COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

SOCI:

PROGETTAZIONE: MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

SE00 - SOTTOSTAZIONI ELETTRICHE

SE02 - SSE HIRPINIA

ELABORATI A CARATTERE GENERALE SSE HIRPINIA

Relazione di calcolo fondazione per sostegno TVA

APPALTATORE	DIRETTORE DELLA PROGETTAZIONE	PROGETTISTA
Consorzio HIRPINIA AV II Direttore Tecnico Ing. Vincenzo Moriello	Il Responsabile integrazione fra le varie prestazioni specialistiche Ing. G. Cassani	NETENGINEERING
21/02/2020		Ing. R. Zanon

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. SCALA:

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione per consegna	B. Borghi	21/02/2020	L. Ongaro	21/02/2020	T. Finocchietti	21/02/2020	Ing. R. Zanon
								21/02/2020

File: IF2801EZZCLSE0200007A.docx n. Elab.: -

<u>Consorzio</u> <u>Soci</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A. NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 007
 A
 2 di 31

Indice

1	GEN	ERALITÀ	3
2	NOR	MATIVA	4
3	MAT	ERIALI	5
1	NAT	URA DEL TERRENO	6
5		ODOLOGIA DI CALCOLO	
3		NIZIONE DEI CARICHI	
		PESI PROPRI	
		IEVE	
		PESO DEL GHIACCIO	
		AZIONE DEL VENTO	
		CARICO DURANTE IL MONTAGGIO	
		AZIONE SISMICA	
		CONDIZIONE DI CARICO DA CORTO CIRCUITO	
7	FON	DAZIONE PER SOSTEGNO TVA	17
	7.1 C	CARATTERISTICHE DELLA STRUTTURA	17
	7.2 C	CARICHI AGENTI E DETERMINAZIONE DEI PARAMETRI DELLA SOLLECITAZIONE	18
	7.2.1	COMBINAZIONE DI CARICO AGLI STATI LIMITE ULTIMI SLU	18
	7.2.2	COMBINAZIONE DI CARICO SISMICA	
	7.2.3	COMBINAZIONE DI CARICO DA CORTO CIRCUITO	20
	7.3 V	/ERIFICA DELLA FONDAZIONE	20
	7.3.1	VERIFICHE SLU DI TIPO GEOTECNICO	
	7.3.2	VERIFICHE SLU DI TIPO STRUTTURALE	
	7.3.3	CONCLUSIONI	31

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A. NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

SE0200 007

3 di 31

E ZZ CL

1 GENERALITÀ

Lo scopo del presente documento è la verifica della seguente opera:

- fondazione per sostegno TVA

che sarà realizzata nella Sottostazione Elettrica RFI sita nel comune di Grottaminarda (AV), alimentata in Alta Tensione a 150kV, nell'ambito degli interventi per la realizzazione della nuova linea ferroviari Apice-Hirpinia.

La fondazione è dimensionata considerando i massimi valori dei parametri della sollecitazione alla base della carpenteria di sostegno dell'apparecchiatura, che sono impiegati come massime azioni esterne sulla struttura di fondazione oggetto di esame.

La verifica della struttura è condotta con il metodo semiprobabilistico agli stati limite, in ottemperanza alle norme vigenti, in due ipotesi di carico, normale ed eccezionale.

Le unità di misura impiegate nella presente relazione sono:

- forza daN
- massa kg
- lunghezza m (per alcune lunghezze cm, mm)

Il sistema di riferimento cartesiano 0xy considerato è tale che la direzione delle ascisse xx è parallela all'asse della sbarra.

Per l'analisi di tutti i particolari strutturali e l'esatta disposizione degli elementi si rimanda agli allegati grafici che integrano la presente relazione.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 007
 A
 4 di 31

2 NORMATIVA

Nell'eseguire le verifiche che costituiscono l'opera di cui alla presente relazione, si è fatto riferimento alla seguente normativa tecnica:

[1] Circolare Ministero Infrastrutture e Trasporti 2 febbraio 2009, n.617

"Applicazione Norme Tecniche per le Costruzioni".

[2] D. M. 14/01/2008

"Nuove Norme tecniche per le costruzioni".

[3] Ordinanza 3274 20 Marzo 2003

"Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".

[4] Legge 5 Novembre 1971 n°1086

"Norme per la disciplina delle opere di conglomerato cementizio armato, normale precompresso ed a struttura metallica".

[5] D.M. 11 marzo 1988

"Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".

[6] Circolare 24 settembre 1988, n°30483

"Norme tecniche per terreni e fondazioni: istruzioni applicative".

[7] CEI EN 61936-1 (2011-07)

"Impianti elettrici con tensioni superiori a 1kV in corrente alternata".

[8] CEI 11-4 (1998)

"Esecuzione delle linee elettriche aeree esterne".

[9] CEI 11-26 (1998)

"Correnti di corto circuito. Calcolo degli effetti. Parte prima: definizioni e metodi di calcolo".

[10] UNI ENV 1993-1-1 Eurocodice 3.

"Progettazione delle strutture di acciaio. Parte 1-1: Regole generali e regole per gli edifici"

[11] UNI ENV 1992-1-1 Eurocodice 2.

"Progettazione delle strutture di calcestruzzo. Parte 1-1: Regole generali e regole per gli edifici"

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 007
 A
 5 di 31

3 MATERIALI

Caratteristiche dei materiali utilizzati nella costruzione.

Calcestruzzo per fondazioni e struttura

Rck 30: f_{ck} = 24,9 MPa Resistenza cilindrica caratteristica del cls a 28 giorni

 α_{cc} =0,85 Coefficiente riduttivo per le resistenze di lunga durata γ_c = 1,5 Coeff. parziale di sicurezza relativo al cls

 $f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c = 14,11 \text{ MPa}$ Resistenza cilindrica di calcolo

E_c = 31447 MPa Modulo elastico

 $\gamma_{cls} = 2400 \text{ daN/m}^3$ Peso specifico

Acciaio per armature e tirafondi

B 450 C f_{yk} = 450 N/ mm² Resistenza caratteristica a snervamento

 $\gamma_s = 1,15$ Coefficiente parziale di sicurezza relativo all'acciaio

 $f_{yd} = 11.8 \text{ MPa}$ Resistenza di calcolo $E_s = 206000 \text{ N/mm}^2$ Modulo elastico

Acciaio per carpenteria metallica tipo S 355 JR

S 355 JR: $f_{yk} = 355 \text{ N/ mm}^2 \text{ Resistenza caratteristica a snervamento}$

f_{tk} = 510 N/ mm² Resistenza caratteristica di rottura

 $\gamma_s = 1,05$ Coeff. Parziale resist. $E_s = 206000 \text{ N/mm}^2$ Modulo elastico

 $\rho = 7850 \text{ daN/m}^3 \text{ Densità}$

Bulloneria classe 6.8

Classe 6.8 ft = 600 N/ mm² Resistenza caratteristica a rottura

f_y = 510 N/ mm2 Resistenza caratteristica di snervamento

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL Relazione di calcolo fondazione per sostegno TVA SE0200 007 6 di 31

4 NATURA DEL TERRENO

La caratterizzazione geotecnica del terreno di fondazione si deduce dallo studio geologico elaborato....

Di seguito si riporta la stratigrafia considerata per il dimensionamento delle fondaziolni del piazzale di SSE.

