COMMITTENTE:

PROGETTAZIONE:

File: RS3E50D09CLVI0007003A.docx

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI PROGETTO DEFINITIVO TRATTA DITTAINO – CATENANUOVA RELAZIONE DI CALCOLO IMPALCATO A SEZIONE MISTA L=50m (singolo binario) SCALA: COMMESSA LOTTO FASE **ENTE** TIPO DOC. OPERA/DISCIPLINA PROGR. REV. 0 9 A D 0 Ant∉izzato Data Redatto Data Verificato Data Data Approvato Rev. Descrizione L.Genca F.Bonifacio F. Sparacino Emissione Esecutiva Nov. 2019 Nov. 2019 Nov. 2019

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 2 di 68

INDICE

1146			
1	PREI	MESSA	. 4
2	NOR	MATIVA DI RIFERIMENTO	. 6
3	MAT	ERIALI IMPIEGATI	. 7
4	ANA	LISI DEI CARICHI UNITARI	. 8
4.1	CA	RICHI PERMANENTI	8
	4.1.1	Pesi propri (G1)	8
	4.1.2	Carichi permanenti portati (G2)	8
4.2	SO	VRACCARICHI ACCIDENTALI	9
	4.2.1	Treni di carico	9
	4.2.2	Azioni orizzontali	.12
4.3	AZ	ONI CLIMATICHE	14
	4.3.1	Variazione termica	.14
	4.3.2	Azione della neve	.14
	4.3.3	Azione del vento	.14
4.4	RIT	TIRO	16
4.5	AZ	IONI ECCEZIONALI	17
4.6	AZ	ONI INDIRETTE	17
4.7	AZ	ONI SISMICHE	18
5	COM	BINAZIONI DI CARICO	. 21
6	EFFE	TTI GLOBALI	. 22
6.1	МС	DELLO DI CALCOLO	22
6.2	TR	AVI	23
6.3	AN	ALISI MODALE	28
6.4	VE	RIFICHE SLU	29
	6.4.1	VERIFICHE TRAVI PRINCIPALI	. 29
	6.4.2	VERIFICHE DIAFRAMMI	.38
	6.4.3	VERIFICA CONTROVENTI	.44
6.5	VE	RIFICA A FATICA TRAVI PRINCIPALI	50
6.6	VE	RIFICHE SLE	51
	6.6.1	VERIFICHE DI DEFORMABILITA'	.51
6.7	RE	AZIONI AGLI APPOGGI	51
	671	SCHEMA APPOGGI	51

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO	LOTTO	FASE	ENTE	COD	DOC.	PROG.	REV.	FC	GLIO
RS3E	50	D	09	CL	VI0007	003	Α	3	di 68

	6.7	.2	REAZIONI APPOGGI	52
7	E	FFE	TTI LOCALI	54
	7.1	ANA	ALISI DEI CARICHI	. 54
	7.1	.1	CARICHI PERMANENTI	54
	7.1	.2	SOVRACCARICHI ACCIDENTALI	54
	7.1	.3	AZIONI ECCEZIONALI	56
	7.1	.4	AZIONI CLIMATICHE	57
	7.2	COI	MBINAZIONE DEI CARICHI	. 58
	7.3	VEF	RIFICHE DI RESISTENZA	. 61
	7.4	VEF	RIFICHE S.L.E.	. 65

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 4 di 68

1 PREMESSA

Oggetto della presente relazione sono le verifiche principali (a livello globale) della travata metallica a sezione mista acciaio-cls di **portata teorica pari a 48 m a singolo binario**. Le travate presentano un pacchetto P.F.-sottotrave pari a 5.225 m con altezza delle travi metalliche massima pari a 4m (in appoggio pari a 2.8m); l'impalcato è composto da due travi con interasse delle anime pari a 3.6m. I diaframmi sono costituiti da angolari accoppiati, con diagonali a croce e correnti superiori ed inferiori con scansione di 4m ed infine sono stati previsti traversi chiusi in corrispondenza degli appoggi.

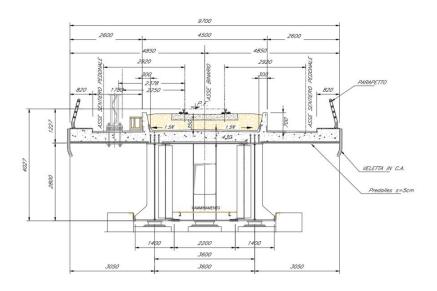


Figura 1_Sezione in asse appoggi

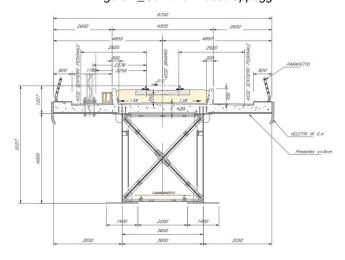


Figura 2_Sezione corrente

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 5 di 68

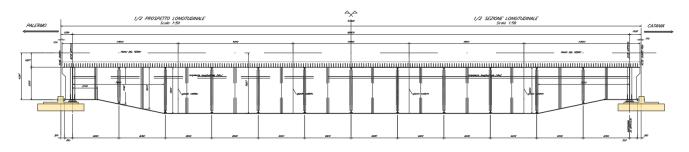


Figura 3_Prospetto

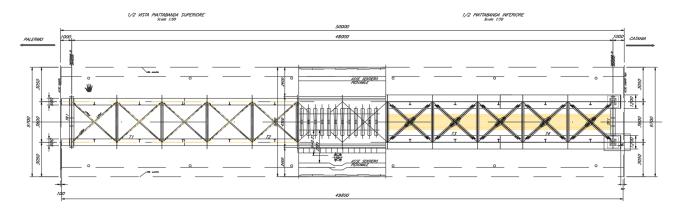


Figura 4_Pianta

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA DITTAINO - CATENANUOVA PROGETTO DEFINITIVO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.

RS3E 50 D 09 CL VI0007 003 A

FOGLIO 6 di 68

2 NORMATIVA DI RIFERIMENTO

Il progetto è redatto secondo i metodi classici della scienza delle costruzioni e nel rispetto della seguente normativa:

- [N1] **Legge 05/01/1971 n°1086:** Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- [N2] **Legge 02/02/1974 n°64:** Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- [N3] D.M. del 14 Gennaio 2008: Nuove norme tecniche per le costruzioni;
- [N4] C.M. 02/02/2009 n.617: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- [N5] **RFI DTC SI PS MA IFS 001 A del 30/12/2016:** Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture;
- [N6] **RFI DTC SI PS SP IFS 001 A del 30/12/2016:** Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;

Nella redazione dei progetti e nelle verifiche strutturali si è inoltre fatto riferimento alla normativa Europea di seguito specificata:

- [N7] **UNI EN 1991-1-4:2005:** Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento:
- [N8] **UNI EN 1992-1-1:2005:** Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- [N9] UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- [N10] **UNI EN 1993-1-1:2005:** Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- [N11] UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- [N12] **UNI EN 1998-1:2005:** Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- [N13] **UNI EN 1998-2:2006:** Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- [N14] **STI 2014 REGOLAMENTO UE N.1299/2014** della commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

Tutti gli elementi lavorati dovranno essere controllati ed accettati in accordo al [N6] ed alla **UNI EN 1090-2** (classe di esecuzione exc3 eccetto camminamenti e grigliati per i quali, come previsto sull'Appendice B, si può utilizzare la classe di esecuzione exc2).

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 7 di 68

3 MATERIALI IMPIEGATI

	CALCESTRUZZO PER SOLETTA				
C32/40					
R _{ck} =	40	N/mm²	resistenza caratteristica cubica		
f _{ck} =	33.2	N/mm²	resistenza caratteristica cilindrica		
f _{cm} =	41.2	N/mm³	resistenza caratteristica cilindrica media		
γ _M =	1.5	-	coefficiente parziale di sicurezza SLU		
f _{cd} =	18.8	N/mm²	resistenza di progetto		
E _{cm} =	33642.8	N/mm²	modulo elastico BT		
E _{cm} *=	11846.0	N/mm ²	modulo elastico LT		
E _{cm} ritiro=	13609.5	N/mm ²	modulo elastico viscoso		
	XC4/S4		Classe di esposizione		
c =	30	mm	copriferro minimo		
			ARMATURE ORDINARIE		
	B 45	0 C cont	rollato in stabilimento		
f _{yk} =	450	N/mm ²	tensione caratteristica di snervamento		
γ _M =	1.15	-	coefficiente parziale di sicurezza SLU elastico		
f _{yd} =	391.3	N/mm²	resistenza di progetto		
E _s =			modulo elastico		
	ACCIA	IO PER C	ARPENTERIA METALLICA		
	S35	5 JO PER	PROFILATI E LAMIERE		
	S355	J2 PER T	RAVI ED ELEM SALDATI		
f _{yk} =	355	МРа	Resistenza di calcolo (t ≤ 40 mm)		
f _{yk} =	335	МРа	Resistenza di calcolo (t > 40 mm)		
γ _M =	1.05	-	coefficiente parziale di sicurezza SLU elastico		
f _{yd} =	338.1	N/mm²	resistenza di progetto (t ≤ 40 mm)		
f _{yd} =	319.0	N/mm³	resistenza di progetto (t > 40 mm)		
E _s =	209000	МРа	modulo elastico		
		ACCIA	IO PIOLI NELSON		
		S 235 J	R+ C450 ST37/3K		
f _{yk} =	355	N/mm ²	tensione caratteristica di snervamento		
E _s =	210000	0 N/mm² modulo elastico			
		ACCIA	IO bulloni e dadi		
viti	8.8; 10.9	•	rmi per le caratteristiche dimensionali alle		
dadi	dadi 8; 10 UNI-EN ISO 898-1, UNI EN 20898-2, UNI EN 14399-4				
			SALDATURE		
			TECNICO DI APPALTO DELLE OPERE CIVILI" di ITI, VIADOTTI, SOTTOVIA E CAVALCAVIA).		

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 8 di 68

4 ANALISI DEI CARICHI UNITARI

Le verifiche dell'opera vengono effettuate in base ai seguenti carichi unitari.

4.1 CARICHI PERMANENTI

4.1.1 PESI PROPRI (G1)

- Peso proprio delle 2 travi in acciaio (inclusi trasversi, irrigidimenti, ecc.) = 35 kN/m (valore stimato da modello);
- Peso proprio della soletta di spessore complessivo variabile = 102 kN/m

Totale Peso proprio = 138 kN/m

Incidenza carpenteria metallica = 3.6 kN/m^2

4.1.2 CARICHI PERMANENTI PORTATI (G2)

Valori complessivi per l'intera larghezza di impalcato:

Permanenti portati	Ripetizioni	Spessore	Larghezza	Area	p	Peso
	-	m	m	mq	kN/mc-mq	kN/ml
Muri paraballast	2			0.15	25	7.5
Cordolo in sx	1				25	3.5
Cordolo in dx	1				25	3.5
Velette	2			0.094	25	4.7
Ballast+ impermab. + armamento	1	0.8	4		18	57.6
Incremento per rialzo in curva	1			0.26	20	5.2
Canalette	1			0.1	25	2.5
Impermeabilizzazione marciapiedi	1	0.05	4		20	4
Impianti	2				1	2
Barriere antirumore	2	1	4		4	32

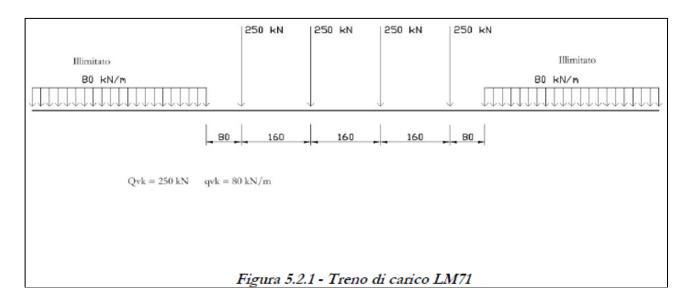
Totale permanenti portati = 123 kN/m

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 9 di 68

4.2 SOVRACCARICHI ACCIDENTALI


4.2.1 TRENI DI CARICO

I carichi verticali sono definiti attraverso dei modelli di carico; in particolare, sono forniti due treni di carico distinti: il primo rappresentativo del traffico normale (LM 71) ed il secondo di quello pesante (SW2).

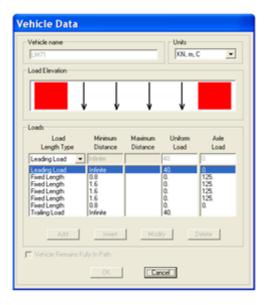
Traffico normale: Treno LM71

Questo treno di carico schematizza gli effetti statici prodotti dal traffico ferroviario normale e risulta costituito da:

- quattro assi da 250 kN disposti ad interasse di 1.60 m;
- una stesa uniforme di 80 kN/m in entrambe le direzioni, a partire da 0.8 m dagli assi d'estremità e per una lunghezza illimitata.

È stata considerata un'eccentricità di carico pari a 1/8 dello scartamento: $e = \frac{s}{8} = \frac{143.5}{8} = 8 \text{ cm}$

Ogni rotaia è stata caricata con la seguente azione verticale:



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA DITTAINO - CATENANUOVA PROGETTO DEFINITIVO

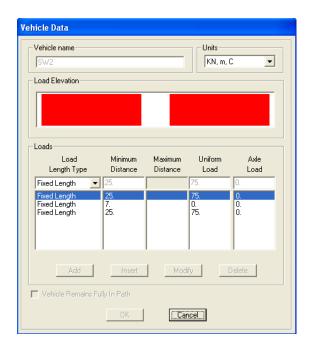
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 10 di 68

I valori caratteristici dei carichi mobili (LM71) attribuiti ai modelli di carico sono stati moltiplicati per un coefficiente di adattamento $\alpha = 1.10$.

Traffico pesante treno SW/2

Tale carico schematizza gli effetti statici prodotti dal traffico ferroviario pesante. Per tale modello di carico è stata considerata la seguente configurazione:

- due stese di carico di intensità 150 kN/m, lunghe 25.00 m distanziate da un lasco di 7.00 m.


U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 11 di 68

Sulla singola rotaia risulta:

Coefficienti dinamici

I coefficienti di incremento dinamico per linee con normale standard manutentivo sono stati determinati con la seguente equazione:

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73 \qquad \text{con la limitazione} \qquad 1 \le \Phi_3 \le 2$$

con la lunghezza Lø valutata secondo Manuale di progettazione delle opere civili RFI:

- Travi principali (L_Φ= 48m): Φ₃ = 1.05
- Traversi intermedi (L_Φ= 2*i = 2*3.6m): $Φ_3 = 1.6$
- Traversi di estremità (L_Φ= 3.6m): Φ₃ = 2

Per la verifica a fatica invece, il coefficiente di incremento dinamico del sovraccarico teorico è stato valutato mediante la seguente formula, in accordo al *Manuale di progettazione delle opere civili RFI:*

$$\Phi_2 = \frac{1.44}{\sqrt{L_\Phi} - 0.2} + 0.82 \qquad \text{con la limitazione} \qquad 1 \le \Phi_3 \le 1.67$$

- Travi principali (LΦ= 48m): Φ₂ = 1.034
- Traversi intermedi (L Φ = 2*i =2*3.6m): Φ ₂ = 1.4
- Traversi di estremità (LΦ= 3.6m): Φ₂ = 1.67

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 12 di 68

4.2.2 AZIONI ORIZZONTALI

4.2.2.1 Serpeggio

Si assume una forza orizzontale di 100 kN applicata alla sommità delle rotaie.

4.2.2.2 Avviamento e frenatura

Avviamento: $Q_{ak} = 33 * L \le 1000 kN$

Treno LM71

 $Q_{ak} = 33 * 50 * 1.1 = 1815 kN;$

pertanto si assumerà: Qak = 1000 kN

Treno SW2

$$Q_{ak} = 33 * (50 - 7) * 1 = 1419kN$$

Frenatura: Treno LM71 $Q_{bk} = 20 * L \le 6000 kN$

Treno SW2 $Q_{hk} = 35 * L$

Treno LM71

 $Q_{bk} = 20 * 50 * 1.1 =$ **1100**kN

Treno SW2

$$Q_{bk} = 35 * (50 - 7) * 1 = 1505 kN$$

Nel modello di calcolo sono state considerate per ciascun treno di carico solamente le azioni (frenatura o avviamento) che determinano le sollecitazioni massime sulla struttura.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 13 di 68

4.2.2.3 Forza centrifuga

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente su tutta l'estensione della curva.

L'azione centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1.80 m al di sopra del P.F..

Raggio considerato: R= 750 m

Per il treno di carico tipo SW/2 si considerano i seguenti parametri e valori:

V = 100 km/h

 $\alpha = 1$

f = 1

Qtk = 0 perché Qvk = 0

qtk = $V^2/(127 \text{ R}) \cdot f \cdot qvk$ = 15.75 kN/m (da considerare per una lunghezza di 50 m)

Il traffico verticale associato è pari a $\Phi \cdot 1 \cdot SW/2 = 1.05 \cdot 1 \cdot 150 \text{ kN/m} = 157.7 \text{ kN/m}$

Per il treno di carico tipo LM/71 occorre distinguere due casi:

V=120 km/h

 $\alpha = 1.1$

f = 1

$$Qtk = 1.1 \cdot V^2 / (127 R) \cdot f \cdot Qvk = 41.6 kN$$

Il traffico verticale associato è pari a $\Phi \cdot \alpha \cdot LM/71 = 1.05 \cdot 1.1 \cdot 250$ kN= 289 kN

$$qtk = 1.1 \cdot V^2 / (127 R) \cdot f \cdot qvk = 13.3 kN/m$$

Il traffico verticale associato è pari a $\Phi \cdot \alpha \cdot LM/71 = 1.05 \cdot 1.1 \cdot 80 \ kN/m = 92.5 \ kN/m$

V=160 km/h

 $\alpha = 1$

f = 0.8 (considerando Lf = 50 m)

Qtk =1 ·
$$V^2/(127 \text{ R}) \cdot f \cdot Qvk = 53.2 \text{ kN}$$

Il traffico verticale associato è pari a Φ · LM/71 = 1.05 · 250 kN= 262.5 kN

$$qtk = 1 \cdot V^2 / (127 R) \cdot f \cdot qvk = 17 kN/m$$

Il traffico verticale associato è pari a Φ x LM/71 = 1.05 · 80 kN/m = 84.1 kN/m

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI00007
 003
 A
 14 di 68

4.3 AZIONI CLIMATICHE

4.3.1 VARIAZIONE TERMICA

Nelle verifiche dei singoli elementi è stata considerata una variazione termica uniforme, una variazione volumetrica ed una variazione termica non uniforme secondo quanto indicato dal MdP [N5].

