COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA DITTAINO – CATENANUOVA (LOTTO 5)

OPERE PRINCIPALI – PONTI E VIADOTTI VI07 - Viadotto ferroviario a Singolo Binario

Relazione di calcolo Spalle 2 di 2

-	SCALA:
	-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

R S 3 E 5 0 D 0 9 C L V I 0 7 0 4 0 0 2 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data 🚆	Autorizzato Data
Α	EMISSIONE ESECUTIVA	Abbasciano	Novembre	A. Ferri	Novembre	F. Sparacino	Novembe	A. Vittozzi
			2019	A	2019	*	2019	Novembre 2019
							Sp	2 2
							# 4 5 E	A207
							TAL	× ×
							Dott.	
							0	
							o, y	

File: RS3E50D09CLVI0704002A.docx n. Elab.: 1357

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 2 di 69

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE DELL'OPERA	
	1.1.1		
2	RIFI	ERIMENTI NORMATIVI	6
3	MA	TERIALI	7
	3.1	VERIFICA S.L.E.	8
	3.1.1	l Verifiche alle tensioni	8
	3.1.2	2 Verifiche a fessurazione	8
4	ANA	ALISI E VERIFICHE SPALLA	10
	4.1	Generalità	10
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE SPALLE.	10
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	
	4.5	GEOMETRIA DELLA SPALLA	
	4.6	Analisi dei carichi	18
	4.6.1	Peso proprio elementi strutturali	18
	4.6.2	2 Carichi trasmessi dall'impalcato	18
	4.6.3	Azione del Vento	20
	4.6.4	4 Carichi da traffico verticali	21
	4.6.5	5 Effetti dinamici	22
	4.6.6	6 Carichi da traffico orizzontali	22
	4.6.7		
		•	
	4.6.8	•	
	4.6.9	9 Spinta del sovraccarico accidentale condizioni statiche	25
	4.6.1	10 Azione sismica	26

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 3 di 69

4	4.6.11	Incremento di spinta del terrapieno	32
	4.6.12	Inerzie strutturali	32
	4.6.13	Calcolo delle sollecitazioni in testa pali	33
	4.6.14	Riepilogo risultati	33
4.7	S	SOLLECITAZIONI	38
	4.7.1	Muro paraghiaia	38
	4.7.2	Muro frontale	40
	4.7.3	Plinto di fondazione	42
4.8	I	PALI DI FONDAZIONE	44
4.9	•	VERIFICHE DEGLI ELEMENTI STRUTTURALI	45
	4.9.1	Paraghiaia	48
	4.9.2	Muro frontale	54
	4.9.3	Zattera di fondazione	60
	4.9.4	Palo di fondazione L=39.0m	63

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle spalle del viadotto ferroviario VI07 della tratta ferroviaria Palomba-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare si tratterà la spalla B che presenta l'altezza del paramento maggiore e l'ipotesi di appoggi "fissi" dell'impalcato.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 14 gennaio 2008.

1.1 Descrizione dell'opera

Il viadotto ferroviario VI07 ha una lunghezza totale di circa 168 m, è costituito da 3 impalcati in sezione mista acciaio/cls di luce 40m ed 1 in sezione mista acciaio/cls di luce 50m. Il viadotto è previsto a singolo binario.

Pile e spalle sono realizzate in c.a. gettato in opera.

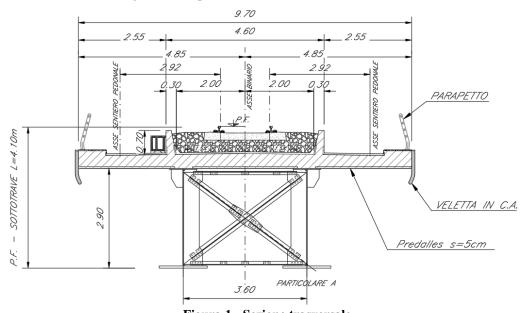
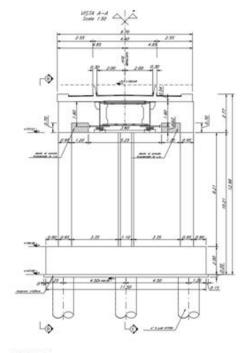
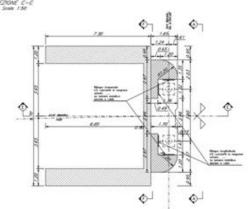
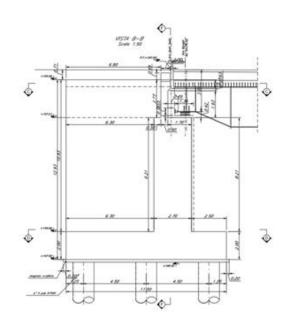


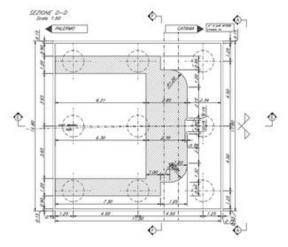
Figura 1 - Sezione trasversale

1.1.1 Aspetti legati alle opere di fondazione


Le fondazioni sono realizzate sia per le pile che per le spalle con plinti su pali di grande diametro.




VI07 - Ponte ferroviario a Singolo Binario


RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	5 di 69

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 6 di 69

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Norme Tecniche per le Costruzioni, DM del 14/01/2008;
- Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- C.M. 02/02/2009 n.617: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- RFI DTC SI PS MA IFS 001 A del 30/12/2016: Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture;
- RFI DTC SI PS SP IFS 001 A del 30/12/2016: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- STI 2014 –Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

LOTTO COMMESSA **CODIFICA DOCUMENTO** REV. RS3E D 09 CL VI 07 04 002 50 Α

FOGLIO

7 di 69

3 **MATERIALI**

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

- Calcestruzzo magro e getto di livellamento
- CLASSE DI RESISTENZA MINIMA C12/15
- TIPO CEMENTO CEM I÷V CLASSE DI ESPOSIZIONE AMBIENTALE : XO
 - Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni

- CLASSE DI RESISTENZA MINIMA C25/30
 TIPO CEMENTO CEM III÷V
 RAPPORTO A/C : ≤ 0.60
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
 COPRIFERRO MINIMO = 60 mm
- DIAMETRO MASSIMO INERTI: 32 mm
 - Calcestruzzo fondazioni armate

- CLASSE DI RESISTENZA MINIMA C25/30 TIPO CEMENTO CEM III÷V RAPPORTO A/C : ≤ 0.60 CLASSE MINIMA DI CONSISTENZA : S4 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 40mm
- DIAMETRO INERTI: 25 mm
 - Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle
- CLASSE DI RESISTENZA MINIMA C32/40

- TIPO CEMENTO CEM III÷V
 RAPPORTO A/C: < 0.50
 CLASSE MINIMA DI CONSISTENZA: S4
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC4
- COPRIFERRO MINIMO = 50mm
- DIAMETRO INERTI: 25 mm
 - Acciaio ordinario per calcestruzzo armato

- IN BARRE E RETI ELETTROSALDATE
 B450C saldabile che presenta le seguenti caratteristiche :

 Tensione di snervamento caratteristica
 Tensione caratteristica a rottura

 ftk > 540 N/mm²
 1.15≤ ftk/fyk < 1.35

(*): I VALORI DI COPRIFERRO RIPORTATI SI RIFERISCONO AD OPERE CON VITA NOMINALE DI 75 ANNI. PER COSTRUZIONI CON VITA NOMINALE DI 100 ANNI TALI VALORI DOVRANNO ESSERE AUMENTATI DI 5 mm.

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ek} ;
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{yk}$

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di esigenza			Armatura			
	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile	
			Stato limite	wd	Stato limite	wd
a	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃
		quasi permanente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	9 di 69

h	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
	Aggicssive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
C	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
	Wiolto Agglessive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 617/09.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	10 di 69

4 ANALISI E VERIFICHE SPALLA

4.1 Generalità

La spalla presentano una configurazione a paramento di spessore 2.75 m e muri di risvolto per il contenimento del rilevato retrostante di spessore 1.20 m. L'altezza della spalla B (escluso paraghiaia) è pari a 8.00 m.

Entrambe le spalle hanno in testa un paraghiaia di spessore 0.5 m ed altezza di circa 3.30 cm dalla testa muro frontale.

Le fondazioni sono realizzate su pali di diametro 1.50m collegate in testa da una platea di spessore 2.00 m.

Il calcolo è stato effettuato per la spalla B, con altezza di paramento maggiore estendendo i risultati anche all'altra.

Per le verifiche dei singoli elementi della spalla (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

4.2 Modelli a mensola per la verifica delle spalle

Le sollecitazioni di verifica della spalla sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle spinte del terreno di riempimento e del sovraccarico in condizioni sia statiche che sismiche e le azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Tutti i muri sono considerati sconnessi fra loro per la valutazione delle sollecitazioni alla base e quindi le azioni provenienti dall'impalcato sono applicate solamente al muro frontale. Tale schema pur risultando cautelativo, non fornisce sovrastime eccessive nel calcolo dei quantitativi di armatura previsti.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali muro paraghiaia e muro frontale che vengono tutti modellati come delle mensole incastrate alla base.

Per il plinto di fondazione, si è utilizzato un modello tirante-puntone per l'analisi e la verifica dello zoccolo anteriore al muro frontale.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC08, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	11 di 69

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

LOTTO REV. COMMESSA CODIFICA DOCUMENTO **FOGLIO** 12 di 69 RS3E 50 D 09 CL VI 07 04 002 Α

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	13 di 69

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
 (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi, alle verifiche strutturali.

	A2-SLU-N max gr.1	A2 - SLU - MT max gr.1	A2 - SLU - MI max gr.1	A2 - SLU - N max gr.3	A2 - SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	A2 - SLU Gmin - N max gr.1	A2 - SLU Gmin - MT max 8r.1	A2 - SLU Gmin - MI max gr.1	A2 - SLU Gmin - N max 8r.3	A2 - SLU Gmin - MT max gr.3	A2 - SLU Gmin - ML max gr.3	A2 - SLU G min - Vento ponte scarico	A1-SLU-N max gr.1	A1-SLU-MT max gr.1	A1-SLU-MLmaxgr.1	A1-SLU-N max gr.3	A1-SLU-MT max gr.3	A1 - SLU - ML max gr.3	A1 - SLU - Vento ponte scarico	A1 - SLU Gmin - N max 8r.1	A1-SLU Gmin-MT max gr.1	A1 - SLU Gmin - ML max gr.1	A1 - SLU Gmin - N max gr.3	A1-SLU Gmin-MT max gr.3	A1-SLU Gmin - ML max 8r.3	A1 - SLU G min - Vento ponte scarico
Peso proprio gl	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35							1.00
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50		0.00					0.00
Ballast	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50		1.00					1.00
Comb. Nmax Qv	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45			0.00
Comb. Nmax Q frenatura	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00					0.00
Comb. Nmax Q centrifuga	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00		0.00
Comb. Nmax Q serpeggio	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00
Comb. MTmax Qv	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Q frenatura	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Q centrifuga	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00
Comb. MTmax Q serpeggio	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00
Comb. MLmax Qv	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00
Comb. MLmax Q frenatura	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00
Comb. MLmax Q centrifuga	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00
Comb. MLmax Q serpeggio	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00	0.00	1.50
Vento Ponte Carico	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.00
Attrito permanente	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00
Attrito carichi mobili	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	14 di 69

SLE rara - N max gr.1	SLE rara - MT max gr.1	SLE rara - ML max gr.1	SLE rara - N max gr.3	SLE rara - MT max gr.3	SLE rara - ML max gr.3	SLE rara - Vento ponte scarico	SLE freq N max gr.1	SLE freq MT max gr.1	SLE freq ML max gr.1	SLE freq N max gr.3	SLE freq MT max gr.3	SLE freq ML max gr.3	SLE freq Vento ponte scarico	SLE quasi permanente	SLV - N max	SLV - MT max	SLV - ML max	SLV - MT max	SLV - ML max	SLV - N min	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Peso proprio gl
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Permanenti G2
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Ballast
1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Qv
0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q frenatura
1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q centrifuga
1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q serpeggio
0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Qv
0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q frenatura
0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q centrifuga
0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	0.00	Comb. MTmax Q serpeggio
0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Qv
0.00	0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q frenatura
0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q centrifuga
0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q serpeggio
0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Scarico
0.60	0.60	0.60	0.60	0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento Ponte Carico
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50	0.50	Attrito permanente
1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20	Attrito carichi mobili
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.30	1.00	0.30	Sisma longitudinale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	1.00	0.30	0.30	Sisma trasversale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	-0.30	-0.30	-1.00	Sisma verticale

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- Lunghezze = m
- Forze = kN

