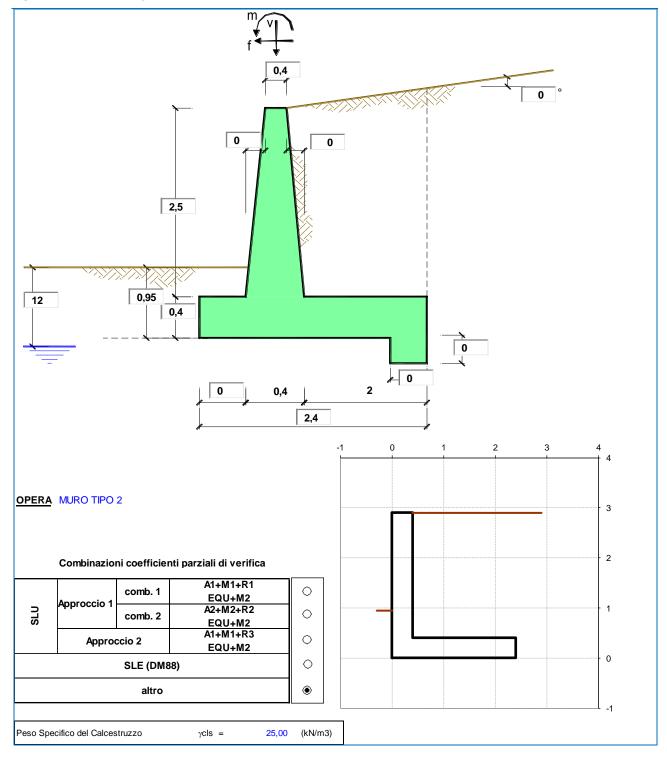
Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Nelle verifiche di sicurezza allo Stato Limite di salvaguardia della Vita, in accordo con quanto riportato nel D.M. 17.01.2018 "Nuove norme tecniche per le costruzioni", par. 7.11.6.2.2., si pongono pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e si impiegano le resistenze di progetto con i coefficienti parziali indicati in tabella 7.11.III:

Tab. 7.11.III - Coefficienti parziali ya per le verifiche degli stati limite (SLV) dei muri di sostegno.

Verifica	Coefficiente parziale γ _R
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2



18.2 **DATI DI INPUT**

Coefficienti Statici:

Carichi	Effetto	Coeff. Parziale	EQU	A1 (STR)	A2 (GEO)	SLE	altro
Permanenti	favorevole	2/-	0,90	1,00	1,00	1,00	1,00
remanenti	sfavorevole	γ̈G	1,10	1,30	1,00	1,00	1,30
Variabili	favorevole		0,00	0,00	0,00	0,00	0,00
Valiabili	sfavorevole	γα	1,50	1,50	1,30	1,00	1,50

Parametro		Coeff. Parziale	M1	M2	SLE	altro
angolo d'attrito	tan φ' _k	$\gamma_{\phi'}$	1,00	1,25	1,00	1,00
coesione	c' _k	γc'	1,00	1,25	1,00	1,00
resistenza non drenata	C _{uk}	γ _{cu}	1,00	1,40	1,00	1,00
peso unità di volume	γ	γ_{γ}	1,00	1,00	1,00	1,00

Verifica	Coeff. Parziale	R1	R2	R3	SLE	altro
Capacità portante fondazione		1,00	1,00	1,40	2,00	1,40
Scorrimento	γR	1,00	1,00	1,10	1,30	1,10
Ribaltamento		1,00	1,00	1,00	1,50	1,15

Coefficienti Sismici:

Verifica	Coeff. Parziale	R1	R2	R3	SLE	altro
Capacità portante fondazione		1,00	1,00	1,40	2,00	1,20
Scorrimento	γR	1,00	1,00	1,10	1,30	1,00
Ribaltamento	7	1,00	1,00	1,00	1,50	1,00

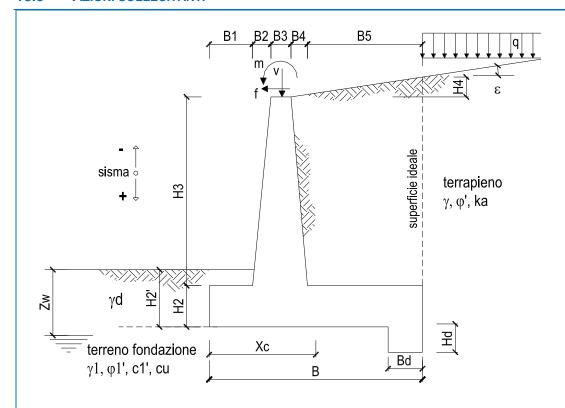
Dati geotecnici e sismici per le verifiche strutturali e geotecniche a carico limite e scorrimento:

						valori carat	teristici	valori di	progetto
Dati (<u>Geotecnici</u>					SLE		STR/GEO	EQU
Dati Terrapieno	Angolo di attrito del terrapieno		(°)		φ'	37,00)	37,00	37,00
Dati rapie	Peso Unità di Volume del terrapieno		(kN/m ³)		γ'	20,00)	20,00	20,00
Ter	Angolo di attrito terreno-superficie ideale		(°)		δ	24,67	7	24,67	24,67
Dati Terreno Fondazione	Condizioni			● d	renat	e 🔘 Non I	Drenate		
ıdaz	Coesione Terreno di Fondazione		(kPa)		c1'	0,00		0,00	0,00
Po	Angolo di attrito del Terreno di Fondazione		(°)		φ1'	33,00)	33,00	33,00
ous	Peso Unità di Volume del Terreno di Fondazione		(kN/m^3)		γ1	20,00)	20,00	20,00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m^3)		γd	20,00)	20,00	20,00
Ξ	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	8,80			
Da	Modulo di deformazione		(kN/m ²)		Е	2102	5		
	Accelerazione sismica				. / ~	0.126	()	1	
				č	a _g /g	0,136	(-)		
. <u>5</u>	Coefficiente Amplificazione Stratigrafico				Ss	1,2	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico				S _T	1	(-)		
Ö	Coefficiente di riduzione dell'accelerazione massima				βs	0,38	(-)		
Dati	Coefficiente sismico orizzontale				kh	0,062016	(-)		
_	Coefficiente sismico verticale				kv	0,0310	(-)	1	
	Muro libero di traslare o ruotare				•) si	no		
			SL	.E	1	STR/G	EO	EG	NU
	Coeff. di Spinta Attiva Statico	ka 0),226			0,226	•	0,226	
<u>.</u> <u>a</u>	Coeff. Di Spinta Attiva Sismica sisma + ka),260			0,260		0,260	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma - ka),262			0,262		0,262	
effic Spii	·		3,392			3,392		3,392	
Ö	Coeff. Di Spinta Passiva Sismica sisma + kp	•	3,280			3,280		3,280	
			3,272			3,272		3,272	

