COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE: CONSORZIO:

SOCI:

PROGETTAZIONE: MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

SE00 - SOTTOSTAZIONI ELETTRICHE

SE02 - SSE HIRPINIA

ELABORATI A CARATTERE GENERALE SSE HIRPINIA

Relazione di calcolo fondazione per sostegno porta isolatore tripolare per supporto sbarre AT

APPALTATORE	DIRETTORE DELLA PROGETTAZIONE	PROGETTISTA
Consorzio HIRPINIA AV II Direttore Tecnico Ing. Vincenzo Moriello 21/02/2020	Il Responsabile integrazione fra le varie prestazioni specialistiche Ing. G. Cassani	NETENGINEERING Ing. R. Zanon

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. SCALA:

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione per consegna	B. Borghi	21/02/2020	L. Ongaro	21/02/2020	T. Finocchietti	21/02/2020	Ing. R. Zanon
								21/02/2020

File: IF2801EZZCLSE0200004A.docx n. Elab.: -

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTAZIONE:

ROCKSOIL S.P.A

Mandataria Mandanti

PROGETTO ESECUTIVO
Relazione di calcolo fondazione per sostegno porta isolatore tripolare per supporto sbarre AT

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA IF28 LOTTO **01** CODIFICA E ZZ CL DOCUMENTO SE0200 004 REV.

FOGLIO 2 di 33

Indice

1	GE	NERALITÀ	3
2	NO	RMATIVA	2
3	MA	TERIALI	<u></u>
1		TURA DEL TERRENO	
5		TODOLOGIA DI CALCOLO	
		FINIZIONE DEI CARICHI	
3			
	6.1	PESI PROPRI	
	6.2	NEVE	
	6.3	PESO DEL GHIACCIO	
	6.4	AZIONE DEL VENTO	10
	6.5	CARICO DURANTE IL MONTAGGIO	11
	6.6	AZIONE SISMICA	11
	6.7	CONDIZIONE DI CARICO DA CORTO CIRCUITO	16
7	FO	NDAZIONE PER SOSTEGNO TRIPOLARE DI SBARRA	17
	7.1	CARATTERISTICHE DELLA STRUTTURA	17
	7.2	CARICHI AGENTI E DETERMINAZIONE DEI PARAMETRI DELLA SOLLECITAZIONE	18
	7.2.		
	7.2.2		
	7.2.3		
	7.3	COMBINAZIONE DI CARICO AGLI STATI LIMITE ULTIMI SLU	
	7.4	COMBINAZIONE DI CARICO SISMICA	
	7.5	COMBINAZIONE DI CARICO DA CORTO CIRCUITO	23
	7.6	VERIFICA DELLA FONDAZIONE	
	7.6.		
		2 VERIFICHE SLU DI TIPO STRUTTURALE	
	7.7	CONCLUSIONI	33

APPALTATORE: Consorzio Soci HIRPINIA AV

SALINI IMPREGILO S.P.A. ASTALDI S.P.A

NET ENGINEERING S.P.A.

PROGETTAZIONE:

ROCKSOIL S.P.A

<u>Mandataria</u> Mandanti

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO**

IF28 E ZZ CL SE0200 004 3 di 33 01 Α

GENERALITÀ

Lo scopo del presente documento è la verifica della seguente opera:

fondazione per sostegno porta isolatore tripolare per supporto sbarre AT

ALPINA S.P.A.

che sarà realizzata nella Sottostazione Elettrica RFI sita nel comune di Grottaminarda (AV), alimentata in Alta Tensione a 150kV, nell'ambito degli interventi per la realizzazione della nuova linea ferroviari Apice-Hirpinia.

La fondazione è dimensionata considerando i massimi valori dei parametri della sollecitazione alla base della carpenteria di sostegno dell'apparecchiatura, che sono impiegati come massime azioni esterne sulla struttura di fondazione oggetto di esame.

La verifica della struttura è condotta con il metodo semiprobabilistico agli stati limite, in ottemperanza alle norme vigenti, in due ipotesi di carico, normale ed eccezionale.

Le unità di misura impiegate nella presente relazione sono:

- forza daN
- massa kg
- m (per alcune lunghezze cm, mm) lunghezza

Il sistema di riferimento cartesiano 0xy considerato è tale che la direzione delle ascisse xx è parallela all'asse della sbarra.

Per l'analisi di tutti i particolari strutturali e l'esatta disposizione degli elementi si rimanda agli allegati grafici che integrano la presente relazione.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 004
 A
 4 di 33

2 NORMATIVA

Nell'eseguire le verifiche che costituiscono l'opera di cui alla presente relazione, si è fatto riferimento alla seguente normativa tecnica:

- [1] Circolare Ministero Infrastrutture e Trasporti 2 febbraio 2009, n.617
 - "Applicazione Norme Tecniche per le Costruzioni".
- [2] D. M. 14/01/2008

"Nuove Norme tecniche per le costruzioni".

- [3] Ordinanza 3274 20 Marzo 2003
 - "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".
- [4] Legge 5 Novembre 1971 n°1086

"Norme per la disciplina delle opere di conglomerato cementizio armato, normale precompresso ed a struttura metallica".

- [5] D.M. 11 marzo 1988
 - "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- [6] Circolare 24 settembre 1988, n°30483

"Norme tecniche per terreni e fondazioni: istruzioni applicative".

- [7] CEI EN 61936-1 (2011-07)
 - "Impianti elettrici con tensioni superiori a 1kV in corrente alternata".
- [8] CEI 11-4 (1998)

"Esecuzione delle linee elettriche aeree esterne".

- [9] CEI 11-26 (1998)
 - "Correnti di corto circuito. Calcolo degli effetti. Parte prima: definizioni e metodi di calcolo".
- [10] UNI ENV 1993-1-1 Eurocodice 3.

"Progettazione delle strutture di acciaio. Parte 1-1: Regole generali e regole per gli edifici"

[11] UNI ENV 1992-1-1 Eurocodice 2.

"Progettazione delle strutture di calcestruzzo. Parte 1-1: Regole generali e regole per gli edifici"

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 004
 A
 5 di 33

3 MATERIALI

Caratteristiche dei materiali utilizzati nella costruzione.

Calcestruzzo per fondazioni e struttura

Rck 30: f_{ck} = 24,9 MPa Resistenza cilindrica caratteristica del cls a 28 giorni

 α_{cc} =0,85 Coefficiente riduttivo per le resistenze di lunga durata γ_c = 1,5 Coeff. parziale di sicurezza relativo al cls

 $f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c = 14,11 \text{ MPa}$ Resistenza cilindrica di calcolo

E_c = 31447 MPa Modulo elastico

 $\gamma_{cls} = 2400 \text{ daN/m}^3$ Peso specifico

Acciaio per armature e tirafondi

B 450 C f_{yk} = 450 N/ mm² Resistenza caratteristica a snervamento

 $\gamma_s = 1,15$ Coefficiente parziale di sicurezza relativo all'acciaio

 f_{yd} = 11,8 MPa Resistenza di calcolo E_s = 206000 N/mm² Modulo elastico

Acciaio per carpenteria metallica tipo S 355 JR

S 355 JR: $f_{yk} = 355 \text{ N/ mm}^2 \text{ Resistenza caratteristica a snervamento}$

f_{tk} = 510 N/ mm² Resistenza caratteristica di rottura

 $\gamma_s = 1,05$ Coeff. Parziale resist. $E_s = 206000 \text{ N/mm}^2$ Modulo elastico

 $\rho = 7850 \text{ daN/m}^3 \text{ Densità}$

Bulloneria classe 6.8

Classe 6.8 ft = 600 N/ mm² Resistenza caratteristica a rottura

f_y = 510 N/ mm2 Resistenza caratteristica di snervamento

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo fondazione per sostegno porta isolatore IF28 E ZZ CL SE0200 004 6 di 33 01 Α tripolare per supporto sbarre AT

4 NATURA DEL TERRENO

La caratterizzazione geotecnica del terreno di fondazione si deduce dallo studio geologico elaborato....

Di seguito si riporta la stratigrafia considerata per il dimensionamento delle fondaziolni del piazzale di SSE.