	Spessore (m)	γ (kN/m 3)	Cu (kPa)	φ°	c' (kPa)
Rilevato +scotoco e bonifica	(vedasi sezione)	19	-	35	0
Strato 1	4m - 1m di scotico= 3	18	100	22	20
Strato 2	2	18	-	32	0
Strato 3	1	18	-	35	0
Strato 4a	12	19	200	20	20
Strato 4b	-	19	350	20	20

Fig. 1: Sintesi delle stratigrafie e dei parametri del terreno in corrispondenza del piazzale di SSE.

Con riferimento al D.M. 14 gennaio 2008, i terreni presenti nell'area sono ascrivibili alla categoria **C**, che in generale comprende:

C – Depositi di terreni a grana grossa mediamente addensati, o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V_S 30 compresi tra 180 e 360 m/s (ovvero resistenza penetrometrica 15 < N_{SPT} <50 nei terreni a grana grossa e 70 < cu <250 KPa nei terreni a grana fina). (Nella definizione V_S 30 è la velocità media di propagazione entro 30 metri di profondità delle onde di taglio).

Con riferimento alla Tabella 3.2.IV del D.M. 14 gennaio 2008, l'assetto topografico del terreno in studio rientra nella categoria:

T1: superficie pianeggiante, pendii e rilievi isolati con inclinazione media i≤15°.

Per una più precisa analisi del terreno si rimanda alla relazione geotecnica sopracitata.

APPALTATORE: Consorzio Soci

HIRPINIA AV

SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

Relazione di calcolo fondazione per sostegno TVA

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL SE0200 007 Α 7 di 31

5 METODOLOGIA DI CALCOLO

Le attività di verifica strutturale della carpenteria e della fondazione vengono condotte seguendo le indicazioni del D.M. 14 gennaio 2008, in particolare per quanto concerne:

- il criterio dello stato limite ultimo;
- le azioni sismiche;
- la metodologia dell'analisi statica equivalente;
- i criteri di combinazione con le concomitanti azioni non sismiche.

In ottemperanza alle norme vigenti, si devono considerare due ipotesi di carico, normale ed eccezionale. In ciascuno di questi casi devono essere analizzate diverse combinazioni, la più sfavorevole delle quali fornisce i parametri della sollecitazione sulla struttura di sostegno e sulla fondazione per determinare la resistenza meccanica delle strutture.

variabilità delle caratteristiche dinamiche delle apparecchiature, "apparecchiatura/carpenteria" vengono normalmente considerati casi differenti, ai quali corrispondono sets di caratteristiche ponderali e geometriche dell'apparecchiatura, a parità di carpenteria.

1. Determinazione delle combinazioni di carico e dei parametri della sollecitazione agenti alla base del sostegno

Nell'ipotesi di carico normale, le azioni di carico agenti sono le seguenti:

- Peso proprio;
- Tiro;
- Carichi durante il montaggio (secondo CEI, si deve tener conto di un carico durante il montaggio almeno pari a 1,0kN nel punto più critico della struttura di supporto)
- Spinta del vento;
- Peso del ghiaccio;

Nell'ipotesi di carico eccezionale, il peso proprio e il tiro agiscono simultaneamente e si devono considerare insieme al maggiore dei seguenti carichi occasionali:

- Carichi derivanti dalle manovre:
- Condizione di carico da corto circuito (secondo CEI 11-26, si considera una corrente di corto circuito trifase pari a 31,5 kA).
- Perdita del tiro esercitato dal conduttore.
- Azione sismica.

Tali azioni, in accordo a quanto previsto dal paragrafo 2.5.3 del D.M. 14 gennaio 2008, sono state combinate tra loro come riportato nella Tabella 6.1, in cui i coefficienti di combinazione sono stati ottenuti definendo le azioni permanenti, eccezionali e quelle variabili e, tra queste ultime, distinguendo le dominanti dalle secondarie.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL Α 8 di 31

L'azione sismica e i carichi da corto circuito sono azioni eccezionali e per tale motivo non si considerano agenti simultaneamente.

Il carico durante il montaggio non si considera agente simultaneamente alle azioni eccezionali di corto circuito.

Ogni combinazione considerata (SLU, SLE, Sismica, Corto circuito) fornisce i parametri della sollecitazione agenti sulla struttura in elevazione.

Tabella 5.1: Coefficienti combinazione delle azioni.

		G1	G2	Qk,i	Qk,i	Qk,i	Qk,i	Qk,i	Е	Е	Е	Α
	Combinazione di carico	Peso proprio	Tiri conduttori	Montaggio	Vento X	Vento y	Ghiaccio	Neve	Sisma X	Sisma Y	Sisma Z	Corto circuito
	SLU_1	1,3	1,5	1,5	0,9	0,9	0,75	0,75	0	0	0	0
	SLU_2	1,3	1,5	1,5	1,5	0,9	0,75	0,75	0	0	0	0
NORMALE	SLU_3	1,3	1,5	1,5	0,9	1,5	0,75	0,75	0	0	0	0
	SLU_4	1,3	1,5	1,5	0,9	0,9	1,5	1,5	0	0	0	0
	SLU_5	1,3	1,5	1,5	0,9	0,9	0,75	1,5	0	0	0	0
	SLE freq_1	1	1	1,5	0,2	0	0	0	0	0	0	0
NORMALE	SLE freq_2	1	1	1,5	0	0,2	0	0	0	0	0	0
NORWALE	SLE freq_3	1	1	1,5	0	0	0,2	0,2	0	0	0	0
	SLE freq_4	1	1	1,5	0	0	0	0,2	0	0	0	0
Sismica	Sismica_1	1	1	1,5	0	0	0	0	1	0,3	0,3	0
	Sismica_2	1	1	1,5	0	0	0	0	0,3	1	0,3	0
	Sismica_3	1	1	1,5	0	0	0	0	0,3	0,3	1	0
ECCEZ.	Eccezionale CC	1	1	0	0	0	0	0	0	0	0	1
	Coefficienti di combinazione delle azioni											

2. Verifica della fondazione

Per ogni combinazioni di carico considerata, si svolgono le verifiche della fondazione, di tipo geotecnico e strutturale, agli stati limite ultimi secondo le NTC.

Per il calcolo delle sollecitazioni si sono adottate le ipotesi di materiali linearmente elastici. Le analisi sono svolte nelle ipotesi di piccoli spostamenti e piccole deformazioni impiegando i criteri della Scienza e della Tecnica delle Costruzioni.

Le verifiche allo stato limite ultimo condotte sulla struttura di fondazione in c.a. sono di due tipi, secondo la vigente normativa:

- SLU di tipo geotecnico
 - Ribaltamento della fondazione (EQU)
 - Collasso per raggiungimento del carico limite dell'insieme fondazione-terreno (GEO)
 - Scorrimento sul piano di posa (GEO)
- SLU di tipo Strutturale (STR):
 - raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale deve essere effettuata, analogamente a quanto previsto nel § 6.4.2.1 delle NTC 2008, secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le resistenze globali.

Le rimanenti verifiche devono essere effettuate, , tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I., seguendo almeno uno dei due approcci:

Approccio 1

APPALTATORE: Consorzio Soci

<u>Mandataria</u>

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO Relazione di calcolo fondazione per sostegno TVA

Mandanti

RADDOPPIO TRATTA APICE - ORSARA

ITINERARIO NAPOLI – BARI

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 01 Α 9 di 31

- Combinazione 1 (A1+M1+R1)
- Combinazione 2 (A2+M2+R2)
- Approccio 2
 - Combinazione 1 (A1+M1+R3)

Nelle verifiche effettuate con l'apporccio 2 finalizzate al dimensionamento strutturale (STR), il coefficiente γR non deve essere portato in conto.