4.5 Geometria della spalla

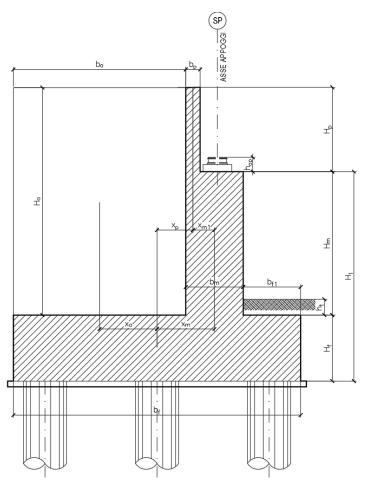


Figura 1 – Significato dei simboli: sezione tipologica

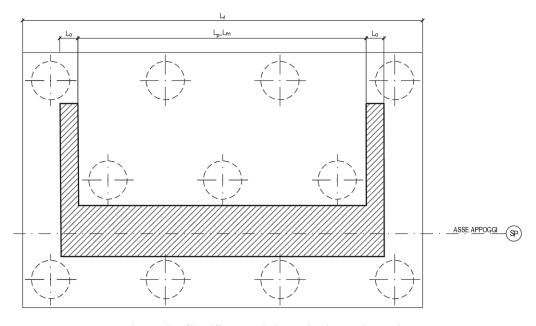


Figura 2 – Significato dei simboli: pianta tipologica

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 17 di 69

$\begin{array}{c} \text{Peso cls} & \gamma_{\text{cls}} \\ \text{Peso terreno} & \gamma_{t} \\ \text{Sovraccarico accidentale sul rilevato} & q_{\text{acc}} \end{array}$	25 20	kN/m ³
Sovraccarico accidentale sul rilevato q _{acc}		1-NI/m ³
Tacc		KIN/III
	53.0	kN/m ²
Altezza appoggio + baggiolo h _{ap}	0.40	m
Distanza piano appoggi-intradosso plinto H ₁	10.40	m
Paraghiaia		
Altezza H _p	3.30	m
Lunghezza lungo asse X b _p	0.5	m
Lunghezza lungo asse Y L _p	7.30	m
Distanza tra i muri andatori dir. Y	7.30	m
Coordinata X del baricentro rispetto fondazione x _p	1.55	m
Muro frontale		
Altezza $H_{\rm m}$	8.00	m
Lunghezza lungo asse X b _m	2.75	m
Lunghezza lungo asse Y L _m	7.30	m
Coordinata X del baricentro rispetto fondazione x _m	2.28	m
Coordinata X del baricentro rispetto paraghiaia x _{ml}	-0.72	m
Distanza asse baggioli- asse muro frontale	0.77	m
Plinto		
Altezza H _f	2.00	m
Lunghezza lungo asse X b _f	12.00	m
Lunghezza lungo asse Y L _f	12.00	m
Mensola anteriore plinto b _{fl}	2.35	m
Spessore ricoprimento medio h _t	1.00	m
Distanza asse baggioli - baricentro plinto	3.05	m
Muro andatore		
Altezza H _a	11.30	m
Lunghezza di un singolo muro lungo asse Y La	1.20	m
Lunghezza di un singolo muro lungo asse X b _a	6.90	m
Coordinata X del baricentro rispetto fondazione x _a	-2.55	m
Terreno		
Angolo d'attrito interno (φ)	35	0
Coefficiente per il calcolo della spinta a riposo	Ko= 0.426	
Sisma		
S _s	1.472	
a_g	0.150	
Coefficiente riduttivo	1.00]
Coefficiente sismico orizzontale k _h	0.221	
Mononobe e Okabe K _{AE}	0.433	
Coefficiente per sisma verticale k _v	0.110	

Tabella 2 – Dati di input

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

> Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato			
Nº Binari		1	
Lunghezza	L	40	m
Peso Proprio	G1	131	kN/m
Permanenti portati	G2	120	kN/m
Ballast	G2	0	kN/m
n° totale appoggi sulla spalla	n	2	
Reazione appoggio i = (G1*L/2)/n	Ri	1310.0	kN
Reazione appoggio i = (G2*L/2)/n	Ri	1200.0	kN
Reazione appoggio i = (G2*L/2)/n (ballast)	Ri	0	kN

4.6.2 Carichi trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato:

	R1	R2	Lø	α	ø3
LM71	2137	1616	38	1.1	1.000
SW/0	2242	1749	38	1.1	1.000
SW/2	2710	2241	38	1	1.000

Che ripartiti con il metodo Courbon sul singolo appoggio forniscono i risultati in tabella seguente.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 19 di 69

Appoggio		A			В		
Descrizione carico	FZ	FX	FY	FZ	FX	FY	biz
Descrizione canco	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
Peso proprio g1	1310			1310			0.00
Permanenti G2	1200			1200			0.00
Ballast							0.00
Comb. Nmax Qv	1436			1274			0.00
Comb. Nmax Q frenatura		578			578		3.00
Comb. Nmax Q centrifuga							0.00
Comb. Nmax Q serpeggio			25			25	3.00
Comb. MTmax Qv	1436			1274			0.00
Comb. MTmax Q frenatura		578			578		3.00
Comb. MTmax Q centrifuga							0.00
Comb. MTmax Q serpeggio			25			25	3.00
Comb. MLmax Qv	1436			1274			0.00
Comb. MLmax Q frenatura		578			578		3.00
Comb. MLmax Q centrifuga							0.00
Comb. MLmax Q serpeggio			25			25	3.00
Vento Ponte Scarico			126			126	3.00
Vento Ponte Carico			234			234	5.00
Attrito permanente		75	75		75	75	0.00
Attrito carichi mobili		43	43		38	38	0.00
Sisma longitudinale		1235			1221		2.50
Sisma trasversale			618			610	2.50
Sisma verticale	309			305			0.00

DOCUMENTO

VI 07 04 002

REV.

Α

FOGLIO

20 di 69

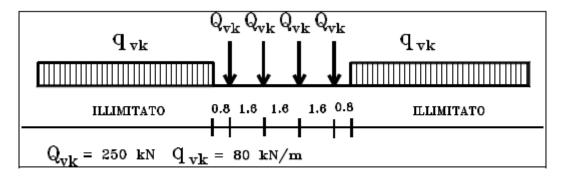
VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

| COMMESSA LOTTO CODIFICA | RS3E | 50 | D 09 CL

4.6.3 Azione del Vento

αR 1.05 Velocità di riferimento Vb(TR) 29.28 Densità dell'aria ρ 1.25 Pressione cinetica di riferimento qb=0.5*p*vb² 0.54 Classe di rugostità del terreno D Distanza dalla costa >10	carico	
Parametri Vb,0 28 Parametri a0 500 Parametri ks 0.36 Velocità di riferimento (Ir=50anni) vb=vb0 * (1+ ks(as/ao-1) 28 Periodo di ritorno considerato TR 112.5 αR 1.05 Vb(Clocità di riferimento Vb(TR) 29.28 Densità dell'aria ρ 1.25 Pressione cinetica di riferimento D Persesione cinetica di riferimento qb=0.5*ρ*νb² 0.54 D Classe di ringostità del terreno D	250	m
Parametri	4	
Parametri	28	m/s
Pelocità di riferimento (Tr=50anni)	500	m
Periodo di ritorno considerato TR 112.5 QR 1.05 Velocità di riferimento Peressione cinetica di riferimento Do Dostatanza dalla costa Altitudine sul livello del mare Peressione del sito Cat III Perto su impalcato Perametti	0.36	1/s
Velocità di riferimento	28	m/s
Velocità di riferimento Velotità di riferimento Velotità Po 1.25	112.5	anni
Densità dell'aria P	1.05	
Pressione cinetica di riferimento	29.28	m/s
D Distanza dalla costa >10 Nitanza dalla costa II Distanza di risposizione del sito Cat II Distanza di risposizione del sito Distanza di risposizione Distanza di	1.25	kg/mo
Altitudine sul livello del mare	0.54	kN/m
Altitudine sul livello del mare Categoria di esposizione del sito Parametri	D	
Altitudine sul livello del mare Cate groin di esposizione del sito Cat II	>10	km
Vento su impalcato Parametri kr 0.19 Parametri 20 0.05 Parametri	<750	m
Parametri kr 0.19 Parametri 20 0.05 Parametri 20	П	
Parametri		
Parametri z0 0.05 Parametri zmin 4 Altezza di riferimento per l'impalcato (EC punto 8.3.1(6)) z 13 Coefficiente di topografia ct 1 Coefficiente di esposizione (z) ce(z) 2.52 Larghezza impalcato b 9.77 Altezza impalcato h1 3.4 Altezza impalcato h1 3.4 Altezza terno o parapetto h2 1.5 Altezza totale impalcato (comprese le barriere o treno) dtot 4.9 Rapporto di forma b'dtot 1.98 Coefficiente di forza (figura 8.3 EC) cfx 1.91 Riepilogo Pressione cinetica di riferimento ce 2.52 Coefficiente di esposizione ce 2.52 Coefficiente di forza chi de comprese e coe 2.52 Coefficiente di forza chi de comprese e coe 2.52 Coefficiente di forza chi riferimento per comprese e coe 2.52 Coefficiente di forza chi riferimento ec punto 8.3.1 (4) e (5)) d 4.9 Forza statica equivalente a m/l f=prodotto 12.6 Pressione statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/l considerata f 12.6 Vento impalcato a ponte scarico Vento impalcato a ponte scarico Vento impalcato a ponte carico	0.19	
Parametri zmin 4 Altezza di riferimento per l'impalcato (EC punto 8.3.1(6)) z 13 Coefficiente di topografia ct 1 Coefficiente di topografia ct 1 Coefficiente di topografia ce(z) 2.52 Larghezza impalcato b 9.77 Altezza impalcato h1 3.4 Altezza treno o parapetto h1 3.4 Altezza totale impalcato (comprese le barriere o treno) dtot 4.9 Rapporto di forma b/dtot 1.98 Coefficiente di forza (figura 8.3 EC) cfx 1.91 Riepilogo Pressione cinetica di riferimento qb 0.54 Coefficiente di sposizione ce 2.52 Coefficiente di forza (Altezza di riferimento (EC punto 8.3.1 (4) e (5)) d 4.9 Forza statica equivalente a m/1 f=prodotto 12.6 Pressione statica equivalente pmin 1.5 Forza statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/1 considerata f 12.6 Vento impalcato a ponte scarico Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico		m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6)) Coefficiente di topografia Coefficiente di esposizione (z) Larghezza impalcato Altezza impalcato Altezza impalcato Altezza treno o parapetto Altezza figura 8.3 EC) Coefficiente di forza (figura 8.3 EC) Coefficiente di forza (figura 8.3 EC) Coefficiente di esposizione Coefficiente di forza Coefficiente di esposizione Coefficiente di forza Coefficiente di forza Coefficiente di forza Coefficiente di esposizione Coefficiente di forza Coefficiente di forza Coefficiente di esposizione Coefficiente di forza Coefficiente di forza Coefficiente di esposizione Coefficiente di forza Coef	4	m
Coefficiente di topografia ct ct 1 Coefficiente di esposizione (z) ce(z) 2.52 Larghezza impalcato b 9.7 Altezza impalcato h1 3.4 Altezza impalcato h1 3.4 Altezza treno o parapetto h2 1.5 Altezza treno o parapetto h2 1.5 Altezza treno i parapetto h2 1.5 Altezza treno o parapetto h2 1.5 Altezza (figura 8.3 EC) cfx 1.91 Riepilogo Pressione cinetica di riferimento qb 0.54 Coefficiente di esposizione ce 2.52 Coefficiente di forza cfx 1.91 Altezza di riferimento (EC punto 8.3.1 (4) e (5)) d 4.9 Forza statica equivalente a m/1 f=prodotto 12.6 Pressione statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/1 considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 1.2.6 Corza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico	13	m
Coefficiente di esposizione (z) Altezza impalcato Altezza impalcato Altezza impalcato Altezza tenno o parapetto Altezza totale impalcato (comprese le barriere o treno) Altezza di forma Coefficiente di forza (figura 8.3 EC) Coefficiente di forza (figura 8.3 EC) Coefficiente di esposizione Coefficiente di esposizione Coefficiente di forza Coefficiente di for	1	
Altezza impalcato Altezza impalcato Altezza impalcato Altezza treno o parapetto Altezza treno o parapetto Altezza treno o parapetto Altezza totale impalcato (comprese le barriere o treno) Altezza totale impalcato (figura 8.3 EC) Altezza (figura 8.3 EC) Altezza (figura 8.3 EC) Altezza (figura 8.3 EC) Altezza di riferimento Altezza di riferimento Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Altezza di riferimento Altezza di rife	2.52	
Altezza impalcato Altezza treno o parapetto Altezza treno o parapetto Altezza treno o parapetto Altezza totale impalcato (comprese le barriere o treno) Altezza (figura 8.3 EC) Altezza (figur	9.7	m
Altezza treno o parapetto Altezza treno o parapetto Altezza totale impalcato (comprese le barriere o treno) Altezza (figura 8.3 EC) Cofficiente di forza (figura 8.3 EC) Coefficiente di esposizione Coefficiente di esposizione Coefficiente di forza Coefficiente di esposizione Coefficiente di forza Coefficiente di f	4.1	m
Altezza totale impalcato (comprese le barriere o treno) Rapporto di forma Defficiente di forza (figura 8.3 EC) Riepilogo Pressione cinetica di riferimento Coefficiente di esposizione Coefficiente di forza Coefficiente di esposizione Coefficiente di forza Coefficient	4	m
Rapporto di forma b/dtot 1.98 Coefficiente di forza (figura 8.3 EC) cfx 1.91 Riepilogo Pressione cinetica di riferimento qb 0.54 Coefficiente di esposizione ce 2.52 Coefficiente di forza cfx 1.91 Altezza di riferimento (EC punto 8.3.1 (4) e (5)) d 4.9 Forza statica equivalente a m/1 f=prodotto 12.6 Pressione statica equivalente pmin 1.5 Forza statica equivalente a m/1 considerata pmin 1.5 Forza statica equivalente a m/1 considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 Luce impalcato FT=f*L/2 252 Vento impalcato a ponte carico	8.1	m
Riepilogo Pressione cinetica di riferimento qb 0.54 Coefficiente di esposizione ce 2.52 Coefficiente di forza cfx 1.91 Altezza di riferimento (EC punto 8.3.1 (4) e (5)) d 4.9 Forza statica equivalente a m/1 f=prodotto 12.6 Pressione statica equivalente pmin 1.5 Forza statica equivalente a m/1 considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 Luce impalcato a ponte carico	1.20	
Pressione cinetica di riferimento qb 0.54 Coefficiente di esposizione ce 2.52 Coefficiente di forza cfx 1.91 Altezza di riferimento (EC punto 8.3.1 (4) e (5)) d 4.9 Forza statica equivalente a m/l f=prodotto 12.6 Pressione statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/l considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 Luce impalcato Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico	2.14	
Pressione cinetica di riferimento qb 0.54 Coefficiente di esposizione ce 2.52 Coefficiente di forza cfx 1.91 Altezza di riferimento (EC punto 8.3.1 (4) e (5)) d 4.9 Forza statica equivalente a m/l f=prodotto 12.6 Pressione statica equivalente (minima considerata) p=f/d 2.57 Pressione statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/l considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 Luce impalcato Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico		
Coefficiente di esposizione Coefficiente di forza Cfx 1.91 4.9 Forza statica equivalente a m/1 F=prodotto 12.6 Pressione statica equivalente p=f/d 2.57 Pressione statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/1 considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 L 40 Forza trasversale al piano appoggi FT=f*L/2 252	0.54	kN/m
Coefficiente di forza cfx 1.91 Altezza di riferimento (EC punto 8.3.1 (4) e (5)) d 4.9 Forza statica equivalente a m/1 f=prodotto 12.6 Pressione statica equivalente p=f/d 2.57 Pressione statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/1 considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 Luce impalcato L 40 Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico	2.52	
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente Pressione statica equivalente (minima considerata) Forza statica equivalente a m/1 considerata Pressione statica equivalente a m/1 considerata Forza statica equivalente a m/1 considerata Forza statica equivalente Forza statica equivalente Forza statica equivalente Forza tratica equivalente Forza tratic	2.14	
Forza statica equivalente a m/l f=prodotto 12.6 Pressione statica equivalente p=f/d 2.57 Pressione statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/l considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 Luce impalcato L 40 Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico	8.1	m
Pressione statica equivalente p=f/d 2.57 Pressione statica equivalente (minima considerata) pmin 1.5 Forza statica equivalente a m/l considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 Luce impalcato L 40 Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico	23.4	kN/m
Pressione statica equivalente (minima considerata) Forza statica equivalente a m/l considerata Pento impalcato a ponte scarico Forza statica equivalente Forza statica equivalente Forza statica equivalente Forza trasversale al piano appoggi FT=f*L/2 Z52 Vento impalcato a ponte carico	2.89	kN/m
Forza statica equivalente a m/l considerata f 12.6 Vento impalcato a ponte scarico Forza statica equivalente f 12.6 Luce impalcato L 40 Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico	1.5	kN/m
Forza statica equivalente f 12.6 Luce impalcato L 40 Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico	23.4	kN/m
Forza statica equivalente f 12.6 Luce impalcato L 40 Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico		
L 40 Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico		kN/m
Forza trasversale al piano appoggi FT=f*L/2 252 Vento impalcato a ponte carico		m
		kN/m
orza statica equivalente f 23.4		1.377
1		kN/m
Luce impalcato L 40 Forza trasversale al piano appoggi FT=f*L/2 468		m kN/m


