PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO E DELLE RELATIVE OPERE DI CONNESSIONE ALLA RTN POTENZA NOMINALE 75MW

REGIONE BASILICATA

PROVINCIA di POTENZA

COMUNE di MONTEMURRO

Località "Tempa del Vento"

COMUNE di ARMENTO

Località "Tempa Rosario"

Scala:	Formato Stampa:
_	A4

PROGETTO DEFINITIVO

TAVOLA

A.5

RELAZIONE SPECIALISTICA ANEMOLOGICA

Progettazione:

R.S.V. Design Studio S.r.l.

Piazza Carmine, 5 | 84077 Torre Orsaia (SA) P.IVA 05885970656 Tel./fax:+39 0974 985490 | e-mail: info@rsv-ds.it

Legale Rappresentante:

Geom. Savino Leonzio

R.S.V. Design Studio S.r.l.
Piazza Carmine 5/a
84077 - Torre Orsaia (SA)
P. IVA: 05885970656
PEC: rsv.sd@pec.it

Committenza:

Via del Gallitello, 89 85100 Potenza (PZ) P.IVA 02041490760

Responsabili Progetto:

Ing. Vassalli Quirino

Ing. Speranza Carmine Antonio

Autorio

Catalogazione Elaborato

ITW_MTM_A5_RELAZIONE SPECIALISTICA ANEMOLOGICA.pdf

ITW_MTM_A5_RELAZIONE SPECIALISTICA ANEMOLOGICA.doc

Data	Motivo della revisione:	Redatto:	Controllato:	Approvato:
Luglio 2020	Prima emissione	LS	LS	RSV

SOMMARIO

PREI	MESSA	2
/A/	DESCRIZIONE DEL SITO	3
1.	INQUADRAMENTO TERRITORIALE E PROGETTUALE	3
C	CARATTERIZZAZIONE ANEMOLOGICA DELL'AREA DI	
PRO	GETTO	7
D	PRODUCIBILITÀ DEL PARCO	11
1.	Producibilità Lorda	11
11.	PRODUCIBILITÀ ATTESA AL NETTO DELLE PERDITE	13
E	VERIFICA CONFORMITÀ PIEAR BASILICATA	15
F	CONCLUSIONI	18

PREMESSA

La vocazione eolica dell'area è subordinata alla verifica delle caratteristiche tecniche relative agli spazi in disponibilità, accessibilità all'area relativamente al trasporto dei componenti degli aerogeneratori, connessione alla rete elettrica nazionale capace di assorbire l'energia prodotta dal parco in progetto e soprattutto ad un sufficiente livello di ventosità.

Il presente documento indaga e dimostra la vocazione eolica dell'area individuata per la costruzione di un Parco Eolico costituito da 14 aerogeneratori e le relative opere di connessione alla RTN da realizzarsi in località "Tempa del vento" e "Tempa Rosario" nei comuni di Montemurro e di Armento in provincia di Potenza, della Regione Basilicata.

L'analisi svolta nel presente documento è stata realizzata sulla base di dati anemometrici rilevati e registrati da una stazione di misura, e suffragati da confronti e correlazioni con dati satellitari appartenenti allo stesso regime di venti e ben rappresentativa del sito.

L'impianto oggetto di studio, da realizzare nei comuni di Montemurro e Armento (PZ), è costituito da 14 aerogeneratori della potenza individuale nominale di circa 5.3 MW per una potenza totale complessiva di circa 75 MW.

All'interno del presente documento si analizza il caso in esame facendo bene attenzione a descrivere:

- > Posizione e caratteristiche delle turbine:
- Analisi ed elaborazione dei dati anemometrici disponibili;
- Valutazione Anemologica del sito;
- Esposizione dei risultati ottenuti.

Tutti gli aspetti sopra elencati vengono trattati dentro WindPRO, un software di simulazione specifico del campo eolico che viene incontro in varie fasi della progettazione.

|A| DESCRIZIONE DEL SITO

I. Inquadramento territoriale e progettuale

L'area interessata dalla realizzazione del progetto è prevalentemente destinata ad uso agricolo e si stanzia al di fuori dei centri abitati di Montemurro e Armento (PZ), alle località "Tempa del Vento" e "Tempa Rosario"; essa presenta una variabilità topografica e altimetrica abbastanza omogenea attestandosi su circa 1000 m slm.

La zona prevista per la realizzazione del parco eolico è situata a circa 3/6 km, in direzione N-E, dal centro abitato di Montemurro, e a circa 2/5 Km in direzione N-O dal centro abitato di Armento.

L'impianto di progetto è costituito da 14 aerogeneratori modello Vestas V150 della potenza nominale approssimativa di 5.3 MW per una potenza totale complessiva di circa 75 MW.

