COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO

NUOVO COLLEGAMENTO PALERMO – CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA DITTAINO – CATENANUOVA

VI15 (ex VI07) - Singolo Binario

Relazione di calcolo Pile 3/3

							SCALA:	
							-	
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.		
RS3E	5 0 D	0 9	$C \mid L \mid$	V I 1 5 0 5	0 0 3	A		
					1	1		

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Augorizzato Data
A	Emissione Esecutiva	Abbasciano	Novembre 2019	A. Ferri	Novembre 2019	F. Sparacino	Novembre 2019	A. Vittozzi Novembre 2019
								M S.p.A.
								TALPER vili e Ga engheri e N° Azi
								Perre Ci Dott. rgll ing
	3E50D09CLVI1505003A.doc							n. Elao: 1613

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 2 di 55

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE DELL'OPERA	4
	1.2	ASPETTI LEGATI ALLE OPERE DI FONDAZIONE	5
2	RIFI	ERIMENTI NORMATIVI	7
	2.1	DOCUMENTI DI RIFERIMENTO	7
3	MA	TERIALI	8
	3.1	VERIFICA S.L.E.	9
	3.1.1	Verifiche alle tensioni	9
	3.1.2	? Verifiche a fessurazione	10
4	ANA	ALISI E VERIFICHE PILA	11
	4.1	Generalità	11
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE PILE	11
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	11
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	15
	4.5	GEOMETRIA DELLA PILA	16
	4.6	Analisi dei carichi	17
	4.6.1	Peso proprio elementi strutturali	17
	4.6.2	? Carichi trasmessi dall'impalcato	17
	4.6.3	8 Azione del Vento	19
	4.6.4	Carichi da traffico verticali	21
	4.6.5	5 Effetti dinamici	22
	4.6.6	6 Carichi da traffico orizzontali	23
	4.6.7	7 Azione sismica	24
	4.6.8	3 Calcolo delle sollecitazioni in testa pali	29
	4.6.9	Riepilogo risultati	29

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 15 05 003	Α	3 di 55

4.7	SOLLECITAZIONI	31
4.7.	7.1 Plinto di fondazione	32
4.8	PALI DI FONDAZIONE	34
4.9	VERIFICHE DEGLI ELEMENTI STRUTTURALI	35
4.9	9.1 Pila	38
4.9	9.2 Zattera di fondazione	47
4.9	9.3 Palo di fondazione L=24.0m	5

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 15 05 003	Α	4 di 55

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI15 della tratta ferroviaria Palomba-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare si tratterà la Pila 27 che presenta l'altezza maggiore per tipologia di pila ed impalcati afferenti.

Verranno ipotizzati appoggi fissi sulla campata di luce maggiore, indipendentemente dal reale posizionamento degli stessi.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 14 gennaio 2008.

1.1 Descrizione dell'opera

Il viadotto VI15 attraversa un corso d'acqua maggiore e nel tratto terminale in direzione Catania, si affianca alla linea storica esistente e presenta un'altezza da terra compresa tra 7 e 10m (distanza p.f. – piano campagna).

Il viadotto è previsto a semplice binario, si estende dal km 5+774.60 (asse giunto spalla A) al km 6+574.90 per uno sviluppo complessivo di 800.72m ed è costituito da 32 campate isostatiche in c.a.p. di luce 25m.

Le pile, in c.a., presentano un fusto a sezione rettangolare cava costante su tutta l'altezza, di dimensioni esterne pari a 3,30mx8,60m con raccordi circolari ed altezza variabile da 4.50m a 11,00m.

Le spalle anch'esse realizzate in c.a. gettato in opera, hanno un'altezza del fusto + muro frontale di 7.25m per la spalla A e 6.05m per la spalla B

L'impalcato è costituito da 2 travi in c.a.p. a cassoncino prefabbricate (precompressione a fili aderenti) solidarizzate da 4 traversi (2 sull'asse-appoggi e 2 in campata), prefabbricati insieme alle travi a da una soletta superiore in c.a. gettata in opera con una larghezza complessiva fuori tutto di 9.70mLa fondazione della pila è costituita da un plinto fondato su 9 pali di diametro 1.50 m sono distanziati di un interasse di almeno 4.5 m. Si è assunta una distanza dal bordo degli stessi di 1.25 m.

Il plinto presenta uno spessore di 2.50 metri e una pianta rettangolare di 12.0x12.0m.

Nella parte sommitale della pila sono disposti gli apparecchi di appoggio dell'impalcato secondo lo schema di figura seguente:



Figura 1: schema appoggi impalcati sx e dx

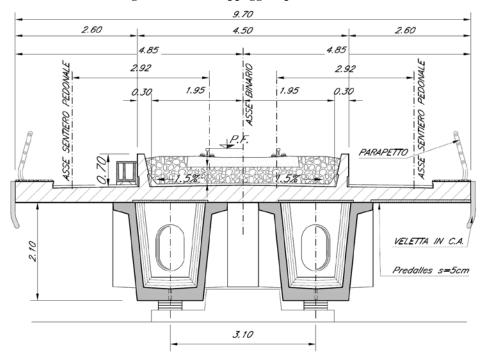
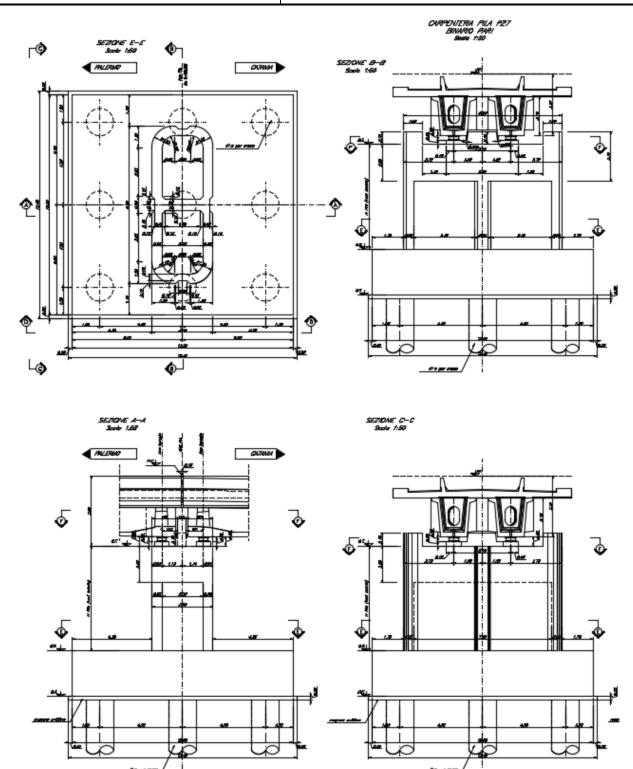


Figura 2: sezione trasversale impalcato sx edx

1.2 Aspetti legati alle opere di fondazione

Le fondazioni del Viadotto - VI15, sono previste su pali in c.a. di grande diametro Φ 1500 sia per le pile che per le spalle.



VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 6 di 55

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 7 di 55

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 14 gennaio 2008, «Norme tecniche per le costruzioni».
- Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2
 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3
 Corpo Stradale
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

2.1 Documenti di riferimento

- Relazione geotecnica e di calcolo delle fondazioni 1/2 RS3E50D09RBVI1503001A
- Relazione geotecnica e di calcolo delle fondazioni 2/2 RS3E50D09RBVI1503002A

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

LOTTO COMMESSA **CODIFICA** DOCUMENTO REV. **FOGLIO** RS3E 50 D 09 CL VI 15 05 003 8 di 55 Α

3 **MATERIALI**

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

- Calcestruzzo magro e getto di livellamento
- CLASSE DI RESISTENZA MINIMA C12/15
- TIPO CEMENTO CEM I÷V CLASSE DI ESPOSIZIONE AMBIENTALE : XO
 - > Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni
- CLASSE DI RESISTENZA MINIMA C25/30

- CLASSE DI RESISTENZA MINIMA C25/30
 TIPO CEMENTO CEM III+V
 RAPPORTO A/C : < 0.60
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
 COPRIFERRO MINIMO = 60 mm
 DIAMETRO MASSIMO INERTI : 32 mm
- - Calcestruzzo fondazioni armate

- CLASSE DI RESISTENZA MINIMA C25/30 TIPO CEMENTO CEM III÷V RAPPORTO A/C : ≤ 0.60 CLASSE MINIMA DI CONSISTENZA : S4 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 40mm
- DIAMETRO INERTI: 25 mm
 - Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle
- CLASSE DI RESISTENZA MINIMA C32/40

- TIPO CEMENTO CEM III+V RAPPORTO A/C : < 0.50 CLASSE MINIMA DI CONSISTENZA :
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC4
- COPRIFERRO MINIMO = 50mm
- DIAMETRO INERTI: 25 mm
 - Acciaio ordinario per calcestruzzo armato

IN BARRE E RETI ELETTROSALDATE

B450C saldabile che presenta le seguenti caratteristiche :

— Tensione di snervamento caratteristica fyk > 450 N/mm²

— Tensione caratteristica a rottura ftk > 540 N/mm²

 $1.15 \le ftk/fyk < 1.35$

(*): I VALORI DI COPRIFERRO RIPORTATI SI RIFERISCONO AD OPERE CON VITA NOMINALE DI 75 ANNI. PER COSTRUZIONI CON VITA NOMINALE DI 100 ANNI TALI VALORI DOVRANNO ESSERE AUMENTATI DI 5 mm.

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ck};
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

Per il caso in esame risulta in particolare per l'elevazione:

CALCESTRUZZO

$\sigma_{cmax\ QP} =$	$(0,40 \text{ f}_{cK})$	= 12	.28 N	⁄IРа	(Comb	oinazione di Carico Qu	asi Perm	nanente)
$\sigma_{cmax R} =$	$(0,55 f_{cK})$	= 16	.89 M	/IPa	(Comb	oinazione di Carico Ca	ratteristic	ca - Rara)
ACCIAIO	$\sigma_{s max} =$	$(0,75 \; f_{yK})$	= 338		MPa	Combinazione Caratteristica(Rara)	di	Carico

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Canani di			Armatura					
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile				
esigenza			Stato limite	wd	Stato limite	wd		
	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃		
a	Orumane	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂		
h	Aggragiva	frequente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂		
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		
	Molto Aggregativo	frequente	formazione fessure	-	ap. fessure	$\leq w_1$		
С	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.2 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

- Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO
NUOVO COLLEGAMENTO PALERMO - CATANIA
PROGETTO DEFINITIVO

VI15 (ex VI07) - Singolo Binario

LOTTO COMMESSA CODIFICA REV. DOCUMENTO **FOGLIO RELAZIONE DI CALCOLO PILE 3/3** D 09 CI VI 15 05 003 11 di 55 Α

ANALISI E VERIFICHE PILA

4.1 Generalità

La pila presenta una sezione rettangolare cava di dimensioni 3.3x8.6m, una altezza complessiva di 5.1m.

Il pulvino è costituito da una sezione piena di dimensione 3.3x8.6m ed altezza 2.0m.

Le fondazioni sono realizzate su pali di diametro 150cm collegate in testa da una platea di spessore 250cm.

Per le verifiche dei singoli elementi della pila (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

4.2 Modelli a mensola per la verifica delle pile

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto.

Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirantepuntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC08, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 15 05 003	Α	12 di 55

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
(2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

LOTTO REV. COMMESSA CODIFICA DOCUMENTO **FOGLIO** RS3E 13 di 55 50 D 09 CL VI 15 05 003 Α

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 15 05 003	Α	14 di 55	

	Azioni	Ψo	Ψ1	Ψ2
	Treno di carico LM 71	0,80 ⁽³⁾	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi , alle verifiche strutturali.

	A2 - SLU - N max gr.1	A2 - SLU - MT max gr.1	A2-SLU-ML max gr.1	A2 - SLU - N max gr.3	A2 - SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	A2 - SLU Gmin - N max gr.1	A2 - SLU Gmin - MT max gr.1	A2 - SLU Gmin - ML max gr.1	A2-SLU Gmin-N max gr.3	A2 - SLU Gmin - MT max gr.3	A2 - SLU Gmin - ML max gr.3	A2 - SLU Gmin - Vento ponte scarico	A1-SLU - N max gr.1	A1-SLU-MT max gr.1	A1-SLU-Ml max gr.1	A1-SLU - N max gr.3	A1-SLU-MT max gr.3	A1-SLU-ML max gr.3	A1 - SLU - Vento ponte scarico	A1 - SLU Gmin - N max gr.1	A1-SLU Gmin-MT max gr.1	A1-SLU Gmin-ML max gr.1
Peso proprio gl	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	1.50	1.50		0.00	0.00	0.00
Ballast	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00
Comb. Nmax Qv	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00
Comb. Nmax Q frenatura	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00
Comb. Nmax Q centrifuga	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00
Comb. Nmax Q serpeggio	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Qv	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00
Comb. MTmax Q frenatura	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00
Comb. MTmax Q centrifuga	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00
Comb. MTmax Q serpeggio	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00
Comb. MLmax Qv	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45
Comb. MLmax Q frenatura	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73
Comb. MLmax Q centrifuga	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45
Comb. MLmax Q serpeggio	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00
Vento Ponte Carico	0.78	0.78	0.00	0.78	0.78	0.00	0.00	0.78	0.78	0.00	0.78	0.78	0.00	0.00	0.90	0.90	0.00	0.90	0.90	0.00	0.00	0.90	0.90	0.00
Attrito permanente	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
Attrito carichi mobili	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00	1.45	1.45	1.45
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vento x	0.00	0.00	0.78	0.00	0.00	0.78	0.00	0.00	0.00	0.78	0.00	0.00	0.78	0.00	0.00	0.00	0.90	0.00	0.00	0.90	0.00	0.00	0.00	0.90
Vento y	0.78	0.78	0.00	0.78	0.78	0.00	1.30	0.78	0.78	0.00	0.78	0.78	0.00	1.30	0.90	0.90	0.00	0.90	0.90	0.00	1.50	0.90	0.90	0.00

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 15 05 003	Α	15 di 55	

A1-SLU Gmin-N max gr.3	A1 - SLU Gmin - MT max gr.3	A1-SLU Gmin-ML max gr.3	A1 - SLU Gmin - Vento ponte scarico	SLE rara - N max gr.1	SLE rara - MT max gr.1	SLE rara - Ml max gr.1	SLE rara - N max gr.3	SLE rara - MT max gr.3	SLE rara - ML max gr.3	SLE rara - Vento ponte scarico	SLE freq N max gr.1	SLE freq MT max gr.1	SLE freq ML max gr.1	SLE freq N max gr.3	SLE freq MT max gr.3	SLE freq ML max gr.3	SLE freq Vento ponte scarico	SLE quasi permanente	SLV - N max	SLV - MT max	SLV - ML max	SLV - MT max	SLV - ML max	SLV - N min	
1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Peso proprio gl
0.00	0.00	0.00	0.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Permanenti G2
1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Ballast
1.45	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Qv
1.45	0.00	0.00	0.00	0.50	0.00		1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q frenatura
0.73	0.00	0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q centrifuga
0.73	0.00	0.00	0.00	1.00	0.00		0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q serpeggio
0.00	1.45	0.00	0.00	0.00	1.00		0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Qv
0.00	1.45		0.00	0.00	0.50		0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q frenatura
0.00	0.73	0.00	0.00	0.00	1.00		0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q centrifuga
0.00	0.73		0.00	0.00	1.00		0.00	0.50	1.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q serpeggio
	0.00	1.45		0.00	0.00			0.00			0.00			0.00			0.00	0.00		0.00			0.20		Comb. MLmax Qv
0.00	0.00	1.45	0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q frenatura
0.00	0.00	0.73	0.00	0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q centrifuga
0.00	0.00	0.73	0.00	0.00	0.00		0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q serpeggio
0.00	0.00	0.00	1.50	0.00	0.00		0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Scarico
0.90	0.90	0.00	0.00	0.60	0.60		0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Carico
1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50		Attrito permanente
1.45	1.45	1.45	0.00	1.00	1.00		1.00	1.00	1.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.20	0.20	0.20	0.20	0.20		Attrito carichi mobili
0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.30	1.00		Sisma longitudinale
0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	1.00	0.30		Sisma trasversale
0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	-0.30	-0.30		Sisma verticale
0.00	0.00	0.90	0.00	0.00	0.00		0.00	0.00	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Vento x
0.90	0.90	0.00	1.50	0.60	0.60	0.00	0.60	0.60	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento y

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

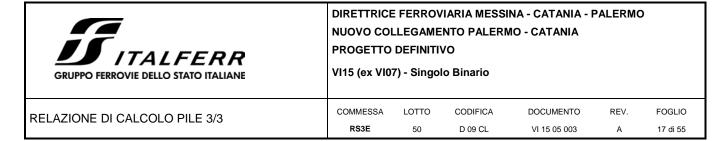
Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

4.4 Sistemi di riferimento ed unità di misura


- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- Lunghezze = m
- Forze = kN

4.5 Geometria della Pila

Generali			
Peso cls	γ _{c1s}	25	kN/m ³
Peso terreno	γ_{t}	20	kN/m ³
Sovraccarico accidentale sul rilevato	q _{acc}	53.0	kN/m ²
Altezza appoggio + baggiolo	h _{ap}	0.45	m
Distanza piano appoggi-intradosso plinto	H ₁	6.05	m
Pulvino			
Altezza	Hp	2.00	m
Lunghezza lungo asse X	b _p	3.3	m
Lunghezza lungo asse Y	L _p	8.60	m
Area Sezione		26.62	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	X _p	0.00	m
Pila			
Altezza	H _m	3.10	m
Lunghezza lungo asse X	b _m	3.30	m
Lunghezza lungo asse Y	L _m	8.60	m
Area Sezione		11.88	m ²
% Vuoti sezione		44%	
Coordinata X del baricentro rispetto fondazione	x _m	0.00	m
Distanza asse baggioli- asse pila (sx)	X _{ml}	-1.10	m
Distanza asse baggioli- asse asse pila (dx)	x _{m2}	1.10	m
Plinto	_		
Altezza	H_{f}	2.50	m
Lunghezza lungo asse X	b _f	12.00	m
Lunghezza lungo asse Y	L_{f}	12.00	m
Spessore ricoprimento medio	h _t	1.00	m
Distanza asse baggioli - baricentro plinto (sx)		-1.10	m
Distanza asse baggioli - baricentro plinto (dx)		1.10	m
Terreno		2.5	0
Angolo d'attrito interno (φ)		35	
Coefficiente per il calcolo della spinta a riposo		Ko= 0.426	
Sisma			
S _s	_	1.563	
a _g		0.157	
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.245	
T. I. I. A. D. (11)			

Tabella 2 – Dati di input

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

> Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato (sx)			
N° Binari		1	
Lunghezza	L	25	m
Peso Proprio	G_1	162	kN/m
Permanenti portati	G_2	120	kN/m
Ballast	G ₂	0	kN/m
n° totale appoggi sulla pila	n	2	
Reazione appoggio $i = (G_1*L/2)/n$	R _i	1012.5	kN
Reazione appoggio $i = (G_2*L/2)/n$	R_{i}	750.0	kN
Reazione appoggio $i = (G_2*L/2)/n$ (ballast)	R _i	0	kN

Impalcato (dx)			
N° Binari		1	
Lunghezza	L	25	m
Peso Proprio	G1	162	kN/m
Permanenti portati	G2	120	kN/m
Ballast	G2	0	kN/m
n° totale appoggi sulla pila	n	2	
Reazione appoggio $i = (G_1*L/2)/n$	Ri	1012.5	kN
Reazione appoggio $i = (G_2*L/2)/n$	Ri	750.0	kN
Reazione appoggio i = (G ₂ *L/2)/n (ballast)	Ri	0	kN

4.6.2 Carichi trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra (la condizione di Momento Longitudinale massimo "MLmax" è riferita alla situazione in cui solo uno dei due impalcati venga caricato):

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 18 di 55

SX							
CAP 25 ML SINGOLO BINARIO							
APPOGGIO	REAZIONE	у	REAZ. LM71	REAZ. SW2	α LM71	α LM71	ø3
1	0.530	1.55	1239	936	1.1	1	1.20
2	0.470	-1.55	1239	936	1.1	1	1.20
dx							
CAP 25 ML SINGOLO BINARIO							
APPOGGIO	REAZIONE	у	REAZ. LM71	REAZ. SW2	α LM71	α LM71	ø3
1	0.530	1.55	1239	1875	1.1	1	1.20
2	0.470	-1.55	1239	1875	1.1	1	1.20
dx ML max							
CAP 25 ML SINGOLO BINARIO							
APPOGGIO	REAZIONE	у	REAZ. LM71	REAZ. SW2	α LM71	α LM71	ø3
1	0.530	1.55	1529	1875	1.1	1	1.20
2	0.470	-1.55	1529	1875	1.1	1	1.20

Che ripartiti con il metodo Courbon sul singolo appoggio forniscono i risultati in tabella seguente.

