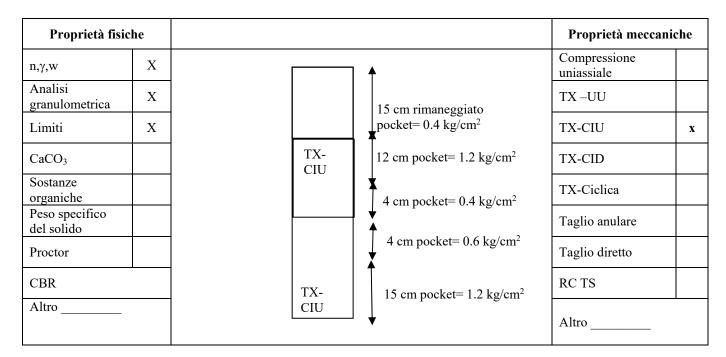


Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Consorzio HirpiniaAV Committente <u>Indagine</u> Sondaggio


I lotto funzionale Apice-Hirpinia SN01

C1 Campione $6.60 \div 7.10 \text{ m}$ <u>Profondità</u> 01/10/19 Data apertura Alfredo Ponzo Operatore

Diametro (mm):	85	
Lunghezza (mm):	500	
Data di apertura:	01/10/2019	

	Indisturbato	
Stato del Campione	Parzialmente Rimaneggiato	x
	Rimaneggiato	

Descrizione: Argilla grigia con striature giallastre. Parte superiore rimaneggiata. Struttura caotica. Presenza di un incluso calcareo (d=45mm). Consistenza molto variabile lungo il campione con parti a w>wL Colore Grigio con striature giallastre Plasticità Non Plastico Bassa Media alta □ Elevata Addensamento Molto sciolto Sciolto Medio Molto denso Denso $(D_r=0.0\div0.2)$ $(D_r = 0.2 \div 0.4)$ $(D_r = 0.4 \div 0.6)$ (Terreni granulari) $(D_r=0.6\div0.8)$ $(D_r=0.8\div1.0)$ Consistenza Molto molle Molle Media Consistente Molto consist. X X $(I_c=0.0\div0.5)$ (Terreni coesivi) $(I_c < 0.0)$ $(I_c=0.5\div1.0)$ $(I_c > 1.0)$ $(I_c >> 1.0)$ Grado di umidità Asciutto Poco Umido Umido Molto Umido П Alterazione Assente Debole Media Elevata X Struttura Omogenea Stratificata Scagliosa Laminata Caotica **Fratturazione** X Assente П Moderata Elevata Cementazione X Assente Debole Media □ Elevata

Nota= e' stato possibile confezionare solo due provini per la prove TX-CIU

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente Consorzio HirpiniaAV

I lotto funzionale Apice-Hirpinia SN01 Indagine

Sondaggio Campione C1

6.60 ÷ 7.10 m 01/10/19 <u>Profondità</u> Data apertura Alfredo Ponzo Operatore

FOTO CAMPIONE 33 34 35 34 हेर देर 10 पी कह 38 16 38 देह कि दी 10 11 15 13 14 15 18 11 18 13 50 51 53 54 53 58 53 58 53

Il responsabile della sperimentazione

Prof. Ing. Anna d'Onofrio

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

 Committente
 Consorzio HirpiniaAV

 Indagine
 I lotto funzionale Apice-Hirpinia

 Sondaggio
 SN01

 Campione
 C1

<u>Profondità</u> 6.60 ÷ 7.10 m <u>Data apertura</u> 07/10/19 <u>Operatore</u> Alfredo Ponzo

Peso specifico del solido

Determinazione con picnometro			
Picnometro n°	10		
Peso picnometro, P _p (g)	59.75		
Peso picnometro + acqua, P _{pw} (g)	158.10		
Volume picnometro, V_p (cm ³) = $(P_{pw} - P_p)/\gamma_w$	98.35		
Peso picnometro + terreno, P _{ps} (g)	77.24		
Peso terreno, $P_s(g) = P_{ps} - P_p$	17.49		
Peso picnometro $+$ terreno $+$ acqua, P_{psw} (g)	169.21		
Volume acqua aggiunta, V_w (cm ³) = $(P_{psw}-P_{ps})/\gamma_w$	91.97		
Volume terreno, V_s (cm ³) = V_p - V_w	6.38		
Peso specifico terreno, $\gamma_s\left(kN/m^3\right) = P_s/V_s$	26.88		

Caratteristiche fisiche generali

	Provino 1	Provino 2	Provino 3	Valore medio
Contenitore n°	37	20	89	
Peso contenitore, Pc (g)	14.94	20.9	10.01	
D (mm), H (mm)	35.66, 72.02	35.55, 71.87		
Volume, V (cm ³)	71.89	71.30		
Peso lordo umido, Pu (g)	147.05	161.74	58.85	
Peso lordo secco, Ps (g)	111.96	130.92	45.21	
Contenuto d'acqua, w	0.36	0.28	0.38	0.34
Peso umido unità di volume, γ (kN/m ³)	18.02	19.37		18.70
Peso secco unità di volume, γ_d (kN/m³)	13.23	15.13		14.18
Peso specifico del solido, γ _s (kN/m ³)	26.88	26.88		26.88
Porosità, n	0.51	0.44		0.47
Indice dei vuoti, e	1.03	0.78		0.90
Grado di saturazione, S	0.96	0.99		0.98

Consistenza terreno a grana fine

Limite di liquidità, w L	0.768
Indice di plasticità, $I_P = w_L - w_P$	0.505
Indice di consistenza, Ic	0.759

Compattezza terreno a grana grossa

Densità minima, e _{max}	/
Densità massima, e _{min}	/
Densità relativa, D _r	/

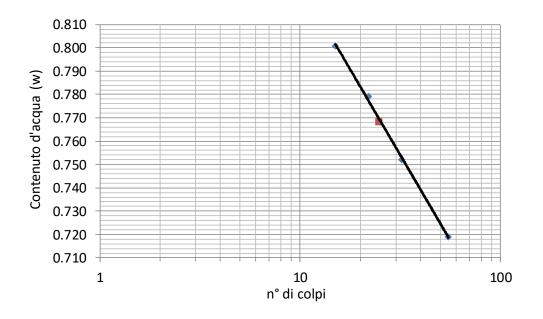
Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

 Committente
 Consorzio HirpiniaAV

 Indagine
 I lotto funzionale Apice-Hirpinia

 Sondaggio
 SN01


 Campione
 C1

<u>Profondità</u> 6.60 ÷ 7.10 m <u>Data apertura</u> 07/10/19 <u>Operatore</u> Alfredo Ponzo

Limite di Liquidità

Metodo di Casagrande (ASTM)

Contenitore n°	Numero di colpi, N	Peso contenitore, Pc (g)	Peso lordo umido, Pu (g)	Peso lordo secco, Ps	$\frac{\text{Conten} \mathbf{P}_{\mathbf{Q}} \ d' \mathbf{P}_{\mathbf{S}} \text{qua}}{\text{w}} = \frac{P_{\mathbf{S}} - P_{\mathbf{C}}}{P_{\mathbf{S}} - P_{\mathbf{C}}}$
68	15	11.08	47.02	31.04	0.801
131	22	10.91	40.87	27.75	0.779
147	32	11.76	46.52	31.6	0.752
187	55	11.67	43.95	30.45	0.719
		Limite di liquidità, w _L (valore a 25 colpi)			0.768

Limite di Plasticità

Contenitore n°	Peso contenitore, P _c (g) 20.69	Peso lordo umido, P _u (g) 50	Peso lordo secco, P _s (g) 43.9	Contenuto d'acqua, w Ps – Pc 0.263
		Limite di plasticità	, w _P (valore medio)	0.263

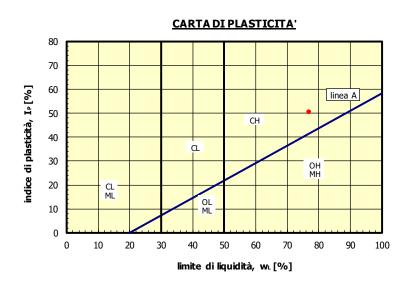
Indice di plasticità, $I_P = w_L - w_P$	0.505
Frazione argillosa (d < 2 μm), CF	0.590
Indice di attività, $I_A = I_P/CF$	0.856

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

<u>Committente</u> Consorzio HirpiniaAV

<u>Indagine</u> I lotto funzionale Apice-Hirpinia


Sondaggio SN01 Campione C1

Profondità 6.60 ÷ 7.10 m

Data apertura 07/10/19

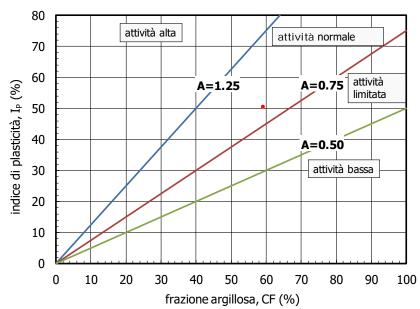
Operatore Alfredo Ponzo

Carta di plasticità

Classifica USCS

ML	Limi inorganici da bassa a media plasticità
CL	Argille inorganiche da bassa a media plasticità
OL	Limi e argille organiche di bassa plasticità
MH	Limi inorganici di alta plasticità
CH	Argille inorganiche di alta plasticità
OH	Argille organiche da media ad alta plasticità

