COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

SOCI:

PROGETTAZIONE: MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

Relazione di Calcolo (Bicanna)

APPALTATORE	DIRETTORE DELLA PROGETTAZIONE	PROGETTISTA
Consorzio HIRPINIA AV II Direttore Tecnico Ing. Vincenzo Moriello 10/06/2020	Il Responsabile integrazione fra le varie prestazioni specialistiche Ing. G. Cassani	NETENGINEERING R.Zanon Ing.

COMMESSA

LOTTO FASE ENTE TIPO DOC.

OPERA/DISCIPLINA

PROGR.

REV.

SCALA:

0 2 0

0 0 2

В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
^	Emissione per consegna	G. Furlan	00/40/0040	L.Ongaro	00/40/0040	T. Finocchietti	00/40/0040	R.Zanon
Α	Emissione per consegna		06/12/2019		06/12/2019		06/12/2019	
В	Recepimento Istruttoria	G. Furlan	10/06/2020	L. Ongaro	10/06/2020	T. Finocchietti	10/06/2020	40/00/0000
ь	Receptifiento istrutiona		10/06/2020		10/06/2020		10/06/2020	10/06/2020

File: IF2801EZZCLRI0200002B.docx

n. Elab.: -

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

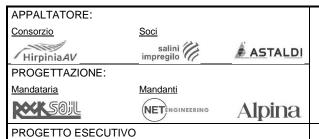
PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI


RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 2 di 177

Indice

1	PR	EMESSA	5
2	SC	OPO DEL DOCUMENTO	5
3	NO	RMATIVA DI RIFERIMENTO	6
4	MA	TERIALI	7
	4.1	MAGRONE	
	4.2	CALCESTRUZZO PER GETTI IN OPERA PER ELEVAZIONI	7
	4.3	CALCESTRUZZO PER GETTI IN OPERA PER PALI DI FONDAZIONE	
	4.4	CALCESTRUZZO PER GETTI IN OPERA PER FONDAZIONI	
		ACCIAO PER C.A.	
	4.5	ACCIAO PER C.A.	9
5	DE	SCRIZIONE DELL'OPERA	10
6	СО	DICE DI CALCOLO	13
7	AN	ALISI DEI CARICHI	14
	7.1	PESO PROPRIO (G1 - DEAD)	14
	7.2	PERMANENTI PORTATI (G2)	
	7.2.		
	7.2.	2 PARAPETTO – G2,2	15
	7.2.		
	7.2.	4 SPINTA DELLE TERRE (SPTSX – SPTDX)	16
	7.3	AZIONI VARIABILI (Q)	
	7.3.	,	
	7.3.		
	7.3.	3 SERPEGGIO4 AVVIAMENTO E FRENATURA	
		AZIONI CLIMATICHE	
	7.4 7.4.		
	7.4.		
		3 AZIONE DEL VENTO	
	7.5	AZIONI INDIRETTE	
		1 RITIRO E VISCOSITÀ	
	7.6	AZIONI SISMICHE	_
8	CO	MBINAZIONI DI CARICO	34
	_	MODELLO DI CALCOLO	35

Titolo_3

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RG
 MD0000 001
 A
 3 di 177

9	CR	ITERI DI VERIFICA	38
10) DIA	GRAMMI DELLE SOLLECITAZIONI	48
	10.1	ORIENTAMENTO DEGLI ASSI LOCALI PER GLI ELEMENTI SHELL	48
	10.2	CRITERI DI VERIFICA AGLI STATI LIMITE ULTIMI E DI ESERCIZIO	49
	10.3	ANALISI IN DIREZIONE LONGITUDINALE	88
11	VEI	RIFICHE STRUTTURALI	90
	11.1	SOLETTA SUPERIORE MEZZERIA MOMENTO POSITIVO – DIREZIONE TRASVERSALE	
	11.2 PIEDR	SOLETTA SUPERIORE APPOGGIO MOMENTO NEGATIVO – DIREZIONE TRASVERSALE –	92
	11.3 PIEDR	SOLETTA SUPERIORE APPOGGIO MOMENTO POSITIVO – DIREZIONE TRASVERSALE –	95
	11.4 PIEDR	SOLETTA SUPERIORE APPOGGIO MOMENTO NEGATIVO – DIREZIONE TRASVERSALE –	96
	11.5 PIEDR	SOLETTA SUPERIORE APPOGGIO MOMENTO POSITIVO – DIREZIONE TRASVERSALE –	99
	11.6	SOLETTA SUPERIORE – DIREZIONE LONGITUDINALE – FIBRE TESE INFERIORI	100
	11.7	SOLETTA SUPERIORE – DIREZIONE LONGITUDINALE – FIBRE TESE SUPERIORI	102
	11.8	PIEDRITTO TESTA MOMENTO NEGATIVO - PIEDRITTO CENTRALE	104
	11.9	PIEDRITTO TESTA MOMENTO NEGATIVO - PIEDRITTO LATERALE	106
	11.10	PIEDRITTO VERIFICA A TAGLIO IN TESTA - PIEDRITTO CENTRALE	108
	11.11	PIEDRITTO TESTA MOMENTO POSITIVO – PIEDRITTO CENTRALE	109
	11.12	PIEDRITTO TESTA MOMENTO POSITIVO – PIEDRITTO LATERALE	110
	11.13	PIEDRITTO BASE MOMENTO NEGATIVO – PIEDRITTO CENTRALE	111
	11.14	PIEDRITTO VERIFICA A TAGLIO ALLA BASE – PIEDRITTO CENTRALE	112
	11.15	PIEDRITTO BASE MOMENTO NEGATIVO – PIEDRITTO LATERALE	113
	11.16	PIEDRITTO VERIFICA A TAGLIO ALLA BASE – PIEDRITTO LATERALE	115
	11.17	PIEDRITTO IN MEZZERIA – PIEDRITTO LATERALE	116
	11.18	PIEDRITTO IN MEZZERIA – PIEDRITTO CENTRALE	118
	11.19	PIEDRITTO IN DIREZIONE LONGITUDINALE- BASE	119
	11.20	PIEDRITTO IN DIREZIONE LONGITUDINALE- MEZZERIA	121
	11.21	FONDAZIONE ATTACCO IN CORRISPONDENZA DEL PIEDRITTO	123
	11.22	FONDAZIONE ATTACCO IN CORRISPONDENZA DEL PIEDRITTO	125
	11.23 TESE	FONDAZIONE IN CORRISPONDENZA DEI PALI IN CAMPATA E CORRENTE – FIBRE INTERNE 126	Ē
	11.24	FONDAZIONE IN CORRISPONDENZA DEI PALI IN CAMPATA – FIBRE ESTERNE TESE	128
		FONDAZIONE IN CORRISPONDENZA DEI PIEDRITTI – FIBRE TESE INTERNE – DIREZIONE ITUDINALE	129

APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandanti NETENGINEERING AIPINA

PROGETTO ESECUTIVO

Titolo_3

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF1N
 01 E ZZ
 RG
 MD0000 001
 A
 4 di 177

_	FONDAZIONE IN CORRISPONDENZA DEI PIEDRITTI – FIBRE TESE ESTERNE – DIREZIONE BITUDINALE	
	FONDAZIONE IN CORRISPONDENZA DEI PALI IN CAMPATA – FIBRE TESE INTERNE – ZIONE LONGITUDINALE	13
	FONDAZIONE IN CORRISPONDENZA DEI PALI IN CAMPATA – FIBRE TESE ESTERNE – ZIONE LONGITUDINALE	13
11.29	FONDAZIONE VERIFICA A PUNZONAMENTO	13
11.30	FONDAZIONE VERIFICA A TAGLIO	14
11.31	SBALZI	14
11.32	VERIFICA DI DEFORMABILITÀ NELLA SEZIONE CORRENTE	14
12 FC	ONDAZIONE	14
12.1	GEOTECNICA	14
12.2	CAPACITA' PORTANTE VERTICALE DEI PALI	14
	2.1 PORTATA LATERALE	
	2.2 PORTATA DI BASE	
	2.3 EFFICIENZA VERTICALE DELLA PALIFICATA	
12.	2.4 CAPACITÀ PORTANTE VERTICALE DELLA PALIFICATA COME BLOCCO	
12.3		
12.	3.1 EFFICIENZA ORIZZONTALE DEI PALI	
12.4	VERIFICA CAPACITÀ PORTANTE VERTICALE	15
12.5	VERIFICA CAPACITÀ PORTANTE ORIZZONTALE	16
13 SII	NTESI ARMATURE	17
13.1	PALI DI FONDAZIONE	17
13.2	SCATOLARE	17
14 AF	PENDICE	17
14.1	MODI DI VIBRARE	17

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL RI0200 002 5 di 177 Relazione di Calcolo (Bicanna)

1 PREMESSA

Nell'ambito *dell'Itinerario Napoli-Bari* si inserisce il *Raddoppio della Tratta Apice - Orsara - 1° Lotto Funzionale Apice - Hirpinia* oggetto di progettazione esecutiva.

2 SCOPO DEL DOCUMENTO

Nell'ambito del progetto in premessa è prevista la realizzazione del *Rilevato RI02 – "Struttura ad archi" dal km* 2+426.10 al km 2+546.10. Tale rilevato ferroviario è costituito da uno *scatolare in c.a "chiuso"* fondato su pali.

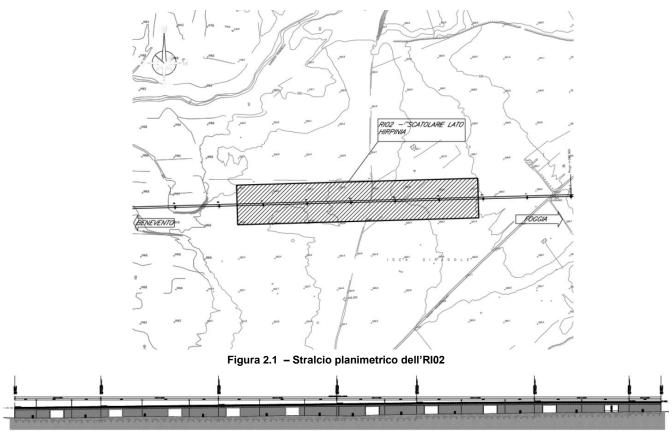


Figura 2.2 - Prospetto dell'RI02

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 6 di 177

3 NORMATIVA DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Rif.[1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- Rif.[2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif.[3] Istruzione RFI DTC INC PO SP IFS 001 Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- Rif.[4] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Rif.[5] Istruzione RFI DTC INC CS SP IFS 001 Specifica per la progettazione geotecnica delle opere civili ferroviarie
- Rif.[6] Istruzione RFI DTC INC PO SP IFS 003 Specifica per la verifica a fatica dei ponti ferroviari
- Rif.[7] Istruzione RFI DTC INC PO SP IFS 004 Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- Rif.[8] Istruzione RFI DTC INC PO SP IFS 005 Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
- Rif.[9] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif.[10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif.[11] RFI DTC SI PS MA IFS 001 A: "Manuale di progettazione delle opere civili Parte II sez.2: Ponti e strutture" del 30/12/2016
- Rif.[12] RFI DTC SI CS MA IFS 001 A: "Manuale di progettazione delle opere civili Parte II sez.3: Corpo stradale" del 30/12/2016.
- Rif.[13] RFI DTC SI SP IFS 001 A: "Capitolato Generale Tecnico d'appalto delle Opere Civili" del 30/12/2016.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 7 di 177

4 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

Per tutte le parti in calcestruzzo, si utilizzeranno additivi anti-ritiro al fine di ridurre almeno del 50% lo sviluppo della contrazione da ritiro.

4.1 MAGRONE

Classe di resistenza minima C12/15
Classe di esposizione X0
Calcestruzzo tipo I

4.2 CALCESTRUZZO PER GETTI IN OPERA PER ELEVAZIONI

Classe di resistenza minima	C32/40		
R _{ck} =	40	MPa	resistenza caratteristica cubica
$f_{ck} =$	32	MPa	resistenza caratteristica cilindrica
f _{cm} =	40	MPa	valor medio resistenza cilindrica
α_{cc} =	0,85		coeff. rid. Per carichi di lunga durata
γм=	1,5	-	coefficiente parziale di sicurezza SLU
f _{cd} =	18,13	MPa	resistenza di progetto
$f_{ctm} =$	3,02	MPa	resistenza media a trazione semplice
$f_{cfm} =$	3,63	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	2,12	MPa	valore caratteristico resistenza a trazione
E _{cm} =	33346	MPa	Modulo elastico di progetto
v =	0,2		Coefficiente di Poisson
$G_c =$	13894	MPa	Modulo elastico Tangenziale di progetto
Classe di esposizione	XC4		
Calcestruzzo tipo	C2		
Copriferro minimo	50	mm	

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

A Later Company

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 8 di 177

4.3 CALCESTRUZZO PER GETTI IN OPERA PER PALI DI FONDAZIONE

Classe di resistenza minima	C25/30		
R _{ck} =	30	MPa	resistenza caratteristica cubica
$f_{ck} =$	25	MPa	resistenza caratteristica cilindrica
$f_{cm} =$	33	MPa	valor medio resistenza cilindrica
α_{cc} =	0,85		coeff. rid. per carichi di lunga durata
γм=	1,5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	14,17	MPa	resistenza di progetto
$f_{ctm} =$	2.56	MPa	resistenza media a trazione semplice
$f_{\text{cfm}} =$	3,07	MPa	resistenza media a trazione per flessione
E _{cm} =	31000	MPa	Modulo elastico di progetto
v =	0,2		Coefficiente di Poisson
$G_c =$	12917	MPa	Modulo elastico Tangenziale di progetto
Classe di esposizione	XC2		
Calcestruzzo tipo	H2		
Copriferro minimo	60	mm	

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandanti <u>Mandataria</u>

Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

RADDOPPIO TRATTA APICE - ORSARA

ITINERARIO NAPOLI – BARI

I LOTTO FUNZIONALE APICE – HIRPINIA

DOCUMENTO

REV.

FOGLIO

9 di 177

CODIFICA

E ZZ CL

4.4 CALCESTRUZZO PER GETTI IN OPERA PER FONDAZIONI

Classe di resistenza minima	C28/35		
R _{ck} =	35	MPa	resistenza caratteristica cubica
f _{ck} =	28	MPa	resistenza caratteristica cilindrica
$f_{cm} =$	36	MPa	valor medio resistenza cilindrica
α_{cc} =	0,85		coeff. rid. per carichi di lunga durata
дм=	1,5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	15,87	MPa	resistenza di progetto
f _{ctm} =	2,77	MPa	resistenza media a trazione semplice
$f_{cfm} =$	3,32	MPa	resistenza media a trazione per flessione
f _{ctk} =	1,94	MPa	valore caratteristico resistenza a trazione
E _{cm} =	32308	MPa	Modulo elastico di progetto
v =	0,2		Coefficiente di Poisson
$G_c =$	13462	MPa	Modulo elastico Tangenziale di progetto
Classe di esposizione	XC2		
Calcestruzzo tipo	G2		
Copriferro minimo	40	mm	

COMMESSA

LOTTO

01

4.5 ACCIAO PER C.A.

B450C

$f_{yk} \ge$	450	MPa	tensione caratteristica di snervamento
f _{tk} ≥	540	MPa	tensione caratteristica di rottura
(f₁/fy)k≥	1,15		
$(f_t/f_y)_k <$	1,35		
γ _s =	1,15	-	coefficiente parziale di sicurezza SLU
$f_{yd} =$	391,3	MPa	tensione caratteristica di snervamento
E _s =	210000	MPa	Modulo elastico di progetto
ε_{yd} =	0,196%		deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7,50%		deformazione caratteristica ultima

APPALTATORE:								
Consorzio	Soci			ITINI	ED A DIO I	NAPOLI – BA	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		HIIN	EKAKIO	NAPULI - B	AKI	
PROGETTAZIONE	:					TA APICE - OF		
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 10 di 177

5 DESCRIZIONE DELL'OPERA

La tipologia strutturale in esame è costituita da uno *scatolare in c.a "chiuso"* necessario a realizzare il raccordo tra il rilevato e la *stazione di Hirpinia*. Tale scatolare ospita la sede ferroviaria sulla soletta superiore. Lo scatolare RI02 si sviluppa per una lunghezza complessiva di 548.18 metri ed è costituito da sette conci, separati da giunti strutturali. L'analisi condotta riguarda il concio tra la pk. 1+418.64 e la pk. 1+446.64 (L = 28 m) che presenta un'apertura sul piedritto centrale. L'altezza netta è variabile tra 9.40 m in corrispondenza della pk. 2+418.22 e 9.10 m in corrispondenza della pk. 1+446.64. Nella figura seguente è riportata una sezione tipo della struttura analizzata.

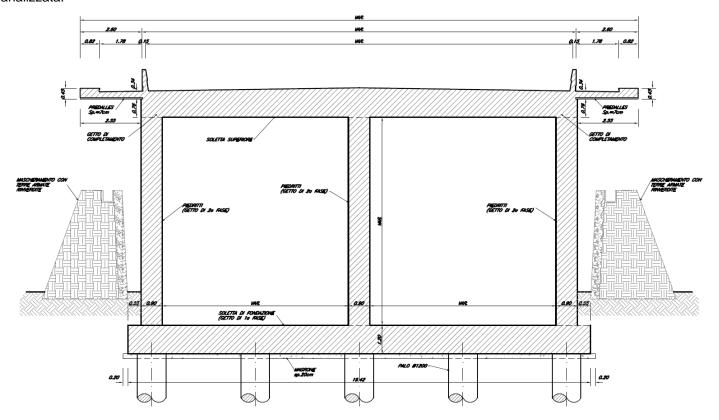


Figura 5.1 - Sezione tipo del manufatto

Di seguito si riportano le caratteristiche geometriche principali del manufatto (riferite alla luce pari a 30m).

$S_f =$	1.20	m	Spessore fondazione
$S_s =$	1.05	m	Spessore medio soletta superiore
$S_p =$	0.90	m	Spessore piedritti
$L_{int} =$	8.03	m	Larghezza utile interna
$L_{tot} =$	18.75	m	Larghezza totale
$H_{int,max} =$	9.40	m	Altezza libera massima del sottopasso
$H_{int,min} =$	9.10	m	Altezza libera minima del sottopasso
L _{sba} =	2.55	m	Larghezza sbalzi laterali
$H_{int,med} =$	9.25	m	Altezza considerata per il calcolo
S _{sba} =	0.33	m	Spessore sbalzi laterali (escluso baggiolo)
$H_{ril,dx} =$	2.15	m	H _{max} rilevato esistente a dx (da imposta fondazione)
$H_{ril,sx} =$	2.15	m	H _{max} rilevato esistente a sx (da imposta fondazione)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Relazione di Calcolo (Bicanna) E ZZ CL 01 В 11 di 177

L'armamento è di tipo convenzionale su ballast.

La geometria del modello ricalca la linea baricentrica degli elementi costituenti l'opera (modello in asse). La struttura scatolare è modellata con elementi "SHELL" ad ognuno dei quali è stato assegnato il rispettivo spessore.

I pali di fondazione sono elementi "FRAME" con diametro 1200 mm. I pali sono suddivisi in elementi da 1.0 metri di lunghezza. In corrispondenza di ogni nodo vengono assegnate molle con rigidezza nel piano X-Y. Al nodo alla base del palo è assegnata anche una molla con rigidezza in direzione verticale Z.

X-Y è il piano orizzontale (X dir. trasversale, Y dir. longitudinale).

X-Z è il piano in direzione trasversale.

Y-Z è il piano in direzione longitudinale.

Si riporta di seguito una vista standard ed estrusa d-el modello di calcolo.

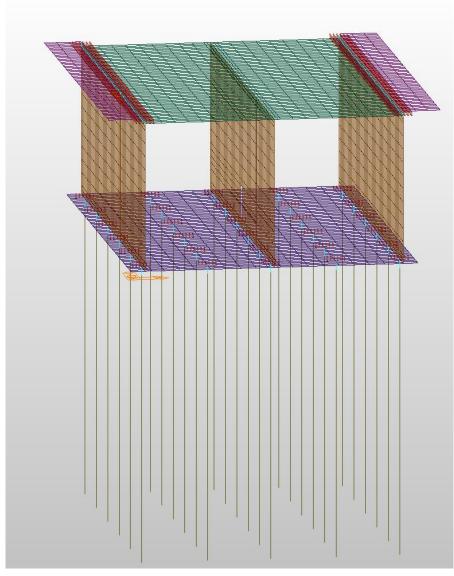


Figura 5.2 - Vista standard del modello di calcolo

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) IF28 01 E ZZ CL RI0200 002 В 12 di 177

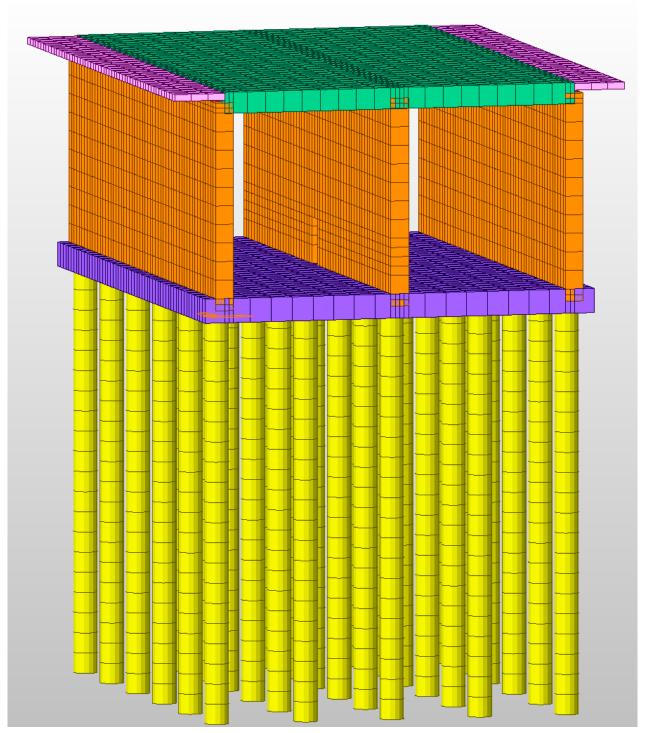


Figura 5.3 - Vista estrusa del modello di calcolo

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 13 di 177 01 В

6 CODICE DI CALCOLO

In accordo al capitolo 10.2 delle NTC si riporta di seguito origine e caratteristiche del codice di calcolo utilizzato. Per le analisi delle strutture è stato utilizzato il software Midas Civil.

Le unità di misura adottate sono le seguenti:

lunghezze: mforze: kN

• temperature: gradi centigradi °

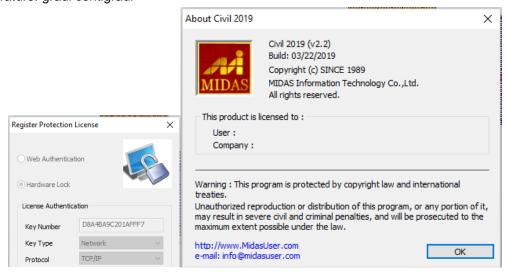


Figura 6.1 – Licenza d'uso

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Relazione di Calcolo (Bicanna) E ZZ CL 14 di 177

7 ANALISI DEI CARICHI

7.1 PESO PROPRIO (G1 - DEAD)

Il carico delle strutture in calcestruzzo armato viene valutato considerando un peso di volume pari a 25 kN/mc. Il peso proprio viene automaticamente calcolato dal programma in base alle dimensioni delle sezioni degli elementi.

7.2 PERMANENTI PORTATI (G2)

7.2.1 Massicciata, armamento e massetto di protezione – G2,1 Sovrastruttura ferroviaria

Si assumono convenzionalmente i seguenti pesi di volume relativi alla massicciata e all'armamento (sovrastruttura ferroviaria):

Peso di volume in rettifilo: 18.00 kN/m³.

Peso di volume calcestruzzo massetto: 24.00 kN/m3.

Il ricoprimento totale è di 80 cm di cui 5 cm rappresentati dal massetto di protezione ed il resto dalla sovrastruttura ferroviaria. La pressione dovuta ai carichi permanenti al di sopra della soletta è pertanto pari a:

 $G_{2,1} = 18.00 \times 0.75 + 24.00 \times 0.05 = 14.7 \text{ kN/m}^2$.

Tale carico viene applicato sull'intera soletta superiore a meno ovviamente degli sbalzi.

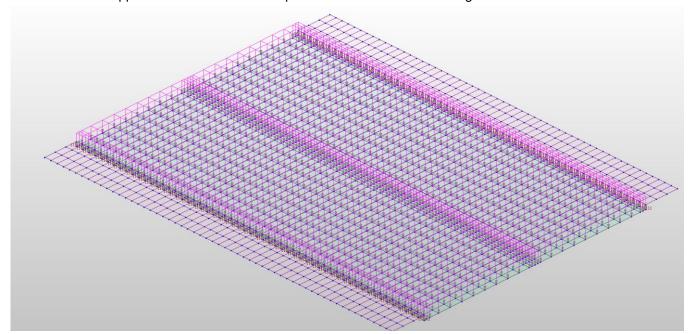


Figura 7.1 – Applicazione del carico G2,1 nel modello di calcolo

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL 15 di 177 Relazione di Calcolo (Bicanna) IF28 01

7.2.2 Parapetto - G2,2

Si considera un carico relativo alle barriere anticaduta pari a 0.5 kN/m.

$G_{2,2} = q_{barriere} = 0.5 \text{ kN/m per ogni lato}$

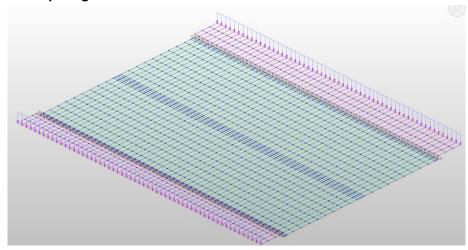


Figura 7.2 - Applicazione del carico G2,2 - lato destro

7.2.3 Canalette impianti- G2,3

A ridosso dei muri, sono previste delle canalette impianti sui lati esterni. Si assume un carico lineare uniforme pari a:

 $G_{2,3} = q_{canalette} = 2.50 \text{ kN/m per ogni lato dell'impalcato}$

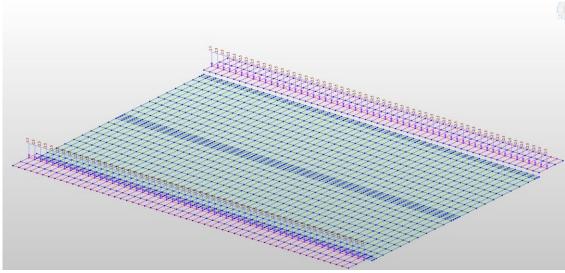


Figura 7.3 – Applicazione del carico G2,3 – lato destro e lato sinistro

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) 01 E ZZ CL RI0200 002 В 16 di 177

7.2.4 Spinta delle terre (SPTSX – SPTDX)

Considerata la presenza delle gabbionature a tergo dell'opera, la spinta delle terre non andrà a gravare sulla struttura e pertanto non sarà considerata.

7.3 AZIONI VARIABILI (Q)

7.3.1 Treni di carico (LM71 Load Case 1, LM71 Load Case 2, LM71 Load Case 3)

I carichi verticali sono definiti per mezzo di modelli di carico; in particolare, sono forniti due modelli di carico distinti: il primo rappresentativo del traffico normale (modello di carico LM71), il secondo rappresentativo del traffico pesante (modello di carico SW). I valori caratteristici dei carichi attribuiti ai modelli di carico debbono moltiplicarsi per il coefficiente "α" che deve assumersi come da tabella seguente:

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1,10
SW/0	1,10
SW/2	1,00

Tabella 1 – coefficienti α per modelli di carico

Treno di carico LM71

Il Treno di carico LM71 è schematizzato nella figura seguente.

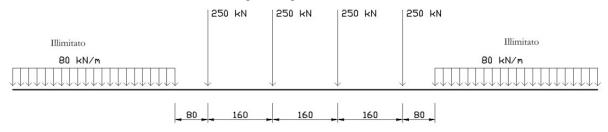


Figura 7.4 - Treno di carico LM71

Per il calcolo del coefficiente dinamico Φ si fa riferimento al paragrafo 2.5.1.4.2.5 del Manuale di Progettazione e in particolare alla tabella 2.5.1.4.2.5.3-1 al punto 5.4 per la definizione della lunghezza caratteristica L Φ . Considerando un portale di due luci e un ridotto standard manutentivo, si ottiene:

Coeff. Dinamico						
L1	9.25	m				
L2	8.84	m				
L3	8.84	m				
L4	9.25	m				
Lm	9.045	m				
k	1.4					
Lφ	12.663	m				
coeff.rid	0.9					
ф	1.24					

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Relazione di Calcolo (Bicanna) E ZZ CL 17 di 177

DISTRIBUZIONE LONGITUDINALE E TRASVERSALE DEL CARICO FERROVIARIO

I sovraccarichi ferroviari (LM71 e SW2) si distribuiscono attraverso il ricoprimento con una pendenza 1 a 4 all'interno del ballast e con la pendenza a 45° all'interno del CLS, per cui la diffusione del carico in senso trasversale all'asse binario, considerando la larghezza della traversina pari a 2.40m, uno spessore del ballast al di sotto della traversina di 0.35m, uno spessore del massetto di 0.05m e metà spessore soletta pari a 0.50m, risulta pari a:

$$L_t = L_{traversina} + 2 \cdot H_{ballast} \cdot \frac{1}{4} + 2 \cdot H_{massetto} \cdot \frac{1}{1} + 2 \cdot \frac{H_{soletta}}{2} \cdot \frac{1}{1} = 3.67m$$

In direzione longitudinale, le 4 forze concentrate da 250 kN, vengono disposte in posizioni differenti al fine di considerare gli effetti più sfavorevoli.

Questo è eseguito tramite la "Moving Load Analysis" implementanta nel software, che tiene in conto automaticamente anche di un'eccentricità di 0.08 m dei carichi verticali.

Treni di carico SW/0- SW/2

Il Treni di carico SW/0-SW/2 sono schematizzati nella figura seguente.

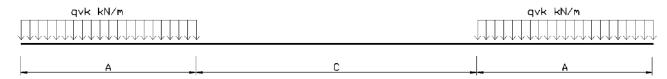


Figura 7.5 - Treno di carico SW

Il modello di carico SW/0 schematizza gli effetti statici prodotti dal traffico ferroviario normale per travi continue (esso andrà utilizzato solo per le travi continue qualora più sfavorevole dell'LM71, nel caso in esame non voene quindi preso in considerazione).

Il modello di carico SW/2 schematizza gli effetti statici prodotti dal traffico ferroviario pesante. Le caratterizzazioni di entrambe queste configurazioni sono indicate nella tabella seguente:

Tipo di carico	Q_{vk}	\boldsymbol{A}	C
Tipo di carico	[kN/m]	[m]	[m]
SW/0	133	15,00	5,30
SW/2	150	25,00	7,00

Tabella 2 – caratterizzazione treni di carico SW

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Relazione di Calcolo (Bicanna) E ZZ CL 18 di 177

7.3.2 Carichi sui marciapiedi (Qsbalzo,SX – Qsbalzo,DX)

I marciapiedi non aperti al pubblico sono utilizzati solo dal personale autorizzato. I carichi accidentali sono schematizzati da un carico uniformemente ripartito del valore di 10 kN/m2. Questo carico non viene considerato contemporaneo al transito dei convogli ferroviari e viene applicato sopra i marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli. Per questo tipo di carico distribuito non viene applicato l'incremento dinamico.

Il valore di questo carico verrà considerato nelle analisi degli sbalzi laterali.

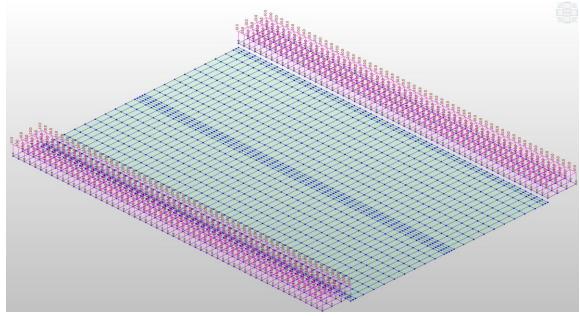


Figura 7.6 - Carichi sugli sbalzi, marciapiede SX e marciapiede DX

7.3.3 Serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario.

Il valore caratteristico di tale forza è stato assunto pari a Qsk=100 kN. Tale valore deve essere moltiplicato per α, ma non per il coefficiente di incremento dinamico.

Questa forza laterale deve essere sempre combinata con i carichi verticali.

L'azione generata dal convoglio risulta pari a:

Qsk=100x1.10=110kN

Per ciascuno dei 3 casi di carico analizzati (3 per il binario di destra e 3 per il binario di sinistra), sarà considerato un nodo all'altezza del piano ferro. Tale nodo, posizionato in mezzeria rispetto all'impronta di carico, sarà collegato al sottostante nodo della struttura tramite un link rigido. Al nodo superiore sarà applicata una forza orizzontale concentrata di 110 kN rappresentativa del serpeggio.

L'azione da serpeggio è applicata al piano ferro e pertanto, nel trasporto al piano medio della soletta nasce una coppia di trasporto. Il braccio rispetto al piano medio della soletta vale 1.42m:

APPALTATORE: Consorzio HIRPINIA AV	Soci SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		ITIN	ERARIO I	NAPOLI – B <i>i</i>	ARI	
PROGETTAZIONE	: <u>Mandanti</u>		RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 19 di 177

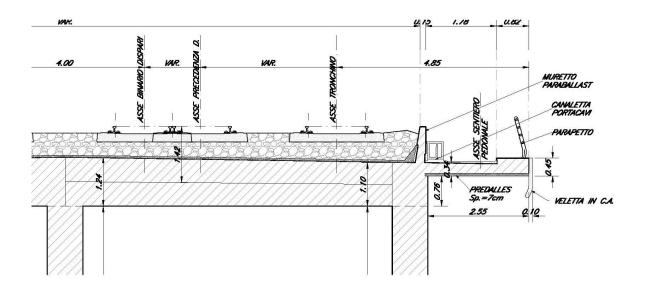


Figura 7.7 – Distanza tra piano ferro e interasse soletta superiore

A titolo di esempio, si riporta di seguito l'applicazione della forza di serpeggio sul binario di destra per il primo schema di carico:

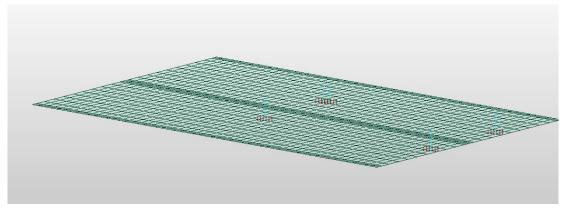


Figura 7.8 – Serpeggio - DX 1° Load Case

L'azione di serpeggio è stata applicata all'interno del caso di carico mobile relativo, in maniera da combinarne gli effetti.