		Spessore (m)	γ (kN/m ³)	Cu (kPa)	φ°	c' (kPa)
	Rilevato +scotoco e bonifica	(vedasi sezione)	19	-	35	0
	Strato 1	4m - 1m di scotico= 3	18	100	22	20
	Strato 2	2	18	-	32	0
	Strato 3	1	18	-	35	0
Strato 4a		12	19	200	20	20
	Strato 4b	-	19	350	20	20

Fig. 1: Sintesi delle stratigrafie e dei parametri del terreno in corrispondenza del piazzale di SSE.

Con riferimento al D.M. 14 gennaio 2008, i terreni presenti nell'area sono ascrivibili alla categoria **C**, che in generale comprende:

 ${f C}$ – Depositi di terreni a grana grossa mediamente addensati, o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V_S 30 compresi tra 180 e 360 m/s (ovvero resistenza penetrometrica 15 < N_{SPT} <50 nei terreni a grana grossa e 70 < cu <250 KPa nei terreni a grana fina). (Nella definizione V_S 30 è la velocità media di propagazione entro 30 metri di profondità delle onde di taglio).

Con riferimento alla Tabella 3.2.IV del D.M. 14 gennaio 2008, l'assetto topografico del terreno in studio rientra nella categoria:

T1: superficie pianeggiante, pendii e rilievi isolati con inclinazione media i≤15°.

Per una più precisa analisi del terreno si rimanda alla relazione geotecnica sopracitata.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo fondazione per sostegno porta isolatore IF28 E ZZ CL SE0200 004 7 di 33 01 Α

5 METODOLOGIA DI CALCOLO

Le attività di verifica strutturale della carpenteria e della fondazione vengono condotte seguendo le indicazioni del D.M. 14 gennaio 2008, in particolare per quanto concerne:

- il criterio dello stato limite ultimo;
- le azioni sismiche;

tripolare per supporto sbarre AT

- la metodologia dell'analisi statica equivalente;
- i criteri di combinazione con le concomitanti azioni non sismiche.

In ottemperanza alle norme vigenti, si devono considerare due ipotesi di carico, normale ed eccezionale. In ciascuno di questi casi devono essere analizzate diverse combinazioni, la più sfavorevole delle quali fornisce i parametri della sollecitazione sulla struttura di sostegno e sulla fondazione per determinare la resistenza meccanica delle strutture.

Data la variabilità delle caratteristiche dinamiche delle apparecchiature, per ogni coppia "apparecchiatura/carpenteria" vengono normalmente considerati casi differenti, ai quali corrispondono sets di caratteristiche ponderali e geometriche dell'apparecchiatura, a parità di carpenteria.

1. Determinazione delle combinazioni di carico e dei parametri della sollecitazione agenti alla base del sostegno

Nell'ipotesi di carico normale, le azioni di carico agenti sono le seguenti:

- Peso proprio;
- Tiro;
- Carichi durante il montaggio (secondo CEI, si deve tener conto di un carico durante il montaggio almeno pari a 1,0kN nel punto più critico della struttura di supporto)
- Spinta del vento;
- Peso del ghiaccio;

Nell'ipotesi di carico eccezionale, il peso proprio e il tiro agiscono simultaneamente e si devono considerare insieme al maggiore dei seguenti carichi occasionali:

- Carichi derivanti dalle manovre;
- Condizione di carico da corto circuito (secondo CEI 11-26, si considera una corrente di corto trifase pari a 31,5 kA).
- Perdita del tiro esercitato dal conduttore.
- Azione sismica.

Tali azioni, in accordo a quanto previsto dal paragrafo 2.5.3 del D.M. 14 gennaio 2008, sono state combinate tra loro come riportato nella Tabella 6.1, in cui i coefficienti di combinazione sono stati ottenuti definendo le azioni permanenti, eccezionali e quelle variabili e, tra queste ultime, distinguendo le dominanti dalle secondarie.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 E ZZ CL SE0200 004 8 di 33 01 Α

L'azione sismica e i carichi da corto circuito sono azioni eccezionali e per tale motivo non si considerano agenti simultaneamente.

Il carico durante il montaggio non si considera agente simultaneamente alle azioni eccezionali di corto circuito.

Ogni combinazione considerata (SLU, SLE, Sismica, Corto circuito) fornisce i parametri della sollecitazione agenti sulla struttura in elevazione.

Tabella 5.1: Coefficienti combinazione delle azioni.

		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i	Е	Е	Е	Α
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio	Vento X	Vento y	Ghiaccio	Neve	Sisma X	Sisma Y	Sisma Z	Corto circuito
	SLU_1	1,3	1,5	1,5	0,9	0,9	0,75	0,75	0	0	0	0
	SLU_2	1,3	1,5	1,5	1,5	0,9	0,75	0,75	0	0	0	0
NORMALE	SLU_3	1,3	1,5	1,5	0,9	1,5	0,75	0,75	0	0	0	0
	SLU_4	1,3	1,5	1,5	0,9	0,9	1,5	1,5	0	0	0	0
	SLU_5	1,3	1,5	1,5	0,9	0,9	0,75	1,5	0	0	0	0
	SLE freq_1	1	1	1,5	0,2	0	0	0	0	0	0	0
NORMALE	SLE freq_2	1	1	1,5	0	0,2	0	0	0	0	0	0
NORWALE	SLE freq_3	1	1	1,5	0	0	0,2	0,2	0	0	0	0
	SLE freq_4	1	1	1,5	0	0	0	0,2	0	0	0	0
Sismica	Sismica_1	1	1	1,5	0	0	0	0	1	0,3	0,3	0
	Sismica_2	1	1	1,5	0	0	0	0	0,3	1	0,3	0
	Sismica_3	1	1	1,5	0	0	0	0	0,3	0,3	1	0
ECCEZ.	Eccezionale CC	1	1	0	0	0	0	0	0	0	0	1
				Coefficienti	di comb	inazione	delle azioni					

2. Verifica della fondazione

Per ogni combinazioni di carico considerata, si svolgono le verifiche della fondazione, di tipo geotecnico e strutturale, agli stati limite ultimi secondo le NTC.

Per il calcolo delle sollecitazioni si sono adottate le ipotesi di materiali linearmente elastici. Le analisi sono svolte nelle ipotesi di piccoli spostamenti e piccole deformazioni impiegando i criteri della Scienza e della Tecnica delle Costruzioni.

Le verifiche allo stato limite ultimo condotte sulla struttura di fondazione in c.a. sono di due tipi, secondo la vigente normativa:

- SLU di tipo geotecnico
 - Ribaltamento della fondazione (EQU)
 - Collasso per raggiungimento del carico limite dell'insieme fondazione-terreno (GEO)
 - Scorrimento sul piano di posa (GEO)
- SLU di tipo Strutturale (STR):
 - raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale deve essere effettuata, analogamente a quanto previsto nel § 6.4.2.1 delle NTC 2008, secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le resistenze globali.

Le rimanenti verifiche devono essere effettuate, , tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I., seguendo almeno uno dei due approcci:

Approccio 1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandanti</u> <u>Mandataria</u> **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo fondazione per sostegno porta isolatore

IF28

01

E ZZ CL

SE0200 004

9 di 33

Α

- Combinazione 1 (A1+M1+R1)
- Combinazione 2 (A2+M2+R2)
- Approccio 2

tripolare per supporto sbarre AT

Combinazione 1 (A1+M1+R3)

Nelle verifiche effettuate con l'apporccio 2 finalizzate al dimensionamento strutturale (STR), il coefficiente γR non deve essere portato in conto.

La lettera A indica i coefficienti da applicare alle sollecitazioni, M i coefficienti da applicare ai parametri geotecnici del terreno e R i coefficienti da applicare per le resistenze globali.

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G ₁	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G ₂ (1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γε	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	γ _R = 1,1

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

Le verifiche agli stati limite ultimi di tipo strutturale sono svolte sugli elementi principali che costituiscono la fondazione.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo fondazione per sostegno porta isolatore IF28 E ZZ CL SE0200 004 10 di 33 01 Α tripolare per supporto sbarre AT

6 DEFINIZIONE DEI CARICHI

6.1 Pesi propri

Il peso proprio di sostegni ed apparecchiature è stato tratto dai documenti forniti dal committente e da dati tecnici del produttore dell'apparecchiatura.

6.2 Neve

Il carico neve è dimensionato secondo NTC 2008.