4.6.4 Carichi da traffico verticali

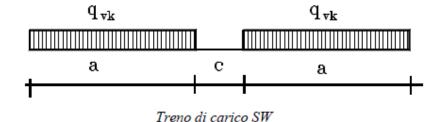
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2.

Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Treno di carico LM 71


Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito</u>: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

Tipo di Carico	$q_{vk} [kN/m]$	a [m]	c [m]	
SW/0	133	15,0	5,3	
SW/2	150	25,0	7,0	

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario.

Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001 A).

MODELLO DI CARICO	COEFFICIENTE "α"	
LM71	1,10	
SW/0	1,10	
SW/2	1,00	

4.6.5 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 14.1.2008 che per l'opera in esame riporta:

[....] Pile con snellezza $\lambda \le 30$, spalle, fondazioni, muri di sostegno e spinte del terreno possono essere calcolate assumendo coefficienti dinamici unitari.

4.6.6 Carichi da traffico orizzontali

Frenatura					
L	40	m			
Leale	40	per Treno LM 71			
	30	per Treno SW/0			
	33	per SW/2			
Qlb,k	880	per Treno LM 71			
Qlb,k	660	per Treno SW/0			
Qlb,k	1155	per SW/2			
Qlb,k (filtrata)per Treno LM 71	880	kN			
Qlb,k (filtrata)per Treno SW/0	660	kN			
Qlb,k(filtrata)per SW/2	1155	kN			

Avviamento					
L	40	m			
Leale	40	per Treno LM 71			
	30	per Treno SW/0			
	33	per SW/2			
Qla,k	1452	per Treno LM 71			
Qla,k	1089	per Treno SW/0			
Qla,k	1089	per SW/2			
Qla,k (filtrata)per Treno LM 71	1000	kN			
Qla,k (filtrata)per Treno SW/0	1000	kN			
Qla,k(filtrata)per SW/2	1000	kN			

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	23 di 69

<u>Serpeggio</u>					
FT=100kN /2	50	kN*m			
Treno LM 71					
α	1.1				
FT*α	55	kN			
Treno SW/0					
α	1.1				
FT*α	55	kN			
Treno SW/2					
α	1				
FT*α	50	kN			
α	-	kN			

4.6.7 Spinta statica del terrapieno

A tergo della spalla, applicato sulla zattera posteriore, viene considerato un carico pari al peso del rinterro calcolato con un peso di volume pari a $\gamma = 20 \text{ kN/m}^3$

L'espressione della spinta esercitata da un terrapieno di peso specifico γ, su una parete di altezza H, risulta:

$$S_o = 1/2 * \gamma * H^2 * K_o$$
 (spinta per metro lineare di spalla)

l'utilizzo di Ko è determinato dall'impossibilità, da parte della spalla, di subire spostamenti; si assume $K_o = 1$ - sen ϕ .

Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete).



Fig. 1 Spinta statica terreno di rinterro

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 07 04 002	Α	24 di 69	

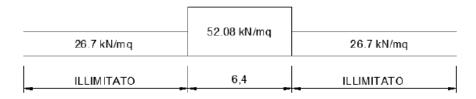
Per il terreno di riempimento si considera lo standard per rilevati ferroviari e si assegnano le seguenti caratteristiche meccaniche:

$$\gamma = 20 \text{ kN/m}^3$$

$$\varphi'=35^{\circ}$$

$$c' = 0$$

4.6.8 Sovraccarico sul terrapieno

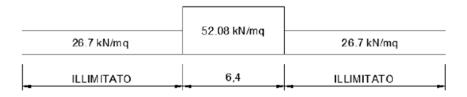

Nell'analisi delle azioni è stato inoltre considerato il contributo, in termini di sovraccarico verticale in fondazione e di spinta, del sovraccarico accidentale eventualmente presente a tergo spalla.

$$q = 53 \text{ kN/m}^2$$

$$S_q = {\color{red}53*0.426} = 22.58 \; kN/m^2$$

Il valore del sovraccarico è determinate come di seguito descritto:

Considerando la distribuzione trasversale dei carichi su una larghezza di 3.0 m secondo quanto previsto da EN 1991 – 2:2003/AC:2010, si ricava il carico equivalente unitario agente alla quota della piattaforma ferroviaria:



A tali carichi si deve applicare il coefficiente α relativo alle categorie S.T.I. come indicato nella tabella 11 di seguito riportata:

Tabella 11					
Fattore alfa (α) per la progettazione di strutture nuove					
Tipo di traffico Valore minimo del fattore alfa (α)					
P1, P2, P3, P4	1,0				
P5	0,91				
P6	0,83				
P1520	Punto in sospeso				
P1600	1,1				
F1, F2, F3	1,0				
F4	0,91				
F1520	Punto in sospeso				
F1600	1,1				
	<u> </u>				

Nel caso in esame, il coefficiente α è pari ad 1.0 perché le categorie di traffico sono P2-P4 per il traffico passeggeri ed F1 per il traffico merci per cui, alle opere si applicano i seguenti carichi equivalenti:

In favore di sicurezza, tale carico, viene esteso su tutta l'impronta del rilevato della spalla con il suo valore massimo, pari a 53 kN/m^2 .

4.6.9 Spinta del sovraccarico accidentale condizioni statiche

In aggiunta in condizioni statiche si considera un sovraccarico accidentale pari a $Q = 53 \text{ kN/m}^2$ gravante sulla spalla e sul cuneo di spinta a tergo di essa

La presenza del sovraccarico Q genera una spinta pari a:

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	26 di 69

$$S_q = Q \cdot H \cdot K_o$$

Tale spinta è applicata ad una altezza pari a H/2.

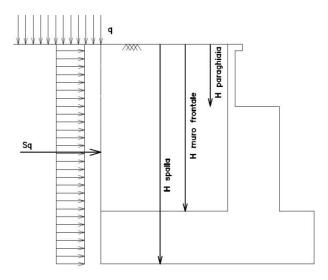


Fig. 2: Spinta statica sovraccarico accidentale

4.6.10 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

> Azioni sismiche sulla Spalla

Per la valutazione dell'azione sismica associata ai carichi fissi propri e permanenti /accidentali agenti sulle spalle si utilizza il metodo dell'analisi pseudostatica in cui il sisma è rappresentato da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k_h (coefficiente sismico verticale) secondo quanto di seguito indicato:

Forza sismica orizzontale $F_h = k_h W$

Forza sismica verticale $F_v = k_v W$

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 27 di 69

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_v = \pm 0.5 \cdot k_h$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g} \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2;

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Con riferimento al valore da assegnare al coefficiente β_m , si è fatto riferimento alle indicazioni di cui alla Tabella 7.1.II riportata nella stessa sezione della norma, tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso delle spalle del viadotto in questione che in virtù della elevata rigidezza sia del sistema di fondazione che della parte in elevazione, è interessata da spostamenti trascurabili durante l'evento sismico) un valore del coefficiente β_m pari ad 1.0.

Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso alla spalla e non subisce deformazioni o movimenti relativi rispetto ad essa.

Sovraspinta sismica del terreno

Per il calcolo della spinta del terreno sulle opere di sostegno, occorre tenere presente che la mobilitazione della spinta attiva avviene per spostamenti di entità contenuta, come si evince dalla seguente tabella desunta dall'EC7 - Parte 1 - Annesso C (C.3 "Movements to mobilise limit earth pressures):

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 28 di 69

Table C.1 — Ratios v₃/h

Kind	l of	v _a /h	v _a /h			
wall	movement	loose soil	dense soil			
		%	%			
a)	Va C	0,4 to 0,5	0,1 to 0,2			
b)	V _a	0,2	0,05 to 0,1			
c)	V _a	0,8 to 1,0	0,2 to 0,5			
d)	Va de	0,4 to 0,5	0,1 to 0,2			
where v _a						

In condizioni sismiche, l'entità degli spostamenti dipende principalmente dall'intensità dell'azione sismica e dalla rigidezza del sistema pali-terreno; pertanto, la possibilità di ammettere la mobilitazione della spinta attiva è subordinata alla valutazione degli spostamenti dell'opera e potrà essere valutata caso per caso. Cautelativamente, la valutazione degli spostamenti, da effettuarsi calcolando le spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche, sarà riferita alla base dell'opera (i.e. alla sommità della palificata) e il confronto con i valori di riferimento per la mobilitazione della spinta attiva sarà effettuato in accordo con lo schema b) della tabella estratta dall'EC7 per terreni addensati (rilevati stradali e ferroviari). L'altezza *h* rispetto alla quale effettuare la verifica corrisponde all'altezza totale dell'opera su cui agisce la spinta del terreno, comprensiva dello spessore della fondazione.

Qualora, a seguito della verifica dell'entità degli spostamenti, non ricorressero le condizioni di spinta attiva, si procederà al calcolo delle spinte considerando la somma della spinta statica a riposo e dell'incremento di spinta sismica valutata con la teoria di Wood, secondo le indicazioni contenute nell'EC8 – Parte 5 – Annesso E (E.9 "Force due to earth pressure for rigid structures"):

 $\Delta S_S = (a_{max}/g) \cdot \gamma \cdot H^2$

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	29 di 69

Tale risultante è applicata ad un'altezza pari ad H/2.

Qualora, a seguito della verifica dell'entità degli spostamenti, ricorressero le condizioni di spinta attiva, si confermerà la correttezza dell'ipotesi di calcolo delle spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche.