Variazione termica uniforme

La variazione termica uniforme volumetrica da considerare per un impalcato a sezione mista ed armamento su ballast risulta pari a $\pm 15^{\circ}$ C.

Variazione termica non uniforme

In aggiunta alla variazione termica uniforme è stata considerata una differenza pari a 5°C tra trave metallica e soletta in c.a..

Per la verifica delle deformazioni orizzontali e verticali dell'impalcato sono state considerate delle differenze di temperatura tra estradosso ed intradosso e fra le superfici laterali più esterne degli impalcati di 10°C.

4.3.2 AZIONE DELLA NEVE

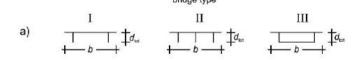
Per l'opera oggetto della presente relazione il carico risulta non dimensionante.

4.3.3 AZIONE DEL VENTO

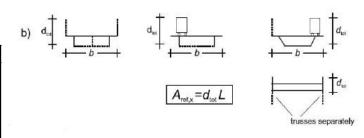
Il calcolo della pressione del vento è stato effettuato secondo quanto previsto dalle NTC 08:

pressione statica equivalente

zona	4	
T_R	112.5	anni
as	220	m
a0	500	m
vb0	28	m/s
a0	500	m
ka	0.02	1/s
vb (T _R)	29.3	m/s
ρ	1.25	kg/m³
•		o,


U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO


 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 15 di 68

qь	0.536	KN/m ²
zona	4	
rugosità	D	
categoria di esposiz.	2	
kr	0.19	
z0	0.05	m
z min	4	m
Ct	1	
Z	21	m
C _{e(10m)}	2.84	
φ=S/S _P	1	
C _{pe}	2.2	
b	9.7	
d	9.7	
pressione esterna		
$p_e = q_b c_p c_e c_t$	3.3	KN/m ²

tipo	b	
b	9.7	m
d	9.7	m
b/d	1.00	m
cfx,0	2.20	

Cautelativamente è stata considerata sulla travata, una pressione uniforme pari a <u>3.5 kN/m²</u> L'azione del vento è stata distinta in:

- <u>Vento su struttura scarica</u>, ossia azione del vento sul ponte senza carichi mobili;
- <u>Vento su struttura carica</u>, ossia azione del vento sul ponte durante il transito dei veicoli.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. RS3E 50 D 09 CL VI0007 003 A

FOGLIO 16 di 68

4.4 RITIRO

RELAZIONE DI CALCOLO

Per la valutazione dell'effetto del <u>ritiro del cls</u>, sulla sezione mista dell'impalcato si è fatto riferimento al §11.2.10.6 del D.M.'08

	Rck	40	MPa
Concrete	f _{ck} =	33.2	Мра
Mean compressive strength	f _{cm} =	41.2	MPa
Coeff. of thermal expansion	α =	1.0E-05	
Concrete elastic modulus	E _{cm} =	33642778	kN/m^2
exposed surfaces	n° =	1	
Concrete type	cls =	n	
age of concrete at beginning of drying	t _s =	2	gg
age of concrete at loading in days	t _o =	28	gg
age of concrete in days	t =	25550000	gg
member's notional size	h _o = 2A _c /u =	677	mm
element section	A _c =	3500000	mmq
perimeter in contact with the atmosphere	u =	10335	mm
relative humidity	RH =	75	%
	RH₀	100	%
reference mean compressive strength	f _{cm0} =	10	MPa
coeff. which depends on the type of cement	α_{ds1}	4	
coeff. which depends on the type of cement	α_{ds2}	0.12	
coefficient for UR%	β _{RH} =	0.896	
deformation basic	ε _{cd0} =	3.00E-04	mm
drying shrinkage strain - time effect	β _{ds} =	1.000	
coefficient depending on the national size	Kh =	0.7	
drying shrinkage strain	ε _{cdS} =	2.097E-04	mm
autogenous shrinkage strain-time effect	β _{as} =	1.0	
autogenous shrinkage strain-infinity	ε _{ca} (∞) =	5.80E-05	mm
autogenous shrinkage strain	ε _{caS} =	5.800E-05	
total shrinkage strain	ε _{cS (t,ts)} =	2.68E-04	mm
shrinkage coefficient	φ(t,t ₀) =	1.840	
	Ecm =	33642777.7	kN/m²
	E* =	11846048.5	kN/m²
	Er =	13609537.9	kN/m²

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 17 di 68

4.5 AZIONI ECCEZIONALI

Deragliamento schema 1

Si considerano due stese di carico di lunghezza 6.40 m, intensità di 60 kN/m, ad una distanza pari allo scartamento S ed eccentriche rispettivamente 1.5 s e s.

Deragliamento schema 2

Si considera un carico lineare di lunghezza 20.00 m, intensità 80*1.4 kN/m, eccentrico di 1.5 s rispetto all'asse binari.

4.6 AZIONI INDIRETTE

Resistenze parassite nei vincoli

Si considera, convenzionalmente, una resistenza pari al 6% del carico verticale totale (permanenti + accidentali dinamizzati).

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

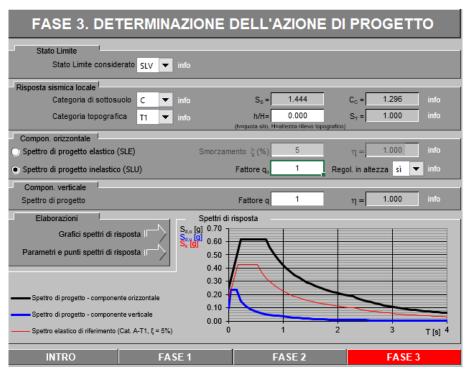
Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

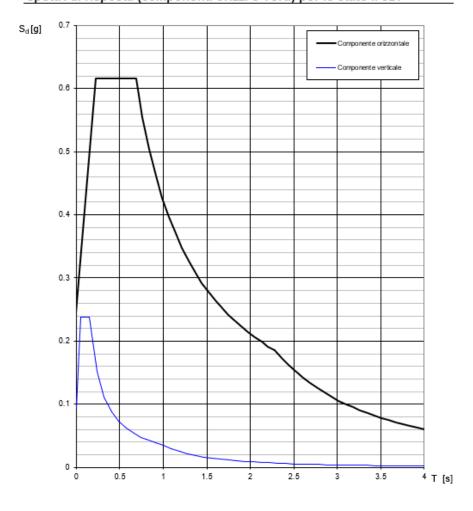
 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 18 di 68

4.7 AZIONI SISMICHE

Lo spettro di progetto è stato ottenuto utilizzando il foglio di calcolo elettronico messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI


Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA DITTAINO - CATENANUOVA PROGETTO DEFINITIVO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS3E 50 D 09 CL VI0007 003 A 19 di 68

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 20 di 68

Parametri e punti dello spettro di risposta orizzontale per lo stato limite SLV

Parametri indipendenti

STATO LIMITE	SLV
ag	0.170 g
F _o	2.511
T _C *	0.529 s
Ss	1.444
Cc	1.296
S _T	1.000
q	1.000

Parametri dipendenti

S	1.444	
η	1.000	
T _B	0.228	s
Tc	0.685	s
T _D	2.280	s

Espressioni dei parametri dipendenti

$$S = S_c \cdot S_r$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_C = C_C \cdot T_C^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4,0 \cdot a_g / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_o(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	I [S]	Se [g]
	0.000	0.246
T _B ◀	0.228	0.617
Tc◀	0.685	0.617
	0.761	0.555
	0.837	0.505
	0.913	0.463
	0.989	0.427
	1.065	0.397
	1.141	0.370
	1.217	0.347
	1.293	0.327
	1.369	0.309
	1.445	0.292
	1.521	0.278
	1.597	0.265
	1.673	0.253
	1.749	0.242
	1.825	0.232
	1.901	0.222
	1.977	0.214
	2.052	0.206
	2.128	0.199
	2.204	0.192
T _D ◀	2.280	0.185
	2.362	0.173
	2.444	0.161
	2.526	0.151
	2.608	0.142
	2.690	0.133
	2.772	0.125
	2.854	0.118
	2.935	0.112
	3.017	0.106
	3.099	0.100
	3.181	0.095
	3.263 3.345	0.091 0.086
	3.427	0.082
	3.509	0.002
	3.591	0.075
	3.672	0.073
	3.754	0.068
	3.836	0.065
	3.918	0.063
	4.000	0.060
	4.000	0.000

RELAZIONE DI CALCOLO

NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA DITTAINO - CATENANUOVA PROGETTO DEFINITIVO

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 21 di 68

5 COMBINAZIONI DI CARICO

Le singole azioni elementari vengono combinate come previsto sulla Normativa Ferroviaria MdP [N5].

COEFFICIENTI DI	A1 STR		
Carichi permanenti	sfav	V	1.35
Cancin permanenti	fav	Y _{G1}	1
Carichi permanenti	sfav	V	1.5
non strutturali	fav	Y _{G2}	0
Traffico	sfav	V	1.45
Traffico	fav	Yq	0
Variabili	sfav	V	1.5
variabili	fav	Yqi	0

Ψο	Ψ_1	Ψ ₂					
trei	no scai	rico					
1	0	0					
se	rpegg	io					
1	0.8	0					
Eff_a	Eff_aerodinamici						
0.8	0.5	0					
	vento						
0.6	0.5	0					
ten	temperatura						
0.6	0.6	0.5					

VALUTAZIONE DEI CARICHI DA TRAFFICO													
Commenti	TIPO DI CARICO	Azioni Verticali		Azioni Orizzontali						Υq			
	GRUPPO DI CARICO	Carico		Treno	Frenat	tura e	Centrifuga		Serpeggio		1.45		
	GROFFO DI CARICO	vert	icale	scarico	avvian	nento	centinaga		oci peggio		1.45		
		sfav	fav		sfav	fav	sfav	fav	sfav	fav	Ψο	Ψ_1	Ψ2
massima azione verticale e laterale	Gruppo1	1	1	0	0.5	0	1	0	1	0	0.8	0.8	0
stabilità laterale	Gruppo2	0	0	1	0	0	1	0	1	0	0.8	0.8	0
massima azione longitudinale	Gruppo3	1	0.5	0	1	1	0.5	0	0.5	0	0.8	0.8	0
fessurazione	Gruppo4	0.8	0.6	0	0.8	0.6	0.8	0.6	0.8	0.6	1	1	0

S.L.U															
VARIABILE PRINCIPALE:				TRAF	FICO				VENTO TEMPERATURA						
CARICHI		SV	V2			LM	71		ST	R.	SV	V2	LM71		STR.
CARICHI	GRUF	PPO1	O1 GRUPPO3		GRUP	PO1	GRU	PPO3	SCA	RICA	GR1	GR3	GR1	GR3	SCARICA
combinazioni	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
Peso Proprio (G1)	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Permanenti Portati (G2)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
SW2	1.45	1.45	1.45	1.45	0	0	0	0	0	0	1.16	1.16	0	0	0
LM71	0	0	0	0	1.45	1.45	1.45	1.45	0	0	0	0	1.16	1.16	0
Serp_SW2	1.45	1.45	0.73	0.73	0	0	0	0	0	0	1.16	0.58	0	0	0
Serp_LM71	0	0	0	0	1.45	1.45	0.73	0.73	0	0	0	0	1.16	0.58	0
F-A_SW2	0.725	0.73	1.45	1.45	0	0	0	0	0	0	0.58	1.16	0	0	0
F-A_LM71	0	0	0	0	0.725	0.73	1.45	1.45	0	0	0	0	0.58	1.16	0
centrifuga_SW2	1.45	1.45	0.73	0.73	0	0	0	0	0	0	1.16	0.58	0	0	0
centrifuga_LM71	0	0	0	0	1.45	1.45	0.73	0.73	0	0	0	0	1.16	0.58	0
Eff_aerodinamici	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	0	0	1.20	1.20	1.20	1.20	0
Vento_scarico	0	0	0	0	0	0	0	0	1.5	1.5	0	0	0	0	0.9
Vento_carico	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0	0	0.9	0.9	0.9	0.9	0
Temp_SLU	0	0.9	0	0.9	0	0.9	0	0.9	0	0.9	1.5	1.5	1.5	1.5	1.5

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS3E 50 D 09 CL VI0007 003 A 22 di 68

6 EFFETTI GLOBALI

6.1 MODELLO DI CALCOLO

Per valutare a livello globale le sollecitazioni e le deformazioni delle varie parti che costituiscono il viadotto (travi, soletta, trasversi, ecc.) sotto le varie azioni di progetto, sono state effettuate modellazioni con il programma agli elementi finiti SAP2000.

Nello studio globale longitudinale dell'impalcato si sono utilizzati tre modelli le cui rigidezze si differenziano nei tre casi di sezione costituita da solo acciaio, sezione composta omogeneizzata per azioni istantanee e sezione composta omogeneizzata per azioni di lunga durata.

Il modello di calcolo per ogni fase è stato ipotizzato come graticcio composto da 2 travi e da diaframmi di collegamento in carpenteria metallica.

La soletta è modellata con elementi trave che ne schematizzano il comportamento trasversale. Per ottenerne il corretto funzionamento si sono introdotti bracci fittizi, di rigidezza infinita, che connettono i baricentri delle membrature.

Per valutare correttamente gli effetti massimi dei carichi viaggianti previsti dalla normativa, essi sono stati definiti all'interno del modello agli elementi finiti come "moving load cases".

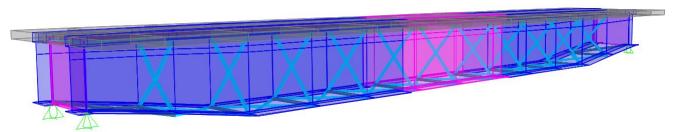
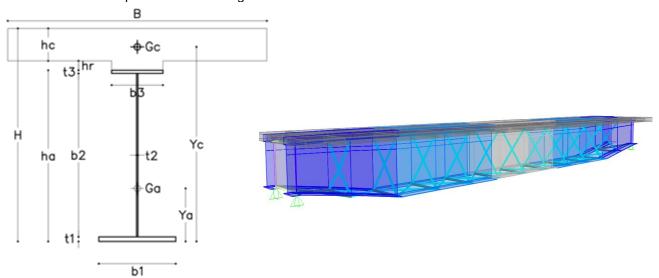


Figura 5_Modello agli elementi finiti realizzato con programma di calcolo Sap2000


U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

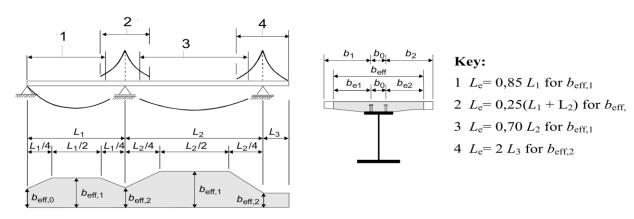
PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS3E 50 D 09 CL VI0007 003 A 23 di 68

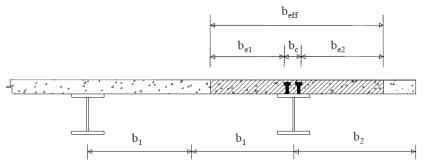
6.2 TRAVI

La denominazione rispetta lo schema seguente:

Concio	centrale	laterale	var		
Н	4430	4430	3230-4430	mm	altezza totale sezione
ha	4000	4000	2800-4000	mm	altezza totale trave
b3	800	800	800	mm	lunghezza piattab sup
t3	40	35	30	mm	spessore piattab sup
b2	3920	3930	2740-3940	mm	altezza anima
t2	22	26	26	mm	spessore anima
b1	1400	1400	1400	mm	lunghezza piattab inf
t1	40	35	30	mm	spessore piattab inf
	2	2	2		NUMERO TRAVI
i	3.6	3.6	3.6	т	INTERASSE ANIME

SOLETTA								
hr	50	mm	altezza cls su ala					
hc	380	mm	altezza cls					
В	4450	mm	larghezza collaborante					


U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI


Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 24 di 68

Per la valutazione della <u>larghezza collaborante</u> della soletta sono state prese a riferimento le prescrizioni della Normativa Nazionale D.M.'08.