La lettera A indica i coefficienti da applicare alle sollecitazioni, M i coefficienti da applicare ai parametri geotecnici del terreno e R i coefficienti da applicare per le resistenze globali.

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G ₁	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G ₂ (1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente $parziale\gamma_M$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γ_c	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

Le verifiche agli stati limite ultimi di tipo strutturale sono svolte sugli elementi principali che costituiscono la fondazione.

APPALTATORE: Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL SE0200 007 10 di 31

DEFINIZIONE DEI CARICHI

6.1 Pesi propri

Il peso proprio di sostegni ed apparecchiature è stato tratto dai documenti forniti dal committente e da dati tecnici del produttore dell'apparecchiatura.

6.2 Neve

Il carico neve è dimensionato secondo NTC 2008.

Zona di carico NEVE Ш quota s.l.m. 160 m 100 daN/m² q_{sk}

Peso del ghiaccio 6.3

Nelle regioni dove si possono verificare formazioni di ghiaccio si deve tenere conto del relativo carico sui conduttori flessibili, sulle sbarre e sui conduttori rigidi (CEI EN 61936-1). Si assume densità del ghiaccio pari a 900kg/m³ e spessore manicotto di ghiaccio di 10 mm.

6.4 Azione del vento

La pressione del vento **p** si ottiene dall'espressione: p=q_{ref} · C_e· C_p· A_v

ce = coeff. di esposizione con:

 c_p = coeff. di forma pari a: 0,7 se riferito a superfici cilindriche

1 se riferito a superfici piane

Tabella 6.1: Determinazione pressione del vento.

	Comune	GROTTAMINARDA (AV)	as=350-400	m s.l.m.	
ZONA	Descrizione		v _{b,0} (m/s)	a ₀ (m)	ka (1/s)
3	Toscana, Marche, Umbria, Lazio, Ab Basilicata, Calabria (esclusa la provi		27	500	0,37

SUPERFICI CILINDRICHE

Rugosità	D	
Cat. Espos.	II	
Vr	27,00	m/s
q r	455,63	N/m^2
k r	0,19	
Z 0	0,05	m
Zmin	4	m
ct	1	

SUPERFICI PIANE

APPALTATORE:

Consorzio Soci

HIRPINIA AV SALINI IN

SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF28 01 E ZZ CL SE0200 007 A 11 di 31

Rugosità	D	
Cat. Espos.	II	
Vr	27,00	m/s
q r	455,63	N/m^2
k r	0,19	
Z 0	0,05	m
Zmin	4	m
ct	1	

6.5 Carico durante il montaggio

Il carico durante il montaggio almeno pari a 1,0kN nel punto più critico della struttura di supporto.

6.6 Azione sismica

Il calcolo dell'azione sismica è svolto per lo Stato limite ultimo di salvaguardia della Vita (SLV).

Per l'azione sismica sono stati considerati gli spettri di risposta elastici in accelerazione delle componenti orizzontali e verticali riferiti al comune di Grottaminarda (AV).

Tramite il fattore di struttura q, relativo alla singola struttura in esame, si otterranno i valori dello spettro di progetto. Il fattore di struttura q sarà determinato secondo le NTC e, nel caso di struttura con comportamento non dissipativa, a mensola o pendolo inverso, si assume valore pari a 1,50 per la componente orizzontale. Lo stesso valore di q si assume pe la componente verticale.

Nell'analisi statica lineare, il periodo del primo modo di vibrare della struttura T_1 è ricavato dalla seguente formula: $T_1 = C_1 \cdot H^{3/4}$

I parametri sismici che caratterizzano l'area dove sorge la struttura sono:

- a_q Accelerazione orizzontale massima al sito
- F₀ Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T'_c periodo di inizio del tratto a velocità costante dello spettro in accelerazione

Poiché l'azione sismica è una forza inerziale, si riporta il calcolo delle componenti orizzontale e verticale dell'azione sismica per ogni apparecchiatura presa in esame.

Tabella 6.2: Determinazione parametri azione sismica.

Calcolo AZIONE SISMIC	Α	Zona	1	SLV	
Tipo costruzione	3		COSTRUZIONI CON LIVELLI DI PRESTAZIONE ELEVATI		
VN	100	anni	Vita nominale		
Classe d'uso	IV				
Cu	2		Coefficiente d'uso		
VR	200	anni	Periodo di riferimento: Se Vr è minore di 35 anni si pone Vr=35		
P VR (SLV)	10%		Probabilità di superamento no considerato	el periodo di riferimento	
TR	1898	anni	Tempo di ritorno		

PARAMETRI DI PERICOLOSITA' SISMICA – apparecchiature e.m. AT								
STATO LIMITE		Tr [anni]	ag [g]	F0	T*c [sec]			
Operatività SLO		120	0,134	2,315	0,334			
Danno	SLD	201	0,175	2,304	0,347			

APPALTATORE:

Consorzio Soci

HIRDINIA AV SALINI IMPRECII O S.R.

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

NET ENGINEERING S.P.A.

PROGETTAZIONE:

ROCKSOIL S.P.A

Mandataria Mandanti

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Salvaguardia vita	SLV	1898	0,473	2,341	0,425
Prevenzione collasso	SLC	2475	0,523	2,365	0,431

Spettri di risposta elastici per i diversi Stati Limite

ALPINA S.P.A.

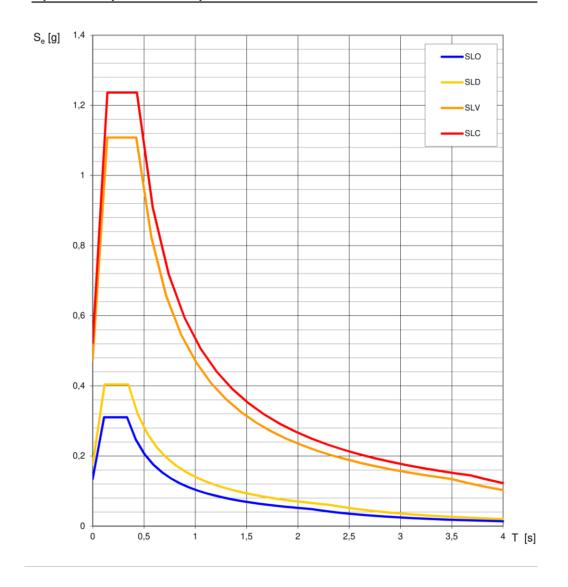


Fig. 2: Spettri di risposta elastici per i diversi stali limite, comune di GROTTAMINARDA (AV) - Apparecchiature elettromeccaniche impianto AT presso SSE di HIRPINIA.

Infine, definendo il fattore di struttura q e la categoria di sottosuolo (tipo **C** nel caso in esame), si determinano gli spettri di risposta per le componenti orizzontale e verticale dell'azione sismica, per lo stato limite ultimo di salvaguardia della vita (SLV).