APPALTATORE: Consorzio HIRPINIA AV	Soci SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		ITINI	ERARIO I	NAPOLI – BA	ARI	
PROGETTAZIONE Mandataria	: <u>Mandanti</u>					TA APICE – OF LLE APICE – HI		
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 20 di 177

7.3.4 Avviamento e frenatura

Le forze di frenatura e di avviamento agiscono sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze sono da considerarsi uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato. I valori caratteristici da considerare sono i seguenti:

Avviamento:

 $Q_{la,k} = 33 \ [kN/m] \times L[m] \le 1000 \ kN$ per modelli di carico LM71, SW/0, SW/2

Frenatura:

 $Q_{lb,k} = 20 [kN/m] \times L[m] \le 6000 kN$ per modelli di carico LM71, SW/0

 $Q_{lb,k} = 35 \, [kN/m] \times L[m]$ per modelli di carico SW/2

Al fine di applicare una pressione al modello di calcolo, si dividono i valori caratteristici per la lunghezza di diffusione in direzione trasversale:

 $Q_{avviamento}$ 33 kN/m 9.89 kN/m2 $Q_{frenatura}$ 20 kN/m 5.99 kN/m2

Le azioni di frenatura ed avviamento vengono combinate con i relativi carichi verticali. Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura. I valori caratteristici dell'azione di frenatura e di quella di avviamento devono essere moltiplicati per α e non devono essere moltiplicati per Φ ."

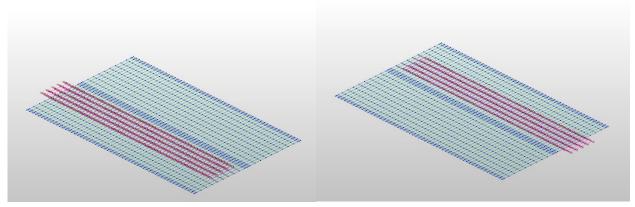


Figura 7.9 - Carico di frenatura sul binario destro e di avvio sul binario sinistro - frenatura e avviamento

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI		NADOLI D	N D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE	:		· ·			TA APICE - OF		
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 21 di 177

7.4 AZIONI CLIMATICHE

Le variazioni termiche, uniforme e differenziale, vengono applicate sia sulla soletta di copertura che sui piedritti in quanto, essendo la struttura in elevazione fuori terra, risulta essere esposta alle azioni climatiche.

7.4.1 Variazione termica uniforme

È stata considerata una variazione termica uniforme pari a ±15°C.

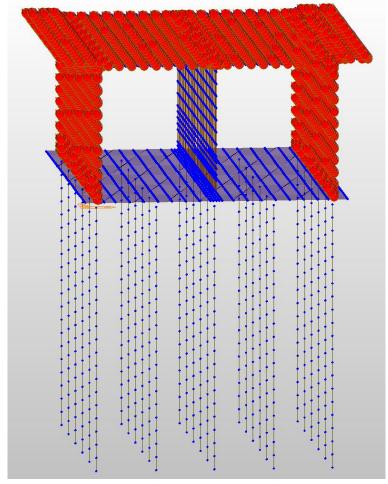


Figura 7.10 – Variazione termica uniforme +15°

7.4.2 Variazione termica differenziale

È stata considerata una differenza di temperatura tra estradosso e intradosso degli elementi pari a ±5°C.

APPALTATORE:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

Mandanti

NET ENGINEERING S.P.A.

ALPINA S.P.A.

PROGETTAZIONE:

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A

<u>Mandataria</u>

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

I LOTTO FUNZIONALE APICE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF28	01	E ZZ CL	RI0200 002	В	22 di 177

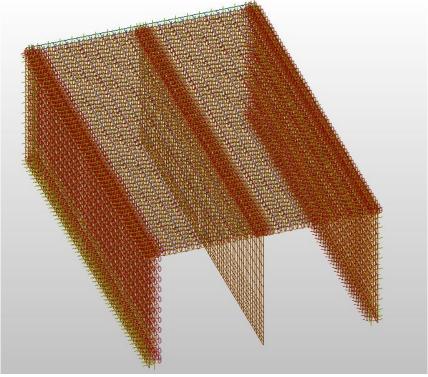


Figura 7.11 – Variazione termica differenziale ±5°

7.4.3 Azione del Vento

Di seguito si riporta il calcolo dell'azione del vento valutata per il sito in esame.

Ai sensi del NTC 08, la pressione del vento è pari a:

$$p = qb \cdot ce \cdot cp \cdot cd$$

dove:

- qb Pressione cinetica di riferimento
- ce Coefficiente di esposizione
- cp Coefficiente di forma (o coefficiente aerodinamico)
- cd Coefficiente dinamico

Pressione cinetica di riferimento:

La pressione cinetica di riferimento qb in (N/m2) è data dall'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$

dove:

- vb Velocità di riferimento del vento
- ρ Densità dell'aria assunta convenzionalmente costante e pari a 1.25kg/m3

Nel caso in esame si assume un periodo si ritorno TR pari a 50 anni per cui si ottiene un coefficienet $\alpha_R \approx 1.00$. Pertanto la velocità di riferimento vb(TR) sarà pari a:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 B 23 di 177

$$v_b(T_R) = \alpha_R \cdot v_b$$

dove:

- vb Velocità di riferimento del vento associata ad un periodo di ritorno di 50 anni
- αR Coefficiente fornito dalla seguente espressione in funzione di TR espresso in anni

$$\alpha_{R} = 0.75 \sqrt{1 - 0.2 \cdot \ln \left[-\ln \left(1 - \frac{1}{T_{R}} \right) \right]}$$

L'area oggetto di studio ricade in zona 3 e pertanto si ottiene:

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste)	25	1000	0,010
2	Emilia Romagna	25	750	0,015
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,020
4	Sicilia e provincia di Reggio Calabria	28	500	0,020
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,015
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,020
7	Liguria	28	1000	0,015
8	Provincia di Trieste	30	1500	0,010
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,020

Figura 7.12: valore dei parametri vb,0 - a0 - ka

- v_{b,0}= 27 m/s
- $a_0 = 500 \text{ m}$
- k_a=0.020 1/s

Considerando un'altitudine sul livello del mare $a_s \approx 320$ m s.l.m < a_0 , si ottiene che $v_b = v_{b,0}$: $q_b = 1.25/2*27^2 = 456$ N/m2

Coefficiente di esposizione

Per il sito in esame si considera la classe di rugosità del terreno D (tab. 3.3.III):

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

E ZZ CL

RI0200 002

01

24 di 177

Tabella 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno	Descrizione			
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15m			
В	Aree urbane (non di classe A), suburbane, industriali e boschive			
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D			
D	Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,)			

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinché una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la classe permanga intorno alla costruzione per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione. Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe più sfavorevole.

Figura 7.13: classi di rugosità del terreno

Categoria di esposizione del sito	k _r	z ₀ [m]	z_{\min} [m]
I	0,17	0,01	2
II	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

Figura 7.14: parametri per la definizione del coefficiente di esposizione

In zona 3, con classe di rugosità D ed a circa 50 km dalla costa si ottiene il valore della classe di esposizione del sito pari a II per il quale valgono i seguenti parametri:

- kr=0.19
- z0=0.05 m
- zmin=4.0 m

Relazione di Calcolo (Bicanna)

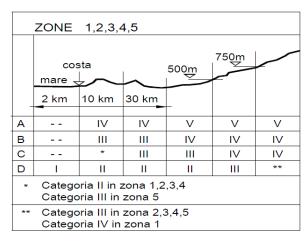


Figura 7.15: definizione delle categorie di esposizione

APPALTATORE:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 B 25 di 177

Per il calcolo dell'azione del vento si considera come altezza della struttura z= 11.70m sopra il piano di campagna. Considerando i seguenti parametri:

- kr=0.19
- z0=0.05 m
- zmin=4.0 m
- z=11.70m
- ct=1.0

E considerando la rezione valida per z>zmin:

$$\begin{aligned} c_{\text{e}}\left(z\right) &= k_{\text{r}}^{2} \ c_{\text{t}} \ln \left(z/z_{0}\right) \left[7 + c_{\text{t}} \ln \left(z/z_{0}\right)\right] & \text{per } z \geq z_{\text{min}} \\ c_{\text{e}}\left(z\right) &= c_{\text{e}}\left(z_{\text{min}}\right) & \text{per } z < z_{\text{min}} \end{aligned}$$

Si ottiene:

Ce=2.45

Coefficiente di forma (o aerodinamico):

Per la determinazione del coefficiente di forma si fa riferimento a quanto riportato al § C3.3.10.1 della circolare esplicativa del 2009.

Il coefficiente di forma cpe vale:

- piedritto direttamente investito dal vento: cpe=+0.80
- piedritto non direttamente investito dal vento e copertura piana: cpe=-0.40

Coefficiente dinamico

Il coefficiente dinamico tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alla risposta dinamica della struttura. Esso è assunto cautelativamente pari ad 1.

La pressione del vento agente sulla struttura vale pertanto:

$$p_{piedritto,1} = q_b \cdot c_e \cdot c_p \cdot c_d = 0.456 \cdot 2.45 \cdot 0.80 \cdot 1.00 = 0.90 \frac{kN}{m^2}$$

$$p_{piedritto,2} = q_b \cdot c_e \cdot c_p \cdot c_d = 0.456 \cdot 2.45 \cdot (-0.40) \cdot 1.00 = -0.45 \frac{kN}{m^2}$$

$$p_{soletta} = q_b \cdot c_e \cdot c_p \cdot c_d = 0.456 \cdot 2.45 \cdot (-0.40) \cdot 1.00 = -0.45 \frac{kN}{m^2}$$

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI		NADOLI D	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE	:		· ·			TA APICE - OF		
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 26 di 177

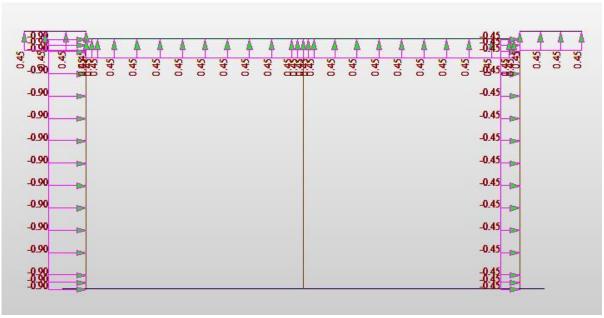


Figura 7.16 - Pressione del vento agente sulla struttura

7.5 AZIONI INDIRETTE

7.5.1 Ritiro e Viscosità

Il ritiro non si considera agire sulla soletta di fondazione in quanto sostanzialmente interrata per la maggior parte della sua dimensione. Si applica una variazione di temperatura equivalente per schematizzare il fenomeno di ritiro abbattuta per tenere in conto che il fenomeno si sviluppa nel tempo.

Il valore del ritiro autogeno preso in considerazione è quello a tempo infinito, mentre il valore di ritiro da essiccamento è trovato interpolando i valori tabellari forniti alla Tab. 3.2 dell EC2.

fck	32.00
ϵ_{c0}	0.000384
ϵ_{ca}	-5.5E-05
kh	0.7
$\epsilon_{c,tot}$	0.000214

Per determinare il coefficiente di viscosità si fa riferimento all'appendice B dell'EC2:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 B 27 di 177

fck	32.00	MPa
RH	65.00	%
В	-	m
Н	-	m
u	106.00	m
t0 ritiro	1.00	gg
t	18250.00	gg
fcm	40.00	MPa
Ac	47.15	m2
h0	890	mm
φRH<35	1.364	
α1	0.911	
α2	0.974	
α3	0.935	
φRH>35	1.296	
φRH	1.296	
β(fcm)	2.66	
β(t0)	0.909	
ф0	3.13	
βH<35	1500.00	
βH>35	1403.12	
βН	1403.12	
βc(t,t0)	0.978	
φ(t,t0)	3.06	

La variazione termica equivalente al ritiro viene valutata con l'espressione ε_s / [(φ (t,t₀)) x α].

$\varepsilon_{\rm c,tot}$	-0.0003238	
φ(t,t0)	3.06	
α	0.00001	1/°C
ΔΤ	-10.58	°C

Si assume una variazione termica equivalente applicata ai piedritti e alla soletta superiore pari a: $\Delta T = -11^{\circ}C$

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA FOGLIO Relazione di Calcolo (Bicanna) 01 E ZZ CL В 28 di 177

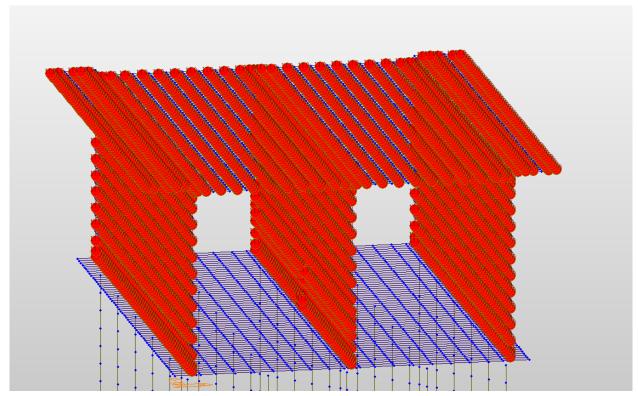


Figura 7.17 – Variazione termica equivalente agli effetti del ritiro Q31= -11°

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE – ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL Relazione di Calcolo (Bicanna) 01 RI0200 002 В 29 di 177

7.6 AZIONI SISMICHE

L'opera in oggetto ricade nel comune di Grottaminarda (AV). Le coordinate utilizzate per il calcolo dell'azione sismica sono le seguenti:

Longitudine: 15.062261Latitudine: 41.085507

L'azione sismica è stata individuata sulla base dei seguenti parametri:

- Vita nominale dell'opera VN =75 anni
- · Classe d'uso III
- Coefficiente d'uso Cu = 1.5
- Periodo di riferimento VR=75x1.5=112.5anni
- Categoria sottosuolo C
- Categoria topografica T1

Gli spettri sono stati valutati con il foglio di calcolo excel "SPETTRI-NTC" scaricato dal sito del Consiglio superiore dei lavori pubblici.

Figura 7.18 – Fase 1 – Individuazione della pericolosità del sito

APPALTATORE:

Consorzio Soci
HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:
Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 30 di 177

Figura 7.19 - Fase 2 - Strategia di progettazione

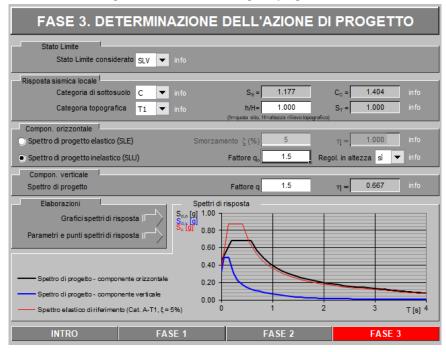


Figura 7.20 - Fase 3 - Azione di progetto

In seguito ad una analisi in frequenza del modello di calcolo (vedasi APPENDICE 1), si sono estrapolati i modi di vibrare per le direzioni principali. Di conseguenza, le azioni sismiche sono valutate considerando un'analisi statica equivalente e quindi è stata considerata l'accelerazione spettrale massima in corrispondenza del Plateau per la componente trasversale X e verticale Z mentre in direzione longitudinale Y la struttura presenta una rigidezza molto elevata e il periodo può quindi essere supposto prossimo allo zero (la struttura è molto rigida in quanto nella realtà il contributo della fondazione in contatto con il suolo è non trascurabile e la fondazione stessa ha un numero

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI		NADOLL B	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:		RADDOPPIO TRATTA APICE – ORSARA						
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 31 di 177	

inferiore di giunti rispetto all'elevazione) per cui l'accelerazione considerata è quella di aggancio allo spettro $a_{max} = a_g x$ S. Gli spettri di progetto utilizzati per la definizione delle azioni sono stati determinati considerando un fattore di struttura q pari a 1.5.

Spettri di risposta (componenti orizz. e vert.) per lo stato limite SLV

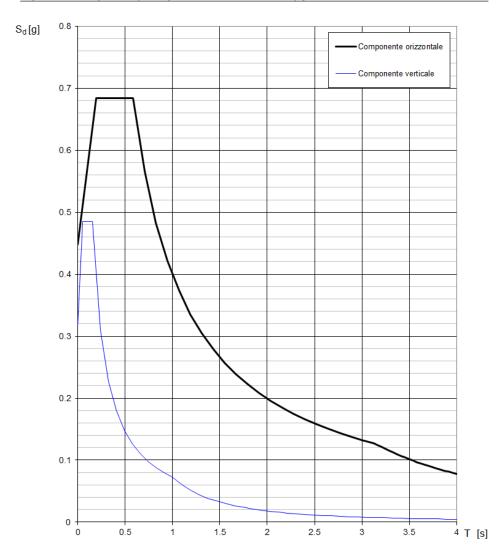


Figura 7.21 – Spettri di risposta in direzione orizzontale e verticale allo SLV

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna) ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 32 di 177 01

Parametri e punti dello spettro di risposta orizzontale per lo stato limiteLV

Parametri indipendenti

STATO LIMITE	SLV			
a _q	0.381 g			
F _o	2.287			
T _c *	0.415 s			
S _S	1.177			
C _c	1.404			
S _T	1.000			
q	1.500			

Parametri dipendenti

S	1.177
η	0.667
T _B	0.194 s
T _C	0.582 s
T _D	3.125 s

Espressioni dei parametri dipendenti

$$\begin{split} &S \! = \! S_8 \cdot S_T & \text{(NTC-08 Eq. 3.2.5)} \\ &\eta = \sqrt{10 \, / (5 + \xi)} \geq 0,55; \; \eta = 1/q & \text{(NTC-08 Eq. 3.2.6; §. 3.2.3.5)} \end{split}$$

$$T_{B} = T_{C}/3$$
 (NTC-07 Eq. 3.2.8)

$$\mathbf{T_C} = \mathbf{C_C} \cdot \mathbf{T_C^*} \tag{NTC-07 Eq. 3.2.7}$$

$$T_D = 4,0 \cdot a_{\rm g} \, / \, g + 1,6 \tag{NTC-07 Eq. 3.2.9} \label{eq:TD}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\text{e}}(\mathsf{T})$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punt	i dello spettr	o di risposta
	T [s]	Se [g]
	0.000	0.449
T _B ◀	0.194	0.684
Tc◀	0.582	0.684
	0.703	0.566
	0.825	0.483
	0.946	0.421
	1.067	0.374
	1.188	0.335
	1.309	0.304
	1.430	0.279
	1.551	0.257
	1.672	0.238
	1.793	0.222
	1.914	0.208
	2.035	0.196
	2.156	0.185
	2.278	0.175
	2.399	0.166
	2.520	0.158
	2.641	0.151
	2.762	0.144
	2.883	0.138
	3.004	0.133
T₀←	3.125	0.128
	3.167	0.124
	3.208	0.121
	3.250	0.118
	3.292	0.115
	3.333	0.112
	3.375	0.109
	3.417	0.107
	3.458	0.104
	3.500	0.102
	3.542	0.099
	3.583	0.097
	3.625	0.095
	3.667	0.093
	3.708	0.091
	3.750	0.089
	3.792	0.087
	3.833	0.085
	3.875	0.083
	3.917	0.081
	3.958	0.079
	4.000	0.078

Figura 7.22 - Spettro di risposta in direzione orizzontale allo SLV

APPALTATORE:

Consorzio
Soci
HIRPINIA AV
SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:
Mandataria
ROCKSOIL S.P.A
NET ENGINEERING S.P.A. ALPINA S.P.A.

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA APICE – ORSARA
I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

COMMESSA

LOTTO

01

CODIFICA

E ZZ CL

DOCUMENTO

REV.

В

FOGLIO

33 di 177

Parametri indipendenti Punti dello spettro di risposta STATO LIMITE SLV 0.318 g 0.000 0.318 1.000 T_B◀ 0.050 0.485 1.000 S 0.150 0.485 1.500 0.235 0.309 0.050 s 0.320 0.227 0.150 s 0.180 0.405 1.000 s 0.490 0.148 0.575 0.126 0.660 0.110 Parametri dipendenti 0.745 0.098 1.907 0.830 0.088 1.000 0.915 0.079 0.667 1.000 0.073 1.094 0.061 1.188 0.052 1.281 0.044 1.375 0.038 Espressioni dei parametri dipendenti 1.469 0.034 1.563 0.030 (NTC-08 Eq. 3.2.5) 1.656 0.027 $S\!=\!S_{\mathbb{S}}\cdot S_{T}$ 1 750 0.024 $\eta = 1/q$ (NTC-08 §. 3.2.3.5) 1.844 0.021 1.938 0.019 $F_v = 1{,}35 \cdot F_o \cdot \left(\frac{a_g}{\varrho}\right)^{0{,}5}$ (NTC-08 Eq. 3.2.11) 2.031 0.018 2.125 0.016 2.219 0.015 2 313 0.014 2.406 0.013 2.500 0.012 2.594 0.011 Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10) 2.688 0.010 2.781 0.009 $0 \le T < T_B \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right]$ 2.875 0.009 2.969 0.008 3.063 0.008 $T_B \leq T < T_C \ | \ S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{v}}$ 3.156 0.007 3.250 0.007 $$\begin{split} T_{C} \leq T < T_{D} & \left| \begin{array}{l} S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_{C}}{T} \right) \\ \\ T_{D} \leq T & \left| \begin{array}{l} S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right) \end{array} \right. \end{split} \end{split}$$ 3.344 0.007 3,438 0.006 3.531 0.006 3.625 0.006 3.719 0.005 3.813 0.005 3.906 0.005 4.000 0.005

Figura 7.23 - Spettro di risposta in direzione verticale allo SLV

Nel modello è stata implementata un'analisi sismica di tipo statico equivalente. Sono state considerate partecipanti le masse proprie degli elementi strutturali, i carichi permanenti e il carico ferroviario con coefficiente di partecipazione pari a 0.2. L'azione sismica è stata così applicata in direzione X e Y.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 В 34 di 177

8 COMBINAZIONI DI CARICO

Le azioni descritte nei paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto in base a quanto prescritto dal D.M. 14 Gennaio 2008.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_j \Psi_2 \cdot Q_{kj}$$

Nella valutazione dell'azione sismica, la risposta è calcolata unitariamente per le componenti come segue:

- E1 = ± 1.00 Ex ± 0.30 Ey
- $E2 = \pm 0.30 Ex \pm 1.00 Ey$

Con Ex, Ey rappresentative rispettivamente dell'azione sismica orizzontale in direzione x e y.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL 35 di 177 Relazione di Calcolo (Bicanna) 01

8.1 MODELLO DI CALCOLO

Nel software di calcolo agli elementi finiti è stato modellato un concio di sviluppo longitudinale pari a 28 m (distanza relativa tra due successivi giunti strutturali sovra-struttura). Questo modello è stato considerato per la valutazione delle sollecitazioni e le deformazioni degli elementi strutturali per le combinazioni agli stati limite ultimi, di esercizio e sismiche.

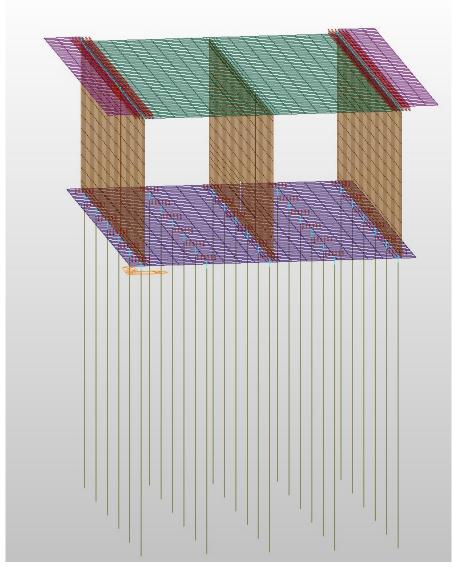


Figura 8.1 - Modello di calcolo SLU/SLE

Sono stati modellati anche i pali di fondazione mediante elementi frame suddivisi in elementi di 1.0 metro di lunghezza. Lungo lo sviluppo del palo, in corrispondenza dei nodi, sono state applicate molle in direzione X e Y. In corrispondenza del nodo alla base del palo è stata applicata anche una molla in direzione verticale Z.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

S.P.A.

COMMESSA

LOTTO **01** CODIFICA E ZZ CL DOCUMENTO RI0200 002

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE – HIRPINIA

REV. F

FOGLIO 36 di 177

Profondita	Z da p.c.	Unità	nh (kN/m3)	Cu (kPa)	Kh (kN/m3)	а	D	kN/m
0	2		4000		6667	0.5	1.2	4000
1	3		4000		10000	1	1.2	12000
2	4		4000		13333	1	1.2	16000
3	5	ALL2_S	4000		16667	1	1.2	20000
4	6		4000		20000	1	1.2	24000
5	7		4000		23333	1	1.2	28000
6	8		4000		26667	1	1.2	32000
7	9			300	75000	1	1.2	90000
8	10			300	75000	1	1.2	90000
9	11			300	75000	1	1.2	90000
10	12			300	75000	1	1.2	90000
11	13			300	75000	1	1.2	90000
12	14			300	75000	1	1.2	90000
13	15			300	75000	1	1.2	90000
14	16			300	75000	1	1.2	90000
15	17			300	75000	1	1.2	90000
16	18	ANZ2a		300	75000	1	1.2	90000
17	19			300	75000	1	1.2	90000
18	20	ANZZu		300	75000	1	1.2	90000
19	21			300	75000	1	1.2	90000
20	22			300	75000	1	1.2	90000
21	23			300	75000	1	1.2	90000
22	24			300	75000	1	1.2	90000
23	25			300	75000	1	1.2	90000
24	26			400	100000	1	1.2	120000
25	27			400	100000	1	1.2	120000
26	28			400	100000	1	1.2	120000
27	29			400	100000	1	1.2	120000
28	30			400	100000	1	1.2	60000

Figura 8.2 - Molle orizzontali da applicare al modello

La molla verticale alla base è stata calcolata a partire dal cedimento del palo:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

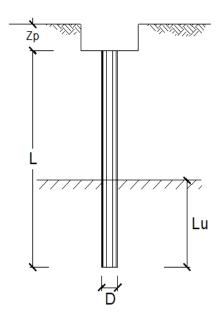
Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 37 di 177

Cedimento

Cedimento		
D	1,2	m
Р	2616,34	kN
L totale	19	m
Lutile	13,8	m
E1	44	Мра
E2		Мра
E3		MPa
Spessore 1	14,8	m
Spessore 2		m
Spessore 3		m
	14,8	m
E ponderato	44	MPa
β	1,56069784	
Cedimento	0,00672483	m

k 389057 kN/m

= 6,72 mm

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 38 di 177

9 CRITERI DI VERIFICA

Gli effetti dei carichi verticali, dovuti alla presenza dei convogli, vengono combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti di cui alla Tabella 5.2.IV del DM 14/01/2008 di seguito riportata.

In particolare, per ogni gruppo viene individuata un'azione dominante che verrà considerata per intero; per le altre azioni, vengono definiti diversi coefficienti di combinazione. Ogni gruppo massimizza una particolare condizione alla quale la struttura dovrà essere verificata.

Tabella 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Numero	Binari	Traffico	normale	Traffico
di binari Carichi		caso a(1)	caso b(1)	pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0")	-	1,0 (LM 71"+"SW/0")
	Primo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 (LM 71"+"SW/0")
	Altri	-	0,75 (LM 71"+"SW/0")	-

Tabella 5.2.IV - Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont:	ali							
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti						
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale						
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale						
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale						
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione						
Azione dominante (I) Includendo tutti i fattori ad essi relativi (Φ,α, ecc) (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.												

I valori fra parentesi indicati nella Tab. 5.2.IV vanno assunti quando l'azione risulta favorevole nei riguardi della verifica che si sta svolgendo.

Il gruppo 4 è da considerarsi esclusivamente per le verifiche a fessurazione. I valori indicati fra parentesi si assumeranno pari a: 0.6 per impalcati con 2 binari caricati e 0.4 per impalcati con tre o più binari caricati.

In fase di combinazione, ai fini delle verifiche degli SLU e SLE per la verifica delle tensioni, si sono considerati i soli Gruppo 1 e 3, mentre per la verifica a fessurazione è stato utilizzato il Gruppo 4. Nella tabella 5.2.III vengono riportati i carichi da utilizzare in caso di impalcati con due, tre o più binari caricati.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti. In particolare nel calcolo della struttura in esame si fa riferimento alla combinazione A1 STR.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

E ZZ CL

01

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

39 di 177

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 14/01/2008)

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica	
Carichi permanenti	anenti favorevoli sfavorevoli		0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00	
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ 62	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00	
Ballast ⁽³⁾	favorevoli sfavorevoli	'nΒ	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00	
Carichi variabili da traffico ^(*)	favorevoli sfavorevoli	7Q	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾	
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00	
Precompressione	npressione favorevole sfavorevole		0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00	

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Tabella 5.2.VI - Coefficienti di combinazione y delle azioni.

	,			
Azioni		Ψo	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	grl	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Le azioni descritte nei paragrafi precedenti ed utilizzati nelle combinazioni di carico vengono di seguito riassunte:

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0.0.

APPALTATORE:

Consorzio Soci
HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:
Mandataria Mandanti

ALPINA S.P.A.

NET ENGINEERING S.P.A.

ROCKSOIL S.P.A

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 40 di 177

n°	LoadCase
1	Peso Proprio
2	sovrastruttura
3	barriere
4	canalette
5	marciapede
6	TempUniforme
7	TermicaLineare
8	Ritiro
9	LM71bordoSX
10	LM71ordoDX
11	LM71ForoSX
12	LM71ForoDX
13	LM71correnteSX
14	LM71correnteDX
15	Frenatura
16	Avviam
17	SismaXsol
18	SismaXsetti
19	SismaYsol
20	SismaYsetti
21	Vento
Ciarra 0.4	Casi elementari di carice

Figura 9.1 – Casi elementari di carico

Si riportano di seguito le combinazioni allo SLU di carico implementate nel modello di calcolo:

Consorzio <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. 01 E ZZ CL RI0200 002 В 41 di 177

			Carico	bordo - M	IAX M-	
n°	LoadCase	LC1	LC2	LC3	LC4	LC5
1	PP	1,35	1,35	1,35	1,35	1,35
2	sovrastr	1,50	1,50	1,50	1,50	1,50
3	barr	1,50	1,50	1,50	1,50	1,50
4	canalette	1,50	1,50	1,50	1,50	1,50
5	marc	0,00	0,00	0,00	0,00	0,00
6	TUNI	0,00	0,90	-0,90	1,50	-1,50
7	DT	0,00	0,90	-0,90	1,50	-1,50
8	Ritiro	0,00	1,20	1,20	1,20	1,20
9	MaxLLbordoSX	1,45	1,45	1,45	1,16	1,16
10	MaxLLbordoDX	1,45	1,45	1,45	1,16	1,16
11	MaxLLForoSX	0,00	0,00	0,00	0,00	0,00
12	MaxLLForoDX	0,00	0,00	0,00	0,00	0,00
13	MaxLLcorrenteSX	0,00	0,00	0,00	0,00	0,00
14	MaxLLcorrenteDX	0,00	0,00	0,00	0,00	0,00
15	Frenatura	0,73	0,73	0,73	0,58	0,58
16	Avviam	0,73	0,73	0,73	0,58	0,58
17	SismaXsol	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00	0,00	0,00	0,00	0,00
20	SismaYsetti	0,00		0,00	0,00	0,00
21	Vento	0,90	0,90	0,90	0,90	0,90

		Caric	o foro - MA	X M-	
LC6	L	C7	LC8	LC9	LC10
1,3	5	1,35	1,35	1,35	1,35
1,5	0	1,50	1,50	1,50	1,50
1,5	0	1,50	1,50	1,50	1,50
1,5	0	1,50	1,50	1,50	1,50
0,0	0	0,00	0,00	0,00	0,00
0,0	0	0,90	-0,90	1,50	-1,50
0,0	0	0,90	-0,90	1,50	-1,50
0,0	0	1,20	1,20	1,20	1,20
0,0	0	0,00	0,00	0,00	0,00
0,0	0	0,00	0,00	0,00	0,00
1,4	5	1,45	1,45	1,16	1,16
1,4	5	1,45	1,45	1,16	1,16
0,0	0	0,00	0,00	0,00	0,00
0,0	0	0,00	0,00	0,00	0,00
0,7	3	0,73	0,73	0,58	0,58
0,7	3	0,73	0,73	0,58	0,58
0,0	0	0,00	0,00	0,00	0,00
0,0	0	0,00	0,00	0,00	0,00
0,0	0	0,00	0,00	0,00	0,00
0,0	0	0,00	0,00	0,00	0,00
0,9	0	0,90	0,90	0,90	0,90

			Carico m	ezzeria - N	1AX M-			Cari	co marciap	iedi	
n°	LoadCase	LC11	LC12	LC13	LC14	LC15	LC16	LC17	LC18	LC19	LC20
	PP	1,35	1,35			1,35	1,35	1,35	1,35	1,35	1,35
_	sovrastr	1,50	1,50		-	1,50	1,50	1,50	1,50	1,50	1,50
	barr	1,50	1,50			1,50	1,50	1,50	1,50	1,50	1,50
	canalette	1,50	1,50			1,50	1,50	1,50	1,50	1,50	1,50
	marc	0,00	0,00	-			1,50	1,50	1,50	1,05	1,05
	TUNI	0,00	0,90	-0,90	1,50	-1,50	0,00	0,90	-0,90	1,50	-1,50
7	DT	0,00	0,90	-0,90	1,50		0,00	0,90	-0,90	1,50	-1,50
8	Ritiro	0,00	1,20	1,20	1,20	1,20	0,00	1,20	1,20	1,20	1,20
9	MaxLLbordoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	MaxLLbordoDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	MaxLLForoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	MaxLLForoDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	MaxLLcorrenteSX	1,45	1,45	1,45	1,16	1,16	0,00	0,00	0,00	0,00	0,00
14	MaxLLcorrenteDX	1,45	1,45	1,45	1,16	1,16	0,00	0,00	0,00	0,00	0,00
15	Frenatura	0,73	0,73	0,73	0,58	0,58	0,73	0,73	0,73	0,58	0,58
16	Avviam	0,73	0,73	0,73	0,58	0,58	0,73	0,73	0,73	0,58	0,58
17	SismaXsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	SismaYsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
21	Vento	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90

Consorzio <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

LOTTO CODIFICA DOCUMENTO REV. COMMESSA FOGLIO 01 E ZZ CL RI0200 002 В 42 di 177

			Carico	bordo - M	AX M+			Ca	rico foro -	MAX M+	
n°	LoadCase	LC21	LC22	LC23	LC24	LC25	LC26	LC27	LC28	LC29	LC30
	1 PP	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35	1,35
	2 sovrastr	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
	3 barr	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
	4 canalette	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
	5 marc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	6 TUNI	0,00	0,90	-0,90	1,50	-1,50	0,00	0,90	-0,90	1,50	-1,50
	7 DT	0,00	0,90	-0,90	1,50	-1,50	0,00	0,90	-0,90	1,50	-1,50
	8 Ritiro	0,00	1,20	1,20	1,20	1,20	0,00	1,20	1,20	1,20	1,20
	9 MaxLLbordoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	10 MaxLLbordoDX	1,45	1,45	1,45	1,16	1,16	0,00	0,00	0,00	0,00	0,00
	11 MaxLLForoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	12 MaxLLForoDX	0,00	0,00	0,00	0,00	0,00	1,45	1,45	1,45	1,16	1,16
	13 MaxLLcorrenteSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	14 MaxLLcorrenteDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	15 Frenatura	0,73	0,73	0,73	0,58	0,58	0,73	0,73	0,73	0,58	0,58
	16 Avviam	0,73	0,73	0,73	0,58	0,58	0,73	0,73	0,73	0,58	0,58
	17 SismaXsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	18 SismaXsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	19 SismaYsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	20 SismaYsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	21 Vento	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90	0,90

