COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO

NUOVO COLLEGAMENTO PALERMO – CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA DITTAINO – CATENANUOVA

VI12 (ex VI04) - Singolo Binario

Relazione di calcolo Pile1/6

								SCALA:
								-
COMMESSA	LOTTO FASE	ENITE	TIPO DOC	ODED A /I	NISCIDI IN A	. PROG	R. RE'	N.
R S 3 E	5 0 D	$\begin{bmatrix} 0 & 9 \end{bmatrix}$	C L	V I 1	$\begin{array}{c c} \hline 2 & 0 & 5 \end{array}$		1 A	v.
			P. (D. (D. (T C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	A torizzato Data
A	Emissione Esecutiva	Abbasciano	Novembre 2019	A. Ferri	Novembre 2019	F. Sparacino	Novembre 2019	A. Vittozzi Toger≣bre 2019
						-		A S.p.A etione etione delle Por 0783
								VIII e Governing Annual
								Poere Ci Dott. Regil ing
File: RS	33E50D09CLVI1205001A.doc	x				I		n. Elab.: 1532

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA LOTTO CODIFICA DOCUMEN

RS3E 50 D 09 CL

DOCUMENTO VI 12 05 001 REV.

FOGLIO 2 di 52

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE DELL'OPERA	
	1.1.		
2		ERIMENTI NORMATIVI	
2			
	2.1	DOCUMENTI DI RIFERIMENTO	
3	MA	TERIALI	10
	3.1	VERIFICA S.L.E.	11
	3.1.	l Verifiche alle tensioni	11
	3.1.2	2 Verifiche a fessurazione	12
4	ANA	ALISI E VERIFICHE PILA	13
	4.1	Generalità	13
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE PILE	13
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	13
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	17
	4.5	GEOMETRIA DELLA PILA	18
	4.6	ANALISI DEI CARICHI	19
	4.6.	l Peso proprio elementi strutturali	19
	4.6.2	2 Carichi trasmessi dall'impalcato	19
	4.6.	3 Azione del Vento	22
	4.6.4	4 Carichi da traffico verticali	24
	4.6.5	5 Effetti dinamici	25
	4.6.0	6 Carichi da traffico orizzontali	25
	4.6.7	7 Azione sismica	27
	4.6.8	8 Calcolo delle sollecitazioni in testa pali	31
	4.6.9	9 Riepilogo risultati	31

VI12 (ex VI04) - Singolo Binario

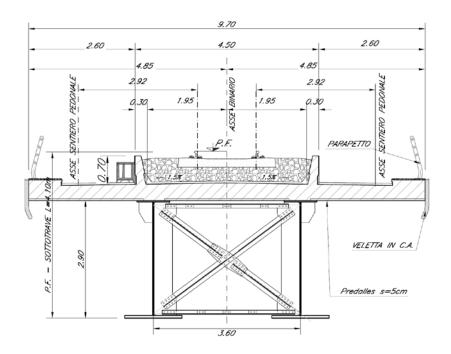
RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 12 05 001	Α	3 di 52

4.7	SOLLECITAZIONI	33
4.7.	l Plinto di fondazione	34
4.8	PALI DI FONDAZIONE	35
4.9	VERIFICHE DEGLI ELEMENTI STRUTTURALI.	36
4.9.	l Pila	39
4.9.	2 Zattera di fondazione	45
49	3 Palo di fondazione L=35 0m	48

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI12 della tratta ferroviaria Palomba-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare si tratterà la Pila 25 che presenta l'altezza maggiore per tipologia di pila ed impalcati afferenti.


Verranno ipotizzati appoggi fissi sulla campata di luce maggiore, indipendentemente dal reale posizionamento degli stessi.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 14 gennaio 2008.

1.1 Descrizione dell'opera

Il viadotto ferroviario VI12 ha una lunghezza totale di 1980.05m, è costituito da 47 impalcati in acciaio da 40,50 e 70m. Il viadotto è previsto a singolo binario.

Le pile sono realizzate in c.a. gettato in opera.

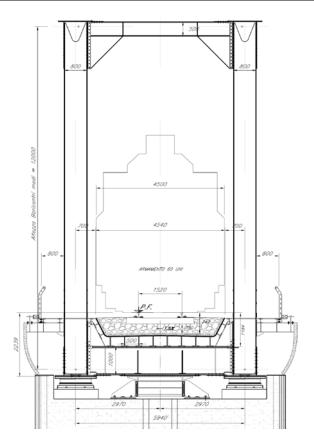
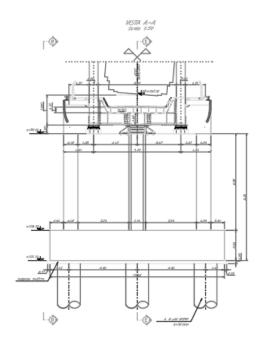
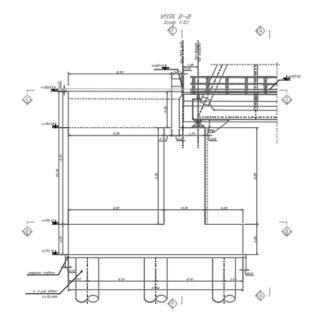


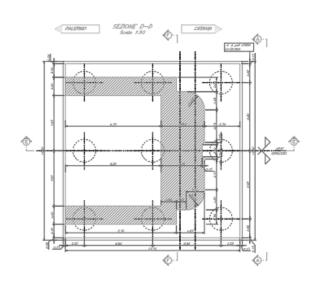
Figura 1 - Sezioni trasversali

1.1.1 Aspetti legati alle opere di fondazione

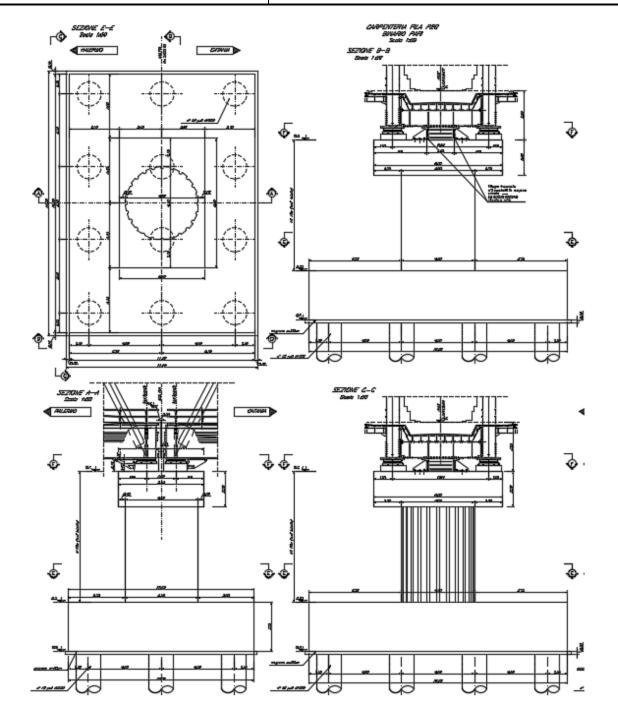

Le fondazioni sono realizzate sia per le pile che per le spalle con plinti su pali di grande diametro.




VI12 (ex VI04) - Singolo Binario


RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 12 05 001	Α	6 di 52

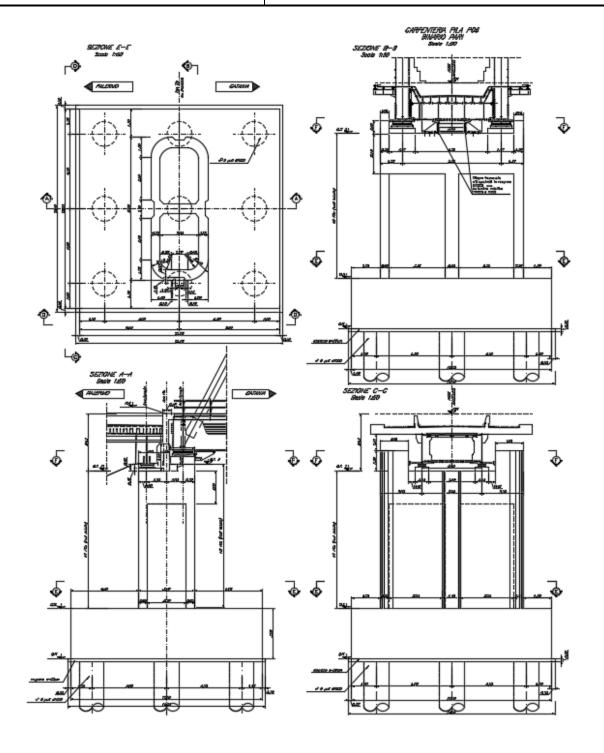


VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 7 di 52



VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 8 di 52

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 12 05 001	Α	9 di 52

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 14 gennaio 2008, «Norme tecniche per le costruzioni».
- Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2
 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3
 Corpo Stradale
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

2.1 Documenti di riferimento

- Relazione geotecnica e di calcolo delle fondazioni 1/2 RS3E50D09RBVI1203001A
- Relazione geotecnica e di calcolo delle fondazioni 2/2 RS3E50D09RBVI1203002A

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

LOTTO COMMESSA **CODIFICA** DOCUMENTO REV. **FOGLIO** RS3E 50 D 09 CL VI 12 05 001 10 di 52 Α

3 **MATERIALI**

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

- Calcestruzzo magro e getto di livellamento
- CLASSE DI RESISTENZA MINIMA C12/15
- TIPO CEMENTO CEM I÷V CLASSE DI ESPOSIZIONE AMBIENTALE : XO
 - > Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni
- CLASSE DI RESISTENZA MINIMA C25/30

- CLASSE DI RESISTENZA MINIMA C25/30
 TIPO CEMENTO CEM III+V
 RAPPORTO A/C : < 0.60
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
 COPRIFERRO MINIMO = 60 mm
 DIAMETRO MASSIMO INERTI : 32 mm
- - Calcestruzzo fondazioni armate

- CLASSE DI RESISTENZA MINIMA C25/30 TIPO CEMENTO CEM III÷V RAPPORTO A/C : ≤ 0.60 CLASSE MINIMA DI CONSISTENZA : S4 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 40mm
- DIAMETRO INERTI: 25 mm
 - Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle
- CLASSE DI RESISTENZA MINIMA C32/40

- CLASSE DI RESISTENZA MINIMA C32/40
 TIPO CEMENTO CEM III÷V
 RAPPORTO A/C : < 0.50
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XC4
- COPRIFERRO MINIMO = 50mm
- DIAMETRO INERTI: 25 mm
 - Acciaio ordinario per calcestruzzo armato


IN BARRE E RETI ELETTROSALDATE

B450C saldabile che presenta le seguenti caratteristiche

fyk > 450 N/mm² ftk > 540 N/mm² - Tensione di snervamento caratteristica

- Tensione caratteristica a rottura $1.15 \le ftk/fyk < 1.35$

(*): I VALORI DI COPRIFERRO RIPORTATI SI RIFERISCONO AD OPERE CON VITA NOMINALE DI 75 ANNI. PER COSTRUZIONI CON VITA NOMINALE DI 100 ANNI TALI VALORI DOVRANNO ESSERE AUMENTATI DI 5 mm.

