COMMITTENTE:



DIREZIONE LAVORI:



APPALTATORE: CONSORZIO:



SOCI:





PROGETTAZIONE: MANDATARIA:



MANDANTI:





# PROGETTO ESECUTIVO

# ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE - HIRPINIA

**VIADOTTI** 

VI01 - VIADOTTO UFITA HIRPINIA DA KM 1+766 A KM 2+421

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

| APPALTATORE                                                             | DIRETTORE DELLA PROGETTAZIONE                                                              | PROGETTISTA      |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|
| Consorzio HIRPINIA AV<br>Il Direttore Tecnico<br>Ing. Vincenzo Moriello | II Responsabile integrazione fra le varie<br>prestazioni specialistiche<br>Ing. G. Cassani | Alpina s.a.      |
| 10/06/2020                                                              |                                                                                            | Ing. P. Galvanin |

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. SCALA:

| Rev. | Descrizione             | Redatto        | Data       | Verificato   | Data       | Approvato     | Data       | Autorizzato Data |
|------|-------------------------|----------------|------------|--------------|------------|---------------|------------|------------------|
| А    | Emissione per consegna  | G. Pallavicini | 21/02/2020 | L. Zanelotti | 21/02/2020 | M. Vernaleone | 21/02/2020 | Ing. P. Galvanin |
| В    | Recepimento Istruttorie | G. Pallavicini | 10/06/2020 | L. Zanelotti | 10/06/2020 | M. Vernaleone | 10/06/2020 |                  |
|      |                         |                |            |              |            |               |            |                  |
|      |                         |                |            |              |            |               |            | 10/06/2020       |

File: IF2801EZZCLVI0105005B n. Elab.: -

APPALTATORE:

Consorzio Soci

HIRPINIA AV SALINI IMPREGILO S.P.A. ASTALDI S.P.A

PROGETTAZIONE:

Mandataria Mandanti

ROCKSOIL S.P.A NET ENGINEERING S.P.A. ALPINA S.P.A.

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

# ITINERARIO NAPOLI – BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

COMMESSA IF28 LOTTO **01**  CODIFICA E ZZ CL DOCUMENTO VI0105 005

REV.

FOGLIO 2 di 191

# **Indice**

| 1 | PRE                              | EMESSA                                                                                                                                | 4              |
|---|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------|
|   | 2.1                              | RMATIVA E DOCUMENTI DI RIFERIMENTO  NORMATIVE                                                                                         | 5              |
| 4 | 3.1<br>3.2<br>CAF<br>4.1         | TERIALI  CALCESTRUZZO PER FUSTO PILA E PULVINO                                                                                        | 8<br>8         |
| 5 | DES                              | SCRIZIONE DELLA STRUTTURA                                                                                                             | 9              |
|   | 6.1<br>6.1.1<br>6.1.2            | PERMANENTI STRUTTURALI (G1)                                                                                                           | 11<br>11<br>13 |
|   | 6.2.1<br>6.2.2<br>6.3            | PERMANENTI NON STRUTTURALI (G2)                                                                                                       | 13<br>15<br>17 |
|   | 6.4.1<br>6.4.2<br>6.4.3<br>6.4.4 | CARICHI DA TRAFFICO  CARICHI VERTICALI DA TRAFFICO (Q1)  AZIONI DI AVVIAMENTO E FRENATURA (Q2)  FORZA CENTRIFUGA (Q3)  SERPEGGIO (Q4) |                |
|   | 6.5.1<br>6.6                     | AZIONI INDIRETTE (Q6)                                                                                                                 | 88<br>96       |
|   |                                  | VARIAZIONI TERMICHE DELL'IMPALCATO (Q71)                                                                                              | 98<br>98<br>98 |
|   |                                  |                                                                                                                                       |                |



# ITINERARIO NAPOLI - BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

NETENGINEERING Alpina

| PROGETTO ESECUTIVO                                                            | COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLI   |
|-------------------------------------------------------------------------------|----------|-------|----------|------------|------|---------|
| Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione | IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 3 di 19 |

| elevazione | · · · · · · · · · · · · · · · · · · ·                                  | 2 3 |
|------------|------------------------------------------------------------------------|-----|
| 6.8 AZIO   | DNI SISMICHE (E)                                                       | 101 |
| 6.8.1 Si   | PETTRI DI PROGETTO ALLO <b>SLV</b>                                     | 102 |
| 7 COMBI    | NAZIONI DI CARICO                                                      | 106 |
| 8 MODEL    | LO DI CALCOLO                                                          | 108 |
| 8.1 DES    | CRIZIONE DEL MODELLO DI CALCOLO                                        | 108 |
| 8.2 CAR    | ICHI ELEMENTARI                                                        | 110 |
| 8.2.1 R    | EPILOGO DEGLI SCARICHI DALL'IMPALCATO                                  | 110 |
| 8.2.2 M    | ASSE SISMICHE E SPETTRI DI RISPOSTA                                    | 113 |
| 8.3 RISU   | JLTATI DEL MODELLO DI CALCOLO                                          | 115 |
| 8.3.1 Sc   | DLLECITAZIONI SUGLI ELEMENTI                                           | 116 |
| 9 VERIFIC  | CHE                                                                    | 121 |
| 9.1 SEZ    | ONE 1- SEZIONE DI INCASTRO                                             | 121 |
| 9.1.1 VE   | RIFICA SLU-STR, N=cost                                                 | 123 |
| 9.1.2 VE   | RIFICA SLU-STR, M/N=cost                                               | 123 |
| 9.1.3 VE   | RIFICA SLU-SISMA, N=COST                                               | 124 |
| 9.1.4 VE   | RIFICA SLU-SISMA, M/N=cost                                             | 125 |
|            | RIFICA A TAGLIO                                                        |     |
|            | RIFICA SLE-RARA                                                        |     |
| 9.1.7 Vi   | RIFICA SLE-QP                                                          | 132 |
| 9.2 VER    | IFICA DEGLI SPOSTAMENTI                                                | 132 |
| 9.3 EFF    | ETTI DI TERMICA E RITIRO DIFFERENZIALE TRA PILA E PLATEA DI FONDAZIONE | 133 |
| 10 ALLEG   | ATI                                                                    | 139 |
| 10.1 OUT   | PUT RC-SEC, SEZIONE DI CALCOLO                                         | 139 |
| 10.2 CON   | IBINAZIONI SLU                                                         | 142 |
| 10.3 CON   | IBINAZIONI SLV                                                         | 157 |
| 10.4 CON   | IBINAZIONI SLE-RARA                                                    | 170 |

| APPALTATORE:                                                  |                 |                   |                  |                    |                     |                         |                  |                    |
|---------------------------------------------------------------|-----------------|-------------------|------------------|--------------------|---------------------|-------------------------|------------------|--------------------|
| <u>Consorzio</u>                                              | <u>Soci</u>     |                   |                  | 1711               |                     | NABOLL B                | 4 D.I            |                    |
| Hirpinia AV_                                                  | salini 🖟        | ASTALDI           |                  | HIIN               | IERARIO             | NAPOLI – B              | AKI              |                    |
| PROGETTAZIONE:                                                |                 |                   |                  | <b>RADDO</b>       | <b>PPIO TRAT</b>    | TA APICE - O            | RSARA            |                    |
| <u>Mandataria</u>                                             | <u>Mandanti</u> |                   | I                | LOTTO              | <b>FUNZIONA</b>     | LE APICE - H            | IRPINIA          |                    |
| XXX SOFT                                                      | NET             | Alpina            |                  |                    |                     |                         |                  |                    |
| PROGETTO ESECUTIV<br>Pile P7, P8, P19, P20, P21<br>elevazione | -               | colo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>4 di 191 |

# 1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Apice-Orsara - I° Lotto Funzionale Apice-Hirpinia oggetto di progettazione esecutiva.

Oggetto della presente relazione è il dimensionamento degli elementi in elevazione costituenti la Pila P07 del Viadotto Ufita Hirpinia - VI01. Per analogia di geometria e condizioni al contorno con la pila P07 il calcolo si ritiene valido e dunque viene esteso anche alle pile P08,P19,P20,P21,P22.

Nel seguito si procede al calcolo dello stato di sollecitazione ed alle verifiche dei vari elementi costituenti la pila, nei confronti degli Stati Limite Ultimi strutturali di presso-flessione e taglio e gli Stati limite di Esercizio di fessurazione e tensionale.

| APPALTATORE:                                                      |                 |                  |                  |                    |                     |                         |                  |                    |
|-------------------------------------------------------------------|-----------------|------------------|------------------|--------------------|---------------------|-------------------------|------------------|--------------------|
| Consorzio                                                         | <u>Soci</u>     |                  |                  | ITINI              |                     | NA DOLL D               | A D I            |                    |
| Hirpinia AV                                                       | salini (        | ASTALDI          |                  | HIIN               | ERARIO              | NAPOLI – B              | AKI              |                    |
| PROGETTAZIONE:                                                    |                 |                  |                  | <b>RADDOF</b>      | PPIO TRAT           | TA APICE - O            | RSARA            |                    |
| <u>Mandataria</u>                                                 | <u>Mandanti</u> |                  | I                | LOTTO I            | FUNZIONA            | LE APICE – HI           | RPINIA           |                    |
|                                                                   | NETENGINEERING  | Alpina           |                  |                    |                     |                         |                  |                    |
| PROGETTO ESECUTIVO<br>Pile P7, P8, P19, P20, P21, F<br>elevazione |                 | olo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>5 di 191 |

# 2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

# 2.1 NORMATIVE

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, Circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- [4] Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- [5] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

| APPALTATORE:                                                |                     |                   |                  |                    |                     |                         |                  |                    |
|-------------------------------------------------------------|---------------------|-------------------|------------------|--------------------|---------------------|-------------------------|------------------|--------------------|
| Consorzio                                                   | <u>Soci</u>         |                   |                  | ITIN               | IEDADIO             | NAPOLI – B              | ۸DI              |                    |
| Hirpinia AV                                                 | salini<br>impregilo | <b>ASTALDI</b>    |                  | 11111              | ILNANIO             | NAFOLI – B              | ANI              |                    |
| PROGETTAZIONE:                                              |                     |                   |                  | RADDO              | PPIO TRAT           | TA APICE - O            | RSARA            |                    |
| <u>Mandataria</u>                                           | <u>Mandanti</u>     |                   | I                | LOTTO              | FUNZIONA            | LE APICE – H            | IRPINIA          |                    |
|                                                             | NET                 | Alpina            |                  |                    |                     |                         |                  |                    |
| PROGETTO ESECUTI<br>Pile P7, P8, P19, P20, P2<br>elevazione |                     | colo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>6 di 191 |

# 2.2 ELABORATI DI RIFERIMENTO

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza



# 3 MATERIALI

# 3.1 CALCESTRUZZO PER FUSTO PILA E PULVINO

| Classe C32/40                   |              |                                                                            |
|---------------------------------|--------------|----------------------------------------------------------------------------|
| Rck =                           | 40,00 MPa    | Resistenza caratteristica cubica                                           |
| fck = 0,83 Rck =                | 33,20 MPa    | Resistenza caratteristica cilindrica                                       |
| fcm = fck +8 =                  | 41,20 MPa    | Valore medio resistenza cilindrica                                         |
| acc =                           | 0,85         | Coeff. rid. per carichi di lunga durata                                    |
| γM =                            | 1,50         | Coeff. parziale di sicurezza SLU                                           |
| $fcd = acc fck/\gamma M =$      | 18,81 MPa    | Resistenza di progetto                                                     |
| fctm = 0.3 fck(2/3) =           | 3,10 MPa     | Resistenza media a trazione semplice                                       |
| fcfm = 1,2 fctm =               | 3,72 MPa     | Resistenza media a trazione per flessione                                  |
| fctk = 0.7 fctm =               | 2,17 MPa     | Valore caratteristico resistenza a trazione (frattile 5%)                  |
| $\sigma c = 0,55 \text{ fck} =$ | 18,26 MPa    | Tensione limite in esercizio in comb. rara                                 |
|                                 |              | (rif.§2.5.1.8.3.2.1[3])                                                    |
| $\sigma c = 0.40 \text{ fck} =$ | 13,28 MPa    | Tensione limite in esercizio in comb. quasi perm. (rif.                    |
|                                 |              | §2.5.1.8.3.2.1 [3])                                                        |
| Ecm = 22000 (fcm/10)(0,3) =     | 33643,00 MPa | Modulo elastico di progetto                                                |
| v =                             | 0,20         | Coefficiente di Poisson                                                    |
| Gc = Ecm /(2(1+ v)=             | 14018,00 MPa | Modulo elastico tangenziale di progetto                                    |
|                                 |              |                                                                            |
| Condizioni ambientali =         |              | Debolmente aggressive                                                      |
| Classe di esposizione =         |              | XC4                                                                        |
| C =                             | 4,50 cm      | Copriferro minimo                                                          |
| W =                             | 0,20 mm      | Apertura massima fessure in esercizio in comb. rara rif.§2.5.1.8.3.2.4[3]) |



# 3.2 ACCIAIO PER BARRE DI ARMATURA

# **B450C**

| <u>fyk</u> ≥450,00 MPa            | Tensione caratteristica | Tensione caratteristica di snervamento                       |  |  |  |  |  |  |
|-----------------------------------|-------------------------|--------------------------------------------------------------|--|--|--|--|--|--|
| ftk ≥                             | 540,00 MPa              | Tensione caratteristica di rottura                           |  |  |  |  |  |  |
| (ft/fy )k≥                        | 1,15                    |                                                              |  |  |  |  |  |  |
| $(ft/fy)_k <$                     | 1,35                    |                                                              |  |  |  |  |  |  |
| γs=                               | 1,15                    | Coefficiente parziale di sicurezza SLU                       |  |  |  |  |  |  |
| fyd = fyk/γs=                     | 391,30 MPa              | Tensione caratteristica di snervamento                       |  |  |  |  |  |  |
| Es =                              | 210000,00 MPa           | Modulo elastico di progetto                                  |  |  |  |  |  |  |
| εyd =                             | 0,20 %                  | Deformazione di progetto a snervamento                       |  |  |  |  |  |  |
| $\epsilon$ uk =(Agt) <sub>k</sub> | 7,50 %                  | Deformazione caratteristica ultima                           |  |  |  |  |  |  |
| σs = 0,75 fyk =                   | 337,50 MPa              | Tensione in esercizio in comb. rara (rif. §2.5.1.8.3.2.1 [3] |  |  |  |  |  |  |

# 4 CARATTERIZZAZIONE GEOTECNICA ED ASPETTI IDRAULICI

# 4.1 CARATTERIZZAZIONE GEOTECNICA

Per la caratterizzazione geotecnica della Tratta si fa riferimento agli elaborati specialistici di riferimento.

# 4.2 ASPETTI IDRAULICI

Per gli aspetti idrologici e idraulici si fa riferimento agli elaborati specialistici di riferimento.

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 9 di 191 IF28 01 elevazione

# 5 DESCRIZIONE DELLA STRUTTURA

Il *Viadotto Ufita Hirpinia - VI01*, a doppio binario, si estende dal km 1+765,00 al km 2+420,00 della *Tratta Apice-Orsara - I° Lotto Funzionale Apice-Hirpinia* per uno sviluppo complessivo di 655 m in corrispondenza del *Torrente Ufita* ed è costituito da n°23 campate isostatiche di cui:

- n°20 campate di luce L=25,00m (asse pila-asse pila): ciascun impalcato è costituito da n°4 travi a cassoncino in c.a.p. di luce di calcolo Lc=22,80m disposte ad un interasse di 2,48m e collegate trasversalmente da n°4 trasversi in c.a.p. con cavi post-tesi. Completa l'impalcato una soletta in c.a. gettata in opera di larghezza complessiva pari a 13,70m.
- n°2 campate (tra le pile P12 e P13 e tra le pile P14 e P15) di luce L=45,00m (asse pila-asse pila): l'impalcato è della tipologia a struttura mista acciaio-calcestruzzo con soletta collaborante in c.a. avente luce di calcolo Lc=43,00m con una larghezza complessiva pari a 13,70m.
- n°1 campata (tra le pile P13 e P14) di luce L=65,00m (asse pila-asse pila): l'impalcato è della tipologia a struttura mista acciaio-calcestruzzo con soletta collaborante in c.a. avente luce di calcolo Lc=63,00m con una larghezza complessiva pari a 13,70m.

L'adozione di "campate speciali" (45,00m-65,00m-45,00m di cui sopra) per lo scavalco del *Torrente Ufita* è stata dettata da motivazioni di carattere idraulico legate in primo luogo al rispetto di quanto prescritto dal *DM* 14 Gennaio 2008 [1] in termini di compatibilità idraulica (cfr. § 5.2.1.2 "...la luce minima tra pile contigue, misurata ortogonalmente al filone principale della corrente, non dovrà esser inferiore a 40metri...").

Le pile, in c.a., a sostegno delle campate di luce L=25,00m presentano un fusto a sezione rettangolare cava costante su tutta l'altezza di dimensioni esterne pari a 3,30m x 8,60m con raccordi circolari ed un motivo "a lesena" nella parte centrale del fusto su tutti e quattro i lati. Diversamente, le pile da P12 a P15, afferenti alle campate di scavalco del *Torrente Ufita*, presentano un fusto a sezione rettangolare cava variabile sull'altezza di dimensioni esterne, a quota estradosso pulvino, pari a 4,50m x 13,20m, con 13,20m costante su tutta l'altezza e 4,50m variabile e crescente con pendenza pari a 1/25; anche tali pile sono caratterizzate da raccordi circolari ed un motivo "a lesena" nella parte centrale del fusto su tutti e quattro i lati. Le pile P4 e P11 sono conformate in maniera tale da consentire su di esse l'alloggiamento di *portali di ormeggio* della T.E.

Per tale *Viadotto* la sezione tipo di piattaforma ferroviaria è conformata per la realizzazione, sia lato B.P. che lato B.D., di marciapiedi per *FFP*, per tutto il tratto interessato dello stesso.

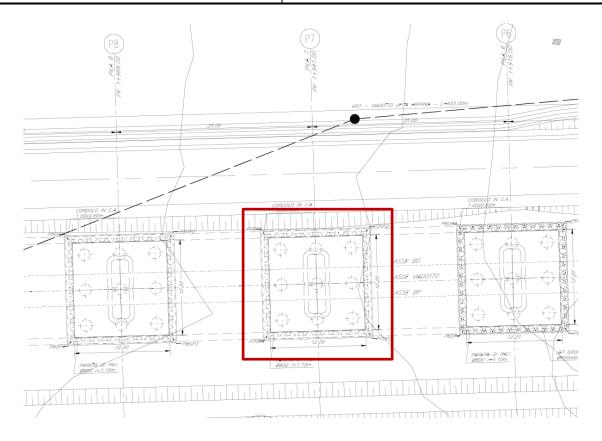
Oggetto della presente relazione è il dimensionamento della Pila P07, sulla quale gravano due impalcati isostatici a singola campata, di lunghezza pari a 25m. Il fusto presenta la sezione tipologica 3,3m x 8,60m e un'altezza fusto pari a 6,45m.

# APPALTATORE: Consorzio Soci Salini impregilo PROGETTAZIONE: Mandataria Mandataria Mandanti

NETENGINEERING

Alpina

# ITINERARIO NAPOLI - BARI


# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

XXX SOUL

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL VI0105 005 B 10 di 191



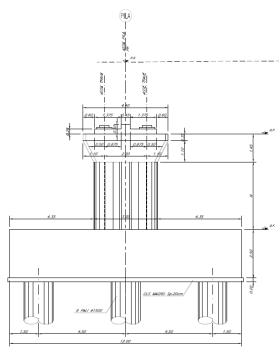



Figura 1 sezione trasversale pila 7

# 6 ANALISI DEI CARICHI

Di seguito si riporta l'analisi dei carichi agenti sulla pila e derivanti dagli impalcati afferenti. Le azioni e le reazioni riportate sono riferite al seguente sistema di riferimento:

asse 1 o asse X: asse longitudinale;

asse 2 o asse Y: asse trasversale;

asse 3 o asse Z: asse verticale.

Le analisi dei carichi sono eseguite con riferimento alle campate tipologiche in c.a.p., o in struttura mista acciaio-calcestruzzo, qualora afferenti alla pila in esame, in modo da semplificare le analisi strutturali mediante modello di calcolo FEM.

Si è controllato che le approssimazioni introdotte nel calcolo facendo riferimento alle campate tipologiche siano comunque trascurabili ai fini della determinazione dei carichi sulle sottostrutture, come dimostrato nel successivo paragrafo

# 6.1 PERMANENTI STRUTTURALI (G1)

# 6.1.1 Peso proprio impalcati

L'impalcato a singola campata isostatica, di campata pari a 25 m in asse ai giunti (22,80 m asse appoggi), è costituito da 4 cassoncini in c.a.p. solidarizzati da trasversi gettati in opera. La soletta è di spessore variabile tra 30 cm e 40 cm ed è anch'essa gettata in opera su predalles prefabbricate.

I carichi afferenti al peso proprio degli impalcati sono calcolati automaticamente sulla base delle caratteristiche geometriche e del peso unitario di ciascun elemento.

|                             | IMPALCAT | O SX  | IMPALCATO | DX |
|-----------------------------|----------|-------|-----------|----|
| Peso proprio travi          |          |       |           |    |
| A sezione testata           | 2.01     | $m^2$ | 2.01      | m² |
| A sezione media transizione | 1.60     | $m^2$ | 1.60      | m² |
| A sezione corrente          | 1.13     | $m^2$ | 1.13      | m² |
| L testata                   | 1.50     | m     | 1.50      | m  |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** Mandanti XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 12 di 191 IF28 01 В elevazione 3.60 3.60 L zone transizione m m L corrente 19.20 m 19.20 m L tot 24.30 24.30 m m $m^3$ $m^3$ V tot trave 30.47 30.47 Peso unitario travi 25.00 kN/m<sup>3</sup> 25.00 kN/m<sup>3</sup> n° travi 4 4 P travi 3047.10 kΝ 3047.10 kN Peso proprio traversi $m^2$ 2.76 $m^2$ A traverso testata 2.76 A traverso corrente 3.64 $m^2$ 3.64 $m^2$ s traverso testata 0.40 m 0.40 m 0.25 0.25 s traverso corrente m m n° traversi testata 2 2 2 2 n° traversi correnti V tot traversi 4.03 $m^3$ 4.03 $m^3$ Peso unitario traversi 25.00 kN/m<sup>3</sup> 25.00 kN/m<sup>3</sup> P traverso 100.70 kΝ 100.70 kN n° travi trasversali 4 4 P travi trasversali 402.80 402.80 Peso proprio soletta $m^2$ $m^2$ A soletta 5.05 5.05 L impalcato 25.00 m 25.00 m Peso unitario soletta 25.00 kN/m<sup>3</sup> 25.00 kN/m<sup>3</sup> P soletta 3156.25 kΝ 3156.25 kN PESO PROPRIO TOTALE IMPALCATO Peso impalcato 6606.15 kΝ 6606.15 kN

| APPALTATORE:                                    |                     |                   |                  |                    |                     |                         |                  |                     |
|-------------------------------------------------|---------------------|-------------------|------------------|--------------------|---------------------|-------------------------|------------------|---------------------|
| Consorzio                                       | <u>Soci</u>         |                   |                  | ITIN               |                     | NADOLI                  | DADI             |                     |
| Hirpinia AV                                     | salini<br>impregilo | <u> </u>          |                  | HHIN               | EKAKIU I            | NAPOLI –                | BAKI             |                     |
| PROGETTAZIONE:                                  |                     |                   |                  | _                  | _                   | TA APICE -              |                  |                     |
| <u>Mandataria</u>                               | <u>Mandanti</u>     |                   | I                | LOTTO              | FUNZIONA            | LE APICE -              | HIRPINIA         |                     |
| XXX SOFT                                        | NET                 | Alpina            |                  |                    |                     |                         |                  |                     |
| PROGETTO ESECUTIV<br>Pile P7, P8, P19, P20, P21 |                     | colo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>13 di 191 |
| elevazione                                      |                     |                   |                  |                    |                     |                         |                  |                     |
| Risultanti reazion                              | ii vincolari        |                   |                  |                    |                     |                         |                  |                     |
| F1                                              |                     | 0                 |                  |                    |                     | 0                       |                  |                     |
| F2                                              |                     | 0                 |                  |                    |                     | 0                       |                  |                     |
| F3                                              |                     | 3303              | kN               |                    | 330                 | )3 kN                   |                  |                     |
| M1                                              |                     | 0                 |                  |                    |                     | 0                       |                  |                     |
| M2                                              |                     | 0                 |                  |                    |                     | 0                       |                  |                     |

# 6.1.2 Peso proprio pila

M3

I carichi afferenti al peso proprio degli elementi costituenti la pila (fusto, pulvino) sono calcolati sulla base delle caratteristiche geometriche di ciascun elemento e considerando un peso unitario del calcestruzzo pari a 25,00 kN/m³.

0

0

# 6.2 PERMANENTI NON STRUTTURALI (G2)

I carichi permanenti non strutturali sono costituiti dal peso della massicciata, dal peso delle barriere antirumore, dal peso delle canalette portacavi. In aggiunta ai permanenti non strutturali portati dagli impalcati si hanno anche quelli costituiti dal riempimento della pila e dagli scarichi del portale T.E.(questi ultimi solo sulle pile P04 e P11).

La normativa distingue tra ballast e permanenti non strutturali generici nell'assegnazione dei valori del coefficiente di combinazione (rif. §2.5.1.8.3.1 [3]), per questo motivo nei paragrafi a seguire i due casi di carico vengono trattati separatamente.

# 6.2.1 Ballast

Secondo il §2.5.1.3.2 [3], ove non si eseguano valutazioni più dettagliate, la determinazione dei carichi permanenti portati relativi al peso della massicciata, armamento e dell'impermeabilizzazione potrà effettuarsi assumendo convenzionalmente, per linea in rettifilo, un peso di volume pari a 18,00 kN/m³, applicato su tutta

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( 🗸 ASTALDI /Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 14 di 191 IF28 01 В

la larghezza media compresa fra i muretti paraballast, per un'altezza media fra p.f. ed estradosso impalcato pari a 0,80 m. Per i ponti in curva si assume un peso convenzionale di 20 kN/m³.

| IMPALCATO SX |                                                                  | IMPALCA                                                                                               | TO DX                                                                                                                                                                |
|--------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                  |                                                                                                       |                                                                                                                                                                      |
| 18.00        | kN/m³                                                            | 18.00                                                                                                 | kN/m³                                                                                                                                                                |
| 20.00        | kN/m³                                                            | 20.00                                                                                                 | kN/m³                                                                                                                                                                |
| N            |                                                                  | N                                                                                                     |                                                                                                                                                                      |
|              | m                                                                |                                                                                                       | m                                                                                                                                                                    |
|              |                                                                  |                                                                                                       | m                                                                                                                                                                    |
|              | m                                                                |                                                                                                       | m                                                                                                                                                                    |
| 25.00        | m                                                                | 25.00                                                                                                 | m                                                                                                                                                                    |
| 2988.00      | kN/m³                                                            | 2988.00                                                                                               | kN/m³                                                                                                                                                                |
|              |                                                                  |                                                                                                       |                                                                                                                                                                      |
| 0.287        | m <sup>2</sup>                                                   | 0.287                                                                                                 | $m^2$                                                                                                                                                                |
| 25.00        | m <sup>2</sup>                                                   | 25.00                                                                                                 | m <sup>2</sup>                                                                                                                                                       |
| 179.38       | kN                                                               | 179.38                                                                                                | kN                                                                                                                                                                   |
|              |                                                                  |                                                                                                       |                                                                                                                                                                      |
| 3167.38      | kN                                                               | 3167.38                                                                                               | kN                                                                                                                                                                   |
|              | 18.00<br>20.00<br>N<br>18.00<br>0.80<br>8.30<br>25.00<br>2988.00 | 18.00 kN/m³ 20.00 kN/m³  N 18.00 m 0.80 m 8.30 m 25.00 m  2988.00 kN/m³  0.287 m² 25.00 m²  179.38 kN | 18.00 kN/m³ 18.00 20.00 kN/m³ 20.00  N N 18.00 m 18.00 0.80 m 0.80 8.30 m 8.30 25.00 m 25.00  2988.00 kN/m³ 2988.00  0.287 m² 0.287 25.00 m² 25.00  179.38 kN 179.38 |

| APPALTATORE:                          |                          |                   |          |       |                |         |        |         |           |
|---------------------------------------|--------------------------|-------------------|----------|-------|----------------|---------|--------|---------|-----------|
| Consorzio                             | <u>Soci</u>              |                   |          | ITIN  |                | NADO    | II D   | A D I   |           |
| Hirpinia AV                           | salini 🦙                 | ASTALD            |          | HIIN  | ERARIO         | NAPO    | LI – B | AKI     |           |
| PROGETTAZIONE:                        |                          |                   |          |       | PPIO TRA       |         |        |         |           |
| <u>Mandataria</u>                     | <u>Mandanti</u>          |                   | I        | LOTTO | <b>FUNZION</b> | ALE API | CE – H | IRPINIA |           |
| XXX SOLL                              | NET                      | Alpina            |          |       |                |         |        |         |           |
| PROGETTO ESECUTI                      |                          |                   | COMMESSA | LOTTO | CODIFICA       | DOCUM   | IENTO  | REV.    | FOGLIO    |
| Pile P7, P8, P19, P20, P21 elevazione | I, P22: Relazione di cal | colo strutture in | IF28     | 01    | E ZZ CL        | VI0105  | 5 005  | В       | 15 di 191 |
|                                       |                          |                   | ·        |       |                |         |        |         | <u> </u>  |
| -                                     |                          |                   |          |       |                |         |        |         |           |
|                                       |                          |                   |          |       |                |         |        |         |           |
| Risultanti reazion                    | <u>ii vincolari</u>      |                   |          |       |                |         |        |         |           |
|                                       |                          |                   |          |       |                |         |        |         |           |
| F1                                    |                          | 0                 |          |       | 0              |         |        |         |           |
| F2                                    |                          | 0                 |          |       | 0              |         |        |         |           |
| F3                                    |                          | 1584              | kN       |       | 1584           | kN      |        |         |           |
| M1                                    |                          | 0                 |          |       | 0              |         |        |         |           |

0

0

# 6.2.2 Permanenti non strutturali generici (G22)

M2

М3

Secondo il §2.5.1.3.2 [3], nella progettazione di nuovi ponti ferroviari dovranno essere sempre considerati i pesi le azioni e gli ingombri associati all'introduzione delle barriere antirumore, anche nei casi in cui non ne sia originariamente prevista la realizzazione, assumendo un peso pari a 4,00 kN/m² ed un'altezza minima di 4,00 m misurata dall'estradosso della soletta.

0

0

|                          | IMPALCATO SX | IMPALCATO DX |
|--------------------------|--------------|--------------|
| Peso barriere antirumore |              |              |
| P barriere               | 4.00 kN/m²   | 4.00 kN/m³   |
| B.A. lato sx             | H4           | H4           |
| B.A. lato dx             | H4           | H4           |
| H barriera sx            | 5.40 m       | 5.40 m       |
| H barriera dx            | 5.40 m       | 5.40 m       |
| L impalcato              | 25.00 m      | 25.00 m      |
| Peso totale barriere     | 1080.00 kN   | 1080.00 kN   |
|                          |              |              |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI Hirpinia AV salini ( **ASTALDI** RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 16 di 191 IF28 В 01

| Peso cordoli, velette                            |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   |           |           |           |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|
| A cordoli                                        | 0.360                                                                                                                                                                                                                           | $m^2$                                                                                                                                                                                                                                                                             | 0.360     | $m^2$     |           |
| A veletta                                        | 0.19                                                                                                                                                                                                                            | $m^2$                                                                                                                                                                                                                                                                             |           |           |           |
| peso unitario cordoli, veletta                   | 25.00                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |           |           |           |
| Peso totale arredi                               | 343.75                                                                                                                                                                                                                          | kN                                                                                                                                                                                                                                                                                | 343.75    | kN        |           |
| Peso canalette portacavi                         |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   |           |           |           |
| P canalette                                      | 5.00                                                                                                                                                                                                                            | kN/m                                                                                                                                                                                                                                                                              | 5.00      | kN/m      |           |
| P tot canalette                                  | 125.00                                                                                                                                                                                                                          | kN                                                                                                                                                                                                                                                                                | 125.00    | kN        |           |
| Permanenti non strutturali totali Permanenti tot | 1548.75                                                                                                                                                                                                                         | kN                                                                                                                                                                                                                                                                                | 1548.75   | kN        |           |
| Risultanti reazioni vincolari                    |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   |           |           |           |
| F1                                               | 0                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   | 0         |           |           |
| F2                                               | 0                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   | 0         |           |           |
| F3                                               | 774                                                                                                                                                                                                                             | kN                                                                                                                                                                                                                                                                                | 774       | kN        |           |
| M1                                               | 0                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   | 0         |           |           |
| M2                                               | 0                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   | 0         |           |           |
| M3                                               | 0                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   | 0         |           |           |
|                                                  | A cordoli A veletta peso unitario cordoli, veletta  Peso totale arredi  Peso canalette portacavi  P canalette P tot canalette  Permanenti non strutturali totali  Permanenti tot  Risultanti reazioni vincolari  F1 F2 F3 M1 M2 | A cordoli A veletta 0.19 peso unitario cordoli, veletta 25.00  Peso totale arredi 343.75  Peso canalette portacavi  P canalette 5.00 P tot canalette 125.00  Permanenti non strutturali totali  Permanenti tot 1548.75  Risultanti reazioni vincolari  F1 0 F2 0 F3 774 M1 0 M2 0 | A cordoli | A cordoli | A cordoli |

# 6.2.2.1 RIEMPIMENTO PILA

La pila non ha riempimento

#### APPALTATORE: Consorzio Soci salini impregilo **ASTALDI** Hirpinia AV PROGETTAZIONE: Mandataria Mandanti XXX SOUL Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in

# ITINERARIO NAPOLI - BARI

# RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

IF28 E ZZ CL 01

DOCUMENTO VI0105 005

REV. FOGLIO 17 di 191 В

#### **VALIDAZIONE ANALISI DEI CARICHI** 6.3

elevazione

Di seguito si riporta un confronto tra l'analisi dei pesi propri e permanenti calcolati nei paragrafi precedenti con riferimento a una campata tipologica e quella riferita alla campata specifica della pila in oggetto, tenendo conto del raggio di curvatura, se presente, e di tutti gli elementi di arredo e completamento dell'impalcato.

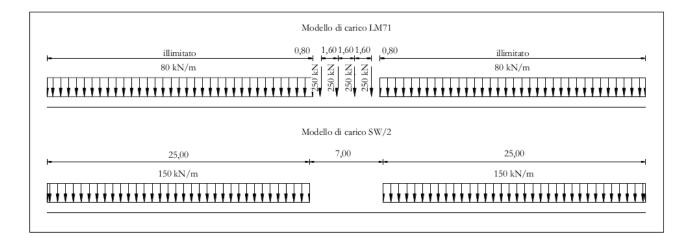
Più nel dettaglio, i carichi permenti provenienti dall'impalcato sono stati dedotti dalla modellezione BIM: sono stati considerati i sovraccarichi provenienti dal camminamento.

| G11                                                         |              |        |         |         |
|-------------------------------------------------------------|--------------|--------|---------|---------|
|                                                             | IMPALC       | ATO SX | IMPALC  | CATO DX |
| Peso proprio travi                                          |              |        |         |         |
| Volume trave da modello BIM                                 | 34,07        | $m^3$  | 34,07   | $m^3$   |
| Peso unitario travi                                         | 25,00        | kN/m³  | 25,00   | kN/m³   |
| n° travi                                                    | 4            |        | 4       |         |
| P travi                                                     | 3407,00      | kN     | 3407,00 | kN      |
| <u>Peso proprio soletta + muretto</u><br><u>baraballast</u> |              |        |         |         |
| Volume soletta+paraballast da BIM                           | 122,35       | m³     | 122,35  | $m^3$   |
| Peso unitario soletta                                       | 25,00        | kN/m³  | 25,00   | kN/m³   |
| P soletta                                                   | 3058,65      | kN     | 3059    | kN      |
| PESO PROPRIO TOTALE IMPALCATO                               |              |        |         |         |
| Peso impalcato                                              | 6465,65      | kN     | 6466    | kN      |
| Risultanti reazioni vincolari                               |              |        |         |         |
| F1                                                          | 0            |        | 0       |         |
| F2                                                          | 0            |        | 0       |         |
| F3                                                          | 3233         | kN     | 3233    | kN      |
| M1                                                          | 0            |        | 0       |         |
| M2                                                          | 0            |        | 0       |         |
| M3                                                          | 0            |        | 0       |         |
| G21                                                         | IMPALCATO SX |        | IMPALC  | ATO DX  |
|                                                             |              |        |         |         |
| <u>Peso ballast</u>                                         |              |        |         |         |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXX SOUL Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in IF28 E ZZ CL VI0105 005 18 di 191 В elevazione kN/m<sup>3</sup> kN/m<sup>3</sup> P ballast rettifilo 18,00 18,00 kN/m<sup>3</sup> P ballast curva 20,00 kN/m<sup>3</sup> 20,00 tracciato in curva (S/N) Ν Ν P ballast 18,00 18,00 m m s ballast 0,80 0,80 m m L ballast 8,30 8,30 m m L impalcato 25,00 m 25,00 m kN/m<sup>3</sup> kN/m<sup>3</sup> Peso totale ballast 2988,00 2988,00 Risultanti reazioni vincolari F1 0 0 F2 0 0 F3 1494 kN 1494 kN M1 0 0 0 0 M2 M3 0 0 **G22 IMPALCATO SX** IMPALCATO DX Peso barriere antirumore kN/m³ P barriere 4,00 kN/m<sup>2</sup> 4,00 B.A. lato sx H4 H4 B.A. lato dx H4 H4 H barriera sx 5,40 m 5,40 m H barriera dx 5,40 5,40 m m L impalcato 25,00 25,00 m m Peso totale barriere 1080,00 1080,00 kΝ kΝ Peso cordoli, velette $\,m^2\,$ A cordoli 0,360 $m^2$ 0,360 $m^2$ 0,19 $m^2$ A veletta 0,19 kN/m<sup>3</sup> kN/m<sup>3</sup> peso unitario cordoli, veletta 25,00 25,00 343,75 kN 343,75 Peso totale arredi kΝ Peso canalette portacavi

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** Mandanti XXXSOU NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in IF28 E ZZ CL VI0105 005 19 di 191 В elevazione P canalette 5,00 kN/m 5,00 kN/m P tot canalette 125,00 kΝ 125,00 kΝ Camminamento FFP Lunghezza totale montanti 1,95 m 1,95 m lunghezza trave 2,4 m 2,4 m Massa HEB140 33,7 kg/m 33,7 kg/m Massa HEB100 20,4 kg/m 20,4 kg/m Massa telaio 114,675 kg 114,675 kg interasse terlaio 1,5 m 1,5 m L impalcato 25 m 25 m Peso telaio 19,1125 kN 19,1125 kN Massa grigliato 40,1 kg/m2 40,1 kg/m2 Larghezza grigliato 2,4 m 2,4 m L impalcato 25 m 25 m Peso grigliato 24,06 kN 24,06 kN Ptot camminamento 43,17 kN 43,17 kN Permanenti non strutturali totali Permanenti tot 1591,92 kΝ 1591,92 kΝ Risultanti reazioni vincolari F1 0 0 F2 0 0 F3 796 796 kΝ kΝ M1 0 0 M2 0 0 0 0 M3 G11+G21+G22 **IMPALCATO SX** IMPALCATO DX Risultanti reazioni vincolari risultanti F1 0 0 F2 0 0 F3 5523 kN 5523 kN M1 0 0 M2 0 0

| APPALTATORE:                          |                         |                   |          |       |                 |              |         |           |
|---------------------------------------|-------------------------|-------------------|----------|-------|-----------------|--------------|---------|-----------|
| Consorzio                             | Soci                    |                   |          | ITIN  |                 | NAPOLI – B   | ۸DI     |           |
| Hirpinia AV                           | salini 🥢                | <b>ASTALDI</b>    |          | 11111 | IERARIO         | NAPOLI - B   | ANI     |           |
| PROGETTAZIONE:                        |                         |                   |          | RADDO | PPIO TRAT       | TA APICE - O | RSARA   |           |
| <u>Mandataria</u>                     | <u>Mandanti</u>         |                   | I        | LOTTO | <b>FUNZIONA</b> | LE APICE - H | IRPINIA |           |
|                                       | NET                     | Alpina            |          |       |                 |              |         |           |
| PROGETTO ESECUTIV                     | /O                      |                   | COMMESSA | LOTTO | CODIFICA        | DOCUMENTO    | REV.    | FOGLIO    |
| Pile P7, P8, P19, P20, P21 elevazione | , P22: Relazione di cal | colo strutture in | IF28     | 01    | E ZZ CL         | VI0105 005   | В       | 20 di 191 |
| M3                                    |                         |                   |          | 0     |                 | C            | )       |           |


Le reazioni esplicitate nel capitolo relativo all'analisi dei carichi risultano essere:

| G11+G21+G22 |      |    |      |    |
|-------------|------|----|------|----|
|             |      |    |      |    |
| F3          | 3303 | kN | 3303 | kN |
| F3          | 1584 | kN | 1584 | kN |
| F3          | 774  | kN | 774  | kN |
|             |      |    |      |    |
| F3 tot      | 5661 | kN | 5661 | kN |
|             |      |    |      |    |

Dal confronto con i carichi desunti dall'analisi della campata tipologica in c.a.p. non si rilevano differenze ingegneristicamente significative.

# 6.4 CARICHI DA TRAFFICO

Le azioni verticali associate ai convogli ferroviari si schematizzano mediante i modelli di carico teorici LM71 e SW/2.



Le differenti disposizioni degli assi e delle stese di carico considerate sono state definite in modo tale da massimizzare gli scarichi sulla pila:

Disposizione 1: disposizione atta a massimizzare lo scarico assiale sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 e la stesa di carico di 25 m del SW/2 sono centrati sulla pila.

# APPALTATORE: Consorzio Soci Salini Mandanti Mandataria PROGETTO ESECUTIVO ASTALDI MASTALDI MASTALDI MASTALDI ASTALDI PROGETTO ESECUTIVO

# ITINERARIO NAPOLI - BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO
Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in

elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL VI0105 005 B 21 di 191

Disposizione 2: disposizione atta a massimizzare il momento longitudinale (momento che "gira" intorno all'asse trasversale) sulla pila. Prevede entrambi i binari di un solo impalcato caricati con i modelli LM71 e SW/2. Gli assi del modello LM71 e la stesa di carico di 25 m del modello SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.

Disposizione 3: disposizione atta a massimizzare il momento trasversale (momento che "gira" intorno all'asse longitudinale) sulla pila Prevede un solo binario di entrambi gli impalcati caricato il modello SW/2. La stesa di carico di 25 m del modello SW/2 è centrata sulla pila.

Disposizione 4: disposizione atta a massimizzare il momento trasversale (momento che "gira" intorno all'asse longitudinale) sulla pila. Prevede un solo binario di entrambi gli impalcati caricato con il modello LM71. Gli assi del LM71 sono centrati sulla pila.

Disposizione 5: disposizione atta a massimizzare lo scarico assiale sulla pila e contemporaneamente a creare un momento longitudinale (che "gira" intorno all'asse trasversale) sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 e la stesa di carico di 25 m del SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.

Disposizione 6: disposizione atta a massimizzare lo scarico assiale sulla pila. Prevede entrambi i binari di entrambe le campate caricati con i modelli LM71 e SW/2. Gli assi del LM71 ed il tratto scarico di 7 m del SW/2 sono centrati sulla pila.

Disposizione 7: disposizione atta a minimizzare lo scarico assiale sulla pila e contemporaneamente a massimizzare il momento longitudinale (momento che "gira" intorno all'asse trasversale. Prevede entrambi i binari di un solo impalcato caricati con i modelli LM71 e SW/2. Gli assi del modello LM71 e la stesa di carico di 25 m del modello SW/2 sono posizionati a partire dall'estremità sinistra dell'impalcato di destra.

Negli schemi seguenti verranno espresse le reazioni verticali come F<sub>A</sub> e F<sub>B</sub> rispettivamente per la campata di sinistra e di destra, avendo considerato l'appoggio in A come quello costituito da 3 appoggi multidirezionali piu 1 unidirezionale, mentre l'appoggio in B quello costituito da 2 appoggi fissi e 2 multidirezionali.






Figura 6.1 Schema degli appoggi degli impalcati

Ai fini di massimizzare il momento in direzione trasversale all'impalcato, come previsto al punto 5.2.2.3.1.1 delle NTC08, per lo schema di carico LM71 è prevista una eccentricità del carico rispetto all'asse del binario, dipendente dallo scartamento s. Tale eccentricità è calcolata sulla base del rapporto massimo fra i carichi afferenti a due ruote appartenenti allo stesso asse

### $Q_{V2}/Q_{V1}=1.25$

Essendo  $Q_{V1}$  e  $Q_{V2}$  i carichi verticali delle ruote di un medesimo asse, e risulta quindi pari a s/18 con s=1425 mm, ovvero s=80 mm; questa eccentricità deve essere considerata nella direzione più sfavorevole.

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** /Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL VI0105 005 23 di 191 IF28 В 01

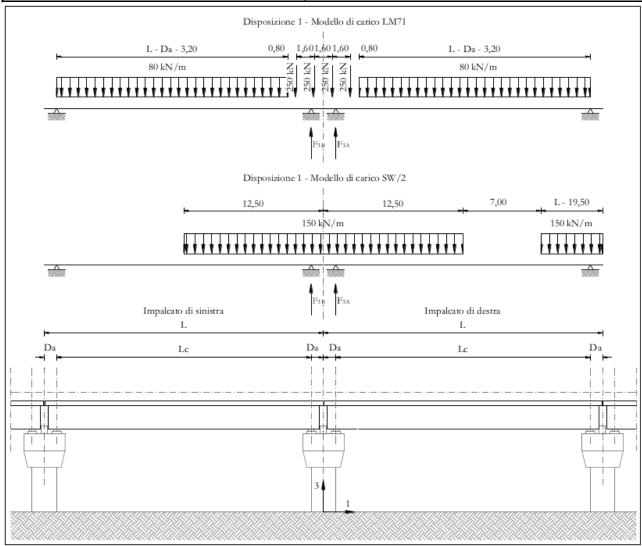



Figura 6.2 Disposizione di carico 1

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO E ZZ CL 24 di 191 IF28 VI0105 005 01 В

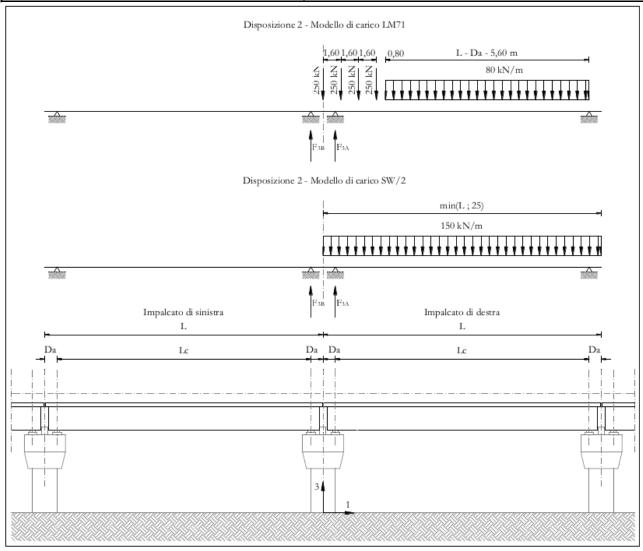



Figura 6.3 Disposizione di carico 2

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 IF28 25 di 191 01 В elevazione

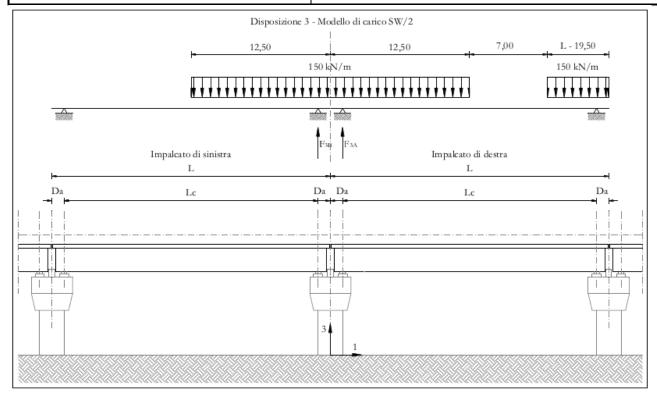



Figura 6.4 Disposizione di carico 3

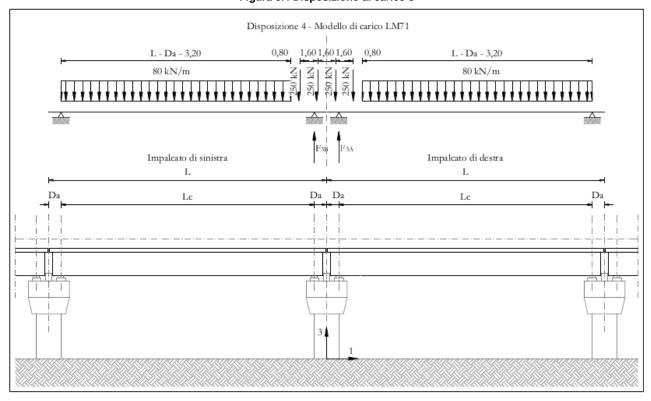



Figura 6.5 Disposizione di carico 4

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL 26 di 191 IF28 VI0105 005 01 В elevazione

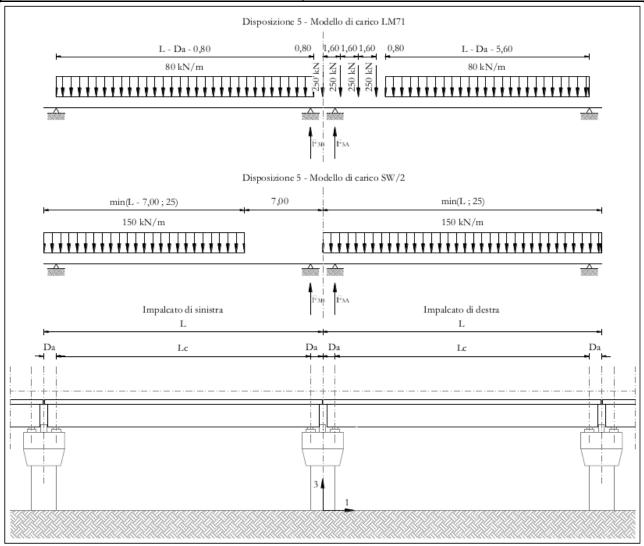



Figura 6.6 Disposizione di carico 5

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL IF28 VI0105 005 27 di 191 01 В elevazione

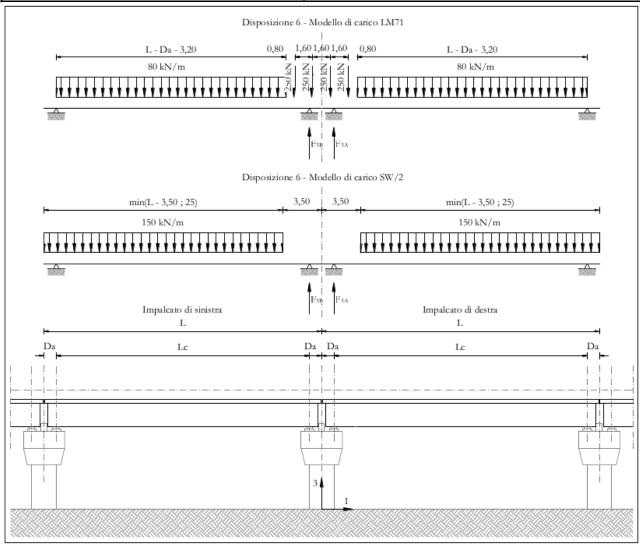



Figura 6.7 Disposizione di carico 6

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 28 di 191 IF28 В 01

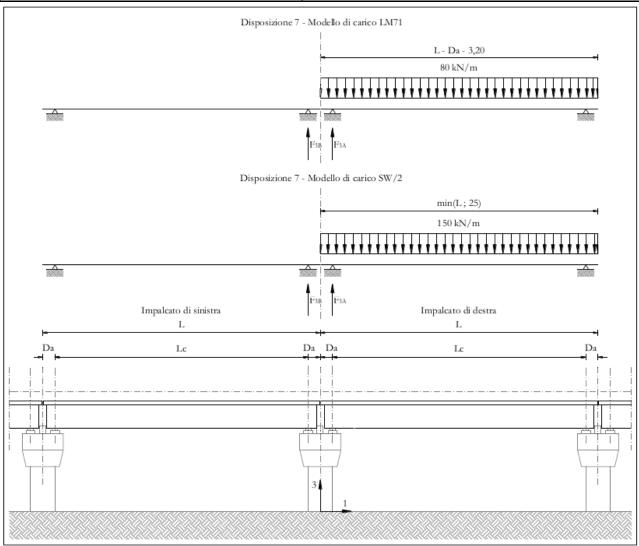



Figura 6.8 Disposizione di carico 7

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo ASTALDI Hirpinia AV PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **XXX**SØ∭ NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 29 di 191 IF28 01 В elevazione

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per il coefficiente  $\alpha$  che deve assumersi come da tabella seguente:

| Modello di carico | Coefficiente α |
|-------------------|----------------|
| LM71              | 1,10           |
| SW/2              | 1,00           |

I valori caratteristici dei carichi attribuiti ai modelli di carico devono essere moltiplicati per coefficienti che tengono conto dell'amplificazione dinamica. I coefficienti di amplificazione dinamica  $\Phi$  si assumono pari a  $\Phi_2$  o  $\Phi_3$  in dipendenza dal livello di manutenzione della linea. In particolare si assumerà:

- per linee con elevato standard manutentivo:

 $\Phi_2 = 1,44/(\sqrt{L\Phi} - 0.2) + 0.82$  con limitazione  $1,00 \le \Phi_2 \le 1.67$ 

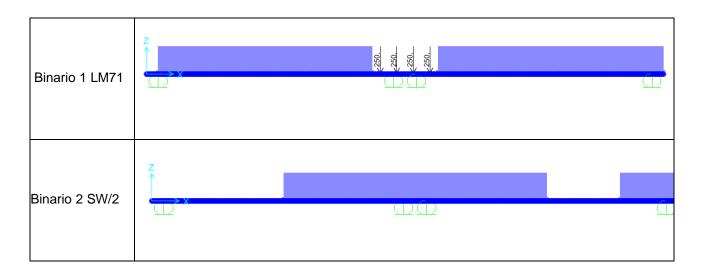
- per linee con normale standard manutentivo:

 $\Phi_3 = 2,16/(\sqrt{L\Phi} - 0,2) + 0,73$  con limitazione  $1,00 \le \Phi_2 \le 2,00$ 

Pile con snellezza  $\lambda \le 30$ , spalle, fondazioni, muri di sostegno e spinte del terreno possono essere calcolate assumendo coefficienti dinamici unitari

Standard manutentivo = Normale

 $\lambda \text{ pila} = 10,95$ 

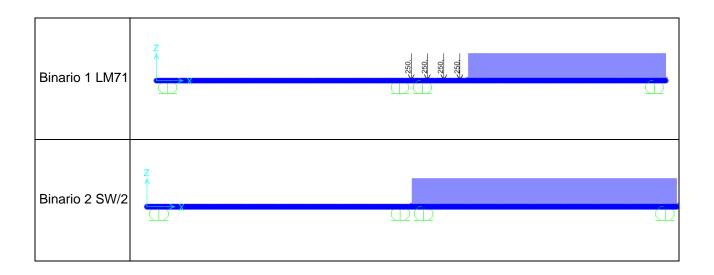

|                           | IMPALCATO SX | IMPALCATO DX |
|---------------------------|--------------|--------------|
| $L_{\Phi} =$              | 22,80 m      | 22,80 m      |
| Φ =                       | 1,20         | 1,20         |
| Φ <sub>elevazione</sub> = | 1,00         | 1,00         |
| Φ <sub>fondazioni</sub> = | 1,00         | 1,00         |

# 6.4.1 Carichi verticali da traffico (Q1)

Di seguito si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.3; il calcolo delle reazioni è stato effettuato tramite il software SAP2000.