Il progetto prevede l'uso di aerogeneratori della più moderna tecnologia e di elevata potenza nominale unitaria, in modo da massimizzare la potenza dell'impianto e l'energia producibile, diminuendo così il numero di turbine e quindi l'impatto ambientale a parità di potenza installata.

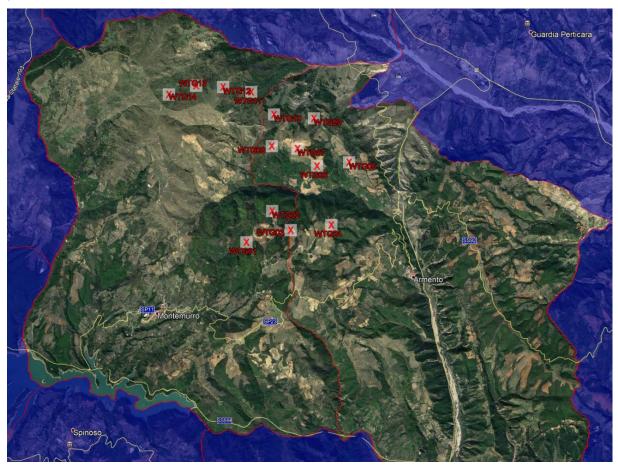


Figura 1: inquadramento territoriale su ortofoto - fonte Google Earth

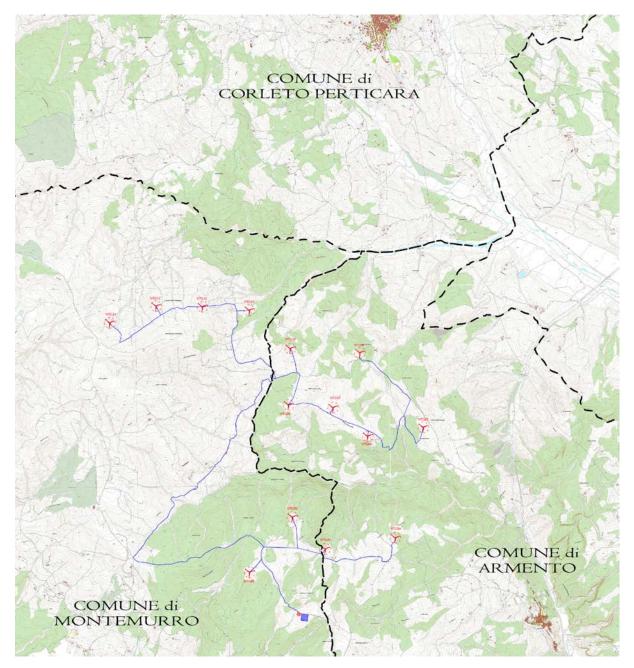


Figura 2: inquadramento territoriale su CTR - fonte RSDI Regione Basilicata

Le coordinate geografiche nel sistema UTM WGS84 (F33) ove sono posizionati gli aerogeneratori sono rappresentate nella seguente Tabella 1.

	UTM WGS 84 Lon. Est [m]	UTM WGS84 Lat. Nord [m]
WTG01	586.458,22	4.463.000,87
WTG02	587.057,16	4.463.773,53
WTG03	587.516,92	4.463.327,42
WTG04	588.499,46	4.463.482,2
WTG05	588.890,48	4.465.029,17
WTG06	588.111,36	4.464.905,37
WTG07	587.627,56	4.465.305,71
WTG08	587.003,71	4.465.343,81
WTG09	588.003,61	4.466.073,33
WTG10	587.028,040	4.463.133,22
WTG11	586.455,94	4.466.667,69
WTG12	585.798,14	4.466.717,14
WTG13	585.150,03	4.466.725,6
WTG14	584.501,21	4.466.492,96

Tabella 1: Coordinate aerogeneratori dell'impianto di progetto

|B| Atlante Eolico "RSE"

Il sito dell'Atlante eolico fornisce dati ed informazioni sulla distribuzione della risorsa eolica sul territorio e nelle aree marine dell'Italia e nel contempo aiuta ad individuare le aree dove tali risorse possono essere interessanti per lo sfruttamento energetico

L'Atlante è uno strumento destinato in particolare agli organismi pubblici che programmano l'uso del territorio, ai responsabili dello sviluppo della rete elettrica, agli investitori che valutano l'opportunità e i rischi associati ad iniziative per la realizzazione di centrali eoliche e a tutti gli organismi di ricerca interessati.

A partire da dati sulla ventosità ed informazioni sul territorio (altitudine, pendenza e rugosità del terreno, distanza dalla rete elettrica ecc.), nonché sulle caratteristiche tecniche di vari modelli di aerogeneratore, un modulo di calcolo valuta, in via preliminare, la producibilità e il costo dell'energia di un'ipotetica centrale eolica in un punto da lui prescelto sulle mappe.