			Car	ico mezzeria - MA)	(M+	
n°	LoadCase	LC31	LC32	LC33	LC34	LC35
1	PP	1,35	1,35	1,35	1,35	1,35
2	sovrastr	1,50	1,50	1,50	1,50	1,50
3	barr	1,50	1,50	1,50	1,50	1,50
4	canalette	1,50	1,50	1,50	1,50	1,50
5	marc	0,00	0,00	0,00	0,00	0,00
6	TUNI	0,00	0,90	-0,90	1,50	-1,50
7	DT	0,00	0,90	-0,90	1,50	-1,50
8	Ritiro	0,00	1,20	1,20	1,20	1,20
9	MaxLLbordoSX	0,00	0,00	0,00	0,00	0,00
10	MaxLLbordoDX	0,00	0,00	0,00	0,00	0,00
11	MaxLLForoSX	0,00	0,00	0,00	0,00	0,00
12	MaxLLForo DX	0,00	0,00	0,00	0,00	0,00
13	MaxLLcorrenteSX	0,00	0,00	0,00	0,00	0,00
14	MaxLLcorrenteDX	1,45	1,45	1,45	1,16	1,16
15	Frenatura	0,73	0,73	0,73	0,58	0,58
16	Avviam	0,73	0,73	0,73	0,58	0,58
17	SismaXsol	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00				
20	SismaYsetti	0,00	0,00	0,00	0,00	0,00
21	Vento	0,90	0,90	0,90	0,90	0,90

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

0.00

0.20

0.20

0.10

0.10

1.00

1.00

0.30

0.30

12 MaxLLForoDX

15 Frenatura

17 SismaXsol

18 SismaXsetti

20 SismaYsetti

19 SismaYsol

16 Avviam

13 MaxLLcorrenteSX

14 MaxLLcorrenteDX

0.00

0.20

0.20

0.10

0.10

1.00

1.00

-0.30

-0.30

0.00

0.20

0.10

0.10

-1.00

1.00

0.30

0.30

0.00

0.20

0.20

0.10

0.10

-1.00

-1.00

-0.30

-0.30

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna) ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL RI0200 002 43 di 177 01 В

0.00

0.00

0.00

0.10

0.10

0.30

0.30

1.00

1.00

0.00

0.00

0.00

0.10

0.10

-0.30

-0.30

1.00

0.00

0.00

0.00

0.10

0.10

0.30

0.30

-1.00

-1.00

0.00

0.00

0.00

0.10

0.10

-0.30

-0.30

-1.00

-1.00

Si riportano di seguito le combinazioni sismiche implementate nel modello:

					rdo-Sisma I	X dominan	teMAX M-							X Dominante MAX M-			
				np+				mp-			Ten				Ten	-	
n°	LoadCase	LC36	LC37	LC38	LC39	LC40	LC41	LC42	LC43	LC44		LC46	LC47	LC48	LC49	LC50	LC51
	1 PP	1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
	2 sovrastr	1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
	3 barr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
	4 canalette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
	5 marc	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	6 TUNI	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.50	0.50	0.50	0.50	-0.50			
	7 DT	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.50	0.50	0.50	0.50	-0.50			
	8 Ritiro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	9 MaxLLbordoSX	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	10 MaxLLbordoDX	0.20	0.20	0.20	0.20		0.20	0.20	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	11 MaxLLForoSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	12 MaxLLForoDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	13 MaxLLcorrenteSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	14 MaxLLcorrenteDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	15 Frenatura	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	16 Avviam	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	17 SismaXsol	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00
	18 SismaXsetti	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00
	19 SismaYsol	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30
	20 SismaYsetti	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30
				Cariaa Ma	naria Ciam	naX Dominante MAX M-				Carico bordo-SismaY dominante MAX M-							
				mp+	220114-31511	Tax Domini		emp-			Te	emp+	JIU0-315111a	ar dominant		mp-	
n°	LoadCase	LC52	LC53	LC54	LC55	LC56	LC57	LC58	LC59	LC60	LC61	LC62	LC63	LC64	LC65	LC66	LC67
-	1 PP	1.00															
	2 sovrastr	1.00							-	_	-		-		1.00		
	3 barr	1.00													1.00		
	4 canalette	1.00		-	-					-	-	-			1.00		
	5 marc	0.00			_	-				_		_			0.00		
	6 TUNI	0.50								-					-0.50		
	7 DT	0.50				-				_					-0.50		
	8 Ritiro	0.00									-				0.00		
	9 MaxLLbordoSX	0.00													0.20		
	10 MaxLLbordoDX	0.00								-	-		-		0.20		
	11 MaxLLForoSX	0.00								_	_		_		0.20		0.10
	11 MUXELFUIUSX	0.00	0.00	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00

0.00

0.20

0.20

0.10

0.10

1.00

1.00

-0.30

-0.30

0.00

0.20

0.20

0.10

0.10

1.00

1.00

0.30

0.30

0.00

0.20

0.20

0.10

0.10

-1.00

-1.00

0.30

0.30

0.0

0.20

0.20

0.10

0.10

-1.00

-1.00

-0.30

0.00

0.00

0.00

0.10

0.10

0.30

0.30

1.00

1.00

0.00

0.00

0.00

0.10

0.10

-0.30

-0.30

1.00

1.00

0.00

0.00

0.10

0.10

0.30

0.30

-1.00

-1.00

0.00

0.00

0.10

0.10

-0.30

-0.30

-1.00

-1.00

				Carico Fo	ro-Sisma Y	Dominant	e MAX M-				C	arico Mez	zeria-Sisma	a Y Domina	nte MAX N	Λ-	
			Ter	np+			Tei	mp-			Ter	np+			Tei	mp-	
n°	LoadCase	LC68	LC69	LC70	LC71	LC72	LC73	LC74	LC75	LC76	LC77	LC78	LC79	LC80	LC81	LC82	LC83
1	1 PP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	2 sovrastr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
3	3 barr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
4	1 canalette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	marc	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6	TUNI	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.500	0.500	0.500	0.500	-0.500	-0.500	-0.500	-0.500
7	DT DT	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.500	0.500	0.500	0.500	-0.500	-0.500	-0.500	-0.500
8	Ritiro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9	MaxLLbordoSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	MaxLLbordoDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
11	1 MaxLLForoSX	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
12	MaxLLForoDX	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
13	MaxLLcorrenteSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
14	MaxLLcorrenteDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
15	Frenatura	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
16	5 Avviam	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
17	7 SismaXsol	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.300	-0.300	0.300	-0.300	0.300	-0.300	0.300	-0.300
18	SismaXsetti	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.300	-0.300	0.300	-0.300	0.300	-0.300	0.300	-0.300
19	SismaYsol	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.000	1.000	-1.000	-1.000	1.000	1.000	-1.000	-1.000
20	SismaYsetti	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.000	1.000	-1.000	-1.000	1.000	1.000	-1.000	-1.000

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 44 di 177

				Carico boi	rdo-Sisma)	X dominan	teMAX M+					Carico Fo	oro-Sisma	X Dominante	MAX M-		
			Ter	np+			Tei	np-			Ter	np+			Tem	ıp-	
•	LoadCase	LC84	LC85	LC86	LC87	LC88	LC89	LC90	LC91	LC92	LC93	LC94	LC95	LC96	LC97	LC98	LC99
1	PP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	sovrastr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
3	barr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4	canalette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
5	marc	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	TUNI	0.50	0.50	0.50	0.50	-0.50	-0.50				0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50
7	DT	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50
8	Ritiro	0.00 0.00 0.00				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9	MaxLLbordoSX 0.00 0.00 0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
10	MaxLLbordoDX	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	MaxLLForoSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	MaxLLForoDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
13	MaxLLcorrenteSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	MaxLLcorrenteDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	Frenatura	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
16	Avviam	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
17	SismaXsol	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00
18	SismaXsetti	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00
19	SismaYsol					0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30
20	SismaYsetti	0.30	0.30 -0.30 0.30 -0.30 0.30 -0.30 0.30								-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30
				Carico Mez	zeria-Sism	aX Domina	inte MAX I	√l-			,	Carico bo	ordo-Sisma	aY dominante	MAX M-		
			Ter	mp+			Te	mp-			Te	emp+			Ten	np-	

			С	arico Meza	zeria-Sisma	aX Domina	nte MAX N	1-				Carico bo	do-Sisma\	dominant	te MAX M-		
			Ten	np+			Ter	np-			Ten	np+			Ter	mp-	
n°	LoadCase	LC100	LC101	LC102	LC103	LC104	LC105	LC106	LC107	LC108	LC109	LC110	LC111	LC112	LC113	LC114	LC115
	1 PP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	2 sovrastr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	3 barr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	4 canalette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	5 marc	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(6 TUNI	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50
	7 DT	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50
	8 Ritiro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	9 MaxLLbordoSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	0 MaxLLbordoDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
1:	1 MaxLLForoSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	2 MaxLLForoDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	3 MaxLLcorrenteSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	4 MaxLLcorrenteDX	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1:	5 Frenatura	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
10	6 Avviam	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
1	7 SismaXsol	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30
18	8 SismaXsetti	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30
19	9 SismaYsol	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00
20	0 SismaYsetti	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00

					•	•	•	•	•		•				_		
			•	Carico Fo	ro-Sisma Y	Dominant	e MAX M-					arico Mez	zeria-Sisma	a Y Domina	nte MAX N	1-	
			Ter	np+			Ter	np-			Ter	np+			Ter	np-	
n°	LoadCase	LC116	LC117	LC118	LC119	LC120	LC121	LC122	LC123	LC124	LC125	LC126	LC127	LC128	LC129	LC130	LC131
1	PP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	sovrastr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
3	barr	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
4	canalette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
5	marc	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6	TUNI	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.500	0.500	0.500	0.500	-0.500	-0.500	-0.500	-0.500
7	DT	0.50	0.50	0.50	0.50	-0.50	-0.50	-0.50	-0.50	0.500	0.500	0.500	0.500	-0.500	-0.500	-0.500	-0.500
8	Ritiro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9	MaxLLbordoSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	MaxLLbordoDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
11	MaxLLForoSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
12	MaxLLForoDX	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
13	MaxLLcorrenteSX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
14	MaxLLcorrenteDX	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
15	Frenatura	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
16	Avviam	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
17	SismaXsol	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.300	-0.300	0.300	-0.300	0.300	-0.300	0.300	-0.300
18	SismaXsetti	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.30	-0.30	0.300	-0.300	0.300	-0.300	0.300	-0.300	0.300	-0.300
19	SismaYsol	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.000	1.000	-1.000	-1.000	1.000	1.000	-1.000	-1.000
20	SismaYsetti	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.000	1.000	-1.000	-1.000	1.000	1.000	-1.000	-1.000

Consorzio <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

LOTTO CODIFICA DOCUMENTO REV. COMMESSA E ZZ CL RI0200 002 В 45 di 177

Si riportano di seguito le combinazioni di calcolo allo SLE (RARA):

-						Carico bor	do-MAX M				
n°	LoadCase	LC132	LC133	LC134	LC135	LC136	LC137	LC138	LC139	LC140	LC141
1	PP	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2	sovrastr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
3	barr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
4	canalette	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
5	marc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6	TUNI	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
7	DT	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
8	Ritiro	0,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
9	MaxLLbordoSX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
10	MaxLLbordoDX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
11	MaxLLForoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	MaxLLForo DX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	MaxLLcorrenteSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14	MaxLLcorrenteDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
15	Frenatura	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
16	Avviam	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
17	SismaXsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	SismaYsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
21	Vento	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60

						Carico foro	-MAX M-				
n°	LoadCase	LC142	LC143	LC144	LC145	LC146	LC147	LC148	LC149	LC150	LC151
1	PP	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2	sovrastr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
3	barr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
4	canalette	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
5	marc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6	TUNI	0,00			0,60	-0,60	_	1,00	1,00	-1,00	
7	DT	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
8	Ritiro	0,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
9	MaxLLbordoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	MaxLLbordoDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	MaxLLForoSX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
12	MaxLLForo DX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
13	MaxLLcorrenteSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14	MaxLLcorrenteDX	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	-,
15	Frenatura	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
16	Avviam	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
17	SismaXsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	SismaYsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
21	Vento	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60

Consorzio

Soci

SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u>

HIRPINIA AV

<u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo (Bicanna)	IF28	01	E ZZ CL	RI0200 002	В	46 di 177

					Ca	arico mezzo	eria -MAX I	M-			
n°	LoadCase	LC152	LC153	LC154	LC155	LC156	LC157	LC158	LC159	LC160	LC161
_	PP	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	sovrastr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
3	barr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
4	canalette	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
5	marc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6	TUNI	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
7	DT	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
8	Ritiro	0,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
9	MaxLLbordoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	MaxLLbordoDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	MaxLLForoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	MaxLLForo DX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	MaxLLcorrenteSX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
14	MaxLLcorrenteDX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
15	Frenatura	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
16	Avviam	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
17	SismaXsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	SismaYsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
21	Vento	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60

						Carico bordo	o-MAX M+			•	
n°	LoadCase	LC162	LC163	LC164	LC165	LC166	LC167	LC168	LC169	LC170	LC171
1	PP	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2	sovrastr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
3	barr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
4	canalette	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
5	marc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6	TUNI	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
7	DT	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
8	Ritiro	0,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
9	MaxLLbordoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	MaxLLbordoDX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
11	MaxLLForoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	MaxLLForo DX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	MaxLLcorrenteSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14	MaxLLcorrenteDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
15	Frenatura	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
16	Avviam	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
17	SismaXsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	SismaYsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
21	Vento	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60

<u>Consorzio</u> <u>Soci</u>

SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u>

HIRPINIA AV

<u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

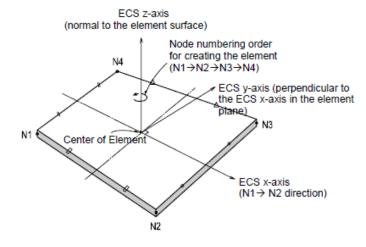
TEOTIOT ONZIONALE AFICE - TIINFINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

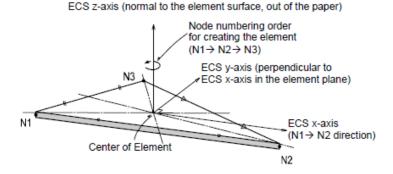
 IF28
 01
 E ZZ CL
 RI0200 002
 B
 47 di 177

						Carico for	o -MAX M+				
n°	LoadCase	LC172	LC173	LC174	LC175	LC176	LC177	LC178	LC179	LC180	LC181
1	PP	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2	sovrastr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
3	barr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
4	canalette	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
5	marc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6	TUNI	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
7	DT	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
8	Ritiro	0,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
9	MaxLLbordoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	MaxLLbordoDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	MaxLLForoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	MaxLLForo DX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
13	MaxLLcorrenteSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14	MaxLLcorrenteDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
15	Frenatura	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
16	Avviam	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
17	SismaXsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	SismaYsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
21	Vento	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60

					Ca	rico mezze	ria -MAX I				
n°	LoadCase	LC182	LC183	LC184		LC186	LC187	LC188	LC189	LC190	LC191
1	PP	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2	sovrastr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
3	barr	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
4	canalette	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
5	marc	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6	TUNI	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
7	DT	0,00	0,00	0,60	0,60	-0,60	-0,60	1,00	1,00	-1,00	-1,00
8	Ritiro	0,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
9	MaxLLbordoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
10	MaxLLbordoDX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
11	MaxLLForoSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
12	MaxLLForo DX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
13	MaxLLcorrenteSX	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
14	MaxLLcorrenteDX	1,00	0,60	1,00	0,60	1,00	0,60	0,80	0,60	0,80	0,60
15	Frenatura	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
16	Avviam	0,50	0,60	0,50	0,60	0,50	0,60	0,40	0,60	0,40	0,60
17	SismaXsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
18	SismaXsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
19	SismaYsol	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
20	SismaYsetti	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
21	Vento	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 48 di 177 Relazione di Calcolo (Bicanna) RI0200 002

10 DIAGRAMMI DELLE SOLLECITAZIONI


10.1 ORIENTAMENTO DEGLI ASSI LOCALI PER GLI ELEMENTI SHELL

L'orientamento degli assi locali 1 e 2 è determinato dalla relazione tra l'asse locale 3 e l'asse globale Z:

- il piano locale 3-2 viene preso verticale, cioè parallelo all'asse Z;
- l'asse locale 2 viene preso in direzione positiva verso l'alto (+Z) a meno che la shell non sia orizzontale nel qual caso l'asse locale 2 è preso orizzontale diretto lungo la direzione globale +Y;
- l'asse locale 1 è sempre orizzontale cioè giace in un piano parallelo al piano XY.

(a) ECS for a quadrilateral element

(b) ECS for a triangular element

APPALTATORE:

Consorzio Soci

HIRPINIA AV SALINIIIA

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

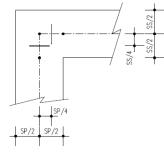
PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

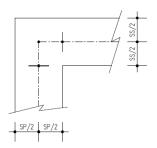
RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 49 di 177


10.2 CRITERI DI VERIFICA AGLI STATI LIMITE ULTIMI E DI ESERCIZIO

Di seguito si riportano le verifiche delle sezioni più significative e per le combinazioni di carico risultate più critiche.


Le verifiche a flessione sono effettuate rispettivamente:

- nella sezione ubicata a metà fra asse piedritto e sezione d'attacco piedritto-soletta nel caso delle verifiche della soletta;
- nella sezione ubicata a metà fra asse soletta e sezione d'attacco del piedritto nel caso delle verifiche del piedritto.

Le verifiche a fessurazione e a taglio sono eseguite nelle sezioni di attacco soletta-piedritto.

VERIFICHE A FLESSIONE

VERIFICHE A FESSURAZIONE E TAGLIO

Di seguito si riportano le mappe delle sollecitazioni per la struttura in elevazione allo SLU in condizioni statiche. Il valore delle sollecitazioni è in kN e kNm.

1								
APPALTATORE:								
<u>Consorzio</u>	<u>Soci</u>			ITINI		MAROLL B	A D.I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		HIIN	ERARIO	NAPOLI – B	AKI	
PROGETTAZIONE	 ≣:		_			TA APICE - OI		
<u>Mandataria</u>	<u>Mandanti</u>		·	LOTTO	FUNZIONA	LE APICE – H	IKPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC	CUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo	o (Bicanna)		IF28	01	E ZZ CL	RI0200 002	В	50 di 177

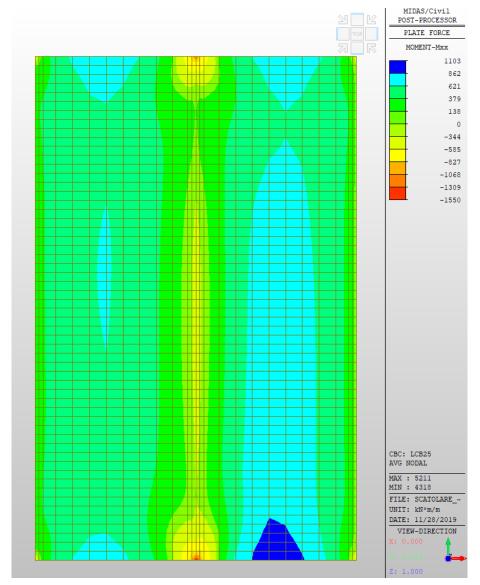


Figura 10.1 – Soletta superiore - Combinazione Momento flettente positivo M11(trasversale) – Massimo nella zona centrale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 В 51 di 177 Relazione di Calcolo (Bicanna)

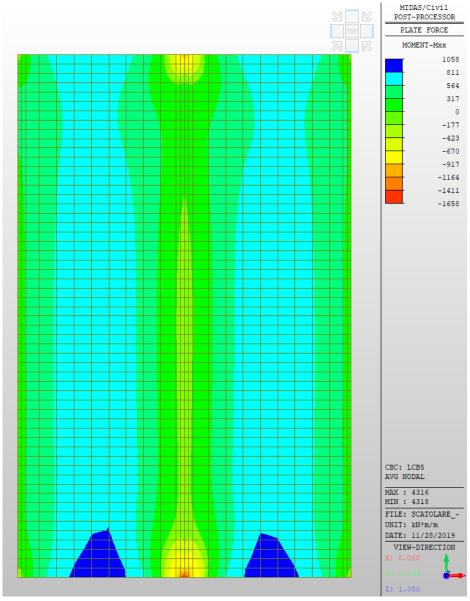


Figura 10.2 - Soletta superiore - Inviluppo Momento flettente negativo piedritto centale M11(trasversale) minimo

APPALTATORE:								
Consorzio	Soci		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						ļ
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESE	PROGETTO ESECUTIVO			LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcol	Relazione di Calcolo (Bicanna)			01	E ZZ CL	RI0200 002	В	52 di 177

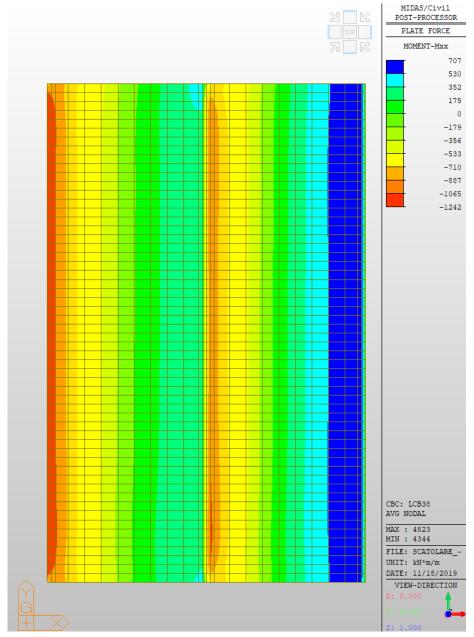


Figura 10.3 – Soletta superiore - Inviluppo Momento flettente negativo piedritto laterale M11(trasversale) – minimo

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 53 di 177

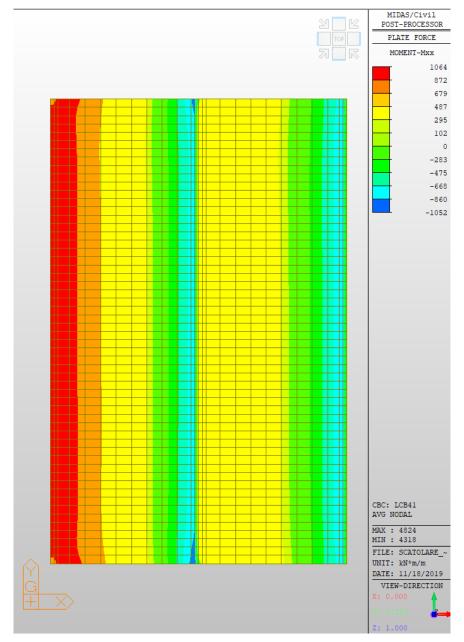


Figura 10.4 – Soletta superiore - Inviluppo Momento flettente postivo max piedritto centrale M11(trasversale)

APPALTATORE:								
<u>Consorzio</u>	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 54 di 177

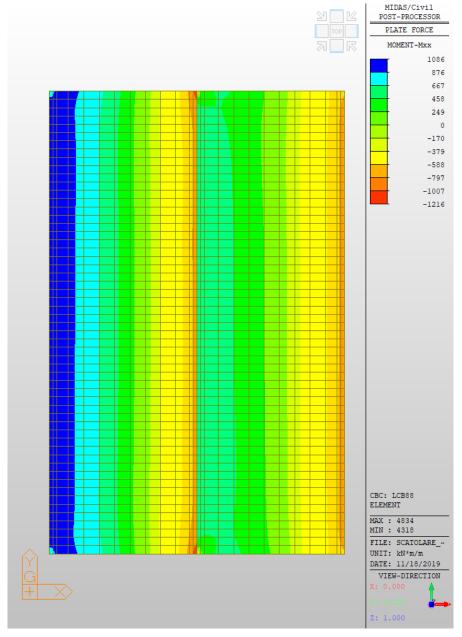


Figura 10.5 – Soletta superiore - Inviluppo Momento flettente postivo max piedritto laterale M11(trasversale)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI SALINI IMPREGILO S.P.A. ASTALDI S.P.A HIRPINIA AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 E ZZ CL RI0200 002 В 55 di 177 Relazione di Calcolo (Bicanna) 01

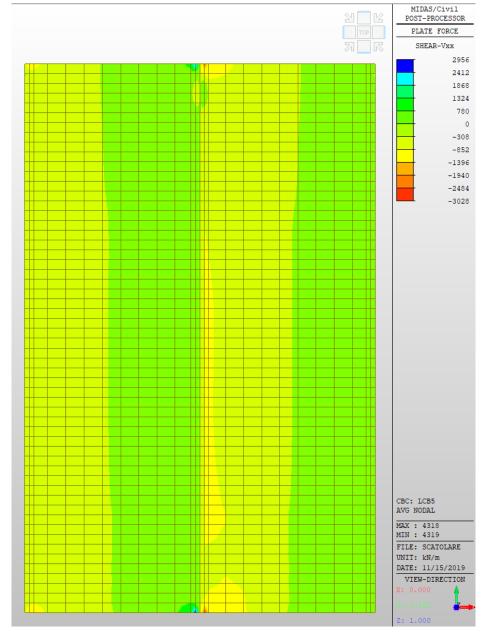


Figura 10.6 - Soletta superiore - Inviluppo Taglio V11(trasversale) Massimo In Corrispondenza del Piedritto Centrale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. IF28 01 E ZZ CL RI0200 002 В 56 di 177 Relazione di Calcolo (Bicanna)

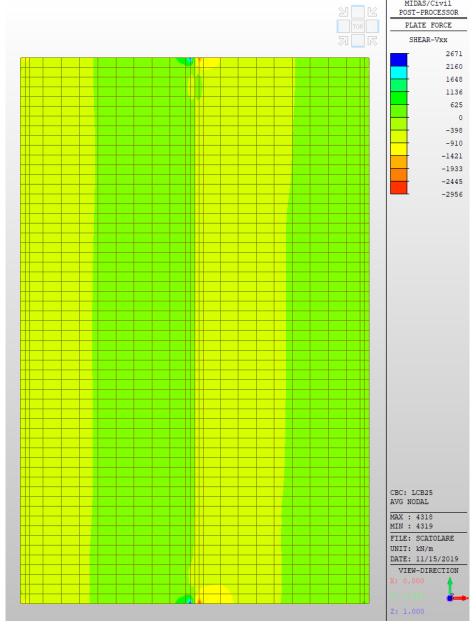


Figura 10.7 – Soletta superiore - Inviluppo Taglio V11(trasversale) Massimo In Corrispondenza del Piedritto Laterale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 В 57 di 177 Relazione di Calcolo (Bicanna)

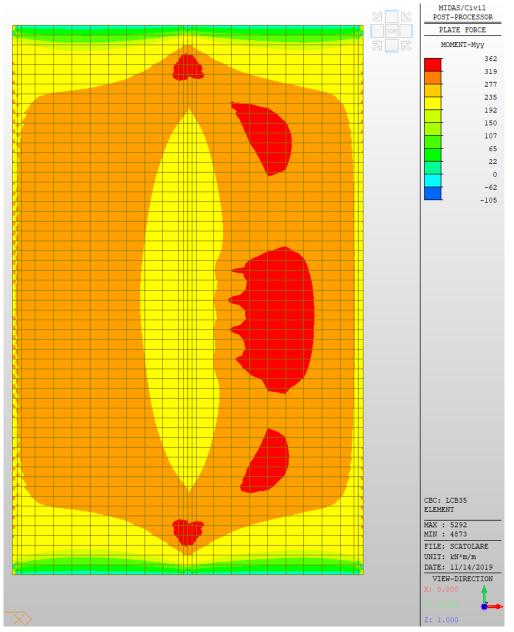


Figura 10.8 - Soletta superiore - Inviluppo Momento M22(Longitudinale) - SLU

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL RI0200 002 В 58 di 177 Relazione di Calcolo (Bicanna)

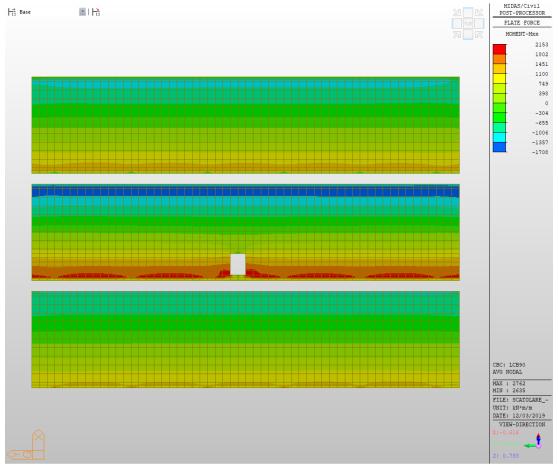


Figura 10.9 - Piedritti- Inviluppo Momento M11 Negativo in testa (Trasversale) Minimo per Piedritto Centrale

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 59 di 177

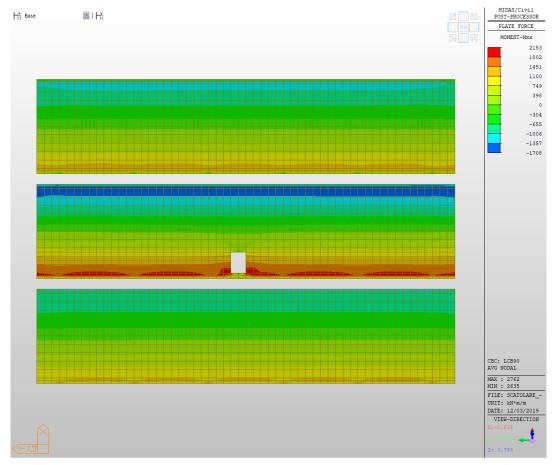


Figura 10.10 – Piedritti- Inviluppo Momento M11 Negativo in testa (Trasversale) Minimo per Piedritto Laterale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) 01 E ZZ CL RI0200 002 В 60 di 177

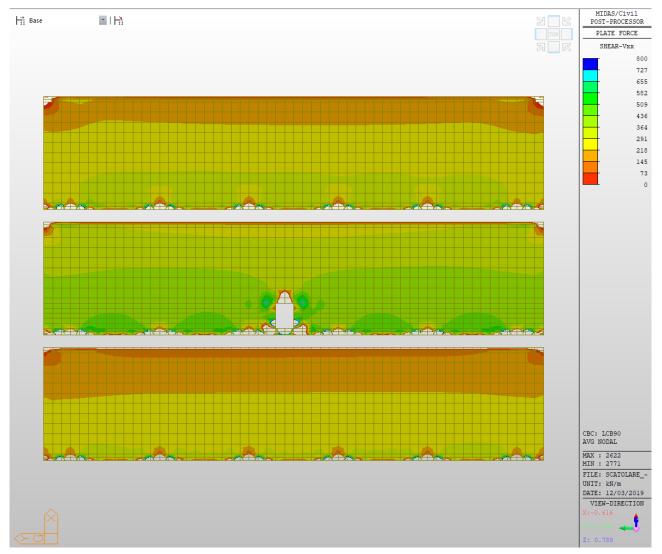


Figura 10.11 – Piedritti - Inviluppo Taglio V11 (Trasversale) Massimo Taglio In Testa Piedritto Centrale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL RI0200 002 В 61 di 177 Relazione di Calcolo (Bicanna)

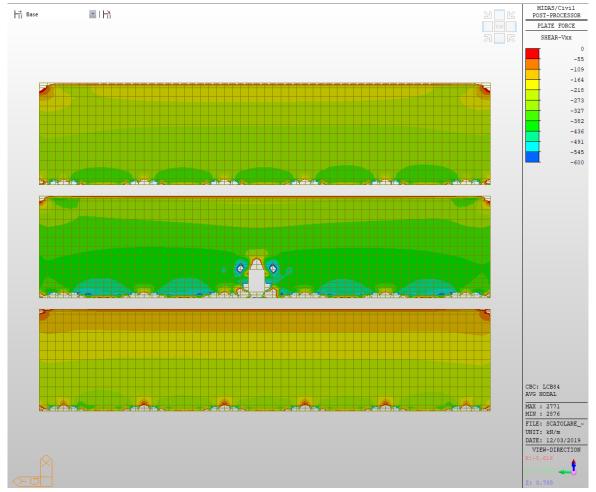


Figura 10.12 – Piedritti - Inviluppo Taglio V11 (Trasversale) Massimo Taglio In Testa Piedritto Laterale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI SALINI IMPREGILO S.P.A. ASTALDI S.P.A HIRPINIA AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) 01 E ZZ CL RI0200 002 В 62 di 177

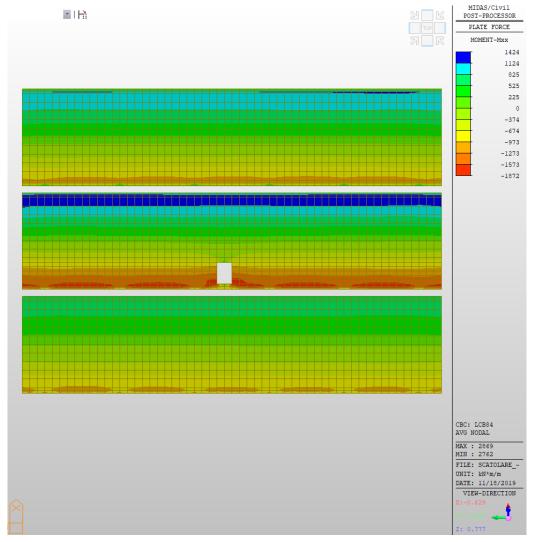


Figura 10.13 - Piedritti - Inviluppo Momento M11 (Trasversale) Massimo Momento In Testa Piedritto Centrale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL RI0200 002 В 63 di 177 Relazione di Calcolo (Bicanna)

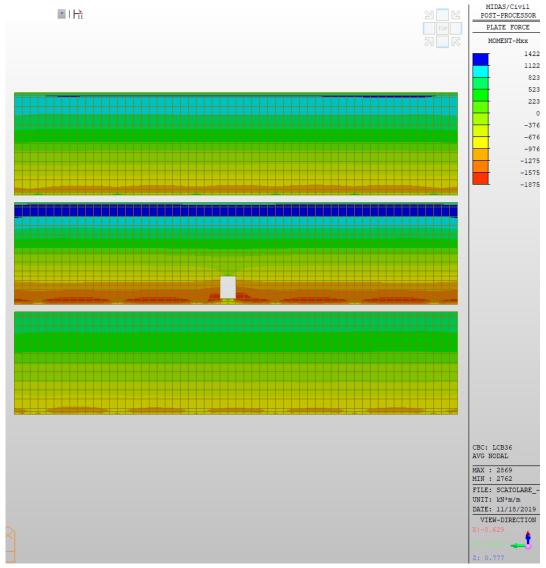


Figura 10.14 - Piedritti - Inviluppo Momento M11 (Trasversale) Massimo Momento In Testa Piedritto Laterale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 В 64 di 177 Relazione di Calcolo (Bicanna)