REAZIONI VINCOLARI [kN,m]

SX

	Appoggio		A			\mathbf{B}		
	Descrizione carico	FZ	FX	FY	FZ	FX	FY	biz
	Descrizione canco	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
	Peso proprio g1	1013			1013			0.00
	Permanenti G2	750			750			0.00
	Ballast							0.00
	Comb. Nmax Qv	596			529			0.00
	Comb. Nmax Q frenatura		0			0		3.30
	Comb. Nmax Q centrifuga			59			59	5.10
	Comb. Nmax Q serpeggio			13			13	3.30
	Comb. MTmax Qv	868			770			0.00
	Comb. MTmax Q frenatura		0			0		3.30
	Comb. MTmax Q centrifuga			83			83	5.10
	Comb. MTmax Q serpeggio			13			13	3.30
	Comb. MLmax Qv	0			0			0.00
	Comb. MLmax Q frenatura		0			0		3.30
	Comb. MLmax Q centrifuga							5.10
	Comb. MLmax Q serpeggio							3.30
	Vento Ponte Scarico			117			117	3.30
	Vento Ponte Carico			130			130	3.65
	Attrito permanente		53	53		53	53	0.00
	Attrito carichi mobili		26	26		23	23	0.00
5	Sisma longitudinale							2.50
Ę,	Sisma trasversale			472			472	2.50
_	Sisma verticale	443			443			0.00
98	Sisma longitudinale		0			0		2.50
q=1.36	Sisma trasversale			521			521	2.50
5	Sisma verticale	443			443			0.00
	Sisma longitudinale		0			0		2.50
Ē	Sisma trasversale			708			708	2.50
	Sisma verticale	443			443			0.00

REAZIONI VINCOLARI [kN,m]

фx

Appoggio		A					
Descrizione carico	FZ	FX	FY	FZ	FX	FY	biz
Descrizione canco	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[m]
Peso proprio g1	1013			1013			0.00
Permanenti G2	750			750			0.00
Ballast							0.00
Comb. Nmax Qv	1195			1059			0.00
Comb. Nmax Q frenatura		438			438		3.30
Comb. Nmax Q centrifuga			59			59	5.10
Comb. Nmax Q serpeggio			13			13	3.30
Comb. MTmax Qv	868			770			0.00
Comb. MTmax Q frenatura		454			454		3.30
Comb. MTmax Q centrifuga			83			83	5.10
Comb. MTmax Q serpeggio			13			13	3.30
Comb. MLmax Qv	1195			1059			0.00
Comb. MLmax Q frenatura		438			438		3.30
Comb. MLmax Q centrifuga			59			59	5.10
Comb. MLmax Q serpeggio			25			25	3.30
Vento Ponte Scarico			117			117	3.30
Vento Ponte Carico			130			130	3.65
Attrito permanente		53	53		53	53	0.00
Attrito carichi mobili		36	36		32	32	0.00
Sisma longitudinale		1211			1211		2.50
Sisma trasversale			472			472	2.50
Sisma verticale	443			443			0.00
Sisma longitudinale		1335			1335		2.50
Sisma trasversale			521			521	2.50
Sisma verticale	443			443			0.00
Sisma longitudinale		1816			1816		2.50
Sisma trasversale			708			708	2.50
Sisma verticale	443			443			0.00

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA LOTTO
RS3E 50

CODIFICA D 09 CL DOCUMENTO VI 15 05 003 REV. F

FOGLIO 19 di 55

4.6.3 Azione del Vento

Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	220	220	m
Zona	Z	IV	IV	
Parametri	Vb,0	28	28	m/s
Parametri	ao	500	500	m
Parametri	ka	0.02	0.02	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 + ka*(as-a0)	28	28	m/s
Periodo di ritorno considerato	TR	112.5	112.5	anni
	αR	1.05	1.05	
Velocità di riferimento	Vb(TR)	29.28	29.28	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*ρ*vb²	0.54	0.54	kN/mq
Classe di rugostità del terreno		D	D	
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		<750	<750	m
Categoria di esposizione del sito	Cat	2	2	
Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	12.9	12.9	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.52	2.52	
Larghezza impalcato	b	9.7	9.7	m
Altezza impalcato	h1	2.7	3.3	m
Altezza treno o parapetto	h2	4	4	m
Altezza totale impalcato (comprese le barriere o treno)	dtot	6.7	7.3	m
Rapporto di forma	b/dtot	1.45	1.33	
Coefficiente di forza (figura 8.3 EC)	cfx	2.07	2.10	

FOGLIO

20 di 55

VI15 (ex VI07) - Singolo Binario

 RELAZIONE DI CALCOLO PILE 3/3
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A

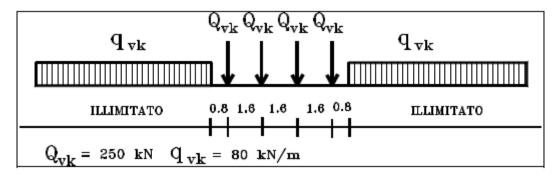
Riepilogo				
Pressione cinetica di riferimento	qb	0.54	0.54	kN/mq
Coefficiente di esposizione	ce	2.52	2.52	
Coefficiente di forza	cfx	2.07	2.10	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	6.7	7.3	m
Forza statica equivalente a m/l	f=prodotto	18.7	20.7	kN/m
Pressione statica equivalente	p=f/d	2.78	2.83	kN/mg
Pressione statica equivalente (minima considerata)	pmin	1.5	1.5	kN/mq
Forza statica equivalente a m/l considerata	f	18.7	20.7	kN/m
1 012a statica equivalente a my 1 considerata		10.7	20.7	KIN/III
Vento impalcato a ponte scarico		SX	dx	
Forza statica equivalente	f	18.7	18.7	kN/m
Luce impalcato	L	25	25	m
Forza trasversale al piano appoggi	FT=f*L/2	233	233	kN/m
Torza trasversare ar piarro appoggi	11-1 42	233	233	KIN/III
Vento impalcato a ponte carico				
Forza statica equivalente	f	20.7	20.7	kN/m
Luce impalcato	L	25	25	m
Forza trasversale al piano appoggi	FT=f*L/2	259	259	kN/m
Torza trasversare ar piano apposso.	11142	203	200	13.47.111
Vento su Pila e Pulvino				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	5.10	5.1	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	1.94	1.94	
		dir.x	dir.x	_
Altezza (dir.z)	h	2.00	3.10	m
Larghezza in direz. Ortogonale al vento	b	8.6	8.6	m
Larghezza in direz. Parallela al vento	d	3.3	3.3	m
Rapporto di forma	d/b	0.38	0.38	_
Coefficiente di forza (figura 7.23 EC)	cfx	2.20	2.20	
Raggio di arrotondamento (figura 7.24 EC)	r	1.2	1.2	m
Rapporto di forma II	r/b	0.14	0.14	
Fattore di riduzione (figura 7.24 EC)	Ψ	0.65	0.65	
Pressione di riferimento	q=Ψ*cfx*ce*qb	1.49	1.49	kN/mq
Area investita dal vento	A=b*h	17.2	26.66	mq
Forza statica equivalente	F=q*A	26	40	kN
		dir.y	dir.y	
Altezza (dir.z)	h	2.00	3.10	m
Larghezza in direz. Ortogonale al vento	b	3.3	3.3	m
Larghezza in direz. Parallela al vento	d	8.6	8.6	m
Rapporto di forma	d/b	2.61	2.61	
Coefficiente di forza (figura 7.23 EC)	cfx	1.50	1.50	
Raggio di arrotondamento (figura 7.24 EC)	r "	1.2	1.2	m
Rapporto di forma II	r/b	0.36	0.36	
Fattore di riduzione (figura 7.24 EC)	Ψ	0.5	0.5	
Pressione di riferimento	q=Ψ*cfx*ce*qb	0.78	0.78	kN/mq
Area investita dal vento Forza statica equivalente	A=b*h F=q*A	6.6 5	10.23 8	mq kN

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 15 05 003	Α	21 di 55

Riepilogo			
Vento x			
Pulvino	F	26	kN
Pila	F	40	kN
Distanza tra spiccato fusto e testa pulvino	bz	5.10	m
Forza totale	F Tot	65	kN
Vento y			
Pulvino	F	5	kN
Pila	F	8	kN
Distanza tra spiccato fusto e testa pulvino	bz	5.10	m
Forza totale	F Tot	13	kN


4.6.4 Carichi da traffico verticali

L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2.

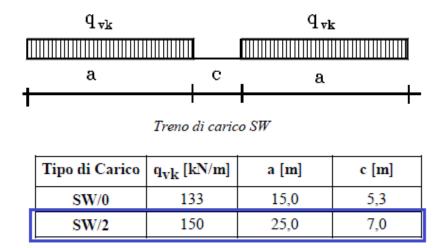
Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.


Treno di carico LM 71

Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;


<u>Carico distribuito</u>: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario.

Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001 A).

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1,10
SW/0	1,10
SW/2	1,00

4.6.5 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 14.1.2008 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2,16}{\sqrt{L_6 - 0.2}} + 0.73$$
 con la limitazione $1.00 \le \Phi_3 \le 2.00$ [5.2.7]

VI15 (ex VI07) - Singolo Binario

 RELAZIONE DI CALCOLO PILE 3/3
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 23 di 55

4.6.6 Carichi da traffico orizzontali

Fren	Frenatura				Avviamento				
L	25	m		L	25	m			
Lcalc	25	per Treno LM 71		Lcalc	25	per Treno LM 71			
	19.7	per Treno SW/0			19.7	per Treno SW/0			
	25	per SW/2			25	per SW/2			
Qlb,k	550	per Treno LM 71		Qla,k	907.5	per Treno LM 71			
Qlb,k	0	per Treno SW/0		Qla,k	0	per Treno SW/0			
Qlb,k	875	per SW/2		Qla,k	825	per SW/2			
Qlb,k (filtrata)per Treno LM 71	550	kN		Qla,k (filtrata)per Treno LM 71	907.5	kN			
Qlb,k (filtrata)per Treno SW/0	0	kN		Qla,k (filtrata)per Treno SW/0	0	kN			
Qlb,k(filtrata)per SW/2	875	kN		Qla,k(filtrata)per SW/2	825	kN			

Serpeggio		
FT=100kN /2	50	kN
Treno LM 71		
α	1.1	
FT*α	55	kN
Treno SW/0		
α	1.1	
FT*α	55	kN
Treno SW/2		
α	1	
FT*α	50	kN

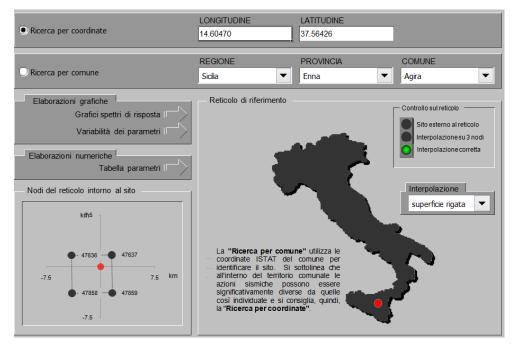
Forza centrifuga sx											
L	25	m		Lø	22.8	m					
velocità di progetto	160	km/h		ø3 Coeff. Dinamico	1.202						
raggio planimetrico	1500	m									
f	0.82	Per V>120	km/h								
f	1	Per V<120	km/h								
Treno LM 71				Treno SW/0				Treno SW/2			
Qvk	1000	kN									
qvk	80	kN/m		qvk	0	kN/m		qvk	150	kN/m	
α	1	Per V>120	km/h	α	1.1			α	1		
α	1.1	Per V<120	km/h								
Qtk	132	Per V>120	km/h								
	100	Per V<120	km/h								
Qtk scelto	132										
qtk	11	Per V>120	km/h	qtk				qtk			
	8	Per V<120	km/h		0	Per V=100	km/h		9	Per V=100	km/h
qtk scelto	11										
L calc= L-6.4m	18.6	m		L calc	19.7	m		L calc	25	m	
qtk*Lcalc	197	kN		qtk*Lcalc	0	kN		qtk*Lcalc	237	kN	
FT= (qtk*Lcalc + qtk)/2	165	kN		FT= qtk*Lcalc /2	0			FT= qtk*Lcalc /2	118		

VI15 (ex VI07) - Singolo Binario

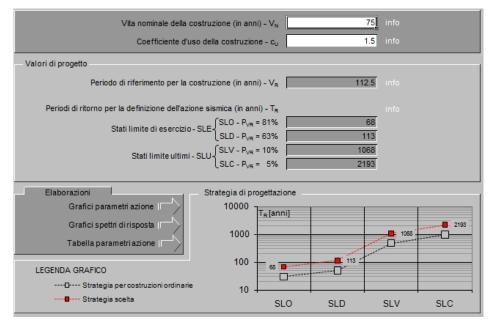
RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 15 05 003	Α	24 di 55

Forza centrifuga dx											
L	25	m		Lø	22.8	m					
velocità di progetto	160	km/h		ø3 Coeff. Dinamico	1.202						
raggio planimetrico	1500	m									
f	0.82	Per V>120	km/h								
f	1	Per V<120	km/h								
Treno LM 71				Treno SW/0				Treno SW/2			
Qvk	1000	kN									
qvk	80	kN/m		qvk	0	kN/m		qvk	150	kN/m	
α	1	Per V>120	km/h	α	1.1			α	1		
α	1.1	Per V<120	km/h								
Qtk	132	Per V>120	km/h								
	100	Per V<120	km/h								
Qtk scelto	132										
qtk	11	Per V>120	km/h	qtk				qtk			
	8	Per V<120	km/h		0	Per V=100	km/h		9	Per V=100	km/h
qtk scelto	11										
L calc= L-6.4m	18.6	m		L calc	19.7	m		L calc	25	m	
qtk*Lcalc	197	kN		qtk*Lcalc	0	kN		qtk*Lcalc	237	kN	
FT= (qtk*Lcalc + qtk)/2	165	kN		FT= qtk*Lcalc /2	0			FT= qtk*Lcalc /2	118		

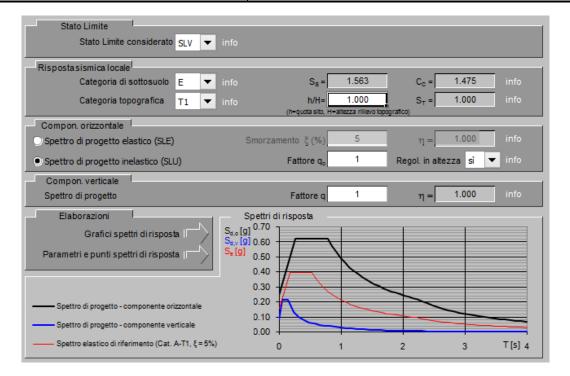

4.6.7 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.