Figura 3: Schermata atlante eolico RSE con Velocità media annuale del vento a 100m

Come illustrato nelle immagini precedenti l'area interessata è caratterizzata da una velocità media del vento a 100 m di 7-8 m/s.

|C| CARATTERIZZAZIONE ANEMOLOGICA DELL'AREA DI PROGETTO

Al fine di definire le principali caratteristiche anemologiche del sito di progetto, la scrivente si è avvalsa di dati anemometrici in proprio possesso dell'area in questione. La disponibilità temporale di suddetti dati è di circa 25 anni.

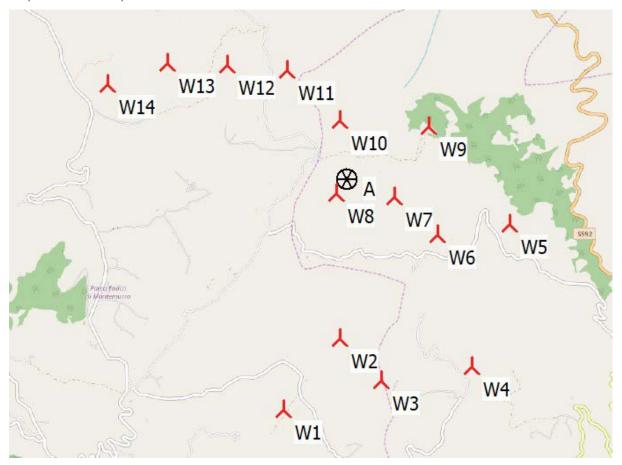
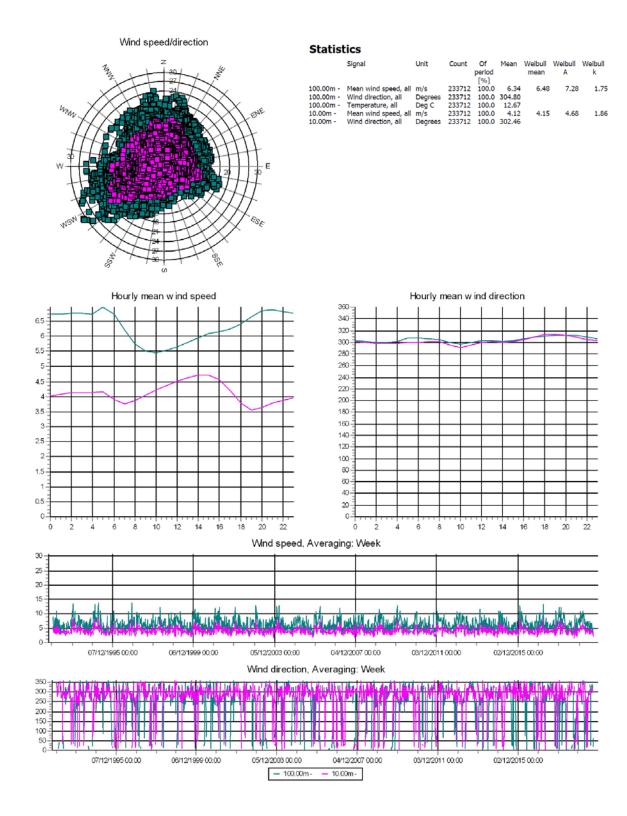



Figura 4: Ubicazione anemometro di riferimento rispetto al parco eolico in progetto

I principali dati di input determinanti per le analisi effettuate sono i seguenti:

- Ubicazione stazione di rilevamento (coord. UTM WGS84 Zona 33):
 - o Est: 607 123
 - o Nord: 4 528 089
- Periodo di osservazione: 01/01/1993 31/08/2019 (319,9 mesi)
- Parametri rilevati:
 - o Velocità media
 - o Intensità di turbolenza
 - o Direzione del vento
 - Deviazione standard turbolenza
 - o Deviazione standard velocità

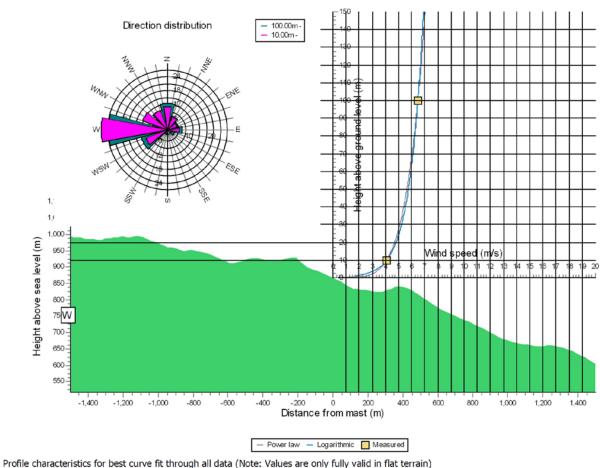
I dati raccolti hanno consentito l'elaborazione della rosa di distribuzione direzionale delle velocità, nonché dei dati relativi alla velocità media oraria e della direzione media oraria così come meglio rappresentati nei grafici seguenti.

