COMMITTENTE:

PROGETTAZIONE:

SCALA:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO–CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali- parte 2 di 2

								-
COM	MESSA LOTTO F	FASE ENTE	TIPO DO	C. OPERA/DI	SCIPLINA	PROG	SR. RE	V.
R S	3 E 5 0	D 0 9	CL	V I O	3 0 3	0 0	2 A	varianti i cia di Rom≥
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Auro zato Data
Α	Emissione definitiva	M. Tartaglia	Novembre 2019	M.D'Effremo	Novembre 2019	F. Sparacino	Novembre 2019	Ambre 2019
			_	10				ITALA re Civili out. Ing. i Ingegn
								U.O. Opere C Dott
								U.O.
RS3E	50 D 09 CL VI0303 002	A.doc						n. Elab.: 1239

PROGETTO DEFINITIVO
TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA LOTTO CODIFICA

D 09 CL

50

RS3E

DOCUMENTO VI 03 03 02

REV. FOGLIO
A 2 di 45

INDICE

1	PRE	MESSA	4
2	NOI	RMATIVA E DOCUMENTI DI RIFERIMENTO	5
	2.1	NORMATIVE E STANDARD DI RIFERIMENTO	5
	2.2	NORMATIVE E STANDARD DI RIFERIMENTO	5
	2.3	DOCUMENTI DI RIFERIMENTO	5
3	CAF	RATTERISTICHE DEI MATERIALI	6
	3.1	ACCIAIO	6
	3.1.	l Acciaio per armatura strutture in c.a	6
	3.1.2	2 Profilati e piastre metalliche	<i>6</i>
	3.2	CALCESTRUZZO	6
	3.2.	l Calcestruzzo magro per getti di livellamento	6
	3.2.2	2 Calcestruzzo pali, diaframmi di fondazione, cordoli opere provvisionali	<i>6</i>
4	DES	CRIZIONE DELL'OPERA	8
5	CAF	RATTERIZZAZIONE GEOTECNICA	10
	5.1	TERRENO	10
	5.2	JET GROUTING	11
6	CRI	TERI GENERALI DI MODELLAZIONE ADOTTATI	12
	6.1	METODOLOGIA DI CALCOLO	12
7	CRI	TERI GENERALI DI PROGETTAZIONE E VERIFICA AI SENSI DEL D.M. 14-01-2008	15
	7.1	METODO AGLI STATI LIMITE ED APPROCCI DI PROGETTO	
	7.2	VERIFICHE ALLO SLU	19
	7.2.	l Pressoflessione	19
	7.2.2		
8	ANA	ALISI DELLE OPERE PROVVISIONALI	22

PROGETTO DEFINITIVO TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 03 03 02
 A
 3 di 45

	8.1	DESCRIZIONE DELLE SEZIONI DI CALCOLO	22
	8.1.	1 Sezione P23	22
	8.2	SCHEMA E FASI DI CALCOLO	24
	8.2.1	1 Sezione P23	24
9	RIS	ULTATI E VERIFICHE PARATIA	30
	9.1	SEZIONE P23	30
	9.1.1	1 RISULTATI (combinazione SLE):	30
	9.1.2	2 RISULTATI e VERIFICHE SLU STR PALANCOLE METALLICHE (combinazione A1+M1+R1):	31
	9.1.3	3 VERIFICA SLU GEO PALANCOLE METALLICHE (combinazione A2+M2+RI)	33
	9.1.4	4 VERIFICA SLU STRU PUNTONE (combinazione A1+M1+RI)	34
	9.1.5	5 VERIFICA SLU STRU TRAVE DI RIPARTIZIONE (combinazione A1+M1+RI)	35
	9.1.0	6 VERIFICA SLU UPL E HYD	38
	9.1.7	7 Verifica stabilità globale del complesso opera di sostegno – terreno	41
10) ANA	ALISI DI STABILITA' SCARPATE PROVVISORIE	42
	10.1	METODOLOGIE DI CALCOLO	42
	10.2	CARICHI	43
	10.3	SEZIONI DI CALCOLO	43
	10.4	RISULTATI	45

PROGETTO DEFINITIVO TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

LOTTO DOCUMENTO COMMESSA CODIFICA RS3E

REV. **FOGLIO** D 09 CL VI 03 03 01 4 di 45 50

1 **PREMESSA**

La presente relazione di calcolo delle opere provvisionali si riferisce alla progettazione definitiva del Lotto 5 della Linea Ferroviaria Messina-Catania-Palermo nella tratta DITTAINO-Catenanuova. La relazione è relativa al viadotto VI03, avente una lunghezza di circa 780.88 m (VI03).

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3F	50	D 09 CI	VI 03 03 02	Δ	5 di 45

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 Normative e standard di riferimento

2.2 NORMATIVE E STANDARD DI RIFERIMENTO

Si riporta nel seguito l'elenco delle leggi e dei decreti di carattere generale, assunti come riferimento.

- Norme Tecniche per le Costruzioni, DM del 14/01/2008;
- Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- C.M. 02/02/2009 n.617: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- RFI DTC SI PS MA IFS 001 A del 30/12/2016: Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture;
- RFI DTC SI PS SP IFS 001 A del 30/12/2016: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- STI 2014 -Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;.

2.3 Documenti di riferimento

Nella presente relazione si è fatto riferimento agli elaborati grafici di progetto:

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO VI 03 03 02 REV. FOGLIO
A 6 di 45

3 CARATTERISTICHE DEI MATERIALI

Il progetto strutturale prevede l'uso dei materiali con le caratteristiche meccaniche minime riportate nei paragrafi seguenti.

3.1 Acciaio

3.1.1 Acciaio per armatura strutture in c.a.

Barre ad aderenza migliorata, saldabile, tipo B450C dotato delle seguenti caratteristiche meccaniche:

– tensione caratteristica di rottura: $f_{tk} \ge 540 \; MPa$

- tensione caratteristica di snervamento: $f_{vk} \ge 450 \text{ MPa}$

- allungamento caratteristico: $\geq 7.5\%$

- rapporto tensione di rottura/ tensione di snervamento: $1.15 \le f_{tk}/f_{yk} < 1.35$

3.1.2 Profilati e piastre metalliche

Acciaio tipo:
 EN 10025-S275 JR

- Tensione di rottura a trazione: $f_{tk} \ge 430 \text{ MPa}$

Tensione di snervamento: $f_{yk} \ge 275 \text{ MPa}$

3.2 Calcestruzzo

3.2.1 Calcestruzzo magro per getti di livellamento

- Classe di resistenza: C12/15

- classe di esposizione: X0

3.2.2 Calcestruzzo pali, diaframmi di fondazione, cordoli opere provvisionali

- Classe di resistenza: C25/30

- classe di esposizione: XC2

- classe di consistenza: S4

VI 03 03 02

FOGLIO

7 di 45

Α

PROGETTO DEFINITIVO
TRATTA DITTAINO - CATENANUOVA

50

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

D 09 CL

- dimensione massima dell'inerte: $D_{max} = 32 \text{ mm}$

RS3E

- copriferro minimo: $c_{f,min} \ge 50 \text{ mm}$

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

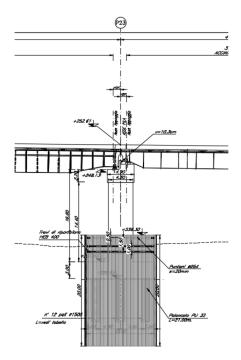
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	8 di 45

4 DESCRIZIONE DELL'OPERA

La presente relazione di calcolo tratta delle analisi delle sollecitazioni e delle verifiche di resistenza delle opere provvisionali previste per i lavori di realizzazione del viadotto VI03. In Figura 1, è rappresentato una parte del viadotto ove sono presenti le sezionei P22 e P23 provviste di opere provvisionali constituite da pali in c.a con a tergo colonne di intasamento in jet grouting. Tra queste, la sezione P23 è stata considerata le più gravosa per la sua tipologia e per questo motivo è stata oggetto di studio, in termini di verifiche geotecniche e strutturali. Per maggiori informazioni si rimanda agli elaborati grafici del viadotto in esame.

P23

Figura 1


PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 03 03 02
 A
 9 di 45

In Figura 2 è rappresentata la sezione dell'opera provvisionale prevista per la pila P23, costituita da pali in c.a. di lunghezza L=21 m, sostenuta da un livello di puntoni. Per ulteriori informazioni si rimanda all'elabaorato grafico.

Figura 2

Essendo queste opere di tipo provvisorio non è necessaria la verifica sismica.