M = limi


C = argille

O = sostanze organiche

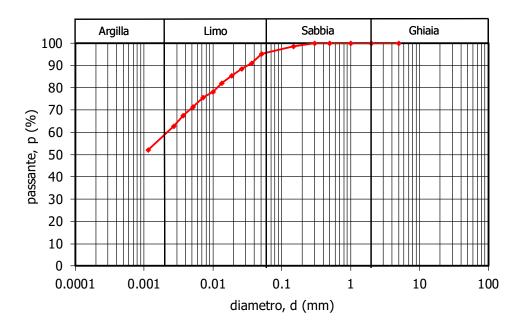
L = bassa plasticità

H = alta plasticità

Carta di attività

Il responsabile della sperimentazione

Prof. Ing. Anna d'Onofrio


Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente Consorzio HirpiniaAV I lotto funzionale Apice-Hirpinia <u>Indagine</u> Sondaggio

SN01 C1

Campione 6.60 ÷ 7.10 m 07/10/19 <u>Profondità</u> Data apertura Alfredo Ponzo Operatore

Terreno: ARGILLA CON LIMO

STACCIATURA			SEDIMENTA	AZIONE	
d (mm)	Peso trattenuto (gr)	Peso passante (gr)	Tempo (min)	Temperatura (°C)	Lettura areometro (gr/cmc)
0.3	0.00	48.28		24.75	
0.15	0.71	47.57	0.5	24.75	1.03000
			1	24.75	1.02875
			2	24.75	1.02800
			4	24.75	1.02700
			8	24.75	1.02600
			15	24.75	1.02475
			30	24.75	1.02400
			60	24.75	1.02275
			120	25.00	1.02150
			240	23.50	1.02025
			1440	23.50	1.01700

CURVA				
GRANULO	METRICA			
d	Passante			
(mm)	(%)			
0.30	100.00			
0.15	98.53			
0.051	95.13			
0.037	91.05			
0.026	88.60			
0.019	85.34			
0.014	82.08			
0.010	78.00			
0.007	75.55			
0.005	71.48			
0.004	67.52			
0.003	62.73			
0.001	52.12			

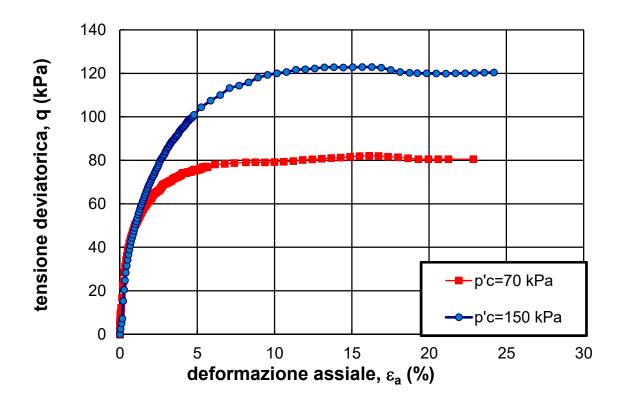
 $G_S=2.74$

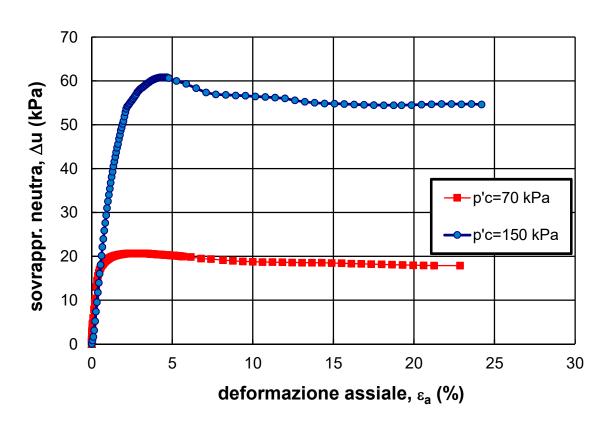
Sondaggio	Campione	Profondità (m)	Peso secco totale (gr)	Metodo di preparazione	% < 0.075 mm	% ciottoli	% ghiaia	% sabbia	omil %	% argilla	Peso secco per sedimentazione	$\mathrm{D}_{\mathrm{max}}$ (mm)	D ₆₀ (mm)	D ₃₀ (mm)	D_{10} (mm)
SN01	C1	6.60-7.10	48.28	A SECCO	99	0		3	37	60	48.28	0.3	0.002	-	

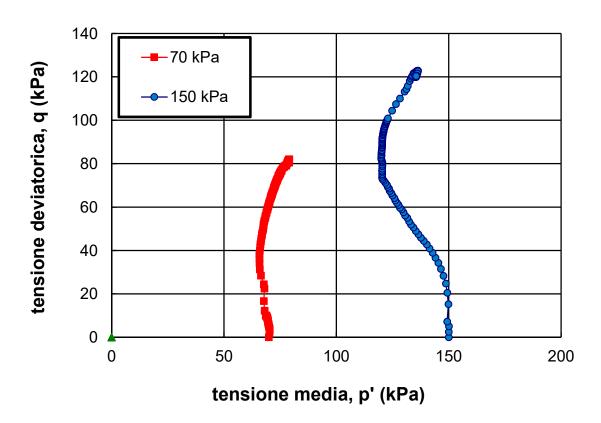
Normativa di riferimento ASTM 422/90 Il responsabile della sperimentazione Prof. Ing. A na d'O. ofrio

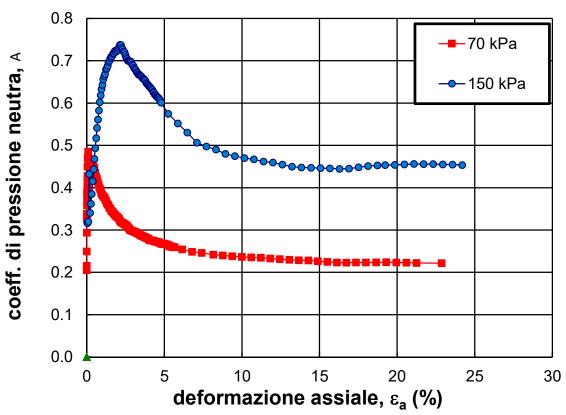
Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Idraulica, Geotecnica ed Ambientale

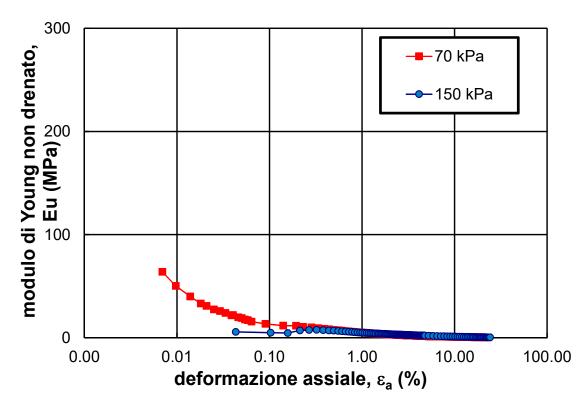
Prova Compressione Triassi	ale n.	Celle n.			
Prova tipo	CU (consolidata non drenata)				
Committente	Co	onsorzio Hirpinia AV			
Indagine	I lotto funzionale Apice-Hirpinia				
Sondaggio	SN01				
Campione	1				
Profondità	6.60 ÷ 7.10 m				

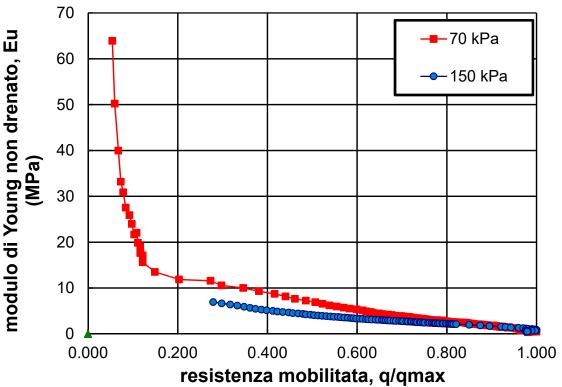

Provi Condizioni i		/a	Provino 2 Condizioni inizio prova			Provino 3 Condizioni inizio prova		
altezza ho	mm	71.87	altezza ho	mm	72.02	altezza ho	mm	
diametro d	mm	35.55	diametro d	mm	35.66	diametro d	mm	
peso umido iniziale	g	132.11	peso umido iniziale	g	140.84	peso umido iniziale	g	
Peso specifico γs	kN/m3	26.87	Peso specifico γs	kN/m3	26.87	Peso specifico γs	kN/m3	
Peso secco dell'udv γd	kN/m3	13.75	Peso secco dell'udv γd	kN/m3	15.13	Peso secco dell'udv γd	kN/m3	
Contenuto d'acqua w		0.321	Contenuto d'acqua w		0.280	Contenuto d'acqua w		
Peso umido dell'udv γ	kN/m3	18.17	Peso umido dell'udv γ	kN/m3	19.37	Peso umido dell'udv γ	kN/m3	
Indice dei vuoti e		0.954	Indice dei vuoti e		0.776	Indice dei vuoti e		
Grado di saturazione Sr		0.9	Grado di saturazione Sr		1.0	Grado di saturazione Sr		
Condizioni	fine prov	a	Condizioni	fine prova	ova Condizioni fine prova			a
Pesafiltro n° 37	g	11.94	Pesafiltro n° 20	g	20.90	Pesafiltro nº 15	g	
Pf + prov. umido	g	146.82	Pf + prov. umido	g	161.32	Pf + prov. umido	g	
Pf + prov.secco	g	111.96	Pf + prov.secco	g	130.92	Pf + prov.secco	g	
Peso secco dell'udv γd	kN/m3	13.80	Peso secco dell'udv γd	kN/m3	15.04	Peso secco dell'udv γd	kN/m3	
Contenuto d'acqua w		0.349	Contenuto d'acqua w		0.276	Contenuto d'acqua w		
Peso umido dell'udv γ	kN/m3	18.61	Peso umido dell'udv γ	kN/m3	19.20	Peso umido dell'udv γ	kN/m3	
Indice dei vuoti e		0.947	Indice dei vuoti e		0.786	Indice dei vuoti e		
Grado di saturazione Sr		1.0	Grado di saturazione Sr		1.0	Grado di saturazione Sr		