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( 🗸 ASTALDI Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 30 di 191 IF28 В 01

# 6.4.1.1 DISPOSIZIONE DI CARICO 1




|                                   | IMPALCATO S             | X  | IMPALCATO DX            |    |  |
|-----------------------------------|-------------------------|----|-------------------------|----|--|
|                                   | reazioni<br>vincolari A |    | reazioni<br>vincolari B |    |  |
| luce                              | 25                      | m  | 25                      | m  |  |
| Modello di carico LM71            | -                       |    |                         |    |  |
| F3                                | 1240.77                 | kN | 1240.77                 | kN |  |
| α                                 | 1.10                    |    | 1.10                    |    |  |
| eccentricità                      | -1.92                   | m  | -1.92                   | m  |  |
| Modello di carico SW/2            | -                       |    |                         |    |  |
| F3                                | 1451.48                 | kN | 1511.18                 | kN |  |
| α                                 | 1.00                    |    | 1.00                    |    |  |
| eccentricità                      | 2.00                    | m  | 2.00                    | m  |  |
| Coeff. Di amplificazione dinamica | -                       |    |                         |    |  |
| ф                                 | 1.00                    |    | 1.00                    |    |  |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 31 di 191 IF28 01 В Reazioni vincolari Qv F3 2816.33 2876.03 kΝ Risultanti reazioni vincolari F1 0 0 kΝ F2 0 0 kΝ F3 2816 2876 kΝ 282 M1 402 kNm M2 0 0 kNm M3 0 0 kNm

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( 🗸 ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 32 di 191 IF28 В 01

# 6.4.1.2 DISPOSIZIONE DI CARICO 2



|                                   | IMPALCATO SX<br>reazioni<br>vincolari A |    | IMPALCATO<br>DX<br>reazioni<br>vincolari B |  |
|-----------------------------------|-----------------------------------------|----|--------------------------------------------|--|
| luce                              | 25                                      | m  | 25 m                                       |  |
| Modello di carico LM71            |                                         |    |                                            |  |
| F3                                | 0.00                                    | kN | 1528.39 kN                                 |  |
| α                                 | 1.10                                    |    | 1.10                                       |  |
| eccentricità                      | -1.92                                   | m  | -1.92 m                                    |  |
| Modello di carico SW/2            |                                         |    |                                            |  |
| F3                                | 0.00                                    | kN | 1875.00 kN                                 |  |
| α                                 | 1.00                                    |    | 1.00                                       |  |
| eccentricità                      | 2.00                                    | m  | 2.00 m                                     |  |
| Coeff. Di amplificazione dinamica |                                         |    |                                            |  |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 33 di 191 IF28 01 В 1.00 1.00 ф Reazioni vincolari Qv F3 0.00 3556.22 kΝ Risultanti reazioni vincolari F1 0 0 kN F2 0 0 kΝ F3 0 3556 kΝ 0 M1 522 kNm M2 0 0 kNm M3 0 0 kNm

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini (impregilo 🗸 ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 34 di 191 IF28 В 01

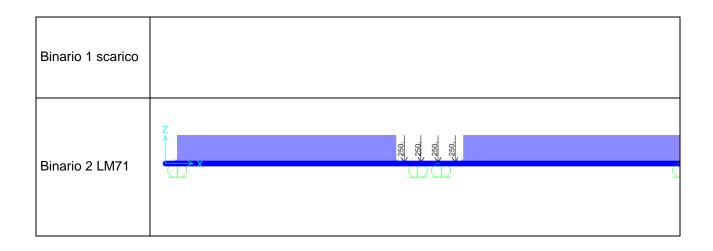
# 6.4.1.3 DISPOSIZIONE DI CARICO 3



|                                   | IMPALCATO SX<br>reazioni<br>vincolari A |    | IMPALCATO<br>DX<br>reazioni<br>vincolari B |    |
|-----------------------------------|-----------------------------------------|----|--------------------------------------------|----|
| luce                              | 25                                      | m  | 25                                         | m  |
| Modello di carico LM71            |                                         |    |                                            |    |
| F3                                | 0.00                                    | kN | 0.00                                       | kN |
| α                                 | 1.10                                    |    | 1.10                                       |    |
| eccentricità                      | -1.92                                   | m  | -1.92                                      | m  |
| Modello di carico SW/2            |                                         |    |                                            |    |
| F3                                | 1451.48                                 | kN | 1511.18                                    | kN |
| α                                 | 1.00                                    |    | 1.00                                       |    |
| eccentricità                      | 2.00                                    | m  | 2.00                                       | m  |
| Coeff. Di amplificazione dinamica |                                         |    |                                            |    |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 35 di 191 IF28 01 В 1.00 1.00 ф Reazioni vincolari Qv F3 1451.48 1511.18 kΝ Risultanti reazioni vincolari F1 0 0 kΝ F2 0 0 kΝ F3 1451 1511 kΝ 2903 3022 M1 kNm M2 0 0 kNm

0


0

kNm

М3

| APPALTATORE:                                                                                     |                 |                  |                                     |                     |                         |                  |                     |  |
|--------------------------------------------------------------------------------------------------|-----------------|------------------|-------------------------------------|---------------------|-------------------------|------------------|---------------------|--|
| Consorzio                                                                                        | <u>Soci</u>     |                  |                                     | ITINI               |                         | NADOLI D         | A D I               |  |
| HirpiniaAV                                                                                       | salini (        | ASTALDI          | ITINERARIO NAPOLI – BARI            |                     |                         |                  |                     |  |
| PROGETTAZIONE:                                                                                   |                 |                  |                                     |                     |                         | TA APICE - O     |                     |  |
| <u>Mandataria</u>                                                                                | <u>Mandanti</u> |                  | I LOTTO FUNZIONALE APICE – HIRPINIA |                     |                         |                  |                     |  |
|                                                                                                  | NET             | Alpina           |                                     |                     |                         |                  |                     |  |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                 | COMMESSA<br>IF28 | LOTTO<br><b>01</b>                  | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>36 di 191 |  |

# 6.4.1.4 DISPOSIZIONE DI CARICO 4



|                                   | IMPALCATO SX<br>reazioni<br>vincolari A | (  | IMPALCATO<br>DX<br>reazioni<br>vincolari B |  |  |
|-----------------------------------|-----------------------------------------|----|--------------------------------------------|--|--|
| luce                              | 25                                      | m  | 45 m                                       |  |  |
| Modello di carico LM71            |                                         |    |                                            |  |  |
| F3                                | 1240.77                                 | kN | 1240.77 kN                                 |  |  |
| α                                 | 1.10                                    |    | 1.10                                       |  |  |
| eccentricità                      | 2.08                                    | m  | 2.08 m                                     |  |  |
| Modello di carico SW/2            |                                         |    |                                            |  |  |
| F3                                | 0.00                                    | kN | 0.00 kN                                    |  |  |
| α                                 | 1.00                                    |    | 1.00                                       |  |  |
| eccentricità                      | 2.00                                    | m  | 2.00 m                                     |  |  |
| Coeff. Di amplificazione dinamica |                                         |    |                                            |  |  |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** Mandanti XXX SOIL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 37 di 191 IF28 01 В ф 1.00 1.00 Reazioni vincolari Qv F3 1364.85 1364.85 kΝ Risultanti reazioni vincolari F1 0 0 kΝ F2 0 0 kΝ F3 1365 1365 kΝ 2839 M1 2839 kNm

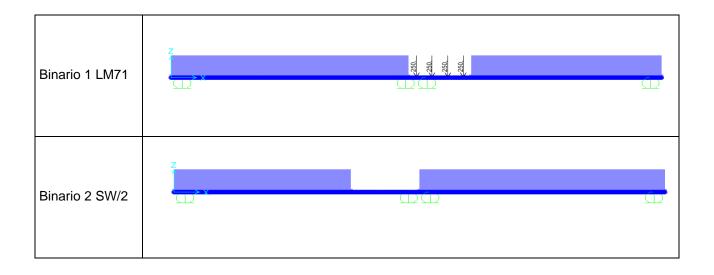
0

0

0

0

kNm


kNm

M2

М3

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini (impregilo **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 38 di 191 IF28 В 01

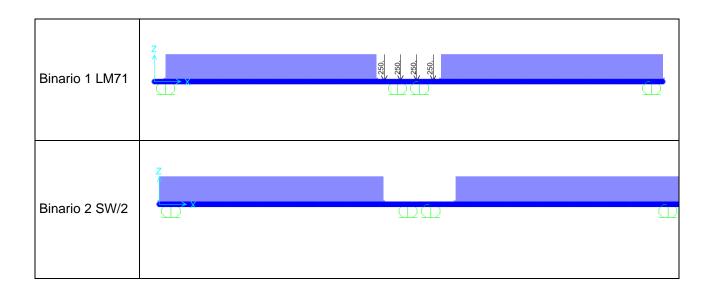
# 6.4.1.5 DISPOSIZIONE DI CARICO 5



|                                   | IMPALCATO S<br>reazioni<br>vincolari A | SX | IMPALCATO<br>DX<br>reazioni<br>vincolari B |    |
|-----------------------------------|----------------------------------------|----|--------------------------------------------|----|
| luce                              | 25                                     | m  | 25                                         | m  |
| Modello di carico LM71            |                                        |    |                                            |    |
| F3                                | 934.04                                 | kN | 1528.39                                    | kN |
| α                                 | 1.10                                   |    | 1.10                                       |    |
| eccentricità                      | 2.08                                   | m  | -1.92                                      | m  |
| Modello di carico SW/2            |                                        |    |                                            |    |
| F3                                | 935.53                                 | kN | 1875.00                                    | kN |
| α                                 | 1.00                                   |    | 1.00                                       |    |
| eccentricità                      | -2.00                                  | m  | 2.00                                       | m  |
| Coeff. Di amplificazione dinamica |                                        |    |                                            |    |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 39 di 191 IF28 01 В 1.00 1.00 ф Reazioni vincolari Qv F3 1962.96 3556.22 kΝ Risultanti reazioni vincolari F1 0 0 kΝ F2 0 0 kΝ F3 1963 3556 kN M1 266 522 kNm M2 0 0 kNm

0


М3

0

kNm

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini (impregilo 🗸 ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 40 di 191 IF28 В 01

# 6.4.1.6 DISPOSIZIONE DI CARICO 6



|                                   | IMPALCATO S             | X  | IMPALCATO DX            | $\Box$ |  |
|-----------------------------------|-------------------------|----|-------------------------|--------|--|
|                                   | reazioni<br>vincolari A |    | reazioni<br>vincolari B |        |  |
| luce                              | 25                      | m  | 25 m                    |        |  |
| Modello di carico LM71            |                         |    |                         |        |  |
| F3                                | 1240.77                 | kN | 1240.77 kN              |        |  |
| α                                 | 1.10                    |    | 1.10                    |        |  |
| eccentricità                      | -1.92                   | m  | -1.92 m                 |        |  |
| Modello di carico SW/2            |                         |    |                         |        |  |
| F3                                | 1364.97                 | kN | 1364.97 kN              |        |  |
| α                                 | 1.00                    |    | 1.00                    |        |  |
| eccentricità                      | 2.00                    | m  | 2.00 m                  |        |  |
| Coeff. Di amplificazione dinamica |                         |    |                         |        |  |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 41 di 191 IF28 01 В 1.00 1.00 ф Reazioni vincolari Qv F3 2729.82 2729.82 kΝ Risultanti reazioni vincolari F1 0 0 kΝ F2 0 0 kΝ F3 2730 2730 kΝ M1 109 109 kNm M2 0 0 kNm

0


M3

0

kNm

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( 🗸 ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 42 di 191 IF28 01 В elevazione

# 6.4.1.7 DISPOSIZIONE DI CARICO 7



|                                   | IMPALCATO                      | SX | IMPALCATO DX            |  |  |
|-----------------------------------|--------------------------------|----|-------------------------|--|--|
|                                   | reazioni<br>vincolari <i>I</i> | A  | reazioni<br>vincolari B |  |  |
| luce                              | 25                             | m  | 25 m                    |  |  |
| Modello di carico LM71            |                                |    |                         |  |  |
| F3                                | 0.00                           | kN | 1000.00 kN              |  |  |
| α                                 | 1.10                           |    | 1.10                    |  |  |
| eccentricità                      | -1.92                          | m  | -1.92 m                 |  |  |
| Modello di carico SW/2            |                                |    |                         |  |  |
| F3                                | 0.00                           | kN | 1875.00 kN              |  |  |
| α                                 | 1.00                           |    | 1.00                    |  |  |
| eccentricità                      | 2.00                           | m  | 2.00 m                  |  |  |
| Coeff. Di amplificazione dinamica |                                |    |                         |  |  |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> Mandanti XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 43 di 191 IF28 01 В 1.00 1.00 ф Reazioni vincolari Qv F3 0.00 2975.00 kΝ Risultanti reazioni vincolari F1 0 0 kΝ F2 0 0 kΝ F3 2975 0 kΝ M1 0 1638 kNmM2 0 0 kNm

0

M3

0

kNm

| APPALTATORE:                                                  |                     |                   |                                 |                                     |                     |                         |                  |                     |
|---------------------------------------------------------------|---------------------|-------------------|---------------------------------|-------------------------------------|---------------------|-------------------------|------------------|---------------------|
| Consorzio                                                     | <u>Soci</u>         |                   | ITINERARIO NAPOLI – BARI        |                                     |                     |                         |                  |                     |
| Hirpinia AV                                                   | salini<br>impregilo | <b>ASTALDI</b>    |                                 |                                     |                     |                         |                  |                     |
| PROGETTAZIONE:                                                |                     |                   | RADDOPPIO TRATTA APICE – ORSARA |                                     |                     |                         |                  |                     |
| <u>Mandataria</u>                                             | <u>Mandanti</u>     |                   | I                               | I LOTTO FUNZIONALE APICE – HIRPINIA |                     |                         |                  |                     |
|                                                               | NET                 | Alpina            |                                 |                                     |                     |                         |                  |                     |
| PROGETTO ESECUTIV<br>Pile P7, P8, P19, P20, P21<br>elevazione | -                   | colo strutture in | COMMESSA<br>IF28                | LOTTO<br><b>01</b>                  | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>44 di 191 |

# 6.4.2 Azioni di avviamento e frenatura (Q2)

La azioni di frenatura e avviamento sono costituite da forze uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato. I valori da considerare sono i seguenti:

- avviamento: Qla,k = 33 kN/m · L ≤ 1000 kN per i modelli di carico LM71,SW/2
- frenatura: Qlb,k = 20 kN/m · L ≤ 6000 kN per i modelli di carico LM71

Qlb,k = 35 kN/m per i modelli di carico SW/2

I valori caratteristici dell'azione di frenatura e di avviamento devono essere moltiplicati per  $\alpha$  e non devono essere moltiplicati per  $\Phi$ .

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento e l'altro in fase di frenatura.

Gli effetti di interazione relativamente alle azioni di frenatura e avviamento si tengono conto applicando ai valori della risultante un coefficiente ah che tiene conto del rapporto di rigidezza tra le pile del viadotto. Per la determinazione dei coefficienti si rimanda al §6.7.3 della presente relazione.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel 6.4.1

| APPALTATORE:                                                                                     |                 |                  |                                 |                     |                         |                  |                            |  |
|--------------------------------------------------------------------------------------------------|-----------------|------------------|---------------------------------|---------------------|-------------------------|------------------|----------------------------|--|
| <u>Consorzio</u>                                                                                 | <u>Soci</u>     |                  | ITINEDADIO NADOLI, DADI         |                     |                         |                  |                            |  |
| HirpiniaAV                                                                                       | salini (//      | <u></u> ASTALDI  | ITINERARIO NAPOLI – BARI        |                     |                         |                  |                            |  |
| PROGETTAZIONE:                                                                                   |                 |                  | RADDOPPIO TRATTA APICE – ORSARA |                     |                         |                  |                            |  |
| <u>Mandataria</u>                                                                                | <u>Mandanti</u> |                  |                                 | LOTTO I             | FUNZIONA                | LE APICE – HI    | RPINIA                     |  |
|                                                                                                  | NET             | Alpina           |                                 |                     |                         |                  |                            |  |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                 | COMMESSA<br>IF28 | LOTTO<br><b>01</b>              | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br><b>45 di 191</b> |  |

# 6.4.2.1 DISPOSIZIONE DI CARICO 1

|                     | IMPALCATO SX |      | IMPALCATO DX |      |  |
|---------------------|--------------|------|--------------|------|--|
|                     | reazioni     |      | reazioni     |      |  |
|                     | vincolari A  |      | vincolari B  |      |  |
|                     | 25.00        |      | 25.00        |      |  |
| luce                | 25.00        | m    | 25.00        | m    |  |
| Luce appoggi        | 22.80        | m    | 22.80        | m    |  |
| Avviamento LM71     |              |      |              |      |  |
| f avv               | 33.00        | kN   | 33.00        | kN   |  |
| α                   | 1.10         |      | 1.10         |      |  |
| L caricata          | 25.00        | m    | 25.00        | m    |  |
| F avv (max 1000 kN) | 825.00       | kN   | 825.00       | kN   |  |
|                     |              |      |              |      |  |
| F1                  | 907.5        | kN   | 907.5        | kN   |  |
|                     |              |      |              |      |  |
|                     |              |      |              |      |  |
|                     |              |      |              |      |  |
| Avviamento SW/2     |              |      |              |      |  |
|                     |              |      |              |      |  |
| favv                | 33.00        | kN   | 33.00        | kN   |  |
| α                   | 1.00         |      | 1.00         |      |  |
| L caricata          | 12.50        | m    | 18.00        | m    |  |
| F avv (max 1000 kN) | 412.50       | kN   | 594.00       | kN   |  |
|                     |              |      |              |      |  |
| F1                  | 412.5        | kN   | 594          | kN   |  |
|                     |              |      |              |      |  |
|                     |              |      |              |      |  |
| Frenatura LM71      |              |      |              |      |  |
|                     |              |      |              |      |  |
| f fren              | 20.00        | kN/m | 20.00        | kN/m |  |
| α                   | 1.10         |      | 1.10         |      |  |
| į                   |              |      | 1            | I    |  |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV RADDOPPIO TRATTA APICE – ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> Mandanti XXXSOU Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in IF28 E ZZ CL VI0105 005 46 di 191 01 В elevazione 25.00 25.00 L caricata m m F fren (max 6000 kN) 500.00 500.00 kN kΝ F1 550 kN 550 kN Frenatura SW/2 f fren 35.00 35.00 kN/m kN/m α 1.00 1.00 L caricata 12.50 m 18.00 m F avv (max 1000 kN) 437.50 kN 630.00 kΝ F1 437.5 kN 630 kN αhp interazione semplificata 1.60 αhp frenatura per LM71 1.60 αhp frenatura per SW/2 1.30 1.30 αhp avviam. per LM71 SW/2 1.12 1.12 Forza totale di avviamento **frenatura** F1 1585.15 kΝ 1835.40 kΝ h rispetto a intradosso imp. 3.28 3.28 m m F tipologia vincolo UL Risultanti reazioni vincolari F1 0 kN -1835 kΝ

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria <u>Mandanti</u> **Alpina** XXX SOUL NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 47 di 191 IF28 01 В F2 0 kN 0 kΝ F3 228 kΝ -264 kΝ M1 0 kNm 0 kNm M2 0 kNm 0 kNm М3 0 kNm 0 kNm

| APPALTATORE:                                                                                     |                 |                  |                                     |                     |                         |                  |                     |  |
|--------------------------------------------------------------------------------------------------|-----------------|------------------|-------------------------------------|---------------------|-------------------------|------------------|---------------------|--|
| Consorzio                                                                                        | <u>Soci</u>     | 2.000            | ITINERARIO NAPOLI – BARI            |                     |                         |                  |                     |  |
| Hirpinia AV                                                                                      | salini (        | ASTALDI          |                                     | 11111               | ENANIO                  | NAPOLI - D       | ANI                 |  |
| PROGETTAZIONE:                                                                                   |                 |                  |                                     |                     |                         | TA APICE - O     |                     |  |
| <u>Mandataria</u>                                                                                | <u>Mandanti</u> |                  | I LOTTO FUNZIONALE APICE – HIRPINIA |                     |                         |                  |                     |  |
| XXX50HL                                                                                          | NET             | Alpina           |                                     |                     |                         |                  |                     |  |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                 | COMMESSA<br>IF28 | LOTTO<br><b>01</b>                  | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>48 di 191 |  |

# 6.4.2.2 DISPOSIZIONE DI CARICO 2

|                     | IMPALCATO S | X    | IMPALCATO DX |      |  |
|---------------------|-------------|------|--------------|------|--|
|                     | reazioni    |      | reazioni     |      |  |
|                     | vincolari A |      | vincolari B  |      |  |
|                     | 25.00       |      | 25.00        |      |  |
| luce                | 25.00       | m    | 25.00        | m    |  |
| Luce appoggi        | 22.80       | m    | 22.80        | m    |  |
| Avviamento LM71     |             |      |              |      |  |
| f avv               | 33.00       | kN   | 33.00        | kN   |  |
| α                   | 1.10        |      | 1.10         |      |  |
| L caricata          | 0.00        | m    | 25.00        | m    |  |
| F avv (max 1000 kN) | 0.00        | kN   | 825.00       | kN   |  |
| F1                  | 0           | kN   | 907.5        | kN   |  |
| Avviamento SW/2     |             |      |              |      |  |
| favv                | 33.00       | kN   | 33.00        | kN   |  |
| α                   | 1.00        |      | 1.00         |      |  |
| L caricata          | 0.00        | m    | 25.00        | m    |  |
| F avv (max 1000 kN) | 0.00        | kN   | 825.00       | kN   |  |
| F1                  | 0           | kN   | 825          | kN   |  |
| Frenatura LM71      |             |      |              |      |  |
| f fren              | 20.00       | kN/m | 20.00        | kN/m |  |
| α                   | 1.10        |      | 1.10         |      |  |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV RADDOPPIO TRATTA APICE – ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti XXXSOU **Alpina** NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in IF28 E ZZ CL VI0105 005 49 di 191 01 elevazione 0.00 25.00 L caricata m m F fren (max 6000 kN) 0.00 kN 500.00 kΝ F1 0 kN 550 kN Frenatura SW/2 f fren 35.00 35.00 kN/m kN/m α 1.00 1.00 0.00 L caricata 25.00 m m F avv (max 1000 kN) 0.00 kN 875.00 kN F1 0 kN 875 kN αhp interazione semplificata 1.60 1.60 αhp frenatura per LM71 αhp frenatura per SW/2 1.30 1.30 αhp avviam. per LM71 SW/2 1.12 1.12 Forza totale di avviamento e **frenatura** F1 0.00 kN 2153.90 kΝ h rispetto a intradosso imp. 3.28 3.28 m m F tipologia vincolo UL Risultanti reazioni vincolari F1 0 kΝ -2154 kΝ F2 0 kN 0 kN

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> **Alpina** XXX SOUL NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 50 di 191 IF28 01 F3 0 kΝ -310 kΝ M1 0 kNm 0 kNm M2 0 kNm 0 kNm M3 0 kNm 0 kNm

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( **ASTALDI** RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA <u>Mandataria</u> <u>Mandanti</u> XXX50jl NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 51 di 191 IF28 01 В

# 6.4.2.3 DISPOSIZIONE DI CARICO 3

|                     | IMPALCATO SX | (    | IMPALCATO DX |      |  |
|---------------------|--------------|------|--------------|------|--|
|                     | reazioni     |      | reazioni     |      |  |
|                     | vincolari A  |      | vincolari B  |      |  |
|                     |              |      |              |      |  |
| luce                | 25.00        | m    | 25.00        | m    |  |
| Luce appoggi        | 22.80        | m    | 22.80        | m    |  |
| Avviamento LM71     |              |      |              |      |  |
| Avviamento Livi71   |              |      |              |      |  |
| favv                | 33.00        | kN   | 33.00        | kN   |  |
| α                   | 1.10         |      | 1.10         |      |  |
| L caricata          | 0.00         | m    | 0.00         | m    |  |
| F avv (max 1000 kN) | 0.00         | kN   | 0.00         | kN   |  |
|                     |              |      |              |      |  |
| F1                  | 0            | kN   | 0            | kN   |  |
|                     |              |      |              |      |  |
|                     |              |      |              |      |  |
|                     |              |      |              |      |  |
| Avviamento SW/2     |              |      |              |      |  |
|                     |              |      |              |      |  |
| favv                | 33.00        | kN   | 33.00        | kN   |  |
| α                   | 1.00         |      | 1.00         |      |  |
| L caricata          | 12.50        | m    | 18.00        | m    |  |
| F avv (max 1000 kN) | 412.50       | kN   | 594.00       | kN   |  |
|                     |              |      |              |      |  |
| F1                  | 412.5        | kN   | 594          | kN   |  |
|                     |              |      |              |      |  |
| 5                   |              |      |              |      |  |
| Frenatura LM71      |              |      |              |      |  |
| f fren              | 20.00        | kN/m | 20.00        | kN/m |  |
| α                   | 1.10         | -    | 1.10         | •    |  |
| L caricata          | 0.00         | m    | 0.00         | m    |  |
| 1                   | I            |      |              |      |  |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV RADDOPPIO TRATTA APICE – ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXXSOU NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in IF28 E ZZ CL VI0105 005 52 di 191 01 В elevazione F fren (max 6000 kN) 0.00 kN 0.00 kΝ F1 0 kN 0 kN Frenatura SW/2 f fren 35.00 kN/m 35.00 kN/m 1.00 1.00 α L caricata 12.50 m 18.00 m F avv (max 1000 kN) 437.50 kN 630.00 kΝ F1 437.5 kN 630 kN ahp interazione semplificata αhp frenatura per LM71 1.60 1.60 αhp frenatura per SW/2 1.30 1.30 αhp avviam. per LM71 SW/2 1.12 1.12 Forza totale di avviamento e **frenatura** F1 568.75 kN 819.00 kΝ h rispetto a intradosso imp. 3.28 m 3.28 m tipologia vincolo UL F Risultanti reazioni vincolari F1 0 kΝ -819 kΝ F2 0 0 kΝ kΝ

82

kN

-118

kN

F3

| APPALTATORE:                                                         |                     |                  |                                     |                    |                     |                         |                  |                        |  |
|----------------------------------------------------------------------|---------------------|------------------|-------------------------------------|--------------------|---------------------|-------------------------|------------------|------------------------|--|
| Consorzio So                                                         | <u>ci</u>           |                  |                                     | ITINI              |                     | NADOLI D                | A D I            |                        |  |
| HirpiniaAV im                                                        | salini 🏀<br>pregilo | <u>* ASTALDI</u> | ITINERARIO NAPOLI – BARI            |                    |                     |                         |                  |                        |  |
| PROGETTAZIONE:                                                       |                     |                  |                                     |                    |                     | TTA APICE – O           |                  |                        |  |
| Mandataria Ma                                                        | <u>ındanti</u>      |                  | I LOTTO FUNZIONALE APICE – HIRPINIA |                    |                     |                         |                  |                        |  |
| N N                                                                  | ETENGINEERING       | Alpina           |                                     |                    |                     |                         |                  |                        |  |
| PROGETTO ESECUTIVO<br>Pile P7, P8, P19, P20, P21, P22:<br>elevazione | Relazione di calco  | olo strutture in | COMMESSA<br>IF28                    | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGL<br><b>53 di 1</b> |  |
| M1                                                                   |                     |                  | 0                                   | kNm                |                     | 0                       | kNm              | 1                      |  |
| M2                                                                   |                     |                  | 0                                   | kNm                |                     | 0                       | kNm              | 1                      |  |
| M3                                                                   |                     |                  | 0                                   | kNm                |                     | 0                       | kNn              | 1                      |  |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOIL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 54 di 191 IF28 01 В

# 6.4.2.4 DISPOSIZIONE DI CARICO 4

|                      | IMPALCATO S | Κ    | IMPALCATO DX |      |  |
|----------------------|-------------|------|--------------|------|--|
|                      | reazioni    |      | reazioni     |      |  |
|                      | vincolari A |      | vincolari B  |      |  |
|                      |             |      |              |      |  |
| luce                 | 25.00       | m    | 25.00        | m    |  |
| Luce appoggi         | 22.80       | m    | 22.80        | m    |  |
| Avviamento LM71      |             |      |              |      |  |
| favv                 | 33.00       | kN   | 33.00        | kN   |  |
| α                    | 1.10        |      | 1.10         |      |  |
| L caricata           | 25.00       | m    | 25.00        | m    |  |
| F avv (max 1000 kN)  | 825.00      | kN   | 825.00       | kN   |  |
|                      |             |      |              |      |  |
| F1                   | 907.5       | kN   | 907.5        | kN   |  |
|                      |             |      |              |      |  |
|                      |             |      |              |      |  |
|                      |             |      |              |      |  |
| Avviamento SW/2      |             |      |              |      |  |
| f avv                | 33.00       | kN   | 33.00        | kN   |  |
| α                    | 1.00        | KIN  | 1.00         | KIN  |  |
| L caricata           | 0.00        | m    | 0.00         | m    |  |
| F avv (max 1000 kN)  | 0.00        | kN   | 0.00         | kN   |  |
| 1 avv (max 1000 kiv) | 0.00        | KIV  | 0.00         | RIV  |  |
| F1                   | 0           | kN   | 0            | kN   |  |
| -                    | · ·         |      | Ç            |      |  |
|                      |             |      |              |      |  |
| Frenatura LM71       |             |      |              |      |  |
| f fren               | 20.00       | kN/m | 20.00        | kN/m |  |
| α                    | 1.10        |      | 1.10         |      |  |
| L caricata           | 25.00       | m    | 25.00        | m    |  |
| i l                  |             |      |              |      |  |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE – ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXXSOU **Alpina** NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL IF28 VI0105 005 55 di 191 01 В elevazione F fren (max 6000 kN) 500.00 kΝ 500.00 kΝ F1 550 kN 550 kΝ Frenatura SW/2 f fren 35.00 kN/m 35.00 kN/m 1.00 1.00 α L caricata 0.00 m 0.00 m F avv (max 1000 kN) 0.00 kN 0.00 kΝ F1 0 kN 0 kN ahp interazione semplificata 1.60 1.60 αhp frenatura per LM71 αhp frenatura per SW/2 1.30 1.30 αhp avviam. per LM71 SW/2 1.12 1.12 Forza totale di avviamento e frenatura F1 1016.40 kΝ 1016.40 kΝ h rispetto a intradosso imp. 3.28 m 3.28 m tipologia vincolo UL F Risultanti reazioni vincolari

0

0

146

kΝ

kΝ

kΝ

-1016

0

-146

kΝ

kΝ

kN

F1

F2

F3

| APPALTATORE:                                               |                                   |                  |                                     |                    |                     |                         |                  |                 |  |
|------------------------------------------------------------|-----------------------------------|------------------|-------------------------------------|--------------------|---------------------|-------------------------|------------------|-----------------|--|
| <u>Consorzio</u>                                           | <u>Soci</u>                       |                  |                                     | ITINI              |                     | NADOLI D                | A D I            |                 |  |
| Hirpinia AV                                                | salini (                          | <u> </u>         | ITINERARIO NAPOLI – BARI            |                    |                     |                         |                  |                 |  |
| PROGETTAZIONE:                                             |                                   |                  |                                     |                    |                     | TTA APICE – O           |                  |                 |  |
| <u>Mandataria</u>                                          | <u>Mandanti</u>                   |                  | I LOTTO FUNZIONALE APICE – HIRPINIA |                    |                     |                         |                  |                 |  |
|                                                            | NET                               | Alpina           |                                     |                    |                     |                         |                  |                 |  |
| PROGETTO ESECUT<br>Pile P7, P8, P19, P20, P2<br>elevazione | IVO<br>1, P22: Relazione di calco | olo strutture in | COMMESSA<br>IF28                    | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGL<br>56 di 1 |  |
| M1                                                         |                                   |                  | 0                                   | kNm                |                     | 0                       | kNm              | ı               |  |
| M2                                                         |                                   |                  | 0                                   | kNm                |                     | 0                       | kNm              | ı               |  |
| M3                                                         |                                   |                  | 0                                   | kNm                |                     | 0                       | kNn              | 1               |  |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( ASTALDI RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 57 di 191 IF28 01 В

# 6.4.2.5 DISPOSIZIONE DI CARICO 5

|                     | IMPALCATO SX | (    | IMPALCATO<br>DX |      |  |
|---------------------|--------------|------|-----------------|------|--|
|                     | reazioni     |      | reazioni        |      |  |
|                     | vincolari A  |      | vincolari B     |      |  |
|                     |              |      |                 |      |  |
| luce                | 25.00        | m    | 25.00           | m    |  |
| Luce appoggi        | 22.80        | m    | 22.80           | m    |  |
| Avviamento LM71     |              |      |                 |      |  |
| favv                | 33.00        | kN   | 33.00           | kN   |  |
| α                   | 1.10         |      | 1.10            |      |  |
| L caricata          | 25.00        | m    | 25.00           | m    |  |
| F avv (max 1000 kN) | 825.00       | kN   | 825.00          | kN   |  |
| F1                  | 907.5        | kN   | 907.5           | kN   |  |
| Avviamento SW/2     |              |      |                 |      |  |
| f avv               | 33.00        | kN   | 33.00           | kN   |  |
| α                   | 1.00         |      | 1.00            |      |  |
| L caricata          | 18.00        | m    | 25.00           | m    |  |
| F avv (max 1000 kN) | 594.00       | kN   | 825.00          | kN   |  |
| F1                  | 594          | kN   | 825             | kN   |  |
| Frenatura LM71      |              |      |                 |      |  |
| f fren              | 20.00        | kN/m | 20.00           | kN/m |  |
| α                   | 1.10         |      | 1.10            |      |  |
| L caricata          | 25.00        | m    | 25.00           | m    |  |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV PROGETTAZIONE: **RADDOPPIO TRATTA APICE - ORSARA** I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXXSOU **Alpina** NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL IF28 VI0105 005 58 di 191 01 В elevazione F fren (max 6000 kN) 500.00 kN 500.00 kΝ F1 550 kN 550 kΝ Frenatura SW/2 f fren 35.00 kN/m 35.00 kN/m 1.00 1.00 α L caricata 18.00 m 25.00 m F avv (max 1000 kN) 630.00 kN 875.00 kΝ F1 630 kN 875 kN ahp interazione semplificata 1.60 1.60 αhp frenatura per LM71 αhp frenatura per SW/2 1.30 1.30 αhp avviam. per LM71 SW/2 1.12 1.12 Forza totale di avviamento e **frenatura** F1 1835.40 kN 2153.90 kΝ h rispetto a intradosso imp. 3.28 3.28 m m tipologia vincolo UL F Risultanti reazioni vincolari

0

0

264

kN

kΝ

kN

-2154

0

-310

kΝ

kΝ

kΝ

F1

F2

F3

| APPALTATORE:      |                                                                                                  |                |                                                          |                    |                     |                         |                  |                           |  |
|-------------------|--------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------|--------------------|---------------------|-------------------------|------------------|---------------------------|--|
| Consorzio         | <u>Soci</u>                                                                                      |                |                                                          | ITINI              |                     | NADOLI D                | A D I            |                           |  |
| Hirpinia AV       | salini 🥢<br>impregilo                                                                            | <b>ASTALDI</b> | ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA APICE – ORSARA |                    |                     |                         |                  |                           |  |
| PROGETTAZIONE:    |                                                                                                  |                |                                                          |                    |                     |                         |                  |                           |  |
| <u>Mandataria</u> | <u>Mandanti</u>                                                                                  |                | I LOTTO FUNZIONALE APICE – HIRPINIA                      |                    |                     |                         |                  |                           |  |
|                   | NET                                                                                              | Alpina         |                                                          |                    |                     |                         |                  |                           |  |
|                   | PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                | COMMESSA<br>IF28                                         | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLI<br><b>59 di 1</b> 9 |  |
| M1                |                                                                                                  |                | 0                                                        | kNm                |                     | 0                       | kNn              | ı                         |  |
| M2                |                                                                                                  |                | 0                                                        | kNm                |                     | 0                       | kNn              | 1                         |  |
| M3                |                                                                                                  |                | 0                                                        | kNm                |                     | 0                       | kNn              | 1                         |  |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( ASTALDI RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 60 di 191 IF28 01 В

# 6.4.2.6 DISPOSIZIONE DI CARICO 6

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IMPALCATO S> | (    | IMPALCATO<br>DX |      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-----------------|------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reazioni     |      | reazioni        |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vincolari A  |      | vincolari B     |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |      |  |
| luce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.00        | m    | 25.00           | m    |  |
| Luce appoggi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.80        | m    | 22.80           | m    |  |
| Avviamento LM71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |      |  |
| , what it is a second of the s |              |      |                 |      |  |
| favv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.00        | kN   | 33.00           | kN   |  |
| α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.10         |      | 1.10            |      |  |
| L caricata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.00        | m    | 25.00           | m    |  |
| F avv (max 1000 kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 825.00       | kN   | 825.00          | kN   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |      |  |
| F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 907.5        | kN   | 907.5           | kN   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |      |  |
| Avviamento SW/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |      |  |
| favv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.00        | kN   | 33.00           | kN   |  |
| α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00         |      | 1.00            |      |  |
| L caricata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.50        | m    | 21.50           | m    |  |
| F avv (max 1000 kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 709.50       | kN   | 709.50          | kN   |  |
| F4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700 5        | LAI  | 700 5           | LAN  |  |
| F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 709.5        | kN   | 709.5           | kN   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                 |      |  |
| Frenatura LM71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |      |                 |      |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                 |      |  |
| f fren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.00        | kN/m | 20.00           | kN/m |  |
| α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.10         |      | 1.10            |      |  |
| L caricata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.00        | m    | 25.00           | m    |  |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE – ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXXSOU NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL IF28 VI0105 005 61 di 191 01 В elevazione F fren (max 6000 kN) 500.00 kN 500.00 kΝ F1 550 kN 550 kΝ Frenatura SW/2 f fren 35.00 kN/m 35.00 kN/m 1.00 1.00 α L caricata 21.50 m 21.50 m F avv (max 1000 kN) 752.50 752.50 kN kΝ F1 752.5 kΝ 752.5 kΝ ahp interazione semplificata αhp frenatura per LM71 1.60 1.60 αhp frenatura per SW/2 1.30 1.30 αhp avviam. per LM71 SW/2 1.12 1.12 Forza totale di avviamento e **frenatura** F1 1994.65 kN 1994.65 kΝ h rispetto a intradosso imp. 3.28 3.28 m m tipologia vincolo UL F Risultanti reazioni vincolari

kΝ

kΝ

kN

0

0

287

-1995

0

-287

kΝ

kΝ

kΝ

F1

F2

F3

| APPALTATORE:                                           |                                      |                  |                  |                    |                     |                |         |   |   |
|--------------------------------------------------------|--------------------------------------|------------------|------------------|--------------------|---------------------|----------------|---------|---|---|
| Consorzio                                              | <u>Soci</u>                          |                  |                  | ITINI              |                     | NADOLI D       | A D I   |   |   |
| Hirpinia AV                                            | salini<br>impregilo                  | ASTALDI          |                  | HIIN               | ERAKIO              | 0 kNm<br>0 kNm |         |   |   |
| PROGETTAZIONE:                                         |                                      |                  |                  | <b>RADDOF</b>      | PPIO TRAT           | ΓΤΑ APICE – Ο  | RSARA   |   |   |
| <u>Mandataria</u>                                      | <u>Mandanti</u>                      |                  | I                | LOTTO I            | FUNZIONA            | ALE APICE - H  | IRPINIA |   |   |
|                                                        | NET                                  | Alpina           |                  |                    |                     |                |         |   |   |
| PROGETTO ESECU<br>Pile P7, P8, P19, P20,<br>elevazione | JTIVO<br>P21, P22: Relazione di calc | olo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL |                |         |   | - |
| M1                                                     |                                      |                  | 0                | kNm                |                     | 0              | kNn     | n |   |
| M2                                                     |                                      |                  | 0                | kNm                |                     | 0              | kNn     | n |   |
| M3                                                     |                                      |                  | 0                | kNm                |                     | 0              | kNn     | n |   |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( HirpiniaAV ASTALDI **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOIL **Alpina** NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione IF28 E ZZ CL VI0105 005 63 di 191 01 В

# 6.4.2.7 DISPOSIZIONE DI CARICO 7

|                     |                         |      | IMPALCATO               |      |
|---------------------|-------------------------|------|-------------------------|------|
|                     | IMPALCATO S             | X    | DX                      |      |
|                     | reazioni<br>vincolari A |      | reazioni<br>vincolari B |      |
| luce                | 25.00                   | m    | 25.00                   | m    |
| Luce appoggi        | 22.80                   | m    | 22.80                   | m    |
| Avviamento LM71     |                         |      |                         |      |
| f avv               | 33.00                   | kN   | 33.00                   | kN   |
| α                   | 1.10                    |      | 1.10                    |      |
| L caricata          | 0.00                    | m    | 25.00                   | m    |
| F avv (max 1000 kN) | 0.00                    | kN   | 825.00                  | kN   |
| F1                  | 0                       | kN   | 907.5                   | kN   |
| Avviamento SW/2     |                         |      |                         |      |
| favv                | 33.00                   | kN   | 33.00                   | kN   |
| α                   | 1.00                    |      | 1.00                    |      |
| L caricata          | 0.00                    | m    | 25.00                   | m    |
| F avv (max 1000 kN) | 0.00                    | kN   | 825.00                  | kN   |
| F1                  | 0                       | kN   | 825                     | kN   |
| Frenatura LM71      |                         |      |                         |      |
| f fren              | 20.00                   | kN/m | 20.00                   | kN/m |
| α                   | 1.10                    |      | 1.10                    |      |
| L caricata          | 0.00                    | m    | 25.00                   | m    |

#### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV RADDOPPIO TRATTA APICE – ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXXSOU NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL IF28 VI0105 005 64 di 191 01 elevazione F fren (max 6000 kN) 0.00 kΝ 500.00 kΝ F1 0 kN 550 kN Frenatura SW/2 f fren 35.00 kN/m 35.00 kN/m 1.00 1.00 α L caricata 0.00 m 25.00 m F avv (max 1000 kN) 0.00 875.00 kΝ kΝ F1 0 kΝ 875 kN ahp interazione semplificata αhp frenatura per LM71 1.60 1.60 1.30 αhp frenatura per SW/2 1.30 αhp avviam. per LM71 SW/2 1.12 1.12 Forza totale di avviamento e frenatura F1 0.00 kΝ 2153.90 kΝ h rispetto a intradosso imp. 3.28 3.28 m m tipologia vincolo UL F Risultanti reazioni vincolari F1 -2154 0 kΝ kΝ F2 0 0 kΝ kΝ

0

kN

-310

kΝ

F3

| APPALTATORE:          |                                                                                                  |         |                                     |                    |                     |                         |           |                            |
|-----------------------|--------------------------------------------------------------------------------------------------|---------|-------------------------------------|--------------------|---------------------|-------------------------|-----------|----------------------------|
| Consorzio Hirpinia AV | Soci<br>salini<br>impregilo                                                                      | ASTALDI | ITINERARIO NAPOLI – BARI            |                    |                     |                         |           |                            |
| PROGETTAZIONE:        |                                                                                                  |         |                                     | RADDO              | PPIO TRAT           | TA APICE - O            | RSARA     |                            |
| <u>Mandataria</u>     | <u>Mandanti</u>                                                                                  |         | I LOTTO FUNZIONALE APICE – HIRPINIA |                    |                     |                         |           |                            |
| XXX SOUL              | NET                                                                                              | Alpina  |                                     |                    |                     |                         |           |                            |
|                       | PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |         | COMMESSA<br>IF28                    | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br>B | FOGLIO<br><b>65 di 191</b> |
| M1                    |                                                                                                  |         | 0                                   | kNm                |                     | 0                       | kNm       | 1                          |
| M2                    |                                                                                                  |         | 0                                   | kNm                |                     | 0                       | kNm       | 1                          |
| M3                    |                                                                                                  |         | 0                                   | kNm                |                     | 0                       | kNm       | 1                          |

# 6.4.3 Forza centrifuga (Q3)

L'azione centrifuga è schematizzata come una forza agente in direzione orizzontale perpendicolarmente al binario e verso l'esterno della curva, applicata ad 1,80 m al di sopra del p.f.. Il valore caratteristico della forza centrifuga si determina in accordo con la seguente espressione:

 $Qtk = V2 \cdot f \cdot (\alpha \cdot Qvk)/(127 \cdot R)$ 

dove V velocità di progetto espressa in km/h

Qvk valore caratteristico dei carichi verticali

R raggio di curvatura in m

f fattore di riduzione (rif. §2.5.1.4.3.1 [3])

Per il modello di carico LM71 e per velocità di progetto superiori a 120 km/h, si considerano i seguenti 2 casi:

- a) modello di carico LM71 e forza centrifuga per V = 120 km/h e f = 1;
- b) modello di carico LM71 e forza centrifuga calcolata per la massima velocità di progetto.

Per i modelli di carico SW si assume una velocità massima di 100 km/h.

La forza centrifuga non deve essere incrementata dei coefficienti dinamici.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel 6.4.1.

# 6.4.3.1 DISPOSIZIONE DI CARICO 1

|                      | IMPALCATO S<br>reazioni<br>vincolari A | X      | IMPALCATO DX<br>reazioni<br>vincolari B |
|----------------------|----------------------------------------|--------|-----------------------------------------|
| luce<br>Luce appoggi | 25.00<br>22.80                         | m<br>m | 25.00 m<br>22.80 m                      |
| Centrifuga LM71      |                                        |        |                                         |

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI

# ITINERARIO NAPOLI – BARI

# PROGETTAZIONE:

Mandataria Mandanti



RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

| NET ENGINEERING                                                             | • Alpina             |                  |                    |                     |                         |                  |                            |
|-----------------------------------------------------------------------------|----------------------|------------------|--------------------|---------------------|-------------------------|------------------|----------------------------|
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di elevazione | calcolo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLI0<br><b>66 di 1</b> 9 |
| v=vmax                                                                      |                      |                  |                    |                     |                         |                  |                            |
| Raggio minimo                                                               |                      | 2000             | m                  |                     | 2000                    | m                |                            |
| Velocità massima                                                            |                      | 200              | km/h               |                     | 200                     | km/h             |                            |
| Lf                                                                          |                      | 25               | m                  |                     | 25                      | m                |                            |
| f                                                                           | (                    | 0.692            |                    |                     | 0.692                   |                  |                            |
| Qvk                                                                         | 12                   | 240.77           | kN                 |                     | 1240.77                 | kN               |                            |
| Q <sub>centr</sub>                                                          | 1                    | 35.30            | kN                 |                     | 135.30                  | kN               |                            |
| v=vmax                                                                      |                      |                  |                    |                     |                         |                  |                            |
| Raggio minimo                                                               |                      | 2000             | m                  |                     | 2000                    | m                |                            |
| Velocità massima                                                            |                      | 120              | km/h               |                     | 120                     | km/h             |                            |
| Lf                                                                          |                      | 25               | m                  |                     | 25                      | m                |                            |
| f                                                                           | -                    | 1.000            |                    |                     | 1.000                   |                  |                            |
| Qvk                                                                         | 13                   | 364.85           | kN                 |                     | 1364.85                 | kN               |                            |
| Q <sub>centr</sub>                                                          | <del>,</del>         | 77.38            | kN                 |                     | 77.38                   | kN               |                            |
| Q <sub>centr</sub> max                                                      | 1                    | 35.30            | kN                 |                     | 135.30                  | kN               |                            |
| Centrifuga SW/2                                                             |                      |                  |                    |                     |                         |                  |                            |
| v=vmax                                                                      |                      | 100              | km/h               |                     | 100                     | km/h             |                            |
| Raggio minimo                                                               |                      | 2000             | m                  |                     | 2000                    | m                |                            |
| Velocità massima                                                            |                      | 100              | km/h               |                     | 100                     | km/h             |                            |
| Lf                                                                          |                      | 25               | m                  |                     | 25                      | m                |                            |
| f                                                                           | :                    | 1.000            |                    |                     | 1.000                   |                  |                            |
| Qvk                                                                         | 14                   | 451.48           | kN                 |                     | 1511.18                 | kN               |                            |
| Q <sub>centr</sub>                                                          | į                    | 57.14            | kN                 |                     | 59.50                   | kN               |                            |
| Forza centrifuga sull'appoggio                                              |                      |                  |                    |                     |                         |                  |                            |

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandanti

NETENGINEERING

**Alpina** 

# ITINERARIO NAPOLI – BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

# PROGETTO ESECUTIVO

XXX SOIL

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

| IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 67 di 191 |
|----------|-------|----------|------------|------|-----------|
| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO    |

| elevazione                      |     |         |        |     |
|---------------------------------|-----|---------|--------|-----|
| F2                              | 192 | 2.44 kN | 194.79 | kN  |
| h rispetto intradosso impalcato | 5.0 | 08 m    | 5.08   | m   |
|                                 |     |         |        |     |
| Risultanti reazioni vincolari   |     |         |        |     |
| F1                              | (   | ) kN    | 0      | kN  |
| F2                              | -1  | 92 kN   | -195   | kN  |
| F3                              | (   | ) kN    | 0      | kN  |
| M1                              | 97  | 78 kNm  | 990    | kNm |
| M2                              | (   | ) kNm   | 0      | kNm |
| M3                              | (   | ) kNm   | 0      | kNm |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( **ASTALDI** RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 68 di 191 IF28 01 В

# 6.4.3.2 DISPOSIZIONE DI CARICO 2

|                        | IMPALCATO S             | X    | IMPALCATO DX            |      |  |
|------------------------|-------------------------|------|-------------------------|------|--|
|                        | reazioni<br>vincolari A |      | reazioni<br>vincolari B |      |  |
| luce                   | 25.00                   | m    | 25.00                   | m    |  |
| Luce appoggi           | 22.80                   | m    | 22.80                   | m    |  |
| Centrifuga LM71        |                         |      |                         |      |  |
| v=vmax                 |                         |      |                         |      |  |
| Raggio minimo          | 2000                    | m    | 2000                    | m    |  |
| Velocità massima       | 200                     | km/h | 200                     | km/h |  |
| Lf                     | 25                      | m    | 25                      | m    |  |
| f                      | 0.692                   |      | 0.692                   |      |  |
| Qvk                    | 0.00                    | kN   | 1528.39                 | kN   |  |
| Q <sub>centr</sub>     | 0.00                    | kN   | 166.66                  | kN   |  |
| v=vmax                 |                         |      |                         |      |  |
| Raggio minimo          | 2000                    | m    | 2000                    | m    |  |
| Velocità massima       | 120                     | km/h | 120                     | km/h |  |
| Lf                     | 25                      | m    | 25                      | m    |  |
| f                      | 1.000                   |      | 1.000                   |      |  |
| Qvk                    | 0.00                    | kN   | 1681.22                 | kN   |  |
| Q <sub>centr</sub>     | 0.00                    | kN   | 95.31                   | kN   |  |
| Q <sub>centr</sub> max | 0.00                    | kN   | 166.66                  | kN   |  |
| Centrifuga SW/2        |                         |      |                         |      |  |

APPALTATORE:

Consorzio







PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

XXX SOUL NETENGINEERING

Alpina

# RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo s elevazione | strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br><b>69 di 191</b> |
|---------------------------------------------------------------------------------------|--------------|------------------|--------------------|---------------------|-------------------------|------------------|----------------------------|
| v=vmax                                                                                |              | 100              | km/h               |                     | 100                     | km/h             |                            |
| Raggio minimo                                                                         | 2            | 2000             | m                  |                     | 2000                    | m                |                            |
| Velocità massima                                                                      |              | 100              | km/h               |                     | 100                     | km/h             |                            |
| Lf                                                                                    |              | 25               | m                  |                     | 25                      | m                |                            |
| f                                                                                     | 1            | 000              |                    |                     | 1.000                   |                  |                            |
| Qvk                                                                                   | (            | 0.00             | kN                 |                     | 1875.00                 | kN               |                            |
| Qcentr                                                                                | (            | 0.00             | kN                 |                     | 73.82                   | kN               |                            |
| Forza centrifuga sull'appoggio                                                        |              |                  |                    |                     |                         |                  |                            |
| F2                                                                                    | (            | 0.00             | kN                 |                     | 240.48                  | kN               |                            |
| h rispetto intradosso impalcato                                                       | !            | 5.08             | m                  |                     | 5.08                    | m                |                            |
| Risultanti reazioni vincolari                                                         |              |                  |                    |                     |                         |                  |                            |
| F1                                                                                    |              | 0                | kN                 |                     | 0                       | kN               |                            |
| F2                                                                                    |              | 0                | kN                 |                     | -240                    | kN               |                            |
| F3                                                                                    |              | 0                | kN                 |                     | 0                       | kN               |                            |
| M1                                                                                    |              | 0                | kNm                |                     | 1222                    | kNm              |                            |
| M2                                                                                    |              | 0                | kNm                |                     | 0                       | kNm              |                            |
| M3                                                                                    |              | 0                | kNm                |                     | 0                       | kNm              |                            |

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( **ASTALDI** RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 70 di 191 IF28 01 В

# 6.4.3.3 DISPOSIZIONE DI CARICO 3

|                        | IMPALCATO SX            |      | IMPALCATO DX            |      |  |
|------------------------|-------------------------|------|-------------------------|------|--|
|                        | reazioni<br>vincolari A |      | reazioni<br>vincolari B |      |  |
| luce                   | 25.00                   | m    | 25.00                   | m    |  |
| Luce appoggi           | 22.80                   | m    | 22.80                   | m    |  |
| Centrifuga LM71        |                         |      |                         |      |  |
| v=vmax                 |                         |      |                         |      |  |
| Raggio minimo          | 2000                    | m    | 2000                    | m    |  |
| Velocità massima       | 200                     | km/h | 200                     | km/h |  |
| Lf                     | 25                      | m    | 25                      | m    |  |
| f                      | 0.692                   |      | 0.692                   |      |  |
| Qvk                    | 0.00                    | kN   | 0.00                    | kN   |  |
| Q <sub>centr</sub>     | 0.00                    | kN   | 0.00                    | kN   |  |
| v=vmax                 |                         |      |                         |      |  |
| Raggio minimo          | 2000                    | m    | 2000                    | m    |  |
| Velocità massima       | 120                     | km/h | 120                     | km/h |  |
| Lf                     | 25                      | m    | 25                      | m    |  |
| f                      | 1.000                   |      | 1.000                   |      |  |
| Qvk                    | 0.00                    | kN   | 0.00                    | kN   |  |
| Q <sub>centr</sub>     | 0.00                    | kN   | 0.00                    | kN   |  |
| Q <sub>centr</sub> max | 0.00                    | kN   | 0.00                    | kN   |  |
| Centrifuga SW/2        |                         |      |                         |      |  |

APPALTATORE:

Consorzio

<u>Soci</u>







PROGETTAZIONE:

**Mandataria** 

<u>Mandanti</u>

NET ENGINEERING

Alpina

# ITINERARIO NAPOLI – BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

DOCUMENTO

VI0105 005

REV.