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2 COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO VI 03 03 01 REV. FOGLIO

3 10 di 45

5 CARATTERIZZAZIONE GEOTECNICA

5.1 Terreno

Per l'inquadramento Geotecnico dell'area interessata dalla realizzazione delle opere ci si è riferiti a quanto indicato nella seguente documentazione Geotecnica Generale di Progetto:

GEOTECNICA																						
Relazione geotecnica generale	-	R	S	3	Е	5	0	D	7	8	R	I	O	Е	0	0	0	5	0	0	1	В

Dall'esame della suddetta documentazione, è stato possibile riscontrare che lungo tutto il tratto interessato dalla realizzazione delle opere in oggetto, si rinvengono nella zona, più superficiale, terreni prettamente coesivi limoso argillosi, talvolta debolmente sabbiosi (**unità bbc**) e al di sotto di questi e fino alle massime profondità di interesse, si riscontra la formazione di Terravecchia (**TRV**), la quale è costituita da una argilla limosa, marnosa con frequanti livelletti limo sabbiosi, a strattura scagliettata. Per maggiori dettagli ed approfondimenti a quanto riportato in merito nella Relazione Geotecnica Generale. Si riportano le caratteristiche fisico-meccaniche di tali terreni:

Unità ba – Depositi alluvionali coesivi (limoso argillosi) $\gamma = 19.0 \text{ kN/m3}$ peso di volume naturale

c' = 0 kPa coesione drenata

 $\varphi = 25^{\circ}$ angolo di resistenza al taglio

 $c_u = 50 \div 150 \text{ kPa}$ resistenza al taglio in condizioni non drenate

Eo = 80÷300 MPa modulo di deformazione elastico iniziale

TRVb - Formazione di Terravecchia

 $\gamma = 21.0 \text{ kN/m3}$ peso di volume naturale

c' = 5 kPa coesione drenata

 $\phi' = 26^{\circ}$ angolo di resistenza al taglio

 $c_u = 115+3.5*z$ kPa z < 30 m resistenza al taglio in condizioni non drenate

 $c_u = 2.5 + 6.5*z$ kPa z > 30 m resistenza al taglio in condizioni non drenate

Eo = 500÷900 MPa modulo di deformazione elastico iniziale

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 03 03 02
 A
 11 di 45

Nei dimensionamenti delle opere si è considerata la seguente stratigrafia:

Litatina	POTENZA	γ	c'	φ'	Εo	Evc	Eur
Litotipo	m	kN/m³	kPa	0	MPa	MPa	MPa
Unità ba – Depositi alluvionali coesivi (limoso argillosi) ba	12	19	0	25	150	30	48
Formazione di Terravecchia TRV)	21	5	26	450	83	133

Il livello idrico è posto ad una quota di 236.3 m s.l.m.m., mentre il piano campagna è posto ad una quota di 234.63 m s.l.m.m. La testa delle paratie è stata posta a 236.30 m s.l.m.m coincidente con il livello idrico.

5.2 **Jet grouting**

Per il jet grouting sono state assunte le seguenti caratteristiche:

- c' = 100 kPa
- φ'= 34°
- E = 150 MPa (5 volte il terreno in posto)

PROGETTO DEFINITIVO

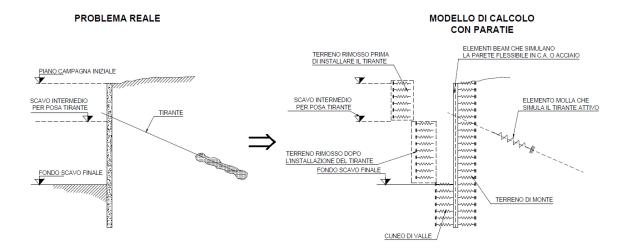
TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	12 di 45

6 CRITERI GENERALI DI MODELLAZIONE ADOTTATI

6.1 Metodologia di calcolo


Le analisi finalizzate al dimensionamento delle paratie trattate nell'ambito del presente documento, sono state condotte con il programma di calcolo "Paratie Plus" della HarpaCeas s.r.l. di Milano Version 18.1

Lo studio del comportamento di un elemento di paratia inserito nel terreno viene effettuato tenendo conto della deformabilità dell'elemento stesso, considerato in regime elastico, e soggetto alle azioni derivanti dalla spinta dei terreni, dalle eventuali differenze di pressione idrostatiche, dalle spinte dovute ai sovraccarichi esterni e dalla presenza degli elementi di contrasto.

La paratia viene discretizzata con elementi finiti monodimensionali a due gradi di libertà per nodo (spostamento orizzontale e rotazione).

Il terreno viene schematizzato con delle molle secondo un modello elasto-plastico; esso reagisce elasticamente sino a valori limite dello spostamento, raggiunti i quali la reazione corrisponde, a seconda del segno dello stesso spostamento, ai valori limite della pressione attiva o passiva.

Gli spostamenti vengono computati a partire dalla situazione di spinta "a riposo".

Al fine di ottenere informazioni attendibili sull'entità delle sollecitazioni e delle deformazioni nelle paratie è necessario poterne seguire il comportamento durante le principali fasi esecutive.

A tal riguardo, l'interazione fra la paratia e il terreno, è simulata modellando la prima con elementi finiti caratterizzati da una rigidezza flessionale ed il secondo con molle elasto-plastiche connesse ai nodi della paratia di

PROGETTO DEFINITIVO
TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 03 03 02
 A
 13 di 45

rigidezza proporzionale al modulo di rigidezza del terreno. Inoltre, è possibile modellare eventuali elementi di sostegno della paratia (tiranti, puntoni) con molle dotate di opportuna rigidezza.

In particolare, la paratia è schematizzata attraverso un diaframma di spessore equivalente ricavato attraverso la seguente espressione:

$$s_{eq} = \sqrt[3]{12E_m J_p}$$

dove:

 E_m modulo elastico del materiale costituente la paratia

 J_{p} inerzia della sezione della paratia

Il terreno si comporta come un mezzo elastico sino a che il rapporto tra la tensione orizzontale efficace (σ 'h) e la tensione verticale efficace (σ 'v) risulta compreso tra il coefficiente di spinta attivo (ka) e passivo (kp), mentre quando il rapporto è pari a ka o a kp il terreno si comporta come un mezzo elasto-plastico.

Questo modello, nella sua semplicità concettuale, derivato direttamente dal modello di Winkler, consente una simulazione del comportamento del terreno adeguata agli scopi progettuali. In particolare, vengono superate le limitazioni dei più tradizionali metodi dell'equilibrio limite, non idonei a seguire il comportamento della struttura al variare delle fasi esecutive.

I parametri di deformabilità del terreno compaiono nella definizione della rigidezza delle molle. Per un letto di molle distribuite la rigidezza di ciascuna di esse, k, è data da: k = E / L

ove E è un modulo di rigidezza del terreno mentre L è una grandezza geometrica caratteristica. Poiché nel programma PARATIE le molle sono posizionate a distanze finite Δ , la rigidezza di ogni molla è: $k=E\Delta/L$

Il valore di Δ è fornito dalla schematizzazione ad elementi finiti.

Il valore di L è fissato automaticamente dal programma. Esso rappresenta una grandezza caratteristica che è diversa a valle e a monte della paratia perché diversa è la zona di terreno coinvolta dal movimento in zona attiva e passiva. Si è scelto:

PROGETTO DEFINITIVO
TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2 COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO VI 03 03 02 REV. FOGLIO A 14 di 45

in zona attiva (uphill):

in zona passiva (downhill):

$$L_A = \frac{2}{3} \ell_A \tan(45^\circ - \phi'/2)$$

$$L_P = \frac{2}{3} \ell_P \tan(45^\circ + \phi'/2)$$

Dove:
$$\ell_A = \min\{1, 2H\};$$

Dove:
$$\ell_{P} = \min\{l - H, H\}$$

con

l = altezza totale della paratia

H = altezza corrente dello scavo.

La logica di questa scelta è illustrata nella pubblicazione di Becci e Nova (1987). Si assume in ogni caso un valore di H non minore di 1/10 dell'altezza totale della parete.

Il programma consente di seguire le fasi evolutive degli scavi a valle dell'opera, determinando, per ciascuna fase di scavo prevista, la deformata dell'opera e le sollecitazioni e gli stati tensionali nel terreno con essa interagente.

Il software consente di tener conto anche della presenza di vincoli lungo la paratia, sia di tipo elastico (molle /tiranti) che di tipo rigido.

La presenza dei tiranti viene infine schematizzata dal software come dei vincoli elastici, la cui deformabilità dipende dalle caratteristiche della sezione resistente in acciaio dei tiranti e dalla lunghezza libera degli stessi, eventualmente incrementata di una quantità funzione dell'efficienza (<=1) associata al bulbo di ancoraggio.