\$ anas

						valori ca	ratteristici	valori di	progetto
<u>Dati (</u>	<u>Geotecnici</u>					S	LE	STR/GEO	EQU
Dati Terrapieno	Angolo di attrito del terrapieno		(°)		φ'	37	7,00	37,00	37,00
Dati rapie	Peso Unità di Volume del terrapieno		(kN/m ³)		γ'	20),00	20,00	20,00
	Angolo di attrito terreno-superficie ideale		(°)		δ	24	,67	24,67	24,67
Dati Terreno Fondazione	Condizioni			⊚ (drenat	e ON	on Drenate		
daz	Coesione Terreno di Fondazione		(kPa)		c1'	0	00	0,00	0,00
Pa	Angolo di attrito del Terreno di Fondazione		(°)		φ1'	33	3,00	33,00	33,00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m^3)		γ1	20	,00	20,00	20,00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m^3)		γd	20	,00	20,00	20,00
i i	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	8	80		
Da	Modulo di deformazione		(kN/m ²)		Е	21	025		
								-	
	Accelerazione sismica				a _g /g	0,136	(-)		
	Coefficiente Amplificazione Stratigrafico				S_{S}	1,2	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico				S_{T}	1	(-)		
Sisr	Coefficiente di riduzione dell'accelerazione massima				β_{s}	0,57	(-)		
ati	Coefficiente sismico orizzontale				kh	0,093024	(-)		
	Coefficiente sismico verticale			_	kv	0,0465	(-)		
	Muro libero di traslare o ruotare				•) si	O no		
l			SL	F		STR	/GEO	F	ฉบ
	Coeff. di Spinta Attiva Statico	(a 0,	226		+	0,226		0,226	
ਓ	Coeff. Di Spinta Attiva Sismica sisma + kas	1	278			0,228		0,228	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma - ka	1	283			0,278		0,278	
efficient Spinta	•	1	392			3,392		3,392	
Soel	Coeff. Di Spinta Passiva Sismica sisma + kps	' '	225			3,225		3,392	
	Coeff. Di Spinta Passiva Sismica sisma - kp	1	208			3,223		3,223	

Calcestruzzo				<u>Acciaio</u>
classe cls C28/	/35 ▼			tipo di acciaio B450C ▼
Rck		35	(MPa)	
fck		28	(MPa)	fyk = 450 (MPa)
fcm		36	(MPa)	
Ec		32308	(MPa)	γ s = 1,15
α_{cc}		0,85		
γс		1,50		$fyd = fyk / \gamma s / \gamma E = 391,30 $ (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$		15,87	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30*f_{ck}^{2/3}$		2,77	(MPa)	$\varepsilon_{\text{ys}} = 0.19\%$
Tensioni limite (tens	sioni amr	nissibili)		
condizioni statiche				coefficiente omogeneizzazione acciaio n = 15
	11 260	nissibili) Mpa Mpa		coefficiente omogeneizzazione acciaio n = 15
	11	Мра		coefficiente omogeneizzazione acciaio n = 15 <u>Copriferro</u> (distanza asse armatura-bordo)
$\frac{condizioni\ statiche}{\sigma_c}$ $\frac{\sigma_c}{\sigma_f}$ $\frac{condizioni\ sismiche}{\sigma_c}$	11 260	Mpa Mpa		<u>Copriferro</u> (distanza asse armatura-bordo)
	11 260	Mpa Mpa Mpa		·
$\frac{condizioni\ statiche}{\sigma_c}$ $\frac{\sigma_c}{\sigma_f}$ $\frac{condizioni\ sismiche}{\sigma_c}$	11 260	Mpa Mpa		<u>Copriferro</u> (distanza asse armatura-bordo) c = 6,00 (cm)
	11 260	Mpa Mpa Mpa		<u>Copriferro</u> (distanza asse armatura-bordo)
	11 260 11 260	Mpa Mpa Mpa Mpa		Copriferro (distanza asse armatura-bordo) c = 6,00 (cm) Copriferro minimo di normativa (ricoprimento armatura)
	11 260 11 260	Mpa Mpa Mpa Mpa Mpa	0,3 mm	



18.3 **AZIONI SOLLECITANTI**

OPERA Esempio

DATI DI PROGETTO:

Geometria del Muro

<u>Ocometra del maro</u>			
Elevazione	H3 =	2,50	(m)
Aggetto Valle	B2 =	0,00	(m)
Spessore del Muro in Testa	B3 =	0,40	(m)
Aggetto monte	B4 =	0,00	(m)

Geometria della Fondazione

Larghezza Fondazione	В	=	2,40	(m)
Spessore Fondazione	H2	=	0,40	(m)
Suola Lato Valle	B1	=	0,00	(m)
Suola Lato Monte	B5	=	2,00	(m)
Altezza dente	Hd	=	0,00	(m)
Larghezza dente	Bd	=	0,00	(m)
Mezzeria Sezione	Xc	=	1,20	(m)

Peso Specifico del Calcestruzzo	vcls -	25.00	(kN/m ³)

I ONZE VENI	IOALI				
- Peso del Mu	ro (Pm)		SLE	STR/GEO	EQU
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0,00	0,00	0,00
Pm2 =	(B3*H3*γcls)	(kN/m)	25,00	25,00	25,00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0,00	0,00	0,00
Pm4 =	(B*H2*γcls)	(kN/m)	24,00	24,00	24,00
Pm5 =	(Bd*Hd*γcIs)	(kN/m)	0,00	0,00	0,00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	49,00	49,00	49,00
- Peso del terr	eno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*γ')	(kN/m)	100,00	100,00	100,00
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0,00	0,00	0,00
Pt3 =	(B4*H3*γ')/2	(kN/m)	0,00	0,00	0,00
Sovr =	qp * (B4+B5)	(kN/m)	120,00	156,00	156,00
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	220,00	256,00	256,00
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	·	(kN/m)	10	15	
	n qs * (B4+B5)	(kN/m)	0	.0	

Sovr acc. Sisr	m qs * (B4+B5)	(kN/m)	0		
MOMENTI D	ELLE FORZE VERT. RISPETTO AL PIEDE DI VALLI	E DEL MURO_		_	
- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0,00	0,00	0,00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	5,00	5,00	5,00
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0,00	0,00	0,00
Mm4 =	Pm4*(B/2)	(kNm/m)	28,80	28,80	28,80
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0,00	0,00	0,00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	33,80	33,80	33,80
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	140,00	140,00	140,00
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0,00	0,00	0,00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0,00	0,00	0,00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	168,00	218,40	218,40
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	308,00	358,40	358,40
	accidentale sulla scarpa di monte del muro	(1.81/)	4.4	0.4	
	t *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	14	21	
Sovr acc. Sisr	m *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0		
	MURO E DEL TERRAPIENO				
	ontale e verticale del muro (Ps)	(1.11/)			
Ps h=	Pm*kh	(kN/m)		3,04	
Ps v=	Pm*kv	(kN/m)		1,52	
- Inerzia orizzo	ontale e verticale del terrapieno a tergo del muro (Pts)				
Ptsh =	Pt*kh	(kN/m)		15,88	
Ptsv =	Pt*kv	(kN/m)		7,94	
	prizzontale di momento dovuto all'inerzia del muro (MF				
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)		0,00	
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)		2,56	
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)		0,00	
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)		0,30	
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)		0,00	
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		2,86	
- Incremento v	verticale di momento dovuto all'inerzia del muro (MPs	v)			
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)		0,00	
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)		0,16	
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)		0,00	
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)		0,89	
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)		0,00	
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)		1,05	
		, ,		,	
	prizzontale di momento dovuto all'inerzia del terrapieno	, ,			
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)		10,23	
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)		0,00	
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)		0,00	
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)		10,23	
- Incremento	verticale di momento dovuto all'inerzia del terrapieno (N	ΔPts v)			
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)		4,34	
		, ,			
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)		0,00	
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)		0,00	
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)		4,34	