В

FOGLIO

71 di 191

CODIFICA

E ZZ CL

PROGETTO ESECUTIVO
Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in

| elevazione                      | IF26    | 01   | E 22 GL | VI0105 005 | В    | 1 01 18 |
|---------------------------------|---------|------|---------|------------|------|---------|
| v=vmax                          | 100     | km/h |         | 100        | km/h |         |
| Raggio minimo                   | 2000    | m    |         | 2000       | m    |         |
| Velocità massima                | 100     | km/h |         | 100        | km/h |         |
| Lf                              | 25      | m    |         | 25         | m    |         |
| f                               | 1.000   |      |         | 1.000      |      |         |
| Qvk                             | 1451.48 | kN   |         | 1511.18    | kN   |         |
| Qcentr                          | 57.14   | kN   |         | 59.50      | kN   |         |
| Forza centrifuga sull'appoggio  |         |      |         |            |      |         |
| F2                              | 57.14   | kN   |         | 59.50      | kN   |         |
| h rispetto intradosso impalcato | 5.08    | m    |         | 5.08       | m    |         |
| Risultanti reazioni vincolari   |         |      |         |            |      |         |
| F1                              | 0       | kN   |         | 0          | kN   |         |
| F2                              | -57     | kN   |         | -59        | kN   |         |
| F3                              | 0       | kN   |         | 0          | kN   |         |
| M1                              | 290     | kNm  |         | 302        | kNm  |         |
| M2                              | 0       | kNm  |         | 0          | kNm  |         |
| M3                              | 0       | kNm  |         | 0          | kNm  |         |

COMMESSA

IF28

LOTTO

01

#### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( **ASTALDI** RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 72 di 191 IF28 01 В

# 6.4.3.4 DISPOSIZIONE DI CARICO 4

|                        | IMPALCATO SX            |      | IMPALCATO DX            |      |  |
|------------------------|-------------------------|------|-------------------------|------|--|
|                        | reazioni<br>vincolari A |      | reazioni<br>vincolari B |      |  |
| luce                   | 25.00                   | m    | 25.00                   | m    |  |
| Luce appoggi           | 22.80                   | m    | 22.80                   | m    |  |
| Centrifuga LM71        |                         |      |                         |      |  |
| v=vmax                 |                         |      |                         |      |  |
| Raggio minimo          | 2000                    | m    | 2000                    | m    |  |
| Velocità massima       | 200                     | km/h | 200                     | km/h |  |
| Lf                     | 25                      | m    | 25                      | m    |  |
| f                      | 0.692                   |      | 0.692                   |      |  |
| Qvk                    | 1240.77                 | kN   | 1240.77                 | kN   |  |
| Q <sub>centr</sub>     | 135.30                  | kN   | 135.30                  | kN   |  |
| v=vmax                 |                         |      |                         |      |  |
| Raggio minimo          | 2000                    | m    | 2000                    | m    |  |
| Velocità massima       | 120                     | km/h | 120                     | km/h |  |
| Lf                     | 25                      | m    | 25                      | m    |  |
| f                      | 1.000                   |      | 1.000                   |      |  |
| Qvk                    | 1364.85                 | kN   | 1364.85                 | kN   |  |
| Q <sub>centr</sub>     | 77.38                   | kN   | 77.38                   | kN   |  |
| Q <sub>centr</sub> max | 135.30                  | kN   | 135.30                  | kN   |  |
| Centrifuga SW/2        |                         |      |                         |      |  |

### APPALTATORE:

Consorzio

<u>Soci</u>







### PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

XXX SOUL NETENGINEERING

**Alpina** 

# ITINERARIO NAPOLI - BARI

CODIFICA

E ZZ CL

### RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

DOCUMENTO

VI0105 005

REV.

В

FOGLIO

73 di 191

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in

| elevazione                      | IF26   | 01   | E 22 GL | VI0105 005 | В    | 73 ai 1 |
|---------------------------------|--------|------|---------|------------|------|---------|
| v=vmax                          | 100    | km/h |         | 100        | km/h |         |
| Raggio minimo                   | 2000   | m    |         | 2000       | m    |         |
| Velocità massima                | 100    | km/h |         | 100        | km/h |         |
| Lf                              | 25     | m    |         | 25         | m    |         |
| f                               | 1.000  |      |         | 1.000      |      |         |
| Qvk                             | 0.00   | kN   |         | 0.00       | kN   |         |
| Q <sub>centr</sub>              | 0.00   | kN   |         | 0.00       | kN   |         |
| Forza centrifuga sull'appoggio  |        |      |         |            |      |         |
| F2                              | 135.30 | kN   |         | 135.30     | kN   |         |
| h rispetto intradosso impalcato | 5.08   | m    |         | 5.08       | m    |         |
| Risultanti reazioni vincolari   |        |      |         |            |      |         |
| F1                              | 0      | kN   |         | 0          | kN   |         |
| F2                              | -135   | kN   |         | -135       | kN   |         |
| F3                              | 0      | kN   |         | 0          | kN   |         |
| M1                              | 687    | kNm  |         | 687        | kNm  |         |
| M2                              | 0      | kNm  |         | 0          | kNm  |         |
| M3                              | 0      | kNm  |         | 0          | kNm  |         |

COMMESSA

IF28

LOTTO

01

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( **ASTALDI** RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 74 di 191 IF28 01 В

### 6.4.3.5 DISPOSIZIONE DI CARICO 5

|                        | IMPALCATO SX            |      | IMPALCATO DX |      |  |
|------------------------|-------------------------|------|--------------|------|--|
|                        | reazioni<br>vincolari A |      |              |      |  |
| luce                   | 25.00                   | m    | 25.00        | m    |  |
| Luce appoggi           | 22.80                   | m    | 22.80        | m    |  |
| Centrifuga LM71        |                         |      |              |      |  |
| v=vmax                 |                         |      |              |      |  |
| Raggio minimo          | 2000                    | m    | 2000         | m    |  |
| Velocità massima       | 200                     | km/h | 200          | km/h |  |
| Lf                     | 25                      | m    | 25           | m    |  |
| f                      | 0.692                   |      | 0.692        |      |  |
| Qvk                    | 934.04                  | kN   | 1528.39      | kN   |  |
| Q <sub>centr</sub>     | 101.85                  | kN   | 166.66       | kN   |  |
| v=vmax                 |                         |      |              |      |  |
| Raggio minimo          | 2000                    | m    | 2000         | m    |  |
| Velocità massima       | 120                     | km/h | 120          | km/h |  |
| Lf                     | 25                      | m    | 25           | m    |  |
| f                      | 1.000                   |      | 1.000        |      |  |
| Qvk                    | 1027.44                 | kN   | 1681.22      | kN   |  |
| Q <sub>centr</sub>     | 58.25                   | kN   | 95.31        | kN   |  |
| Q <sub>centr</sub> max | 101.85                  | kN   | 166.66       | kN   |  |
| Centrifuga SW/2        |                         |      |              |      |  |

### APPALTATORE:

Consorzio

<u>Soci</u>







### PROGETTAZIONE:

<u>Mandataria</u>

F3

M1

M2

М3

<u>Mandanti</u>

NET ENGINEERING Alpina

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

| N. S.                                         | Aipiria                |                  |                    |                     |                         |           |                           |
|-----------------------------------------------------------------------------------|------------------------|------------------|--------------------|---------------------|-------------------------|-----------|---------------------------|
| PROGETTO ESECUTIVO<br>Pile P7, P8, P19, P20, P21, P22: Relazione di<br>elevazione | i calcolo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br>B | FOGLI0<br><b>75 di 19</b> |
| v=vmax                                                                            |                        | 100              | km/h               |                     | 100                     | km/h      |                           |
| Raggio minimo                                                                     | :                      | 2000             | m                  |                     | 2000                    | m         |                           |
| Velocità massima                                                                  |                        | 100              | km/h               |                     | 100                     | km/h      |                           |
| Lf                                                                                |                        | 25               | m                  |                     | 25                      | m         |                           |
| f                                                                                 | -                      | 1.000            |                    |                     | 1.000                   |           |                           |
| Qvk                                                                               | 9                      | 35.53            | kN                 |                     | 1875.00                 | kN        |                           |
| Q <sub>centr</sub>                                                                | \$                     | 36.83            | kN                 |                     | 73.82                   | kN        |                           |
| Forza centrifuga sull'appoggio                                                    |                        |                  |                    |                     |                         |           |                           |
| F2                                                                                | 1                      | 38.68            | kN                 |                     | 240.48                  | kN        |                           |
| h rispetto intradosso impalcato                                                   |                        | 5.08             | m                  |                     | 5.08                    | m         |                           |
| Disultanti razzioni vincolari                                                     |                        |                  |                    |                     |                         |           |                           |
| Risultanti reazioni vincolari                                                     |                        |                  |                    |                     |                         |           |                           |
| F1                                                                                |                        | 0                | kN                 |                     | 0                       | kN        |                           |
| F2                                                                                |                        | -139             | kN                 |                     | -240                    | kN        |                           |
|                                                                                   |                        |                  |                    | 1                   |                         |           |                           |

0

705

0

0

kΝ

kNm

kNm

kNm

0

1222

0

0

kΝ

kNm

kNm

kNm

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( **ASTALDI** RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 76 di 191 IF28 01 В

### 6.4.3.6 DISPOSIZIONE DI CARICO 6

|                        | IMPALCATO SX |      | IMPALCATO DX |      |
|------------------------|--------------|------|--------------|------|
|                        | reazioni     |      | reazioni     |      |
|                        | vincolari A  |      | vincolari B  |      |
|                        |              |      |              |      |
| luce                   | 25.00        | m    | 25.00        | m    |
| Luce appoggi           | 22.80        | m    | 22.80        | m    |
| Centrifuga LM71        |              |      |              |      |
| oeminaga zivir z       |              |      |              |      |
| v=vmax                 |              |      |              |      |
| Raggio minimo          | 2000         | m    | 2000         | m    |
| Velocità massima       | 200          | km/h | 200          | km/h |
| Lf                     | 25           | m    | 25           | m    |
| f                      | 0.692        |      | 0.692        |      |
| Qvk                    | 1240.77      | kN   | 1240.77      | kN   |
| Q <sub>centr</sub>     | 135.30       | kN   | 135.30       | kN   |
|                        |              |      |              |      |
| v=vmax                 |              |      |              |      |
| Raggio minimo          | 2000         | m    | 2000         | m    |
| Velocità massima       | 120          | km/h | 120          | km/h |
| Lf                     | 25           | m    | 25           | m    |
| f                      | 1.000        |      | 1.000        |      |
| Qvk                    | 1364.85      | kN   | 1364.85      | kN   |
| Q <sub>centr</sub>     | 77.38        | kN   | 77.38        | kN   |
|                        |              |      |              |      |
|                        |              |      |              |      |
| Q <sub>centr</sub> max | 135.30       | kN   | 135.30       | kN   |
|                        |              |      |              |      |
|                        |              |      |              |      |
| Centrifuga SW/2        |              |      |              |      |
|                        |              |      |              |      |

APPALTATORE:

Consorzio

<u>Soci</u>







PROGETTAZIONE:

<u>Mandataria</u>

M3

<u>Mandanti</u>

XXX SOIL





### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

DOCUMENTO

0

kNm

REV.

FOGLIO

CODIFICA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in

| Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutt elevazione | ure in IF28 | 01   | E ZZ CL | VI0105 005 | В 7  | 7 di 19 |
|-------------------------------------------------------------------------|-------------|------|---------|------------|------|---------|
| v=vmax                                                                  | 100         | km/h |         | 100        | km/h |         |
| Raggio minimo                                                           | 2000        | m    |         | 2000       | m    |         |
| Velocità massima                                                        | 100         | km/h |         | 100        | km/h |         |
| Lf                                                                      | 25          | m    |         | 25         | m    |         |
| f                                                                       | 1.000       |      |         | 1.000      |      |         |
| Qvk                                                                     | 1364.97     | kN   |         | 1364.97    | kN   |         |
| Q <sub>centr</sub>                                                      | 53.74       | kN   |         | 53.74      | kN   |         |
| Forza centrifuga sull'appoggio                                          |             |      |         |            |      |         |
| F2                                                                      | 189.04      | kN   |         | 189.04     | kN   |         |
| h rispetto intradosso impalcato                                         | 5.08        | m    |         | 5.08       | m    |         |
| Risultanti reazioni vincolari                                           |             |      |         |            |      |         |
| F1                                                                      | 0           | kN   |         | 0          | kN   |         |
| F2                                                                      | -189        | kN   |         | -189       | kN   |         |
| F3                                                                      | 0           | kN   |         | 0          | kN   |         |
| M1                                                                      | 960         | kNm  |         | 960        | kNm  |         |
| M2                                                                      | 0           | kNm  |         | 0          | kNm  |         |

0

kNm

COMMESSA

LOTTO

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI HirpiniaAV salini ( **ASTALDI** RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 78 di 191 IF28 01 В

### 6.4.3.7 DISPOSIZIONE DI CARICO 7

|                        | IMPALCATO SX            |      | IMPALCATO DX            |      |  |
|------------------------|-------------------------|------|-------------------------|------|--|
|                        | reazioni<br>vincolari A |      | reazioni<br>vincolari B |      |  |
| luce                   | 25.00                   | m    | 25.00                   | m    |  |
| Luce appoggi           | 22.80                   | m    | 22.80                   | m    |  |
| Centrifuga LM71        |                         |      |                         |      |  |
| v=vmax                 |                         |      |                         |      |  |
| Raggio minimo          | 2000                    | m    | 2000                    | m    |  |
| Velocità massima       | 200                     | km/h | 200                     | km/h |  |
| Lf                     | 25                      | m    | 25                      | m    |  |
| f                      | 0.692                   |      | 0.692                   |      |  |
| Qvk                    | 0.00                    | kN   | 1000.00                 | kN   |  |
| Q <sub>centr</sub>     | 0.00                    | kN   | 109.04                  | kN   |  |
| v=vmax                 |                         |      |                         |      |  |
| Raggio minimo          | 2000                    | m    | 2000                    | m    |  |
| Velocità massima       | 120                     | km/h | 120                     | km/h |  |
| Lf                     | 25                      | m    | 25                      | m    |  |
| f                      | 1.000                   |      | 1.000                   |      |  |
| Qvk                    | 0.00                    | kN   | 1100.00                 | kN   |  |
| Q <sub>centr</sub>     | 0.00                    | kN   | 62.36                   | kN   |  |
| Q <sub>centr</sub> max | 0.00                    | kN   | 109.04                  | kN   |  |
| Centrifuga SW/2        |                         |      |                         |      |  |

### APPALTATORE:

Consorzio

<u>Soci</u>







### PROGETTAZIONE:

<u>Mandataria</u>

M2

М3

<u>Mandanti</u>

XXX SOLL



Alpina

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

DOCUMENTO

VI0105 005

0

0

kNm

kNm

REV.

В

FOGLIO

79 di 191

CODIFICA

E ZZ CL

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

| 100   | km/h                                                       | 100                                                                                        | km/h                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                           |
|-------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2000  | m                                                          | 2000                                                                                       | m                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |
| 100   | km/h                                                       | 100                                                                                        | km/h                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                           |
| 25    | m                                                          | 25                                                                                         | m                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |
| 1.000 |                                                            | 1.000                                                                                      |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |
| 0.00  | kN                                                         | 1875.00                                                                                    | kN                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| 0.00  | kN                                                         | 73.82                                                                                      | kN                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                            |                                                                                            |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |
| 0.00  | kN                                                         | 182.86                                                                                     | kN                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| 5.08  | m                                                          | 5.08                                                                                       | m                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                           |
|       |                                                            |                                                                                            |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |
| 0     | kN                                                         | 0                                                                                          | kN                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| 0     | kN                                                         | -183                                                                                       | kN                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| 0     | kN                                                         | 0                                                                                          | kN                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |
| 0     | kNm                                                        | 929                                                                                        | kNm                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                           |
|       | 2000<br>100<br>25<br>1.000<br>0.00<br>0.00<br>0.00<br>5.08 | 2000 m 100 km/h 25 m 1.000 0.00 kN  0.00 kN  5.08 m  kN  kN  kN  kN  kN  kN  kN  kN  kN  k | 2000       m       2000         100       km/h       100         25       m       25         1.000       1.000         0.00       kN       1875.00         0.00       kN       73.82         0       kN       5.08         0       kN       0         0       kN       -183         0       kN       0         0       kN       0         0       kN       0 | 2000     m     2000     m       100     km/h     100     km/h       25     m     25     m       1.000     1.000     0.00     kN       0.00     kN     73.82     kN       0.00     kN     182.86     kN       5.08     m     5.08     m       0     kN     0     kN       0     kN     -183     kN       0     kN     0     kN       0     kN     0     kN |

0

0

kNm

kNm

COMMESSA

IF28

LOTTO

01

| APPALTATORE:                                                                                     |                 |                  |                          |                     |                         |                  |                            |  |
|--------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------------|---------------------|-------------------------|------------------|----------------------------|--|
| <u>Consorzio</u>                                                                                 | <u>Soci</u>     |                  |                          | ITINI               |                         | NADOLI D         | ^ DI                       |  |
| HirpiniaAV                                                                                       | salini (        | <u></u> ASTALDI  | ITINERARIO NAPOLI – BARI |                     |                         |                  |                            |  |
| PROGETTAZIONE:                                                                                   |                 |                  |                          |                     |                         | TA APICE - O     |                            |  |
| <u>Mandataria</u>                                                                                | <u>Mandanti</u> |                  | I                        | LOTTO               | FUNZIONA                | LE APICE – HI    | RPINIA                     |  |
|                                                                                                  | NETENGINEERING  | Alpina           |                          |                     |                         |                  |                            |  |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                 | COMMESSA<br>IF28 | LOTTO<br><b>01</b>       | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br><b>80 di 191</b> |  |

# 6.4.4 Serpeggio (Q4)

La forza laterale indotta dal serpeggio si schematizza come una forza concentrata agente orizzontalmente perpendicolarmente all'asse del binario. Il valore caratteristico di tale forza è assunto pari a 100 kN, tale valore deve essere moltiplicato per  $\alpha$  ma non per il coefficiente di amplificazione dinamica.

Nei sottoparagrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel 6.4.1

### 6.4.4.1 DISPOSIZIONE DI CARICO 1

|                                  | IMPALCATO SX            | IMPALCATO DX            |  |  |
|----------------------------------|-------------------------|-------------------------|--|--|
|                                  | reazioni<br>vincolari A | reazioni<br>vincolari B |  |  |
| Serpeggio LM71                   |                         |                         |  |  |
| Forza serpeggio                  | 100.00 kN               | 100.00 kN               |  |  |
| α                                | 1.10                    | 1.10                    |  |  |
| Serpeggio SW/2                   |                         |                         |  |  |
| Forza serpeggio                  | 100.00 kN               | 100.00 kN               |  |  |
| α                                | 1.00                    | 1.00                    |  |  |
|                                  |                         |                         |  |  |
| Forza totale serpeggio           |                         |                         |  |  |
| F2                               | 210.00 kN               | 210.00 kN               |  |  |
| h rispetto intradosso impalcato  | 3.28 m                  | 3.28 m                  |  |  |
| Risultanti reazioni<br>vincolari |                         |                         |  |  |

|                                       |                          |                   | 1        |         |          |                |        |       |     |
|---------------------------------------|--------------------------|-------------------|----------|---------|----------|----------------|--------|-------|-----|
| APPALTATORE:                          |                          |                   |          |         |          |                |        |       |     |
| Consorzio                             | <u>Soci</u>              |                   |          | ITINI   |          | NAPOLI – B     | A D I  |       |     |
| Hirpinia AV                           | salini<br>impregilo      | <u>* ASTALDI</u>  |          | HIINI   | EKAKIO   | NAPOLI – D     | AKI    |       |     |
| PROGETTAZIONE:                        |                          |                   |          | RADDOF  | PPIO TRA | ΓΤΑ APICE – ΟΙ | RSARA  |       |     |
| <u>Mandataria</u>                     | <u>Mandanti</u>          |                   | I        | LOTTO F | FUNZIONA | LE APICE - HI  | RPINIA |       |     |
| ROCK SOFT                             | NET                      | Alpina            |          |         |          |                |        |       |     |
| PROGETTO ESECUTIVO                    |                          |                   | COMMESSA | LOTTO   | CODIFICA | DOCUMENTO      | REV.   | FOG   | LIO |
| Pile P7, P8, P19, P20, P21 elevazione | , P22: Relazione di cald | colo strutture in | IF28     | 01      | E ZZ CL  | VI0105 005     | В      | 81 di |     |
| F1                                    |                          |                   | 0        | kN      |          | 0              | kN     |       |     |
| F2                                    |                          |                   | -105     | kN      |          | -105           | kN     |       | ì   |
| F3                                    |                          |                   | 0        | kN      |          | 0              | kN     |       | ì   |
| M1                                    |                          |                   | 344      | kNm     |          | 344            | kNm    |       | 1   |
| M2                                    |                          |                   | 0        | kNm     |          | 0              | kNm    |       | ì   |
| M3                                    |                          |                   | 0        | kNm     |          | 0              | kNm    |       | 1   |

### 6.4.4.2 DISPOSIZIONE DI CARICO 2

|                                  | IMPALCATO            | O SX | IMPALCATO DX            |    |  |
|----------------------------------|----------------------|------|-------------------------|----|--|
|                                  | reazion<br>vincolari |      | reazioni<br>vincolari B |    |  |
| Serpeggio LM71                   |                      |      |                         |    |  |
| Forza serpeggio                  | 0.00                 | kN   | 100.00                  | kN |  |
| α                                | 1.10                 |      | 1.10                    |    |  |
| Serpeggio SW/2                   |                      |      |                         |    |  |
| Forza serpeggio                  | 0.00                 | kN   | 100.00                  | kN |  |
| α                                | 1.00                 |      | 1.00                    |    |  |
| Forza totale serpeggio           |                      |      |                         |    |  |
| F2                               | 0.00                 | kN   | 210.00                  | kN |  |
| h rispetto intradosso impalcato  | 3.28                 | m    | 3.28                    | m  |  |
| Risultanti reazioni<br>vincolari |                      |      |                         |    |  |
| F1                               | 0                    | kN   | 0                       | kN |  |

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti **Alpina** XXX SOUL NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 82 di 191 IF28 01 В 0 kN -210 kΝ F2 F3 0 kΝ 0 kΝ M1 0 kNm 689 kNmM2 0 kNm 0 kNm M3 0 kNm 0 kNm

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( ASTALDI Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 83 di 191 IF28 01 В

# 6.4.4.3 DISPOSIZIONE DI CARICO 3

|                                  | IMPALCATO SX            |     | IMPALCATO DX |     |
|----------------------------------|-------------------------|-----|--------------|-----|
|                                  | reazioni<br>vincolari A |     | reazioni     |     |
|                                  | Vincolari A             |     | vincolari B  |     |
| Serpeggio LM71                   |                         |     |              |     |
| Forza serpeggio                  | 0.00                    | kN  | 0.00         | kN  |
| α                                | 1.10                    |     | 1.10         |     |
| Serpeggio SW/2                   |                         |     |              |     |
| Forza serpeggio                  | 100.00                  | kN  | 100.00       | kN  |
| α                                | 1.00                    |     | 1.00         |     |
|                                  |                         |     |              |     |
| Forza totale serpeggio           |                         |     |              |     |
| F2                               | 100.00                  | kN  | 100.00       | kN  |
| h rispetto intradosso impalcato  | 3.28                    | m   | 3.28         | m   |
|                                  |                         |     |              |     |
| Risultanti reazioni<br>vincolari |                         |     |              |     |
|                                  |                         |     |              |     |
| F1                               | 0                       | kN  | 0            | kN  |
| F2                               | -50                     | kN  | -50          | kN  |
| F3                               | 0                       | kN  | 0            | kN  |
| M1                               | 164                     | kNm | 164          | kNm |
| M2                               | 0                       | kNm | 0            | kNm |
| M3                               | 0                       | kNm | 0            | kNm |

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( ASTALDI Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 84 di 191 IF28 01 В

# 6.4.4.4 DISPOSIZIONE DI CARICO 4

|                                  | IMPALCATO S             | Κ   | IMPALCATO DX            |     |
|----------------------------------|-------------------------|-----|-------------------------|-----|
|                                  | reazioni<br>vincolari A |     | reazioni<br>vincolari B |     |
| Serpeggio LM71                   |                         |     |                         |     |
| Forza serpeggio                  | 100.00                  | kN  | 100.00                  | kN  |
| α                                | 1.10                    |     | 1.10                    |     |
| Serpeggio SW/2                   |                         |     |                         |     |
| Forza serpeggio                  | 0.00                    | kN  | 0.00                    | kN  |
| α                                | 1.00                    |     | 1.00                    |     |
| Forza totale serpeggio           |                         |     |                         |     |
| F2                               | 110.00                  | kN  | 110.00                  | kN  |
| h rispetto intradosso impalcato  | 3.28                    | m   | 3.28                    | m   |
|                                  |                         |     |                         |     |
| Risultanti reazioni<br>vincolari |                         |     |                         |     |
| VIIICOIGII                       |                         |     |                         |     |
| F1                               | 0                       | kN  | 0                       | kN  |
| F2                               | -55                     | kN  | -55                     | kN  |
| F3                               | 0                       | kN  | 0                       | kN  |
| M1                               | 180                     | kNm | 180                     | kNm |
| M2                               | 0                       | kNm | 0                       | kNm |
| М3                               | 0                       | kNm | 0                       | kNm |

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 85 di 191 IF28 01 В

### 6.4.4.5 DISPOSIZIONE DI CARICO 5

|                                  | IMPALCATO SX |     | IMPALCATO DX |     |
|----------------------------------|--------------|-----|--------------|-----|
|                                  | reazioni     |     | reazioni     |     |
|                                  | vincolari A  |     | vincolari B  |     |
| Serpeggio LM71                   |              |     |              |     |
| Forza serpeggio                  | 100.00       | kN  | 100.00       | kN  |
| α                                | 1.10         |     | 1.10         |     |
| Serpeggio SW/2                   |              |     |              |     |
| Forza serpeggio                  | 100.00       | kN  | 100.00       | kN  |
| α                                | 1.00         |     | 1.00         |     |
| Forza totale serpeggio           |              |     |              |     |
|                                  |              |     |              |     |
| F2                               | 210.00       | kN  | 210.00       | kN  |
| h rispetto intradosso impalcato  | 3.28         | m   | 3.28         | m   |
|                                  |              |     |              |     |
| Risultanti reazioni<br>vincolari |              |     |              |     |
|                                  |              |     |              |     |
| F1                               | 0            | kN  | 0            | kN  |
| F2                               | -105         | kN  | -105         | kN  |
| F3                               | 0            | kN  | 0            | kN  |
| M1                               | 344          | kNm | 344          | kNm |
| M2                               | 0            | kNm | 0            | kNm |
| M3                               | 0            | kNm | 0            | kNm |

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( ASTALDI Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 86 di 191 IF28 01 В

# 6.4.4.6 DISPOSIZIONE DI CARICO 6

|                                  | IMPALCATO SX |     | IMPALCATO DX |     |
|----------------------------------|--------------|-----|--------------|-----|
|                                  | reazioni     |     | reazioni     |     |
|                                  | vincolari A  |     | vincolari B  |     |
| Serpeggio LM71                   |              |     |              |     |
| Forza serpeggio                  | 100.00       | kN  | 100.00       | kN  |
| α                                | 1.10         |     | 1.10         |     |
| Serpeggio SW/2                   |              |     |              |     |
| Forza serpeggio                  | 100.00       | kN  | 100.00       | kN  |
| α                                | 1.00         |     | 1.00         |     |
| Forza totale serpeggio           |              |     |              |     |
|                                  |              |     |              |     |
| F2                               | 210.00       | kN  | 210.00       | kN  |
| h rispetto intradosso impalcato  | 3.28         | m   | 3.28         | m   |
|                                  |              |     |              |     |
| Risultanti reazioni<br>vincolari |              |     |              |     |
|                                  |              |     |              |     |
| F1                               | 0            | kN  | 0            | kN  |
| F2                               | -105         | kN  | -105         | kN  |
| F3                               | 0            | kN  | 0            | kN  |
| M1                               | 344          | kNm | 344          | kNm |
| M2                               | 0            | kNm | 0            | kNm |
| M3                               | 0            | kNm | 0            | kNm |

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione E ZZ CL VI0105 005 87 di 191 IF28 01 В

# 6.4.4.7 DISPOSIZIONE DI CARICO 7

|                                  | IMPALCATO               | SX  | IMPALCATO D             | x   |
|----------------------------------|-------------------------|-----|-------------------------|-----|
|                                  | reazioni<br>vincolari A |     | reazioni<br>vincolari B |     |
| Serpeggio LM71                   |                         |     |                         |     |
| Forza serpeggio                  | 0.00                    | kN  | 100.00                  | kN  |
| α                                | 1.10                    |     | 1.10                    |     |
| Serpeggio SW/2                   |                         |     |                         |     |
| Forza serpeggio                  | 0.00                    | kN  | 100.00                  | kN  |
| α                                | 1.00                    |     | 1.00                    |     |
| Forza totale serpeggio           |                         |     |                         |     |
| F2                               | 0.00                    | kN  | 210.00                  | kN  |
| h rispetto intradosso impalcato  | 3.28                    | m   | 3.28                    | m   |
|                                  |                         |     |                         |     |
| Risultanti reazioni<br>vincolari |                         |     |                         |     |
| F1                               | 0                       | kN  | 0                       | kN  |
| F2                               | 0                       | kN  | -210                    | kN  |
| F3                               | 0                       | kN  | 0                       | kN  |
| M1                               | 0                       | kNm | 689                     | kNm |
| M2                               | 0                       | kNm | 0                       | kNm |
| M3                               | 0                       | kNm | 0                       | kNm |

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **XXX**SØ∭ Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL 88 di 191 IF28 VI0105 005 01 elevazione

### 6.5 CARICHI VARIABILI (Q5)

### 6.5.1 Azioni del vento (Q51)

L'azione del vento viene ricondotta ad un'azione statica equivalente costituita da pressioni e depressioni agenti normalmente alle superfici.

La pressione del vento è data dalla seguente espressione:

 $p = q_b \cdot ce \cdot c_p \cdot c_d$ 

dove:

qb pressione cinetica di riferimento

ce coefficiente di esposizione

cp coefficiente di forma

cd coefficiente dinamico, posto generalmente pari a 1

Di seguito si riporta il dettaglio del calcolo di tali fattori per l'opera in oggetto.

### 6.5.1.1 PRESSIONE CINETICA DI RIFERIMENTO

La pressione cinetica di riferimento si determina mediante l'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$
 (in N/m<sup>2</sup>)

dove v<sub>b</sub> velocità di riferimento

ρ densità dell'aria, convenzionalmente posta pari a 1,25 kg/m³

Di seguito si determina la pressione di riferimento sulla base dei parametri caratteristici del sito e il tempo di ritorno dell'opera in oggetto

### Parametri dipendenti dal sito

| Zona                  | 3        |
|-----------------------|----------|
| V <sub>b,0</sub>      | 27 m/s   |
| <b>a</b> <sub>0</sub> | 500 m    |
| ka                    | 0.02 1/s |

| APPALTATORE:                                                      |                 |                  |                  |                    |                     |                         |                  |                     |
|-------------------------------------------------------------------|-----------------|------------------|------------------|--------------------|---------------------|-------------------------|------------------|---------------------|
| Consorzio                                                         | <u>Soci</u>     |                  |                  | ITINII             |                     | NADOLI D                | A D I            |                     |
| Hirpinia AV                                                       | salini (//      | ASTALDI          |                  | HIINI              | EKAKIO              | NAPOLI – B              | AKI              |                     |
| PROGETTAZIONE:                                                    |                 |                  |                  | RADDOF             | PPIO TRAT           | TA APICE - O            | RSARA            |                     |
| <u>Mandataria</u>                                                 | <u>Mandanti</u> |                  | I                | LOTTO F            | FUNZIONA            | LE APICE – HI           | RPINIA           |                     |
|                                                                   | NET             | Alpina           |                  |                    |                     |                         |                  |                     |
| PROGETTO ESECUTIVO<br>Pile P7, P8, P19, P20, P21, P<br>elevazione |                 | olo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>89 di 191 |

Tali parametri sono determinati in funzione della Fig. 3.3.1 e della Tab. 3.3.1 delle NTC08



Figura 6.9 Mappa delle zone in cui è suddiviso il territorio italiano (Fig. 3.3.1 NTC08)

| Zona | Descrizione                                                                                                                            | v <sub>b,0</sub> [m/s] | a <sub>0</sub> [m] | k <sub>a</sub> [1/s] |
|------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|----------------------|
| 1    | Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto,<br>Friuli Venezia Giulia (con l'eccezione della provincia di Trieste) | 25                     | 1000               | 0,010                |
| 2    | Emilia Romagna                                                                                                                         | 25                     | 750                | 0,015                |
| 3    | Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)      | 27                     | 500                | 0,020                |
| 4    | Sicilia e provincia di Reggio Calabria                                                                                                 | 28                     | 500                | 0,020                |
| 5    | Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)                                               | 28                     | 750                | 0,015                |
| 6    | Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)                                             | 28                     | 500                | 0,020                |
| 7    | Liguria                                                                                                                                | 28                     | 1000               | 0,015                |
| 8    | Provincia di Trieste                                                                                                                   | 30                     | 1500               | 0,010                |
| 9    | Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto                                                                            | 31                     | 500                | 0,020                |

Tabella 1 Valori dei parametri v,b,0, a0, ka (Tab. 3.3.1 NTC08)

### Altitudine del sito

| as             | 320 m.s.l.m. |
|----------------|--------------|
| V <sub>b</sub> | 27 m/s       |

### Tempo di ritorno

La velocità di riferimento del vento  $v_b[T_R]$  riferita ad un generico periodo di ritorno  $T_R$  può essere valutata, nel campo compreso tra 10 e 500 anni, con l'espressione:

$$v_b[T_R] = \alpha_R * v_b$$

con

$$\alpha_R = 0.75 \sqrt{1 - 0.2 * \ln \left[ -\ln \left( 1 - \frac{1}{T_R} \right) \right]}$$

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo 🗸 ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXXX9训 NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in 90 di 191 E ZZ CL VI0105 005 IF28 01 elevazione Si ottiene:

| T <sub>R</sub> | 75 anni   |
|----------------|-----------|
| αR             | 1.02      |
| $v_b[T_R]$     | 27.63 m/s |

### Pressione di riferimento

La pressione cinetica di riferimento q<sub>b</sub> è data dall'espressione:

$$q_b = \frac{1}{2}\rho * v_b^2$$

### Si ottiene

| qь | 477.25 N/m <sup>2</sup> |
|----|-------------------------|
|----|-------------------------|

### 6.5.1.2 COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione ce dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito e si determina mediante l'espressione:

$$c_e(z) = k_r^2 \cdot c_t \cdot ln(z/z_0) \ [7 + c_t \cdot ln(z/z_0)] \ per \ z \geq z_{min}$$

$$C_e(z) = C_e(z_{min}) per z < z_{min}$$

dove

k<sub>r</sub>, z<sub>0</sub>, z<sub>min</sub> sono parametri che dipendono dalla categoria di esposizione del sito;

 $c_t$  è il coefficiente di topografia, posto generalmente pari a 1

Di seguito si determina il coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato, posta pari alla massima quota del complesso impalcato, barriere antirumore (b.a.), sagoma del treno. A tal proposito il §2.5.1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4,00 m sul p.f.. L'azione del vento dovrà comunque considerarsi agente sulle b.a. presenti considerando la loro altezza effettiva se disponibile oppure un'altezza convenzionale di 4,00 m misurati dall'estradosso della soletta qualora le b.a. non siano previste al momento della redazione del progetto.

### categoria di esposizione

| Classe di rugosità       | D                     |
|--------------------------|-----------------------|
| Distanza dalla costa     | ≥30 km; <500 m.s.l.m. |
| Categoria di esposizione | II                    |
| <b>k</b> r               | 0.19                  |

| APPALTATORE:      |                                                                                                  |         |                                 |                    |                     |                         |                  |                            |
|-------------------|--------------------------------------------------------------------------------------------------|---------|---------------------------------|--------------------|---------------------|-------------------------|------------------|----------------------------|
| Consorzio         | <u>Soci</u>                                                                                      |         |                                 | ITIN               |                     | NADOLI D                | ADI              |                            |
| Hirpinia AV       | salini (                                                                                         | ASTALDI |                                 | HIIN               | ERARIO              | NAPOLI – B              | AKI              |                            |
| PROGETTAZIONE:    |                                                                                                  |         | RADDOPPIO TRATTA APICE – ORSARA |                    |                     |                         |                  |                            |
| <u>Mandataria</u> | <u>Mandanti</u>                                                                                  |         |                                 | LOTTO              | <b>FUNZIONA</b>     | LE APICE – H            | IRPINIA          |                            |
|                   | NETENGINEERING                                                                                   | Alpina  |                                 |                    |                     |                         |                  |                            |
|                   | PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |         | COMMESSA<br>IF28                | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br><b>91 di 191</b> |
| $z_0$             |                                                                                                  |         |                                 | 0.05 m             | 1                   |                         | ·                |                            |
| Zmin              |                                                                                                  |         |                                 | 4.00 m             | 1                   |                         |                  |                            |

### Quota di riferimento z

| H pila ad intradosso impalcato           | 6.85 m  |
|------------------------------------------|---------|
| H impalcato a piano del ferro            | 3.28 m  |
| H barriere antirumore da piano del ferro | 4.67 m  |
| H treno su piano del ferro               | 4.00 m  |
| z di riferimento                         | 14.80 m |

### Coefficiente di esposizione

| Ce | 2.61 |
|----|------|

### 6.5.1.3 COEFFICIENTE DI FORMA DELL'IMPALCATO

Il coefficiente di forma dell'impalcato e l'area di riferimento per il calcolo della forza risultante si determinano in base ai criteri enunciati nel §8.3.1 [9].

A tal proposito si riconduce il coefficiente di forma  $c_p$  al coefficiente di forza  $c_{fx,0}$ . Il coefficiente di forza  $c_{fx,0}$  si determina in base al rapporto tra larghezza b e altezza totale dell'impalcato  $d_{tot}$ .

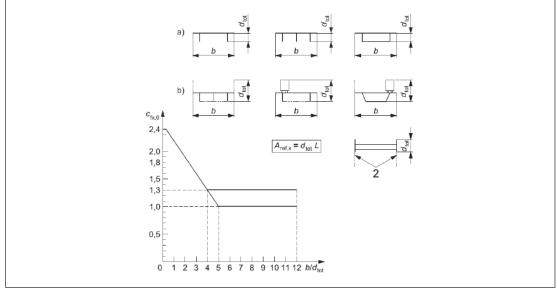



Figura 6.10 coefficiente di forza  $c_{fx,0}$  in funzione della geometria dell'impalcato (fig. 8.3 EC1-4)

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE – ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXX SOUL **Alpina** NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 92 di 191 IF28 В 01 elevazione

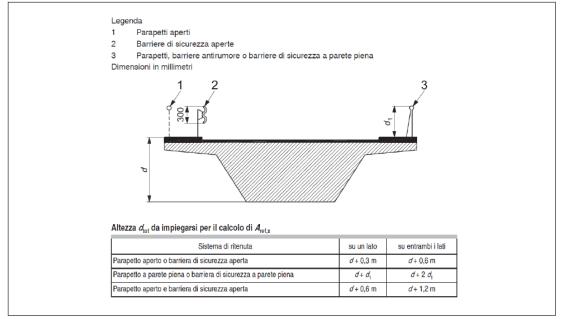



Figura 6.11 criteri per la determinazione di d (fig 8.5 EC1-4)

L'area da considerare per il calcolo della risultante di forza si definisce come la somma di tutte le superfici proiettate dall'impalcato nel piano longitudinale, comprese le barriere e la sagoma dei veicoli.

Per il caso in esame si ha:

|                                            | IMPALCATO SX |   | IMPALCATO DX |   |
|--------------------------------------------|--------------|---|--------------|---|
| Caratteristiche geometriche dell'impalcato |              |   |              |   |
| b                                          | 13.70        | m | 13.70        | m |
| H b.a. su p.f.                             | 4.67         | m | 4.67         | m |
| d <sub>tot</sub>                           | 7.95         | m | 7.95         | m |
| b/d <sub>tot</sub>                         | 1.72         |   | 1.72         |   |
| $c_{fx,0} = c_p$                           | 1.98         |   | 1.98         |   |
| Area di riferimento                        |              |   |              |   |
| H imp. Da intradosso a p.f.                | 3.28         | m | 3.28         | m |
| H b.a. su p.f. sx                          | 4.67         | m | 4.67         | m |
| H b.a. su p.f. dx                          | 4.67         | m | 4.67         | m |
| H treno su p.f.                            | 4.00         | m | 4.00         | m |

| APPALTATORE:      |                                                                                                  |      |             |                                 |                          |               |                 |                  |                     |
|-------------------|--------------------------------------------------------------------------------------------------|------|-------------|---------------------------------|--------------------------|---------------|-----------------|------------------|---------------------|
| Consorzio         | <u>Soci</u>                                                                                      |      |             |                                 | ITIN                     | IEDAE         |                 | ADI              |                     |
| HirpiniaAV        | salini<br>impregilo                                                                              | AST. | <u>ALDI</u> |                                 | ITINERARIO NAPOLI – BARI |               |                 |                  |                     |
| PROGETTAZIONE:    |                                                                                                  |      |             | RADDOPPIO TRATTA APICE – ORSARA |                          |               |                 |                  |                     |
| <u>Mandataria</u> | <u>Mandanti</u>                                                                                  |      |             | I                               | LOTTO                    | FUNZI         | ONALE APICE – H | IRPINIA          |                     |
| ROK SOLL          | NET                                                                                              | Alpi | na          |                                 |                          |               |                 |                  |                     |
|                   | PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |      |             | COMMESSA<br>IF28                | LOTTO<br><b>01</b>       | CODIFICE ZZ C |                 | REV.<br><b>B</b> | FOGLIO<br>93 di 191 |
| d <sub>tot2</sub> |                                                                                                  |      |             | 12.62                           |                          | m             | 12.62           | m                |                     |
| L impalcato       |                                                                                                  |      |             | 25                              |                          | m             | 25              | m                |                     |
| $A_{rif}$         |                                                                                                  |      |             | 315.50                          |                          | $m^2$         | 315.50          | m <sup>2</sup>   |                     |

# 6.5.1.4 AZIONE DEL VENTO SULL'IMPALCATO

Di seguito si procede al calcolo dell'azione del vento sull'impalcato in relazione ai parametri determinati nei paragrafi precedenti.

|                               | IMPALCA <sup>-</sup> | го sx | IMPALCATO DX |       |  |
|-------------------------------|----------------------|-------|--------------|-------|--|
| Pressione del vento           |                      |       |              |       |  |
| q <sub>b</sub>                | 477.25               | N/m²  | 477.25       | N/m²  |  |
| C <sub>e</sub>                | 2.61                 |       | 2.61         |       |  |
| $c_p$                         | 1.98                 |       | 1.98         |       |  |
| C <sub>d</sub>                | 1.00                 |       | 1.00         |       |  |
| $p=q_b*c_e*c_p*c_d$           | 2.47                 | kN/m² | 2.47         | kN/m² |  |
| -                             |                      |       |              |       |  |
| H imp. Da intradosso a p.f.   | 3.28                 | m     | 3.28         | m     |  |
| H b.a. su p.f. sx             | 4.67                 | m     | 4.67         | m     |  |
| H b.a. su p.f. dx             | 4.67                 | m     | 4.67         | m     |  |
| H treno su p.f.               | 4.00                 | m     | 4.00         | m     |  |
| $d_{tot2}$                    | 12.62                | m     | 12.62        | m     |  |
| L impalcato                   | 25                   | m     | 25           | m     |  |
| A <sub>rif</sub>              | 315.50               | $m^2$ | 315.50       | $m^2$ |  |
| H da intradosso impalcato     | 5.62                 | m     | 5.62         | m     |  |
| Risultante forza del vento    |                      |       |              |       |  |
| F <sub>vH</sub>               | 778                  | kN    | 778          | kN    |  |
| $M_{vT}$                      | 4369.19              | kNm   | 4369.19      | kNm   |  |
| Risultante reazioni vincolari |                      |       |              |       |  |

| APPALTATORE:                                          |                         |          |            |                |            |        |
|-------------------------------------------------------|-------------------------|----------|------------|----------------|------------|--------|
| Consorzio Soci                                        |                         | 1714     | IEDADIO N  | ADOLL DAD      | \ <b>I</b> |        |
| Hirpinia AV salini impregilo                          | 🗸 ASTALDI               | 1111     | NERARIO N  | APOLI – BAR    | <b>(1</b>  |        |
| PROGETTAZIONE:                                        |                         |          |            | A APICE - ORS  |            |        |
| Mandataria Mandanti                                   |                         | ILOTTO   | FUNZIONALE | E APICE – HIRP | INIA       |        |
| NET ENGINEERI                                         | Alpina                  |          |            |                |            |        |
| PROGETTO ESECUTIVO                                    | COMMESSA LOTTO          | CODIFICA | DOCUMENTO  | REV. FOO       | GLIO       |        |
| Pile P7, P8, P19, P20, P21, P22: Relazione elevazione | di calcolo strutture in | IF28 01  | E ZZ CL    | VI0105 005     | B 94 d     | di 191 |
|                                                       |                         |          |            |                |            |        |
| <br> F1                                               | 0                       | kN       | 0          | kN             |            |        |
| F2                                                    | -389                    | kN       | -389       | kN             |            |        |
| F3                                                    | 0                       | kN       | 0          | kN             |            |        |
| M1                                                    | 2185                    | kNm      | 2185       | kNm            |            |        |
| M2                                                    | 0                       | kNm      | 0          | kNm            |            |        |
| M3                                                    | 0                       | kNm      | 0          | kNm            |            |        |

### 6.5.1.5 COEFFICIENTE DI FORMA DELLA PILA

Nel caso di pila con sezione rettangolare, il coefficiente di forma della pila e l'area di riferimento per il calcolo della risultante si determinano in base alle indicazioni del  $\S7.6$  [9]. A tal proposito si riconduce il coefficiente di forma  $c_p$  al coefficiente di forza  $c_f$ .

Il coefficiente di esposizione c<sub>f</sub> si determina mediante l'espressione:

$$C_f = C_{f,0} \cdot \psi_r \cdot \psi_\lambda$$

dove:

c<sub>f,0</sub> è il coefficiente di forma in assenza di effetto di estremità;

 $\psi_r$  è il fattore riduttivo per sezioni con spigoli arrotondati;

 $\psi_{\lambda}$  è il fattore di effetto di estremità, posto cautelativamente pari a 1.

I valori di  $c_{f,0}$  e  $\psi_r$  si determinano in funzione del rapporto tra le dimensioni in sezione dell'elemento investito, secondo gli abachi riportati al paragrafo 7.6 dell'Eurocodice 1-4.

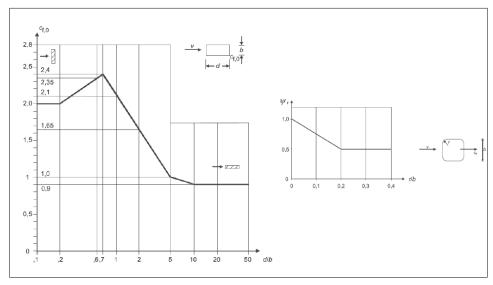



Figura 6.12 – Determinazione del coefficiente di forma c<sub>fx0</sub> in funzione delle dimensioni della sezione (fig. 7.23 EC1-4) e correlazione tra il raggio di arrotondamento dello spigolo e il fattore riduttivo ψr (fig. 7.24 EC1-4)

| APPALTATORE:                                                                                     |                     |                  |                    |                     |                         |                  |                            |  |
|--------------------------------------------------------------------------------------------------|---------------------|------------------|--------------------|---------------------|-------------------------|------------------|----------------------------|--|
| Consorzio                                                                                        | <u>Soci</u>         |                  |                    | ITINI               |                         | NAPOLI – B       | ۸DI                        |  |
| Hirpinia AV                                                                                      | salini<br>impregilo | <u> ASTALDI</u>  |                    | HIIN                | EKAKIO                  | NAPOLI - B       | AKI                        |  |
| PROGETTAZIONE:                                                                                   |                     |                  |                    | RADDO               | PPIO TRAT               | TA APICE - O     | RSARA                      |  |
| <u>Mandataria</u>                                                                                | <u>Mandanti</u>     |                  | I                  | LOTTO               | FUNZIONA                | LE APICE - H     | IRPINIA                    |  |
|                                                                                                  | NETENGINEERING      | Alpina           |                    |                     |                         |                  |                            |  |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                     | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br><b>95 di 191</b> |  |

L'area da considerare per il calcolo della risultante di forza si definisce come la superficie proiettata dalla pila nel piano longitudinale. Per il caso in esame si ha:

| Caratteristiche geometriche della pila    |      |   |
|-------------------------------------------|------|---|
|                                           |      |   |
| b                                         | 3.30 | m |
| d                                         | 8.60 | m |
| d/b                                       | 2.61 |   |
| C <sub>fx,0</sub>                         | 1.46 |   |
| r                                         | 1.00 | m |
| r/b                                       | 0.30 |   |
| ψr                                        | 0.50 |   |
| $\psi_{\lambda}$                          | 1.00 |   |
|                                           |      |   |
| coefficiente di forma                     |      |   |
|                                           |      |   |
| $cp = cf_{x,0} * \psi_r * \psi_{\lambda}$ | 0.73 |   |

Si assume in forma conservativa  $c_p=1$ 

### 6.5.1.6 AZIONE DEL VENTO SULLA PILA

| Pressione del vento        |        |       |
|----------------------------|--------|-------|
|                            |        |       |
| q <sub>b</sub>             | 477.25 | N/m²  |
| Ce                         | 2.61   |       |
| C <sub>p</sub>             | 1.00   |       |
| Cd                         | 1.00   |       |
|                            |        |       |
| $p=q_b*c_e*c_p*c_d$        | 1.29   | kN/m² |
| -                          |        |       |
|                            |        |       |
| Risultante forza del vento |        |       |
|                            |        |       |
| b                          | 3.30   | m     |

| APPALTATORE:                                                                                     |                 |      |                  |                    |                     |                         |                  |                     |  |
|--------------------------------------------------------------------------------------------------|-----------------|------|------------------|--------------------|---------------------|-------------------------|------------------|---------------------|--|
| Consorzio                                                                                        | <u>Soci</u>     |      |                  |                    | 170                 | VED A DIO               | NADOLI D         | ADI                 |  |
| Hirpinia AV                                                                                      | salini 🦟        | AST. | ALDI             |                    | 1111                | NEKAKIO                 | NAPOLI – B       | AKI                 |  |
| PROGETTAZIONE:                                                                                   |                 |      |                  |                    | RADD                | OPPIO TRAT              | TTA APICE – O    | RSARA               |  |
| <u>Mandataria</u>                                                                                | <u>Mandanti</u> |      |                  | I                  | LOTTO               | FUNZIONA                | LE APICE – H     | IRPINIA             |  |
| RXX SOFE                                                                                         | NETENGINEERING  | Alpi | na               |                    |                     |                         |                  |                     |  |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                 |      | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>96 di 191 |  |
| F <sub>vH</sub>                                                                                  |                 |      | 4.               | 11 kN,             | /m                  |                         |                  |                     |  |

L'azione del vento così calcolata viene applicata come una forza uniformemente distribuita sugli elementi che compongono il fusto e il pulvino della pila.

# 6.6 AZIONI INDIRETTE (Q6)

### 6.6.1 Resistenze parassite nei vincoli (Q61)

Per la valutazione delle coazioni generate dallo scorrimento dei vincoli, è stato considerato un coefficiente d'attrito f pari a 0,06, applicato alle azioni verticali agenti sugli apparecchi d'appoggio.

Con riferimento a quanto riportato nel §2.5.1.6.3 [3] la forza agente sulle pile per impalcati a travate isostatiche, facendo riferimento all'apparecchio d'appoggio maggiormente caricato tra i due presenti sulla pila, si considera pari a:

$$Fa = f (0,2 \cdot V_G + V_Q)$$

dove V<sub>G</sub> reazione verticale massima associata ai carichi permanenti

VQ reazione verticale massima associata ai carichi mobili dinamizzati

Sia:

 $V_{G} = G_1 + G_{12} + G_{22} = 3303 \text{ kN} + 1584 \text{ kN} + 774 \text{ kN} = 5661 \text{ kN}$ 

Vo= 3556 kN

Per l'opera in oggetto si ha dunque:

|                                                     | IMPALCATO | ) SX | IMPALCATO DX |    |  |
|-----------------------------------------------------|-----------|------|--------------|----|--|
| Reazioni verticali massime                          |           |      |              |    |  |
| $V_{G}$                                             | 5661      | kN   | 5661         | kN |  |
| $V_Q$                                               | 3556.00   | kN   | 3556.00      | kN |  |
| Forza d'attrito risultante per il singolo impalcato |           |      |              |    |  |
| f                                                   | 0.06      |      | 0.06         |    |  |

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXX SOIL NETENGINEERING **Alpina** PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione IF28 E ZZ CL VI0105 005 97 di 191 01 281.29 Fa kΝ 281.29 kΝ F Tipologia di vincolo UL Risultante reazioni vincolari F1 0 kΝ -281 kΝ F2 0 kΝ 0 kΝ F3 0 kN0 kΝ M1 0 kNm 0 kNm M2 0 kNm 0 kNm

0

kNm

0

kNm

М3

| APPALTATORE:                                                   |                        |                   |                  |                    |                     |                         |                  |                     |
|----------------------------------------------------------------|------------------------|-------------------|------------------|--------------------|---------------------|-------------------------|------------------|---------------------|
| <u>Consorzio</u>                                               | <u>Soci</u>            |                   |                  | ITIN               |                     | NADOLI D                | A D I            |                     |
| Hirpinia <i>AV</i>                                             | salini ()<br>impregilo | ASTALDI           |                  | HHIN               | IERARIO             | NAPOLI – B              | AKI              |                     |
| PROGETTAZIONE:                                                 |                        |                   |                  |                    |                     | TTA APICE – O           |                  |                     |
| <u>Mandataria</u>                                              | <u>Mandanti</u>        |                   | I                | LOTTO              | <b>FUNZIONA</b>     | LE APICE - H            | IRPINIA          |                     |
| **KSOJL                                                        | NET                    | Alpina            |                  |                    |                     |                         |                  |                     |
| PROGETTO ESECUTIV<br>Pile P7, P8, P19, P20, P21,<br>elevazione | -                      | colo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>98 di 191 |

### 6.7 EFFETTI D'INTERAZIONE (Q7)

### 6.7.1 Applicabilità dell'Allegato 3

Ove non applicabile il metodo semplificato per la valutazione delle azioni dovute agli effetti di interazione binario-struttura secondo quanto previsto nell'Allegato 3 delle specifiche RFI [3] si rimanda allo specifico elaborato:

• IF0G.01.D.09.CL.VI0000.001 – Viadotti ferroviari – Relazione di interazione statica treno-binariostruttura.

### 6.7.2 Variazioni termiche dell'impalcato (Q71)

La presente azione si considera applicata in corrispondenza del piano ferro.