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	15 di 45

7 CRITERI GENERALI DI PROGETTAZIONE E VERIFICA AI SENSI DEL D.M. 14-01-2008

Nel presente paragrafo sono riportate alcune indicazioni salienti della Normativa riguardanti criteri generali di progettazione e verifica delle opere strutturali e geotecniche, oltre a specifiche da adottare per il caso delle Paratie di Sostegno.

7.1 Metodo agli Stati Limite ed Approcci di Progetto

Il progetto di opere strutturali e geotecniche va effettuato, come prescritto dal DM 14/01/08, con i criteri del metodo **semiprobabilistico agli stati limite** basati sull'impiego dei coefficienti parziali di sicurezza. Nel metodo semiprobabilistico agli stati limite, la sicurezza strutturale è verificata tramite il confronto tra la resistenza e l'effetto delle azioni. La normativa distingue inoltre tra *Stati Limite Ultimi* e *Stati Limite di Esercizio*.

La verifica della sicurezza nei riguardi degli **stati limite ultimi** di resistenza è stata effettuata con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale: $Rd \ge Ed$. Dove:

Rd è la resistenza di progetto

Ed è il valore di progetto dell'effetto delle azioni,

$$R_{\text{d}} = \frac{1}{\gamma_{\text{R}}} \, R \left[\gamma_{\text{F}} F_{k}; \frac{X_{k}}{\gamma_{\text{M}}}; a_{\text{d}} \right]. \label{eq:Rd}$$

$$\begin{aligned} \textbf{E}_{\textbf{d}} = \textbf{E} \Bigg[\gamma_{\textbf{F}} \textbf{F}_{\textbf{k}}; \frac{\textbf{X}_{\textbf{k}}}{\gamma_{\textbf{M}}}; \textbf{a}_{\textbf{d}} \, \Bigg] & \textbf{E}_{\textbf{d}} = \gamma_{\textbf{E}} \cdot \textbf{E} \Bigg[\textbf{F}_{\textbf{k}}; \frac{\textbf{X}_{\textbf{k}}}{\gamma_{\textbf{M}}}; \textbf{a}_{\textbf{d}} \, \Bigg] \end{aligned} \\ & \text{oppure} \end{aligned}$$

Il coefficiente γR opera direttamente sulla resistenza del sistema.

I coefficienti parziali di sicurezza, γ Mi e γ Fj= γ Ej , associati rispettivamente al materiale i-esimo e all'azione j-esima, tengono in conto la variabilità delle rispettive grandezze e le incertezze relative alle tolleranze geometriche e all'affidabilità del modello di calcolo.

In accordo a quanto stabilito al $\S 2.6.1$ del DM 14.01.08, le verifica della condizione $Rd \ge Ed$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

Nel primo Approccio progettuale (**Approccio l**) le verifiche si eseguono con due diverse combinazioni di gruppi di coefficienti ognuna delle quali può essere critica per differenti aspetti dello stesso progetto, convenzionalmente indicate come di seguito:

A1+M1+R1 A2+M2+R2

Nel secondo approccio progettuale (**Approccio 2**) le verifiche si eseguono con un'unica combinazione di gruppi di coefficienti.

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	16 di 45

Gli stati limite di verifica si distinguono in genere in:

EQU perdita di equilibrio della struttura fuori terra, considerata come corpo rigido.

STR raggiungimento della resistenza degli elementi strutturali.

GEO raggiungimento della resistenza del terreno interagente con la struttura con sviluppo di meccanismi di collasso dell'insieme terreno-struttura;

UPL perdita di equilibrio della struttura o del terreno, dovuta alla spinta dell'acqua (sollevamento per galleggiamento).

HYD erosione e sifonamento del terreno dovuta ai gradienti idraulici.

I coefficienti parziali da applicare alle azioni sono quelli definiti alla Tab 2.6.I del DM 14.01.08 di seguito riportata per chiarezza espositiva:

Tab. 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\rm F}$			
Control of the contro	Favorevoli	2/	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli	ΥG1	1,1	0,9 1,0 1,1 1,3 0,8 0,8 1,5 1,5 0,0 0,0	1,0
Caribi and a state of the state	Favorevoli		0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	Υ _{G2}	1,5	1,5	1,3
Animi muhili O	Favorevoli	2/	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	Yα	1,5	1,5	1,3

⁽¹⁾Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potrarno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Nella Tab. 2.6.I il significato dei simboli è il seguente:

γ_{G1} coefficiente parziale dei carichi permanenti G₁;

γ_{G2} coefficiente parziale dei carichi permanenti non strutturali G₂;

γ_{Oi} coefficiente parziale delle azioni variabili Q.

Nel caso in cui l'azione sia costituita dalla spinta del terreno, per la scelta dei coefficienti parziali di sicurezza valgono le indicazioni riportate nel Capitolo 6.

I valori dei coefficienti parziali da applicare ai materiali e/o alle caratteristiche dei terreni (M) sono definiti nelle specifiche sezioni della norma, ed in particolare al Cap. 4 per ciò che concerne i coefficienti parziali da applicare ai materiali strutturali, mentre al Cap.6 sono indicati quelli da applicare alle caratteristiche meccaniche dei terreni.

I coefficienti parziali da applicare alle resistenze (R) sono infine unitari sulle capacità resistenti degli elementi strutturali, mentre assumono in genere valore diverso da 1 per ciò che concerne verifiche che attengono il controllo di meccanismi di stabilità locale o globale; i valori da adottare per ciascun meccanismo di verifica, sono definiti nelle specifiche sezioni di normativa dedicate al calcolo delle diverse opere geotecniche.

La verifica della sicurezza nei riguardi degli **stati limite di esercizio** viene effettuata invece controllando gli aspetti di funzionalità e lo stato tensionale e/o deformativo delle opere, con riferimento ad una combinazione di verifica caratterizzata da coefficienti parziali sulle azioni e sui materiali tutti unitari.

Al § 2.5.3 del DM 14.01.08, sono infine definiti i criteri con cui le diverse azioni presenti vanno combinate per ciascuno stato limite di verifica previsto dalla Normativa, di seguito riportati per completezza:

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	17 di 45

2.5.3. COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{\text{G1}} \cdot G_{1} + \gamma_{\text{G2}} \cdot G_{2} + \gamma_{\text{P}} \cdot P + \gamma_{\text{Q1}} \cdot Q_{\text{k1}} + \gamma_{\text{Q2}} \cdot \psi_{\text{02}} \cdot Q_{\text{k2}} + \gamma_{\text{Q3}} \cdot \psi_{\text{03}} \cdot Q_{\text{k3}} + \dots \\ [2.5.1]$$

– Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.2]

– Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.3]

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\psi_{23}\cdot Q_{k3}+\dots \eqno(2.5.4)$
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.5]

– Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} Q_{ki}$$
. [2.5.7]

Nelle combinazioni si intende che vengano omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Nell'ambito della progettazione geotecnica, la normativa definisce inoltre nella Tab 6.2.II, i valori dei coefficienti parziali M1/M2 da applicare ai parametri caratteristici dei terreni nell'ambito delle diverse combinazioni contemplate dai due approcci di progetto come già illustrati al paragrafo precedente:

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γe	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tali valori agiscono sulle proprietà dei terreni, condizionando sia le azioni (spinte ed incrementi di spinta), sia le resistenze nei riguardi delle verifiche di stabilità dell'insieme opere-terreno con esse interagenti da effettuare caso per caso in funzione del tipo di opera.(Paratie, Muri, Pali di Fondazione ecc..)

Inoltre, ribadisce i valori dei coefficienti da applicare alle azioni nella Tab 6.2.II di seguito riportata:

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	18 di 45

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_F \ (o \ \gamma_E)$	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ ₆₂	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υœ	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽i) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ G1

Nell'ambito delle Analisi di seguito esposte, si è fatto riferimento nella fattispecie all'**APPROCCIO 1**, andando ad esaminare tutti gli stati limite ritenuti significativi per il caso delle opere in progetto, secondo quanto specificato al già citato prg "6.5.3.1.2 Paratie" del DM 14.01.08, ovvero:

SLU di tipo geotecnica (GEO) e di tipo idraulico (UPL e HYD)

- collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
- collasso per carico limite verticale;
- sfilamento di uno o più ancoraggi;
- instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
- instabilità del fondo scavo per sollevamento;
- sifonamento del fondo scavo;
- instabilità globale del complesso opera di sostegno-terreno;

SLU di tipo strutturale (STR)

- raggiungimento della resistenza in uno o più ancoraggi;
- raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;
- raggiungimento della resistenza strutturale della paratia.

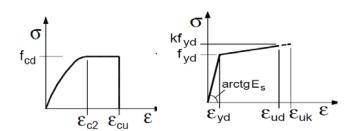
Si è infine proceduto con una verifica nei riguardi degli Stati Limite di Esercizio (SLE), effettuando una stima delle deformazioni dell'opera e dei cedimenti del piano limite a tergo.