Zona di carico NEVE	II	
quota s.l.m.	160	m
q _{sk}	100	daN/m²

6.3 Peso del ghiaccio

Nelle regioni dove si possono verificare formazioni di ghiaccio si deve tenere conto del relativo carico sui conduttori flessibili, sulle sbarre e sui conduttori rigidi (CEI EN 61936-1). Si assume densità del ghiaccio pari a 900kg/m³ e spessore manicotto di ghiaccio di 10 mm.

6.4 Azione del vento

La pressione del vento **p** si ottiene dall'espressione: p=q_{ref} · C_e· C_p· A_v

con: c_e = coeff. di esposizione

 c_p = coeff. di forma pari a: 0,7 se riferito a superfici cilindriche

1 se riferito a superfici piane

Tabella 6.1: Determinazione pressione del vento.

	Comune	GROTTAMINARDA (AV)	as=350-400	m s.l.m.	
ZONA	Descrizione		v _{b,0} (m/s)	a ₀ (m)	ka (1/s)
3	Toscana, Marche, Umbria, Lazio, Ab Basilicata, Calabria (esclusa la provi		27	500	0,37

SUPERFICI CILINDRICHE

Rugosità	D	
Cat. Espos.	II	
Vr	27,00	m/s
q r	455,63	N/m^2
k r	0,19	
Z 0	0,05	m
Zmin	4	m
ct	1	

SUPERFICI PIANE

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo fondazione per sostegno porta isolatore IF28 E ZZ CL SE0200 004 11 di 33

01

Α

Rugosità	D	
Cat. Espos.	II	
Vr	27,00	m/s
q r	455,63	N/m^2
k r	0,19	
Z 0	0,05	m
Zmin	4	m
ct	1	

tripolare per supporto sbarre AT

6.5 Carico durante il montaggio

Il carico durante il montaggio almeno pari a 1,0kN nel punto più critico della struttura di supporto.

6.6 Azione sismica

Il calcolo dell'azione sismica è svolto per lo Stato limite ultimo di salvaguardia della Vita (SLV).

Per l'azione sismica sono stati considerati gli spettri di risposta elastici in accelerazione delle componenti orizzontali e verticali riferiti al comune di Grottaminarda (AV).

Tramite il fattore di struttura q, relativo alla singola struttura in esame, si otterranno i valori dello spettro di progetto. Il fattore di struttura q sarà determinato secondo le NTC e, nel caso di struttura con comportamento non dissipativa, a mensola o pendolo inverso, si assume valore pari a 1,50 per la componente orizzontale. Lo stesso valore di q si assume pe la componente verticale.

Nell'analisi statica lineare, il periodo del primo modo di vibrare della struttura T₁ è ricavato dalla seguente formula: $T_1 = C_1 \cdot H^{3/4}$

I parametri sismici che caratterizzano l'area dove sorge la struttura sono:

- Accelerazione orizzontale massima al sito
- Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale F_0
- periodo di inizio del tratto a velocità costante dello spettro in accelerazione

Poiché l'azione sismica è una forza inerziale, si riporta il calcolo delle componenti orizzontale e verticale dell'azione sismica per ogni apparecchiatura presa in esame.

Tabella 6.2: Determinazione parametri azione sismica.

Calcolo AZIONE SISMICA Zona		1	SLV			
Tipo costruzione	3		COSTRUZIONI CON LIVELLI DI PRESTAZIONE ELEVATI			
VN	100	anni	Vita nominale			
Classe d'uso	IV					
Cu	2		Coefficiente d'uso			
VR	200	anni	Periodo di riferimento: Se Vr è minore di 35 anni si pone Vr=35			
P VR (SLV)	10%		Probabilità di superamento nel periodo di riferimento considerato			
TR	1898	anni	Tempo di ritorno			

PARAMETRI DI PERICOLOSITA' SISMICA – apparecchiature e.m. AT						
STATO LIMITE Tr [anni] ag [g] F0 T*c [sec]					T*c [sec]	
Operatività	SLO	120	0,134	2,315	0,334	
Danno	SLD	201	0,175	2,304	0,347	

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO CODIFICA REV. COMMESSA DOCUMENTO FOGLIO Relazione di calcolo fondazione per sostegno porta isolatore IF28 01 E ZZ CL SE0200 004 Α 12 di 33 tripolare per supporto sbarre AT

Salvaguardia vita	SLV	1898	0,473	2,341	0,425
Prevenzione collasso	SLC	2475	0,523	2,365	0,431

Spettri di risposta elastici per i diversi Stati Limite

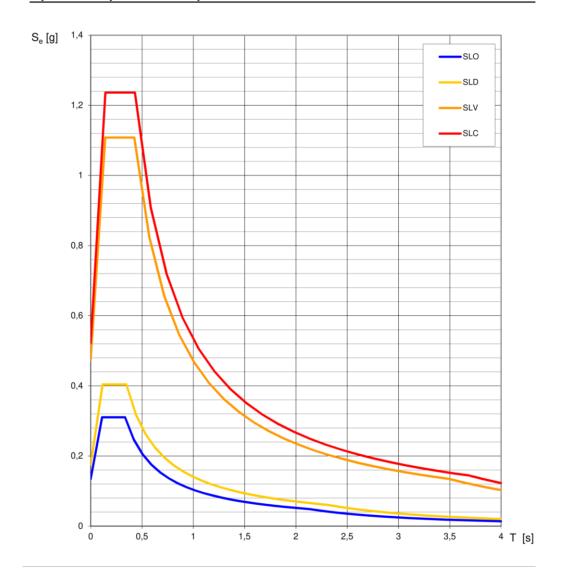


Fig. 2: Spettri di risposta elastici per i diversi stali limite, comune di GROTTAMINARDA (AV) - Apparecchiature elettromeccaniche impianto AT presso SSE di HIRPINIA.

Infine, definendo il fattore di struttura q e la categoria di sottosuolo (tipo **C** nel caso in esame), si determinano gli spettri di risposta per le componenti orizzontale e verticale dell'azione sismica, per lo stato limite ultimo di salvaguardia della vita (SLV).

• Categoria sottosuolo: C

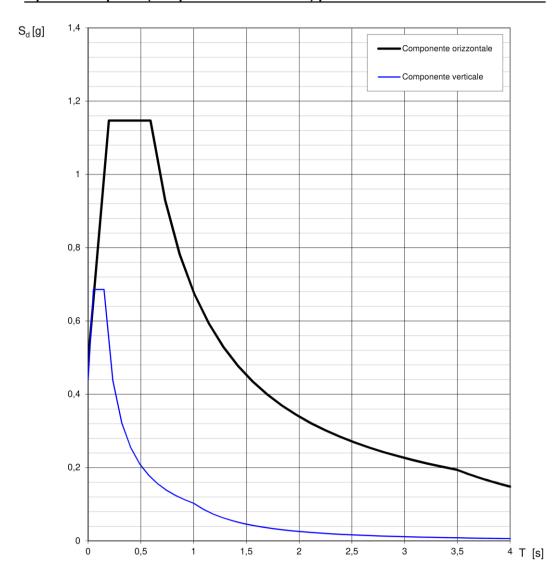
Categoria topografica: T1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO REV. COMMESSA CODIFICA DOCUMENTO FOGLIO Relazione di calcolo fondazione per sostegno porta isolatore IF28 01 E ZZ CL SE0200 004 13 di 33 Α tripolare per supporto sbarre AT

Stato limite considerato: SLV

- q per la componente orizzontale = 1,5 (struttura a mensola o pendolo inverso, per strtture non dissipative)
- *q* per la componente verticale = 1,5 (struttura a mensola o pendolo inverso)

Si riportano di seguito gli spettri di progetto così definiti:


Periodo di ritorno: 1898

ag = 0,473 g

Accelerazione spettrale orizzontale = 1,147 g (accelerazione al plateau)

Accelerazione spettrale verticale = 0,44 g (massima accelerazione al piede a periodo nullo).