Di seguito si considera come prima pila la pila accostata alla spalla munita di appoggi fissi, si considera pertanto come ultima pila la pila accostata alla spalla munita di appoggi scorrevoli.

Dal §3.1 dell'Allegato 3 delle Specifiche RFI [3] si desume:

Fts =  $\beta \cdot \alpha ts1 \cdot \alpha ts2 \cdot \alpha ts3 \cdot L \cdot q \cdot n$ dove

 $\alpha$ ts1 0,70 nel caso di  $\Delta$ t = 30 °C (valore massimo)

αts2 1,00 (rigidezza massima della spalla)

αts3 0,80 nel caso di viadotto con un numero di campate ≥ 3

L luce della campata

q resistenza allo scorrimento longitudinale del binario scarico, posto generalmente pari a

20,00 kN/m

n numero di binari

β 0,40 nel caso dell'ultima pila

β 0,20 nel caso della penultima e della prima pila

β 0,00 nel caso delle pile intermedie

Essendo il calcolo rappresentativo di una serie di pile fra cui l'ultima pila P22, si assume β=0.4.

# APPALTATORE:

Consorzio

<u>Soci</u>







### PROGETTAZIONE:

**Mandataria** 

<u>Mandanti</u>

XXX SOUL





### RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA IF28

LOTTO 01

CODIFICA E ZZ CL

DOCUMENTO VI0105 005

REV. В

FOGLIO 99 di 191

|                                                 | IMPALCATO SX |      | IMPALCA | TO DX |
|-------------------------------------------------|--------------|------|---------|-------|
| Reazioni per variazioni termiche dell'impalcato |              |      |         |       |
| ΔΤ                                              | 30           | °C   | 30      | °C    |
| L impalcato                                     | 25.00        | m    | 25.00   | m     |
| q                                               | 20.00        | kN/m | 20.00   | kN/m  |
| n° binari                                       | 2            |      | 2       |       |
| atp1                                            | 0.70         |      | 0.70    |       |
| atp2                                            | 1.00         |      | 1.00    |       |
| atp3                                            | 1.00         |      | 1.00    |       |
| β                                               | 0.40         |      | 0.40    |       |
| Ft,pila                                         | 0.00         | kN   | 0.00    | kN    |
| Tipologia di vincolo                            | UL           |      | F       |       |
| Risultante reazioni vincolari                   |              |      |         |       |
| F1                                              | 0            | kN   | -280    | kN    |
| F2                                              | 0            | kN   | 0       | kN    |
| F3                                              | 0            | kN   | 0       | kN    |
| M1                                              | 0            | kNm  | 0       | kNm   |
| M2                                              | 0            | kNm  | 0       | kNm   |
| M3                                              | 0            | kNm  | 0       | kNm   |

| APPALTATORE:                                                  |                     |                   |                  |                    |                     |                         |                  |                         |
|---------------------------------------------------------------|---------------------|-------------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
| Consorzio                                                     | <u>Soci</u>         |                   |                  | ITIN               | IED A DIO           | NAPOLI – B              | ۸DI              |                         |
| Hirpinia AV                                                   | salini<br>impregilo | <b>ASTALDI</b>    |                  | 11111              | ILNANIO             | NAFOLI - B              | ANI              |                         |
| PROGETTAZIONE:                                                |                     |                   |                  |                    |                     | TA APICE - O            |                  |                         |
| <u>Mandataria</u>                                             | <u>Mandanti</u>     |                   | I                | LOTTO              | <b>FUNZIONA</b>     | LE APICE - H            | IRPINIA          |                         |
|                                                               | NET                 | Alpina            |                  |                    |                     |                         |                  |                         |
| PROGETTO ESECUTIV<br>Pile P7, P8, P19, P20, P21<br>elevazione | -                   | colo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>100 di<br>191 |

### 6.7.3 Azioni di frenatura e avviamento

Gli effetti di interazione relativi alle azioni di frenatura e avviamento si tengono conto applicando ai valori della risultante un coefficiente ah che tiene conto del rapporto di rigidezza tra le pile del viadotto.

Essendo la relazione tipologica, si prendono in considerazione le condizioni più sfavorevoli, ossia:

per le azioni di frenatura del modello di carico LM71 :  $\alpha$ hp =  $\alpha$ hp3 = 1,60

per le azioni di frenatura del modello di carico SW/2 :  $\alpha$ hp =  $\alpha$ hp3 = 1,30

per le azioni di avviamento di entrambi i modelli di carico :  $\alpha hp = \alpha hp3 \cdot \alpha hp4 = 1,60 \cdot 0,70 = 1,12$ 

### 6.7.4 Inflessione dell'impalcato dovuta ai carichi verticali da traffico

Le azioni longitudinali da inflessione impalcato esercitano delle spinte che si contrappongono alle flessioni generate dall'eccentricità dei carichi verticali. Per questo motivo a vantaggio di sicurezza tali azioni vengono trascurate nei calcoli successivi.

# APPALTATORE: Consorzio Soci Hirpinia AV PROGETTAZIONE: Mandataria Mandanti PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in Mandatoria COMMESSA LOTTO 1528 Mandatoria COMMESSA LOTTO 1528 Mandatoria LOTTO MESSA LOTTO MESSA Mandatoria LOTTO MESSA Mandatoria Mandanti PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in

### ITINERARIO NAPOLI – BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 OMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 VI0105 005
 B
 191

# 6.8 AZIONI SISMICHE (E)

elevazione

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo.

Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi. Gli spettri di progetto così definiti vengono utilizzati nel modello di calcolo per la definizione di casi di analisi di tipo "dinamica lineare con spettro di risposta".

I valori del fattore di struttura q, adottati per la definizione delle azioni sismiche e per il dimensionamento degli elementi secondo i criteri della gerarchia delle resistenze, sono stati definiti in base ai criteri di seguito esplicitati.

Per le strutture in elevazione, in accordo con quanto indicato nel §7.9.2.1 [1] per pile verticali inflesse in c.a. e progettazione in CD"B", si assume un fattore di struttura q<sub>0</sub> paria 1,5 (vedi Tabella 1).

Per elementi duttili in c.a. i valori di  $q_0$  riportati in Tabella 1, valgono se la sollecitazione di compressione normalizzata vk non eccede il valore 0,3. Per valori di  $v_k$  compresi tra 0,3 e 0,6 ( $v_k$  non può eccedere 0,6)  $q_0$  si ottiene dalla relazione seguente:

$$q_0(v_k) = q_0 - (v_k/0, 3 - 1) \cdot (q_0 - 1)$$

Infine il fattore di struttura q da adottare nelle analisi si ottiene moltiplicando il  $q_0$  così ottenuto per il coefficiente riduttivo  $K_R$  che dipende dalle caratteristiche di regolarità della struttura.

In generale il requisito di regolarità e quindi il valore di  $K_R$  si determinano a posteriori secondo il procedimento indicato nel  $\S7.9.2.1$  [1]. Per il caso in esame si ipotizza un  $K_R$  pari a 1.

$$q_0(v_k) = q_0 = 1,5$$

$$q=q_0(v_k)\cdot K_R=1,5.$$

| Tini di alamanti duttili                          | q     | 10    |  |
|---------------------------------------------------|-------|-------|--|
| Tipi di elementi duttili                          | CD"B" | CD"A" |  |
| Pile in cemento armato                            |       |       |  |
| Pile verticali inflesse                           | 1,5   | 3,5 λ |  |
| Elementi di sostegno inclinati inflessi           | 1,2   | 2,1 λ |  |
| Pile in acciaio:                                  |       |       |  |
| Pile verticali inflesse                           | 1,5   | 3,5   |  |
| Elementi di sostegno inclinati inflessi           | 1,2   | 2,0   |  |
| Pile con controventi concentrici                  | 1,5   | 2,5   |  |
| Pile con controventi eccentrici                   | -     | 3,5   |  |
| Spalle rigidamente connesse con l'impalcato       |       |       |  |
| In generale                                       | 1,5   | 1,5   |  |
| Strutture che si muovono col terreno <sup>7</sup> | 1,0   | 1,0   |  |
| Archi                                             | 1,2   | 2,0   |  |

Tabella 2 Valori del fattore di struttura q0 per diverse tipologiedi pile e spalle (Tab. 7.9.1 NTC08)



### 6.8.1 Spettri di progetto allo SLV

Per il ponte in esame, si considera una vita nominale di 75 anni, ed una classe d'uso III (Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso) a cui corrisponde una vita di riferimento pari a 112.5 anni. Ne derivano i seguenti periodi di ritorno per la definizione dell'azione sismica:

- SLO: T<sub>R</sub> = 68 anni;
- SLD: T<sub>R</sub> = 113 anni;
- SLV: T<sub>R</sub> = 1068 anni;
- SLC: T<sub>R</sub> = 2193 anni.

Si riportano di seguito le immagini relative alla definizione dello spettro di risposta elastico. Per il caso in esame è stato adottato il software-free <u>SPETTRI-NTC ver. 1.0.3</u> (scaricato dal sito del Consiglio Superiore dei Lavori Pubblici <u>www.cslp.it</u>).



Figura 6.13 individuazione della pericolosità del sito





Figura 6.14 Scelta della strategia di progettazione

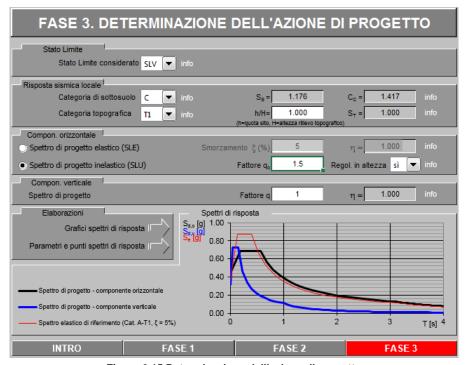



Figura 6.15 Determinazione dell'azione di progetto

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( 🗸 ASTALDI /Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria <u>Mandanti</u> XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 104 di 191 Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 IF28 В 01 elevazione

| Parametri indipendenti |         |  |  |  |  |
|------------------------|---------|--|--|--|--|
| STATO LIMITE           | SLV     |  |  |  |  |
| a <sub>o</sub>         | 0.381 g |  |  |  |  |
| F.                     | 2.287   |  |  |  |  |
| T <sub>c</sub> 1       | 0.416 s |  |  |  |  |
| Ss                     | 1.177   |  |  |  |  |
| Co                     | 1.403   |  |  |  |  |
| S⊤                     | 1.000   |  |  |  |  |
| q                      | 1.500   |  |  |  |  |

| Parametri dipendenti |         |  |  |  |  |
|----------------------|---------|--|--|--|--|
| S                    | 1.177   |  |  |  |  |
| η                    | 0.667   |  |  |  |  |
| T <sub>B</sub>       | 0.194 s |  |  |  |  |
| To                   | 0.583 s |  |  |  |  |
| Tn                   | 3.125 s |  |  |  |  |

Figura 6.16 Parametri delle spettro orizzontale SLV

| Parametri indi  | pendenti |
|-----------------|----------|
| STATO LIMITE    | SLV      |
| a <sub>gv</sub> | 0.318 g  |
| Ss              | 1.000    |
| S <sub>T</sub>  | 1.000    |
| q               | 1.000    |
| T <sub>B</sub>  | 0.050 s  |
| Tc              | 0.150 s  |
| T <sub>D</sub>  | 1.000 s  |

| Pa | rametri dipe   | endenti |
|----|----------------|---------|
|    | F <sub>v</sub> | 1.906   |
|    | S              | 1.000   |
|    | 22             | 1 000   |

Figura 6.17 Parametri delle spettro verticale SLV

# Spettro di progetto orizzontale allo SLV

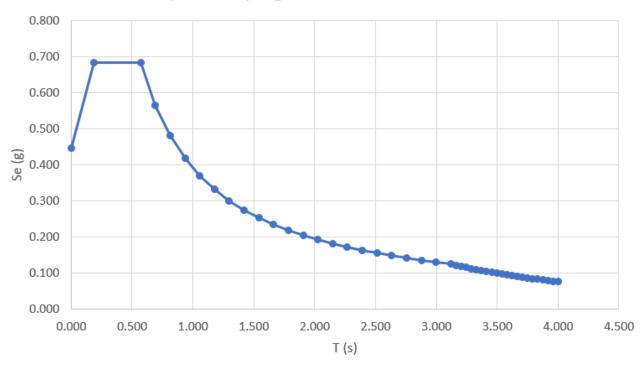



Figura 6.18 Spettro di progetto di risposta nelle componenti orizzontali di accelerazione per lo SLV

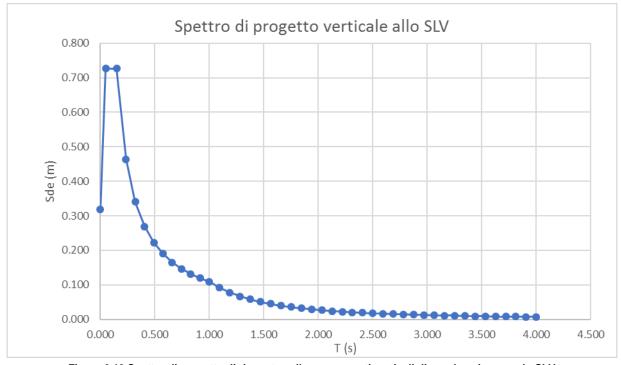



Figura 6.19 Spettro di progetto di risposta nelle componenti verticali di accelerazione per lo SLV

| APPALTATORE:                                                      |                 |                  |                                     |                    |                     |                         |                  |                         |
|-------------------------------------------------------------------|-----------------|------------------|-------------------------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
| Consorzio                                                         | <u>Soci</u>     |                  |                                     | ITINI              |                     | NADOLI D                | A D I            |                         |
| HirpiniaAV                                                        | salini (        | <b>ASTALDI</b>   |                                     | HIIN               | EKAKIU              | NAPOLI – B              | AKI              |                         |
| PROGETTAZIONE:                                                    |                 |                  |                                     |                    |                     | TA APICE - O            |                  |                         |
| <u>Mandataria</u>                                                 | <u>Mandanti</u> |                  | I LOTTO FUNZIONALE APICE – HIRPINIA |                    |                     |                         |                  |                         |
| XXX SOUL                                                          | NETENGINEERING  | Alpina           |                                     |                    |                     |                         |                  |                         |
| PROGETTO ESECUTIVO<br>Pile P7, P8, P19, P20, P21, F<br>elevazione |                 | olo strutture in | COMMESSA<br>IF28                    | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>106 di<br>191 |

### 7 COMBINAZIONI DI CARICO

Le combinazioni di calcolo sono state definite sulla base dei criteri enunciati nei §2.5.1.8.2.3 [3], §2.5.1.8.3.1 [3] e §2.5.1.8.3.2 [3] di cui si riportano di seguito alcuni stralci.

|                     | Azioni verticali           |                  | ARICO Azioni verticali Azioni orizzontali |                   |                   | Azioni orizzontali                        |  |  |  |  |
|---------------------|----------------------------|------------------|-------------------------------------------|-------------------|-------------------|-------------------------------------------|--|--|--|--|
| Gruppo di carico    | Carico<br>verticale<br>(1) | Treno<br>scarico | Frenatura<br>e<br>avviamento              | Centrifuga        | Serpeggio         | Commenti                                  |  |  |  |  |
| Gruppo 1<br>(2)     | 1,00                       | -                | 0,5 (0,0)                                 | 1,0 (0,0)         | 1,0 (0,0)         | massima azione<br>verticale e<br>laterale |  |  |  |  |
| <b>Gruppo.2</b> (2) | -                          | 1,00             | 0,00                                      | 1,0 (0,0)         | 1,0(0,0)          | stabilità laterale                        |  |  |  |  |
| Gruppo 3<br>(2)     | 1,0 (0,5)                  | -                | 1,00                                      | 0,5 (0,0)         | 0,5 (0,0)         | massima azione<br>longitudinale           |  |  |  |  |
| Gruppo 4            | 0,8 (0,6;<br>0,4)          | -                | 0,8 (0,6;<br>0,4)                         | 0,8 (0,6;<br>0,4) | 0,8 (0,6;<br>0,4) | fessurazione                              |  |  |  |  |

<sup>(2)</sup> La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

Tabella 3 Valutazione dei carichi da traffico (tab. 5.2.IV NTC08)

|                                                      |                           | Coefficiente    | EQU <sup>(1)</sup>          | A1<br>STR                   | A2<br>GEO    | Combinazione eccezionale    | Combinazione<br>Sismica     |
|------------------------------------------------------|---------------------------|-----------------|-----------------------------|-----------------------------|--------------|-----------------------------|-----------------------------|
| Carichi permanenti                                   | favorevoli<br>sfavorevoli | γ <sub>G1</sub> | 0,90<br>1,10                | 1,00<br>1,35                | 1,00<br>1,00 | 1,00<br>1,00                | 1,00<br>1,00                |
| Carichi permanenti non<br>strutturali <sup>(2)</sup> | favorevoli<br>sfavorevoli | γ <sub>G2</sub> | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 | 1,00<br>1,00                | 1,00<br>1,00                |
| Ballast <sup>(3)</sup>                               | favorevoli<br>sfavorevoli | γв              | 0,90<br>1,50                | 1,00<br>1,50                | 1,00<br>1,30 | 1,00<br>1,00                | 1,00<br>1,00                |
| Carichi variabili da<br>traffico <sup>(4)</sup>      | favorevoli<br>sfavorevoli | γQ              | 0,00<br>1,45                | 0,00<br>1,45                | 0,00<br>1,25 | 0,00<br>0,20 <sup>(5)</sup> | 0,00<br>0,20 <sup>(5)</sup> |
| Carichi variabili                                    | favorevoli<br>sfavorevoli | γQi             | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 | 0,00<br>1,00                | 0,00<br>0,00                |
| Precompressione                                      | favorevole<br>sfavorevole | γр              | 0,90<br>1,00 <sup>(6)</sup> | 1,00<br>1,00 <sup>(7)</sup> | 1,00<br>1,00 | 1,00<br>1,00                | 1,00<br>1,00                |

<sup>(1)</sup> Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

<sup>(2)</sup> Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

<sup>(3)</sup> Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

<sup>(4)</sup> Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

<sup>(5)</sup> Aliquota di carico da traffico da considerare.

<sup>(6) 1,30</sup> per instabilità in strutture con precompressione esterna

<sup>(7) 1,20</sup> per effetti locali

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandataria Mandanti NET MOINEERING Alpina

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in

PROGETTO ESECUTIVO

elevazione

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIC

 IF28
 01
 E ZZ CL
 VI0105 005
 B
 191

| Azioni              |                                                            | Ψο      | Ψ1      | Ψ2   |
|---------------------|------------------------------------------------------------|---------|---------|------|
| Azioni<br>singole   | Carico sul rilevato a tergo delle spalle                   | 0,80    | 0,50    | 0,0  |
| da traffico         | Azioni aerodinamiche generate dal transito<br>dei convogli | 0,80    | 0,50    | 0,0  |
|                     | gr <sub>1</sub>                                            | 0,80(2) | 0,80(1) | 0,0  |
| Gruppi di           | gr <sub>2</sub>                                            | 0,80(2) | 0,80(1) | -    |
| carico              | gr <sub>3</sub>                                            | 0,80(2) | 0,80(1) | 0,0  |
|                     | gr <sub>4</sub>                                            | 1,00    | 1,00(1) | 0,0  |
| Azioni del<br>vento | F <sub>Wk</sub>                                            | 0,60    | 0,50    | 0,0  |
| Azioni da           | in fase di esecuzione                                      | 0,80    | 0,0     | 0,0  |
| neve                | SLU e SLE                                                  | 0,0     | 0,0     | 0,0  |
| Azioni<br>termiche  | T <sub>k</sub>                                             | 0,60    | 0,60    | 0,50 |

<sup>(1) 0,80</sup> se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 5 Coefficienti di combinazione delle azioni (tab. 5.2.VI NTC08)

|          | Azioni                      | Ψο      | Ψ1   | Ψ2  |
|----------|-----------------------------|---------|------|-----|
|          | Treno di carico LM 71       | 0,80(3) | (1)  | 0,0 |
| Azioni   | Treno di carico SW /0       | 0,80(3) | 0,80 | 0,0 |
| singole  | Treno di carico SW/2        | 0,0(3)  | 0,80 | 0,0 |
| da       | Treno scarico               | 1,00(3) |      | -   |
| traffico | Centrifuga                  | (2 (3)  | (2)  | (2) |
|          | Azione laterale (serpeggio) | 1,00    | 0,80 | 0,0 |

<sup>(1) 0,80</sup> se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

### Tabella 6 Ulteriori coefficienti di combinazione delle azioni (tab. 5.2.VII NTC08)

Le combinazioni di carico, dedotte a partire dalle precedenti tabelle, vengono riportate in allegato alla relazione di calcolo.

<sup>(2)</sup> Quando come azione di base venga assunta quella del vento, i coefficienti  $\psi_0$  relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

<sup>(2)</sup> Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.

<sup>(3)</sup> Quando come azione di base venga assunta quella del vento, i coefficienti  $\psi_0$  relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

| APPALTATORE:                                                                                     |                 |         |                                     |                    |                     |                         |                  |                         |
|--------------------------------------------------------------------------------------------------|-----------------|---------|-------------------------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
| Consorzio                                                                                        | <u>Soci</u>     |         |                                     | ITIN               | IED A DIO           | NADOLI D                | A D I            |                         |
| HirpiniaAV                                                                                       | salini 🦟        | ASTALDI | ITINERARIO NAPOLI – BARI            |                    |                     |                         |                  |                         |
| PROGETTAZIONE:                                                                                   |                 |         |                                     |                    |                     | TTA APICE - O           |                  |                         |
| <u>Mandataria</u>                                                                                | <u>Mandanti</u> |         | I LOTTO FUNZIONALE APICE – HIRPINIA |                    |                     |                         |                  |                         |
| XXX SOUL                                                                                         | NET             | Alpina  |                                     |                    |                     |                         |                  |                         |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                 |         | COMMESSA<br>IF28                    | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>108 di<br>191 |

# 8 MODELLO DI CALCOLO

### 8.1 DESCRIZIONE DEL MODELLO DI CALCOLO

Il fusto della pila viene modellato attraverso l'utilizzo di un frame a sezione costante incastrato alla base in corrispondenza dell'asse baricentrico. Il pulvino della pila viene invece modellato con un frame a sezione variabile al fine di ricreare la reale geometria; le caratteristiche geometriche e meccaniche assegnate a ciascun elemento sono state definite sulla base delle reali dimensioni e dei materiali che compongono l'elemento stesso. Si definiscono inoltre 3 distinte coppie di nodi poste a quote differenti rispettivamente coincidenti con:

- quota intradosso impalcati
- baricentro geometrico degli impalcati
- piano del ferro

Tutte e tre le coppie di punti vengono posizionate in pianta nel baricentro degli appoggi.

I nodi rappresentativi delle quote del singolo impalcato vengono collegati tra loro e al nodo sommitale del pulvino attraverso due distinti constraints di tipo body.

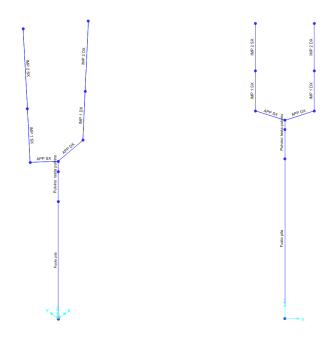



Figura 8.1 Vista 3D (a sinistra) e frontale (a destra) del modello di calcolo utilizzato per il dimensionamento delle pile

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI Hirpinia*AV* salini ( 🗸 ASTALDI RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA **Mandataria** Mandanti XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 109 di 191 Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 IF28 В 01 elevazione



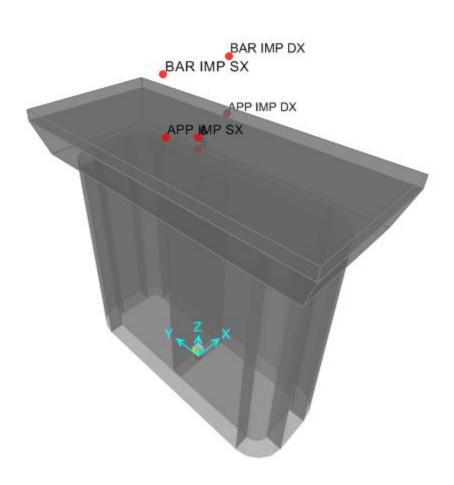



Figura 8.2 Vista estrusa del modello di calcolo delle pile

| APPALTATORE:                                                      |                 |                  |                  |                                     |                     |                         |      |                         |  |
|-------------------------------------------------------------------|-----------------|------------------|------------------|-------------------------------------|---------------------|-------------------------|------|-------------------------|--|
| <u>Consorzio</u>                                                  | <u>Soci</u>     |                  |                  | ITINI                               |                     | NADOLI D                | ADI  |                         |  |
| HirpiniaAV                                                        | salini (        | <u></u> ASTALDI  |                  | HIIN                                | ERARIO              | NAPOLI – B              | AKI  |                         |  |
| PROGETTAZIONE:                                                    |                 |                  |                  |                                     |                     | TA APICE - O            |      |                         |  |
| <u>Mandataria</u>                                                 | <u>Mandanti</u> |                  | I                | I LOTTO FUNZIONALE APICE – HIRPINIA |                     |                         |      |                         |  |
|                                                                   | NET             | Alpina           |                  |                                     |                     |                         |      |                         |  |
| PROGETTO ESECUTIVO<br>Pile P7, P8, P19, P20, P21, P<br>elevazione |                 | olo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b>                  | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV. | FOGLIO<br>110 di<br>191 |  |

# 8.2 CARICHI ELEMENTARI

# 8.2.1 Riepilogo degli scarichi dall'impalcato

Si riporta nelle tabelle sottostanti un riassunto delle azioni scambiate dall'impalcato alle pile ed inserite come azioni di input nel modello di calcolo eseguito con SAP2000. Nella tabella non rientrano i carichi relativi a:

- peso della pila, calcolato in automatico dal software
- vento trasversale sul fusto della pila, applicato come un carico uniformemente distribuito
- azioni del sisma, calcolate in automatico dal software a seguito dell'inserimento degli spettri di progetto, per entrambi i versi nelle direzioni considerate.

# 8.2.1.1 SCARICHI IMPALCATO SINISTRO

|                              | F1 | F2 | F3    | M1    | M2  | M3  |
|------------------------------|----|----|-------|-------|-----|-----|
|                              | kN | kN | kN    | kNm   | kNm | kNm |
| G pesi propri                |    |    |       |       |     |     |
| G11                          | 0  | 0  | -3303 | 0     | 0   | 0   |
| G12                          | 0  | 0  | -1584 | 0     | 0   | 0   |
| G22                          | 0  | 0  | -774  | 0     | 0   | 0   |
| Q1 treno verticale           |    |    |       |       |     |     |
| Q11                          | 0  | 0  | -2816 | -282  | 0   | 0   |
| Q12                          | 0  | 0  | 0     | 0     | 0   | 0   |
| Q13                          | 0  | 0  | -1451 | -2903 | 0   | 0   |
| Q14                          | 0  | 0  | -1365 | -2839 | 0   | 0   |
| Q15                          | 0  | 0  | -1963 | -266  | 0   | 0   |
| Q16                          | 0  | 0  | -2730 | -109  | 0   | 0   |
| Q17                          | 0  | 0  | 0     | 0     | 0   | 0   |
| Q2 avviamento e<br>frenatura |    |    |       |       |     |     |
| Q21                          | 0  | 0  | -228  | 0     | 0   | 0   |
| Q22                          | 0  | 0  | 0     | 0     | 0   | 0   |
| Q23                          | 0  | 0  | -82   | 0     | 0   | 0   |
| Q24                          | 0  | 0  | -146  | 0     | 0   | 0   |

| ADDA: =:-             | FODE:                            |                   |                 |          |          |                      |                     |                         |             |                         |
|-----------------------|----------------------------------|-------------------|-----------------|----------|----------|----------------------|---------------------|-------------------------|-------------|-------------------------|
| APPALTAT<br>Consorzio | TORE:                            | Soci              |                 |          |          |                      |                     |                         |             |                         |
| 11119                 |                                  | salir<br>impregil | ni 🎢            | ASTALD   |          | ITIN                 | ERARIO              | NAPOLI -                | – BARI      |                         |
| Hirpinia.<br>PROGETT  | 22/0 %                           | impregil          | 0 11            | * VOIVED | !        | RADDO                | ΡΡΙΟ ΤΡΑΊ           | ΤΔ ΔΡΙΩΕ                | – ORSARA    |                         |
| Mandataria            | AZIONE.                          | Mandant           | <u>ti</u>       |          |          |                      |                     |                         | - HIRPINIA  |                         |
| <b>XXX</b> SE         |                                  | NETEN             | GINEERING       | Alpina   |          |                      |                     |                         |             |                         |
|                       | O ESECUTIVO<br>P19, P20, P21, P2 | 22: Relaz         | cione di calcol | -        | COMMESS/ | A LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | O REV.<br>B | FOGLIO<br>111 di<br>191 |
| Q25                   |                                  |                   | 0               | 0        | -264     | 0                    | 0                   | 0                       |             |                         |
| Q26                   |                                  |                   | 0               | 0        | -287     | 0                    | 0                   | 0                       |             |                         |
| Q27                   |                                  |                   | 0               | 0        | 0        | 0                    | 0                   | 0                       |             |                         |
| Q3                    | centrifuga                       |                   |                 |          |          |                      |                     |                         |             |                         |
| Q31                   |                                  |                   | 0               | 192      | 0        | -978                 | 0                   | 0                       |             |                         |
| Q32                   |                                  |                   | 0               | 0        | 0        | 0                    | 0                   | 0                       |             |                         |
| Q33                   |                                  |                   | 0               | 57       | 0        | -290                 | 0                   | 0                       |             |                         |
| Q34                   |                                  |                   | 0               | 135      | 0        | -687                 | 0                   | 0                       |             |                         |
| Q35                   |                                  |                   | 0               | 139      | 0        | -705                 | 0                   | 0                       |             |                         |
| Q36                   |                                  |                   | 0               | 189      | 0        | -960                 | 0                   | 0                       |             |                         |
| Q37                   |                                  |                   | 0               | 0        | 0        | 0                    | 0                   | 0                       |             |                         |
| Q4                    | serpeggio                        |                   |                 | <u>l</u> |          |                      |                     |                         |             |                         |
| Q41                   |                                  |                   | 0               | 105      | 0        | -344                 | 0                   | 0                       |             |                         |
| Q42                   |                                  |                   | 0               | 0        | 0        | 0                    | 0                   | 0                       |             |                         |
| Q43                   |                                  |                   | 0               | 50       | 0        | -164                 | 0                   | 0                       |             |                         |
| Q44                   |                                  |                   | 0               | 55       | 0        | -180                 | 0                   | 0                       |             |                         |
| Q45                   |                                  |                   | 0               | 105      | 0        | -344                 | 0                   | 0                       |             |                         |
| Q46                   |                                  |                   | 0               | 105      | 0        | -344                 | 0                   | 0                       |             |                         |
| Q47                   |                                  |                   | 0               | 0        | 0        | 0                    | 0                   | 0                       |             |                         |
| (                     | Q5 vento                         |                   |                 | <u> </u> |          |                      |                     |                         |             |                         |
| Q51                   |                                  |                   | 0               | 404      | 0        | -2268                | 0                   | 0                       |             |                         |
| Q6 att                | rito sui vinco                   | oli               |                 | <u> </u> |          |                      |                     |                         |             |                         |
| Q61                   |                                  |                   | 0               | 0        | 0        | 0                    | 0                   | 0                       |             |                         |
| Q7 az                 | ioni termiche                    | e                 |                 | <u> </u> |          |                      |                     |                         |             |                         |
| Q71                   |                                  |                   | 0               | 0        | 0        | 0                    | 0                   | 0                       |             |                         |
| -                     |                                  |                   |                 |          |          |                      |                     |                         |             |                         |

# 8.2.1.2 SCARICHI IMPALCATO DESTRO

|        |        | F1 | F2 | F3    | M1  | M2  | M3  |
|--------|--------|----|----|-------|-----|-----|-----|
|        |        | kN | kN | kN    | kNm | kNm | kNm |
| G pesi | propri |    |    |       |     |     |     |
| G11    |        | 0  | 0  | -3303 | 0   | 0   | 0   |
| G12    |        | 0  | 0  | -1584 | 0   | 0   | 0   |

# APPALTATORE:

Consorzio

<u>Soci</u>







PROGETTAZIONE:

<u>Mandataria</u>

Mandanti

NET ENGINEERING

Alpina

RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO B 112 di 191

| elevazione  | P20, P21, P22: Relaz | ione di calcoli | o strutture in | IF28  | 01    | E ZZ CL | VI0105 005 |
|-------------|----------------------|-----------------|----------------|-------|-------|---------|------------|
| G22         |                      | 0               | 0              | -774  | 0     | 0       | 0          |
| Q1 treno    | verticale            |                 |                |       |       |         |            |
| Q11         |                      | 0               | 0              | -2876 | -402  | 0       | 0          |
| Q12         |                      | 0               | 0              | -3556 | -522  | 0       | 0          |
| Q13         |                      | 0               | 0              | -1511 | -3022 | 0       | 0          |
| Q14         |                      | 0               | 0              | -1365 | -2839 | 0       | 0          |
| Q15         |                      | 0               | 0              | -3556 | -522  | 0       | 0          |
| Q16         |                      | 0               | 0              | -2730 | -109  | 0       | 0          |
| Q17         |                      | 0               | 0              | -2975 | -1638 | 0       | 0          |
| Q2 avviamen | to e frenatura       |                 |                |       |       |         |            |
| Q21         |                      | 1835            | 0              | 264   | 0     | 0       | 0          |
| Q22         |                      | 2154            | 0              | 310   | 0     | 0       | 0          |
| Q23         |                      | 819             | 0              | 118   | 0     | 0       | 0          |
| Q24         |                      | 1016            | 0              | 146   | 0     | 0       | 0          |
| Q25         |                      | 2154            | 0              | 310   | 0     | 0       | 0          |
| Q26         |                      | 1995            | 0              | 287   | 0     | 0       | 0          |
| Q27         |                      | 2154            | 0              | 310   | 0     | 0       | 0          |
| Q3 cer      | ntrifuga             |                 |                |       |       |         |            |
| Q31         |                      | 0               | 195            | 0     | -990  | 0       | 0          |
| Q32         |                      | 0               | 240            | 0     | -1222 | 0       | 0          |
| Q33         |                      | 0               | 59             | 0     | -302  | 0       | 0          |
| Q34         |                      | 0               | 135            | 0     | -687  | 0       | 0          |
| Q35         |                      | 0               | 240            | 0     | -1222 | 0       | 0          |
| Q36         |                      | 0               | 189            | 0     | -960  | 0       | 0          |
| Q37         |                      | 0               | 183            | 0     | -929  | 0       | 0          |
| Q4 ser      | peggio               |                 |                |       |       |         |            |
| Q41         |                      | 0               | 105            | 0     | -344  | 0       | 0          |
| Q42         |                      | 0               | 210            | 0     | -689  | 0       | 0          |
| Q43         |                      | 0               | 50             | 0     | -164  | 0       | 0          |
| Q44         |                      | 0               | 55             | 0     | -180  | 0       | 0          |
| Q45         |                      | 0               | 105            | 0     | -344  | 0       | 0          |
| Q46         |                      | 0               | 105            | 0     | -344  | 0       | 0          |
| Q47         |                      | 0               | 210            | 0     | -689  | 0       | 0          |
| Q5 v        | rento                |                 |                |       |       |         |            |
| Q51         |                      | 0               | 404            | 0     | -2268 | 0       | 0          |

| APPALTATORE              | :                                                                                     |           |        |                          |                                                                        |                     |                         |            |                         |  |
|--------------------------|---------------------------------------------------------------------------------------|-----------|--------|--------------------------|------------------------------------------------------------------------|---------------------|-------------------------|------------|-------------------------|--|
| Consorzio<br>Hirpinia AV | <u>Soci</u><br>sali<br>impregi                                                        | ni 🏀 📗    | ASTALD | ITINERARIO NAPOLI – BARI |                                                                        |                     |                         |            |                         |  |
| PROGETTAZIO              | NE:                                                                                   |           |        |                          | RADDOPPIO TRATTA APICE – ORSARA<br>I LOTTO FUNZIONALE APICE – HIRPINIA |                     |                         |            |                         |  |
| <u>Mandataria</u>        |                                                                                       |           |        |                          | I LOTTO I                                                              | -UNZIONA            | LE APICE -              | – HIRPINIA |                         |  |
| XXX SOUL                 | NETEN                                                                                 | GINEERING | Alpina |                          |                                                                        |                     |                         |            |                         |  |
|                          | PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in |           |        | COMMESSA<br>IF28         | LOTTO <b>01</b>                                                        | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.       | FOGLIO<br>113 di<br>191 |  |
| Q6 attrito               | sui vincoli                                                                           |           |        |                          |                                                                        |                     |                         |            |                         |  |
| Q61                      |                                                                                       | 281       | 0      | 0                        | 0                                                                      | 0                   | 0                       |            |                         |  |
| Q7 azioni                | termiche                                                                              |           |        |                          |                                                                        |                     |                         |            |                         |  |
| Q71                      |                                                                                       | 280       | 0      | 0                        | 0                                                                      | 0                   | 0                       |            |                         |  |

# 8.2.2 Masse sismiche e spettri di risposta

Per la determinazione delle sollecitazioni sui diversi elementi costituenti la pila si procede con un'analisi dinamica lineare con spettro di risposta su modello agli elementi finiti

Le masse sismiche della pila e del pulvino sono calcolate automaticamente dal programma sulla base delle caratteristiche geometriche e della massa unitaria dei materiali costituenti i vari elementi.

Le masse sismiche relative agli impalcati e i carichi variabili sono inserite manualmente nel modello. Il punto di applicazione delle stesse è definito in base ai gradi di vincolo offerti dagli apparecchi d'appoggio per ciascun impalcato. Nel caso in esame si ha che:

- in direzione X la massa sismica è rappresentata dalle masse afferenti all'impalcato vincolato alla pila mediante gli apparecchi d'appoggio fissi e si considera agente alla quota degli apparecchi d'appoggio;
- in direzione Y la massa sismica è rappresentata della metà della massa afferente a ciascun impalcato e si considerano agenti alla quota baricentrica degli impalcati stessi;
- in direzione Z la massa sismica è rappresentata della metà della massa di ciascun impalcato ciascuna delle quali agisce nel centro geometrico degli apparecchi d'appoggio degli impalcati stessi.

il peso dell'impalcato viene stimato a partire dal peso proprio dello stesso, dai carichi permanenti portati e da un'aliquota del 20% del peso del carico ferroviario massimo.

$$m_{\text{sis,long}} = G_1 + G_{12} + G_{22} + 0.2Q_{\text{treno}}$$

$$m_{sis,trasv} = \frac{1}{2}*(G_1+G_{12}+G_{22}+0.2Q_{treno})$$

Dove

 $Q_{treno} = Q_{LM71,max} + Q_{SW/2,max} = 2488 \text{ kN} + 3750 \text{ kN} = 6238 \text{ kN}$ 

si ottengono

 $m_{sis,long} = 11322 \text{ kN} + 1247 \text{ kN} = 12569 \text{ kN}$ 

 $m_{sis,trasv} = 12569/2 = 6284 \text{ kN}$ 

### APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria <u>Mandanti</u> XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione 114 di 191 E ZZ CL VI0105 005 IF28 В 01



Figura 8.3 Assegnazione delle masse sismiche al modello di calcolo

APPALTATORE: Consorzio <u>Soci</u> ITINERARIO NAPOLI - BARI salini ( **ASTALDI** Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE – HIRPINIA **Mandataria** <u>Mandanti</u> XXX SOUL NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione 115 di 191 E ZZ CL VI0105 005 IF28 В 01

# 8.3 RISULTATI DEL MODELLO DI CALCOLO

| Output<br>Case | Step<br>Num | Period | UX  | UY  | UZ  | Sum<br>UX | Sum<br>UY | Sum<br>UZ | RX  | RY  | RZ  | SumRX | SumRY | SumRZ |
|----------------|-------------|--------|-----|-----|-----|-----------|-----------|-----------|-----|-----|-----|-------|-------|-------|
| -              | -           | Sec    |     |     |     |           |           |           |     |     |     |       |       |       |
| MODAL          | 1           | 0.113  | 94% | 0%  | 0%  | 94%       | 0%        | 0%        | 0%  | 8%  | 0%  | 0%    | 8%    | 0%    |
| MODAL          | 2           | 0.079  | 0%  | 93% | 0%  | 94%       | 93%       | 0%        | 6%  | 0%  | 0%  | 6%    | 8%    | 0%    |
| MODAL          | 3           | 0.029  | 0%  | 0%  | 96% | 94%       | 93%       | 96%       | 0%  | 0%  | 0%  | 6%    | 8%    | 0%    |
| MODAL          | 4           | 0.023  | 0%  | 0%  | 0%  | 94%       | 93%       | 96%       | 0%  | 0%  | 89% | 6%    | 8%    | 89%   |
| MODAL          | 5           | 0.017  | 0%  | 0%  | 0%  | 94%       | 93%       | 96%       | 0%  | 65% | 0%  | 6%    | 73%   | 89%   |
| MODAL          | 6           | 0.008  | 0%  | 4%  | 0%  | 94%       | 97%       | 96%       | 71% | 0%  | 0%  | 77%   | 73%   | 89%   |
| MODAL          | 7           | 0.007  | 5%  | 0%  | 0%  | 99%       | 97%       | 96%       | 0%  | 15% | 0%  | 77%   | 88%   | 89%   |
| MODAL          | 8           | 0.004  | 0%  | 1%  | 0%  | 99%       | 98%       | 96%       | 9%  | 0%  | 0%  | 85%   | 88%   | 89%   |
| MODAL          | 9           | 0.004  | 0%  | 0%  | 0%  | 99%       | 98%       | 96%       | 0%  | 6%  | 0%  | 85%   | 94%   | 89%   |
| MODAL          | 10          | 0.003  | 0%  | 0%  | 3%  | 99%       | 98%       | 99%       | 0%  | 0%  | 0%  | 85%   | 94%   | 89%   |
| MODAL          | 11          | 0.003  | 1%  | 0%  | 0%  | 100%      | 98%       | 99%       | 0%  | 3%  | 0%  | 85%   | 96%   | 89%   |
| MODAL          | 12          | 0.002  | 0%  | 0%  | 0%  | 100%      | 98%       | 99%       | 8%  | 0%  | 0%  | 93%   | 96%   | 90%   |
| MODAL          | 13          | 0.002  | 0%  | 0%  | 0%  | 100%      | 98%       | 99%       | 0%  | 1%  | 0%  | 93%   | 97%   | 90%   |
| MODAL          | 14          | 0.002  | 0%  | 0%  | 0%  | 100%      | 98%       | 99%       | 0%  | 1%  | 0%  | 93%   | 99%   | 90%   |
| MODAL          | 15          | 0.002  | 0%  | 0%  | 0%  | 100%      | 99%       | 99%       | 3%  | 0%  | 0%  | 96%   | 99%   | 90%   |
| MODAL          | 16          | 0.002  | 0%  | 0%  | 0%  | 100%      | 99%       | 99%       | 0%  | 0%  | 0%  | 96%   | 99%   | 90%   |
| MODAL          | 17          | 0.001  | 0%  | 0%  | 0%  | 100%      | 99%       | 99%       | 0%  | 1%  | 0%  | 96%   | 99%   | 90%   |
| MODAL          | 18          | 0.001  | 0%  | 0%  | 0%  | 100%      | 99%       | 99%       | 2%  | 0%  | 0%  | 98%   | 99%   | 90%   |
| MODAL          | 19          | 0.001  | 0%  | 0%  | 0%  | 100%      | 99%       | 99%       | 0%  | 0%  | 0%  | 98%   | 100%  | 90%   |
| MODAL          | 20          | 0.001  | 0%  | 0%  | 0%  | 100%      | 99%       | 100%      | 0%  | 0%  | 0%  | 98%   | 100%  | 90%   |

# 8.3.1 Sollecitazioni sugli elementi

# 8.3.1.1 DEFINIZIONE DELLA ZONA CRITICA:

Al fine di assicurare un adeguato comportamento dissipativo alla struttura, si localizzano le dissipazioni di energia per isteresi in zone a tal fine individuate e progettate, dette 'dissipative' o 'critiche', effettuando il dimensionamento degli elementi non dissipativi nel rispetto del criterio di gerarchia delle resistenze; l'individuazione delle zone dissipative deve essere congruente con lo schema strutturale adottato. Poiché il comportamento sismico della struttura è largamente dipendente dal comportamento delle sue zone critiche, esse debbono formarsi ove previsto e mantenere, in presenza di azioni cicliche, la capacità di trasmettere le necessarie sollecitazioni e di dissipare energia.

Nel caso delle pile tali zone si identificano come la zona compresa tra la sezione di incastro alla base e la sezione posta ad una distanza L<sub>h</sub> dall'incastro, dove L<sub>h</sub> assume il massimo tra i seguenti valori (rif §7.9.6.2):

- la profondità della sezione in direzione ortogonale all'asse di rotazione delle cerniere;
- la distanza tra la sezione di momento massimo e la sezione in cui il momento si riduce del 20%.

Nel caso in esame essendo la profondità massima della sezione (8.6m) maggiore dell'altezza della pila, si assume come  $L_h$  l'intero sviluppo del fusto pila.

# 8.3.1.2 SOLLECITAZIONI FLETTENTI IN ZONA CRITICA

Per quanto indicato al 7.9.4 delle NTC08, l'incremento delle sollecitazioni flettenti nelle zone critiche per effetto delle non linearità geometriche possono essere prese in conto mediante l'espressione semplificata:

$$\Delta M = d_{Ed} * N_{Ed}$$

dove:

N<sub>Ed</sub> è la forza assiale di progetto

 $d_{Ed} = \mu_d \cdot d_{Ee}$  in accordo al 7.3.3.3 in cui:

d<sub>Ee</sub> è lo spostamento derivante dall'analisi lineare

 $\mu_d = q seT_1 \ge T_C$ 

 $\mu_d = 1 + (q - 1) \cdot T_C/T_1$  se  $T_1 < T_C$  in ogni caso  $\mu_d \le 5 \cdot q - 4$ 

Per il caso in esame si ha:

 $T_1=0.113s$ 

Tc=0.583s

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXXX9训 NETENGINEERING Alpina PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in 117 di E ZZ CL VI0105 005 IF28 01 191 elevazione

 $\mu_{\rm d} = 3.58$ 

Nelle sezioni comprese nella zona critica deve risultare:

 $M_{Ed} \leq M_{Rd}$ 

# 8.3.1.3 SOLLECITAZIONI FLETTENTI FUORI DALLA ZONA CRITICA

II §7.9.5.1 [1] definisce il fattore di "sovraresistenza"  $\gamma_{Rd}$  che viene calcolato mediante l'espressione:

$$\gamma_{Rd} = 0.7 + 0.2 q \ge 1$$

nella quale q è il fattore di struttura utilizzato nei calcoli.

Nel caso in cui la compressione normalizzata  $v_k = N_{Ed}/(A_c \cdot f_{ck})$  ecceda il valore 0,1 tale fattore deve essere moltiplicato per  $f = 1 + 2 \cdot (v_k - 0,1)^2$ .

Nel caso in esame tale fattore assume il valore:

 $N_{ed} = N_{ed,max} = -28646 \text{ kN}$ 

 $A_c = 12 \text{ m}^2$ 

 $f_{ck} = 33.2 \text{ MPa}$ 

 $v_k = 0.072$ 

Da cui γ<sub>Rd</sub> =1

Nelle sezioni al di fuori della zona critica tenendo conto del criterio della gerarchia delle resistenze deve risultare:

 $M_{qr} \leq M_{Rd}$ 

I valori di  $M_{gr}$  lungo lo sviluppo dell'elemento si ottengono scalando il diagramma delle sollecitazioni flettenti ponendo nella sezione critica un momento agente pari a  $\gamma_{Rd} \cdot M_{Rd}$ .

# 8.3.1.4 SOLLECITAZIONI DI TAGLIO

Le sollecitazioni di taglio si ottengono con il criterio della gerarchia delle resistenze riportato al 7.9.5.5 delle NTC08, il quale conduce ad adottare come sollecitazione di calcolo:

$$V_{gr,i} = V_{E,i} * \frac{\gamma_{Rd} * M_{Rd,i}}{M_{E,i}}$$

I valori di resistenza a taglio degli elementi in c.a. devono inoltre essere divisi per un coefficiente di sicurezza aggiuntivo nei confronti della rottura fragile γ<sub>Bd</sub> valutato mediante la seguente espressione:

| APPALTATORE:                                               |                                    |                   |                  |                    |                     |                         |                  |                         |
|------------------------------------------------------------|------------------------------------|-------------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
| Consorzio                                                  | <u>Soci</u><br>salini<br>impregilo | å ASTALDI         |                  | ITIN               | IERARIO             | NAPOLI – B              | ARI              |                         |
| PROGETTAZIONE:  Mandataria                                 | Mandanti                           | <u> </u>          |                  |                    |                     | TA APICE – O            |                  |                         |
| Nandatalia<br>Nandatalia                                   | NETENGINEERING                     | Alpina            | •                | 20110              | I GNEIGH            |                         |                  |                         |
| PROGETTO ESECUT<br>Pile P7, P8, P19, P20, P2<br>elevazione | -                                  | colo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>118 di<br>191 |

 $1 \le \gamma_{Bd} = 1.25 + 1 - q \cdot V_{Ed}/V_{gr} \le 1.25$ 

La valutazione delle sollecitazioni di taglio da GR viene condotto nei paragrafi successivi relativi alle verifiche a taglio, a fronte dei valori resistenti ottenuti dalle successive verifiche a pressoflessione.

| APPALTATORE:                                                      |                 |                  |                  |                    |                     |                         |                  |                         |
|-------------------------------------------------------------------|-----------------|------------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
| <u>Consorzio</u>                                                  | <u>Soci</u>     |                  |                  | ITIAII             |                     | NADOLI D                | A D I            |                         |
| HirpiniaAV                                                        | salini 🥢        | ASTALDI          |                  | HIINI              | EKAKIO              | NAPOLI – B              | AKI              |                         |
| PROGETTAZIONE:                                                    |                 |                  |                  | <b>RADDOF</b>      | PPIO TRAT           | TA APICE - O            | RSARA            |                         |
| <u>Mandataria</u>                                                 | <u>Mandanti</u> |                  | I                | LOTTO F            | FUNZIONA            | LE APICE – HI           | RPINIA           |                         |
|                                                                   | NET             | Alpina           |                  |                    |                     |                         |                  |                         |
| PROGETTO ESECUTIVO<br>Pile P7, P8, P19, P20, P21, F<br>elevazione |                 | olo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>119 di<br>191 |

# 8.3.1.5 SOLLECITAZIONI ALLA BASE DELLA PILA

Si riportano le sollecitazioni più significative nelle combinazioni SLU-STR, SLU-SISMA e SLE-RARA alla base del fusto della pila.

|                | Sollecitazioni di verifica in combinazione SLU-STR |      |      |       |       |       |      |  |  |  |  |
|----------------|----------------------------------------------------|------|------|-------|-------|-------|------|--|--|--|--|
| sollecitazione | combinazione                                       | F1   | F2   | F3    | M1    | M2    | M3   |  |  |  |  |
| Sollecitazione | Combinazione                                       | KN   | KN   | KN    | KN-m  | KN-m  | kN-m |  |  |  |  |
| MAX F1         | slu60                                              | 3786 | 1053 | 24720 | 13201 | 31746 | 361  |  |  |  |  |
| MAX F2         | slu26                                              | 1340 | 1590 | 28240 | 19501 | 8810  | 5    |  |  |  |  |
| MAX F3         | slu52                                              | 2002 | 1590 | 28240 | 19501 | 14140 | 5    |  |  |  |  |
| MIN F3         | slu25                                              | 507  | 1207 | 12753 | 14619 | 4272  | 0    |  |  |  |  |
| MAX M1         | slu63                                              | 1404 | 1275 | 23972 | 23266 | 10139 | 0    |  |  |  |  |
| MAX M2         | slu60                                              | 3786 | 1053 | 24720 | 13201 | 31746 | 361  |  |  |  |  |

| Sollecitazioni di verifica in combinazione SLU-SISMA |              |       |       |       |        |        |      |  |  |  |
|------------------------------------------------------|--------------|-------|-------|-------|--------|--------|------|--|--|--|
| sollecitazione                                       | combinazione | F1    | F2    | F3    | M1     | M2     | M3   |  |  |  |
| Sollecitazione                                       | Combinazione | KN    | KN    | KN    | KN-m   | KN-m   | kN-m |  |  |  |
| MAX F1                                               | slu-SISMA6   | 9306  | 2399  | 12504 | -18088 | 61438  | 156  |  |  |  |
| MIN F1                                               | slu-SISMA1   | -8679 | -2354 | 16747 | 18696  | -55998 | -107 |  |  |  |
| MAX F2                                               | slu-SISMA32  | 2900  | 7966  | 12990 | -60839 | 18956  | 357  |  |  |  |
| MIN F2                                               | slu-SISMA28  | -2407 | -7846 | 16747 | 62319  | -15003 | -356 |  |  |  |
| MAX F3                                               | slu-SISMA38  | -2604 | -2354 | 23592 | 18832  | -16786 | -107 |  |  |  |
| MIN F3                                               | slu-SISMA41  | 2800  | 2354  | 4600  | -18696 | 18596  | 107  |  |  |  |
| MAX M1                                               | slu-SISMA24  | 2800  | 7846  | 10307 | -62319 | 18596  | 356  |  |  |  |
| MIN M1                                               | slu-SISMA26  | -2390 | -7770 | 17293 | 64318  | -15191 | -356 |  |  |  |
| MAX M2                                               | slu-SISMA6   | 9306  | 2399  | 12504 | -18088 | 61438  | 156  |  |  |  |
| MIN M2                                               | slu-SISMA1   | -8679 | -2354 | 16747 | 18696  | -55998 | -107 |  |  |  |

| d <sub>ex</sub> | <b>d</b> ey |
|-----------------|-------------|
| m               | m           |
| 0.0018          | 0.0002      |
| 0.0019          | 0.0002      |
| 0.0005          | 0.0007      |
| 0.0006          | 0.0007      |
| 0.0006          | 0.0002      |
| 0.0005          | 0.0002      |
| 0.0005          | 0.0007      |
| 0.0006          | 0.0007      |
| 0.0018          | 0.0002      |
| 0.0019          | 0.0002      |

Considerando gli effetti del secondo ordine come definito al 8.3.1.2 si ottengono le seguenti sollecitazioni di calcolo:

APPALTATORE:

Consorzio







PROGETTAZIONE:

**Mandataria** 

<u>Mandanti</u>



**Alpina** 

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 120 di 191 E ZZ CL VI0105 005 IF28 01 В

|                | Sollecitazioni di verifica in combinazione SLU-SISMA |       |       |       |        |        |      |  |  |  |
|----------------|------------------------------------------------------|-------|-------|-------|--------|--------|------|--|--|--|
| sollecitazione | combinazione                                         | F1    | F2    | F3    | M1     | M2     | M3   |  |  |  |
| Sollecitazione | Combinazione                                         | KN    | KN    | KN    | KN-m   | KN-m   | kN-m |  |  |  |
| MAX F1         | slu-SISMA6                                           | 9306  | 2399  | 12504 | -18097 | 61517  | 156  |  |  |  |
| MIN F1         | slu-SISMA1                                           | -8679 | -2354 | 16747 | 18708  | -56115 | -107 |  |  |  |
| MAX F2         | slu-SISMA32                                          | 2900  | 7966  | 12990 | -60869 | 18979  | 357  |  |  |  |
| MIN F2         | slu-SISMA28                                          | -2407 | -7846 | 16747 | 62359  | -15042 | -356 |  |  |  |
| MAX F3         | slu-SISMA38                                          | -2604 | -2354 | 23592 | 18849  | -16836 | -107 |  |  |  |
| MIN F3         | slu-SISMA41                                          | 2800  | 2354  | 4600  | -18699 | 18604  | 107  |  |  |  |
| MAX M1         | slu-SISMA24                                          | 2800  | 7846  | 10307 | -62343 | 18615  | 356  |  |  |  |
| MIN M1         | slu-SISMA26                                          | -2390 | -7770 | 17293 | 64360  | -15231 | -356 |  |  |  |
| MAX M2         | slu-SISMA6                                           | 9306  | 2399  | 12504 | -18097 | 61517  | 156  |  |  |  |
| MIN M2         | slu-SISMA1                                           | -8679 | -2354 | 16747 | 18708  | -56115 | -107 |  |  |  |

| Sollecitazioni di verifica in combinazione SLE-RARA |              |       |       |       |       |        |      |  |  |
|-----------------------------------------------------|--------------|-------|-------|-------|-------|--------|------|--|--|
| sollecitazione                                      | combinazione | F1    | F2    | F3    | M1    | M2     | M3   |  |  |
|                                                     | Combinazione | KN    | KN    | KN    | KN-m  | KN-m   | kN-m |  |  |
| MAX F3                                              | SLE-RARA44   | -1369 | -1080 | 19975 | 13247 | -9652  | -3   |  |  |
| MIN F3                                              | SLE-RARA25   | -338  | -805  | 12753 | 9746  | -2848  | 0    |  |  |
| MAX M1                                              | SLE-RARA55   | -959  | -863  | 17031 | 15844 | -6912  | 0    |  |  |
| MAX M2                                              | SLE-RARA85   | -2605 | -708  | 17547 | 8885  | -21836 | -248 |  |  |



# 9 VERIFICHE

# 9.1 SEZIONE 1- SEZIONE DI INCASTRO

La sezione di base viene armata tramite armatura verticale disposta lungo i perimetri esterni ed interni della sezione cava con barre φ24 ad interasse 15 cm secondo lo schema riportato nella figura sottostante.