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ck};
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

Per il caso in esame risulta in particolare per l'elevazione:

CALCESTRUZZO

$\sigma_{cmax\ QP} =$	$(0,40 \; f_{cK})$	= 12	.28 M	[Pa	(Comb	oinazione di Carico Qu	asi Perm	nanente)
$\sigma_{cmax\ R} =$	$(0,55 f_{cK})$	= 16	. 89 M	[Pa	(Comb	oinazione di Carico Ca	ratteristi	ca - Rara)
<u>ACCIAIO</u>						Combinazione	di	Carico
	$\sigma_{s max} =$	$(0,75 f_{yK})$	= 338	N	/IPa	Caratteristica(Rara)		

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Cruppi di			Armatura				
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile		
esigeliza			Stato limite	wd	Stato limite	wd	
	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃	
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂	
b	Agamagairra	frequente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂	
U	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
	Molto Agamagiya	frequente	formazione fessure	-	ap. fessure	$\leq w_1$	
С	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.2 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

- Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 12 05 001	Α	13 di 52

4 ANALISI E VERIFICHE PILA

4.1 Generalità

La pila presenta una sezione circolare di diametro 4.50m, una altezza complessiva di 16.60m.

Il pulvino è costituito da una sezione piena di dimensione 5.3x8.00m ed altezza 2.20m.

Le fondazioni sono realizzate su pali di diametro 1.50m collegate in testa da una platea di spessore 3.00m.

Per le verifiche dei singoli elementi della pila (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

4.2 Modelli a mensola per la verifica delle pile

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto.

Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirantepuntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC08, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 12 05 001	Α	14 di 52

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

LOTTO REV. COMMESSA CODIFICA DOCUMENTO **FOGLIO** 15 di 52 50 D 09 CL VI 12 05 001 Α

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γр	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 12 05 001	Α	16 di 52	

	Azioni	Ψo	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi , alle verifiche strutturali.

	A2 - SLU - N max gr.1	A2-SLU-MT max gr.1	A2-SLU-ML max gr.1	A2 - SLU - N max gr.3	A2 - SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	A2 - SLU Gmin - N max gr.1	A2 - SLU Gmin - MT max gr.1	A2 - SLU Gmin - ML max gr.1	A2 - SLU Gmin - N max gr.3	A2 - SLU Gmin - MT max gr.3	A2 - SLU Gmin - ML max gr.3	A2 - SLU Gmin - Vento ponte scarico	A1-SLU - N max gr.1	A1-SLU-MT max gr.1	A1-SLU-MI max gr.1	A1-SLU - N max gr.3	A1-SLU-MT max gr.3	A1-SLU-ML max gr.3	A1 - SLU - Vento ponte scarico	A1-SLU Gmin-N max gr.1	A1-SLU Gmin-MT max gr.1	A1-SLU Gmin-ML max gr.1
Peso proprio gl	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35		1.00	1.00	1.00
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	1.50	1.50		0.00	0.00	0.00
Ballast	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50		1.00	1.00	1.00
Comb. Nmax Qv	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00		1.45	0.00	0.00
Comb. Nmax Q frenatura	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00		0.73	0.00	0.00
Comb. Nmax Q centrifuga	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00		1.45	0.00	0.00
Comb. Nmax Q serpeggio	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00		1.45	0.00	0.00
Comb. MTmax Qv	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00		0.00	1.45	0.00
Comb. MTmax Q frenatura	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00		0.00	0.73	0.00
Comb. MTmax Q centrifuga	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00
Comb. MTmax Q serpeggio	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00
Comb. MLmax Qv	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45
Comb. MLmax Q frenatura	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73
Comb. MLmax Q centrifuga	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45
Comb. MLmax Q serpeggio	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00
Vento Ponte Carico	0.78	0.78	0.00	0.78	0.78	0.00	0.00	0.78	0.78	0.00	0.78	0.78	0.00	0.00	0.90	0.90	0.00	0.90	0.90	0.00		0.90	0.90	0.00
Attrito permanente	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Attrito carichi mobili	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00	1.45	1.45	1.45
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vento x	0.00	0.00	0.78	0.00	0.00	0.78	0.00	0.00	0.00	0.78	0.00	0.00	0.78	0.00	0.00	0.00	0.90	0.00	0.00	0.90	0.00	0.00	0.00	0.90
Vento y	0.78	0.78	0.00	0.78	0.78	0.00	1.30	0.78	0.78	0.00	0.78	0.78	0.00	1.30	0.90	0.90	0.00	0.90	0.90	0.00	1.50	0.90	0.90	0.00

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 12 05 001	Α	17 di 52	

A1-SLU Gmin-N max gr.3	A1 - SLU Gmin - MT max gr.3	A1 - SLU Gmin - ML max gr.3	A1 - SLU Gmin - Vento ponte scarico	SLE rara - N max gr.1	SLE rara - MT max gr.1	SLE rara - ML max gr.1	SLE rara - N max gr.3	SLE rara - MT max gr.3	SLE rara - ML max gr.3	SLE rara - Vento ponte scarico	SLE freq N max gr.1	SLE freq MT max gr.1	SLE freq ML max gr.1	SLE freq N max gr.3	SLE freq MT max gr.3	SLE freq ML max gr.3	SLE freq Vento ponte scarico	SLE quasi permanente	SLV - N max	SLV - MT max	SLV - ML max	SLV - MT max	SLV - ML max	SLV - N min	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00	Peso proprio gl
0.00	0.00	0.00	0.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Permanenti G2
1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Ballast
1.45	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.20	Comb. Nmax Qv
1.45	0.00	0.00	0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.20	Comb. Nmax Q frenatura
0.73	0.00	0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.20	Comb. Nmax Q centrifuga
0.73	0.00	0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.20	Comb. Nmax Q serpeggio
0.00	1.45	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	0.00	Comb. MTmax Qv
0.00	1.45	0.00	0.00	0.00	0.50		0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q frenatura
0.00	0.73	0.00	0.00	0.00	1.00		0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	0.00	Comb. MTmax Q centrifuga
0.00	0.73	0.00	0.00	0.00	1.00		0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q serpeggio
0.00	0.00	1.45	0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Qv
0.00	0.00	1.45	0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q frenatura
0.00	0.00	0.73	0.00	0.00	0.00		0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q centrifuga
0.00	0.00	0.73	0.00	0.00	0.00		0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q serpeggio
0.00	0.00	0.00	1.50	0.00	0.00		0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Scarico
0.90	0.90	0.00	0.00	0.60	0.60	0.00	0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Carico
1.35	1.35	1.35	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50		Attrito permanente
1.45	1.45	1.45	0.00	1.00	1.00	-	1.00	1.00	1.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.20	0.20	0.20	0.20	0.20		Attrito carichi mobili
0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.30	1.00		Sisma longitudinale
0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	1.00	0.30		Sisma trasversale
0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	-0.30	-0.30		Sisma verticale
0.00	0.00	0.90	0.00	0.00	0.00		0.00	0.00	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Vento x
0.90	0.90	0.00	1.50	0.60	0.60	0.00	0.60	0.60	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento y

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

4.4 Sistemi di riferimento ed unità di misura


- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- Lunghezze = m
- Forze = kN

4.5 Geometria della Pila

Generali			
Peso cls	γ _{c1s}	25	kN/m³
Peso terreno	γt	20	kN/m³
Sovraccarico accidentale sul rilevato	q _{acc}	53.0	kN/m ²
Altezza appoggio + baggiolo	h _{ao}	0.45	m
Distanza piano appoggi-intradosso plinto	H ₁	20.05	m
Pulvino			
Altezza	Hp	2.20	m
Lunghezza lungo asse X	b _p	5.3	m
Lunghezza lungo asse Y	L_p	8.00	m
Area Sezione		42.40	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	Хp	0.00	m
Pila			
Altezza	H_m	16.60	m
Lunghezza lungo asse X	b _m	4.5	m
Lunghezza lungo asse Y	L _m	4.50	m
Area Sezione		15.90	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	X _m	0.00	m
Distanza asse baggioli- asse pila (sx)	x _{m1}	-1.20	m
Distanza asse baggioli- asse asse pila (dx)	x _{m2}	1.20	m
Plinto			
Altezza	H_{f}	3.00	m
Lunghezza lungo asse X	b_{f}	12.00	m
Lunghezza lungo asse Y	$L_{\rm f}$	12.00	m
Spessore ricoprimento medio	h _t	1.00	m
Distanza asse baggioli - baricentro plinto (sx)		-1.20	m
Distanza asse baggioli - baricentro plinto (dx)		1.20	m
Terreno		25	0
Angolo d'attrito interno (φ)		35	[
Coefficiente per il calcolo della spinta a riposo		Ko= 0.426	
Sisma		1 1 2 2	
S _s		1.462	
a _g		0.158	
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.231	

Tabella 2 – Dati di input

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

➤ Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato (sx	()		
N° Binari		1	
Lunghezza	L	40	m
Peso Proprio	G_1	131	kN/m
Permanenti portati	G_2	120	kN/m
Ballast	G ₂	0	kN/m
n° totale appoggi sulla pila	n	2	
Reazione appoggio $i = (G_1*L/2)/n$	R_{i}	1310.0	kN
Reazione appoggio $i = (G_2*L/2)/n$	R_{i}	1200.0	kN
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	R_{i}	0	kN