PROGETTO DEFINITIVO

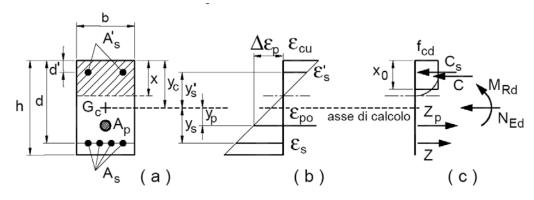
TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	19 di 45


Per le paratie, i calcoli di progetto devono comprendere la verifica degli eventuali ancoraggi, puntoni o strutture di controventamento.

Ciascuno degli Stati Limite di verifica previsti per le Paratie, è stato esaminato riferendosi alla Combinazioni 1 per il caso deli Stati Limite STR ed alla Combinazione 2 per gli Stati Limite (GEO) e di tipo idraulico (UPL e HYD)


7.2 VERIFICHE ALLO SLU

7.2.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC08, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	20 di 45

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

7.2.2 Taglio

La resistenza a taglio VRd della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}}\right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

- $v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$;
- $k = 1 + (200/d)^{1/2} \le 2$;
- $\rho_1 = A_{sw}/(b_w*d)$
- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

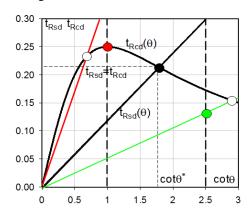
$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd}^{'} \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

Essendo:

$$1 \le \operatorname{ctg} \theta \le 2.5$$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC08, considerando

PROGETTO DEFINITIVO
TRATTA DITTAINO - CATENANUOVA


VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 03 03 02
 A
 21 di 45

ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

 $1 \le \operatorname{ctg} \theta \le 2,5$

$$45^{\circ} \ge \theta \ge 21.8^{\circ}$$

- Se la $\cot\theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rd}(=V_{Rcd}=V_{Rsd})$
- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportato dalle armature trasversali valutabile per una $\cot\theta=2,5$.
- Se la cotθ* è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e taglio resistente V_{Rd}(=V_{Rcd}) coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una cotθ=1,0.

L'angolo effettivo di inclinazione delle

bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato:

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature) dove

$$v = f'cd / fcd = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

αc coefficiente maggiorativo pari a

 $\begin{array}{lll} 1 & & \text{per membrature non compresse} \\ 1 + \sigma_{cp}/f_{cd} & & \text{per} & 0 \leq \sigma_{cp} < 0.25 \ f_{cd} \\ 1.25 & & \text{per} \ 0.25 \ f_{cd} \leq \sigma_{cp} \leq 0.5 \ f_{cd} \\ 2.5(1 - \sigma_{cp}/f_{cd}) & & \text{per} \ 0.5 \ f_{cd} < \sigma_{cp} < f_{cd} \end{array}$

 ω_{sw} : Percentuale meccanica di armatura trasversale.

$$\omega_{SW} = \frac{A_{SW} f_{yd}}{b \, s \, f_{cd}}$$

PROGETTO DEFINITIVO

RS3E

TRATTA DITTAINO - CATENANUOVA

D 09 CL

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA LOTTO CODIFICA

DOCUMENTO VI 03 03 02 REV. FOGLIO

A 22 di 45

8 ANALISI DELLE OPERE PROVVISIONALI

8.1 Descrizione delle sezioni di calcolo

8.1.1 Sezione P23

Paratia di pali in c.a.:

Dp = 500 mm diametro di perforazione

i = 0.6 m interasse longitudinale tra i pali

L = 21 m lunghezza del palo

Armatura

24 φ 26 armatura longitudinali in acciao B450C

φ12 passo 10cm armatura a taglio in acciao B450C

jet grouting di intasamento la cui efficiacia sarà da confermare con specifico campo prove

 $\phi = 500 \text{ mm}$ diametro delle colonne

i=0.35 m interasse longitudinale colonne in jet grouting

L=17m Lunghezza trattamento

236.3 m s.l.m.m. quota inizio trattamento

219.3 m s.l.m.m quota piede trattamento trattamento

Sistema di puntoni:

La Figura 3 mostra la pianta dello scavo della sezione P23

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3F	50	D 09 CI	\/I 03 03 02	Δ	23 di 45

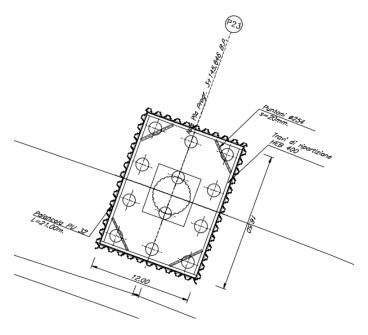


Figura 3

I puntoni sono sezioni circolari cave in acciaio (S275) aventi Φ254 mm inclinati di circa 45°.

La rigidezza del puntone è stata valutata tramite una modellazione agli elementi finiti in ambiente Midas Civil. Alla trave di ripartizione è stato applicato un carico uniformemente distribuito di 1 KN/m e si è mediato lo spostamento in corrispondenza della mezzeria della trave di ripartizione del punto medio (sempre sulla trave di ripartizione) tra appoggio e collegamento trave/puntone = $0.131*10^{-3}$ m. Tramite la formula $k=\frac{1}{u}$ si valuta la rigidezza $k\simeq 7619.048$ kN/m da applicare alle molle nel modello in Paratie Plus. La Figura 4 mostra lo schema statico utilizzato in Midas Civil:

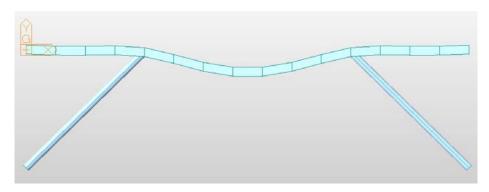
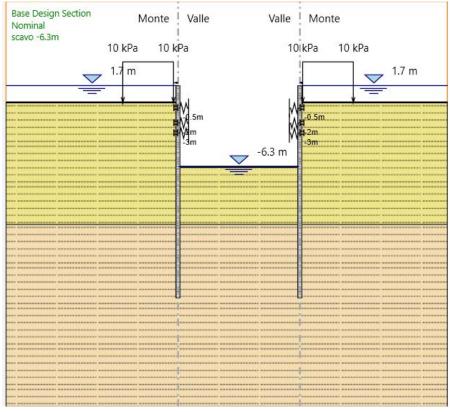


Figura 4

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA


VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	24 di 45

8.2 Schema e fasi di calcolo

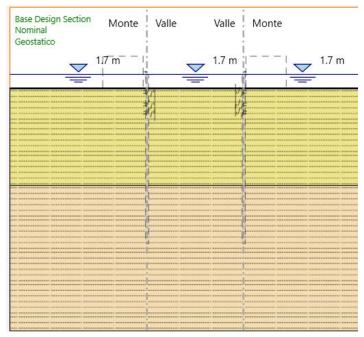
8.2.1 Sezione P23

GEOMETRIA SEZIONE P23

Tipo paratia: pali in c.a. a destra e a sinistra

La massima altezza di scavo è di 6.3 m

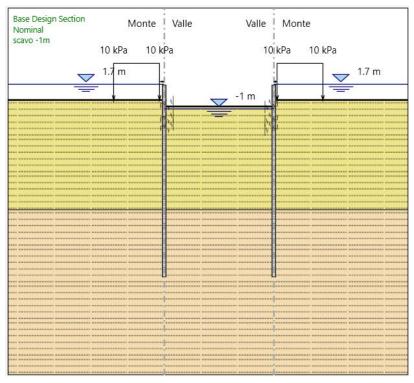
Nel calcolo si è tenuto conto del carico accidentale dovuto ai mezzi di cantiere $q_{acc,\,1}=10.0~kN/m^2$ uniformemente distribuito su un'area di impronta di 5.0 m posto in prossimità dell'estradosso della parartia.


6.3	[m]
19.3	[m]
21.0	[m]
1	[m]
0.6	[m]
0.50	[m]
24 ф 26	[-]
φ 12 con passo 10 cm	[-]
	19.3 21.0 1 0.6 0.50 24 \ d 26

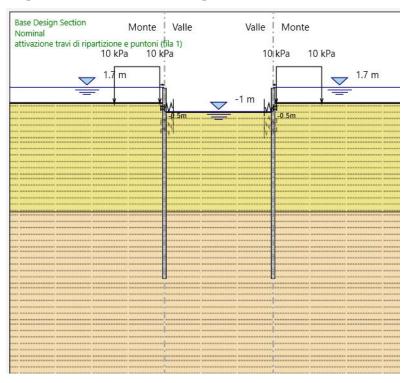

Di seguito si riportano le fasi di calcolo che sono state analizzate in successione.