· Categoria sottosuolo: C

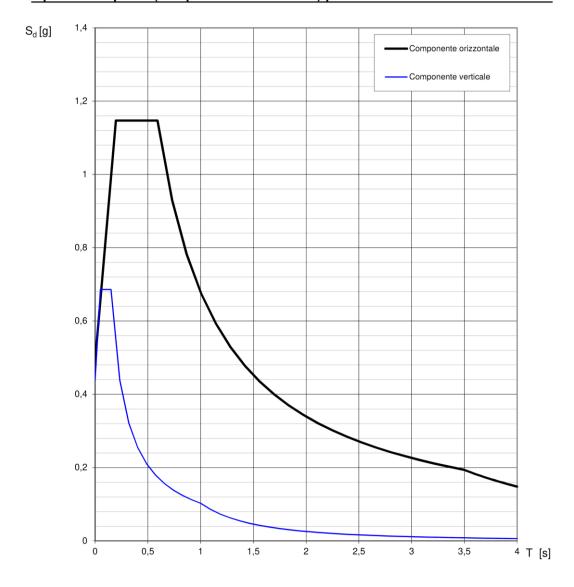
Categoria topografica: T1

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL 13 di 31 Relazione di calcolo fondazione per sostegno TVA 01 Α

Stato limite considerato: SLV

- q per la componente orizzontale = 1,5 (struttura a mensola o pendolo inverso, per strtture non dissipative)
- q per la componente verticale = 1,5 (struttura a mensola o pendolo inverso)

Si riportano di seguito gli spettri di progetto così definiti:


Periodo di ritorno: 1898

ag = 0,473 g

Accelerazione spettrale orizzontale = 1,147 g (accelerazione al plateau)

Accelerazione spettrale verticale = 0,44 g (massima accelerazione al piede a periodo nullo).

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL 14 di 31

Parametri e punti dello spettro di risposta orizzontale per lo stato limite:

Parametri indipendenti

STATO LIMITE	SLV
a_{g}	0,473 g
F _o	2,341
T_C^*	0,425 s
S _S	1,035
C_C	1,393
S _T	1,000
q	1,000

Parametri dipendenti

S	1,035
η	1,000
T _B	0,197 s
T_C	0,592 s
T_D	3,493 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\mathrm{B}} = T_{\mathrm{C}}/3 \tag{NTC-07 Eq. 3.2.8}$$

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto S_d(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S_e(T) sostituendo n con 1/g, dove g è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,490
T _B ◀	0,197	1,147
T _C ◀	0,592	1,147
	0,730	0,930
	0,868	0,782
	1,006	0,674
	1,144	0,593
	1,282	0,529
	1,421	0,478
	1,559	0,435
	1,697	0,400
	1,835	0,370
	1,973	0,344
	2,112	0,321
	2,250	0,302
	2,388	0,284
	2,526	0,269
	2,664	0,255
	2,802	0,242
	2,941	0,231
	3,079	0,220
	3,217	0,211
	3,355	0,202
$T_D \leftarrow$	3,493	0,194
	3,517	0,192
	3,542	0,189
	3,566	0,186
	3,590	0,184
	3,614	0,182
	3,638	0,179
	3,662	0,177
	3,686	0,174
	3,710	0,172
	3,735	0,170
	3,759	0,168
	3,783	0,166
	3,807	0,164
	3,831	0,162
	3,855	0,159
	3,879	0,158
	3,903	0,156
	3,928	0,154
	3,952	0,152
	3,976	0,150
	4,000	0,148

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. E ZZ CL 15 di 31

Parametri e punti dello spettro di risposta verticale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
a_{gv}	0,440 g
a _{gv} S _S	1,000
S_T	1,000
q	1,500
T _B	0,050 s
T _C	0,150 s
T_D	1,000 s

Parametri dipendenti

F _v	2,174
S	1,000
n	0,667

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T \tag{NTC-08 Eq. 3.2.5}$$

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_{\rm v} = 1,35 \cdot F_{\rm o} \cdot \left(\frac{a_{\rm g}}{\rm g}\right)^{0.5} \tag{NTC-08 Eq. 3.2.11}$$

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq T < T_C \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ & T_C \leq T < T_D \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq T \end{split}$$

Punti dello spettro di risposta

	T [s]	Se [g]
	0,000	0,440
T _B ◀	0,050	0,686
T _C ◀	0,150	0,686
	0,235	0,438
	0,320	0,322
	0,405	0,254
	0,490	0,210
	0,575	0,179
	0,660	0,156
	0,745	0,138
	0,830	0,124
	0,915	0,112
$T_D \leftarrow$	1,000	0,103
	1,094	0,086
	1,188	0,073
	1,281	0,063
	1,375	0,054
	1,469	0,048
	1,563	0,042
	1,656	0,038
	1,750	0,034
	1,844	0,030
	1,938	0,027
	2,031	0,025
	2,125	0,023
	2,219	0,021
	2,313	0,019
	2,406	0,018
	2,500	0,016
	2,594 2,688	0,015
	2,781	0,014 0,013
	2,875	0,013
	2,969	0,012
	3,063	0,012
	3,156	0,010
	3,250	0,010
	3,344	0,009
	3,438	0,009
	3,531	0,008
	3,625	0,008
	3,719	0,007
	3,813	0,007
	3,906	0,007
	4,000	0,006

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 007
 A
 16 di 31

La componente verticale del sisma sarà trascurata.

6.7 Condizione di carico da corto circuito

La condizione di corto circuito è considerata eccezionale. I valori di corto circuito per l'apparecchiatura sono stati determinati secondo normativa vigente.

Il corto circuito non viene considerato contestualmente al sisma, anche se potrebbe essere causato da quest'ultimo. Trattasi, in questa interpretazione, di due eventi eccezionali la cui probabilità combinata di accadimento può essere considerata scarsa.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

Relazione di calcolo fondazione per sostegno TVA

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

SE0200 007

17 di 31

E ZZ CL

7 FONDAZIONE PER SOSTEGNO TVA

7.1 Caratteristiche della struttura

Trattasi di fondazione unipolare costituita da una piastra in c.c.a. di spessore 60cm di dimensioni in pianta di 1,80x1,80m; la profondità del piano di posa è di 0,60m. Sulla piastra, in posizione centrale, si imposta un batolo in c.c.a. di dimensioni 0,90x0,90x0,20m, sporgenti dal piano campagna di 20cm. Al batolo è ancorato il sostegno dell'apparecchiatura in esame, tramite tirafondi ad uncino, interasse 40 cm.

Per quanto riguarda l'apparecchiatura installate sulla fondazione, di seguito si riportano le caratteristiche essenziali fornite dal produttore.

TVA

Sostegno	
Peso [daN]	160,00
Peso colonne [daN]	0
Peso traverso [daN]	0
Altezza [m]	2,135
Baricentro [m]	1,0675
Diametro [m]	0,219
h vento [m]	1,0675
Sup. esposta al vento [m^2]	0,468
Apparecchiatura	
Peso [daN]	550
Altezza [m]	2,365
Baricentro [m]	1,1825
Sezione [m]	0,265
H vento (m)	3,3175
Diametro testa [m]	0,4
altezza attacco	2,2
Sup. esposta al vento [m^2]	0,627
Altezza applicazione tiro [m]	4,500
Altezza applicazione montaggio [m]	2,135
Collegamento elettrico	tubo 40/30
Lunghezza campata [m]	7,000
diametro conduttore [m]	0,040
altezza	4,48
peso [daN/m]	1,485

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

<u>Mandataria</u> Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL SE0200 007 01 Α 18 di 31

7.2 Carichi agenti e determinazione dei parametri della sollecitazione

Di seguito sono indicati i carichi, riportati alla base del sostegno e pertanto agenti direttamente sulla fondazione. Tali valori sono stati ricavati secondo quanto riportato al capitolo 6.