Monthly wind speeds

100.00m -																					
Month	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	
January	6.68	8.52	10.20	5.83	5.16	5.58	6.95	6.55	7.57	5.90	9.54	9.38	7.06	6.46	7.87	6.85	7.25	8.13	5.39	8.18	
February	6.70	6.56	7.91	7.59	7.70	5.91	8.62	7.79	8.71	6.90	6.58	8.75	8.17	7.98	7.73	5.94	8.94	9.23	6.98	8.30	
March	6.74	5.87	9.74	5.75	8.14	8.54	6.79	6.80	9.38	7.16	6.14	6.47	6.01	8.63	7.65	8.46	8.94	6.90	6.50	6.47	
April	6.01	7.95	6.47	5.55	7.62	8.17	7.23	7.08	7.62	5.64	6.25	6.38	6.19	5.81	3.91	8.18	5.55	5.72	6.49	7.49	
May	4.84	6.58	6.53	6.01	6.65	6.23	5.28	4.35	5.68	5.26	4.74	6.43	6.57	5.56	6.04	5.04	4.36	6.71	6.13	6.32	
June	5.78	6.36	5.46	5.45	5.64	5.76	5.89	5.31	6.80	5.02	4.21	5.26	4.81	4.99	5.71	5.30	5.12	5.93	5.76	5.13	
July	5.49	5.50	4.58	6.06	6.15	5.78	5.35	6.86	6.04	6.49	5.74	5.16	6.48	5.02	5.49	6.02	5.58	4.94	5.81	5.92	
August	4.48	5.44	4.53	5.02	5.67	5.07	4.92	4.67	5.07	5.86	5.22	5.70	5.71	6.62	6.83	4.56	4.25	5.33	4.19	4.77	
September	5.56	4.74	6.26	7.45	4.34	6.88	4.55	6.76	6.73	4.97	5.74	4.85	4.68	4.83	6.83	5.18	5.79	5.88	4.71	5.36	
October	5.33	6.06	3.71	6.66	6.15	6.80	5.35	4.66	4.00	6.24	7.60	5.12	4.06	5.81	5.00	4.78	5.67	5.53	6.29	5.41	
November	6.56	5.74	7.02	8.07	5.90	7.30	6.37	7.34	7.81	7.31	5.04	6.54					6.76		4.11	6.22	
December	8.98	6.54	7.09	7.22	7.61	6.64	9.78	7.02	8.90	6.30	6.90	7.10	8.86	5.21			8.67	8.44	9.00	8.77	
mean, all data	6.09	6.32	6.62	6.38					7.01								6.39	6.73	5.95	6.52	
mean of months	6.10	6.32	6.63	6.39	6.39	6.55	6.42	6.27	7.03	6.09	6.14	6.43	6.22	6.07	6.32	6.15	6.41	6.74	5.95	6.53	

Monthly wind speeds

100.00m -									
Month	2013	2014	2015	2016	2017	2018	2019	Mean	Mean of month
January	8.41	7.21	8.02	8.92	7.01	7.38	9.02	7.45	7.45
February	6.54	7.45	6.86	8.67	6.64	6.91	8.89	7.59	7.59
March	8.26	6.76	7.41	6.63	8.19	9.18	8.51	7.48	7.48
April	6.55	7.24	6.65	6.98	5.94	5.06	6.06	6.51	6.51
May	6.83	6.08	6.52	7.03	5.91	4.52	6.67	5.88	5.88
June	5.74	5.73	5.35	5.72	4.76	6.54	4.95	5.50	5.50
July	4.81	6.55	4.23	4.90	5.66	6.33	5.55	5.65	5.65
August	5.02	5.44	4.68	5.75	5.51	4.06	3.92	5.12	5.12
September	6.40	5.28	5.84	4.78	6.31	5.33		5.62	5.62
October	4.22	5.24	5.81	6.13	5.68	6.22		5.52	5.52
November	7.57	5.03	5.13	6.01	6.56	5.89		6.41	6.40
December	5.22	6.68	3.66	6.11	9.49	7.33		7.37	7.37
mean, all data	6.29	6.22	5.84	6.46	6.48	6.23	6.69	6.34	
mean of months	6.30	6.22	5.85	6.47	6.47	6.23	6.70		6.34