Fasi di calcolo

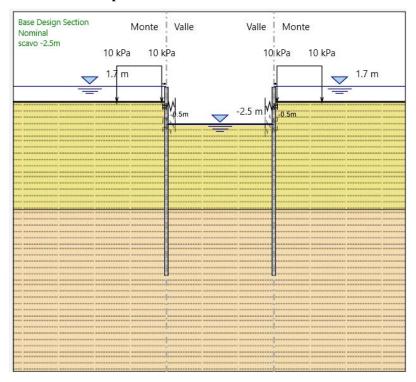
FASE 0: Generazione stato tensionale iniziale



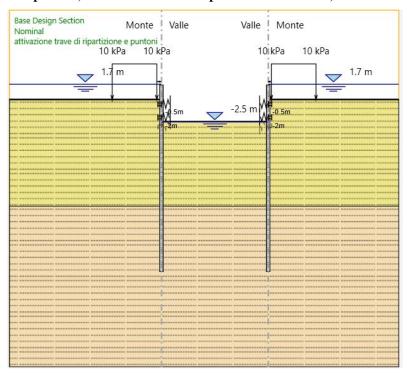
FASE 1: Installazione pali in c.a.+aativazione carico che simula il terreno + attivazione carico di cantiere qacc =10.0 kPa



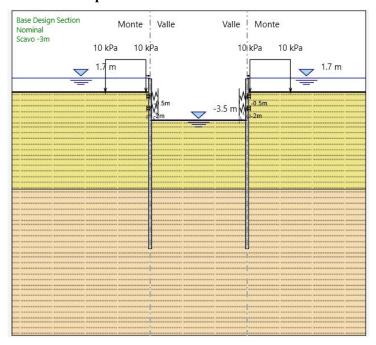
FASE 2: Scavo fino a arrivare a 1 m dal p.c.



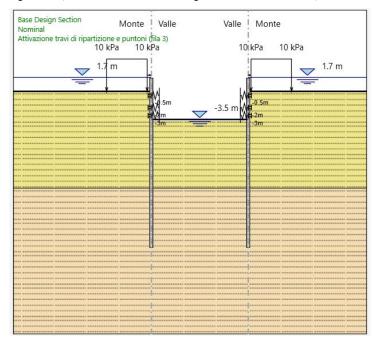
FASE 3: Installazione dei puntoni, con relative travi di ripartizione dei carichi, a 0.5 metri dalla testa della paratia



FASE 5: Scavo fino ad arrivare a 2.5 m da p.c.



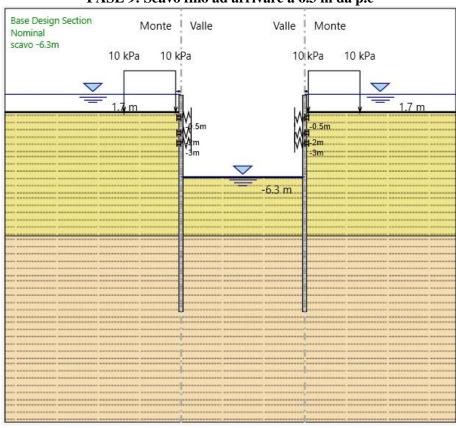
FASE 6: Installazione dei puntoni, con relative travi di ripartizione dei carichi, a 2 metri dalla testa della paratia



FASE 7: Scavo fino ad arrivare a 3.5 m da p.c.

FASE 8: Installazione dei puntoni, con relative travi di ripartizione dei carichi, a 3 metri dalla testa della paratia

PROGETTO DEFINITIVO


VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

TRATTA DITTAINO - CATENANUOVA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 03 03 02
 A
 29 di 45

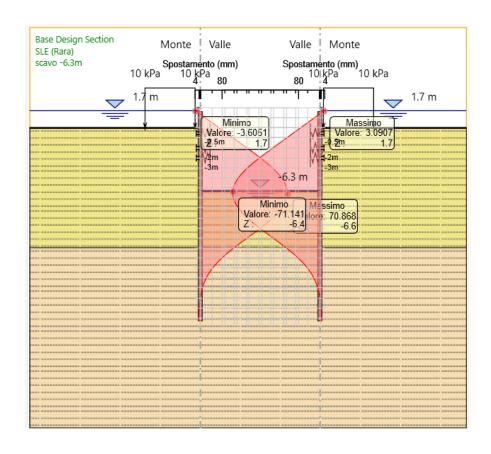
FASE 9: Scavo fino ad arrivare a 6.3 m da p.c

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 03 03 02	Α	30 di 45	


9 RISULTATI E VERIFICHE PARATIA

Nel seguito si espongono, in sintesi, i principali risultati di interesse progettuale.

9.1 **SEZIONE P23**

9.1.1 RISULTATI (combinazione SLE):

Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della paratia di sinistra e di destra vale 7.1 cm.

RISULTATI e VERIFICHE SLU STR PALANCOLE METALLICHE (combinazione A1+M1+R1): 9.1.2

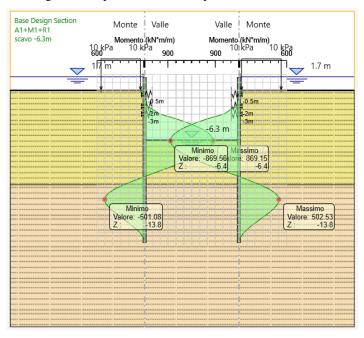
RS3E

50

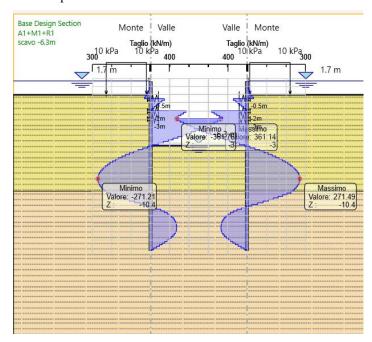
D 09 CL

Dall'inviluppo del momento flettente in combinazione A1+M1+R1 si osserva che il massimo valore sulla paratia di sinistra e di destra vale 869.15 kNm/m e si attinge ad una quota di 6.4 m. dal p.c..

DOCUMENTO


VI 03 03 02

REV.

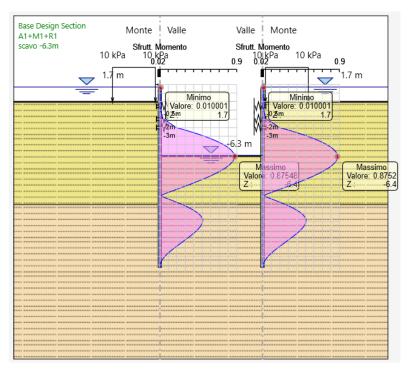

Α

FOGLIO

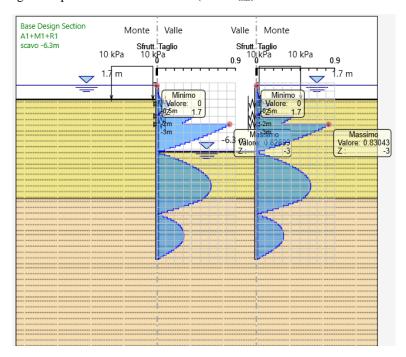
31 di 45

Dall'inviluppo del taglio in combinazione A1+M1+R1 si osserva che il massimo valore sulla paratia di sinistra e di destra si ha ad una profondità di 3m da p.c e risulta pari a 361.14 kN/m

PROGETTO DEFINITIVO


TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	32 di 45

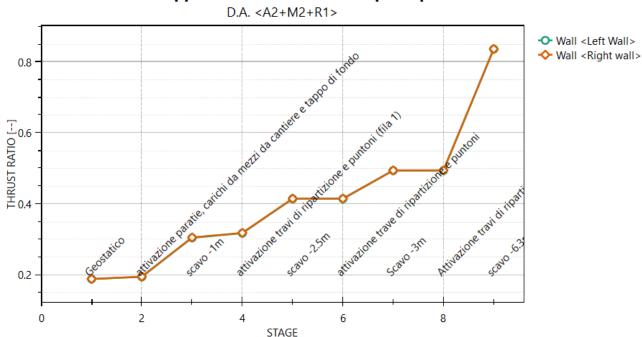
Nel seguito si riportano i risultati delle verifiche strutturali delle palancole metalliche a flessione e a taglio condotte mediante l'ausilio di Paratie plus. In Particolare si riportano i diagrammi dei tassi di sfruttamento sul palo, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione del palo.

