COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA DITTAINO – CATENANUOVA (LOTTO 5)

OPERE PRINCIPALI – PONTI E VIADOTTI

VI02 - Viadotto ferroviario a Singolo Binario

Relazione di calcolo Pile

SCALA:
-

COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.

RS3E	5 0	D 0 9	CL	V I 0	2 0 5	0 0 2	Α

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autor zato Data
A	EMISSIONE ESECUTIVA	Abbasciano	Novembre 2019	A. Ferri	Novembre 2019	F. Sparacino	Novembre 2019	A. Vittozzi
			2017	2	2017	340	201)	Nov5ubje 2019
								IR S.4
							i	N. A. A. S.
								Clyi
								de of the other

File: RS3E50D09CLVI0205002A.docx n. Elab.: 1195

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 2 di 51

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE DELL'OPERA	4
	1.2	ASPETTI LEGATI ALLE OPERE DI FONDAZIONE	5
2	RIFE	ERIMENTI NORMATIVI	7
3	МАТ	TERIALI	8
	3.1	VERIFICA S.L.E.	9
	3.1.1	Verifiche alle tensioni	9
	3.1.2	Verifiche a fessurazione	9
4	ANA	ALISI E VERIFICHE PILA	11
	4.1	GENERALITÀ	11
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE PILE	11
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	11
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	15
	4.5	GEOMETRIA DELLA PILA	16
	4.6	Analisi dei carichi	17
	4.6.1	Peso proprio elementi strutturali	17
	4.6.2	Carichi trasmessi dall'impalcato	17
	4.6.3	Azione del Vento	20
	4.6.4	Carichi da traffico verticali	22
	4.6.5	Effetti dinamici	23
	4.6.6	Carichi da traffico orizzontali	23
	4.6.7	Azione sismica	25
	4.6.8	Calcolo delle sollecitazioni in testa pali	29
	4.6.9	Riepilogo risultati	29
	4.7	Sollecitazioni	31

REV.

Α

FOGLIO

3 di 51

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA DOCUMENTO

RS3E 50 D 09 CL VI 02 05 002

4.7.	.1	Plinto di fondazione	32
4.8		PALI DI FONDAZIONE	33
4.9		VERIFICHE DEGLI ELEMENTI STRUTTURALI.	34
4.9	. 1	Pila	37
4.9	.2	Zattera di fondazione	43
4.9	.3	B Palo di fondazione L=43.0m	46

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI02 della tratta ferroviaria Dittaino-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare si tratterà la Pila 16 che presenta l'altezza maggiore per tipologia di pila ed impalcati afferenti.

Verranno ipotizzati appoggi fissi sulla campata di luce maggiore, indipendentemente dal reale posizionamento degli stessi.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 14 gennaio 2008.

1.1 Descrizione dell'opera

Il viadotto ferroviario VI02 ha una lunghezza totale di circa 501 m, è costituito da 20 impalcati in c.a.p da 25m. Il viadotto è previsto a singolo binario.

Pile e spalle sono realizzate in c.a. gettato in opera.

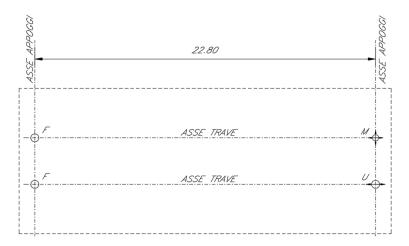


Figura 1: schema appoggi impalcati sx e dx

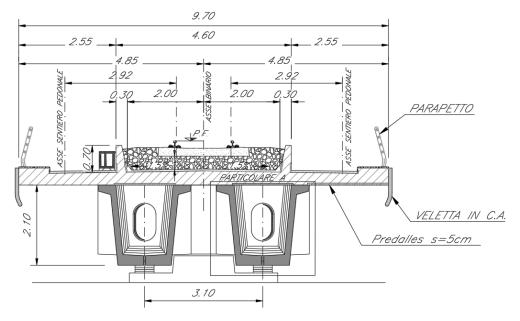
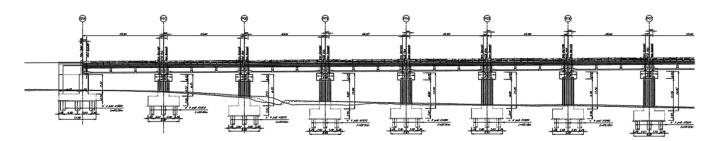
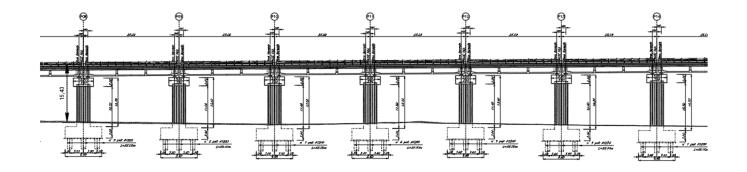
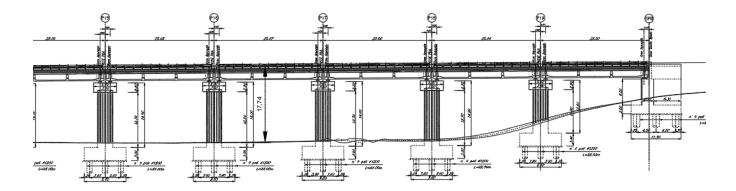




Figura 2: sezione trasversale impalcato sx edx

1.2 Aspetti legati alle opere di fondazione

Le fondazioni sono realizzate sia per le pile che per le spalle con plinti su pali di grande diametro.



VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 6 di 51

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 7 di 51

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Norme Tecniche per le Costruzioni, DM del 14/01/2008;
- Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- C.M. 02/02/2009 n.617: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- RFI DTC SI PS MA IFS 001 A del 30/12/2016: Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture;
- RFI DTC SI PS SP IFS 001 A del 30/12/2016: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- STI 2014 –Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

LOTTO COMMESSA RS3E 50

CODIFICA D 09 CL

DOCUMENTO VI 02 05 002

REV. Α

FOGLIO 8 di 51

3 **MATERIALI**

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

- Calcestruzzo magro e getto di livellamento
- CLASSE DI RESISTENZA MINIMA C12/15
- TIPO CEMENTO CEM I÷V CLASSE DI ESPOSIZIONE AMBIENTALE : XO
 - > Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni
- CLASSE DI RESISTENZA MINIMA C25/30

- CLASSE DI RESISTENZA INTERNA CACAGO TIPO CEMENTO CEM III+V
 RAPPORTO A/C : < 0.60
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
 COPRIFERRO MINIMO = 60 mm
- DIAMETRO MASSIMO INERTI: 32 mm
 - Calcestruzzo fondazioni armate

- CLASSE DI RESISTENZA MINIMA C25/30 TIPO CEMENTO CEM III÷V RAPPORTO A/C : ≤ 0.60 CLASSE MINIMA DI CONSISTENZA : S4 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 40mm
- DIAMETRO INERTI: 25 mm
 - Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle
- CLASSE DI RESISTENZA MINIMA C32/40
- TIPO CEMENTO CEM III+V RAPPORTO A/C : ≤ 0.50 CLASSE MINIMA DI CONSISTENZA :
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC4
- COPRIFERRO MINIMO = 50mm
- DIAMETRO INERTI: 25 mm
 - Acciaio ordinario per calcestruzzo armato

IN BARRE E RETI ELETTROSALDATE

N DANNE E NETT CELETRICA STATE STAT

 $1.15 \le ftk/fyk < 1.35$

(*): I VALORI DI COPRIFERRO RIPORTATI SI RIFERISCONO AD OPERE CON VITA NOMINALE DI 75 ANNI. PER COSTRUZIONI CON VITA NOMINALE DI 100 ANNI TALI VALORI DOVRANNO ESSERE AUMENTATI DI 5 mm.

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{sk};
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di esigenza			Armatura				
	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile		
			Stato limite	wd	Stato limite	wd	
a	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃	

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 02 05 002	Α	10 di 51

		quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
	Agglessive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	\leq w ₁
		quasi permanente	decompressione	-	ap. fessure	\leq w ₁

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	I CLASSE DI ESPOSIZIONE		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 617/09.

4 ANALISI E VERIFICHE PILA

4.1 Generalità

La pila presenta una sezione circolare di diametro 4.50m, una altezza complessiva di 12.80m.

Il pulvino è costituito da una sezione piena di dimensione 5.3x 8.00m ed altezza 2.20m.

Le fondazioni sono realizzate su pali di diametro 1.20 m collegate in testa da una platea di spessore 3.00m.

Per le verifiche dei singoli elementi della pila (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

4.2 Modelli a mensola per la verifica delle pile

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto.

Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirantepuntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC08, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 02 05 002	Α	12 di 51

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** 13 di 51 RS3E 50 D 09 CL VI 02 05 002 Α

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 02 05 002	Α	14 di 51

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi , alle verifiche strutturali.