19 **MURO TIPO 3 - VERIFICHE GEOTECNICHE**

19.1 **CONDIZIONE STATICA**

CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	18,98	24,67	24,67
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	39,27	51,05	51,05
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	3,27	4,91	4,91
- Componente orizzontale condizione statica					
Sth =	St*cosδ	(kN/m)	17,25	22,42	22,42
Sqh perm =	Sq perm*cosδ	(kN/m)	35,69	46,39	46,39
Sqh acc =	Sq acc*cosδ	(kN/m)	2,97	4,46	4,46
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	7,92	10,30	10,30
Sqv perm=	Sq perm*senδ	(kN/m)	16,39	21,31	21,31
Sqv acc =	Sq acc*senδ	(kN/m)	1,37	2,05	2,05
- Spinta passi	va sul dente				
Sp=½*g1'*Hd2	^{2*} ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0,00	0,00	0,00

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO		CARICO	SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	16,67	21,68	21,68
MSt2 =	Stv*B	(kNm/m)	19,01	24,71	24,71
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	51,75	67,27	67,27
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	4,31	6,47	6,47
MSq2 perm=	Sqv perm*B	(kNm/m)	39,33	51,13	51,13
MSq2 acc =	Sqv acc*B	(kNm/m)	3,28	4,92	4,92
$MSp = \gamma 1'*I$	Hd ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0,00	0,00	0,00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0,00	0,00	0,00
Mfext3 =	$(vp+v)^*(B1 +B2 + B3/2)$	(kNm/m)	0,04	0,04	0,04

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Fs	scorr.	(N*f + Sp) / T	3,00	>	1,1
Coe f	fficiente di =	attrito alla base (f) tgφ1'	0,65	(-)	
Risu T	ıltante forz =	e orizzontali (T) Sth + Sqh + f	73,28	(kN/m)	
Rist N	ıltante forz =	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	338,85	(kN/m)	

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	338,85	353,85	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sqh + f - Sp	73,28	73,28	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \Sigma M$	377,59	398,59	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
$M = Xc^*N - MM$	29,03	26,03	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

$qlim = c'Nc*ic + q_0*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$						
c1' φ1' γ1	angolo di attri	eno di fondaz. to terreno di fondaz. volume terreno fondaz.		0,00 33,00 20,00		(kPa) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico	stabilizzante		19,00		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza eq	uivalente		0,09 2,23	0,07 2,25	(m) (m)
I valori di Nc, N	lq e Ng sono st	ati valutati con le espressioni s	uggerite da Vesic (197	75)		
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tg$ $N\gamma = 2^{*}(Nq + 1)$	g(φ')	(1 in cond. nd) (2+ π in cond. nd) (0 in cond. nd)		26,09 38,64 35,19		(-) (-) (-)
I valori di ic, iq	e iγ sono stati	valutati con le espressioni sugg	erite da Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + iq))$	/(Nq - 1)	(1 in cond. nd)		0,61 0,60 0,48	0,63 0,60 0,48	(-) (-) (-)
(fondazione nas	striforme m = 2	2)				
qlim	(carico limite	unitario)		682,06	689,23	(kN/m ²)
ES carios li	mito	E _ alim*D*/N	Nmin	4,49	>	1.1

FS carico limite

F = qlim*B*/N

Nmax

4,39

1,4

VERIFICA AL RIBALTAMENTO (EQU)

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 392,24 (kNm/m)

Momento ribaltante (Mr)

MSt + MSq + Mfext1+ Mfext2 + MSp 14,65 (kNm/m)

26,78 Fs ribaltamento Ms/Mr 1,15

19.2 **CONDIZIONE SISMICA+**

CONDIZIONE SISMICA +

	TERRENO E DEL SOVRACCARICO	Γ	SLE	STR/GEO	EQU
- Spinta condiz		(kN/m)	10.00	19.09	18,98
	$0.5^*\gamma^*(H2+H3+H4+Hd)^{2*}$ ka	(kN/m)	18,98	18,98	
	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas ⁺ -Sst1 stat	(kN/m)	3,54	3,54	3,54
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	45,19	45,19	45,19
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0,00	0,00	0,00
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	17,25	17,25	17,25
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	3,21	3,21	3,21
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	41,06	41,06	41,06
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0,00	0,00	0,00
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	7,92	7,92	7,92
Sst1v sism =	Sst1 sism*senδ	(kN/m)	1,48	1,48	1,48
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	18,86	18,86	18,86
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiv	a sul dente				
	$Hd^{2*}kps^{+}+(2*c_{1}'*kps^{+0.5}+\gamma 1' (1+kv) kps^{+*}H2')*Hd$	(kN/m)	0,00	0,00	0,00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARI	со	CL E	CTD/CEO	FOLL
- Condizione si	smica +		SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	16,67	16,67	16,67
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	3,11	3,11	3,11
MSst2 stat =	Sst1v stat* B	(kNm/m)	19,01	19,01	19,01
MSst2 sism =	Sst1v sism* B	(kNm/m)	3,54	3,54	3,54
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	59,54	59,54	59,54
MSsq2 =	Ssq1v*B	(kNm/m)	45,26	45,26	45,26
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
		(kNm/m)		0,00	
Mfext2 =	mp+ms (fp+fs)*(H3 + H2)	(kNm/m)		0,00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0,04	
VERIFICA AL	LO SCORRIMENTO				
Digultanta forza	a vorticali (NI)				
Risultante forze N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		306,91	(kN/m)	
Risultante forze T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		80,44	(kN/m)	
Coefficiente di a	attrito alla base (f) tgφ1'		0,65	(-)	
Fs =	(N*f + Sp) / T		2,48	>	1,1
	(···· • • •) / ·		_, . •	-	•,•

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante for	rze verticali (N)	Nmin	Nmax	
N =	Pm+Pt+vp+vs+Sst1v+Ssq1v+Psv+Ptsv+(Sovracc)	306,91	306,91	(kN/m)
Risultante for	rze orizzontali (T)			
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	80,44		(kN/m)
Risultante de	ei momenti rispetto al piede di valle (MM)			
MM =	Σ M	322,63	322,63	(kNm/m)
Momento rispetto al baricentro della fondazione (M)				
M =	Xc*N - MM	45,67	45,67	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