Valori di progetto

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.


Dalla relazione geologica risulta una categoria del suolo tra C ed E, a favore di sicurezza nel dimensionamento della spalla si utilizza una categoria del suolo E

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 15 05 003	Α	26 di 55

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

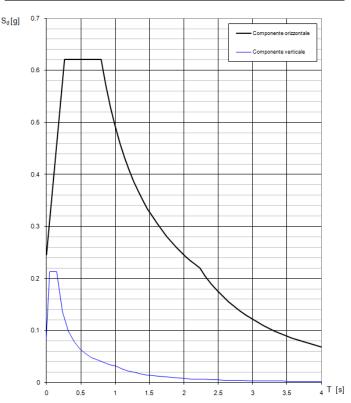
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 15 05 003	Α	27 di 55	

Parametri e punti dello spettro di risposta orizzontale per lo stato limite SLV

Parameur mui	penaenu
STATO LIMITE	SLV
an	0.157 g
Fo	2.529
T _C	0.537 s
Ss	1.563
Co	1.475
ST	1.000
q	1.000

Espressioni dei parametri dipendenti

(NTC-08 Eq. 3.2.5)
(NTC-08 Eq. 3.2.6; §. 3.2.3.5
(NTC-07 Eq. 3.2.8)
(NTC-07 Eq. 3.2.7)
(NTC-07 Eq. 3.2.9)


Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_k(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^3} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

		l oe idi
	0.000	0.246
T _B ◀	0.264	0.621
Tc◀	0.792	0.621
l l	0.860	0.572
l l	0.928	0.530
	0.997	0.493
[1.065	0.461
[[1.134	0.434
[[1.202	0.409
[[1.271	0.387
l l	1.339	0.367
l l	1.407	0.349
[1.476	0.333
	1.544	0.318
ĺ	1.613	0.305
	1.681	0.292
[1.750	0.281
	1.818	0.270
[1.886	0.261
[1.955	0.251
[[2.023	0.243
[[2.092	0.235
[2.160	0.228
T₀◀	2.229	0.221
T₀◀	2.229 2.313	0.221 0.205
T₀◀		
T₀◀	2.313	0.205
T₀◀	2.313 2.397	0.205 0.191
T₽◀	2.313 2.397 2.482	0.205 0.191 0.178
T _₽ ◀	2.313 2.397 2.482 2.566	0.205 0.191 0.178 0.166
T _o ◀	2.313 2.397 2.482 2.566 2.650	0.205 0.191 0.178 0.166 0.156
To◀	2.313 2.397 2.482 2.566 2.650 2.735	0.205 0.191 0.178 0.166 0.156 0.146
To◀	2.313 2.397 2.482 2.566 2.650 2.735 2.819	0.205 0.191 0.178 0.166 0.156 0.146 0.138
To◀	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130
To◀	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123
To◀	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988 3.072	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123 0.116
To♣	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988 3.072 3.156	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123 0.116
To♣	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988 3.072 3.156 3.241	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123 0.116 0.110
To♣	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988 3.072 3.156 3.241 3.325	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123 0.110 0.110 0.104
To♣	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988 3.072 3.156 3.241 3.325 3.410	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123 0.116 0.110 0.104 0.099 0.094
T _o ∢	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988 3.072 3.156 3.241 3.325 3.410 3.494	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123 0.116 0.110 0.104 0.099 0.099
T _o ∢	2.313 2.397 2.482 2.566 2.650 2.735 2.903 2.988 3.072 3.156 3.241 3.325 3.410 3.494 3.578	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123 0.116 0.110 0.104 0.099 0.094 0.090 0.086
T _o ∢	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988 3.072 3.156 3.241 3.325 3.410 3.494 3.578 3.663	0.205 0.191 0.178 0.166 0.156 0.146 0.138 0.130 0.123 0.116 0.110 0.104 0.099 0.094 0.090 0.086 0.082
To ←	2.313 2.397 2.482 2.566 2.650 2.735 2.819 2.903 2.988 3.072 3.156 3.241 3.325 3.410 3.410 3.410 3.578 3.663 3.747	0.205 0.191 0.178 0.178 0.166 0.156 0.146 0.130 0.130 0.123 0.110 0.110 0.104 0.099 0.099

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

Calcolo dell'azione Sismica

Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle Normative. Qualora le ipotesi non siano soddisfate, per il calcolo dei periodi propri della pila, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello tridimensionale agli Elementi Finiti semplificato.

I Fattori di struttura utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali e verifica del plinto
- q= 1 per le verifiche a taglio degli elementi strutturali (vedi anche punto successivo), verifiche a capacità portante orizzontale dei pali.
- Solo per la verifica a taglio dello spiccato della pila, il criterio adottato è quello della gerarchia delle resistenze, così come indicato al punto 7.9.5 delle NTC

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 28 di 55

Condizione Sismica			
Massa sismica impalcato dir x	mix	7952	kN
Massa efficace pila dir x	mpx	1126	kN
Massa complessiva dir x	mix + mpx	9077	kN
1/5 Massa sismica impalcato dir x	mix/5	1590	kN
Verifica requisito dir x		si	_
Massa sismica impalcato dir. y	mi _y	7726	kN
Massa efficate pila dir. Y	mpy	1126	kN
Massa complessiva dir. Y	miy + mpy	8851	kN
1/5 Massa sismica impalcato dir. Y	miy/5	1545	kN
Verifica requisito dir. Y		si	1.37
Massa sismica impalcato dir. z	miz	7726 1126	kN kN
Massa efficate pila dir. Z Massa complessiva dir. Z	mpz miz + mpz	8851	kN
1/5 Massa sismica impalcato dir. Z	miz/5	1545	kN
Verifica requisito dir. Z	IIIZ J	si	KIV
· emouroquino un. 2		-	
Inerzia Pila asse y	J_{yy}	16.9	m ⁴
Inerzia Pila asse x	J_{xx}	77.5	m ⁴
Area Pila	Ap	11.88	m ²
Rigidezza Pila asse y	K _y	3.8E+09	N/m
Rigidezza Pila asse x	K _x	1.7E+10	N/m
rigidezza Pila asse z	K _z	7.7E+10	N/m
Periodo x	T _x	0.10	s
Periodo y	T _v	0.04	S
Periodo z	T _z	0.02	s
1 01000 2	- 2	0.02	
Accelerazione orizzontale Se(Tx) direzione x	a _g x	0.40	
Accelerazione orizzontale Se(Ty) direzione y	a _g y	0.32	
Accelerazione Verticale Se(Tz) direzione z	a _g z	0.20	
q=1.5	ug 2	0.20	
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.27	
Accelerazione orizzontale Sd(Ty) direzione y		0.21	
Accelerazione Verticale Sd(Tz) direzione z	a _g y	0.20	
q=1.36	a _g z	0.20	
Accelerazione orizzontale Sd(Tx) direzione x	2 V	0.29	
Accelerazione orizzontale Sd(Tx) direzione x Accelerazione orizzontale Sd(Ty) direzione y	a _g x	0.24	
	a _g y		
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.20	
q=1 Accelerazione orizzontale Sd(Tx) direzione x		0.4	
	a _g x	0.4	
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.3	
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.2	
Condizione Sismica - Taglia	nti I otali		
q=1.5 Tagliante direzione x	F x	2421	kN
Tagliante direzione y	Fy	1888	kN
Tagliante direzione z	Fz	1770	kN
q=1.36		1770	1111
Tagliante direzione x	F x	2670	kN
Tagliante direzione y	F y	2083	kN
Tagliante direzione z	Fz	1770	kN
q=1			
Tagliante direzione x	F x	3631	kN
Tagliante direzione y	F y	2832	kN
Tagliante direzione z	F z	1770	kN

4.6.8 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, n è il numero di pali e Jl , Jt sono le inerzie longitudinale e trasversale della palificata

$$J_l = \sum y_i^2 \qquad \qquad J_t = \sum x_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H₁ sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.9 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max}, N_{min}, T ed M.

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 30 di 55

	SPI	ICCATO PILA	: condizione s	tatica										
Descrizione carico	FZ	F _X	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	My						
Descrizione canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]						
Pila	2251			0.00	0.00	0	0	0						
Vento su pila dir. x		65		0.00	0.00	5.10	0	332						
Vento su pila dir.y			13	0.00	0.00	5.10	66	0						
INTRADOSSO FONDAZIONE: condizione statica														
Descrizione carico	FZ	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	\mathbf{M}_{y}						
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]						
Pila	2251			0.00	0.00	0	0	0						
Plinto	9000			0.00	0.00	1.25	0.00	0						
Rinterro	2312			0.00	0.00	0.00	0.00	0						
Vento su pila dir. x		65		0.00	0.00	7.60	0	494						
Vento su pila dir.y			13	0.00	0.00	7.60	99	0						
	INTRADO	SSO FONDA	ZIONE: condiz	ione sism	ica									
Descrizione carico	FZ	FX	Fy	b _{ix}	b _{iy}	b _{iz}	M _x	\mathbf{M}_{y}						
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]						
Plinto sisma x		2209		0.00	0.00	1.25	0.00	2761						
Plinto sisma y			2209	0.00	0.00	1.25	2761	0						
Plinto sisma z	1104			0.00	0.00	1.25	0	0						
Rinterro sisma z	284			0.00	0.00	0.00	0	0						