Il copriferro lordo utilizzato nel calcolo è pari a 8.5 cm. La verifica dell'armatura trasversale per il taglio viene eseguita a posteriori applicando il metodo della gerarchia delle resistenze.

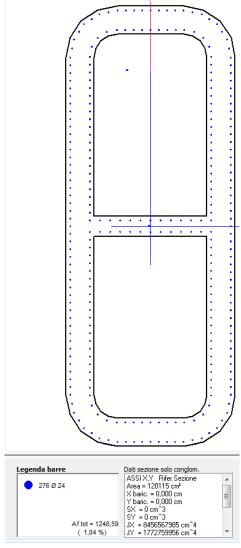



Figura 9.1 Disposizione dell'armatura verticale

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV PROGETTAZIONE: RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA Mandataria Mandanti XXXSOU Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. 122 di Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 IF28 01 В 191 elevazione

Il coefficiente di sicurezza a pressoflessione viene determinato secondo due percorsi di sollecitazione:

- ad azione assiale costante
- a rapporto M/N costante

Si riportano le caratteristiche della sezione:

# ARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

| CALCESTRUZZO - | Classe:                        | C32/40              |         |
|----------------|--------------------------------|---------------------|---------|
|                | Resis. compr. di calcolo fcd:  | 188,10              | daN/cm² |
|                | Resis. compr. ridotta fcd':    | 94,05               | daN/cm² |
|                | Def.unit. max resistenza ec2:  | 0,0020              |         |
|                | Def.unit. ultima ecu:          | 0,0035              | daN/cm² |
|                | Diagramma tensione-deformaz.:  | Parabola-Rettangolo |         |
|                | Modulo Elastico Normale Ec:    | 333460              | daN/cm² |
|                | Coeff. di Poisson:             | 0,20                |         |
|                | Resis. media a trazione fctm:  | 31,00               | daN/cm² |
|                |                                |                     |         |
| ACCIAIO -      | Tipo:                          | B450C               |         |
|                | Resist. caratt. snervam. fyk:  | 4500,0              | daN/cm² |
|                | Resist. caratt. rottura ftk:   | 4500,0              | daN/cm² |
|                | Resist. snerv. di calcolo fyd: | 3913,0              | daN/cm² |
|                | Resist. ultima di calcolo ftd: | 3913,0              | daN/cm² |
|                | Deform. ultima di calcolo Epu: | 0,068               |         |
|                | Modulo Elastico Ef             | 2000000             | daN/cm² |
|                | Diagramma tensione-deformaz.:  | Bilineare finito    |         |
|                |                                |                     |         |

I dati relativi alla geometria della sezione ed il posizionamento delle armature vengono riportati negli allegati.

Facendo riferimento al punto 2.5.2.2.6 del MdP RFI si vuole verificare il quantitativo minimo di armatura longitudinale, che dovrà risultare:

 $\rho_{min} \ge 0.6\%$ 

Nel caso in esame  $\rho = 1.04\% > \rho_{min}$ 

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXX SOUL Alpina NETENGINEERING PROGETTO ESECUTIVO FOGLIO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in 123 di E ZZ CL VI0105 005 IF28 01 В 191 elevazione

# 9.1.1 verifica SLU-STR, N=cost

# ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

| N<br>Mx<br>My<br>Vy<br>Vx |         | Coppia concer<br>con verso posi<br>Coppia concer<br>con verso posi<br>Componente c | Sforzo normale in daN applicato nel Baric. (+ se di compressione) Coppia concentrata in daNm applicata all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [daN] parallela all'asse princ.d'inerzia y Componente del Taglio [daN] parallela all'asse princ.d'inerzia x |    |    |  |  |  |
|---------------------------|---------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|--|--|--|
| N°Comb.                   | N       | Mx                                                                                 | My                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vy | Vx |  |  |  |
| 1                         | 2472000 | 1320100                                                                            | 3174600                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 0  |  |  |  |
| 2                         | 2824000 | 1950100                                                                            | 881000                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 | 0  |  |  |  |
| 3                         | 2824000 | 1950100                                                                            | 1414000                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 0  |  |  |  |
| 4                         | 1275300 | 1461900                                                                            | 427200                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 | 0  |  |  |  |
| 5                         | 2397200 | 2326600                                                                            | 1013900                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 0  |  |  |  |
| 6                         | 2472000 | 1320100                                                                            | 3174600                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 0  |  |  |  |

# **RISULTATI DEL CALCOLO**

# Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7,2 cm Interferro netto minimo barre longitudinali: 8,9 cm Copriferro netto minimo staffe: 6,2 cm

# METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [daN] (positivo se di compressione) Ν Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia Мx Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia Му Nult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.) Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia Mx ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia My ult Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

| N°Comb | Ver | N       | Mx      | Му      | N ult   | Mx ult   | My ult   | Mis.Sic. |
|--------|-----|---------|---------|---------|---------|----------|----------|----------|
| 1      | S   | 2472000 | 1320100 | 3174600 | 2472007 | 4407959  | 10671443 | 3,358    |
| 2      | S   | 2824000 | 1950100 | 881000  | 2824005 | 18911122 | 8454242  | 9,680    |
| 3      | S   | 2824000 | 1950100 | 1414000 | 2824010 | 13824488 | 10041208 | 7,093    |
| 4      | S   | 1275300 | 1461900 | 427200  | 1275324 | 19505809 | 5609208  | 13,326   |
| 5      | S   | 2397200 | 2326600 | 1013900 | 2397176 | 18480934 | 8072462  | 7,946    |
| 6      | S   | 2472000 | 1320100 | 3174600 | 2472007 | 4407959  | 10671443 | 3,358    |

# 9.1.2 verifica SLU-STR, M/N=cost

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandanti NETENGINEERING AIDINA

# ITINERARIO NAPOLI - BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA IF28

10

CODIFICA E ZZ CL

LOTTO

01

0

0

DOCUMENTO VI0105 005

REV.

FOGLIO **124 di 191** 

| N<br>Mx<br>My<br>Vy<br>Vx |         | Coppia concer<br>con verso posi<br>Coppia concer<br>con verso posi<br>Componente c | e in daN applicato nel E<br>ntrata in daNm applicat<br>tivo se tale da comprin<br>ntrata in daNm applicat<br>tivo se tale da comprin<br>lel Taglio [daN] parallel<br>lel Taglio [daN] parallel | a all'asse x princ. d'i<br>nere il lembo sup. de<br>a all'asse y princ. d'i<br>nere il lembo destro<br>a all'asse princ.d'ine | nerzia<br>ella sez.<br>nerzia<br>della sez.<br>erzia y |
|---------------------------|---------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| N°Comb.                   | N       | Mx                                                                                 | Му                                                                                                                                                                                             | Vy                                                                                                                            | Vx                                                     |
| 1                         | 2472000 | 1320100                                                                            | 3174600                                                                                                                                                                                        | 10                                                                                                                            | 0                                                      |
| 2                         | 2824000 | 1950100                                                                            | 881000                                                                                                                                                                                         | 10                                                                                                                            | 0                                                      |
| 3                         | 2824000 | 1950100                                                                            | 1414000                                                                                                                                                                                        | 10                                                                                                                            | 0                                                      |
| 4                         | 1275300 | 1461900                                                                            | 427200                                                                                                                                                                                         | 10                                                                                                                            | 0                                                      |

1013900

3174600

# **RISULTATI DEL CALCOLO**

2397200

2472000

5

## Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7,3 cm Interferro netto minimo barre longitudinali: 9,1 cm Copriferro netto minimo staffe: 6,3 cm

2326600

1320100

# METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [daN] (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia
My Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia
N ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx ult Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia
My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

| N°Comb | Ver | N       | Mx      | My      | N ult    | Mx ult   | My ult   | Mis.Sic. |
|--------|-----|---------|---------|---------|----------|----------|----------|----------|
|        |     |         |         |         |          |          |          |          |
| 1      | S   | 2472000 | 1320100 | 3174600 | 12795555 | 6839459  | 16429715 | 5,176    |
| 2      | S   | 2824000 | 1950100 | 881000  | 20994563 | 14476991 | 6595459  | 7,434    |
| 3      | S   | 2824000 | 1950100 | 1414000 | 19105818 | 13195046 | 9564251  | 6,766    |
| 4      | S   | 1275300 | 1461900 | 427200  | 18670041 | 21378960 | 6332321  | 14,640   |
| 5      | S   | 2397200 | 2326600 | 1013900 | 18830243 | 18303390 | 7900682  | 7,855    |
| 6      | S   | 2472000 | 1320100 | 3174600 | 12795555 | 6839459  | 16429715 | 5,176    |

# 9.1.3 verifica SLU-SISMA, N=cost

# ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandanti NETENGINEERING AIPINA

# ITINERARIO NAPOLI - BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 125 di 191

|         | Componente del Taglio [daN] parallela all'asse princ.d'inerzia y<br>Componente del Taglio [daN] parallela all'asse princ.d'inerzia x |                                                                                                                                                           |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| N       | Mx                                                                                                                                   | Му                                                                                                                                                        | Vy                                                                                                                                                                                                                                       | Vx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 1250400 | -1809700                                                                                                                             | 6151700                                                                                                                                                   | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 1674700 | 1870800                                                                                                                              | -5611500                                                                                                                                                  | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 1299000 | -6086900                                                                                                                             | 1897900                                                                                                                                                   | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 1674700 | 6235900                                                                                                                              | -1504200                                                                                                                                                  | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 2359200 | 1884900                                                                                                                              | -1683600                                                                                                                                                  | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 460000  | -1869900                                                                                                                             | 1860400                                                                                                                                                   | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 1030700 | -6234300                                                                                                                             | 1861500                                                                                                                                                   | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 1729300 | 6436000                                                                                                                              | -1523100                                                                                                                                                  | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 1250400 | -1809700                                                                                                                             | 6151700                                                                                                                                                   | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 1674700 | 1870800                                                                                                                              | -5611500                                                                                                                                                  | 10                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|         | 1250400<br>1674700<br>1299000<br>1674700<br>2359200<br>460000<br>1030700<br>1729300<br>1250400                                       | N Mx  1250400 -1809700 1674700 1870800 1299000 -6086900 1674700 6235900 2359200 1884900 460000 -1869900 1030700 -6234300 1729300 6436000 1250400 -1809700 | N Mx My  1250400 -1809700 6151700 1674700 1870800 -5611500 1299000 -6086900 1897900 1674700 6235900 -1504200 2359200 1884900 -1683600 460000 -1869900 1860400 1030700 -6234300 1861500 1729300 6436000 -1523100 1250400 -1809700 6151700 | N         Mx         My         Vy           1250400         -1809700         6151700         10           1674700         1870800         -5611500         10           1299000         -6086900         1897900         10           1674700         6235900         -1504200         10           2359200         1884900         -1683600         10           460000         -1869900         1860400         10           1030700         -6234300         1861500         10           1729300         6436000         -1523100         10           1250400         -1809700         6151700         10 |  |  |  |  |  |  |

con verso positivo se tale da comprimere il lembo destro della sez.

# **RISULTATI DEL CALCOLO**

# Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7,3 cm Interferro netto minimo barre longitudinali: 12,6 cm Copriferro netto minimo staffe: 6,3 cm

# METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata Ν Sforzo normale assegnato [daN] (positivo se di compressione) Мх Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia Му Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia Nult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.) Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia Mx ult My ult Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

| N°Comb | Ver | N       | Mx       | Му       | N ult   | Mx ult    | My ult   | Mis.Sic. |
|--------|-----|---------|----------|----------|---------|-----------|----------|----------|
| 1      | S   | 1250400 | -1809700 | 6151700  | 1250409 | -2680270  | 9121366  | 1,483    |
| 2      | S   | 1674700 | 1870800  | -5611500 | 1674704 | 3261257   | -9654240 | 1,723    |
| 3      | S   | 1299000 | -6086900 | 1897900  | 1299019 | -18954162 | 5973630  | 3,117    |
| 4      | S   | 1674700 | 6235900  | -1504200 | 1674728 | 21103036  | -5181943 | 3,387    |
| 5      | S   | 2359200 | 1884900  | -1683600 | 2359205 | 11116290  | -9890540 | 5,887    |
| 6      | S   | 460000  | -1869900 | 1860400  | 460010  | -7778463  | 7732881  | 4,158    |
| 7      | S   | 1030700 | -6234300 | 1861500  | 1030698 | -18634313 | 5607903  | 2,991    |
| 8      | S   | 1729300 | 6436000  | -1523100 | 1729306 | 21420226  | -5034209 | 3,327    |
| 9      | S   | 1250400 | -1809700 | 6151700  | 1250409 | -2680270  | 9121366  | 1,483    |
| 10     | S   | 1674700 | 1870800  | -5611500 | 1674704 | 3261257   | -9654240 | 1,723    |

# 9.1.4 verifica SLU-SISMA, M/N=cost

## APPALTATORE: Consorzio Soci salini impregilo ASTALDI Hirpinia AV PROGETTAZIONE:

ITINERARIO NAPOLI - BARI

**RADDOPPIO TRATTA APICE - ORSARA** I LOTTO FUNZIONALE APICE - HIRPINIA

Mandataria Mandanti

XXX SOU Alpina NETENGINEERING

COMMESSA

IF28

10

10

10

10

10

10

LOTTO 01

0

0

0

0

0

0

CODIFICA E ZZ CL

DOCUMENTO VI0105 005

REV. В

FOGLIO 126 di 191

# PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

# ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

| N<br>Mx<br>My<br>Vy<br>Vx |         | Coppia conce<br>con verso pos<br>Coppia conce<br>con verso pos<br>Componente | e in daN applicato nel l<br>ntrata in daNm applicat<br>itivo se tale da comprir<br>ntrata in daNm applicat<br>itivo se tale da comprir<br>del Taglio [daN] paralle<br>del Taglio [daN] paralle | ta all'asse x princ. d'i<br>nere il lembo sup. de<br>ta all'asse y princ. d'i<br>nere il lembo destro<br>la all'asse princ.d'ine | nerzia<br>ella sez.<br>nerzia<br>della sez.<br>erzia y |
|---------------------------|---------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| N°Comb.                   | N       | Mx                                                                           | My                                                                                                                                                                                             | Vy                                                                                                                               | Vx                                                     |
| 1                         | 1250400 | -1809700                                                                     | 6151700                                                                                                                                                                                        | 10                                                                                                                               | 0                                                      |
| 2                         | 1674700 | 1870800                                                                      | -5611500                                                                                                                                                                                       | 10                                                                                                                               | 0                                                      |
| 3                         | 1299000 | -6086900                                                                     | 1897900                                                                                                                                                                                        | 10                                                                                                                               | 0                                                      |
| 4                         | 1674700 | 6235900                                                                      | -1504200                                                                                                                                                                                       | 10                                                                                                                               | 0                                                      |

-1683600

1860400

1861500

-1523100

6151700

-5611500

# **RISULTATI DEL CALCOLO**

5

6

7

8

9

10

2359200

460000

1030700

1729300

1250400

1674700

# Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7,3 cm Interferro netto minimo barre longitudinali: 12,6 cm Copriferro netto minimo staffe: 6,3 cm

1884900

-1869900

-6234300

6436000

-1809700

1870800

# METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

S = combinazione verificata / N = combin. non verificata Ver Sforzo normale assegnato [daN] (positivo se di compressione) Mx Momento flettente assegnato [daNm] riferito all'asse x princ. d'inerzia Momento flettente assegnato [daNm] riferito all'asse y princ. d'inerzia Му Nult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.) Mx ult Momento flettente ultimo [daNm] riferito all'asse x princ. d'inerzia Momento flettente ultimo [daNm] riferito all'asse y princ. d'inerzia My ult Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

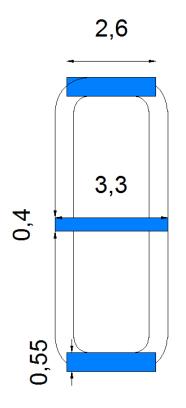
| N°Comb | Ver | N       | Mx       | Му       | N ult    | Mx ult    | My ult    | Mis.Sic. |
|--------|-----|---------|----------|----------|----------|-----------|-----------|----------|
| 1      | S   | 1250400 | -1809700 | 6151700  | 2068048  | -2982324  | 10177599  | 1,654    |
| 2      | S   | 1674700 | 1870800  | -5611500 | 3606248  | 4078095   | -12067109 | 2,153    |
| 3      | S   | 1299000 | -6086900 | 1897900  | 5348826  | -25073914 | 7781986   | 4,118    |
| 4      | S   | 1674700 | 6235900  | -1504200 | 7701556  | 28703448  | -6810014  | 4,599    |
| 5      | S   | 2359200 | 1884900  | -1683600 | 16704419 | 13297323  | -11975456 | 7,081    |
| 6      | S   | 460000  | -1869900 | 1860400  | 2514186  | -10184337 | 10204444  | 5,466    |
| 7      | S   | 1030700 | -6234300 | 1861500  | 3921913  | -23692824 | 7181202   | 3,805    |
| 8      | S   | 1729300 | 6436000  | -1523100 | 7731884  | 28788115  | -6758702  | 4,471    |
| 9      | S   | 1250400 | -1809700 | 6151700  | 2068048  | -2982324  | 10177599  | 1,654    |
| 10     | S   | 1674700 | 1870800  | -5611500 | 3606248  | 4078095   | -12067109 | 2.153    |

| APPALTATORE:                                               |                       |                   |                  |                    |                     |                         |                  |                         |
|------------------------------------------------------------|-----------------------|-------------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
| Consorzio                                                  | <u>Soci</u>           |                   |                  | ITIN               | IED A DIO           | NAPOLI – B              | ۸DI              |                         |
| Hirpinia AV                                                | salini 🥢<br>impregilo | <u>  ASTALDI</u>  |                  | 11111              | IERARIO             | NAPOLI - B              | ANI              |                         |
| PROGETTAZIONE:                                             |                       |                   |                  | RADDO              | PPIO TRAT           | TTA APICE - O           | RSARA            |                         |
| <u>Mandataria</u>                                          | <u>Mandanti</u>       |                   | I                | LOTTO              | FUNZIONA            | LE APICE - H            | IRPINIA          |                         |
|                                                            | NET                   | Alpina            |                  |                    |                     |                         |                  |                         |
| PROGETTO ESECUT<br>Pile P7, P8, P19, P20, P2<br>elevazione |                       | colo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>127 di<br>191 |

# 9.1.5 Verifica a taglio

La verifica viene effettuata distintamente per le due direzioni x e y.

Per quanto riguarda le combinazioni sismiche, con riferimento ai criteri della gerarchia delle resistenze, si procede al calcolo del taglio agente di calcolo sulla base dei risultati delle verifiche flessionali.


$$V_{gr} = V_{Ed} \cdot \gamma_{Rd} \cdot M_{Rd}/M_{Ed} \leq q \cdot V_{Ed}$$

|                | Sollecitazioni di verifica in combinazione SLU-SISMA |       |       |        |        |         |         |        |        |
|----------------|------------------------------------------------------|-------|-------|--------|--------|---------|---------|--------|--------|
| sollecitazione | combinazione                                         | F1    | F2    | M1     | M2     | Mrd1    | Mrd2    | Vgr1   | Vgr2   |
| Soliecitazione | COMBINAZIONE                                         | KN    | KN    | KN-m   | KN-m   | KN-m    | KN-m    | KN     | KN     |
| MAX F1         | slu-SISMA6                                           | 9306  | 2399  | -18097 | 61517  | -29823  | 101776  | 13959  | 3599   |
| MIN F1         | slu-SISMA1                                           | -8679 | -2354 | 18708  | -56115 | 40781   | -120671 | -13019 | -3531  |
| MAX F2         | slu-SISMA32                                          | 2900  | 7966  | -60869 | 18979  | -250739 | 77820   | 4350   | 11949  |
| MIN F2         | slu-SISMA28                                          | -2407 | -7846 | 62359  | -15042 | 287034  | -68100  | -3611  | -11769 |

Si dispongono armature trasversali lungo il perimetro interno ed esterno φ22 a passo s=15 cm.

Per la verifica a taglio essendo la sezione cava, si fa riferimento alle zone evidenziate nelle figure sottostanti per la determinazione del taglio resistente:

# In direzione1



b = 0.55+0.55+0.4 = 1.5 m h = (2.6+2.6+3.3)/3 = 2.83 m d = h-c = 2.83 m-0.05 m=2.78 m Vgr1 = 13959 kN

# APPALTATORE:

Consorzio







# PROGETTAZIONE:

**Mandataria** 

Mandanti

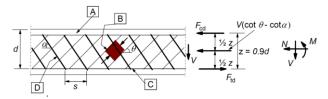




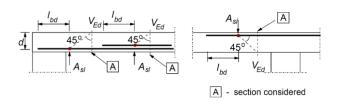
# PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

| Beometria                        |                |   |       |                 |
|----------------------------------|----------------|---|-------|-----------------|
| sezione trasversale              |                |   |       |                 |
| base                             | В              | = | 150   | cm              |
| altezza                          | Н              | = | 283   | cm              |
| copriferro (asse armatura long.) | С              | = | 5     | cm              |
| altezza utile                    | d              | = | 278   | cm              |
| braccio coppia interna           | Z              | = | 250.2 | cm              |
| armatura a taglio                |                |   |       |                 |
| numero braccia                   | n              | = | 6     |                 |
| diametro                         | ф              | = | 22    | mm              |
| passo                            | S              | = | 15    | cm              |
| inclinazione                     | α              | = | 90    | •               |
| area                             | Asw            | = | 22.81 | cm <sup>2</sup> |
| armatura longitudinale tesa      |                |   |       |                 |
| numero barre                     | n <sub>1</sub> | = | 15    |                 |
| diametro                         | $\phi_1$       | = | 30    | mm              |
| numero barre                     | $n_2$          | = | 0     |                 |
| diametro                         | $\phi_2$       | = | 0     | mm              |
| area totale                      | Ası            | = | 106.0 | cm <sup>2</sup> |

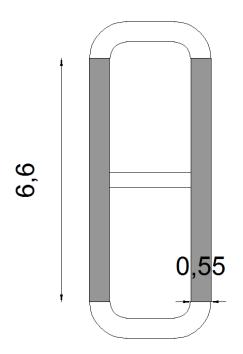

| materiali                              |                     |   |       |     |
|----------------------------------------|---------------------|---|-------|-----|
| calcestruzzo                           |                     |   |       |     |
| resistenza caratt. cilindrica a 28 gg. | fck                 | = | 33.2  | MPa |
| coeff. parziale di sicurezza           | γс                  | = | 1.5   |     |
| coeff. effetti a lungo termine         | $\alpha cc$         | = | 0.85  |     |
| tensione di calcolo                    | $f_{cd}$            | = | 18.8  | MPa |
| coeff. riduzione resistenza bielle     | ν                   | = | 0.520 |     |
| tensione di calcolo bielle             | $\nu f_{\text{cd}}$ | = | 9.8   | MPa |
| acciaio                                |                     |   |       |     |
| tensione caratt. di snervamento        | fyk                 | = | 450.0 | MPa |
| coeff. parziale di sicurezza           | γs                  | = | 1.15  |     |
| tensione di snervamento di calcolo     | fyd                 | = | 391.3 | MPa |

# ITINERARIO NAPOLI - BARI


# **RADDOPPIO TRATTA APICE - ORSARA** I LOTTO FUNZIONALE APICE - HIRPINIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. 128 di E ZZ CL VI0105 005 IF28 01 В 191

# legenda




 $oxed{A}$  - compression chord,  $oxed{B}$  - struts,  $oxed{C}$  - tensile chord,  $oxed{D}$  - shear reinforcement



| sollecitazioni e verifiche       |             |   |         |    |
|----------------------------------|-------------|---|---------|----|
| taglio                           | VEd         | = | 13959   | kN |
| azione assiale                   | NEd         | = | 0       | kN |
|                                  |             |   |         |    |
| resistenza elemento non armato   | VRdc        | = | 1201.1  | kΝ |
|                                  |             |   |         |    |
| resistenza armatura a taglio     | $V_{Rds}$   | = | 14886.7 | kN |
| resistenza bielle calcestruzzo   | $V_{Rdmax}$ | = | 18369.0 | kΝ |
| inclinazione bielle calcestruzzo | θ           | = | 45.0    | ۰  |
| sezione                          |             |   | duttile |    |
|                                  |             |   |         |    |
| traslazione armatura long.       | aı          | = | 125.1   | cm |

# In direzione y



b = 0.55 + 0.55 = 1.1 m

h = 6.60 m

d = h-c = 6.60 m-0.05 m = 6.55 m

Vgr2 = 11949 kN

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: Mandataria Mandanti XXXX9训 Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in IF28 E ZZ CL 01 elevazione

| geometria                        |          |   |       |                 |
|----------------------------------|----------|---|-------|-----------------|
| sezione trasversale              |          |   |       |                 |
| base                             | В        | = | 110   | cm              |
| altezza                          | Н        | = | 660   | cm              |
| copriferro (asse armatura long.) | С        | = | 5     | cm              |
| altezza utile                    | d        | = | 655   | cm              |
| braccio coppia interna           | Z        | = | 589.5 | cm              |
| armatura a taglio                |          |   |       |                 |
| numero braccia                   | n        | = | 4     |                 |
| diametro                         | ф        | = | 22    | mm              |
| passo                            | S        | = | 15    | cm              |
| inclinazione                     | α        | = | 90    | •               |
| area                             | Asw      | = | 15.21 | cm <sup>2</sup> |
| armatura longitudinale tesa      |          |   |       |                 |
| numero barre                     | $n_1$    | = | 15    |                 |
| diametro                         | $\phi_1$ | = | 30    | mm              |
| numero barre                     | $n_2$    | = | 0     |                 |
| diametro                         | $\phi_2$ | = | 0     | mm              |
| area totale                      | Ası      | = | 106.0 | cm <sup>2</sup> |

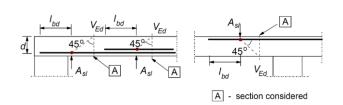
| materiali                              |                     |   |       |     |
|----------------------------------------|---------------------|---|-------|-----|
| calcestruzzo                           |                     |   |       |     |
| resistenza caratt. cilindrica a 28 gg. | fck                 | = | 33.2  | MPa |
| coeff. parziale di sicurezza           | γс                  | = | 1.5   |     |
| coeff. effetti a lungo termine         | $\alpha cc$         | = | 0.85  |     |
| tensione di calcolo                    | $f_{cd}$            | = | 18.8  | MPa |
| coeff. riduzione resistenza bielle     | ν                   | = | 0.520 |     |
| tensione di calcolo bielle             | $\nu f_{\text{cd}}$ | = | 9.8   | MPa |
| acciaio                                |                     |   |       |     |
| tensione caratt. di snervamento        | fyk                 | = | 450.0 | MPa |
| coeff. parziale di sicurezza           | γs                  | = | 1.15  |     |
| tensione di snervamento di calcolo     | fyd                 | = | 391.3 | MPa |

# I LOTTO FUNZIONALE APICE - HIRPINIA FOGLIO

DOCUMENTO

VI0105 005

REV.


В

129 di

191



legenda



| sollecitazioni e verifiche       |             |   |         |    |
|----------------------------------|-------------|---|---------|----|
| taglio                           | VEd         | = | 11949   | kN |
| azione assiale                   | NEd         | = | 0       | kN |
|                                  |             |   |         |    |
| resistenza elemento non armato   | VRdc        | = | 1850.1  | kN |
|                                  |             |   |         |    |
| resistenza armatura a taglio     | VRds        | = | 23383.1 | kΝ |
| resistenza bielle calcestruzzo   | $V_{Rdmax}$ | = | 31738.2 | kN |
| inclinazione bielle calcestruzzo | θ           | = | 45.0    | ۰  |
| sezione                          |             |   | duttile |    |
|                                  |             |   |         |    |
| traslazione armatura long.       | aı          | = | 294.8   | cm |

Per quanto previsto al 7.9.6.2 delle NTC08, per pile e spalle le armature di confinamento atte a conferire duttilità alle zone di cerniera plastica non sono necessarie nei seguenti casi:

- se la sollecitazione di compressione ridotta risulta v<sub>k</sub>≤0.08;
- nel caso di sezioni in parete sottile, cave mono o multi-cellulari, o a doppio T, purchè risulti v<sub>k</sub>≤0.2, se è possibile raggiungere una duttilità in curvatura non inferiore a μc=12 senza che la deformazione di compressione massima nel conglomerato superi il valore 0.0035. In questo caso è sufficiente il rispetto delle regole applicabili per le armature di confinamento;
- se il fattore di struttura q non supera il valore 1.5.

negli altri casi dovrà risultare:

-  $\omega_{wd,r}$  = 0,33 · A<sub>c</sub>/A<sub>cc</sub> v<sub>k</sub> − 0,07 ≥ 0,12 per sezioni rettangolari

-  $\omega_{wd,c}$  = 1,4 ·  $\omega_{wd,r}$ per sezioni circolari

La percentuale meccanica è definita dalle espressioni:

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo 🗸 ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXX SOUL Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in E ZZ CL VI0105 005 IF28 01

 $-\omega_{wd,r} = A_{sw}/(s \cdot b) \cdot f_{vd}/f_{cd}$ 

elevazione

per sezioni rettangolari

-  $\omega_{wd,c}$  = 4  $A_{sp}/(D_{sp} \cdot s) \cdot f_{yd}/f_{cd}$ 

per sezioni circolari

Tuttavia, per quanto previsto al 2.5.2.2.6 del Manuale di progettazione RFI, se q≤1.5 vanno rispettate le seguenti limitazioni geometriche:

REV.

В

130 di

191

- Asw/(s · b) · fyd/fcd ≥  $\zeta$ per sezioni rettangolari

- ρw · fyd/fcd ≥ 1,40 ·  $\zeta$ per sezioni circolari

con:

pw = Vsc/Vcc rapporto tra il volume complessivo delle armature di confinamento Vsc e volume di calcestruzzo confinato Vcc;

 $\zeta = 0.07 \text{ per ag} \ge 0.35 \text{ g};$ 

 $\zeta = 0.05 \text{ per ag} \ge 0.25 \text{ g};$ 

 $\zeta = 0.04 \text{ per ag} \ge 0.15 \text{ g};$ 

 $\zeta = 0.03 \text{ per ag} < 0.15 \text{ g}.$ 

Essendo q=1.5 e a<sub>g</sub> ≥0.35 risulterà:

 $\omega_{\text{wd},r,\text{min}} = 0.07$ 

Poiché secondo il 7.4.6.2.2 delle NTC08 almeno una barra ogni due di guelle disposte sui lati deve essere contenuta da staffe interne o legature, si dispongono 62 legature φ8

 $A_{sw}/s$  staffe = 0.0101 m<sup>2</sup>/m

 $A_{sw}/s$  spilli = 0.0206 m<sup>2</sup>/m

b = 8.6 m

 $f_{vd} = 391.3 \text{ MPa}$ 

 $f_{cd} = 18.81 \text{ MPa}$ 

 $\omega_{wd,r} = 0.074 > \omega_{wd,r,min}$ 

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI – BARI salini impregilo ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXXX9训 NETENGINEERING Alpina PROGETTO ESECUTIVO **FOGLIO** COMMESSA LOTTO CODIFICA DOCUMENTO REV. Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in 131 di IF28 E ZZ CL VI0105 005 01 В 191 elevazione

# 9.1.6 Verifica SLE-RARA

In combinazione SLE-RARA si vuole verificare che l'apertura delle fessure risulti

 $w_k \le 0.2 \text{ mm}$ 

Dal punto di vista tensionale dovrà risultare inoltre:

tensione limite nel calcestruzzo:  $\sigma_{cls} = 0.55 f_{ck} = 18.2 MPa$ 

tensione limite nelle barre:  $\sigma_{acciaio} = 0.75 f_{yk} = 337.5 Mpa$ 

Si riportano le verifiche effettuate con il software RC-SEC per le sollecitazioni riportate al 8.3.1

# COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo superiore della sezione
My Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sezione

| N°Comb. | N      | Mx      | My       |
|---------|--------|---------|----------|
| 1       | 136900 | 1324700 | -965200  |
| 2       | 33800  | 974600  | -284800  |
| 3       | 95900  | 1584400 | -691200  |
| 4       | 260500 | 888500  | -2183600 |

# COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Sf min Xf min, Yf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Af eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure Srm Distanza media tra le fessure espressa in mm (§ B.6.6.3 Istruzioni DM96) Coeff.(§ B.6.6.3 Istruz. DM96) dipendente dalla forma del diagramma tensioni K3

Ap.fess. Apertura fessure in mm. Calcolo secondo § 4.1.2.2.4.6 NTC.

| N°Comb | Ver | Sc max | Xc max | Yc max | Sf min | Xf min | Yf min | Ac eff. | Af eff. | Srm | K3    | Ap. fess. |
|--------|-----|--------|--------|--------|--------|--------|--------|---------|---------|-----|-------|-----------|
| 1      | S   | 23,4   | -157,4 | 368,3  | -753   | 149,4  | -365,0 | 39744   | 475,0   | 282 | 0,125 | 0,072     |
| 2      | S   | 11,3   | -135,7 | 400,7  | -385   | 129,6  | -394,6 | 32871   | 371,0   | 288 | 0,125 | 0,038     |
| 3      | S   | 21,8   | -157,4 | 368,3  | -696   | 149,4  | -365,0 | 32762   | 384,5   | 284 | 0,125 | 0,067     |
| 4      | S   | 36,2   | 0,0    | 0,0    | -1408  | 156,5  | -329,2 | 47444   | 551,9   | 279 | 0,125 | 0,134     |

La sezione risulta verificata.

# 9.1.7 Verifica SLE-QP

Dal punto di vista tensionale dovrà risultare inoltre:

tensione limite nel calcestruzzo:  $\sigma_{cls} = 0.40 f_{ck} = 13.2 Mpa$ 

Tale condizione, essendo verificata in combinazione SLE-RARA, risulta implicitamente soddisfatta anche in SLE-QP.

# 9.2 VERIFICA DEGLI SPOSTAMENTI

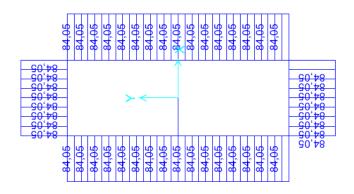
Di seguito sono riportati i massimi valori degli spostamenti in testa pila per le combinazioni SLE-RARA e SLU-SISMA. I valori ottenuti dall'analisi per le combinazioni sismiche sono stati ulteriormente elaborati così come descritto nel §8.3.2. Gli spostamenti risultanti sono i seguenti:

| Spostamenti in combinazione SLE-RARA |              |      |      |       |  |  |  |
|--------------------------------------|--------------|------|------|-------|--|--|--|
| sollecitazione                       | combinazione | d1   | d2   | d3    |  |  |  |
|                                      | Combinazione | mm   | mm   | mm    |  |  |  |
| MAX d1                               | SLE-RARA85   | 0.76 | 0.08 | -0.23 |  |  |  |
| MIN d1                               | SLE-RARA1    | 0.00 | 0.00 | -0.18 |  |  |  |
| MAX d2                               | SLE-RARA22   | 0.12 | 0.14 | -0.22 |  |  |  |
| MIN d2                               | SLE-RARA1    | 0.00 | 0.00 | -0.18 |  |  |  |
| MAX d3                               | SLE-RARA5    | 0.17 | 0.06 | -0.16 |  |  |  |
| MIN d3                               | SLE-RARA27   | 0.42 | 0.04 | -0.26 |  |  |  |

| Spostamenti in combinazione SLU-SISMA |              |       |       |       |  |  |  |
|---------------------------------------|--------------|-------|-------|-------|--|--|--|
| sollecitazione                        | combinazione | d1    | d2    | d3    |  |  |  |
| Soliecitazione                        | Combinazione | mm    | mm    | mm    |  |  |  |
| MAX d1                                | slu-SISMA6   | 7.65  | 0.73  | -0.57 |  |  |  |
| MIN d1                                | slu-SISMA1   | -6.97 | -0.72 | -0.77 |  |  |  |
| MAX d2                                | slu-SISMA26  | 2.29  | 2.44  | -0.56 |  |  |  |
| MIN d2                                | slu-SISMA28  | -1.87 | -2.38 | -0.77 |  |  |  |
| MAX d3                                | slu-SISMA41  | 2.32  | 0.72  | -0.19 |  |  |  |
| MIN d3                                | slu-SISMA38  | -2.09 | -0.71 | -1.10 |  |  |  |

| APPALTATORE:                                                                                     |                 |                |                  |                    |                     |                         |                  |                         |
|--------------------------------------------------------------------------------------------------|-----------------|----------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
| <u>Consorzio</u>                                                                                 | <u>Soci</u>     |                |                  | ITINI              |                     | NADOLI D                | A D I            |                         |
| Hirpinia AV                                                                                      | salini 🥢        | <b>ASTALDI</b> |                  | HIIN               | EKAKIO              | NAPOLI – B              | AKI              |                         |
| PROGETTAZIONE:                                                                                   |                 |                |                  | RADDO              | PPIO TRAT           | TTA APICE – O           | RSARA            |                         |
| <u>Mandataria</u>                                                                                | <u>Mandanti</u> |                | I                | LOTTO              | FUNZIONA            | LE APICE - H            | IRPINIA          |                         |
| XXX50HL                                                                                          | NETENGINEERING  | Alpina         |                  |                    |                     |                         |                  |                         |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |                 |                | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>133 di<br>191 |

# 9.3 EFFETTI DI TERMICA E RITIRO DIFFERENZIALE TRA PILA E PLATEA DI


# **FONDAZIONE**

Applicando le indicazioni riportate al 5.2.2.5.2 delle NTC08, anche per le pile si dovrà tenere conto degli effetti dovuti ai fenomeni termici e di ritiro differenziale. Per le usuali tipologie di pile cave, salvo più accurate determinazioni, si potranno adottare le ipotesi approssimate di seguito descritte:

- differenza di temperatura fra interno ed esterno pari a 10 °C, considerando un modulo elastico E non ridotto
- Variazione termica uniforme tra fusto pila e zattera interrata pari a 5 °C con variazione lineare tra l'estradosso zattera di fondazione ed un'altezza da assumersi, in mancanza di determinazioni più precise, pari a 5 volte lo spessore della parete della pila.
- ritiro differenziale fusto-fondazione (fusto-pulvino), considerando un plinto (pulvino)
  parzialmente stagionato, che non ha, quindi, ancora esaurito la relativa deformazione da
  ritiro. Conseguentemente a tale situazione si potrà considerare un valore di ritiro
  differenziale pari al 50% di quello a lungo termine, considerando un valore convenzionale
  del modulo di elasticità pari ad 1/3 di quello misurato

Considerare una differenza di temperatura fra zona interna ed esterna della pila, significa applicare un delta termico a farfalla sui setti esterni, con gradiente pari a 10°C/0.55m = 18.18 °C/m, il risultato che si ottiene in termini di sollecitazioni è un momento flettente costante

Considerando una sezione piana rappresentativa della sezione della pila,





 $M_{ed1} = 84 \text{ kNm}$ 

Applicando la variazione termica lineare per un'altezza di 0.55\*5=2,75m, si ottengono delle sollecitazioni di trazione in direzione trasversale:

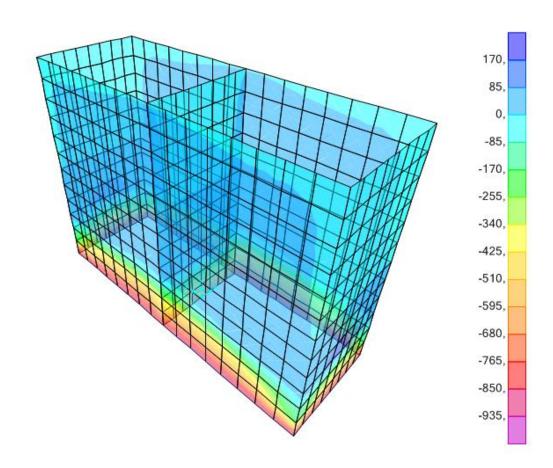



Figura.9.2 Azione assiale in direzione trasversale

Le sollecitazioni massime alla base risultano mediate in un metro di altezza risultano dell'ordine di 817 kN in trazione.

# Poiché al 4.1.1.1 le NTC riportano:

"L'analisi elastica lineare può essere usata per valutare gli effetti delle azioni sia per gli stati limite di esercizio sia per gli stati limite ultimi. Per la determinazione degli effetti delle azioni, le analisi saranno effettuate assumendo: - sezioni interamente reagenti con rigidezze valutate riferendosi al solo calcestruzzo; - relazioni tensione deformazione lineari; - valori medi del modulo d'elasticità. Per la determinazione degli effetti delle deformazioni termiche, degli eventuali cedimenti e del ritiro le analisi saranno effettuate

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo 🗸 ASTALDI Hirpinia AV **RADDOPPIO TRATTA APICE - ORSARA** PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti **XXX**SØ∭ Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in 135 di E ZZ CL VI0105 005 IF28 01 В 191 elevazione

assumendo: - per gli stati limite ultimi, rigidezze ridotte valutate ipotizzando che le sezioni siano fessurate (in assenza di valutazioni più precise la rigidezza delle sezioni fessurate potrà essere assunta pari alla metà della rigidezza delle sezioni interamente reagenti); - per gli stati limite di esercizio, rigidezze intermedie tra quelle delle sezioni interamente reagenti e quelle delle sezioni fessurate"

Per effetto dell'adozione del modulo elastico ridotto tale valore vale:

 $Ned_{SLE} = 75\% *750 = 563 kN$ 

Ned<sub>SLu</sub>= 50% \*750 =375 kN

In questa fase si valuta l'effetto del ritiro, anch'esso genera un effetto di trazione in direzione trasversale a causa dell'impedimento di deformazione offerto dal vincolo della fondazione.

Le deformazioni vengono applicate al modello di calcolo come una variazione termica equivalente,

$$\Delta T = \alpha * \varepsilon_{r\infty} = \alpha * (\varepsilon_{cd} + \varepsilon_{ca})$$

Considero come sezione esposta su 2 facce il setto di dimensioni maggiori 1m\*0.55m

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandanti NET NOINEERING ASTALDI ASTALDI ASTALDI ASTALDI ASTALDI AND ASTALD

# ITINERARIO NAPOLI - BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

# PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIC IF28 01 E ZZ CL VI0105 005 B 191

| BEAM                                            | ε <sub>beam</sub> (to                   | ∞) |          |
|-------------------------------------------------|-----------------------------------------|----|----------|
| Concrete class C30/37                           | fck (Mpa)                               | 32 | N        |
| Concrete elastic modulus                        | E <sub>cm</sub> (Gpa)                   | =  | 33       |
| element thickness                               | s (mm)                                  | =  | 550      |
| exposed surfaces                                | n°                                      | =  | 2        |
| member's notional size α=2Ac/u h0               | α (mm)                                  | =  | 550      |
| relative hunidity                               | UR%                                     | =  | 75       |
| age of concrete in days                         | t (gg)                                  |    | 18250    |
| age of concrete at loading in days/t0           | t <sub>s</sub> (gg)                     | =  | 2        |
| coefficient which depends on the type of cement | $\alpha_{\text{ds1}}$                   | =  | 4        |
| coefficient which depends on the type of cement | $\alpha_{\text{ds2}}$                   | =  | 0.12     |
| reference mean compressive strength             | f <sub>cm0</sub> (Mpa)                  | =  | 10       |
| characteristic compressive strength             | f <sub>ck</sub> (Mpa)                   | =  | 32       |
| mean compressive strength                       | f <sub>cm</sub> (Mpa)                   | =  | 40       |
| coefficient for UR%                             | $\beta_{\text{RH}}$                     | =  | 0.90     |
| basic drying shrinkage strain                   | $\epsilon_{cd0}$                        | =  | 3.11E-04 |
| drying shrinkage strain - time effect           | $\beta_{ds}$ (t, t <sub>s</sub> )       | =  | 0.97     |
| coefficient depending on the notional size      | k <sub>h</sub>                          | =  | 0.7      |
| drying shrinkage strain x1000                   | ε <sub>cd</sub> (t )                    | =  | 0.21     |
| autogenous shrinkage strain-time effect         | β <sub>as</sub> (t)                     | =  | 1        |
| autogenous shrinkage strain - infinity          | ε <sub>ca</sub> (∞)                     | =  | 0.0001   |
| autogenous shrinkage strain x1000               | $\varepsilon_{ca}$ (t )                 | =  | 0.055    |
| total shrinkage strain x1000                    | $\varepsilon_{cs}$ (t, t <sub>s</sub> ) | =  | 0.2668   |
| Equivalent thermal effect                       | ΔT°C                                    | =  | 26.7     |

| Final creep coefficient | φ(∞,t0) =                     | 2.60    |
|-------------------------|-------------------------------|---------|
| Elong-term t0=28 days   | E <sub>log-term</sub> (Mpa)   | 11.1153 |
| Eshort-term             | E <sub>short-term</sub> (Mpa) | 25386.7 |

Il valore di  $\Delta T$  va considerato con un'aliquota del 50% e rapportato con i moduli elastici a breve e lungo termine.

 $\Delta T_2 = 50\% [\Delta T^*1/3] = 4.45^{\circ}C$ 



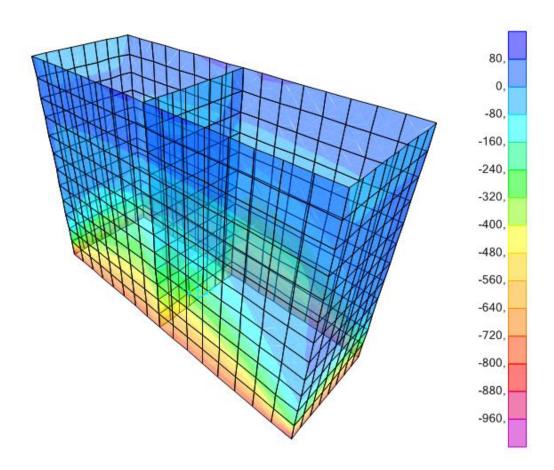



Figura 9.3 Azione assiale in direzione trasversale generata dal ritiro differenziale pila-fondazione

Le sollecitazioni massime alla base risultano (mediate nell'altezza di 1 metro), dell'ordine di 650 kN in trazione.

Applicando i coefficienti di combinazione, si ottengono le sollecitazioni di verifica SLU e SLE.

Combinazione SLU

 $Q_{rit}*1.2 + Q_{t1}*1.5 + Q_{t2}*1.5$ 

combinazione SLE

 $Q_{rit} + Q_{t1} + Q_{t2}$ 

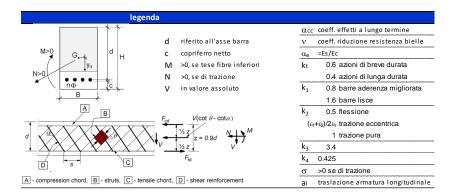
 $M_{sle} = 84 \text{ kN}$ 

### APPALTATORE: Consorzio Soci ITINERARIO NAPOLI - BARI salini impregilo **ASTALDI** Hirpinia AV RADDOPPIO TRATTA APICE - ORSARA PROGETTAZIONE: I LOTTO FUNZIONALE APICE - HIRPINIA Mandataria Mandanti XXX SOUL Alpina NETENGINEERING PROGETTO ESECUTIVO COMMESSA LOTTO CODIFICA DOCUMENTO REV. Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in 138 di E ZZ CL VI0105 005 IF28 01 В 191 elevazione

 $N_{sle} = 563 \text{ kN} + 700 \text{ kN} = 1263 \text{ kN}$ 

 $M_{slu} = 84*1.5 = 126 \text{ kN}$ 

 $N_{slu} = 375*1.5+700*1.2 = 1402 \text{ kN}$ 


Si effettua la verifica nello spessore del setto di 55 cm, all'armatura trasversale prevista per il taglio viene integrata per il primo metro da spiccato fondazione un armatura aggiuntiva φ22/15 ai lembi esterni.