Tasso di sfruttamento a momento nelle pali in comb. A1-M1-R3 (.T.S.F._{max} = 0.87<1 – VERIFICA SODDISFATTA)

Tasso di sfruttamento a taglio nei pali in comb. A1-M1-R3 (.T.S.F. $_{max} = 0.83 < 1 - VERIFICA SODDISFATTA$)

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA


VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	33 di 45

9.1.3 VERIFICA SLU GEO PALANCOLE METALLICHE (combinazione A2+M2+RI)

Il massimo rapporto di mobilitazione della spinta passiva è circa l'84% sulla partia di sinistra di destra.

Massimi rapporti di mobilizzazione spinta passiva

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 01	В	34 di 45

9.1.4 VERIFICA SLU STRU PUNTONE (combinazione A1+M1+RI)

I puntoni sono caratterizzati da un profilo circolare cavo \$\psi\$ 254 s=20mm.

Tramite il programma di calcolo Paratie Plus è stata valutata la reazione nella molla in combinazione A1+M1+R1 che risulta essere pari a KN/m sul lato destro e sul lato sinisto del muro.

Tale reazione è stata utilizzata come moltiplicatore del carico unitario nel modello in Midas Civil.

In tal modo è stato valutato lo sforzo normale agente sul singolo puntone.

Tale sforzo è $N_{Ed} = 2194 \text{ kN}$. Si è proceduto dunque alla verifica di instabilità del puntone compresso.

 $N_{b,Rd}$ è la resistenza all'instabilità nell'asta compressa, data da

$$N_{b,Rd} = \frac{\chi * A * f_{yk}}{\gamma_{M1}}$$

essendo la sezione di classe 1.

Infatti:

$$\frac{d}{t} = 12.7 \le 50\varepsilon^2 = 42.5$$

e come riportato nella tabella sottostante la sezione è di classe 1.

Sezioni tubolari						
Classe		Sezione soggetta a flessione e/o compressione				
1		d l t ≤ 50 ε ²				
2				d/t≤70 ε²		
3	No	$d!t \leq 90 \ \varepsilon^2$ Nota Per $d!t > 90 \ \varepsilon^2$ vedere EN 1993-1-6.				
	f _y	235	275	355	420	460
$\varepsilon = \sqrt{235/f_y}$	ε	1,00	0,92	0,81	0,75	0,71
	ε^2	1,00	0,85	0,66	0,56	0,51

Figura 2.3 Tabella 5.2- parte 3 di EN 1993-1-1: rapporti lato/spessore per parti compresse.

I coefficienti χ dipendono dal tipo di sezione e dal tipo di acciaio impiegato; essi si desumono, in funzione di appropriati valori della snellezza adimensionale $\bar{\lambda}$, dalla seguente formula

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}} = 1$$

PROGETTO DEFINITIVO

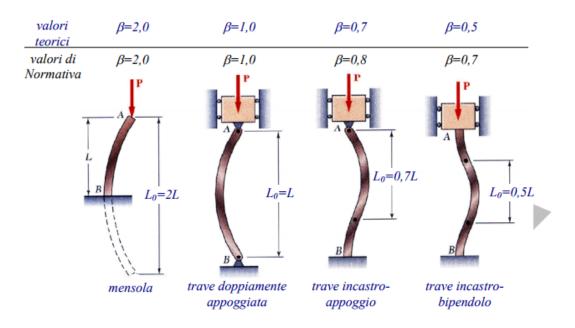
TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	35 di 45

dove $\phi = 0.5[1 + \alpha(\bar{\lambda} - 0.2) + \bar{\lambda}^2]$, α è il fattore di imperfezione, ricavato dalla Tab 4.2.VI, e la snellezza adimensionale $\bar{\lambda}$ è pari a

$$\bar{\lambda} = \sqrt{\frac{A*f_{yk}}{N_{cr}}} = 0.0248$$


dove $N_{cr} = \frac{\pi^2 * EJ}{L_0^2} = 6.56*10^6 \, \text{kN}$ e $\alpha = 0.21$ essendo il tubolare una sezione formata a caldo.

Nella formulazione precedente

$$E = 210 * 10^{9} \frac{N}{m^{2}}$$

$$J = 1.01 * 10^{-4} m^{4}$$

$$L_{o} = \beta L = 1 * 5.66 = 5.66 m$$

Risulta:

$$N_{b,Rd} = \frac{\chi * A * f_{yk}}{\gamma_{M1}} = 3515.9 \ kN$$

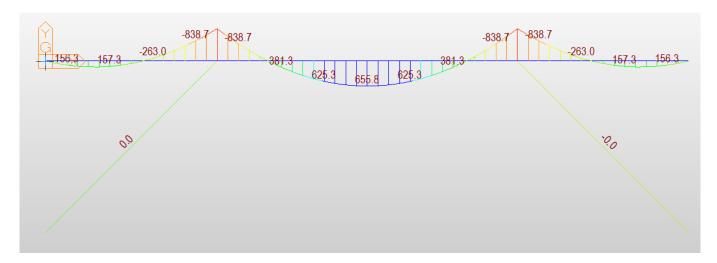
Dunque essendo $N_{Ed} = 2194kN$ la verifica risulta essere soddisfatta.

9.1.5 VERIFICA SLU STRU TRAVE DI RIPARTIZIONE (combinazione A1+M1+RI)

VERIFICA A MOMENTO

Il momento flettente di calcolo M_{Ed} deve rispettare la seguente condizione:

PROGETTO DEFINITIVO


TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	36 di 45

$$\frac{M_{Ed}}{M_{c,Rd}} \leq 1$$

Per ricavare la sollecitazione massima a flessione nella trave di ripartizione si è ricavato il carico uniformemente distribuito sulla trave di ripartizione su ParatiePlus 18 nella combinazione A1+M1+R1. Tale carico è stato applicato allo schema trave/puntone su Midas Civil. Il momento massimo risulta essere 838.7 KNm.

La resistenza di calcolo a flessione retta della sezione $M_{c,Rd}$ vale per le sezioni di classe 1 e 2

$$M_{c,Rd} = M_{pl,Rd} = \frac{W_{pl} * f_{yk}}{\gamma_{M0}} = 846.48 \, kNm$$

Ove W_{pl} della sezione composta è la somma di W_{pl} dei due profilati HE400B (W_{pl} =3232cm³)

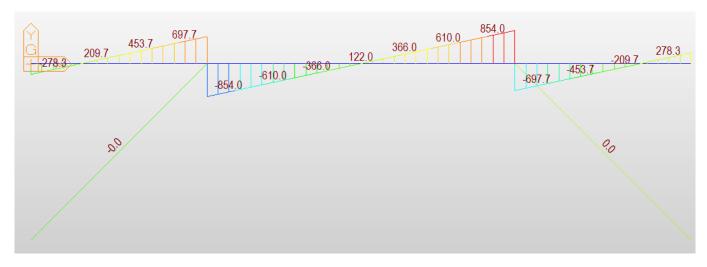
Dunque la verifica risulta essere soddisfatta.

VERIFICA A TAGLIO

Il taglio di calcolo T_{Ed} deve rispettare la seguente condizione:

$$\frac{T_{Ed}}{T_{c,Rd}} \le 1$$

Per ricavare la sollecitazione massima a taglio nella trave di ripartizione si è ricavato il carico uniformemente distribuito sulla trave di ripartizione su ParatiePlus 18 nella combinazione A1+M1+R1. Tale carico è stato applicato allo schema trave/puntone su Midas Civil. Il taglio massimo risulta essere 697.7 kN.


PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 03 03 02
 A
 37 di 45

La resistenza di calcolo taglio della sezione $T_{c,Rd}$ vale:

$$T_{c,Rd} = \frac{A_v * f_{yd}}{\sqrt{3}} = 1358.18 \, kN$$

Ove A_{ν} della sezione composta è la somma di A_{ν} dei due profilati HE400B (A_{ν} =69.98 cm²)

Dunque la verifica risulta essere soddisfatta.

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 03 03 01	В	38 di 45	

9.1.6 VERIFICA SLU UPL E HYD

Il § 6.2.3.2. del DM 14.01.2008 specifica che le opere geotecniche devono essere verificate, ove ricorrano le condizioni, anche che nei riguardi di possibili stati limite di sollevamento o di sifonamento.

A tal fine, nella valutazione delle pressioni interstiziali e delle quote piezometriche caratteristiche, si devono assumere le condizioni più sfavorevoli, considerando i possibili effetti delle condizioni stratigrafiche.