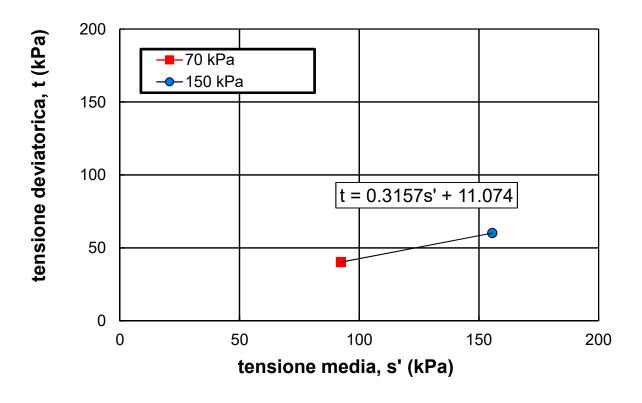

Conso	lidazione		Conso	lidazione		Consoli	dazione	
Pressione di cella σc	kPa	350	Pressione di cella σc	kPa	270	Pressione di cella σc	kPa	0
Contropressione u0	kPa	200	Contropressione u0	kPa	200	Contropressione u0	kPa	0
Tensione effettiva σ'c	kPa	150	Tensione effettiva σ'c	kPa	70	Tensione effettiva σ'c	kPa	0
		A 17			ΔV			ΔV
Data & ora	t	ΔV	Data & ora	t		Data & ora	t	
(gg-hh-min)	(min)	(cmc)	(gg-hh-min)	(min)	(cmc)	(gg-hh-min)	(min)	(cmc)
	0	0		0	0		0	0
	0.13	0.187		0.13	0.163			
	0.27 0.52	0.197 0.205		0.27 0.52	0.173 0.178			
	1	0.205		1	0.178			
	2	0.258		2	0.190			
	4	0.318		4	0.238			
	8	0.413		8	0.283			
	15	0.500		15	0.310			
	30	0.547		30	0.315			
	60	0.526		60	0.305			
	120	0.455		120	0.285			
	240	0.416		240	0.257			
	480	0.302		480	0.207			
	960	0.200		960	0.152			
	1087	0.187		1087	0.146			
							ļ	
- 4	,	<u></u>		,	<u>-</u>			
Volume finale Vc	(cmc)		Volume finale Vc	(cmc)		Volume finale Vc	(cmc)	
Altezza finale hc	(mm)		Altezza finale hc	(mm)		Altezza finale hc	(mm)	
Area finale Ac	(cmq)	9.93	Area finale Ac	(cmq)		Area finale Ac	(cmq)	
t100	(min)		t100	(min)		t100	(min)	

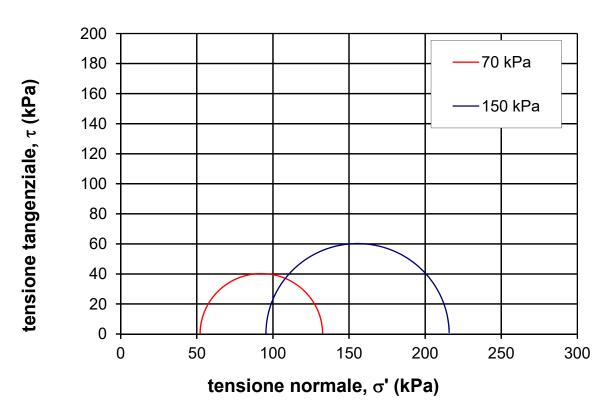

				Laborat	orio di Geoteo	nica			
Prova Co	mpressione Trias	ssiale n.		Prova Com	npressione Triass	siale n.	Prova C	ompressione Trias	siale n.
CIU (co	onsolidata non dr	enata)		CIU (con	isolidata non dre	nata)	CIU (d	consolidata non dr	enata)
	Provino 1				Provino 2			Provino 3	
Velocità di	prova (mm/min)	0.01		Velocità di pi	rova (mm/min)	0.01	Velocità di	prova (mm/min)	0.01
tensione di c	onfinamento (kPa)	150		tensione di cor	nfinamento (kPa)	70	tensione di co	onfinamento (kPa)	0
LVDT	cella di carico	Δu		LVDT	cella di carico	Δu	LVDT	cella di carico	Δu
δ (mm)	kg	(kPa)		δ (mm)	kg	(kPa)	δ (mm)	kg	(kPa)
0	0	0		0	0	0			
0.031	0.250	0.780	0.262	0.000	0.181	0.365			
0.074	0.515	1.625	0.540	0.000	0.318	0.672	1		
0.113	0.732 1.550	3.119 5.198	0.769 1.628	0.002 0.005	0.408 0.453	0.999 1.306			
0.192	2.078	7.408	2.182	0.007	0.499	1.594			
0.232	2.521	9.552	2.647	0.010	0.567	1.882			
0.273	2.878	11.761	3.022	0.013	0.612	2.151			
0.315	3.202	13.971	3.362	0.015	0.657	2.401			
0.355	3.491	16.050	3.666	0.018	0.703	2.670			
0.396	3.730	18.064	3.916	0.021	0.771	2.920			
0.437	3.968 4.173	20.144 22.158	4.167 4.381	0.024 0.028	0.817 0.861	3.150 3.400		+	
0.477	4.173	23.978	4.381	0.028	0.861	3.400		+	
0.560	4.530	25.862	4.757	0.023	0.930	3.842			
0.601	4.684	27.617	4.918	0.036	0.975	4.091		1	
0.643	4.854	29.371	5.097	0.039	0.975	4.303			
0.684	5.007	30.995	5.258	0.042	1.021	4.514			
0.724	5.178	32.555	5.437	0.046	1.021	4.706			
0.766	5.314	34.050	5.579	0.065	1.247	5.935			
0.806	5.467	35.414	5.740	0.101	1.701	7.818			
0.846	5.638 5.757	36.779 38.143	5.919 6.044	0.139 0.166	2.291 2.495	9.431 10.392		+	
0.928	5.910	39.313	6.205	0.204	2.903	12.965			
0.969	6.046	40.548	6.349	0.241	3.198	14.425			
1.009	6.131	41.587	6.438	0.281	3.493	15.520			
1.051	6.268	42.692	6.581	0.318	3.696	16.231			
1.091	6.370	43.732	6.689	0.356	3.878	16.884			
1.132	6.489 6.608	44.771 45.616	6.814 6.939	0.395 0.432	4.082 4.263	17.326 17.748			
1.214	6.728	46.786	7.064	0.471	4.399	18.056			
1.256	6.847	47.695	7.189	0.511	4.535	18.286			
1.296	6.949	48.735	7.297	0.548	4.672	18.536			
1.336	7.068	49.385	7.422	0.587	4.807	18.728			
1.377	7.153	50.230	7.511	0.626	4.921	18.958			
1.419	7.256	50.879	7.619	0.664	5.057	19.093		 	
1.459	7.358	51.880	7.726	0.703	5.171	19.285			
1.500	7.460 7.528	52.861 53.660	7.833 7.905	0.742 0.781	5.238 5.329	19.415 19.573		+	
1.540	7.528	54.193	7.905	0.781	5.329	19.573		+	
1.622	7.715	54.388	8.101	0.819	5.487	19.803			
1.662	7.713	54.713	8.191	0.899	5.556	19.871		†	
1.702	7.903	54.973	8.298	0.936	5.669	19.946		1	
1.744	7.971	55.298	8.370	0.975	5.737	20.034			
1.784	8.073	55.493	8.477	1.013	5.805	20.093		1	
1.824	8.192	55.818	8.602	1.054	5.918	20.153		<u> </u>	
1.864	8.278	56.078	8.692	1.093	5.964	20.210			
1.906	8.380	56.403	8.799	1.132	6.077	20.256			
1.944	8.431	56.663	8.853	1.171	6.100	20.307			
1.986	8.499	56.987	8.924	1.210	6.168	20.354			
2.026	8.567	57.442	8.995	1.249	6.236	20.393			
2.066	8.635	57.637	9.067	1.289	6.281	20.426		+	
2.106	8.738 8.806	57.832 58.092	9.174 9.246	1.329 1.367	6.350 6.394	20.437 20.483		+	
2.146	8.908	58.287	9.246	1.406	6.440	20.485		+	