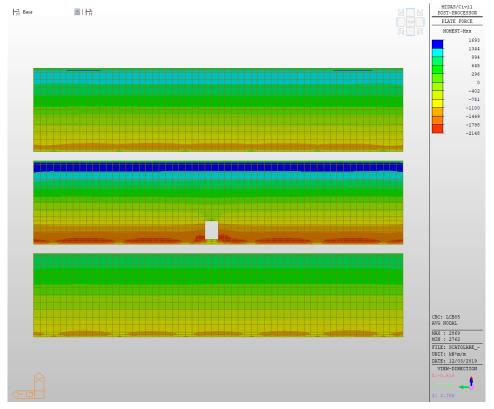


Figura 10.15 - Piedritti - Inviluppo Momento M11 Negativo alla Base (Trasversale) - Minimo Momento Piedritto Centrale

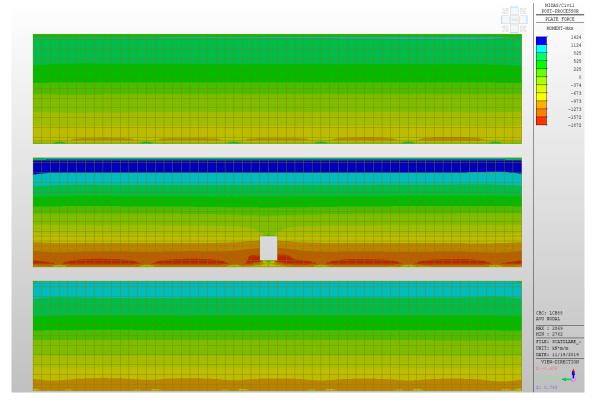


Figura 10.16 - Piedritti - Inviluppo Momento M11 Negativo alla Base (Trasversale) - Minimo Momento Piedritto Laterale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO COMMESSA REV. FOGLIO Relazione di Calcolo (Bicanna) 01 E ZZ CL RI0200 002 В 65 di 177

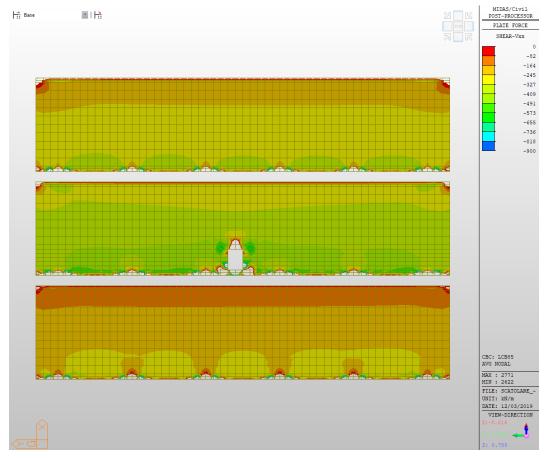


Figura 10.17 – Piedritti - Inviluppo Taglio V11 alla Base (Trasversale) – Minimo Taglio Piedritto Centrale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO COMMESSA REV. FOGLIO 01 E ZZ CL RI0200 002 В 66 di 177 Relazione di Calcolo (Bicanna)

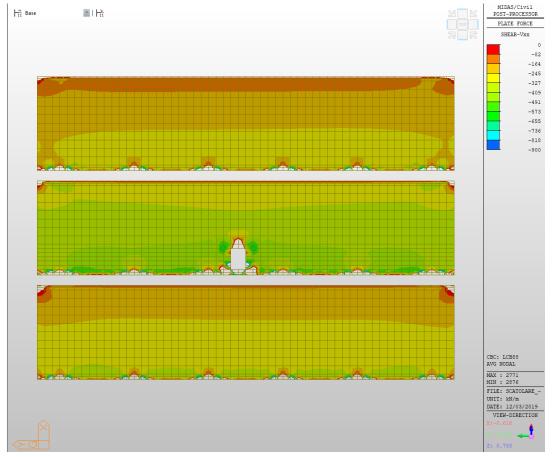


Figura 10.18 – Piedritti - Inviluppo Taglio V11 alla Base (Trasversale) – Minimo Taglio Piedritto Laterale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 E ZZ CL RI0200 002 В 67 di 177 Relazione di Calcolo (Bicanna) 01

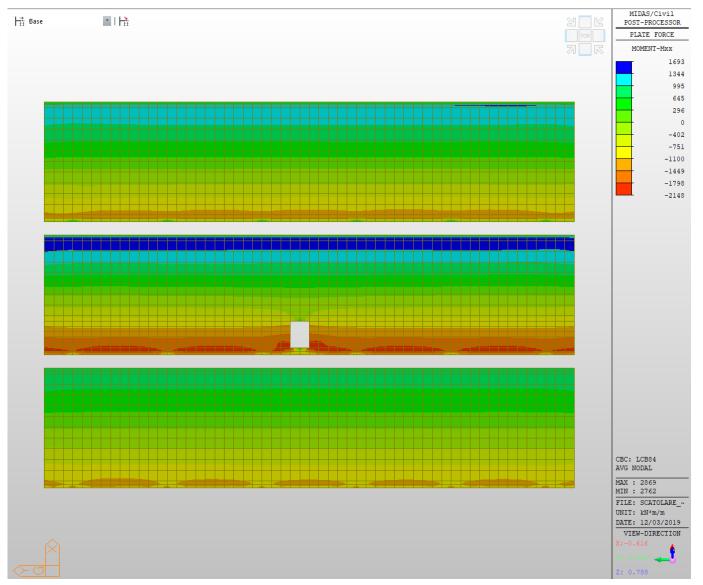


Figura 10.19 - Piedritti - Inviluppo Momento M11 Positivo in mezzeria (Trasversale) - Massimo Momento Mezzeria Piedritto Centrale

APPALTATORE:								
Consorzio	Soci		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A					ļ	
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA					
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE - HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 68 di 177

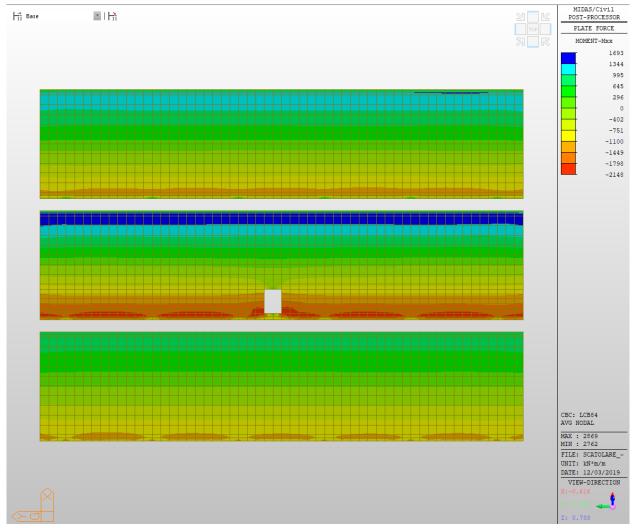


Figura 10.20 – Piedritti - Inviluppo Momento M11 Positivo in mezzeria (Trasversale) – Massimo Momento Mezzeria Piedritto Laterale

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo (Bicanna)			IF28	01	E ZZ CL	RI0200 002	В	69 di 177

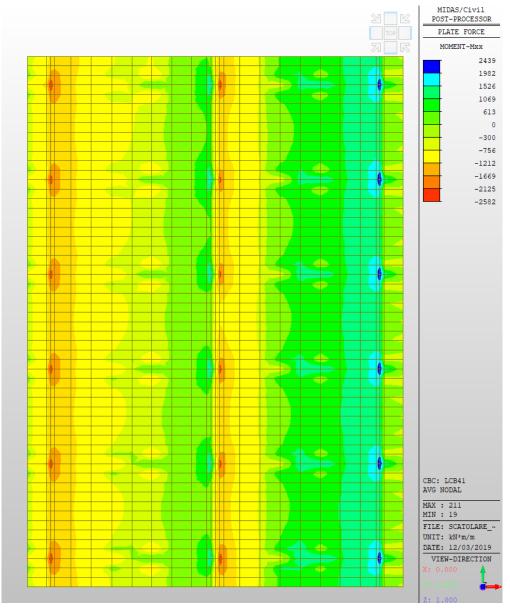


Figura 10.21 - Platea - Inviluppo Momento M11 - (Trasversale) - Fibre Tese Esterne in Corrispondenza del Piedritto

APPALTATORE:								
Consorzio	Soci		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						ļ
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESE	PROGETTO ESECUTIVO			LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo (Bicanna)			IF28	01	E ZZ CL	RI0200 002	В	70 di 177

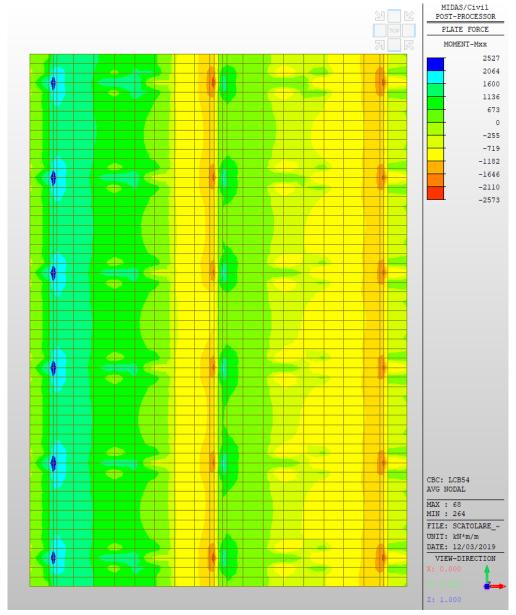


Figura 10.22 - Platea - Inviluppo Momento M11 - (Trasversale) - Fibre Tese Interne in Corrispondenza del Piedritto

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo (Bicanna)			IF28	01	E ZZ CL	RI0200 002	В	71 di 177

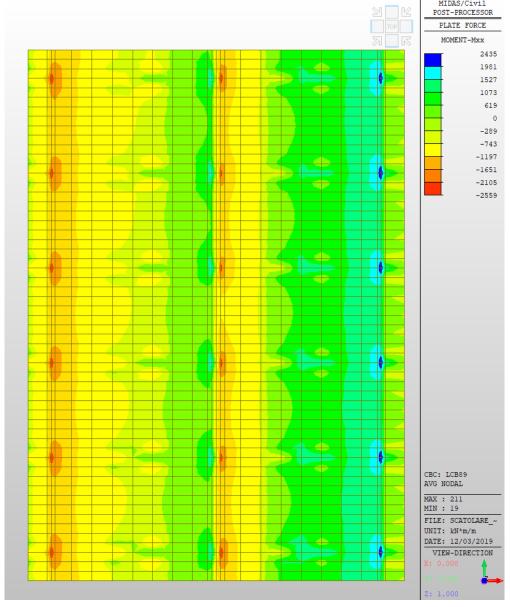


Figura 10.23 - Platea - Momento M11 Positivo - (Trasversale) - Fibre Tese Interne in Corrispondenza dei Pali

APPALTATORE:								
Consorzio	Soci		ITINERARIO NAPOLI – BARI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						ļ
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	ļ
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESE	PROGETTO ESECUTIVO			LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo (Bicanna)			IF28	01	E ZZ CL	RI0200 002	В	72 di 177

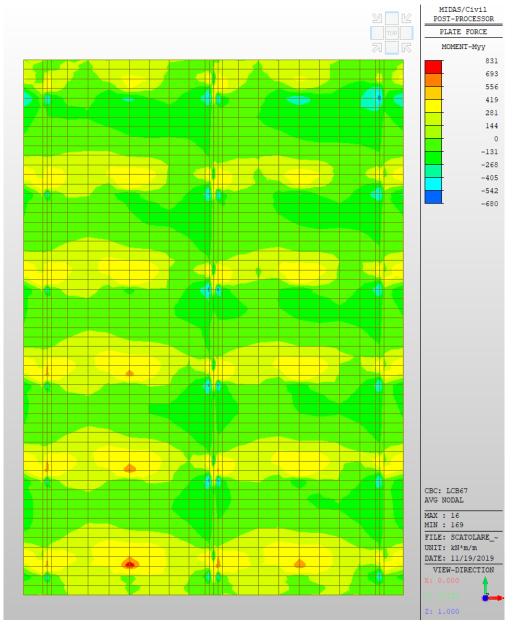


Figura 10.24 – Platea - Inviluppo Momento M22 Positivo (Longitudinale) – Fibre Tese Interne in Corrispondeza dei Pali

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI	ED A DIO I	NAPOLI – BA	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		HHIN	EKAKIU I	NAPULI – BA	AKI	
PROGETTAZIONE	::		_			TA APICE - OF		
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di Calcolo	(Bicanna)		IF28	01	E ZZ CL	RI0200 002	В	73 di 177

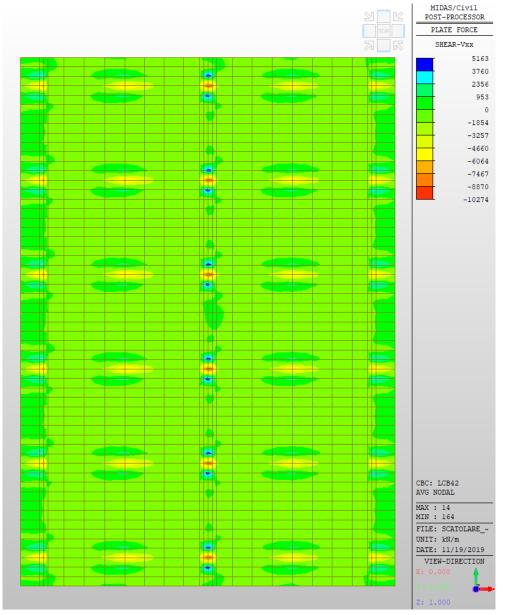


Figura 10.25 – Platea - Inviluppo Taglio V11 (trasversale) – massimo taglio in corrispondena del piedritto centrale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 В 74 di 177 Relazione di Calcolo (Bicanna)

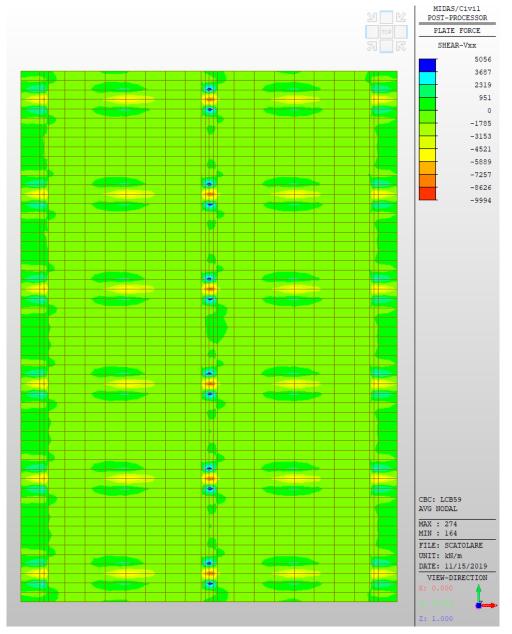


Figura 10.26 – Platea - Inviluppo Taglio V11 (trasversale) – massimo taglio in corrispondena del piedritto laterale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. 01 E ZZ CL RI0200 002 В 75 di 177 Relazione di Calcolo (Bicanna)

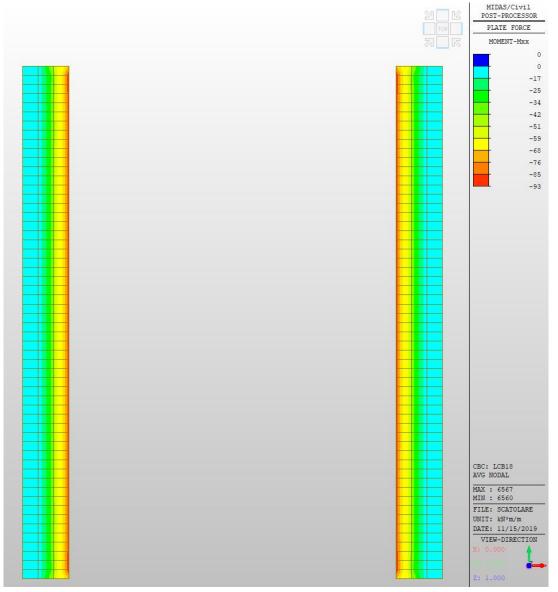


Figura 10.27 - Sbalzi - Inviluppo Momento M11 Negativo(Trasversale)

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) 01 E ZZ CL RI0200 002 В 76 di 177

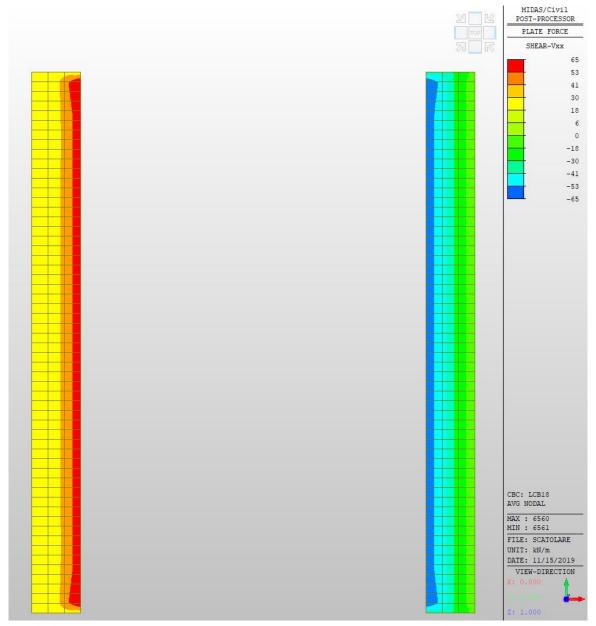


Figura 10.28 - Sbalzi - Inviluppo Taglio V11 (Trasversale)

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 77 di 177

Di seguito si riportano le mappe delle sollecitazioni per la struttura in elevazione allo SLE in condizioni statiche. Il valore delle sollecitazioni è in kN e kNm.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL RI0200 002 В 78 di 177 Relazione di Calcolo (Bicanna) 01

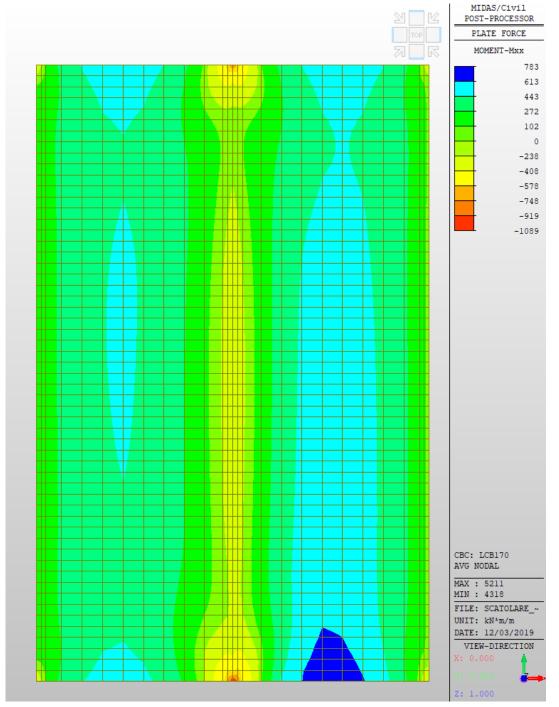


Figura 10.29 - Soletta Superiore - Inviluppo Momento M11 Positivo(Trasversale) - SLE

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. IF28 E ZZ CL RI0200 002 В 79 di 177 Relazione di Calcolo (Bicanna) 01

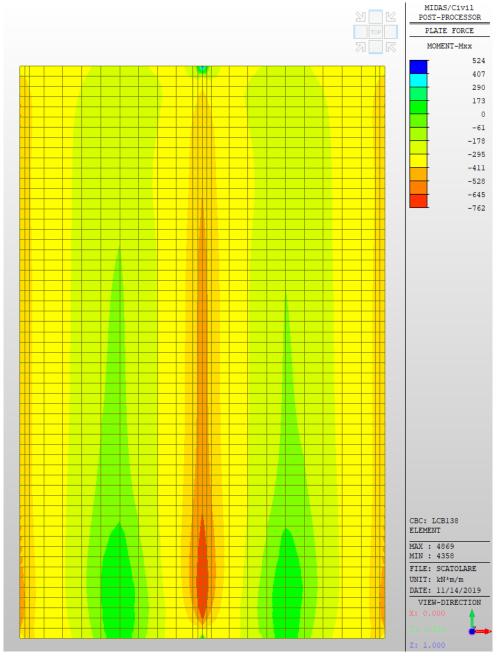


Figura 10.30 - Soletta Superiore - Inviluppo Momento M11 Negativo(Trasversale) Piedritto Laterale - SLE

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI SALINI IMPREGILO S.P.A. ASTALDI S.P.A HIRPINIA AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL RI0200 002 В 80 di 177 Relazione di Calcolo (Bicanna)

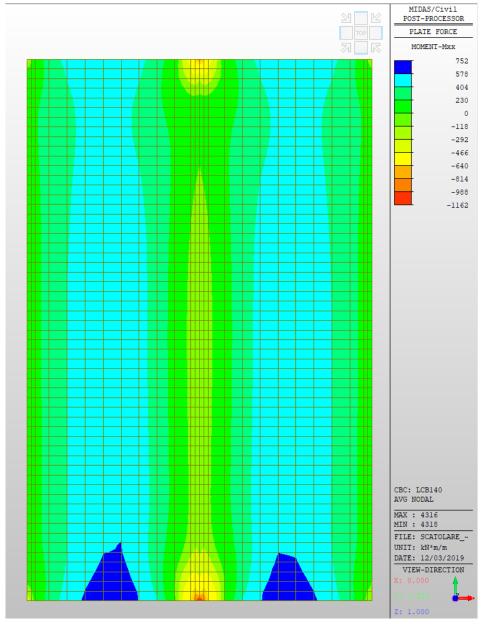


Figura 10.31 - Soletta Superiore - Inviluppo Momento M11 Negativo(Trasversale) Piedritto Centrale - SLE

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

RADDOPPIO TRATTA APICE - ORSARA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 В 81 di 177

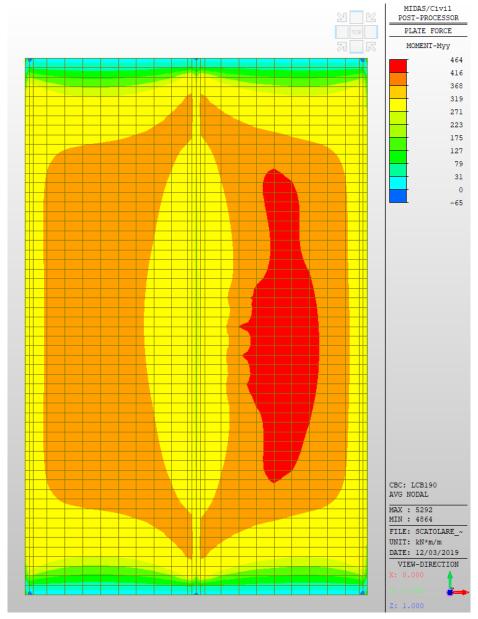


Figura 10.32 - Soletta Superiore - Inviluppo Momento M22 Positivo(Longitudinale) - SLE

APPALTATORE:								
Consorzio	Soci			ITINI		IADOLI D	N D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE	:		· ·			TA APICE - OF		
<u>Mandataria</u>	<u>Mandanti</u>		1	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 82 di 177	

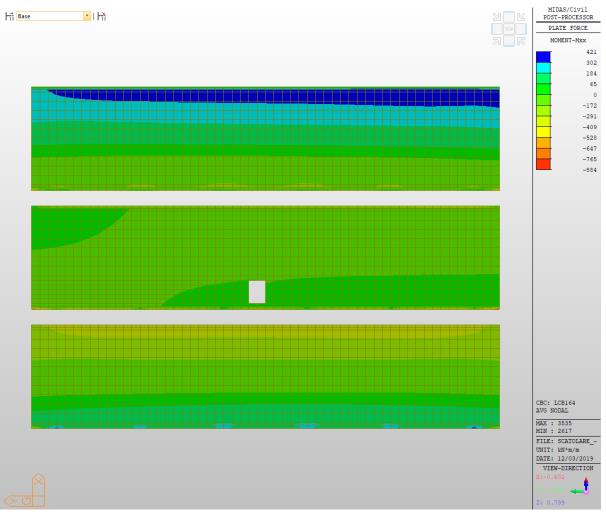


Figura 10.33 –Piedritti - Inviluppo Momento M11 Negativo alla base – SLE - minimo per piedritto centrale

APPALTATORE: Consorzio	<u>Soci</u>			ITIN	ERARIO I	NAPOLI – B <i>i</i>	ARI	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A						
PROGETTAZIONE	:		· ·			TA APICE - OF		
<u>Mandataria</u>	<u>Mandanti</u>		1	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 83 di 177	

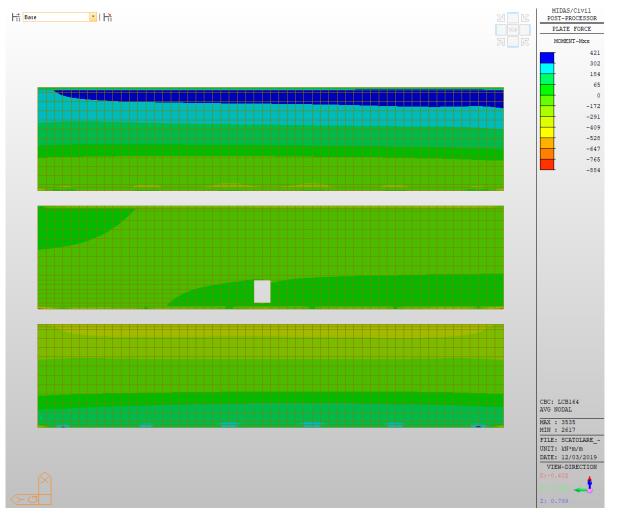


Figura 10.34 - Piedritti - Inviluppo Momento M11 Negativo alla base - SLE - minimo per piedritto laterale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) 01 E ZZ CL RI0200 002 В 84 di 177

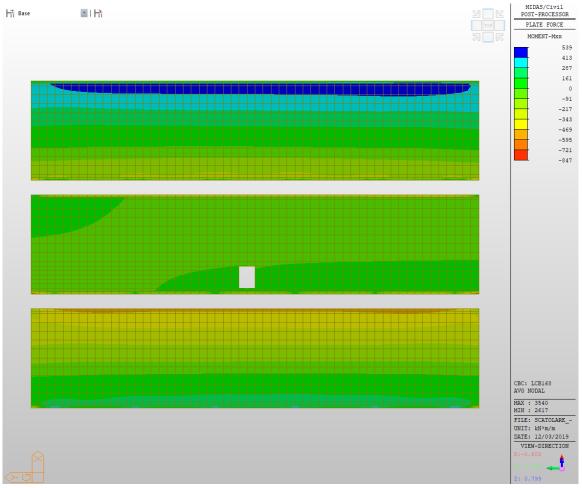


Figura 10.35 - Piedritti - Inviluppo Momento M11 positivo in mezzeria - SLE - massimo per piedritto centrale

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI SALINI IMPREGILO S.P.A. ASTALDI S.P.A HIRPINIA AV RADDOPPIO TRATTA APICE – ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL RI0200 002 В 85 di 177 Relazione di Calcolo (Bicanna)

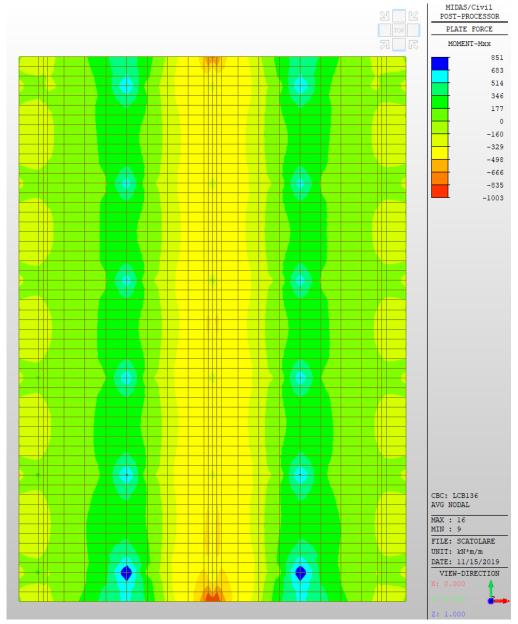


Figura 10.36 - Platea - Inviluppo Momento M11 (direzione trasversale) fibre tese esterne in corrispondenza del piedritto - SLE

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 В 86 di 177 Relazione di Calcolo (Bicanna)

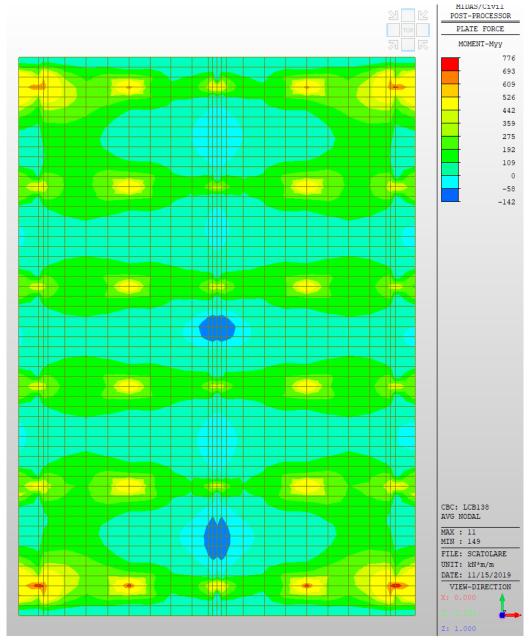


Figura 10.37 - Platea - Inviluppo Momento M22 positivo (direzione longitudinale) - SLE

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL RI0200 002 В 87 di 177 Relazione di Calcolo (Bicanna)

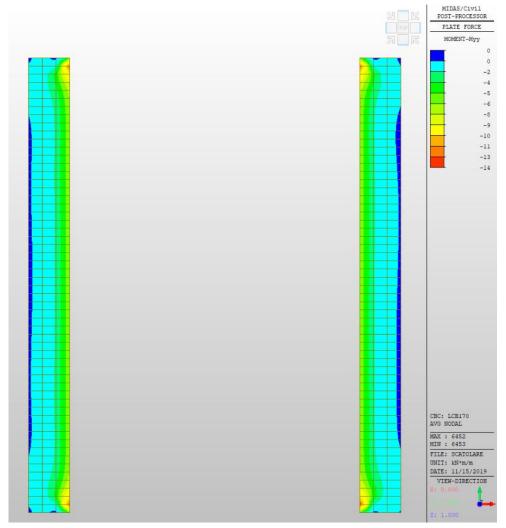


Figura 10.38 - Sbalzi - Inviluppo Momento M11 negativo (direzione trasversale) - SLE

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

RADDOPPIO TRATTA APICE - ORSARA

ITINERARIO NAPOLI – BARI

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL RI0200 002 88 di 177

10.3 ANALISI IN DIREZIONE LONGITUDINALE

Le azioni agenti in direzione longitudinale Y possono essere riassunte in:

- azioni sismiche;
- azioni causate dal ritiro:
- azioni dovute alla temperatura.

Per le sovrastrutture (piedritti e soletta superiore) l'azione sismica longitudinale può essere trascurata in quanto lo scatolare ha sviluppo notevole. Ne conseque che le tensioni interne principalmente membranali sono minime.

L'azione dovuta al ritiro del calcestruzzo, già determinata precedentemente come temperatura equivalente, genera tensioni di trazione permanenti a lungo termine principalmente nei piedritti poichè si assume conservativamente che essi non possano contrarsi liberamente a causa del vincolo di incastro alla soletta di fondazione la quale, essendo a sua volta vincolata ai pali ed avendo sicuramente una maggiore età di maturazione rispetto alle sovrastrutture, costituisce vincolo alla contrazione delle rimanenti parti di sovrastruttura.

Per quanto riguarda invece la tensione di trazione dovuta alla temperatura, essa agisce a breve termine per cui non contribuisce alla formazione permanente di fessurazione. L'azione termica sarà comunque considerata per le verifiche allo S.L.U. ed allo S.L.E.

Le armature da disporre in direzione longitudinale per contenere la fessurazione da ritiro saranno quindi disposte principalmente nei piedritti in quanto la soletta superiore risente meno di tale coazione ed è comunque armata per sopportare le sollecitazioni interne.

La coazione da ritiro determina nelle zone adiacenti la fondazione una tensione di trazione pari circa a 2.5MPa, valore pressochè uguale al limite imposto da normativa (f_{ctm}/1.2 = 3.0/1.2 = 2.5 MPa) per cui si ritiene necessario inserire una specifica armatura.

I piedritti hanno altezza netta pari ad H = 9.20m e spessore effettivo pari a B = 0.90m.

Si determina l'armatura minima mediante l'equazione definita in Eurocodice 2 di seguito riportata.

$$A_{s.min} > k_c * k * f_{ct.eff} * A_{ct} / \sigma_s$$

Per il calcolo dei coefficienti si considera conservativamente la sezione trasversale del piedritto tenso-inflessa con tensione inferiore pari a $\sigma_{c,bot} = f_{ct,eff} = f_{ctm}/1.2$ e superiore pari a metà di quella inferiore, $\sigma_{c,top} = 0.5^*\sigma_{cb}$ (1/3*H superiore compresso e 2/3*H inferiore tesi).

Si assume quindi:

$$\begin{split} f_{\text{ct,eff}} &= f_{\text{ctm}} \, / 1.2 = 2.5 \text{ MPa} \\ \sigma_{\text{c,bot}} &= 2.5 \text{ MPa}, \, \sigma_{\text{c,top}} = 1.25 \text{ MPa} \\ k_c &= 0.4^* [1 \text{-} (\sigma_{\text{c}} / (k_1^* (h/h^*)^* f_{\text{ct,eff}}))] \\ \sigma_c &= N / (B^* H) \end{split}$$

Dove N = N_{comp} + N_{traz} = +1725 - 6900 = -5175 kN è la forza assiale di trazione su tutta la sezione del piedritto dovuta a ritiro impedito calcolata con andamento tensionale sopra definito ($\sigma_{c,bot} = \sigma_{c,top}$).