ES carico li	mite F – alim*R*/ N	Nmin	3,89	>	1 1	
qlim	(carico limite unitario)		567,16	567,16	(kN/m ²)	
(fondazione nas	striforme m = 2)					
$i\gamma = (1 - T/(N + 1))$			0,40	0,40	(-)	
iq = (1 - T/(N + ic = iq - (1 - iq)/(N + ic))	-		0,54 0,53	0,54 0,53	(-) (-)	
I valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)						
$N\gamma = 2^*(Nq + 1)$,		35,19		(-)	
$Nq = tg^{2}(45 + q)$ Nc = (Nq - 1)/tg	· · · · · · · · · · · · · · · · · · ·		26,09 38,64		(-) (-)	
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975	5)			
B*= B - 2e	larghezza equivalente		2,10	2,10	(m)	
e = M / N	eccentricità		0,15	0,15	(m)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		19,00		(kN/m^2)	
γ1	peso unità di volume terreno fondaz.	20,00		(kN/m ³)		
c1' φ1'	coesione terreno di fondaz. angolo di attrito terreno di fondaz.		0,00 33,00		(kN/mq) (°)	

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Mm + Mt + Mfext3 392,24 (kNm/m)

F = qlim*B*/N

Momento ribaltante (Mr)

FS carico limite

MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 23,81 (kNm/m)

16,47 Fr Ms / Mr 1,15

Nmax

3,89

1,4

19.3 CONDIZIONE SISMICA -

CONDIZIONE SISMICA-

	_			1
SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta condizione sismica -		SLE	STR/GEO	EQU
- Spirita condizione sistriica - Sst1 stat = 0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	18,98	18,98	18,98
Sst1 sism = 0.5° /'*(1-kv)*(H2+H3+H4+Hd) ^{2*} kas ⁻ -Sst1 stat	(kN/m)	2,37	2,37	2,37
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)			45,59
		45,59	45,59	
$Ssq1 acc = qs*(H2+H3+H4+Hd)*kas^{-}$	(kN/m)	0,00	0,00	0,00
- Componente orizzontale condizione sismica -				
Sst1h stat = Sst1 stat* $\cos \delta$	(kN/m)	17,25	17,25	17,25
Sst1h sism = Sst1 sism* $\cos \delta$	(kN/m)	2,16	2,16	2,16
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	41,43	41,43	41,43
Ssq1h acc= Ssq1 acc*cosδ	(kN/m)	0,00	0,00	0,00
- Componente verticale condizione sismica -				
Sst1v stat = Sst1 stat*senδ	(kN/m)	7,92	7,92	7,92
Sst1v sism = Sst1 sism*senδ	(kN/m)	0,99	0,99	0,99
Ssq1v perm= Ssq1 perm*senδ	(kN/m)	19,03	19,03	19,03
Ssq1v acc= Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
	,	-,	-,	,,,,,
- Spinta passiva sul dente				
Sp= $\frac{1}{2}$ * γ_1 '(1-kv) Hd ² *kps ⁻ +(2*c ₁ *kps ^{-0.5} + γ 1' (1-kv) kps ^{-*} H2')*Hd	(kN/m)	0,00	0,00	0,00
			<u>.</u>	
MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARI - Condizione sismica -	СО	SLE	STR/GEO	EQU
Containing distining	<u>L</u>			
MSst1 stat = Sst1h stat * ($(H2+H3+H4+hd)/3-hd$)	(kNm/m)	16,67	16,67	16,67
MSst1 sism= Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	2,09	2,09	2,09
MSst2 stat = Sst1v stat* B	(kNm/m)	19,01	19,01	19,01
MSst2 sism = Sst1v sism* B	(kNm/m)	2,38	2,38	2,38
MSsq1 = Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	60,08	60,08	60,08
MSsq2 = Ssq1v * B	(kNm/m)	45,67	45,67	45,67
$MSp = \gamma_1'' + Hd^3 + (2^*c'' + kps^{+0.5} + \gamma'' + kps^{+*} + 2') + Hd^2/2$	(kNm/m)	0,00	0,00	0,00
MOMENTI DOVUTI ALLE FORZE ESTERNE				
Mfext1 = mp+ms	(kNm/m)		0,00	
Mfext2 = (fp+fs)*(H3 + H2)	(kNm/m)		0,00	
Mfext3 = $(vp+vs)*(B1 + B2 + B3/2)$	(kNm/m)		0,04	
VERIFICA ALLO SCORRIMENTO				
Risultante forze verticali (N)				
N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		287,68	(kN/m)	
Risultante forze orizzontali (T)				
T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh		79,75	(kN/m)	
Coefficiente di attrito alla base (f)				
$f = tg\phi 1'$		0,65	(-)	
Fs = (N*f + Sp)/T		2,34	>	1,1

Risul	tante forz	e verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	287,68	287,68	(kN/m)
Risul	tante forz	e orizzontali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	79,75		(kN/m)
Risul	tante dei	momenti rispetto al piede di valle (MM)			
MM	=	Σ M	311,58	311,58	(kNm/m)
Momento rispetto al baricentro della fondazione (M)					
М	=	Xc*N - MM	33,64	33,64	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0,00 33,00 20,00		(kN/mq) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	19,00		(kN/m^2)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0,12 2,17	0,12 2,17	(m) (m)
I valori di Nc, N	Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (19	975)		
$Nq = tg^{2}(45 + t_{0})$ Nc = (Nq - 1)/t $N\gamma = 2*(Nq + 1)$	$g(\phi')$ (2+ π in cond. nd)	26,09 38,64 35,19		(-) (-) (-)
I valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)			
ia = (1 - T/(N +	- B*c'cota@')) ^m (1 in cond. nd)	0.52	0.52	(-)

$iq = (1 - T/(N + B*c'cotg\phi'))^m$	(1 in cond. nd)	0,52	0,52	(-)
ic = iq - (1 - iq)/(Nq - 1)		0,50	0,50	(-)
$i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}$		0,38	0,38	(-)

(fondazione nastriforme m = 2)

 (kN/m^2) qlim (carico limite unitario) 546,77 546,77

FS carico limite	F = qlim*B*/ N	Nmin	4,12	>	1 4
1 o carico infine		Nmax	4,12	>	1,4

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Mm + Mt + Mfext3 392,24 (kNm/m)

Momento ribaltante (Mr)

MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 40,50 (kNm/m)

9,68 Ms / Mr 1,15 Fr

19.4 RIEPILOGO VERIFICHE

Coefficienti di sicurezza

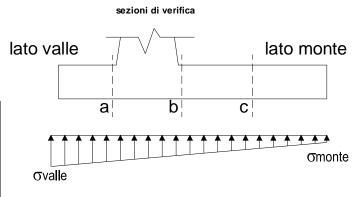
	Scorrimento	<u>Ribaltamento</u>	Carico limite
Statico	3,00	26,78	4,39
Sismico	2,34	9,68	3,89