Per la valutazione del coefficiente di spinta attiva in condizioni statiche si farà in generale riferimento alla formulazione di Muller – Breslau:

$$k_a = \frac{\cos^2(\alpha + \phi)}{\cos^2\alpha \cdot \cos(\alpha - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}{\cos(\alpha - \delta) \cdot \cos(\alpha + \beta)}}\right]^2}$$

$$\alpha = \text{inclinazione del paramento di monte rispetto alla verticale}$$

$$\beta = \text{inclinazione del pendio di monte rispetto al piano}$$

- angolo di attrito interno del terreno

- δ = angolo di attrito terra-muro

Per la valutazione del coefficiente di spinta attiva in condizioni sismiche si farà riferimento alla formulazione di Mononobe-Okabe:

$$k_{a} = \frac{\cos^{2}(\phi - \alpha - \theta)}{\cos \theta \cdot \cos^{2}\alpha \cdot \cos(\delta + \alpha + \theta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\cos(\delta + \alpha + \theta) \cdot \cos(\beta - \alpha)}}\right]^{2}} \qquad \text{se } \beta \leq \phi - \theta$$

$$k_a = \frac{\cos^2(\phi - \alpha - \theta)}{\cos \theta \cdot \cos^2 \alpha \cdot \cos(\delta + \alpha + \theta)}$$
 se $\beta > \phi - \theta$

dove θ = angolo sismico, definito secondo la seguente espressione (in assenza di falda) in funzione dei coefficienti sismici k_h e k_v :

$$\tan \theta = k_h / (1 \pm k_v)$$

Nella determinazione dei coefficienti sismici k_h e k_v , per le spalle di ponti e viadotti ferroviari fondate su pali si porrà $\beta_m = 1$ in accordo con l'EC8-5.

Le forze di inerzia agenti sulla massa della struttura e del terreno presente sulla sua fondazione saranno valutate applicando l'accelerazione massima al suolo ag S.

La spinta totale di progetto Ed esercitata dal terrapieno ed agente sull'opera di sostegno in condizioni sismiche è dunque data dalla somma della spinta a riposo, della spinta sismica e della spinta statica data dal sovraccarico accidentale combinata al 20% così come riportato nella Tabella 5.2.V delle NTC2008.

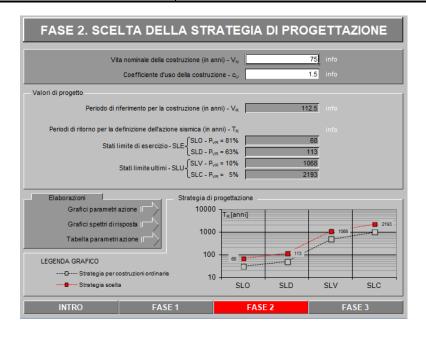
$$E_d = S_{stat} + 0.2 \cdot S_q + \Delta S_s$$

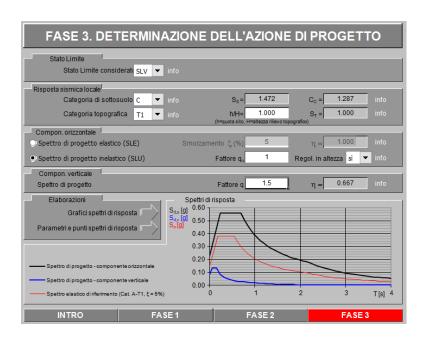
Infine, nel caso specifico non essendo presente la falda a tergo dell'opera, la spinta idrostatica è nulla.

Valori di progetto

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

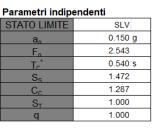



VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

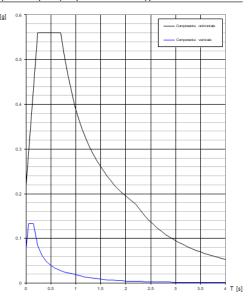
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 31 di 69



VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	32 di 69

Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLV

Parametri dipendenti

S	1.472
η	1.000
T _B	0.232 s
T _C	0.695 s
T _D	2.199 s

4.6.11 Incremento di spinta del terrapieno

Avendo valutato preliminarmente l'entità dello spostamento della struttura in fase sismica, e ricorrendo le condizioni sovra descritte (EC7 - Parte 1 - Annesso C), l'incremento di spinta del terrapieno viene valutato secondo la teoria di Mononobe-Okabe.

Mononobe e Okabe			
Inclinazione Paramento	α	90.0	
Angolo d'attrito interno	φ	35.0	0
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.221	
Coefficiente per sisma verticale	\mathbf{k}_{v}	0.110	
θ (+k _v)		11.2	
θ (- k_v)		13.9	
Mononobe e Okabe (+k _v)	KAE	0.395	
Mononobe e Okabe (-k _v)	KAE	0.433	

4.6.12 Inerzie strutturali

Si valutano le inerzie legate alla massa degli elementi strutturali con la seguente formula:

$$F_i = k_h \cdot W_{str}$$

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO	
NUOVO COLLEGAMENTO PALERMO - CATANIA	
PROGETTO DEFINITIVO	

VI07 - Ponte ferroviario a Singolo Binario

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	33 di 69

4.6.13 Calcolo delle sollecitazioni in testa pali

RELAZIONE DI CALCOLO SPALLE

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, $n \in I$ numero di pali e II, II sono le inerzie longitudinale e trasversale della palificata

$$J_l = \sum y_i^2 \qquad J_t = \sum x_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.14 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max}, N_{min}, T ed M.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 34 di 69

Fase statica

PARAGHIAIA

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		FZ	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	301			0.00	0.00	1.65	0	0
Rinterro	g3		339		0.00	0.00	1.10	0	373
					0.00	0.00	3.30	0	0
Sovr. acc. sul rilevato			544		0.00	0.00	1.65	0	898

SPICCATO MURO FRONTALE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	301	0	0	-0.72		9.65	0	-217
Muro frontale	g1	5335	0	0			4.00	0	0
Totale Permanenti		5636	0	0				0	-217
Rinterro	g3		5282	0			3.77	0	19894
Sovr. acc. sul rile	vato		1864	0			5.65	0	10533

FONDAZIONE

AZIONI SU SPALLA [kN,m]

cond statica

Sovr. acc. sul rilevato

Descrizion	o antino	Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizioni	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	301			1.55	0.00	11.65	0	467
Muro frontale	g1	5335			2.28	0.00	6.00	0	12164
Plinto	g ₁	7200			0.00	0.00	1.00	0	0
Muri andatori	g1	4678			-2.55	0.00	7.65	0	-11929
Tota	ale Permanenti	17514						0	701
Rinterro	g3	11384			-2.55	0.00	7.65	0	-29028
Ricop. Plinto	g3	1008			2.55	0.00	2.50	0	2570
Sovr. acc. sul rileva	2670			-2.55	0.00	13.30	0	-6808	
* Il sovraccarico ac	ccidentale a terg	o della spai	lla è da con	siderarsi pı	resente in	tutte 1	e combi	nazioni	
Rinterro	g3		7317	·	-2.55	0.00	4.43	0	32437

2194

0.00 0.00

6.65

0

14592

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	35 di 69

Fase sismica Mononobe-Okabe / ka

PARAGHIAIA

AZIONI SU SPALLA [kN,m]

		SI		

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	301			0.00	0.00	1.65	0	0
Rinterro	g3		215		0.00	0.00	1.10	0	237
					0.00	0.00	3.30	0	0
Sovr. acc. sul rilevato			346		0.00	0.00	1.65	0	571

cond sismica x

Descrizione carico		F_{Z}	F_X	$\mathbf{F}_{\mathbf{Y}}$	b _{ix}	b_{iy}	b _{iz}	$\mathbf{M}_{\mathbf{x}}$	M_y
Descrizione ca	inco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	0	66	0	0.00	0.00	1.65	0	110
Rinterro	Inerzia		734				1.65	0	1211
	Sovraspinta		171				1.10	0	189
Rinterro [totale]			905					0	1400
Sovr. acc. sul rilevato			346		0.00	0.00	1.65	0	571
Totale generale			1318					0	2080

cond sismica y

Descrizione carico		Fz	F_X	FY	b_{ix}	b_{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	0	0	66	0.00	0.00	1.65	110	0

cond sismica vert

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	qб	33	0	0	0.00	0.00	1.65	0	0

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 36 di 69

SPICCATO MURO FRONTALE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	F_X	F_{Y}	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	301	0	0	-0.72		9.65	0	-217
Muro frontale	g1	5335	0	0			4.00	0	0
Totale Permanenti		5636	0	0				0	-217
Rinterro	g3		3356	0			3.77	0	12643
Sovr. acc. sul rilevato			1185	0			5.65	0	6694

cond sismica x

Descrizione carico		F_Z	F_X	F_{Y}	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6		66		-0.72	0.00	9.65	0	642
Muro frontale	qб		1178		0.00	0.00	4.00	0	4712
Rinterro									
	Inerzia		2514				5.65	0	14201
	Sovraspinta		2009				3.77	0	7569
Rinterro [totale]			4523					0	21770
Sovr. acc. sul rilevato			1185				5.65	0	6694
Totale generale			6952					0	33817

cond sismica y

Descrizione carico		F_Z	FX	Fy	b _{ix}	b _{iy}	b _{iz}	$\mathbf{M}_{\mathbf{x}}$	M_{y}
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6			66	-0.72	0.00	9.65	642	0
Muro frontale	q6			1178	0.00	0.00	4.00	4712	0
Rinterro					0.00	0.00	0.00	0	0
Totale generale				1244				5353	0

cond sismica vert

Descrizione carico		F_Z	F_X	F_{Y}	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	33			-0.72	0.00	9.65	0	-24
Muro frontale	q6	589			0.00	0.00	4.00	0	0
Totale generale		622						0	-24

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 37 di 69

FONDAZIONE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizion	a annia a	Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y	
Descrizioni	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]	
Paraghiaia	g1	301			1.55	0.00	11.65	0	467	
Muro frontale	g1	5335			2.28	0.00	6.00	0	12164	
Plinto	gı	7200			0.00	0.00	1.00	0	0	
Muri andatori	g1	4678			-2.55	0.00	7.65	0	-11929	
Tota	ıle Permanenti	17514						0	701	
Rinterro	g3	11384			-2.55	0.00	7.65	0	-29028	
Ricop. Plinto	g3	1008			2.55	0.00	2.50	0	2570	
Sovr. acc. sul rileva	ito	2670			-2.55	0.00	13.30	0	-6808	
* Il sovraccarico ad	o della spai	lla è da con	siderarsi pı	resente in	tutte 1	e combi	nazioni			
Rinterro	g3		4650		-2.55	0.00	4.43	0	20614	
Sovr. acc. sul rileva	ito		1394		0.00	0.00	6.65	0	9273	

AZIONI SU SPALLA [kN,m]

cond sismica x

Descrizio		F_Z	FX	Fy	b _{ix}	b _{iy}	b_{iz}	M_x	M_y
Descrizio	ne canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q ₆		66		1.55	0.00	11.65	0	775
Muro frontale	q 6		1178		2.28	0.00	6.00	0	7068
Plinto	q ₆		1590		0.00	0.00	1.00	0	1590
Muri andatori	q ₆		1033		-2.55	0.00	7.65	0	7902
Rinterro	Inerzia		2514		-2.55	0.00	7.65	0	19228
Sovraspinta			2784		-2.55	0.00	4.43	0	12340
Rinterro [totale]			5297				7.65	0	31569
Sovr. acc. sul rilevato			1394		-2.55		7.65	0	9273
	Totale generale		10559						58176

cond sismica y

Descrizion	o antino	F_Z	FX	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizione canco		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q ₆			66	1.55	0.00	11.65	775	0
Muro frontale	Q 6			1178	2.28	0.00	6.00	7068	0
Plinto	Q 6			1590	0.00	0.00	1.00	1590	0
Muri andatori	Q 6			1033	-2.55	0.00	7.65	7902	0
Rinterro	Inerzia			2514	0.00		7.65	19228	0
	Sovraspinta			142			4.43	628	0
Rinterro [totale]				2655				19856	0
Sovr. acc. sul rilevato				1394	-2.55		13.30	18546	0
	Totale generale			7917				55737	0

cond sismica vert

Docorisio	ne carico	Fz	F_X	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizione canco		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q 6	33			1.55	0.00	11.65	0.00	52
Muro frontale	q 6	589			2.28	0.00	6.00	0.00	1343
Plinto	q 6	795			0.00	0.00	1.00	0.00	0
Muri andatori	q 6	516			-2.55	0.00	7.65	0.00	-1317
Rinterro	q 6	1257			0.00	0.00	0.00	0.00	0
Ricop. Plinto	q 6	111			2.55	0.00	2.50	0.00	284
	Totale generale	3302						0.00	361

4.7 Sollecitazioni

4.7.1 Muro paraghiaia

In condizioni statiche il muro paraghiaia è sollecitato dalla spinta del rilevato, dalla spinta dei sovraccarichi accidentali, dai sovraccarichi mobili agenti sulla mensola del muro e dall'azione di frenatura. In condizioni sismiche il muro paraghiaia è sollecitato dalla spinta sismica del rilevato, dalle masse del muro. Il modello di calcolo utilizzato è quello di mensola incastrata al muro frontale.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 39 di 69