	A2 - SLU - N max gr.1	A2 - SLU - MT max gr.1	A2-SLU-ML max gr.1	A2 - SLU - N max gr.3	A2 - SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	A2 - SLU Gmin - N max gr.1	A2 - SLU Gmin - MT max gr.1	A2 - SLU Gmin - ML max gr.1	A2-SLU Gmin-N max gr.3	A2 - SLU Gmin - MT max gr.3	A2 - SLU Gmin - ML max gr.3	A2 - SLU Gmin - Vento ponte scarico	A1-SLU - N max gr.1	A1-SLU-MT max gr.1	A1-SLU-Ml max gr.1	A1-SLU - N max gr.3	A1-SLU-MT max gr.3	A1-SLU-ML max gr.3	A1 - SLU - Vento ponte scarico	A1 - SLU Gmin - N max gr.1	A1-SLU Gmin-MT max gr.1	A1-SLU Gmin-ML max gr.1
Peso proprio gl	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	1.50	1.50		0.00	0.00	0.00
Ballast	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00
Comb. Nmax Qv	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00
Comb. Nmax Q frenatura	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00
Comb. Nmax Q centrifuga	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00
Comb. Nmax Q serpeggio	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Qv	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00
Comb. MTmax Q frenatura	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00
Comb. MTmax Q centrifuga	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00
Comb. MTmax Q serpeggio	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00
Comb. MLmax Qv	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45
Comb. MLmax Q frenatura	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73
Comb. MLmax Q centrifuga	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45
Comb. MLmax Q serpeggio	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00
Vento Ponte Carico	0.78	0.78	0.00	0.78	0.78	0.00	0.00	0.78	0.78	0.00	0.78	0.78	0.00	0.00	0.90	0.90	0.00	0.90	0.90	0.00	0.00	0.90	0.90	0.00
Attrito permanente	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Attrito carichi mobili	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00	1.45	1.45	1.45
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vento x	0.00	0.00	0.78	0.00	0.00	0.78	0.00	0.00	0.00	0.78	0.00	0.00	0.78	0.00	0.00	0.00	0.90	0.00	0.00	0.90	0.00	0.00	0.00	0.90
Vento y	0.78	0.78	0.00	0.78	0.78	0.00	1.30	0.78	0.78	0.00	0.78	0.78	0.00	1.30	0.90	0.90	0.00	0.90	0.90	0.00	1.50	0.90	0.90	0.00

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 15 di 51

A1-SLU Gmin-N max gr.3 A1-SLU Gmin-MT max gr.3	A1-SLU G min-ML max gr.3	A1 - SLU Gmin - Vento ponte scarico	SLE rara - N max gr.1	SLE rara - MT max gr.1	SLE rara - ML max gr.1	SLE rara - N max gr.3	SLE rara - MT max gr.3	SLE rara - ML max gr.3	SLE rara - Vento ponte scarico	SLE freq N max gr.1	SLE freq MT max gr.1	SLE freq ML max gr.1	SLE freq N max gr.3	SLE freq MT max gr.3	SLE freq ML max gr.3	SLE freq Vento ponte scarico	SLE quasi permanente	SLV - N max	SLV - MT max	SLV - ML max	SLV - MT max	SLV - ML max	SLV - N min	
1.00 1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Peso proprio gl
0.00 0.00	_	0.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Permanenti G2
1.00 1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Ballast
1.45 0.00		0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Qv
1.45 0.00		0.00	0.50	0.00		1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q frenatura
0.73 0.00	0.00	0.00	1.00	0.00		0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q centrifuga
0.73 0.00		0.00	1.00	0.00		0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q serpeggio
0.00 1.45		0.00	0.00	1.00		0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Qv
0.00 1.45		0.00	0.00	0.50		0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q frenatura
0.00 0.73		0.00	0.00	1.00		0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q centrifuga
0.00 0.73		0.00	0.00	1.00		0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q serpeggio
0.00 0.00		0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Qv
0.00 0.00		0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q frenatura
0.00 0.00		0.00	0.00	0.00		0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q centrifuga
0.00 0.00		0.00	0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	Comb. MLmax Q serpeggio
0.00 0.00		1.50	0.00	0.00		0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Scarico
0.90 0.90		0.00	0.60	0.60		0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Carico
1.35 1.35	5 1.35	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50	0.50	Attrito permanente
1.45 1.45	5 1.45	0.00	1.00	1.00		1.00	1.00	1.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20	Attrito carichi mobili
0.00 0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.30	1.00	0.30	Sisma longitudinale
0.00 0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	1.00	0.30		Sisma trasversale
0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	-0.30	-0.30	-1.00	Sisma verticale
0.00 0.00	0.90	0.00	0.00	0.00	0.60	0.00	0.00	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento x
0.90 0.90	0.00	1.50	0.60	0.60	0.00	0.60	0.60	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento y

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- Lunghezze = m
- Forze = kN

4.5 Geometria della Pila

Generali			
Peso cls	γ _{c1s}	25	kN/m ³
Peso terreno	$\gamma_{\rm t}$	20	kN/m ³
Sovraccarico accidentale sul rilevato	q _{acc}	53.0	kN/m ²
Altezza appoggio + baggiolo	h _{an}	0.45	m
Distanza piano appoggi-intradosso plinto	H ₁	16.25	m
Pulvino			
Altezza	Hp	2.20	m
Lunghezza lungo asse X	b _p	5.3	m
Lunghezza lungo asse Y	L _p	8.00	m
Area Sezione		42.40	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	Хp	0.00	m
Pila			
Altezza	H _m	12.80	m
Lunghezza lungo asse X	b _m	4.50	m
Lunghezza lungo asse Y	L _m	4.50	m
Area Sezione		15.90	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	x _m	0.00	m
Distanza asse baggioli- asse pila (sx)	x _{m1}	-1.20	m
Distanza asse baggioli- asse asse pila (dx)	x _{m2}	1.20	m
Plinto			
Altezza	H_{f}	3.00	m
Lunghezza lungo asse X	$b_{\rm f}$	9.60	m
Lunghezza lungo asse Y	L_{f}	9.60	m
Spessore ricoprimento medio	h _t	1.00	m
Distanza asse baggioli - baricentro plinto (sx)		-1.20	m
Distanza asse baggioli - baricentro plinto (dx)		1.20	m
Terreno	T	<u> </u>	
Angolo d'attrito interno (φ)		35	0
Coefficiente per il calcolo della spinta a riposo	 	Ko= 0.426	
Sisma			
Ss		1.489]
<u>a_g</u>		0.135]
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.201	

Tabella 2 – Dati di input

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

> Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato	(sx)		
N° Binari		1	
Lunghezza	L	25	m
Peso Proprio	G_1	162	kN/m
Permanenti portati	- G ₂	120	kN/m
Ballast	G ₂	0	kN/m
n° totale appoggi sulla pila	n	2	
Reazione appoggio $i = (G_1*L/2)/n$	R_i	1012.5	kN
Reazione appoggio $i = (G_2*L/2)/n$	R_i	750.0	kN
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	Ri	0	kN

Impalcato (dx	:)		
N° Binari		1	
Lunghezza	L	25	m
Peso Proprio	G1	162	kN/m
Permanenti portati	G2	120	kN/m
Ballast	G2	0	kN/m
nº totale appoggi sulla pila	n	2	
Reazione appoggio $i = (G_1*L/2)/n$	Ri	1012.5	kN
Reazione appoggio $i = (G_2*L/2)/n$	Ri	750.0	kN
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	Ri	0	kN

4.6.2 Carichi trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra (la condizione di Momento Longitudinale massimo "MLmax" è riferita alla situazione in cui solo uno dei due impalcati venga caricato):

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 18 di 51

SX									
CAP 25 ML SINGOLO BINARIO									
APPOGGIO	REAZIONE	у	REAZ. LM71	REAZ. SW2	α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.530	1.55	1239	936	1.1	1	1.20	1638	1125
2	0.470	-1.55	1239	936	1.1	1	1.20	1638	1125
dx									
CAP 25 ML SINGOLO BINARIO									
APPOGGIO	REAZIONE	У	REAZ. LM71	REAZ. SW2	α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.530	1.55	1239	1875	1.1	1	1.20	1638	2254
2	0.470	-1.55	1239	1875	1.1	1	1.20	1638	2254
dx ML max									
CAP 25 ML SINGOLO BINARIO									
APPOGGIO	REAZIONE	у	REAZ. LM71	REAZ. SW2	α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.530	1.55	1529	1875	1.1	1	1.20	2022	2254
2	0.470	-1.55	1529	1875	1.1	1	1.20	2022	2254

Che ripartiti con il metodo Courbon sul singolo appoggio forniscono i risultati in tabella seguente.

$\underline{\textbf{REAZIONI VINCOLARI}} \ [kN,m]$

SX

	Appoggio		A			В		
	Descrizione carico	FZ	FX	FY	FZ	FX	FY	biz
	Descrizione carico	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
	Peso proprio g1	1013			1013			0.00
	Permanenti G2	750			750			0.00
	Ballast							0.00
	Comb. Nmax Qv	596			529			0.00
	Comb. Nmax Q frenatura		0			0		3.30
	Comb. Nmax Q centrifuga			119			119	5.10
	Comb. Nmax Q serpeggio			13			13	3.30
	Comb. MTmax Qv	868			770			0.00
	Comb. MTmax Q frenatura		0			0		3.30
	Comb. MTmax Q centrifuga			165			165	5.10
	Comb. MTmax Q serpeggio			13			13	3.30
	Comb. MLmax Qv	0			0			0.00
	Comb. MLmax Q frenatura		0			0		3.30
	Comb. MLmax Q centrifuga						0	5.10
	Comb. MLmax Q serpeggio							3.30
	Vento Ponte Scarico			69			69	3.30
	Vento Ponte Carico			145			145	3.65
	Attrito permanente		53	53		53	53	0.00
	Attrito carichi mobili		26	26		23	23	0.00
N.	Sisma longitudinale							2.50
Ē	Sisma trasversale			1028			1028	2.50
	Sisma verticale	276			276			0.00
9	Sisma longitudinale		0			0		2.50
q=1.36	Sisma trasversale			1134			1134	2.50
6	Sisma verticale	276			276			0.00
	Sisma longitudinale		0			0		2.50
Ę,	Sisma trasversale			1542			1542	2.50
	Sisma verticale	276			276			0.00

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 19 di 51

$\underline{\textbf{REAZIONI VINCOLARI}} \ [kN,m]$

đx

Appoggio		A			В		
D	FZ	FX	FY	FZ	FX	FY	biz
Descrizione carico	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
Peso proprio g1	1013			1013			0.00
Permanenti G2	750			750			0.00
Ballast							0.00
Comb. Nmax Qv	1195			1059			0.00
Comb. Nmax Q frenatura		438			438		3.30
Comb. Nmax Q centrifuga			119			119	5.10
Comb. Nmax Q serpeggio			13			13	3.30
Comb. MTmax Qv	868			770			0.00
Comb. MTmax Q frenatura		438			438		3.30
Comb. MTmax Q centrifuga			165			165	5.10
Comb. MTmax Q serpeggio			13			13	3.30
Comb. MLmax Qv	1195			1059			0.00
Comb. MLmax Q frenatura		438			438		3.30
Comb. MLmax Q centrifuga			119			119	5.10
Comb. MLmax Q serpeggio			25			25	3.30
Vento Ponte Scarico			69			69	3.30
Vento Ponte Carico			145			145	3.65
Attrito permanente		53	53		53	53	0.00
Attrito carichi mobili		36	36		32	32	0.00
Sisma longitud i nale		2095			2095		2.50
Sisma trasversale			1028			1028	2.50
Sisma verticale	276			276			0.00
Sisma longitudinale		2311			2311		2.50
Sisma trasversale			1134			1134	2.50
Sisma verticale	276			276			0.00
Sisma longitudinale		3143			3143		2.50
Sisma trasversale			1542			1542	2.50
Sisma verticale	276			276			0.00