Per la **stabilità al sollevamento** deve risultare che il valore di progetto dell'azione instabilizzante ($V_{inst,d}$) ovverosia della risultante delle pressioni idrauliche ottenuta considerando separatamente la parte permanente ($G_{inst,d}$) e quella variabile ($Q_{inst,d}$), sia non maggiore della combinazione dei valori di progetto delle azioni stabilizzanti ($G_{stb,d}$) e delle resistenze (R_d), ovvero:

$$V_{inst.d} \le G_{stb.d} + R_d$$
 [6.2.4]

$$V_{inst.d} = G_{inst.d} + Q_{inst.d}$$
 [6.2.5]

Per le verifiche di stabilità al sollevamento, i relativi coefficienti parziali sulle azioni sono indicati nella Tab. 6.2.Ill.

Tab. 6.2.III – Coefficienti parziali sulle azioni per le verifiche nei confronti di stati limite di sollevamento

	Effetto	Coefficiente Parziale γ _F (ο γ _E)	Sollevamento (UPL)
Control or comment of Co	Favorevole		0,9
Carichi permanenti G ₁	Sfavorevole	γ _{G1}	1,1
Carichi permanenti	Favorevole		0,8
$G_{2^{(1)}}$	Sfavorevole	γ _{G2}	1,5
A - : : - : - : - - : : O	Favorevole		0,0
Azioni variabili Q	Sfavorevole	γQi	1,5

⁽i) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti 🕫

Al fine del calcolo della resistenza di progetto Rd, tali coefficienti devono essere combinati in modo opportuno con quelli relativi ai parametri geotecnici (M2).

Ove necessario, il calcolo della resistenza va eseguito in accordo a quanto indicato negli specifici paragrafi della normativa dedicata alle fondazioni su pali e per gli ancoraggi.

In presenza di scavi a valle di opere di sostegno di terreni in falda, quando il piano finale di scavo da progetto è inferiore al livello della falda in sito, si configurano due potenziali meccanismi di instabilità della zona a valle delle opere, e che vanno indagati, ovvero :

- Instabilità del fondo scavo per "sifonamento"
- Instabilità del fondo scavo per "sollevamento"

I fenomeni sono legati essenzialmente ai processi di filtrazione che si innescano verso la zona di fondo scavo a completamento degli scavi, che avvengono "a breve termine" per terreni a grana grossa, ovvero a "lungo termine" per terreni a grana fine, o comunque, in quest'ultimo caso, alla sovrapressione di tipo idrostatico che agisce a piede del cuneo di terreno potenzialmente instabile immediatamente a ridosso dell'opera.

Nel caso in esame i terreni interessati dal moto di filtrazione sono caratterizzati da differeni valori della conducibilità idraulica pertanto, al fine di determinare la sovrappressione idrodinamica agente ai piedi della paratia, si sono determinate le perdite di carico che si hanno in ciascun strato e pari a:

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2 COMMESSA LOTTO

CODIFICA DOCUMENTO
D 09 CL VI 03 03 02

REV. FOGLIO A 39 di 45

 $\frac{l_i}{l_r}$

$$\Delta H_i = \Delta H \frac{\frac{l_i}{k_i}}{\sum_j \frac{l_j}{k_i}}$$

con

 ΔH_i perdite di carico nell'iesimo strato;

 ΔH carico idraulico

 l_i spessore dell'iesimo stratto

 k_i conducibilità idraulica dell'iesimo stratto

Determinate le perdite di carico e assumendo come piano z=0 quello passante per il piede della paratia, si può determinare la pressione idrodinamica agente in corrispondenza del piede della paratia:

$$u = \left(H_w - \sum_{j} \Delta H_i - z\right) \cdot \gamma_w$$

dove

H_w altezza piezometrica di monte

 $\sum_i \Delta H_i$ perdite di carico nella sezione in esame, somma delle perdite di carico negli strati di monte

z quota geotedica (assunta pari z=0 se si valutano le pressioni al piede della paratia).

Nota la pressione idrodinamica agente, si può determinare la forza instabilizzante agente sul volume di terreno oggetto della verifica in esame:

$$V_{inst.d} = \gamma_{G1} \cdot u_{idrodin} \cdot B \cdot L$$

Con B e L larghezza e profondità dello scavo pari rispettivamente a 12 e 16.5 m.

Mentre le forze stablizzanti sono sate dal peso del volume di terreno soggetto a verifica:

$$G_{st,d} = \gamma_{G1} \cdot \gamma_{sat} \cdot h \cdot B \cdot L$$

Con h spessore del volume soggetto a verifica

Nel caso in esame si ha:

Hw	ΔН	ΣΔΗ	U idrodin,fondo scavo	$V_{inst,d}$	σv ,fondo scavo	G _{stb,d}	$FS=(G_{stb,d} + R_d)/V_d$
[m]	[m]	[m]	[kPa]	[kN]	[kPa]	[kN]	[-]
18.7	8	4.00	146.97	6332.02	213.30	27643.68	2.18

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	40 di 45

Essendo le forze stabillizzanti maggiori di quelle instabilizzanti, la verifica a sollevameno del fondo scavo è verificata.

In aggiunta al meccanismo di sollevamento, la normativa al § 6.2.3.2. del DM 14.01.2008 prescrive di effettuare verifiche specifiche nei riguardi del rischio di "sifonamento", che riguarda specificamente le condizioni di filtrazione che si innescano a valle degli scavi, per effetto dei quali, a seguito dell'incremento delle pressioni interstiziali nella zona di valle, si può determinare un annullamento delle tensioni verticali efficaci e quindi la completa perdita di resistenza del terreno che determina un trasporto delle particelle da parte dell'acqua in movimento, dando origine ad un fenomeno progressivo di erosione che conduce al collasso della struttura del terreno.

La normariva Il controllo della stabilità al sifonamento si esegue verificando che il valore di progetto della pressione interstiziale instabilizzante (uinst,d) risulti non superiore al valore di progetto della tensione totale stabilizzante (sstb,d), tenendo conto dei coefficienti parziali della Tab. 6.2.IV:

$$u_{inst,d} \le \sigma_{sstb,d}$$
 (6.2.6)

In entrambe le verifiche, nella valutazione delle pressioni interstiziali, si devono assumere le condizioni più sfavorevoli, considerando i possibili effetti delle successioni stratigrafiche sul regime di pressione dell'acqua. Nelle verifiche al sifonamento, in presenza di adeguate conoscenze sul regime delle pressioni interstiziali, i coefficienti di sicurezza minimi sono indicati nella Tab. 6.2.IV. Valori superiori possono essere assunti e giustificati tenendo presente della pericolosità del fenomeno in relazione

Tabella 6.2.IV – Coefficienti parziali sulle azioni per le verifiche nei confronti di stati limite di sifonamento.

6.2.17 - Coefficient par zian suite azioni per le verifiche nei confronti ai sian timite ai sifonamento.					
CARICHI	EFFETTO	COEFFICIENTE PARZIALE γ _F (ο γ _E)	SIFONAMENTO (HYD)		
Permanenti	Favorevole		0,9		
remanenti	Sfavorevole	γG1	1,3		
Permanenti non strutturali (1)	Favorevole		0,0		
remanenti non strutturan	Sfavorevole	γ _{G2}	1,5		
Variabili	Favorevole	24-	0,0		
Valiabili	Sfavorevole	γQi	1,5		

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Nel caso in esame, anche se i terreni presenti non suscettibili al fenomeno del sifonamento, si comunqueè effettuata la verifica alla base dell' Unità ba – Depositi alluvionali coesivi.

Come pressione instabilizzante $u_{inst,d}$ si è considerata la pressione indrodinamica agente alla base dello strato ba determinata tramite la:

$$u = \left(H_w - \sum_j \Delta H_i - z\right) \cdot \gamma_w \cdot \gamma_{G1}$$

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 03 03 02	Α	41 di 45

Si riportano i risulatati delle analisi:

U _{istb,d}	$\sigma_{stb,d}$	$\sigma_{\text{stb,d}}/u_{\text{istb,d}}$
[kPa]	[kPa]	[-]
74.20	97.47	1.31

Sia la verifica nei confronti del sollevamento del fondo scavo e sia del sifonamento sono soddisfatte.

9.1.7 Verifica stabilità globale del complesso opera di sostegno – terreno

Il DM 17.01.08 affronta il tema della Stabilità Globale distinguendo tra il caso dei Pendii Naturali (§ 6.3) e quello delle opere in terra in Materiali sciolti e Fronti di scavo (§ 6.8) fornendo prescrizioni differenti circa i criteri di verifica da adottare nei due casi.

Trattandosi nel caso in esame di valutare la Stabilità Globale di Opere a sostegno di scavi, si ricade nel caso dei "Fronti di Scavo e rilevati"; nel seguito si riportano dunque, per maggiore chiarezza espositiva, le specifiche normative a riguardo.