Si ottiene:
$$\sigma_c = N/(B^*H) = -5175^*10^3/(900^*9200) = -0.625$$
 MPa $h^* = 1.0$ m $k_1 = 2/3^*(1.0/9.2) = 0.0725$ $k_c = 0.4^*[1-(-0.625/(0.072^*(9.2/1.0)^*2.5))] = 0.4^*[1+0.377] \approx 0.55$ $k = 0.65$ $\sigma_S = 240$ MPa $< 0.75^*f_{vk} = 330$ MPa

Si ottiene:

 $A_{s,min} > 0.55^*0.65^*2.5^*(2/3^*9200^*900)/240 = 0.55^*0.65^*2.5^*5520000/240 = 4933500/240 = 20^{\circ}556 \ mm^2$

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL RI0200 002 B 89 di 177

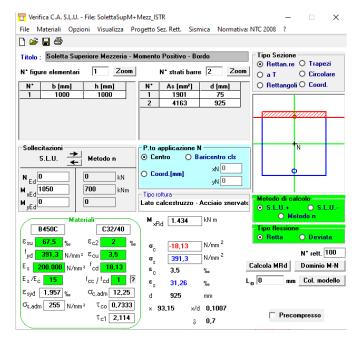
Tale armature sarà disposta per una altezza pari a circa 2/3*H = 6.0m di piedritto (zona inferiore tesa) Si dispongono:

- nei primi 3.0m: 2+2Φ16/200mm (di parete) + 2 Φ 12/200mm interni allo spessore B
- nei successivi 3.0m: 2 Ф 16/200mm (di parete) + 1 Ф 12/200mm interni allo spessore B

Si ottiene:

 $A_{s,d} = \left[4^*(3.0/0.2)^*201 + 2^*(3.0/0.2)^*113 + 2^*(3.0/0.2)^*201 + 1^*(3.0/0.2)^*113\right] = 23^*175 mm^2 > A_{s,min}$

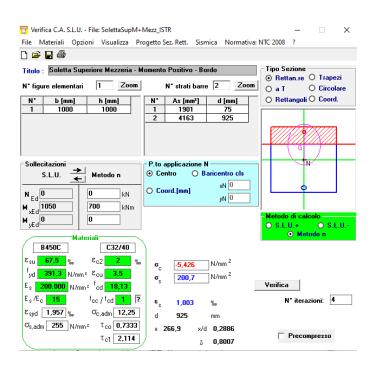
Il passo delle armature in direzione orizzontale è pari circa a 200mm nella zona inferiore tesa.


In accordo al punto 7.3.3(2) dell'Eurocodice 2, si può ragionevolmente ritenere che nel caso di fessurazione provocata da deformazioni impresse, l'utilizzo dei parametri scelti (diametri, spaziatura orizzontale e verticale e limitazione tensionale dell'armatura) conduca con buona probabolità ad un' ampiezza di fessura inferiore a 0.3mm. Tale limite è ritenuto accettabile essendo i piedritti non a permanente contatto con il terreno ed interamente ispezionabili.

L'armatura così definita e strettamente necessaria per il ritiro, sarà tuttavia aumentata per via delle sollecitazioni longitudinali fuori dal piano.

APPALTATORE:								
Consorzio	Soci			ITINI		NAPOLI – BA	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		HIIIN	EKAKIO	NAPULI - DA	4KI	
PROGETTAZIONE:					TA APICE - OF			
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 90 di 177	

11 Verifiche strutturali


11.1 SOLETTA SUPERIORE MEZZERIA MOMENTO POSITIVO – DIREZIONE TRASVERSALE

Armatura:

5Ф22 superiori

5Φ24 + 5Φ22inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

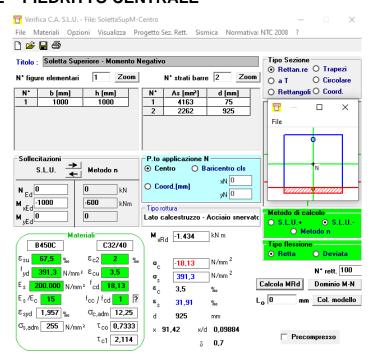
Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

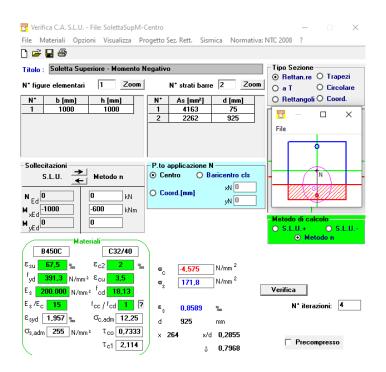
RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 91 di 177

	Comb. S	LE RAF	RA - MEZZERIA SOLETTA SUPERIORE - ZONA BORDO
Rck	40	Мра	
fck	32	Мра	
fctm	3,02	Мра	(per classi <= C50/60)
σfess	2,52	Мра	
Wid	0,167	m3	modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00	Мра	tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
σs	201	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	32	Мра	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	3,02	Мра	fct,eff = 0.3*fck^(2/3)
Es	210'000	Мра	Modulo acciaio armatura
αe	6,30		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1000	mm	Altezza sezione
c'	75	mm	Copriferro (al baricentro armature) armature tese
d	925	mm	Altezza utile - rispetto al lembo compresso
х	266,9	mm	Profondità asse neutro
2.5(h-d)	187,5	mm	
(h-x)/3	244,4	mm	
h/2	500,0	mm	
hceff	187,5	mm	Altezza efficace
Aceff	187'500	mmq	Area efficace
As	4163	mmq	Area armatura nella zona tesa
ρ p ,eff	0,02220		Percentuale armatura
εsm	0,000573		
С	50	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	24	mm	
n2	5		
Ф2	22	mm	
ф eq	23,04	mm	Diametro equivalente
srmax	346,438	mm	Distanza massima fessura
w	0,20	mm	Ampiezza teorica fessura
AA	0,20	10000	Junibierra realita lessara

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL Relazione di Calcolo (Bicanna) RI0200 002 В 92 di 177


11.2 SOLETTA SUPERIORE APPOGGIO MOMENTO NEGATIVO – DIREZIONE TRASVERSALE – PIEDRITTO CENTRALE

Armatura:

5Ф24 + 5Ф22 superiori

5Φ24 inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 93 di 177

	Comb. SLE R	ARA -	SOLETTA SUPERIORE - MOMENTO NEGATIVO CENTRO
Rck	40	Мра	
fck	32	Мра	
fctm	3,02	Mpa	(per classi <= C50/60)
σfess	2,52	Мра	
Wid	0,167	m3	modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00	Мра	tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
	•		,
σs	172	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	32	Мра	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	3,02	Мра	fct,eff = 0.3*fck^(2/3)
Es		Мра	Modulo acciaio armatura
αe	6,30		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1000	mm	Altezza sezione
c'	75	mm	Copriferro (al baricentro armature) armature tese
d	925	mm	Altezza utile - rispetto al lembo compresso
х	264,0	mm	Profondità asse neutro
2.5(h-d)	187,5	mm	
(h-x)/3	245,3	mm	
h/2	500,0	mm	
hceff	187,5	mm	Altezza efficace
Aceff		mmq	Area efficace
As	4163	mmq	Area armatura nella zona tesa
ρ p ,eff	0,02220		Percentuale armatura
εsm	0,000491		
С	50	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	22	mm	
n2	5		
Ф2	24	mm	
φeq	23,04	mm	Diametro equivalente
srmax	346,438	mm	Distanza massima fessura
w	0,17	mm	Ampiezza teorica fessura

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A PROGETTAZIONE: Mandataria Mandanti

ALPINA S.P.A.

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

DOCUMENTO

RI0200 002

REV.

FOGLIO

94 di 177

CODIFICA

E ZZ CL

SOLETTA SUPERIORE VERIFICA A TAGLIO IN CORRISPONDENZA DEL PIEDITRITTO CENTRALE

COMMESSA

LOTTO

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2008 § 4.1.2.1.3

• Caratteristiche della sezione

NET ENGINEERING S.P.A.

ROCKSOIL S.P.A

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

$b_{\rm w} = 1000$	mm larghezza	$f_{yk} = 450$	MPa	resist. caratteristica
h = 1000	mm altezza	$\gamma_s = 1,15$		coeff. sicurezza
c = 50	mm copriferro	$f_{yd} = 391,3$	MPa	resist. di calcolo
$f_{ck} = 32$	MPa resist. caratteristica	Armatura longitud	inale tesa	:
$\gamma_c = 1,50$	coeff. sicurezza	$A_{sl,1} = 5$	Ø	$24 = 22,62 \text{ cm}^2$
$\alpha_{cc} = 0.85$	coeff. riduttivo	$A_{sl,2} = 5$	Ø	$22 = 19,01 \text{ cm}^2$
d = 950	mm altezza utile	$A_{sl,3} = 0$	Ø	$0 = 0.00 \text{ cm}^2$
$f_{cd} = 18,13$	MPa resist. di calcolo			$41,63 \text{ cm}^2$

• **Sollecitazioni** (compressione<0, trazione>0, taglio in valore assoluto)

$$N_{ed} = 0.0 \text{ kN}$$
 $V_{ed} = 850.0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

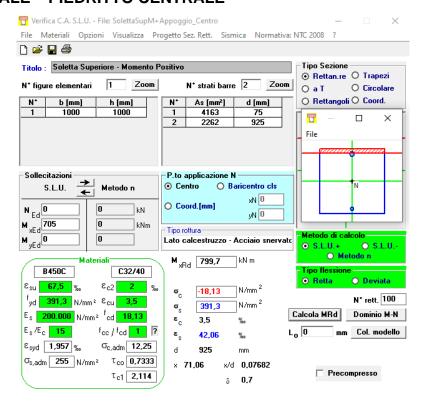
$$\begin{split} k &= 1 + (200/d)^{1/2} < 2 & k &= 1,459 & < 2 \\ \nu_{min} &= 0,035 \; k^{3/2} f_{ck}^{-1/2} & \nu_{min} &= 0,349 \\ \rho_1 &= A_{sl} / (b_w \times d) < 0.02 & \rho_1 &= 0,004 & < 0.02 \\ \sigma_{cp} &= N_{Ed} / A_c < 0.2 f_{cd} & \sigma_{cp} &= 0,00 & MPa & < 0.2 \; fcd \end{split}$$

$$\begin{split} V_{Rd} &= (0.18 \times k \times (100 \times \rho_1 \times f_{ck})^{1/3} / g_c + 0.15 \times \sigma_{cp}) \times b_w \times d > (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d \\ V_{Rd} &= 401.0 \text{ kN}; \qquad (con \, (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d = 331.4 \text{ kN}) \\ V_{Rd} &= 401.0 \text{ kN} \quad valore \, di \, calcolo \end{split}$$

la sezione NON è verificata in assenza di armature per il taglio

• Elementi con armature trasversali resistenti a taglio

 $\theta = 45.0$ inclinaz. bielle cls angolo ammissibile $\alpha = 90.0$ inclinaz, staffe

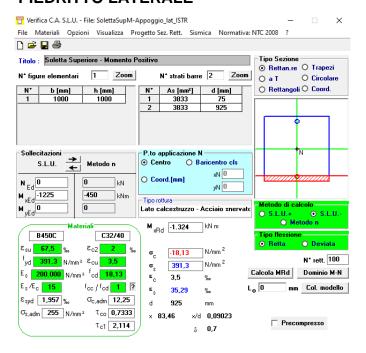

Armatura a taglio (staffatura):

la sezione armata a taglio risulta verificata.

Si dispongono staffe f12/200x200 per una lunghezza 2.00m da filo piedritto. Staffe f12/400x400 altrove.

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI	ED A DIO I	NADOLI D	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:		-			TA APICE - OF			
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 95 di 177	

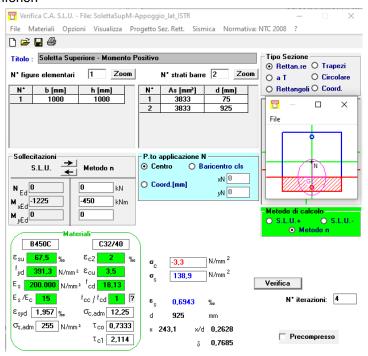
11.3 SOLETTA SUPERIORE APPOGGIO MOMENTO POSITIVO – DIREZIONE TRASVERSALE – PIEDRITTO CENTRALE


Armatura:

5Ф24 + 5Ф22 superiori

5Ф24 inferiori

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL Relazione di Calcolo (Bicanna) RI0200 002 В 96 di 177


11.4 SOLETTA SUPERIORE APPOGGIO MOMENTO NEGATIVO – DIREZIONE TRASVERSALE – PIEDRITTO LATERALE

Armatura:

5 Φ 24 + 5 Φ 20 superiori

 $5 \Phi 24 + 5 \Phi 20$ inferiori inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 97 di 177

			- MOMENTO NEGATIVO SOLETTA - piedritto laterale
Rck	40	Мра	
fck	32	Мра	
fctm	3,02		(per classi <= C50/60)
σfess	2,52	Мра	
Wid	0,167		modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00	<u> </u>	tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
Mfess	420	kNm	
Med	520	kNm	
check	FESSURATO		
σs	139	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	32	Мра	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	3,02	Мра	$fct,eff = 0.3*fck^{(2/3)}$
Es	210'000	Мра	Modulo acciaio armatura
αe	6,30		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1000	mm	Altezza sezione
c'	75	mm	Copriferro (al baricentro armature) armature tese
d	925	mm	Altezza utile - rispetto al lembo compresso
х	243,1	mm	Profondità asse neutro
2.5(h-d)	187,5	mm	
(h-x)/3	252,3	mm	
h/2	500,0	mm	
hceff	187,5	mm	Altezza efficace
Aceff	187'500	mmq	Area efficace
As	3833	mmq	Area armatura nella zona tesa
ρ p ,eff	0,02044		Percentuale armatura
εsm	0,000397		
С	50	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	24	mm	
n2	5		
Ф2	20	mm	
ф eq	22,18	mm	Diametro equivalente
srmax	354,463	mm	Distanza massima fessura
w	0,14	mm	Ampiezza teorica fessura

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo (Bicanna) E ZZ CL 98 di 177

SOLETTA SUPERIORE VERIFICA A TAGLIO – IN CORRISPONDENZA DEI PIEDRITTI LATERALI VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2008 § 4.1.2.1.3

• Caratteristiche della sezione

$b_{w} = 1000$	mm larghezza	$f_{yk} = 450$ MPa	resist. caratteristica
h = 1000	mm altezza	$\gamma_s = 1.15$	coeff. sicurezza
c = 50	mm copriferro	$f_{yd} = 391.3$ MPa	resist. di calcolo
$f_{ck} = 32$	MPa resist. caratteristica	Armatura longitudinale tesa	:
$\gamma_c = 1.50$	coeff. sicurezza	$A_{sl,1} = 5$ Ø	$24 = 22.62 \text{ cm}^2$
$\alpha_{cc} = 0.85$	coeff. riduttivo	$A_{sl,2} = 5$ Ø	$20 = 15.71 \text{ cm}^2$
d = 950	mm altezza utile	$A_{sl,3} = 0$ Ø	$0 = 0.00 \text{ cm}^2$
$f_{cd} = 18.13$	MPa resist. di calcolo		38.33 cm^2

• Sollecitazioni (compressione<0, trazione>0, taglio in valore assoluto)

$$N_{ed} = 0.0 \text{ kN}$$
 $V_{ed} = 400.0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

$$\begin{split} k &= 1 + (200/d)^{1/2} < 2 & k &= 1.459 & < 2 \\ \nu_{min} &= 0,035 \; k^{3/2} f_{ck}^{1/2} & \nu_{min} &= 0.349 \\ \rho_1 &= A_{sl} / (b_w \!\!\times\!\! d) <\!\! 0.02 & \rho_1 &= 0.004 & <\!\! 0.02 \\ \sigma_{cp} &= N_{Ed} \! / \! A_c <\!\! 0.2 f_{cd} & \sigma_{cp} &= 0.00 & MPa & <\!\! 0.2 fcd \end{split}$$

$$\begin{split} V_{Rd} &= (0.18 \times k \times (100 \times \rho_1 \times f_{ck})^{1/3} / g_c + 0.15 \times \sigma_{cp}) \times b_w \times d > (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d \\ V_{Rd} &= 390.1 \text{ kN}; \qquad (con \, (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d = 331.4 \text{ kN}) \\ V_{Rd} &= 390.1 \text{ kN} \quad \text{valore di calcolo} \end{split}$$

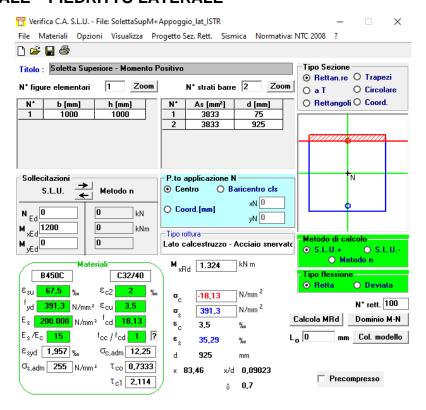
la sezione NON è verificata in assenza di armature per il taglio

• Elementi con armature trasversali resistenti a taglio

 $\theta = 45.0$ ° inclinaz. bielle cls angolo ammissibile $\alpha = 90.0$ ° inclinaz. staffe

Armatura a taglio (staffatura):

$$\begin{split} A_{sw}/s &= \text{staffe } \not O & 12 \quad \text{mm con } n^{\circ} \text{ bracci (trasv)} & 2.5 \quad \text{passo} & 20 \quad \text{cm} = 0.141 \text{ cm}^{2}/\text{cm} \\ V_{Rsd} &= 0.90 \times d \times (A_{sw}/s) \times f_{yd} \times (\text{cotg}\alpha + \text{cotg}\theta) \times \text{sen}\alpha & V_{Rsd} &= 473.0 \text{ kN} \\ f_{cd} &= 9.07 & MPa \text{ resist. di calcolo ridotta} \\ \alpha_{c} &= 1.000 & \text{coeff. maggiorativo} \end{split}$$

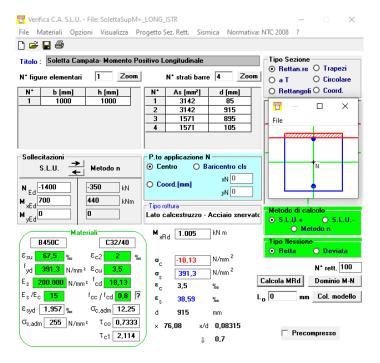

$$\begin{split} V_{Rcd} &= 0.90 \times d \times b_w \times \alpha_c \times f_{cd} \times (cotg\alpha + cotg\theta) / (1 + cotg^2 a) & V_{Rcd} &= 3876.2 \text{ kN} \\ V_{Rd} &= \text{min}(V_{Rcd}, V_{Rsd}) & V_{Rd} &= 473.0 \\ &> 400.0 \text{ kN} & c.s. &= 1.2 \end{split}$$

la sezione armata a taglio risulta verificata.

Si dispongono staffe f12/200x200 per una lunghezza 2.00m da filo piedritto. Staffe f12/400x600 altrove.

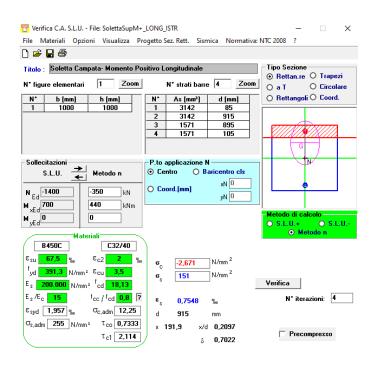
APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI	ED A DIO I	NADOLL D	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		HIIN	EKAKIU I	NAPOLI – B	AKI	
PROGETTAZIONE:					TA APICE - OF			
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 99 di 177	

11.5 SOLETTA SUPERIORE APPOGGIO MOMENTO POSITIVO – DIREZIONE TRASVERSALE – PIEDRITTO LATERALE


Armatura:

5 Φ 24 + 5 Φ 20 superiori

5 Φ 24 + 5 Φ 20 inferiori


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 100 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

11.6 SOLETTA SUPERIORE – DIREZIONE LONGITUDINALE – FIBRE TESE INFERIORI

Armatura:

10 Φ 20+5 Φ 20 superiori 10 Φ 20 +5 Φ 20 inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

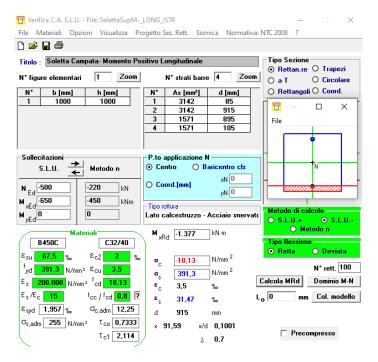
<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

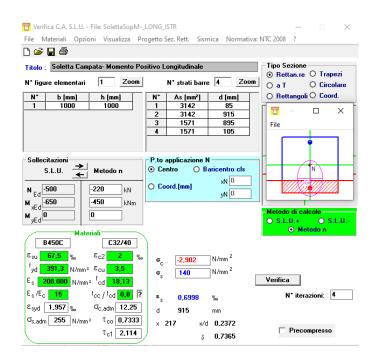
ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA


COMMESSA IF28 LOTTO **01** CODIFICA E ZZ CL DOCUMENTO RI0200 002 REV.

FOGLIO 101 di 177

	Comb. SLE	RARA	- MEZZERIA SOLETTA SUPERIORE Long - tese inferiori
Rck	40	Мра	-
fck	32	Мра	
fctm	3,02		(per classi <= C50/60)
σfess	2,52	Мра	
Wid	0,167		modulo di reazione sezione ideale, rif. al lembo teso
σG	0,35		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
	,		,
σs	151	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	32	Мра	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	3,02	Мра	fct,eff = 0.3*fck^(2/3)
Es	210'000	Мра	Modulo acciaio armatura
αe	6,30		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1000	mm	Altezza sezione
c'	98	mm	Copriferro (al baricentro armature) armature tese
d	902	mm	Altezza utile - rispetto al lembo compresso
х	191,9	mm	Profondità asse neutro
2.5(h-d)	245,0	mm	
(h-x)/3	269,4	mm	
h/2	500,0	mm	
hceff	245,0	mm	Altezza efficace
Aceff	245'000	mmq	Area efficace
As	4713	mmq	Area armatura nella zona tesa
ρ p ,eff	0,01924		Percentuale armatura
εsm	0,000431		
С	75	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	10		
Ф1	20	mm	
n2	5		
Ф2	20	mm	
φ eq	20,00	mm	Diametro equivalente
	424 745		
srmax	431,745	mm	Distanza massima fessura
w	0,19	mm	Ampiezza teorica fessura
VV	0,19	1111111	minhiezza renitra lessaria


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 102 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 В IF28 01 177

11.7 SOLETTA SUPERIORE – DIREZIONE LONGITUDINALE – FIBRE TESE SUPERIORI

Armatura:

10 Φ 20+5 Φ 20 superiori 10 Φ 20 +5 Φ 20 inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

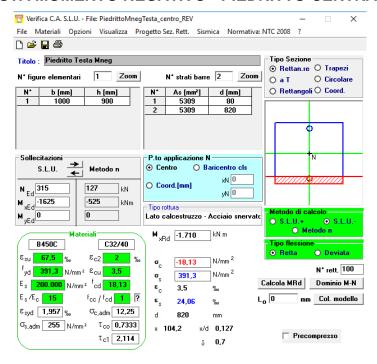
ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO

01

IF28

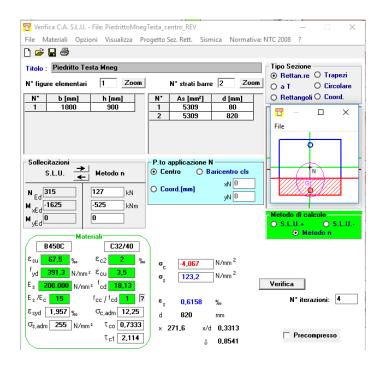

CODIFICA E ZZ CL DOCUMENTO RI0200 002 REV.

FOGLIO 103 di 177

Comb. SLE RARA -			MEZZERIA SOLETTA SUPERIORE Long - tese superiori	
Rck	40	Мра		
fck	32	Mpa		
fctm	3,02	 	(per classi <= C50/60)	
σfess	2,52	Мра		
Wid	0,167		modulo di reazione sezione ideale, rif. al lembo teso	
σG	0,22		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione	
	,	<u> </u>	,	
σs	140	Мра	Tasso di lavoro acciaio (SLE rara)	
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine	
fck	32	Мра		
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3	
fct,eff	3,02	Мра	$fct,eff = 0.3*fck^{2/3}$	
Es	210'000	Мра	Modulo acciaio armatura	
αe	6,30		αe = Es/Ec	
Section width	1000	mm	Larghezza sezione	
Section depth	1000	mm	Altezza sezione	
c'	92	mm	Copriferro (al baricentro armature) armature tese	
d	908	mm	Altezza utile - rispetto al lembo compresso	
х	217,0	mm	Profondità asse neutro	
2.5(h-d)	230,0	mm		
(h-x)/3	261,0	mm		
h/2	500,0	mm		
hceff	230,0	mm	Altezza efficace	
Aceff	230'000	mmq	Area efficace	
As	4713	mmq	Area armatura nella zona tesa	
ρ p ,eff	0,02049		Percentuale armatura	
εsm	0,000400			
С	75	mm	Ricoprimento barre tese	
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)	
k2	0,5		0.5 flessione - 1.0 trazione	
k3	3,40			
k4	0,425			
n1	10			
Ф1	20	mm		
n2	5			
Ф2	20	mm		
φ eq	20,00	mm	Diametro equivalente	
srmax	420,924	mm	Distanza massima fessura	
w	0,17	mm	Ampiezza teorica fessura	

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 104 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.8 PIEDRITTO TESTA MOMENTO NEGATIVO - PIEDRITTO CENTRALE



Il valore di sforzo normale N_{Ed} utilizzato nelle verifiche, a favore di sicurezza, deriva dai soli pesi propri.

Armatura:

5 Φ 26 + 5 Φ 26 esterni

5 Φ 26 + 5 Φ 26 interni

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

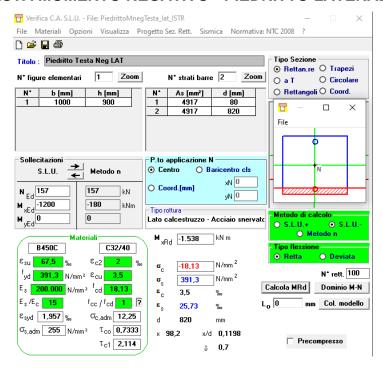
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA E ZZ CL IF28 01

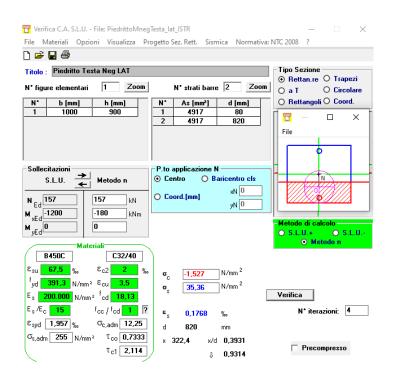

DOCUMENTO RI0200 002

FOGLIO REV. 105 di 177 В

Comb. SLE RARA - MOMENTO NEGATIVO PIEDRITTO CENTR TESTA						
Rck	40	Мра				
fck	32	Мра				
fctm	3,02	Мра	(per classi <= C50/60)			
σfess	2,52	Мра				
Wid	0,135	m3	modulo di reazione sezione ideale, rif. al lembo teso			
σG	-0,14	Мра	tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione			
σs	123	Мра	Tasso di lavoro acciaio (SLE rara)			
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine			
fck	32	Мра				
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3			
fct,eff	3,02	Мра	fct,eff = 0.3*fck^(2/3)			
Es	210'000	Мра	Modulo acciaio armatura			
αe	6,30		αe = Es/Ec			
Section width	1000	mm	Larghezza sezione			
Section depth	900	mm	Altezza sezione			
c'	80	mm	Copriferro (al baricentro armature) armature tese			
d	820	mm	Altezza utile - rispetto al lembo compresso			
х	271,6	mm	Profondità asse neutro			
2.5(h-d)	200,0	mm				
(h-x)/3	209,5	mm				
h/2	450,0	mm				
hceff	200,0	mm	Altezza efficace			
Aceff	200'000		Area efficace			
As	5309		Area armatura nella zona tesa			
ρ p ,eff	0,02655		Percentuale armatura			
, , ,	·					
εsm	0,000352					
	•					
С	65	mm	Ricoprimento barre tese			
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)			
k2	0,5		0.5 flessione - 1.0 trazione			
k3	3,40					
k4	0,425					
n1	5					
Ф1	26	mm				
n2	5					
Ф2	26	mm				
φ eq	26,00	mm	Diametro equivalente			
srmax	387,510	mm	Distanza massima fessura			
w	0,14	mm	Ampiezza teorica fessura			

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 106 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.9 PIEDRITTO TESTA MOMENTO NEGATIVO - PIEDRITTO LATERALE



Il valore di sforzo normale N_{Ed} utilizzato nelle verifiche, a favore di sicurezza, deriva dai soli pesi propri.

Armatura:

5 Φ 26 + 5 Φ 24 esterni

5 Φ 26 + 5 Φ 24 interni

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA IF28 LOTTO **01** CODIFICA E ZZ CL DOCUMENTO RI0200 002 REV. **B**

FOGLIO 107 di 177

i	0,04			
	/			
srmax	394,482	mm	Distanza massima fessura	
φ eq	25,04	mm	Diametro equivalente	
Ф2	24 25.04	mm	Diametra equivalente	
n2	5	na :==		
Ф1	26	mm		
n1	5	na :==		
k4	0,425			
k3	3,40			
k2	0,5		0.5 flessione - 1.0 trazione	
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)	
C Id	67	mm	Ricoprimento barre tese	
	67	mm	Discontinuo de la constanta de	
εsm	0,000101			
	0.0004.04			
ρ p ,eff	0,02554		Percentuale armatura	
As	4917	mmq	Area armatura nella zona tesa	
Aceff			Area efficace	
hceff	192,5	mm	Altezza efficace	
h/2	450,0	mm		
(h-x)/3	192,5	mm		
2.5(h-d)	200,0	mm		
X	322,4	mm	Profondità asse neutro	
d	820	mm	Altezza utile - rispetto al lembo compresso	
c'	80	mm	Copriferro (al baricentro armature) armature tese	
Section depth	900	mm	Altezza sezione	
Section width	1000	mm	Larghezza sezione	
αe	6,30		αe = Es/Ec	
Es	210'000	Мра	Modulo acciaio armatura	
fct,eff	3,02	Мра	fct,eff = 0.3*fck^(2/3)	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3	
fck	32	Мра		
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine	
σs	35	Мра	Tasso di lavoro acciaio (SLE rara)	
σG	-0,14	Мра	tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione	
Wid	0,135	m3	modulo di reazione sezione ideale, rif. al lembo teso	
σfess	2,52	Мра		
fctm	3,02		(per classi <= C50/60)	
fck	32	Мра		
		Mpa		

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 108 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.10 PIEDRITTO VERIFICA A TAGLIO IN TESTA - PIEDRITTO CENTRALE

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2008 § 4.1.2.1.3

• Caratteristiche della sezione

$b_{w} = 1000$	mm larghezza	$f_{yk} = 450$ MPa	resist. caratteristica
h = 900	mm altezza	$\gamma_s = 1,15$	coeff. sicurezza
c = 80	mm copriferro	$f_{yd} = 391,3$ MPa	resist. di calcolo
$f_{ck} = 32$	MPa resist. caratteristica	Armatura longitudinale	esa:
$\gamma_c = 1,50$	coeff. sicurezza	$A_{sl,1} = 5$	$24 = 22,62 \text{ cm}^2$
$\alpha_{cc} = 0.85$	coeff. riduttivo	$A_{sl,2} = 5$	$26 = 26,55 \text{ cm}^2$
d = 820	mm altezza utile	$A_{sl,3} = 0$	$0 = 0.00 \text{ cm}^2$
$f_{cd} = 18,13$	MPa resist. di calcolo		$49,17 \text{ cm}^2$

• Sollecitazioni (compressione<0, trazione>0, taglio in valore assoluto)

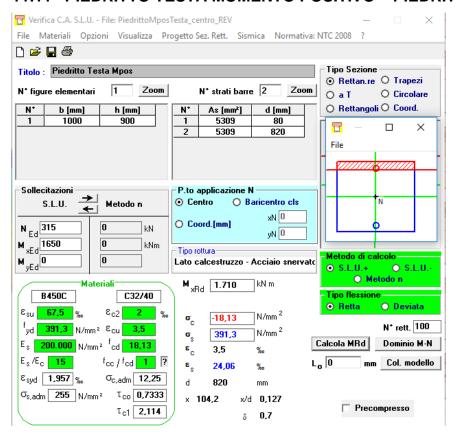
$$N_{ed} = 0.0 \text{ kN}$$
 $V_{ed} = 328.0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

$$\begin{split} k &= 1 + (200/d)^{1/2} < 2 & k &= 1,494 & < 2 \\ \nu_{min} &= 0,035 \; k^{3/2} f_{ck}^{-1/2} & \nu_{min} &= 0,362 \\ \rho_1 &= A_{sl} / (b_w \! \times \! d) < \! 0.02 & \rho_1 &= 0,006 & < 0.02 \\ \sigma_{cp} &= N_{Ed} \! / \! A_c < \! 0.2 f_{cd} & \sigma_{cp} &= 0,00 & MPa & < 0.2 \; fcd \end{split}$$

$$V_{Rd} = (0.18 \times k \times (100 \times \rho_1 \times f_{ck})^{1/3} / g_c + 0.15 \times \sigma_{cp}) \times b_w \times d > (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d$$

$$V_{Rd} = 393.5 \text{ kN}; \quad (con (v_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d = 296.4 \text{ kN})$$

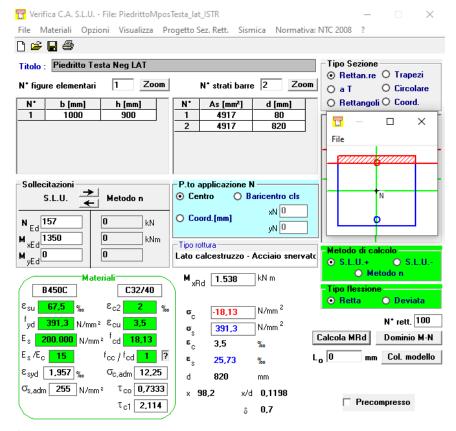

$$V_{Rd} = 393.5 \text{ kN}$$
 valore di calcolo

la sezione è verificata in assenza di armature per il taglio

Il taglio agente sul piedritto laterale, essendo inferiore, si ritiene verificato.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 109 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.11 PIEDRITTO TESTA MOMENTO POSITIVO - PIEDRITTO CENTRALE

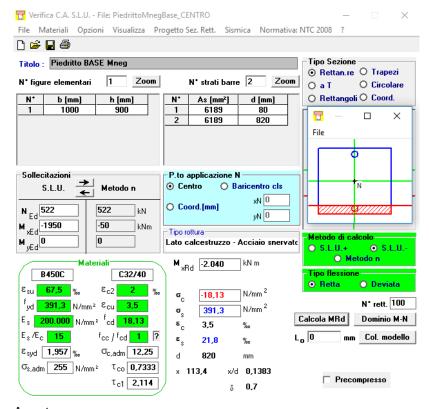

Armatura:

5 Φ 26 + 5 Φ 26 esterni

5 Φ 26 + 5 Φ 26 interni

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 110 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

11.12 PIEDRITTO TESTA MOMENTO POSITIVO – PIEDRITTO LATERALE


Armatura:

5 Φ 26 + 5 Φ 24 esterni

5 Φ 26 + 5 Φ 24 interni

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 111 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.13 PIEDRITTO BASE MOMENTO NEGATIVO - PIEDRITTO CENTRALE

Armatura:

5 Φ 30 + 5 Φ 26 esterni

5 Φ 30 + 5 Φ 26 interni

Essendo la combinazione dimensionante SLV, l'armatura sarà simmetricamente disposta.