VI02 - Viadotto ferroviario a Singolo Binario

 RELAZIONE DI CALCOLO PILA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 20 di 51

4.6.3 Azione del Vento

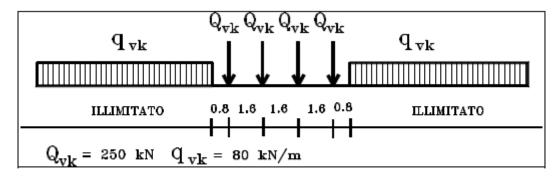
Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	250	250	m
Zona	Z	4	4	
Parametri	Vb,0	28	28	m/s
Parametri	a 0	500	500	m
Parametri	ks	0.36	0.36	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 * (1+ ks(as/ao-1)	28	28	m/s
Periodo di ritorno considerato	TR	112.5	112.5	anni
	αR	1.05	1.05	
Velocità di riferimento	Vb(TR)	29.28	29.28	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*ρ*vb²	0.54	0.54	kN/mq
Classe di rugostità del terreno	,	D	D	
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		<750	<750	m
Categoria di esposizione del sito	Cat	II	II	
Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	20	20	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.81	2.81	
Larghezza impalcato	b	9.7	9.7	m
Altezza impalcato	h1	2.6	3.3	m
Altezza treno o parapetto	h2	1.5	4	m
Altezza totale impalcato (comprese le barriere o treno)	dtot	4.1	7.3	m
Rapporto di forma	b/dtot	2.37	1.33	***
Coefficiente di forza (figura 8.3 EC)	cfx	1.79	2.10	
Riepilogo				
Pressione cinetica di riferimento	qb	0.54	0.54	kN/mq
Coefficiente di esposizione	ce	2.81	2.81	
Coefficiente di forza	cfx	1.79	2.10	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	4.1	7.3	m
Forza statica equivalente a m/l	f=prodotto	11.0	23.1	kN/m
Pressione statica equivalente	p=f/d	2.69	3.16	kN/mg
Pressione statica equivalente (minima considerata)	pmin	1.5	1.5	kN/mo
Forza statica equivalente a m/l considerata	f	11.0	23.1	kN/m
Vento impalcato a ponte scarico		sx	dx	
Forza statica equivalente	f	11.0	11.0	kN/m
Luce impalcato	L	25	25	m
Forza trasversale al piano appoggi	FT=f*L/2	138	138	kN/m
Vento impalcato a ponte carico				
Forza statica equivalente	f	23.1	23.1	kN/m
Luce impalcato	L	25	25	m
Forza trasversale al piano appoggi	FT=f*L/2	289	289	kN/m

VI02 - Viadotto ferroviario a Singolo Binario

 RELAZIONE DI CALCOLO PILA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 21 di 51

Vento su Pila e Pulvino				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	15.00	15	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.62	2.62	
		dir.x	dir.x	
Altezza (dir.z)	h	2.20	12.80	m
Larghezza in direz. Ortogonale al vento	ъ	8.00	4.50	m
Larghezza in direz. Parallela al vento	đ	5.3	4.5	m
Rapporto di forma	d/b	0.66	1.00	
Coefficiente di forza (figura 7.23 EC)	cfx	2.38	2.15	
Raggio di arrotondamento (figura 7.24 EC)	r	0	2.25	m
Rapporto di forma II	r/b	0.00	0.50	
Fattore di riduzione (figura 7.24 EC)	Ψ	1.00	0.50	
Pressione di riferimento	q=Ψ*cfx*ce*qb	3.33	1.51	kN/mq
Area investita dal vento	A=b*h	17.6	57.6	mq
Forza statica equivalente	F=q*A	59	87	kN
		dir.y	dir.y	
Altezza (dir.z)	h	2.20	12.80	m
Larghezza in direz. Ortogonale al vento	ь	5.3	4.5	m
Larghezza in direz. Parallela al vento	đ	8	4.5	m
Rapporto di forma	d/b	1.51	1.00	
Coefficiente di forza (figura 7.23 EC)	cfx	1.86	2.15	
Raggio di arrotondamento (figura 7.24 EC)	r	0	2.25	m
Rapporto di forma II	r/b	0.00	0.50	
Fattore di riduzione (figura 7.24 EC)	Ψ	1.00	0.50	
Pressione di riferimento	q=Ψ*cfx*ce*qb	2.60	1.51	kN/mq
Area investita dal vento	A=b*h	11.66	57.6	mq
Forza statica equivalente	F=q*A	30	87	kN
Riepilogo	•			
Vento x				
Pulvino	F	59	kN	
Pila	F	87	kN	
Distanza tra spiccato fusto e testa pulvino	bz	15.00	m	
Forza totale	F Tot	145	kN	
Vento y				
Pulvino	F	30	kN	
Pila	F	87	kN	
Distanza tra spiccato fusto e testa pulvino	bz	15.00	m	
Forza totale	F Tot	117	kN	


4.6.4 Carichi da traffico verticali

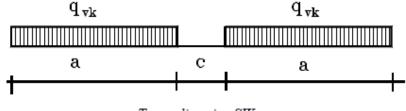
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2.

Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Treno di carico LM 71


Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito</u>: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

Treno di carico SW

Tipo di Carico	$q_{vk}[kN/m]$	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario.

Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001 A).

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1,10
SW/0	1,10
SW/2	1,00

4.6.5 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 14.1.2008 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2,16}{\sqrt{L_6} - 0,2} + 0,73$$
 con la limitazione $1,00 \le \Phi_3 \le 2,00$ [5.2.7]

4.6.6 Carichi da traffico orizzontali

Frenatura							
L	25	m					
Leale	25	per Treno LM 71					
	19.7	per Treno SW/0					
	25	per SW/2					
Qlb,k	550	per Treno LM 71					
Qlb,k	433.4	per Treno SW/0					
Qlb,k	875	per SW/2					
Qlb,k (filtrata)per Treno LM 71	550	kN					
Qlb,k (filtrata)per Treno SW/0	433	kN					
Qlb,k(filtrata)per SW/2	875	kN					

Avviamento							
L	25	m					
Lcalc	25	per Treno LM 71					
	19.7	per Treno SW/0					
	25	per SW/2					
Qla,k	907.5	per Treno LM 71					
Qla,k	715.11	per Treno SW/0					
Qla,k	825	per SW/2					
Qla,k (filtrata)per Treno LM 71	908	kN					
Qla,k (filtrata)per Treno SW/0	715	kN					
Qla,k(filtrata)per SW/2	825	kN					

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

Forza centrifuga sx

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 24 di 51

<u>Serp</u>	<u>eggio</u>	
FT=100kN/2	50	kN*m
Treno LM 71		
α	1.1	
FT*α	55	kN
Treno SW/0		
α	1.1	
FT*α	55	kN
Treno SW/2		
α	1	
FT*α	50	kN

L	25	m	Lø	22.8	m			
velocità di progetto	160	km/h	ø3 Coeff. Dinamico	1.202				
raggio planimetrico	750	m						
f	0.82	Per V>120 km/h						
f	1	Per V<120 km/h						
Treno LM 71	٦		Treno SW/0			Treno SW/2		
Qvk	1000	kN						
qvk	80	kN/m	qvk	133	kN/m	qvk	150	kN/m
α	1	Per V>120 km/h	α	1.1		α	1	
α	1.1	Per V<120 km/h						
Qtk	265	Per V>120 km/h						
~	200	Per V<120 km/h						
Qtk scelto	265							
qtk	21	Per V>120 km/h						
	16	Per V<120 km/h	qtk	18	Per V=100 km/h	qtk	19	Per V=100 km/h
qtk scelto	21							
L calc= L-6.4m	18.6	m	L calc	19.7	m	L calc	25	m
qtk*Lcalc	394	kN	qtk*Leale	364	kN	qtk*Lcalc	473	kN
FT= (qtk*Lcalc + qtk)/2	329	kN	FT= qtk*Leale /2	182		FT= qtk*Lcalc /2	237	
Forza centrifuga dx					_			
L	25	m	Lø	22.8	m			
velocità di progetto	160	km/h	ø3 Coeff. Dinamico	1.202				
raggio planimetrico	750	m						
f	0.82	Per V>120 km/h						
f	1	Per V<120 km/h						
	7		T 0777.0	ı				
Treno LM 71	1000	kN	Treno SW/0			Treno SW/2		
Qvk	1000	kN kN/m		400	137/		150	137/
qvk	80		qvk	133	kN/m	qvk	150	kN/m
α	1	Per V>120 km/h Per V<120 km/h	α	1.1		α	1	
α	1.1	rer v<120 km/h						
Qtk	265	Per V>120 km/h						
	200	Per V<120 km/h						
Qtk scelto	265	·						
qtk	21	Per V>120 km/h						
	16	Per V<120 km/h	qtk	18	Per V=100 km/h	qtk	19	Per V=100 km/h
qtk scelto	21							
L calc= L-6.4m	18.6	m	L calc	19.7	m	L calc	25	m
qtk*Lcalc	394	kN	qtk*Lcalc	364	kN	qtk*Lcalc	473	kN
FT= (qtk*Lcalc + qtk)/2	329	kN	FT= qtk*Lcalc /2	182		FT= qtk*Lcalc /2	237	

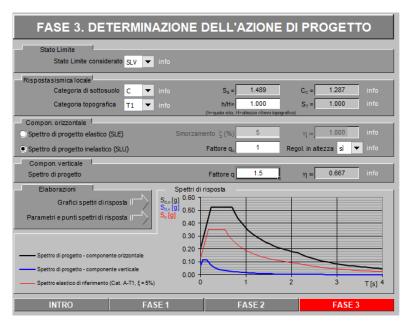


4.6.7 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

Valori di progetto

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:

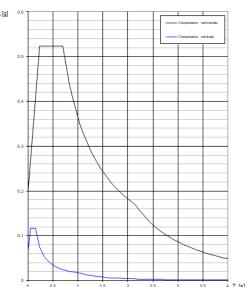

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica.