Il punto 6.8 del DM 17.01.08 e relativa circolare applicativa, tratta l'argomento della verifica di Stabilità di Materiali Sciolti e fronti di scavo, nella fattispecie, al punto 6.8.2 "Verifiche di Sicurezza (SLU)" viene prescritto quanto di seguito:

Le verifiche devono essere effettuate secondo l'Approccio 1 - Combinazione 2 (A2+M2+R2) tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

In aggiunta a quanto già riportato nei precedenti paragrafi, si riporta di seguito la Tab. 6.8.I, in cui è definito il valore del coefficiente parziale "R2" da applicare al valore della resistenza caratteristica calcolata per la generica superfice di potenziale scivolamento analizzata:

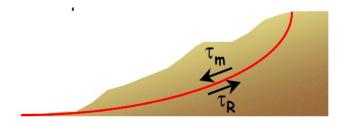
Tabella 6.8.I – Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo.

Coefficiente	R2	
γr	1.1	

Per il caso in esame, le verifiche sono state effettuate mediante i metodi dell'equilibrio limite rispetto a superfici di forma circolare, utilizzando il metodo di **Bishop,** per i cui dettagli si rimanda a quanto esposto a riguarda nella letteratura tecnica.

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA


VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA
RS3E	50	D 09 CL

DOCUMENTO REV. VI 03 03 02

FOGLIO

42 di 45

$$FS = \frac{\int\limits_{S} \tau_{\text{rott}}}{\int\limits_{S} \tau_{\text{mob}}}$$

Le verifiche sono state effettuare rispetto a famiglie di superfici potenziali di rottura disegnate in maniera tale da non intersecare le opere, escludendo quindi ai fini della stabilità la resistenza al taglio locale offerta dalle opere, fermo restando tutte le prescrizioni definite dalla normativa per questo tipo di verifica

Nel caso in esame la verifica non risulta significativa in quanto non esistono superfici di scorrimento circolari ammissibili che hanno tratto finale ricadente nella parte di scavo tra le paratie.

ANALISI DI STABILITA' SCARPATE PROVVISORIE

Nel presente capitolo si riportano le verifiche di stabilità globali delle trincee ferroviarie in progetto. Lungo il tracciato ferroviario sono presenti tratti con con altezze generlamente inferiori ai 6 m. In generale si prevedono:

scarpate di scavo provvisorie, per la realizzazione delle opere d'arte, con pendenza 2 (verticale) / 3 (orizzontale), con banca intermedia di larghezza 2 m ogni 6 m di dislivello.

10.1 Metodologie di calcolo

Le verifiche di stabilità per le scarpate di scavo provvisionali sono state svolte nelle sole condizioni statiche. L'esame delle condizioni di stabilità è stato condotto utilizzando gli usuali metodi dell'equilibrio limite. Per la valutazione dei fattori di sicurezza alla stabilità globale si è impiegato il codice di calcolo denomiato Slide 7.0, in cui la ricerca delle superfici critiche viene svolta attraverso la generazione automatica di un elevato numero di superfici di potenziale scivolamento. Sono state cautelativamente considerate ipotesi di deformazione piana. In particolare, in questa sede si fa riferimento al metodo di Bishop che prevede superfici di scorrimento circolari nei terreni. Nelle analisi sono state ovviamente tralasciate le superfici più corticali in quanto poco significative e per le quali non risulta idonea una analisi convenzionale all'equilibrio limite.

Il coefficiente di sicurezza FS a rottura lungo la superficie di scorrimento viene definito come rapporto tra la resistenza al taglio disponibile lungo la superficie S e quella effettivamente mobilitata lungo la stessa superficie:

REV.

FOGLIO

43 di 45

PROGETTO DEFINITIVO

TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO
RS3E	50	D 09 CL	VI 03 03 02

$$FS = \frac{\int_{S} \tau_{\text{disp}}}{\int_{S} \tau_{\text{mob}}}$$

In accordo alla normativa vigente per rilevati in materiali sciolti e fronti di scavo, le analisi di stabilità vengono condotte secondo la combinazione (A2+M2+R2).

Secondo quanto previsto da normativa, per le analisi di stabilità in condizioni statiche SLU, i parametri di resistenza del terreno devono essere abbattuti a mezzo dei coefficienti parziali di seguito riportati.

 $\gamma_{\phi'} = 1.25$ coefficiente parziale per l'angolo di resistenza al taglio

 $\gamma_{c'} = 1.25$ coefficiente parziale per la coesione drenata

L'analisi viene quindi condotta con i seguenti parametri geotecnici di calcolo:

 $tan(\varphi'_k) = tan(\varphi'_k) / \gamma_{\varphi'}$ angolo di resistenza al taglio

 $c'_k = c'_k / \gamma_{c'}$ coesione drenata

Il coefficiente di sicurezza minimo per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo è pari ad $1.1 \ (\gamma_R)$ in condizioni SLU statiche, quindi il fattore di sicurezza alla stabilità da verificare è FS ≥ 1.1 .

10.2 Carichi

Il sovraccarico accidentale stradale, considerato agente sulle viabilità, è stato assunto pari a 20 kPa già fattorizzato ($\gamma_F = 1.3$, Tabella 5.2.V NTC 2008).

Inoltre, sia per le trincee definitive che per quelle provvisorie, è stato cautelativamente utilizzato un sovraccarico accidentale a monte di 10 kPa.

In condizioni sismiche, ai carichi accidentali è stato applicato un coefficiente di combinazione pari a 0.2, come da § 2.3.3 delle Specifiche RFI.

10.3 Sezioni di calcolo

L'analisi di stabilità per le trincee provvisorie è stata condotta cautelativamente per le seguenti sezioni:

PROGETTO DEFINITIVO
TRATTA DITTAINO - CATENANUOVA

VI03 - Viadotto a Singolo Binario - Ltot=780.88 ml circa Relazione di calcolo opere provvisionali parte 2 di 2
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 03 03 02
 A
 44 di 45

- sezione di altezza 6 m con scarpate 2 (vert) /3 (orizz) in terreni coesivi, cautelativamente si considera uno spessore superficiale di 2 m circa di eluvio-colluvio (unità b2), poi alluvioni coesive (unità bbc) con falda a fondo scavo;
- sezione di altezza 6 m con scarpate 2 (vert) /3 (orizz) in terreni incoerenti (unità bni) con falda a fondo scavo.

Sono stati considerati i seguenti parametri geotecnici. I parametri di resistenza assunti nei calcoli sono sono quelli che mediamente si individuano dall'inviluppo di tutti i risultati delle prove di laboratorio nell'ambito delle tensioni che interessano le superfici di scorrimento.

Unità ba – Depositi alluvionali coesivi (limoso argillosi) $\gamma = 19.0 \text{ kN/m3}$ peso di volume naturale

c' = 0 kPa coesione drenata

 $\phi' = 25^{\circ}$ angolo di resistenza al taglio

TRVb - Formazione di Terravecchia

 $\gamma = 21.0 \text{ kN/m3}$ peso di volume naturale

c' = 5 kPa coesione drenata

 $\varphi = 26^{\circ}$ angolo di resistenza al taglio

10.4 Risultati

Nelle seguenti figure sono mostrati i risultati delle verifiche di stabilità delle scarpate.

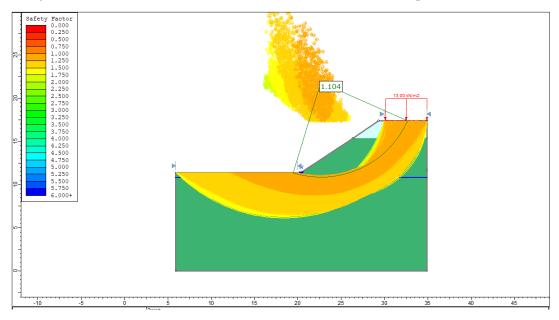


Figura 5. Analisi statica – Scarpate provvisorie –trincea H=6m – terreni coesivi

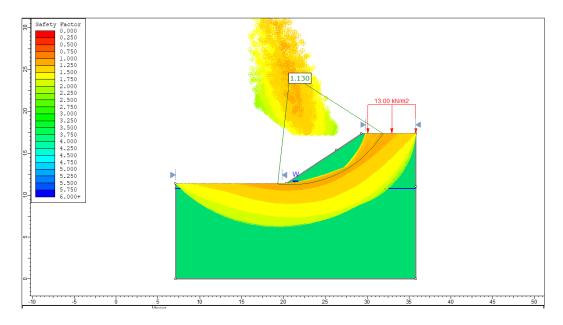


Figura 6. Analisi statica – Scarpate provvisorie –trincea H=6m – terreni incoerenti

I fattori di sicurezza minimi ottenuti dalle verifiche sono sempre maggiori di quanto prescritto da normativa ($\gamma_R \ge 1.1$ per le analisi statiche SLU) quindi le verifiche di stabilità sono sempre soddisfatte.