Monthly wind speeds

10.00m -																				
Month	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
January	4.36	5.11	6.32	3.51	3.30	3.61	4.39	4.22	4.62	3.85	5.90	5.63	4.39	3.97	4.90	4.28	4.43	4.92	3.38	4.91
February	4.30	4.12	5.02	4.67	5.15	3.89	5.42	4.96	5.52	4.34	4.07	5.38	5.00	5.04	4.73	3.91	5.40	5.60	4.63	4.96
March	4.40	3.99	6.14	3.71	5.20	5.34	4.43	4.44	5.80	4.50	4.14	4.23	4.11	5.42	4.97	5.49	5.48	4.47	4.21	4.23
April	4.05	5.23	4.21	3.75	4.86	5.11	4.67	4.52	4.94	3.67	4.11	4.34	4.05	3.79	2.92	5.12	3.80	3.67	4.15	4.92
May	3.30	4.32	4.37	4.27	4.33	4.06	3.61	3.18	3.74	3.72	3.49	4.28	4.32	3.95	4.04	3.48	3.25	4.41	4.07	4.16
June	3.88	4.17	3.83	3.79	3.92	3.96	3.96	3.71	4.62	3.49	3.30	3.75	3.31	3.58	3.92	3.71	3.58	3.91	3.86	3.78
July	3.87	3.79	3.38	3.95	4.18	4.08	3.68	4.42	4.05	4.37	3.84	3.63	4.37	3.36	3.94	4.07	3.80	3.39	4.03	4.06
August	3.46	3.89	3.23	3.46	3.88	3.62	3.51	3.38	3.63	3.86	3.74	3.85	3.88	4.42	4.41	3.43	3.17	3.78	3.25	3.53
September	3.63	3.36	4.02	4.74	3.02	4.35	3.08	4.42	4.44	3.31	3.74	3.38	3.14	3.19	4.23	3.53	3.78	3.77	3.35	3.48
October	3.35	3.94	2.85	4.09	4.13	4.19	3.48	3.03	2.91	3.91	4.71	3.31	2.71	3.65	3.25	3.28	3.79	3.41	3.89	3.63
November	3.94	3.53	4.20	4.96	3.46	4.53	3.90	4.26	4.72	4.26	3.15	4.06	3.72	3.89	3.83	3.88	4.18	4.93	2.52	3.80
December	5.55	4.01	4.24	4.28	4.64	4.04	6.01	4.46	5.41	3.77	4.17	4.25	5.35	3.22	4.17	4.37	5.05	4.95	5.46	5.24
mean, all data	4.01	4.12	4.31	4.09	4.17	4.23	4.17	4.08	4.52	3.92	4.03	4.17	4.03	3.95	4.11	4.05	4.14	4.26	3.90	4.22
mean of months	4.01	4.12	4.32	4.10	4.17	4.23	4.18	4.08	4.53	3.92	4.03	4.17	4.03	3.96	4.11	4.05	4.14	4.27	3.90	4.23

Monthly wind speeds

10.00m -									
Month	2013	2014	2015	2016	2017	2018	2019	Mean	Mean of month
January	4.94	4.46	4.95	5.61	4.08	4.71	5.32	4.60	4.60
February	4.19	4.55	4.29	5.23	4.20	4.23	5.72	4.76	4.76
March	5.27	4.31	4.69	4.19	5.12	5.80	5.37	4.79	4.79
April	4.36	4.68	4.43	4.49	4.00	3.55	4.05	4.28	4.28
May	4.61	4.15	4.32	4.67	3.91	3.19	4.42	3.99	3.99
June	3.99	3.84	3.61	3.88	3.59	4.31	3.50	3.81	3.81
July	3.42	4.32	3.39	3.52	3.98	4.13	3.81	3.88	3.88
August	3.55	3.78	3.26	4.01	3.84	2.97	2.97	3.62	3.62
September	4.30	3.42	3.93	3.21	4.11	3.58		3.71	3.71
October	2.83	3.50	3.69	3.75	3.95	3.81		3.58	3.58
November	4.53	3.15	3.64	3.71	4.13	3.67		3.94	3.94
December	3.48	4.15	2.83	3.81	5.75	4.38		4.50	4.50
mean, all data	4.12	4.02	3.91	4.17	4.22	4.03	4.39	4.12	
mean of months	4.12	4.03	3.92	4.17	4.22	4.03	4.40		4.12

I dati elaborati hanno consentito la determinazione della distribuzione direzionale e il profilo del vento per il sito specifico.

Shear exponent 0.1999 (Power law profile)

Roughness length 0.1947 m class 2.48 (Equivalent roughness for logarithmic profile)

Figura 5: Distribuzione direzionale e profilo del vento

Come rappresentato dalla Figura 5, la direzione prevalente del vento risultante dall'analisi in mesoscala è W (Ovest), mentre ci consente di verificare che all'altezza al mozzo delle turbine è superiore a 6,50 m/sec, inoltre dai grafici mensili comulativi dei dati si può osservare che la velocità media è superiore ai 5,00 m/sec e per alcuni mesi è superiore a 7,50m/sec.