Tabella 7.1: Tabella input fondazioni: SOSTEGNO TVA

TABI	ELLA INPUT	FONDAZION	11									Υ
	PESI			TIRI CON	DUTTORI		GHIACCIO)		NEVE]
Fx	0	daN	Fx	0	daN	Fx	0	daN	Fx	0	daN	
Fy	0	daN	Fy	0	daN	Fy	0	daN	Fy	0	daN	Asse Sbarr
Fz	714	daN	Fz	0	daN	Fz	5	daN	Fz	0	daN	x
Mx	0	daN m	Mx	0	daN m	Mx	0	daN m	Mx	0	daN m	
Му	0	daN m	Му	0	daN m	Му	0	daN m	Му	0	daN m	
Mz	0	daN m	Mz	0	daN m	Mz	0	daN m	Mz	0	daN m	
	MANUTEN	ZIONE X		MANUTE	NZIONE Y		VENTO X			VENTO Y		
Fx	100	daN	Fx	0	daN	Fx	65	daN	Fx	0	daN	
Fy	0	daN	Fy	100	daN	Fy	0	daN	Fy	74	daN	
Fz	100	daN	Fz	100	daN	Fz	0	daN	Fz	0	daN	
Mx	0	daN m	Mx	214	daN m	Mx	0	daN m	Mx	191	daN m	
Му	214	daN m	Му	0	daN m	Му	154	daN m	Му	0	daN m	
Mz	0	daN m	Mz	0	daN m	Mz	0	daN m	Mz	0	daN m	
	SISMA X			SISMA Y			SISMA Z		CORTO CII	RCUITO 1		
Fx	376	daN	Fx	0	daN	Fx	0	daN	Fx	0	daN	
Fy	0	daN	Fy	376	daN	Fy	0	daN	Fy	100	daN	
Fz	0	daN	Fz	0	daN	Fz	176	daN	Fz	0	daN	
Mx	0	daN m	Mx	1145	daN m	Mx	0	daN m	Mx	450	daN m	
Му	1145	daN m	Му	0	daN m	Му	0	daN m	Му	0	daN m	
Mz	0	daN m	Mz	0	daN m	Mz	0	daN m	Mz	0	daN m	

Tali carichi sono stati combinati secondo quanto riportato al capitolo 5 e in tabella 5.1, al fine di determinare i parametri della sollecitazione con cui eseguire le verifiche previste.

Di seguito si riporta il calcolo dei parametri della sollecitazione alla base del sostegno ottenuti per ogni combinazione di carico, per l'apparecchiatura presa in esame.

7.2.1 COMBINAZIONE DI CARICO AGLI STATI LIMITE ULTIMI SLU

AZIONI ESTERNE BASE SOSTEGNO

	Рр			manutenzione	manutenzione	Vento X	Vento Y	
	PESI	Ghiaccio	Neve	x	у			
Azione assiale	7140	50	0	1000	1000	0	0	Ζ
Taglio in X	0	0	0	1000	0	650,0	0	Ν
Taglio in Y	0	0	0	0	1000	0	740	Ν
Momento flettente rispetto asse X	0	0	0	0	2140	0	1910	N m

Consorzio Soci

SALINI IMPREGILO S.P.A. ASTALDI S.P.A HIRPINIA AV

PROGETTAZIONE:

Mandataria <u>Mandanti</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 01 E ZZ CL SE0200 007 19 di 31 Relazione di calcolo fondazione per sostegno TVA Α

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE – HIRPINIA

Momento flettente rispetto asse y	0	0	0	2140	0	1540	0	N m

Parametri della sollecitazione alla base del sostegno - SLU

	SLU_1	SLU_2	SLU_3	SLU_4	SLU_5	SLU_6
Azione assiale	12320	12320	12320	12357	12320	12320
Taglio in X	2085	2475	2085	2085	2085	2085
Taglio in Y	2166	2166	2610	2166	2166	2166
Momento flettente rispetto asse X	4929	4929	6075	4929	4929	4929
Momento flettente rispetto asse y	4596	5520	4596	4596	4596	4596
VE,d	3006	3289	3341	3006	3006	3006
ME,d	6739	7400	7618	6739	6739	6739

7.2.2 COMBINAZIONE DI CARICO SISMICA

Azioni esterne base sostegno - rif. Tabella input fondazioni.									
	Pp			manutenzione	manutenzione	TIRO	Sisma x	Sisma y	
	PESI	Ghiaccio	Neve	х	у				
Azione assiale	7140	50	0	1000	1000	0	0	0	N
Taglio in X	0	0	0	1000	0	0	3760	0	N
Taglio in Y	0	0	0	0	1000	0	0	3760	N
Momento flettente rispetto asse X	0	0	0	0	2140	0	0	11450	N m
Momento flettente rispetto asse y	0	0	0	2140	0	0	11450	0	N m

Parametri della sollecitazione alla base del sostegno

	Sismica_1	Sismica_2								
Azione assiale	10140	10140	N							
Taglio in X	5260	2628	N							
Taglio in Y	2628	5260	N							
Momento flettente rispetto asse X	6645	14660	N m							

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo fondazione per sostegno TVA E ZZ CL SE0200 007 Α 20 di 31

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE - ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

14660 6645 Momento flettente rispetto asse y N m

COMBINAZIONE DI CARICO DA CORTO CIRCUITO

Azioni esterne base sostegno - rif. Tabella input fondazioni

		manutenzione	manutenzione		
	Рр	x	у	Corto circuito 1	
Azione assiale	7140	1000	1000	0	N
Taglio in X	0	1000	0	0	N
Taglio in Y	0	0	1000	1000	N
Momento flettente rispetto asse X	0	0	2140	4500	N m
Momento flettente rispetto asse y	0	2140	0	0	N m

Parametri della sollecitazione alla base del sostegno

	CC1	
Azione assiale	7140	Ν
Taglio in X	0	Ν
Taglio in Y	1000	Ν
Momento flettente rispetto asse X	4500	N m
Momento flettente rispetto asse y	0	N m

7.3 Verifica della fondazione

7.3.1 VERIFICHE SLU DI TIPO GEOTECNICO

Sono state considerate le combinazioni di carico sismica, agli stati limite ultimi e di corto circuito.

Per ogni combinazione di carico ottenuta impiegando i coefficienti parziali riportati nella seguente tabella, sono stati calcolati i parametri della sollecitazione alla base di ogni sostegno. Quindi, tra quelle esaminate, si sono considerate le combinazioni di carico che trasmettono alla fondazione:

- 1.Massimo momento ribaltante attorno ad una asse trasversale a quello della linea Mx,MAX
- 2.Massimo momento ribaltante attorno ad una asse parallelo a quello della linea My, MAX
- 3. Minima azione verticale.

Tabella 7.2: Coefficienti parziali per le verifiche di tipo geotecnico.

NTC 2008	NTC 2008
Tab. 6.2.I	Tab. 6.2.II

NTC 2008 Tabb. 6.2.I, 6.2.II, 6.8.I

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 007
 A
 21 di 31

VERIFICHE SLU - GEO	Approccio	Comb.	γ _{G1}	γg2	γ Q1	γ _φ ' tan	γ c'	γcu	γγ	γк
Callagae ner	2	-	(1)(1,3)	(0)(1,5)	(0)(1,5)	1	1	1	1	2,3
Collasso per carico limite	1	1	(1)(1,3)	(0)(1,5)	(0)(1,5)	1	1	1	1	1
(GEO)	1	2	(1)(1)	(0)(1,3)	(0)(1,3)	1,25	1,25	1,4	1	1,8
Scorrimento	2	-	(1)(1,3)	(0)(1,5)	(0)(1,5)	1	1	1	1	1,1
(GEO)	1	1	(1)(1,3)	(0)(1,5)	(0)(1,5)	1	1	1	1	1
	1	2	(1)(1)	(0)(1,3)	(0)(1,3)	1,25	1,25	1,4	1	1
Stabilità globale (EQU)	1	2	(0,9)(1,1)	(0)(1,5)	(0)(1,5)	1,25	1,25	1,4	1	1,1

Per calcolare le sollecitazioni alla base della fondazione, ai valori dei parametri della sollecitazione calcolati alla base del sostegno sono stati sommati i corrispettivi contributi dovuti allo sforzo di taglio e al peso della fondazione stessa.