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF28 01 E ZZ CL SE0200 004 A 14 di 33

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV			
a_{g}	0,473 g			
F _o	2,341			
T_C^*	0,425 s			
S _S	1,035			
C _C	1,393			
S _T	1,000			
q	1,000			

Parametri dipendenti

S	1,035
η	1,000
T _B	0,197 s
T _C	0,592 s
T_D	3,493 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\mathrm{B}} = T_{\mathrm{C}}/3 \tag{NTC-07 Eq. 3.2.8}$$

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/g, dove g è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,490
T _B ◀	0,197	1,147
T _C ◀	0,592	1,147
	0,730	0,930
	0,868	0,782
	1,006	0,674
	1,144	0,593
	1,282	0,529
	1,421	0,478
	1,559	0,435
	1,697	0,400
	1,835	0,370
	1,973	0,344
	2,112	0,321
	2,250	0,302
	2,388	0,284
	2,526	0,269
	2,664	0,255
	2,802	0,242
	2,941	0,231
	3,079	0,220
	3,217	0,211
	3,355	0,202
$T_D \leftarrow$	3,493	0,194
	3,517	0,192
	3,542	0,189
	3,566	0,186
	3,590	0,184
	3,614	0,182
	3,638	0,179
	3,662	0,177
	3,686	0,174
	3,710	0,172
	3,735	0,170
	3,759	0,168
	3,783	0,166
	3,807	0,164
	3,831	0,162
	3,855	0,159
	3,879	0,158
	3,903	0,156
	3,928	0,154
	3,952	0,152
	3,976	0,150
	4,000	0,148

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

LOTTO REV. COMMESSA CODIFICA DOCUMENTO **FOGLIO** IF28 E ZZ CL SE0200 004 Α 15 di 33 01

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a_{gv}	0,440 g
a _{gv} S _S	1,000
S _T	1,000
q	1,500
T _B	0,050 s
T _C	0,150 s
T_D	1,000 s

Parametri dipendenti

F_v	2,174
S	1,000
n	0,667

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{\rm v} = 1,35 \cdot F_{\rm o} \cdot \left(\frac{a_{\rm g}}{g}\right)^{0.5} \tag{NTC-08 Eq. 3.2.11}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,440
T _B ◀	0,050	0,686
T _C ←	0,150	0,686
	0,235	0,438
	0,320	0,322
	0,405	0,254
	0,490	0,210
	0,575	0,179
	0,660	0,156
	0,745	0,138
	0,830	0,124
	0,915	0,112
$T_D \leftarrow$	1,000	0,103
	1,094	0,086
	1,188	0,073
	1,281	0,063
	1,375	0,054
	1,469	0,048
	1,563	0,042
	1,656	0,038
	1,750	0,034
	1,844	0,030
	1,938	0,027
	2,031	0,025
	2,125	0,023
	2,219	0,021
	2,313	0,019
	2,406	0,018
	2,500	0,016
	2,594	0,015
	2,688	0,014
	2,781	0,013
	2,875	0,012
	2,969	0,012
	3,063	0,011
	3,156	0,010
	3,250	0,010
	3,344	0,009
	3,438	0,009
	3,531	0,008
	3,625	0,008
	3,719	0,007
	3,813	0,007
	3,906 4,000	0,007
	4,000	0,006

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandanti <u>Mandataria</u> **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA FOGLIO Relazione di calcolo fondazione per sostegno porta isolatore E ZZ CL SE0200 004 IF28 01 Α 16 di 33 tripolare per supporto sbarre AT

La componente verticale del sisma sarà trascurata.

6.7 Condizione di carico da corto circuito

La condizione di corto circuito è considerata eccezionale. I valori di corto circuito per l'apparecchiatura sono stati determinati secondo normativa vigente.

Il corto circuito non viene considerato contestualmente al sisma, anche se potrebbe essere causato da quest'ultimo. Trattasi, in questa interpretazione, di due eventi eccezionali la cui probabilità combinata di accadimento può essere considerata scarsa.

APPALTATORE:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

Mandanti

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

PROGETTAZIONE:

<u>Mandataria</u>

Relazione di calcolo fondazione per sostegno porta isolatore tripolare per supporto sbarre AT

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 004
 A
 17 di 33

7 FONDAZIONE PER SOSTEGNO TRIPOLARE DI SBARRA

7.1 Caratteristiche della struttura

Trattasi di fondazione costituita da una piastra in c.c.a. di spessore 50cm di dimensioni in pianta di 6,20x2,00m; la profondità del piano di posa è di 0,60m. Sulle estremità della piastra, a distanza ciascuno di 2,50m dalla mezzeria della fondazione sono impostati due batoli in c.c.a. di dimensioni 0,80x0,80x0,20m, sporgenti dal piano campagna di 10cm. Ad ogni batolo è ancorata la colonna del portale di sostegno tripolare in esame, tramite tirafondi ad uncino, interasse 40 cm.

Per quanto riguarda l'apparecchiatura installate sulla fondazione, di seguito si riportano le caratteristiche essenziali considerate.

SUPPORTO SBARRE TRIPOLARE

Sostegno	
Peso [daN]	295,00
Altezza [m] colonna	5,85
Baricentro [m] colonna	2,925
Diametro [m] colonna	0,219
h vento [m] colonna	2,925
Sup. esposta al vento colonna [m^2]	1,282
H traverso (m)	0,1
Lg traverso (m)	5
h vento su traverso	5,80
Sup. esposta al vento traverso [m^2]	0,50
Apparecchiatura (dati singolo isolatore)	
Peso [daN]	94
Altezza [m]	1,65
Baricentro [m]	0,825
Sezione [m]	0,15
H vento (m)	3,595
Diametro testa [m]	0,15
altezza attacco	1,65
Sup. esposta al vento [m^2]	0,248
Altezza applicazione tiro [m]	7,500
Altezza applicazione montaggio [m]	5,850
Altezza applicazione vento su colonna [m]	2,925
Altezza applicazione vento su traverso [m]	5,800
Collegamento elettrico	tubo 100/86
Lunghezza campata [m]	11
diametro conduttore [m]	0,10
altezza	7,45
peso [daN/m]	5,32

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo fondazione per sostegno porta isolatore IF28 E ZZ CL SE0200 004 18 di 33 01 Α tripolare per supporto sbarre AT

7.2 Carichi agenti e determinazione dei parametri della sollecitazione

Di seguito sono riportati i carichi sopra descritti che sono stati applicati al modello di calcolo ad elementi finiti della struttura di sostegno dell'apparecchiatura.

La presenza dei tubi in alluminio (sbarre) che collegano i portali di supporto sbarra è stata rappresentata mediante la funzioni "vincoli" come un carrello che consenta la la traslazione nelle direzioni z e y (rispettivamente direzione verticale e ortogonale allo sviluppo della sbarra).

Nel modello di calcolo, i carichi sono applicati come forze concentrate nei punti coincidenti con il baricentro degli elementi. Per maggiori dettagli si rimanda alle seguenti tabelle.

7.2.1 AZIONE DEL VENTO

Si riporta la determinazione della forza vento applicata al modello di calcolo, spirante in direzione x e y.

La forza vento sull'apparecchiatura viene calcolata come forza applicata al baricentro dell'apparecchiatura e riportata alla sommità del sostegno insieme al suo momento di trasporto. La forza vento sulla struttura di sostegno viene considerata anch'essa come applicata al baricentro dell'elemento.

Asse Sbarra

SUPPORTO SBARRE TRIPOLARE

Carichi derivanti da azione	del vento					
pressione vento su sup. cilindriche		p sup. cil.	69,29	daN/m^		
pressione vento su sup. piane		p sup. piane	98,99	daN/m^ 2		
Forza vento xx						
Superficie esposta al vento	app. singola	уу	0,45	m^2/m	Superficie yy_vento in dir XX	apparecch.
	traverso	уу	0,53	m^2/m	Superficie yy_vento in dir XX	singolo traverso
	colonna	уу	1,28	m^2/m	Superficie yy_vento in dir XX	singola colonna
Fvx, app	app. singola	- 1	31,18	daN	zG,app= 6,60 m	
Fvx, trav	traverso	1	52,46	daN	zG,trav= 5,90 m	
Fvx, col	colonna	_ 1	88,77	daN	zG,col= 2,93 m	
My,trasporto		1	23,39	daN m		
Forza vento yy						
Superficie esposta al vento	app. singola	XX	0,45	m^2/m	Superficie xx_vento in dir YY	apparecch.
	traverso	xx	0,04	m^2/m	Superficie xx_vento in dir YY	singolo traverso
	colonna	xx	1,28	m^2/m	Superficie xx_vento in dir YY	singola colonna
	conduttore	xx	0,10	m^2/m	. –	
Fvy, app	app. singola	1	31,18	daN	zG,app= 6,60 m	
Fvy, trav	traverso	1	3,96	daN	zG,trav= 5,90 m	_
Fvy, col	colonna	1	88,77	daN	zG,col= 2,93 m	
Fvy, cond rigido DX	_ conduttore	1	38,11	daN		
Fvy, cond rigido SX		1	38,11	daN		