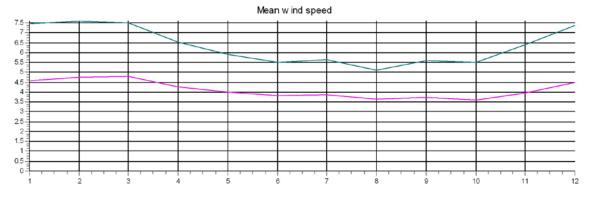


Figura 6: Grafico mensile cumulativo della velocità media del vento

|D| PRODUCIBILITÀ DEL PARCO

I. Producibilità Lorda

La producibilità lorda del parco eolico, oggetto del presente studio, è stata valutata in rapporto al modello di aerogeneratore previsto da progetto, aventi le seguenti caratteristiche tecniche:

• Altezza mozzo: fino a 105,00m;

• Diametro Rotore: fino a 150,00m

Potenza: 5600kW limitata fino a 5300kW

Classe IEC: S

Inoltre è stata utilizzata come curva di potenza rappresentativa dell'aerogeneratore, quella calcolata alla densità dell'aria di 1,102 kg/m³, corrispondente all'altitudine media del sito (comprensiva dell'altezza al mozzo).

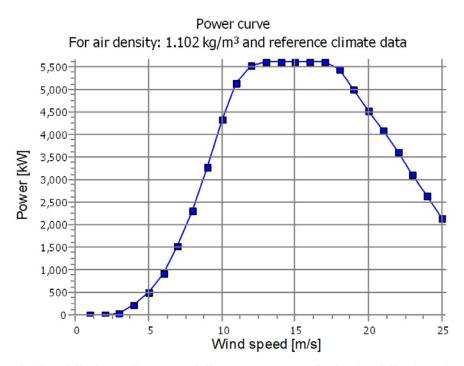


Figura 7: Grafico della Curva di Potenza dell'aerogeneratore alla densità dell'aria pari a 1,102 kg/m³

Oltre alla curva di potenza si è considerata anche la cosiddetta curva di spinta (Ct), utile alla determinazione delle perdite che si vanno a realizzare per l'effetto scia.

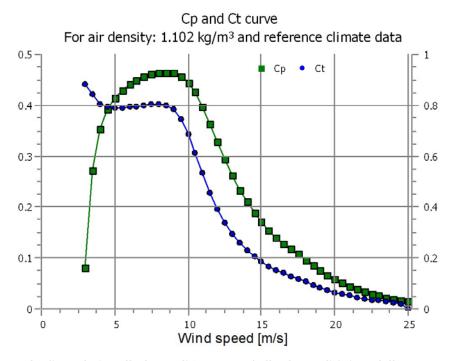


Figura 8: Grafico relativo alla Curva di Potenza ed alla Curva di Spinta dell'aerogeneratore alla densità dell'aria pari a 1,102 kg/m³

I risultati ottenuti con il modello di calcolo, macchina per macchina e per l'insieme dell'impianto, sono riportati nella tabella sottostante. I risultati di producibilità sono al netto delle perdite per scia indotta tra le macchine.

	UTM WGS 84	UTM WGS84	Gross AEP	Ore	Efficienza	U
	Lon. Est [m]	Lat. Nord [m]	[MWh/anno]	[Anno]	[%]	[m/s]
WTG01	586.458,22	4.463.000,87	16849	3179	95.90	7.00
WTG02	587.057,16	4.463.773,53	17555	3312	95.00	7.20
WTG03	587.516,92	4.463.327,42	14245	2688	91.30	6.50
WTG04	588.499,46	4.463.482,2	15790	2979	90.10	6.90
WTG05	588.890,48	4.465.029,17	16506	3114	90.70	7.10
WTG06	588.111,36	4.464.905,37	17017	3211	93.30	7.10
WTG07	587.627,56	4.465.305,71	17383	3280	90.20	7.40
WTG08	587.003,71	4.465.343,81	18136	3422	92.80	7.50
WTG09	588.003,61	4.466.073,33	16480	3109	92.30	7.00
WTG10	587.028,040	4.463.133,22	14660	2766	94.30	6.50
WTG11	586.455,94	4.466.667,69	13144	2480	89.80	6.20
WTG12	585.798,14	4.466.717,14	18679	3524	92.00	7.80
WTG13	585.150,03	4.466.725,6	18363	3465	95.40	7.50
WTG14	584.501,21	4.466.492,96	17167	3239	98.50	7.00

Tabella 2: Risultati ottenuti dal modello di calcolo tramite software WindPro

Le ore di funzionamento riportate in tabella 2, così come tutti quelli rappresentati nel presente documento, sono calcolati in funzione della potenza limitata a 5300kW e non della potenza nominale di 5600kW.