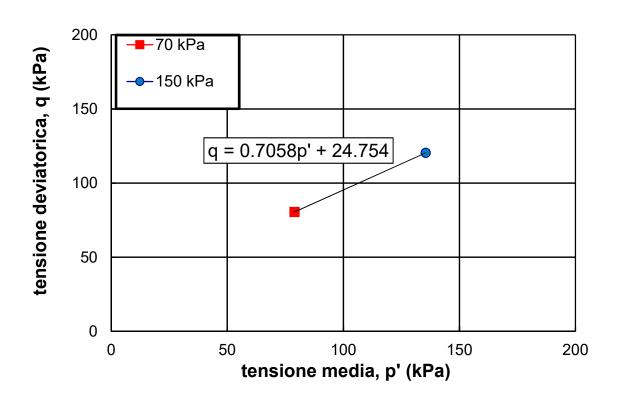

				Laborat	torio di Geote	cnica			
Prova Co	mpressione Trias	siale n.			npressione Trias		Prova C	ompressione Trias	siale n.
	onsolidata non dr				nsolidata non dro			consolidata non dre	
010 (00	Provino 1	oriata)		100) 010	Provino 2	Jiiata)	, 515	Provino 3	Jiata,
Velocità di	prova (mm/min)	0.01		Velocità di n	rova (mm/min)	0.01	Velocità di	prova (mm/min)	0.01
	onfinamento (kPa)	150			nfinamento (kPa)	70	•	onfinamento (kPa)	0.01
	ommamento (m a)	100		tonoione di co	initialization (in a)	70	tonoione ar es	ommumeme (m u)	-
LVDT	cella di carico	Δu		LVDT	cella di carico	Δu	LVDT	cella di carico	Δu
δ (mm)	kg	(kPa)		δ (mm)	kg	(kPa)	δ (mm)	kg	(kPa)
2.228	8.976	58.417	9.425	1.447	6.485	20.529	1		,
2.268	9.027	58.547	9.479	1.486	6.531	20.553			
2.308	9.130	58.742	9.586	1.525	6.644	20.576			
2.348	9.180	58.872	9.639	1.564	6.689	20.591			
2.388 2.428	9.265 9.300	59.067 59.197	9.729 9.765	1.603 1.643	6.758 6.780	20.615 20.624	 	+	
2.470	9.368	59.405	9.836	1.683	6.803	20.633	†	1	
2.510	9.419	59.554	9.890	1.723	6.849	20.629			
2.550	9.470	59.665	9.944	1.762	6.871	20.629			
2.591	9.555	59.847	10.033	1.801	6.916	20.629		+ +	
2.631	9.589 9.657	59.983 60.152	10.069 10.140	1.842 1.881	6.939 7.007	20.640	-	+ +	
2.712	9.708	60.132	10.140	1.922	7.075	20.653		+ +	
2.752	9.811	60.347	10.301	1.961	7.143	20.655		<u> </u>	
2.793	9.862	60.412	10.355	2.000	7.211	20.648			
2.833	9.930	60.548	10.426	2.041	7.234	20.653		+	
2.873	9.981 10.032	60.587 60.639	10.480 10.534	2.080 2.121	7.256 7.279	20.640		+	
2.914	10.066	60.685	10.569	2.160	7.302	20.625			
2.995	10.134	60.756	10.641	2.200	7.325	20.634			
3.035	10.185	60.756	10.695	2.240	7.347	20.636			
3.072	10.270	60.821	10.784	2.279	7.392	20.634			
3.108 3.148	10.304	60.776	10.820	2.320 2.359	7.392	20.629			
3.148	10.390 10.407	60.828 60.808	10.909 10.927	2.359	7.438 7.438	20.629 20.617			
3.230	10.475	60.821	10.999	2.439	7.506	20.615			
3.271	10.526	60.847	11.052	2.479	7.551	20.611			
3.313	10.543	60.854	11.070	2.519	7.574	20.591			
3.353	10.594	60.821	11.124	2.558	7.596	20.569			
3.393 3.433	10.647 10.730	60.743 60.659	11.179 11.267	2.598 2.638	7.619 7.642	20.550 20.531			
3.773	11.165	60.009	11.723	2.678	7.664	20.517			
4.213	11.563	59.327	12.141	2.718	7.664	20.501			
4.653	11.916	58.352	12.511	2.760	7.733	20.489			
5.093	12.344	57.358	12.961	2.799	7.733	20.473	ļ	1	
5.533 5.973	12.552 12.800	56.919 56.819	13.179 13.440	2.838 2.879	7.755 7.824	20.463 20.451	 	+	
6.413	13.130	56.689	13.786	2.918	7.868	20.434	†	1	
6.853	13.355	56.624	14.023	2.959	7.891	20.418			
7.293	13.535	56.448	14.211	2.998	7.891	20.414			
7.733	13.689	56.338	14.373	3.039	7.891	20.399		+	
8.173 8.613	13.905 14.025	56.195 56.013	14.600 14.726	3.078 3.119	7.891 7.914	20.379		+	
9.053	14.025	55.578	14.726	3.119	7.914	20.351		+ +	
9.493	14.227	55.237	14.938	3.199	7.959	20.331		<u> </u>	
9.933	14.235	55.032	14.947	3.239	7.959	20.324			
10.373	14.219	54.865	14.930	3.279	7.982	20.303		ļ — — Ţ	
10.813 11.253	14.233	54.803	14.944	3.318	7.982	20.287	-	+	
11.693	14.241 14.244	54.752 54.622	14.953 14.956	3.357 3.398	8.028 8.050	20.284		+ +	
12.133	14.205	54.570	14.915	3.437	8.095	20.235		†	
12.573	14.090	54.492	14.795	3.478	8.073	20.238			
13.013	13.979	54.450	14.677	3.517	8.118	20.217			
13.453	13.933	54.453	14.630	3.558	8.073	20.203	<u> </u>	+	
13.807 14.247	13.916 13.907	54.453 54.492	14.611 14.603	3.597 3.637	8.095 8.118	20.188	 	+ +	
14.693	13.902	54.603	14.503	3.677	8.141	20.162	<u> </u>	+	
15.139	13.891	54.668	14.585	3.717	8.141	20.142		<u>† </u>	
15.584	13.913	54.733	14.608	3.757	8.186	20.130			
16.028	13.910	54.733	14.606	3.796	8.186	20.107			
16.473	13.927	54.684	14.623	3.836	8.277	20.084	ļ	+	
16.920 17.369	13.943 13.951	54.724 54.622	14.640 14.648	3.876 3.916	8.254 8.300	20.058 20.045	 	+	

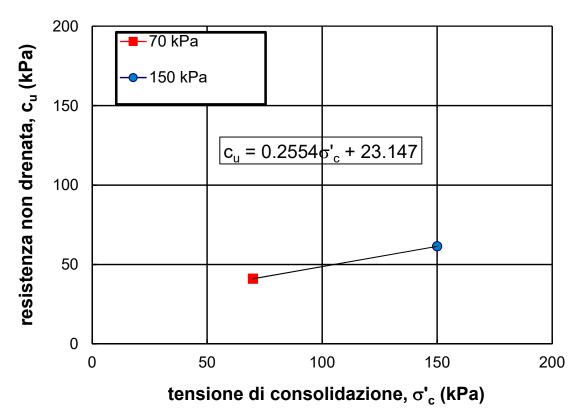

			Laborat	orio di Geote	cnica			
Prova Co	mpressione Trias	siale n.	Prova Com	pressione Trias	siale n.	Prova Co	ompressione Trias	ssiale n.
CIU (co	onsolidata non dr	enata)		solidata non dre			onsolidata non dr	
	Provino 1			Provino 2	,	,	Provino 3	·
Velocità di	prova (mm/min)	0.01	Velocità di pr	ova (mm/min)	0.01	Velocità di p	rova (mm/min)	0.01
	onfinamento (kPa)	150		ifinamento (kPa)	70	tensione di co	nfinamento (kPa)	0
	· · ·						<u> </u>	
LVDT	cella di carico	Δu	LVDT	cella di carico	Δu	LVDT	cella di carico	Δu
δ (mm)	kg	(kPa)	δ (mm)	kg	(kPa)	δ (mm)	kg	(kPa)
			3.957	8.27711263	20.01474			
			3.996	8.321828337	19.99438			
			4.036 4.075	8.299862726 8.299862726	19.96537 19.9379			
			4.415	8.472449664	19.8361			
			4.875	8.566587994				
			5.315	8.665668586				
			5.855	8.762709514				
			6.295 6.735	8.82939083 8.888227286	18.95618 18.80463			
			7.175	8.958831034	18.7278			
			7.615	9.037279642	18.67651			
			8.055	9.068659085	18.67018		ļ	
			8.495 8.935	9.131417971 9.162797414			 	
			9.375	9.202021718				
			9.815	9.233636507				
			10.255	9.257406436				
			10.695 11.135	9.295218665 9.335384352			 	
			11.135	9.335364352				
			12.015	9.342680073				
			12.455	9.297415226	18.20918			
			12.919	9.272625466				
			13.387 13.857	9.220300244 9.170642275				
			14.325	9.170642275				
			14.791	9.170642275				
			15.258	9.170642275				
			16.416	9.170642275	17.85499			
				<u> </u>				
							 	
							 	
				 			 	
				 				
				<u> </u>			<u> </u>	











Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Consorzio HirpiniaAV Committente I lotto funzionale Apice-Hirpinia <u>Indagine</u> Sondaggio

Campione

<u>Profondità</u>

Operatore

Data apertura

SN01 C2

12.50 ÷ 13.00 m 01/10/19 Alfredo Ponzo

Diametro (mm):	85
Lunghezza (mm):	500
Data di apertura:	01/10/2019

	Indisturbato					
Stato del Campione	Parzialmente Rimaneggiato	x				
	Rimaneggiato					

Descrizione: Argilla grigia con striature giallastre. Parte superiore (15cm) rimaneggiata. Parte inferiore argilla omogenea con presenza di alcune concrezioni calcaree nella parte centrale (d max 5 mm) Colore Grigio con striature giallastre Plasticità Non Plastico Bassa Media alta □ Elevata Addensamento Molto sciolto Sciolto Medio Molto denso Denso $(D_r=0.0\div0.2)$ $(D_r = 0.2 \div 0.4)$ $(D_r=0.4\div0.6)$ $(D_r = 0.6 \div 0.8)$ (Terreni granulari) $(D_r=0.8\div1.0)$ Consistenza Molto molle Molle Media Consistente Molto consist. X $(I_c=0.0\div0.5)$ (Terreni coesivi) $(I_c < 0.0)$ $(I_c=0.5\div1.0)$ $(I_c > 1.0)$ $(I_c >> 1.0)$ Grado di umidità Asciutto Poco Umido Umido Molto Umido Alterazione Debole Elevata Assente Media \mathbf{X} Stratificata Caotica Struttura X Omogenea Scagliosa Laminata **Fratturazione** X Assente Moderata Elevata Cementazione X Assente Debole Media □ Elevata