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> <u>Mandanti</u>

PROGETTO ESECUTIVO

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

Relazione di calcolo fondazione per sostegno porta isolatore tripolare per supporto sbarre AT

COMMESSA IF28

LOTTO CODIFICA 01 E ZZ CL

DOCUMENTO SE0200 004

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

REV. Α

FOGLIO 19 di 33

Mx,trasporto	vento su app.	1	23,39	daN m		
Mx,trasporto	vento su cond. DX	1	57,16	daN m		
Mx,trasporto	vento su cond. SX	1	57,16	daN m		
			-		p lineare sb. Alluminio 100/80[daNm]	
Peso conduttore rigido			83,97	daN		7,634
_			-	1	p lineare manicotto 10mm [daN/m]	
Peso manicotto di ghia	ccio 10mm		34,21	daN		3,11
Area esposta al vento d	conduttore rigido		0,1	m^2/m	densità ghiaccio 900 kg/m3	
Lunghezza conduttore	DX		11	m		
Lunghezza conduttore	SX		11	m		
Area esposta al vento d	conduttore rigido con ghiacci	0	0,12	m^2/m	_	

Tali carichi sono stati combinati secondo quanto riportato al capitolo 6 e in tabella 6.1, al fine di determinare i parametri della sollecitazione con cui eseguire le verifiche previste, sia allo stato limite ultimo sia di esercizio, di cui si riporta un estratto. Si precisa che il carico di montaggio è stato applicato ai nodi in cui l'apparecchiatura viene ancorata alla struttura di sostegno. Per le caratteristiche dell'impianto, il valore del tiro è nullo.

		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio X	Montaggio Y	Vento X	Vento y	Ghiaccio
	SLU_1	1,3	1,5	1,5	0	1,5	0,9	0,75
	SLU_2	1,3	1,5	0	1,5	1,5	0,9	0,75
NORMALE	SLU_3	1,3	1,5	1,5	0	0,9	1,5	0,75
NORWALE	SLU_4	1,3	1,5	0	1,5	0,9	1,5	0,75
	SLU_5	1,3	1,5	1,5	0	0,9	0,9	1,5
	SLU_6	1,3	1,5	0	1,5	0,9	0,9	1,5
	SLE freq_1	1	1	1,5	0	0,2	0	0
	SLE freq_2	1	1	1,5	0	0	0,2	0
NORMALE	SLE freq_3	1	1	1,5	0	0	0	0,2
NORWALE	SLE freq_4	1	1	0	1,5	0,2	0	0
	SLE freq_5	1	1	0	1,5	0	0,2	0
	SLE freq_6	1	1	0	1,5	0	0	0,2

APPALTATORE: Consorzio HIRPINIA AV	Soci SALINI IMPREGILO S.P.A. ASTA	ALDI S.P.A		ITINI	ERARIO I	NAPOLI – B	ARI	
PROGETTAZIONE Mandataria ROCKSOIL S.P.A	-			TA APICE – OF LE APICE – HI				
PROGETTO ESEC Relazione di calcolo tripolare per support	atore	COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO SE0200 004	REV.	FOGLIO 20 di 33	

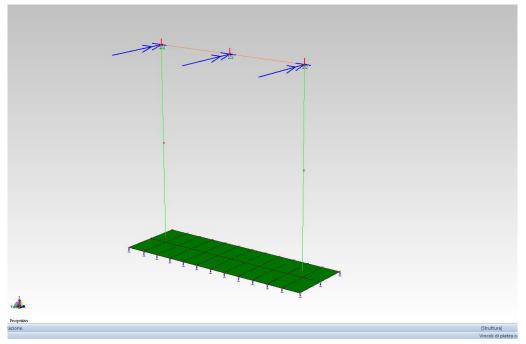
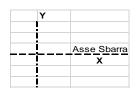



Fig. 7.1. Vista del modello ad elemeneti finiti con applicazione dei carichi in SLU 3.

7.2.2 CORTO CIRCUITO

Il carico da corto circuito è stato applicato nella direzione yy in corrispondenza della sommità delle colonne, con verso opposto. La forza vale 100 daN. Sullo stesso punto è stato applicato un momento di trasporto calcolato come il valore della forza da corto circuito per l'altezza dell'apparecchiatura, in quanto il carico da corto circuito si assume applicato in sommità dell'apparecchiatura. Il valore applicato è pari a M=100 daN x 1,85 m=185 daN m.

Corto circuito				
valore del corto circuito	YY	100	daN	applicato all'apparecchiatura
My,trasporto		185	daN m	applicato al traverso su cui grava l'apparecchiatura

Tali carichi sono stati combinati secondo quanto riportato al capitolo 6 e in tabella 6.1, al fine di determinare i parametri della sollecitazione con cui eseguire le verifiche previste, di cui si riporta un estratto. Per le caratteristiche dell'impianto, il valore del tiro è nullo.

		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i	Α
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio X	Montaggio Y	Vento X	Vento y	Ghiaccio	Corto circuito
ECCEZ.	Eccezionale CC	1	1	0	0	0	0	0	1

APPALTATORE:								
Consorzio	<u>Soci</u>			ITINI		IADOLI D	A D I	
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE	_			TA APICE - OF				
<u>Mandataria</u>	<u>Mandanti</u>		I	LOTTO	FUNZIONA	LE APICE – HI	RPINIA	
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
	PROGETTO ESECUTIVO			LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	Relazione di calcolo fondazione per sostegno porta isolatore ripolare per supporto sbarre AT			01	E ZZ CL	SE0200 004	Α	21 di 33

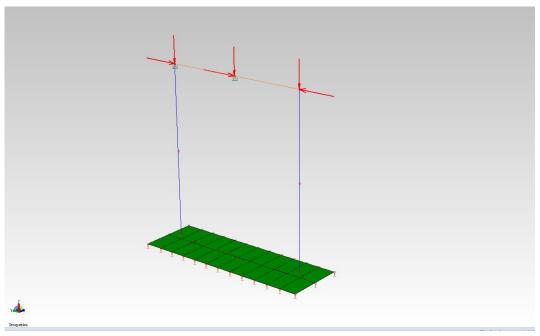


Fig. 7.2. Vista del modello ad elementi finiti con applicazione dei carichi in Corto circuito.

7.2.3 AZIONE SISMICA

L'azione sismica si ripartisce sul sistema sostegno+apparecchiatura secondo la relazione:

$$Fi = Fh \cdot zi \cdot Wi / (\Sigma j \cdot zj \cdot Wj)$$

I carichi così ottenuti e applicati al modello sono riportati di seguito.

Con riferimento alla tabella 7.3, e alle caratteristiche del sistema si ha:

Carichi deriva	nti da azione sismica					
Forza orizzonta	ale		Fh	7485,03	daN	
Apparecchiatura			Wapp	300,00	daN	
			z app	6,60	m	
Sostegno			Wtrav+col	700,00	daN	
			z trav+col	2,93	m	
			Σj zj Wj	4027,50	daN m	
Ripartizione a	zione sismica su elementi p	rincipali	1		Υ	
	Apparecchiatura sostegno	3679,79 3805,24	daN daN			Asse Sbarra
M trasporto	3679,79*1,5/2=	2759,84	daN m			

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> <u>Mandanti</u> **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO CODIFICA COMMESSA DOCUMENTO REV. FOGLIO Relazione di calcolo fondazione per sostegno porta isolatore IF28 E ZZ CL SE0200 004 22 di 33 01 Α

Anche in questo caso ai nodi del traverso (n. 3) su cui grava l'apparecchiatura, è stato applicato un momento M= (3679,79*1,5/2)/3=919,95 daN m, calcolato come la forza sismica sull'apparecchiatura applicata al baricentro della stessa. Per le caratteristiche dell'impianto, il valore del tiro è nullo.

tripolare per supporto sbarre AT

Tali carichi sono stati combinati secondo quanto riportato al capitolo 6 e in tabella 6.1, al fine di determinare i parametri della sollecitazione con cui eseguire le verifiche previste.