A favore della sicurezza non è stato considerato il contributo del terreno sulla fondazione (spessore terreno=0).

Caratteristiche del TERRENO								
γ t	1900	daN/m^3	Peso di volume terreno					
γ'	-	daN/m^3	Peso di volume immerso					
φ'	35	0	Angolo di attrito in gradi					
φ'	0,611	rad	Angolo di attrito in radianti					
c'	0	daN/m^2	Coefficiente di coesione					
Caratteristiche del	CLS							
Rck	250	daN/cm2						
γcls	2500	daN/m^3	Peso specifico cls					
γ'cls	1500	daN/m^3	Peso specifico cls immerso					
Caratteristiche FON	NDAZIONE							
Bx	1,8	m	lato minore//x					
Ву	1,8	m	lato maggiore//y					
b	0,9	m	lato minore batolo					
l	0,9	m	lato maggiore batolo					
ebx	0	m	eccentricità batolo y					
eby	0	m	eccentricità batolo x					
D	0,2	m	altezza batolo					
d	0,6	m	altezza piastra					
sp=H	0,8	m	spessore totale fondazione					
spf	0,2	m	spessore fondazione fuori terra					
sp t	0	m	Spessore terreno					

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> <u>Mandanti</u> **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO LOTTO CODIFICA DOCUMENTO REV. COMMESSA FOGLIO IF28 01 E ZZ CL SE0200 007 22 di 31 Relazione di calcolo fondazione per sostegno TVA Α

P cls	52650	N	Peso fondazione cls
P terreno	0	N	Peso terreno su fondazione
P tot fon	-52650	N	Peso totale cls+terreno

Si riportano gli esiti delle verifiche svolte sulla fondazione.

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

DOCUMENTO

REV.

Α

FOGLIO

23 di 31

CODIFICA

E ZZ CL

Verifica a ribaltamento EQU

La verifica a ribaltamento è stata eseguita per le tre condizioni (1, 2, 3) per le combinazioni di carico Corto Circuito (CC), Sismica e SLU. La verifica risulta soddisfatta.

COMMESSA

LOTTO

01

Si riportano gli esiti della verifica a ribaltamento svolta per la combinazione simica poiché più gravosa per la struttura in esame.

Azioni esterne riportate alla base del sostegno

	Pp		manutenzione	manutenzione	Sisma x	Sisma y
	PESI	Ghiaccio	x	у		
Azione assiale	7140	50	1000	1000	0	0
Taglio in X	0	0	1000	0	3760	0
Taglio in Y	0	0	0	1000	0	3760
Momento flettente rispetto asse X	0	0	0	2140	0	11450
Momento flettente rispetto asse y	0	0	2140	0	11450	0

PdS alla base del sostegno - SISMICA

	Sismica_1	Sismica_2	
Azione assiale	7140	7140	Ν
Taglio in X	5060	2428	Ν
Taglio in Y	2428	5060	Ν
Momento flettente rispetto asse X	6217	14232	N m
Momento flettente rispetto asse y	14232	6217	N m

PdS alla base del sostegno – sismica

. ao ana sa		, 0.0.				
Condizione	Comb.	Mx (daN	Ту	Му	Tx	N
		m)	(daN)	(daN m)	(daN)	(daN)
1.	SISMICA 2	1423	506	622	243	-714
2.	SISMICA 1	622	243	1423	506	-714

1.	SISMICA 2	405	0	194	0	-2774
2	SISMICA 1	194	0	405	0	-2774

Contributo alle sollecitazioni dato dalla fondazione

Parametri della sollecitazione alla base della fondazione

Condizione	Comb.	Mx	Ту	Му	Tx	N
		(daN m)	(daN)	(daN m)	(daN)	(daN)
1.	SISMICA 2	1828	506	816	243	-3488
2.	SISMICA 1	816	243	1828	506	-3488

Verifica a ribaltamento

Condizione	1.	2.	

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 007
 A
 24 di 31

Ed= M rib,xx	1828	816	daN m	Momento di ribaltamento totale rispetto asse xx
Rd= M stab xx / γR	2854	2854	daN m	Momento stabilizzante derivante da carichi di compressione-asse xx
Ed <rd< th=""><th>Verificato</th><th>Verificato</th><th></th><th></th></rd<>	Verificato	Verificato		
μ rib,xx	1,56	3,50		Verifica
Verifica stabilità	Verificato	Verificato		
Ed= M rib,yy	816	1828	daN m	Momento di ribaltamento totale rispetto asse yy
Rd= M stab yy / γR	2854	2854	daN m	Momento stabilizzante derivante da carichi di compressione-asse yy
Ed <rd< th=""><th>Verificato</th><th>Verificato</th><th></th><th></th></rd<>	Verificato	Verificato		
μ rib,yy	3,50	1,56		Verifica
Verifica stabilità	Verificato	Verificato		

Collasso per carico limite fondazione-terreno GEO

Il carico limite per la fondazione è stato calcolato mediante la formula trinomia del carico limite:

 $Q_{lim} = N_q \gamma_1 D \ s_q \ i_q \ d_q \ b_q \ g_q + \ N_{cc} \ s_c \ i_c \ d_c \ b_c \ g_c + 0.5 \ N_{gg} B \ s_g \ i_g \ b_g \ g_g$

per le tre condizioni (1, 2, 3) per le combinazioni di carico Corto Circuito (CC), Sismica e SLU. La verifica risulta soddisfatta.

Si riporta di seguito l'esito della verifica condotta nella combinazione di carico Sismica, risultata più gravosa per la verifica in esame.

Combinazione di carico SISMICA

Azioni esterne riportate alla base del sostegno

	Рр		manutenzione	manutenzione	Sisma x	Sisma y	
	PESI	Ghiaccio	x	у			
Azione assiale	7140	50	1000	1000	0	0	N
Taglio in X	0	0	1000	0	3760	0	N
Taglio in Y	0	0	0	1000	0	3760	N
Momento flettente rispetto asse X	0	0	0	2140	0	11450	N m
Momento flettente rispetto asse y	0	0	2140	0	11450	0	N m

PdS alla base del sostegno - SISMICA								
	Sismica_1	Sismica_2						
Azione assiale	10140	10140	N					
Taglio in X	5260	2628	N					
Taglio in Y	2628	5260	N					
Momento flettente rispetto asse X	6645	14660	N m					
Momento flettente rispetto asse y	14660	6645	N m					

PdS alla base del sostegno - SISMICA

l Condizione	Comb.	Mx	Tv	I M∨	Tx	l N

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandanti <u>Mandataria</u>

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

IF28 E ZZ CL SE0200 007 Relazione di calcolo fondazione per sostegno TVA 01

COMMESSA

LOTTO

		(daN m)	(daN)	(daN m)	(daN)	(daN)
1. Mx max	SISMICA 2	1466	526	665	263	-1014
2. My max	SISMICA 1	665	263	1466	526	-1014

1. Mx max	SISMICA 2	421	0	210	0	-5265
2. My max	SISMICA 1	210	1	421	1	-5265

Contributo alle sollecitazioni dato dalla fondazione Contributo alle sollecitazioni dato dalla fondazione

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA

I LOTTO FUNZIONALE APICE - HIRPINIA

DOCUMENTO

REV.