Proprietà fisi	che			Proprietà meccani	che
n,γ,w	X			Compressione uniassiale	
Analisi granulometrica	X		15 cm rimaneggiato	TX –UU	
Limiti	X		To om rimanoggiano	TX-CIU	
CaCO ₃			15 cm – presenza	TX-CID	
Sostanze organiche		n-γ-w	concrezioni	TX-Ciclica	
Peso specifico del solido		<u> </u>	† *	Taglio anulare	
Proctor		RC TS		Taglio diretto	
CBR				RC TS	х
Altro			↓	Altro	

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente Consorzio HirpiniaAV

I lotto funzionale Apice-Hirpinia SN01 Indagine

Sondaggio Campione

C2

12.50 ÷ 13.00 m 01/10/19 <u>Profondità</u> Data apertura Alfredo Ponzo Operatore

Il responsabile della sperimentazione

Prof. Ing. Anna d'Onofrio

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

 Committente
 Consorzio HirpiniaAV

 Indagine
 I lotto funzionale Apice-Hirpinia

 Sondaggio
 SN01

<u>Campione</u> C2

 Profondità
 12.50 ÷ 13.00 m

 Data apertura
 01/10/19

 Operatore
 Alfredo Ponzo

Peso specifico del solido

Determinazione con picnometro	
Picnometro n°	18
Peso picnometro, P _p (g)	42.55
Peso picnometro $+$ acqua, $P_{pw}\left(g\right)$	140.21
Volume picnometro, V_p (cm ³) = $(P_{pw} - P_p)/\gamma_w$	97.66
Peso picnometro + terreno, P _{ps} (g)	58.12
Peso terreno, $P_s(g) = P_{ps} - P_p$	15.27
Peso picnometro $+$ terreno $+$ acqua, $P_{psw}\left(g\right)$	150.07
Volume acqua aggiunta, V_w (cm ³) = $(P_{psw}-P_{ps})/\gamma_w$	91.95
Volume terreno, V_s (cm ³) = V_p - V_w	5.71
Peso specifico terreno, $\gamma_s\left(g/cm^3\right) = P_s/V_s$	2.727

Caratteristiche fisiche generali

	Provino 1	Provino 2	Provino 3	Valore medio
Contenitore n°	13	30	26	
Peso contenitore, Pc (g)	20.89	12.20	11.16	
D (mm), H (mm)	56.01, 19.97			
Volume, V (cm ³)	49.18			
Peso lordo umido, Pu (g)	119.79	38.05	48.31	
Peso lordo secco, Ps (g)	99.26	32.57	40.43	
Contenuto d'acqua, w	0.26	0.27	0.27	
Peso umido unità di volume, γ (kN/m ³)	19.72			
Peso secco unità di volume, γ _d (kN/m³)	15.63			
Peso specifico del solido, γ _s (kN/m ³)	26.74			
Porosità, n	0.42			
Indice dei vuoti, e	0.71			
Grado di saturazione, S	1			

Consistenza terreno a grana fine

Limite di liquidità, w L	0.643
Indice di plasticità, $I_P = w_L - w_P$	0.351
Indice di consistenza, Ic	1.065

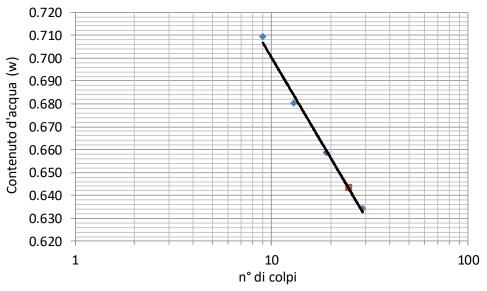
Compattezza terreno a grana grossa

Densità minima, e _{max}	/
Densità massima, e _{min}	/
Densità relativa, $\mathbf{D_r} = \frac{-\mathbf{e_{max}} - \mathbf{e_{min}}}{\mathbf{e_{max}} - \mathbf{e_{min}}}$	/

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

I lotto funzionale Apice-Hirpinia SN01 Committente <u>Indagine</u>


Sondaggio C2

Campione 12.50 ÷ 13.00 m 01/10/19 <u>Profondità</u> Data apertura Alfredo Ponzo Operatore

Limite di Liquidità

Metodo di Casagrande (ASTM)

Contenitore n°	Numero di colpi, N	Jumero di colpi, N Peso contenitore, Pc (g) Peso lordo umido, (g)		Peso lordo secco, Ps	$\frac{\text{Conten} \mathbf{P}_{\mathbf{Q}} \ \mathbf{d'Psqua}}{\text{w}} = \frac{Ps - Pc}{Ps - Pc}$
183	9	12.12	40.65	28.81	0.709
51	13	12.26	39.7	28.59	0.680
196	19	11.15	39.38	28.17	0.659
179	29	11.42	43.21	30.87	0.634
		Limite di	liquidità, w _L (valore a	25 colpi)	0.643

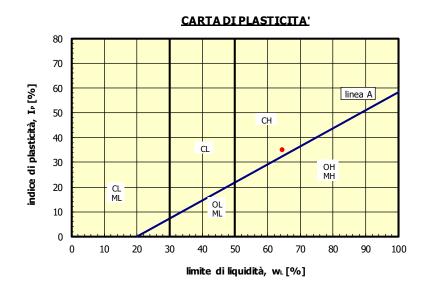
Limite di Plasticità

Contenitore n°	Peso contenitore, Pc (g)	Peso lordo umido, Pu (g)	Peso lordo secco, P _s (g)	Contenuto d'acqua, w = $\frac{1 u - 1s}{Ps - Pc}$	
29	15.05	46.47	39.37	0.292	
		0.292			

Indice di plasticità, $I_P = w_L - w_P$	0.351
Frazione argillosa (d < 2 μm), CF	0.56
Indice di attività, $I_A = I_P/CF$	0.627

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica


<u>Committente</u> Consorzio HirpiniaAV

<u>Indagine</u> I lotto funzionale Apice-Hirpinia

Sondaggio SN01 Campione C2

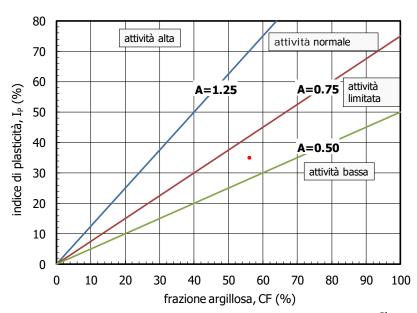
 $\begin{array}{ccc} \hline Profondità & 12.50 \div 13.00 \text{ m} \\ \hline Data apertura & 01/10/19 \\ \hline Operatore & Alfredo Ponzo \\ \end{array}$

Carta di plasticità

Classifica USCS

ML	Limi inorganici da bassa a media plasticità
CL	Argille inorganiche da bassa a media plasticità
OL	Limi e argille organiche di bassa plasticità
MH	Limi inorganici di alta plasticità
CH	Argille inorganiche di alta plasticità
OH	Argille organiche da media ad alta plasticità

M = limi


C = argille

O = sostanze organiche

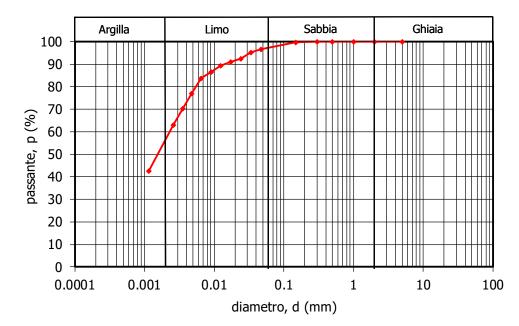
L = bassa plasticità

H = alta plasticità

Carta di attività

Il responsabile della sperimentazione

Prof. Ing. Anna d'Onofrio


Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente Consorzio HirpiniaAV I lotto funzionale Apice-Hirpinia <u>Indagine</u> Sondaggio

SN01 C2

Campione 12.50 ÷ 13.00 m 01/10/19 <u>Profondità</u> Data apertura Alfredo Ponzo Operatore

Terreno: ARGILLA CON LIMO

	STACCIATUR	RA	SEDIMENTAZIONE			
d (mm)	Peso trattenuto (gr)	Peso passante (gr)	Tempo (min)	Temperatura (°C)	Lettura areometro (gr/cmc)	
0.3	0.00	56.49		26.00		
0.15	0.23	56.26	0.5	26.00	1.03400	
			1	26.00	1.03350	
			2	26.00	1.03250	
			4	26.00	1.03200	
			8	26.00	1.03150	
			15	26.00	1.03050	
			30	26.00	1.02950	
			60	26.00	1.02725	
			120	25.50	1.02500	
			240	23.50	1.02275	
			1440	23.50	1.01575	

CURVA							
GRANULO							
d	Passante						
(mm)	(%)						
0.30	100.00						
0.15	99.58						
0.047	96.68						
0.034	95.23						
0.024	92.33						
0.017	90.88						
0.012	89.43						
0.009	86.54						
0.007	83.64						
0.005	77.11						
0.004	70.37						
0.003	62.99						
0.001	42.70						
	_						

	-		-
~ -	_ ~	7	77
T TC=	= Z	. /	LI

Sondaggio	Campione	Profondità (m)	Peso secco totale (gr)	Metodo di preparazione	% < 0.075 mm	% ciottoli	% ghiaia	% sabbia	omil %	% argilla	Peso secco per sedimentazione	$\mathrm{D}_{\mathrm{max}}$ (mm)	D ₆₀ (mm)	D ₃₀ (mm)	$\begin{array}{c} D_{10} \\ (mm) \end{array}$
SN01	C2	12.50- 13.00	54.27	A SECCO	99	0		3	40	57	54.27	0.3	0.0012	ı	