Figura 4.3.1. - Definizione della larghezza efficace b_{eff} e delle aliquote b_{el}

L1	48000	[mm]	lunghezza campata
		_	
2*b1	3600	[mm]	interassi travi
b1	1800	[mm]	semi interasse travi
b2	3050	[mm]	sbalzo laterale 1
b2	3050	[mm]	sbalzo laterale 2
b0	200	[mm]	distanza tra assi connettori
Le	48000	[mm]	lunghezza equivalente
be1	1700	[mm]	lato interno
be2	2950	[mm]	lato sbalzo
β1-1	1.00	< 1	
β2-1	1.00	< 1	
		_	
b eff 1	4850	[mm]	trave laterale

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 25 di 68

Concio centrale:

CLASSIFICAZIONE DELLA SEZIONE

	,						1	
			d ; d ₁	d_2	d_3	d_4		
Larghezza/spessore:		d/t _w =	45.45	132.73			$\alpha_y =$	0.615
	Piattabande	c/t =	9.73				ψ _y =	-1.000
		$\alpha_d =$	1.000	0.483				
asse neutro el. = cm	199.967	$\psi_d =$	0.490	-2.041				
		C _Ψ =	-0.490	2.041				
Limite larghezza/spes	sore anima :	classe 1	26.85	60.65				
		classe 2	30.92	69.92				
		classe 3	41.09	69.92				
		$k_{\sigma} =$					_	
						classe del	l'anima	4
Limite larghezza/spes	sore piattab.	classe 1	7.32					
		classe 2	8.14					
		classe 3	11.39					
		_				classe pia	ttabanda	3
	CLASSE SE	EZIONE	4	-				

1) larghezza efficace (bcf) della piattabanda superiore:

$\lambda\pi\phi = \chi / \tau\phi / [28, 4.\epsilon. (\kappa\sigma)0, 5]$	λπι =	0.641826	
coeff. di imbozzamento	ks =	0.43	
fattore di riduzione	ρφ=	1.000000	
ceff = rf . c	ceff =	38.90	cm
larghezza efficace compr.	bfeff =	80.00	cm
Area efficace piattab.	Ac,eff =	320.00	cm2

2) altezza efficace dell'anima:

altezza efficace anima	H _{eff} ANIMA=	385.58	cm
Area efficace anima	A _{eff} ANIMA=	848.27	cm2

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 26 di 68

Concio laterale

CLASSIFICAZIONE DELLA SEZIONE

							,	
			d ; d ₁	d_2	d_3	d_4		
Larghezza/spessore:		d/t _w =	38.46	112.69			$\alpha_y =$	0.582
	Piattabande	c/t =	11.06				ψ _y =	-1.000
		$\alpha_d =$	1.000	0.439				
asse neutro el. = cm	199.968	$\psi_d =$	0.491	-2.035				
		C _Ψ =	-0.491	2.036				
Limite larghezza/spes	sore anima :	classe 1	26.85	66.66				
		classe 2	30.92	76.84				
		classe 3	41.07	76.84				
		$k_{\sigma} =$					_	
						classe del	l'anima	4
Limite larghezza/spes	sore piattab.	classe 1	7.32					
		classe 2	8.14					
		classe 3	11.39					
		_				classe pia	ttabanda	3
	CLASSE SE	EZIONE	4					

1) larghezza efficace (bcf) della piattabanda superiore:

$\lambda\pi\phi = \chi / \tau\phi / [28, 4.\epsilon. (\kappa\sigma)0, 5]$	$\lambda \pi \iota =$	0.729744	
coeff. di imbozzamento	ks =	0.43	
fattore di riduzione	$\rho \phi =$	1.000000	
ceff = rf . c	ceff =	38.70	cm
larghezza efficace compr.	bfeff =	80.00	cm
Area efficace piattab.	Ac,eff =	280.00	cm2

2) altezza efficace dell'anima:

altezza efficace anima	H _{eff} ANIMA=	393.60	cm
Area efficace anima	A _{eff} ANIMA=	1023.36	cm2

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI00007
 003
 A
 27 di 68

Concio var. per h max (4m)

CLASSIFICAZIONE DELLA SEZIONE

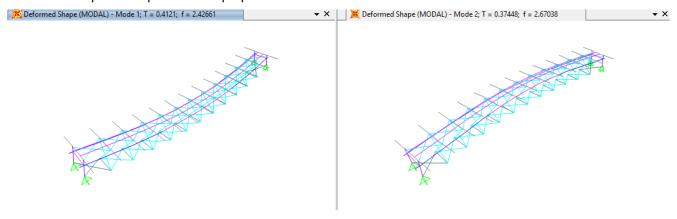
	Г						7	
			d ; d_1	d_2	d_3	d_4		
Larghezza/spessore:	Anima	d/t _w =	38.46	113.08			$\alpha_y =$	0.567
	Piattabande	c/t =	12.90				ψ _y =	-1.000
		$\alpha_d =$	1.000	0.420				
asse neutro el. = cm	199.967	$\psi_d =$	0.492	-2.030				
		C _Ψ =	-0.493	2.031				
Limite larghezza/spess	sore anima :	classe 1	26.85	69.74				
		classe 2	30.92	80.40				
		classe 3	41.05	80.40				
		$k_{\sigma} =$					<u> </u>	
						classe del	l'anima	4
Limite larghezza/spess	sore piattab.	classe 1	7.32					
		classe 2	8.14					
		classe 3	11.39					
	·					classe pia	ttabanda	4
	CLASSE SE	EZIONE	4	~				

1) larghezza efficace (bcf) della piattabanda superiore:

$\lambda\pi\phi = \chi / \tau\phi / [28, 4.\epsilon (\kappa\sigma)0, 5]$	$\lambda\pi\iota=$	0.851368	
coeff. di imbozzamento	ks =	0.43	
fattore di riduzione	ρφ=	0.915208	
ceff = rf . c	ceff =	35.42	cm
larghezza efficace compr.	bfeff =	73.44	cm
Area efficace piattab.	Ac.eff =	220.31	cm2

2) altezza efficace dell'anima:

altezza efficace anima	H _{eff} ANIMA=	394.60	cm
Area efficace anima	A _{eff} ANIMA=	1025.96	cm2



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS3E 50 D 09 CL VI0007 003 A 28 di 68

6.3 ANALISI MODALE

L'analisi modale effettuata con programma di calcolo Sap2000, fornisce le frequenze proprie di vibrare dell'impalcato in esame: il primo modo proprio di vibrare dell'impalcato è flessionale verticale, il secondo traslazionale. Pertanto, la prima frequenza propria con la quale si effettua la verifica dei requisiti per analisi statica o dinamica è quella del primo modo proprio di vibrare:

L'analisi è stata condotta verificando che il numero totale di mdv consentisse l'eccitazione dell'85% della massa in tutte le componenti di spostamento, si riportano i primi 12mdv:

TABLE: Mod	TABLE: Modal Participating Mass Ratios														
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.412	3%	0%	81%	0.02793	0.000001346	0.80501	2.854E-09	0.00001316	4.771E-08	0%	0%	0%
MODAL	Mode	2	0.374	0%	72%	0%	0.02793	0.72176	0.80501	0.00586	0.000000297	0.00084	1%	0%	0%
MODAL	Mode	3	0.275	0%	0%	0%	0.02793	0.72183	0.80501	0.78807	1.33E-08	0.00012	79%	0%	0%
MODAL	Mode	4	0.162	0%	0%	0%	0.02793	0.72268	0.80501	0.00034	0.000005548	0.43044	79%	0%	43%
MODAL	Mode	5	0.135	17%	0%	0%	0.19381	0.72268	0.80882	6.543E-08	0.4857	0.00027	79%	49%	43%
MODAL	Mode	6	0.134	0%	0%	0%	0.19411	0.72281	0.80883	0.00001447	0.00074	0.16004	79%	49%	59%
MODAL	Mode	7	0.117	0%	0%	0%	0.19447	0.72281	0.8092	4.793E-09	0.00002353	1.108E-09	79%	49%	59%
MODAL	Mode	8	0.117	0%	0%	0%	0.1945	0.72281	0.8092	1.147E-09	0.0004	2.576E-10	79%	49%	59%
MODAL	Mode	9	0.117	0%	0%	0%	0.1945	0.72281	0.80926	4.669E-10	5.586E-07	1.003E-10	79%	49%	59%
MODAL	Mode	10	0.117	0%	0%	0%	0.1945	0.72281	0.80926	2.292E-10	0.00013	4.536E-11	79%	49%	59%
MODAL	Mode	11	0.117	0%	0%	0%	0.1945	0.72281	0.80929	9.843E-11	3.368E-08	2.064E-11	79%	49%	59%
MODAL	Mode	12	0.117	0%	0%	0%	0.1945	0.72281	0.80929	4.191E-11	0.00007931	8.502E-12	79%	49%	59%

Considerando la prima frequenza propria flessionale dell'impalcato, si valuta la necessità o meno di effettuare analisi dinamiche piuttosto che statiche, in base alle indicazioni del [N5], verificando che essa ricada nel fuso dei Limiti della frequenza naturale del ponte n_0 [Hz] in funzione di L [m].

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA DITTAINO - CATENANUOVA PROGETTO DEFINITIVO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.

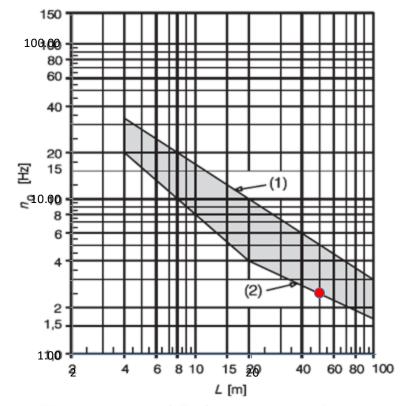
RS3E 50 D 09 CL VI0007 003 A

FOGLIO

29 di 68

La suddetta frequenza, calcolata analiticamente corrisponde a quella fornita dal modello.

Come si evince da grafico seguente non è necessario effettuare analisi dinamiche.



δ_0	51.0	mm
N_0	2.49	Hz

 $\delta_0\,\grave{e}$ la freccia in mezzeria dovuta $\label{eq:delta} \text{alle azioni permanenti}$

 N_0 è la prima frequenza naturale ${\it flessionale} \ \ {\it del} \ ponte$

(1)	5.24	Нz
(2)	2.38	Hz

- (1) Limite superiore della frequenza naturale
- (2) Limite inferiore della frequenza naturale

6.4 VERIFICHE SLU

Si riportano di seguito le sollecitazioni flettenti e taglianti per la trave più sollecitata per le 3 fasi di carico.

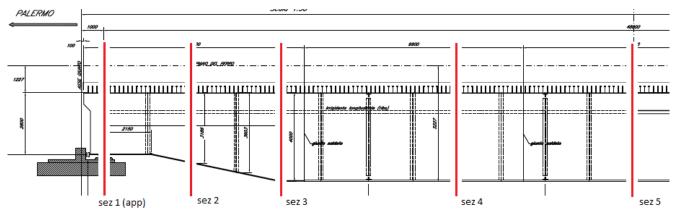
6.4.1 VERIFICHE TRAVI PRINCIPALI

Di seguito la legenda dei conci di trave verificati (vista in pianta delle travi nel modello):

tr <u>-17</u>	tr-18	tr-19	tr-20	tr-21	tr-22	tr-23	tr-24	tr-25	tr-26	tr-27	tr-28	tr-29	tr-30	tr-31	tr-32
69															171
tr-1	tr-2	tr-3	tr-4	tr-5	tr-6	tr-7	tr-8	tr-9	tr-10	tr-11	tr-12	tr-13	tr-14	tr-15	tr-16

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 30 di 68

SEZIONI EFFICACI:

Si riduce la sezione resistente della piattabanda superiore per il concio "iniziale" (var) come indicato al paragrafo 6.2, solo in fase 1 (soletta non reagente).

Si riduce la sezione resistente dell'anima per tutti i conci "come indicato al paragrafo 6.2, per tutte e tre le fasi di calcolo.

SEZIONI DI VERIFICA:

FASE I (carichi: pesi propri: ACCIAIO *1.35 + SOLETTA C.A.*1.35)

TABLE: Ele	ement Ford	ces - Frame	es		2096.07	-2096			25034.06
Frame	Station	OutputCase	CaseType	P	V2	V3	Т	M2	M3
Text	m 🛂	Text▼	Text▼	KN 🔽	KN 🔻	KN 🔽	KN-m ▼	KN-m ▼	KN-m ▼
tr-1	0	fase 1	Combinat	-9.82E-12	1.84E-12	-1.20E-15	-2.35E-15	-2.40E-15	8.84E-11
tr-2	0	fase 1	Combinat	108.813	-2096	-0.506	0.0793	0.0281	-131.778
tr-3	0	fase 1	Combinat	152.217	-1747.21	2.132	0.0176	2.0964	7524.973
tr-4	0	fase 1	Combinat	0.231	-1412.86	-1.633	0.0328	-6.4154	13781.29
tr-5	0	fase 1	Combinat	0.696	-1059.54	0.145	0.0219	0.1186	18651.15
tr-6	0	fase 1	Combinat	0.814	-706.228	-0.085	0.0033	-0.4608	22178.08
tr-7	0	fase 1	Combinat	0.814	-534.222	-0.085	0.0033	-0.2903	23418.53
tr-8	0	fase 1	Combinat	0.637	-351.501	-0.089	-0.0022	-0.1193	24321.74
tr-9	0	fase 1	Combinat	0.727	4.639	0.09	0.0022	0.2367	25034.02
tr-10	0	fase 1	Combinat	1.088	360.778	0.089	-0.0033	-0.1239	24313.53
tr-11	0	fase 1	Combinat	1.088	534.198	0.089	-0.0033	-0.3024	23418.55
tr-12	0	fase 1	Combinat	1.16	715.503	-0.151	-0.0219	-0.4819	22201.29
tr-13	0	fase 1	Combinat	0.84	1068.814	1.593	-0.0327	0.1187	18744.83
tr-14	0	fase 1	Combinat	123.206	1406.868	-1.773	-0.0185	-6.3005	13859.85
tr-15	0	fase 1	Combinat	90.555	1763.465	0.181	-0.0704	0.7821	7609.423
tr-16	0	fase 1	Combinat	-1.84E-11	0.00E+00	-4.80E-15	4.51E-15	-1.20E-15	9.82E-11

Mmax. (fase I) = 25034 kN*mTmax. (fase I) = 2096 KN

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 31 di 68

FASE II: azioni di lunga durata (carichi: PERMANENTI PORTATI) = 1.5 * G2 + 1.5 * ritiro

TABLE: Ele	ment For	ces - Frame	es		2826.42	-2885.213			40889.296
Frame	Station	OutputCase	CaseType	Р	V2	V3	Т	M2	М3
Text▼	m 🔽	Text▼	Text▼	KN 🔽	KN 🔽	KN 🔻	KN-m ▼	KN-m ▼	KN-m
tr-1	0	fase2	Combinat	-7.91E-11	6.22E-12	5.12E-13	-3.47E-14	6.66E-14	3.82E-11
tr-2	0	fase2	Combinat	-8510.91	-2885.213	62.705	12.0781	123.9563	8827.3747
tr-3	0	fase2	Combinat	-8478.97	-2410.976	61.973	8.849	125.5322	19532.024
tr-4	0	fase2	Combinat	-8558.47	-1533.089	50.598	6.9074	112.6975	28297.562
tr-5	0	fase2	Combinat	-8532.92	-1095.539	39.663	5.1324	91.7901	33689.616
tr-6	0	fase2	Combinat	-8504.35	-661.043	29.243	3.13	68.6905	37588.356
tr-7	0	fase2	Combinat	-8504.35	-661.043	29.243	3.13	10.2046	38910.441
tr-8	0	fase2	Combinat	-8470.58	-227.672	16.881	1.143	47.9077	39978.609
tr-9	0	fase2	Combinat	-8439.65	204.861	2.534	-0.8526	18.6406	40851.726
tr-10	0	fase2	Combinat	-8410.34	637.289	-10.614	-2.8783	-10.5343	40212.385
tr-11	0	fase2	Combinat	-8410.34	637.289	-10.614	-2.8783	10.6944	38937.807
tr-12	0	fase2	Combinat	-8377.94	1069.732	-22.147	-4.9674	-34.0743	38085.583
tr-13	0	fase2	Combinat	-8341.35	1503.636	-34.301	-6.8947	-59.9712	34499.675
tr-14	0	fase2	Combinat	-8201.38	2363.089	-47.481	-9.2122	-96.5541	29354.515
tr-15	0	fase2	Combinat	-8166.61	2826.42	-61.749	-12.0816	-124.354	20787.574
tr-16	0	fase2	Combinat	-3.55E-11	-1.45E-12	-2.88E-13	-6.49E-14	-1.97E-13	-1.36E-11

Mmax. (fase II) = 40890 kN*mTmax. (fase II) = 2885 kN

FASE III (carichi: SOVRACCARICHI ACCIDENTALI e AZIONI CLIMATICHE, si riporta l' inviluppo delle combinazioni precedentemente descritte e depurate dei carichi G1 e G2)

TABLE: Ele	ement Ford	ces - Frames			2950.086	-2966.99		28914.31	
Frame	Station	OutputCase		P	V MAX	V MIN	V2	М3	
Text▼	m 🛂	Text	₩.	KN 🔽	KN 🔽	KN 🔽	KN 🔽	KN-m ▼	_
tr-1	0	INVILUPPO_SLU		5.46E-12	8.85E-14	-1.48E-13	-1.484E-13	1.1E-11	
tr-2	0	INVILUPPO_SLU		740.687	-375.03	-2966.99	-2966.99	847.8996	
tr-3	0	INVILUPPO_SLU		2932.556	-128.76	-2177.94	-2177.935	13176.01	
tr-4	0	INVILUPPO_SLU		3915.713	-53.591	-1712.58	-1712.584	19302.94	
tr-5	0	INVILUPPO_SLU		4738.909	107.548	-1369.16	-1369.158	23886.66	
tr-6	0	INVILUPPO_SLU		5401.381	307.972	-1369.16	-1369.158	26972.06	
tr-7	0	INVILUPPO_SLU		5401.381	307.972	-1067.96	-1067.957	28407.71	
tr-8	0	INVILUPPO_SLU		5778.302	555.631	-764.28	-764.28	28591.92	
tr-9	0	INVILUPPO_SLU		5792.873	849.093	-468.607	-468.607	28782.84	
tr-10	0	INVILUPPO_SLU	ı	5445.746	1151.639	-221.44	1151.639	28626.33	
tr-10	0	INVILUPPO_SLU	ı	5445.746	1151.639	-221.44	1151.639	27989.42	
tr-12	0	INVILUPPO_SLU		4812.233	1452.172	-20.043	1452.172	27074.45	
tr-13	0	INVILUPPO_SLU		3886.247	1789.957	102.018	1789.957	24234.56	
tr-14	0	INVILUPPO_SLU		2776.64	2142.465	159.654	2142.465	19932.31	
tr-15	0	INVILUPPO_SLU		623.259	2950.086	287.551	2950.086	11563.74	
tr-16	0	INVILUPPO_SLU		0	8.39E-13	1.54E-13	8.385E-13	1.63E-11	

Mmax. (fase III) = 28914 kN*mTmax. (fase II) = 2967 kN

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. **FOGLIO** RS3E D 09 CL VI0007 003 A 32 di 68