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL PARAGHIAIA

IVIERIA ALI	LA DASE D	LUTAKA	JIII AIA		
	Nz	Tx	Ty	Mx	Му
A2 - SLU - N max gr.1	301	1121	0	0	1608
A2 - SLU - MT max gr.1	301	1121	0	0	1608
A2 - SLU - ML max gr.1	301	1121	0	0	1608
A2 - SLU - N max gr.3	301	1121	0	0	1608
A2 - SLU - MT max gr.3	301	1121	0	0	1608
A2 - SLU - ML max gr.3	301	1121	0	0	1608
A2 - SLU - Vento ponte scarico	301	441	0	0	485
A2 - SLU Gmin - N max gr.1	301	681	0	0	1123
A2 - SLU Gmin - MT max gr.1	301	681	0	0	1123
A2 - SLU Gmin - ML max gr.1	301	681	0	0	1123
A2 - SLU Gmin - N max gr.3	301	681	0	0	1123
A2 - SLU Gmin - MT max gr.3	301	681	0	0	1123
A2 - SLU Gmin - ML max gr.3	301	681	0	0	1123
A2 - SLU Gmin - Vento ponte scarico	301	0	0	0	0
A1 - SLU - N max gr.1	407	1298	0	0	1862
A1 - SLU - MT max gr.1	407	1298	0	0	1862
A1 - SLU - ML max gr.1	407	1298	0	0	1862
A1 - SLU - N max gr.3	407	1298	0	0	1862
A1 - SLU - MT max gr.3	407	1298	0	0	1862
A1 - SLU - ML max gr.3	407	1298	0	0	1862
A1 - SLU - Vento ponte scarico	407	508	0	0	559
A1 - SLU Gmin - N max gr.1	301	789	0	0	1303
A1 - SLU Gmin - MT max gr.1	301	789	0	0	1303
A1 - SLU Gmin - ML max gr.1	301	789	0	0	1303
A1 - SLU Gmin - N max gr.3	301	789	0	0	1303
A1 - SLU Gmin - MT max gr.3	301	789	0	0	1303
A1 - SLU Gmin - ML max gr.3	301	789	0	0	1303
A1 - SLU Gmin - Vento ponte scarico	301	0	0	0	0
SLE rara - N max gr.1	301	883	0	0	1271
SLE rara - MT max gr.1	301	883	0	0	1271
SLE rara - ML max gr.1	301	883	0	0	1271
SLE rara - N max gr.3	301	883	0	0	1271
SLE rara - MT max gr.3	301	883	0	0	1271
SLE rara - ML max gr.3	301	883	0	0	1271
SLE rara - Vento ponte scarico	301	883	0	0	1271
SLE freq N max gr.1	301	883	0	0	1271
SLE freq MT max gr.1	301	883	0	0	1271
SLE freq ML max gr.1	301	883	0	0	1271
SLE freq N max gr.3	301	883	0	0	1271
SLE freq MT max gr.3	301	883	0	0	1271
SLE freq ML max gr.3	301	883	0	0	1271
SLE freq Vento ponte scarico	301	339	0	0	373
SLE quasi permanente	301	339	0	0	373
SLV - N max	334	576	20	33	804
SLV - MT max gr.1	311	576	66	110	804
SLV - ML max gr.1	311	1257	20	33	1861
SLV - MT max gr.3	291	576	66	110	804
SLV - ML max gr.3	291	1257	20	33	1861
SLV - N min	268	576	20	33	804

Tabella 3 – Sollecitazioni alla base del muro paraghiaia

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 40 di 69

4.7.2 Muro frontale

Le sollecitazioni riportate nella seguente tabella sono state ottenute dal modello di calcolo descritto nei paragrafi precedenti.

Per la verifica del muro frontale, a quota spiccato, tali azioni possono essere considerate uniformemente distribuite in quanto l'altezza del muro frontale è tale che nell' ipotesi di ripartizione a 45°, tali scarichi si ripartiscono uniformemente alla base del muro

Ai carichi prima riportati, si aggiungono il peso proprio del muro frontale, del muro paraghiaia e la spinta del terreno e del sovraccarico sul rilevato a tergo.

Si ottengono quindi le seguenti sollecitazioni, con riferimento alle combinazioni maggiormente significative.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 41 di 69

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL MURO FRONTALE

INTERNA ALLA	BASE DEL	MUROFR	ONTALE		
	Nz	Tx	Ту	Mx	Му
A2 - SLU - N max gr.1	14764	10171	680	8087	56196
A2 - SLU - MT max gr.1	14764	10171	680	8087	56196
A2 - SLU - ML max gr.1	14764	10171	680	8087	56196
A2 - SLU - N max gr.3	14764	10894	649	7731	64432
A2 - SLU - MT max gr.3	14764	10894	649	7731	64432
A2 - SLU - ML max gr.3	14764	10894	649	7731	64432
A2 - SLU - Vento ponte scarico	11376	7017	478	5000	31331
A2 - SLU Gmin - N max gr.1	11644	3305	680	8087	27931
A2 - SLU Gmin - MT max gr.1	11644	3305	680	8087	27931
A2 - SLU Gmin - ML max gr.1	11644	3305	680	8087	27931
A2 - SLU Gmin - N max gr.3	11644	4028	649	7731	36167
A2 - SLU Gmin - MT max gr.3	11644	4028	649	7731	36167
A2 - SLU Gmin - ML max gr.3	11644	4028	649	7731	36167
A2 - SLU Gmin - Vento ponte scarico	8256	151	478	5000	3066
A1 - SLU - N max gr.1	18675	11785	815	9591	65596
A1 - SLU - MT max gr.1	18675	11785	815	9591	65596
A1 - SLU - ML max gr.1	18675	11785	815	9591	65596
A1 - SLU - N max gr.3	18675	12624	779	9178	75163
A1 - SLU - MT max gr.3	18675	12624	779	9178	75163
A1 - SLU - ML max gr.3	18675	12624	779	9178	75163
A1 - SLU - Vento ponte scarico	14746	8126	581	6017	36752
A1 - SLU Gmin - N max gr.1	12186	3863	815	9591	32352
A1 - SLU Gmin - MT max gr.1	12186	3863	815	9591	32352
A1 - SLU Gmin - ML max gr.1	12186	3863	815	9591	32352
A1 - SLU Gmin - N max gr.3	12186	4702	779	9178	41920
A1 - SLU Gmin - MT max gr.3	12186	4702	779	9178	41920
A1 - SLU Gmin - ML max gr.3	12186	4702	779	9178	41920
A1 - SLU Gmin - Vento ponte scarico	8256	151	529	5574	3066
SLE rara - N max gr.1	13366	7956	563	6572	44700
SLE rara - MT max gr.1	13366	7956	563	6572	44700
SLE rara - ML max gr.1	13366	7956	563	6572	44700
SLE rara - N max gr.3	13366	8534	538	6287	51289
SLE rara - MT max gr.3	13366	8534	538	6287	51289
SLE rara - ML max gr.3	13366	8534	538	6287	51289
SLE rara - Vento ponte scarico	10656	7297	403	4138	35341
SLE freq N max gr.1	12824	7824	256	2501	42828
SLE freq MT max gr.1	12824	7824	256	2501	42828
SLE freq ML max gr.1	12824	7824	256	2501	42828
SLE freq N max gr.3	12824	8286	236	2273	48100
SLE freq MT max gr.3	12824	8286	236	2273	48100
SLE freq ML max gr.3	12824	8286	236	2273	48100
SLE freq Vento ponte scarico	10656	5432	277	2701	24808
SLE quasi permanente	10656	5432	151	1265	24808
SLV - N max	12434	6383	843	6570	38070
SLV - MT max gr.1	11569	6383	2574	19683	37756
SLV - IVI1 max gr.1	11569	12140	843	6565	75482
	10827	6383	2574	19679	37486
SLV - MT max gr.3	10827	12140	843		75213
SLV - ML max gr.3			843	6561	
SLV - N min	9962	6383	845	6557	37172

Tabella 4 – Sollecitazioni alla base del muro frontale

Le sollecitazioni in direzione trasversale risultano trascurabili rispetto a quelle in direzione longitudinale, tenuto anche conto della geometria della sezione del muro frontale.

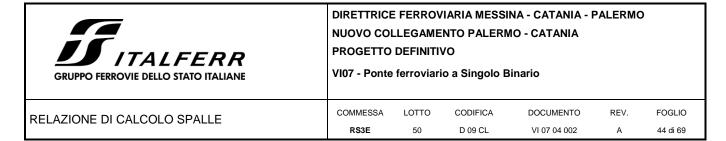
4.7.3 Plinto di fondazione

In questo paragrafo si riporta la determinazione delle sollecitazioni in quota testa pali che si ottengono sommando, alle azioni provenienti dall'impalcato, la risultante e il momento risultante dei pesi della struttura, del terreno interno alla spalla e delle spinte dovute al rilevato rispetto al baricentro del plinto. In condizioni sismiche si è tenuto conto dell'incremento di spinta delle inerzie.

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 43 di 69

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE

A2 - SLU - N max gr.1 A2 - SLU - MT max gr.1	Nz 46088 46088	Tx	Ту	Mx	My
A2 - SLU - MT max gr.1					
	46088	13229	680	9447	58348
AO CITI MI 4		13229	680	9447	58348
A2 - SLU - ML max gr.1	46088	13229	680	9447	58348
A2 - SLU - N max gr.3	46088	13952	649	9028	68030
A2 - SLU - MT max gr.3	46088	13952	649	9028	68030
A2 - SLU - ML max gr.3	46088	13952	649	9028	68030
A2 - SLU - Vento ponte scarico	39363	9662	478	5956	27548
A2 - SLU Gmin - N max gr.1	26859	3718	680	9447	41059
A2 - SLU Gmin - MT max gr.1	26859	3718	680	9447	41059
A2 - SLU Gmin - ML max gr.1	26859	3718	680	9447	41059
A2 - SLU Gmin - N max gr.3	26859	4440	649	9028	50741
A2 - SLU Gmin - MT max gr.3	26859	4440	649	9028	50741
A2 - SLU Gmin - ML max gr.3	26859	4440	649	9028	50741
A2 - SLU Gmin - Vento ponte scarico	20134	151	478	5956	10258
A1 - SLU - N max gr.1	57169	15316	815	11221	69527
A1 - SLU - MT max gr.1	57169	15316	815	11221	69527
A1 - SLU - ML max gr.1	57169	15316	815	11221	69527
A1 - SLU - N max gr.3	57169	16155	779	10735	80773
A1 - SLU - MT max gr.3	57169	16155	779	10735	80773
A1 - SLU - ML max gr.3	57169	16155	779	10735	80773
A1 - SLU - Vento ponte scarico	49369	11178	581	7180	33798
A1 - SLU Gmin - N max gr.1	27935	4341	815	11221	46536
A1 - SLU Gmin - MT max gr.1	27935	4341	815	11221	46536
A1 - SLU Gmin - ML max gr.1	27935	4341	815	11221	46536
A1 - SLU Gmin - N max gr.3	27935	5180	779	10735	57782
A1 - SLU Gmin - MT max gr.3	27935	5180	779	10735	57782
A1 - SLU Gmin - ML max gr.3	27935	5180	779	10735	57782
A1 - SLU Gmin - Vento ponte scarico	20134	151	529	6631	10258
SLE rara - N max gr.1	40305	10321	563	7698	48198
SLE rara - MT max gr.1	40305	10321	563	7698	48198
SLE rara - ML max gr.1	40305	10321	563	7698	48198
SLE rara - N max gr.3	40305	10899	538	7363	55944
SLE rara - MT max gr.3	40305	10899	538	7363	55944
SLE rara - ML max gr.3	40305	10899	538	7363	55944
SLE rara - Vento ponte scarico	37595	9662	403	4943	31342
SLE freq N max gr.1	39763	10189	256	3012	44827
SLE freq MT max gr.1	39763	10189	256	3012	44827
SLE freq ML max gr.1	39763	10189	256	3012	44827
SLE freq N max gr.3	39763	10651	236	2744	51023
SLE freq MT max gr.3	39763	10651	236	2744	51023
SLE freq ML max gr.3	39763	10651	236	2744	51023
SLE freq Vento ponte scarico	34926	7467	277	3255	23558
SLE quasi permanente	34926	7467	151	1566	23558
SLV - N max	39917	8738	2510	18174	42775
SLV - MT max gr.1	37176	8738	8131	57888	41211
SLV - ML max gr.1	37176	16872	2510	18169	97622
SLV - MT max gr.3	34827	8738	8131	57885	39871
SLV - ML max gr.3	34827	16872	2510	18165	96282
SLV - N min	32086	8738	2510	18161	38307

Tabella 5 – Sollecitazioni ad intradosso del baricentro fondazione

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARICE	NTRO DE	LLA PAL	IFICATA					
C.C.	N	T_x	T _y	M _x	M_{y}	$N_{max/palo}$	$N_{\min/palo}$	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
Al - SLU - N max gr.1	57169	15316	815	11221	69527	9343	3361	1704
Al - SLU - MT max gr.1	57169	15316	815	11221	69527	9343	3361	1704
Al - SLU - ML max gr.1	57169	15316	815	11221	69527	9343	3361	1704
A1 - SLU - N max gr.3	57169	16155	779	10735	80773	9741	2963	1797
A1 - SLU - MT max gr.3	57169	16155	779	10735	80773	9741	2963	1797
A1 - SLU - ML max gr.3	57169	16155	779	10735	80773	9741	2963	1797
A1 - SLU - Vento ponte scarico	49369	11178	581	7180	33798	7003	3968	1244
Al - SLU Gmin - N max gr.1	27935	4341	815	11221	46536	5243	965	491
A1 - SLU Gmin - MT max gr.1	27935	4341	815	11221	46536	5243	965	491
A1 - SLU Gmin - ML max gr.1	27935	4341	815	11221	46536	5243	965	491
A1 - SLU Gmin - N max gr.3	27935	5180	779	10735	57782	5642	566	582
A1 - SLU Gmin - MT max gr.3	27935	5180	779	10735	57782	5642	566	582
A1 - SLU Gmin - ML max gr.3	27935	5180	779	10735	57782	5642	566	582
A1 - SLU Gmin - Vento ponte scarico	20134	151	529	6631	10258	2863	1612	61