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 02 05 002	Α	27 di 51	

Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLV

Parametri dipendenti

1.489
1.000
0.232 s
0.695 s
2.139 s

Calcolo dell'azione Sismica

Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle Normative. Qualora le ipotesi non siano soddisfate, per il calcolo dei periodi propri della pila, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello tridimensionale agli Elementi Finiti semplificato.

I Fattori di struttura utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali e verifica del plinto
- q= 1 per le verifiche a taglio degli elementi strutturali (vedi anche punto successivo), verifiche a capacità portante orizzontale dei pali.
- Solo per la verifica a taglio dello spiccato della pila, il criterio adottato è quello della gerarchia delle resistenze, così come indicato al punto 7.9.5 delle NTC

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 28 di 51

Condizione Sist	nica		
Massa sismica impalcato dir x	mix	7952	kN
Massa efficace pila dir x	mpx	4028	kN
Massa complessiva dir x	mix + mpx	11980	kN
1/5 Massa sismica impalcato dir x	mix/5	1590	kN
Verifica requisito dir x		no	
Massa sismica impalcato dir. y	mi _y	7726	kN
Massa efficate pila dir. Y	mpy	4028	kN
Massa complessiva dir. Y	miy + mpy	11754	kN
1/5 Massa sismica impalcato dir. Y	miy/5	1545	kN
Verifica requisito dir. Y		no	127
Massa sismica impalcato dir. z	miz	7726	kN
Massa efficate pila dir. Z	mpz	4028	kN
Massa complessiva dir. Z 1/5 Massa sismica impalcato dir. Z	miz + mpz miz/5	11754 1545	kN kN
Verifica requisito dir. Z	IIIIZ/3	1343 no	KIN
vermea requisito dir. Z		110	
Inerzia Pila asse y	J_{yy}	20.1	m ⁴
Inerzia Pila asse x	J _{xx}	20.1	m ⁴
Area Pila	A _p	15.90	m ²
Rigidezza Pila asse y	K _v	371827068.3	N/m
Rigidezza Pila asse x	K _x	371827068.3	N/m
rigidezza Pila asse z	K _z	34989488179	N/m
Periodo x	T _x	0.36	s
Periodo y	T _v	0.35	s
Periodo z		0.04	
Periodo 2	T_z	0.04	S
A coolerations originately So(Tv) discrime v		0.52	
Accelerazione orizzontale Se(Tx) direzione x	a _g x		
Accelerazione orizzontale Se(Ty) direzione y	a _g y	0.52	
Accelerazione Verticale Se(Tz) direzione z	a _g z	0.09	
q=1.5		0.25	
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.35	
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.35	
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.09	
q=1.36			
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.39	
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.39	
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.09	
q=1			
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.5	
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.5	
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.09375	
Condizione Sismica - Ta		ıli	
q=1.5			
Tagliante direzione x	F x	4190	kN
Tagliante direzione y	F y	4111	kN
Tagliante direzione z	Fz	1102	kN
q=1.36	E	4622	1.37
Tagliante direzione x Tagliante direzione y	F x	4622	kN 1-N
Tagliante direzione y Tagliante direzione z	F y F z	4534 1102	kN kN
	I. Z	1102	kN
Tagliante direzione x	Fχ	6285	kN
Tagliante direzione y	Fy	6167	kN
Tagliante direzione z	Fz	1102	kN

4.6.8 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, $n \in I$ numero di pali e II, II sono le inerzie longitudinale e trasversale della palificata

$$J_{t} = \sum y_{i}^{2} \qquad J_{t} = \sum x_{i}^{2}$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.9 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max}, N_{min}, T ed M.

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 30 di 51

	SP	ICCATO PILA	: condizione s	tatica				
Descritions	FZ	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	Mx	My
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Pila	7421			0.00	0.00	0	0	0
Vento su pila đir. x		145		0.00	0.00	15.00	0	2182
Vento su pila dir.y			117.1	0.00	0.00	15.00	1757	0
	INTRADO	OSSO FONDA	ZIONE: condiz	zione stat	ica			•
Descrizione carico	FZ	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	My
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Pila	7421			0.00	0.00	0	0	0
Plinto	6912			0.00	0.00	1.50	0.00	0
Rinterro	1438			0.00	0.00	0.00	0.00	0
Vento su pila đir. x		145		0.00	0.00	18.00	0	2618
Vento su pila đir.y			117.1	0.00	0.00	18.00	2108	0
	INTRADO	SSO FONDA	ZIONE: condiz	ione sisn	ica		•	•
D	FZ	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	My
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Plinto sisma x		1389		0.00	0.00	1.50	0.00	2084
Plinto sisma y			1389	0.00	0.00	1.50	2084	0
Plinto sisma z	695			0.00	0.00	1.50	0	0
Rinterro sisma z	145			0.00	0.00	0.00	0	0

4.7 Sollecitazioni

	OL DELL.	A PILA			
	Nz	Tx	Ty	Mx	My
A2 - SLU - N max gr.1	19595	905	1559	29326	1748
A2 - SLU - MT max gr.1	19466	905	1789	34039	1578
A2 - SLU - ML max gr.1	18189	1018	717	13072	2087
A2 - SLU - N max gr.3	19595	1452	1230	22627	2774
A2 - SLU - MT max gr.3	19466	1452	1345	24976	2605
A2 - SLU - ML max gr.3	18189	1566	537	9429	3113
A2 - SLU - Vento ponte scarico	15371	212	723	12279	326
A2 - SLU Gmin - N max gr.1	15695	905	1559	29326	1748
A2 - SLU Gmin - MT max gr.1	15566	905	1789	34039	157
A2 - SLU Gmin - ML max gr.1	14289	1018	717	13072	208
A2 - SLU Gmin - N max gr.3	15695	1452	1230	22627	277
A2 - SLU Gmin - MT max gr.3	15566	1452	1345	24976	260:
A2 - SLU Gmin - ML max gr.3	14289	1566	537	9429	3113
A2 - SLU Gmin - Vento ponte scarico	11471	212	723	12279	326
Al - SLU - N max gr.1	24886	1090	1845	34578	2090
Al - SLU - MT max gr.1	24737	1090	2112	40045	1893
Al - SLU - ML max gr.l	23255	1221	872	15784	2482
Al - SLU - N max gr.3	24886	1726	1464	26806	3282
A1 - SLU - MT max gr.3	24737	1726	1597	29532	3086
A1 - SLU - ML max gr.3	23255	1857	664	11558	3674
A1 - SLU - Vento ponte scarico	19986	286	875	14809	441
Al - SLU Gmin - N max gr.1	16371	1090	1845	34578	2090
Al - SLU Gmin - MT max gr.1	16222	1090	2112	40045	1893
A1 - SLU Gmin - ML max gr.1	14740	1221	872	15784	2482
A1 - SLU Gmin - N max gr.3	16371	1726	1464	26806	328
A1 - SLU Gmin - MT max gr.3	16222	1726	1597	29532	308
A1 - SLU Gmin - ML max gr.3	14740	1857	664	11558	367
Al - SLU Gmin - Vento ponte scarico	11471	212	801	13665	326
SLE rara - N max gr.1	17850	766	1273	23806	146
SLE rara - MT max gr.1	17747	766	1457	27577	132
SLE rara - ML max gr.1	16725	854	616	11111	1729
SLE rara - N max gr.3	17850	1204	1010	18447	228
SLE rara - N max gr.3 SLE rara - MT max gr.3	17747	1204	1102	20326	2149
_	16725	1292	472		
SLE rara - ML max gr.3	14471	212	605	8197	2551 326
SLE rara - Vento ponte scarico				10199	
SLE freq N max gr.1	17175	655	726	13538	1230
SLE freq MT max gr.1	17092	655	873	16554	112
SLE freq ML max gr.1	16275	655	535	9542	134
SLE freq N max gr.3	17175	1006	515	9250	189
SLE freq MT max gr.3	17092	1006	589	10754	178
SLE freq ML max gr.3	16275	1006	420	7211	2001
SLE freq Vento ponte scarico	14471	212	350	5855	326
SLE quasi permanente	14471	212	212	3268	326
SLV - N max	16251	1561	1468	26345	281
SLV - MT max gr.1	15458	1561	4383	78766	278
SLV - ML max gr.1	15253	4494	1420	25346	810
SLV - MT max gr.3	14795	1561	4383	78766	278
SLV - ML max gr.3	14591	4494	1420	25346	810
SLV - N min	14043	1561	1468	26345	281
SLV - N max	16251	1691	1595	28603	304
SLV - MT max gr.1	15458	1691	4806	86334	301
SLV - ML max gr.1	15253	4926	1547	27625	887
SLV - MT max gr.3	14795	1691	4806	86334	301
SLV - ML max gr.3	14591	4926	1547	27625	887
SLV - N min	14043	1691	1595	28603	304
SLV - N max	16251	2190	2085	37416	3939
SLV - MT max gr.1	15458	2190	6439	115671	391
SLV - ML max gr.1	15253	6589	2037	36417	1186
SLV - MT max gr.3	14795	2190	6439	115671	391
SLV - ML max gr.3	14591	6589	2037	36417	1186
SLV - N min	14043	2190	2085	37416	3939
	14042	2190	2085	37416	3