SEZ 1 (APP) - Tipo concio = VAR. H MIN

Dati sezione

		Trave i	n acciaio							
schema	statico		trave appoggiata	1		1.			В	
Н	3230	mm	altezza totale sezione		_	, I			cf	T F)——
ha	2800	mm	altezza totale trave				1		Af1 ——	
b3	800	mm	lunghezza piattab sup			hc 			Af2 ————	
t3	30	mm	spessore piattab sup			 	+ +		hr cf dc (
b2	2740	mm	altezza anima			 		3		9
t2	26	mm	spessore anima						b3	<u> </u>
b1	1400	mm	lunghezza piattab inf					•	 	-
t1	30	mm	spessore piattab inf					•	— ⊕ G	
	2		NUMERO TRAVI			H ,	YAf1			
i	3.6	m	INTERASSE TRAVI						- <u>t2</u> Yc	
Aa	137240	mm²	area acciaio			ha	YAf2 b2			
Ja	1.67E+11	mm ⁴	inerzia acciaio						→	
ya	1218	mm	baricentro trave					i		
		so	etta						Ya	
hr	50	mm	altezza cls su ala							
hc	380	mm	altezza cls		_					B)
В	4850	mm	larghezza collaborante			•	t1 -		b1	ע
Ac	1.88E+06	mm ²	area cls				Ì	ſ	Ť	
yc	3035	mm	baricentro soletta	195						
		arm	atura	n(L.T.)	n(B.T.)			ВА	RICENTRI	
пф1	10		ferri sup in un metro	17.6	6.2	ya	1218	mm	baricentro trave	1196
ф1	24	mm	diametro ferri sup.	soletta inte	ram. reag.	y _G BT	2521	mm	sez a mom positivo	2469
Af1	21941	mm²	area armatura sup	soletta inte	ram. reag.	y _G BT	1661	mm	sez a mom negativo	1661
if1	100	mm	interferro	1		y _G LT	2171	mm	sez a mom positivo	2013
пф2	5		ferri inf in un metro			y _G LT	1661	mm	sez a mom negativo	1661
ф2	24	mm	diametro ferri inf.					ı	NERZIE	
Af2	21941	mm²	area armatura inf			Ja	1.67E+11	mm ⁴	inerzia sola trave	1.62E+11
if2	100	mm	interferro			Ja+s	4.96E+11	mm ⁴	sez a mom positivo (BT)	4.65E+11
cf	50	mm	copriferro			Ja+f	2.79E+11	mm ⁴	sez a mom negativo (BT)	2.79E+11
yaf1	3180	mm	baricentro ferri sup			Ja+s	4.07E+11	mm ⁴	sez a mom positivo (LT)	3.35E+11
yaf2	2912	mm	baricentro ferri inf			Ja+f	2.79E+11	mm ⁴	sez a mom negativo (LT)	2.79E+11
				=			sez. lorda			sez. efficace

Verifica

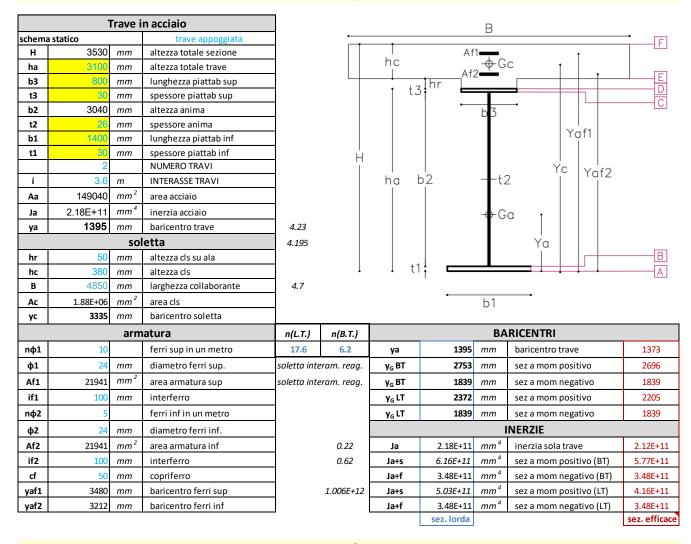
1) sezione a momento flettente positivo (cls reagente)

		FASE 1	FASE 2	FASE 3	
mom. Flett.	M ed	-131.8	8827.4	847.9	kNm
taglio agente	Ted	-2096.0	-2885.2	-2967.0	kN

	fibra	σ FASE 1	σ FASE 2	σ FASE 3	σTOT	σlimite		tasso di lavoro
ferri sup	Af1	0.00	-30.79	-1.30	-32.1	391.3	verificato	0.08
ferri inf	Af2	0.00	-23.71	-0.81	-24.5	391.3	verificato	0.06
cls sup	F	0.00	-1.82	-0.22	-2.0	18.8	verificato	0.11
cls inf	E	0.00	-1.25	-0.11	-1.4	18.8	verificato	0.07
piattab sup	D	1.31	-20.76	-0.60	-20.1	338.1	verificato	0.06
anima sup	С	1.28	-19.97	-0.55	-19.2	338.1	verificato	0.06
anima inf	В	-0.95	52.33	4.44	55.8	338.1	verificato	0.17
piattab inf	Α	-0.97	53.12	4.50	56.6	338.1	verificato	0.17
		[Mna]	[Mna]	[Mna]	[Mna]	[Mna]		

		τ FASE 1	τ FASE 2	τ FASE 3	τ ΤΟΤ	τlimite		
anima	C, D	-29.4	-40.5	-41.6	-111.6	195.2	verificato	0.57
		[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]	,	

σ id TOT	σ limite	
32.1	391.3	verificato
24.5	391.3	verificato
2.0	18.8	verificato
1.4	18.8	verificato
22.7	338.1	verificato
196.0	338.1	verificato
210.8	338.1	verificato
58.6	338.1	verificato
[Mpa]	[Mpa]	


U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 33 di 68

SEZ 2 - Tipo concio = VAR

Datí sezione

Verifica

1) sezione a momento flettente positivo (cls reagente)

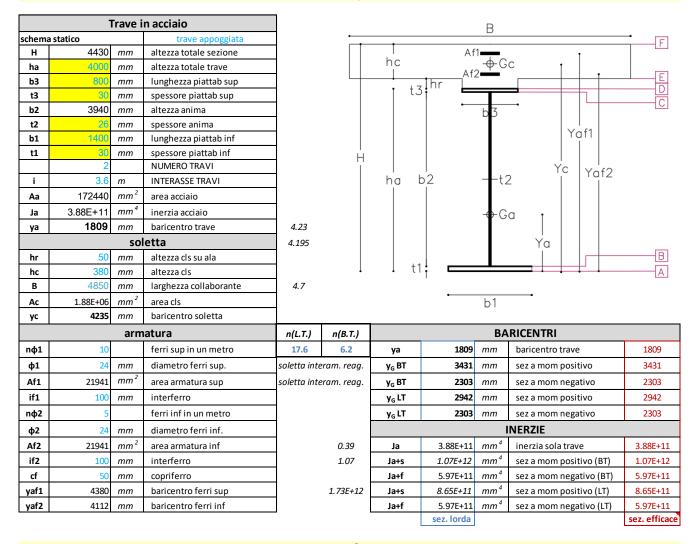
		FASE 1	FASE 2	FASE 3	
mom. Flett.	M ed	9236.6	21946.0	15102.6	kNm
taglio agente	Ted	-1662.9	-2411.0	-2177.9	kN

	fibra	σ FASE 1	σ FASE 2	σ FASE 3	σTOT	σ limite		tasso di lavoro
ferri sup	Af1	0.00	-67.23	-20.53	-87.8	391.3	verificato	0.22
ferri inf	Af2	0.00	-53.10	-13.51	-66.6	391.3	verificato	0.17
cls sup	F	0.00	-3.96	-3.52	-7.5	18.8	verificato	0.40
cls inf	E	0.00	-2.82	-1.91	-4.7	18.8	verificato	0.25
piattab sup	D	-75.10	-47.19	-10.58	-132.9	338.1	verificato	0.39
anima sup	С	-73.79	-45.61	-9.80	-129.2	338.1	verificato	0.38
anima inf	В	58.39	114.69	69.82	242.9	338.1	verificato	0.72
piattab inf	Α	59.69	116.27	70.60	246.6	338.1	verificato	0.73
		[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]		<u> </u>

		τ FASE 1	τ FASE 2	τ FASE 3	τ ΤΟΤ	τlimite		
anima	C, D	-21.0	-30.5	-27.6	-79.1	195.2	verificato	0.41
-		[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]		

σ id TOT	σ limite	
87.8	391.3	verificato
66.6	391.3	verificato
7.5	18.8	verificato
4.7	18.8	verificato
132.9	338.1	verificato
200.8	338.1	verificato
279.7	338.1	verificato
246.6	338.1	verificato
	fa.e. 3	

[Mpa] [Mpa]


U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. **FOGLIO** RS3E D 09 CL VI0007 003 34 di 68

SEZ 3 - Tipo concio = VAR. hmax

Datí sezione

Verifica

1) sezione a momento flettente positivo (cls reagente)

		FASE 1	FASE 2	FASE 3	
mom. Flett.	M ed	15151.1	29830.7	20749.9	kNm
taglio agente	Ted	-1326.9	-1533.1	-1712.6	kN

	fibra	σ FASE 1	σ FASE 2	σ FASE 3	σTOT	σlimite		tasso di lavoro
ferri sup	Af1	0.00	-49.61	-18.38	-68.0	391.3	verificato	0.17
ferri inf	Af2	0.00	-40.36	-13.19	-53.6	391.3	verificato	0.14
cls sup	F	0.00	-2.91	-3.11	-6.0	18.8	verificato	0.32
cls inf	Е	0.00	-2.17	-1.93	-4.1	18.8	verificato	0.22
piattab sup	D	-85.50	-36.50	-11.02	-133.0	338.1	verificato	0.39
anima sup	С	-84.33	-35.47	-10.44	-130.2	338.1	verificato	0.39
anima inf	В	69.43	100.42	65.84	235.7	338.1	verificato	0.70
piattab inf	Α	70.60	101.46	66.42	238.5	338.1	verificato	0.71
		[Mna]	[Mna]	[Mna]	[Mna]	[Mna]		

								-
		τ FASE 1	τ FASE 2	τ FASE 3	τ ΤΟΤ	τ limite		
anima	C, D	-16.8	-19.4	-21.7	-57.9	195.2	verificato	0.30
		[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]	•	

σ id TOT	σ limite	
68.0	391.3	verificato
53.6	391.3	verificato
6.0	18.8	verificato
4.1	18.8	verificato
133.0	338.1	verificato
177.0	338.1	verificato
256.9	338.1	verificato
238.5	338.1	verificato
[Mpa]	[Mpa]	

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 35 di 68

SEZ 4 - Tipo concio = laterale

Datí sezione

Trave in acciaio										
schema	statico		trave appoggiata					Е	3	
Н	4430	mm	altezza totale sezione					A (1		F
ha	4000	mm	altezza totale trave			h h	С	Af1 - Af2	-Gc	
b3	800	mm	lunghezza piattab sup			\Box	11	_Af2 _		E
t3	35	mm	spessore piattab sup				t3 hr	\vdash		D
b2	3930	mm	altezza anima					• h	- -	C
t2	26	mm	spessore anima					U		
b1	1400	mm	lunghezza piattab inf						Yaf1	
t1	35	mm	spessore piattab inf			L I				
	2		NUMERO TRAVI			i i			Yc Yaf2	
i	3.6	m	INTERASSE TRAVI			h	a b ₂	_	-t2 1012	
Aa	183180	mm²	area acciaio							
Ja	4.30E+11	mm ⁴	inerzia acciaio	irrigidimen	to long			-	+Ga †	
ya	1795	mm	baricentro trave	L	200					
		sol	etta	sp	20				Ya	
hr	50	mm	altezza cls su ala	уд	3000		t1! =			В
hc	380	mm	altezza cls				· · ·			A
В	4850	mm	larghezza collaborante				-		4	
Ac	1.88E+06	mm ²	area cls					b		
yc	4235	mm	baricentro soletta							
		arm	atura	n(L.T.)	n(B.T.)			ВА	RICENTRI	
пф1	10		ferri sup in un metro	17.6	6.2	ya	1795	mm	baricentro trave	1767
ф1	24	mm	diametro ferri sup.	soletta inte	ram. reag.	y _G BT	3393	mm	sez a mom positivo	3316
Af1	21941	mm²	area armatura sup	soletta inte	ram. reag.	y _G BT	2268	mm	sez a mom negativo	2268
if1	100	mm	interferro	1		y _G LT	2897	mm	sez a mom positivo	2693
пф2	5		ferri inf in un metro			y _G LT	2268	mm	sez a mom negativo	2268
ф2	24	mm	diametro ferri inf.					ı	NERZIE	
Af2	21941	mm²	area armatura inf	1	0.43	Ja	4.30E+11	mm ⁴	inerzia sola trave	4.19E+11
if2	100	mm	interferro	1	1.15	Ja+s	1.15E+12	mm ⁴	sez a mom positivo (BT)	1.07E+12
cf	50	mm	copriferro			Ja+f	6.44E+11	mm ⁴	sez a mom negativo (BT)	6.44E+11
yaf1	4380	mm	baricentro ferri sup		1.853E+12	Ja+s	9.26E+11	mm ⁴	sez a mom positivo (LT)	7.71E+11
yaf2	4112	mm	baricentro ferri inf			Ja+f	6.44E+11	mm ⁴	sez a mom negativo (LT)	6.44E+11
					•		sez. lorda			sez. efficace

Verífica

1) sezione a momento flettente positivo (cls reagente)

		FASE 1	FASE 2	FASE 3	
mom. Flett.	M ed	24122.3	39902.0	28661.0	kNm
taglio agente	Ted	-404.2	-661.0	-1068.0	kN

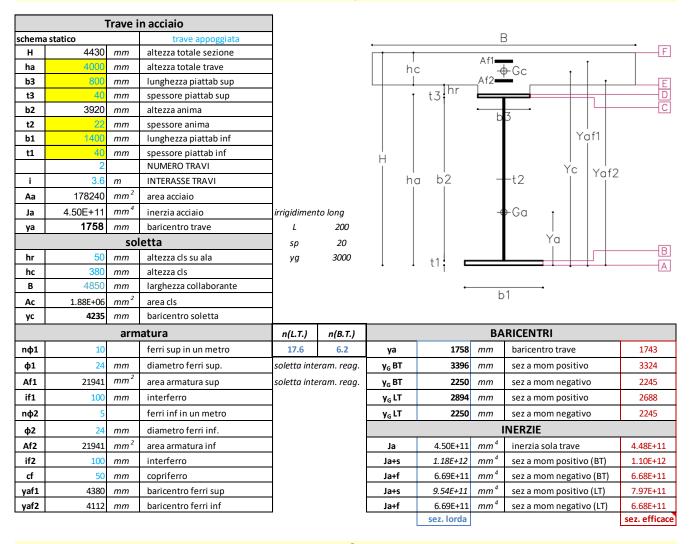
	fibra	σ FASE 1	σ FASE 2	σ FASE 3	σTOT	σ limite		tasso di lavoro
ferri sup	Af1	0.00	-87.32	-28.41	-115.7	391.3	verificato	0.30
ferri inf	Af2	0.00	-73.45	-21.25	-94.7	391.3	verificato	0.24
cls sup	F	0.00	-5.10	-4.79	-9.9	18.8	verificato	0.53
cls inf	E	0.00	-3.98	-3.15	-7.1	18.8	verificato	0.38
piattab sup	D	-128.48	-67.65	-18.26	-214.4	338.1	verificato	0.63
anima sup	С	-126.47	-65.84	-17.33	-209.6	338.1	verificato	0.62
anima inf	В	99.63	137.60	87.60	324.8	338.1	verificato	0.96
piattab inf	Α	101.64	139.42	88.54	329.6	338.1	verificato	0.97
		[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]		

		τ FASE 1	τ FASE 2	τ FASE 3	τ ΤΟΤ	τlimite		
anima	C, D	-4.0	-6.5	-10.5	-20.9	195.2	verificato	0.11
		[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]	,	

σ id TOT	σ limite	
115.7	391.3	verificato
94.7	391.3	verificato
9.9	18.8	verificato
7.1	18.8	verificato
214.4	338.1	verificato
218.5	338.1	verificato
327.4	338.1	verificato
329.6	338.1	verificato
/a.a. 1	fa.4 1	

[Mpa] [Mpa]

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI


Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 36 di 68

SEZ 5 - Tipo concio = CENTRALE

Datí sezione

Verifica

1) sezione a momento flettente positivo (cls reagente)

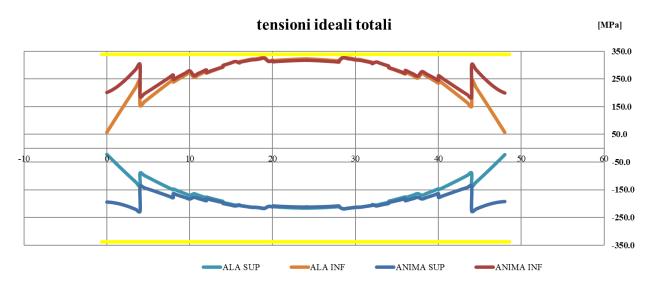
		FASE 1	FASE 2	FASE 3	
mom. Flett.	M ed	25034.1	40889.3	28914.3	kNm
taglio agente	Ted	360.8	637.3	1151.6	kN

	fibra	σ FASE 1	σ FASE 2	σ FASE 3	σTOT	σ limite		tasso di lavoro
ferri sup	Af1	0.0	-86.8	-27.7	-114.5	391.3	verificato	0.29
ferri inf	Af2	0.0	-73.0	-20.7	-93.7	391.3	verificato	0.24
cls sup	F	0.0	-5.1	-4.7	-9.7	18.8	verificato	0.52
cls inf	E	0.0	-4.0	-3.1	-7.0	18.8	verificato	0.37
piattab sup	D	-126.2	-67.3	-17.7	-211.2	338.1	verificato	0.62
anima sup	С	-124.0	-65.2	-16.7	-205.9	338.1	verificato	0.61
anima inf	В	95.2	135.8	86.1	317.2	338.1	verificato	0.94
piattab inf	Α	97.4	137.9	87.2	322.5	338.1	verificato	0.95
		[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]		

		τ FASE 1	τ FASE 2	τ FASE 3	τ ΤΟΤ	τ limite		
anima	C, D	4.4	7.7	13.9	26.0	195.2	verificato	0.13
-		[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]	•	

σ id TOT	σ limite	
114.5	391.3	verificato
93.7	391.3	verificato
9.7	18.8	verificato
7.0	18.8	verificato
211.2	338.1	verificato
220.1	338.1	verificato
321.4	338.1	verificato
322.5	338.1	verificato
	fa.e. 3	

[Mpa] [Mpa]


U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI00007
 003
 A
 37 di 68

FUSO DELLE TENSIONI

Si riporta il fuso delle tensioni lungo le fibre A (piattab. inf.), B (anima inf), C (anima. sup.), D (piattab. sup.) della trave di verifica

Le verifiche risultano soddisfatte.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

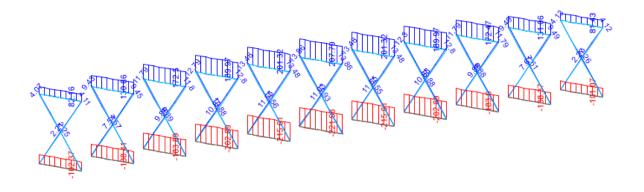
Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.
RS3E 50 D 09 CL VI0007 003 A

FOGLIO

38 di 68

6.4.2 VERIFICHE DIAFRAMMI


6.4.2.1 Diaframmi correnti

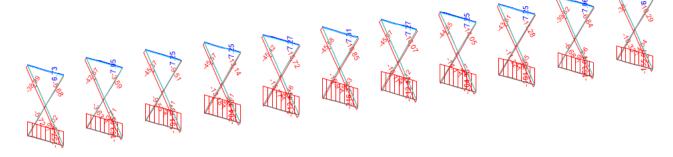
I correnti superiori ed i diagonali che compongono i diaframmi correnti sono profili 2L 100 x 10 I correnti inferiori sono profili 2L 120 x 12

ection Name	2L100X10/10/	Disp	olay Color
Properties			
Cross-section (axial) area	3831.	Section modulus about 3 axis	49219.84
Moment of Inertia about 3 axis	3533000.	Section modulus about 2 axis	73923.81
Moment of Inertia about 2 axis	7762000.	Plastic modulus about 3 axis	90950.
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	127300.
Shear area in 2 direction	2000.	Radius of Gyration about 3 axis	30.368
Shear area in 3 direction	1660.	Radius of Gyration about 2 axis	45.0123
Torsional constant	126700.	Shear Center Eccentricity (x3)	0.