Tabella 6 – Sollecitazioni massime sul singolo palo C.C. SLU

SOLL. TOTALI NE	SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T _x	T_y	M_x	$\mathbf{M}_{\mathbf{y}}$	N _{max/palo}	N _{min/palo}	T _{/palo}				
n°	kN	kN	kN	kNm	kNm	kN	kN	kN				
SLV - N max	39917	8738	2510	18174	42775	6693	2178	1010				
SLV - MT max gr.1	37176	8738	8131	57888	41211	7801	460	1326				
SLV - ML max gr.1	37176	16872	2510	18169	97622	8419	-158	1895				
SLV - MT max gr.3	34827	8738	8131	57885	39871	7490	249	1326				
SLV - ML max gr.3	34827	16872	2510	18165	96282	8108	-369	1895				
SLV - N min	32086	8738	2510	18161	38307	5657	1474	1010				

Tabella 7 – Sollecitazioni massime sul singolo palo C.C. SLV

SOLL. TOTALI NEL BAI	SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA												
C.C.	N	T _x	T_{y}	M _x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}					
n°	kN	kN	kN	kNm	kNm	kN	kN	kN					
SLE rara - N max gr.1	40305	10321	563	7698	48198	6549	2408	1148					
SLE rara - MT max gr.1	40305	10321	563	7698	48198	6549	2408	1148					
SLE rara - ML max gr.1	40305	10321	563	7698	48198	6549	2408	1148					
SLE rara - N max gr.3	40305	10899	538	7363	55944	6823	2134	1212					
SLE rara - MT max gr.3	40305	10899	538	7363	55944	6823	2134	1212					
SLE rara - ML max gr.3	40305	10899	538	7363	55944	6823	2134	1212					
SLE rara - Vento ponte scarico	37595	9662	403	4943	31342	5521	2833	1074					

Tabella 8 – Sollecitazioni massime sul singolo palo C.C. SLE

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della spalla (muro frontale, muro paraghiaia, ...) vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

		CARATTERISTICHE DELLA INTERNA ALLA BASE D					
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	301	1121	0	0	1608
80	Tx,A _{max}	A2 - SLU - N max gr.1	301	1121	0	0	1608
SLU GEO	Ty,A _{max}	A2 - SLU - N max gr.1	301	1121	0	0	1608
돐	Mxx max	A2 - SLU - N max gr.1	301	1121	0	0	1608
	Myy max	A2 - SLU - N max gr.1	301	1121	0	0	1608
	Nz,A _{max}	A1 - SLU - N max gr.1	407	1298	0	0	1862
抚	Tx,A _{max}	A1 - SLU - N max gr.1	407	1298	0	0	1862
SLU STR	Ty,A _{max}	A1 - SLU - N max gr.1	407	1298	0	0	1862
53	Mxx max	A1 - SLU - N max gr.1	407	1298	0	0	1862
	Myy max	A1 - SLU - N max gr.1	407	1298	0	0	1862
	Nz,A _{max}	SLE rara - N max gr.1	301	883	0	0	1271
ΙΚΑ	Tx,A _{max}	SLE rara - N max gr.1	301	883	0	0	1271
SLE RARA	Ty,A _{max}	SLE rara - N max gr.1	301	883	0	0	1271
SLE	Mxx max	SLE rara - N max gr.1	301	883	0	0	1271
	Myy max	SLE rara - N max gr.1	301	883	0	0	1271
TE	Nz,A _{max}	SLE freq N max gr.1	301	883	0	0	1271
SLE FREQENTE	Tx,A _{max}	SLE freq N max gr.1	301	883	0	0	1271
<u> </u>	Ty,A _{max}	SLE freq N max gr.1	301	883	0	0	1271
EŽ	Mxx max	SLE freq N max gr.1	301	883	0	0	1271
22	Myy max	SLE freq N max gr.1	301	883	0	0	1271
SLE Q.P.		SLE quasi permanente	301	339	0	0	373
	Nz,A _{max}	SLV - N max	334	576	20	33	804
<u>~</u>	Tx,A _{max}	SLV - ML max gr.1	311	1257	20	33	1861
SLV	Ty,A _{max}	SLV - MT max gr.1	311	576	66	110	804
	Mxx max	SLV - MT max gr.1	311	576	66	110	804
	Myy max	SLV - ML max gr.1	311	1257	20	33	1861

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 46 di 69

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL MURO FRONTALE

		INTERNA ALLA BASE D	LD Merco				
			Nz,A	Tx,A	Ty,A	Mxx	Myy
			[kN]	[kN]	[kN]	[kNm]	[kNm]
	Nz, A_{max}	A2 - SLU - N max gr.1	14764	10171	680	8087	56196
엺	Tx,Amax	A2 - SLU - N max gr.3	14764	10894	649	7731	64432
SLU GEO	Ty,A _{max}	A2 - SLU - N max gr.1	14764	10171	680	8087	56196
돐	Mxx max	A2 - SLU - N max gr.1	14764	10171	680	8087	56196
	Myy_{max}	A2 - SLU - N max gr.3	14764	10894	649	7731	64432
	Nz, A_{max}	A1 - SLU - N max gr.1	18675	11785	815	9591	65596
TR	Tx, A_{max}	A1 - SLU - N max gr.3	18675	12624	779	9178	75163
SLU STR	$Ty,\!A_{\text{max}}$	A1 - SLU - N max gr.1	18675	11785	815	9591	65596
23	Mxx max	A1 - SLU - N max gr.1	18675	11785	815	9591	65596
	Myy max	A1 - SLU - N max gr.3	18675	12624	779	9178	75163
	Nz, A_{max}	SLE rara - N max gr.1	13366	7956	563	6572	44700
SLE RARA	Tx,A _{max}	SLE rara - N max gr.3	13366	8534	538	6287	51289
3 E/	Ty,A _{max}	SLE rara - N max gr.1	13366	7956	563	6572	44700
SL	Mxx max	SLE rara - N max gr.1	13366	7956	563	6572	44700
	Myy_{max}	SLE rara - N max gr.3	13366	8534	538	6287	51289
TE	Nz, A_{max}	SLE freq N max gr.1	12824	7824	256	2501	42828
EN.	Tx , A_{max}	SLE freq N max gr.3	12824	8286	236	2273	48100
SLE FREQENTE	$Ty,\!A_{\text{max}}$	SLE freq Vento ponte scarico	10656	5432	277	2701	24808
EŽ	Mxx max	SLE freq Vento ponte scarico	10656	5432	277	2701	24808
52	Myy max	SLE freq N max gr.3	12824	8286	236	2273	48100
SLE Q.P.		SLE quasi permanente	10656	5432	151	1265	24808
	Nz,A _{max}	SLV - N max	12434	6383	843	6570	38070
_	Tx,A _{max}	SLV - ML max gr.1	11569	12140	843	6565	75482
SLV	Ty,A _{max}	SLV - MT max gr.1	11569	6383	2574	19683	37756
	Mxx max	SLV - MT max gr.1	11569	6383	2574	19683	37756
	Myy max	SLV - ML max gr.1	11569	12140	843	6565	75482

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 47 di 69

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE

INTERNA INTRADOSSO FONDAZIONE									
Nz,A Tx,A Ty,A Mxx Myy									
			[kN]	[kN]	[kN]	[kNm]	[kNm]		
_	Nz,A _{max}	A2 - SLU - N max gr.1	46088	13229	680	9447	58348		
SLU GEO	Tx,A _{max}	A2 - SLU - N max gr.3	46088	13952	649	9028	68030		
Ĕ	Ty,A _{max}	A2 - SLU - N max gr.1	46088	13229	680	9447	58348		
22	Mxx max	A2 - SLU - N max gr.1	46088	13229	680	9447	58348		
	Myy max	A2 - SLU - N max gr.3	46088	13952	649	9028	68030		
	Nz,A _{max}	A1 - SLU - N max gr.1	57169	15316	815	11221	69527		
TR	Tx,A _{max}	A1 - SLU - N max gr.3	57169	16155	779	10735	80773		
SLU STR	Ty,A_{max}	A1 - SLU - N max gr.1	57169	15316	815	11221	69527		
S	Mxx max	A1 - SLU - N max gr.1	57169	15316	815	11221	69527		
	Myy max	A1 - SLU - N max gr.3	57169	16155	779	10735	80773		
	Nz,A _{max}	SLE rara - N max gr.1	40305	10321	563	7698	48198		
IR.A	Tx,A _{max}	SLE rara - N max gr.3	40305	10899	538	7363	55944		
SLE RARA	Ty,A _{max}	SLE rara - N max gr.1	40305	10321	563	7698	48198		
SLI	Mxx max	SLE rara - N max gr.1	40305	10321	563	7698	48198		
	Myy_{max}	SLE rara - N max gr.3	40305	10899	538	7363	55944		
TE	Nz,A_{max}	SLE freq N max gr.1	39763	10189	256	3012	44827		
EN	Tx,A _{max}	SLE freq N max gr.3	39763	10651	236	2744	51023		
RE	Ty,A _{max}	SLE freq Vento ponte scarico	34926	7467	277	3255	23558		
SLE FREQENTE	Mxx max	SLE freq Vento ponte scarico	34926	7467	277	3255	23558		
S	Myy max	SLE freq N max gr.3	39763	10651	236	2744	51023		
SLE Q.P.		SLE quasi permanente	34926	7467	151	1566	23558		
	Nz,A _{max}	SLV - N max	39917	8738	2510	18174	42775		
_	Tx,A _{max}	SLV - ML max gr.1	37176	16872	2510	18169	97622		
SLV	Ty,A _{max}	SLV - MT max gr.1	37176	8738	8131	57888	41211		
	Mxx max	SLV - MT max gr.1	37176	8738	8131	57888	41211		
	Myy max	SLV - ML max gr.1	37176	16872	2510	18169	97622		

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3E
 50
 D 09 CL
 VI 07 04 002

REV. FOGLIO A 48 di 69

4.9.1 Paraghiaia

Viene verificata la sezione di incastro con lo spiccato del muro frontale. Nella determinazione dei momenti flettenti di verifica il muro paraghiaia viene considerato come una mensola incastrata allo spiccato del muro frontale, trascurando a favore di sicurezza gli effetti dovuti alla eventuale presenza dei muri di risvolto.

Caratteristiche della sezione:

Sezione rettangolare 50x730 cm

Armatura verticale

 $A_s = \phi 20/10$ (lato controterra)

 $A'_s = \phi 16/20$ (lato esterno)

Armatura orizzontale

 $A_s = \phi 14/20$

 $A'_{s} = \phi 12/20$

CALCESTRUZZO -

La verifica a taglio è soddisfatta come elemento non armato a taglio. Si prevede comunque un minimo di armatura a taglio costituita da spilli $9\emptyset 8/m^2$

C32/40

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classa.

CALCESTRUZZO -	Classe.	U32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA REV. DOCUMENTO FOGLIO RS3E 50 D 09 CL VI 07 04 002 49 di 69 Α

Classe Conglo	C32/40	
N°vertice:	X [cm]	Y [cm]
1	0.0	0.0
2	0.0	730.0
3	50.0	730.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	8.0	8.0	16
2	8.0	722.0	16
3	42.0	722.0	16
4	42.0	8.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Barra Ini. N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	70	20
2	3	4	35	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		aric. (+ se di comp asse x princ. d'iner imere il lembo sup asse y princ. d'iner imere il lembo des' la all'asse princ.d'in la all'asse princ.d'in	zia . della sez. zia tro della sez. nerzia y		
N°Comb.	N	Mx	Му	Vy	Vx
1	407.00	0.00	1862.00	0.00	1298.00
2	407.00	0.00	1862.00	0.00	1298.00
3	407.00	0.00	1862.00	0.00	1298.00
4	407.00	0.00	1862.00	0.00	1298.00
5	407.00	0.00	1862.00	0.00	1298.00
6	334.00	33.00	804.00	20.00	576.00
7	311.00	33.00	1861.00	20.00	1257.00
8	311.00	110.00	804.00	66.00	576.00
9	311.00	110.00	804.00	66.00	576.00
10	311.00	33.00	1861.00	20.00	1257.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 50 di 69

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	301.00	0.00	1271.00
2	301.00	0.00	1271.00
3	301.00	0.00	1271.00
4	301.00	0.00	1271.00
5	301.00	0.00	1271.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	301.00	0.00 (0.00)	1271.00 (1163.56)
2	301.00	0.00 (0.00)	1271.00 (1163.56)
3	301.00	0.00 (0.00)	1271.00 (1163.56)
4	301.00	0.00 (0.00)	1271.00 (1163.56)
5	301.00	0.00 (0.00)	1271.00 (1163.56)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 301.00 0.00 (0.00) 373.00 (1220.71)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.0 cm Interferro netto minimo barre longitudinali: 8.1 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