II. Producibilità attesa al netto delle perdite

La producibilità lorda definita nel paragrafo precedente è ottenuta dal processo di calcolo che tiene conto unicamente delle perdite dovute all'effetto scia che si genera tra gli aerogeneratori, pertanto a tali producibilità lorde devono essere sottratte le perdite dovute all'impianto e cioè:

Perdite considerate	Incidenza %
Disponibilità aerogeneratori	- 3,00
Disponibilità B.O.P.	- 1,00
Disponibilità rete	- 0,20
Perdite elettriche	- 2,00
Prestazione aerogeneratori	- 2,00
Densità dell'aria	- 2,50
Altre perdite	- 0,50
TOTALE PERDITE	- 10,70

Tabella 3: Perdite ipotizzate

Le perdite ipotizzate in Tabella 3 dovranno essere verificati successivamente, una volta sottoscritti tutti i contratti di fornitura delle turbine, costruzione del parco e relativo esercizio.

Pertanto possiamo riassumere i valori di producibilità lorda e netta nella seguente tabella:

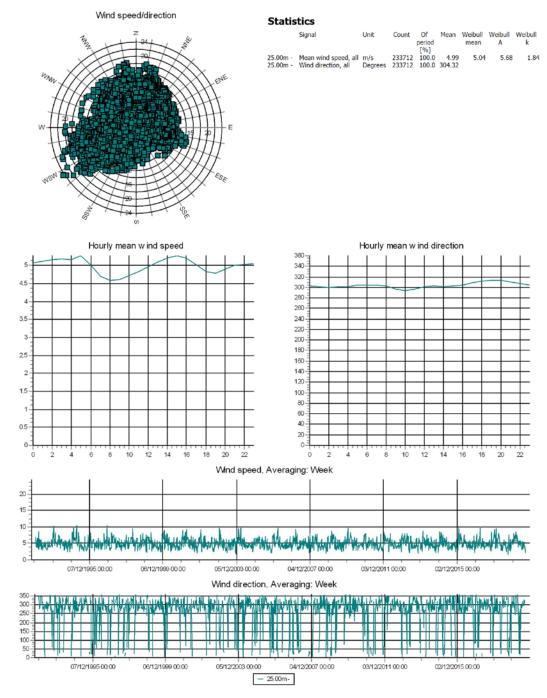
Gross AEP	Gross AEP	Perdite totali	NET AEP	NET AEP
[MWh/anno]	[ore/anno]	%	[MWh/anno]	[ore/anno]
231974	3126	- 10,70	207153	2792

Tabella 4: Confronto Producibilità Iorda (Gross) e netta (NET)

Per i singoli aerogeneratori risultano invece le seguenti producibilità nette:

	UTM WGS 84	UTM WGS84	Net AEP	Ore
	Lon. Est [m]	Lat. Nord [m]	[MWh/anno]	[Anno]
WTG01	586.458,22	4.463.000,87	15046	2839
WTG02	587.057,16	4.463.773,53	15677	2958
WTG03	587.516,92	4.463.327,42	12721	2400
WTG04	588.499,46	4.463.482,2	14100	2660
WTG05	588.890,48	4.465.029,17	14740	2781
WTG06	588.111,36	4.464.905,37	15196	2867
WTG07	587.627,56	4.465.305,71	15523	2929
WTG08	587.003,71	4.465.343,81	16195	3056
WTG09	588.003,61	4.466.073,33	14717	2777
WTG10	587.028,040	4.463.133,22	13091	2470
WTG11	586.455,94	4.466.667,69	11738	2215
WTG12	585.798,14	4.466.717,14	16680	3147
WTG13	585.150,03	4.466.725,6	16398	3094
WTG14	584.501,21	4.466.492,96	15330	2892

Tabella 5: Producibilità netta per singoli aerogeneratori


a...a...__...a....

|E| VERIFICA CONFORMITÀ PIEAR BASILICATA

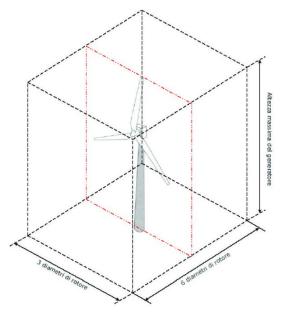
Il PIEAR Basilicata per gli impianti di specie richiede che vengano soddisfatti dei vincoli tecnici minimi per l'avvio del procedimento autorizzativo, che sono:

a) Velocità media annua a 25m dal suolo non inferiore a 4m/s.

Il risultato dell'analisi anemologica del sito rappresentato nella seguente figura evidenzia che a 25m dal suolo la velocità media del vento è circa 5m/sec, il chè rende verificata la condizione richiesta.

b) Ore equivalenti del generatore non inferiori a 2000.