MURO TIPO 3 - VERIFICHE STRUTTURALI 20

20.1 **VERIFICHE ALLO STATO LIMITE ULTIMO**

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

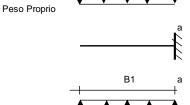

ovalle = N/A + M/Wgg

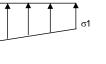
 σ monte = N / A - M / Wgg

A = 1.0*B2,40 (m²)

 $Wgg = 1.0*B^2/6$ 0,96 (m^3)

	N	М	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
statico	338,85	29,03	171,43	110,95
Statico	353,85	26,03	174,55	120,32
sisma+	306,91	45,67	175,45	80,31
	306,91	45,67	175,45	80,31
sisma-	287,68	33,64	154,91	84,83
	287,68	33,64	154,91	84,83


Mensola Lato Valle


Peso Proprio. PP = 10.00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1±kv)$

	σvalle	σ1	Ма	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
-4-4:	171,43	171,43	0,00	0,00
statico	174,55	174,55	0,00	0,00
sisma+	175,45	175,45	0,00	0,00
	175,45	175,45	0,00	0,00
alama	154,91	154,91	0,00	0,00
sisma-	154,91	154,91	0,00	0,00

Mensola Lato Monte

PP	=	10,00 (kl	N/m ²)	peso proprio soletta fondazione
PD	=	0,00 (k	:N/m)	peso proprio dente

			₹	■	
		Nmin	N max stat	N max sism	
pm	=	128,00	135,50	128,00	(kN/m^2)
pvb	=	128,00	135,50	128,00	(kN/m^2)
		100.00	105 50	100.00	(LN1/m2)

 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 +$

128,00 (kN/m^2) 128,00 135,50 $-(Stv+Sqv)*B5-PD*(1\pm kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2$ $Mc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma_{2} - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_{2} - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_{2} - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + (\sigma_{2} - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/6 - (pm-pvc)^2/6 -$ $-(Stv+Sqv)^*(B5/2)-PD^*(1\pm kv)^*(B5/2-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2$ $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

ovalle	σ 1
	Stv+Stq
pv	Peso del Terrapieno pm
PP	} PD ▼
b - c B5 - B5/2	+
62	omonte

	σmonte	σ2b	Mb	Vb	σ2 c	Mc	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	110,95	161,35	-87,81	-37,36	136,15	-42,98	-48,10
Statico	120,32	165,52	-87,53	-38,81	142,92	-42,47	-47,53
olomo .	80,31	159,59	-127,59	-72,91	119,95	-52,63	-70,40
sisma+	80,31	159,59	-127,59	-72,91	119,95	-52,63	-70,40
aia	84,83	143,23	-114,73	-67,33	114,03	-47,52	-62,23
sisma-	84,83	143,23	-114,73	-67,33	114,03	-47,52	-62,23

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma_{2}c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm k v)^* h^{2*} h/3$

 $Mt \ sism = \frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^2 * h/2 \quad o * h/3$

 $Mq = \frac{1}{2} Ka_{orizz} *q*h^2$

 $\begin{aligned} M_{ext} &= m + f^*h \\ M_{inerzia} &= \Sigma P m_i^* b_i^* k h \end{aligned}$

 $N_{ext} = v$

 $N_{pp+inerzia} = \Sigma Pm_i^*(1\pm kv)$


Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

 $Vq = Ka_{orizz}^*q^*h$

 $V_{ext} = f$

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

			•					
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210116	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	13,89	54,80	0,00	68,69	0,20	25,00	25,20
e-e	1,88	5,86	30,82	0,00	36,68	0,20	18,75	18,95
f-f	1,25	1,74	13,70	0,00	15,44	0,20	12,50	12,70
a-a	0.63	0.22	3.42	0.00	3.64	0.20	6.25	6.45

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
36210116	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	16,66	43,84	0,00	60,50
e-e	1,88	9,37	32,88	0,00	42,25
f-f	1,25	4,17	21,92	0,00	26,09
g-g	0,63	1,04	10,96	0,00	12,00

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	10,68	2,19	44,25	0,00	1,94	59,06	0,20	25,78	25,98
е-е	1,88	4,51	0,92	24,89	0,00	1,09	31,41	0,20	19,33	19,53
f-f	1,25	1,34	0,27	11,06	0,00	0,48	13,16	0,20	12,89	13,09
a-a	0.63	0.17	0.03	2.77	0.00	0.12	3.09	0.20	6.44	6.64

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	12,82	2,63	35,40	0,00	1,55	52,40
e-e	1,88	7,21	1,48	26,55	0,00	1,16	36,40
f-f	1,25	3,20	0,66	17,70	0,00	0,78	22,34
g-g	0,63	0,80	0,16	8,85	0,00	0,39	10,20

condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	$M_{inerzia}$	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	10,68	1,47	44,65	0,00	1,94	58,74	0,20	24,22	24,42
е-е	1,88	4,51	0,62	25,11	0,00	1,09	31,33	0,20	18,17	18,37
f-f	1,25	1,34	0,18	11,16	0,00	0,48	13,17	0,20	12,11	12,31
g-g	0,63	0,17	0,02	2,79	0,00	0,12	3,10	0,20	6,06	6,26

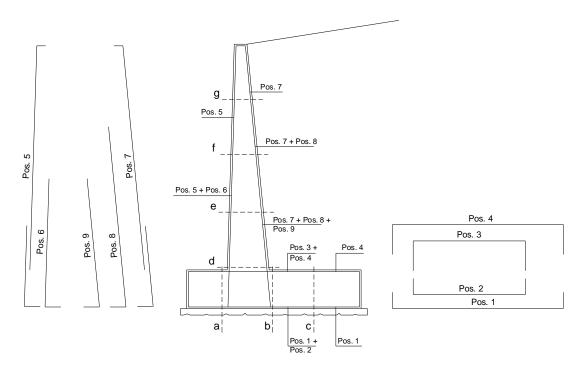
sezione	h	h Vt stat Vt sism		Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	12,82	1,76	35,72	0,00	1,55	51,85
e-e	1,88	7,21	0,99	26,79	0,00	1,16	36,15
f-f	1,25	3,20	0,44	17,86	0,00	0,78	22,28
g-g	0,63	0,80	0,11	8,93	0,00	0,39	10,23

L'armatura del paramento verticale del muro è prevista come segue:

- armatura verticale (armatura di forza):
 - Ø16/20 esterni
 - Ø16/20 interni (lato terreno)
- armatura longitudinale di ripartizione:
 - Ø12/20 esterni
 - Ø12/20 interni

Non è prevista alcuna specifica armatura a taglio. Verranno tuttavia disposte spille di legatura Ø10/40x40.

Il copriferro netto minimo è assunto pari a 45 mm.