LOTTO REV. COMMESSA CODIFICA DOCUMENTO FOGLIO RS3E D 09 CL VI 07 04 002 51 di 69 50 Α

Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) My Res

Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Tesa
1	S	407.00	0.00	1862.00	406.99	0.01	3465.87	1.86 223.9(65.4)
2	S	407.00	0.00	1862.00	406.99	0.01	3465.87	1.86 223.9(65.4)
3	S	407.00	0.00	1862.00	406.99	0.01	3465.87	1.86 223.9(65.4)
4	S	407.00	0.00	1862.00	406.99	0.01	3465.87	1.86 223.9(65.4)
5	S	407.00	0.00	1862.00	406.99	0.01	3465.87	1.86 223.9(65.4)
6	S	334.00	33.00	804.00	333.81	129.54	3464.41	4.29 223.9(65.4)
7	S	311.00	33.00	1861.00	310.96	59.31	3455.94	1.86 223.9(65.4)
8	S	311.00	110.00	804.00	311.09	481.80	3454.76	4.28 223.9(65.4)
9	S	311.00	110.00	804.00	311.09	481.80	3454.76	4.28 223.9(65.4)
10	S	311.00	33.00	1861.00	310.96	59.31	3455.94	1.86 223.9(65.4)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
13 max	Ordinata in oni della barra compp. a co max (sistema m. X, 1,0 3cz.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.194	50.0	730.0	0.00007	42.0	722.0	-0.01451	8.0	8.0
2	0.00350	0.194	50.0	730.0	0.00007	42.0	722.0	-0.01451	8.0	8.0
3	0.00350	0.194	50.0	730.0	0.00007	42.0	722.0	-0.01451	8.0	8.0
4	0.00350	0.194	50.0	730.0	0.00007	42.0	722.0	-0.01451	8.0	8.0
5	0.00350	0.194	50.0	730.0	0.00007	42.0	722.0	-0.01451	8.0	8.0
6	0.00350	0.193	50.0	730.0	0.00007	42.0	722.0	-0.01460	8.0	8.0
7	0.00350	0.193	50.0	730.0	0.00006	42.0	722.0	-0.01464	8.0	8.0
8	0.00350	0.195	50.0	730.0	0.00010	42.0	722.0	-0.01448	8.0	8.0
9	0.00350	0.195	50.0	730.0	0.00010	42.0	722.0	-0.01448	8.0	8.0
10	0.00350	0.193	50.0	730.0	0.00006	42.0	722.0	-0.01464	8.0	8.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 a, b, c x/d C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000428819	0.000000000	-0.017940932	0.194	0.700
2	0.000428819	0.000000000	-0.017940932	0.194	0.700
3	0.000428819	0.000000000	-0.017940932	0.194	0.700
4	0.000428819	0.000000000	-0.017940932	0.194	0.700
5	0.000428819	0.000000000	-0.017940932	0.194	0.700
6	0.000428416	0.00000149	-0.018029749	0.193	0.700
7	0.000430398	0.000000089	-0.018084792	0.193	0.700

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE REPORT OF THE STATE OF THE	RS3E	50	D 09 CL	VI 07 04 002	Α	52 di 69

8	0.000425109	0.00000177	-0.017885022	0.195	0.700
9	0.000425109	0.00000177	-0.017885022	0.195	0.700
10	0.000430398	0.000000089	-0.018084792	0.193	0.700

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

S = comb.verificata a taglio/ N = comb. non verificata Ver Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta) Ved Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

Altezza utile sezione [cm] d Larghezza minima sezione [cm] bw

Rapporto geometrico di armatura longitudinale [<0.02] Ro Scp Tensione media di compressione nella sezione [Mpa]

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
1	S	1298.00	1851.06	42.0	730.0	0.0073	0.11
2	S	1298.00	1851.06	42.0	730.0	0.0073	0.11
3	S	1298.00	1851.06	42.0	730.0	0.0073	0.11
4	S	1298.00	1851.06	42.0	730.0	0.0073	0.11
5	S	1298.00	1851.06	42.0	730.0	0.0073	0.11
6	S	576.01	1904.34	42.0	730.0	0.0081	0.09
7	S	1257.00	1865.52	42.0	730.0	0.0076	0.09
8	S	576.03	1886.23	42.0	730.0	0.0079	0.09
9	S	576.03	1886.23	42.0	730.0	0.0079	0.09
10	S	1257 00	1865 52	42 N	730 0	0.0076	0.09

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9
2	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9
3	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9
4	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9
5	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2

k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RFI	AZIONE	DL CAL	COLO	SPALL	F

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 07 04 002	Α	53 di 69	

wk Mx fe My fe		Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]									
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56
2	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56
3	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56
4	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56
5	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9
2	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9
3	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9
4	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9
5	S	5.81	50.0	730.0	-148.0	8.0	68.3	8395	223.9

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56
2	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56
3	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56
4	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56
5	S	-0.00096	0	0.500	19.9	70	0.00044 (0.00044)	365	0.162 (0.20)	0.00	1163.56

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.74 50.0 730.0 -38.9 8.0 38.2 8030 223.9

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00026	0	0.500	19.9	70	0.00012 (0.00012)	359	0.042 (0.20)	0.00	1220.71

VI07 - Ponte ferroviario a Singolo Binario

337.50 MPa

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3E
 50
 D 09 CL
 VI 07 04 002

REV. FOGLIO A 54 di 69

4.9.2 Muro frontale

Viene verificata la sezione di incastro con la platea di fondazione. Nella determinazione dei momenti flettenti di verifica il muro frontale viene considerato come una mensola incastrata nella platea di fondazione, trascurando a favore di sicurezza gli effetti dovuti alla eventuale presenza dei muri di risvolto.

Caratteristiche della sezione:

Sezione rettangolare 275x730 cm

Armatura verticale

 $A_s = \frac{\phi 26}{10} + \frac{\phi 26}{10} + \frac{\phi 26}{10}$ (lato controterra)

 $A'_s = \phi 26/10$ (lato esterno)

Armatura orizzontale

 $A_s = \phi 20/20 + \phi 20/20 + \phi 20/20$ (lato controterra)

 $A'_s = \phi 20/20$ (lato esterno)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
CALCESTRUZZO -	******	18.800	MPa
	Resis. compr. di progetto fcd:		
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	

Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA REV. FOGLIO DOCUMENTO RS3E 50 D 09 CL VI 07 04 002 55 di 69 Α

N°vertice:	X [cm]	Y [cm]
1	0.0	0.0
2	0.0	730.0
3	275.0	730.0
4	275.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	9.0	9.0	26
2	9.0	721.0	26
3	266.0	721.0	26
4	266.0	9.0	26
5	15.0	721.0	26
6	15.0	9.0	26
7	21.0	9.0	26
8	21.0	721.0	26

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre N°Gen. N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	70	26
2	3	4	70	26
3	5	6	70	26
4	7	8	70	26

ARMATURE A TAGLIO

8 mm Diametro staffe: Passo staffe: 1.9 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
-	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	18675.00	9591.00	65596.00	815.00	11785.00
2	18675.00	9178.00	75163.00	779.00	12624.00
3	18675.00	9591.00	65596.00	815.00	11785.00

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE REPORT OF THE STATE OF THE	RS3E	50	D 09 CL	VI 07 04 002	Α	56 di 69

4	18675.00	9591.00	65596.00	815.00	11785.00
5	18675.00	9178.00	75163.00	779.00	12624.00
6	12434.00	6570.00	38070.00	843.00	6383.00
7	11569.00	6565.00	75482.00	843.00	12140.00
8	11569.00	19683.00	37756.00	2574.00	6383.00
9	11569.00	19683.00	37756.00	2574.00	6383.00
10	11569.00	6565.00	75482.00	843.00	12140.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	13366.00	6572.00	44700.00
2	13366.00	6287.00	51289.00
3	13366.00	6572.00	44700.00
4	13366.00	6572.00	44700.00
5	13366.00	6287.00	51289.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	12824.00	2501.00 (2519.16)	42828.00 (43139.04)
2	12824.00	2273.00 (2013.55)	48100.00 (42609.63)
3	10656.00	2701.00 (4923.39)	24808.00 (45220.11)
4	10656.00	2701.00 (4923.39)	24808.00 (45220.11)
5	12824.00	2273.00 (2013.55)	48100.00 (42609.63)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 10656.00 1265.00 (2379.85) 24808.00 (46671.39)

RISULTATI DEL CALCOLO

Му

Му

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali:

PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 57 di 69

Interferro netto minimo barre longitudinali: 3.4 cm Copriferro netto minimo staffe: 6.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	18675.00	9591.00	65596.00	18674.80	18517.40	131669.87	1.981529.1(602.3)
2	S	18675.00	9178.00	75163.00	18675.10	16200.53	131779.78	1.741529.1(602.3)
3	S	18675.00	9591.00	65596.00	18674.80	18517.40	131669.87	1.981529.1(602.3)
4	S	18675.00	9591.00	65596.00	18674.80	18517.40	131669.87	1.981529.1(602.3)
5	S	18675.00	9178.00	75163.00	18675.10	16200.53	131779.78	1.741529.1(602.3)
6	S	12434.00	6570.00	38070.00	12434.07	21404.31	125058.76	3.231529.1(602.3)
7	S	11569.00	6565.00	75482.00	11569.16	10516.46	124614.07	1.641529.1(602.3)
8	S	11569.00	19683.00	37756.00	11569.13	62515.66	120954.65	3.161529.1(602.3)
9	S	11569.00	19683.00	37756.00	11569.13	62515.66	120954.65	3.161529.1(602.3)
10	S	11569.00	6565.00	75482.00	11569.16	10516.46	124614.07	1.641529.1(602.3)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	275.0	730.0	0.00293	266.0	721.0	-0.01410	9.0	9.0
2	0.00350	275.0	730.0	0.00292	266.0	721.0	-0.01444	9.0	9.0
3	0.00350	275.0	730.0	0.00293	266.0	721.0	-0.01410	9.0	9.0
4	0.00350	275.0	730.0	0.00293	266.0	721.0	-0.01410	9.0	9.0
5	0.00350	275.0	730.0	0.00292	266.0	721.0	-0.01444	9.0	9.0
6	0.00350	275.0	730.0	0.00289	266.0	721.0	-0.01554	9.0	9.0
7	0.00350	275.0	730.0	0.00279	266.0	721.0	-0.01812	9.0	9.0
8	0.00350	275.0	730.0	0.00308	266.0	721.0	-0.01072	9.0	9.0
9	0.00350	275.0	730.0	0.00308	266.0	721.0	-0.01072	9.0	9.0
10	0.00350	275.0	730.0	0.00279	266.0	721.0	-0.01812	9.0	9.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 58 di 69

Coeff. di riduz. momenti per sola flessione in travi continue						
а	b	С	x/d	C.Rid.		
0.000061330	0.000001781	-0.014665502				
0.000063045	0.000001630	-0.015026959				
0.000061330	0.000001781	-0.014665502				
0.000061330	0.000001781	-0.014665502				
0.000063045	0.000001630	-0.015026959				
0.000065956	0.000002081	-0.016157162				
0.000077716	0.000001319	-0.018834599				
0.000042715	0.000003963	-0.011139658				
0.000042715	0.000003963	-0.011139658				
0.000077716	0.000001319	-0.018834599				
	a 0.000061330 0.000063045 0.000061330 0.000063045 0.000065956 0.000077716 0.000042715 0.000042715	a b 0.000061330 0.000001781 0.000063045 0.000001630 0.000061330 0.000001781 0.000061330 0.000001781 0.000063045 0.000001630 0.000065956 0.000002081 0.000077716 0.00001319 0.000042715 0.000003963 0.000042715 0.000003963	a b c 0.000061330	a b c x/d 0.000061330 0.000001781 -0.014665502 0.000063045 0.000001630 -0.015026959 0.000061330 0.000001781 -0.014665502 0.000061330 0.000001781 -0.014665502 0.000063045 0.000001630 -0.015026959 0.000065956 0.000002081 -0.016157162 0.000077716 0.000001319 -0.018834599 0.000042715 0.000003963 -0.011139658 0.000042715 0.000003963 -0.011139658		

VERIFICHE A TAGLIO

bw

Diam. Staffe: 8 mm

Passo staffe: 1.9 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S 11	803.69	61223.25	12787.0726	5.6 247.0	728.5	2.500	1.049	48.8	52.9(0.0)
2	S 12	639.91	61238.41	12798.2526	5.6 247.3	728.1	2.500	1.049	52.3	52.9(0.0)
3	S 11	803.69	61223.25	12787.0726	5.6 247.0	728.5	2.500	1.049	48.8	52.9(0.0)
4	S 11	803.69	61223.25	12787.0726	5.6 247.0	728.5	2.500	1.049	48.8	52.9(0.0)
5	S 12	639.91	61238.41	12798.2526	5.6 247.3	728.1	2.500	1.049	52.3	52.9(0.0)
6	S 6	406.41	60688.98	12888.7326	5.6 249.0	727.9	2.500	1.033	26.3	52.9(0.0)
7	S 12	152.55	60922.34	12952.9126	5.7 250.2	728.7	2.500	1.031	49.6	52.9(0.0)
8	S 6	593.50	59581.57	12741.8826	5.2 246.2	724.5	2.500	1.031	27.4	52.9(0.0)
9	S 6	593.50	59581.57	12741.8826	5.2 246.2	724.5	2.500	1.031	27.4	52.9(0.0)
10	S 12	152.55	60922.34	12952.9126	5.7 250.2	728.7	2.500	1.031	49.6	52.9(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]

Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE	DI CVI	COIO	CDVIIE
NELAZIONE	DI CAL	LOLU	SEALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	59 di 69

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.41	275.0	730.0	-131.3	9.0	9.0	28384	1146.8
2	S	7.20	275.0	730.0	-156.1	9.0	9.0	28389	1146.8
3	S	6.41	275.0	730.0	-131.3	9.0	9.0	28384	1146.8
4	S	6.41	275.0	730.0	-131.3	9.0	9.0	28384	1146.8
5	S	7.20	275.0	730.0	-156.1	9.0	9.0	28389	1146.8