Visto il valore trascurabile di momento agente in combinazione SLE (50 kNm/m) si ritiene trascurabile la verifica alla fessurazione.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 112 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.14 PIEDRITTO VERIFICA A TAGLIO ALLA BASE – PIEDRITTO CENTRALE

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2008 § 4.1.2.1.3

• Caratteristiche della sezione

$b_{\rm w} = 1000$	mm larghezza	$f_{yk} = 450$ MPa	resist. caratteristica
h = 900	mm altezza	$\gamma_s = 1.15$	coeff. sicurezza
c = 70	mm copriferro	$f_{yd} = 391.3$ MPa	resist. di calcolo
$f_{ck} = 32$	MPa resist. caratteristica	Armatura longitudinale tesa	:
$\gamma_c=1.50$	coeff. sicurezza	$A_{sl,1} = 5$ Ø	$30 = 35.34 \text{ cm}^2$
$\alpha_{cc}=0.85$	coeff. riduttivo	$A_{sl,2} = 5$ Ø	$26 = 26.55 \text{ cm}^2$
d = 830	mm altezza utile	$A_{sl,3} = 0$ Ø	$0 = 0.00 \text{ cm}^2$
$f_{cd} = 18.13$	MPa resist. di calcolo		61.89 cm^2

• **Sollecitazioni** (compressione<0, trazione>0, taglio in valore assoluto)

$$N_{ed} = -522.0 \text{ kN}$$
 $V_{ed} = 500.0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

$$\begin{split} k &= 1 + (200/\text{d})^{1/2} < 2 & k = 1.491 & < 2 \\ \nu_{min} &= 0.035 \; k^{3/2} f_{ck}^{-1/2} & \nu_{min} &= 0.360 \\ \rho_1 &= A_{sl} / (b_w \times \text{d}) < 0.02 & \rho_1 &= 0.007 & < 0.02 \\ \sigma_{cp} &= N_{Ed} / A_c < 0.2 f_{cd} & \sigma_{cp} &= -0.58 & \text{MPa} & < 0.2 \; \text{fcd} \end{split}$$

$$V_{Rd} = (0.18 \times k \times (100 \times \rho_1 \times f_{ck})^{1/3} / g_c + 0.15 \times \sigma_{cp}) \times b_w \times d > (v_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d$$

$$V_{Rd} = 499.7 \text{ kN}; \quad (con (v_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d = 371.4 \text{ kN})$$

$$V_{Rd} = 499.7 \text{ kN}; \quad valore di calcolo$$

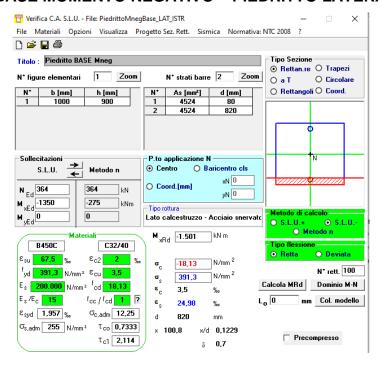
499.7 kN valore di calcolo $V_{Rd} =$

la sezione NON è verificata in assenza di armature per il taglio

• Elementi con armature trasversali resistenti a taglio

 $\theta = 45.0$ inclinaz, bielle cls angolo ammissibile $\alpha = 90.0$ inclinaz. staffe

Armatura a taglio (staffatura):


$$\begin{split} A_{sw}/s &= \text{staffe } \emptyset & 12 \quad \text{mm con } n^{\circ} \text{ bracci (trasv)} & 5 \quad \text{passo} & 20 \quad \text{cm} &= 0.283 \text{ cm}^{2}/\text{cm} \\ V_{Rsd} &= 0.90 \times d \times (A_{sw}/s) \times f_{yd} \times (\text{cotg}\alpha + \text{cotg}\theta) \times \text{sen}\alpha & V_{Rsd} &= 826.5 \text{ kN} \\ f_{cd} &= 9.07 & \text{MPa resist. di calcolo ridotta} \\ \alpha_{c} &= 1.032 & \text{coeff. maggiorativo} \end{split}$$

$$\begin{split} &V_{Rcd} = 0.90 \times d \times b_w \times \alpha_c \times f_{cd} \times (cotg\alpha + cotg\theta) / (1 + cotg^2 a) & V_{Rcd} = 3494.9 \text{ kN} \\ &V_{Rd} = \text{min}(V_{Rcd}, V_{Rsd}) & V_{Rd} = 826.5 & > 500.0 \text{ kN} & c.s. = 1.7 \end{split}$$

la sezione armata a taglio risulta verificata.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 113 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.15 PIEDRITTO BASE MOMENTO NEGATIVO - PIEDRITTO LATERALE

Armatura:

10 Φ 24 esterni

10 Φ 24 interni

Essendo la combinazione dimensionante SLV, l'armatura sarà simmetricamente disposta.

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna) ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA IF28 LOTTO **01** CODIFICA E ZZ CL DOCUMENTO RI0200 002 REV.

FOGLIO 114 di 177

	Comb. SL	E RARA	A - MOMENTO NEGATIVO PIEDRITTO BASE -laterale
Rck	40	Мра	
fck	32	Мра	
fctm	3,02		(per classi <= C50/60)
σfess	2,52	Мра	
Wid	0,135	m3	modulo di reazione sezione ideale, rif. al lembo teso
σG	-0,41	Мра	tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
σs	47	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	32	Мра	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	3,02	Мра	$fct,eff = 0.3*fck^{2/3}$
Es		Мра	Modulo acciaio armatura
αe	6,30		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	900	mm	Altezza sezione
c'	80	mm	Copriferro (al baricentro armature) armature tese
d	820	mm	Altezza utile - rispetto al lembo compresso
х	360,9	mm	Profondità asse neutro
2.5(h-d)	200,0	mm	
(h-x)/3	179,7	mm	
h/2	450,0	mm	
hceff	179,7	mm	Altezza efficace
Aceff	179'700	mmq	Area efficace
As	4524	mmq	Area armatura nella zona tesa
ρ p ,eff	0,02518		Percentuale armatura
εsm	0,000135		
С	68	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	24	mm	
n2	5		
Ф2	24	mm	
φ eq	24,00	mm	Diametro equivalente
srmax	393,264	mm	Distanza massima fessura
w	0,05	mm	Ampiezza teorica fessura

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 115 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.16 PIEDRITTO VERIFICA A TAGLIO ALLA BASE - PIEDRITTO LATERALE

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2008 § 4.1.2.1.3

• Caratteristiche della sezione

mm larghezza

 $b_{\rm w} = 1000$

h = 900	mm altezza	$\gamma_{\rm s} = 1.15$	coeff. sicurezza
c = 80	mm copriferro	$f_{yd} = 391,3$ MPa	resist. di calcolo
$f_{ck} = 32$	MPa resist. caratteristica	Armatura longitudinale tesa	:
$\gamma_c = 1,50$	coeff. sicurezza	$A_{sl,1} = 5$ Ø	$24 = 22,62 \text{ cm}^2$
$\alpha_{cc} = 0.85$	coeff. riduttivo	$A_{sl,2} = 5$ Ø	$24 = 22,62 \text{ cm}^2$
d = 820	mm altezza utile	$A_{sl,3} = 0$ Ø	$0 = 0.00 \text{ cm}^2$
$f_{cd} = 18,13$	MPa resist. di calcolo		$45,24 \text{ cm}^2$

 $f_{vk} = 450$

MPa

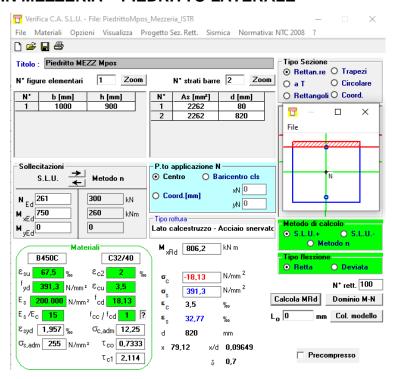
resist. caratteristica

• **Sollecitazioni** (compressione<0, trazione>0, taglio in valore assoluto)

$$N_{ed} = -364,5 \text{ kN}$$
 $V_{ed} = 350,0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

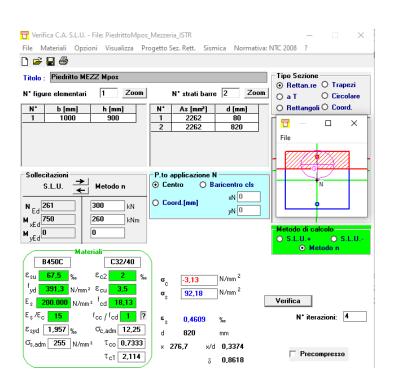
$$\begin{split} k &= 1 + (200/d)^{1/2} < 2 & k &= 1,494 & < 2 \\ \nu_{min} &= 0,035 \; k^{3/2} f_{ck}^{-1/2} & \nu_{min} &= 0,362 \\ \rho_1 &= A_{sl} / (b_w \!\!\times\!\! d) < \!\! 0.02 & \rho_1 &= 0,006 & < \!\! 0.02 \\ \sigma_{cp} &= N_{Ed} \! / A_c < \!\! 0.2 f_{cd} & \sigma_{cp} &= -0,41 & MPa & < \!\! 0.2 \; fcd \end{split}$$


$$\begin{split} V_{Rd} &= (0.18 \times k \times (100 \times \rho_1 \times f_{ck})^{1/3} / g_c + 0.15 \times \sigma_{cp}) \times b_w \times d > (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d \\ V_{Rd} &= 432.6 \text{ kN}; \qquad (con \, (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d = 346.2 \text{ kN}) \end{split}$$

$$V_{Rd}$$
 = 432,6 kN valore di calcolo

la sezione è verificata in assenza di armature per il taglio

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 116 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177


11.17 PIEDRITTO IN MEZZERIA – PIEDRITTO LATERALE

Armatura:

5 Φ 24 esterni

5 Φ 24 interni

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

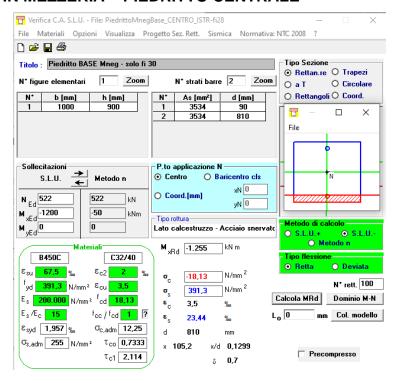
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

FOGLIO


117 di 177

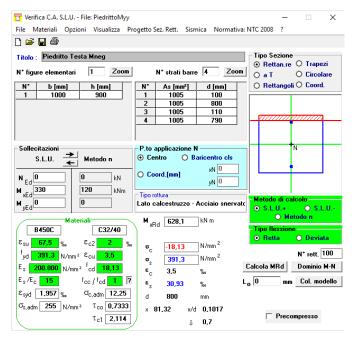
COMMESSA LOTTO CODIFICA DOCUMENTO REV. IF28 01 E ZZ CL RI0200 002 B

	C	Comb.	SLE RARA - MOMENTO POSITIVO MEZZERIA
Rck	40	Мра	
fck	32	Мра	
fctm	3,02	Мра	(per classi <= C50/60)
σfess	2,52	Мра	
Wid	0,135	m3	modulo di reazione sezione ideale, rif. al lembo teso
σG	-0,29	Мра	tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
σs	92	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	32	Мра	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	3,02	Мра	$fct,eff = 0.3*fck^{2/3}$
Es	210'000	Мра	Modulo acciaio armatura
αe	6,30		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	900	mm	Altezza sezione
c'	80	mm	Copriferro (al baricentro armature) armature tese
d	820	mm	Altezza utile - rispetto al lembo compresso
х	276,7	mm	Profondità asse neutro
2.5(h-d)	200,0	mm	
(h-x)/3	207,8	mm	
h/2	450,0	mm	
hceff	200,0	mm	Altezza efficace
Aceff	200'000	mmq	Area efficace
As	2262	mmq	Area armatura nella zona tesa
ρ p ,eff	0,01131		Percentuale armatura
εsm	0,000263		
С	68	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	24	mm	
n2	0		
Ф2	0	mm	
φ eq	24,00	mm	Diametro equivalente
srmax	591,943	mm	Distanza massima fessura
w	0,16	mm	Ampiezza teorica fessura

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 118 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 В 01 177

11.18 PIEDRITTO IN MEZZERIA - PIEDRITTO CENTRALE

Armatura:


5 Φ 30 esterni

5 Φ 30 interni

Visto il valore trascurabile di momento agente in combinazione SLE (50 kNm/m) si ritiene trascurabile la verifica alla fessurazione.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 119 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 В IF28 01 177


11.19 PIEDRITTO IN DIREZIONE LONGITUDINALE- BASE

Armatura:

10 Φ 16 esterni

10 Φ 16 interni

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

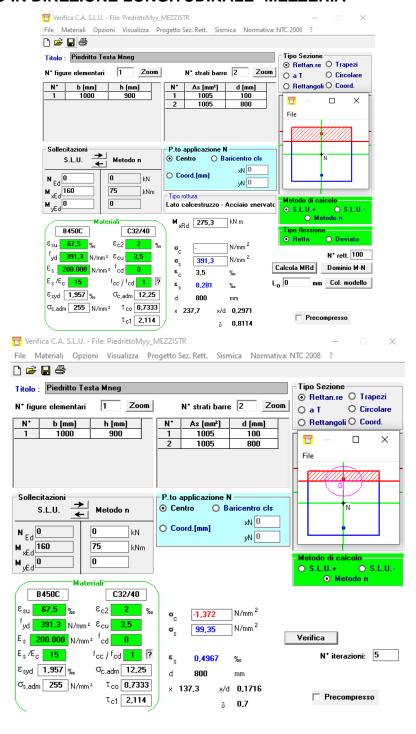
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ZIONE:

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI – BARI

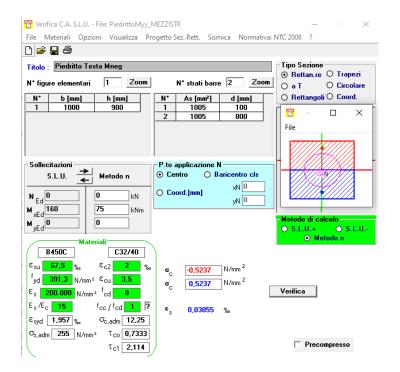

COMMESSA LOTTO IF28 01

CODIFICA E ZZ CL DOCUMENTO RI0200 002 REV. FOGLIO 120 di 177

		Comb	SLE RARA - MOMENTO LONG - PIEDRITTO
Rck	40	Мра	
fck	32	Мра	
fctm	3,02	Мра	(per classi <= C50/60)
σfess	2,52	Мра	
Wid	0,135	m3	modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
σs	83	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	32	Мра	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	3,02	Мра	fct,eff = 0.3*fck^(2/3)
Es	210'000	Мра	Modulo acciaio armatura
αe	6,30		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	900	mm	Altezza sezione
c'	105	mm	Copriferro (al baricentro armature) armature tese
d	795	mm	Altezza utile - rispetto al lembo compresso
х	180,3	mm	Profondità asse neutro
2.5(h-d)	262,5	mm	
(h-x)/3	239,9	mm	
h/2	450,0	mm	
hceff	239,9	mm	Altezza efficace
Aceff	239'900	mmq	Area efficace
As	2011	mmq	Area armatura nella zona tesa
ρ p ,eff	0,00838		Percentuale armatura
εsm	0,000236		
С	95	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	16	mm	
n2	5		
Ф2	16	mm	
φ eq	16,00	mm	Diametro equivalente
srmax	647,479	mm	Distanza massima fessura
w	0,15	mm	Ampiezza teorica fessura

APPALTATORE:								
Consorzio	Soci			ITINI		IABOLL B	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:						TA APICE - OI		
<u>Mandataria</u>	<u>Mandanti</u>		l	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di Calcolo (Bicanna)			IF28	01	E ZZ CL	RI0200 002	В	121 di 177

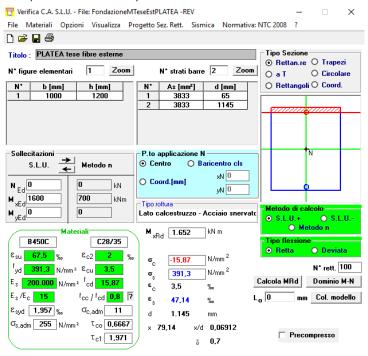
11.20 PIEDRITTO IN DIREZIONE LONGITUDINALE- MEZZERIA


Armatura:

5 Φ 16 esterni

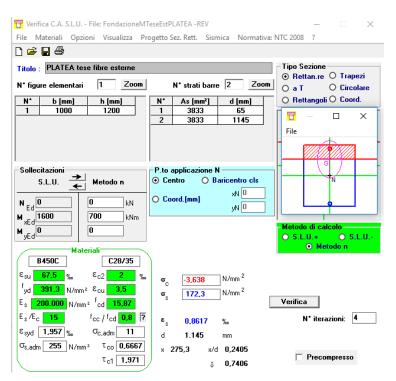
5 Φ 16 interni

La tensione di trazione nel calcestruzzo risulta minore al limite imposto da normativa ($f_{ctm}/1.2 = 3.0/1.2 = 2.5$ MPa) per cui in accordo al paragrafo 4.1.2.2.4.1 delle NTC2008, non è necessario valutare l'apertura delle fessure.


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandanti <u>Mandataria</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 122 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 123 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

11.21 FONDAZIONE ATTACCO IN CORRISPONDENZA DEL PIEDRITTO


Verifica per momento negativo (fibre tese esterne)

Armatura:

5 Φ 24 + 5 Φ 20 superiori

5 Φ 24 + 5 Φ 20 inferiori

Consorzio <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

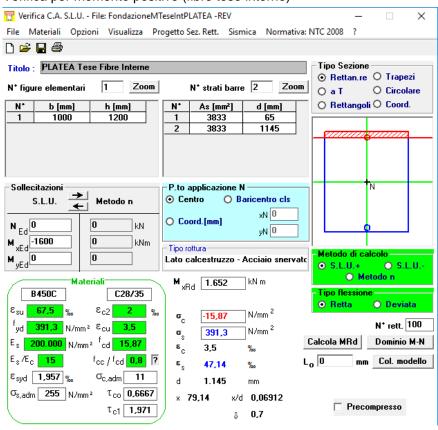
COMMESSA IF28

LOTTO 01

CODIFICA E ZZ CL

DOCUMENTO RI0200 002

REV. В

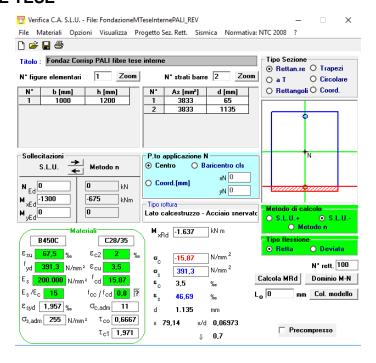

FOGLIO 124 di 177

	Comb. SLE	RARA	- MOMENTO PLATEA FIBRE TESE ESTERNE sotto PIED
Rck	35	Мра	
fck	28	Мра	
fctm	2,77	Мра	(per classi <= C50/60)
σfess	2,31	Mpa	,
Wid	0,240	m3	modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
σs	172	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	28	Мра	
Ecm	32308	<u> </u>	Modulo E = 22000*(fcm/10)^0.3
fct,eff	2,77		$fct,eff = 0.3*fck^{2}(3)$
Es	-	t i	Modulo acciaio armatura
αe	6,50	İ	αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1200	mm	Altezza sezione
c'	65	mm	Copriferro (al baricentro armature) armature tese
d	1135	mm	Altezza utile - rispetto al lembo compresso
х	275,3	mm	Profondità asse neutro
2.5(h-d)	162,5	mm	
(h-x)/3	308,2	mm	
h/2	600,0	mm	
hceff	162,5	mm	Altezza efficace
Aceff		mmq	Area efficace
As	3833		Area armatura nella zona tesa
ρ p ,eff	0,02359		Percentuale armatura
• • • • • • • • • • • • • • • • • • • •	•		
εsm	0,000492		
	•		
С	40	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	24	mm	
n2	5		
Ф2	20	mm	
φ eq	22,18	mm	Diametro equivalente
srmax	295,868	mm	Distanza massima fessura
w	0,15	mm	Ampiezza teorica fessura

APPALTATORE:								
Consorzio	Soci			ITINI		NADOLI B	۸DI	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE	:					TA APICE - OF		
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 125 di 177

11.22 FONDAZIONE ATTACCO IN CORRISPONDENZA DEL PIEDRITTO

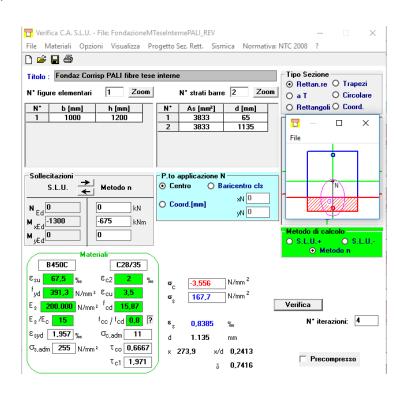
Verifica per momento positivo (fibre tese interne)


Armatura:

5 Φ 24 + 5 Φ 20 superiori

5 Φ 24 + 5 Φ 20 inferiori

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 126 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177


11.23 FONDAZIONE IN CORRISPONDENZA DEI PALI IN CAMPATA E CORRENTE – FIBRE INTERNE TESE

Armatura:

5 Φ 24 + 5 Φ 20 superiori

5 Φ 24 + 5 Φ 20inferiori

Consorzio <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

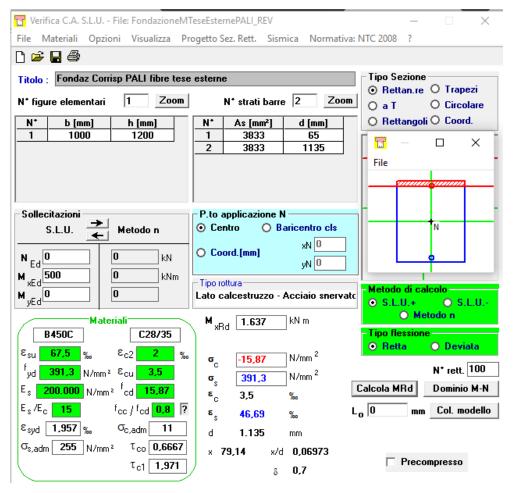
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA

LOTTO

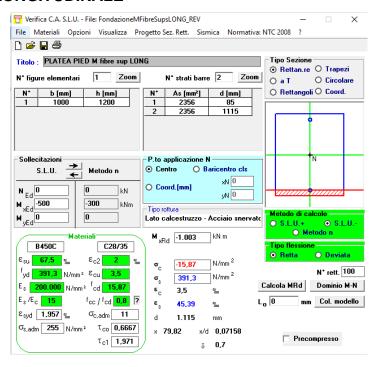

CODIFICA

FOGLIO DOCUMENTO REV. 127 di 177 E ZZ CL IF28 01 RI0200 002 В

	Comb. SLE	RARA	- MOMENTO PLATEA ZONA PALI FIBRE TESE INTERNE
Rck	35	Мра	
fck	28	Мра	
fctm	2,77	Мра	(per classi <= C50/60)
σfess	2,31	Мра	
Wid	0,240	m3	modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00	Мра	tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
σs	168	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	28	Мра	
Ecm	32308	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	2,77	Мра	fct,eff = 0.3*fck^(2/3)
Es	210'000	Мра	Modulo acciaio armatura
αe	6,50		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1200	mm	Altezza sezione
c'	65	mm	Copriferro (al baricentro armature) armature tese
d	1135	mm	Altezza utile - rispetto al lembo compresso
х	273,9	mm	Profondità asse neutro
2.5(h-d)	162,5	mm	
(h-x)/3	308,7	mm	
h/2	600,0	mm	
hceff	162,5	mm	Altezza efficace
Aceff	162'500	mmq	Area efficace
As	3833	mmq	Area armatura nella zona tesa
ρ p ,eff	0,02359		Percentuale armatura
εsm	0,000479		
С	40	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	24	mm	
n2	5		
Ф2	20	mm	
φ eq	22,18	mm	Diametro equivalente
srmax	295,868	mm	Distanza massima fessura
w	0,14	mm	Ampiezza teorica fessura

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI		NADOLI D	۸DI	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE	:		· ·			TA APICE - OI		
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 128 di 177	

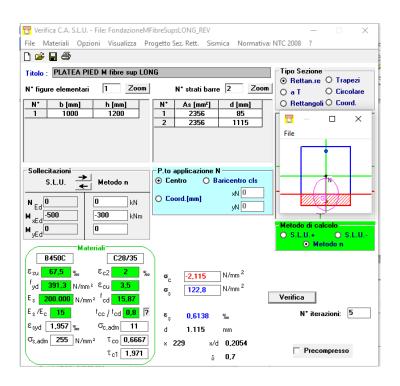
11.24 FONDAZIONE IN CORRISPONDENZA DEI PALI IN CAMPATA – FIBRE ESTERNE TESE


Armatura:

 $5 \Phi 24 + 5 \Phi 20$ superiori

5 Φ 24 + 5 Φ 20 inferiori

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI	ED A DIO I	NADOLL B	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 129 di 177


11.25 FONDAZIONE IN CORRISPONDENZA DEI PIEDRITTI – FIBRE TESE INTERNE – DIREZIONE LONGITUDINALE

Armatura:

7.5 Φ 20 superiori

7.5 Φ 20 inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

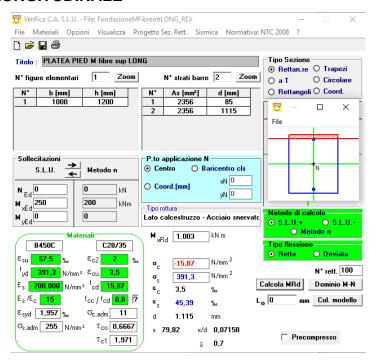
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

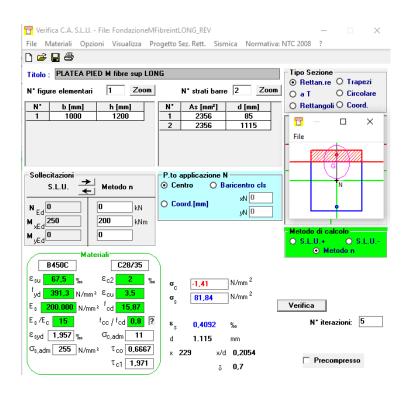
COMMESSA LO


IF28

LOTTO **01** CODIFICA E ZZ CL DOCUMENTO RI0200 002 REV. **B** FOGLIO 130 di 177

	Comb. SLE RA	ARA - N	MOMENTO PLATEA LONGITUDINALE TESE INTERNE PIED
Rck	35	Мра	
fck	28	Мра	
fctm	2,77	_	(per classi <= C50/60)
σfess	2,31	Мра	
Wid	0,240		modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
	-		·
σs	123	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	28	Мра	
Ecm	32308		Modulo E = 22000*(fcm/10)^0.3
fct,eff	2,77		fct,eff = 0.3*fck^(2/3)
Es	210'000	 	Modulo acciaio armatura
αe	6,50	<u> </u>	αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1200	mm	Altezza sezione
c'	85	mm	Copriferro (al baricentro armature) armature tese
d	1115	mm	Altezza utile - rispetto al lembo compresso
х	229,0	mm	Profondità asse neutro
2.5(h-d)	212,5	mm	
(h-x)/3	323,7	mm	
h/2	600,0	mm	
hceff	212,5	mm	Altezza efficace
Aceff			Area efficace
As	2356	<u> </u>	Area armatura nella zona tesa
ρ p ,eff	0,01109		Percentuale armatura
717	,		
εsm	0,000351		
	,		
С	75	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	7,5		
Ф1	20	mm	
n2	0		
Ф2	0	mm	
φeq	20,00	mm	Diametro equivalente
srmax	561,664	mm	Distanza massima fessura
w	0,20	mm	Ampiezza teorica fessura

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO NA DOLL DA DI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 131 di 177


11.26 FONDAZIONE IN CORRISPONDENZA DEI PIEDRITTI – FIBRE TESE ESTERNE – DIREZIONE LONGITUDINALE

Armatura:

7.5 Φ 20 superiori

7.5 Φ 20 inferiori

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

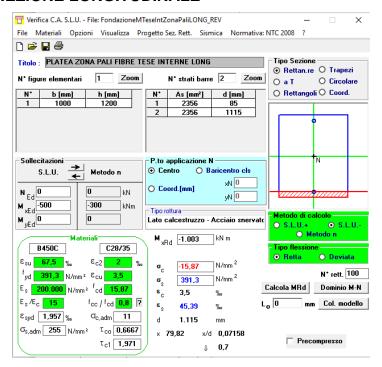
<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

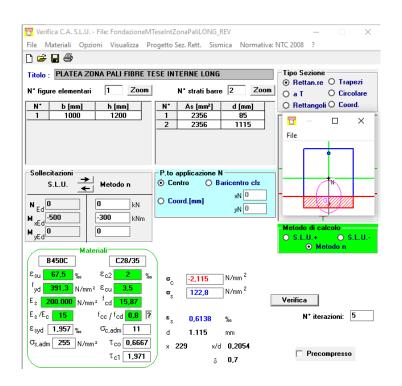
RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA


COMME IF28

SSA	LOTTO	CODIFICA	DOCUMENTO	REV.	132 di
3	01	E ZZ CL	RI0200 002	B	177

	Comb. SLE	RARA	- MOMENTO PLATEA LONGITUDINALE TESE EST PIED
Rck	35	Мра	
fck	28	Мра	
fctm	2,77		(per classi <= C50/60)
σfess	2,31	Мра	, ,
Wid	0,240		modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
	·		,
σs	82	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	28	Мра	
Ecm	32308	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	2,77	Мра	fct,eff = 0.3*fck^(2/3)
Es	210'000	Мра	Modulo acciaio armatura
αe	6,50		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1200	mm	Altezza sezione
c'	85	mm	Copriferro (al baricentro armature) armature tese
d	1115	mm	Altezza utile - rispetto al lembo compresso
х	229,0	mm	Profondità asse neutro
2.5(h-d)	212,5	mm	
(h-x)/3	323,7	mm	
h/2	600,0	mm	
hceff	212,5	mm	Altezza efficace
Aceff	212'500	mmq	Area efficace
As	2356	mmq	Area armatura nella zona tesa
ρ p ,eff	0,01109		Percentuale armatura
εsm	0,000234		
С	75	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	7,5		
Ф1	20	mm	
n2	0		
Ф2	0	mm	
φ eq	20,00	mm	Diametro equivalente
srmax	561,664	mm	Distanza massima fessura
w	0,13	mm	Ampiezza teorica fessura

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO NA DOLL. DA DI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 133 di 177


11.27 FONDAZIONE IN CORRISPONDENZA DEI PALI IN CAMPATA – FIBRE TESE INTERNE – DIREZIONE LONGITUDINALE

Armatura:

7.5 Φ 20 superiori

7.5 Φ 20 inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

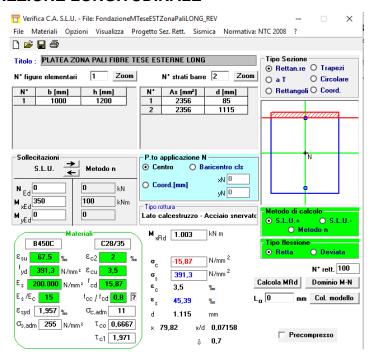
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

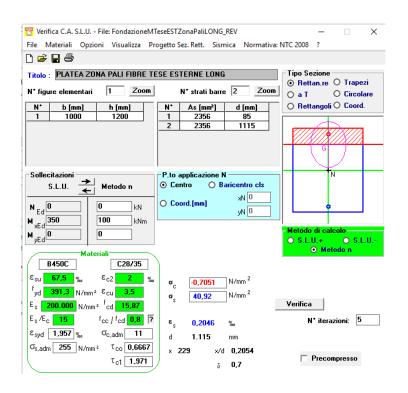
COMMESSA IF28


LOTTO **01** CODIFICA E ZZ CL DOCUMENTO RI0200 002 REV.

FOGLIO 134 di 177

	Comb. SLE	RARA	- MOMENTO PLATEA LONGITUDINALE TESE INT PALI
Rck	35	Мра	
fck	28	Мра	
fctm	2,77		(per classi <= C50/60)
ofess	2,31	Мра	, ,
Wid	0,240		modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
	•		,
σs	123	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6	•	kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	28	Мра	-
Ecm	32308	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	2,77	Мра	fct,eff = 0.3*fck^(2/3)
Es			Modulo acciaio armatura
αe	6,50		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1200	mm	Altezza sezione
c'	85	mm	Copriferro (al baricentro armature) armature tese
d	1115	mm	Altezza utile - rispetto al lembo compresso
х	229,0	mm	Profondità asse neutro
2.5(h-d)	212,5	mm	
(h-x)/3	323,7	mm	
h/2	600,0	mm	
hceff	212,5	mm	Altezza efficace
Aceff	212'500	mmq	Area efficace
As	2356		Area armatura nella zona tesa
ρp,eff	0,01109		Percentuale armatura
εsm	0,000351		
С	75	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	7,5		
Ф1	20	mm	
n2	0		
Ф2	0	mm	
φeq	20,00	mm	Diametro equivalente
srmax	561,664	mm	Distanza massima fessura
w	0,20	mm	Ampiezza teorica fessura

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINED A DIO NA DOLL. DA DI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – H	IRPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 135 di 177


11.28 FONDAZIONE IN CORRISPONDENZA DEI PALI IN CAMPATA – FIBRE TESE ESTERNE – DIREZIONE LONGITUDINALE

Armatura:

7.5 Φ 20 superiori

7.5 Φ 20 inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

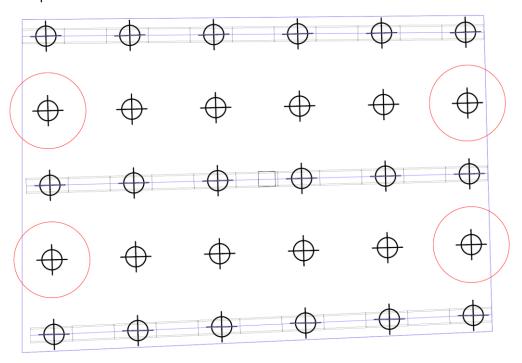
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA IF28 LOTTO **01** CODIFICA E ZZ CL DOCUMENTO RI0200 002 REV.