Nel capitolo precedente è stato trattato il calcolo della producibilità netta dell'impianto, da cui sono scaturiti i seguenti risultati:


	UTM WGS 84	UTM WGS84	Net AEP	Ore
	Lon. Est [m]	Lat. Nord [m]	[MWh/anno]	[Anno]
WTG01	586.458,22	4.463.000,87	15046	2839
WTG02	587.057,16	4.463.773,53	15677	2958
WTG03	587.516,92	4.463.327,42	12721	2400
WTG04	588.499,46	4.463.482,2	14100	2660
WTG05	588.890,48	4.465.029,17	14740	2781
WTG06	588.111,36	4.464.905,37	15196	2867
WTG07	587.627,56	4.465.305,71	15523	2929
WTG08	587.003,71	4.465.343,81	16195	3056
WTG09	588.003,61	4.466.073,33	14717	2777
WTG10	587.028,040	4.463.133,22	13091	2470
WTG11	586.455,94	4.466.667,69	11738	2215
WTG12	585.798,14	4.466.717,14	16680	3147
WTG13	585.150,03	4.466.725,6	16398	3094
WTG14	584.501,21	4.466.492,96	15330	2892

Pertanto possiamo confermare che ogni singolo aerogeneratore rispetta il vincolo del funzionamento per almeno 2000 ore equivalenti annuali.

c) Densità volumetrica di energia annua unitaria non inferiore a 0,2 kWh/(anno • mc), come riportato nella formula seguente:

Posto che:

- "D" è diametro del rotore avente dimensione fino a 150m;
- "H" è l'altezza al mozzo avente dimensione fino a 105m;
- "E" è l'energia netta annuale prodotta dal singolo aerogeneratore;

I valori della densità volumetrica di energia annua per singolo generatore sono:

	UTM WGS 84	UTM WGS84	Net AEP	Ev
	Lon. Est [m]	Lat. Nord [m]	[MWh/anno]	[kWh/(m ³ *anno)]
WTG01	586.458,22	4.463.000,87	15046	0.35
WTG02	587.057,16	4.463.773,53	15677	0.37
WTG03	587.516,92	4.463.327,42	12721	0.30
WTG04	588.499,46	4.463.482,2	14100	0.33
WTG05	588.890,48	4.465.029,17	14740	0.35
WTG06	588.111,36	4.464.905,37	15196	0.36
WTG07	587.627,56	4.465.305,71	15523	0.37
WTG08	587.003,71	4.465.343,81	16195	0.38
WTG09	588.003,61	4.466.073,33	14717	0.35
WTG10	587.028,040	4.463.133,22	13091	0.31
WTG11	586.455,94	4.466.667,69	11738	0.28
WTG12	585.798,14	4.466.717,14	16680	0.39
WTG13	585.150,03	4.466.725,6	16398	0.39
WTG14	584.501,21	4.466.492,96	15330	0.36

Tabella 6: Risultati verifica della densità volumetrica di energia annua unitaria

Da cui risulta evidente che per ogni aerogeneratore di progetto la densità volumetrica di energia è superiore a 0,2 kWh/(m3*anno).

- d) Numero massimo di aerogeneratori pari a 30 che viene ridotto a 10 nel caso di aree di valore naturalistico elevato.
 - Il parco eolico oggetto del presente studio è localizzato al di fuori di aree di valore naturalistico elevato, pertanto risulta ampliamente verificata tale indicazione poiché costituito da un massimo di 14 aerogeneratori.

|F| CONCLUSIONI

Nell'ambito del processo di progettazione di un impianto eolico e più in generale nelle fasi dello sviluppo del sito è necessario conoscere con una buona affidabilità la consistenza della risorsa eolica disponibile e quindi della sua produzione attesa. Ciò è garantito da idonee rilevazioni in sito delle grandezze di velocità e di direzione del vento per un periodo di diversi anni. È possibile giungere ad una valutazione utile della risorsa eolica grazie a calcoli e confronti con dati di stazioni anemometriche considerate storiche perché con un periodo di rilevazione di 10 anni e oltre.

L'analisi e l'elaborazione dei dati della stazione non ha evidenziato particolari carenze o lacune.

I risultati delle attività, dalla validazione alla elaborazione del dato, sono ampiamente descritti nel presente studio ed indicano che il sito è interessato da un buon regime di venti, tipico della zona di appartenenza, soprattutto in relazione all'energia specifica della vena fluida.

Anche l'attività di valutazione della ventosità di lungo periodo è stata svolta con profitto avendo riscontrato un buon coefficiente di correlazione e buona sintonia degli andamenti delle velocità medie mensili contemporanee con il riferimento di lungo periodo considerato.

Positiva è risultata anche la verifica della condizione richiesta di ventosità superiore a 4 m/s a 25 m dal suolo.

Si può quindi affermare che i risultati delle misurazioni della ventosità, pur considerando le tipiche incertezze di misura proprie delle apparecchiature utilizzate, che sono state opportunamente e cautelativamente stimate, indicano che l'entità della risorsa disponibile rientra tra quelle di interesse per la realizzazione di un impianto eolico.