Impalcato (dx	:)		
N° Binari		1	
Lunghezza	L	40	m
Peso Proprio	G1	131	kN/m
Permanenti portati	G2	120	kN/m
Ballast	G2	0	kN/m
n° totale appoggi sulla pila	n	2	
Reazione appoggio $i = (G_1*L/2)/n$	Ri	1310.0	kN
Reazione appoggio $i = (G_2*L/2)/n$	Ri	1200.0	kN
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	Ri	0	kN

4.6.2 Carichi trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra (la condizione di Momento Longitudinale massimo "MLmax" è riferita alla situazione in cui solo uno dei due impalcati venga caricato):

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 20 di 52

sx									
SEZIONE MISTA 40 ML SINGOLO BINARIO									
APPOGGIO	REAZIONE	У	REAZ.	LM71 REAZ. SW	2 α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.530	1.8	184	11 2617	1.1	1	1.09	2212	2858
2	0.470	-1.8	184	11 2617	1.1	1	1.09	2212	2858
dx									
SEZIONE MISTA 40 ML SINGOLO BINARIO									
APPOGGIO	REAZIONE	У	REAZ.	LM71 REAZ. SW	2 α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.530	1.8	184	11 1925	1.1	1	1.09	2212	2102
2	0.470	-1.8	184	11 1925	1.1	1	1.09	2212	2102
dx ML max									
SEZIONE MISTA 40 ML SINGOLO BINARIO									
APPOGGIO	REAZIONE	У	REAZ.	LM71 REAZ. SW	2 α LM71	α SW2	ø3	REAZ. LM71	REAZ. SW2
1	0.530	1.8	213	37 2710	1.1	1	1.09	2567	2960
2	0.470	-1.8	213	37 2710	1.1	1	1.09	2567	2960

Che ripartiti con il metodo Courbon sul singolo appoggio forniscono i risultati in tabella seguente.

REAZIONI VINCOLARI [kN,m]

sx

Appoggio		A			В		
Descrizione carico	FZ	FX	FY	FZ	FX	FY	biz
Descrizione canco	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
Peso proprio g1	1310			1310			0.00
Permanenti G2	1200			1200			0.00
Ballast							0.00
Comb. Nmax Qv	1515			1343			0.00
Comb. Nmax Q frenatura		0			0		3.00
Comb. Nmax Q centrifuga			142			142	4.80
Comb. Nmax Q serpeggio			13			13	3.00
Comb. MTmax Qv	1172			1040			0.00
Comb. MTmax Q frenatura		0			0		3.00
Comb. MTmax Q centrifuga			217			217	4.80
Comb. MTmax Q serpeggio			13			13	3.00
Comb. MLmax Qv	0			0			0.00
Comb. MLmax Q frenatura		0			0		3.00
Comb. MLmax Q centrifuga							4.80
Comb. MLmax Q serpeggio						0	3.00
Vento Ponte Scarico			181			181	3.15
Vento Ponte Carico			301			301	3.50
Attrito permanente		75	75		75	75	0.00
Attrito carichi mobili		45	45		40	40	0.00
Sisma longitudinale							2.30
Sisma trasversale			1505			1505	2.30
Sisma verticale	450			450			0.00
Sisma longitudinale		0			0		2.30
Sisma trasversale			1660			1660	2.30
Sisma verticale	450			450			0.00
Sisma longitudinale		0			0		2.30
Sisma trasversale			2258			2258	2.30
Sisma verticale	450			450			0.00

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 21 di 52

$\underline{\textbf{REAZIONI VINCOLARI}} \ [kN,m]$

đх

Appoggio		A			В		
Descrizione carico	FZ	FX	FY	FZ	FX	FY	biz
Descrizione canco	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
Peso proprio g1	1310			1310			0.00
Permanenti G2	1200			1200			0.00
Ballast							0.00
Comb. Nmax Qv	1114			988			0.00
Comb. Nmax Q frenatura		578			578		3.00
Comb. Nmax Q centrifuga			142			142	4.80
Comb. Nmax Q serpeggio			13			13	3.00
Comb. MTmax Qv	1172			1040			0.00
Comb. MTmax Q frenatura		500			500		3.00
Comb. MTmax Q centrifuga			217			217	4.80
Comb. MTmax Q serpeggio			13			13	3.00
Comb. MLmax Qv	1569			1391			0.00
Comb. MLmax Q frenatura		578			578		3.00
Comb. MLmax Q centrifuga			142			142	4.80
Comb. MLmax Q serpeggio			25			25	3.00
Vento Ponte Scarico			181			181	3.15
Vento Ponte Carico			301			301	3.50
Attrito permanente		75	75		75	75	0.00
Attrito carichi mobili		47	47		42	42	0.00
Sisma longitudinale		2980			2980		2.30
Sisma trasversale			1505			1505	2.30
Sisma verticale	450			450			0.00
Sisma longitudinale		3287			3287		2.30
Sisma trasversale			1660			1660	2.30
Sisma verticale	450			450			0.00
Sisma longitudinale		4470			4470		2.30
Sisma trasversale			2258			2258	2.30
Sisma verticale	450			450			0.00

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA LOTTO
RS3E 50

 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 D 09 CL
 VI 12 05 001
 A
 22 di 52

4.6.3 Azione del Vento

Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	250	250	m
Zona	Z	4	4	
Parametri	Vb,0	28	28	m/s
Parametri	a0	500	500	m
Parametri	ks	0.36	0.36	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 * (1+ ks(as/ao-1)	28	28	m/s
Periodo di ritorno considerato	TR	112.5	112.5	anni
	αR	1.05	1.05	
Velocità di riferimento	Vb(TR)	29.28	29.28	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*ρ*vb²	0.54	0.54	kN/mq
Classe di rugostità del terreno	1	D	D	1
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		<750	<750	m
Categoria di esposizione del sito	Cat	II	II	
Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	z	19.6	19.6	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.80	2.80	
Larghezza impalcato	b	9.7	9.7	m
Altezza impalcato	h1	4.5	5.2	m
Altezza treno o parapetto	h2	1.5	4	m
Altezza totale impalcato (comprese le barriere o treno)	dtot	6	9.2	m
Rapporto di forma	b/dtot	1.62	1.05	
Coefficiente di forza (figura 8.3 EC)	cfx	2.02	2.18	
Riepilogo				
Pressione cinetica di riferimento	qb	0.54	0.54	kN/mq
Coefficiente di esposizione	ce	2.80	2.80	
Coefficiente di forza	cfx	2.02	2.18	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	6	9.2	m
Forza statica equivalente a m/l	f=prodotto	18.1	30.1	kN/m
Pressione statica equivalente	p=f/d	3.02	3.27	kN/mg
Pressione statica equivalente (minima considerata)	pmin	1.5	1.5	kN/mo
Forza statica equivalente a m/l considerata	f	18.1	30.1	kN/m
Vento impalcato a ponte scarico		sx	dx	
Forza statica equivalente	f	18.1	18.1	kN/m
Luce impalcato	L	40	40	m
Forza trasversale al piano appoggi	FT=f*L/2	362	362	kN/m
Vento impalcato a ponte carico				
Forza statica equivalente	f	30.1	30.1	kN/m
Luce impalcato	L	40	40	m
Forza trasversale al piano appoggi	FT=f*L/2	602	602	kN/m

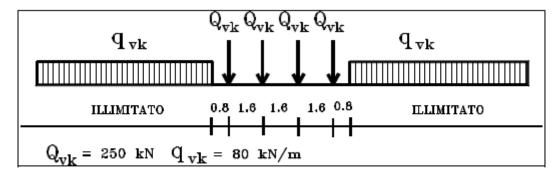
VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 23 di 52

Parametri	kr	0.19	0.19	
Parametri	z0	0.19	0.19	m
Parametri	zmin	4	4	m
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	ZIIIIII	18.80	18.8	m
	ct	10.00	1	ш
Coefficiente di topografia Coefficiente di esposizione (z)		2.77	2.77	
Coefficiente di esposizione (2)	ce(z)	dir.x	dir.x	
Altezza (dir.z)	h	2.20	16.60	m
Larghezza (ur.z) Larghezza in direz. Ortogonale al vento	b	8.00	4.50	m
Larghezza in direz. Ortogonaie ai vento Larghezza in direz. Parallela al vento	đ	5.3	4.50	m
•	d/b	0.66	1.00	m
Rapporto di forma	cfx			
Coefficiente di forza (figura 7.23 EC)		2.38	2.15	
Raggio di arrotondamento (figura 7.24 EC)	r 	0.00	0.50	m
Rapporto di forma II	r/b Ψ	1.00	0.50	
Fattore di riduzione (figura 7.24 EC) Pressione di riferimento	-	3.53	1.59	1-NT/m-
Area investita dal vento	q=Ψ*cfx*ce*qb A=b*h	17.6	74.7	kN/mq
		62	119	mq
Forza statica equivalente	F=q*A	dir.v		kN
A14 (4in)	h	2.20	dir.y 16.60	
Altezza (dir.z)	b	5.3	4.5	m m
Larghezza in direz. Ortogonale al vento Larghezza in direz. Parallela al vento	đ	8	4.5	m
_	d/b	1.51	1.00	m
Rapporto di forma	cfx	1.86	2.15	
Coefficiente di forza (figura 7.23 EC)		0		
Raggio di arrotondamento (figura 7.24 EC)	r -d-	_	2.25 0.50	m
Rapporto di forma II	r/b Ψ	0.00	0.50	
Fattore di riduzione (figura 7.24 EC)	_	1.00		1.37/
Pressione di riferimento	q=Ψ*cfx*ce*qb	2.75	1.59	kN/mq
Area investita dal vento	A=b*h	11.66	74.7	mq
Forza statica equivalente	F=q*A	32	119	kN
Riepilogo Vento x				+
vento x Pulvino	F	62	kN	
Pulvino Pila	F	119	kN	
	bz	18.80	m KIN	
Distanza tra spiccato fusto e testa pulvino Forza totale		18.80		
rotza totale	F Tot	181	kN	
Vento y				
Pulvino	F	32	kN	
Pila	F	119	kN	
Distanza tra spiccato fusto e testa pulvino	bz	18.80	m	
Forza totale	F Tot	151	kN	


4.6.4 Carichi da traffico verticali

L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2.

Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Treno di carico LM 71

Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito</u>: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

Tipo di Carico	$q_{vk}[kN/m]$	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario.

Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001 A).