Normativa di riferimento ASTM 422/90

Il responsabile della sperimentazione Ing. Anna d'Onofrio

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente <u>Indagine</u> Sondaggio Campione

<u>Profondità</u>

Operatore

Data apertura

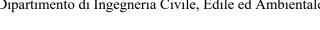
Consorzio HirpiniaAV I lotto funzionale Apice-Hirpinia SN01

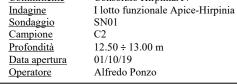
C2

12.50 ÷ 13.00 m 01/10/19 Alfredo Ponzo

Prova di TAGLIO TORSIONALE

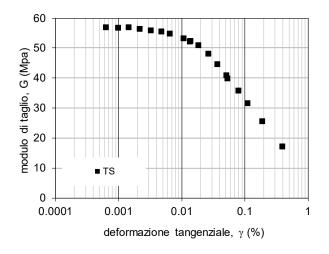
	Dati iniziali										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
35.30	71.75	70.18	19.95	26.50	26.74	0.695	100	144			

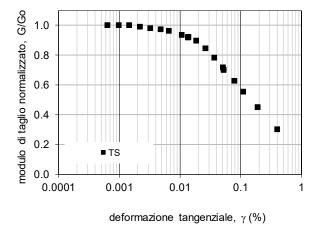

	Dati fine consolidazione										
D (mm)	H (mm)	V (cm ³)	γ (kN/m ³)	w (%)	$\frac{\gamma_d}{(kN/m^3)}$	e (/)	S _r (%)	p' (kPa)			
35.16	71.58	69.47	20.06	25.87	15.9	0.678	100	144			

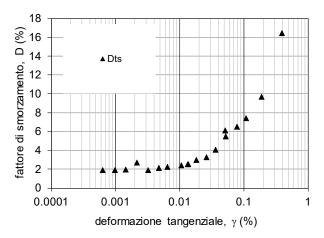

		TAGLIO TO	RSIONALE		
γ (%)	G (MPa)	D (%)	f _r (Hz)	G/G _o (/)	Du/p'
6.33E-04	56.93	1.90	0.5	1.00	0.00
9.88E-04	56.83	1.93	0.5	1.00	0.00
1.45E-03	56.92	1.95	0.5	1.00	0.00
2.17E-03	56.35	2.72	0.5	0.99	0.00
3.24E-03	55.81	1.93	0.5	0.98	0.00
4.80E-03	55.45	2.13	0.5	0.97	0.00
6.49E-03	54.83	2.24	0.5	0.96	0.00
1.07E-02	53.24	2.43	0.5	0.94	0.00
1.36E-02	52.25	2.50	0.5	0.92	0.00
1.38E-02	52.43	2.54	0.5	0.92	0.00
1.84E-02	51.02	2.98	0.5	0.90	0.00
2.65E-02	48.16	3.27	0.5	0.85	0.00
3.66E-02	44.66	4.06	0.5	0.78	0.00
5.14E-02	40.96	6.09	0.5	0.72	0.00
5.25E-02	39.90	5.46	0.5	0.70	0.00
7.87E-02	35.75	6.51	0.5	0.63	0.00
1.10E-01	31.57	7.41	0.5	0.55	0.00
1.90E-01	25.61	9.66	0.5	0.45	0.00
3.96E-01	17.17	16.45	0.5	0.30	0.01
4.07E-01	12.62	27.77	0.5	0.22	0.02

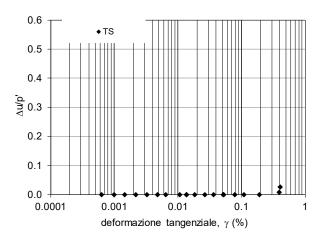
Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica






Consorzio HirpiniaAV


Committente

<u>Indagine</u>

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

 Committente
 Consorzio HirpiniaAV

 Indagine
 I lotto funzionale Apice-Hirpinia

Sondaggio SN01 Campione C2

 $\begin{array}{ccc} \hline Profondità & 12.50 \div 13.00 \text{ m} \\ \hline Data apertura & 01/10/19 \\ \hline Operatore & Alfredo Ponzo \\ \end{array}$

APPENDICE

1. L'attrezzatura sperimentale per prove di taglio torsionale

L'apparecchiatura utilizzata è la cella di taglio torsionale THOR (Figura A.1), progettata e realizzata presso l'Università di Napoli Federico II (d'Onofrio, 1996) sulla base del prototipo originario di colonna risonante 'fixed-free' messo a punto presso l'Università del Texas di Austin (Isenhower, 1979; Ni, 1987). Le caratteristiche tecniche dell'apparecchiatura sono dettagliate da d'Onofrio et al. (1999). In Tabella A.1 sono sintetizzate le principali caratteristiche del sistema, ed in Figura A.2 uno schema della catena strumentale per il controllo e l'acquisizione.

Tipo di prova		Colonna risonante / Taglio torsionale			
Nome dell'appared	chiatura	THOR			
	Diametro esterno	36mm			
	Altezza	72mm			
	Accuratezza nella misura delle dimensioni e del peso del provino	0.1 mm, 0.1gr			
Provino	Metodo di preparazione del provino	Fustellamento			
	Saturazione	In cella via back-pressure			
	Test di B	B > 0.95 mediando i valori ottenuti incrementando e decrementando la pressione di cella			
	Contatto tra provino e apparecchiatura	Piastra rugosa avvitata nella testa di carico e pietra porosa di carburo di silicio avvitata al piedistallo			
Sistema di applicazione dei carichi torcenti	Tipo	Motore elettromagnetico			
	Pressione di cella	40 Pa attraverso convertitore E/P			
Accuratezza del	Contropressione	Senza controllo			
sistema di controllo	Sistema di applicazione dei carichi torcenti	Controllo in corrente risoluzione 1.6*10 ⁻⁵ Nm (2 Pa per il provino Ø 36 mm) Fondo scala 5 Nm Non c'è effetto della forza elettromotrice indotta			
	Pressione di cella	Sensore di pressione di elevate prestazioni con membrana al silicone			
	Contropressione	Trasduttore miniaturizzato con diaframma al silicone			
Tr: 1:	Pressione neutra	Trasduttore miniaturizzato con diaframma al silicone			
Tipo di trasduttori	Coppia torcente	Cella torsionale a strain-gage			
utilizzati	Spostamenti assiali	LVDT in corrente continua			
utilizzati	Variazioni di volume	Trasduttore differenziale di pressione/ volumometro			
	Accelerazioni	Accelerometro piezoelettrico			
	Rotazioni	Laser /Proximitor			
	Pressione di cella	1.5 Pa			
	Contropressione	0.7 Pa			
Accuratezza delle	Pressione interstiziale	0.7 Pa			
misure	Coppia torcente	6x10 ⁻³ Nm			
msure	Spostamenti assiali	1 μm			
	Variazioni di volume	0.0014 cm^3			
	Rotazioni	2. 5x10 ⁻⁷ rad (prox)			

Tabella A.1. Principali caratteristiche della cella di taglio torsionale THOR.

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

 Committente
 Consorzio HirpiniaAV

 Indagine
 I lotto funzionale Apice-Hirpinia

Sondaggio SN01 Campione C2

 Profondità
 12.50 ÷ 13.00 m

 Data apertura
 01/10/19

 Operatore
 Alfredo Ponzo

Figura A.1. l'apparecchiatura di taglio torsionale THOR.

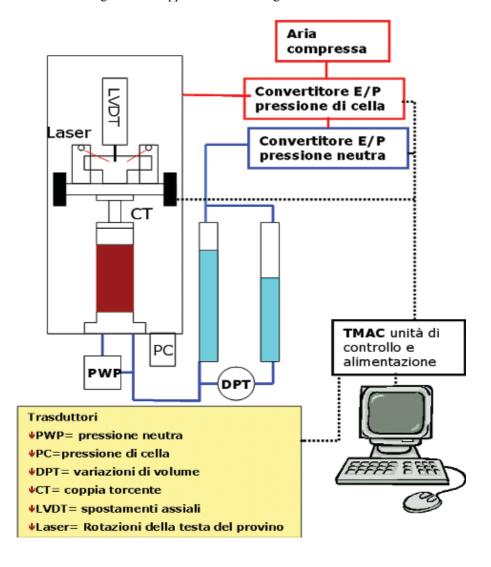


Figura A.2. Diagramma schematico del sistema di controllo e acquisizione di THOR

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente Consorzio HirpiniaAV

I lotto funzionale Apice-Hirpinia **Indagine**

Sondaggio SN01 C2 Campione

12.50 ÷ 13.00 m **Profondità** 01/10/19 Data apertura Alfredo Ponzo Operatore

2. Procedure sperimentali per le prove RC e CTS

Ciascun provino è stato sottoposto ad una prima fase di applicazione della sollecitazione sferica per ricondurre il provino alla tensione efficace stimata agente in sito.

Al termine di questa fase è stato poi applicato il carico torsionale M(t), avente caratteristiche diverse in funzione del tipo di prova. In particolare, in relazione alla frequenza con la quale vengono fatte variare le sollecitazioni nel tempo, è possibile distinguere due tipi di prova: prove «cicliche» (torsione ciclica, CTS) e prove «dinamiche» propriamente dette (colonna risonante, RC).