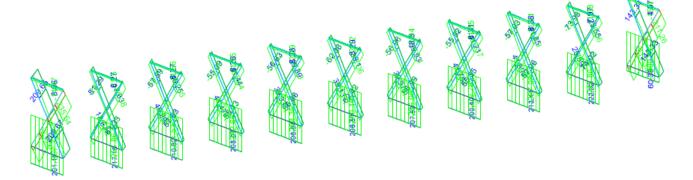
Section Name	2L120	IX12/12/	
Properties			
Cross-section (axial) area	5508.	Section modulus about 3 axis	85460.25
Moment of Inertia about 3 axis	7353000.	Section modulus about 2 axis	128174.6
Moment of Inertia about 2 axis	16150000.	Plastic modulus about 3 axis	157200.
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	220100.
Shear area in 2 direction	2880.	Radius of Gyration about 3 axis	36.5372
Shear area in 3 direction	2390.	Radius of Gyration about 2 axis	54.1489
Torsional constant	262700.	Shear Center Eccentricity (x3)	0.

Fase 1

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI


Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.
RS3E 50 D 09 CL VI0007 003 A


FOGLIO

39 di 68

Fase 2

Fase 3 (con coefficiente dinamico Φ3 dei traversi, definito al cap. 4.2)

CORRENTI SUPERIORI

Fase 1

 $N_{Ed\ 1t} = 207.8\ kN$

 $N_{Ed\ 1c} = 0kN$

Fase 2

 $N_{Ed\ 2t}=7\ kN$

 $N_{Ed\ 2c}=0\ kN$

Fase 3

 $N_{Ed 3t} = 8 kN$

N_{Ed 3c}= -14 kN

	TRAZIONE						
N _{Ed} =	223	kN	sollecitazione agente				
f _{yk} =	355	MPa	resistenza di calcolo				
f _{tk} =	510	MPa	resistenza di calcolo				
γ _{m 0} =	1.05	-	coeff. SLU				
γ _{m 2} =	1.25	-	coeff. SLU				
f _{yd} =	338	MPa	resistenza di progetto				
A =	3800	mm2	area sezione lorda				
An=	2850	mm2	area sezione netta (senza fori dei collegam.)				
N _{pl,Rd} =	1285	kN	res pl della sez lorda				
N _{u,Rd} =	1047	kN	res a rottura della sez netta				

N _{t,Rd} =	1047	kN	res a rottura per trazione della sez
$N_{Ed}/N_{t,Rd}$, ≤1	4	verifica soddisfatta

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 40 di 68

CORRENTI INFERIORI

Fase 1

 $N_{Ed\ 1t} = 0\ kN$

 $N_{Ed\ 1c} = -122\ kN$

Fase 2

 $N_{Ed\ 2t} = 0\ kN$

 $N_{Ed\ 2c}$ = -217 kN

Fase 3

 $N_{Ed 3t} = 234 kN$

 $N_{Ed 3c} = -397 kN$

La verifica a trazione sarà soddisfatta come riportato per il corrente sup.

	Stal	bilità delle	e aste compresse	Stabilità delle aste compresse fuori dal piano			
E =	210000	МРа	modulo elastico	E=	209000	МРа	modulo elastico
	1		classe della sezione		4		classe della sezione
N _{ed} =	736	kN	sollecitazione agente	N _{ed} =	736	kN	sollecitazione agente
f _{yk} =	355	MPa	resistenza di calcolo	f _{vk} =	355	MPa	resistenza di calcolo
A =	5508	mm2	area della sezione	A =	5508	mm2	area della sezione
L=	3600	mm	lunghezza dell'asta	L=	3600	mm	lunghezza dell'asta
J =	7353000	mm4	inerzia della sezione	J =	16150000	mm4	inerzia della sezione
γ _{m 1} =	1.05	_	coeff. SLU	γ _{m 1} =	1.05	-	coeff. SLU
A eff=	5508	mm2	area efficace della sezione	A eff=	5508	mm2	area efficace della sezione
χ =	0.43	OK		χ =	0.68	OK	dip da sezione e tipo di acciaio
ф=	2			ф=	1		
α =	0.34	TAB 4.2.VI	fattore di imperfezione	α =	0.34	TAB 4.2.VI	fattore di imperfezione
λ =	1.3		snellezza adimensionale	λ =	0.9		snellezza adimensionale
β =	1.00		riduz lugh libera d'inflessione	β=	1.00		riduz lugh libera d'inflessione
L ₀ =	3600	mm	lunghezza libera d'inflessione	L ₀ =	3600	mm	lunghezza libera d'inflessione
Ncr =	1175922	Ν	carico critico euleriano	Ncr =	2570476	Ν	carico critico euleriano
v =	0.20		coeff di Poisson	v =	0.20		coeff di Poisson
non si poss	non si possono trascurare i fenome		i di instabilità per aste compresse	non si poss	ono trascurar	e i fenomen	i di instabilità per aste compresse
N _{b,Rd} =	804.4	kN		N _{b,Rd} =	1264.5	kN	
N _{b,Rd} ≥	$N_{b,Rd} \ge N_{ed}$		verifica soddisfatta	$N_{b,Rd} \ge 1$	N _{ed}	4	verifica soddisfatta

DIAGONALI

Fase 1

 $N_{Ed\ 1t} = 13.86\ kN$

 $N_{Ed\ 1c} = 0 \ kN$

Fase 2

 $N_{Ed\ 2t} = 0 \ kN$

 $N_{Ed\ 2c} = -45.6 \ kN$

Fase 3

N_{Ed 3t}= 199 kN

 $N_{Ed 3c} = -226 kN$

La verifica a trazione sarà soddisfatta come riportato per il corrente sup.

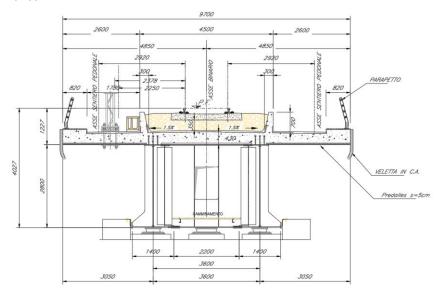
U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 41 di 68

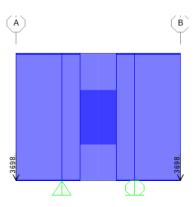
S	Stabilità de	lle aste c	compresse fuori dal piano		Stabilità	delle aste	e compresse nel piano
E =	209000	МРа	modulo elastico	E =	210000	МРа	modulo elastico
	4		classe della sezione		4		classe della sezione
N _{ed} =	272	kN	sollecitazione agente	N _{ed} =	272	kN	sollecitazione agente
f _{yk} =	355	MPa	resistenza di calcolo	f _{yk} =	355	MPa	resistenza di calcolo
A =	3831	mm2	area della sezione	A =	3831	mm2	area della sezione
L =	5382	mm	lunghezza dell'asta	L=	5382	mm	lunghezza dell'asta
J =	7762000	mm4	inerzia della sezione	J =	3533000	mm4	inerzia della sezione
γ _{m 1} =	1.05	-	coeff. SLU	γ _{m 1} =	1.05	-	coeff. SLU
A eff=	3831	mm2	area efficace della sezione	A eff=	3831	mm2	area efficace della sezione
χ =	0.32	OK	dip da sezione e tipo di acciaio	χ =	0.50	OK	dip da sezione e tipo di acciaio
ф=	2			ф=	1		
α =	0.34	TAB 4.2.VI	fattore di imperfezione	α =	0.34	TAB 4.2.VI	fattore di imperfezione
λ =	1.6		snellezza adimensionale	λ =	1.2		snellezza adimensionale
β=	1.00		riduz lugh libera d'inflessione	β=	0.50		riduz lugh libera d'inflessione
L ₀ =	5382	mm	lunghezza libera d'inflessione	L ₀ =	2691	mm	lunghezza libera d'inflessione
Ncr =	552754	Ν	carico critico euleriano	Ncr =	1011196	N	carico critico euleriano
v =	0.20		coeff di Poisson	v =	0.20		coeff di Poisson
non si possono trascurare i fenomeni di instabilità per aste compresse			i di instabilità per aste compresse	non si poss	ono trascurare	e i fenomen	i di instabilità per aste compresse
N _{b,Rd} =	412.1	kN		N _{b,Rd} =	648.2	kN	
$N_{b,Rd} \ge 1$	$N_{b,Rd} \ge N_{ed}$		verifica soddisfatta	N _{b,Rd} ≥ I	V _{ed}	✓	verifica soddisfatta

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

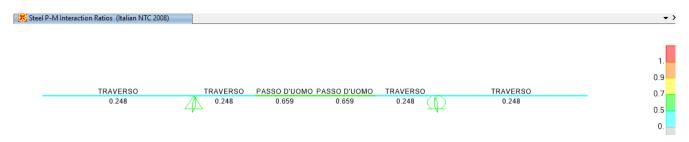

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 42 di 68


6.4.2.2 Diaframmi di testata

Si riporta la verifica a sollevamento dell'impalcato in caso di sostituzione degli apparecchi d'appoggio. I carichi agenti saranno quelli permanenti (pesi propri e permanenti portati) e i vincoli sono stati ipotizzati a una distanza dall'asse trave pari a circa 1m.


Il traverso pieno presenta un'anima con spessore 30mm e ali 400x20, passo d'uomo 800x1200mm².

Carichi perm travi:

Comb SLU (carico perm su travi + peso proprio) *1.35

Verifica:

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 43 di 68

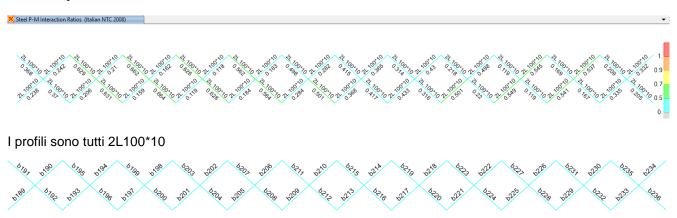
	gth: 0.400 : 0.400		id: 0.00	-	: PASSO D'UC : Class 3	OMO Frame Rolled	Type: DCH-MF	RF
Inte	eraction=Metho	d B		Multi	Response=Env	velopes	P-De	elta Done? No
			aM1=1.05	GammaM	12=1.25	_		
An/	Ag=1.00	RLL	F=1.000	PLLF=	0.750	D/C Lim=0.95	50	
Aef	f=0.063	eNv	=0.000	eNz=0	.000			
	.063	_	=0.079	iyy=1		Wel, yy=0.057	7 Weff	f, yy=0.057
	1.623E-05		=2.168E-			Wel, $zz=0.001$		zz=0.001
	0.000 10000000.0	_	=0.000 355000.0	h=2.8	000.000	Wpl,yy=0.069 Wpl,zz=0.002		7=0.016 2=0.063
	ESS CHECK FORC	-			0000.000	wp1,22-0.002	AV, 2	0.003
	Location		Ned	Med, yy	Med,zz	Ved, z	Ved, y	Ted
	0.400		0.000	-4998.268	0.000	2.610	0.000	0.000
	DEMAND/CAPACI D/C Ratio:		9 = 0.00 $= NEd/$		0.000 < ammaM1) + kz	0.950 cy (My, Ed+NEd		My,Rk/GammaM1)
BAS	IC FACTORS		To a la con-	T. E	T / /			
	Buckling Mode Major (y-y)	e K	Factor 1.000	L Factor 4.000	Lcr/i 1.425			
	Major Braced		1.000	4.000	1.425			
	Minor (z-z)		1.000	4.000	27.229			
	Minor Braced		1.000	4.000	27.229			
7 17 7 7	LTB		1.000	4.000	27.229			
AXIA.	L FORCE DESIGN		Ned	Nc,Rd	Nt,Rd			
			Force	Capacity	Capacity			
	Axial		0.000	21232.381	21232.381			
		0.1	Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Ag	
		21	232.381	23060.160	1037.045	1037.045	1.000	
	Cu	ırve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd
	Major (y-y)	C	-	64085617.6	0.019	0.456	1.000	21232.381
	MajorB(y-y)			64085617.6	0.019	0.456	1.000	21232.381
	Minor (z-z)	C	0.490	175559.829	0.356	0.602	0.920	19537.498
	MinorB(z-z)	C		175559.829	0.356	0.602	0.920	19537.498
	Torsional TF	С	0.490	1037.045	4.637	12.336	0.042	893.355
MOM	ENT DESIGN							
11011	2111 2201011		Med	Med, span	Mm, Ed	Meq, Ed		
			Moment	Moment	Moment	Moment		
	Major (y-y)	-4	998.268	-4998.268	-4998.007	-4998.059		
	Minor (z-z)		0.000	0.000	0.000	0.000		
		C	Mc,Rd apacity	Mv,Rd Capacity	Mn,Rd Capacity	Mb,Rd Capacity		
	Major (y-y)		115.802	19115.802	19115.802	19115.802		
	Minor (z-z)		366.568	366.568	366.568			
			Section	Flange	Web	Epsilon	Alpha	Psi
	Compactness		Class 3	Class 3	Class 3	0.814	0.500	-1.000
			_	LambdaBarLT	PhiLT	ChiLT	psi	Mcr
	LTB	d	0.760	1.150	1.523	0.397	1.000	15170.043
	Factors Cmy		Cmz	CmLT	kyy	kyz	kzy	kzz
	1.000		1.000	1.000	1.000	1.000	1.000	1.000

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 44 di 68


6.4.3 VERIFICA CONTROVENTI

6.4.3.1 CONTROVENTI SUPERIORI

La verifica si sviluppa in FASE 1 + carico da VENTO*1.5, in quanto alla maturazione del getto ci sarà la soletta a prendere le sollecitazioni trasversali.

 $qw=3.5 kN/m^2$

Si riporta la verifica effettuata direttamente con software di calcolo sap2000 che risulta soddisfatta come si evince dai tassi di lavoro riportati anche in tabella.

Frame	DesignSect	DesignType	Status	Ratio	Frame	DesignSect	DesignType	Status	Ratio
Text	Text	Text	Text	Unitless	Text	Text	Text	Text	Unitless
b189	2L 100*10	Beam	No Messages	0.238	b213	2L 100*10	Beam	No Messages	0.368
b190	2L 100*10	Beam	No Messages	0.242	b214	2L 100*10	Beam	No Messages	0.365
b191	2L 100*10	Beam	No Messages	0.368	b215	2L 100*10	Beam	No Messages	0.415
b192	2L 100*10	Beam	No Messages	0.370	b216	2L 100*10	Beam	No Messages	0.417
b193	2L 100*10	Beam	No Messages	0.206	b217	2L 100*10	Beam	No Messages	0.433
b194	2L 100*10	Beam	No Messages	0.210	b218	2L 100*10	Beam	No Messages	0.430
b195	2L 100*10	Beam	No Messages	0.629	b219	2L 100*10	Beam	No Messages	0.314
b196	2L 100*10	Beam	No Messages	0.631	b220	2L 100*10	Beam	No Messages	0.316
b197	2L 100*10	Beam	No Messages	0.159	b221	2L 100*10	Beam	No Messages	0.501
b198	2L 100*10	Beam	No Messages	0.162	b222	2L 100*10	Beam	No Messages	0.498
b199	2L 100*10	Beam	No Messages	0.662	b223	2L 100*10	Beam	No Messages	0.218
b200	2L 100*10	Beam	No Messages	0.664	b224	2L 100*10	Beam	No Messages	0.220
b201	2L 100*10	Beam	No Messages	0.119	b225	2L 100*10	Beam	No Messages	0.549
b202	2L 100*10	Beam	No Messages	0.118	b226	2L 100*10	Beam	No Messages	0.545
b203	2L 100*10	Beam	No Messages	0.626	b227	2L 100*10	Beam	No Messages	0.119
b204	2L 100*10	Beam	No Messages	0.628	b228	2L 100*10	Beam	No Messages	0.119
b205	2L 100*10	Beam	No Messages	0.184	b229	2L 100*10	Beam	No Messages	0.541
b206	2L 100*10	Beam	No Messages	0.183	b230	2L 100*10	Beam	No Messages	0.537
b207	2L 100*10	Beam	No Messages	0.562	b231	2L 100*10	Beam	No Messages	0.169
b208	2L 100*10	Beam	No Messages	0.564	b232	2L 100*10	Beam	No Messages	0.167
b209	2L 100*10	Beam	No Messages	0.284	b233	2L 100*10	Beam	No Messages	0.335
b210	2L 100*10	Beam	No Messages	0.282	b234	2L 100*10	Beam	No Messages	0.332
b211	2L 100*10	Beam	No Messages	0.498	b235	2L 100*10	Beam	No Messages	0.209
b212	2L 100*10	Beam	No Messages	0.501	b236	2L 100*10	Beam	No Messages	0.205

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 V10007
 003
 A
 45 di 68

6.4.3.2 CONTROVENTI INFERIORI

Si è effettuata la verifica nel modello globale tenendo conto delle sollecitazioni delle 3 fasi di calcolo.