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1,10
SW/0	1,10
SW/2	1,00

4.6.5 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 14.1.2008 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2,16}{\sqrt{L_6} - 0,2} + 0,73$$
 con la limitazione $1,00 \le \Phi_3 \le 2,00$ [5.2.7]

4.6.6 Carichi da traffico orizzontali

Frenatura						
L	40	m				
Leale	40	per Treno LM 71				
	30	per Treno SW/0				
	33	per SW/2				
Qlb,k	880	per Treno LM 71				
Qlb,k	660	per Treno SW/0				
Qlb,k	1155	per SW/2				
Qlb,k (filtrata)per Treno LM 71	880	kN				
Qlb,k (filtrata)per Treno SW/0	660	kN				
Qlb,k(filtrata)per SW/2	1155	kN				

Avviamento						
L	40	m				
Leale	40	per Treno LM 71				
	30	per Treno SW/0				
	33	per SW/2				
Qla,k	1452	per Treno LM 71				
Qla,k	1089	per Treno SW/0				
Qla,k	1089	per SW/2				
Qla,k (filtrata)per Treno LM 71	1000	kN				
Qla,k (filtrata)per Treno SW/0	1000	kN				
Qla,k(filtrata)per SW/2	1000	kN				

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 26 di 52

Ser	oeggio	
FT=100kN /2	50	kN*m
Treno LM 71		
α	1.1	
FT*α	55	kN
Treno SW/0		
α	1.1	
FT*α	55	kN
Treno SW/2		
α	1	
FT*α	50	kN

Forza centrifuga sx								
L	40	m	Lø	38	m			
velocità di progetto	160	km/h	ø3 Coeff. Dinamico	1.092				
raggio planimetrico	750	m						
f	0.80	Per V>120 km/h						
f	1	Per V<120 km/h						
Treno LM 71			Treno SW/0			Treno SW/2		
Qvk	1000	kN						
qvk	80	kN/m	qvk	133	kN/m	qvk	150	kN/m
α	1	Per V>120 km/h	α	1.1		α	1	
α	1.1	Per V<120 km/h						
Qtk	235	Per V>120 km/h						
-	182	Per V<120 km/h						
Qtk scelto	235							
qtk	19	Per V>120 km/h						
•	15	Per V<120 km/h	qtk	17	Per V=100 km/h	qtk	17	Per V=100 km/h
qtk scelto	19					1	-	
L calc= L-6.4m	33.6	m	L calc	30	m	L calc	33	m
qtk*Lcalc	631	kN	gtk*Leale	503	kN	qtk*Leale	568	kN
FT= (qtk*Lcalc + qtk)/2	433	kN	FT= qtk*Lcalc /2	252	AL.	FT= qtk*Lcalc /2	284	
ri-(qik Leaic : qik)/2	400	KIY	FI-que Deale/2	202		FT=qtk Ecale/2	204	
Forza centrifuga dx					_			
L	40	m	Lø	38	m			
velocità di progetto	160	km/h	ø3 Coeff. Dinamico	1.092				
raggio planimetrico	750	m						
f	0.80	Per V>120 km/h						
f	1	Per V<120 km/h						
	_							
Treno LM 71		437	Treno SW/0			Treno SW/2		
Qvk	1000	kN						
qvk	80	kN/m	qvk	133	kN/m	qvk	150	kN/m
α	1	Per V>120 km/h	α	1.1		α	1	
α	1.1	Per V<120 km/h						
Qtk	235	Per V>120 km/h						
•	182	Per V<120 km/h						
Qtk scelto	235							
qtk	19	Per V>120 km/h						
•	15	Per V<120 km/h	qtk	17	Per V=100 km/h	qtk	17	Per V=100 km/h
qtk scelto	19		•	=-		1		
L calc= L-6.4m	33.6	m	L calc	30	m	L calc	33	m
qtk*Lcalc	631	kN	gtk*Leale	503	kN	qtk*Leale	568	kN
FT= (qtk*Lcalc + qtk)/2	433	kN	FT= qtk*Lcalc /2	252		FT= qtk*Lcalc /2	284	
11 (que reale : que)/2	400	RL1	11- qik Loaic/2	202		pri-que Leale/2	204	

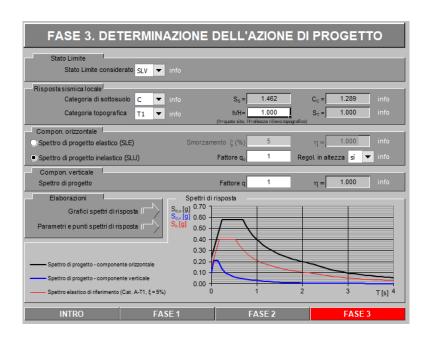
4.6.7 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

Valori di progetto

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.


VI12 (ex VI04) - Singolo Binario

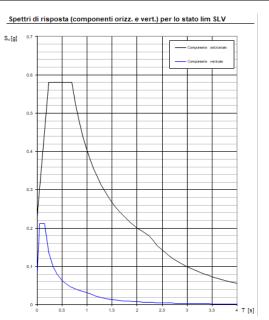
RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 28 di 52

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 12 05 001	Α	29 di 52	

Parametri indipendenti

STATO LIMITE	SLV
a _n	0.158 g
F _o	2.511
T _C *	0.538 s
Ss	1.462
C _C	1.289
S _T	1.000
q	1.000

Parametri dipendenti

S	1.462
η	1.000
T _B	0.231 s
T _C	0.693 s
T _D	2.232 s

Calcolo dell'azione Sismica

Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle Normative. Qualora le ipotesi non siano soddisfate, per il calcolo dei periodi propri della pila, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello tridimensionale agli Elementi Finiti semplificato.

I Fattori di struttura utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali e verifica del plinto
- q= 1 per le verifiche a taglio degli elementi strutturali (vedi anche punto successivo), verifiche a capacità portante orizzontale dei pali.
- Solo per la verifica a taglio dello spiccato della pila, il criterio adottato è quello della gerarchia delle resistenze, così come indicato al punto 7.9.5 delle NTC

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 30 di 52

Condizione Sismica									
Massa sismica impalcato dir x	mix	10881	kN						
Massa efficace pila dir x	mpx	4532	kN						
Massa complessiva dir x	mix + mpx	15413	kN						
1/5 Massa sismica impalcato dir x	mix/5	2176	kN						
Verifica requisito dir x		no	127						
Massa sismica impalcato dir. y	mi _y	11032	kN						
Massa efficate pila dir. Y	mpy	4532	kN						
Massa complessiva dir. Y 1/5 Massa sismica impalcato dir. Y	miy + mpy miy/5	15564 2206	kN kN						
Verifica requisito dir. Y	miyro	no	KIV						
Massa sismica impalcato dir. z	miz	11032	kN						
Massa efficate pila dir. Z	mpz	4532	kN						
Massa complessiva dir. Z	miz + mpz	15564	kN						
1/5 Massa sismica impalcato dir. Z	miz/5	2206	kN						
Verifica requisito dir. Z		no							
Inerzia Pila asse y	J_{yy}	20.13	m ⁴						
Inerzia Pila asse x	J_{xx}	20.13	m ⁴						
Area Pila	A_p	15.90	m ²						
Rigidezza Pila asse y	K _v	212132779.6	N/m						
Rigidezza Pila asse x	K _x	212132779.6	N/m						
rigidezza Pila asse z	K _z	27917144824	N/m						
Periodo x	T _x	0.54	s						
Periodo y	T _v	0.54	S						
Periodo z	Tz	0.05	s						
	-2								
Accelerazione orizzontale Se(Tx) direzione x	a _g x	0.58							
Accelerazione orizzontale Se(Ty) direzione y	a _g y	0.58							
Accelerazione Verticale Se(Tz) direzione z	a _g z	0.12							
q=1.5	5								
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.39							
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.39							
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.12							
q=1.36	5								
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.43							
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.43							
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.12							
q=1	5								
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.6							
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.6							
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.115498							
Condizione Sismica - Ta		ili							
q=1.5									
Tagliante direzione x	F x	5960	kN						
Tagliante direzione y	F y	6018	kN						
Tagliante direzione z	F z	1798	kN						
q=1.36	- '	6577	122						
Tagliante direzione x	Fx	6573	kN						
Tagliante direzione y	Fy	6638	kN 1-N						
Tagliante direzione z	Fz	1798	kN						
q=1 Tagliante direzione x	F x	8940	kN						
Tagliante direzione y	Fy	9028	kN						
Tagliante direzione z	F z	1798	kN						
		1.70	ALA 1						

4.6.8 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, $n \in I$ numero di pali e II, II sono le inerzie longitudinale e trasversale della palificata

$$J_{t} = \sum y_{i}^{2} \qquad J_{t} = \sum x_{i}^{2}$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.9 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max}, N_{min}, T ed M.

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 32 di 52

	SPI	CCATO PILA	: condizione s	tatica							
Descrizione carico	FZ	F _X	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	My			
Descrizione canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Pila	8932			0.00	0.00	0	0	0			
Vento su pila dir. x		181		0.00	0.00	18.80	0	3406			
Vento su pila dir.y			151.2	0.00	0.00	18.80	2842	0			
INTRADOSSO FONDAZIONE: condizione statica											
· · ·	Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	\mathbf{M}_{y}			
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Pila	8932			0.00	0.00	0	0	0			
Plinto	10800			0.00	0.00	1.50	0.00	0			
Rinterro	2475			0.00	0.00	0.00	0.00	0			
Vento su pila dir. x		181		0.00	0.00	21.80	0	3949			
Vento su pila dir.y			151.2	0.00	0.00	21.80	3295	0			
	INTRADO	SSO FONDA	ZIONE: condiz	ione sisn	nica						
· · ·	FZ	FX	Fy	b _{ix}	b _{iy}	b _{iz}	M _x	My			
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Plinto sisma x		2495		0.00	0.00	1.50	0.00	3742			
Plinto sisma y			2495	0.00	0.00	1.50	3742	0			
Plinto sisma z	1247			0.00	0.00	1.50	0	0			
Rinterro sisma z	286			0.00	0.00	0.00	0	0			