Α

FOGLIO

25 di 31

CODIFICA

Parametri della sollecitazione alla base della fondazione

Condizione	Comb.	Mx	Ту	Му	Tx	N	
		(daN m)	(daN)	(daN m)	(daN)	(daN)	
1.	SISMICA 2	1887	526	875	263	-6279	
2.	SISMICA 1	875	264	1887	527	-6279	

Verifica

App. 2 (A1+M1+R3)

Condizione	1.	2.	
Bx=	1,80	1,80	m
Ly=	1,80	1,80	m
ey=	0,30	0,14	m
ex=	0,14	0,30	m
L'y=	1,20	1,52	m
B'x=	1,52	1,20	m
H tot	588	589	daN
V tot	6279	6279	daN
mL	1,559	1,441	
mB	1,441	1,559	
θ	1,571	1,571	rad
m	1,441	1,559	
D	0,60	0,60	m
Ed	6279	6279	daN

lato minore fondazione lato maggiore fondazione eccentrità yy

eccentrità xx

dimensione yy efficace della fondazione dimensione xx efficace della fondazione Carico orizzontale base fondazione Carico verticale totale base fondazione

angolo di applicazione di H rispetto alla direzione

profondità piano di posa Carico totale di compressione

APPROCCIO 2 A1+M1+R3	1.	2.
φ	0,61	0,61
γ	1900	1900
C'k	0	0
Nq	33,3	33,3
Nc	46,12	46,12
N _Y	48,03	48,03

fattori di capacità portante

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF28	01	E ZZ CL	SE0200 007	Α	26 di 31

rapporto Ed/Rd	0,09	0,10	
	VERIFICATO	VERIFICATO	
Ed	6279	6279	daN
QLIM	70676	63155	daN
Q lim	38745	34621	daN/m2
gу	1	1	
g c	1	1	
g q	1	1	fattori di inclinazione del piano campagna
by	1	1	
bc	1	1	
bq	1	1	fattori di inclinazione del piano di posa
İγ	0,787	0,777	
İc	0,864	0,853	
İq	0,868	0,858	fattori di inclinazione del carico
Sγ	0,492	0,685	
Sc	1,916	1,569	
Sq	1,888	1,552	fattori di forma

• Collasso per scorrimento sul piano di posa GEO

La verifica a scorrimento è stata eseguita per le tre condizioni (1, 2, 3) per le combinazioni di carico Corto Circuito (CC), Sismica e SLU, prendendo in considerazione il carico verticale Qv e il carico orizzontale massimo.

Il carico verticale è stato poi moltiplicato per la tangente dell'angolo di attrito del terreno ottenendo così il carico limite orizzontale. Tale carico è stato poi diviso per il coefficiente γ_r =1,1 ottenendo così il carico orizzontale massimo resistente $Q_{h,Rd}$. Affinché la verifica sia soddisfatta, il carico resistente deve risultare superiore al carico agente.

La verifica risulta sempre soddisfatta.

Si riporta di seguito l'esito della verifica condotta nella combinazione di carico Sismica, risultata più gravosa per la verifica in esame.

	Verifica a s	corrimento		
	Appro	occio 2		
(A1+M1+R3)	1.	2.		_
Qh	588	589	daN	azione orizzontale agente
Qv	6279	6279	daN	azione verticale agente
φ	35	35	0	
С	0	0	kg/m²	-
Qh,lim	4397	4397	daN	-
γR	1,1	1,1		
Qh,Rd	3997	3997	daN	1
	Verificato	Verificato		_
rapporto Ed/Rd	0,15	0,15		

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

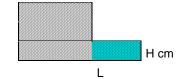
ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 SE0200 007
 A
 27 di 31

7.3.2 VERIFICHE SLU DI TIPO STRUTTURALE


Le verifiche agli stati limite ultimi di tipo strutturale sono svolte sugli elementi principali che costituiscono la fondazione:

Verifica della piastra

Per la piastra, si esegue la verifica delle sporgenze della base rispetto al batolo, assumendo lo schema statico di trave incastrata ad un'estremità, di luce pari alle dimensioni della sporgenza stessa avente sezione di altezza pari allo spessore della piastra 60 cm e larghezza pari al lato della piastra 140 cm.

Piastra di base:

bx	1,80	m
by	1,80	m
h	0,60	m
W	0,97	m3

Risega piastra:

bx	0,25	m
by	1,80	m
sp	0,60	m

Il carico agente sulla trave è dato dal peso proprio della piastra e dalla reazione del terreno (agente nel verso opposto) corrispondente alla pressione massima agente sulla superficie di base della trave, determinata per ogni combinazione di carico analizzata. Il peso terreno che insiste sulla piastra è trascurato a favore della sicurezza.

Azioni agenti sulla fondazione:

Pds BASE	Sismica_1	CC1	SLU 3	
Nsd,z	1014	714	1232	daN
Vsd,x	526	0	209	daN
Vsd,y	263	100	261	daN
Msdx	665	450	608	daN m
Msdy	1466	0	460	daN m

Verifica risega piastra			Sismica_1	CC1	SLU 3		
		cls tot*1,3	6844,50	6844,50	6844,50	daN	peso complessivo della fondazione peso complessivo del terreno
Calcolo della tensione sul terreno trasmessa dal		terreno*1,5	0,00	0,00	0,00	daN	sovrastante
plinto di fondazione		Nsd	1014,00	714,00	1231,95	daN	sforzo normale derivante da combinazione di carico
		Ntot	7858,50	7558,50	8076,45	daN	Carico totale di compressione
DIREZIONE X							
	Mtot y	Vsdx*braccio	420,80	0,00	166,80	daNm	Contributo al momento dato dal taglio alla base sostegno Momento di calcolo alla base del
		Msdy	1466,00	0,00	459,60	daNm	sosetgno
		Mtot y	1886,80	0,00	626,40	daNm	Momento complessivo alla base della piastra
Eccentricità di carico	ex=My/N	ex	0,24	0,00	0,08	m	eccentricità di carico in direzione x
		bx/6	0,30	0,30	0,30	m	estremi nocciolo d'inerzia

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

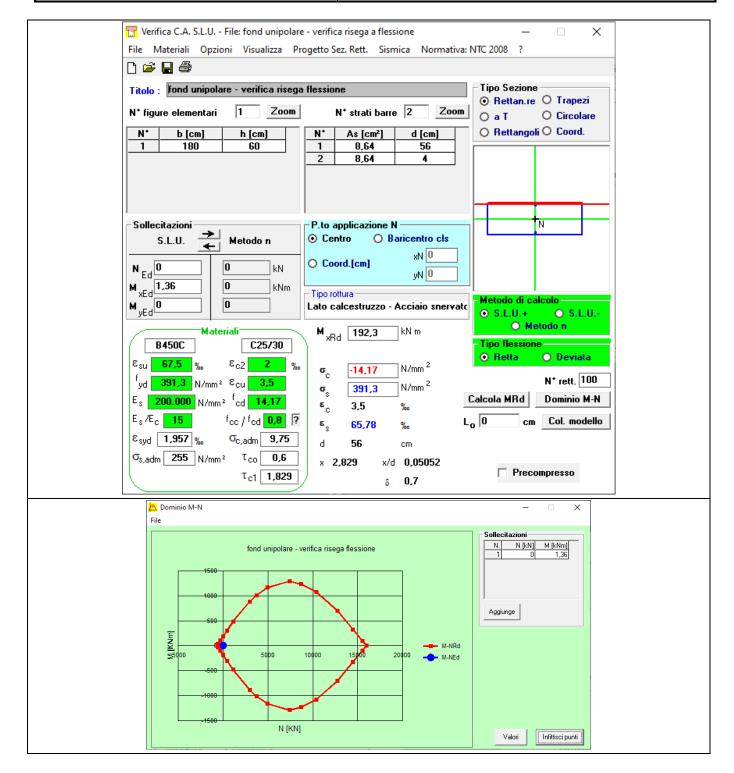
ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Relazione di calcolo fondazione per sostegno TVA