4.7 Sollecitazioni

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DELLA PILA										
	Nz	Tx	Ty	Mx	Му					
A2 - SLU - N max gr.1	14425	905	1129	9841	8382					
A2 - SLU - MT max gr.1	14296	925	1247	11079	7006					
A2 - SLU - ML max gr.1	13019	956	567	4371	10187					
A2 - SLU - N max gr.3	14425	1452	950	7993	13227					
A2 - SLU - MT max gr.3	14296	1492	1009	8606	12029					
A2 - SLU - ML max gr.3	13019	1503	462	3309	15032					
A2 - SLU - Vento ponte scarico	10201	212	834	6621	1174					
A2 - SLU Gmin - N max gr.1	10525	905	1129	9841	8382					
A2 - SLU Gmin - MT max gr.1	10396	925	1247	11079	7006					
A2 - SLU Gmin - ML max gr.1	9119	956	567	4371	10187					
A2 - SLU Gmin - N max gr.3	10525	1452	950	7993	13227					
A2 - SLU Gmin - MT max gr.3	10396	1492	1009	8606	12029					
A2 - SLU Gmin - ML max gr.3	9119	1503	462	3309	15032					
A2 - SLU Gmin - Vento ponte scarico	6301	212	834	6621	1174					
Al - SLU - N max gr.l	17906	1090	1347	11615	9946					
Al - SLU - MT max gr.1	17757	1113	1484	13051	8350					
A1 - SLU - ML max gr.1	16275	1148	698	5294	12038					
Al - SLU - N max gr.3	17906	1726	1140	9472	15574					
A1 - SLU - MT max gr.3	17757	1772	1208	10182	14184					
Al - SLU - ML max gr.3	16275	1784	577	4062	17667					
A1 - SLU - Vento ponte scarico	13007	286	1004	7870	1585					
A1 - SLU Gmin - N max gr.1	11201	1090	1347	11615	9946					
Al - SLU Gmin - MT max gr.1	11051	1113	1484	13051	8350					
Al - SLU Gmin - ML max gr.1	9570	1148	698	5294	1203					
_	11201	1726	1140	9472						
Al - SLU Gmin - N max gr.3					15574					
Al - SLU Gmin - MT max gr.3	11051	1772	1208	10182	14184					
Al - SLU Gmin - ML max gr.3	9570	1784	577	4062	1766					
A1 - SLU Gmin - Vento ponte scarico	6301	212	930	7459	1174					
SLE rara - N max gr.1	12680	766	933	7992	6940					
SLE rara - MT max gr.1	12577	782	1027	8982	5840					
SLE rara - ML max gr.1	11555	805	496	3732	8376					
SLE rara - N max gr.3	12680	1204	790	6514	10816					
SLE rara - MT max gr.3	12577	1236	837	7003	9858					
SLE rara - ML max gr.3	11555	1243	412	2882	12253					
SLE rara - Vento ponte scarico	9301	212	691	5364	1174					
SLE freq N max gr.1	12004	655	534	4309	5787					
SLE freq MT max gr.1	11922	668	609	5101	4907					
SLE freq ML max gr.1	11104	655	439	3220	6777					
SLE freq N max gr.3	12004	1006	419	3126	8888					
SLE freq MT max gr.3	11922	1031	457	3518	8121					
SLE freq ML max gr.3	11104	1006	372	2541	9878					
SLE freq Vento ponte scarico	9301	212	445	3236	1174					
SLE quasi permanente	9301	212	212	1174	1174					
SLV - N max	11747	1031	753	5930	8362					
SLV - MT max gr.1	10487	1037	2093	16767	8170					
SLV - ML max gr.1	10283	2725	729	5658	22252					
SLV - MT max gr.3	9425	1037	2093	16767	8170					
SLV - ML max gr.3	9221	2725	729	5658	22252					
SLV - N min	8207	1031	753	5930	8362					
SLV - N max	11747	1105	811	6379	8964					
SLV - MT max gr.1	10487	1112	2287	18301	8772					
SLV - ML max gr.1	10283	2975	787	6127	24258					
SLV - MT max gr.3	9425	1112	2287	18301	8772					
SLV - ML max gr.3	9221	2975	787	6127	24258					
SLV - N min	8207	1105	811	6379	8964					
SLV - N max	11747	1394	1036	8210	1128					
SLV - MT max gr.1	10487	1400	3037	24366	11094					
SLV - ML max gr.1	10283	3936	1012	7938	31996					
SLV - MT max gr.3	9425	1400	3037	24366	11094					
SLV - ML max gr.3	9221	3936	1012	7938	31990					
SLV - N min	8207	1394	1036	8210	1128					

Tabella 3 – Sollecitazioni della base della pila

4.7.1 Plinto di fondazione

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA LOTTO CODIFICA DOCL

RS3E 50 D 09 CL VI 15

 DOCUMENTO
 REV.
 FOGLIO

 VI 15 05 003
 A
 33 di 55

	NI-	т.,	т.,	14.	3.6-
A2 CIU N	Nz 26431	905	Ty 1129	Mx 12664	My 1064
A2 - SLU - N max gr.1 A2 - SLU - MT max gr.1	26302	925	1247	14195	9319
A2 - SLU - ML max gr.1	25025	956	567	5790	1257
A2 - SLU - N max gr.3	26431	1452	950	10369	1685
A2 - SLU - MT max gr.3	26302	1492	1009	11128	1576
A2 - SLU - ML max gr.3	25025	1503	462	4465	1879
A2 - SLU - Vento ponte scarico	22207	212	834	8707	170
A2 - SLU Gmin - N max gr.1	19525	905	1129	12664	1064
A2 - SLU Gmin - MT max gr.1	19396	925	1247	14195	931
A2 - SLU Gmin - ML max gr.1	18119	956	567	5790	1257
A2 - SLU Gmin - N max gr.3	19525	1452	950	10369	1685
A2 - SLU Gmin - MT max gr.3	19396	1492	1009	11128	1576
A2 - SLU Gmin - ML max gr.3	18119	1503	462	4465	1879
A2 - SLU Gmin - Vento ponte scarico	15301	212	834	8707	170
Al SLU - N max gr.l	33525	1090	1347	14984	1267
Al SIU MI max gr.l	33376	1113 1148	1484 698	16760 7040	1113
Al - SLU - ML max gr.1	31894 33525	1726	1140	7040 12322	1490 1988
Al - SLU - N max gr.3 Al - SLU - MT max gr.3	33323	1772	1208	13203	1861
A1 - SLU - M1 max gr.3 A1 - SLU - ML max gr.3	31894	1784	577	5503	2212
A1 - SLU - ML max gr.5 A1 - SLU - Vento ponte scarico	28625	286	1004	10380	2212
Al - SLU Gmin - N max gr.1	20201	1090	1347	14984	1267
Al - SLU Gmin - MT max gr.1	20051	1113	1484	16760	1113
Al - SLU Gmin - ML max gr.1	18570	1148	698	7040	1490
A1 - SLU Gmin - N max gr.3	20201	1726	1140	12322	1988
A1 - SLU Gmin - MT max gr.3	20051	1772	1208	13203	1861
A1 - SLU Gmin - ML max gr.3	18570	1784	577	5503	2212
A1 - SLU Gmin - Vento ponte scarico	15301	212	930	9784	170
SLE rara - N max gr.1	23993	766	933	10324	885
SLE rara - MT max gr.1	23890	782	1027	11549	779:
SLE rara - ML max gr.1	22868	805	496	4972	1039
SLE rara - N max gr.3	23993	1204	790	8488	1382
SLE rara - MT max gr.3	23890	1236	837	9095	1294
SLE rara - ML max gr.3	22868	1243	412	3913	1536
SLE rara - Vento ponte scarico SLE freq N max gr.1	20614 23317	655	691 534	7090 5643	742
SLE freq N max gr.1 SLE freq MT max gr.1	23234	668	609	6623	657
SLE freq MI max gr.1 SLE freq ML max gr.1	22417	655	439	4319	841:
SLE freq N max gr.3	23317	1006	419	4175	1140
SLE freq MT max gr.3	23234	1031	457	4660	1069
SLE freq ML max gr.3	22417	1006	372	3471	1239
SLE freq Vento ponte scarico	20614	212	445	4347	170
SLE quasi permanente	20614	212	212	1703	170
SLV - N max	24447	1693	1415	8640	1176
SLV - MT max gr.1	22216	1700	4302	24760	1159
SLV - ML max gr.1	22012	4934	1392	8309	3182
SLV - MT max gr.3	20321	1700	4302	24760	1159
SLV - ML max gr.3	20117	4934	1392	8309	3182
SLV - N min	18132	1693	1415	8640	1176
SLV - N max	24447	1768	1474	9234	1255
SLV - MT max gr.1	22216	1774	4496	26781	1238
SLV - ML max gr.1	22012	5183	1450	8924	3445
SLV - MT max gr.3	20321	1774	4496 1450	26781	1238
SLV - ML max gr.3 SLV - N min	20117	5183	1450	8924 9234	3445 1255
SLV - N min SLV - N max	18132 24447	1768 2056	1474		
SLV - N max SLV - MT max gr.1	22216	2063	1698 5246	11628 34720	1559 1542
SLV - MI max gr.1 SLV - ML max gr.1	22012	6144	1675	11297	4459
SLV - ML max gr.1 SLV - MT max gr.3	20321	2063	5246	34720	1542
SLV - ML max gr.3	20117	6144	1675	11297	4459
SLV - N min	18132	2056	1698	11628	1559

Tabella 4 – Sollecitazioni ad intradosso del baricentro fondazione

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARICE	SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T _x	T_{y}	M _x	M_{y}	$N_{max/palo}$	N _{min/palo}	T _{/palo}				
n°	kN	kN	kN	kNm	kNm	kN	kN	kN				
Al - SLU - N max gr.1	33525	1090	1347	14984	12670	4749	2701	193				
Al - SLU - MT max gr.1	33376	1113	1484	16760	11133	4741	2675	206				
Al - SLU - ML max gr.1	31894	1148	698	7040	14909	4357	2731	149				
A1 - SLU - N max gr.3	33525	1726	1140	12322	19889	4918	2532	230				
A1 - SLU - MT max gr.3	33376	1772	1208	13203	18615	4887	2530	238				
A1 - SLU - ML max gr.3	31894	1784	577	5503	22128	4567	2520	208				
A1 - SLU - Vento ponte scarico	28625	286	1004	10380	2298	3650	2711	116				
Al - SLU Gmin - N max gr.1	20201	1090	1347	14984	12670	3269	1220	193				
Al - SLU Gmin - MT max gr.1	20051	1113	1484	16760	11133	3261	1195	206				
Al - SLU Gmin - ML max gr.1	18570	1148	698	7040	14909	2876	1250	149				
A1 - SLU Gmin - N max gr.3	20201	1726	1140	12322	19889	3438	1052	230				
A1 - SLU Gmin - MT max gr.3	20051	1772	1208	13203	18615	3406	1050	238				
A1 - SLU Gmin - ML max gr.3	18570	1784	577	5503	22128	3087	1040	208				
A1 - SLU Gmin - Vento ponte scarico	15301	212	930	9784	1703	2126	1275	106				
						4918	1040	238				

Tabella 5 – Sollecitazioni massime sul singolo palo C.C. SLU

C.C.	N	T _x	T_{y}	M_x	M_{y}	N _{max/palo}	N _{min/palo}	$T_{/palo}$
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLV - N max	24447	2056	1698	11628	15598	3725	1708	296
SLV - MT max gr.1	22216	2063	5246	34720	15422	4326	611	626
SLV - ML max gr.1	22012	6144	1675	11297	44597	4516	376	708
SLV - MT max gr.3	20321	2063	5246	34720	15422	4115	401	626
SLV - ML max gr.3	20117	6144	1675	11297	44597	4305	165	708
SLV - N min	18132	2056	1698	11628	15598	3023	1006	296
						4516	165	708