4.7 Sollecitazioni

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DELLA PILA									
	Nz	Tx	Ty	Mx	Му				
A2 - SLU - N max gr.1	26612	1242	2349	52716	2494				
A2 - SLU - MT max gr.1	25942	1144	2724	61659	2390				
A2 - SLU - ML max gr.1	24112	1383	937	20327	3315				
A2 - SLU - N max gr.3	26612	1964	1963	43483	4101				
A2 - SLU - MT max gr.3	25942	1769	2150	47916	3781				
A2 - SLU - ML max gr.3	24112	2104	728	15363	4921				
A2 - SLU - Vento ponte scarico	20412	301	1439	30576	579				
A2 - SLU Gmin - N max gr.1	20372	1242	2349	52716	2494				
A2 - SLU Gmin - MT max gr.1	19702	1144	2724	61659	2390				
A2 - SLU Gmin - ML max gr.1	17872	1383	937	20327	3315				
A2 - SLU Gmin - N max gr.3	20372	1964	1963	43483	4101				
A2 - SLU Gmin - MT max gr.3	19702	1769	2150	47916	3781				
A2 - SLU Gmin - ML max gr.3	17872	2104	728	15363	4921				
A2 - SLU Gmin - Vento ponte scarico	14172	301	1439	30576	579				
Al - SLU - N max gr.1	33525	1498	2775	62107	3003				
Al - SLU - MT max gr.1	32747	1385	3210	72480	2883				
Al - SLU - ML max gr.1	30625	1660	1144	24681	3954				
A1 - SLU - N max gr.3	33525	2337	2327	51397	4870				
Al - SLU - MT max gr.3	32747	2111	2545	56539	4498				
Al - SLU - ML max gr.3	30625	2499	902	18922	5820				
Al - SLU - Vento ponte scarico	26333	407	1719	36417	782				
A1 - SLU Gmin - N max gr.1	21364	1498	2775	62107	3003				
Al - SLU Gmin - MT max gr.1	20587	1385	3210	72480	2883				
	18464				3954				
Al - SLU Gmin - ML max gr.1		1660 2337	1144	24681	4870				
A1 - SLU Gmin - N max gr.3	21364		2327	51397					
A1 - SLU Gmin - MT max gr.3	20587	2111	2545	56539	4498				
A1 - SLU Gmin - ML max gr.3	18464	2499	902	18922	5820				
A1 - SLU Gmin - Vento ponte scarico	14172	301	1614	34387	579				
SLE rara - N max gr.1	23932	1054	1907	42607	2111				
SLE rara - MT max gr.1	23396	976	2207	49761	2028				
SLE rara - ML max gr.1	21932	1162	810	17421	2760				
SLE rara - N max gr.3	23932	1632	1598	35221	3397				
SLE rara - MT max gr.3	23396	1476	1748	38767	3140				
SLE rara - ML max gr.3	21932	1739	643	13450	4045				
SLE rara - Vento ponte scarico	18972	301	1176	24858	579				
SLE freq N max gr.1	22940	903	935	20733	1804				
SLE freq MT max gr.1	22511	841	1175	26456	1738				
SLE freq ML max gr.1	21340	903	708	15096	2160				
SLE freq N max gr.3	22940	1366	688	14824	2833				
SLE freq MT max gr.3	22511	1241	808	17661	2628				
SLE freq ML max gr.3	21340	1365	574	11919	3188				
SLE freq Vento ponte scarico	18972	301	663	13907	579				
SLE quasi permanente	18972	301	301	5798	579				
SLV - N max	21764	2205	2115	45552	4706				
SLV - MT max gr.1	20397	2174	6389	137795	4655				
SLV - ML max gr.1	20104	6377	2058	44143	1378				
SLV - MT max gr.3	19317	2174	6389	137795	4655				
SLV - ML max gr.3	19024	6377	2058	44143	1378				
SLV - N min	18164	2205	2115	45552	4706				
SLV - N max	21764	2389	2301	49497	5103				
SLV - MT max gr.1	20397	2358	7009	151102	5051				
SLV - ML max gr.1	20104	6990	2244	48149	1510				
SLV - MT max gr.3	19317	2358	7009	151102	5051				
SLV - ML max gr.3	19024	6990	2244	48149	1510				
SLV - Min max gr.5	18164	2389	2301	49497	5103				
SLV - N min		3099	3018						
	21764			65012	6633				
SLV - MT max gr.1	20397	3068	9399	202660	6581				
SLV - ML max gr.1	20104	9357	2961	63603	2020				
SLV - MT max gr.3	19317	3068	9399	202660	6581				
SLV - ML max gr.3 SLV - N min	19024	9357	2961	63603	2020				
	18164	3099	3018	65012	6633				

Tabella 3 – Sollecitazioni della base della pila

4.7.1 Plinto di fondazione

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

	Nz	Tx	Ty	Mx	My
A2 - SLU - N max gr.1	40630	1242	2349	59763	28665
A2 - SLU - MT max gr.1	39960	1144	2724	69830	27337
A2 - SLU - ML max gr.1	38130	1383	937	23137	37304
A2 - SLU - N max gr.3	40630	1964	1963	49371	46908
A2 - SLU - MT max gr.3	39960	1769	2150	54367	43119
A2 - SLU - ML max gr.3	38130	2104	728	17547	55531
A2 - SLU - Vento ponte scarico A2 - SLU Gmin - N max gr.1	34430 31172	301 1242	1439 2349	34892 59763	6702 2866
A2 - SLU Gmin - IV max gr.1 A2 - SLU Gmin - MT max gr.1	30502	1144	2724	69830	2733
A2 - SLU Gmin - ML max gr.1	28672	1383	937	23137	3730
A2 - SLU Gmin - N max gr.3	31172	1964	1963	49371	4690
A2 - SLU Gmin - MT max gr.3	30502	1769	2150	54367	43119
A2 - SLU Gmin - ML max gr.3	28672	2104	728	17547	55531
A2 - SLU Gmin - Vento ponte scarico	24972	301	1439	34892	6702
Al - SLU - N max gr.1	51817	1498	2775	70434	34525
Al - SLU - MT max gr.1	51040	1385	3210	82112	32985
Al - SLU - ML max gr.l	48917	1660	1144	28113	44527
A1 - SLU - N max gr.3	51817	2337	2327	58379	55710
A1 - SLU - MT max gr.3	51040	2111	2545	64174	51316
A1 - SLU - ML max gr.3	48917	2499	902	21628	65700
Al - SLU - Vento ponte scarico	44625	407	1719	41575	9047
Al - SLU Gmin - N max gr.1	32164	1498	2775	70434	3452: 3298:
Al SLUGmin - MT max gr.1	31387 29264	1385 1660	3210 1144	82112 28113	4452
A1 - SLU Gmin - ML max gr.1 A1 - SLU Gmin - N max gr.3	32164	2337	2327	58379	5571
A1 - SLU Gmin - MT max gr.3	31387	2111	2545	64174	51310
A1 - SLU Gmin - ML max gr.3	29264	2499	902	21628	65700
A1 - SLU Gmin - Vento ponte scarico	24972	301	1614	39229	6702
SLE rara - N max gr.1	37207	1054	1907	48328	24273
SLE rara - MT max gr.1	36671	976	2207	56381	23210
SLE rara - ML max gr.1	35207	1162	810	19850	31089
SLE rara - N max gr.3	37207	1632	1598	40014	38867
SLE rara - MT max gr.3	36671	1476	1748	44010	35835
SLE rara - ML max gr.3	35207	1739	643	15378	45671
SLE rara - Vento ponte scarico	32247	301	1176	28387	6702
SLE freq N max gr.1	36215	903	935	23539	20758
SLE freq MT max gr.1	35786	841	1175	29982	1990
SLE freq ML max gr.1	34615	903	708	17221	24316
SLE freq N max gr.3	36215	1366	688 808	16888	32434
SLE freq MT max gr.3 SLE freq ML max gr.3	35786 34615	1241 1365	574	20085 13643	30009 3598
SLE freq ML max gr.5 SLE freq Vento ponte scarico	32247	301	663	15897	6702
SLE quasi permanente	32247	301	301	6702	6702
SLV - N max	36573	2953	2864	53020	5480
SLV - MT max gr.1	34132	2922	8884	160704	54190
SLV - ML max gr.1	33839	8871	2807	51441	16073
SLV - MT max gr.3	32132	2922	8884	160704	5419
SLV - ML max gr.3	31839	8871	2807	51441	16073
SLV - N min	29906	2953	2864	53020	54802
SLV - N max	36573	3137	3049	57522	5932
SLV - MT max gr.1	34132	3106	9504	175870	5871
SLV - ML max gr.1	33839	9485	2993	56005	17579
SLV - MT max gr.3	32132	3106	9504	175870	5871
SLV - ML max gr.3	31839	9485	2993	56005	17579
SLV - N min	29906	3137	3049	57522	5932
SLV - N max	36573	3847	3767	75189	76750
SLV - MT max gr.1	34132	3816	11894	234600	76143
SLV - ML max gr.1	33839	11851 3816	3710	73609	23389
SLV - MT max gr.3 SLV - ML max gr.3	32132 31839	3816 11851	11894 3710	234600 73609	76143 23389
SLV - ML max gr.3 SLV - N min	31839 29906	3847	3710 3767	73609 75189	76750

Tabella 4 - Sollecitazioni ad intradosso del baricentro fondazione

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T _x	T_{y}	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}			
n°	kN	kN	kN	kNm	kNm	kN	kN	kN			
Al - SLU - N max gr.1	51817	1498	2775	70434	34525	9645	1870	350			
Al - SLU - MT max gr.1	51040	1385	3210	82112	32985	9934	1408	388			
A1 - SLU - ML max gr.1	48917	1660	1144	28113	44527	8126	2745	224			
A1 - SLU - N max gr.3	51817	2337	2327	58379	55716	9983	1532	366			
A1 - SLU - MT max gr.3	51040	2111	2545	64174	51316	9949	1394	367			
A1 - SLU - ML max gr.3	48917	2499	902	21628	65700	8670	2201	295			
A1 - SLU - Vento ponte scarico	44625	407	1719	41575	9047	6833	3083	196			
Al - SLU Gmin - N max gr.1	32164	1498	2775	70434	34525	7461	-314	350			
Al - SLU Gmin - MT max gr.1	31387	1385	3210	82112	32985	7750	-775	388			
Al - SLU Gmin - ML max gr.1	29264	1660	1144	28113	44527	5942	561	224			
A1 - SLU Gmin - N max gr.3	32164	2337	2327	58379	55716	7800	-652	366			
A1 - SLU Gmin - MT max gr.3	31387	2111	2545	64174	51316	7765	-790	367			
A1 - SLU Gmin - ML max gr.3	29264	2499	902	21628	65700	6486	17	295			
A1 - SLU Gmin - Vento ponte scarico	24972	301	1614	39229	6702	4476	1074	182			
	_		_	_		9983	-790	388			