Tabella 3 – Sollecitazioni della base della pila

4.7.1 Plinto di fondazione

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

	Nz	Tx	Ty	Mx	M
A2 - SLU - N max gr.1	28377	905	1559	34002	201
A2 - SLU - MT max gr.1	28248	905	1789	39405	185
A2 - SLU - ML max gr.1	26971	1018	717	15224	239
A2 - SLU - N max gr.3	28377	1452	1230	26316	321
A2 - SLU - MT max gr.3	28248	1452	1345	29011	304
A2 - SLU - ML max gr.3	26971	1566	537	11041	358
A2 - SLU - Vento ponte scarico	24153	212	723	14446	390
A2 - SLU Gmin - N max gr.1	22607	905	1559	34002	201
A2 - SLU Gmin - MT max gr.1	22478 21201	905 1018	1789 717	39405 15224	185 239
A2 - SLU Gmin - ML max gr.1	21201	1452	1230	26316	321
A2 - SLU Gmin - N max gr.3 A2 - SLU Gmin - MT max gr.3	22478	1452	1345	29011	304
A2 - SLU Gmin - MI max gr.3 A2 - SLU Gmin - ML max gr.3	21201	1566	537	11041	358
A2 - SLU Gmin - Vento ponte scarico	18383	212	723	14446	39
A1 - SLU - N max gr.1	36374	1090	1845	40112	241
Al - SLU - MT max gr.1	36225	1090	2112	46380	222
Al - SLU - ML max gr.1	34743	1221	872	18401	284
Al - SLU - N max gr.3	36374	1726	1464	31197	380
Al - SLU - MT max gr.3	36225	1726	1597	34323	360
A1 - SLU - ML max gr.3	34743	1857	664	13549	423
A1 - SLU - Vento ponte scarico	31475	286	875	17434	52
Al - SLU Gmin - N max gr.1	23283	1090	1845	40112	241
A1 - SLU Gmin - MT max gr.1	23134	1090	2112	46380	222
A1 - SLU Gmin - ML max gr.1	21652	1221	872	18401	284
A1 - SLU Gmin - N max gr.3	23283	1726	1464	31197	380
A1 - SLU Gmin - MT max gr.3	23134	1726	1597	34323	360
A1 - SLU Gmin - ML max gr.3	21652	1857	664	13549	423
A1 - SLU Gmin - Vento ponte scarico	18383	212	801	16069	39
SLE rara - N max gr.1	26201	766	1273	27624	169
SLE rara - MT max gr.1	26098 25076	766 854	1457 616	31946 12960	155
SLE rara - ML max gr.1					
SLE rara - N max gr.3 SLE rara - MT max gr.3	26201 26098	1204 1204	1010 1102	21475 23631	264 251
SLE rara - ML max gr.3	25076	1204	472	9613	293
SLE rara - Vento ponte scarico	22822	212	605	12013	39
SLE freq N max gr.1	25525	655	726	15715	143
SLE freq MT max gr.1	25442	655	873	19173	132
SLE freq ML max gr.1	24625	655	535	11148	154
SLE freq N max gr.3	25525	1006	515	10796	219
SLE freq MT max gr.3	25442	1006	589	12521	208
SLE freq ML max gr.3	24625	1006	420	8471	230
SLE freq Vento ponte scarico	22822	212	350	6904	39
SLE quasi permanente	22822	212	212	3902	39
SLV - N max	25441	1978	1885	31373	334
SLV - MT max gr.1	24060	1978	5773	93999	331
SLV - ML max gr.1	23855	5884	1837	30232	965
SLV - MT max gr.3	22894	1978	5773	93999	331
SLV - ML max gr.3	22689	5884	1837	30232	965
SLV - N min SLV - N max	21554 25441	1978	1885 2012	31373	334
SLV - N max SLV - MT max gr.1	24060	2108 2108	6196	34013 102837	361 358
	23855	6315	1964	32892	105
SLV - ML max gr.1 SLV - MT max gr.3	22894	2108	6196	102837	358
SLV - ML max gr.3	22689	6315	1964	32892	105
SLV - N min	21554	2108	2012	34013	361
SLV - N max	25441	2607	2502	44295	465
SLV - MT max gr.1	24060	2607	7829	137073	463
SLV - ML max gr.1	23855	7979	2454	43154	140
SLV - MT max gr.3	22894	2607	7829	137073	463
SLV - ML max gr.3	22689	7979	2454	43154	140
SLV - N min	21554	2607	2502	44295	465

Tabella 4 – Sollecitazioni ad intradosso del baricentro fondazione

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T _x	T_{y}	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}			
n°	kN	kN	kN	kNm	kNm	kN	kN	kN			
Al - SLU - N max gr.1	36374	1090	1845	40112	24169	7018	1066	238			
Al - SLU - MT max gr.1	36225	1090	2112	46380	22205	7200	850	264			
Al - SLU - ML max gr.1	34743	1221	872	18401	28483	6031	1690	167			
A1 - SLU - N max gr.3	36374	1726	1464	31197	38002	7245	838	251			
A1 - SLU - MT max gr.3	36225	1726	1597	34323	36037	7282	768	261			
A1 - SLU - ML max gr.3	34743	1857	664	13549	42316	6447	1274	219			
A1 - SLU - Vento ponte scarico	31475	286	875	17434	5268	4548	2446	102			
Al - SLU Gmin - N max gr.1	23283	1090	1845	40112	24169	5563	-389	238			
A1 - SLU Gmin - MT max gr.1	23134	1090	2112	46380	22205	5746	-605	264			
A1 - SLU Gmin - ML max gr.1	21652	1221	872	18401	28483	4576	235	167			
A1 - SLU Gmin - N max gr.3	23283	1726	1464	31197	38002	5791	-617	251			
A1 - SLU Gmin - MT max gr.3	23134	1726	1597	34323	36037	5828	-687	261			
A1 - SLU Gmin - ML max gr.3	21652	1857	664	13549	42316	4992	-181	219			
A1 - SLU Gmin - Vento ponte scarico	18383	212	801	16069	3902	2967	1118	92			
						7282	-687	264			

Tabella 5 - Sollecitazioni massime sul singolo palo C.C. SLU

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T _x	T _y	M _x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}			
n°	kN	kN	kN	kNm	kNm	kN	kN	kN			
SLV - N max	25441	2108	2012	34013	36134	6074	-421	324			
SLV - MT max gr.1	24060	2108	6196	102837	35863	9095	-3748	727			
SLV - ML max gr.1	23855	6315	1964	32892	105634	9064	-3763	735			
SLV - MT max gr.3	22894	2108	6196	102837	35863	8965	-3878	727			
SLV - ML max gr.3	22689	6315	1964	32892	105634	8934	-3892	735			
SLV - N min	21554	2108	2012	34013	36134	5642	-853	324			
·						9095	-3892	735			

Tabella 6 – Sollecitazioni massime sul singolo palo C.C. SLV q=1.36

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T _x	T _y	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}			
n°	kN	kN	kN	kNm	kNm	kN	kN	kN			
SLV - N max	25441	2607	2502	44295	46590	7034	-1381	401			
SLV - MT max gr.1	24060	2607	7829	137073	46319	11164	-5817	917			
SLV - ML max gr.1	23855	7979	2454	43154	140488	11153	-5851	928			
SLV - MT max gr.3	22894	2607	7829	137073	46319	11034	-5947	917			
SLV - ML max gr.3	22689	7979	2454	43154	140488	11023	-5981	928			
SLV - N min	21554	2607	2502	44295	46590	6603	-1813	401			
						11164	-5981	928			

Tabella 7 – Sollecitazioni massime sul singolo palo C.C. SLV q=1

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T _x	T _y	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}			
n°	kN	kN	kN	kNm	kNm	kN	kN	kN			
SLE rara - N max gr.1	26201	766	1273	27624	16938	4974	848	165			
SLE rara - MT max gr.1	26098	766	1457	31946	15583	5100	699	183			
SLE rara - ML max gr.1	25076	854	616	12960	19859	4306	1267	117			
SLE rara - N max gr.3	26201	1204	1010	21475	26464	5131	692	175			
SLE rara - MT max gr.3	26098	1204	1102	23631	25109	5156	643	181			
SLE rara - ML max gr.3	25076	1292	472	9613	29385	4592	981	153			
SLE rara - Vento ponte scarico	22822	212	605	12013	3902	3273	1799	71			
						5156	643	183			

Tabella 8 – Sollecitazioni massime sul singolo palo C.C. SLE

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della spalla (muro frontale, muro paraghiaia, ...) vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 35 di 51

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DELLA PILA									
		EVIERCE TRUE DESCRIPTION	Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]		
	Nz,A _{max}	A2 - SLU - N max gr.1	19595	905	1559	29326	17482		
EO	Tx,A _{max}	A2 - SLU - ML max gr.3	18189	1566	537	9429	31137		
SLU GEO	Ty,A _{max}	A2 - SLU - MT max gr.1	19466	905	1789	34039	15788		
SL	Mxx max	A2 - SLU - MT max gr.1	19466	905	1789	34039	15788		
	Myy max	A2 - SLU - ML max gr.3	18189	1566	537	9429	31137		
	Nz, A_{max}	Al - SLU - N max gr.1	24886	1090	1845	34578	20900		
IX.	Tx,A _{max}	A1 - SLU - ML max gr.3	23255	1857	664	11558	36745		
SLU STR	Ty,A _{max}	A1 - SLU - MT max gr.1	24737	1090	2112	40045	18935		
SL	Mxx max	A1 - SLU - MT max gr.1	24737	1090	2112	40045	18935		
	Myy max	A1 - SLU Gmin - ML max gr.3	14740	1857	664	11558	36745		
	Nz,A _{max}	SLE rara - N max gr.1	17850	766	1273	23806	14639		
SLE RARA	Tx,A _{max}	SLE rara - ML max gr.3	16725	1292	472	8197	25511		
R.	Ty,A _{max}	SLE rara - MT max gr.1	17747	766	1457	27577	13284		
SLE	Mxx max	SLE rara - MT max gr.1	17747	766	1457	27577	13284		
"	Myy max	SLE rara - ML max gr.3	16725	1292	472	8197	25511		
Ħ	Nz,A _{max}	SLE freq N max gr.1	17175	655	726	13538	12365		
ENT	Tx,A _{max}	SLE freq N max gr.3	17175	1006	515	9250	18935		
REC	Ty,A _{max}	SLE freq MT max gr.1	17092	655	873	16554	11281		
SLE FREQENTE	Mxx max	SLE freq MT max gr.1	17092	655	873	16554	11281		
02	Myy max	SLE freq ML max gr.3	16275	1006	420	7211	20015		
SLE Q.P.		SLE quasi permanente	14471	212	212	3268	3268		
	Nz, A_{max}	SLV - N max	16251	1561	1468	26345	28114		
q=1.5	Tx,A _{max}	SLV - ML max gr.1	15253	4494	1420	25346	81031		
SLVq	Ty,A _{max}	SLV - MT max gr.1	15458	1561	4383	78766	27843		
SI	Mxx max	SLV - MT max gr.1	15458	1561	4383	78766	27843		
\vdash	Myy max	SLV - ML max gr.1	15253	4494	1420	25346	81031		
36	Nz,A _{max}	SLV - N max	16251	1691	1595	28603	30436		
= 1,	Tx,A _{max}	SLV - ML max gr.1	15253	4926	1547	27625	88773		
SLV q=1.36	Ty,A _{max}	SLV - MT max gr.1	15458	1691	4806	86334	30165		
SI	Mxx max	SLV - MT max gr.1	15458	1691	4806	86334	30165		
\vdash	Myy max	SLV - ML max gr.1	15253	4926	1547	27625	88773		
_	Nz,A _{max}	SLV - N max	16251 15253	2190 6589	2085	37416 36417	39395 118636		
⁷ q=1	Tx,A _{max} Ty,A _{max}	SLV - ML max gr.1 SLV - MT max gr.1	15458	2190	6439	115671	39124		
SLV	Mxx max	SLV - MT max gr.1 SLV - MT max gr.1	15458	2190	6439	115671	39124		
•	Myy max	SLV - ML max gr.1	15253	6589	2037	36417	118636		
	212 y max	OD 1 - MIN may 21.1	15255	0505	2031	30417	110000		