L'armatura della zattera di fondazione del muro è prevista come segue:

- armatura in direzione trasversale:
 - Ø20/20 superiori
 - Ø16/20 inferiori
- armatura in direzione longitudinale:
- Ø12/20 superiori
- Ø12/20 inferiori

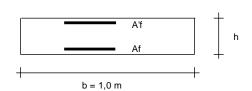
Non è prevista alcuna specifica armatura a taglio. Verranno tuttavia disposti dei cavallotti Ø16/80x40.

Il copriferro netto minimo è assunto pari a 40 mm.

SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	5,0	16		5	5,0	16	
2	0,0	0		6	0,0	0	
3	0,0	0		7	5,0	16	
4	5,0	20		8	0,0	0	
·=				۵	0.0	0	



VERIFICHE

a-a	pos 1-2-3-4
b-b	pos 1-2-3-4
C-C	pos 1-4
d-d	pos 5-6-7-8-9
е-е	pos 5-6-7-8-9
f-f	pos 5-7-8
g-g	pos 5-7

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	0,00	0,00	0,40	15,71	10,05	131,95
b - b	-127,59	0,00	0,40	15,71	10,05	194,86
c - c	-52,63	0,00	0,40	15,71	10,05	194,86
d - d	68,69	25,20	0,40	10,05	10,05	135,22
е -е	36,68	18,95	0,40	10,05	10,05	134,30
f - f	15,44	12,70	0,40	10,05	10,05	133,38
g - g	3,64	6,45	0,40	10,05	10,05	132,46

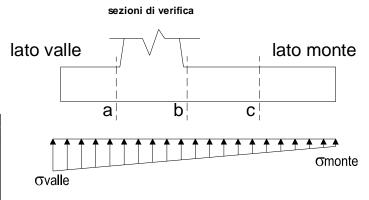
(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	0,00	0,40	169,23	16	80	40	21,8	188,09	Armatura a taglio non necessaria
b - b	72,91	0,40	169,23	16	80	40	21,8	188,09	Armatura a taglio non necessaria
c - c	70,40	0,40	169,23	16	80	40	21,8	188,09	Armatura a taglio non necessaria
d - d	60,50	0,40	151,11	10	40	40	21,8	146,94	Armatura a taglio non necessaria
е -е	42,25	0,40	150,32	10	40	40	21,8	146,94	Armatura a taglio non necessaria
f - f	26,09	0,40	149,52	10	40	40	21,8	146,94	Armatura a taglio non necessaria
g - g	12,00	0,40	148,72	10	40	40	21,8	146,94	Armatura a taglio non necessaria

20.2 VERIFICA ALLO STATO LIMITE DI FESSURAZIONE

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

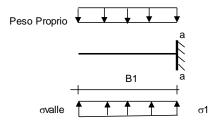

 σ valle = N / A + M / Wgg

 σ monte = N / A - M / Wgg

$$A = 1.0*B = 2,40 (m^2)$$

$$Wgg = 1.0*B^2/6 = 0.96 (m^3)$$

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
From	294,53	22,45	146,11	99,34
Freq.	302,03	20,95	147,67	104,02
O D	293,51	20,45	143,59	101,00
Q.P.	293,51	20,45	143,59	101,00



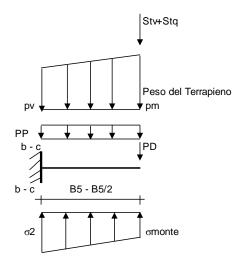
Mensola Lato Valle

Peso Proprio. PP = 10,00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

	σvalle	σ1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
Freq.	146,11	146,11	0,00
гіец.	147,67	147,67	0,00
Q.P.	143,59	143,59	0,00
Q.P.	143,59	143,59	0,00

Mensola Lato Monte

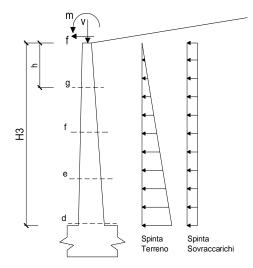

PP	=	10,00	(kN/m^2)	peso proprio soletta fondazione
PD	=	0,00	(kN/m)	peso proprio dente

		Nmin N	max Freq	N max QP	
pm	=	110,00	113,75	110,00	(kN/m^2)
pvb	=	110,00	113,75	110,00	(kN/m^2)
pvc	=	110,00	113,75	110,00	(kN/m^2)

$$\begin{split} Mb = &(\sigma_{monte}\text{-}(pvb+PP))*B5^2/2 + (\sigma 2b - \sigma_{monte})*B5^2/6 - (pm-pvb))*B5^2/3 + \\ &- (Stv+Sqv)*B5-PD*(B5-Bd/2) + Msp+Sp*H2/2 \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}}\text{-}(\text{pvc+PP}))^*(\text{B5/2})^2/2 + (\sigma_{\text{2c}}\text{-}\sigma_{\text{monte}})^*(\text{B5/2})^2/6 - (\text{pm-pvc})^*(\text{B5/2})^2/3 + \\ & - (\text{Stv+Sqv})^*(\text{B5/2})\text{-PD}^*(\text{B5/2-Bd/2}) + \text{Msp+Sp*H2/2} \end{aligned}$

caso	σmonte	σ2b	Mb	σ2c	Mc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
Freq.	99,34	138,31	-66,01	118,82	-32,42
гіец.	104,02	140,40	-65,87	122,21	-32,17
Q.P.	101,00	136,50	-62,96	118,75	-30,85
Q.F.	101,00	136,50	-62,96	118,75	-30,85

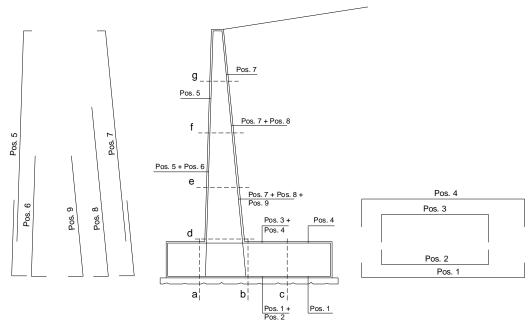


CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

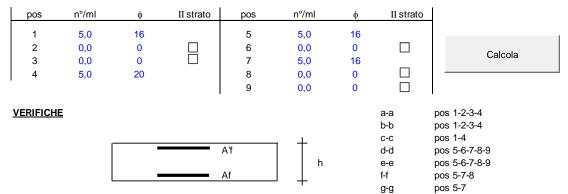
Azioni sulla parete e Sezioni di Calcolo