Tabella 5 – Sollecitazioni massime sul singolo palo C.C. SLU

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
C.C.	N	T _x	T _y	M _x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
SLV - N max	36573	3847	3767	75189	76750	9691	-1564	598		
SLV - MT max gr.1	34132	3816	11894	234600	76143	15301	-7717	1388		
SLV - ML max gr.1	33839	11851	3710	73609	233890	15149	-7629	1380		
SLV - MT max gr.3	32132	3816	11894	234600	76143	15079	-7939	1388		
SLV - ML max gr.3	31839	11851	3710	73609	233890	14927	-7851	1380		
SLV - N min	29906	3847	3767	75189	76750	8950	-2304	598		
						15301	-7939	1388		

Tabella 6 – Sollecitazioni massime sul singolo palo C.C. SLV q=1

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
C.C.	N	T _x	T _y	M _x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
SLV - N max	36573	3137	3049	57522	59321	8391	-264	486		
SLV - MT max gr.1	34132	3106	9504	175870	58714	12481	-4896	1111		
SLV - ML max gr.1	33839	9485	2993	56005	175793	12345	-4825	1105		
SLV - MT max gr.3	32132	3106	9504	175870	58714	12259	-5118	1111		
SLV - ML max gr.3	31839	9485	2993	56005	175793	12123	-5047	1105		
SLV - N min	29906	3137	3049	57522	59321	7650	-1005	486		
						12481	-5118	1111		

Tabella 7 – Sollecitazioni massime sul singolo palo C.C. SLV q=1.36

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
C.C.	N	T_x	T_y	$\mathbf{M}_{\mathbf{x}}$	$M_{\rm y}$	N _{max/palo}	$N_{\min/palo}$	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
SLE rara - N max gr.1	37207	1054	1907	48328	24273	6823	1445	242		
SLE rara - MT max gr.1	36671	976	2207	56381	23210	7022	1127	268		
SLE rara - ML max gr.1	35207	1162	810	19850	31089	5799	2025	157		
SLE rara - N max gr.3	37207	1632	1598	40014	38867	7056	1213	254		
SLE rara - MT max gr.3	36671	1476	1748	44010	35835	7032	1117	254		
SLE rara - ML max gr.3	35207	1739	643	15378	45671	6173	1651	206		
SLE rara - Vento ponte scarico	32247	301	1176	28387	6702	4883	2283	135		
						7056	1117	268		

Tabella 8 – Sollecitazioni massime sul singolo palo C.C. SLE

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della spalla (muro frontale, muro paraghiaia, ...) vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 37 di 52

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DELLA PILA							
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	26612	1242	2349	52716	24940
SLU GEO	Tx,A _{max}	A2 - SLU - ML max gr.3	24112	2104	728	15363	49218
ū	$Ty,\!A_{\text{max}}$	A2 - SLU - MT max gr.1	25942	1144	2724	61659	23904
\mathbf{SI}	Mxx max	A2 - SLU - MT max gr.1	25942	1144	2724	61659	23904
	Myy max	A2 - SLU - ML max gr.3	24112	2104	728	15363	49218
	Nz,A_{max}	Al - SLU - N max gr.1	33525	1498	2775	62107	30032
TR	Tx,A _{max}	A1 - SLU - ML max gr.3	30625	2499	902	18922	58204
SLU STR	Ty,A _{max}	A1 - SLU - MT max gr.1	32747	1385	3210	72480	28831
$\mathbf{S}\mathbf{\Gamma}$	Mxx max	A1 - SLU - MT max gr.1	32747	1385	3210	72480	28831
	Myy max	A1 - SLU - ML max gr.3	30625	2499	902	18922	58204
	Nz,A _{max}	SLE rara - N max gr.1	23932	1054	1907	42607	21111
SLE RARA	Tx,A _{max}	SLE rara - ML max gr.3	21932	1739	643	13450	40452
R.	Ty,A _{max}	SLE rara - MT max gr.1	23396	976	2207	49761	20283
)LE	Mxx max	SLE rara - MT max gr.1	23396	976	2207	49761	20283
0.2	Myy max	SLE rara - ML max gr.3	21932	1739	643	13450	40452
ы	Nz,A _{max}	SLE freq N max gr.1	22940	903	935	20733	18049
ENT	Tx,A _{max}	SLE freq N max gr.3	22940	1366	688	14824	28337
SLE FREQENTE	Ty,A _{max}	SLE freq MT max gr.1	22511	841	1175	26456	17386
LEF	Mxx max	SLE freq MT max gr.1	22511	841	1175	26456	17386
02	Myy max	SLE freq ML max gr.3	21340	1365	574	11919	31887
SLE Q.P.		SLE quasi permanente	18972	301	301	5798	5798
	Nz,A_{max}	SLV - N max	21764	2205	2115	45552	47065
SLV q=1.5	Tx,A _{max}	SLV - ML max gr.1	20104	6377	2058	44143	137859
Vq	Ty,A _{max}	SLV - MT max gr.1	20397	2174	6389	137795	46552
$\mathbf{S}\mathbf{\Gamma}$	Mxx max	SLV - MT max gr.1	20397	2174	6389	137795	46552
	Myy max	SLV - ML max gr.1	20104	6377	2058	44143	137859
36	Nz,A _{max}	SLV - N max	21764	2389	2301	49497	51032
	Tx,A _{max}	SLV - ML max gr.1	20104	6990	2244	48149	151081
SLV q=1.	Ty,A _{max}	SLV - MT max gr.1	20397	2358	7009	151102	50519
\mathbf{S}	Mxx max	SLV - MT max gr.1	20397	2358	7009	151102	50519
	Myy max	SLV - ML max gr.1	20104	6990	2244	48149	151081
	Nz,A _{max}	SLV - N max	21764	3099	3018	65012	66331
q=]	Tx,A _{max}	SLV - ML max gr.1	20104	9357	2961	63603	202078
SLV q=1	Ty,A _{max}	SLV - MT max gr.1	20397	3068	9399	202660	65818
S	Mxx max	SLV - MT max gr.1	20397	3068	9399	202660	65818
	Myy max	SLV - ML max gr.1	20104	9357	2961	63603	202078

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3E
 50
 D 09 CL
 VI 12 05 001

REV.

Α

FOGLIO

38 di 52

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE

		INTERNA INTRADOSSO					
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	40630	1242	2349	59763	28665
SLU GEO	Tx,A _{max}	A2 - SLU - ML max gr.3	38130	2104	728	17547	55531
UG	Ty,A _{max}	A2 - SLU - MT max gr.1	39960	1144	2724	69830	27337
$\mathbf{S}\mathbf{\Gamma}$	Mxx max	A2 - SLU - MT max gr.1	39960	1144	2724	69830	27337
	Myy_{max}	A2 - SLU - ML max gr.3	38130	2104	728	17547	55531
	Nz,A_{max}	Al - SLU - N max gr.1	51817	1498	2775	70434	34525
TR	Tx,A _{max}	A1 - SLU - ML max gr.3	48917	2499	902	21628	65700
SLU STR	Ty,A _{max}	Al - SLU - MT max gr.1	51040	1385	3210	82112	32985
$\mathbf{S}\mathbf{\Gamma}$	Mxx max	A1 - SLU - MT max gr.1	51040	1385	3210	82112	32985
	Myy max	A1 - SLU - ML max gr.3	48917	2499	902	21628	65700
	Nz,A _{max}	SLE rara - N max gr.1	37207	1054	1907	48328	24273
IR.A	Tx,A _{max}	SLE rara - ML max gr.3	35207	1739	643	15378	45671
SLE RARA	Ty,A _{max}	SLE rara - MT max gr.1	36671	976	2207	56381	23210
SLF	Mxx max	SLE rara - MT max gr.1	36671	976	2207	56381	23210
	Myy max	SLE rara - ML max gr.3	35207	1739	643	15378	45671
Œ	Nz,A _{max}	SLE freq N max gr.1	36215	903	935	23539	20758
ENJ	Tx,A _{max}	SLE freq N max gr.3	36215	1366	688	16888	32434
SLE FREQENTE	Ty,A _{max}	SLE freq MT max gr.1	35786	841	1175	29982	19909
LE	Mxx max	SLE freq MT max gr.1	35786	841	1175	29982	19909
02	Myy max	SLE freq ML max gr.3	34615	1365	574	13643	35981
SLE Q.P.		SLE quasi permanente	32247	301	301	6702	6702
	$Nz,\!A_{\text{max}}$	SLV - N max	36573	2953	2864	53020	54802
=1.5	Tx,A _{max}	SLV - ML max gr.1	33839	8871	2807	51441	160731
SLV q=1.5	Ty,A _{max}	SLV - MT max gr.1	34132	2922	8884	160704	54196
$\mathbf{S}\mathbf{\Gamma}$	Mxx max	SLV - MT max gr.1	34132	2922	8884	160704	54196
	Myy max	SLV - ML max gr.1	33839	8871	2807	51441	160731
98	Nz,A _{max}	SLV - N max	36573	3137	3049	57522	59321
SLV q=1.36	Tx,A _{max}	SLV - ML max gr.1	33839	9485	2993	56005	175793
Vq	Ty,A _{max}	SLV - MT max gr.1	34132	3106	9504	175870	58714
$\mathbf{S}\mathbf{\Gamma}$	Mxx max	SLV - MT max gr.1	34132	3106	9504	175870	58714
	Myy max	SLV - ML max gr.1	33839	9485	2993	56005	175793
_	Nz,A _{max}	SLV - N max	36573	3847	3767	75189	76750
[=b	Tx,Amax	SLV - ML max gr.1	33839	11851	3710	73609	233890
SLV q=1	Ty,A _{max}	SLV - MT max gr.1	34132	3816	11894	234600	76143
S	Mxx max	SLV - MT max gr.1	34132	3816	11894	234600	76143
	Myy max	SLV - ML max gr.1	33839	11851	3710	73609	233890