Gli elementi di controvento saranno collegati attraverso bullonatura tra le ali dei profili ad L e un'apposita piastra da prevedersi in corrispondenza delle piattabande inferiori delle travi. Pertanto, lo sforzo assiale estratto da modello dovrà essere applicato al profilo, per le verifiche con un'eccentricità pari a 20 mm.

Verifica instabilità elementi soggetti a compressione e flessione - Sezioni di classe 1-2

$$\begin{split} \frac{N_{Sd}}{\chi_{\min}} + \frac{k_{y} M_{y,Sd}}{W_{pl,y} \frac{f_{y}}{\gamma_{M1}}} + \frac{k_{z} M_{y,Sd}}{W_{pl,z} \frac{f_{y}}{\gamma_{M1}}} \leq 1 \\ \mu_{y} = \overline{\lambda}_{y} (2 \beta_{My} - 4) + \left[\frac{W_{pl,y} - W_{el,y}}{W_{el,y}} \right] \qquad \qquad \mu_{z} = \overline{\lambda}_{z} (2 \beta_{Mz} - 4) + \left[\frac{W_{pl,z} - W_{el,z}}{W_{el,z}} \right] \\ k_{y} = 1 - \frac{\mu_{y} N_{Sd}}{\chi_{y} A f_{y}} \end{split}$$

cv testata (2L 120x12)

FASE1

 $N_{Ed\ 1t} = 78\ kN$

 $N_{Ed\ 1c} = 0 \ kN$

FASE2

 $N_{Ed\ 2t} {=}\ 272\ kN$

 $N_{Ed\ 2c}$ = -61

FASE3

 $N_{Ed 3t} = 930 \text{ kN}$

 $N_{Ed 3c} = -505 \text{ kN}$

	TRAZIONE						
N _{Ed} =	1280	kΝ	sollecitazione agente				
f _{yk} =	355	МРа	resistenza di calcolo				
f _{tk} =	510	МРа	resistenza di calcolo				
γ _{m 0} =	1.05	-	coeff. SLU				
γ _{m 2} =	1.25	-	coeff. SLU				
f _{yd} =	338	MPa	resistenza di progetto				
A =	5500	mm2	area sezione lorda				
An=	4125	mm2	area sezione netta (senza fori dei collegam.)				
$N_{pl,Rd} =$	1860	kN	res pl della sez lorda				
$N_{u,Rd} =$	1515	kN	res a rottura della sez netta				

N _{t,Rd} =	1515	kN	res a rottura per trazione della sez
$N_{Ed}/N_{t,Rd}$	≤1	4	verifica soddisfatta

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 46 di 68

	Stabilità de	elle aste	compresse yy					
E =	210000	МРа	modulo elastico					
	2		classe della sezione					
N _{ed} =	566.0	kN	sollecitazione agente					
f _{yk} =	355	MPa	resistenza di calcolo					
A =	5508	mm2	area della sezione					
L=	5500	mm	lunghezza dell'asta					
J =	7.35E+06	mm4	inerzia della sezione					
γ _{m 1} =	1.05	-	coeff. SLU					
A eff=	5508	mm2	area efficace della sezione					
χ =	0.61	OK	dip da sezione e tipo di acciaio					
ф=	1.119							
α =	0.34	TAB 4.2.VI	fattore di imperfezione					
λ =	0.985		snellezza adimensionale					
β =	0.50		riduz lugh libera d'inflessione					
L ₀ =	2750	mm	lunghezza libera d'inflessione					
Ncr =	2015200	N	carico critico euleriano					
v =	0.20		coeff di Poisson					
non si pos	sono trascurare i fer	nomeni di in	stabilità per aste compresse					
$N_{b,Rd} =$	1129.5	kN						
$N_{b,Rd} \ge$	N _{b,Rd} ≥ N _{ed} verifica soddisfatta							

μу	-0.9345	
Wply	157.2	cm3
Wely	85.5	cm3
ку	1.4460	

0.1.111.								
	<u>Stabilità del</u>	<u>le aste c</u>	compresse zz					
E =	210000	МРа	modulo elastico					
	2		classe della sezione					
N _{ed} =	566.0	kN	sollecitazione agente					
f _{yk} =	355	MPa	resistenza di calcolo					
A =	5508	mm2	area della sezione					
L =	5500	mm	lunghezza dell'asta					
J =	1.62E+07	mm4	inerzia della sezione					
γ _{m 1} =	1.05	-	coeff. SLU					
A eff=	5508	mm2	area efficace della sezione					
χ =	0.80	OK	dip da sezione e tipo di acciaio					
ф=	0.800							
α =	0.34	TAB 4.2.VI	fattore di imperfezione					
λ =	0.665		snellezza adimensionale					
β =	0.50		riduz lugh libera d'inflessione					
L ₀ =	2750	mm	lunghezza libera d'inflessione					
Ncr =	4426151	Ν	carico critico euleriano					
v =	0.20		coeff di Poisson					
non si possono tr	ascurare i fenon	neni di inst	abilità per aste compresse					
N _{b,Rd} =	1495.9	kN						
$N_{b,Rd} \ge N_{ed}$		4	verifica soddisfatta					

μz	-0.47953522	
Wplz	220.1	cm3
Welz	128.2	cm3
K 7	1 1728	

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 47 di 68

	Stabilità delle travi inflesse							
E =	210000	МРа	modulo elastico					
	2		classe della sezione					
$M_{ed} =$	11.32	kNm	massimo momento flettente di calcolo					
f _{yk} =	355	МРа	resistenza di calcolo					
γ _m =	1.05		coeff. SLU					
f _{yd} =	338	MPa	resistenza di progetto					
W _y =	157200	mm3	modulo res					
χ _{LT} =	0.957		dip da sezione e tipo di acciaio					
f =	1.00							
ф=	0.57							
β=	1.00	min 0.75	riduz lugh libera d'inflessione					
λ _{LT} =	0.320		snellezza adimensionale					
kc =	1.00	TAB 4.2.VI	<u>II</u>					
Mcr =	5.46E+08	Nmm	mom critico el di instab torsionale					
λ _{LT,0} =	0.2	max 0.4						
α =	0.34	TAB 4.2.VI	fattore di imperfezione					
M _{bRd} =	50.85	kNm	momento resistente					
M, bRd ≥	M _{ed}	✓	verifica soddisfatta					

Verifica instabilità elementi soggetti a compressione e flessione - Sezioni di classe 1-2

$$\frac{N_{Sd}}{\chi_{\min} \ A \frac{f_{y}}{\gamma_{M1}}} + \frac{k_{y} \ M_{y.Sd}}{W_{pl.y} \frac{f_{y}}{\gamma_{M1}}} + \frac{k_{z} \ M_{y.Sd}}{W_{pl.z} \frac{f_{y}}{\gamma_{M1}}} \le 1$$

I termine

II termine

III termine

0.501

+ 0.213

0.000

= 0.714

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 48 di 68

Cv 2L 100x10

Dalla somma delle 3 fasi:

ABLE: Element Forces - Frames TABLE: Element Forces - Frames TABLE: Element Forces - Fra		- Frames	TABLE: Element Forces - Frames															
Frame	Station OutputCase	P	Frame	Station OutputCase	e P	Frame	Station (OutputCase	StepType	P	Frame	Station	OutputCase	StepType	P			
Text -	m √ Text ▼	KN 🕶	▼ Text ▼	m - Text	KN 🕶	→ Text →	m 🕶	Text	Text -	KN 🕶	▼ Text ▼	m ×	Text	Text -	KN 🕶	~	595.721 🔻	-170.804
71	0 fase 1	77.454	b71	0 fase2	204.066	b71	0 IN\	/ILUPPO_SLU	Max	213.407	b71	0	INVILUPPO_SLU	J Min	-291.077		494.927	-9.557
72	0 fase 1	77.439	b72	0 fase2	204.06	b72	0 IN\	/ILUPPO_SLU	Max	213.488	b72	0	INVILUPPO_SLU	J Min	-290.941		494.987	-9.442
73	0 fase 1	77.558	b73	0 fase2	-65.74	b73	0 IN\	/ILUPPO SLU	Max	333.886	b73	0	INVILUPPO SLU	J Min	-173.733		345.704	-161.915
74	0 fase 1	77.543	b74	0 fase2	-65.739	b74	0 IN\	/ILUPPO_SLU	Max	333.817	b74	0	INVILUPPO_SLU	J Min	-173.738		345.621	-161.934
75	0 fase 1	123.269	b75	0 fase2	216.265	b75	0 IN\	/ILUPPO_SLU	Max	217.793	b75	0	INVILUPPO_SLU	J Min	-266.911		557.327	72.623
76	0 fase 1	123.25	b76	0 fase2	216.241	b76	0 IN\	/ILUPPO_SLU	Max	217.85	b76	0	INVILUPPO_SLU	J Min	-266.829		557.341	72.662
77	0 fase 1	123.353	b77	0 fase2	-2.661	b77	0 IN\	/ILUPPO_SLU	Max	357.777	b77	0	INVILUPPO_SLU	J Min	-127.448		478.469	-6.756
78	0 fase 1	123.333	b78	0 fase2	-2.661	b78	0 IN\	/ILUPPO SLU	Max	357.684	b78	0	INVILUPPO SLU	J Min	-127.488		478.356	-6.816
79	0 fase 1	142.984	b79	0 fase2	202.929	b79	0 IN\	/ILUPPO SLU	Max	236.651	b79	0	INVILUPPO SLU	J Min	-228.526		582.564	117.387
80	0 fase 1	142.976	b80	0 fase2	202.908	b80	0 IN\	/ILUPPO SLU	Max	236.715	b80	0	INVILUPPO SLU	J Min	-228.448		582.599	117.436
81	0 fase 1	143.056	b81	0 fase2	40.624	b81	0 IN\	/ILUPPO SLU	Max	332.665	b81	0	INVILUPPO SLU	J Min	-137.296		516.345	46.384
82	0 fase 1	143.048	b82	0 fase2	40.635	b82	0 IN\	/ILUPPO SLU	Max	332.583	b82	0	INVILUPPO SLU	J Min	-137.335		516.266	46.348
83	0 fase 1	150.609	b83	0 fase2	177.546	b83	0 IN\	/ILUPPO SLU	Max	258.99	b83	0	INVILUPPO SLU	J Min	-193.257		587.145	134.898
84	0 fase 1	150.604	b84	0 fase2	177.524	b84	0 IN\	/ILUPPO SLU	Max	259.056	b84	0	INVILUPPO SLU	J Min	-193.181		587.184	134.947
85	0 fase 1	150.674	b85	0 fase2	78.121	b85	0 IN\	/ILUPPO SLU	Max	309.042	b85	0	INVILUPPO SLU	J Min	-147.706		537.837	81.089
36	0 fase 1	150,669	b86	0 fase2	78.135	b86	0 INV	/ILUPPO SLU	Max	308.966	b86	0	INVILUPPO SLU	J Min	-147.744		537.77	81.06
37	0 fase 1	160.443	b87	0 fase2	151.06	b87	0 IN\	/ILUPPO SLU	Max	284.168	b87	0	INVILUPPO SLU	J Min	-164.736		595.671	146.767
88	0 fase 1	160.44	b88	0 fase2	151.038	b88	0 INV	/ILUPPO SLU	Max	284.243	b88	0	INVILUPPO SLU	J Min	-164.66		595.721	146.818
89	0 fase 1	160.505	b89	0 fase2	120.446	b89		/ILUPPO SLU		293.074	b89		INVILUPPO SLU		-156.652		574.025	124.299
90	0 fase 1	160.502	b90	0 fase2	120.465	b90		/ILUPPO SLU		293.005	b90		INVILUPPO SLU		-156.691		573.972	124.276
91	0 fase 1	160.441	b91	0 fase2	115.818	b91	0 INV	/ILUPPO SLU	Max	303.095	b91	0	INVILUPPO SLU	J Min	-150.419		579.354	125.84
92	0 fase 1	160,444	b92	0 fase2	115,799	b92		/ILUPPO SLU		303.171	b92		INVILUPPO SLU		-150.38		579.414	125.863
93	0 fase 1	160,502	b93	0 fase2	155.685	b93	0 INV	/ILUPPO SLU	Max	273.612	b93	0	INVILUPPO SLU	J Min	-176.45		589,799	139,737
94	0 fase 1	160,505	b94	0 fase2	155,708	b94		/ILUPPO SLU		273,546	b94		INVILUPPO_SLU		-176.526		589.759	139,687
95	0 fase 1	150.606	b95	0 fase2	72.904	b95		/ILUPPO SLU		317.573	b95		INVILUPPO SLU		-141.726		541.083	81.784
96	0 fase 1	150,611	b96	0 fase2	72.886	b96	0 INV	/ILUPPO SLU	Max	317.651	b96	0	INVILUPPO SLU	J Min	-141.686		541.148	81.811
97	0 fase 1	150.666	b97	0 fase2	182.756	b97		/ILUPPO SLU		247.773	b97		INVILUPPO SLU		-205.083		581.195	128.339
98	0 fase 1	150,671	b98	0 fase2	182.78	b98	0 INV	/ILUPPO SLU	Max	247,706	b98	0	INVILUPPO SLU	J Min	-205.16		581.157	128,291
99	0 fase 1	142.98	b99	0 fase2	33.601	b99	0 IN\	/ILUPPO SLU	Max	339.505	b99	0	INVILUPPO SLU	J Min	-131.581		516.086	45
100	0 fase 1	142.988	b100	0 fase2	33.585	b100	0 IN\	/ILUPPO SLU	Max	339.59	b100	0	INVILUPPO SLU	J Min	-131.541		516.163	45.032
101	0 fase 1	143.039	b101	0 fase2	209.941	b101	0 INV	/ILUPPO SLU	Max	224.31	b101	0	INVILUPPO SLU	J Min	-240.441		577.29	112.539
102	0 fase 1	143.047	b102	0 fase2	209.968	b102		/ILUPPO SLU		224.245	b102		INVILUPPO SLU		-240.52		577.26	112.495
103	0 fase 1	123.266	b103	0 fase2	-12.877	b103		/ILUPPO SLU		364.603	b103		INVILUPPO SLU		-120.811		474.992	-10.422
104	0 fase 1	123.285	b104	0 fase2	-12.885	b104		/ILUPPO SLU		364.7	b104		INVILUPPO SLU		-120.769		475.1	-10.369
105	0 fase 1	123.326	b105	0 fase2	226.458	b105		/ILUPPO SLU		202.9	b105		INVILUPPO SLU		-280.373		552.684	69.411
106	0 fase 1	123.345	b106	0 fase2	226.49	b106		/ILUPPO SLU		202.843	b106		INVILUPPO SLU		-280.456		552.678	69.379
107	0 fase 1	77.657	b107	0 fase2	-80.856	b107		/ILUPPO SLU		343.756	b107		INVILUPPO SLU		-167.591		340.557	-170.79
108	0 fase 1	77.673	b108	0 fase2	-80.869	b108		/ILUPPO SLU		343.802	b108		INVILUPPO SLU		-167.608		340.606	-170.804
109	0 fase 1	77.718	b109	0 fase2	219.587	b109		/ILUPPO SLU		183,474	b109		INVILUPPO SLU		-333.443		480.779	-36.138
110	0 fase 1	77.733	b110	0 fase2	219.606	b110		/ILUPPO SLU		183.376	b110		INVILUPPO SLU		-333.624		480.715	-36.285

	Ot-1:11:4 -1 -	lla aata		1		
_	Stabilità de	MPa				
E =	210000	IVIPU	modulo elastico	-		
	2		classe della sezione			
N _{ed} =	172.0	kN	sollecitazione agente			
$f_{yk} =$	355	MPa	resistenza di calcolo			
A =	3831	mm2	area della sezione			
L=	5200	mm	lunghezza dell'asta			
J =	3.53E+06	mm4	inerzia della sezione			
γ _{m 1} =	1.05	-	coeff. SLU			
A eff=	3831	mm2	area efficace della sezione			
χ =	0.52	OK	dip da sezione e tipo di acciaio			
ф=	1.284					
α =	0.34	TAB 4.2.VI	fattore di imperfezione			
λ =	1.121		snellezza adimensionale			
β =	0.50		riduz lugh libera d'inflessione			
L ₀ =	2600	mm	lunghezza libera d'inflessione			
Ncr =	1083218	N	carico critico euleriano		Τ	
v =	0.20		coeff di Poisson	μу	-1.2112	
non si pos	sono trascurare i fen	omeni di ir	stabilità per aste compresse	Wply	90.486842	cm3
$N_{b,Rd}$ =	677.5	kN		Wely	50.111	cm3
$N_{b,Rd} \ge$	N_{ed}	4	verifica soddisfatta	ку	1.2928	