 $\begin{array}{lll} Mt & = 1/2 \ Ka_{orizz} \, \, ^* \gamma^* h^{2*} h/3 \\ Mq & = 1/2 \ Ka_{orizz} \, ^* q^* h^2 \\ M_{ext} & = m + f^* h \\ N_{ext} & = v \end{array}$

condizione Frequente


sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	10,68	40,86	0,00	51,54	0,20	25,00	25,20
e-e	1,88	4,51	22,98	0,00	27,49	0,20	18,75	18,95
f-f	1,25	1,34	10,21	0,00	11,55	0,20	12,50	12,70
g-g	0,63	0,17	2,55	0,00	2,72	0,20	6,25	6,45

condizione Quasi Permanente


sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	10,68	38,46	0,00	49,14	0,20	25,00	25,20
e-e	1,88	4,51	21,63	0,00	26,14	0,20	18,75	18,95
f-f	1,25	1,34	9,61	0,00	10,95	0,20	12,50	12,70
a-a	0.63	0.17	2.40	0.00	2.57	0.20	6.25	6.45

SCHEMA DELLE ARMATURE

ARMATURE

condizione Frequente

Sez.	M	N	h	Af	A'f	σα	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm^2)	(N/mm ²)	(mm)	(mm)
a - a	0,00	0,00	0,40	15,71	10,05	0,00	0,00	0,000	0,300
b - b	-66,01	0,00	0,40	15,71	10,05	3,86	138,38	0,153	0,300
c - c	-32,42	0,00	0,40	15,71	10,05	1,90	67,96	0,075	0,300
d - d	51,54	25,20	0,40	10,05	10,05	3,62	153,19	0,200	0,300
e -e	27,49	18,95	0,40	10,05	10,05	1,93	78,96	0,103	0,300
f - f	11,55	12,70	0,40	10,05	10,05	0,81	30,84	0,040	0,300
g - g	2,72	6,45	0,40	10,05	10,05	0,19	5,62	0,007	0,300

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

b = 1.0 m

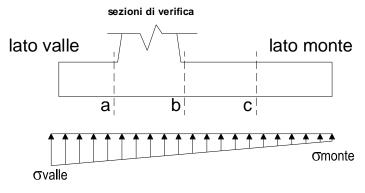
condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	σα	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	0,00	0,00	0,40	15,71	10,05	0,00	0,00	0,000	0,200
b - b	-62,96	0,00	0,40	15,71	10,05	3,69	131,99	0,146	0,200
c - c	-30,85	0,00	0,40	15,71	10,05	1,81	64,68	0,071	0,200
d - d	49,14	25,20	0,40	10,05	10,05	3,46	145,46	0,190	0,200
е -е	26,14	18,95	0,40	10,05	10,05	1,84	74,61	0,097	0,200
f - f	10,95	12,70	0,40	10,05	10,05	0,77	28,91	0,037	0,200
g - g	2,57	6,45	0,40	10,05	10,05	0,18	5,14	0,006	0,200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

20.3 VERIFICHE TENSIONI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

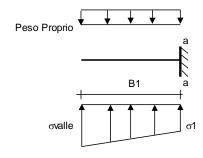

Reazione del terreno

ovalle = N / A + M / Wggomonte = N / A - M / Wgg

A = 1.0*B = 2,40 (m²)

 $Wgg = 1.0*B^2/6 = 0.96$ (m³)

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	294,88	23,94	147,80	97,93
Statico	304,88	21,94	149,89	104,18
sisma+	306,91	45,67	175,45	80,31
SiSilia+	306,91	45,67	175,45	80,31
sisma-	287,68	33,64	154,91	84,83
	287,68	33,64	154,91	84,83

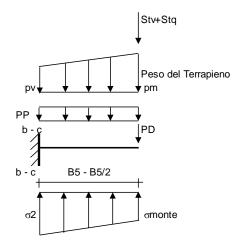


Mensola Lato Valle

Peso Proprio. PP = 10,00 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

caso	σvalle	σ1	Ма
caso	[kN/m ²]	[kN/m ²]	[kNm]
statico	147,80	147,80	0,00
Statico	149,89	149,89	0,00
sisma+	175,45	175,45	0,00
SiSilia+	175,45	175,45	0,00
sisma-	154,91	154,91	0,00
	154,91	154,91	0,00


Mensola Lato Monte

PP PD	=	10,00 0,00	(kN/m²) (kN/m)		peso proprio soletta fondazione peso proprio dente
		Nmin	N max stat N	max sism	
pm	=	110,00	115,00	110,00	(kN/m^2)
pvb	=	110,00	115,00	110,00	(kN/m²)
pvc	=	110,00	115,00	110,00	(kN/m^2)

$$\begin{split} \text{Mb} = & (\sigma_{monte} \text{-}(\text{pvb+PP})^*(1\pm k\text{v}))^*\text{B5}^2/2 + (\sigma 2\text{b} - \sigma_{monte})^*\text{B5}^2/6 - (\text{pm-pvb}))^*(1\pm k\text{v})^*\text{B5}^2/3 + \\ - & (\text{Stv+Sqv})^*\text{B5-PD}^*(1\pm k\text{v})^*(\text{B5-Bd/2}) - \text{PD}^*\text{kh}^*(\text{Hd+H2/2}) + \text{Msp+Sp}^*\text{H2/2} \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{monte} - (\text{pvc+PP})^* (1 \pm \text{kv}))^* (\text{B5/2})^2 / 2 + (\sigma_2 \text{c} - \sigma_{monte})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (1 \pm \text{kv})^* (\text{B5/2})^2 / 3 + \\ & - (\text{Stv+Sqv})^* (\text{B5/2}) - \text{PD}^* (1 \pm \text{kv})^* (\text{B5/2-Bd/2}) - \text{PD}^* \text{kh}^* (\text{Hd+H2/2}) + \text{Msp+Sp*H2/2} \end{aligned}$

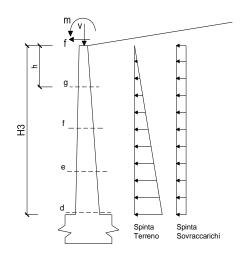
	σmonte	σ2b	Mb	σ2c	Мс
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
statico	97,93	139,49	-67,79	118,71	-33,25
	104,18	142,27	-67,60	123,22	-32,91
	80,31	159,59	-90,48	119,95	-43,35
sisma+	80,31	159,59	-90,48	119,95	-43,35
sisma-	84,83	143,23	-79,85	114,03	-38,80
	84,83	143,23	-79,85	114,03	-38,80

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

 $Mt \ sism = \frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^2 * h/2 \quad o * h/3$


= $\frac{1}{2}$ Ka_{orizz}*q*h²

= m+f*h

 $M_{inerzia} = \Sigma Pm_i^*b_i^*kh$

(solo con sisma)