I criteri di interpretazione delle prove in termini di rigidezza e smorzamento sono variabili a seconda delle caratteristiche della sollecitazione torsionale applicata. Infatti, nelle prove TS l'effetto delle forze di inerzia è trascurabile e quindi l'interpretazione è di tipo «quasi statico», mentre per le prove RC è necessario fare riferimento a modelli d'analisi dinamici. I criteri descritti in seguito sono quelli pressoché universalmente adottati per l'interpretazione delle prove RC e CTS, conformi alle norme ASTM (ASTM D4015/92). Presso il DIGA sono state messe a punto, e vengono normalmente utilizzate, procedure di interpretazione più complesse, che si avvalgono della completa automazione e digitalizzazione delle prove. Queste procedure, ampiamente descritte altrove (Papa et al., 1988; Silvestri, 1991, d'Onofrio, 1996), tra l'altro consentono di aumentare l'affidabilità dei risultati anche quando il livello di deformazioni indagato è basso e quindi si è in presenza di un rapporto segnale/rumore non elevato. Per approfondimenti si rimanda a Silvestri (1991).

2.1 Prove di colonna risonante (RC)

Durante una prova di colonna risonante (Figura A.3) il provino è sottoposto ad una sollecitazione torsionale di ampiezza M costante e frequenza f variabile nel tempo:

$$M(t) = M \sin[2\pi ft]$$

Nell'attrezzatura utilizzata, l'estremità superiore del provino è libera, mentre la base è rigidamente vincolata al piedistallo fisso; in tal modo lo schema dinamico di riferimento è del tipo «a base fissa» o «fixed-free» (Woods, 1978).

Durante la prova, viene registrata la vibrazione della testa del provino in termini di rotazione, θ, rilevata a seconda dei casi da una coppia di sensori laser oppure da due coppie di trasduttori di prossimità. Tale misura viene convertita in deformazioni tangenziali, y, mediante le opportune costanti di taratura (d'Onofrio, 1996). La risposta del provino risulta in ogni istante isofrequenziale con la sollecitazione, mentre l'ampiezza (θ o γ) varia in relazione alla frequenza, ed attinge il valore massimo quando vengono raggiunte le cosiddette "condizioni di risonanza" ($f = f_R$).

Il modulo tangenziale G viene dedotto dalla misura della velocità delle onde di taglio, V_S, ottenuta analizzando la risposta del sistema composto da provino e dispositivo di carico torsionale, sulla base di classici modelli teorici di vibrazione torsionale di solidi cilindrici (Richart et al, 1970). Dalla conoscenza $V_s = \frac{d \mathcal{L}_{r} \mathcal{L}_{r}}{\beta}$ aratteristiche fisico-geometriche del sistema, V_s e G si ricavano applicando le espressioni:

$$G = \rho V_s^2$$

dove L indica l'altezza del provino e ρ la densità del terreno. La costante adimensionale β è funzione dell'inerzia polare di massa del provino, I, e di quella del sistema di eccitazione, I₀, secondo l'equazione:

$$\frac{I}{I_0} = \beta \tan \beta$$

Dalla curva di risposta è possibile anche ricavare il fattore di smorzamento D, individuando i valori di frequenza (f1, f2) corrispondenti ad un'ampiezza di vibrazione pari a $\gamma_{max}/\sqrt{2}$ (metodo della "semibanda di potenza"): $D_{hp} = \frac{f_2 - f_1}{2 f_R}$

$$D_{hp} = \frac{f_2 - f_1}{2 f_R}$$

A causa della non linearità e della degradazione ciclica, questo criterio non sempre fornisce una valutazione attendibile del fattore di smorzamento D. In casi del genere si può, in alternativa, ricorrere al metodo basato sull'espressione analitica del

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente Consorzio HirpiniaAV

Indagine I lotto funzionale Apice-Hirpinia

Sondaggio SN01 Campione C2

 Profondità
 12.50 ÷ 13.00 m

 Data apertura
 01/10/19

 Operatore
 Alfredo Ponzo

fattore di risonanza (metodo del fattore di risonanza), cioè il rapporto tra il valore di picco, γ_{max} , della curva di risposta $\gamma(f)$ e la rotazione statica corrispondente ad una coppia di eguale ampiezza M. Da esso si ricava D, una volta noti le ampiezze M e γ_{max} , ed il valore di G già calcolato, con l'espressione seguente:

$$D_{rf} = \frac{M_0 \overline{R}}{2G\gamma_{max}}$$

Questo metodo appare in genere più attendibile di quello precedente, perché meno sensibile agli effetti della non linearità e della degradazione ciclica del terreno.

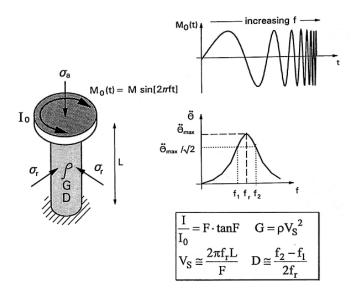


Figura A.3: Interpretazione delle prove di colonna risonante.

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

<u>Committente</u> Consorzio HirpiniaAV <u>Indagine</u> I lotto funzionale Apice-Hirpinia

Sondaggio SN01 Campione C2

 $\begin{array}{ccc} \hline Profondità & 12.50 \div 13.00 \text{ m} \\ \hline Data apertura & 01/10/19 \\ \hline Operatore & Alfredo Ponzo \\ \end{array}$

2.2 Prova di torsione ciclica (CTS)

Durante una prova di torsione ciclica (Figura A.4), il provino viene sottoposto ad un momento torcente M(t) variabile nel tempo con legge sinusoidale (di ampiezza e frequenza costanti) e si misura la rotazione della testa $\theta(t)$.

Le tracce temporali rappresentative di momenti e rotazioni vengono tradotte in termini di andamenti $\tau(t)$ e $\gamma(t)$, mediante le opportune costanti di taratura ed assumendo alcune ipotesi semplificative sulla distribuzione dello stato tensio-deformativo all'interno del provino.

Per ciascun ciclo di carico si individuano quindi i valori di picco della tensione e della deformazione tangenziali (τ_{max} e γ_{max}), e l'andamento del ciclo di isteresi risultante dall'accoppiamento di $\tau(t)$ e $\gamma(t)$.

I valori di G e D vengono calcolati utilizzando le relazioni:

$$G = \frac{\tau_{pp}}{\gamma_{pp}}$$

$$D = \frac{W_d}{4\pi W_s}$$

Per l'interpretazione dei risultati relativi alle prove di torsione ciclica si è attribuita maggiore affidabilità a tecniche di regressione statistica ai bassi livelli di deformazione (adoperando una regressione sinusoidale, cfr. Papa et al., 1988); non appena i disturbi elettrici sono apparsi senz'altro trascurabili, si è ricorsi ai criteri ordinari (ampiezze picco-picco, area del ciclo di isteresi).

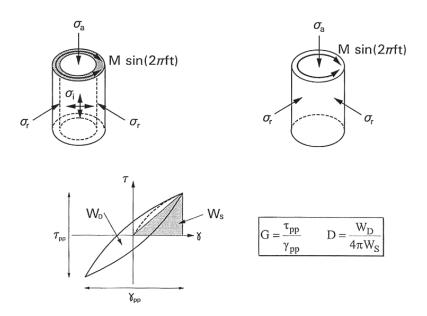


Figura A.4: Interpretazione delle prove di torsione ciclica.

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente Consorzio HirpiniaAV

I lotto funzionale Apice-Hirpinia **Indagine**

SN01 Sondaggio C2 Campione

12.50 ÷ 13.00 m

<u>Profondità</u> 01/10/19 Data apertura Alfredo Ponzo Operatore

Riferimenti

AGI (1994) - Raccomandazioni sulle prove geotecniche di laboratorio

ASTM D422/90 - Standard Test Method for particle-size analysis of soils.

ASTM D4318 - Standard Test Methods for liquid limit, plastic limit, and plasticity index of Soils.

ASTM D2435/96 - Standard Test Methods for one-dimensional consolidation properties of soils using incremental loading.

ASTM D4015/92 - Standard Test Methods for modulus and damping of soils by Resonant-Column method.

d'Onofrio A. (1996) - Comportamento meccanico dell'argilla di Vallericca in condizioni lontane dalla rottura - Tesi di dottorato in Ingegneria Geotecnica, Università degli Studi di Napoli.

d'Onofrio A., Silvestri F., Vinale F. (1999) - A new torsional shear device - ASTM Geotechnical Testing Journal, Vol 22-2 pp.107-117.

Isenhower W.M. (1979) - Torsional Simple Shear/Resonant Column properties of San Francisco Bay Mud - M.S. Thesis, The University of Texas at Austin.

Ni S. H. (1987) Dynamic properties of sand under true triaxial stress states from Resonant Column/Torsional Shear tests -Ph. D. dissertation, The University of Texas at Austin.

Papa V., Silvestri F., Vinale F. (1988) - Recenti sviluppi e prospettive nelle tecniche di interpretazione di prove dinamiche di taglio semplice - Atti del Convegno del Gruppo Nazionale di Coordinamento per gli Studi di Ingegneria Geotecnica, Monselice.

Richart F.E., Hall J.R., Woods R.D. (1970) - Vibrations of soils and foundations - Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Silvestri F. (1991) - Analisi del comportamento dei terreni naturali in prove cicliche e dinamiche di taglio torsionale - Tesi di Dottorato in Ingegneria Geotecnica, Università degli Studi di Napoli.

Woods R.D. (1978) - Measurement of dynamic soil properties - Proc. "Geotechnical Engineering Division Specialty Conference on Earthquake Engineering and Soil Dynamics", ASCE, Pasadena (California).