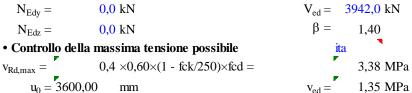

FOGLIO 136 di 177

	Comb. SLE	RARA	- MOMENTO PLATEA LONGITUDINALE TESE EST PALI
Rck	35	Мра	
fck	28	Мра	
fctm	2,77		(per classi <= C50/60)
σfess	2,31	Мра	
Wid	0,240		modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
	.,		
σs	41	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	28	Мра	
Ecm	32308	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	2,77	Мра	fct,eff = 0.3*fck^(2/3)
Es	210'000	Мра	Modulo acciaio armatura
αe	6,50		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	1200	mm	Altezza sezione
C'	85	mm	Copriferro (al baricentro armature) armature tese
d	1115	mm	Altezza utile - rispetto al lembo compresso
х	229,0	mm	Profondità asse neutro
2.5(h-d)	212,5	mm	
(h-x)/3	323,7	mm	
h/2	600,0	mm	
hceff	212,5	mm	Altezza efficace
Aceff	212'500	mmq	Area efficace
As	2356	mmq	Area armatura nella zona tesa
ρ p ,eff	0,01109		Percentuale armatura
εsm	0,000117		
С	75	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	7,5		
Ф1	20	mm	
n2	0		
Ф2	0	mm	
ф eq	20,00	mm	Diametro equivalente
srmax	561,664	mm	Distanza massima fessura
	0.07	100 100	Annahara tanàna faranza
W	0,07	mm	Ampiezza teorica fessura

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 137 di 177 Relazione di Calcolo (Bicanna) E ZZ CL IF28 RI0200 002 В 01

11.29 FONDAZIONE VERIFICA A PUNZONAMENTO

I pali per i quali è necessario disporre armatura a punzonamento sono quelli disposti nelle file non in corrispondenza dei piedritti:


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO DOCUMENTO COMMESSA LOTTO CODIFICA REV. 138 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

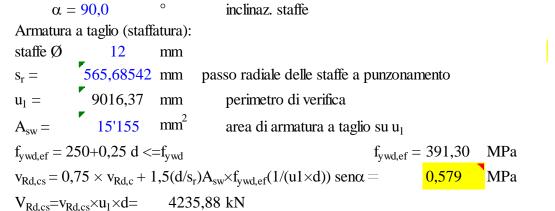
VERIFICA A TAGLIO-PUNZONAMENTO DI PIASTRE E FONDAZIONI SECONDO UNI EN 1992-1 §6.4

• Caratteristiche della sezione

h = 1200	mm	altezza	Armatura longitud	lina	ıle t	esa i	n y e z su f	ascia D+3	3d:	
c = 65	mm	copriferro da asse armatura tesa								
d = 1135	mm	altezza utile	D+3d = 4605		mn	1				
D = 1200	mm	diametro pilastro	in y	1		Ø	24	/	10	cm
$f_{ck} = 28$	MPa	resist. caratteristica	in z	1		Ø	20	/	10	cm
$\gamma_c = 1,50$		coeff. sicurezza								
$\alpha_{\rm cc} = 0.85$		coeff. riduttivo	$A_{sly} = 208,33$		cm	2				
$f_{cd} = 15,87$	MPa	resist. di calcolo	$A_{sly} = 208,33$ $A_{slz} = 144,67$,	cm	2				
di bordo		tipo pilastro								
$f_{yk}=450$	MPa	resist. caratteristica	ly = 0.95		m		luce can	npata in y		
$\gamma_s = 1,15$		coeff. sicurezza	1z = 0.95		m		luce can	npata in z		
$f_{vd} = 391,3$	MPa	resist. di calcolo								

• Sollecitazioni (compressione>0, trazione<0, taglio in valore assoluto)

la massima tensione di taglio-punzonamento non è superata


• Elementi senza armature trasversali resistenti a taglio

• Elementi senza armature trasversali resistenti a	tagno	
$C_{\rm rd,c} = 0.18/\gamma c$	$C_{\rm rd,c}=0.12$	
$k = 1 + (200/d)^{1/2} < 2$	k = 1,420	
$v_{\min} = 0.035 \text{ k}^{3/2} f_{ck}^{-1/2}$	$v_{min} = 0.313$	
$\rho_{ly} = A_{sly}/((D+3d)d)$	$\rho_{ly}=0,004$	
$\rho_{lz} = A_{slz}/((D+3d)d)$	$\rho_{\rm lz}\!=0,\!003$	
$\rho_1 = (r_{1y} \times r_{1z})^{1/2} < 0.02$	$\rho_1 = 0,003$	
$\sigma_{cy} = N_{Edy}/A_{cy}$	$\sigma_{\rm cy} = 0.000$	MPa
$\sigma_{cz} = N_{Edz}/A_{cz}$	$\sigma_{cz} = 0,000$	MPa
$\sigma_{cp} = N_{Ed}/A_c$	$\sigma_{cp} = 0.00$	MPa
$v_{Rd,c} = C_{Rd,c} \times k \times (100 \times \rho_1 \times f_{ck})^{1/3} + 0.1 \times \sigma_{cp} > = (v_{min} + 0.1 \times \sigma_{cp}) + 0.1 \times \sigma_{cp} > 0$	$0.1 \times \sigma_{\rm cp}$	
$v_{Rd,c} = 0,358 \text{ MPa}$		
• Verifica lungo il perimetro u ₁		
$u_1 = 9016,37$ mm	$v_{ed} = 0.539$	9 MPa

la sezione NON è verificata in assenza di armature per il taglio

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 139 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

• Elementi con armature trasversali resistenti a taglio

• Verifica lungo il perimetro del pilastro

$$u_0 = 3600,00$$
 mm $v_{ed} = 1,35$ MPa $v_{Rd,max} = 0,5 \times 0,60 \times (1 - fck/250) \times fcd = 3,38$ MPa $v_{ed} = 3942,00$ kN

la sezione armata a taglio risulta verificata.

Nella verifica a punzonamento, non è stato tenuto in conto del contributo resistente del calcestruzzo.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 140 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

11.30 FONDAZIONE VERIFICA A TAGLIO

La soletta di fondazione offre, senza specifica armatura, un taglio resistente di 500 kN. Le combinazioni dimensionanti sono quelle SLV.

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2008 § 4.1.2.1.3

• Caratteristiche della sezione

mm larghezza	$f_{yk} = 450$	MPa	resist. c	aratteristica
mm altezza	$\gamma_s = 1.15$		coeff. si	icurezza
mm copriferro	$f_{yd} = 391.3$	MPa	resist. d	li calcolo
MPa resist. caratteristica	Armatura longitud	dinale tesa	ı :	
coeff. sicurezza	$A_{sl,1} = $	5 Ø	26	$= 26.55 \text{ cm}^2$
coeff. riduttivo	$A_{sl,2} = $	5 Ø	30	$= 35.34 \text{ cm}^2$
mm altezza utile	$A_{sl,3} = $	Ø	0	$= 0.00 \text{ cm}^2$
MPa resist. di calcolo				61.89 cm^2
	mm altezza mm copriferro MPa resist. caratteristica coeff. sicurezza coeff. riduttivo mm altezza utile	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

• Sollecitazioni (compressione<0, trazione>0, taglio in valore assoluto)

$$N_{ed} = 0.0 \text{ kN}$$
 $V_{ed} = 1000.0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

$$\begin{split} k &= 1 + (200/d)^{1/2} < 2 & k = 1.420 & < 2 \\ \nu_{min} &= 0.035 \ k^{3/2} f_{ck}^{-1/2} & \nu_{min} = 0.335 \\ \rho_1 &= A_{sl}/(b_w \!\!\times\!\! d) < \!\! 0.02 & \rho_1 = 0.005 & < 0.02 \\ \sigma_{cp} &= N_{Ed}\!\!/A_c < \!\! 0.2 f_{cd} & \sigma_{cp} = 0.00 & MPa & < 0.2 \ fcd \end{split}$$

$$\begin{split} V_{Rd} &= (0.18 \times k \times (100 \times \rho_1 \times f_{ck})^{1/3} / g_c + 0.15 \times \sigma_{cp}) \times b_w \times d > (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d \\ V_{Rd} &= 501.6 \text{ kN}; \qquad (con \, (\nu_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d = 380.2 \text{ kN}) \end{split}$$

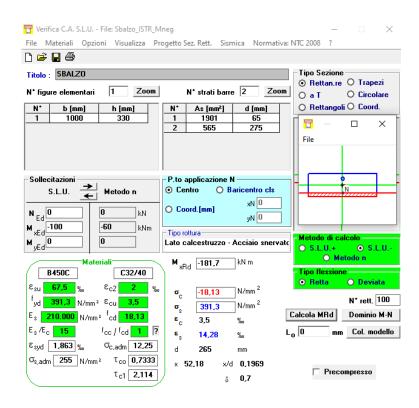
 $V_{Rd} = 501.6 \text{ kN}$ valore di calcolo

la sezione NON è verificata in assenza di armature per il taglio

• Elementi con armature trasversali resistenti a taglio

 $\theta=25.0$ ° inclinaz, bielle cls angolo ammissibile $\alpha=90.0$ ° inclinaz, staffe

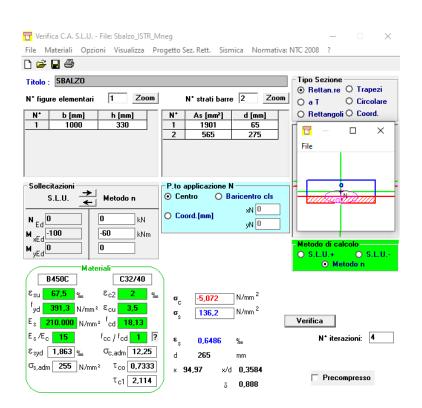
Armatura a taglio (staffatura):


$$\begin{split} A_{sw}/s &= \text{staffe } \emptyset & 12 \quad \text{mm con } n^{\circ} \text{ bracci (trasv)} & 5 \qquad \text{passo} & 40 \quad \text{cm} &= 0.141 \text{ cm}^{2}/\text{cm} \\ V_{Rsd} &= 0.90 \times d \times (A_{sw}/s) \times f_{yd} \times (\text{cotg}\alpha + \text{cotg}\theta) \times \text{sen}\alpha & V_{Rsd} &= 1211.9 \text{ kN} \\ f_{cd} &= 9.07 & \text{MPa resist. di calcolo ridotta} \\ \alpha_{c} &= 1.000 & \text{coeff. maggiorativo} \\ V_{Rcd} &= 0.90 \times d \times b_{w} \times \alpha_{c} \times f_{cd} \times (\text{cotg}\alpha + \text{cotg}\theta)/(1 + \text{cotg}^{2}a) & V_{Rcd} &= 3547.4 \text{ kN} \end{split}$$

 $V_{Rd} = min(V_{Rcd}, V_{Rsd})$ $V_{Rd} = 1211.9 > 1000.0 \text{ kN}$ c.s.= 1.2

la sezione armata a taglio risulta verificata.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 141 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177


11.31 **SBALZI**

Armatura:

5 Φ 22 superiori

5 Φ 12 inferiori

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 142 di 177

Rck	40	Мра	
fck	32	Мра	
fctm	3,02		(per classi <= C50/60)
σfess	2,52	Мра	(1)
Wid	0,018		modulo di reazione sezione ideale, rif. al lembo teso
σG	0,00		tensione media (baricentrica) dovuta a solo sforzo assiale>0 trazione
σs	136	Мра	Tasso di lavoro acciaio (SLE rara)
kt	0,6		kt = 0.4 lungo termine; kt = 0.6 breve termine
fck	32	Мра	
Ecm	33346	Мра	Modulo E = 22000*(fcm/10)^0.3
fct,eff	3,02	Мра	fct,eff = 0.3*fck^(2/3)
Es	210'000	Мра	Modulo acciaio armatura
αe	6,30		αe = Es/Ec
Section width	1000	mm	Larghezza sezione
Section depth	330	mm	Altezza sezione
c'	65	mm	Copriferro (al baricentro armature) armature tese
d	265	mm	Altezza utile - rispetto al lembo compresso
х	95,0	mm	Profondità asse neutro
2.5(h-d)	162,5	mm	
(h-x)/3	78,3	mm	
h/2	165,0	mm	
hceff	78,3	mm	Altezza efficace
Aceff	78'343	mmq	Area efficace
As	1901	mmq	Area armatura nella zona tesa
ρ p ,eff	0,02426		Percentuale armatura
εsm	0,000389		
С	50	mm	Ricoprimento barre tese
k1	0,8		Aderenza (0.8 migliorata - 1.6 liscia)
k2	0,5		0.5 flessione - 1.0 trazione
k3	3,40		
k4	0,425		
n1	5		
Ф1	22	mm	
n2	0		
Ф2	0	mm	
ф eq	22,00	mm	Diametro equivalente
srmax	324,132	mm	Distanza massima fessura
w	0,13	mm	Ampiezza teorica fessura

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 143 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01

177

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2008 § 4.1.2.1.3

• Caratteristiche della sezione

$b_{w} = 1000$	mm larghezza	$f_{yk} = 450$ MPa	resist. caratteristica
h = 330	mm altezza	$\gamma_s = 1,15$	coeff. sicurezza
c = 65	mm copriferro	$f_{yd} = 391,3$ MPa	resist. di calcolo
$f_{ck} = 32$	MPa resist. caratteristica	Armatura longitudinale tesa	ı:
$\gamma_c = 1,50$	coeff. sicurezza	$A_{sl,1} = 5$ Ø	$22 = 19,01 \text{ cm}^2$
$\alpha_{cc} = 0.85$	coeff. riduttivo	$A_{sl,2} = 0$ Ø	$0 = 0.00 \text{ cm}^2$
d = 265	mm altezza utile	$A_{sl,3} = 0$ Ø	$0 = 0.00 \text{ cm}^2$
$f_{cd} = 18,13$	MPa resist. di calcolo		$19,01 \text{ cm}^2$

• Sollecitazioni (compressione<0, trazione>0, taglio in valore assoluto)

$$N_{ed} = 0.0 \text{ kN}$$
 $V_{ed} = 65.0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

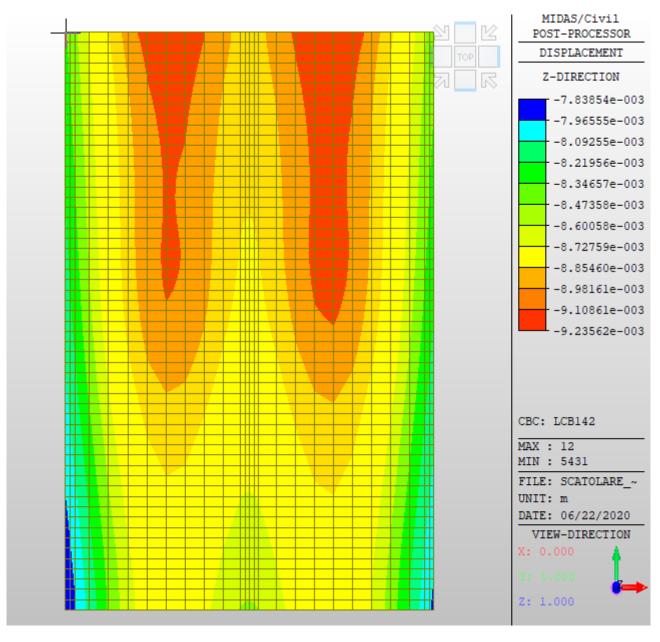
$$\begin{split} k &= 1 + (200/d)^{1/2} < 2 & k &= 1,869 & < 2 \\ \nu_{min} &= 0,035 \; k^{3/2} f_{ck}^{-1/2} & \nu_{min} &= 0,506 \\ \rho_1 &= A_{sl} / (b_w \times d) < 0.02 & \rho_1 &= 0,007 & < 0.02 \\ \sigma_{cp} &= N_{Ed} / A_c < 0.2 f_{cd} & \sigma_{cp} &= 0,00 & MPa & < 0.2 \; fcd \end{split}$$

$$V_{Rd}\!=(0.\!18\times\! k\times\! (100\times\! \rho_1\times\! f_{ck})^{1/3}/g_c+0.\!15\times\! \sigma_{cp)}\times b_w\times d>(\nu_{min}+0.\!15\times\! \sigma_{cp})\times b_w\times d$$

$$V_{Rd} = 168.9 \text{ kN}; \quad (con (v_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d = 134.0 \text{ kN})$$

 $V_{Rd} =$ 168,9 kN valore di calcolo

la sezione è verificata in assenza di armature per il taglio


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 144 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

11.32 VERIFICA DI DEFORMABILITÀ NELLA SEZIONE CORRENTE

In corrispondenza della soletta superiore, si registra uno spostamento relativo massimo, tra incastro su piedritto e mezzeria sezione trasversale, pari a circa 9 - 8 = 1 mm.

Considerando come valore limite 1/1000 della luce pari a 8900 mm /1000 = 8.9 mm, lo spostamento relativo si ritiene accettabile.

Di seguito la mappa degli spostamenti verticali (in metri), per la soletta superiore in combinazione rara.

APPALTATORE: Consorzio

Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ALPINA S.P.A.

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 145 di E ZZ CL RI0200 002 IF28 01 В 177

12 FONDAZIONE

12.1 GEOTECNICA

Nel presente capitolo si riporta la caratterizzazione geotecnica per l'opera in esame, valutata sulla base dell'interpretazione delle indagini geotecniche svolte in prossimità dell'opera desunta dalla relazione geotecnica del progetto esecutivo.

Tratta all'aperto da pk 0+450 a pk 1+800

	Unità	Unità 1	Unità 2	Unità 3	Unità 4a	Unità 4b
Class	sificazione AGI (1977)	limo con argilla deb sabbioso	sabbia con limo argilloso	ghiaie con sabbia deb limosa		
Proprietà	u.m.	range	range	range	range	range
γ	kN/m3	17÷19	18.0÷19.5	18÷20	19÷21	19÷21
wN	%	28÷40	10÷30	0	12÷20	12÷25
LL	%	50÷65	30÷42	20÷30	45÷70	40÷75
LP	%	20÷28	15÷20	13÷16	18÷24	15÷25
IP	%	25÷45	15÷25	8÷18	25÷30	20÷48
c'	kPa	10÷20	0÷5	0	20÷30	20÷40
ø'	۰	22÷25	30÷33	35÷37	20÷23	20÷25
Cu	kPa	80÷120	-	-	150÷350 (***)	200÷500 (***)
E0	MPa	200÷400	300÷600	400÷600	600÷1000	800÷1500 (*)
E young	MPa	8÷15	30÷60	40÷60	20÷80	30÷90 (**)

^(*) indica aumento lineare con la profondità (da 10m a 35m) con una variabilità pari a ± 200 MPa

Figura 39 - Modello geotecnico

^(*) indica aumento lineare con la profondità (da 10m a 35m) con una variabilità pari a ± 10 MPa

^(***) intervallo di variabilità all'interno del quale la coesione non drenata aumenta linearmente con la profondità

APPALTATORE: Consorzio HIRPINIA AV	Soci SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE: Mandataria Mandanti ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.						TA APICE – OI LE APICE – HI		
PROGETTO ESEC	CUTIVO		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 146 di 177

COESIONE NON DRENATA - Tratta all'aperto da pk 0+450 a pk 1+800

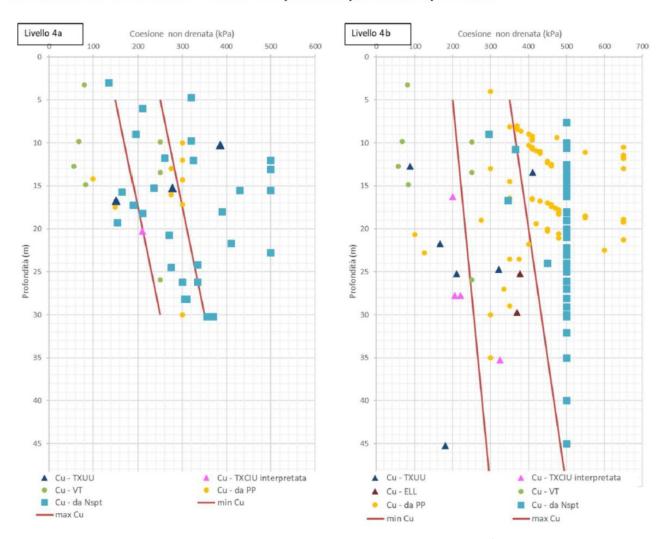


Figura 40 – Andamento coesione non drenata con la profondità

Per lo strato 4a si considera una coesione non drenata media variabile tra 200 kPa e 300 kPa tra 5 m e 30 m di profondità.

Per lo strato 4b si considera una coesione non drenata media variabile tra 275 kPa e 400 kPa tra 5 m e 50 m di profondità.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 147 di

 177
 177
 177
 177

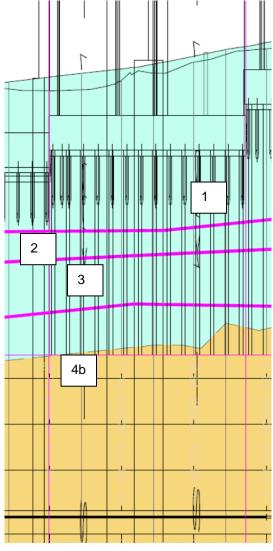


Figura 41 – Profilo geotecnico RI02 bicanna

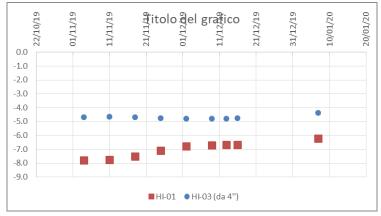


Figura 42 - Andamentio falda

Si considera la falda in corrispondenza del sondaggio/ piezometro HI-03 posta a 4.8 m dal p.c.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

FOGLIO

148 di

177

COMMESSA LOTTO CODIFICA DOCUMENTO REV. IF28 01 E ZZ CL RI0200 002 B

12.2 CAPACITA' PORTANTE VERTICALE DEI PALI

La capacità portante del palo di fondazione è valutata come somma della portata laterale e di base.

Rt = Rs + Rb

dove:

Rs = resistenza limite laterale;

Rb = resistenza limite di base.

La resistenza limite laterale e di base sono valutate con le seguenti relazioni:

$$\label{eq:Rs} \boldsymbol{R}_s = \sum_{j=1}^n \boldsymbol{A}_{s,j} \cdot \boldsymbol{q}_{s,j} \;, \qquad \quad \boldsymbol{R}_b = \boldsymbol{A}_b \cdot \boldsymbol{q}_b \,,$$

dove:

As, j = area laterale del palo corrispondente allo strato j;

qs,j = portanza laterale limite strato j;

n = numero totali di strati;

Ab = area base palo:

qb = portanza limite di base.

La portata ammissibile a compressione (R_{d,comp}) dei pali è calcolata facendo riferimento all'espressione seguente:

$$R_{d,comp} = \frac{\left(\frac{Rb}{Fsb}\right) + \left(\frac{Rs}{Fsl}\right)}{F_{si}} - W_P'$$

dove:

R_{d,comp} = resistenza di progetto o portata ammissibile alla compressione del palo

 $F_{s,b}$ = coefficiente di sicurezza alla portata di base (R3) = 1,35 $F_{s,l}$ = coefficiente di sicurezza alla portata laterale (R3) = 1,15

 $F_{s,i}$ = coefficiente di sicurezza indagini indagate =1,45 n° 7 indagini (per l'intero modello geotecnico della tratta in oggetto sono state utilizzate più di 10 verticali d'indagine, a favore di sicurezza si considerano solo quelle poste in corrispondenza dell'RI02 e limitrofe n°7)

W'_p = differenza tra peso del palo e tensione litostatica alla base del palo

12.2.1 Portata laterale

Strati argillosi

 $q_{s,i} = \alpha_i \cdot c_{u,i}$, $0.23 \ \sigma'v \le q_{s,i} \le 0.55 \ \sigma'v \le 100 \ kPa$

con

qs,i = portanza laterale dello strato i-esimo, qs,lim = 100 kPa (AGI);

cu,i = coesione caratteristica non drenata dello strato i-esimo;

 α_i = è un coefficiente empirico nello strato i-esimo funzione della cu,i. Si assume valida la seguente legge di variazione (Raccomandazioni AGI):

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 149 di E ZZ CL RI0200 002 IF28 01 В 177

 α = 0.9 cu \leq 25 kPa

 $\alpha = 0.8 \text{ cu} = 25 \div 50 \text{ kPa}$

 $\alpha = 0.6 \text{ cu} = 50 \div 75 \text{ kPa}$

 α = 0.4 cu \geq 75 kPa

Strati sabbiosi

 $q_{s,i} = k \tan \cdot \varphi_i \cdot \sigma'_v \le 170 \text{ kPa}$ con $k_{s,i} = 0.5$.

12.2.2 Portata di base

Strati argillosi

La portanza di base negli strati argillosi è valutata con la seguente relazione:

 $q_b = 9 \cdot c_u + \sigma_v \le 4300 \text{ kPa}$

Strati sabbiosi

La portanza di base negli strati incoerenti è valutata con la seguente relazione:

 $q_b = N^*_q \cdot \sigma_v \le 4300 \text{ kPa},$

con

Ng di Berezantzev (corrispondente ad un cedimento pari 0.06÷0.1 Φ).

Il parametro Ng sarà determinato in riferimento ad un angolo di resistenza taglio ridotto (Φ'rid) rispetto a quello prima dell'installazione del palo (Kishida, 1967):

 $\Phi_{rid}^0 = \Phi - 3^\circ$

12.2.3 Efficienza verticale della palificata

Nell'approccio convenzionale di progetto si assume che lo stato limite ultimo della palificata corrisponda al raggiungimento del carico limite sul palo più caricato. Tale modo di procedere trascura la duttilità del sistema fondazione-terreno e può risultare dunque particolarmente cautelativo.

Le indagini svolte hanno infatti confermato la ragguardevole riserva di resistenza della palificata considerata nel suo complesso. Vedasi ad esempio la pubblicazione "Carico limite di gruppi di pali sotto carichi verticali ed eccentrici" di Raffaele Di Laora, Luca de Sanctis e Stefano Aversa.

Poiché il riferimento è il carico limite della palificata in cui per definizione l'efficienza risulta unitaria, si è scelto di adottare tale valore in linea peraltro con il PD (elaborato "FONDAZIONI VIADOTTI - Criteri di calcolo delle fondazioni - IF0G01D09RBV10003001A"). Linea che si continua a seguire nell'assumere quale carico limite della palificata la plasticizzazione del primo palo.

Consorzio

Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u>

Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 150 di E ZZ CL RI0200 002 IF28 01 В 177

12.2.4 Capacità portante verticale della palificata come blocco

Per il calcolo della capacità portante com blocco si utilizzano le raccomandazioni AGI.

 $Q= B x h x Nc x Cu_{(L)} + 2 x (h+B) x L x qs$

B, h = dimensioni in pianta del blocco

L= lunghezza pali

qs = valore medio della resistenza al taglio del tratto di lunghezza L

Cu (L) = coesione non drenata alla profondità L

Nc = fattore funzione dei rapporti h/b e L/B

20.2	N _C								
L/B	h/B = 1	h/B > 20	1 < h/B < 20						
0.25	6.7	5,6	5.6 • (1 + 0.2 L/B)						
0.50	7.1	5.9	5.9 • (")						
0.75	7.4	6.2	6.2 • (")						
1.00	7.7	6.4	6.4 • (")						
1.50	8.1	6.8	6.8 • (")						
2.00	8.4	7.0	7.0 • (*)						
2.50	8.6	7.2	7.2 • (")						
3.00	8.8	7.4	7.4 • (")						
> 4.00	9.0	7 -5	7.5 • (")						

 APPALTATORE:
 Soci

 Consorzio
 Salin

 HIRPINIA AV
 SALIN

IIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 151 di

 177

12.3 CAPACITA' PORTANTE ORIZZONTALE DEI PALI

Il calcolo della capacità portante di un palo soggetto ad un carico orizzontale è condotto applicando la teoria di Broms (1964), considerando lo schema di palo vincolato in testa in terreno coerente/incoerente soggetto ad un carico orizzontale.

Secondo la teoria di Broms, lo stato tensodeformativo del complesso palo terreno sotto azioni orizzontali, si presenta come un problema tridimensionale per la cui soluzione è necessario introdurre alcune ipotesi semplificative:

- il terreno è omogeneo;
- il comportamento dell'interfaccia palo-terreno è di tipo rigido-perfettamente plastico;
- la forma del palo è ininfluente, l'interazione palo-terreno è determinata dalla dimensione caratteristica d della sezione del palo (diametro) misurata normalmente alla direzione del movimento;
- il palo ha un comportamento rigido-perfettamente plastico, ovvero si considerano trascurabili le deformazioni elastiche del palo.

L'ultima ipotesi comporta che il palo abbia solo moti rigidi finché non si raggiunge il momento di plasticizzazione

 M_{y} del palo. A questo punto si ha la formazione di una cerniera plastica in cui la rotazione continua per un tratto di lunghezza non definita con momento costante.

Essendo la palificata completamente immorsata nel soprastante plinto di fondazione, si fa l'ipotesi di palo a rotazione in testa impedita.

Pali a rotazione in testa impedita:

I possibili meccanismi di rottura e le corrispondenti reazioni del terreno sono:

Per il palo corto:

$$\frac{H}{k_p \cdot \gamma \cdot d^3} = 1.5 \left(\frac{L}{d}\right)^2$$

Per il palo intermedio:

$$\frac{H}{k_p \cdot \gamma \cdot d^3} = \frac{1}{2} \cdot \left(\frac{L}{d}\right)^2 + \frac{M_y}{k_p \cdot \gamma \cdot d^4} \cdot \frac{d}{L}$$

Per il palo lungo:

$$\frac{H}{k_p \cdot \gamma \cdot d^3} = \sqrt[3]{\left(3.676 \cdot \frac{M_y}{k_p \cdot \gamma \cdot d^4}\right)^2}$$

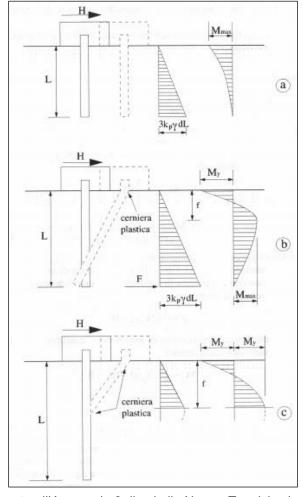
Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.


PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 177

La verifica è condotta con riferimento all'Approccio 2 di cui alle Norme Tecniche (comb. A1+M1+R3).

La condizione di verifica impone il soddisfacimento della disequazione:

$$R_d / E_d \ge 1$$
,

con l'adozione del coefficiente parziale γ_T =1.3 (par. 6.4.3.1.2 , N.T.).

12.3.1 Efficienza orizzontale dei pali

Il carico totale agente su un gruppo di pali, di diametro "d" posti a interasse "s" sufficientemente ridotto (s/d <6), sottoposto ad una sollecitazione orizzontale statica, si ripartisce in maniera non uniforme tra i singoli pali. L'aliquota di carico assorbita da ciascun palo è condizionata, principalmente, dalla fila di appartenenza dei pali all'interno del gruppo.

Il complesso della sperimentazione disponibile evidenzia come la fila che assorbe l'aliquota maggiore di carico è la fila frontale, quella cioè, che incontra la resistenza di un terreno non disturbato dalla presenza di file a lei antistanti, pur risentendo comunque i pali della presenza di quelli vicini.

Le file successive, invece, assorbono aliquote di carico minori.

APPALTATORE:

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

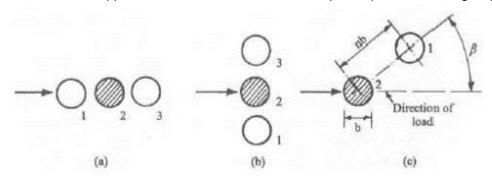
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF28
 01
 E ZZ CL
 RI0200 002
 B
 153 di

 177

Il fenomeno di disomogenea distribuzione dei carichi in ragione della fila di appartenenza del gruppo va sotto il nome di shadowing (BROWN ET AL., 1988), o "effetto ombra".

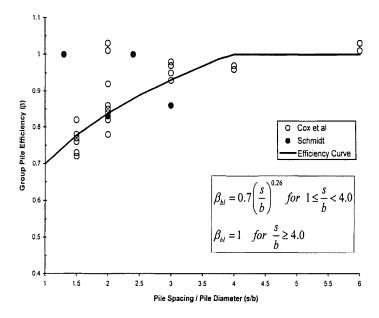
La procedura di calcolo è di seguito riassunta.

Per ogni palo, l'efficienza f è definita dal prodotto degli effetti ombra subiti dai pali circostanti, espressi in termini di coefficienti riduttivi β . I valori di tali coefficienti tengono conto degli effetti di interazione con gli altri pali del gruppo nel suo complesso: interazioni tra pali posti lungo la retta di applicazione del carico, interazione tra pali disposti in direzione ortogonale alla retta di applicazione del carico, interazione tra pali disposti con un angolo β tra loro.

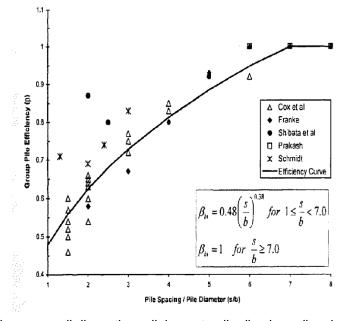
Effetti di interazione tra pali in linea (a), affiancati (b) o disposti con un'angolazione β tra loro (c) (Reese &Van Impe, 2001)

Pertanto si ha $f_i = \beta_{1i} * \beta_{2i} * \beta_{3i} * ... * \beta_{ji}$

I singoli "contributi ombra" sono stimati singolarmente come segue.


L'interazione tra pali in linea, caricati in direzione parallela alla fila, si esplica in una diminuzione delle caratteristiche meccaniche del terreno retrostante il palo di testa della fila, con conseguente incremento degli spostamenti dei pali retrostanti.

Studi sperimentali condotti sull'argomento hanno mostrato che l'interazione dipende principalmente dalla posizione relativa dei pali. Molti autori (Dunnavant & O'Neill, 1986) raccomandano fattori di riduzione distinti per pali frontali e pali retrostanti. Tali fattori sono dati in funzione della spaziatura tra i pali nella direzione del carico.

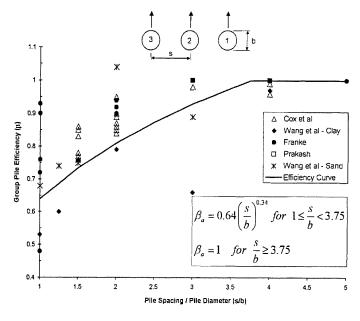

I fattori di riduzione per pali frontali possono essere ricavati dalle indicazioni fornite nella figura in basso.