N _{pp+inerzia}= $\Sigma Pm_i^*(1\pm kv)$

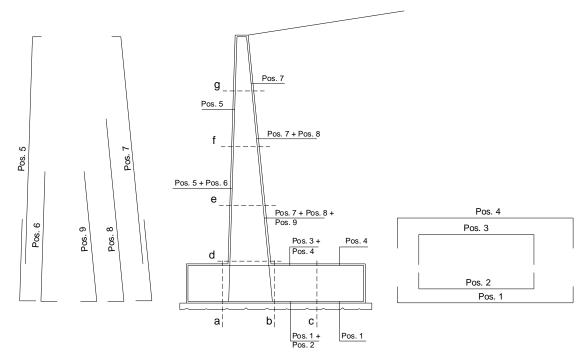
condizione statica

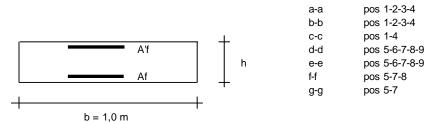
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
00210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	10,68	41,66	0,00	52,34	0,20	25,00	25,20
е-е	1,88	4,51	23,43	0,00	27,94	0,20	18,75	18,95
f-f	1,25	1,34	10,41	0,00	11,75	0,20	12,50	12,70
g-g	0,63	0,17	2,60	0,00	2,77	0,20	6,25	6,45

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M_{ext}	M _{inerzia}	M_{tot}	N_{ext}	N _{pp+inerzia}	N _{tot}
002.0	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	10,68	2,19	44,25	0,00	1,94	59,06	0,20	25,78	25,98
e-e	1,88	4,51	0,92	24,89	0,00	1,09	31,41	0,20	19,33	19,53
f-f	1,25	1,34	0,27	11,06	0,00	0,48	13,16	0,20	12,89	13,09
g-g	0,63	0,17	0,03	2,77	0,00	0,12	3,09	0,20	6,44	6,64

condizione sismica -


sezione	h	Mt stat	Mt sism	Mq	M _{ext}	$\mathbf{M}_{\text{inerzia}}$	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2,50	10,68	1,47	44,65	0,00	1,94	58,74	0,20	24,22	24,42
e-e	1,88	4,51	0,62	25,11	0,00	1,09	31,33	0,20	18,17	18,37
f-f	1,25	1,34	0,18	11,16	0,00	0,48	13,17	0,20	12,11	12,31
g-g	0,63	0,17	0,02	2,79	0,00	0,12	3,10	0,20	6,06	6,26


SCHEMA DELLE ARMATURE

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	
1 2 3	5,0 0,0	16 0		5 6 7	5,0 0,0	16 0 16		Calcola
4	0,0 5,0	20		8 9	5,0 0,0 0,0	0		

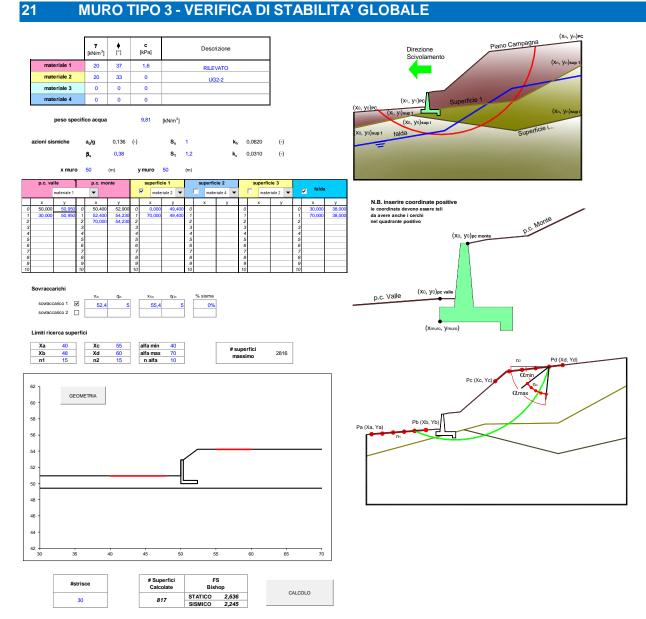
Condizione	Statica

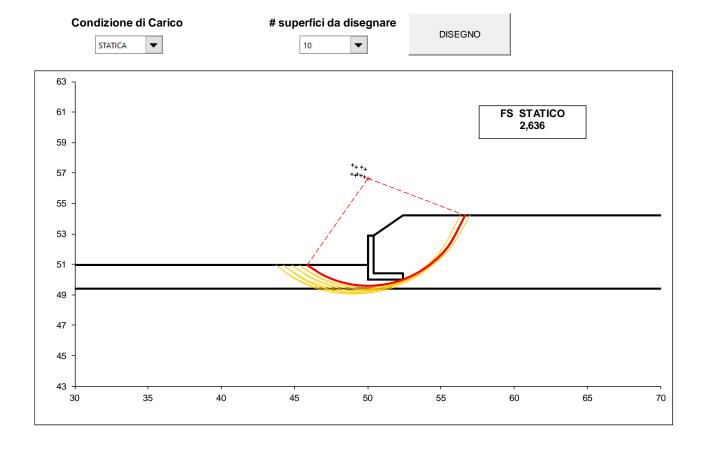
Condizion	ie Statica						
Sez.	М	N	h	Af	A'f	σ C	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	0,00	0,00	0,40	15,71	10,05	0,00	0,00
b - b	-67,79	0,00	0,40	15,71	10,05	3,97	142,11
c - c	-33,25	0,00	0,40	15,71	10,05	1,95	69,70
d - d	52,34	25,20	0,40	10,05	10,05	3,68	155,77
е -е	27,94	18,95	0,40	10,05	10,05	1,97	80,41
f - f	11,75	12,70	0,40	10,05	10,05	0,83	31,48
g - g	2,77	6,45	0,40	10,05	10,05	0,19	5,77

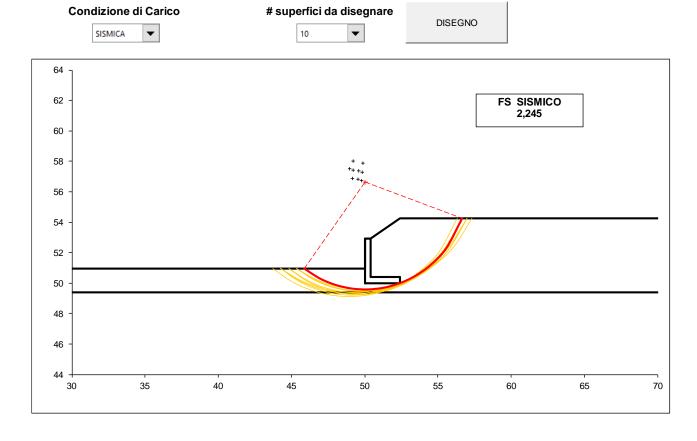
Condizione Sismica

COMMIZION	ic Oldillou						
Sez.	М	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	0,00	0,00	0,40	15,71	10,05	0,00	0,00
b - b	-90,48	0,00	0,40	15,71	10,05	5,30	189,67
c - c	-43,35	0,00	0,40	15,71	10,05	2,54	90,88
d - d	59,06	24,42	0,40	10,05	10,05	4,15	177,77
e -e	31,41	18,37	0,40	10,05	10,05	2,21	91,86
f - f	13,17	12,31	0,40	10,05	10,05	0,93	36,22
g - g	3,10	6,26	0,40	10,05	10,05	0,22	6,91

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)






5 anas

MURO TIPO 3 - VERIFICA DI STABILITA' GLOBALE