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3E
 50
 D 09 CL
 VI 02 05 002

 DOCUMENTO
 REV.
 FOGLIO

 VI 02 05 002
 A
 36 di 51

		CARATTERISTICHE DELLA					
<u> </u>		INTERNA INTRADOSSO	1				
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	28377	905	1559	34002	20197
SLU GEO	Tx,A _{max}	A2 - SLU - ML max gr.3	26971	1566	537	11041	35834
ne	$Ty,\!A_{\text{max}}$	A2 - SLU - MT max gr.1	28248	905	1789	39405	18503
SL	Mxx max	A2 - SLU - MT max gr.1	28248	905	1789	39405	18503
	Myy_{max}	A2 - SLU - ML max gr.3	26971	1566	537	11041	35834
	Nz, A_{max}	Al - SLU - N max gr.1	36374	1090	1845	40112	24169
IR	Tx, A_{max}	A1 - SLU - ML max gr.3	34743	1857	664	13549	42316
SLU STR	Ty, A_{max}	A1 - SLU - MT max gr.1	36225	1090	2112	46380	22205
SI	Mxx max	A1 - SLU - MT max gr.1	36225	1090	2112	46380	22205
	Myy max	A1 - SLU - ML max gr.3	34743	1857	664	13549	42316
	Nz,A _{max}	SLE rara - N max gr.1	26201	766	1273	27624	16938
SLE RARA	Tx,A _{max}	SLE rara - ML max gr.3	25076	1292	472	9613	29385
2	Ty,A _{max}	SLE rara - MT max gr.1	26098	766	1457	31946	15583
SLE	Mxx max	SLE rara - MT max gr.1	26098	766	1457	31946	15583
	Myy max	SLE rara - ML max gr.3	25076	1292	472	9613	29385
Ξ	Nz,A _{max}	SLE freq N max gr.1	25525	655	726	15715	14331
QEN!	Tx,A _{max}	SLE freq N max gr.3	25525	1006	515	10796	21952
SLE FREQENTE	Ty,A _{max}	SLE freq MT max gr.1	25442	655	873	19173	13247
SLE	Mxx max	SLE freq MT max gr.1	25442	655	873	19173	13247
	Myy_{max}	SLE freq ML max gr.3	24625	1006	420	8471	23032
SLE Q.P.		SLE quasi permanente	22822	212	212	3902	3902
۵.	Nz,A_{max}	SLV - N max	25441	1978	1885	31373	33423
q=1.5	Tx,A _{max}	SLV - ML max gr.1	23855	5884	1837	30232	96598
SLV 9	Ty,A _{max}	SLV - MT max gr.1	24060	1978	5773	93999	33152
SI	Mxx max	SLV - MT max gr.1	24060	1978	5773	93999	33152
<u> </u>	Myy max	SLV - ML max gr.1	23855	5884	1837	30232	96598
36	Nz,A _{max}	SLV - N max	25441	2108	2012	34013	36134
SLV q=1.36	Tx,A _{max}	SLV - ML max gr.1	23855	6315	1964	32892	105634
N.	Ty,A _{max}	SLV - MT max gr.1 SLV - MT max gr.1	24060 24060	2108 2108	6196 6196	102837 102837	35863 35863
SI	Mxx max	SLV - M1 max gr.1 SLV - ML max gr.1	23855	6315	1964	32892	105634
	Myy max Nz,Amax	SLV - NI max gr.1	25441	2607	2502	44295	46590
-	Tx,A _{max}	SLV - William gr.1	23855	7979	2454	43154	140488
V q=1	Ty,A _{max}	SLV - MT max gr.1	24060	2607	7829	137073	46319
SLV	Mxx max	SLV - MT max gr.1	24060	2607	7829	137073	46319
	Myy max	SLV - ML max gr.1	23855	7979	2454	43154	140488
	J J max						

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO
RS3E 50

CODIFICA D 09 CL DOCUMENTO VI 02 05 002 REV. FOO A 37 o

FOGLIO 37 di 51

4.9.1 Pila

Taglio di progetto:

Direzione		Long.(Myy,Tx)	Trasv(Mxx,Ty)	
Altezza pila	H	18.0	18.0	m
Fattore di struttura		1.5	1.5	
Fattore di sovraresistenza (eq. 7.9.7)	γRd	1	1	
Fattore di sovraresistenza filtrato (eq. 7.9.7)	γRđ	1	1	
Taglio agente (q=1)	V	6589	6439	kN
Momento agente (q=1)	M	118636	115671	kN*m
Taglio agente (con q)	VEd	4494	4383	kN
Momento agente (con q)	MEd	81031	78766	kN*m
Momento Resistente	MRd	135079	133692	kN*m
Rapporto di sovraresistenza	MRd/MEd	1.67	1.70	
Tipo sezione (EC8-2; eq. 6.11)		NON CRITICA	NON CRITICA	
Angolo inclinazione bielle compresse	Teta	da calc.	da calc.	
Limite superiore Vgr	Vgr.max= V	6589	6439	kN
Taglio di progetto per la gerarchia della resistenza (eq. 7.9.12)	Vgr	7492	7440	kN
Taglio di progetto per la gerarchia della resistenza filtrato (eq. 7.9.12)	Vgr	6589	6439	kN
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq. 7.9.10)	γBd	1	1.23	
fattore di sicurezza aggiuntivo per la resistenza a taglio filtrato (eq. 7.9.10)	γBđ	1	1.23	
Riassumendo				
Taglio di calcolo	Vgr	6589	6439	kN
fattore di sicurezza aggiuntivo filtrato (eq. 7.9.10)	γBd	1.23	1.23	
Angolo inclinazione bielle compresse	Teta	da calc.	da calc.	

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo 61*62:	1.00	

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 38 di 51

Coeff. Aderenza differito B1*B2: 0.50
Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C32/40

Raggio circ.: 225.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

XcentroAscissa [cm] del centro della circonf. lungo cui sono disposte le barre generateYcentroOrdinata [cm] del centro della circonf. lungo cui sono disposte le barre genrateRaggioRaggio [cm] della circonferenza lungo cui sono disposte le barre generateN°BarreNumero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Barre N°Gen. Xcentro Ycentro Raggio Ø 0.0 0.0 215.0 120 30 2 0.0 0.0 205.0 120 30

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 9.4 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	24886.00	20900.00	34578.00	0.00	0.00
2	23255.00	36745.00	11558.00	0.00	0.00
3	24737.00	18935.00	40045.00	0.00	0.00
4	24737.00	18935.00	40045.00	0.00	0.00
5	14740.00	36745.00	11558.00	0.00	0.00
6	16251.00	28114.00	26345.00	0.00	0.00
7	15253.00	81031.00	25346.00	6589.00	0.00
8	15458.00	27843.00	78766.00	0.00	6439.00
9	15458.00	27843.00	78766.00	0.00	0.00
10	15253.00	81031.00	25346.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A

FOGLIO

39 di 51

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	17850.00	23806.00	14639.00
2	16725.00	8197.00	25511.00
3	17747.00	27577.00	13284.00
4	17747.00	27577.00	13284.00
5	16725.00	8197.00	25511.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	17175.00	13538.00 (62492.32)	12365.00 (57077.67)
2	17175.00	9250.00 (31478.81)	18935.00 (64437.97)
3	17092.00	16554.00 (62246.41)	11281.00 (42418.85)
4	17092.00	16554.00 (62246.41)	11281.00 (42418.85)
5	16275.00	7211.00 (22874.24)	20015.00 (63490.22)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 14471.00 3268.00 (0.00) 3268.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.5 cm Interferro netto minimo barre longitudinali: 7.0 cm Copriferro netto minimo staffe: 7.5 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 40 di 51