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

		the and the financial and include a	lal aalaaakuumaa ala kafaulaua a faksa
La sezione viene assunta sem	ore tessurata anche nei casc) in cui la trazione minima d	lel calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00069	0	0.500	26.0	77	0.00039 (0.00039)	371	0.146 (0.20)	6065.61	41255.75
2	S	-0.00082	0	0.500	26.0	77	0.00049 (0.00047)	371	0.184 (0.20)	5015.41	40915.40
3	S	-0.00069	0	0.500	26.0	77	0.00039 (0.00039)	371	0.146 (0.20)	6065.61	41255.75
4	S	-0.00069	0	0.500	26.0	77	0.00039 (0.00039)	371	0.146 (0.20)	6065.61	41255.75
5	S	-0.00082	0	0.500	26.0	77	0.00049 (0.00047)	371	0.184 (0.20)	5015.41	40915.40

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.85	275.0	730.0	-121.2	9.0	9.0	28389	1146.8
2	S	6.47		730.0	-140.9	9.0	9.0	28389	1146.8
3	S	3.57	275.0	730.0	-61.0	9.0	9.0	28383	1146.8
4	S	3.57	275.0	730.0	-61.0	9.0	9.0	28383	1146.8
5	S	6.47	275.0	730.0	-140.9	9.0	9.0	28389	1146.8

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00064	0	0.500	26.0	77	0.00036 (0.00036)	371	0.135 (0.20)	2519.16	43139.04
2	S	-0.00074	0	0.500	26.0	77	0.00042 (0.00042)	371	0.157 (0.20)	2013.55	42609.63
3	S	-0.00032	0	0.500	26.0	77	0.00018 (0.00018)	371	0.068 (0.20)	4923.39	45220.11
4	S	-0.00032	0	0.500	26.0	77	0.00018 (0.00018)	371	0.068 (0.20)	4923.39	45220.11
5	S	-0.00074	0	0.500	26.0	77	0.00042 (0.00042)	371	0.157 (0.20)	2013.55	42609.63

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 60 di 69

l S 3.47 275.0 730.0 -59.5 9.0 9.0 28389 1146.8

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00032	0	0.500	26.0	77	0.00018 (0.00018)	371	0.066 (0.20)	2379.85	46671.39

l'armatura minima posta in opera non rispetta i minimi previsti dalla norma per gli elementi "trave" di media duttilità

Per la verifica a taglio della sezione si considera l'area di ferro necessaria, come indicata dal codice di calcolo,e si assegna una armatura equivalente; in particolare si utilizzeranno:

Spille $9\phi 12/mq$.

4.9.3 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{max} = 9741 \text{ kN (CC. SLU)}$

 $T_{max} = 1797 \text{ kN (CC. SLU)}$

 $N_{max} = 8419 \text{ kN (CC. SLV)}$

 $T_{max} = 1895 \text{ kN (CC. SLV)}$

4.9.3.1 <u>Unghia anteriore platea fondazione</u>

Il tacco anteriore del plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo anteriore del muro frontale, mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente), mentre l'altezza della biella compressa è stata valutata pari a 0.2 d_p (con d_paltezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 61 di 69

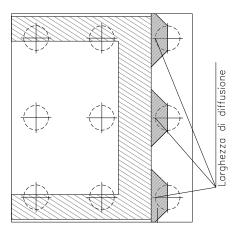
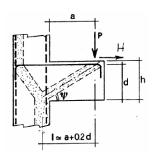



Figura 3 – Diffusione delle azioni dal palo al muro frontale

Di seguito si riportano i risultati delle verifiche strutturali del plinto di fondazione, condotte con riferimento al metodo usualmente utilizzato per la verifica delle mensole tozze, ovvero il metodo del tirante-puntone, di cui nel seguito si riporta lo schema e di verifica generale e relative formulazioni proposte a riguardo al C4.1.2.1.5 dalla Circolare Ministeriale n° 617/09.

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (PED, HED)

Pr : Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{_{R}}=P_{_{Rs}}=\!\left(A_{_{s}}f_{_{yd}}-H_{_{Ed}}\right)\!\frac{1}{\lambda}\qquad\lambda\!\!=\!\!ctg\psi\!\!\cong\!\!1/(0.9d).$$

Pr : Portanza mensola in termini di resistenza della Biella compressa

$$P_{Rc} = 0,4bdf_{cd} \frac{c}{1+\lambda^2} \ge P_{Rs}$$

CONDIZIONI DI VERIFICA

- $_{\text{1}}\quad P_{\text{R}}\geq P_{Ed}$
- $P_{Rc} \ge P_{Rs}$

VI07 - Ponte ferroviario a Singolo Binario

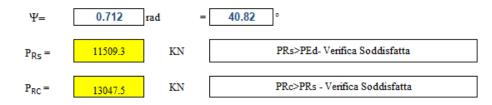
RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 07 04 002	Α	62 di 69

Dati di progetto

b(m)=	2.85	m	dimensione trasversale verifica
$P_{Ed}(KN) =$	9741.00	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	1797.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	1.60	m	distanza P da incastro
h(m) =	2.00	m	spessore mensola
$\delta(m) =$	0.10	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	1.90	m	altezza utile
1(m) =	1.98	m	a+0,2d
λ =	1.16		$\lambda = \operatorname{ctg} \psi \cong 1/(0,9d)$.

Tipo di mensola (Valutazione coefficiente c)


Caratteristiche Materiali

fcd=	14.1	MPa	Calcestruzz
fyd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	24.0	p1(cm) = 10.0	θ1°= 0.0
Αφ i (mm²) =	452.39	nb tot 1=	28.5	$A\phi TOT (mm^2) = 12893.09$	$A\phi CAL(mm^2) = 12893.09$
Registro tipo	R2				
n° R2=	1	φ2(mm) =	24.0	p2(cm) = 10.0	θ2° = 0.0
Αφ i (mm²) =	452.39	nb tot 2 =	28.5	$A\phi$ TOT (mm ²) = 12893.09	$A\phi CAL(mm^2) = 12893.09$
Registro tipo	R3				
n° R3=	1	φ3(mm) =	24.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	452.39	nb tot 3 =	28.5	$A\phi$ TOT (mm ²) = 12893.09	$A\phi CAL(mm^2) = 12893.09$

Verifiche di resistenza

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO VI 07 04 002 REV. FOGLIO

A 63 di 69

4.9.4 Palo di fondazione L=39.0m

Viene verificata la sezione di incastro con la platea di fondazione.

Il momento flettente agente in testa palo viene derivato dal taglio in testa palo nell'ipotesi di elasticità lineare sia per il palo che per il terreno. Risulta

 $M=T\ast\alpha$

 $\alpha = 3.1$ (vedi relazione geotecnica)

 $N_{max} = 9741 \; kN$ $T = 1797 \; kN$ $M = 1797 * 3.1=5571 \; kNm$

 $N_{min} = -369 \text{ kN}$ T = 1895 kN M = 1895 * 3.1 = 5875 kNm

 $N = 8419 kN \qquad \qquad T = 1895 \ kN \qquad \qquad M_{max} = 1895 \ * \ 3.1 = 5875 \ kNm$

Caratteristiche della sezione:

Sezione circolare Ø 150 cm

 $A_s = 36 + 36 + 36 \phi 26$ staffe $\phi 14/15$

La lunghezza del palo è pari a L = 39.00m

CALCESTRUZZO - Classe:

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 64 di 69

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 75.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre generate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen. Xcentro Ycentro **N°Barre** Ø Raggio 1 0.0 0.0 66.3 36 26 2 0.0 0.0 36 26 61.5 3 0.0 0.0 57.0 36 26

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 15.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	9741.00	5571.00	0.00	1797.00	0.00
2	965.00	5571.00	0.00	1797.00	0.00
3	8419.00	5875.00	0.00	1895.00	0.00
4	-369.00	5875.00	0.00	1895.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 65 di 69

 1
 6823.00
 3759.00
 0.00

 2
 2134.00
 3759.00
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 6410.00
 3670.00 (2217.96)
 0.00 (0.00)

 2
 2427.00
 3670.00 (1633.38)
 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 2406.00
 817.00 (3667.09)
 0.00 (0.00)

 2
 1343.00
 817.00 (2145.25)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm
Interferro netto minimo barre longitudinali: 1.9 cm
Copriferro netto minimo staffe: 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	9741.00	5571.00	0.00	9740.92	11728.09	0.00	2.11 573.4(53.0)
2	S	965.00	5571.00	0.00	964.95	10794.66	0.00	1.94 573.4(53.0)
3	S	8419.00	5875.00	0.00	8419.17	11713.43	0.00	1.99 573.4(53.0)
4	S	-369.00	5875.00	0.00	-368.83	10469.38	0.00	1.78 573.4(53.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** RS3E 50 D 09 CL VI 07 04 002 Α 66 di 69

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	75.0	0.00310	0.0	66.3	-0.00305	0.0	-66.3
2	0.00350	0.0	75.0	0.00294	0.0	66.3	-0.00559	0.0	-66.3
3	0.00350	0.0	75.0	0.00308	0.0	66.3	-0.00333	0.0	-66.3
4	0.00350	0.0	75.0	0.00290	0.0	66.3	-0.00618	0.0	-66.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Did	Cooff, di riduz, momenti per sola flossione in travi continue

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	o a	N°Comb
		0.000023631	0.000046352	0.000000000	1
		-0.001325345	0.000064338	0.000000000	2
		-0.000127915	0.000048372	0.000000000	3
		-0.001637485	0.000068500	0.000000000	4

VERIFICHE A TAGLIO

bw

Ctg

Acw Ast A.Eff

Diam. Staffe: 14 mm

Passo staffe: 15.0 cm [Passo massimo di normativa = 25.0 cm]

S = comb. verificata a taglio / N = comb. non verificata Ver Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro

Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

$N^{\circ}Comb$	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	c	1797.00	2007.42	5245.74118.0	21 02 7	126.6	2 500	1 250	10.6	E7 2(0 0)
	_	1797.00								` ,
3	-	1895.00		5717.55119.						57.2(0.0)
-	-			5309.52118.						57.2(0.0)
4	3	1895.00	3430.78	5807.08120.	UJ 1U3.8	135.4	∠.500	1.000	10.7	57.2(0.0)

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO

NUOVO COLLEGAMENTO PALERMO - CATANIA

PROGETTO DEFINITIVO

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 67 di 69

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max

Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Sf min Xs min Ys min Ver Sc max Xc max Yc max Ac eff. As eff. S 10.35 0.0 0.0 -81.8 0.0 -66.31300 79.6 2 S 9.49 0.0 0.0 -156.6 0.0 -66.3 2221 122.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Cf e sm - e cm sr max Mx fess My fess wk S -0.00048 0 0.500 26.0 74 0.00025 (0.00025) 0.079 (0.20) 0.00 324 2269.23 S -0.000870.500 26.0 0.00059 (0.00047) 0.197 (0.20) 0.00 74 332 1597.07

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 79.6 S 10.06 0.0 0.0 -83.3 0.0 -66.3 1350 2 S 9.34 0.0 0.0 -146.7 0.0 -66.3 2164 122.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00049	0	0.500	26.0	74	0.00025 (0.00025)	327	0.082 (0.20)	2217.96	0.00
2	S	-0.00082	0	0.500	26.0	74	0.00055 (0.00044)	330	0.181 (0.20)	1633.38	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc	max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2 46	0.0	0.0	-7.6	0.0	-66.3	534	15 9

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 68 di 69

2 S 2.22 0.0 0.0 -19.7 0.0 -66.3 1452 79.6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max		wk	Mx fess	My fess
1	S	-0.00005	0	0.500	26.0	74	0.00002 (0.00002)	400	0.009 (0.20)	3667.09	0.00
2	S	-0.00011	0	0.500	26.0	74	0.00006 (0.00006)	332	0.020 (0.20)	2145.25	0.00

VI07 - Ponte ferroviario a Singolo Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 07 04 002
 A
 69 di 69

5 SINTESI DELLE VERIFICHE GEOTECNICHE

Nel presente paragrafo si riporta una sintesi in forma tabellare delle sollecitazioni massime sui pali e delle verifiche geotecniche per il viadotto in oggetto, con relativi coefficienti di sicurezza.

Per maggiori dettagli si rimanda alle specifiche relazioni delle fondazioni.

PALI					SOLLECITAZIONI									
viadot to	spalla pila	D[m m]	npali[-]	Lpalo [m]	SFORZO NORMALE SLU/SLV		SFORZO NORMALE SLE		TAGLI E MOMENTI					
									senza scalzamento			con scalzamento		
					Nmax,c [kN]	Nmin[k N]	Nmax, SLE,rara [kN]	Nmax, SLE,FREQ [kN]	Tmax [kN]	alfa [m]	Mm ax	Tmax [kN]	alfa [m]	Mm ax
VI07	spalla 1	1500	9	31.0	6692	-	4752		855	3.1	2651	-	-	-
VI07	spalla 2	1500	9	39.0	9741	-369	6823	6410	1895	3.1	5875	1184	3.1	
VI07	Pila 1	1500	9	32.0	7587	-1206	5170		1245	3.1	3860	ı	ı	-
VI07	Pila 2	1500	12	39.0	9595	-2068	7195	6049	1224	3.1	3794	160	3.1	

VERIFICHE GEOTECNICHE										
Cariaa limita	e orizzontale	Capacità portante palo								
Carico ilmite	e orizzontale		COMPRESSIONE	TRAZIONE						
Hd[kN]	FS	Qd [kN]	Qd [kN], SCALZ	FS	Qd,trazione [kN]					
856	1.00	7251	-	1.08	-	-				
1999.98	1.06	10604	10264	1.05	8684	23.53				
1286.9	1.03	8218	-	1.08	6573	5.45				
1233.9	1.01	10591	10102	1.05	8622	4.17				