Tabella 6 - Sollecitazioni massime sul singolo palo C.C. SLV q=1

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T _x	T_{y}	M_x	M_{y}	$N_{\rm max/palo}$	N _{min/palo}	T _{/palo}			
n°	kN	kN	kN	kNm	kNm	kN	kN	kN			
SLV - N max	24447	1768	1474	9234	12556	3523	1909	256			
SLV - MT max gr.1	22216	1774	4496	26781	12380	3919	1018	537			
SLV - ML max gr.1	22012	5183	1450	8924	34455	4052	839	598			
SLV - MT max gr.3	20321	1774	4496	26781	12380	3708	808	537			
SLV - ML max gr.3	20117	5183	1450	8924	34455	3842	629	598			
SLV - N min	18132	1768	1474	9234	12556	2822	1208	256			
			_	_		4052	629	598			

Tabella 7 – Sollecitazioni massime sul singolo palo C.C. SLV q=1

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 15 05 003	Α	35 di 55

SOLL. TOTALI NEL BAI	OLL. TOTALI NEL BARICENTRO DELLA PALIFICATA												
C.C.	N	T _x	T_{y}	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M}_{\mathbf{y}}$	N _{max/palo}	N _{min/palo}	T _{/palo}					
n°	kN	kN	kN	kNm	kNm	kN	kN	kN					
SLE rara - N max gr.1	23993	766	933	10324	8856	3376	1956	134					
SLE rara - MT max gr.1	23890	782	1027	11549	7795	3371	1938	143					
SLE rara - ML max gr.1	22868	805	496	4972	10390	3110	1972	105					
SLE rara - N max gr.3	23993	1204	790	8488	13827	3492	1839	160					
SLE rara - MT max gr.3	23890	1236	837	9095	12948	3471	1838	166					
SLE rara - ML max gr.3	22868	1243	412	3913	15361	3255	1827	146					
SLE rara - Vento ponte scarico	20614	212	691	7090	1703	2616	1965	80					
						3492	1827	166					

Tabella 8 – Sollecitazioni massime sul singolo palo C.C. SLE

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della spalla (muro frontale, muro paraghiaia, ...) vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A

FOGLIO

36 di 55

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DELLA PILA							
		INTERNA ALLA BASE DELL	Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
SLUGEO	Nz,A _{max}	A2 - SLU - N max gr.1	14425	905	1129	9841	8382
	Tx,A _{max}	A2 - SLU - ML max gr.3	13019	1503	462	3309	15032
	Ty,A _{max}	A2 - SLU - MT max gr.1	14296	925	1247	11079	7006
	Mxx max	A2 - SLU - MT max gr.1	14296	925	1247	11079	7006
	Myy max	A2 - SLU Gmin - ML max gr.3	9119	1503	462	3309	15032
SLUSTR	Nz,A _{max}	Al - SLU - N max gr.1	17906	1090	1347	11615	9946
	Tx , A_{max}	A1 - SLU - ML max gr.3	16275	1784	577	4062	17667
	Ty,Amax	A1 - SLU - MT max gr.1	17757	1113	1484	13051	8350
	Mxx max	A1 - SLU - MT max gr.1	17757	1113	1484	13051	8350
	Myy max	A1 - SLU - ML max gr.3	16275	1784	577	4062	17667
SLE RARA	Nz,A _{max}	SLE rara - N max gr.1	12680	766	933	7992	6940
	Tx,A _{max}	SLE rara - ML max gr.3	11555	1243	412	2882	12253
	Ty,A _{max}	SLE rara - MT max gr.1	12577	782	1027	8982	5840
SLE	Mxx max	SLE rara - MT max gr.1	12577	782	1027	8982	5840
•	Myy max	SLE rara - ML max gr.3	11555	1243	412	2882	12253
SLE FREQENTE	Nz,A _{max}	SLE freq N max gr.1	12004	655	534	4309	5787
	Tx,A _{max}	SLE freq MT max gr.3	11922	1031	457	3518	8121
	Ty,A _{max}	SLE freq MT max gr.1	11922	668	609	5101	4907
	Mxx max	SLE freq MT max gr.1	11922	668	609	5101	4907
	Myy max	SLE freq ML max gr.3	11104	1006	372	2541	9878
SLE Q.P.		SLE quasi permanente	9301	212	212	1174	1174
SLV q=1.5	Nz,A _{max}	SLV - N max	11747	1031	753	5930	8362
	Tx,A _{max}	SLV - ML max gr.1	10283	2725	729	5658	22252
	Ty,A _{max}	SLV - MT max gr.1	10487	1037	2093	16767	8170
	Mxx max	SLV - MT max gr.1	10487	1037	2093	16767	8170
	Myy max	SLV - ML max gr.3	9221	2725	729	5658	22252
SLV q=136	Nz,A _{max}	SLV - N max	11747	1105	811	6379	8964
	Tx,A _{max}	SLV - ML max gr.1	10283	2975	787	6127	24258
	Ty,A _{max}	SLV - MT max gr.1	10487	1112	2287	18301	8772
	Mxx max	SLV - MT max gr.1	10487	1112	2287	18301	8772
	Myy max	SLV - ML max gr.3	9221	2975	787	6127	24258
SLV q=1	Nz,A _{max}	SLV - N max	11747	1394	1036	8210	11285
	Tx,Amax	SLV - ML max gr.1 SLV - MT max gr.1	10283 10487	3936 1400	1012 3037	7938 24366	31996 11094
	Ty,A _{max} Mxx _{max}	SLV - M1 max gr.1 SLV - MT max gr.1	10487	1400	3037	24366	11094
		SLV - MI max gr.1 SLV - ML max gr.1	10283	3936	1012	7938	31996
	Myy max	SLV - ML Max gr.1	10283	3930	1012	1938	31990

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO
VI 15 05 003

REV. FOGLIO A 37 di 55

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE

INTERNA INTRADOSSO FONDAZIONE							
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	26431	905	1129	12664	10644
SLU GEO	Tx,A _{max}	A2 - SLU - ML max gr.3	25025	1503	462	4465	18790
ne	Ty,A _{max}	A2 - SLU - MT max gr.1	26302	925	1247	14195	9319
SI	Mxx max	A2 - SLU - MT max gr.1	26302	925	1247	14195	9319
	Myy max	A2 - SLU - ML max gr.3	25025	1503	462	4465	18790
	Nz,A_{max}	Al - SLU - N max gr.1	33525	1090	1347	14984	12670
Τ̈́	Tx,A _{max}	A1 - SLU - ML max gr.3	31894	1784	577	5503	22128
SLU STR	Ty,Amax	Al - SLU - MT max gr.1	33376	1113	1484	16760	11133
SI	Mxx max	Al - SLU - MT max gr.1	33376	1113	1484	16760	11133
	Myy max	A1 - SLU - ML max gr.3	31894	1784	577	5503	22128
	Nz,A _{max}	SLE rara - N max gr.1	23993	766	933	10324	8856
SLE RARA	Tx,A _{max}	SLE rara - ML max gr.3	22868	1243	412	3913	15361
2	Ty,A _{max}	SLE rara - MT max gr.1	23890	782	1027	11549	7795
SLE	Mxx max	SLE rara - MT max gr.1	23890	782	1027	11549	7795
	Myy max	SLE rara - ML max gr.3	22868	1243	412	3913	15361
Œ	Nz,A _{max}	SLE freq N max gr.1	23317	655	534	5643	7425
ENI	Tx,A _{max}	SLE freq MT max gr.3	23234	1031	457	4660	10699
SLE FREQENTE	Ty,A _{max}	SLE freq MT max gr.1	23234	668	609	6623	6577
SLE 1	Mxx max	SLE freq MT max gr.1	23234	668	609	6623	6577
	Myy max	SLE freq ML max gr.3	22417	1006	372	3471	12392
SLE Q.P.		SLE quasi permanente	20614	212	212	1703	1703
	Nz,A _{max}	SLV - N max	24447	1693	1415	8640	11767
SLV q=1.5	Tx,A _{max}	SLV - ML max gr.1	22012	4934	1392	8309	31826
γď	Ty,A _{max}	SLV - MT max gr.1	22216	1700	4302	24760	11591
Z	Mxx max	SLV - MT max gr.1	22216	1700	4302	24760	11591
	Myy max	SLV - ML max gr.3	20117	4934	1392	8309	31826
9	Nz,A _{max}	SLV - N max	24447	1768	1474	9234	12556
7	Tx,A _{max}	SLV - ML max gr.1	22012	5183	1450	8924	34455
SLV q=136	Ty,A _{max}	SLV - MT max gr.1	22216	1774	4496	26781	12380
SL	Mxx max	SLV - MT max gr.1	22216	1774	4496	26781	12380
	Myy max	SLV - ML max gr.1	22012	5183	1450	8924	34455
_	Nz,A _{max}	SLV - N max	24447	2056	1698	11628	15598
-	Tx,Amax	SLV - ML max gr.1	22012	6144	1675	11297	44597
SLV q=1	Ty,A _{max}	SLV - MT max gr.1	22216 22216	2063 2063	5246 5246	34720	15422 15422
√ 2	Mxx max	SLV - MT max gr.1 SLV - ML max gr.1	22210	6144	1675	34720 11297	44597
	Myy max	SLIV - MLI MAX gr.1	22012	0144	10/3	11297	44397

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO VI 15 05 003 REV. FOGLIO A 38 di 55

4.9.1 Pila

Taglio di progetto:

Angolo inclinazione bielle compresse	Teta	da calc.	da calc.	
fattore di sicurezza aggiuntivo filtrato (eq. 7.9.10)	γва	1.21	1.22	
Taglio di calcolo	Vgr	3936	3037	kN
Riassumendo				
fattore di sicurezza aggiuntivo per la resistenza a taglio filtrato (eq. 7.9.10)	γBd	1	1.22	
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq. 7.9.10)	γBd	1	1.22	
Taglio di progetto per la gerarchia della resistenza filtrato (eq. 7.9.12)	Vgr	3936	3037	kN
Taglio di progetto per la gerarchia della resistenza (eq. 7.9.12)	Vgr	17452	28870	kN
Limite superiore Vgr	Vgr.max= V		3037	kN
Angolo inclinazione bielle compresse	Teta	da calc.	da calc.	
Tipo sezione (EC8-2; eq. 6.11)		NON CRITICA	NON CRITICA	
Rapporto di sovraresistenza	MRd/MEd	6.40	13.79	
Momento Resistente	MRd	142496	231269	kN*m
Momento agente (con q)	MEd	22252	16767	kN*m
Taglio agente (con q)	VEd	2725	2093	kN
Momento agente (q=1)	M	31996	24366	kN*m
Taglio agente (q=1)	V	3936	3037	kN
Fattore di sovraresistenza filtrato (eq. 7.9.7)	γRd	1	1	
Fattore di sovraresistenza (eq. 7.9.7)	γRd	1	1	
Fattore di struttura		1.5	1.5	
Altezza pila	Н	14.35	14.35	m
Direzione		0 (77. 7	Trasv(Mxx,Ty)	

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque		mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
CALCESTRUZZO -	Classe:	C20/25	
	Resis. compr. di progetto fcd:	11.330	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	29960.0	MPa

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE REPORT OF THE GOOD THE GOOD	RS3E	50	D 09 CL	VI 15 05 003	Α	39 di 55

	Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti:	2.210 15.00 15.00 110.00	MPa
	Ap.Fessure limite S.L.E. comb. Freque Sc limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.:	nti: 0.200 0.00 0.200	mm Mpa mm
CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C20/25 11.330 9.400 0.0020 0.0035	MPa MPa
	Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Coeff. Omogen. S.L.E.:	Parabola-Rettangolo 29960.0 2.210 15.00 15.00	MPa MPa
	Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Frequenti: Sc limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.:	110.00 nti: 0.200 0.00 0.200	daN/cm² mm Mpa mm
ACCIAIO -	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu:	B450C 450.00 450.00 391.30 391.30 0.068	MPa MPa MPa MPa
	Modulo Elastico Ef Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo ß1*ß2: Coeff. Aderenza differito ß1*ß2: Sf limite S.L.E. Comb. Rare:	2000000 Bilineare finito 1.00 0.50 337.50	daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO N° 1

Forma del Dominio: Classe Conglomerato:		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4 5 6 7 8 9 10 11 12 13	310.0 365.0 402.0 426.0 430.0 413.0 430.0 426.0 402.0 365.0 310.0 -365.0	165.0 152.0 123.0 77.0 40.0 25.0 -25.0 -40.0 -77.0 -123.0 -165.0 -165.0
15	-402.0	-123.0

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RS3E	50	D 09 CL	VI 15 05 003	Α	40 di 55

16	-426.0	-77.0
17	-430.0	-40.0
18	-413.0	-25.0
19	-413.0	25.0
20	-430.0	40.0
21	-426.0	77.0
22	-402.0	123.0
23	-365.0	152.0
24	-310.0	165.0

DOMINIO N° 2 Forma del Dominio: Classe Conglomerato:		Poligonale vuoto C20/25
N°vertice:	X [cm]	Y [cm]
1 2 3 4 5 6 7	30.0 300.0 335.0 358.0 365.0 365.0	110.0 110.0 100.0 73.0 45.0 -45.0
8 9 10	335.0 300.0 30.0	-100.0 -110.0 -110.0

DOMINIO N° 3

Forma del Dominio: Classe Conglomerato:		Poligonale vuoto C20/25
N°vertice:	X [cm]	Y [cm]
1	-30.0	-110.0
2	-300.0	-110.0
3	-335.0	-100.0
4	-358.0	-73.0
5	-365.0	-45.0
6	-365.0	45.0
7	-358.0	73.0
8	-335.0	100.0
9	-300.0	110.0
10	-30.0	110.0

DATI BARRE ISOLATE

X [cm]	Y [cm]	DiamØ[mm]
308.8	155.0	26
360.6	142.8	26
394.1	116.5	26
416.3	74.0	26
419.5	44.1	26
403.0	29.5	26
403.0	-29.5	26
419.5	-44.1	26
416.3	-74.0	26
394.1	-116.5	26
	308.8 360.6 394.1 416.3 419.5 403.0 403.0 419.5 416.3	308.8 155.0 360.6 142.8 394.1 116.5 416.3 74.0 419.5 44.1 403.0 29.5 403.0 -29.5 419.5 -44.1 416.3 -74.0

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
REE/ LEIGHE BI G/LEGGEG TIEE G/G	RS3E	50	D 09 CL	VI 15 05 003	Α	41 di 55

11	360.6	-142.8	26
12	308.8	-155.0	26
13	-308.8	-155.0	26
14	-360.6	-142.8	26
15	-394.1	-116.5	26
16	-416.3	-74.0	26
17	-419.5	-44.1	26
18	-403.0	-29.5	26
19	-403.0	29.5	26
20	-419.5	44.1	26
21	-416.3	74.0	26
22	-394.1	116.5	26
23	-360.6	142.8	26
24	-308.8	155.0	26
25	20.0	120.0	26
26	301.4	120.0	26
27	340.7	108.8	26
28	367.1	77.7	26
29	375.0	46.2	26
30	375.0	-46.2	26
31	367.1	-77.7	26
32	340.7	-108.8	26
33	301.4	-120.0	26
34	20.0	-120.0	26
35	-20.0	-120.0	26
36	-301.4	-120.0	26
37	-340.7	-108.8	26
38	-367.1	-77.7	26
39	-375.0	-46.2	26
40	-375.0	46.2	26
41	-367.1	77.7	26
42	-340.7	108.8	26
43	-301.4	120.0	26
44	-20.0	120.0	26

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Gen. N°Barra Ini. N°Barra Fin.

N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	24	1	62	26
2	12	13	62	26
3	34	33	28	26
4	35	36	28	26
5	25	26	28	26
6	43	44	28	26
7	34	25	25	26
8	35	44	25	26
9	1	2	3	26
10	2	3	3	26
11	3	4	3	26
12	4	5	3	26

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
RELAZIONE	DI CALCOLO	FILE 3/3		RS3E	50	D 09 CL	VI 15 05 003	Α	42 di 55
4.0		_							
13	6	7	4	26					
14	9	8	3	26					
15	9	10	3	26					
16	10	11	3 3	26					
17	11	12	3	26					
18	13	14	3	26					
19	14	15	3	26					
20	15	16	3	26					
21	16	17	3	26					
22	19	18	4	26					
23	21	20	3	26					
24	21	22	3	26					
25	22	23	3	26					
26	23	24	3	26					
27	26	27	3	26					
28	27	28	3	26					
29	28	29	3	26					
30	29	30	8	26					
31	30	31	3	26					
32	31	32		26					
33	32	33	3 3	26					
34	36	37	3	26					
35	37	38	3	26					
36	38	39	3	26					
37	39	40	8	26					
38	40	41	3	26					
39	41	42	3	26					
40	42	43	3 3	26					
ADMATUDE A T	ACLIO								

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 4.6 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My		Momento fletto con verso pos Momento fletto	ente [kNm] intorno a itivo se tale da comp ente [kNm] intorno a	Baric. (+ se di compre l'asse x princ. d'inerzi orimere il lembo sup. d l'asse y princ. d'inerzi	a Iella sez. a
Vy		Componente	del Taglio [kN] paralİ	orimere il lembo destro ela all'asse princ.d'ine	rzia y
Vx		Componente	iei ragiio įkivį paraii	ela all'asse princ.d'ine	IZId X
N°Comb.	N	Mx	Му	Vy	Vx
1	17906.30	9945.68	11615.30	0.00	0.00
2	16275.05	17666.79	4061.87	0.00	0.00
3	17756.95	8350.24	13051.16	0.00	0.00
4	17756.95	8350.24	13051.16	0.00	0.00
5	16275.05	17666.79	4061.87	0.00	0.00
6	11747.09	8362.13	5930.15	0.00	0.00
7	10283.09	22251.97	5658.04	0.00	0.00
8	10487.49	8170.39	16767.08	0.00	0.00
9	10487.49	8170.39	16767.08	0.00	0.00
10	9221.09	22251.97	5658.04	0.00	0.00
11	0.00	0.10	0.00	3936.00	0.00

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

LOTTO COMMESSA RS3E 50

CODIFICA DOCUMENTO D 09 CL

REV.

Α

FOGLIO

0.00

VI 15 05 003

43 di 55

12

Му

0.00

0.00

3037.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

0.00

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	12680.00	6940.00	7992.00
2	11555.00	12253.00	2882.00
3	12577.00	5840.00	8982.00
4	12577.00	5840.00	8982.00
5	11555.00	12253.00	2882.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	My
1	12004.00	5787.00 (402495.44)	4309.00 (340424.70)
2	11922.00	8121.00 (71161.23)	3518.00 (14088.56)
3	11922.00	4907.00 (0.00)	5101.00 (0.00)
4	11922.00	4907.00 (0.00)	5101.00 (0.00)
5	11104.00	9878.00 (209853.00)	2541.00 (53982.23)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx 9301.00 1174.00 (0.00) 1174.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.7 cm Interferro netto minimo barre longitudinali: 4.9 cm Copriferro netto minimo staffe: 7.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 44 di 55

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	17906.30	9945.68	11615.30	17906.35	139717.09	162939.91	14.042325.5(375.1)
2	S	16275.05	17666.79	4061.87	16275.25	151090.48	34623.17	8.552325.5(375.1)
3	S	17756.95	8350.24	13051.16	17757.09	131002.90	203461.79	15.622325.5(375.1)
4	S	17756.95	8350.24	13051.16	17757.09	131002.90	203461.79	15.622325.5(375.1)
5	S	16275.05	17666.79	4061.87	16275.25	151090.48	34623.17	8.552325.5(375.1)
6	S	11747.09	8362.13	5930.15	11747.09	140877.84	99920.63	16.852325.5(375.1)
7	S	10283.09	22251.97	5658.04	10282.90	143728.95	37289.88	6.472325.5(375.1)
8	S	10487.49	8170.39	16767.08	10487.53	113997.63	231269.44	13.822325.5(375.1)
9	S	10487.49	8170.39	16767.08	10487.53	113997.63	231269.44	13.822325.5(375.1)
10	S	9221.09	22251.97	5658.04	9220.91	142496.65	35779.72	6.402325.5(375.1)
11	S	0.00	0.10	0.00	0.00	131960.43	0.00	999.002325.5(375.1)
12	S	0.00	0.00	0.00	0.00	131960.43	0.00	999.002325.5(375.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X, Y, O sez.)
Ys max	Ordinata in cm della harra corrispi a es max (sistema rif. X.Y.O.sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	310.0	165.0	0.00319	308.8	155.0	-0.00961	-308.8	-155.0
2	0.00350	310.0	165.0	0.00293	308.8	155.0	-0.01579	-308.8	-155.0
3	0.00350	365.0	152.0	0.00324	360.6	142.8	-0.00862	-360.6	-142.8
4	0.00350	365.0	152.0	0.00324	360.6	142.8	-0.00862	-360.6	-142.8
5	0.00350	310.0	165.0	0.00293	308.8	155.0	-0.01579	-308.8	-155.0
6	0.00350	310.0	165.0	0.00307	308.8	155.0	-0.01263	-308.8	-155.0
7	0.00350	310.0	165.0	0.00290	308.8	155.0	-0.01670	-308.8	-155.0
8	0.00350	365.0	152.0	0.00327	360.6	142.8	-0.00859	-360.6	-142.8
9	0.00350	365.0	152.0	0.00327	360.6	142.8	-0.00859	-360.6	-142.8
10	0.00350	310.0	165.0	0.00289	308.8	155.0	-0.01702	-308.8	-155.0
11	0.00350	310.0	165.0	0.00267	308.8	155.0	-0.02298	308.8	-155.0
12	0.00350	310.0	165.0	0.00267	308.8	155.0	-0.02298	308.8	-155.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA LOTTO CODIFICA DOCUI

 MMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 45 di 55

N°Comb	a	b	С	x/d	C.Rid.
1	0.000005411	0.000030520	-0.003213148		
2	0.000001691	0.000057023	-0.006432938		
3	0.000006535	0.000025020	-0.002688422		
4	0.000006535	0.000025020	-0.002688422		
5	0.000001691	0.000057023	-0.006432938		
6	0.000003933	0.000042806	-0.004782093		
7	0.000001891	0.000059478	-0.006900166		
8	0.000007907	0.000021553	-0.002661979		
9	0.000007907	0.000021553	-0.002661979		
10	0.000001851	0.000060551	-0.007064668		
11	0.000000000	0.000082765	-0.010156248		
12	0.000000000	0.000082765	-0.010156248		