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

$N^{\circ}Comb$	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	24886.00	20900.00	34578.00	24886.14	79290.15	131185.75	3.791696.5(477.1)
2	S	23255.00	36745.00	11558.00	23255.26	144397.32	45405.64	3.931696.5(477.1)
3	S	24737.00	18935.00	40045.00	24737.00	65449.37	138419.86	3.461696.5(477.1)
4	S	24737.00	18935.00	40045.00	24737.00	65449.37	138419.86	3.461696.5(477.1)
5	S	14740.00	36745.00	11558.00	14740.26	134389.73	42282.70	3.661696.5(477.1)
6	S	16251.00	28114.00	26345.00	16251.22	104203.05	97641.74	3.711696.5(477.1)
7	S	15253.00	81031.00	25346.00	15252.92	135079.80	42266.07	1.671696.5(477.1)
8	S	15458.00	27843.00	78766.00	15458.12	47257.61	133692.58	1.701696.5(477.1)
9	S	15458.00	27843.00	78766.00	15458.12	47257.61	133692.58	1.701696.5(477.1)
10	S	15253.00	81031.00	25346.00	15252.92	135079.80	42266.07	1.671696.5(477.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X.Y.O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	192.6	159.1	0.00321	186.2	107.5	-0.00936	-186.2	-107.5
2	0.00350	67.5	98.8	0.00320	66.4	204.5	-0.00958	-66.4	-204.5
3	0.00350	203.4	185.9	0.00321	196.4	87.4	-0.00938	-196.4	-87.4
4	0.00350	203.4	185.9	0.00321	196.4	87.4	-0.00938	-196.4	-87.4
5	0.00350	67.5	76.3	0.00317	66.4	204.5	-0.01089	-66.4	-204.5
6	0.00350	153.8	164.2	0.00318	143.9	159.8	-0.01064	-143.9	-159.8
7	0.00350	67.2	214.7	0.00317	66.4	204.5	-0.01081	-66.4	-204.5
8	0.00350	212.1	75.0	0.00317	204.5	66.4	-0.01077	-204.5	-66.4
9	0.00350	212.1	75.0	0.00317	204.5	66.4	-0.01077	-204.5	-66.4
10	0.00350	67.2	214.7	0.00317	66.4	204.5	-0.01081	-66.4	-204.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000025010	0.000015117	-0.003075283		
2	0.000008921	0.000028363	-0.003189880		
3	0.000026459	0.000012511	-0.003085283		
4	0.000026459	0.000012511	-0.003085283		
5	0.000009816	0.000031206	-0.003860483		
6	0.000021977	0.000023452	-0.003731526		

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3E 50 D 09 CL VI 02 05 002 A 41 di 51

7	0.000009708	0.000031036	-0.003816730	
8	0.000030588	0.000010812	-0.003799531	
9	0.000030588	0.000010812	-0.003799531	
10	0.000009708	0.000031036	-0.003816730	

VERIFICHE A TAGLIO

bw

Diam. Staffe: 10 mm

Passo staffe: 9.4 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato

Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh legat proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	$d \mid z$	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	68279.56	4413.54382	.8 345.5	388.2	1.000	1.083	0.0	32.7(0.0)
2	S	0.00		4428.62383		386.6	1.000	1.078	0.0	32.6(0.0)
3	S	0.00	68262.89	4414.71382	.8 345.5	388.2	1.000	1.083	0.0	32.7(0.0)
4	S	0.00	68262.89	4414.71382	.8 345.5	388.2	1.000	1.083	0.0	32.7(0.0)
5	S	0.00	65657.33	4515.56386	.4 353.5	376.6	1.000	1.049	0.0	32.6(0.0)
6	S	0.00	66049.15	4501.14385	.9 352.3	378.3	1.000	1.054	0.0	32.7(0.0)
7	S	6288.54	45321.48	11281.06386	.4 353.2	376.6	2.500	1.051	18.2	32.6(0.0)
8	S	6070.87	45337.77	11280.91386	.4 353.1	376.6	2.500	1.052	17.6	32.7(0.0)
9	S	0.00	65739.76	4512.36386	.4 353.1	376.6	1.000	1.052	0.0	32.7(0.0)
10	S	0.00	65716.14	4512.43386	.4 353.2	376.6	1.000	1.051	0.0	32.6(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	•	0.77	117.9	0.0			-180.3	10877	381.7
2	S	3.81	214.2				-66.4	11020	367.6
•	S		97.6	0.0			-191.6	11536	381.7
	S		97.6	0.0				11536	381.7
5	S	3.81	214.2	0.0	-40.1	-204.5	-66.4	11020	367.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

PROGETTO DEFINITIVO

VI02 - Viadotto ferroviario a Singolo Binario

I REL AZIC	ONE DI CALCOLO PILA	
IRELAZIO	JNE DI CALCOLO PILA	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 02 05 002	Α	42 di 51

H														
		La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm												
Ver.			Esito della verifica											
e1										tata in sezion		a		
e2									rione -) valuta	ta in sezione	fessurata			
k1		= 0.8 pe	er barre ac	d aderenz	a miglio	orata [ed	լ.(7.11)EC	[2]		1				
kt									[cfr. eq.(7.9)E					
k2									eq.(7.13)EC2	.]				
k3 k4			Coeff. in e											
Ø									efficace Δc (eff [eq.(7.11)E	C2]			
Cf			ro [mm] ne							on [cq.(7.11)L	.02]			
e sm -	e cm								[(7.8)EC2 e ((C4.1.7)NTCl				
									4.1.8)NTC]	, ,				
sr max	K		a distanza					,	, .					
wk		Apertura	a fessure i	n mm cal	colata =	sr max	*(e_sm - 6	e_cm) [(7.8	B)EC2 e (C4.1	I.7)NTC]. Valo	ore limite t	tra parentesi		
Mx fes			nente mom											
My fes	SS.	Compor	nente mom	nento di p	rima fes	ssurazio	ne intorno	all'asse \	' [kNm]					
0 1		_		•		~								
Comb.	Ver	e1		e2	k2	Ø	Cf		е	sm - e cm	sr max	wk	Mx fess	My fess
_										(0.00010)			=======================================	
1	S	-0.00021		0	0.500	30.0	85			2 (0.00012)	434	0.053 (0.20)		30765.09
2	S	-0.00021		0	0.500	30.0	85			2 (0.00012)	442	0.053 (0.20)		55094.27
3	S	-0.00027		0	0.500		85			(0.00015)	443	0.068 (0.20)		24034.28
4	S	-0.00027		0	0.500		85			5 (0.00015)	443	0.068 (0.20)		24034.28
5	S	-0.00021		0	0.500	30.0	85		0.00012	2 (0.00012)	442	0.053 (0.20)	17702.47	55094.27
COMBINA	AZIONI	FREQUEN	TI IN ESE	ERCIZIO	- MA	SSIME	TENSI	oni nor	Mali ed Ai	PERTURA F	ESSUR	E (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max	Yc max	5	of min	Xs min	Ys min	Ac eff.	As eff.				
1	S	2.66	151.7	0.0			-143.9		6697	261.5				
2	S	3.01	202.2	0.0			-191.6	-97.6	8646	303.9				
3	S	2.87	126.7	0.0			-117.1		8124	296.9				
4	S	2.87	126.7	0.0			-117.1	-180.3	8124	296.9				
5	S	3.02	211.7	0.0		-22.7	-200.7	-77.0	9327	325.2				
COMBINA	AZIONI	FREQUEN [®]	TI IN ESE	ERCIZIO	- APE	RTUR	A FESS	URE [§ 7	.3.4 EC2]					
Comb.	Ver	e1		e2	k2	Ø	Cf		е	sm - e cm :	sr max	wk	Mx fess	My fess
														,
1	S	-0.00007		0	0.500	30.0	85		0.00004	(0.00004)	420	0.016 (0.20)	62492.32	57077.67
2	S	-0.00011		0	0.500	30.0	85			(0.00006)	434	0.026 (0.20)		64437.97
3	S	-0.00009		0	0.500		85			5 (0.00005)	429	0.022 (0.20)		42418.85
4	S	-0.00009		0		30.0	85			5 (0.00005)	429			
5	S	-0.00012		0	0.500		85			7 (0.00007)	435	0.030 (0.20)		63490.22
3	5	0.00012		O	0.500	30.0	03		0.00007	(0.00007)	433	0.030 (0.20)	22017.27	03470.22
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)														
N°Comb	Ver	Sc max	Xc max	Yc max	S	of min	Xs min	Ys min	Ac eff.	As eff.				
1	S	1.19	159.1	0.0		6.0	-152.0	-152.0						

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

4.9.2 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{max} = 7282 \text{ kN (CC. SLU)}$

 $N_{max} = 9095 \text{ kN (CC. SLV q=1.36)}$

 $T_{max} = 735 \text{ kN (CC. SLV q=1.36)}$

Il plinto fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo esterno della pila, mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente), mentre l'altezza della biella compressa è stata valutata pari a 0.2 d_p (con d_paltezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

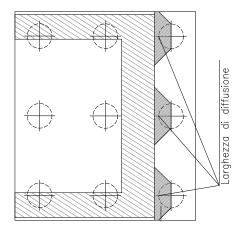
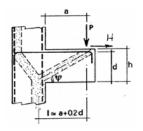


Figura 1 - Diffusione delle azioni dal palo alla pila

Di seguito si riportano i risultati delle verifiche strutturali del plinto di fondazione, condotte con riferimento al metodo usualmente utilizzato per la verifica delle mensole tozze, ovvero il metodo del tirante-puntone, di cui nel seguito si riporta lo schema e di verifica generale e relative formulazioni proposte a riguardo al C4.1.2.1.5 dalla Circolare Ministeriale n° 617 del 02-02-09.

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.
RS3E	50	D 09 CL	VI 02 05 002	Α

FOGLIO

44 di 51

VERIFICA MENSOLE TOZZE - MECCANISMO TIRANTE PUNTONE secondo Circ 617-09/ C4.1.2.1.5

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (PFD,HFD)

Pr: Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{_{R}} = P_{_{Rs}} = \left(A_{_{s}}f_{_{yd}} - H_{_{Ed}}\right)\frac{1}{\lambda} \\ \lambda = ctg\psi \cong I/(0,9d). \label{eq:problem}$$

Pr : Portanza mensola in termini di resistenza della Biella compressa

$$P_{\text{Rc}} = 0,4bdf_{\text{cd}} \frac{c}{1+\lambda^2} \geq P_{\text{Rs}}$$

CONDIZIONI DI VERIFICA

- $1 \qquad P_R \geq P_{Ed}$
- $\geq P_{Rs}$

VI02 - Viadotto ferroviario a Singolo Binario

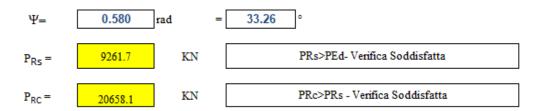
RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 02 05 002	Α	45 di 51

Dati di progetto

b(m)=	4.20	m	dimensione trasversale verifica
P_{Ed} (KN) =	9095.00	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	735.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	3.40	m	distanza P da incastro
h(m) =	3.00	m	spessore mensola
$\delta(m) =$	0.10	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	2.90	m	altezza utile
1(m) =	3.98	m	a+0,2d
λ =	1.52		$\lambda = \operatorname{ctg} \psi \cong 1/(0,9d)$.