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

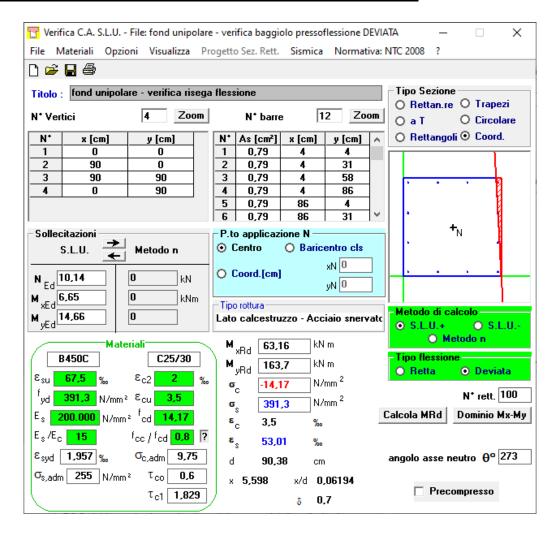
 IF28
 01
 E ZZ CL
 SE0200 007
 A
 28 di 31

			Sezione omogenea	Sezione omogenea	Sezione omogenea		
		u	0,66	0,90	0,82	m	distanza di applicazione carico dal lato piastra
		σt	4366,62	2332,87	3137,18	daN/m2	tensione sul terreno trasmessa dal plinto
DIREZIONE Y							
	Mtot x	Vsdx*braccio	210,24	80,00	208,80	daNm	Contributo al momento dato dal taglio alla base sostegno Momento di calcolo alla base del
		Msdx	664,50	450,00	607,50	daNm	sosetgno
		Mtot x	874,74	530,00	816,30	daNm	Momento complessivo alla base della piastra
Eccentricità di carico	ex=My/N	ex	0,11	0,07	0,10	m	eccentricità di carico in direzione x
		bx/6	0,30	0,30	0,30	m	estremi nocciolo d'inerzia
			Sezione omogenea	Sezione omogenea	Sezione omogenea	_	
		u	0,79	0,83	0,80	m	distanza di applicazione carico dal lato piastra
		σt	3325,40	2878,14	3332,55	daN/m2	tensione sul terreno trasmessa dal plinto
CARICO SULLA RISEGA		p soletta	3510,00	3510,00	3510,00	daN/m	
direzione x		p terreno	0,00	0.00	0,00	daN/m	
a o x		R terreno	-7859,91	-4199,17	-5646,92	daN/m	
		q	-4349,91	-689,17	-2136,92	daN/m	
Sollecitazioni di calcolo		My	135,93	21,54	66,78	daNm	
con cui verificare la sezio	ne	Vedx	1087,48	172,29	534,23	daN	
CARICO SULLA RISEGA		p soletta	3510,00	3510,00	3510,00	daN/m	
direzione y		p terreno	0,00	0,00	0,00	daN/m	
		R terreno	-5985,72	-5180,65	-5998,58	_ daN/m	
		q	-2475,72	-1670,65	-2488,58	daN/m	
Sollecitazioni di calcolo		Mx	77,37	52,21	77,77	daNm	
con cui verificare la sezio	ne	Vedy	618,93	417,66	622,15	daN	

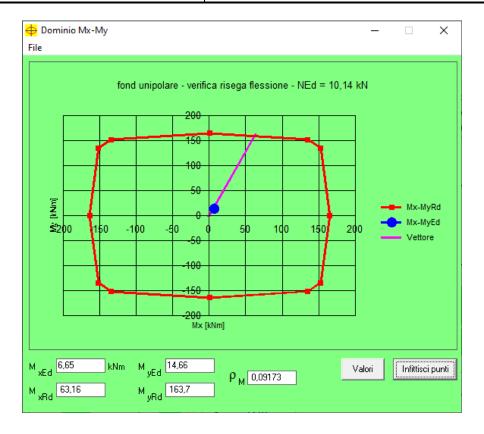
Si verifica a flessione e a taglio la sezione 180x60 cm, armata inferiormente e superiormente con barre 11Ø10. Le verifiche risultano soddisfatte.

APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA <u>Mandataria</u> Mandanti **ROCKSOIL S.P.A** NET ENGINEERING S.P.A. ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL SE0200 007 29 di 31 Relazione di calcolo fondazione per sostegno TVA

Resistenza di ca	alcolo a taglio	NTC 2008				
k	vmin	ρ1	бср	bw(mm)	Vrd1(daN)	Vrd2(daN)
1,598	0,353	0,001	0,000	1400	24913	35621


APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **ROCKSOIL S.P.A NET ENGINEERING S.P.A.** ALPINA S.P.A. PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL Relazione di calcolo fondazione per sostegno TVA 01 SE0200 007 Α 30 di 31

Vrd (daN)	Ved (daN)	Vrd ≥ Ved
35621	1087	VERIFICATO


• Verifica del batolo

Il batolo viene verificato come una trave incastrata nella sezione di interfaccia tra il batolo stesso e la piastra di fondazione, su cui agiscono le sollecitazioni trasmesse dalla struttura fuori terra sovrastante. Si svolge la verifica a pressoflessione deviata sulla sezione armata con 4+4Ø10 disposte regolarmente su angoli e perimetro della sezione. La verifica è sempre soddisfatta.

	Sismica_1	CC1	SLU 3	
N	1014	714	1232	daN
Mx	665	450	608	daN m
Му	1466	0	460	daN m

APPALTATORE:									
Consorzio	<u>Soci</u>		ITINEDADIO NADOLI, DADI						
HIRPINIA AV	SALINI IMPREGILO S.P.A.	ASTALDI S.P.A	ITINERARIO NAPOLI – BARI						
PROGETTAZIONE:			RADDOPPIO TRATTA APICE – ORSARA						
<u>Mandataria</u>	<u>Mandanti</u>		I LOTTO FUNZIONALE APICE – HIRPINIA						
ROCKSOIL S.P.A	NET ENGINEERING S.P.A.	ALPINA S.P.A.							
PROGETTO ESECUTIVO Relazione di calcolo fondazione per sostegno TVA			COMMESSA IF28	LOTTO 01	CODIFICA E ZZ CL	DOCUMENTO SE0200 007	REV.	FOGLIO 31 di 31	

7.3.3 CONCLUSIONI

Sugli esiti delle analisi effettuate, per le condizioni di carico statico e per la condizione di carico sismica effettuata secondo le NTC 2008, risulta che per tutte le combinazioni di carico applicate:

- le verifiche di tipo geotecnico sulla fondazione in c.a. risultano verificate;
- <u>le verifiche di tipo strutturale sulla fondazione in c.a. risultano verificate.</u>

Il progettista