VI12 (ex VI04) - Singolo Binario

50

C32/40

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA LOTTO RS3E

CODIFICA D 09 CL

DOCUMENTO VI 12 05 001

REV. Α

FOGLIO 39 di 52

4.9.1 Pila

Taglio di progetto:

CALCESTRUZZO -

Direzione		Long.(Myy,Tx)	Trasv(Mxx,Ty)	
Altezza pila	H	21.6	21.6	m
Fattore di struttura		1.5	1.5	
Fattore di sovraresistenza (eq. 7.9.7)	γRđ	1	1	
Fattore di sovraresistenza filtrato (eq. 7.9.7)	γRd	1	1	
Taglio agente (q=1)	V	9357	9399	kN
Momento agente (q=1)	M	202078	202660	kN*m
Taglio agente (con q)	VEd	6377	6389	kN
Momento agente (con q)	MEd	137859	137795	kN*m
Momento Resistente	MRd	140547	140159	kN*m
Rapporto di sovraresistenza	MRd/MEd	1.02	1.02	
Tipo sezione (EC8-2; eq. 6.11)		CRITICA	CRITICA	
Angolo inclinazione bielle compresse	Teta	45	45	
Limite superiore Vgr	Vgr.max= V	9357	9399	kN
Taglio di progetto per la gerarchia della resistenza (eq. 7.9.12)	Vgr	6501	6499	kN
Taglio di progetto per la gerarchia della resistenza filtrato (eq. 7.9.12)	Vgr	6501	6499	kN
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq. 7.9.10)	γBd	1	0.78	
fattore di sicurezza aggiuntivo per la resistenza a taglio filtrato (eq. 7.9.10)	γBđ	1	1.00	
Riassumendo				
Taglio di calcolo	Vgr	6501	6499	kN
fattore di sicurezza aggiuntivo filtrato (eq. 7.9.10)	γBđ	1.00	1.00	
Angolo inclinazione bielle compresse	Teta	45	45	

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI Classe:

07120201110220	0.4000.	002,10	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Mpa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito B1*B2:	0.50	

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 40 di 52

Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C32/40

Raggio circ.: 225.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	215.0	120	30
2	0.0	0.0	205.0	120	30

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 3.4 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	33525.00	30032.00	62107.00	0.00	0.00
2	30625.00	58204.00	18922.00	0.00	0.00
3	32747.00	28831.00	72480.00	0.00	0.00
4	32747.00	28831.00	72480.00	0.00	0.00
5	30625.00	58204.00	18922.00	0.00	0.00
6	21764.00	47065.00	45552.00	0.00	0.00
7	20104.00	137859.00	44143.00	6501.00	0.00
8	20397.00	46552.00	137795.00	0.00	6499.00
9	20397.00	46552.00	137795.00	0.00	0.00
10	20104.00	137859.00	44143.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO DEFINITIVO

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA LOTTO CODIFICA DOCUMENTO

S3E 50 D 09 CL VI 12 05 001 A 41 di 52

REV.

FOGLIO

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ d'inerzia (tra parente

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	My
1	23932.00	42607.00	21111.00
2	21932.00	13450.00	40452.00
3	23396.00	49761.00	20283.00
4	23396.00	49761.00	20283.00
5	21932.00	13450.00	40452.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	22940.00	20733.00 (55448.65)	18049.00 (48270.52)
2	22940.00	14824.00 (29615.32)	28337.00 (56611.53)
3	22511.00	26456.00 (53023.23)	17386.00 (34845.10)
4	22511.00	26456.00 (53023.23)	17386.00 (34845.10)
5	21340.00	11919.00 (20317.02)	31887.00 (54354.29)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 18972.00 5798.00 (0.00) 5798.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.5 cm Interferro netto minimo barre longitudinali: 7.0 cm Copriferro netto minimo staffe: 7.5 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

LOTTO REV. COMMESSA CODIFICA DOCUMENTO FOGLIO RS3E 50 D 09 CL VI 12 05 001 42 di 52 Α

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	33525.00	30032.00	62107.00	33524.96	70928.92	146689.95	2.361696.5(477.1)
2	S	30625.00	58204.00	18922.00	30624.78	151956.69	49400.83	2.611696.5(477.1)
3	S	32747.00	28831.00	72480.00	32747.05	59912.03	150630.25	2.081696.5(477.1)
4	S	32747.00	28831.00	72480.00	32747.05	59912.03	150630.25	2.081696.5(477.1)
5	S	30625.00	58204.00	18922.00	30624.78	151956.69	49400.83	2.611696.5(477.1)
6	S	21764.00	47065.00	45552.00	21763.90	107485.21	104032.93	2.281696.5(477.1)
7	S	20104.00	137859.00	44143.00	20103.76	140547.19	45005.86	1.021696.5(477.1)
8	S	20397.00	46552.00	137795.00	20397.02	47337.58	140159.62	1.021696.5(477.1)
9	S	20397.00	46552.00	137795.00	20397.02	47337.58	140159.62	1.021696.5(477.1)
10	S	20104.00	137859.00	44143.00	20103.76	140547.19	45005.86	1.021696.5(477.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	202.6	159.1	0.00323	191.6	97.6	-0.00830	-191.6	-97.6
2	0.00350	69.6	104.3	0.00322	66.4	204.5	-0.00864	-66.4	-204.5
3	0.00350	209.1	188.0	0.00323	200.7	77.0	-0.00839	-200.7	-77.0
4	0.00350	209.1	188.0	0.00323	200.7	77.0	-0.00839	-200.7	-77.0
5	0.00350	69.6	78.8	0.00322	66.4	204.5	-0.00864	-66.4	-204.5
6	0.00350	156.5	161.7	0.00320	152.0	152.0	-0.00979	-152.0	-152.0
7	0.00350	68.6	214.3	0.00319	66.4	204.5	-0.01004	-66.4	-204.5
8	0.00350	213.2	72.0	0.00319	204.5	66.4	-0.00999	-204.5	-66.4
9	0.00350	213.2	72.0	0.00319	204.5	66.4	-0.00999	-204.5	-66.4
10	0.00350	68.6	214.3	0.00319	66.4	204.5	-0.01004	-66.4	-204.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45a, b, c x/d Coeff. di riduz. momenti per sola flessione in travi continue C.Rid.

N°Comb	a	b	С	x/d	C.Rid.
1	0.000024149	0.000011677	-0.002535311		
2	0.000008527	0.000026229	-0.002705513		
3	0.000025108	0.000009987	-0.002579849		
4	0.000025108	0.000009987	-0.002579849		
5	0.000008527	0.000026229	-0.002705513		
6	0.000021012	0.000021710	-0.003298077		
7	0.000009383	0.000029303	-0.003422922		

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
TREE TENERS OF THE THE	RS3E	50	D 09 CL	VI 12 05 001	Α	43 di 52

8	0.000029054	0.000009815	-0.003400139	
9	0.000029054	0.000009815	-0.003400139	
10	0.000009383	0.000029303	-0.003422922	

VERIFICHE A TAGLIO

bw

Diam. Staffe: 10 mm

Passo staffe: 3.4 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh legat proiettata sulla direz, del taglio e d_max= massima altezza utile nella direz, del taglio.

$N^{\circ}Comb$	Ver	Ved	Vcd	Vwd	$d \mid z$	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	70191.30	11979.05380.3	339.1	396.0	1.000	1.112	0.0	90.3(0.0)
2	S	0.00	69499.42	12055.79381.3	341.4	392.9	1.000	1.102	0.0	90.3(0.0)
3	S	0.00	70108.43	11990.42380.3	339.5	396.0	1.000	1.110	0.0	90.3(0.0)
4	S	0.00	70108.43	11990.42380.3	339.5	396.0	1.000	1.110	0.0	90.3(0.0)
5	S	0.00	69499.42	12055.79381.3	341.4	392.9	1.000	1.102	0.0	90.3(0.0)
6	S	0.00	67523.74	12286.11383.8	347.9	385.0	1.000	1.073	0.0	90.3(0.0)
7	S	6191.34	67128.90	12328.78384.3	349.1	383.4	1.000	1.067	45.3	90.3(0.0)
8	S	6157.13	67160.97	12324.32384.3	349.0	383.3	1.000	1.068	45.1	90.3(0.0)
9	S	0.00	67160.97	12324.32384.3	349.0	383.3	1.000	1.068	0.0	90.3(0.0)
10	S	0.00	67128.90	12328.78384.3	349.1	383.4	1.000	1.067	0.0	90.3(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
As eff.
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.81	99.9	0.0	-93.8	-97.6	-191.6	12298	410.0
2	S	6.10	213.5	0.0	-82.0	-204.5	-66.4	12167	410.0
3	S	7.75	84.9	0.0	-122.7	-77.0	-200.7	12914	438.3
4	S	7.75	84.9	0.0	-122.7	-77.0	-200.7	12914	438.3
5	S	6.10	213.5	0.0	-82.0	-204.5	-66.4	12167	410.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

VI12 (ex VI04) - Singolo Binario

RELAZIONE	DΙ	CAL	COL	\cap	ΡII	F	1/6
RELAZIONE	וט		JOUL	. •	$\Gamma \sqcup$	_	1/0

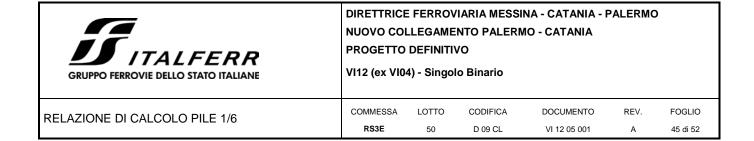
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 12 05 001	Α	44 di 52