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 49 di 68

	Stabilità de	lle aste c	compresse ZZ			
E =	210000	МРа	modulo elastico			
	2		classe della sezione			
N _{ed} =	172.0	kN	sollecitazione agente			
f _{yk} =	355	MPa	resistenza di calcolo			
A =	3831	mm2	area della sezione			
L =	5200	mm	lunghezza dell'asta			
J =	7.76E+06	mm4	inerzia della sezione			
γ _{m 1} =	1.05	-	coeff. SLU			
A eff=	3831	mm2	area efficace della sezione			
χ =	0.75	OK	dip da sezione e tipo di acciaio			
ф=	0.880					
α =	0.34	TAB 4.2.VI	fattore di imperfezione			
λ =	0.756		snellezza adimensionale			
β =	0.50		riduz lugh libera d'inflessione			
L ₀ =	2600	mm	lunghezza libera d'inflessione			
Ncr =	2379830	N	carico critico euleriano			
v =	0.20		coeff di Poisson	μz	-0.644450973	
non si possono tr	ascurare i feno	meni di inst	abilità per aste compresse	Wplz	117.75	cm3
N _{b,Rd} =	973.0	kN		Welz	68.608	cm3
$N_{b,Rd} \ge N_{ed}$		✓	verifica soddisfatta	ΚZ	1.1085	

	Stabilità delle travi inflesse							
E =	210000	МРа	modulo elastico					
	2		classe della sezione					
$M_{ed} =$	3.44	kNm	massimo momento flettente di calcolo					
f _{yk} =	355	МРа	resistenza di calcolo					
γ _m =	1.05		coeff. SLU					
f _{yd} =	338	MPa	resistenza di progetto					
W _y =	49220	mm3	modulo res					
χ _{LT} =	0.975		dip da sezione e tipo di acciaio					
f =	1.00							
ф=	0.55							
β =	1.00	min 0.75	riduz lugh libera d'inflessione					
λ _{LT} =	0.270		snellezza adimensionale					
kc =	1.00	TAB 4.2.VI	<u>II</u>					
Mcr =	2.40E+08	Nmm	mom critico el di instab torsionale					
λ _{LT,0} =	0.2	max 0.4						
α =	0.34	TAB 4.2.VI	fattore di imperfezione					
M _{bRd} =	16.23	kNm	momento resistente					
M, bRd ≥	M _{ed}	✓	verifica soddisfatta					

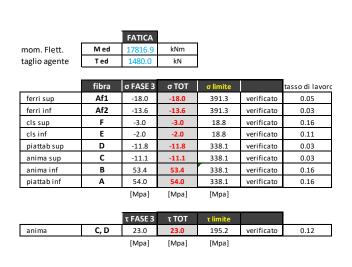
INSTABILITA'

Le verifiche risultano soddisfatte.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO


 PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 50 di 68


6.5 VERIFICA A FATICA TRAVI PRINCIPALI

Viene di seguito riportata la verifica a fatica della trave maggiormente sollecitata nelle condizioni di traffico ferroviario comprensivo degli effetti dinamici.

Fuso delle tensioni lungo le piattabande della trave di progetto per lo stato limite di fatica:

La sezione maggiormente sollecitata è quella in mezzeria:

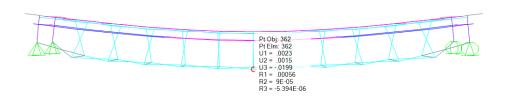
4.			
λ	=	0.63	_
$\lambda = \lambda 1 * \lambda 2$	2 * λ3 * .	λ4	
λ1	=	0.63	
λ2	=	1	
λ3	=	1	VU = 100 anni
λ4	=	1	
σ MAX [MPa]	=	54.0	
а	=	1.00	rapporto sigma1treno/2 treni
n	=	0.33	DA NORMA (% di treni su ponte)
γm	=	1.35	_
ks	=	0.89	
σd [MPa]	=	71	
σd red [MPa]	=	63.1	
σd red/γm	=	46.8	
·		>	ОК
σ MAX * λ [MPa]	=	34.0	

Le caratteristiche geometriche utilizzate sono le medesime cui si è fatto riferimento per le verifiche di resistenza. La verifica risulta soddisfatta.

RELAZIONE DI CALCOLO

NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA DITTAINO - CATENANUOVA PROGETTO DEFINITIVO

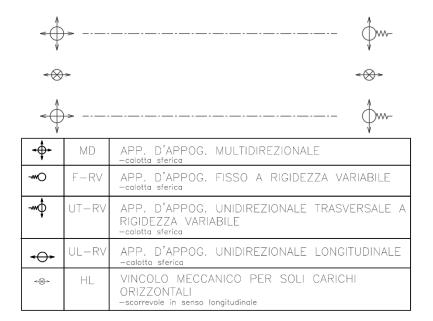
U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario


PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 51 di 68

6.6 VERIFICHE SLE

6.6.1 VERIFICHE DI DEFORMABILITA'

Si verifica l'inflessione nel piano verticale dell'impalcato. Si considera agente il treno di carico con il corrispondente coefficiente dinamico e con il coefficiente α .


LM71
Abbassamento 19.9 mm < L/1000 = 48 mm

6.7 REAZIONI AGLI APPOGGI

6.7.1 SCHEMA APPOGGI

Lo schema dei vincoli della travata metallica è il seguente:

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 52 di 68

6.7.2 REAZIONI APPOGGI

Le azioni verticali massime derivano dalle combinazioni SLU, si riporta di seguito la tabella come da Manuale RFI:

N	Reazioni degli apparecchi di appoggio							
longitudingle						min TI	max Tt	min Tt
			(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Azi	oni (valori caratteristici)		(1414)	(11.1)	(14.1)	(14.4)	(14.4)	(11.1)
1.1		peso proprio	1719	1719	-	-	-	-
1.2	1	permanenti	1979	1979	-	-	-	-
1.3	permanenti G, P	precompressione	-	-	-	-	-	-
1.4	1	ritiro e viscosità	-	-	-	-	-	-
	1							
2.1		treni di carico	1666	0	-	-	-	-
2.2		veicoli speciali	-	-	-	-	-	-
2.3	1	forza centrifuga	369	-369				
2.4		awiamento e frenatura	45	-45				
2.5		serpeggio	77	-77				
2.6		folla	-	-				
2.7		vento sulla struttura	822	-822				
2.8	variabili Q	vento sulla struttura e sui treni di carico	1228	-1228				
2.9		temperatura	0	0				
2.1								
2.11		sisma						
2.12		cedimenti delle sottostrutture	-	-				
2.13		resistenze parassite nei vincoli	-	-				
5.1		Nmax	10198	-				
5.2	combinazioni di esercizio	Nmin	-	2797				
5.3		TI max		-				
5.4		Ttmax		-				

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 53 di 68

L'azione sismica statica equivalente, calcolata considerando la massima accelerazione dello spettro sarà:

VN (anni)	75
Cu	1.5

luce (m)	50
1400 (111)	30

PP+ soletta+ predalles	G1 (kN)	6878
perm + fonoass	G2 (kN)	6179
0,2 (LM71+a/f+ cf)	Q (kN)	1578

	Masse (t)	Accellerazione m/s² (Spettro elastico SLV)	Fo (kN)
Pesi propri	701	0.620 g	4264
Permanenti portati (incluse eventuali barriere a.r.)	630	0.620 g	3831
0,2 (LM71+a/f+ cf)	161	0.620 g	978
TOTALE			9073

AZIONE ORIZZONTALE SISMICA MAX SU APPOGGIO

5173

VALORE APPROSSIMATO

5200

Si considerano come azioni di progetto le seguenti:

						TRASVERSALE A VARIABILE	MULTIDIREZION ALE	Dispositivo meccanico	
ьотто	TIPOLOGIA IMPALCATO	LUCE ASSI GIUNTI	NUMERO BINARI	NUMERO TRAVI	-w(- ₩ ♦			
	-		=	-	Nmax	HLmax	Nmax	HTmax	
		m			kN	kN kN kN		kN	
	Ţ,	~	~	*	SLU	SIS	SLU 🔻	SIS	
5	SEZ MISTA	50	1	2	10200	5200	10200	5200	

Non si è tenuto conto per la massima azione sismica delle rigidezze delle sottostrutture.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 54 di 68

7 EFFETTI LOCALI

Sezione mista acc-cls: 2 travi alte 4.5m ad interasse 3.6m, soletta in cls Rck= 40 MPa con altezza variabile: 43cm - 37cm.

7.1 ANALISI DEI CARICHI

I carichi adottati per le verifiche di resistenza e deformabilità della soletta in c.a. sono i seguenti.

7.1.1 CARICHI PERMANENTI

7.1.1.1 PESI PROPRI

Valutati direttamente dalla geometria inserita nel modello di calcolo considerando $\Upsilon_{cls} = 25 \text{ kN/m}^3$.

7.1.1.2 PERMANENTI PORTATI

•	Armamento + impermeab. + rialzo in curva	$= 16 \text{ kN/m}^2$
•	Cordoli +impermeabilizzazione	$= 5.3 \text{ kN/m}^2$
•	Muretto paraballast	= 3.6* KN
•	Canaletta +impianti	= 3.5 kN *
•	Barriere antirumore	= 16* kN
•	Velette	= 5* kN

^{*} il valore indicato è per l'elemento singolo

Si sta considerando una striscia di soletta di 1m.

7.1.2 SOVRACCARICHI ACCIDENTALI

7.1.2.1 TRENI DI CARICO

Considerando una diffusione del carico secondo ¼ nel ballast ed a 45° nella soletta di copertura, la ruota da 250 kN si ripartisce trasversalmente su una larghezza pari a 2.98m.

 $qLM71 = 250 kN *\alpha /1.6 m$

LM71	171.88	carico unitario da ripartire su				2.98	->	57.77	KN/m
Lφ	3	*	3.6	=	10.8	m			
coeff amplificazione dinamica	Ф3			=	1.43	m			

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 55 di 68

7.1.2.2 FOLLA

10 kN/m², applicata ove presenti i camminamenti e l'FFP.

7.1.2.3 SERPEGGIO

 $Q_{sk} = 100 \text{ kN},$

 δ_h = 0.8 m; distanza fra piano ferro ed estradosso soletta

M_s = 100 * 0.8 = 80 kNm/m; momento trasversale da serpeggio

7.1.2.4 CENTRIFUGA

Considerando una diffusione del carico secondo ¼ nel ballast ed a 45° nella soletta e traversine 240x20 ad interasse 60 cm, il carico dovuto ai treni si ripartisce:

longitudinalmente su una larghezza di 1.60 m (L_long);

trasversalmente su una larghezza di 3.0 m (L_trasv);

centrifuga LM71

qv= 250*1.1/1.60 = 171.88 kN/m (carico verticale viaggiante al metro)

qt= c*qv=0.213*171.8 = 36.6 kN/m (azione orizzontale centrifuga al metro)

 $c = (V^2)/(127*R)*f$

La forza qt applicata secondo normativa ad 1.8 m al di sopra del P.F., presenta un braccio rispetto al piano medio della soletta b=2.8 m e quindi il momento torcente sulla soletta risulta pari a:

Mtorc=
$$qt^b= 36.6^*(1.8+0.8+0.2) = 102.5 \text{ kNm/m}$$

Nel calcolo delle sollecitazioni indotte dalla forza centrifuga sulla soletta è stata considerata la presenza di un solo treno di carico (LM71).

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.

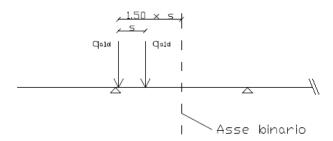
RS3E 50 D 09 CL VI0007 003 A

FOGLIO

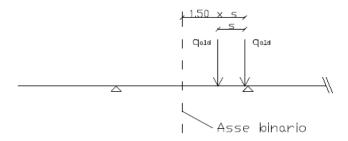
56 di 68

7.1.3 AZIONI ECCEZIONALI

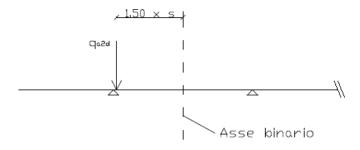
7.1.3.1 DERAGLIAMENTO


s= distanza di scartamento = 1.435m

1.5 x s = 2.1525 m distanza massima dell'asse di carico dall'asse del binario


q_{a1d} = 50 kN/m asse di carico caso 1a e 1b (stesa di carico = 6.40 m)

q_{a2d} = 80 kN/m asse di carico caso 2 (stesa di carico = 20.00 m)


Caso 1a

Caso 1b

Caso 2

Per ragioni di semplicità (l'assunzione tuttavia non ha alcuna conseguenza sul dimensionamento strutturale), gli effetti del deragliamento del treno sono assimilati ad una condizione d'esercizio e pertanto vengono confrontati in alternativa agli effetti prodotti dal treno di progetto.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 57 di 68

7.1.4 AZIONI CLIMATICHE

7.1.4.1 VENTO

Vento su barriera antirumore alta 4m: q = 3 kN/m²

Vento trasversale sul treno: v come calcolato di seguito:

$$v = \pm M_w/W = qv*(h/2)/(bL^2/6) = 25.4 \text{ kN/m}$$

h = 5 m

b = 1 m

L = 2.98 m

In presenza della barriera antirumore e di un treno sul binario più vicino alla barriera si ammetterà in alternativa:

- il vento trasversale sulla barriera antirumore diretto verso il treno (+ q_v),
- il vento trasversale sul treno diretto verso la barriera antirumore (- v).

In presenza della barriera antirumore e di un treno sul binario si ammetterà la presenza contemporanea di q_v e v (con lo stesso segno).

Nell'ipotesi di assenza di barriere antirumore si assumerà ovviamente il verso sfavorevole del vento trasversale sul treno ($\pm v$).

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 58 di 68

7.2 COMBINAZIONE DEI CARICHI

5.2.3.3 Verifiche agli SLU e SLE

5.2.3.3.1 Requisiti concernenti gli SLU

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali in Tab. 5.2.V e i coefficienti di combinazione ψ in Tab. 5.2.VI.

Tabella 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00

Tabella 5.2.IV - Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont	ali	
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,00	,	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione

Azione dominante

Tabella 5.2.VI - Coefficienti di combinazione y delle azioni.

Azioni		Ψο	V 1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80(1)	0,0
Gruppi di	9 72	0,80 ⁽²⁾	0,80(1)	-
carico	9 3	0,80(2)	0,80(1)	0,0
	9 74	1,00	1,00 ⁽¹⁾	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

..

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assumzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS3E 50 D 09 CL VI0007 003 A 59 di 68

• COMBINAZIONE S.L.U.

	S.L.U														
VARIABILE PRINCIPALE:				TRAF	FICO				VEN	OTV	TEMPERATURA				
CADICHI	SW2					LM71				R.	SW2		LIV	171	STR.
CARICHI	GRUF	PPO1	GRUPPO3		GRUP	PO1	GRU	PPO3	SCA	RICA	GR1	GR3	GR1	GR3	SCARICA
combinazioni	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
Peso Proprio (G1)	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Permanenti Portati (G2)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
SW2	1.45	1.45	1.45	1.45	0	0	0	0	0	0	1.16	1.16	0	0	0
LM71	0	0	0	0	1.45	1.45	1.45	1.45	0	0	0	0	1.16	1.16	0
Serp_SW2	1.45	1.45	0.73	0.73	0	0	0	0	0	0	1.16	0.58	0	0	0
Serp_LM71	0	0	0	0	1.45	1.45	0.73	0.73	0	0	0	0	1.16	0.58	0
F-A_SW2	0.725	0.73	1.45	1.45	0	0	0	0	0	0	0.58	1.16	0	0	0
F-A_LM71	0	0	0	0	0.725	0.73	1.45	1.45	0	0	0	0	0.58	1.16	0
centrifuga_SW2	1.45	1.45	0.73	0.73	0	0	0	0	0	0	1.16	0.58	0	0	0
centrifuga_LM71	0	0	0	0	1.45	1.45	0.73	0.73	0	0	0	0	1.16	0.58	0
Eff_aerodinamici	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	0	0	1.20	1.20	1.20	1.20	0
Vento_scarico	0	0	0	0	0	0	0	0	1.5	1.5	0	0	0	0	0.9
Vento_carico	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0	0	0.9	0.9	0.9	0.9	0
Temp_SLU	0	0.9	0	0.9	0	0.9	0	0.9	0	0.9	1.5	1.5	1.5	1.5	1.5

• COMBINAZIONI S.L.E.