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI	EDADIO I	NADOLL D	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV. B	FOGLIO 154 di 177

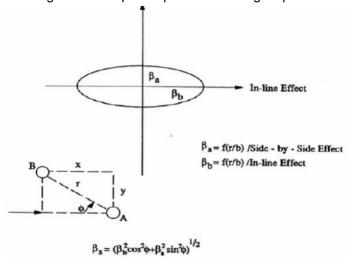
Fattori di riduzione per pali disposti parallelamente alla direzione di carico - (pali frontali)

I fattori di riduzione per pali retrostanti possono essere ricavati dalle indicazioni fornite di seguito.

Fattori di riduzione per pali disposti parallelamente alla direzione di carico - (pali retrostanti)

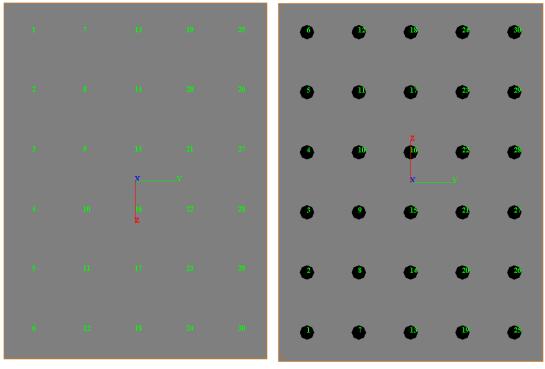

L'interazione del secondo tipo si esplica invece con un incremento degli spostamenti del palo centrale per effetto della presenza dei pali laterali.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 155 di Relazione di Calcolo (Bicanna) IF28 E ZZ CL RI0200 002 01 В 177


Schema B - Pali affiancati

Tale riduzione di "p" in funzione del rapporto s/D (s = interasse dei pali, D = diametro del palo) può essere ricavata dalle indicazioni fornite nella figura seguente.

Fattori di riduzione per pali disposti su file perpendicolari alla direzione del carico


L'ultimo contributo riguarda l'effetto generato da pali disposti con un angolo β tra loro.

L'efficienza fi determina una riduzione della resistenza del palo i-esimo ai carichi orizzontali, rispetto al valore limite calcolato nel caso di palo isolato.

APPALTATORE: Consorzio HIRPINIA AV	Soci SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		ITIN	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE Mandataria ROCKSOIL S.P.A	E: Mandanti NET ENGINEERING S.P.A.	ALPINA S.P.A.	· ·			TA APICE – OI LLE APICE – H		
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 156 di 177

Tale procedura è stata implementata nel programma PGROUP, che considera la distribuzione planimetrica di ciascun palo e la direzione qualunque del carico rispetto a detta distribuzione.

Efficienza minima dei pali per ogni scenario di carico pari a 0.71

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> <u>Mandanti</u> ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA COMMESSA DOCUMENTO REV. 157 di 177 Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В

12.4 VERIFICA CAPACITÀ PORTANTE VERTICALE

Si riportano le massime sollecitazioni in sommità palo.

SLV	V_{combo}	N	
327	[kN]	[kN]	
V _{combo}	949.55	-2974.01	
N _{MAX, COMP}	563.35	-4758.87	
N _{MAX, TRAZ}	626.66	804.69	
V _{MAX,PALI,TRAZ}	795.73	78.79	
SLU	V _{combo}	N	
320	[kN]	[kN]	
V _{combo}	195.21	-3511.88	
N _{MAX, COMP}	153.45	-3565.81	
N _{MIN, COMP}	39.76	-2249.38	
SLE	V_{combo}	N	
322	[kN]	[kN]	
V _{combo}	143.48	-2581.10	
N _{MAX, COMP}	114.95	-2616.34	
N _{MIN, COMP}	33.46	-1642.60	

Si riporta successivamente il grafico di capacità portante in compressione del singolo palo:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

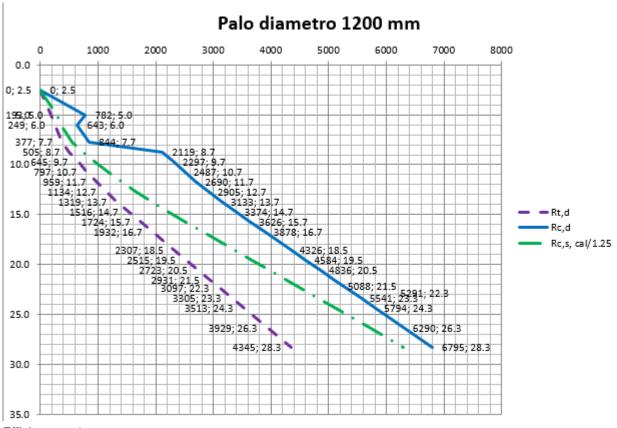
PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)


ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 158 di

 177
 177
 177
 177

Efficienza = 1

Palo lunghezza 19 m (profondità base 21.5 m)

Area palo =1.131 m²

Differenza tra peso del palo e tensione litostatica alla base del palo:

P= 1.131 x 19 x 25 - 417.3 kPa x 1.131 = 65.25 kPa

Azioni:

 $N_{SLV} = 4759 + 65.25 = 4824 \text{ kN}$

 $N_{SLU} = 3566 + 65.25x + 1.35 (\gamma) = 3654 kN$

 $N_{SLE} = 2616 + 65.25 = 2681 \text{ kN}$

 $R_{d,comp} = 5088 \text{ kN}$

Verifica SLV:

Compressione

5088 > 4824 kN Verificato

Trazione

Peso palo immerso = 1.13 x 1.8 x 25+1.13 x (19-1.8) x 15 = 342.4 kN

Resistenza a trazione = 2931 kN

2931 kN > 805 - 342.4 = 465.6 kN

Verifica SLU:

5088 > 3654 kN Verificato

Verifica SLE:

Portata laterale limite = 5312 kN

APPALTATORE:

Consorzio Soci
HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:
Mandataria Mandanti

NET ENGINEERING S.P.A. ALPINA S.P.A.

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 159 di

 177
 177
 177
 177

5312/1.25=4250> 2616 kN Verificato

ROCKSOIL S.P.A

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

Cedimento			70
D	1.2	m	Zp ***
P	2616.34	kN	
L totale	19	m	
Lutile	13.8	m	
E1	44	Mpa	
E2		Mpa	Ĺ
E3		MPa	I
Spessore 1	14.8	m	
Spessore 2		m	Lu
Spessore 3		m	
	14.8	m	↓ Ш <u> </u>
			4
E ponderato	4	4 MPa	[^] D [^]
β	1.5606978	4	
Cedimento	0.0067248	3 m	= 6.72 mm

Capacità portante com	e blocco				
L	19	m			
В	17	m			
h	65	m			
L/B	1	.12			
h/B	3.	.82			
fattore molt.	6.4				
Nc	7.83				
Cu base	319.4	kPa	1		
qs	74	kPa	i		
Q base	2,763,7				
Q laterale	230,5	84 kN			
$\xi_3 =$	1	.45			
R3 laterale comp.	1	.15			
R3 base	1	.35			
Q	1,550,1	135 kN			
N medio	4758.87	kN			
n° pali	70				
N tot	333120.9	kN			
Incremento di carico do	ovuto al peso palo		65.25		
Incremento totale			4567.5		
Verifica	1,550,1	35	>	337,688	Verificato

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

LOTTO CODIFICA DOCUMENTO COMMESSA E ZZ CL IF28 01

RI0200 002

FOGLIO 160 di 177

REV.

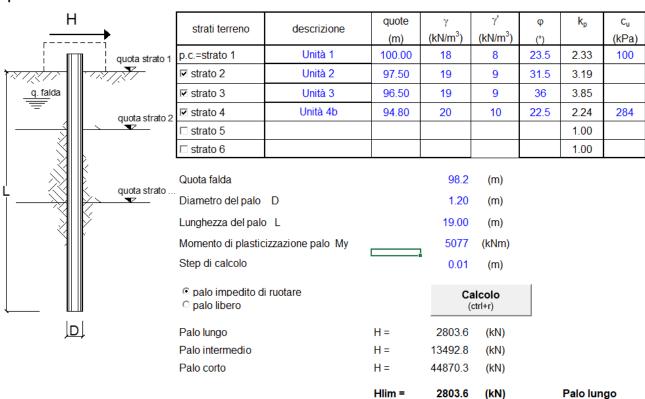
В

12.5 VERIFICA CAPACITÀ PORTANTE ORIZZONTALE

Si riporta la verifica a capacità portante orizzontale.

La sezione è armata in sommità con 26 \(\phi \) 30+26 \(\phi \) 24

Con N= 2974 kN si ha un Momento resistente=5077 kN m T agente = 949.55 kN Con N= 4759 kN si ha un Momento resistente=5227 kN m Tagente = 563.35 kNCon N= -805 kN si ha un Momento resistente=4374 kN m T agente = 626.66 kN Con N= -79 kN si ha un Momento resistente=4542 kN m T agente = 795.73 kN


Azioni SLU /SLE:

T_{SLU} max= 195.21 kN

 $T_{SLE rara} = 143.48 \text{ kN}$

Si verifica la capacità portante in condizioni non drenate dato che la sollecitazione dimensionante è in condizioni sismiche.

RI02 opera

Verifica

 $\gamma_T = 1.3$

 $\xi = 1.45$

Efficienza orizzontale =0.71

H limite compressione = 2803.6 kN

H_{max} = (2803.6 / (1.3 x 1.45)) x 0.71 =1056 kN > 949.55 kN Verificato in compressione

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

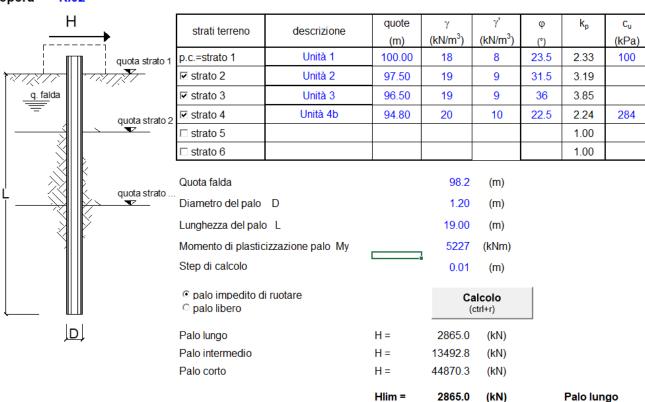
Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA


FOGLIO

161 di

177

COMMESSA LOTTO CODIFICA DOCUMENTO REV. IF28 E ZZ CL RI0200 002 01 В

opera **RI02**

H limite compressione = 2865 kN

 $H_{max} = (2865 / (1.3 x 1.45)) x 0.71 = 1079 kN > 563.35 kN Verificato in compressione$

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

Relazione di Calcolo (Bicanna)

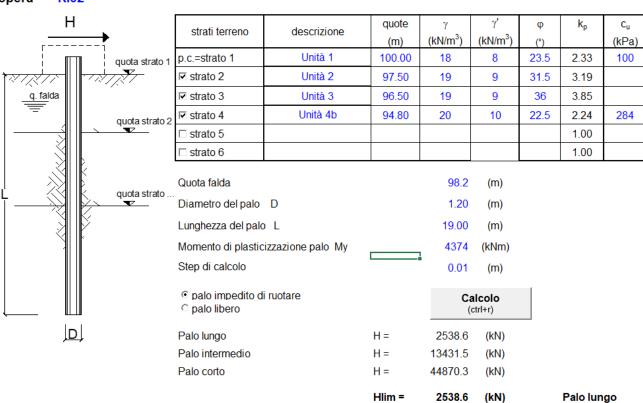
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

COMMESSA IF28

LOTTO COD

CODIFICA DOCUMENTO E ZZ CL RI0200 002


ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

REV. **B** FOGLIO 162 di 177

opera RI02

H limite trazione = 2538.6 kN

 $H_{max} = (2538.6 / (1.3 \times 1.45)) \times 0.71 = 956 \text{ kN} > 626.66 \text{ kN}$ Verificato in trazione

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

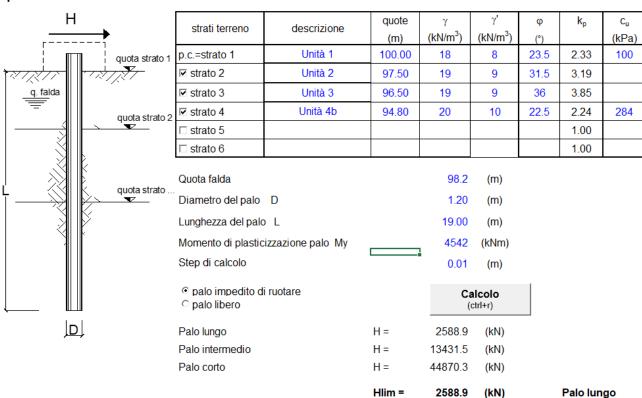
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

COMMESSA IF28

LOTTO CODIFICA E ZZ CL 01

DOCUMENTO RI0200 002

ITINERARIO NAPOLI – BARI


RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

REV. В

FOGLIO 163 di 177

RI02 opera

H limite trazione = 2589 kN

 $H_{max} = (2589 / (1.3 \times 1.45)) \times 0.71 = 975 \text{ kN} > 795.73 \text{ kN}$ Verificato in trazione

Verifica strutturale del palo

Si verifica la sezione con il momento resistente precedentemente utilizzato per la verifica a capacità portante orizzontale e il taglio limite.

Armatura 26 Φ 30+26 Φ 24 copriferro netto 6 cm

Armatura taglio 2 staffe a 2 bracci Φ 16/10

(Percentuale armatura 2.7 %)

Sollecitazioni SLE rara

Con una forza orizzontale in sommità di 143.48 kN (N=2581.1 kN) si ottiene un momento in sommità di 343 kNm.

Fessure in rara = non fessurata

Tensione cls =2.94 MPa<10 MPa (0.4 x fck a favore di sicurezza)

Tensione acciaio = 7.75 MPa <337.5 MPa

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C25/30

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 164 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

Resis. compr. di progetto fcd: 14.160 MPa Resis. compr. ridotta fcd': 7.080 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.560 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Tipo: B450C

ACCIAIO -

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: MPa 450.00 Resist. snerv. di progetto fyd: 391.30 MPa 391.30 Resist. ultima di progetto ftd: MPa 0.068

Deform. ultima di progetto Epu:

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cmY centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Ycentro Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Raggio **N°Barre** Numero di barre generate equidist. disposte lungo la circonferenza

Diametro [mm] della singola barra generata

N°Gen. Xcentro Ycentro Raggio N°Barre Ø 0.0 0.0 50.9 30 26 1 0.0 0.0 46.7 26 24

ARMATURE A TAGLIO

Diametro staffe: 16 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate Mx

con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb. Ν Mx Vy

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

NET ENGINEERING S.P.A.

PROGETTAZIONE:

ROCKSOIL S.P.A

Mandataria Mandanti

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna) ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 165 di E ZZ CL RI0200 002 IF28 01 В 177

1	2974.00	5077.00	2803.00
2	4759.00	5227.00	2865.00
3	-805.00	4374.00	2538.00
4	-79.00	4542.00	2589.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

ALPINA S.P.A.

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Mx My 2581.00 343.00 0.00 1

RISULTATI DEL CALCOLO

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	2974.00	5077.00	2974.09	5077.17	1.00301.4(113.1)
2	S	4759.00	5227.00	4758.94	5227.77	1.00301.4(113.1)
3	S	-805.00	4374.00	-805.09	4374.92	1.00301.4(113.1)
4	S	-79.00	4542.00	-79.25	4542.15	1.00301.4(113.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	60.0	0.00286	0.0	50.9	-0.00434	0.0	-50.9
2	0.00350	0.0	60.0	0.00293	0.0	50.9	-0.00349	0.0	-50.9
3	0.00350	0.0	60.0	0.00263	0.0	50.9	-0.00710	0.0	-50.9
4	0.00350	0.0	60.0	0.00268	0.0	50.9	-0.00644	0.0	-50.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

NET ENGINEERING S.P.A.

PROGETTAZIONE:

ROCKSOIL S.P.A

bw

Ctg

Acw

Ast

A.Eff

Mandataria Mandanti

ALPINA S.P.A.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 166 di Relazione di Calcolo (Bicanna) E ZZ CL RI0200 002 IF28 01 В 177

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000070702	-0.000742133		
2	0.000000000	0.000063005	-0.000280321		
3	0.000000000	0.000095581	-0.002234839		
4	0.000000000	0.000089674	-0.001880439		

VERIFICHE A TAGLIO E DUTTILITA'

Diam. Staffe: 16 mm 10.0 cm Passo staffe:

Ver S = comb. verificata a taglio / N = comb. non verificata Taglio di progetto [kN] = Vy ortogonale all'asse neutro Ved

Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

Alfa Coeff. di riduzione (efficienza) dell'armatura di confinamento [(7.4.29)NTC-(5.15)EC8]

Owd Rapporto meccanico di armatura staffe nella sola direzione del taglio di cui al primo membro della (7.4.29)NTC (tra parentesi vi è il 1/2 del rapporto meccanico minimo di normativa riferito quindi alla sola dir. del taglio)

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff	Alfa	Owd
1	S	2803.00	2803.00	4745.06	93.0 77.1	109.5	2.039	1.186	45.5	77.1(0.0)	0.907	0.232(0.040)
2	S	2865.00	2865.00	4586.16	92.7 74.8	109.2	2.032	1.250	48.2	77.1(0.0)	0.907	0.232(0.040)
3	S	2538.00	2538.00	4889.16	94.7 83.3	105.9	1.946	1.000	40.0	77.1(0.0)	0.907	0.241(0.040)
4	S	2589.00	2589.00	4614.80	94.2 82.0	107.2	1.866	1.000	43.3	77.1(0.0)	0.907	0.238(0.040)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Ac eff. Sc max Xc max Yc max Sf min Xs min Ys min As eff. D barre Beta12 Ver S 7.7 1 2.94 0.0 0.0 0.0 -50.9

APPALTATORE: Consorzio HIRPINIA AV	Soci SALINI IMPREGILO S.P.A.	ASTALDI S.P.A		ITIN	ERARIO I	NAPOLI – BA	ARI	
PROGETTAZIONE Mandataria ROCKSOIL S.P.A	E: Mandanti NET ENGINEERING S.P.A.	ALPINA S.P.A.				TA APICE – OI LLE APICE – HI		
PROGETTO ESEC Relazione di Calcolo			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO RI0200 002	REV.	FOGLIO 167 di 177

Per la parte inferiore, al di sotto della cerniera plastica (profondità calcolata secondo la teoria di Broms, circa 5.5 m) si modella un palo libero di ruotare e spostarsi soggetto al momento plastico della sezione soprastante (5077 kNm) con molle orizzontali.

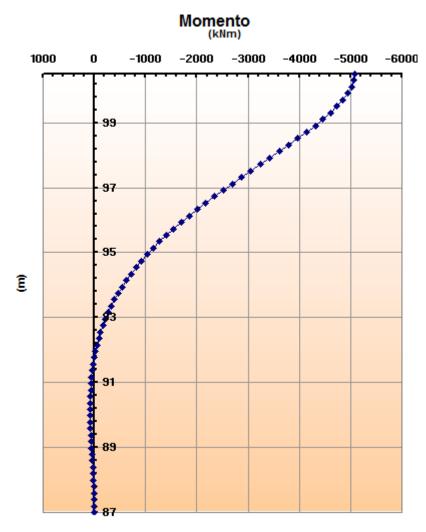


Figura 43 – Diagramma di momento

APPALTATORE:

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 RI0200 002
 B
 168 di

 177

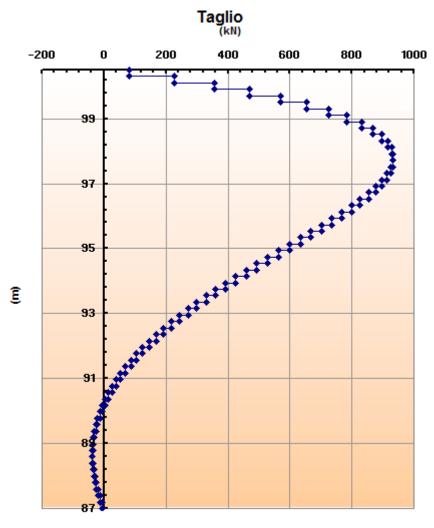


Figura 44 - Diagramma di taglio

In corrispondenza dell'inizio della seconda gabbia di armatura 9 m da sommità palo (5.5 m profondità cerniera plastica da sommità palo + 3.5 m, quota grafico 96.5) si ha un momento di 2692 kNm e taglio 913 kN.

C25/30

Con un Momento plastico di 5227 kNm si ottiene un momento di 2771 kNm e un taglio di 940 kN.

Con un Momento plastico di 4374 kNm si ottiene un momento di 2319 kNm e un taglio di 787 kN.

Con un Momento plastico di 4542 kNm si ottiene un momento di 2408 kNm e un taglio di 817 kN.

Si verifica la sezione con 26 Φ 26 +13 Φ 20 (1.6% della sezione di cls > 1 %) doppie staffe Φ 14 /24 cm. M rara = 75 kNm

Passo massimo delle staffe = 0.6 x 400 = 240 mm (Eurocodice 2 – capitolo 9.5.3)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 169 di E ZZ CL RI0200 002 IF28 01 В 177

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

MPa Resis. compr. di progetto fcd: 14.160 Resis. compr. ridotta fcd': 7.080 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 31475.0 MPa MPa

Resis. media a trazione fctm: 2.560 Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

ACCIAIO -Tipo: B450C

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: MPa 450.00 Resist. snerv. di progetto fyd: 391.30 MPa 391.30 Resist. ultima di progetto ftd: MPa

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cmY centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Ycentro Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Raggio **N°Barre** Numero di barre generate equidist. disposte lungo la circonferenza

Diametro [mm] della singola barra generata

N°Gen. Xcentro Ycentro Raggio N°Barre Ø 0.0 0.0 26 513 26 1 0.0 0.0 47.6 13 20

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 24.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate Mx

con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb. Ν Mx Vy

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 170 di E ZZ CL RI0200 002 IF28 01 В 177

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

1	2974.00	2692.00	913.00
2	4758.00	2771.00	940.00
3	-804.00	2319.00	787.00
4	-78.79	2408.00	817.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Mx My 2581.00 75.00 0.00 1

RISULTATI DEL CALCOLO

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Mx Res

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	2974.00	2692.00	2973.71	3636.12	1.35178.9(113.1)
2	S	4758.00	2771.00	4758.11	3869.88	1.40178.9(113.1)
3	S	-804.00	2319.00	-804.04	2708.93	1.17178.9(113.1)
4	S	-78.79	2408.00	-78.72	2934.25	1.22178.9(113.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	60.0	0.00284	0.0	51.3	-0.00494	0.0	-51.3
2	0.00350	0.0	60.0	0.00294	0.0	51.3	-0.00370	0.0	-51.3
3	0.00350	0.0	60.0	0.00246	0.0	51.3	-0.00984	0.0	-51.3
4	0.00350	0.0	60.0	0.00256	0.0	51.3	-0.00855	0.0	-51.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

COMMESSA

LOTTO CODIFICA E ZZ CL 01

DOCUMENTO RI0200 002

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

FOGLIO REV. 171 di В

177

Relazione di Calcolo (Bicanna) IF28

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000075871	-0.001052236		
2	0.000000000	0.000064699	-0.000381912		
3	0.000000000	0.000119816	-0.003688947		
4	0.000000000	0.000108307	-0.002998420		

VERIFICHE A TAGLIO E DUTTILITA'

bw

Ctg

Acw

Ast

Diam. Staffe: 14 mm 24.0 cm Passo staffe:

Ver S = comb. verificata a taglio / N = comb. non verificata Taglio di progetto [kN] = Vy ortogonale all'asse neutro Ved

Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A.Eff Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d max con L=lungh.legat.proietta-

ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio. Alfa Coeff. di riduzione (efficienza) dell'armatura di confinamento [(7.4.29)NTC-(5.15)EC8]

Owd Rapporto meccanico di armatura staffe nella sola direzione del taglio di cui al primo membro della (7.4.29)NTC (tra parentesi vi è il 1/2 del rapporto meccanico minimo di normativa riferito quindi alla sola dir. del taglio)

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff	Alfa	Owd
1	S	913.00	3338.61	1146.55	93.7 79.0	109.1	1.500	1.186	19.7	24.7(0.0)	0.785	0.074(0.040)
2	S	940.00	3385.84	1098.68	93.1 75.7	109.5	1.500	1.250	21.2	24.7(0.0)	0.785	0.074(0.040)
3	S	787.00	2875.63	1279.95	97.1 88.2	99.8	1.500	1.000	15.2	24.7(0.0)	0.785	0.082(0.040)
4	S	817.00	2899.91	1250.27	96.1 86.1	103.0	1.500	1.000	16.2	24.7(0.0)	0.785	0.079(0.040)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (DM96)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff. Distanza tre le barre tese [cm] ai fini del calcolo dell'apertura fessure D barre

Beta12 Prodotto dei coeff. di aderenza delle barre Beta1*Beta2

N°Comb Sf min Xs min Ys min Ac eff. Sc max Xc max Yc max As eff. D barre Beta12 Ver S 23.4 1 2.18 0.0 0.0 0.0 -51.3

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

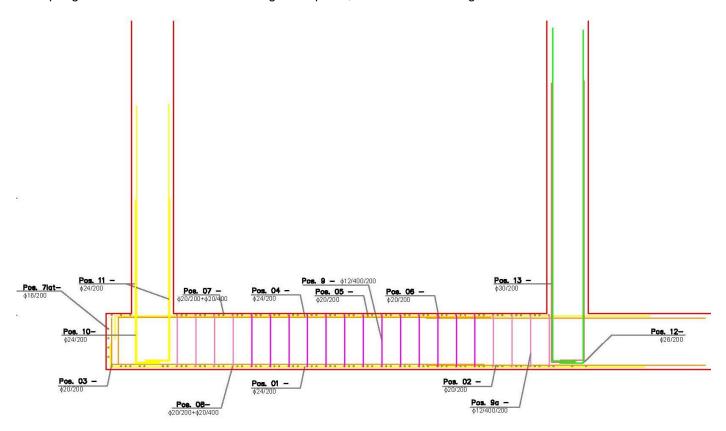
 IF28
 01
 E ZZ CL
 RI0200 002
 B
 177

13 SINTESI ARMATURE

13.1 PALI DI FONDAZIONE

Palo

Diametro 1.2 m L 19 m


				Lunghezza del palo con
n°	armatura longitudinale	Lunghezza	Spirale	spirale (m)
1° gabbia	26¢30 + 26¢24	12	ϕ 16/10 + ϕ 16/10	10.5
2° gabbia	26\psi26 + 13\psi20	10	φ14/24 + φ14/24	8.5

Incidenza 270 kg/m³

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 173 di 177 Relazione di Calcolo (Bicanna) IF28 E ZZ CL RI0200 002 В 01

13.2 SCATOLARE

Si dispongono le armature trasversali di seguito esposte, sintetizzandole in figura.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO 174 di 177 Relazione di Calcolo (Bicanna) IF28 E ZZ CL RI0200 002 01 В

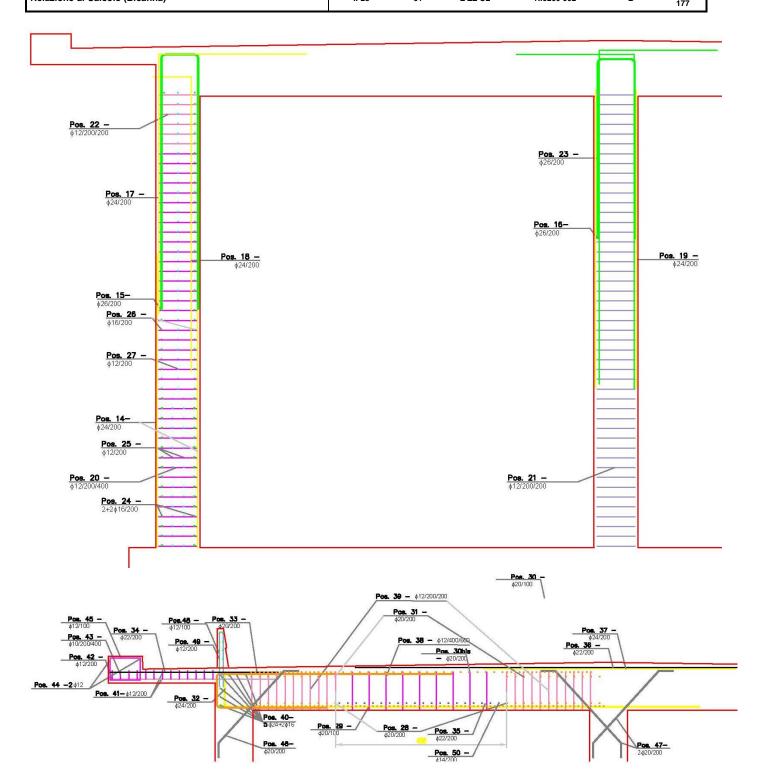


Figura 13.1: Schema indicativo armature

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO
Relazione di Calcolo (Bicanna)

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

FOGLIO

175 di

177

REV.

В

COMMESSA LOTTO CODIFICA DOCUMENTO IF28 01 E ZZ CL RI0200 002

SOLETTA SUPERIORE: Armatura in direzione trasversale

Attacco piedritti – piedritti laterale: Superiore: Φ 24/200mm+ Φ 20/200mm; Inferiore: Φ 24/200mm+ Φ 20/200mm

Attacco piedritti – piedritto centrale: Superiore: Φ 24/200mm+ Φ 22/200mm; Inferiore: Φ 24/200mm

Mezzeria: Superiore: Φ22/200mm;; Inferiore: Φ24/200mm + Φ22/200mm Armatura a taglio attacco piedritti : Φ12/200x200, altrove Φ12/400x600

SOLETTA SUPERIORE: Armatura in direzione longitudinale

Nei primi 2 m circa dal piedritto:

Superiore: Φ20/100mm+ Φ20/200mm; Inferiore: Φ20/100mm+ Φ20/200mm

In mezzeria:

Superiore: Φ 20/200mm;

Inferiore: Φ20/100mm+ Φ14/200mm

SBALZO: Armatura in direzione trasversale

Attacco piedritti: Superiore: Φ22/200mm; Inferiore: Φ12/200mm

Armatura a Taglio: Φ10/200/400mm

SBALZO: Armatura in direzione longitudinale

Superiore: Φ12/200mm; Inferiore: Φ12/200mm

CORDOLO: Armatura in direzione trasversale

Staffa Φ12/100mm

CORDOLO: Armatura in direzione longitudinale

Reggistaffa 2Φ12

PIEDRITTI: Armatura trasversale

Attacco platea piedritto centrale: Esterna: Φ30/200mm + Φ26/200mm; Interna: Φ30/200mm + Φ26/200mm; Attacco platea piedritti laterali: Esterna: Φ24/200mm + Φ24/200mm; Interna: Φ24/200mm + Φ24/200mm

Mezzeria piedritto centrale: Esterna: Φ30/200mm; Interna: Φ30/200mm Mezzeria piedritto laterale: Esterna: Φ26/200mm; Interna: Φ26/200mm

Attacco soletta superiore piedritto centrale: Esterna: Φ26/200mm+ Φ26/200mm (forchetta); Interna: Φ26/200mm + Φ26/200mm (forchetta)

Attacco soletta superiore piedritto laterale: Esterna: Φ24/200mm+ Φ26/200mm (forchetta); Interna: Φ24/200mm + Φ26/200mm (forchetta)

Armatura a taglio piedritto laterale: Φ12/200x200 per il primo metro dalla soletta superiore, Φ12/200x400 altrove

Armatura a taglio piedritto centrale: Φ12/200x200

PIEDRITTI: Armatura longitudinale

4Ф16/200mm + 2Ф12/200mm per i primi 3.0 m

2Φ16/200mm + 1Φ12/200mm fino ad intradosso soletta superiore

SOLETTA INFERIORE: Armatura in direzione trasversale

Attacco piedritti: Superiore: Φ24/200mm + Φ20/200mm; Inferiore: Φ24/200mm + Φ20/200mm

Mezzeria: Superiore: Φ24/200mm + Φ20/200mm; Inferiore: Φ24/200mm + Φ20/200mm

Armatura a taglio Φ12/400x200

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria <u>Mandanti</u>

Relazione di Calcolo (Bicanna)

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

FOGLIO LOTTO CODIFICA DOCUMENTO REV. COMMESSA 176 di 177 IF28 E ZZ CL RI0200 002 В 01

SOLETTA INFERIORE: Armatura in direzione longitudinale

Superiore: Φ20/200mm + Φ20/400mm; Inferiore: Φ20/200mm + Φ20/400mm

INCIDENZE

RIO2 BICANNA - SEZIONE CORRENTE							
FONDAZIONE		180	kg/m3				
PIEDRITTI		150	kg/m3				
SOLETTA	SOLETTA 150 kg/m3						

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** <u>Mandanti</u> **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. FOGLIO PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV.

IF28

01

E ZZ CL

RI0200 002

177 di

177

В

14 APPENDICE

Relazione di Calcolo (Bicanna)

14.1 MODI DI VIBRARE

Si riportano i modi di vibrare della struttura, come analizzata.

		EIC	GENVALUE ANA	LYSIS		
Mode	Freque	ency	Period	Tolerance		
No	(rad/sec)	(cycle/sec)	(sec)	Tolerance		
1	13.827590	2.200729	0.454395	0.0000e+000		
2	19.639277	3.125688	0.319930	0.0000e+000		
3	23.190171	3.690830	0.270942	0.0000e+000		
4	35.907202	5.714809	0.174984	0.0000e+000		
5	41.559796	6.614447	0.151184	0.0000e+000		
6	42.338740	6.738420	0.148403	0.0000e+000		
7	49.270459	7.841637	0.127524	0.0000e+000		
8	52.612652	8.373564	0.119423	0.0000e+000		
9	70.680320	11.249122	0.088896	0.0000e+000		
10	107.112760	17.047525	0.058660	0.0000e+000		
11	116.394491	18.524759	0.053982	0.0000e+000		
12	130.647073	20.793127	0.048093	1.1237e-057		
13	134.720420	21.441421	0.046639	1.2446e-050		
14	139.734087	22.239371	0.044965	7.5128e-043		
15	142.260664	22.641488	0.044167	3.7470e-039		
16	149.564260	23.803891	0.042010	4.4214e-027		
17	150.998812	24.032207	0.041611	1.5082e-024		
18	157.447029	25.058473	0.039907	6.1053e-015		
19	157.624751	25.086758	0.039862	2.2103e-014		
20	160.074927	25.476716	0.039252	3.5408e-013		

Figura 14.1 - Periodi principali della struttura

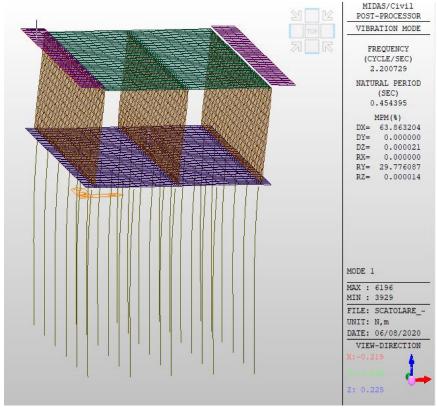


Figura 14.2 - 1 modo di vibrare - trasversale