# Si riportano le verifiche SLE e SLU

|         | geometria         |           |                    |                    |  |  |
|---------|-------------------|-----------|--------------------|--------------------|--|--|
|         | sezio             | ne trasve | rsale              |                    |  |  |
| В       | Н                 | С         | d                  | Z                  |  |  |
| [cm]    | [cm]              | [cm]      | [cm]               | [cm]               |  |  |
| 100     | 55                | 4.9       | 49.0               | 44.1               |  |  |
|         | armatu            | ra longit | udinale            |                    |  |  |
| Nbarre  | ф                 | d         | AsI                |                    |  |  |
|         | [mm]              | [cm]      | [cm <sup>2</sup> ] |                    |  |  |
| 13.33   | 22                | 6.0       | 50.67              |                    |  |  |
| 13.33   | 22                | 49.0      | 50.67              |                    |  |  |
|         |                   |           |                    |                    |  |  |
|         |                   |           |                    |                    |  |  |
|         | armatura a taglio |           |                    |                    |  |  |
| Nbracci | ф                 | s         | α                  | Asw                |  |  |
|         | [mm]              | [cm]      | [°]                | [cm <sup>2</sup> ] |  |  |
| 2       | 12                | 20        | 90                 | 2.26               |  |  |

| materiali           |            |       |          |             |       |  |  |
|---------------------|------------|-------|----------|-------------|-------|--|--|
| ca                  | alcestruzz | 0     |          | acciaio     |       |  |  |
| Rck                 | 40         | [MPa] | fyk      | 450         | [MPa] |  |  |
| fck                 | 33.2       | [MPa] | γs       | 1.15        |       |  |  |
| γс                  | 1.5        |       | fyd      | 391.3       | [MPa] |  |  |
| $\alpha$ cc         | 0.85       |       | Es       | 210000      | [MPa] |  |  |
| fcd                 | 18.8       | [MPa] | εuk      | 75          | [‰]   |  |  |
| ν                   | 0.520      |       |          |             |       |  |  |
| €c2                 | 2.0        | [‰]   |          |             |       |  |  |
| €cu2                | 3.5        | [‰]   |          |             |       |  |  |
| $\alpha_{\text{e}}$ | 15.0       |       |          |             |       |  |  |
| kt                  | 0.4        |       | V        | alori limit | e     |  |  |
| $k_1$               | 0.8        |       | 0,45 fck | 14.9        | [MPa] |  |  |
| k <sub>3</sub>      | 3.4        |       | 0,8 fyk  | 360.0       | [MPa] |  |  |
| $k_4$               | 0.425      |       | Wk,lim   | -           | [mm]  |  |  |

|                |            | sollecitazi | oni e ris | sultati  |              |        |                         |                      |          | rifica DM(   | 10       |
|----------------|------------|-------------|-----------|----------|--------------|--------|-------------------------|----------------------|----------|--------------|----------|
|                | SLE        |             |           |          | SLU          |        |                         |                      | Ve       | TITICA DIVIC | 10       |
| MEk            | 84.00      | [kNm]       |           | MEd      | 126.00       | [kNm]  | _                       |                      |          |              |          |
| NEk            | 1263       | [kN]        |           | NEd      | 1402         | [kN]   |                         | tip                  | o di rot | tura         | 2        |
| tensi          | oni e fess | ure         |           | VEd      | 0.00         | [kN]   |                         | 1                    | lato a   | cciaio       |          |
| Mdec           | -          | [kNm]       |           | pres     | so-flessior  | ne     |                         | 2                    | lato c   | ls - acciaio | snervato |
| Mcr            | 56.2       | [kNm]       | _         | MRd      | 581.8        | [kNm]  |                         | 3                    | lato c   | ls - acciaio | elastico |
|                |            |             |           | FS       | 4.62         |        | $\longrightarrow$       | 4                    | sez. t   | ot. compre   | essa     |
| Уn             | -          | [cm]        |           |          | taglio       |        |                         |                      |          |              |          |
| σc,min         | -          | [MPa]       | _         | VRdc     | 20.0         | [kN]   | ='                      | cor                  | tributo  | Asl          |          |
| σs,min         | 86.1       | [MPa]       | _         | non serv | e armatura a | taglio | _                       | sce                  | lta      | no           |          |
| σs,max         | 163.2      | [MPa]       |           |          |              |        |                         | ang                  | golo θ   |              |          |
|                |            |             | _         | VRds     | 418.5        | [kN]   | -                       | sce                  | lta      | imposto      |          |
| k <sub>2</sub> | 0.7        |             |           | VRdmax   | 1653.5       | [kN]   | $ \Longleftrightarrow $ | $\theta$ im          | posto    | 25           | [°]      |
| Esm-Ecm        | 0.53       | [‰]         |           | θ        | 25.0         | [°]    |                         | $\theta_{\text{ca}}$ | lcolato  | 12.3         | [°]      |
| Sr,max         | 31.2       | [cm]        |           | sezione  | duttile      |        |                         | $\theta$ int         | F        | 21.8         | [°]      |
| Wk             | 0.165      | [mm]        | _         | aı       | 49.0         | [cm]   | •                       | θsu                  | n        | 45           | [°]      |





# 10 ALLEGATI

# 10.1 OUTPUT RC-SEC, SEZIONE DI CALCOLO

# CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

| CALCESTRUZZO - | Classe:                              | C32/40              |                     |
|----------------|--------------------------------------|---------------------|---------------------|
|                | Resis. compr. di calcolo fcd:        | 188,10              | daN/cm <sup>2</sup> |
|                | Resis. compr. ridotta fcd':          | 94,05               | daN/cm <sup>2</sup> |
|                | Def.unit. max resistenza ec2:        | 0,0020              |                     |
|                | Def.unit. ultima ecu:                | 0,0035              | daN/cm <sup>2</sup> |
|                | Diagramma tensione-deformaz.:        | Parabola-Rettangolo |                     |
|                | Modulo Elastico Normale Ec:          | 333460              | daN/cm <sup>2</sup> |
|                | Coeff. di Poisson:                   | 0,20                |                     |
|                | Resis. media a trazione fctm:        | 31,00               | daN/cm <sup>2</sup> |
|                | Coeff. Omogen. S.L.E.:               | 15,0                |                     |
|                | Sc limite S.L.E. comb. Rare:         | 166,00              | daN/cm <sup>2</sup> |
|                | Ap.Fessure limite S.L.E. comb. Rare: | 99999,000           | mm                  |
| ACCIAIO -      | Tipo:                                | B450C               |                     |
| 710011110      | Resist. caratt. snervam. fyk:        | 4500.0              | daN/cm²             |
|                | Resist, caratt, rottura ftk:         | 4500.0              |                     |
|                | Resist. snerv. di calcolo fyd:       | 3913.0              |                     |
|                | Resist. ultima di calcolo ftd:       | 3913,0              |                     |
|                | Deform. ultima di calcolo Epu:       | 0,068               |                     |
|                | Modulo Elastico Ef                   | 2000000             | daN/cm²             |
|                | Diagramma tensione-deformaz.:        | Bilineare finito    |                     |
|                | Coeff. Aderenza istantaneo ß1*ß2:    | 1,00                |                     |
|                | Coeff. Aderenza differito ß1*ß2:     | 0,50                |                     |
|                | Sf limite S.L.E. Comb. Rare:         | 3600,0              | daN/cm²             |
|                |                                      |                     |                     |

# **CARATTERISTICHE DOMINI CONGLOMERATO**

# DOMINIO N° 1

| Forma del Do<br>Classe Conglo |                                                                | Poligonale<br>C32/40                                        |
|-------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|
| N°vertice:                    | X [cm]                                                         | Y [cm]                                                      |
| 1<br>2<br>3<br>4<br>5<br>6    | -165,0<br>-157,4<br>-135,7<br>-103,3<br>-65,0<br>65,0<br>103,3 | 330,0<br>368,3<br>400,7<br>422,4<br>430,0<br>430,0<br>422,4 |
| 8                             | 135,7                                                          | 400,7                                                       |
| 9                             | 157,4                                                          | 368,3                                                       |
| 10                            | 165,0                                                          | 330,0                                                       |
| 11                            | 165,0                                                          | -330,0                                                      |
| 12                            | 157,4                                                          | -368,3                                                      |
| 13                            | 135,7                                                          | -400,7                                                      |
| 14                            | 103,3                                                          | -422,4                                                      |

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandanti NET NGINEERING APPALTATORE: Mandataria Appaltation Appaltat

# ITINERARIO NAPOLI - BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

# PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

| L |          |
|---|----------|
|   |          |
|   | COMMESSA |
|   | IF28     |

LOTTO CODIFICA

01 E ZZ CL

DOCUMENTO VI0105 005 REV. FOGLIO B 140 di 191

| 15 | 65,0   | -430,0 |
|----|--------|--------|
| 16 | -65,0  | -430,0 |
| 17 | -103,3 | -422,4 |
| 18 | -135,7 | -400,7 |
| 19 | -157,4 | -368,3 |
| 20 | -165,0 | -330,0 |
|    |        |        |

# DOMINIO N° 2

| Forma del Do<br>Classe Conglo | Poligonale vuoto<br>C32/40 |        |
|-------------------------------|----------------------------|--------|
| N°vertice:                    | X [cm]                     | Y [cm] |
| 1                             | -110,0                     | 330,0  |
| 2                             | -106,6                     | 347,2  |
| 3                             | -96,8                      | 361,8  |
| 4                             | -82,2                      | 371,6  |
| 5                             | -65,0                      | 375,0  |
| 6                             | 65,0                       | 375,0  |
| 7                             | 82,2                       | 371,6  |
| 8                             | 96,8                       | 361,8  |
| 9                             | 106,6                      | 347,2  |
| 10                            | 110,0                      | 330,0  |
| 11                            | 110,0                      | 20,0   |
| 12                            | -110,0                     | 20,0   |

# DOMINIO N° 3

| Forma del Dominio:<br>Classe Conglomerato: |                                                                          |  |
|--------------------------------------------|--------------------------------------------------------------------------|--|
| X [cm]                                     | Y [cm]                                                                   |  |
| 110,0                                      | -20,0                                                                    |  |
| 110,0                                      | -330,0                                                                   |  |
| 106,6                                      | -347,2                                                                   |  |
| 96,8                                       | -361,8                                                                   |  |
| 82,2                                       | -371,6                                                                   |  |
| 65,0                                       | -375,0                                                                   |  |
| -65,0                                      | -375,0                                                                   |  |
| -82,2                                      | -371,6                                                                   |  |
| -96,8                                      | -361,8                                                                   |  |
| -106,6                                     | -347,2                                                                   |  |
| -110,0                                     | -330,0                                                                   |  |
| -110,0                                     | -20,0                                                                    |  |
|                                            | X [cm]  110,0 110,0 106,6 96,8 82,2 65,0 -65,0 -82,2 -96,8 -106,6 -110,0 |  |

# **DATI BARRE ISOLATE**

| N°Barra | X [cm] | Y [cm] | DiamØ[mm] |
|---------|--------|--------|-----------|
| 1       | -156,5 | 329,2  | 24        |
| 2       | -149,4 | 365,0  | 24        |
| 3       | -129,6 | 394,6  | 24        |
| 4       | -100,0 | 414,4  | 24        |
| 5       | -64,2  | 421,5  | 24        |
| 6       | 64,2   | 421,5  | 24        |
| 7       | 100,0  | 414,4  | 24        |
| 8       | 129,6  | 394,6  | 24        |
| 9       | 149,4  | 365,0  | 24        |
| 10      | 156,5  | 329,2  | 24        |
| 11      | 156,5  | -329,2 | 24        |

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandanti NET NGINEERING Alpina

# ITINERARIO NAPOLI - BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

| DDOCETTO | FCFCI | ITIVO |
|----------|-------|-------|
| PROGETTO | ESEUL | טעוונ |

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

| ~ |     |
|---|-----|
|   | 201 |
|   | COM |

| MMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>141 di<br>191 |
|----------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
|----------------|--------------------|---------------------|-------------------------|------------------|-------------------------|

| 149,4  | -365,0                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 129,6  | -394,6                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100,0  | -414,4                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 64,2   | -421,5                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -64,2  | -421,5                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -100,0 | -414,4                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -129,6 | -394,6                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -149,4 | -365,0                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -156,5 |                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -118,5 | 330,8                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -114,6 | 350,5                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -102,9 | 367,9                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -85,5  | 379,6                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -65,8  | 383,5                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65,8   | 383,5                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 85,5   | 379,6                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 102,9  | 367,9                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 350,5                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 118,5  | 330,8                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 118,5  | 11,5                                                                                                                                                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -118,5 | 11,5                                                                                                                                                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 118,5  | -11,5                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 118,5  | -330,8                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 114,6  | -350,5                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 102,9  | -367,9                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 85,5   | -379,6                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65,8   |                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -65,8  | -383,5                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -85,5  | -379,6                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | -367,9                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | -350,5                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -118,5 | -11,5                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 129,6 100,0 64,2 -64,2 -100,0 -129,6 -149,4 -156,5 -118,5 -114,6 -102,9 -85,5 -65,8 85,5 102,9 114,6 118,5 -118,5 -118,5 -118,5 -118,5 -118,5 -118,5 -118,5 -118,6 -102,9 -85,5 -65,8 -65,8 -65,8 -65,8 | 129,6       -394,6         100,0       -414,4         64,2       -421,5         -64,2       -421,5         -100,0       -414,4         -129,6       -394,6         -149,4       -365,0         -156,5       -329,2         -118,5       330,8         -114,6       350,5         -102,9       367,9         -85,5       379,6         -65,8       383,5         85,5       379,6         102,9       367,9         114,6       350,5         118,5       11,5         -118,5       11,5         118,5       -11,5         118,5       -330,8         114,6       -350,5         -05,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5         -65,8       -383,5     < |

# **DATI GENERAZIONI LINEARI DI BARRE**

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

| N°Gen. | N°Barra Ini. | N°Barra Fin. | N°Barre | Ø  |
|--------|--------------|--------------|---------|----|
| 1      | 1            | 20           | 43      | 24 |
| 2      | 10           | 11           | 43      | 24 |
| 3      | 21           | 32           | 20      | 24 |
| 4      | 30           | 31           | 20      | 24 |
| 5      | 1            | 2            | 1       | 24 |
| 6      | 2            | 3            | 1       | 24 |
| 7      | 3            | 4            | 1       | 24 |
| 8      | 4            | 5            | 1       | 24 |
| 9      | 5            | 6            | 7       | 24 |
| 10     | 6            | 7            | 1       | 24 |
| 11     | 7            | 8            | 1       | 24 |
| 12     | 8            | 9            | 1       | 24 |
| 13     | 9            | 10           | 1       | 24 |
| 14     | 25           | 26           | 7       | 24 |
| 15     | 11           | 12           | 1       | 24 |
| 16     | 12           | 13           | 1       | 24 |

| APPALTATORE                                                                                      | Ξ:   |                    |                  |                    |                     |                         |                  | •                       |  |
|--------------------------------------------------------------------------------------------------|------|--------------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|--|
| Consorzio                                                                                        | Soci | İ                  |                  |                    |                     |                         |                  |                         |  |
| HirpiniaAV                                                                                       | imp  | salini 🥢<br>regilo | <u></u> ASTALDI  |                    | HIIN                | ERARIO                  | NAPOLI – B       | ARI                     |  |
| PROGETTAZIO                                                                                      | NE:  |                    |                  |                    | RADDO               | PPIO TRAI               | TTA APICE - O    | RSARA                   |  |
| <u>Mandataria</u>                                                                                | Man  | <u>danti</u>       |                  | I                  | LOTTO               | <b>FUNZIONA</b>         | LE APICE – H     | IRPINIA                 |  |
|                                                                                                  | NE   | TENGINEERING       | Alpina           |                    |                     |                         |                  |                         |  |
| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione |      |                    | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>142 di<br>191 |  |
| 17                                                                                               | 13   | 14                 | 1                | 24                 |                     |                         |                  |                         |  |
| 18                                                                                               | 14   | 15                 | 1                | 24                 |                     |                         |                  |                         |  |
| 19                                                                                               | 15   | 16                 | 7                | 24                 |                     |                         |                  |                         |  |
| 20                                                                                               | 16   | 17                 | 1                | 24                 |                     |                         |                  |                         |  |
| 21                                                                                               | 17   | 18                 | 1                | 24                 |                     |                         |                  |                         |  |
| 22                                                                                               | 18   | 19                 | 1                | 24                 |                     |                         |                  |                         |  |
| 23                                                                                               | 19   | 20                 | 1                | 24                 |                     |                         |                  |                         |  |
| 24                                                                                               | 38   | 39                 | 7                | 24                 |                     |                         |                  |                         |  |
| 25                                                                                               | 31   | 32                 | 11               | 24                 |                     |                         |                  |                         |  |
| 26                                                                                               | 44   | 33                 | 11               | 24                 |                     |                         |                  |                         |  |
| 27                                                                                               | 44   | 43                 | 20               | 24                 |                     |                         |                  |                         |  |
| 28                                                                                               | 32   | 44                 | 1                | 24                 |                     |                         |                  |                         |  |
| 29                                                                                               | 33   | 34                 | 20               | 24                 |                     |                         |                  |                         |  |
| 30                                                                                               | 31   | 33                 | 1                | 24                 |                     |                         |                  |                         |  |

# **10.2 COMBINAZIONI SLU**

| slu1 | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
|------|------------|----|-----|------|---|------|------|------|------|
| slu1 |            |    | G21 | 1,5  |   |      |      |      |      |
| slu1 |            |    | G22 | 1,5  |   |      |      |      |      |
| slu2 | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
| slu2 |            |    | G21 | 1,5  |   |      |      |      |      |
| slu2 |            |    | G22 | 1,5  |   |      |      |      |      |
| slu2 |            |    | Q15 | 1,45 |   |      |      |      |      |
| slu2 |            |    | Q25 | 1,45 |   |      |      |      |      |
| slu2 |            |    | Q35 | 0,73 |   |      |      |      |      |
| slu2 |            |    | Q45 | 0,73 |   |      |      |      |      |
| slu3 | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
| slu3 |            |    | G21 | 1,5  |   |      |      |      |      |
| slu3 |            |    | G22 | 1,5  |   |      |      |      |      |
| slu3 |            |    | Q13 | 1,45 |   |      |      |      |      |
| slu3 |            |    | Q23 | 0,73 |   |      |      |      |      |
| slu3 |            |    | Q33 | 1,45 |   |      |      |      |      |
| slu3 |            |    | Q43 | 1,45 |   |      |      |      |      |
| slu4 | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
| slu4 |            |    | G21 | 1,5  |   |      |      |      |      |
| slu4 |            |    | G22 | 1,5  |   |      |      |      |      |
| slu4 |            |    | Q15 | 1,45 |   |      |      |      |      |
| slu4 |            |    | Q25 | 0,73 |   |      |      |      |      |
| slu4 |            |    | Q35 | 1,45 |   |      |      |      |      |
| slu4 |            |    | Q45 | 1,45 |   |      |      |      |      |
| slu4 |            |    | Q51 | 0,9  |   |      |      |      |      |
| slu5 | Linear Add | No | G1  |      | 1 | none | none | none | none |
| slu5 |            |    | G21 |      | 1 |      |      |      |      |

APPALTATORE:

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

Mandataria Mandanti



Alpina

# ITINERARIO NAPOLI – BARI

# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO        |
|----------|-------|----------|------------|------|---------------|
| IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 143 di<br>191 |

| elevazione |            |    |     |      |   |      |      |      |      |
|------------|------------|----|-----|------|---|------|------|------|------|
| slu5       |            |    | Q51 | 0,9  |   |      |      |      |      |
| slu5       |            |    | Q61 | 1,45 |   |      |      |      |      |
| slu5       |            |    | Q71 | 1,5  |   |      |      |      |      |
| slu6       | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
| slu6       |            |    | G21 | 1,5  |   |      |      |      |      |
| slu6       |            |    | G22 | 1,5  |   |      |      |      |      |
| slu6       |            |    | Q12 | 1,45 |   |      |      |      |      |
| slu6       |            |    | Q22 | 0,73 |   |      |      |      |      |
| slu6       |            |    | Q32 | 1,45 |   |      |      |      |      |
| slu6       |            |    | Q42 | 1,45 |   |      |      |      |      |
| slu6       |            |    | Q51 | 0,9  |   |      |      |      |      |
| slu7       | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
| slu7       |            |    | G21 | 1,5  |   |      |      |      |      |
| slu7       |            |    | G22 | 1,5  |   |      |      |      |      |
| slu7       |            |    | Q11 | 1,45 |   |      |      |      |      |
| slu7       |            |    | Q21 | 1,45 |   |      |      |      |      |
| slu7       |            |    | Q31 | 0,73 |   |      |      |      |      |
| slu7       |            |    | Q41 | 0,73 |   |      |      |      |      |
| slu8       | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
| slu8       |            |    | G21 | 1,5  |   |      |      |      |      |
| slu8       |            |    | G22 | 1,5  |   |      |      |      |      |
| slu8       |            |    | Q13 | 1,45 |   |      |      |      |      |
| slu8       |            |    | Q23 | 1,45 |   |      |      |      |      |
| slu8       |            |    | Q33 | 0,73 |   |      |      |      |      |
| slu8       |            |    | Q43 | 0,73 |   |      |      |      |      |
| slu8       |            |    | Q51 | 0,9  |   |      |      |      |      |
| slu9       | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
| slu9       |            |    | G21 | 1,5  |   |      |      |      |      |
| slu9       |            |    | G22 | 1,5  |   |      |      |      |      |
| slu9       |            |    | Q51 | 0,9  |   |      |      |      |      |
| slu9       |            |    | Q61 | 1,45 |   |      |      |      |      |
| slu9       |            |    | Q71 | 1,5  |   |      |      |      |      |
| slu10      | Linear Add | No | G1  |      | 1 | none | none | none | none |
| slu10      |            |    | G21 |      | 1 |      |      |      |      |
| slu10      |            |    | Q17 | 0,73 |   |      |      |      |      |
| slu10      |            |    | Q27 | 1,45 |   |      |      |      |      |
| slu10      |            |    | Q37 | 0,73 |   |      |      |      |      |
| slu10      |            |    | Q47 | 0,73 |   |      |      |      |      |
| slu11      | Linear Add | No | G1  | 1,35 |   | none | none | none | none |
|            |            |    |     |      |   |      |      |      |      |

APPALTATORE:

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

Mandataria Mandanti





# RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

144 di 191

ITINERARIO NAPOLI – BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. |
|----------|-------|----------|------------|------|
| IF28     | 01    | E ZZ CL  | VI0105 005 | В    |

| elevazione |            |    |     |      | IF28 | 01 | E 22 |      | /10105 005 |
|------------|------------|----|-----|------|------|----|------|------|------------|
| slu11      |            |    | G22 | 1,5  |      |    |      |      |            |
| slu11      |            |    | Q15 | 1,45 |      |    |      |      |            |
| slu11      |            |    | Q25 | 0,73 |      |    |      |      |            |
| slu11      |            |    | Q35 | 1,45 |      |    |      |      |            |
| slu11      |            |    | Q45 | 1,45 |      |    |      |      |            |
| slu12      | Linear Add | No | G1  | 1,35 | none | ı  | none | none | none       |
| slu12      |            |    | G21 | 1,5  |      |    |      |      |            |
| slu12      |            |    | G22 | 1,5  |      |    |      |      |            |
| slu12      |            |    | Q11 | 1,45 |      |    |      |      |            |
| slu12      |            |    | Q21 | 1,45 |      |    |      |      |            |
| slu12      |            |    | Q31 | 0,73 |      |    |      |      |            |
| slu12      |            |    | Q41 | 0,73 |      |    |      |      |            |
| slu12      |            |    | Q51 | 0,9  |      |    |      |      |            |
| slu13      | Linear Add | No | G1  | 1,35 | none | ı  | none | none | none       |
| slu13      |            |    | G21 | 1,5  |      |    |      |      |            |
| slu13      |            |    | G22 | 1,5  |      |    |      |      |            |
| slu13      |            |    | Q12 | 1,45 |      |    |      |      |            |
| slu13      |            |    | Q22 | 0,73 |      |    |      |      |            |
| slu13      |            |    | Q32 | 1,45 |      |    |      |      |            |
| slu13      |            |    | Q42 | 1,45 |      |    |      |      |            |
| slu14      | Linear Add | No | G1  | 1,35 | none | ı  | none | none | none       |
| slu14      |            |    | G21 | 1,5  |      |    |      |      |            |
| slu14      |            |    | G22 | 1,5  |      |    |      |      |            |
| slu14      |            |    | Q14 | 1,45 |      |    |      |      |            |
| slu14      |            |    | Q24 | 0,73 |      |    |      |      |            |
| slu14      |            |    | Q34 | 1,45 |      |    |      |      |            |
| slu14      |            |    | Q44 | 1,45 |      |    |      |      |            |
| slu14      |            |    | Q51 | 0,9  |      |    |      |      |            |
| slu15      | Linear Add | No | G1  | 1,35 | none | ı  | none | none | none       |
| slu15      |            |    | G21 | 1,5  |      |    |      |      |            |
| slu15      |            |    | G22 | 1,5  |      |    |      |      |            |
| slu15      |            |    | Q13 | 1,45 |      |    |      |      |            |
| slu15      |            |    | Q23 | 1,45 |      |    |      |      |            |
| slu15      |            |    | Q33 | 0,73 |      |    |      |      |            |
| slu15      |            |    | Q43 | 0,73 |      |    |      |      |            |
| slu16      | Linear Add | No | G1  | 1,35 | none | ı  | none | none | none       |
| slu16      |            |    | G21 | 1,5  |      |    |      |      |            |
| slu16      |            |    | G22 | 1,5  |      |    |      |      |            |
| slu16      |            |    | Q15 | 1,45 |      |    |      |      |            |
| slu16      |            |    | Q25 | 1,45 |      |    |      |      |            |

Consorzio

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u> XXX SOIL NETENGINEERING

**Alpina** 

### ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO        |
|----------|-------|----------|------------|------|---------------|
| IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 145 di<br>191 |

| elevazione |            |    | 1   | ,    | _    |      |      |      |
|------------|------------|----|-----|------|------|------|------|------|
| slu16      |            |    | Q35 | 0,73 |      |      |      |      |
| slu16      |            |    | Q45 | 0,73 |      |      |      |      |
| slu16      |            |    | Q51 | 0,9  |      |      |      |      |
| slu17      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu17      |            |    | G21 | 1,5  |      |      |      |      |
| slu17      |            |    | G22 | 1,5  |      |      |      |      |
| slu17      |            |    | Q51 | 1,5  |      |      |      |      |
| slu17      |            |    | Q61 | 0,9  |      |      |      |      |
| slu17      |            |    | Q71 | 0,9  |      |      |      |      |
| slu18      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu18      |            |    | G21 | 1,5  |      |      |      |      |
| slu18      |            |    | G22 | 1,5  |      |      |      |      |
| slu18      |            |    | Q16 | 1,45 |      |      |      |      |
| slu18      |            |    | Q26 | 1,45 |      |      |      |      |
| slu18      |            |    | Q36 | 0,73 |      |      |      |      |
| slu18      |            |    | Q46 | 0,73 |      |      |      |      |
| slu19      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu19      |            |    | G21 | 1,5  |      |      |      |      |
| slu19      |            |    | G22 | 1,5  |      |      |      |      |
| slu19      |            |    | Q14 | 1,45 |      |      |      |      |
| slu19      |            |    | Q24 | 0,73 |      |      |      |      |
| slu19      |            |    | Q34 | 1,45 |      |      |      |      |
| slu19      |            |    | Q44 | 1,45 |      |      |      |      |
| slu20      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu20      |            |    | G21 | 1,5  |      |      |      |      |
| slu20      |            |    | G22 | 1,5  |      |      |      |      |
| slu20      |            |    | Q16 | 1,45 |      |      |      |      |
| slu20      |            |    | Q26 | 0,73 |      |      |      |      |
| slu20      |            |    | Q36 | 1,45 |      |      |      |      |
| slu20      |            |    | Q46 | 1,45 |      |      |      |      |
| slu20      |            |    | Q51 | 0,9  |      |      |      |      |
| slu21      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu21      |            |    | G21 | 1,5  |      |      |      |      |
| slu21      |            |    | G22 | 1,5  |      |      |      |      |
| slu21      |            |    | Q11 | 1,45 |      |      |      |      |
| slu21      |            |    | Q21 | 0,73 |      |      |      |      |
| slu21      |            |    | Q31 | 1,45 |      |      |      |      |
| slu21      |            |    | Q41 | 1,45 |      |      |      |      |
| slu22      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu22      |            |    | G21 | 1,5  |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

Mandataria Mandanti





### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI – BARI

PROGETTO ESECUTIVO

| COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>146 di<br>191 |
|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|

| elevazione | 9, F20, F21, F22. Ne |    |     |      |   | F28  | 01 E Z | - CL | /10105 005 |
|------------|----------------------|----|-----|------|---|------|--------|------|------------|
| slu22      |                      |    | G22 | 1,5  |   |      |        |      |            |
| slu22      |                      |    | Q13 | 1,45 |   |      |        |      |            |
| slu22      |                      |    | Q23 | 0,73 |   |      |        |      |            |
| slu22      |                      |    | Q33 | 1,45 |   |      |        |      |            |
| slu22      |                      |    | Q43 | 1,45 |   |      |        |      |            |
| slu22      |                      |    | Q51 | 0,9  |   |      |        |      |            |
| slu23      | Linear Add           | No | G1  | 1,35 |   | none | none   | none | none       |
| slu23      |                      |    | G21 | 1,5  |   |      |        |      |            |
| slu23      |                      |    | G22 | 1,5  |   |      |        |      |            |
| slu23      |                      |    | Q12 | 1,45 |   |      |        |      |            |
| slu23      |                      |    | Q22 | 1,45 |   |      |        |      |            |
| slu23      |                      |    | Q32 | 0,73 |   |      |        |      |            |
| slu23      |                      |    | Q42 | 0,73 |   |      |        |      |            |
| slu24      | Linear Add           | No | G1  | 1,35 |   | none | none   | none | none       |
| slu24      |                      |    | G21 | 1,5  |   |      |        |      |            |
| slu24      |                      |    | G22 | 1,5  |   |      |        |      |            |
| slu24      |                      |    | Q14 | 1,45 |   |      |        |      |            |
| slu24      |                      |    | Q24 | 1,45 |   |      |        |      |            |
| slu24      |                      |    | Q34 | 0,73 |   |      |        |      |            |
| slu24      |                      |    | Q44 | 0,73 |   |      |        |      |            |
| slu24      |                      |    | Q51 | 0,9  |   |      |        |      |            |
| slu25      | Linear Add           | No | G1  |      | 1 | none | none   | none | none       |
| slu25      |                      |    | G21 |      | 1 |      |        |      |            |
| slu25      |                      |    | Q51 | 1,5  |   |      |        |      |            |
| slu25      |                      |    | Q61 | 0,9  |   |      |        |      |            |
| slu25      |                      |    | Q71 | 0,9  |   |      |        |      |            |
| slu26      | Linear Add           | No | G1  | 1,35 |   | none | none   | none | none       |
| slu26      |                      |    | G21 | 1,5  |   |      |        |      |            |
| slu26      |                      |    | G22 | 1,5  |   |      |        |      |            |
| slu26      |                      |    | Q11 | 1,45 |   |      |        |      |            |
| slu26      |                      |    | Q21 | 0,73 |   |      |        |      |            |
| slu26      |                      |    | Q31 | 1,45 |   |      |        |      |            |
| slu26      |                      |    | Q41 | 1,45 |   |      |        |      |            |
| slu26      |                      |    | Q51 | 0,9  |   |      |        |      |            |
| slu27      | Linear Add           | No | G1  | 1,35 |   | none | none   | none | none       |
| slu27      |                      |    | G21 | 1,5  |   |      |        |      |            |
| slu27      |                      |    | G22 | 1,5  |   |      |        |      |            |
| slu27      |                      |    | Q16 | 1,45 |   |      |        |      |            |
| slu27      |                      |    | Q26 | 0,73 |   |      |        |      |            |
| slu27      |                      |    | Q36 | 1,45 |   |      |        |      |            |

<u>Consorzio</u> <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

Mandataria Mandanti



Alpina

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA

IF28

LOTTO 01

CODIFICA E ZZ CL DOCUMENTO VI0105 005 REV. **B**  FOGLIO 147 di 191

| elevazione |            |    |     |      |      |      |      |      |
|------------|------------|----|-----|------|------|------|------|------|
| slu27      |            |    | Q46 | 1,45 |      |      |      |      |
| slu28      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu28      |            |    | G21 | 1,5  |      |      |      |      |
| slu28      |            |    | G22 | 1,5  |      |      |      |      |
| slu28      |            |    | Q12 | 1,45 |      |      |      |      |
| slu28      |            |    | Q22 | 1,45 |      |      |      |      |
| slu28      |            |    | Q32 | 0,73 |      |      |      |      |
| slu28      |            |    | Q42 | 0,73 |      |      |      |      |
| slu28      |            |    | Q51 | 0,9  |      |      |      |      |
| slu29      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu29      |            |    | G21 | 1,5  |      |      | 1    |      |
| slu29      |            |    | G22 | 1,5  |      |      | 1    |      |
| slu29      |            |    | Q14 | 1,45 |      |      |      |      |
| slu29      |            |    | Q24 | 1,45 |      |      |      |      |
| slu29      |            |    | Q34 | 0,73 |      |      |      |      |
| slu29      |            |    | Q44 | 0,73 |      |      |      |      |
| slu30      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu30      |            |    | G21 | 1,5  |      |      | 1    |      |
| slu30      |            |    | G22 | 1,5  |      |      | 1    |      |
| slu30      |            |    | Q16 | 1,45 |      |      |      |      |
| slu30      |            |    | Q26 | 1,45 |      |      | 1    |      |
| slu30      |            |    | Q36 | 0,73 |      |      | 1    |      |
| slu30      |            |    | Q46 | 0,73 |      |      | 1    |      |
| slu30      |            |    | Q51 | 0,9  |      |      |      |      |
| slu31      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu31      |            |    | G21 | 1,5  |      |      |      |      |
| slu31      |            |    | G22 | 1,5  |      |      |      |      |
| slu31      |            |    | Q11 | 1,45 |      |      |      |      |
| slu31      |            |    | Q21 | 0,73 |      |      |      |      |
| slu31      |            |    | Q31 | 1,45 |      |      |      |      |
| slu31      |            |    | Q41 | 1,45 |      |      |      |      |
| slu31      |            |    | Q71 | 0,9  |      |      |      |      |
| slu32      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu32      |            |    | G21 | 1,5  |      |      |      |      |
| slu32      |            |    | G22 | 1,5  |      |      |      |      |
| slu32      |            |    | Q11 | 1,45 |      |      |      |      |
| slu32      |            |    | Q21 | 1,45 |      |      |      |      |
| slu32      |            |    | Q31 | 0,73 |      |      |      |      |
| slu32      |            |    | Q41 | 0,73 |      |      |      |      |
|            |            |    |     |      |      |      |      |      |

Consorzio

HirpiniaAV





PROGETTAZIONE:

Mandataria Mandanti





### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI – BARI

POCETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

PROGETTO ESECUTIVO

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO        |
|----------|-------|----------|------------|------|---------------|
| IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 148 di<br>191 |

| slu33 | Linear Add | No | G1  | 1,35 | none | none | none | none |
|-------|------------|----|-----|------|------|------|------|------|
| slu33 |            |    | G21 | 1,5  |      |      |      |      |
| slu33 |            |    | G22 | 1,5  |      |      |      |      |
| slu33 |            |    | Q13 | 1,45 |      |      |      |      |
| slu33 |            |    | Q23 | 1,45 |      |      |      |      |
| slu33 |            |    | Q33 | 0,73 |      |      |      |      |
| slu33 |            |    | Q43 | 0,73 |      |      |      |      |
| slu33 |            |    | Q71 | 0,9  |      |      |      |      |
| slu34 | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu34 |            |    | G21 | 1,5  |      |      |      |      |
| slu34 |            |    | G22 | 1,5  |      |      |      |      |
| slu34 |            |    | Q13 | 1,45 |      |      |      |      |
| slu34 |            |    | Q23 | 0,73 |      |      |      |      |
| slu34 |            |    | Q33 | 1,45 |      |      |      |      |
| slu34 |            |    | Q43 | 1,45 |      |      |      |      |
| slu34 |            |    | Q61 | 1,45 |      |      |      |      |
| slu35 | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu35 |            |    | G21 | 1,5  |      |      |      |      |
| slu35 |            |    | G22 | 1,5  |      |      |      |      |
| slu35 |            |    | Q15 | 1,45 |      |      |      |      |
| slu35 |            |    | Q25 | 0,73 |      |      |      |      |
| slu35 |            |    | Q35 | 1,45 |      |      |      |      |
| slu35 |            |    | Q45 | 1,45 |      |      |      |      |
| slu35 |            |    | Q71 | 0,9  |      |      |      |      |
| slu36 | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu36 |            |    | G21 | 1,5  |      |      |      |      |
| slu36 |            |    | G22 | 1,5  |      |      |      |      |
| slu36 |            |    | Q15 | 1,45 |      |      |      |      |
| slu36 |            |    | Q25 | 1,45 |      |      |      |      |
| slu36 |            |    | Q35 | 0,73 |      |      |      |      |
| slu36 |            |    | Q45 | 0,73 |      |      |      |      |
| slu36 |            |    | Q61 | 1,45 |      |      |      |      |
| slu37 | Linear Add | No | G1  | 1    | none | none | none | none |
| slu37 |            |    | G21 | 1    |      |      |      |      |
| slu37 |            |    | Q17 | 0,73 |      |      |      |      |
| slu37 |            |    | Q27 | 1,45 |      |      |      |      |
| slu37 |            |    | Q37 | 0,73 |      |      |      |      |
| slu37 |            |    | Q47 | 0,73 |      |      |      |      |
| slu37 |            |    | Q71 | 0,9  |      |      |      |      |
| slu38 | Linear Add | No | G1  | 1,35 | none | none | none | none |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

Mandataria Mandanti

NET ENGINEERING

Alpina

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA

IF28

LOTTO CODIFICA

01 E ZZ CL

DOCUMENTO VI0105 005 REV.

FOGLIO 149 di 191

| elevazione |            |    |     |      | F28  | U1 E ZZ |      | /10105 005 |
|------------|------------|----|-----|------|------|---------|------|------------|
| slu38      |            |    | G21 | 1,5  |      |         |      |            |
| slu38      |            |    | G22 | 1,5  |      |         |      |            |
| slu38      |            |    | Q11 | 1,45 |      |         |      |            |
| slu38      |            |    | Q21 | 0,73 |      |         |      |            |
| slu38      |            |    | Q31 | 1,45 |      |         |      |            |
| slu38      |            |    | Q41 | 1,45 |      |         |      |            |
| slu38      |            |    | Q61 | 1,45 |      |         |      |            |
| slu39      | Linear Add | No | G1  | 1,35 | none | none    | none | none       |
| slu39      |            |    | G21 | 1,5  |      |         |      |            |
| slu39      |            |    | G22 | 1,5  |      |         |      |            |
| slu39      |            |    | Q13 | 1,45 |      |         |      |            |
| slu39      |            |    | Q23 | 0,73 |      |         |      |            |
| slu39      |            |    | Q33 | 1,45 |      |         |      |            |
| slu39      |            |    | Q43 | 1,45 |      |         |      |            |
| slu39      |            |    | Q71 | 0,9  |      |         |      |            |
| slu40      | Linear Add | No | G1  | 1,35 | none | none    | none | none       |
| slu40      |            |    | G21 | 1,5  |      |         |      |            |
| slu40      |            |    | G22 | 1,5  |      |         |      |            |
| slu40      |            |    | Q13 | 1,45 |      |         |      |            |
| slu40      |            |    | Q23 | 1,45 |      |         |      |            |
| slu40      |            |    | Q33 | 0,73 |      |         |      |            |
| slu40      |            |    | Q43 | 0,73 |      |         |      |            |
| slu40      |            |    | Q61 | 1,45 |      |         |      |            |
| slu41      | Linear Add | No | G1  | 1,35 | none | none    | none | none       |
| slu41      |            |    | G21 | 1,5  |      |         |      |            |
| slu41      |            |    | G22 | 1,5  |      |         |      |            |
| slu41      |            |    | Q15 | 1,45 |      |         |      |            |
| slu41      |            |    | Q25 | 1,45 |      |         |      |            |
| slu41      |            |    | Q35 | 0,73 |      |         |      |            |
| slu41      |            |    | Q45 | 0,73 |      |         |      |            |
| slu41      |            |    | Q71 | 0,9  |      |         |      |            |
| slu42      | Linear Add | No | G1  | 1,35 | none | none    | none | none       |
| slu42      |            |    | G21 | 1,5  |      |         |      |            |
| slu42      |            |    | G22 | 1,5  |      |         |      |            |
| slu42      |            |    | Q15 | 1,45 |      |         |      |            |
| slu42      |            |    | Q25 | 0,73 |      |         |      |            |
| slu42      |            |    | Q35 | 1,45 |      |         |      |            |
| slu42      |            |    | Q45 | 1,45 |      |         |      |            |
| slu42      |            |    | Q61 | 1,45 |      |         |      |            |
| slu43      | Linear Add | No | G1  | 1,35 | none | none    | none | none       |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

Mandataria Mandanti

NET ENGINEERING



### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA

IF28

LOTTO CODIFICA

01 E ZZ CL

DOCUMENTO VI0105 005 REV. **B**  FOGLIO 150 di 191

| elevazione | 1          | 1        |     |      | 1    |      | 1    |      |
|------------|------------|----------|-----|------|------|------|------|------|
| slu43      |            |          | G21 | 1,5  |      |      |      |      |
| slu43      |            |          | G22 | 1,5  |      |      |      |      |
| slu43      |            |          | Q11 | 1,45 |      |      |      |      |
| slu43      |            |          | Q21 | 1,45 |      |      |      |      |
| slu43      |            |          | Q31 | 0,73 |      |      |      |      |
| slu43      |            |          | Q41 | 0,73 |      |      |      |      |
| slu43      |            |          | Q71 | 0,9  |      |      |      |      |
| slu44      | Linear Add | No       | G1  | 1    | none | none | none | none |
| slu44      |            |          | G21 | 1    |      |      |      |      |
| slu44      |            |          | Q17 | 0,73 |      |      |      |      |
| slu44      |            |          | Q27 | 1,45 |      |      |      |      |
| slu44      |            |          | Q37 | 0,73 |      |      |      |      |
| slu44      |            |          | Q47 | 0,73 |      |      |      |      |
| slu44      |            |          | Q61 | 1,45 |      |      |      |      |
| slu45      | Linear Add | No       | G1  | 1    | none | none | none | none |
| slu45      |            |          | G21 | 1    |      |      |      |      |
| slu45      |            |          | Q17 | 0,73 |      |      |      |      |
| slu45      |            |          | Q27 | 1,45 |      |      |      |      |
| slu45      |            |          | Q37 | 0,73 |      |      |      |      |
| slu45      |            |          | Q47 | 0,73 |      |      |      |      |
| slu45      |            |          | Q51 | 0,9  |      |      |      |      |
| slu46      | Linear Add | No       | G1  | 1,35 | none | none | none | none |
| slu46      |            |          | G21 | 1,5  |      |      |      |      |
| slu46      |            |          | G22 | 1,5  |      |      |      |      |
| slu46      |            |          | Q12 | 1,45 |      |      |      |      |
| slu46      |            |          | Q22 | 0,73 |      |      |      |      |
| slu46      |            |          | Q32 | 1,45 |      |      |      |      |
| slu46      |            |          | Q42 | 1,45 |      |      |      |      |
| slu46      |            |          | Q71 | 0,9  |      |      |      |      |
| slu47      | Linear Add | No       | G1  | 1,35 | none | none | none | none |
| slu47      |            |          | G21 | 1,5  |      |      |      |      |
| slu47      |            |          | G22 | 1,5  |      |      |      |      |
| slu47      |            |          | Q12 | 1,45 |      |      |      |      |
| slu47      |            |          | Q22 | 1,45 |      |      |      |      |
| slu47      |            |          | Q32 | 0,73 |      |      |      |      |
| slu47      |            |          | Q42 | 0,73 |      |      |      |      |
| slu47      |            |          | Q61 | 1,45 |      |      |      |      |
| slu48      | Linear Add | No       | G1  | 1,35 | none | none | none | none |
| slu48      |            |          | G21 | 1,5  |      |      |      |      |
| slu48      |            | <u> </u> | G22 | 1,5  |      | 1    | +    |      |

Consorzio

Hirpinia AV





PROGETTAZIONE:

Mandataria Mandanti

NET ENGINEERING

Alpina

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA
IF28 01 E ZZ CL

DOCUMENTO VI0105 005 REV. FOGLIO B 151 di 191

| cic vazione |            |    |     |      |      |      |      |      |
|-------------|------------|----|-----|------|------|------|------|------|
| slu48       |            |    | Q14 | 1,45 |      |      |      |      |
| slu48       |            |    | Q24 | 1,45 |      |      |      |      |
| slu48       |            |    | Q34 | 0,73 |      |      |      |      |
| slu48       |            |    | Q44 | 0,73 |      |      |      |      |
| slu48       |            |    | Q71 | 0,9  |      |      |      |      |
| slu49       | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu49       |            |    | G21 | 1,5  |      |      |      |      |
| slu49       |            |    | G22 | 1,5  |      |      |      |      |
| slu49       |            |    | Q14 | 1,45 |      |      |      |      |
| slu49       |            |    | Q24 | 0,73 |      |      |      |      |
| slu49       |            |    | Q34 | 1,45 |      |      |      |      |
| slu49       |            |    | Q44 | 1,45 |      |      |      |      |
| slu49       |            |    | Q61 | 1,45 |      |      |      |      |
| slu50       | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu50       |            |    | G21 | 1,5  |      |      |      |      |
| slu50       |            |    | G22 | 1,5  |      |      |      |      |
| slu50       |            |    | Q16 | 1,45 |      |      |      |      |
| slu50       |            |    | Q26 | 0,73 |      |      |      |      |
| slu50       |            |    | Q36 | 1,45 |      |      |      |      |
| slu50       |            |    | Q46 | 1,45 |      |      |      |      |
| slu50       |            |    | Q71 | 0,9  |      |      |      |      |
| slu51       | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu51       |            |    | G21 | 1,5  |      |      |      |      |
| slu51       |            |    | G22 | 1,5  |      |      |      |      |
| slu51       |            |    | Q16 | 1,45 |      |      |      |      |
| slu51       |            |    | Q26 | 1,45 |      |      |      |      |
| slu51       |            |    | Q36 | 0,73 |      |      |      |      |
| slu51       |            |    | Q46 | 0,73 |      |      |      |      |
| slu51       |            |    | Q61 | 1,45 |      |      |      |      |
| slu52       | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu52       |            |    | G21 | 1,5  |      |      |      |      |
| slu52       |            |    | G22 | 1,5  |      |      |      |      |
| slu52       |            |    | Q11 | 1,45 |      |      |      |      |
| slu52       |            |    | Q21 | 0,73 |      |      |      |      |
| slu52       |            |    | Q31 | 1,45 |      |      |      |      |
| slu52       |            |    | Q41 | 1,45 |      |      |      |      |
| slu52       |            |    | Q51 | 0,9  |      |      |      |      |
| slu52       |            |    | Q61 | 1,45 |      |      |      |      |
| slu52       |            |    | Q71 | 0,9  |      |      |      |      |
| slu53       | Linear Add | No | G1  | 1,35 | none | none | none | none |

Consorzio <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

**Mandataria** <u>Mandanti</u>

XXX SOUL

PROGETTO ESECUTIVO



RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. 152 di 191 E ZZ CL VI0105 005 IF28 01 В

|       | ESECUTIVO<br>19, P20, P21, P22: Re | lazione di | calcolo struttu | :-   |      | 01 E Z |        | OCUMENTO<br>10105 005 |
|-------|------------------------------------|------------|-----------------|------|------|--------|--------|-----------------------|
| slu53 |                                    |            | G21             | 1,5  |      |        |        |                       |
| slu53 |                                    |            | G22             | 1,5  |      |        |        |                       |
| slu53 |                                    |            | Q12             | 1,45 |      |        |        |                       |
| slu53 |                                    |            | Q22             | 0,73 |      |        |        |                       |
| slu53 |                                    |            | Q32             | 1,45 |      |        |        |                       |
| slu53 |                                    |            | Q42             | 1,45 |      |        |        |                       |
| slu53 |                                    |            | Q61             | 1,45 |      |        |        |                       |
| slu54 | Linear Add                         | No         | G1              | 1,35 | none | none   | none   | none                  |
| slu54 |                                    |            | G21             | 1,5  |      |        |        |                       |
| slu54 |                                    |            | G22             | 1,5  |      |        |        |                       |
| slu54 |                                    |            | Q14             | 1,45 |      |        |        |                       |
| slu54 |                                    |            | Q24             | 0,73 |      |        |        |                       |
| slu54 |                                    |            | Q34             | 1,45 |      |        |        |                       |
| slu54 |                                    |            | Q44             | 1,45 |      |        |        |                       |
| slu54 |                                    |            | Q71             | 0,9  |      |        |        |                       |
| slu55 | Linear Add                         | No         | G1              | 1,35 | none | none   | none   | none                  |
| slu55 |                                    |            | G21             | 1,5  |      |        |        |                       |
| slu55 |                                    |            | G22             | 1,5  |      |        |        |                       |
| slu55 |                                    |            | Q14             | 1,45 |      |        |        |                       |
| slu55 |                                    |            | Q24             | 1,45 |      |        |        |                       |
| slu55 |                                    |            | Q34             | 0,73 |      |        |        |                       |
| slu55 |                                    |            | Q44             | 0,73 |      |        |        |                       |
| slu55 |                                    |            | Q61             | 1,45 |      |        |        |                       |
| slu56 | Linear Add                         | No         | G1              | 1,35 | none | none   | none   | none                  |
| slu56 |                                    |            | G21             | 1,5  |      |        |        |                       |
| slu56 |                                    |            | G22             | 1,5  |      |        |        |                       |
| slu56 |                                    |            | Q16             | 1,45 |      |        |        |                       |
| slu56 |                                    |            | Q26             | 1,45 |      |        |        |                       |
| slu56 |                                    |            | Q36             | 0,73 |      |        |        |                       |
| slu56 |                                    |            | Q46             | 0,73 |      |        |        |                       |
| slu56 |                                    |            | Q71             | 0,9  |      |        |        |                       |
| slu57 | Linear Add                         | No         | G1              | 1,35 | none | none   | none   | none                  |
| slu57 |                                    |            | G21             | 1,5  |      | 1      | 110110 | 110110                |
| slu57 |                                    |            | G22             | 1,5  |      |        |        |                       |
| slu57 |                                    |            | Q16             | 1,45 |      |        |        |                       |
| slu57 |                                    |            | Q26             | 0,73 |      |        |        |                       |
| slu57 |                                    |            | Q36             | 1,45 |      |        |        |                       |
| slu57 |                                    |            | Q46             | 1,45 |      |        |        |                       |
| slu57 |                                    |            | Q61             | 1,45 |      |        |        |                       |
| slu58 | Linear Add                         | No         | G1              | 1,35 | none | none   | none   | none                  |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

Mandataria Mandanti



Alpina

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO        |
|----------|-------|----------|------------|------|---------------|
| IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 153 di<br>191 |

| elevazione |            |    |     |      |      |      |      |      |
|------------|------------|----|-----|------|------|------|------|------|
| slu58      |            |    | G21 | 1,5  |      |      |      |      |
| slu58      |            |    | G22 | 1,5  |      |      |      |      |
| slu58      |            |    | Q12 | 1,45 |      |      |      |      |
| slu58      |            |    | Q22 | 1,45 |      |      |      |      |
| slu58      |            |    | Q32 | 0,73 |      |      |      |      |
| slu58      |            |    | Q42 | 0,73 |      |      |      |      |
| slu58      |            |    | Q71 | 0,9  |      |      |      |      |
| slu59      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu59      |            |    | G21 | 1,5  |      |      |      |      |
| slu59      |            |    | G22 | 1,5  |      |      |      |      |
| slu59      |            |    | Q12 | 1,45 |      |      |      |      |
| slu59      |            |    | Q22 | 0,73 |      |      |      |      |
| slu59      |            |    | Q32 | 1,45 |      |      |      |      |
| slu59      |            |    | Q42 | 1,45 |      |      |      |      |
| slu59      |            |    | Q51 | 0,9  |      |      |      |      |
| slu59      |            |    | Q61 | 1,45 |      |      |      |      |
| slu59      |            |    | Q71 | 0,9  |      |      |      |      |
| slu60      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu60      |            |    | G21 | 1,5  |      |      |      |      |
| slu60      |            |    | G22 | 1,5  |      |      |      |      |
| slu60      |            |    | Q12 | 1,45 |      |      |      |      |
| slu60      |            |    | Q22 | 1,45 |      |      |      |      |
| slu60      |            |    | Q32 | 0,73 |      |      |      |      |
| slu60      |            |    | Q42 | 0,73 |      |      |      |      |
| slu60      |            |    | Q51 | 0,9  |      |      |      |      |
| slu60      |            |    | Q61 | 1,45 |      |      |      |      |
| slu60      |            |    | Q71 | 0,9  |      |      |      |      |
| slu61      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu61      |            |    | G21 | 1,5  |      |      |      |      |
| slu61      |            |    | G22 | 1,5  |      |      |      |      |
| slu61      |            |    | Q15 | 1,45 |      |      |      |      |
| slu61      |            |    | Q25 | 0,73 |      |      |      |      |
| slu61      |            |    | Q35 | 1,45 |      |      |      |      |
| slu61      |            |    | Q45 | 1,45 |      |      |      |      |
| slu61      |            |    | Q51 | 0,9  |      |      |      |      |
| slu61      |            |    | Q61 | 1,45 |      |      |      |      |
| slu61      |            |    | Q71 | 0,9  |      |      |      |      |
| slu62      | Linear Add | No | G1  | 1,35 | none | none | none | none |
| slu62      |            |    | G21 | 1,5  |      |      |      |      |
| slu62      |            |    | G22 | 1,5  |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

Mandataria Mandanti



Alpina

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

REV.