> Il responsabile della sperimentazione Prof. Ing. Anna d'Onofrio

Dipartimento di Ingegneria Civile, Edile ed Ambientale - via Claudio, 21 - 80125 NAPOLI

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Laboratorio di Geotecnica

Committente <u>Indagine</u> Sondaggio Campione

<u>Profondità</u>

Operatore

Data apertura

Consorzio HirpiniaAV I lotto funzionale Apice-Hirpinia SN01

C3

19.00 ÷ 19.30 m 16/01/20 Alfredo Ponzo

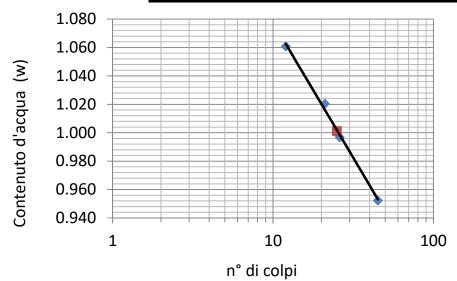
Diametro (mm):	85
Lunghezza (mm):	250
Data di apertura:	16/01/2020

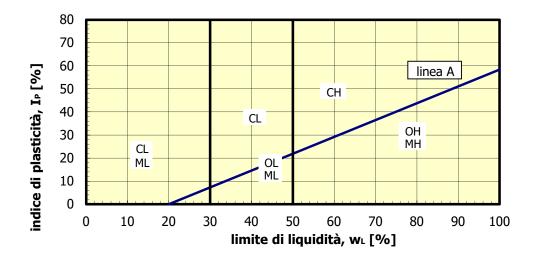
	Indisturbato	
Stato del Campione	Parzialmente Rimaneggiato	x
	Rimaneggiato	

Descrizione: Parte superiore : presenti grossi elementi lapidei di diametro pari a quello della fustella. Parte inferiore: argilla grigia microfogliettata									
Colore		grigio							
Plasticità		Non Plastico		Bassa	x	Media alta		Elevata	
Addensamento (Terreni granulari)		Molto sciolto (D _r =0.0÷0.2)		Sciolto (D _r =0.2÷0.4)		Medio (D _r =0.4÷0.6)		Denso (D _r =0.6÷0.8)	Molto denso (D _r =0.8÷1.0)
Consistenza (Terreni coesivi)		Molto molle $(I_c < 0.0)$		Molle (I _c =0.0÷0.5)		Media (I _c =0.5÷1.0)	X	Consistente $(I_c>1.0)$	Molto consist. (I _c >>1.0)
Grado di umidità		Asciutto		Poco Umido	x	Umido		Molto Umido	
Alterazione	x	Assente		Debole		Media		Elevata	
Struttura		Omogenea		Stratificata	x	Micro Scagliosa		Laminata	Caotica
Fratturazione		Assente	□Х	Moderata		Elevata			
Cementazione	X	Assente		Debole		Media		Elevata	

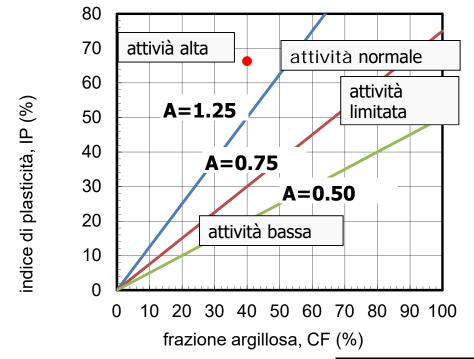
Proprietà fisio	che		Proprietà meccaniche
n,γ,w	X		Compressione uniassiale
Analisi granulometrica	X		TX –UU
Limiti	X	A Sand Service Control	TX-CIU
CaCO ₃			TX-CID
Sostanze organiche		5 3 3 S S S S S S S S S S S S S S S S S	TX-Ciclica
Peso specifico del solido		SONDAG	Taglio anulare
Proctor		SAVEL S STREET S STRE	Taglio diretto
CBR		A WORTH OF A	RC TS
Altro			Altro

Non è stato possibile confezionare provini per prove meccaniche

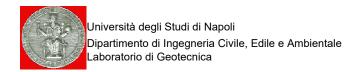



Università degli Studi di Napoli Dipartimento di Ingegneria Civile, Edile e Ambientale Laboratorio di Geotecnica

Committente	Consorzio HirpiniaAV
Indagine	I lotto funzionale Apice-Hirpinia
Sondaggio	SN01
Campione	C3
Profondità	19.00-19.30
Data	16/01/2020
Operatore	Alfredo Ponzo


	LIMITE DI PLASTICITA'							
pesafiltro n°	Tara	Peso lordo umido (P _u)	Peso lordo secco (Ps)	Contenuto d'acqua (w)				
[-]	[gr]	[gr]	[gr]	[-]				
21	14.04	44.46	36.77	0.338				
			W _P	0.338				

	LIMITE DI LIQUIDITA' (Metodo di Casagrande ASTM)						
Pesafiltro n°	N° colpi (N)	Tara (P _c)	Peso lordo umido (P _u)	Peso lordo secco (Ps)	Contenuto d'acqua (w)		
[-]	[-]	[g]	[g]	[g]	[g]		
34	45	7.93	23.9	16.11	0.952		
97	26	11.02	42.09	26.58	0.997		
176	21	12.04	35.86	23.83	1.020		
37	12	8.23	37.02	22.2	1.061		
	25	Lir	nite di liquidità ASTN	/I (w _L)	1.001		

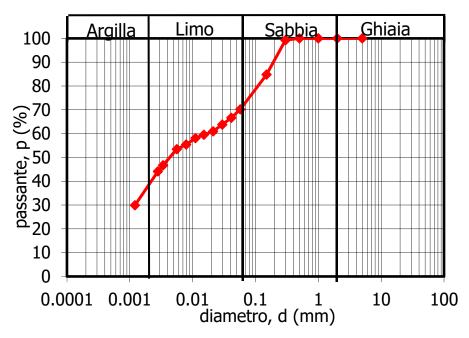


ML	Limi inorganici da bassa a media plasticità	M = limi
CL	Argille inorganiche da bassa a media plasticità	C = argille
OL	Limi e argille organiche di bassa plasticità	O = sostanze organiche
MH	Limi inorganici di alta plasticità	L = bassa plasticità
СН	Argille inorganiche di alta plasticità	H = alta plasticità
OH	Argille organiche da media ad alta plasticità	

CONSISTENZA TERRENO A GRANA FINE						
\mathbf{w}_L	l _P	I _c				
[-]	[-]	[-]				
100.113	66.28					
COMPATTEZZA TERRENO A GRANA GROSSA						
e _{max} e _{min} D _r						
[-]	[-]	[-]				

	Consorzio
Committente	HirpiniaAV
Indagine	Apice-Hirpinia
Sondaggio	SN01
Campione	C3
Profondità	19.00-19.30
Data	16/01/2020
Operatore	Alfredo Ponzo

Peso specifico del solido				
Peso specifico dell'acqua (γ _w) (g/cm ³)	1.000			
picnometro n°	18.000			
Peso picnometro (P _p) (g)	59.77			
Peso picnometro + acqua (P _{pw}) (g)	158.200			
Volume picnometro (V _p) (cm ³)	98.43			
Peso picnometro + terreno (P _{ps}) (g)	75.91			
Peso terreno (P _s)	16.14			
Peso picnometro + terreno + acqua (P _{psw}) (g)	168.520			
Volume acqua aggiunta (V _w) (cm³)	92.61			
Volume terreno (V _s) (cm ³)	5.820			
Peso specifico del terreno (γ _s) (kN/m³)	27.194			


Caratteristiche Fisiche Generali				
pesafiltro n°				
Peso contenitore (P _c) (g)				
Diametro (D) (mm)				
Altezza (H) (mm)				
Volume (V) (cm³)				
Peso lordo umido (P _u) (g)				
Peso lordo secco (P _s) (g)				
Contenuto d'acqua (w)				
Peso umido unità di volume (γ) (kN/m³)				
Peso secco unità di volume (γ _d) (kN/m³)				
Peso specifico del solido (γ _s)(kN/m³)				
Porosità (n)				
Indice dei vuoti (e)				
Grado di Saturazione (S _r)				

Il responsabile della sperimentazione prof. Ing. Anna d'Onofric

Università degli Studi di Napoli Dipartimento di Ingegneria Civile, Edile e Ambientale Laboratorio di Geotecnica

Committente	Consorzio HirpiniaAV	
Indagine	I lotto funzionale Apice-Hirpinia	
Sondaggio	SN01	
Campione	C3	
Profondità	19.00 ÷ 19.30 m	
Data	27/01/2020	
Operatore	Alfredo Ponzo	

Curva granulometrica			
diametro	passante		
(mm)	(%)		
0.50	100.00		
0.30	99.25		
0.15	84.78		
0.06	70.21		
0.04	66.64		
0.03	63.79		
0.02	60.94		
0.015	59.52		
0.011	58.09		
0.008	55.42		
0.006	53.46		
0.003	46.71		
0.003	44.14		
0.001	29.88		

ARGILLA CON SABBIA E LIMO

peso secco	peso secco		
totale (g)	sediment. (g)		
34.03	34.03		

STACCIATURA			SEDIMENTAZIONE			
d	peso trattenuto	peso passante	tempo	temperatura	lettura areometro	
(mm)	(g)	(g)	(min)	(°C)	(g/cm³)	
0.50	0.00	54.85		19		
0.30	0.41	54.44	0.5	19	1.02625	
0.15	8.35	46.50	1	19	1.025	
			2	19	1.024	
			4	19	1.023	
			8	19	1.0225	
			15	19	1.022	
			30	19.5	1.021	
			60	20	1.02025	
			170	21	1.01775	
			240	23.5	1.0165	
			1440	23.5	1.0115	

Gs= 2.773

%<0.075mm	%ghiaia	% sabbia	%limo	%argilla	D _{max} (mm)	D ₆₀ (mm)	D ₁₀ (mm)
74	0	30	30	40	J 0	50 0.0200	

Normativa di riferimento : ASTM 422/90

il responsabile della sper men azione prof. Ing. Anna d'Onofrio