	S.L.E. rara																
VARIABILE PRINCIPALE:				TRAF	FICO				VE	OTV		TEMPERATURA					
CARICHI		SV	V2		LM71				S1	STR.		SW2			LM71	STR.	
CARICHI	GRUI	PPO1	GRU	PPO3	GRUP	PO1	GRU	PPO3	SCA	RICA	GR1	GR3	GR4	GR1	GR3	GR4	SCARICA
combinazioni	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
Peso Proprio (G1)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Permanenti Portati (G2)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
SW2	1	1	1	1	0	0	0	0	0	0	0.8	0.8	0.8	0	0	0	0
LM71	0	0	0	0	1	1	1	1	0	0	0	0	0	0.8	0.8	0.6	0
Serp_SW2	1	1	0.5	0.5	0	0	0	0	0	0	0.8	0.4	0.8	0	0	0	0
Serp_LM71	0	0	0	0	1	1	0.5	0.5	0	0	0	0	0	0.8	0.4	0.6	0
F-A_SW2	0.5	0.5	1	1	0	0	0	0	0	0	0.4	0.8	0.8	0	0	0	0
F-A_LM71	0	0	0	0	0.5	0.5	1	1	0	0	0	0	0	0.4	0.8	0.6	0
centrifuga_SW2	1	1	0.5	0.5	0	0	0	0	0	0	0.8	0.4	0.8	0	0	0	0
centrifuga_LM71	0	0	0	0	1	1	0.5	0.5	0	0	0	0	0	0.8	0.4	0.6	0
Eff_aerodinamici	1	1	1	1	1	1	1	1	0	0	0.8	0.8	1	0.8	0.8	1	0
Vento_scarico	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0.6
Vento_carico	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0	0	0.6	0.6	0.6	0.6	0.6	0.6	0
Temp_SLU	0	0.6	0	0.6	0	0.6	0	0.6	0	0.6	1	1	1	1	1	1	1

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 60 di 68

						S.L.E	.freq	uent	е								
VARIABILE PRINCIPALE:				TRAF	FICO				VEI	OTV			TE	MPERA	TURA	1	
		SV	V2			LM	71		S1	ΓR.		SW2			LM71		STR.
CARICHI	GRU	PPO1	GRU	PPO3	GRUP	PO1	GRU	PPO3	SCA	RICA	GR1	GR3	GR4	GR1	GR3	GR4	SCARICA
combinazioni	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
Peso Proprio (G1)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Permanenti Portati (G2)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
SW2	0.8	0.8	0.8	0.8	0	0	0	0	0	0	0	0	0	0	0	0	0
LM71	0	0	0	0	0.8	0.8	0.8	0.8	0	0	0	0	0	0	0	0	0
Serp_SW2	0.8	0.8	0.4	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0
Serp_LM71	0	0	0	0	0.8	0.8	0.4	0.4	0	0	0	0	0	0	0	0	0
F-A_SW2	0.4	0.4	0.8	0.8	0	0	0	0	0	0	0	0	0	0	0	0	0
F-A_LM71	0	0	0	0	0.4	0.4	0.8	0.8	0	0	0	0	0	0	0	0	0
centrifuga_SW2	0.8	0.8	0.4	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0
centrifuga_LM71	0	0	0	0	0.8	0.8	0.4	0.4	0	0	0	0	0	0	0	0	0
Eff_aerodinamici	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0	0	0.0	0.0	0	0.0	0.0	0	0
Vento_scarico	0	0	0	0	0	0	0	0	0.5	0.5	0	0	0	0	0	0	0
Vento_carico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temp_SLU	0	0.5	0	0.5	0	0.5	0	0.5	0	0.5	0.6	0.6	0.6	0.6	0.6	0.6	1
					S.L.I	E. qu	asi p	erma	nente	,							
VARIABILE PRINCIPALE:				TRAF	FICO				VEI	OTV			TE	MPERA	TURA	\	
		SV	V2			LM	71		Sī	ΓR.		SW2			LM71		STR.
CARICHI	GRU	PPO1	GRU	PPO3	GRUP	PO1	GRU	PPO3	SCA	RICA	GR1	GR3	GR4	GR1	GR3	GR4	SCARICA
combinazioni	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
Peso Proprio (G1)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Permanenti Portati (G2)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
SW2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LM71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Serp SW2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Serp LM71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F-A_SW2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F-A_LM71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
centrifuga_SW2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
centrifuga_LM71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Eff_aerodinamici	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vento_scarico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vento_carico	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Temp SLU	0	0.5	0	0.5	0	0.5	0	0.5	0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.

RS3E 50 D 09 CL VI0007 003 A

FOGLIO 61 di 68

7.3 VERIFICHE DI RESISTENZA

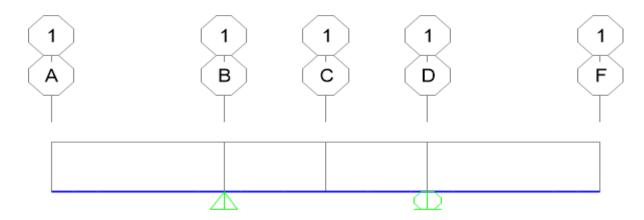


Figura 6_schema soletta

L'inviluppo delle sollecitazioni come da combinazione allo S.L.U. è il seguente:

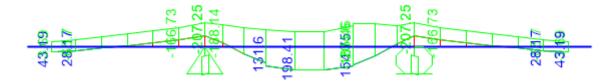
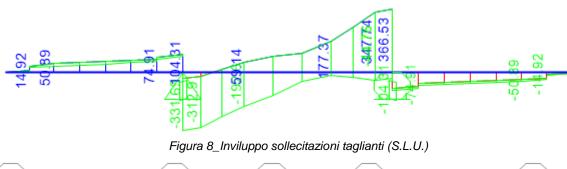



Figura 7_Inviluppo sollecitazioni flettenti (S.L.U.)

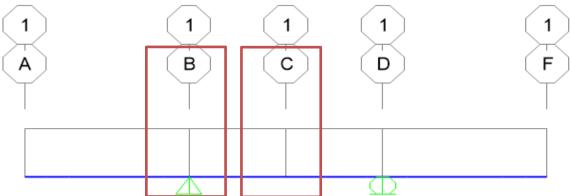


Figura 9_Sezioni di verifica

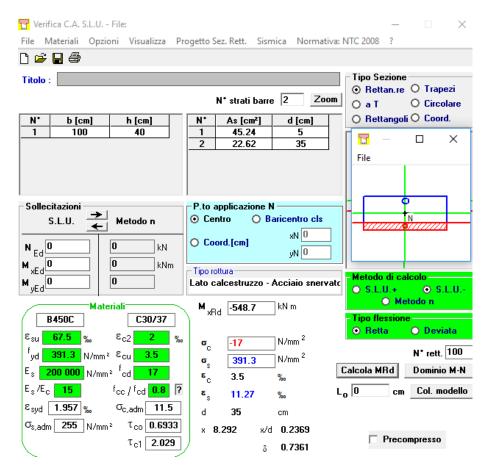
U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 62 di 68

• SEZIONE APPOGGI B, D:


Verifica a flessione

Mmax (-) = -207 kNm

Tmax (-) = 366 kN

Ferri sup: Φ24/10

Ferri inf: Φ24/20

La verifica risulta soddisfatta.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL V10007 003 A 63 di 68

SEZIONE CAMPATA BD

Verifica a flessione

Mmax $_{c}(+) = 198.4 \text{ kNm}$

Ferri sup: Φ24/10

Ferri inf: Φ24/20

La verifica risulta soddisfatta.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 64 di 68

VERIFICHE A TAGLIO

Elementi senza armature trasversali resistenti a taglio

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \, \cdot b_w d$$

larghezza sezione			1000	[mm]
altezza sezione			410	[mm]
altezza utile			360	[mm]
armatura longitudinale TESA/1mΦ	24	100	4524	[mm ²]
traliccio	0	0	0	[mm ²]
rapporto geometrico di armatura long	itudinale		0.013	
tensione media di compressione nella	sezione		0	[MPa]
			1.5	
			40.0	
resistenza caratteristica cilindrica			33.2	[MPa]
			0.47	[MPa]
			1.75	<=2
			167.4	
resistenza a taglio			261.5	[kN]
taglio sollecitante			365	[kN]
	altezza sezione altezza utile armatura longitudinale TESA/1mΦ traliccio rapporto geometrico di armatura long tensione media di compressione nella resistenza caratteristica cilindrica	altezza sezione altezza utile armatura longitudinale TESA/1mΦ 24 traliccio 0 rapporto geometrico di armatura longitudinale tensione media di compressione nella sezione resistenza caratteristica cilindrica	altezza sezione altezza utile armatura longitudinale TESA/1mΦ 24 100 traliccio 0 0 rapporto geometrico di armatura longitudinale tensione media di compressione nella sezione resistenza caratteristica cilindrica	altezza sezione 410 altezza utile 360 armatura longitudinale TESA/1mΦ 24 100 4524 traliccio 0 0 0 0 rapporto geometrico di armatura longitudinale 0.013 tensione media di compressione nella sezione 0 1.5 40.0 resistenza caratteristica cilindrica 33.2 resistenza taglio 261.5

Elementi con armature trasversali resistenti a taglio

ф	diametro staffe	10.0	[mm]
n staffe		5.0	
S	passo	200	[mm]
A _{Sw}	area staffe	392.7	[mm ²]
Υm		1.50	
f _{yk}		450	[MPa]
f _{yd}		391.3	[MPa]
α	angolo di inclinazione armatura trasversale rispetto asse trave	45.0	[deg]
cot α		1.0	

θ	angolo di inclinazione puntone compresso rispetto asse trave	21.8	[deg]
cot θ		2.5	

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

V _{Rsd}	<u>616.1</u>	[kN]

$$V_{\text{Rcd}} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

f _{cd}	resistenza a compressione	18.8	[MPa]
f' _{cd}	resistenza a compressione ridotta del cls d'anima	9.4	[MPa]
α_{c}	per membrature non compresse	1	
V _{Rcd}		<u>1471.2</u>	[kN]

V _{Rd2}	taglio resistente= min(Vrsd, Vrcd)	616.1	[kN]
V_{ed}	taglio affidato all' armatura	365.0	[kN]

VERIFICATO

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO	LOTTO	FASE	ENTE	COL	DOC.	PROG.	REV.	FOGLIO
RS3E	50	D	09	CL	VI0007	003	Α	65 di 68

7.4 VERIFICHE S.L.E.

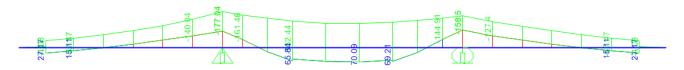
4.1.2.2.5.1 Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

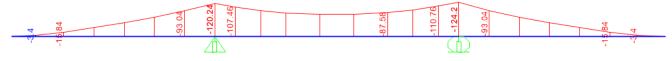
 $\sigma_c < 0.60~f_{ck}$ per combinazione caratteristica (rara) (4.1.40)

 $\sigma_c \leq 0.45~f_{ck}$ per combinazione quasi permanente. (4.1.41)

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.


Tabella C4.1.II Diametri massimi delle barre per il controllo di fessurazione

Tensione nell'acciaio	Diametro massimo φ delle barre (mm)				
σ _s [MPa]	w ₃ = 0,4 mm	$w_2 = 0.3 \text{ mm}$	$w_1 = 0.2 \text{ mm}$		
160	40	32	25		
200	32	25	16		
240	20	16	12		
280	16	12	8		
320	12	10	6		
360	10	8	-		

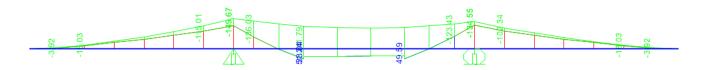

Tabella C4.1.III Spaziatura massima delle barre per il controllo di fessurazione

Tensione nell'acciaio	Spaziatura massima s delle barre (mm)				
$\sigma_s \; [\text{MPa}]$	$w_3 = 0.4 \text{ mm}$	$w_2 = 0.3 \text{ mm}$	$w_1 = 0.2 \text{ mm}$		
160	300	300	200		
200	300	250	150		
240	250	200	100		
280	200	150	50		
320	150	100	-		
360	100	50	-		

Si riportano di seguito gli inviluppi delle sollecitazioni flettenti per le combinazioni Rara e Frequente ed il calcolo delle rispettive tensioni:

Soll. Flettenti SLE Combinazione rara

Soll. Flettenti SLE Combinazione quasi permanente



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 66 di 68

Soll. Flettenti SLE Combinazione frequente

• Sezione M(-)

RARA				tesa	compr			
n NANA	b	h	x	As	As'	С	c'	d
15	1000	410	145.16	4524	2262	50	50	348
13	mm	mm	mm	mm ²	mm ²	mm	mm	mm
.0.			M	х	J id		σ cls	σαςς
0.000474			177040	145.2	4.12E+09		6.24E-03	0.13
			kNmm	mm	mm ⁴		kN/mm²	kN/mm
							6.24	130.78
							МРа	МРа
							compress	traz
QUASI PE	RMANENT	E		tesa	compr			
n	b	h	X	As	As'	С	c'	d
15	1000	410	145.16	4524	2262	50	50	348
	mm	mm	mm	mm²	mm²	mm	mm	mm
		1		_	1			
f.o.			М	Х	J id		σ cls	σасс
0.000474			124200	145.2	4.12E+09		4.38E-03	0.09
			kNmm	mm	mm ⁴		kN/mm²	kN/mm
							4.38	91.75
							МРа	МРа
				tesa	compr			
FREQUEN	TE							
	_	h	x		As'	С	c'	d
n 15	b	h 410	x 145.16	As	As' 2262	c 50	c' 50	d 348
-	_				As' 2262 mm²			
n	b 1000	410	145.16	As 4524	2262	50	50	348
n 15	b 1000	410	145.16	As 4524	2262	50	50	348
n 15	b 1000	410	145.16 mm	As 4524 mm ²	2262 mm ² J id 4.12E+09	50	50 mm σ cls 5.29E-03	348 mm σacc 0.11
n 15	b 1000	410	145.16 mm	As 4524 mm ²	2262 mm ²	50	50 mm	348 mm σacc 0.11
n	b 1000	410	145.16 mm M 150000	As 4524 mm ² x 145.2	2262 mm ² J id 4.12E+09	50	50 mm σ cls 5.29E-03	348 <i>mm</i>

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC.
 PROG. REV.
 FOGLIO

 RS3E
 50
 D
 09
 CL
 VI0007
 003
 A
 67 di 68

TENSIONE MASSIMA DI COMPRESSIONE DEL CLS IN CONDIZIONI DI ESERCIZIO

Rck	40	
h	410	mm
d	360	mm
С	50	mm
fck	33.2	N/mm²
fyk	450	N/mm²
n	15	c omogeneizzazione

As' sup	4524	mm²
As inf	2262	mm²
х	145.16	mm
Jid,x	4.12E+09	mm ⁴

mom.flettente

comb.rara	177.04	kNm
0.60 fck-20%	19.9	N/mm²
σς	6.24	N/mm²
verifica	ok	

comb quasi perman.	124.2	kNm
0.45 fck-20%	14.9	N/mm²
σς	4.38	N/mm²
verifica	ok	

ACCIAIO (comb.rara)	177.04	kNm
0.8 fyk	360	N/mm²
σs	130.8	N/mm²

verifica ok

CONDIZIONI AMBIENTALI

molto aggressive

Nel nostro caso abbiamo acciaio ordinario (non precompresso),

pertanto è classificato come "poco sensibile"

lo stato limite da considerare è quello di APERTURA DELLE FESSURE

 $\begin{array}{c|cccc} \text{COMBINAZIONE DELLE AZIONI} & \textit{frequente} & \textit{quasi permanente} \\ \text{limiti (w1)} & \hline 0.2 & 0.2 & [\text{mm}] \\ \end{array}$

La verifica può essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata, per la combinazione di car

valutata nella sezione parzializzata, per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura.

DIAMETRO BARRE	24	mm
SPAZIATURA	100	mm

COMB RARA

σs 130.8 <i>Mpa</i>	σs	130.8	Мра
----------------------------	----	-------	-----

DIAMETRO MAX 25 mm verifica OK

Sezione M(+)

RARA				tesa	compr			
n	b	h	X	As	As'	С	c'	d
15	1000	460	108.34	2262	4524	50	50	398
	mm	mm	mm	mm²	mm²	mm	mm	mm

f.o. -0.00066
 M
 x
 J id

 70090
 108.3
 3.50E+09

 kNmm
 mm
 mm⁴

σ cls	σасс
2.17E-03	0.09
kN/mm ²	kN/mm²
2.17	86.97
MPa	MPa

traz

compress

QUASI PE	RMANENT	<u>E</u>		tesa	compr			
n	b	h	X	As	As'	С	c'	d
15	1000	460	108.34	2262	4524	50	50	398
	mm	mm	mm	mm²	mm²	mm	mm	mm

f.o. -0.00066

	М	х	J id
Ī	0	108.3	3.50E+09
	kNmm	mm	mm ⁴

σ cls	σасс
0.00E+00	0.00
kN/mm²	kN/mm²
0.00	0.00
МРа	МРа

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato a sezione mista L=50m (Lc=48m) singolo binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3E 50 D 09 CL VI0007 003 A 68 di 68

<u>FREQUEN</u>	<u>TE</u>			tesa	compr			
n	b	h	X	As	As'	С	c'	d
15	1000	460	108.34	2262	4524	50	50	398
	mm	mm	mm	mm²	mm²	mm	mm	mm

f.o.

1.06E-05

М	X	J id
59000	108.3	3.50E+09
kNmm	mm	mm ⁴

σ cls	σасс
1.83E-03	0.07
kN/mm²	kN/mm²
1.83	73.21
MPa	MPa

TENSIONE MASSIMA DI COMPRESSIONE DEL CLS IN CONDIZIONI DI ESERCIZIO

Rck	40			
h	410	mm		
d	360	mm		
С	50	mm		
fck	33.2	N/mm²		
fyk	450	N/mm²		
n	15	c omogeneizzazione		

As' sup	4524	mm²
As inf	2262	mm²
x	145.16	mm
Jid,x	4.12E+09	mm ⁴

mom.flettente

comb.rara	70.09	kNm
0.60 fck-20%	19.9	N/mm²
σς	2.17	N/mm²
verifica	ok	
comb quasi perman.	0	kNm
0.45 fck-20%	14.9	N/mm²
σς	0.00	N/mm²
verifica	ok	
ACCIAIO (comb.rara)	70.09	kNm
0.8 fyk	360	N/mm²
σs	87.0	N/mm²
verifica	ok	

CONDIZIONI AMBIENTALI	molto aggressive			
Nel nostro caso abbiamo acciaio ordinario (non precompresso),				
pertanto è classificato come "poco sensibile	e"			
lo stato limite da considerare à quello di	ADEDTIIDA DELLE EESSLIDE			

 $\begin{array}{c|cccc} \text{COMBINAZIONE DELLE AZIONI} & \textit{frequente} & \textit{quasi permanente} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$

La verifica può essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata, per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura.

DIAMETRO BARRE	24	mm
SPAZIATURA	200	mm

<u>COMB RA</u>	. <u>RA</u>	
σs	87.0	Мра
DIAMETRO MAX	25	mm
verifica	OK	
SPAZIATURA MAX	200	mm

ΟK

verifica

Armatura longitudinale di ripartizione

Come armatura longitudinale di ripartizione si adottano Φ 16/20cm inferiormente e superiormente.

Dalle verifiche risulta giustificata un'incidenza di acciaio d'armatura nella soletta pari a 200 kg/m³.