		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i	Е	Е	Α
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio X	Montaggio Y	Vento X	Vento y	Ghiaccio	Sisma X	Sisma Y	Corto circuito
	Sismica_1	1	1	1,5	0	0	0	0	1	0,3	0
Ciamiaa	Sismica_2	1	1	1,5	0	0	0	0	0,3	1	0
Sismica	Sismica_3	1	1	0	1,5	0	0	0	1	0,3	0
	Sismica_4	1	1	0	1,5	0	0	0	0,3	1	0

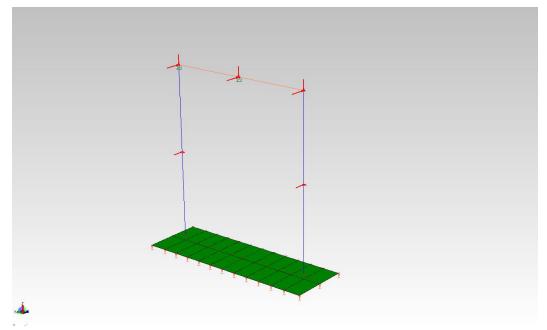


Fig. 7.3. Vista del modello ad elementi finiti con applicazione dei carichi in Sismica 1.

7.3 Combinazione di carico agli stati limite ultimi SLU

Parametri della sollo	Ecitazione ai	ia base uella	i Siligola Colo	IIIIa- SLU			•
	SLU_1	SLU_2	SLU_3	SLU_4	SLU_5	SLU_6	
Azione assiale	29740	45500	30130	45880	30130	45890	N
Taglio in X	771	771	463	463	463	463	N
Taglio in Y	4870	27370	6380	28880	4910	27410	N
Momento flettente rispetto asse X	12570	104800	17650	109900	12640	104900	N m
Momento flettente rispetto asse y	1142	1142	685	685	685	685	N m

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 004
 A
 23 di 33

7.4 Combinazione di carico sismica

Parametri della sollecitazione alla base della singola colonna- SISMICA

		1	1		1
	Sismica_1	Sismica_2	Sismica_3	Sismica_4	
Azione assiale	30880	39160	46640	54920	N
Taglio in X	9590	2880	9440	2880	N
Taglio in Y	13690	39900	36200	62400	N
Momento flettente rispetto asse X	40660	124600	132900	216900	N m
Momento flettente rispetto asse y	13340	3410	13340	4279	N m

7.5 Combinazione di carico da corto circuito

Parametri della sollecitazione alla base della singola colonna- CORTO CIRCUITO										
	CC1									
Azione assiale	4860	N								
Taglio in X	0	N								
Taglio in Y	1750	N								
Momento flettente rispetto asse X	6476	N m								
Momento flettente rispetto asse y	0	N m								

APPALTATORE: Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

Relazione di calcolo fondazione per sostegno porta isolatore tripolare per supporto sbarre AT

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF28 E ZZ CL SE0200 004 24 di 33 01 Α

7.6 Verifica della fondazione

7.6.1 VERIFICHE SLU DI TIPO GEOTECNICO

Sono state considerate le combinazioni di carico sismica, agli stati limite ultimi e di corto circuito.

Per ogni combinazione di carico ottenuta impiegando i coefficienti parziali riportati nella seguente tabella, sono stati calcolati i parametri della sollecitazione alla base di ogni sostegno. Quindi, tra quelle esaminate, si sono considerate le combinazioni di carico che trasmettono alla fondazione:

- Massimo momento ribaltante attorno ad una asse trasversale a quello della linea M_{x.MAX}
- 2. Massimo momento ribaltante attorno ad una asse parallelo a quello della linea M_{v.MAX}
- 3. Minima azione verticale.

Tabella 7.1: Coefficienti parziali per le verifiche di tipo geotecnico.

				NTC 2008 Tab. 6.2.I			NTC 2 Tab. 6			NTC 2008 Tabb. 6.2.I, 6.2.II, 6.8.I
VERIFICHE SLU - GEO	Approccio	Comb.	γG1	γG2	γ Q1	γ _φ ' tan	γc'	γcu	γγ	γR
Collasso per	2	•	(1)(1,3)	(0)(1,5)	(0)(1,5)	1	1	1	1	2,3
carico limite	1	1	(1)(1,3)	(0)(1,5)	(0)(1,5)	1	1	1	1	1
(GEO)	1	2	(1)(1)	(0)(1,3)	(0)(1,3)	1,25	1,25	1,4	1	1,8
Scorrimento	2	-	(1)(1,3)	(0)(1,5)	(0)(1,5)	1	1	1	1	1,1
(GEO)	1	1	(1)(1,3)	(0)(1,5)	(0)(1,5)	1	1	1	1	1
	1	2	(1)(1)	(0)(1,3)	(0)(1,3)	1,25	1,25	1,4	1	1
Stabilità globale (EQU)	1	2	(0,9)(1,1)	(0)(1,5)	(0)(1,5)	1,25	1,25	1,4	1	1,1

Per calcolare le sollecitazioni alla base della fondazione, ai valori dei parametri della sollecitazione calcolati alla base del sostegno sono stati sommati i corrispettivi contributi dovuti allo sforzo di taglio e al peso della fondazione stessa.

A favore della sicurezza non è stato considerato il contributo del terreno sulla fondazione (spessore terreno=0).

Nel caso di verifica a ribaltamento, per la combinazione di carico sismica, il peso viene ridotto di una quantità pari al peso della fondazione moltiplicato per l'accelerazione calcolata del terreno in direzione verticale.

Caratteristiche del TERRENO								
γ t	1900	daN/m^3	Peso di volume terreno					
γ'	-	daN/m^3	Peso di volume immerso					
φ'	35	٥	Angolo di attrito in gradi					
φ'	0,611	rad	Angolo di attrito in radianti					
c'	0	daN/m^2	Coefficiente di coesione					
Caratteristiche del 0	CLS							

APPALTATORE: Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

LOTTO REV. COMMESSA CODIFICA DOCUMENTO **FOGLIO** IF28 E ZZ CL SE0200 004 25 di 33 01 Α

Rck	250	daN/cm2	
			Dana ana siti ana ala
γcls	2500	daN/m^3	Peso specifico cls
γ'cls	1500	daN/m^3	Peso specifico cls immerso
Caratteristiche FON	NDAZIONE		
Bx	2	m	lato minore//x
Ву	6,2	m	lato maggiore//y
b	0,8	m	lato minore batolo
1	0,8	m	lato maggiore batolo
ebx	0	m	eccentricità batolo y
eby	0	m	eccentricità batolo x
D	0,2	m	altezza batolo
d	0,5	m	altezza piastra
sp=H	0,7	m	spessore totale fondazione
spf	0,1	m	spessore fondazione fuori terra
sp t	0,1	m	Spessore terreno
P cls	161400	N	Peso fondazione cls
P terreno	0	N	Peso terreno su fondazione
P tot fon	-161400	N	Peso totale cls+terreno

Si riportano gli esiti delle verifiche svolte sulla fondazione.

Verifica a ribaltamento EQU

La verifica a ribaltamento è stata eseguita per le tre condizioni (1, 2, 3) per le combinazioni di carico Corto Circuito (CC), Sismica e SLU. La verifica risulta soddisfatta.

Si riportano gli esiti della verifica a ribaltamento svolta per la combinazione di carico da corto circuito per le tre condizioni (1, 2, 3) analizzate per le quali le azioni sulla fondazione sono coincidenti.

Nei confronti del ribaltamento la combinazione di carico simica è risultata più gravosa per la fondazione in esame

Combinazione di carico sismica

Azioni esterne riportate alla base della singola colonna

	Sismica_1	Sismica_2	Sismica_3	Sismica_4	
Azione assiale	30880	39160	46640	54920	N
Taglio in X	9590	2880	9440	2880	N
Taglio in Y	13690	39900	36200	62400	N
Momento flettente rispetto asse X	40660	124600	132900	216900	N m
Momento flettente rispetto asse y	13340	3410	13340	4279	N m

PdS alla base del sostegno - SISMICA

	Sismica_1	Sismica_2	Sismica_3	Sismica_4	
Azione assiale	61760	78320	93280	109840	N

Consorzio <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandanti <u>Mandataria</u>

PROGETTO ESECUTIVO

NET ENGINEERING S.P.A. ALPINA S.P.A.