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr m wk Mx f My f	n - e cm ax ess.	Minima defor = 0.8 per ba = 0.4 per cc = 0.5 per fles = 3.400 Coel = 0.425 Coel Diametro [m Copriferro [m Differenza tr: Tra parentes Massima dis	ormazione un mazione un mazione un mazione un mazione un me ad adere omb. quasi p essione; =(e1 f. in eq.(7.1 f. in eq.(7.1 f. in eq.(7.1 m) equivalen la le deforma i: valore min lanza tra le f sure in mm commento d	itaria di tra: enza migliorermanenti enza migliorermanenti enza el el el el enza el el enza el el enza	zione nel rata [eq.(', = 0.6 pe 1) per tra: annessi annessi annessi rre tese c riferimen e di accia Smax / Es m] sr max*(e surazione	calcestruzzo 7.11)EC2] er comb.freque zione eccenti nazionali nazionali comprese nel to alla barra io e calcestru s [(7.9)EC2 e_sm - e_cm e intorno all'a	uzzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC]) [(7.8)EC2 e (C4.1.7)NTC]. Valor sse X [kNm]	essurata C2]			
Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1	S	-0.00049	0	0.500	30.0	85	0.00028 (0.00028)	442	0.124 (0.20)	46201.90	22892.21
2	S	-0.00043	0	0.500	30.0	85	0.00025 (0.00025)	440	0.108 (0.20)	16434.08	49426.88
3	S	-0.00064	0	0.500	30.0	85	0.00037 (0.00037)	439	0.162 (0.20)	44993.32	18339.65
4	S	-0.00064	0	0.500	30.0	85	0.00037 (0.00037)	439	0.162 (0.20)	44993.32	18339.65
5	S	-0.00043	0	0.500	30.0	85	0.00025 (0.00025)	440	0.108 (0.20)	16434.08	49426.88

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

$N^{\circ}Comb$	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.93	147.7	0.0	-24.8	-143.9	-159.8	8396	303.9
2	S	4.54	199.4	0.0	-38.4	-191.6	-97.6	9946	339.3
3	S	4.49	123.6	0.0	-38.6	-117.1	-180.3	10017	339.3
4	S	4.49	123.6	0.0	-38.6	-117.1	-180.3	10017	339.3
5	S	4.84	210.8	0.0	-50.7	-200.7	-77.0	10996	367.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]


Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1	C	0.00012	0	0.500	20.0	O.F.	0.00007 (0.00007)	420	0.000 (0.00)	FF 440 / F	40070 50
I	5	-0.00013	U	0.500	30.0	85	0.00007 (0.00007)	430	0.032 (0.20)	55448.65	48270.52
2	S	-0.00020	0	0.500	30.0	85	0.00012 (0.00012)	438	0.050 (0.20)	29615.32	56611.53
3	S	-0.00020	0	0.500	30.0	85	0.00012 (0.00012)	440	0.051 (0.20)	53023.23	34845.10
4	S	-0.00020	0	0.500	30.0	85	0.00012 (0.00012)	440	0.051 (0.20)	53023.23	34845.10
5	S	-0.00027	0	0.500	30.0	85	0.00015 (0.00015)	442	0.067 (0.20)	20317.02	54354.29

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.75	159.1	0.0	5.2	-152.0	-152.0		

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

4.9.2 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{max} = 9983 \text{ kN (CC. SLU)}$

 $N_{max} = 12481 \text{ kN (CC. SLV q=1.36)}$

 $T_{max} = 1111 \text{ kN (CC. SLV q=1.36)}$

Il plinto fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo esterno della pila, mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente), mentre l'altezza della biella compressa è stata valutata pari a 0.2 d_p (con d_paltezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

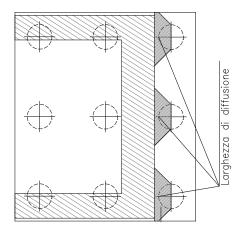


Figura 1 - Diffusione delle azioni dal palo alla pila

Di seguito si riportano i risultati delle verifiche strutturali del plinto di fondazione, condotte con riferimento al metodo usualmente utilizzato per la verifica delle mensole tozze, ovvero il metodo del tirante-puntone, di cui nel seguito si riporta lo schema e di verifica generale e relative formulazioni proposte a riguardo al C4.1.2.1.5 dalla Circolare Ministeriale n° 617 del 02-02-09.


VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 12 05 001	Α	46 di 52

VERIFICA MENSOLE TOZZE - MECCANISMO TIRANTE PUNTONE secondo Circ 617-09/ C4.1.2.1.5

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (PFD,HFD)

Pr: Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{\text{R}} = P_{\text{Rs}} = \left(A_{\text{s}}f_{\text{yd}} - H_{\text{Ed}}\right)\frac{1}{\lambda} \\ \lambda = ctg\psi \cong l/(0,9d). \label{eq:problem}$$

Pr: Portanza mensola in termini di resistenza della Biella compressa

$$P_{\text{Re}} = 0,4bdf_{\text{cd}}\frac{c}{1+\lambda^2} \ge P_{\text{Rs}}$$

CONDIZIONI DI VERIFICA

$$1 \qquad P_R \geq P_{Ed}$$

$$\geq P_{Rs}$$

VI12 (ex VI04) - Singolo Binario

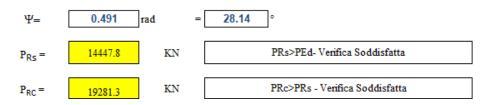
RELAZIONE DI CALCOLO PILE 1/6

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 12 05 001	Α	47 di 52

Dati di progetto

b(m)=	5.30	m	dimensione trasversale verifica
P_{Ed} (KN) =	12481.00	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	1111.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	4.30	m	distanza P da incastro
h(m) =	3.00	m	spessore mensola
$\delta(m) =$	0.10	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	2.90	m	altezza utile
1(m) =	4.88	m	a+0,2d
λ =	1.87		$\lambda = \operatorname{ctg} \psi \cong 1/(0,9d)$.

Tipo di mensola (Valutazione coefficiente c)


Caratteristiche Materiali

fcd=	14.1	MPa	Calcestruzzo
fvd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	24.0	p1(cm) = 10.0	θ1° = 0.0
Αφ i (mm²) =	452.39	nb tot 1=	53.0	$A\phi TOT (mm^2) = 23976.61$	$A\phi CAL(mm^2) = 23976.61$
Registro tipo	R2				
n° R2=	1	φ2(mm) =	24.0	p2(cm) = 10.0	θ2° = 0.0
Αφ i (mm²) =	452.39	nb tot 2 =	53.0	$A\phi$ TOT (mm ²) = 23976.61	$A\phi CAL(mm^2) = 23976.61$
Registro tipo	R3				
n° R3=	1	φ3(mm) =	24.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	452.39	nb tot 3 =	53.0	$A\phi TOT (mm^2) = 23976.61$	Aφ CAL(mm²) = 23976.61

Verifiche di resistenza

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO
VI 12 05 001

REV. FOGLIO A 48 di 52

4.9.3 Palo di fondazione L=35.0m

Viene verificata la sezione di incastro con la platea di fondazione.

Il momento flettente agente in testa palo viene derivato dal taglio in testa palo nell'ipotesi di elasticità lineare sia per il palo che per il terreno. Risulta

 $M = T * \alpha$

 $\alpha = 3.34$ (vedi relazione geotecnica)

 $N_{max} = 15301 \; kN$ $T = 1388 \; kN$ $M = 1388 * 3.34 = 4636 \; kNm$

 $N_{min} = -7939 \text{ kN}$ T = 1388 kN M = 1388 * 3.34 = 4636 kNm

N = -7939 kN T = 1388 kN $M_{max} = 1388 * 3.34 = 4636 \text{ kNm}$

Caratteristiche della sezione:

Sezione circolare Ø 150 cm

 $A_s = 40 + 40 \ \phi 26$ staffe $\phi 14/15$

La lunghezza del palo è pari a L = 35.00m

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
ACCIAIO -	Tipo:	B450C	
710011110	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito B1*B2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

PROGETTO DEFINITIVO

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 49 di 52

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 75.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre generate
Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

Ø N°Gen. Xcentro Ycentro Raggio N°Barre 0.0 0.0 65.0 40 1 26 2 0.0 0.0 59.0 40 26

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 15.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	15301.00	4636.00	0.00	1388.00	0.00
2	-7939.00	4636.00	0.00	1388.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 7056.00
 896.00
 0.00

 2
 1117.00
 896.00
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO DEFINITIVO

VI12 (ex VI04) - Singolo Binario

RELAZIONE DI CALCOLO PILE 1/6

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 12 05 001
 A
 50 di 52

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 5851.00
 929.00 (0.00)
 0.00 (0.00)

 2
 2008.00
 929.00 (2283.24)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.7 cm Interferro netto minimo barre longitudinali: 3.4 cm Copriferro netto minimo staffe: 7.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kNm] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	15301.00	4636.00	0.00	15301.14	9167.19	0.00	1.98 424.7(53.0)
2	S	-7939.00	4636.00	0.00	-7938.98	5023.80	0.00	1.08 424.7(53.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	75.0	0.00311	0.0	65.0	-0.00194	0.0	-65.0
2	0.00350	0.0	75.0	0.00217	0.0	65.0	-0.01516	0.0	-65.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO PILE 1/6

VI12 (ex VI04) - Singolo Binario

LOTTO COMMESSA CODIFICA

DOCUMENTO

REV. FOGLIO

50 D 09 CL VI 12 05 001 51 di 52 Α

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. h x/d

0.000000000 0.000038833 0.000587557 1 2 0.000000000 0.000133271 -0.006495344

VERIFICHE A TAGLIO

bw

Diam. Staffe: 14 mm

15.0 cm [Passo massimo di normativa = 25.0 cm] Passo staffe:

S = comb. verificata a taglio / N = comb. non verificata Ver

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d | z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed

Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Ctg Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb Ver Ved Vcd Vwd d | z bw Ctg Acw Ast A.Eff 1388.00 2781.61 3345.88117.5| 87.4 134.3 2.500 0.971 16.2 39.2(0.0) 3246.52 2 S 1388.00 4516.01127.9 117.9 112.8 2.500 1.000 12.0 39.2(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 4.74 0.0 0.0 20.5 0.0 -65.0 1 2 S 2.73 0.0 0.0 -33.3 0.0 -65.0 1881 84.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver.

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO PILE 1/6

VI12 (ex VI04) - Singolo Binario

COMMESSA LOTTO REV. CODIFICA DOCUMENTO FOGLIO RS3E 50 D 09 CL VI 12 05 001 52 di 52 Α

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] e sm - e cm

sr max Massima distanza tra le fessure [mm]

wk

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Mx fess. My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
2	S	-0.00019	0	0.500	26.0	87	0.00010 (0.00010)	394	0.039 (0.20)	1704.72	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.31	0.0	0.0	12.1	0.0	-65.0		
2	S	2.95	0.0	0.0	-19.1	0.0	-65.0	1153	53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1 2	S S	0.00000 -0.00012	0.00000	0.500	26.0	 87	0.00006 (0.00006)		0.000 (0.20) 0.022 (0.20)	0.00 2283.24	0.00 0.00