В

154 di 191

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 IF28
 01
 E ZZ CL
 VI0105 005

| slu62     Q15     1,45       slu62     Q25     1,45       slu62     Q35     0,73 |     |
|----------------------------------------------------------------------------------|-----|
|                                                                                  |     |
| slu62 Q35 0,73                                                                   |     |
|                                                                                  |     |
| slu62 Q45 0,73                                                                   |     |
| slu62 Q51 0,9                                                                    |     |
| slu62 Q61 1,45                                                                   |     |
| slu62 Q71 0,9                                                                    |     |
| slu63 Linear Add No G1 1,35 none none none                                       | one |
| slu63 G21 1,5                                                                    |     |
| slu63 G22 1,5                                                                    |     |
| slu63 Q14 1,45                                                                   |     |
| slu63 Q24 0,73                                                                   |     |
| slu63 Q34 1,45                                                                   |     |
| slu63 Q44 1,45                                                                   |     |
| slu63 Q51 0,9                                                                    |     |
| slu63 Q61 1,45                                                                   |     |
| slu63 Q71 0,9                                                                    |     |
| slu64 Linear Add No G1 1,35 none none none                                       | one |
| slu64 G21 1,5                                                                    |     |
| slu64 G22 1,5                                                                    |     |
| slu64 Q14 1,45                                                                   |     |
| slu64 Q24 1,45                                                                   |     |
| slu64 Q34 0,73                                                                   |     |
| slu64 Q44 0,73                                                                   |     |
| slu64 Q51 0,9                                                                    |     |
| slu64 Q61 1,45                                                                   |     |
| slu64 Q71 0,9                                                                    |     |
| slu65 Linear Add No G1 1,35 none none none                                       | one |
| slu65 G21 1,5                                                                    |     |
| slu65 G22 1,5                                                                    |     |
| slu65 Q11 1,45                                                                   |     |
| slu65 Q21 1,45                                                                   |     |
| slu65 Q31 0,73                                                                   |     |
| slu65 Q41 0,73                                                                   |     |
| slu65 Q51 0,9                                                                    |     |
| slu65 Q61 1,45                                                                   |     |
| slu65 Q71 0,9                                                                    |     |
| slu66 Linear Add No G1 1 none none none                                          | one |
| slu66 G21 1                                                                      |     |
| slu66 Q17 0,73                                                                   |     |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV



<u>Mandanti</u>



PROGETTAZIONE:

<u>Mandataria</u>

NET ENGINEERING

Alpina

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 VI0105 005
 B
 155 di

 191
 191
 191
 191

| elevazione |            |    |     |      | IF28 | U1 E Z | Z CL V | 10105 005 |
|------------|------------|----|-----|------|------|--------|--------|-----------|
| slu66      |            |    | Q27 | 1,45 |      |        |        |           |
| slu66      |            |    | Q37 | 0,73 |      |        |        |           |
| slu66      |            |    | Q47 | 0,73 |      |        |        |           |
| slu66      |            |    | Q51 | 0,9  |      |        |        |           |
| slu66      |            |    | Q61 | 1,45 |      |        |        |           |
| slu66      |            |    | Q71 | 0,9  |      |        |        |           |
| slu67      | Linear Add | No | G1  | 1,35 | none | none   | none   | none      |
| slu67      |            |    | G21 | 1,5  |      |        |        |           |
| slu67      |            |    | G22 | 1,5  |      |        |        |           |
| slu67      |            |    | Q13 | 1,45 |      |        |        |           |
| slu67      |            |    | Q23 | 0,73 |      |        |        |           |
| slu67      |            |    | Q33 | 1,45 |      |        |        |           |
| slu67      |            |    | Q43 | 1,45 |      |        |        |           |
| slu67      |            |    | Q51 | 0,9  |      |        |        |           |
| slu67      |            |    | Q61 | 1,45 |      |        |        |           |
| slu67      |            |    | Q71 | 0,9  |      |        |        |           |
| slu68      | Linear Add | No | G1  | 1,35 | none | none   | none   | none      |
| slu68      |            |    | G21 | 1,5  |      |        |        |           |
| slu68      |            |    | G22 | 1,5  |      |        |        |           |
| slu68      |            |    | Q13 | 1,45 |      |        |        |           |
| slu68      |            |    | Q23 | 1,45 |      |        |        |           |
| slu68      |            |    | Q33 | 0,73 |      |        |        |           |
| slu68      |            |    | Q43 | 0,73 |      |        |        |           |
| slu68      |            |    | Q51 | 0,9  |      |        |        |           |
| slu68      |            |    | Q61 | 1,45 |      |        |        |           |
| slu68      |            |    | Q71 | 0,9  |      |        |        |           |
| slu69      | Linear Add | No | G1  | 1,35 | none | none   | none   | none      |
| slu69      |            |    | G21 | 1,5  |      |        |        |           |
| slu69      |            |    | G22 | 1,5  |      |        |        |           |
| slu69      |            |    | Q16 | 1,45 |      |        |        |           |
| slu69      |            |    | Q26 | 0,73 |      |        |        |           |
| slu69      |            |    | Q36 | 1,45 |      |        |        |           |
| slu69      |            |    | Q46 | 1,45 |      |        |        |           |
| slu69      |            |    | Q51 | 0,9  |      |        |        |           |
| slu69      |            |    | Q61 | 1,45 |      |        |        |           |
| slu69      |            |    | Q71 | 0,9  |      |        |        |           |
| slu70      | Linear Add | No | G1  | 1,35 | none | none   | none   | none      |
| slu70      |            |    | G21 | 1,5  |      |        |        |           |
| slu70      |            |    | G22 | 1,5  |      |        |        |           |
| slu70      |            |    | Q16 | 1,45 |      |        |        |           |

| Α        | PPALTATOR                                   | RE:                                     |             |                 |       |                          |                    |              |
|----------|---------------------------------------------|-----------------------------------------|-------------|-----------------|-------|--------------------------|--------------------|--------------|
| <u>C</u> | <u>Consorzio</u>                            | <u>Soci</u>                             |             |                 |       |                          | 1711               | .ED 4        |
|          | Hirpinia <i>AV</i>                          | sa<br>impreg                            | lini 🧑      | 📕 AST           | ALDI  |                          | HIIN               | IER <i>A</i> |
| F        | ROGETTAZI                                   | ONE:                                    |             |                 |       |                          | RADDO              | PPIO         |
| N        | <u> landataria</u>                          | Manda                                   | <u>nti</u>  |                 |       | I                        | LOTTO              | FUNZ         |
|          | XXX50JL                                     | NET                                     | NGINEERING  | Alpi            | na    |                          |                    |              |
| Р        | PROGETTO E<br>Pile P7, P8, P19<br>Ievazione | SECUTIVO<br>, <b>P20, P21, P22: Rel</b> | azione di ( | calcolo struttu | re in | <br>IMESSA<br><b>F28</b> | LOTTO<br><b>01</b> | COD<br>E Z   |
|          | slu70                                       |                                         |             | Q26             | 1,45  |                          |                    |              |
|          | -170                                        |                                         |             | 036             | 0.70  |                          |                    |              |

# ITINERARIO NAPOLI – BARI

| COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>156 di<br>191 |
|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|

| slu70 |  | Q26 | 1,45 |  |  |
|-------|--|-----|------|--|--|
| slu70 |  | Q36 | 0,73 |  |  |
| slu70 |  | Q46 | 0,73 |  |  |
| slu70 |  | Q51 | 0,9  |  |  |
| slu70 |  | Q61 | 1,45 |  |  |
| slu70 |  | Q71 | 0,9  |  |  |

# APPALTATORE: Consorzio Soci Salini impregilo PROGETTAZIONE: Mandataria Mandanti

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

XXX SOUL

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

NETENGINEERING

COMMESSA IF28

**Alpina** 

LOTTO CODIFICA

01 E ZZ CL

DOCUMENTO VI0105 005 REV. FOGLIO B 157 di 191

**10.3 COMBINAZIONI SLV** 

| slu-SISMA1 | Linear Add | No | G1  |     | 1 | none | none | none | none |
|------------|------------|----|-----|-----|---|------|------|------|------|
| slu-SISMA1 |            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA1 |            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA1 |            |    | E1  |     | 1 |      |      |      |      |
| slu-SISMA1 |            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA1 |            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA2 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA2 |            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA2 |            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA2 |            |    | Q16 | 0,2 |   |      |      |      |      |
| slu-SISMA2 |            |    | Q26 | 0,1 |   |      |      |      |      |
| slu-SISMA2 |            |    | Q36 | 0,2 |   |      |      |      |      |
| slu-SISMA2 |            |    | Q46 | 0,2 |   |      |      |      |      |
| slu-SISMA2 |            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA2 |            |    | Q71 | 0,5 |   |      |      |      |      |
| slu-SISMA2 |            |    | E1  |     | 1 |      |      |      |      |
| slu-SISMA2 |            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA2 |            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA3 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA3 |            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA3 |            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA3 |            |    | Q12 | 0,2 |   |      |      |      |      |
| slu-SISMA3 |            |    | Q22 | 0,1 |   |      |      |      |      |
| slu-SISMA3 |            |    | Q32 | 0,2 |   |      |      |      |      |
| slu-SISMA3 |            |    | Q42 | 0,2 |   |      |      |      |      |
| slu-SISMA3 |            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA3 |            |    | Q71 | 0,5 |   |      |      |      |      |
| slu-SISMA3 |            |    | E1  |     | 1 |      |      |      |      |
| slu-SISMA3 |            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA3 |            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA4 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA4 |            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA4 |            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA4 |            |    | Q14 | 0,2 |   |      |      |      |      |
| slu-SISMA4 |            |    | Q24 | 0,2 |   |      |      |      |      |
| slu-SISMA4 |            |    | Q34 | 0,1 |   |      |      |      |      |
| slu-SISMA4 |            |    | Q44 | 0,1 |   |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

Mandanti

NET: NGINEERING

Alpina

### ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO                                                 | COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO        |
|--------------------------------------------------------------------|----------|-------|----------|------------|------|---------------|
| Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in | IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 158 di<br>191 |
| elevazione                                                         |          |       |          |            |      |               |

| SIU-SISMA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elevazione |            |    |     |     |   |      |      |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|----|-----|-----|---|------|------|------|------|
| SIU-SISMA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA4 |            |    | Q61 | 0,2 |   |      |      |      |      |
| SIU-SISMA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA4 |            |    | Q71 | 0,5 |   |      |      |      |      |
| SIU-SISMA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA4 |            |    | E1  |     | 1 |      |      |      |      |
| SIU-SISMA5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA4 |            |    | E2  | 0,3 |   |      |      |      |      |
| SIU-SISMAS   G21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | slu-SISMA4 |            |    | E3  | 0,3 |   |      |      |      |      |
| SIU-SISMAS   Q61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | slu-SISMA5 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SIU-SISMAS   Q71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | slu-SISMA5 |            |    | G21 |     | 1 |      |      |      |      |
| SIU-SISMA5   E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | slu-SISMA5 |            |    | Q61 | 0,2 |   |      |      |      |      |
| Siu-SiSMA5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA5 |            |    | Q71 | 0,5 |   |      |      |      |      |
| SIU-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA5 |            |    | E1  |     | 1 |      |      |      |      |
| Siu-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA5 |            |    | E2  | 0,3 |   |      |      |      |      |
| SIU-SISMA6   G21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | slu-SISMA5 |            |    | E3  | 0,3 |   |      |      |      |      |
| SIU-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA6 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SIU-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA6 | •          |    | G21 |     | 1 |      |      |      |      |
| SIU-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA6 |            |    | G22 |     | 1 |      |      |      |      |
| SIU-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA6 |            |    | Q12 | 0,2 |   |      |      |      |      |
| Slu-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA6 |            |    | Q22 | 0,2 |   |      |      |      |      |
| Slu-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA6 |            |    | Q32 | 0,1 |   |      |      |      |      |
| slu-SISMA6         Q71         0,5         ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | slu-SISMA6 |            |    | Q42 | 0,1 |   |      |      |      |      |
| slu-SISMA6         E1         1           slu-SISMA6         E2         0,3           slu-SISMA6         E3         0,3           slu-SISMA7         Linear Add         No         G1         1         none         none         none           slu-SISMA7         G21         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | slu-SISMA6 |            |    | Q61 | 0,2 |   |      |      |      |      |
| Slu-SISMA6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA6 |            |    | Q71 | 0,5 |   |      |      |      |      |
| slu-SISMA6         E3         0,3         none         none         none           slu-SISMA7         G21         1         none         none         none           slu-SISMA7         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | slu-SISMA6 |            |    | E1  |     | 1 |      |      |      |      |
| slu-SISMA7         Linear Add         No         G1         1         none         none         none           slu-SISMA7         G21         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | slu-SISMA6 |            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA7         G21         1           slu-SISMA7         G22         1           slu-SISMA7         Q14         0,2           slu-SISMA7         Q24         0,1           slu-SISMA7         Q34         0,2           slu-SISMA7         Q44         0,2           slu-SISMA7         Q61         0,2           slu-SISMA7         E1         1           slu-SISMA7         E2         0,3           slu-SISMA8         Linear Add         No         G1         1           slu-SISMA8         G21         1         none         none           slu-SISMA8         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA6 |            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA7         G22         1           slu-SISMA7         Q14         0,2           slu-SISMA7         Q24         0,1           slu-SISMA7         Q34         0,2           slu-SISMA7         Q44         0,2           slu-SISMA7         Q61         0,2           slu-SISMA7         Q71         0,5           slu-SISMA7         E1         1           slu-SISMA7         E2         0,3           slu-SISMA8         Linear Add         No         G1         1           slu-SISMA8         G21         1         1           slu-SISMA8         G22         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | slu-SISMA7 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA7       Q14       0,2         slu-SISMA7       Q24       0,1         slu-SISMA7       Q34       0,2         slu-SISMA7       Q44       0,2         slu-SISMA7       Q61       0,2         slu-SISMA7       E1       1         slu-SISMA7       E2       0,3         slu-SISMA7       E3       0,3         slu-SISMA8       Linear Add       No       G1       1       none       none       none         slu-SISMA8       G21       1       slu-SISMA8       G22       1       Image: Control of the contro | slu-SISMA7 |            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA7         Q24         0,1           slu-SISMA7         Q34         0,2           slu-SISMA7         Q44         0,2           slu-SISMA7         Q61         0,2           slu-SISMA7         E1         1           slu-SISMA7         E2         0,3           slu-SISMA7         E3         0,3           slu-SISMA8         Linear Add         No         G1         1         none         none         none           slu-SISMA8         G21         1          slu-SISMA8         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | slu-SISMA7 |            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA7         Q34         0,2           slu-SISMA7         Q44         0,2           slu-SISMA7         Q61         0,2           slu-SISMA7         Q71         0,5           slu-SISMA7         E1         1           slu-SISMA7         E2         0,3           slu-SISMA7         E3         0,3           slu-SISMA8         Linear Add         No         G1         1         none         none         none           slu-SISMA8         G21         1          slu-SISMA8         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | slu-SISMA7 |            |    | Q14 | 0,2 |   |      |      |      |      |
| slu-SISMA7         Q44         0,2            slu-SISMA7         Q61         0,2            slu-SISMA7         Q71         0,5            slu-SISMA7         E1         1            slu-SISMA7         E3         0,3            slu-SISMA8         Linear Add         No         G1         1         none         none         none           slu-SISMA8         G21         1           slu-SISMA8         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | slu-SISMA7 |            |    | Q24 | 0,1 |   |      |      |      |      |
| slu-SISMA7         Q61         0,2           slu-SISMA7         Q71         0,5           slu-SISMA7         E1         1           slu-SISMA7         E2         0,3           slu-SISMA7         E3         0,3           slu-SISMA8         Linear Add         No         G1         1         none         none         none           slu-SISMA8         G21         1          slu-SISMA8         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | slu-SISMA7 |            |    | Q34 | 0,2 |   |      |      |      |      |
| slu-SISMA7         Q71         0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | slu-SISMA7 |            |    | Q44 | 0,2 |   |      |      |      |      |
| slu-SISMA7         E1         1           slu-SISMA7         E2         0,3           slu-SISMA7         E3         0,3           slu-SISMA8         Linear Add         No         G1         1         none         none         none           slu-SISMA8         G21         1          slu-SISMA8         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | slu-SISMA7 |            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA7         E2         0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slu-SISMA7 |            |    | Q71 | 0,5 |   |      |      |      |      |
| slu-SISMA7         E3         0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slu-SISMA7 |            |    | E1  |     | 1 |      |      |      |      |
| slu-SISMA8         Linear Add         No         G1         1         none         none         none           slu-SISMA8         G21         1           Slu-SISMA8         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | slu-SISMA7 |            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA8         G21         1           slu-SISMA8         G22         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | slu-SISMA7 |            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA8 G22 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | slu-SISMA8 | Linear Add | No | G1  |     | 1 | none | none | none | none |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA8         Q16         0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | slu-SISMA8 |            |    | G22 |     | 1 |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | slu-SISMA8 |            |    | Q16 | 0,2 |   |      |      |      |      |

Consorzio

Hirpinia AV





PROGETTAZIONE:

slu-SISMA9

slu-SISMA10

slu-SISMA10 slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

slu-SISMA11

Linear Add

Linear Add

<u>Mandataria</u>

<u>Mandanti</u>

#### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

|                                                       | NETENGINE  | ERING     | Alpina            |                  |                    |                     |                         |      |                         |
|-------------------------------------------------------|------------|-----------|-------------------|------------------|--------------------|---------------------|-------------------------|------|-------------------------|
| PROGETTO ESEC<br>Pile P7, P8, P19, P20,<br>elevazione |            | e di cald | colo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV. | FOGLIO<br>159 di<br>191 |
| slu-SISMA8                                            |            |           | Q26               | 0,2              |                    |                     |                         |      |                         |
| slu-SISMA8                                            |            |           | Q36               | 0,1              |                    |                     |                         |      |                         |
| slu-SISMA8                                            |            |           | Q46               | 0,1              |                    |                     |                         |      |                         |
| slu-SISMA8                                            |            |           | Q61               | 0,2              |                    |                     |                         |      |                         |
| slu-SISMA8                                            |            |           | Q71               | 0,5              |                    |                     |                         |      |                         |
| slu-SISMA8                                            |            |           | E1                | 1                |                    |                     |                         |      |                         |
| slu-SISMA8                                            |            |           | E2                | 0,3              |                    |                     |                         |      |                         |
| slu-SISMA8                                            |            |           | E3                | 0,3              |                    |                     |                         |      |                         |
| slu-SISMA9                                            | Linear Add | No        | G1                | 1                | none               | none                | none                    | none |                         |
| slu-SISMA9                                            |            |           | G21               | 1                |                    |                     |                         |      |                         |
| slu-SISMA9                                            |            |           | G22               | 1                |                    |                     |                         |      |                         |
| slu-SISMA9                                            |            |           | Q61               | 0,2              |                    |                     |                         |      |                         |
| slu-SISMA9                                            |            |           | Q71               | 0,5              |                    |                     |                         |      |                         |
| slu-SISMA9                                            |            |           | E1                | 1                |                    |                     |                         |      |                         |
| slu-SISMA9                                            |            |           | E2                | 0,3              |                    |                     |                         |      |                         |

0,3

0,2

0,1

0,1

0,5

0,3

0,2

0,1

0,2

0,2

0,5

0,3

1

1

1

1

1

1

1

1

none

none

none

none

none

none

none

none

E3

G1

G21

G22

Q11

Q21

Q31

Q41

Q61

Q71

E1

E2

E3

G1

G21

G22

Q13

Q23

Q33

Q43

Q61

Q71

E1

E2

E3

No

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

Mandanti



Alpina

### ITINERARIO NAPOLI – BARI

| elevazione             | - u u |     | IF28 |   | U1   | E ZZ CL | VIU105 005 | В    |
|------------------------|-------|-----|------|---|------|---------|------------|------|
| slu-SISMA12 Linear Add | No    | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA12            |       | G21 |      | 1 |      |         |            |      |
| slu-SISMA12            |       | G22 |      | 1 |      |         |            |      |
| slu-SISMA12            |       | Q15 | 0,2  |   |      |         |            |      |
| slu-SISMA12            |       | Q25 | 0,2  |   |      |         |            |      |
| slu-SISMA12            |       | Q35 | 0,1  |   |      |         |            |      |
| slu-SISMA12            |       | Q45 | 0,1  |   |      |         |            | 1    |
| slu-SISMA12            |       | Q61 | 0,2  |   |      |         |            |      |
| slu-SISMA12            |       | Q71 | 0,5  |   |      |         |            |      |
| slu-SISMA12            |       | E1  |      | 1 |      |         |            | 1    |
| slu-SISMA12            |       | E2  | 0,3  |   |      |         |            | 1    |
| slu-SISMA12            |       | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA13 Linear Add | No    | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA13            |       | G21 |      | 1 |      |         |            | 1    |
| slu-SISMA13            |       | G22 |      | 1 |      |         |            | 1    |
| slu-SISMA13            |       | Q11 | 0,2  |   |      |         |            |      |
| slu-SISMA13            |       | Q21 | 0,1  |   |      |         |            |      |
| slu-SISMA13            |       | Q31 | 0,2  |   |      |         |            | 1    |
| slu-SISMA13            |       | Q41 | 0,2  |   |      |         |            | 1    |
| slu-SISMA13            |       | Q61 | 0,2  |   |      |         |            | 1    |
| slu-SISMA13            |       | Q71 | 0,5  |   |      |         |            |      |
| slu-SISMA13            |       | E1  |      | 1 |      |         |            | 1    |
| slu-SISMA13            |       | E2  | 0,3  |   |      |         |            | 1    |
| slu-SISMA13            |       | E3  | 0,3  |   |      |         |            | 1    |
| slu-SISMA14 Linear Add | No    | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA14            |       | G21 |      | 1 |      |         |            | 1    |
| slu-SISMA14            |       | G22 |      | 1 |      |         |            | 1    |
| slu-SISMA14            |       | Q13 | 0,2  |   |      |         |            | 1    |
| slu-SISMA14            |       | Q23 | 0,2  |   |      |         |            | 1    |
| slu-SISMA14            |       | Q33 | 0,1  |   |      |         |            | 1    |
| slu-SISMA14            |       | Q43 | 0,1  |   |      |         |            | 1    |
| slu-SISMA14            |       | Q61 | 0,2  |   |      |         |            | 1    |
| slu-SISMA14            |       | Q71 | 0,5  |   |      |         |            | 1    |
| slu-SISMA14            |       | E1  |      | 1 |      |         |            | 1    |
| slu-SISMA14            |       | E2  | 0,3  |   |      |         |            | 1    |
| slu-SISMA14            |       | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA15 Linear Add | No    | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA15            |       | G21 |      | 1 |      |         |            |      |
| slu-SISMA15            |       | G22 |      | 1 |      |         |            |      |
|                        | 1     | Q15 | 0,2  |   |      |         |            |      |

Consorzio <u>Soci</u>

Hirpinia*AV* 





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>



Alpina

# ITINERARIO NAPOLI – BARI

| ı |                                                                          | прина                     |                  |                    |                     |                         |                  |                         |
|---|--------------------------------------------------------------------------|---------------------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
|   | PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione elevazione | e di calcolo strutture in | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>161 di<br>191 |
|   | slu-SISMA15                                                              | Q25                       | 0,1              |                    |                     |                         |                  |                         |
|   | slu-SISMA15                                                              | Q35                       | 0,2              |                    |                     |                         |                  |                         |
|   | slu-SISMA15                                                              | Q45                       | 0,2              |                    |                     |                         |                  |                         |

| elevazione             |    |     |     |   |      |      |      |      |
|------------------------|----|-----|-----|---|------|------|------|------|
| slu-SISMA15            |    | Q25 | 0,1 |   |      |      |      |      |
| slu-SISMA15            |    | Q35 | 0,2 |   |      |      |      |      |
| slu-SISMA15            |    | Q45 | 0,2 |   |      |      |      |      |
| slu-SISMA15            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA15            |    | Q71 | 0,5 |   |      |      |      |      |
| slu-SISMA15            |    | E1  |     | 1 |      |      |      |      |
| slu-SISMA15            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA15            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA16 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA16            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA16            |    | Q17 | 0,1 |   |      |      |      |      |
| slu-SISMA16            |    | Q27 | 0,2 |   |      |      |      |      |
| slu-SISMA16            |    | Q37 | 0,1 |   |      |      |      |      |
| slu-SISMA16            |    | Q47 | 0,1 |   |      |      |      |      |
| slu-SISMA16            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA16            |    | Q71 | 0,5 |   |      |      |      |      |
| slu-SISMA16            |    | E1  |     | 1 |      |      |      |      |
| slu-SISMA16            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA16            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA17 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA17            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA17            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA17            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA17            |    | E2  |     | 1 |      |      |      |      |
| slu-SISMA17            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA18 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA18            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA18            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA18            |    | Q16 | 0,2 |   |      |      |      |      |
| slu-SISMA18            |    | Q26 | 0,1 |   |      |      |      |      |
| slu-SISMA18            |    | Q36 | 0,2 |   |      |      |      |      |
| slu-SISMA18            |    | Q46 | 0,2 |   |      |      |      |      |
| slu-SISMA18            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA18            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA18            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA18            |    | E2  |     | 1 |      |      |      |      |
| slu-SISMA18            |    | E3  | 0,3 |   |      |      |      |      |
| slu-SISMA19 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA19            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA19            |    | G22 |     | 1 |      |      |      |      |
|                        |    |     |     |   |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

 <u>Mandanti</u>



Alpina

# ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione | COMMESSA<br>IF28 | LOTTO <b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV. | FOGLIO<br>162 di<br>191 |
|--------------------------------------------------------------------------------------------------|------------------|-----------------|---------------------|-------------------------|------|-------------------------|
|--------------------------------------------------------------------------------------------------|------------------|-----------------|---------------------|-------------------------|------|-------------------------|

| elevazione             |    |     | 20  |   | 0.   | L LL 0L | 110100 000 | J    |
|------------------------|----|-----|-----|---|------|---------|------------|------|
| slu-SISMA19            |    | Q12 | 0,2 |   |      |         |            |      |
| slu-SISMA19            |    | Q22 | 0,1 |   |      |         |            |      |
| slu-SISMA19            |    | Q32 | 0,2 |   |      |         |            |      |
| slu-SISMA19            |    | Q42 | 0,2 |   |      |         |            |      |
| slu-SISMA19            |    | Q61 | 0,2 |   |      |         |            |      |
| slu-SISMA19            |    | Q71 | 0,2 |   |      |         |            |      |
| slu-SISMA19            |    | E1  | 0,3 |   |      |         |            |      |
| slu-SISMA19            |    | E2  |     | 1 |      |         |            |      |
| slu-SISMA19            |    | E3  | 0,3 |   |      |         |            |      |
| slu-SISMA20 Linear Add | No | G1  |     | 1 | none | none    | none       | none |
| slu-SISMA20            |    | G21 |     | 1 |      |         |            |      |
| slu-SISMA20            |    | G22 |     | 1 |      |         |            |      |
| slu-SISMA20            |    | Q15 | 0,2 |   |      |         |            |      |
| slu-SISMA20            |    | Q25 | 0,2 |   |      |         |            |      |
| slu-SISMA20            |    | Q35 | 0,1 |   |      |         |            |      |
| slu-SISMA20            |    | Q45 | 0,1 |   |      |         |            |      |
| slu-SISMA20            |    | Q61 | 0,2 |   |      |         |            |      |
| slu-SISMA20            |    | Q71 | 0,2 |   |      |         |            |      |
| slu-SISMA20            |    | E1  | 0,3 |   |      |         |            |      |
| slu-SISMA20            |    | E2  |     | 1 |      |         |            |      |
| slu-SISMA20            |    | E3  | 0,3 |   |      |         |            |      |
| slu-SISMA21 Linear Add | No | G1  |     | 1 | none | none    | none       | none |
| slu-SISMA21            |    | G21 |     | 1 |      |         |            |      |
| slu-SISMA21            |    | G22 |     | 1 |      |         |            |      |
| slu-SISMA21            |    | Q11 | 0,2 |   |      |         |            |      |
| slu-SISMA21            |    | E1  | 0,3 |   |      |         |            |      |
| slu-SISMA21            |    | E2  |     | 1 |      |         |            |      |
| slu-SISMA21            |    | E3  | 0,3 |   |      |         |            |      |
| slu-SISMA22 Linear Add | No | G1  |     | 1 | none | none    | none       | none |
| slu-SISMA22            |    | G21 |     | 1 |      |         |            |      |
| slu-SISMA22            |    | G22 |     | 1 |      |         |            |      |
| slu-SISMA22            |    | Q13 | 0,2 |   |      |         |            |      |
| slu-SISMA22            |    | Q23 | 0,2 |   |      |         |            |      |
| slu-SISMA22            |    | Q33 | 0,1 |   |      |         |            |      |
| slu-SISMA22            |    | Q43 | 0,1 |   |      |         |            |      |
| slu-SISMA22            |    | Q61 | 0,2 |   |      |         |            |      |
| slu-SISMA22            |    | Q71 | 0,2 |   |      |         |            |      |
| slu-SISMA22            |    | E1  | 0,3 |   |      |         |            |      |
|                        |    |     |     |   |      |         |            |      |
| slu-SISMA22            |    | E2  |     | 1 |      |         |            |      |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET INGINEERING

**Alpina** 

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 163 di 191

| elevazione             | c ai caic | olo strutture ili | IF28 |   | 01   | E ZZ CL | VI0105 005 | В    |
|------------------------|-----------|-------------------|------|---|------|---------|------------|------|
| slu-SISMA23 Linear Add | No        | G1                |      | 1 | none | none    | none       | none |
| slu-SISMA23            |           | G21               |      | 1 |      |         |            |      |
| slu-SISMA23            |           | G22               |      | 1 |      |         |            |      |
| slu-SISMA23            |           | Q15               | 0,2  |   |      |         |            |      |
| slu-SISMA23            |           | Q25               | 0,1  |   |      |         |            |      |
| slu-SISMA23            |           | Q35               | 0,2  |   |      |         |            |      |
| slu-SISMA23            |           | Q45               | 0,2  |   |      |         |            |      |
| slu-SISMA23            |           | Q61               | 0,2  |   |      |         |            |      |
| slu-SISMA23            |           | Q71               | 0,2  |   |      |         |            |      |
| slu-SISMA23            |           | E1                | 0,3  |   |      |         |            |      |
| slu-SISMA23            |           | E2                |      | 1 |      |         |            |      |
| slu-SISMA23            |           | E3                | 0,3  |   |      |         |            |      |
| slu-SISMA24 Linear Add | No        | G1                |      | 1 | none | none    | none       | none |
| slu-SISMA24            |           | G21               |      | 1 |      |         |            |      |
| slu-SISMA24            |           | Q61               | 0,2  |   |      |         |            |      |
| slu-SISMA24            |           | Q71               | 0,5  |   |      |         |            |      |
| slu-SISMA24            |           | E1                | 0,3  |   |      |         |            |      |
| slu-SISMA24            |           | E2                |      | 1 |      |         |            |      |
| slu-SISMA24            |           | E3                | 0,3  |   |      |         |            |      |
| slu-SISMA25 Linear Add | No        | G1                |      | 1 | none | none    | none       | none |
| slu-SISMA25            |           | G21               |      | 1 |      |         |            |      |
| slu-SISMA25            |           | G22               |      | 1 |      |         |            |      |
| slu-SISMA25            |           | Q12               | 0,2  |   |      |         |            |      |
| slu-SISMA25            |           | Q22               | 0,2  |   |      |         |            |      |
| slu-SISMA25            |           | Q32               | 0,1  |   |      |         |            |      |
| slu-SISMA25            |           | Q42               | 0,1  |   |      |         |            |      |
| slu-SISMA25            |           | Q61               | 0,2  |   |      |         |            |      |
| slu-SISMA25            |           | Q71               | 0,2  |   |      |         |            |      |
| slu-SISMA25            |           | E1                | 0,3  |   |      |         |            |      |
| slu-SISMA25            |           | E2                |      | 1 |      |         |            |      |
| slu-SISMA25            |           | E3                | 0,3  |   |      |         |            |      |
| slu-SISMA26 Linear Add | No        | G1                |      | 1 | none | none    | none       | none |
| slu-SISMA26            |           | G21               |      | 1 |      |         |            |      |
| slu-SISMA26            |           | G22               |      | 1 |      |         |            |      |
| slu-SISMA26            |           | Q14               | 0,2  |   |      |         |            |      |
| slu-SISMA26            |           | Q24               | 0,1  |   |      |         |            |      |
| slu-SISMA26            |           | Q34               | 0,2  |   |      |         |            |      |
| slu-SISMA26            |           | Q44               | 0,2  |   |      |         |            |      |
| slu-SISMA26            |           | Q61               | 0,2  |   |      |         |            |      |
| slu-SISMA26            |           | Q71               | 0,2  |   |      |         |            |      |

Consorzio Soci

Hirpinia AV





PROGETTAZIONE:

Mandataria

<u>Mandanti</u>



Alpina

# ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO                                                            | COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO        |
|-------------------------------------------------------------------------------|----------|-------|----------|------------|------|---------------|
| Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione | IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 164 di<br>191 |

| elevazione             |    |     | IF28 |   | U1   | E ZZ CL | VIU105 005 | В    |
|------------------------|----|-----|------|---|------|---------|------------|------|
| slu-SISMA26            |    | E1  | 0,3  |   |      |         |            |      |
| slu-SISMA26            |    | E2  |      | 1 |      |         |            |      |
| slu-SISMA26            |    | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA27 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA27            |    | G21 |      | 1 |      |         |            |      |
| slu-SISMA27            |    | Q17 | 0,1  |   |      |         |            |      |
| slu-SISMA27            |    | Q27 | 0,2  |   |      |         |            |      |
| slu-SISMA27            |    | Q37 | 0,1  |   |      |         |            |      |
| slu-SISMA27            |    | Q47 | 0,1  |   |      |         |            |      |
| slu-SISMA27            |    | Q61 | 0,2  |   |      |         |            |      |
| slu-SISMA27            |    | Q71 | 0,2  |   |      |         |            |      |
| slu-SISMA27            |    | E1  | 0,3  |   |      |         |            |      |
| slu-SISMA27            |    | E2  |      | 1 |      |         |            |      |
| slu-SISMA27            |    | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA28 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA28            |    | G21 |      | 1 |      |         |            | i    |
| slu-SISMA28            |    | G22 |      | 1 |      |         |            |      |
| slu-SISMA28            |    | Q61 | 0,2  |   |      |         |            |      |
| slu-SISMA28            |    | Q71 | 0,5  |   |      |         |            |      |
| slu-SISMA28            |    | E1  | 0,3  |   |      |         |            |      |
| slu-SISMA28            |    | E2  |      | 1 |      |         |            |      |
| slu-SISMA28            |    | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA29 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA29            |    | G21 |      | 1 |      |         |            |      |
| slu-SISMA29            |    | G22 |      | 1 |      |         |            |      |
| slu-SISMA29            |    | Q11 | 0,2  |   |      |         |            |      |
| slu-SISMA29            |    | Q21 | 0,2  |   |      |         |            |      |
| slu-SISMA29            |    | Q31 | 0,1  |   |      |         |            |      |
| slu-SISMA29            |    | Q41 | 0,1  |   |      |         |            |      |
| slu-SISMA29            |    | Q61 | 0,2  |   |      |         |            |      |
| slu-SISMA29            |    | Q71 | 0,2  |   |      |         |            |      |
| slu-SISMA29            |    | E1  | 0,3  |   |      |         |            |      |
| slu-SISMA29            |    | E2  |      | 1 |      |         |            |      |
| slu-SISMA29            |    | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA30 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA30            |    | G21 |      | 1 |      |         |            |      |
| slu-SISMA30            |    | G22 |      | 1 |      |         |            |      |
| slu-SISMA30            |    | Q13 | 0,2  |   |      |         |            |      |
| slu-SISMA30            |    | Q23 | 0,1  |   |      |         |            |      |
| slu-SISMA30            |    | Q33 | 0,2  |   |      |         |            |      |

Consorzio Soci







PROGETTAZIONE:

<u>Mandataria</u>

Mandanti

NET INGINEERING

Alpina

# ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione | COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>165 di<br>191 |
|--------------------------------------------------------------------------------------------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
|--------------------------------------------------------------------------------------------------|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|

| elevazione             | - u u |     | IF28 |   | U1   | E ZZ CL | VIU1U5 UU5 | В    |
|------------------------|-------|-----|------|---|------|---------|------------|------|
| slu-SISMA30            |       | Q43 | 0,2  |   |      |         |            |      |
| slu-SISMA30            |       | Q61 | 0,2  |   |      |         |            |      |
| slu-SISMA30            |       | Q71 | 0,2  |   |      |         |            |      |
| slu-SISMA30            |       | E1  | 0,3  |   |      |         |            |      |
| slu-SISMA30            |       | E2  |      | 1 |      |         |            |      |
| slu-SISMA30            |       | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA31 Linear Add | No    | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA31            |       | G21 |      | 1 |      |         |            |      |
| slu-SISMA31            |       | G22 |      | 1 |      |         |            |      |
| slu-SISMA31            |       | Q16 | 0,2  |   |      |         |            |      |
| slu-SISMA31            |       | Q26 | 0,2  |   |      |         |            |      |
| slu-SISMA31            |       | Q36 | 0,1  |   |      |         |            |      |
| slu-SISMA31            |       | Q46 | 0,1  |   |      |         |            |      |
| slu-SISMA31            |       | Q61 | 0,2  |   |      |         |            |      |
| slu-SISMA31            |       | Q71 | 0,2  |   |      |         |            |      |
| slu-SISMA31            |       | E1  | 0,3  |   |      |         |            |      |
| slu-SISMA31            |       | E2  |      | 1 |      |         |            |      |
| slu-SISMA31            |       | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA32 Linear Add | No    | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA32            |       | G21 |      | 1 |      |         |            |      |
| slu-SISMA32            |       | G22 |      | 1 |      |         |            |      |
| slu-SISMA32            |       | Q11 | 0,2  |   |      |         |            |      |
| slu-SISMA32            |       | Q21 | 0,1  |   |      |         |            |      |
| slu-SISMA32            |       | Q31 | 0,2  |   |      |         |            |      |
| slu-SISMA32            |       | Q41 | 0,2  |   |      |         |            |      |
| slu-SISMA32            |       | Q61 | 0,2  |   |      |         |            |      |
| slu-SISMA32            |       | Q71 | 0,2  |   |      |         |            |      |
| slu-SISMA32            |       | E1  | 0,3  |   |      |         |            |      |
| slu-SISMA32            |       | E2  |      | 1 |      |         |            |      |
| slu-SISMA32            |       | E3  | 0,3  |   |      |         |            |      |
| slu-SISMA33 Linear Add | No    | G1  |      | 1 | none | none    | none       | none |
| slu-SISMA33            |       | G21 |      | 1 |      |         |            |      |
| slu-SISMA33            |       | G22 |      | 1 |      |         |            |      |
| slu-SISMA33            |       | Q14 | 0,2  |   |      |         |            |      |
| slu-SISMA33            |       | Q24 | 0,2  |   |      |         |            |      |
| slu-SISMA33            |       | Q34 | 0,1  |   |      |         |            |      |
| slu-SISMA33            |       | Q44 | 0,1  |   |      |         |            |      |
| slu-SISMA33            |       | Q61 | 0,2  |   |      |         |            |      |
| slu-SISMA33            |       | Q71 | 0,2  |   |      |         |            |      |
| slu-SISMA33            |       | E1  | 0,3  |   |      |         |            |      |

<u>Consorzio</u> <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

Mandataria

<u>Mandanti</u>

NET

Alpina

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL VI0105 005 B 191

| elevazione                 |          |            |     |   |      |      |      |      |
|----------------------------|----------|------------|-----|---|------|------|------|------|
| slu-SISMA33                |          | E2         |     | 1 |      |      |      |      |
| slu-SISMA33                |          | E3         | 0,3 |   |      |      |      |      |
| slu-SISMA34 Linear Add     | No       | G1         |     | 1 | none | none | none | none |
| slu-SISMA34                |          | G21        |     | 1 |      |      |      |      |
| slu-SISMA34                |          | G22        |     | 1 |      |      |      |      |
| slu-SISMA34                |          | E1         | 0,3 |   |      |      |      |      |
| slu-SISMA34                |          | E2         | 0,3 |   |      |      |      |      |
| slu-SISMA34                |          | E3         |     | 1 |      |      |      |      |
| slu-SISMA35 Linear Add     | No       | G1         |     | 1 | none | none | none | none |
| slu-SISMA35                |          | G21        |     | 1 |      |      |      |      |
| slu-SISMA35                |          | G22        |     | 1 |      |      |      |      |
| slu-SISMA35                |          | Q16        | 0,2 |   |      |      |      |      |
| slu-SISMA35                |          | Q26        | 0,1 |   |      |      |      |      |
| slu-SISMA35                |          | Q36        | 0,2 |   |      |      |      |      |
| slu-SISMA35                |          | Q46        | 0,2 |   |      |      |      |      |
| slu-SISMA35                |          | Q61        | 0,2 |   |      |      |      |      |
| slu-SISMA35                |          | Q71        | 0,2 |   |      |      |      |      |
| slu-SISMA35                |          | E1         | 0,3 |   |      |      |      |      |
| slu-SISMA35                |          | E2         | 0,3 |   |      |      |      |      |
| slu-SISMA35                |          | E3         |     | 1 |      |      |      |      |
| slu-SISMA36 Linear Add     | No       | G1         |     | 1 | none | none | none | none |
| slu-SISMA36                |          | G21        |     | 1 |      |      |      |      |
| slu-SISMA36                |          | G22        |     | 1 |      |      |      |      |
| slu-SISMA36                |          | Q12        | 0,2 |   |      |      |      |      |
| slu-SISMA36                |          | Q22        | 0,1 |   |      |      |      |      |
| slu-SISMA36                |          | Q32        | 0,2 |   |      |      |      |      |
| slu-SISMA36                |          | Q42        | 0,2 |   |      |      |      |      |
| slu-SISMA36                |          | Q61        | 0,2 |   |      |      |      |      |
| slu-SISMA36                |          | Q71        | 0,2 |   |      |      |      |      |
| slu-SISMA36                |          | E1         | 0,3 |   |      |      |      |      |
| slu-SISMA36                |          | E2         | 0,3 |   |      |      |      |      |
| slu-SISMA36                |          | E3         |     | 1 |      |      |      |      |
| slu-SISMA37 Linear Add     | No       | G1         |     | 1 | none | none | none | none |
| slu-SISMA37                |          | G21        |     | 1 |      |      |      |      |
| slu-SISMA37                |          | G22        |     | 1 |      |      |      |      |
| slu-SISMA37                |          | Q15        | 0,2 |   |      |      |      |      |
| slu-SISMA37                |          | Q25        | 0,2 |   |      |      |      |      |
|                            | <u> </u> |            |     |   | I -  | T -  | T .  | 1    |
| slu-SISMA37                |          | Q35        | 0,1 |   |      |      |      |      |
| slu-SISMA37<br>slu-SISMA37 |          | Q35<br>Q45 | 0,1 |   |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

Mandataria

<u>Mandanti</u>

NET



### ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO                                                            | COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO        |
|-------------------------------------------------------------------------------|----------|-------|----------|------------|------|---------------|
| Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione | IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 167 di<br>191 |

| clu CICNAA 2 7         |    |     |     |   |      |      |      |      |
|------------------------|----|-----|-----|---|------|------|------|------|
| slu-SISMA37            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA37            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA37            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA37            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA38 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA38            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA38            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA38            |    | Q11 | 0,2 |   |      |      |      |      |
| slu-SISMA38            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA38            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA38            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA39 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA39            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA39            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA39            |    | Q13 | 0,2 |   |      |      |      |      |
| slu-SISMA39            |    | Q23 | 0,2 |   |      |      |      |      |
| slu-SISMA39            |    | Q33 | 0,1 |   |      |      |      |      |
| slu-SISMA39            |    | Q43 | 0,1 |   |      |      |      |      |
| slu-SISMA39            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA39            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA39            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA39            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA39            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA40 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA40            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA40            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA40            |    | Q15 | 0,2 |   |      |      |      |      |
| slu-SISMA40            |    | Q25 | 0,1 |   |      |      |      |      |
| slu-SISMA40            |    | Q35 | 0,2 |   |      |      |      |      |
| slu-SISMA40            |    | Q45 | 0,2 |   |      |      |      |      |
| slu-SISMA40            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA40            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA40            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA40            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA40            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA41 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA41            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA41            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA41            |    | Q71 | 0,5 |   |      |      |      |      |
| slu-SISMA41            |    | E1  | 0,3 |   |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>



Alpina

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL VI0105 005 B 168 di 191

| slu-SISMA41            |    | E2  | 0,3 |   |      |      |      |      |
|------------------------|----|-----|-----|---|------|------|------|------|
| slu-SISMA41            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA42 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA42            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA42            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA42            |    | Q12 | 0,2 |   |      |      |      |      |
| slu-SISMA42            |    | Q22 | 0,2 |   |      |      |      |      |
| slu-SISMA42            |    | Q32 | 0,1 |   |      |      |      |      |
| slu-SISMA42            |    | Q42 | 0,1 |   |      |      |      |      |
| slu-SISMA42            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA42            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA42            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA42            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA42            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA43 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA43            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA43            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA43            |    | Q14 | 0,2 |   |      |      |      |      |
| slu-SISMA43            |    | Q24 | 0,1 |   |      |      |      |      |
| slu-SISMA43            |    | Q34 | 0,2 |   |      |      |      |      |
| slu-SISMA43            |    | Q44 | 0,2 |   |      |      |      |      |
| slu-SISMA43            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA43            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA43            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA43            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA43            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA44 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA44            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA44            |    | Q17 | 0,1 |   |      |      |      |      |
| slu-SISMA44            |    | Q27 | 0,2 |   |      |      |      |      |
| slu-SISMA44            |    | Q37 | 0,1 |   |      |      |      |      |
| slu-SISMA44            |    | Q47 | 0,1 |   |      |      |      |      |
| slu-SISMA44            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA44            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA44            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA44            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA44            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA45 Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA45            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA45            |    | G22 |     | 1 |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET ENGINEERING

Alpina

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL VI0105 005 B 191

| slu-SISMA45<br>slu-SISMA45 |    | Q61 | 0,2 |   |      |      |      |      |
|----------------------------|----|-----|-----|---|------|------|------|------|
|                            |    |     | 0,2 |   |      |      |      |      |
| -L CICAAAAT                |    | Q71 | 0,5 |   |      |      |      |      |
| slu-SISMA45                |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA45                |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA45                |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA46 Linear Add     | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA46                |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA46                |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA46                |    | Q11 | 0,2 |   |      |      |      |      |
| slu-SISMA46                |    | Q21 | 0,2 |   |      |      |      |      |
| slu-SISMA46                |    | Q31 | 0,1 |   |      |      |      |      |
| slu-SISMA46                |    | Q41 | 0,1 |   |      |      |      |      |
| slu-SISMA46                |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA46                |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA46                |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA46                |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA46                |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA47 Linear Add     | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA47                |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA47                |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA47                |    | Q13 | 0,2 |   |      |      |      |      |
| slu-SISMA47                |    | Q23 | 0,1 |   |      |      |      |      |
| slu-SISMA47                |    | Q33 | 0,2 |   |      |      |      |      |
| slu-SISMA47                |    | Q43 | 0,2 |   |      |      |      |      |
| slu-SISMA47                |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA47                |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA47                |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA47                |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA47                |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA48 Linear Add     | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA48                |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA48                |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA48                |    | Q16 | 0,2 |   |      |      |      |      |
| slu-SISMA48                |    | Q26 | 0,2 |   |      |      |      |      |
| slu-SISMA48                |    | Q36 | 0,1 |   |      |      |      |      |
| slu-SISMA48                |    | Q46 | 0,1 |   |      |      |      |      |
| slu-SISMA48                |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA48                |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA48                |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA48                |    | E2  | 0,3 |   |      |      |      |      |

# APPALTATORE: Consorzio Soci Salini impregilo ASTALDI PROGETTAZIONE: Mandataria Mandanti

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

NET ENGINEERING Alpina

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF28 01 E ZZ CL VI0105 005 B 191

| slu-SISMA48 |            |    | E3  |     | 1 |      |      |      |      |
|-------------|------------|----|-----|-----|---|------|------|------|------|
| slu-SISMA49 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA49 |            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA49 |            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA49 |            |    | Q11 | 0,2 |   |      |      |      |      |
| slu-SISMA49 |            |    | Q21 | 0,1 |   |      |      |      |      |
| slu-SISMA49 |            |    | Q31 | 0,2 |   |      |      |      |      |
| slu-SISMA49 |            |    | Q41 | 0,2 |   |      |      |      |      |
| slu-SISMA49 |            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA49 |            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA49 |            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA49 |            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA49 |            |    | E3  |     | 1 |      |      |      |      |
| slu-SISMA50 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| slu-SISMA50 |            |    | G21 |     | 1 |      |      |      |      |
| slu-SISMA50 |            |    | G22 |     | 1 |      |      |      |      |
| slu-SISMA50 |            |    | Q14 | 0,2 |   |      |      |      |      |
| slu-SISMA50 |            |    | Q24 | 0,2 |   |      |      |      |      |
| slu-SISMA50 |            |    | Q34 | 0,1 |   |      |      |      |      |
| slu-SISMA50 |            |    | Q44 | 0,1 |   |      |      |      |      |
| slu-SISMA50 |            |    | Q61 | 0,2 |   |      |      |      |      |
| slu-SISMA50 |            |    | Q71 | 0,2 |   |      |      |      |      |
| slu-SISMA50 |            |    | E1  | 0,3 |   |      |      |      |      |
| slu-SISMA50 |            |    | E2  | 0,3 |   |      |      |      |      |
| slu-SISMA50 |            |    | E3  |     | 1 |      |      |      |      |

### 10.4 COMBINAZIONI SLE-RARA

| SLE-RARA1 | Linear Add | No | G1  | 1   | none | none | none | none |
|-----------|------------|----|-----|-----|------|------|------|------|
| SLE-RARA1 |            |    | G21 | 1   |      |      |      |      |
| SLE-RARA1 |            |    | G22 | 1   |      |      |      |      |
| SLE-RARA2 | Linear Add | No | G1  | 1   | none | none | none | none |
| SLE-RARA2 |            |    | G21 | 1   |      |      |      |      |
| SLE-RARA2 |            |    | G22 | 1   |      |      |      |      |
| SLE-RARA2 |            |    | Q16 | 1   |      |      |      |      |
| SLE-RARA2 |            |    | Q26 | 1   |      |      |      |      |
| SLE-RARA2 |            |    | Q36 | 0,5 |      |      |      |      |
| SLE-RARA2 |            |    | Q46 | 0,5 |      |      |      |      |
| SLE-RARA3 | Linear Add | No | G1  | 1   | none | none | none | none |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

Mandataria

<u>Mandanti</u>

NETENGINEERING

**Alpina** 

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA IF28

LOTTO

01

CODIFICA DOCUMENTO
E ZZ CL VI0105 005

REV. FOGLIO B 171 di 191

| Old Tallionio |            |    |     |     |   |      |      |      |      |
|---------------|------------|----|-----|-----|---|------|------|------|------|
| SLE-RARA3     |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA3     |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA3     |            |    | Q14 |     | 1 |      |      |      |      |
| SLE-RARA3     |            |    | Q24 | 0,5 |   |      |      |      |      |
| SLE-RARA3     |            |    | Q34 |     | 1 |      |      |      |      |
| SLE-RARA3     |            |    | Q44 |     | 1 |      |      |      |      |
| SLE-RARA4     | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA4     |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA4     |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA4     |            |    | Q11 |     | 1 |      |      |      |      |
| SLE-RARA4     |            |    | Q21 |     | 1 |      |      |      |      |
| SLE-RARA4     |            |    | Q31 | 0,5 |   |      |      |      |      |
| SLE-RARA4     |            |    | Q41 | 0,5 |   |      |      |      |      |
| SLE-RARA4     |            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA5     | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA5     |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA5     |            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA5     |            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA5     |            |    | Q71 |     | 1 |      |      |      |      |
| SLE-RARA6     | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA6     |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA6     |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA6     |            |    | Q13 |     | 1 |      |      |      |      |
| SLE-RARA6     |            |    | Q23 | 0,5 |   |      |      |      |      |
| SLE-RARA6     |            |    | Q33 |     | 1 |      |      |      |      |
| SLE-RARA6     |            |    | Q43 |     | 1 |      |      |      |      |
| SLE-RARA6     |            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA7     | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA7     |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA7     |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA7     |            |    | Q12 |     | 1 |      |      |      |      |
| SLE-RARA7     |            |    | Q22 |     | 1 |      |      |      |      |
| SLE-RARA7     |            |    | Q32 | 0,5 |   |      |      |      |      |
| SLE-RARA7     |            |    | Q42 | 0,5 |   |      |      |      |      |
| SLE-RARA8     | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA8     |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA8     |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA8     |            |    | Q15 |     | 1 |      |      |      |      |
| SLE-RARA8     |            |    | Q25 |     | 1 |      |      |      |      |
| SLE-RARA8     |            |    | Q35 | 0,5 |   |      |      |      |      |
|               |            | 1  | 1   |     |   | I    | _1   |      | 1    |

<u>Consorzio</u> <u>Soci</u>







PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET ENGINEERING

Alpina

# RADDOPPIO TRATTA APICE – ORSARA

ITINERARIO NAPOLI - BARI

I LOTTO FUNZIONALE APICE – HIRPINIA

FOGLIO

172 di 191

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IF28 01 E ZZ CL VI0105 005 B

| elevazione            |    |     |     |   |      |      |      |      |
|-----------------------|----|-----|-----|---|------|------|------|------|
| SLE-RARA8             |    | Q45 | 0,5 |   |      |      |      |      |
| SLE-RARA8             |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA9 Linear Add  | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA9             |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA9             |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA9             |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA9             |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA9             |    | Q71 |     | 1 |      |      |      |      |
| SLE-RARA10 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA10            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA10            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA10            |    | Q11 |     | 1 |      |      |      |      |
| SLE-RARA10            |    | Q21 | 0,5 |   |      |      |      |      |
| SLE-RARA10            |    | Q31 |     | 1 |      |      |      |      |
| SLE-RARA10            |    | Q41 |     | 1 |      |      |      |      |
| SLE-RARA10            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA11 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA11            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA11            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA11            |    | Q16 |     | 1 |      |      |      |      |
| SLE-RARA11            |    | Q26 | 0,5 |   |      |      |      |      |
| SLE-RARA11            |    | Q36 |     | 1 |      |      |      |      |
| SLE-RARA11            |    | Q46 |     | 1 |      |      |      |      |
| SLE-RARA12 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA12            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA12            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA12            |    | Q13 |     | 1 |      |      |      |      |
| SLE-RARA12            |    | Q23 |     | 1 |      |      |      |      |
| SLE-RARA12            |    | Q33 | 0,5 |   |      |      |      |      |
| SLE-RARA12            |    | Q43 | 0,5 |   |      |      |      |      |
| SLE-RARA12            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA13 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA13            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA13            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA13            |    | Q12 |     | 1 |      |      |      |      |
| SLE-RARA13            |    | Q22 | 0,5 |   |      |      |      |      |
| SLE-RARA13            |    | Q32 |     | 1 |      |      |      |      |
| SLE-RARA13            |    | Q42 |     | 1 |      |      |      |      |
| SLE-RARA14 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA14            |    | G21 |     | 1 |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>



Alpina

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO
Pile P7 P8 P19 P20 P21 P22: Relazione di calcolo strutture

| COI | MMESSA L<br>IF28 | DIFICA I<br>ZZ CL | DOCUMENTO<br>VI0105 005 | RE' | V. FOGLIO<br>173 di<br>191 |
|-----|------------------|-------------------|-------------------------|-----|----------------------------|
|     |                  |                   |                         |     |                            |

| elevazione            | e ai caice | oio strutture in | IF28 |   | 01   | E ZZ CL | VI0105 005 | В    |
|-----------------------|------------|------------------|------|---|------|---------|------------|------|
| SLE-RARA14            |            | G22              |      | 1 |      |         |            |      |
| SLE-RARA14            |            | Q15              |      | 1 |      |         |            |      |
| SLE-RARA14            |            | Q25              | 0,5  |   |      |         |            |      |
| SLE-RARA14            |            | Q35              |      | 1 |      |         |            |      |
| SLE-RARA14            |            | Q45              |      | 1 |      |         |            |      |
| SLE-RARA14            |            | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA15 Linear Add | No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA15            |            | G21              |      | 1 |      |         |            |      |
| SLE-RARA15            |            | G22              |      | 1 |      |         |            |      |
| SLE-RARA15            |            | Q14              |      | 1 |      |         |            |      |
| SLE-RARA15            |            | Q24              |      | 1 |      |         |            |      |
| SLE-RARA15            |            | Q34              | 0,5  |   |      |         |            |      |
| SLE-RARA15            |            | Q44              | 0,5  |   |      |         |            |      |
| SLE-RARA16 Linear Add | No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA16            |            | G21              |      | 1 |      |         |            |      |
| SLE-RARA16            |            | Q17              | 0,5  |   |      |         |            |      |
| SLE-RARA16            |            | Q27              |      | 1 |      |         |            |      |
| SLE-RARA16            |            | Q37              | 0,5  |   |      |         |            |      |
| SLE-RARA16            |            | Q47              | 0,5  |   |      |         |            |      |
| SLE-RARA16            |            | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA17 Linear Add | No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA17            |            | G21              |      | 1 |      |         |            |      |
| SLE-RARA17            |            | G22              |      | 1 |      |         |            |      |
| SLE-RARA17            |            | Q51              |      | 1 |      |         |            |      |
| SLE-RARA17            |            | Q61              | 0,6  |   |      |         |            |      |
| SLE-RARA17            |            | Q71              | 0,6  |   |      |         |            |      |
| SLE-RARA18 Linear Add | No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA18            |            | G21              |      | 1 |      |         |            |      |
| SLE-RARA18            |            | Q17              | 0,5  |   |      |         |            |      |
| SLE-RARA18            |            | Q27              |      | 1 |      |         |            |      |
| SLE-RARA18            |            | Q37              | 0,5  |   |      |         |            |      |
| SLE-RARA18            |            | Q47              | 0,5  |   |      |         |            |      |
| SLE-RARA19 Linear Add | No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA19            |            | G21              |      | 1 |      |         |            |      |
| SLE-RARA19            |            | G22              |      | 1 |      |         |            |      |
| SLE-RARA19            |            | Q15              |      | 1 |      |         |            |      |
| SLE-RARA19            |            | Q25              | 0,5  |   |      |         |            |      |
| SLE-RARA19            |            | Q35              |      | 1 |      |         |            |      |
| SLE-RARA19            |            | Q45              |      | 1 |      |         |            |      |
| SLE-RARA20 Linear Add | No         | G1               |      | 1 | none | none    | none       | none |

<u>Consorzio</u> <u>Soci</u>

Hirpinia*AV* 





PROGETTAZIONE:

Mandataria

<u>Mandanti</u>

NET

**Alpina** 

### ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

174 di 191

PROGETTO ESECUTIVO

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. |
|----------|-------|----------|------------|------|
| IF28     | 01    | E ZZ CL  | VI0105 005 | В    |

| Pile P7, P8, P19, P20, P21, P22: Relaz<br>elevazione | ione di caic | olo strutture in | IF28 |   | 01   | E ZZ CL | VI0105 005 | В    |
|------------------------------------------------------|--------------|------------------|------|---|------|---------|------------|------|
| SLE-RARA20                                           |              | G21              |      | 1 |      |         |            |      |
| SLE-RARA20                                           |              | G22              |      | 1 |      |         |            |      |
| SLE-RARA20                                           |              | Q12              |      | 1 |      |         |            |      |
| SLE-RARA20                                           |              | Q22              |      | 1 |      |         |            |      |
| SLE-RARA20                                           |              | Q32              | 0,5  |   |      |         |            |      |
| SLE-RARA20                                           |              | Q42              | 0,5  |   |      |         |            |      |
| SLE-RARA20                                           |              | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA21 Linear Ad                                 | d No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA21                                           |              | G21              |      | 1 |      |         |            |      |
| SLE-RARA21                                           |              | G22              |      | 1 |      |         |            |      |
| SLE-RARA21                                           |              | Q11              |      | 1 |      |         |            |      |
| SLE-RARA21                                           |              | Q21              | 0,5  |   |      |         |            |      |
| SLE-RARA21                                           |              | Q31              |      | 1 |      |         |            |      |
| SLE-RARA21                                           |              | Q41              |      | 1 |      |         |            |      |
| SLE-RARA22 Linear Ad                                 | d No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA22                                           |              | G21              |      | 1 |      |         |            |      |
| SLE-RARA22                                           |              | G22              |      | 1 |      |         |            |      |
| SLE-RARA22                                           |              | Q14              |      | 1 |      |         |            |      |
| SLE-RARA22                                           |              | Q24              | 0,5  |   |      |         |            |      |
| SLE-RARA22                                           |              | Q34              |      | 1 |      |         |            |      |
| SLE-RARA22                                           |              | Q44              |      | 1 |      |         |            |      |
| SLE-RARA22                                           |              | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA23 Linear Ad                                 | d No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA23                                           |              | G21              |      | 1 |      |         |            |      |
| SLE-RARA23                                           |              | G22              |      | 1 |      |         |            |      |
| SLE-RARA23                                           |              | Q13              |      | 1 |      |         |            |      |
| SLE-RARA23                                           |              | Q23              |      | 1 |      |         |            |      |
| SLE-RARA23                                           |              | Q33              | 0,5  |   |      |         |            |      |
| SLE-RARA23                                           |              | Q43              | 0,5  |   |      |         |            |      |
| SLE-RARA24 Linear Ad                                 | d No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA24                                           |              | G21              |      | 1 |      |         |            |      |
| SLE-RARA24                                           |              | G22              |      | 1 |      |         |            |      |
| SLE-RARA24                                           |              | Q16              |      | 1 |      |         |            |      |
| SLE-RARA24                                           |              | Q26              |      | 1 |      |         |            |      |
| SLE-RARA24                                           |              | Q36              | 0,5  |   |      |         |            |      |
| SLE-RARA24                                           |              | Q46              | 0,5  |   |      |         |            |      |
| SLE-RARA24                                           |              | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA25 Linear Ad                                 | d No         | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA25                                           |              | G21              |      | 1 |      |         |            |      |
| SLE-RARA25                                           |              | Q51              |      | 1 |      |         |            |      |