ROCKSOIL S.P.A

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo fondazione per sostegno porta isolatore IF28 01 E ZZ CL SE0200 004 Α 26 di 33 tripolare per supporto sbarre AT

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

Taglio in X	19180	5760	18880	5760	N
Taglio in Y	27380	79800	72400	124800	N
Momento flettente rispetto asse X	81320	249200	265800	433800	N m
Momento flettente rispetto asse y	26680	6819	26680	8558	N m

Parametri della sollecitazione alla base della fondazione

Condizione	Comb.	Mx	Ту	Му	Tx	N	
		(daN m)	(daN)	(daN m)	(daN)	(daN)	<u>-</u>
1. Mx max	SISMICA 4	43380	12480	856	576	-10984	_
2. My max	SISMICA 3	26580	7240	2668	1888	-9328	-
3. N min	SISMICA 1	8132	2738	2668	1918	-6176	-
1. Mx max	SISMICA 4	8736	0	403	0	-8504	Contributo alle sollecitazioni dato dalla fondazione
2. My max	SISMICA 3	5068	0	1322	0	-8504	Contributo alle sollecitazioni dato dalla fondazione
3. N min	SISMICA 1	1917	0	1343	0	-16140	Contributo alle sollecitazioni dato dalla fondazione
Parametri da	ella sollecitazione	alla basa	dolla fan	daziona			
Condizione	Comb.	Mx		My	Tx	N]
Condizione	Comb.	(daN m)	Ty (daN)	(daN m)	(daN)	(daN)	
1.	SISMICA 4	52116	12480	1259	576	-19488	
2.	SISMICA 3	31648	7240	3990	1888	-17832	
3.	SISMICA 1	10049	2738	4011	1918	-22316	

Verifica a ribaltamento

Condizione	1.	2.	3.		
Ed= M rib,xx	52116	31648	10049	daN m	Momento di ribaltamento totale rispetto asse xx
Rd= M stab xx / γR	54921	50254	62890	daN m	Momento stabilizzante derivante da carichi di compressione-asse xx
Ed <rd< td=""><td>Verificato</td><td>Verificato</td><td>Verificato</td><td></td><td></td></rd<>	Verificato	Verificato	Verificato		
m rib,xx	1,05	1,59	6,26		Verifica
Verifica stabilità	Verificato	Verificato	Verificato		
Ed= M rib,yy	1259	3990	4011	daN m	Momento di ribaltamento totale rispetto asse yy
Rd= M stab yy / γR	17717	16211	20287	daN m	Momento stabilizzante derivante da carichi di compressione-asse yy
Ed <rd< td=""><td>Verificato</td><td>Verificato</td><td>Verificato</td><td></td><td>. ,,</td></rd<>	Verificato	Verificato	Verificato		. ,,
m rib,yy	14,07	4,06	5,06		Verifica

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO**

SE0200 004

27 di 33

Α

E ZZ CL

Verifica stabilità Verifica	to Verificato	Verificato		
-----------------------------	---------------	------------	--	--

Collasso per carico limite fondazione-terreno GEO

Il carico limite per la fondazione è stato calcolato mediante la formula trinomia del carico limite:

 $Q_{lim} = N_q \gamma_1 D \ s_q \ i_q \ d_q \ b_q \ g_q + \ N_{cc} \ s_c \ i_c \ d_c \ b_c \ g_c + 0,5 \ N_{gg} B \ s_g \ i_g \ b_g \ g_g$

per le tre condizioni (1, 2, 3) per le combinazioni di carico Corto Circuito (CC), Sismica e SLU. La verifica risulta soddisfatta.

IF28

01

Si riporta di seguito l'esito della verifica condotta nella combinazione di carico simsica risultata più gravosa per la fondazione in esame.

Combinazione di carico sismica

	Sismica_1	Sismica_2	Sismica_3	Sismica_4	
Azione assiale	30880	39160	46640	54920	N
Taglio in X	9590	2880	9440	2880	N
Taglio in Y	13690	39900	36200	62400	N
Momento flettente rispetto asse X	40660	124600	132900	216900	N n
	13340	3410	13340	4279	
Momento flettente rispetto asse y		0.10	100.10		Nn
PdS alla base del sostegno - SISMI	CA				Nm
,		Sismica_2	Sismica_3	Sismica_4	Nm
,	CA				Nn
PdS alla base del sostegno - SISMI	CA Sismica_1	Sismica_2	Sismica_3	Sismica_4	Nm
PdS alla base del sostegno - SISMI Azione assiale	CA Sismica_1 61760	Sismica_2 78320	Sismica_3 93280	Sismica_4 109840	N
PdS alla base del sostegno - SISMI Azione assiale Taglio in X	Sismica_1 61760 19180	Sismica_2 78320 5760	Sismica_3 93280 18880	Sismica_4 109840 5760	N

Condizione	Comb.	Mx	Ту	Му	Tx	N
		(daN m)	(daN)	(daN m)	(daN)	(daN)
1. Mx max	SISMICA 4	43380	12480	856	576	-10984
2. My max	SISMICA 3	26580	7240	2668	1888	-9328
3. N min	SISMICA 1	8132	2738	2668	1918	-6176

	1. Mx max	SISMICA 4	8736	0	403	0	-16140
	2. My max	SISMICA 3	5068	0	1322	0	-16140
Ī	3. N min	SISMICA 1	1917	0	1343	0	-16140

Contributo alle sollecitazioni dato dalla fondazione Contributo alle sollecitazioni dato dalla fondazione Contributo alle sollecitazioni dato dalla fondazione

Parametri della sollecitazione alla base della fondazione

Condizione	Comb.	Mx	Τy	My	Tx	N	١
------------	-------	----	----	----	----	---	---

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno porta isolatore

tripolare per supporto sbarre AT

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL SE0200 004 Α 28 di 33

		(daN m)	(daN)	(daN m)	(daN)	(daN)
1.	SISMICA 4	52116	12480	1259	576	-27124
2.	SISMICA 3	31648	7240	3990	1888	-25468
3.	SISMICA 1	10049	2738	4011	1918	-22316

APPROCCIO 2 A1+M1+R3				
Condizione	1.	2.	3.	
Bx=	2,00	2,00	2,00	m
Ly=	6,20	6,20	6,20	m
ey=	1,92	1,24	0,45	m
ex=	0,05	0,16	0,18	m
L'y=	2,36	3,71	5,30	m
B'x=	1,91	1,69	1,64	m
H tot	12493	7482	3343	daN
V tot	27124	25468	25468	daN
mL	1,447	1,312	1,236	
mB	1,553	1,688	1,764	
θ	1,571	1,571	1,571	rad
m	1,553	1,688	1,764	
D	0,70	0,70	0,70	m
Ed	27124	25468	22316	daN

lato minore fondazione lato maggiore fondazione eccentrità yy eccentrità xx

dimensione yy efficace della fondazione dimensione xx efficace della fondazione Carico orizzontale base fondazione Carico verticale totale base fondazione

angolo di applicazione di H rispetto alla direzione L'

profondità piano di posa Carico totale di compressione

<u>q_{lim}=NqγıD sq iq dq l</u> APPROCCIO 2		, ,,		
A1+M1+R3	1.	2.	3.	
φ	0,61	0,61	0,61	
/	1900	1900	1900	
C'k	0	0	0	
N _q	33,3	33,3	33,3	fattori di capacità portante
N _c	46,12	46,12	46,12	
Nγ	48,03	48,03	48,03	
Sq	1,567	1,318	1,217	fattori di forma
Sc	1,584	1,328	1,224	
Sγ	0,676	0,818	0,876	
q	0,383	0,556	0,780	fattori di inclinazione del carico
c	0,364	0,542	0,773	
v	0,207	0,393	0,678	
Dq	1	1	1	fattori di inclinazione del piano di posa
b _c	1	1	1	

APPALTATORE:							
Consorzio	Soci		ITINERARIO NAPOLI – BARI				
HIRPINIA AV	SALINI IMPREGILO S.P.A	A. ASTALDI S.P.A	ITINERARIO NAPOLI – BARI				
PROGETTAZIONE:				DDOPPIO TRATTA APICE – ORSARA			
<u>Mandataria</u>	<u>Mandanti</u>		ILO	TTO FUNZIONALE APICE – HIRPINIA			
ROCKSOIL S.P.A	NET ENGINEERING S.P.	A. ALPINA S.P.A.					
PROGETTO ESECU Relazione di calcolo fo tripolare per supporto	ondazione per sostegno p	oorta isolatore		OTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL SE0200 004 A 29 di 33			
b _v	1	1	1				
g _q	1	1	1	fattori di inclinazione del piano campagna			
g _c	1	1	1	, , ,			
gγ	1	1	1				
Qlim	16860	24861	37610	daN/m2			
QLIM	75797	155769	326981	daN			
Ed	27124	25468	22316	daN			
	VERIFICATO	VERIFICATO	VERIFICATO				
rapporto Ed/Rd	0,36	0,16	0,07				

• Collasso per scorrimento sul piano di posa GEO

La verifica a scorrimento è stata eseguita per le tre condizioni (1, 2, 3) per le combinazioni di carico Corto Circuito (CC), Sismica e SLU, prendendo in considerazione il carico verticale Qv e il carico orizzontale massimo.