Tipo di mensola (Valutazione coefficiente c)


Caratteristiche Materiali

fcd=	14.1	MPa	Calcestruzzo
fyd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	24.0	p1(cm) = 10.0	θ1°= 0.0
Aφ i (mm²) =	452.39	nb tot 1=	42.0	$A\phi TOT (mm^2) = 19000.34$	$A\phi CAL(mm^2) = 19000.34$
Registro tipo	R2				
n° R2=	1	φ2(mm) =	24.0	p2(cm) = 10.0	$\theta 2^{\circ} = 0.0$
Αφ i (mm²) =	452.39	nb tot 2 =	42.0	$A\phi$ TOT (mm ²) = 19000.34	$A\phi CAL(mm^2) = 19000.34$
Registro tipo	R3				
n° R3=	0	φ3(mm) =	26.0	p3(cm) = 10.0	$\theta 3^{\circ} = 0.0$
Αφ i (mm²) =	530.93	nb tot 3 =	0.0	$A\phi TOT (mm^2) = 0.00$	$A\phi$ CAL(mm ²) = 0.00

Verifiche di resistenza

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI02 - Viadotto ferroviario a Singolo Binario

50

RELAZIONE DI CALCOLO PILA

LOTTO COMMESSA RS3E

CODIFICA D 09 CL

DOCUMENTO VI 02 05 002

REV. Α

FOGLIO 46 di 51

4.9.3 Palo di fondazione L=43.0m

Viene verificata la sezione di incastro con la platea di fondazione.

Il momento flettente agente in testa palo viene derivato dal taglio in testa palo nell'ipotesi di elasticità lineare sia per il palo che per il terreno. Risulta

 $M = T * \alpha$

 $\alpha = 2.5$ (vedi relazione geotecnica)

 $N_{max} = 11164 \; kN$ T = 928 kN

M = 928 * 2.5 = 2320 kNm

 $N_{\text{min}} = \text{-}5981 \ kN$ T = 928 kN M = 928 * 2.5 = 2320 kNm

N = -5981 kNT = 928 kN $M_{max} = 928 * 2.5 = 2320 \text{ kNm}$

Caratteristiche della sezione:

Sezione circolare Ø 120 cm

 $A_s = 30 + 30 \phi 26$

staffe *\phi*14/15

La lunghezza del palo è pari a L = 43.00m

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo 61*62:	1.00	
	Coeff. Aderenza differito B1*B2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

PROGETTO DEFINITIVO

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 47 di 51

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	50.0	30	26
2	0.0	0.0	45.0	30	26

ARMATURE A TAGLIO

Му

Diametro staffe: 14 mm Passo staffe: 15.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ. d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ. d'inerzia x

${\sf N}^{\circ}{\sf Comb}.$	N	Mx	My	Vy	Vx
1	7282.00	660.00	0.00	264.00	0.00
2	-687.00	660.00	0.00	264.00	0.00
3	11164.00	2320.00	0.00	928.00	0.00
4	-5981.00	2320.00	0.00	928.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	My
1	5156.00	458.00	0.00
2	643.00	458.00	0.00

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 48 di 51

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 4373.00
 323.00 (1882.13)
 0.00 (0.00)

 2
 1278.00
 323.00 (1840.85)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.7 cm Interferro netto minimo barre longitudinali: 2.4 cm Copriferro netto minimo staffe: 7.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)
Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	7282.00	660.00	0.00	7282.27	5278.70	0.00	8.00 318.6(33.9)
2	S	-687.00	660.00	0.00	-687.19	4497.60	0.00	6.81 318.6(33.9)
3	S	11164.00	2320.00	0.00	11164.26	4806.42	0.00	2.07 318.6(33.9)
4	S	-5981.00	2320.00	0.00	-5981.08	2875.81	0.00	1.24 318.6(33.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	60.0	0.00295	0.0	50.0	-0.00255	0.0	-50.0
2	0.00350	0.0	60.0	0.00259	0.0	50.0	-0.00655	0.0	-50.0
3	0.00350	0.0	60.0	0.00303	0.0	50.0	-0.00167	0.0	-50.0
4	0.00350	0.0	60.0	0.00198	0.0	50.0	-0.01323	0.0	-50.0

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA RS3E 50 D 09 CL

DOCUMENTO VI 02 05 002

REV. **FOGLIO** Α

49 di 51

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000055004	0.000199782		
2	0.000000000	0.000091335	-0.001980114		
3	0.000000000	0.000046997	0.000680152		
4	0.000000000	0.000152112	-0.005626722		

VERIFICHE A TAGLIO

bw

Diam. Staffe: 14 mm

Passo staffe: 15.0 cm [Passo massimo di normativa = 25.0 cm]

Ver

S = comb. verificata a taglio / N = comb. non verificata
Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] $d \mid z$

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast Area staffe+legature efficaci nella direzione del taglio di combinaz. [cm²/m] A.Eff

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

$N^{\circ}Comb$	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	c	264.00	2242 27	2712 51	01 0 71 1	100 O	2 500	1 250	2 0	39.0(0.0)
2	S	264.00	2127.49	3104.52	93.3 81.4	107.1	2.500	1.000	3.3	39.0(0.0)
3	S	928.00	1323.20	2565.70	92.1 67.3	106.4	2.500	0.757	14.1	39.0(0.0)
4	S	928.00	2060.46	3471.201	01.0 91.0	92.8	2.500	1.000	10.4	39.0(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm2] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.97	0.0	0.0	26.0	0.0	-50.0		
2	S	2.62	0.0	0.0	-32.3	0.0	-50.0	1239	63.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

VI02 - Viadotto ferroviario a Singolo Binario

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 50 di 51

Ver.		Esito della ve	erifica				aso in cui la trazione minima del			ctm	
e1 e2							zzo (trazione -) valutata in sezion o (trazione -) valutata in sezione				
k1		= 0.8 per ba					o (trazione) valutata in sezione	icoourata			
kt							juenti [cfr. eq.(7.9)EC2]				
k2							trica [eq.(7.13)EC2]				
k3		= 3.400 Coe	1 '	,							
k4		= 0.425 Coe					- III	-001			
Ø							ell'area efficace Ac eff [eq.(7.11)E	:C2]			
Cf		Copriferro [m									
e sm	ı - e cm						ruzzo [(7.8)EC2 e (C4.1.7)NTC]				
sr ma	av	Massima dis				s [(7.9)EC	2 e (C4.1.8)NTC]				
wk	ax					sm - e cn	n) [(7.8)EC2 e (C4.1.7)NTC]. Val	ore limite	tra narentesi		
Mx fe	229						asse X [kNm]	ore minic	ira parentesi		
My fe							asse Y [kNm]				
,											
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	-0.00021	0						0.000 (0.20)	818.77	0.00
2	S	-0.00019	0	0.500	26.0	87	0.00010 (0.00010)	382	0.037 (0.20)	859.82	0.00
COMPIN	LAZIONI	EDECHENTLIN	I ESEDOIZ	ю ма	CCIME 1	ENCIONI	NODMALLED ADEDTIDA	ECCLID	E (NTC/EC2)		

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.96	0.0	0.0	25.2	0.0	-50.0		
2	S	2.09	0.0	0.0	-4.9	0.0	-50.0	341	5.3

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1	S	-0.00053	0						0.000 (0.20)	1882.13	0.00
2	S	-0.00004	0	0.500	26.0	87	0.00001 (0.00001)	579	0.008 (0.20)	1840.85	0.00

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI02 - Viadotto ferroviario a Singolo Binario

 RELAZIONE DI CALCOLO PILA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 02 05 002
 A
 51 di 51

5 SINTESI DELLE VERIFICHE GEOTECNICHE

Nel presente paragrafo si riporta una sintesi in forma tabellare delle sollecitazioni massime sui pali e delle verifiche geotecniche per il viadotto in oggetto, con relativi coefficienti di sicurezza.

Per maggiori dettagli si rimanda alle specifiche relazioni delle fondazioni.

	<i>-</i>		0		1									
PALI					SOLLECITAZIONI									
	spalla pila	D[m m]	npali[-]	Lpalo [m]	SFORZO NORMALE SLU/SLV		SFORZO NORMALE SLE		TAGLI E MOMENTI					
viadot to									senza scalzamento			con scalzamento		
					Nmax,c [kN]	Nmin[k N]	Nmax, SLE,rara [kN]	Nmax, SLE,FREQ [kN]	Tmax [kN]	alfa [m]	Mm ax	Tmax [kN]	alfa [m]	Mm ax
VI02	spalla 1	1500	9	26.0	5268	-	3758	-	685	3.1	2124	-	-	-
VI02	spalla 2	1500	9	32.0	7255	-	5102	-	1433	3.1	4442	-	-	-
VI02	Pila 8	1200	9	38.0	7765	-3101	4628		876	2.5	2172	-	-	-
VI02	Pila 16	1200	9	43.0	9095	-3892	5156		928	2.5	2301	-	-	-

VERIFICHE GEOTECNICHE										
Carriera limeita	e orizzontale	Capacità portante palo								
Carico ilmite	e orizzontale		COMPRESSIONE	TRAZIONE						
Hd[kN]	Hd[kN] FS		Qd [kN], SCALZ FS Q		Qd,trazione [kN]					
866.9	1.27	5925	-	1.12	-	-				
1542.3	1.08	7959	-	1.10	-	-				
902.5	1.03	8182	-	1.05	6776	2.19				
974.5	1.05	9473	-	1.04	7959	2.04				