Consorzio <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

XXX SOIL NETENGINEERING

**Alpina** 

### RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI – BARI

PROGETTO ESECUTIVO

| COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGL<br>175 c<br>191 |
|------------------|--------------------|---------------------|-------------------------|------------------|----------------------|
|                  | LOTTO              |                     |                         |                  |                      |
| IF28             | 01                 | E ZZ CL             | VI0105 005              | В                |                      |

| elevazione        |          |     |     |   |      |      |      |      |
|-------------------|----------|-----|-----|---|------|------|------|------|
| SLE-RARA25        |          | Q61 | 0,6 |   |      |      |      |      |
| SLE-RARA25        |          | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA26 Linear | r Add No | G1  |     | 1 | none | none | none | none |
| SLE-RARA26        |          | G21 |     | 1 |      |      |      |      |
| SLE-RARA26        |          | G22 |     | 1 |      |      |      |      |
| SLE-RARA26        |          | Q12 |     | 1 |      |      |      |      |
| SLE-RARA26        |          | Q22 | 0,5 |   |      |      |      |      |
| SLE-RARA26        |          | Q32 |     | 1 |      |      |      |      |
| SLE-RARA26        |          | Q42 |     | 1 |      |      |      |      |
| SLE-RARA26        |          | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA27 Linear | r Add No | G1  |     | 1 | none | none | none | none |
| SLE-RARA27        |          | G21 |     | 1 |      |      |      |      |
| SLE-RARA27        |          | G22 |     | 1 |      |      |      |      |
| SLE-RARA27        |          | Q11 |     | 1 |      |      |      |      |
| SLE-RARA27        |          | Q21 |     | 1 |      |      |      |      |
| SLE-RARA27        |          | Q31 | 0,5 |   |      |      |      |      |
| SLE-RARA27        |          | Q41 | 0,5 |   |      |      |      |      |
| SLE-RARA28 Linear | r Add No | G1  |     | 1 | none | none | none | none |
| SLE-RARA28        |          | G21 |     | 1 |      |      |      |      |
| SLE-RARA28        |          | G22 |     | 1 |      |      |      |      |
| SLE-RARA28        |          | Q14 |     | 1 |      |      |      |      |
| SLE-RARA28        |          | Q24 |     | 1 |      |      |      |      |
| SLE-RARA28        |          | Q34 | 0,5 |   |      |      |      |      |
| SLE-RARA28        |          | Q44 | 0,5 |   |      |      |      |      |
| SLE-RARA28        |          | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA29 Linear | Add No   | G1  |     | 1 | none | none | none | none |
| SLE-RARA29        |          | G21 |     | 1 |      |      |      |      |
| SLE-RARA29        |          | G22 |     | 1 |      |      |      |      |
| SLE-RARA29        |          | Q13 |     | 1 |      |      |      |      |
| SLE-RARA29        |          | Q23 | 0,5 |   |      |      |      |      |
| SLE-RARA29        |          | Q33 |     | 1 |      |      |      |      |
| SLE-RARA29        |          | Q43 |     | 1 |      |      |      |      |
| SLE-RARA30 Linear | Add No   | G1  |     | 1 | none | none | none | none |
| SLE-RARA30        |          | G21 |     | 1 |      |      |      |      |
| SLE-RARA30        |          | G22 |     | 1 |      |      | 1    |      |
| SLE-RARA30        |          | Q16 |     | 1 |      |      | 1    |      |
| SLE-RARA30        |          | Q26 | 0,5 |   |      |      | 1    |      |
| SLE-RARA30        |          | Q36 |     | 1 |      |      |      |      |
| 01 = 0.10.00      |          | 1   |     |   | 1    | 1    | 1    | 1    |
| SLE-RARA30        |          | Q46 |     | 1 |      |      |      | i i  |

Consorzio <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

XXX SOIL NETENGINEERING

**Alpina** 

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI – BARI

PROGETTO ESECUTIVO

| FOGLIO<br>176 di<br>191 |
|-------------------------|
|                         |

| elevazione |            |    |     |     |   |      |      |      |      |
|------------|------------|----|-----|-----|---|------|------|------|------|
| SLE-RARA31 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA31 |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA31 |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA31 |            |    | Q15 |     | 1 |      |      |      |      |
| SLE-RARA31 |            |    | Q25 |     | 1 |      |      |      |      |
| SLE-RARA31 |            |    | Q35 | 0,5 |   |      |      |      |      |
| SLE-RARA31 |            |    | Q45 | 0,5 |   |      |      |      |      |
| SLE-RARA32 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA32 |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA32 |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA32 |            |    | Q11 |     | 1 |      |      |      |      |
| SLE-RARA32 |            |    | Q21 | 0,5 |   |      |      |      |      |
| SLE-RARA32 |            |    | Q31 |     | 1 |      |      |      |      |
| SLE-RARA32 |            |    | Q41 |     | 1 |      |      |      |      |
| SLE-RARA32 |            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA33 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA33 |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA33 |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA33 |            |    | Q12 |     | 1 |      |      |      |      |
| SLE-RARA33 |            |    | Q22 | 0,5 |   |      |      |      |      |
| SLE-RARA33 |            |    | Q32 |     | 1 |      |      |      |      |
| SLE-RARA33 |            |    | Q42 |     | 1 |      |      |      |      |
| SLE-RARA33 |            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA34 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA34 |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA34 |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA34 |            |    | Q14 |     | 1 |      |      |      |      |
| SLE-RARA34 |            |    | Q24 | 0,5 |   |      |      |      |      |
| SLE-RARA34 |            |    | Q34 |     | 1 |      |      |      |      |
| SLE-RARA34 |            |    | Q44 |     | 1 |      |      |      |      |
| SLE-RARA34 |            |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA35 | Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA35 |            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA35 |            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA35 |            |    | Q14 |     | 1 |      |      |      |      |
| SLE-RARA35 |            |    | Q24 |     | 1 |      |      |      |      |
| SLE-RARA35 |            |    | Q34 | 0,5 |   |      |      |      |      |
| SLE-RARA35 |            |    | Q44 | 0,5 |   |      |      |      |      |
| SLE-RARA35 |            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA36 | Linear Add | No | G1  |     | 1 | none | none | none | none |

<u>Consorzio</u> <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET INGINEERING

Alpina

ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO                                                 | COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO |
|--------------------------------------------------------------------|----------|-------|----------|------------|------|--------|
| Pile P7, P8, P19, P20, P21, P22; Relazione di calcolo strutture in | IF28     | 01    | E 77 CI  | VI0105 005 | D.   | 177 di |
| elevazione                                                         | IFZO     | UI    | E ZZ GL  | VI0105 005 | ь    | 191    |

| SLE-RARA36<br>SLE-RARA36 |    | C21 |     |   |      |      |      | _    |
|--------------------------|----|-----|-----|---|------|------|------|------|
| SLE-RARA36               |    | G21 |     | 1 |      |      |      |      |
|                          |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA36               |    | Q16 |     | 1 |      |      |      |      |
| SLE-RARA36               |    | Q26 |     | 1 |      |      |      |      |
| SLE-RARA36               |    | Q36 | 0,5 |   |      |      |      |      |
| SLE-RARA36               |    | Q46 | 0,5 |   |      |      |      |      |
| SLE-RARA36               |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA37 Linear Add    | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA37               |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA37               |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA37               |    | Q16 |     | 1 |      |      |      |      |
| SLE-RARA37               |    | Q26 | 0,5 |   |      |      |      |      |
| SLE-RARA37               |    | Q36 |     | 1 |      |      |      |      |
| SLE-RARA37               |    | Q46 |     | 1 |      |      |      |      |
| SLE-RARA37               |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA38 Linear Add    | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA38               |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA38               |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA38               |    | Q12 |     | 1 |      |      |      |      |
| SLE-RARA38               |    | Q22 |     | 1 |      |      |      |      |
| SLE-RARA38               |    | Q32 | 0,5 |   |      |      |      |      |
| SLE-RARA38               |    | Q42 | 0,5 |   |      |      |      |      |
| SLE-RARA38               |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA39 Linear Add    | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA39               |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA39               |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA39               |    | Q11 |     | 1 |      |      |      |      |
| SLE-RARA39               |    | Q21 | 0,5 |   |      |      |      |      |
| SLE-RARA39               |    | Q31 |     | 1 |      |      |      |      |
| SLE-RARA39               |    | Q41 |     | 1 |      |      |      |      |
| SLE-RARA39               |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA40 Linear Add    | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA40               |    | G21 |     | 1 |      |      |      | 1    |
| SLE-RARA40               |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA40               |    | Q13 |     | 1 |      |      |      |      |
| SLE-RARA40               |    | Q23 | 0,5 |   |      |      |      |      |
| SLE-RARA40               |    | Q33 |     | 1 |      |      |      |      |
| SLE-RARA40               |    | Q43 |     | 1 |      |      |      |      |
| SLE-RARA40               |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA40               |    | Q61 |     | 1 |      |      | 1    |      |

Consorzio <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

**Mandataria** 

<u>Mandanti</u>

XXX SOUL



# **Alpina**

### RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA E ZZ CL IF28 01

DOCUMENTO VI0105

FOGLIO REV.

|       |   | 4=0 !! |
|-------|---|--------|
| 5 005 | В | 178 di |
| 3 003 | ь | 191    |
|       |   |        |

| elevazione            |    |     | 20  |   | · -  |      |      |      |
|-----------------------|----|-----|-----|---|------|------|------|------|
| SLE-RARA40            |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA41 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA41            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA41            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA41            |    | Q14 |     | 1 |      |      |      |      |
| SLE-RARA41            |    | Q24 | 0,5 |   |      |      |      |      |
| SLE-RARA41            |    | Q34 |     | 1 |      |      |      |      |
| SLE-RARA41            |    | Q44 |     | 1 |      |      |      |      |
| SLE-RARA41            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA42 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA42            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA42            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA42            |    | Q16 |     | 1 |      |      |      |      |
| SLE-RARA42            |    | Q26 | 0,5 |   |      |      |      |      |
| SLE-RARA42            |    | Q36 |     | 1 |      |      |      |      |
| SLE-RARA42            |    | Q46 |     | 1 |      |      |      |      |
| SLE-RARA42            |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA43 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA43            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA43            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA43            |    | Q16 |     | 1 |      |      |      |      |
| SLE-RARA43            |    | Q26 |     | 1 |      |      |      |      |
| SLE-RARA43            |    | Q36 | 0,5 |   |      |      |      |      |
| SLE-RARA43            |    | Q46 | 0,5 |   |      |      |      |      |
| SLE-RARA43            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA44 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA44            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA44            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA44            |    | Q11 |     | 1 |      |      |      |      |
| SLE-RARA44            |    | Q21 | 0,5 |   |      |      |      |      |
| SLE-RARA44            |    | Q31 |     | 1 |      |      |      |      |
| SLE-RARA44            |    | Q41 |     | 1 |      |      |      |      |
| SLE-RARA44            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA44            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA44            |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA45 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA45            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA45            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA45            |    | Q12 |     | 1 |      |      |      |      |
|                       |    |     |     |   | 1    | 1    |      | 1    |

<u>Consorzio</u> <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

<u>Mandataria</u>

Mandanti

NETENGINEERING

Alpina

# ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO                                                 | COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO |
|--------------------------------------------------------------------|----------|-------|----------|------------|------|--------|
| Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in | IF28     | 01    | E 77 CI  | VI0105 005 | REV. | 179 di |
| elevazione                                                         | 11-20    | 01    | L ZZ GL  | VI0103 003 | ь    | 191    |

| elevazione            |    |     | IF28 |   | 01   | E 22 CL | VIU1U5 UU5 | В    |
|-----------------------|----|-----|------|---|------|---------|------------|------|
| SLE-RARA45            |    | Q32 | 0,5  |   |      |         |            |      |
| SLE-RARA45            |    | Q42 | 0,5  |   |      |         |            |      |
| SLE-RARA45            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA46 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA46            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA46            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA46            |    | Q14 |      | 1 |      |         |            |      |
| SLE-RARA46            |    | Q24 |      | 1 |      |         |            |      |
| SLE-RARA46            |    | Q34 | 0,5  |   |      |         |            |      |
| SLE-RARA46            |    | Q44 | 0,5  |   |      |         |            |      |
| SLE-RARA46            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA47 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA47            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA47            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA47            |    | Q13 |      | 1 |      |         |            |      |
| SLE-RARA47            |    | Q23 | 0,5  |   |      |         |            |      |
| SLE-RARA47            |    | Q33 |      | 1 |      |         |            |      |
| SLE-RARA47            |    | Q43 |      | 1 |      |         |            |      |
| SLE-RARA47            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA48 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA48            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA48            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA48            |    | Q13 |      | 1 |      |         |            |      |
| SLE-RARA48            |    | Q23 | 0,5  |   |      |         |            |      |
| SLE-RARA48            |    | Q33 |      | 1 |      |         |            |      |
| SLE-RARA48            |    | Q43 |      | 1 |      |         |            |      |
| SLE-RARA48            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA49 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA49            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA49            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA49            |    | Q15 |      | 1 |      |         |            |      |
| SLE-RARA49            |    | Q25 | 0,5  |   |      |         |            |      |
| SLE-RARA49            |    | Q35 |      | 1 |      |         |            |      |
| SLE-RARA49            |    | Q45 |      | 1 |      |         |            |      |
| SLE-RARA49            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA50 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA50            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA50            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA50            |    | Q15 |      | 1 |      |         |            |      |
| SLE-RARA50            |    | Q25 |      | 1 |      |         |            |      |

Consorzio

<u>Soci</u> HirpiniaAV





PROGETTAZIONE:

**Mandataria** 

XXX SOUL

<u>Mandanti</u>



# RADDOPPIO TRATTA APICE - ORSARA

CODIFICA

PROGETTO ESECUTIVO

| COMMESSA |
|----------|

LOTTO

I LOTTO FUNZIONALE APICE – HIRPINIA

DOCUMENTO

FOGLIO

180 di 191

REV.

ITINERARIO NAPOLI - BARI

| Pile P7, P8, P19, P20, P21, P22: Relazione elevazione | di calc | olo strutture in | COMMESSA<br>IF28 | L |      | ODIFICA<br>E ZZ CL | VI0105 005 | REV.<br><b>B</b> |
|-------------------------------------------------------|---------|------------------|------------------|---|------|--------------------|------------|------------------|
| SLE-RARA50                                            |         | Q35              | 0,5              |   |      |                    |            |                  |
| SLE-RARA50                                            |         | Q45              | 0,5              |   |      |                    |            |                  |
| SLE-RARA50                                            |         | Q61              |                  | 1 |      |                    |            |                  |
| SLE-RARA51 Linear Add                                 | No      | G1               |                  | 1 | none | none               | none       | none             |
| SLE-RARA51                                            |         | G21              |                  | 1 |      |                    |            |                  |
| SLE-RARA51                                            |         | Q17              | 0,5              |   |      |                    |            |                  |
| SLE-RARA51                                            |         | Q27              |                  | 1 |      |                    |            |                  |
| SLE-RARA51                                            |         | Q37              | 0,5              |   |      |                    |            |                  |
| SLE-RARA51                                            |         | Q47              | 0,5              |   |      |                    |            |                  |
| SLE-RARA51                                            |         | Q71              | 0,6              |   |      |                    |            |                  |
| SLE-RARA52 Linear Add                                 | No      | G1               |                  | 1 | none | none               | none       | none             |
| SLE-RARA52                                            |         | G21              |                  | 1 |      |                    |            |                  |
| SLE-RARA52                                            |         | G22              |                  | 1 |      |                    |            |                  |
| SLE-RARA52                                            |         | Q11              |                  | 1 |      |                    |            |                  |
| SLE-RARA52                                            |         | Q21              |                  | 1 |      |                    |            |                  |
| SLE-RARA52                                            |         | Q31              | 0,5              |   |      |                    |            |                  |
| SLE-RARA52                                            |         | Q41              | 0,5              |   |      |                    |            |                  |
| SLE-RARA52                                            |         | Q61              |                  | 1 |      |                    |            |                  |
| SLE-RARA53 Linear Add                                 | No      | G1               |                  | 1 | none | none               | none       | none             |
| SLE-RARA53                                            |         | G21              |                  | 1 |      |                    |            |                  |
| SLE-RARA53                                            |         | G22              |                  | 1 |      |                    |            |                  |
| SLE-RARA53                                            |         | Q13              |                  | 1 |      |                    |            |                  |
| SLE-RARA53                                            |         | Q23              |                  | 1 |      |                    |            |                  |
| SLE-RARA53                                            |         | Q33              | 0,5              |   |      |                    |            |                  |
| SLE-RARA53                                            |         | Q43              | 0,5              |   |      |                    |            |                  |
| SLE-RARA53                                            |         | Q71              | 0,6              |   |      |                    |            |                  |
| SLE-RARA54 Linear Add                                 | No      | G1               |                  | 1 | none | none               | none       | none             |
| SLE-RARA54                                            |         | G21              |                  | 1 |      |                    |            |                  |
| SLE-RARA54                                            |         | G22              |                  | 1 |      |                    |            |                  |
| SLE-RARA54                                            |         | Q12              |                  | 1 |      |                    |            |                  |
| SLE-RARA54                                            |         | Q22              | 0,5              |   |      |                    |            |                  |
| SLE-RARA54                                            |         | Q32              |                  | 1 |      |                    |            |                  |
| SLE-RARA54                                            |         | Q42              |                  | 1 |      |                    |            |                  |
| SLE-RARA54                                            |         | Q71              | 0,6              |   |      |                    |            |                  |
| SLE-RARA55 Linear Add                                 | No      | G1               |                  | 1 | none | none               | none       | none             |
| SLE-RARA55                                            |         | G21              |                  | 1 |      |                    |            |                  |
| SLE-RARA55                                            |         | G22              |                  | 1 |      |                    |            |                  |
| SLE-RARA55                                            |         | Q14              |                  | 1 |      |                    |            |                  |
| SLE-RARA55                                            |         | Q24              | 0,5              |   |      |                    |            |                  |
| SLE-RARA55                                            |         | Q34              |                  | 1 |      |                    |            |                  |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET ENGINEERING

Alpina

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

a

COMMESSA

IF28

LOTTO CODIFICA
01 E ZZ CL

DOCUMENTO VI0105 005 REV. FO

181 di 191

| elevazione            |    |     | IF28 |   | 01   | E ZZ CL | VI0105 005 | В    |
|-----------------------|----|-----|------|---|------|---------|------------|------|
| SLE-RARA55            |    | Q44 |      | 1 |      |         |            |      |
| SLE-RARA55            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA55            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA55            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA56 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA56            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA56            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA56            |    | Q15 |      | 1 |      |         |            |      |
| SLE-RARA56            |    | Q25 | 0,5  |   |      |         |            |      |
| SLE-RARA56            |    | Q35 |      | 1 |      |         |            |      |
| SLE-RARA56            |    | Q45 |      | 1 |      |         |            |      |
| SLE-RARA56            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA57 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA57            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA57            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA57            |    | Q11 |      | 1 |      |         |            |      |
| SLE-RARA57            |    | Q21 |      | 1 |      |         |            |      |
| SLE-RARA57            |    | Q31 | 0,5  |   |      |         |            |      |
| SLE-RARA57            |    | Q41 | 0,5  |   |      |         |            |      |
| SLE-RARA57            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA58 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA58            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA58            |    | Q17 | 0,5  |   |      |         |            |      |
| SLE-RARA58            |    | Q27 |      | 1 |      |         |            |      |
| SLE-RARA58            |    | Q37 | 0,5  |   |      |         |            |      |
| SLE-RARA58            |    | Q47 | 0,5  |   |      |         |            |      |
| SLE-RARA58            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA59 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA59            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA59            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA59            |    | Q12 |      | 1 |      |         |            |      |
| SLE-RARA59            |    | Q22 | 0,5  |   |      |         |            |      |
| SLE-RARA59            |    | Q32 |      | 1 |      |         |            |      |
| SLE-RARA59            |    | Q42 |      | 1 |      |         |            |      |
| SLE-RARA59            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA59            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA59            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA60 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA60            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA60            |    | G22 |      | 1 |      |         |            |      |

Consorzio <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

**Mandataria** 

<u>Mandanti</u>

XXX SOIL NETENGINEERING **Alpina** 

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7. P8. P19. P20. P21. P22: Relazione di calcolo strutture in

COMMESSA

LOTTO CODIFICA

DOCUMENTO

REV.

182 di 191

| Pile P7, P8, P19, P20, P21, P22: Relazione elevazione | di calc | olo strutture in | IF28 |   | 01   | E ZZ CL | VI0105 005 | В    |
|-------------------------------------------------------|---------|------------------|------|---|------|---------|------------|------|
| SLE-RARA60                                            |         | Q13              |      | 1 |      |         |            |      |
| SLE-RARA60                                            |         | Q23              |      | 1 |      |         |            |      |
| SLE-RARA60                                            |         | Q33              | 0,5  |   |      |         |            |      |
| SLE-RARA60                                            |         | Q43              | 0,5  |   |      |         |            |      |
| SLE-RARA60                                            |         | Q61              |      | 1 |      |         |            |      |
| SLE-RARA61 Linear Add                                 | No      | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA61                                            |         | G21              |      | 1 |      |         |            |      |
| SLE-RARA61                                            |         | G22              |      | 1 |      |         |            |      |
| SLE-RARA61                                            |         | Q15              |      | 1 |      |         |            |      |
| SLE-RARA61                                            |         | Q25              |      | 1 |      |         |            |      |
| SLE-RARA61                                            |         | Q35              | 0,5  |   |      |         |            |      |
| SLE-RARA61                                            |         | Q45              | 0,5  |   |      |         |            |      |
| SLE-RARA61                                            |         | Q71              | 0,6  |   |      |         |            |      |
| SLE-RARA62 Linear Add                                 | No      | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA62                                            |         | G21              |      | 1 |      |         |            |      |
| SLE-RARA62                                            |         | G22              |      | 1 |      |         |            |      |
| SLE-RARA62                                            |         | Q15              |      | 1 |      |         |            |      |
| SLE-RARA62                                            |         | Q25              | 0,5  |   |      |         |            |      |
| SLE-RARA62                                            |         | Q35              |      | 1 |      |         |            |      |
| SLE-RARA62                                            |         | Q45              |      | 1 |      |         |            |      |
| SLE-RARA62                                            |         | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA62                                            |         | Q61              |      | 1 |      |         |            |      |
| SLE-RARA62                                            |         | Q71              | 0,6  |   |      |         |            |      |
| SLE-RARA63 Linear Add                                 | No      | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA63                                            |         | G21              |      | 1 |      |         |            |      |
| SLE-RARA63                                            |         | Q17              | 0,6  |   |      |         |            |      |
| SLE-RARA63                                            |         | Q27              | 0,6  |   |      |         |            |      |
| SLE-RARA63                                            |         | Q37              | 0,6  |   |      |         |            |      |
| SLE-RARA63                                            |         | Q47              | 0,6  |   |      |         |            |      |
| SLE-RARA64 Linear Add                                 | No      | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA64                                            |         | G21              |      | 1 |      |         |            |      |
| SLE-RARA64                                            |         | Q17              | 0,5  |   |      |         |            |      |
| SLE-RARA64                                            |         | Q27              |      | 1 |      |         |            |      |
| SLE-RARA64                                            |         | Q37              | 0,5  |   |      |         |            |      |
| SLE-RARA64                                            |         | Q47              | 0,5  |   |      |         |            |      |
| SLE-RARA64                                            |         | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA64                                            |         | Q61              |      | 1 |      |         |            |      |
| SLE-RARA64                                            |         | Q71              | 0,6  |   |      |         |            |      |
| SLE-RARA65 Linear Add                                 | No      | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA65                                            |         | G21              |      | 1 |      |         |            |      |

Consorzio <u>Soci</u>

HirpiniaAV





PROGETTAZIONE:

**Mandataria** 

<u>Mandanti</u>

XXX SOUL NETENGINEERING

**Alpina** 

RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

REV.

183 di 191

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

| COMMESSA | LOTTO | CODIFICA | DOCUMENTO   |
|----------|-------|----------|-------------|
| 1500     |       |          | 1/10/05 005 |

| Pile P7, P8, P19, P20, P21, P22: elevazione | Relazione di calce | olo strutture in | COMMESSA<br>IF28 | L |      | CODIFICA<br>E ZZ CL | VI0105 005 | RE\<br><b>B</b> |
|---------------------------------------------|--------------------|------------------|------------------|---|------|---------------------|------------|-----------------|
| SLE-RARA65                                  |                    | G22              |                  | 1 |      |                     |            |                 |
| SLE-RARA65                                  |                    | Q11              | 0,6              |   |      |                     |            |                 |
| SLE-RARA65                                  |                    | Q21              | 0,6              |   |      |                     |            |                 |
| SLE-RARA65                                  |                    | Q31              | 0,6              |   |      |                     |            |                 |
| SLE-RARA65                                  |                    | Q41              | 0,6              |   |      |                     |            |                 |
| SLE-RARA65                                  |                    | Q61              |                  | 1 |      |                     |            |                 |
| SLE-RARA66 Linea                            | r Add No           | G1               |                  | 1 | none | none                | none       | none            |
| SLE-RARA66                                  |                    | G21              |                  | 1 |      |                     |            |                 |
| SLE-RARA66                                  |                    | G22              |                  | 1 |      |                     |            |                 |
| SLE-RARA66                                  |                    | Q13              |                  | 1 |      |                     |            |                 |
| SLE-RARA66                                  |                    | Q23              |                  | 1 |      |                     |            |                 |
| SLE-RARA66                                  |                    | Q33              | 0,5              |   |      |                     |            |                 |
| SLE-RARA66                                  |                    | Q43              | 0,5              |   |      |                     |            |                 |
| SLE-RARA66                                  |                    | Q51              | 0,6              |   |      |                     |            |                 |
| SLE-RARA66                                  |                    | Q61              |                  | 1 |      |                     |            |                 |
| SLE-RARA66                                  |                    | Q71              | 0,6              |   |      |                     |            |                 |
| SLE-RARA67 Linea                            | r Add No           | G1               |                  | 1 | none | none                | none       | none            |
| SLE-RARA67                                  |                    | G21              |                  | 1 |      |                     |            |                 |
| SLE-RARA67                                  |                    | G22              |                  | 1 |      |                     |            |                 |
| SLE-RARA67                                  |                    | Q14              | 0,8              |   |      |                     |            |                 |
| SLE-RARA67                                  |                    | Q24              | 0,8              |   |      |                     |            |                 |
| SLE-RARA67                                  |                    | Q34              | 0,8              |   |      |                     |            |                 |
| SLE-RARA67                                  |                    | Q44              | 0,8              |   |      |                     |            |                 |
| SLE-RARA67                                  |                    | Q51              | 0,6              |   |      |                     |            |                 |
| SLE-RARA68 Linea                            | r Add No           | G1               |                  | 1 | none | none                | none       | none            |
| SLE-RARA68                                  |                    | G21              |                  | 1 |      |                     |            |                 |
| SLE-RARA68                                  |                    | G22              |                  | 1 |      |                     |            |                 |
| SLE-RARA68                                  |                    | Q14              | 0,8              |   |      |                     |            |                 |
| SLE-RARA68                                  |                    | Q24              | 0,8              |   |      |                     |            |                 |
| SLE-RARA68                                  |                    | Q34              | 0,8              |   |      |                     |            |                 |
| SLE-RARA68                                  |                    | Q44              | 0,8              |   |      |                     |            |                 |
| SLE-RARA69 Linear                           | r Add No           | G1               |                  | 1 | none | none                | none       | none            |
| SLE-RARA69                                  |                    | G21              |                  | 1 |      |                     |            |                 |
| SLE-RARA69                                  |                    | G22              |                  | 1 |      |                     |            |                 |
| SLE-RARA69                                  |                    | Q15              | 0,6              |   |      |                     |            |                 |
| SLE-RARA69                                  |                    | Q25              | 0,6              |   |      |                     |            |                 |
| SLE-RARA69                                  |                    | Q35              | 0,6              |   |      |                     |            |                 |
| SLE-RARA69                                  |                    | Q45              | 0,6              |   |      |                     |            |                 |
| SLE-RARA69                                  |                    | Q61              |                  | 1 |      |                     |            |                 |
| SLE-RARA70 Linear                           | r Add No           | G1               |                  | 1 | none | none                | none       | none            |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET ENGINEERING

Alpina

# ITINERARIO NAPOLI – BARI

| PROGETTO ESECUTIVO                                                 | COMMESSA | LOTTO | CODIFICA | DOCUMENTO  | REV. | FOGLIO        |
|--------------------------------------------------------------------|----------|-------|----------|------------|------|---------------|
| Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in | IF28     | 01    | E ZZ CL  | VI0105 005 | В    | 184 di<br>191 |

| elevazione            |    |     | 20  |   | •    |      |      |      |
|-----------------------|----|-----|-----|---|------|------|------|------|
| SLE-RARA70            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA70            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA70            |    | Q11 |     | 1 |      |      |      |      |
| SLE-RARA70            |    | Q21 |     | 1 |      |      |      |      |
| SLE-RARA70            |    | Q31 | 0,5 |   |      |      |      |      |
| SLE-RARA70            |    | Q41 | 0,5 |   |      |      |      |      |
| SLE-RARA70            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA70            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA70            |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA70 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA71            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA71            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA71            |    | Q12 | 0,6 |   |      |      |      |      |
| SLE-RARA71            |    | Q22 | 0,6 |   |      |      |      |      |
| SLE-RARA71            |    | Q32 | 0,6 |   |      |      |      |      |
| SLE-RARA71            |    | Q42 | 0,6 |   |      |      |      |      |
| SLE-RARA71            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA71 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA72            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA72            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA72            |    | Q12 | 0,6 |   |      |      |      |      |
| SLE-RARA72            |    | Q22 | 0,6 |   |      |      |      |      |
| SLE-RARA72            |    | Q32 | 0,6 |   |      |      |      |      |
| SLE-RARA72            |    | Q42 | 0,6 |   |      |      |      |      |
| SLE-RARA72 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA73            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA73            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA73            |    | Q13 | 0,8 |   |      |      |      |      |
| SLE-RARA73            |    | Q23 | 0,8 |   |      |      |      |      |
| SLE-RARA73            |    | Q33 | 0,8 |   |      |      |      |      |
| SLE-RARA73            |    | Q43 | 0,8 |   |      |      |      |      |
| SLE-RARA73            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA73 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA74            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA74            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA74            |    | Q15 |     | 1 |      |      |      |      |
| SLE-RARA74            |    | Q25 |     | 1 |      |      |      |      |
| SLE-RARA74            |    | Q35 | 0,5 |   |      |      |      |      |
| SLE-RARA74            |    | Q45 | 0,5 |   |      |      |      |      |
| JLL IVAIVAT           |    |     |     |   |      |      |      |      |

<u>Consorzio</u> <u>Soci</u>

Hirpinia AV





PROGETTAZIONE:

Mandataria

<u>Mandanti</u>

NETENGINEERING

**Alpina** 

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI – BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

\_\_\_\_

| COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>185 di<br>191 |
|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|

| SLE-RARA74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elevazione            |    |     | IF28 |   | 01   | E 22 CL | VI0105 005 | В    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----|-----|------|---|------|---------|------------|------|
| SLE-RARA74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA74            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA75   G21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA74            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA74 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA75   Q16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA75            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA75   Q26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA75            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA75            |    | Q16 | 0,6  |   |      |         |            |      |
| SLE-RARA75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA75            |    | Q26 | 0,6  |   |      |         |            |      |
| SLE-RARA75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA75            |    | Q36 | 0,6  |   |      |         |            |      |
| SLE-RARA75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA75            |    | Q46 | 0,6  |   |      |         |            |      |
| SLE-RARA76   G21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA75            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA76   G22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA75 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA76            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA76         Q26         0,6         ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLE-RARA76            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA76            |    | Q16 | 0,6  |   |      |         |            |      |
| SLE-RARA76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA76            |    | Q26 | 0,6  |   |      |         |            |      |
| SLE-RARA76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA76            |    | Q36 | 0,6  |   |      |         |            |      |
| SLE-RARA77   G21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA76            |    | Q46 | 0,6  |   |      |         |            |      |
| SLE-RARA77         G22         1           SLE-RARA77         Q16         1           SLE-RARA77         Q26         0,5           SLE-RARA77         Q36         1           SLE-RARA77         Q46         1           SLE-RARA77         Q51         0,6           SLE-RARA77         Q61         1           SLE-RARA77         Linear Add         No         G1         1 none         none         none           SLE-RARA78         G21         1         SLE-RARA78         SLE-RARA78         G22         1         SLE-RARA78         Q21         0,6         SLE-RARA78         Q21         0,6         SLE-RARA78         Q21         0,6         SLE-RARA78         Q21         0,6         SLE-RARA78         Q41         0,6         SLE-RARA78         SLE-RARA78         Q51         0,6         SLE-RARA78         SLE-RARA78         Q51         0,6         SLE-RARA78         SLE-RARA78         Q51         0,6         SLE-RARA78         SLE-RARA78         Q51         0,6         SLE-RARA78         SLE-RARA79         G21         1         none         none         none           SLE-RARA79         G21         1         1         none         none         none                                                                                        | SLE-RARA76 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SLE-RARA77            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA77         Q26         0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLE-RARA77            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA77         Q36         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA77            |    | Q16 |      | 1 |      |         |            |      |
| SLE-RARA77         Q46         1           SLE-RARA77         Q51         0,6           SLE-RARA77         Q61         1           SLE-RARA77         Q71         0,6           SLE-RARA78         G21         1           SLE-RARA78         G22         1           SLE-RARA78         Q11         0,6           SLE-RARA78         Q21         0,6           SLE-RARA78         Q31         0,6           SLE-RARA78         Q41         0,6           SLE-RARA78         Q51         0,6           SLE-RARA78         Q51         0,6           SLE-RARA78         Linear Add         No         G1         1         none         none         none           SLE-RARA79         G21         1         none         none         none         none         none           SLE-RARA79         G22         1         0,6         1         0,6         1         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6         0,6 <t< td=""><td>SLE-RARA77</td><td></td><td>Q26</td><td>0,5</td><td></td><td></td><td></td><td></td><td></td></t<>                                                              | SLE-RARA77            |    | Q26 | 0,5  |   |      |         |            |      |
| SLE-RARA77         Q61         1           SLE-RARA77         Q71         0,6           SLE-RARA77         Linear Add         No         G1         1         none         none         none           SLE-RARA78         G21         1          SLE-RARA78         G22         1          SLE-RARA78         G21         0,6         SLE-RARA78         G21         0,6         SLE-RARA78         G21         0,6         SLE-RARA78         G21         0,6         G21         G21         G22         G21         G22         G22 <t< td=""><td>SLE-RARA77</td><td></td><td>Q36</td><td></td><td>1</td><td></td><td></td><td></td><td></td></t<> | SLE-RARA77            |    | Q36 |      | 1 |      |         |            |      |
| SLE-RARA77         Q61         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA77            |    | Q46 |      | 1 |      |         |            |      |
| SLE-RARA77         Linear Add         No         G1         1         none         none         none           SLE-RARA78         G21         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLE-RARA77            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA77         Linear Add         No         G1         1         none         none         none           SLE-RARA78         G21         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLE-RARA77            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA78         G21         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SLE-RARA77            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA78       G22       1         SLE-RARA78       Q11       0,6         SLE-RARA78       Q21       0,6         SLE-RARA78       Q31       0,6         SLE-RARA78       Q41       0,6         SLE-RARA78       Q51       0,6         SLE-RARA78       Linear Add       No       G1       1       none       none       none         SLE-RARA79       G21       1       SLE-RARA79       G22       1       SLE-RARA79       G11       0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SLE-RARA77 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA78         Q11         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLE-RARA78            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA78         Q21         0,6           SLE-RARA78         Q31         0,6           SLE-RARA78         Q41         0,6           SLE-RARA78         Q51         0,6           SLE-RARA78         Linear Add         No         G1         1         none         none         none           SLE-RARA79         G21         1          SLE-RARA79         G1           SLE-RARA79         G1         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SLE-RARA78            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA78         Q31         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLE-RARA78            |    | Q11 | 0,6  |   |      |         |            |      |
| SLE-RARA78         Q41         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLE-RARA78            |    | Q21 | 0,6  |   |      |         |            |      |
| SLE-RARA78         Q51         0,6           SLE-RARA78         Linear Add         No         G1         1         none         none         none           SLE-RARA79         G21         1          SLE-RARA79         G22         1            SLE-RARA79         Q11         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SLE-RARA78            |    | Q31 | 0,6  |   |      |         |            |      |
| SLE-RARA78         Linear Add         No         G1         1         none         none         none           SLE-RARA79         G21         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLE-RARA78            |    | Q41 | 0,6  |   |      |         |            |      |
| SLE-RARA79         G21         1           SLE-RARA79         G22         1           SLE-RARA79         Q11         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SLE-RARA78            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA79         G22         1           SLE-RARA79         Q11         0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SLE-RARA78 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA79 Q11 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLE-RARA79            |    | G21 |      | 1 |      |         |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLE-RARA79            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA79 Q21 0,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SLE-RARA79            |    | Q11 | 0,6  |   |      |         |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SLE-RARA79            |    | Q21 | 0,6  |   |      |         |            |      |

Consorzio

Hirpinia*AV* 





PROGETTAZIONE:

<u>Mandataria</u>

XXX SOUL

<u>Mandanti</u>



Alpina

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

a

COMMESSA

IF28

LOTTO CODIFICA

01 E ZZ CL

DOCUMENTO VI0105 005 REV. **B** 

FOGLIO 186 di 191

| elevazione            |    |     | IF28 |   | 01   | E 22 CL | VI0105 005 | В    |
|-----------------------|----|-----|------|---|------|---------|------------|------|
| SLE-RARA79            |    | Q31 | 0,6  |   |      |         |            |      |
| SLE-RARA79            |    | Q41 | 0,6  |   |      |         |            |      |
| SLE-RARA79 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA80            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA80            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA80            |    | Q12 | 0,6  |   |      |         |            |      |
| SLE-RARA80            |    | Q22 | 0,6  |   |      |         |            |      |
| SLE-RARA80            |    | Q32 | 0,6  |   |      |         |            |      |
| SLE-RARA80            |    | Q42 | 0,6  |   |      |         |            |      |
| SLE-RARA80            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA80 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA81            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA81            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA81            |    | Q14 |      | 1 |      |         |            |      |
| SLE-RARA81            |    | Q24 |      | 1 |      |         |            |      |
| SLE-RARA81            |    | Q34 | 0,5  |   |      |         |            |      |
| SLE-RARA81            |    | Q44 | 0,5  |   |      |         |            |      |
| SLE-RARA81            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA81            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA81            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA81 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA82            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA82            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA82            |    | Q15 | 0,6  |   |      |         |            |      |
| SLE-RARA82            |    | Q25 | 0,6  |   |      |         |            |      |
| SLE-RARA82            |    | Q35 | 0,6  |   |      |         |            |      |
| SLE-RARA82            |    | Q45 | 0,6  |   |      |         |            |      |
| SLE-RARA82            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA82 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA83            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA83            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA83            |    | Q15 | 0,6  |   |      |         |            |      |
| SLE-RARA83            |    | Q25 | 0,6  |   |      |         |            |      |
| SLE-RARA83            |    | Q35 | 0,6  |   |      |         |            |      |
| SLE-RARA83            |    | Q45 | 0,6  |   |      |         |            |      |
| SLE-RARA83 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA84            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA84            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA84            |    | Q16 | 0,6  |   |      |         |            |      |
| SLE-RARA84            |    | Q26 | 0,6  |   |      |         |            |      |

<u>Consorzio</u> <u>Soci</u>

Hirpinia*AV* 





PROGETTAZIONE:

Mandataria

<u>Mandanti</u>

NETENGINEERING

Alpina

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA IF28

LOTTO

01

CODIFICA E ZZ CL DOCUMENTO VI0105 005 REV. **B**  187 di 191

| elevazione            |    |     |     |   |      |      |      |      |
|-----------------------|----|-----|-----|---|------|------|------|------|
| SLE-RARA84            |    | Q36 | 0,6 |   |      |      |      |      |
| SLE-RARA84            |    | Q46 | 0,6 |   |      |      |      |      |
| SLE-RARA84            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA84 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA85            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA85            |    | G22 |     | 1 |      |      | 1    |      |
| SLE-RARA85            |    | Q12 |     | 1 |      |      | 1    |      |
| SLE-RARA85            |    | Q22 |     | 1 |      |      |      |      |
| SLE-RARA85            |    | Q32 | 0,5 |   |      |      | 1    |      |
| SLE-RARA85            |    | Q42 | 0,5 |   |      |      | 1    |      |
| SLE-RARA85            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA85            |    | Q61 |     | 1 |      |      | 1    |      |
| SLE-RARA85            |    | Q71 | 0,6 |   |      |      |      |      |
| SLE-RARA85 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA86            |    | G21 |     | 1 |      |      | 1    |      |
| SLE-RARA86            |    | G22 |     | 1 |      |      | 1    |      |
| SLE-RARA86            |    | Q13 | 0,8 |   |      |      | 1    |      |
| SLE-RARA86            |    | Q23 | 0,8 |   |      |      | 1    |      |
| SLE-RARA86            |    | Q33 | 0,8 |   |      |      |      |      |
| SLE-RARA86            |    | Q43 | 0,8 |   |      |      | 1    |      |
| SLE-RARA86            |    | Q51 | 0,6 |   |      |      |      |      |
| SLE-RARA86 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA87            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA87            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA87            |    | Q13 | 0,8 |   |      |      |      |      |
| SLE-RARA87            |    | Q23 | 0,8 |   |      |      |      |      |
| SLE-RARA87            |    | Q33 | 0,8 |   |      |      |      |      |
| SLE-RARA87            |    | Q43 | 0,8 |   |      |      |      |      |
| SLE-RARA87 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA88            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA88            |    | G22 |     | 1 |      |      |      |      |
| SLE-RARA88            |    | Q14 | 0,8 |   |      |      |      |      |
| SLE-RARA88            |    | Q24 | 0,8 |   |      |      |      |      |
| SLE-RARA88            |    | Q34 | 0,8 |   |      |      |      |      |
| SLE-RARA88            |    | Q44 | 0,8 |   |      |      |      |      |
| SLE-RARA88            |    | Q61 |     | 1 |      |      |      |      |
| SLE-RARA88 Linear Add | No | G1  |     | 1 | none | none | none | none |
| SLE-RARA89            |    | G21 |     | 1 |      |      |      |      |
| SLE-RARA89            |    | G22 |     | 1 | 1    |      |      |      |
| SLE-RARAO9            |    | UZZ |     |   |      |      |      |      |

<u>Consorzio</u>

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET ENGINEERING

Alpina

### ITINERARIO NAPOLI - BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA

IF28

CODIFICA E ZZ CL

LOTTO

01

DOCUMENTO VI0105 005 REV. **B** 

188 di 191

| elevazione            |    |     | IF28 |   | U1   | E 22 CL | VIU1U5 UU5 | В    |
|-----------------------|----|-----|------|---|------|---------|------------|------|
| SLE-RARA89            |    | Q26 |      | 1 |      |         |            |      |
| SLE-RARA89            |    | Q36 | 0,5  |   |      |         |            |      |
| SLE-RARA89            |    | Q46 | 0,5  |   |      |         |            |      |
| SLE-RARA89            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA89            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA89            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA89 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA90            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA90            |    | Q17 | 0,6  |   |      |         |            |      |
| SLE-RARA90            |    | Q27 | 0,6  |   |      |         |            |      |
| SLE-RARA90            |    | Q37 | 0,6  |   |      |         |            |      |
| SLE-RARA90            |    | Q47 | 0,6  |   |      |         |            |      |
| SLE-RARA90            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA90 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA91            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA91            |    | Q17 | 0,6  |   |      |         |            |      |
| SLE-RARA91            |    | Q27 | 0,6  |   |      |         |            |      |
| SLE-RARA91            |    | Q37 | 0,6  |   |      |         |            |      |
| SLE-RARA91            |    | Q47 | 0,6  |   |      |         |            |      |
| SLE-RARA91            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA91 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA92            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA92            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA92            |    | Q11 | 0,6  |   |      |         |            |      |
| SLE-RARA92            |    | Q21 | 0,6  |   |      |         |            |      |
| SLE-RARA92            |    | Q31 | 0,6  |   |      |         |            |      |
| SLE-RARA92            |    | Q41 | 0,6  |   |      |         |            |      |
| SLE-RARA92            |    | Q51 | 0,6  |   |      |         |            |      |
| SLE-RARA92            |    | Q61 |      | 1 |      |         |            |      |
| SLE-RARA92            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA92 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA93            |    | G21 |      | 1 |      |         |            |      |
| SLE-RARA93            |    | G22 |      | 1 |      |         |            |      |
| SLE-RARA93            |    | Q14 | 0,8  |   |      |         |            |      |
| SLE-RARA93            |    | Q24 | 0,8  |   |      |         |            |      |
| SLE-RARA93            |    | Q34 | 0,8  |   |      |         |            |      |
| SLE-RARA93            |    | Q44 | 0,8  |   |      |         |            |      |
| SLE-RARA93            |    | Q71 | 0,6  |   |      |         |            |      |
| SLE-RARA93 Linear Add | No | G1  |      | 1 | none | none    | none       | none |
| SLE-RARA94            |    | G21 |      | 1 |      |         |            |      |

<u>Consorzio</u> <u>Soci</u>







PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET ENGINEERING

Alpina

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

| COMMESSA<br>IF28 | LOTTO<br><b>01</b> | CODIFICA<br>E ZZ CL | DOCUMENTO<br>VI0105 005 | REV.<br><b>B</b> | FOGLIO<br>189 di<br>191 |
|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|
|------------------|--------------------|---------------------|-------------------------|------------------|-------------------------|

| elevazione            | di calce | olo strutture in | IF28 |   | 01   | E ZZ CL | VI0105 005 | В    |
|-----------------------|----------|------------------|------|---|------|---------|------------|------|
| SLE-RARA94            |          | G22              |      | 1 |      |         |            |      |
| SLE-RARA94            |          | Q15              | 0,6  |   |      |         |            |      |
| SLE-RARA94            |          | Q25              | 0,6  |   |      |         |            |      |
| SLE-RARA94            |          | Q35              | 0,6  |   |      |         |            |      |
| SLE-RARA94            |          | Q45              | 0,6  |   |      |         |            |      |
| SLE-RARA94            |          | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA94            |          | Q61              |      | 1 |      |         |            |      |
| SLE-RARA94            |          | Q71              | 0,6  |   |      |         |            |      |
| SLE-RARA94 Linear Add | No       | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA95            |          | G21              |      | 1 |      |         |            |      |
| SLE-RARA95            |          | G22              |      | 1 |      |         |            |      |
| SLE-RARA95            |          | Q12              | 0,6  |   |      |         |            |      |
| SLE-RARA95            |          | Q22              | 0,6  |   |      |         |            |      |
| SLE-RARA95            |          | Q32              | 0,6  |   |      |         |            |      |
| SLE-RARA95            |          | Q42              | 0,6  |   |      |         |            |      |
| SLE-RARA95            |          | Q71              | 0,6  |   |      |         |            |      |
| SLE-RARA95 Linear Add | No       | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA96            |          | G21              |      | 1 |      |         |            |      |
| SLE-RARA96            |          | G22              |      | 1 |      |         |            |      |
| SLE-RARA96            |          | Q13              | 0,8  |   |      |         |            |      |
| SLE-RARA96            |          | Q23              | 0,8  |   |      |         |            |      |
| SLE-RARA96            |          | Q33              | 0,8  |   |      |         |            |      |
| SLE-RARA96            |          | Q43              | 0,8  |   |      |         |            |      |
| SLE-RARA96            |          | Q51              | 0,6  |   |      |         |            |      |
| SLE-RARA96            |          | Q61              |      | 1 |      |         |            |      |
| SLE-RARA96            |          | Q71              | 0,6  |   |      |         |            |      |
| SLE-RARA96 Linear Add | No       | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA97            |          | G21              |      | 1 |      |         |            |      |
| SLE-RARA97            |          | G22              |      | 1 |      |         |            |      |
| SLE-RARA97            |          | Q16              | 0,6  |   |      |         |            |      |
| SLE-RARA97            |          | Q26              | 0,6  |   |      |         |            |      |
| SLE-RARA97            |          | Q36              | 0,6  |   |      |         |            |      |
| SLE-RARA97            |          | Q46              | 0,6  |   |      |         |            |      |
| SLE-RARA97            |          | Q71              | 0,6  |   |      |         |            |      |
| SLE-RARA97 Linear Add | No       | G1               |      | 1 | none | none    | none       | none |
| SLE-RARA98            |          | G21              |      | 1 |      |         |            |      |
| SLE-RARA98            |          | Q17              | 0,6  |   |      |         |            |      |
| SLE-RARA98            |          | Q27              | 0,6  |   |      |         |            |      |
| SLE-RARA98            |          | Q37              | 0,6  |   |      |         |            |      |
| SLE-RARA98            |          | Q47              | 0,6  |   |      |         |            |      |

Consorzio

HirpiniaAV

XXXSOUL





PROGETTAZIONE:

**Mandataria** 

<u>Mandanti</u>

<u>Soci</u>



# **Alpina**

### RADDOPPIO TRATTA APICE - ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

COMMESSA LOTTO CODIFICA DOCUMENTO REV. 190 di 191 E ZZ CL VI0105 005 IF28 01 В

| elevazione             | e ui caic | olo strutture ili | IF28 |   | 01   | E ZZ CL | VI0105 005 | E    |
|------------------------|-----------|-------------------|------|---|------|---------|------------|------|
| SLE-RARA98             |           | Q51               | 0,6  |   |      |         |            |      |
| SLE-RARA98             |           | Q61               |      | 1 |      |         |            |      |
| SLE-RARA98             |           | Q71               | 0,6  |   |      |         |            |      |
| SLE-RARA98 Linear Add  | No        | G1                |      | 1 | none | none    | none       | none |
| SLE-RARA99             |           | G21               |      | 1 |      |         |            |      |
| SLE-RARA99             |           | G22               |      | 1 |      |         |            |      |
| SLE-RARA99             |           | Q11               | 0,6  |   |      |         |            |      |
| SLE-RARA99             |           | Q21               | 0,6  |   |      |         |            |      |
| SLE-RARA99             |           | Q31               | 0,6  |   |      |         |            |      |
| SLE-RARA99             |           | Q41               | 0,6  |   |      |         |            |      |
| SLE-RARA99             |           | Q71               | 0,6  |   |      |         |            |      |
| SLE-RARA99 Linear Add  | No        | G1                |      | 1 | none | none    | none       | none |
| SLE-RARA100            |           | G21               |      | 1 |      |         |            |      |
| SLE-RARA100            |           | G22               |      | 1 |      |         |            |      |
| SLE-RARA100            |           | Q12               | 0,6  |   |      |         |            |      |
| SLE-RARA100            |           | Q22               | 0,6  |   |      |         |            |      |
| SLE-RARA100            |           | Q32               | 0,6  |   |      |         |            |      |
| SLE-RARA100            |           | Q42               | 0,6  |   |      |         |            |      |
| SLE-RARA100            |           | Q51               | 0,6  |   |      |         |            |      |
| SLE-RARA100            |           | Q61               |      | 1 |      |         |            |      |
| SLE-RARA100            |           | Q71               | 0,6  |   |      |         |            |      |
| SLE-RARA100 Linear Add | No        | G1                |      | 1 | none | none    | none       | none |
| SLE-RARA101            |           | G21               |      | 1 |      |         |            |      |
| SLE-RARA101            |           | G22               |      | 1 |      |         |            |      |
| SLE-RARA101            |           | Q15               | 0,6  |   |      |         |            |      |
| SLE-RARA101            |           | Q25               | 0,6  |   |      |         |            |      |
| SLE-RARA101            |           | Q35               | 0,6  |   |      |         |            |      |
| SLE-RARA101            |           | Q45               | 0,6  |   |      |         |            |      |
| SLE-RARA101            |           | Q71               | 0,6  |   |      |         |            |      |
| SLE-RARA101 Linear Add | No        | G1                |      | 1 | none | none    | none       | none |
| SLE-RARA102            |           | G21               |      | 1 |      |         |            |      |
| SLE-RARA102            |           | G22               |      | 1 |      |         |            |      |
| SLE-RARA102            |           | Q16               | 0,6  |   |      |         |            |      |
| SLE-RARA102            |           | Q26               | 0,6  |   |      |         |            |      |
| SLE-RARA102            |           | Q36               | 0,6  |   |      |         |            |      |
| SLE-RARA102            |           | Q46               | 0,6  |   |      |         |            |      |
| SLE-RARA102            |           | Q51               | 0,6  |   |      |         |            |      |
| SLE-RARA102            |           | Q61               |      | 1 |      |         |            |      |
| SLE-RARA102            |           | Q71               | 0,6  |   |      |         |            |      |
| SLE-RARA102 Linear Add | No        | G1                |      | 1 | none | none    | none       | none |

Consorzio

Hirpinia AV





PROGETTAZIONE:

<u>Mandataria</u>

<u>Mandanti</u>

NET ENGINEERING

**Alpina** 

# ITINERARIO NAPOLI – BARI

### RADDOPPIO TRATTA APICE – ORSARA I LOTTO FUNZIONALE APICE – HIRPINIA

PROGETTO ESECUTIVO

Pile P7, P8, P19, P20, P21, P22: Relazione di calcolo strutture in elevazione

la

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF28
 01
 E ZZ CL
 VI0105 005
 B
 191 di

 191
 191
 191
 191
 191

| SLE-RARA103         G21         1           SLE-RARA103         G22         1 |      |
|-------------------------------------------------------------------------------|------|
| SLE-RARA103 G22 1                                                             |      |
|                                                                               |      |
| SLE-RARA103 Q13 0,8                                                           |      |
| SLE-RARA103 Q23 0,8                                                           |      |
| SLE-RARA103 Q33 0,8                                                           |      |
| SLE-RARA103 Q43 0,8                                                           |      |
| SLE-RARA103 Q71 0,6                                                           |      |
| SLE-RARA103 Linear Add No G1 1 none none none                                 | none |
| SLE-RARA104 G21 1                                                             |      |
| SLE-RARA104 G22 1                                                             |      |
| SLE-RARA104 Q14 0,8                                                           |      |
| SLE-RARA104 Q24 0,8                                                           |      |
| SLE-RARA104 Q34 0,8                                                           |      |
| SLE-RARA104 Q44 0,8                                                           |      |
| SLE-RARA104 Q51 0,6                                                           |      |
| SLE-RARA104 Q61 1                                                             |      |
| SLE-RARA104 Q71 0,6                                                           |      |
| SLE-RARA104 Linear Add No G1 1 none none                                      | none |
| SLE-RARA105 G21 1                                                             |      |
| SLE-RARA105 Q17 0,6                                                           |      |
| SLE-RARA105 Q27 0,6                                                           |      |
| SLE-RARA105 Q37 0,6                                                           |      |
| SLE-RARA105 Q47 0,6                                                           |      |
| SLE-RARA105 Q71 0,6                                                           |      |