Il carico verticale è stato poi moltiplicato per la tangente dell'angolo di attrito del terreno ottenendo così il carico limite orizzontale. Tale carico è stato poi diviso per il coefficiente γ_r =1,1 ottenendo così il carico orizzontale massimo resistente $Q_{h,Rd}$. Affinché la verifica sia soddisfatta, il carico resistente deve risultare superiore al carico agente.

La verifica risulta sempre soddisfatta.

Si riportano gli esiti della verifica a scorrimento sul piano di posa svolta per la combinazione di carico sismica risultata la più gravosa per la fondazione.

(A1+M1+R3)	1.	2.	3.		
Qh	12493	7482	3343	daN	azione orizzontale agente
Qv	27124	25468	22316	daN	azione verticale agente
φ	35	35	35	0	
С	0	0	0	kg/m²	
Qh,lim	18992	17833	15626	daN	
γR	1,1	1,1	1,1		
Qh,Rd	17266	16212	14205	daN	
	Verificato	Verificato	Verificato		•
rapporto Ed/Rd	0,72	0,46	0,24		

7.6.2 VERIFICHE SLU DI TIPO STRUTTURALE

Si riporta nell'immagine seguente una vista del modello di calcolo da cui sono stati ricavati i parametri della sollecitazione relativi alla fondazione.

APPALTATORE:								
Consorzio	<u>Soci</u>		ITINEDADIO NADOLI. DADI					
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:		RADDOPPIO TRATTA APICE – ORSARA						
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.						
PROGETTO ESECUTIVO Relazione di calcolo fondazione per sostegno porta isolatore tripolare per supporto sbarre AT		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO SE0200 004	REV.	FOGLIO 30 di 33	

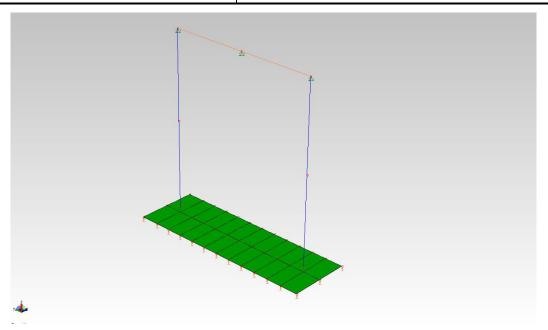
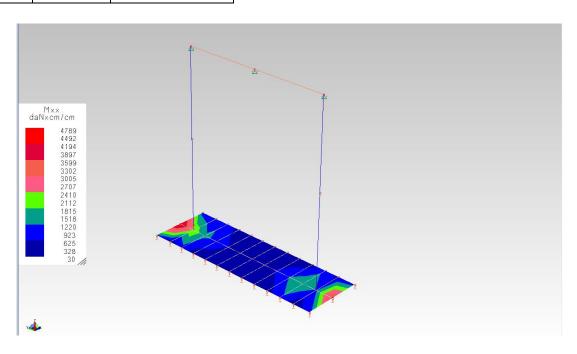



Fig. 7.4: Vista del modello ad elementi finiti.

Nella tabella seguente si riportano i valori della sollecitazione flettente sulla piastra di fondazione ottenute dall'analisi statica lineare effettuata sul modello ad elementi finiti. Inoltre si riportano le mappe di colore ottenute relative alla sollecitazione flettente massima rispetto agli assi di sviluppo x e y, in cui i valori forniti dal programma di calcolo per il momento flettente sono riferiti alla lunghezza lineare di 1m di sezione. Tali valori saranno impiegati nella verifica flessione della piastra di fondazione.

M xx max	4789	daN m/m
M yy max	9758	daN m/m

APPALTATORE:								
Consorzio	Soci		ITINEDADIO NADOLI, DADI					
HIRPINIA AV	SALINI IMPREGILO S.P.A. ASTALDI S.P.	A	ITINERARIO NAPOLI – BARI					
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA					
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA					
ROCKSOIL S.P.A	NET ENGINEERING S.P.A. ALPINA S.P.A	۸.						
PROGETTO ESECUTIVO Relazione di calcolo fondazione per sostegno porta isolatore tripolare per supporto sbarre AT		COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO SE0200 004	REV.	FOGLIO 31 di 33	

Fig. 7.5: Mappa di colore momento flettente rispetto asse globale x

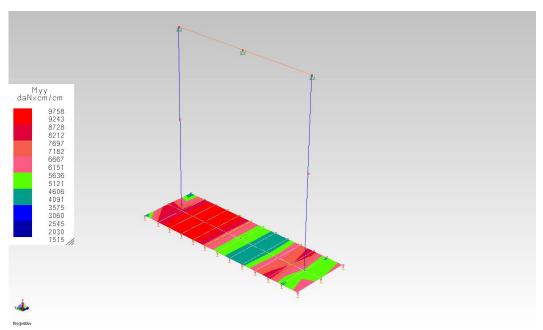
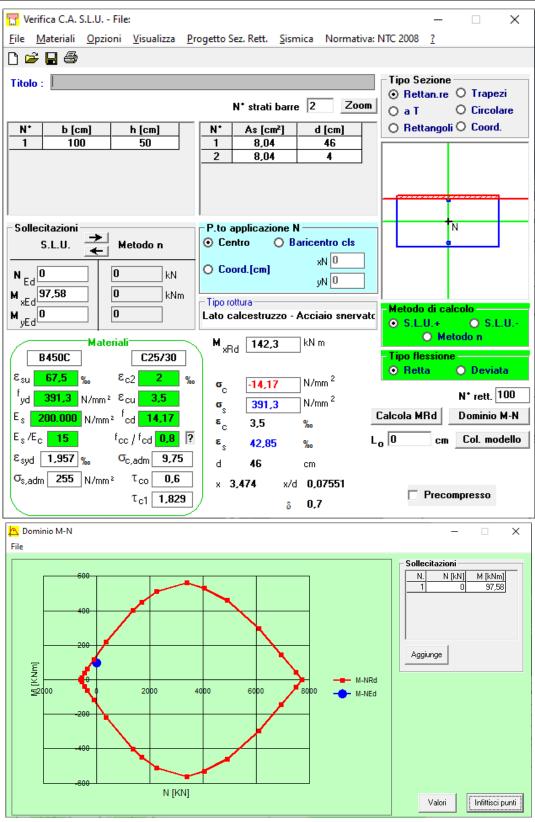



Fig. 7.6: Mappa di colore momento flettente rispetto asse globale y

Si riporta la verifica della sezione della piastra per i massimi valori di momento flettente calcolati, disponendo $1\varnothing 16/20$ cm in entrambe le direzioni.

Verifica sezione 100x50cm: sollecitazione flettente 9758 daN m.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo fondazione per sostegno porta isolatore IF28 E ZZ CL SE0200 004 32 di 33 01 Α tripolare per supporto sbarre AT

La verifica della sezione è soddisfatta.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandanti <u>Mandataria</u> **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo fondazione per sostegno porta isolatore E ZZ CL SE0200 004 IF28 01 Α 33 di 33 tripolare per supporto sbarre AT

7.7 Conclusioni

Sugli esiti delle analisi effettuate, per le condizioni di carico statico e per la condizione di carico sismica effettuata secondo le NTC 2008, risulta che per tutte le combinazioni di carico applicate:

- le verifiche di tipo geotecnico sulla fondazione in c.a. risultano verificate;
- le verifiche di tipo strutturale sulla fondazione in c.a. risultano verificate.

Il progettista