VERIFICHE A TAGLIO

Diam. Staffe: 10 mm

Passo staffe: 4.6 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio resistente ultimo [kN] lato conglomerato compresso [(4.1.28) NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	$d \mid z$	bw	Ctg	Acw	Ast	A.Eff
1	S	0.00	20114.55	1774.36 142.8	3 132.8	299.5	1.000	1.076	0.0	34.1(0.0)
2	S	0.00	28065.82	2552.49 201.0) 191.0	292.4	1.000	1.069	0.0	34.1(0.0)
3	S	0.00	17005.45	1509.16 122.9	112.9	297.9	1.000	1.076	0.0	34.1(0.0)
4	S	0.00	17005.45	1509.16 122.9	112.9	297.9	1.000	1.076	0.0	34.1(0.0)
5	S	0.00	28065.82	2552.49 201.0) 191.0	292.4	1.000	1.069	0.0	34.1(0.0)
6	S	0.00	24407.97	2238.59 177.5	167.5	295.2	1.000	1.050	0.0	34.1(0.0)
7	S	0.00	26992.91	2519.21 198.5	188.5	291.9	1.000	1.044	0.0	34.1(0.0)
8	S	0.00	14102.62	1246.01 103	.3 93.3	308.0	1.000	1.045	0.0	34.1(0.0)
9	S	0.00	14102.62	1246.01 103	.3 93.3	308.0	1.000	1.045	0.0	34.1(0.0)
10	S	0.00	26897.76	2528.43 199.2	2 189.2	291.0	1.000	1.039	0.0	34.1(0.0)
11	S	3936.00	18764.37	6441.72 202.8	3 192.8	300.2	2.500	1.000	20.9	34.1(0.0)
12	S	0.00	27208.33	2576.69 202.8	3 192.8	300.2	1.000	1.000	0.0	34.1(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 15 05 003	Α	46 di 55

Ac eff.			Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure						
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.11	-30.0	110.0	1.2	-360.6	-142.8		
2	S	1.32	-30.0	110.0	-4.3	-308.8	-155.0	3772	122.1
3	S	1.05	-30.0	110.0	1.6	-360.6	-142.8		
4	S	1.05	-30.0	110.0	1.6	-360.6	-142.8		
5	S	1.32	-30.0	110.0	-4.3	-308.8	-155.0	3772	122.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt

= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2

k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk Mx fess	My fess
			_							
1	S	0.00000	0						0.000 (0.20) 402495.44	340424.70
2	S	-0.00003	0	0.500	26.0	87	0.00001 (0.00001)	432	0.006 (0.20) 104210.12	24511.02
3	S	-0.00001	0						0.000 (0.20) 222577.51	170312.86
4	S	-0.00001	0						0.000 (0.20) 222577.51	170312.86
5	S	-0.00003	0	0.500	26.0	87	0.00001 (0.00001)	432	0.006 (0.20) 104210.12	24511.02

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.02	-30.0	110.0	3.4	-308.8	-155 N		
2	S	1.13		110.0		-308.8			
3	S	0.97	-30.0	110.0	3.9	-308.8	-155.0		
4	S	0.97	-30.0	110.0	3.9	-308.8	-155.0		
5	S	1.17	-30.0	110.0	-1.0	-308.8	-155.0	440	10.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk Mx fess	My fess
1	ς	0.00000	0						0.000 (0.20) 402495.44	340424 70
2	S	-0.00007	0						0.000 (0.20) 402473.44	
3	S	0.00000	0.00000						0.000 (0.20) 0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20) 0.00	0.00
5	S	-0.00001	0	0.500	26.0	87	0.00000 (0.00000)	479	0.001 (0.20) 209853.00	53982.23

N°Comb	Ver	Sc max	Xc max Yc	max Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.64	-30.0 1	10.0 7.0	-308.8	-155.0		

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

4.9.2 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{max} = 4918 \text{ kN (CC. SLU)}$

 $N_{max} = 4052 \text{ kN (CC. SLV q=1.36)}$

 $T_{max} = 598 \text{ kN (CC. SLV q=1.36)}$

Il plinto di fondazione è stato verificato ipotizzando un meccanismo di trave soggetta a flessione. Si riporta di seguito la verifica. La larghezza è stata valutata mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

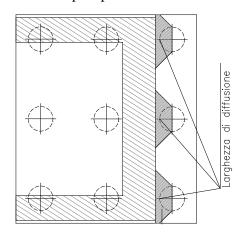


Figura 1 - Diffusione delle azioni dal palo alla pila

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 48 di 55

Il momento flettente viene ricavato a partire dall'azione assiale massima nel palo moltiplicata per la distanza tra il palo ed la pila. Il taglio agente sarà pari allo sforzo normale stesso.

Risulta dunque:

M = 4918*3 = 14754 kN*m

 $T = 4918 \; kN$

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
ACCIAIO -	Tipo:	B450C	
7.00	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C25/30
N° vertice:	X [cm]	Y [cm]
1	-187.5	0.0
2	-187.5	250.0
3	187.5	250.0
4	187.5	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-177.5	10.0	26
2	-177.5	240.0	26
3	177.5	240.0	26
4	177.5	10.0	26
5	177.5	15.2	26
6	-177.5	15.2	26
7	-177.5	235.0	26
8	177.5	235.0	26

DATI GENERAZIONI LINEARI DI BARRE

PROGETTO DEFINITIVO

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 49 di 55

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	34	26
2	2	3	34	26
3	5	6	34	26
4	7	8	17	26

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 1.8 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato nel Baric. (+ se di compres Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. de							
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della s							
Vy Vx		Componente del	Taglio [kN] parallela	nere in embo desiro n all'asse princ.d'iner n all'asse princ.d'iner	zia y			
N°Comb.	N	Mx	Му	Vy	Vx			

0.00

4918.00

0.00

RISULTATI DEL CALCOLO

1

Sezione verificata per tutte le combinazioni assegnate

0.00

Copriferro netto minimo barre longitudinali: 8.7 cm Interferro netto minimo barre longitudinali: 2.4 cm Copriferro netto minimo staffe: 7.7 cm

14754.00

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

 Mx
 Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

 My
 Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia

 N Res
 Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

 Mx Res
 Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	14754.00	0.00	0.00	34147.32	0.00	2.31382	.3(133.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** RS3E 50 D 09 CL VI 15 05 003 50 di 55 Α

Deform. unit. massima del conglomerato a compressione ec max Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform. unit. massima nell'acciaio (positiva se di compress.) es max Xs max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec max x/d Xc max Yc max es min Xs min Ys min es max Xs max Ys max 1 0.00350 0.075 -187.5 250.0 0.00156 -177.5 240.0 -0.04295-177.5 10.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. x/d

1 0.000000000 0.000193552 -0.044887945 0.075 0.700

VERIFICHE A TAGLIO

bw

Diam. Staffe: 10 mm

Passo staffe: 1.8 cm [Passo massimo di normativa = 33.0 cm]

Ver

S = comb. verificata a taglio / N = comb. non verificata Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Vcd Taglio resistente ultimo [kN] lato conglomerato compresso [(4.1.28) NTC]

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata [cm] valutata lungo strisce ortog. all'asse neutro. Dmed Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Acw Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A.Eff Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb Ver Ved Vcd Vwd Dmed A.Eff hw Ctg Acw Ast S 19775.17 18439.58 4918.00 240.0 375.0 2.500 1.000 23.3 87.3(0.0) 1

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO PILE 3/3

LOTTO COMMESSA CODIFICA

VI15 (ex VI07) - Singolo Binario

RS3E D 09 CL 50

DOCUMENTO VI 15 05 003

REV. Α

FOGLIO 51 di 55

4.9.3 Palo di fondazione L=24.0m

Viene verificata la sezione di incastro con la platea di fondazione.

Il momento flettente agente in testa palo viene derivato dal taglio in testa palo nell'ipotesi di elasticità lineare sia per il palo che per il terreno. Risulta

 $M = T * \alpha$

 $\alpha = 2.85$ (vedi relazione geotecnica)

 $N_{max} = 4918 \ kN$ T = 238 kN

M = 238 * 2.85 = 679 kNm

 $N_{\text{min}} = 165 kN \,$ T = 708 kN M = 765 * 2.85 = 2018 kNm

N = 165 kNT = 708 kN $M_{max} = 708 * 2.85 = 2018 \text{ kNm}$

Caratteristiche della sezione:

Sezione circolare Ø 150 cm

 $A_s = 36\phi 26$ *staffe \phi14/15*

La lunghezza del palo è pari a L = 24.00m

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo 81*82 :	1.00	
	Coeff. Aderenza differito B1*B2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

PROGETTO DEFINITIVO

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A

FOGLIO

52 di 55

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 75.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

 N°Gen.
 Xcentro
 Ycentro
 Raggio
 N°Barre
 Ø

 1
 0.0
 0.0
 65.0
 36
 26

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 15.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.

Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y

Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	4516.00	2018.00	0.00	708.00	0.00
2	165.00	2018.00	0.00	708.00	0.00
3	4918.00	679.00	0.00	238.00	0.00
4	1040.00	679.00	0.00	238.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 3492.00
 473.00
 0.00

 2
 1827.00
 473.00
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO DEFINITIVO

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

LOTTO COMMESSA CODIFICA DOCUMENTO

RS3E 50 D 09 CL

VI 15 05 003 Α

REV.

FOGLIO 53 di 55

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione Му

N°Comb. Ν Mx Му 357.00 (1839.46) 3168.00 0.00 (0.00) 1 357.00 (1412.45) 0.00 (0.00) 1903.00 2

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.7 cm Interferro netto minimo barre longitudinali: 8.7 cm Copriferro netto minimo staffe: cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia My N Res Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	4516.00	2018.00	0.00	4515.82	5756.29	0.00	2.85 191.1(53.0)
2	S	165.00	2018.00	0.00	165.24	4287.04	0.00	2.12 191.1(53.0)
3	S	4918.00	679.00	0.00	4917.87	5856.72	0.00	8.63 191.1(53.0)
4	S	1040.00	679.00	0.00	1039.93	4642.70	0.00	6.84 191.1(53.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	75.0	0.00285	0.0	65.0	-0.00553	0.0	-65.0
2	0.00350	0.0	75.0	0.00251	0.0	65.0	-0.01029	0.0	-65.0
3	0.00350	0.0	75.0	0.00287	0.0	65.0	-0.00526	0.0	-65.0
4	0.00350	0.0	75.0	0.00261	0.0	65.0	-0.00896	0.0	-65.0

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO VI 15 05 003 REV. FOGLIO A 54 di 55

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb b C.Rid. y/d 0.000000000 0.000064519 -0.001338959 1 2 0.000000000 0.000098530 -0.003889744 0.000000000 0.000062559 -0.001191958 3 4 0.000000000 0.000089018 -0.003176333

VERIFICHE A TAGLIO

bw

Ctg

Acw

Ast A.Eff

Diam. Staffe: 14 mm

Passo staffe: 15.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb Ver Ved Vcd Vwd $d \mid z$ bw Ctg Acw Ast A.Eff 708.00 3965.05 2027.79118.2 101.0 136.2 2.500 1.180 7.2 20.5(0.0) S 2.500 2 708.00 3427.37 2235.92122.1 111.4 125.2 1.007 20.5(0.0) 6.5 3 S 238.00 4006.97 2008.95117.9 100.1 137.1 2.500 1.197 2.4 20.5(0.0) S 238.00 3562.23 2189.31121.1 109.0 128.5 2.500 1.042 20.5(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.85	0.0	0.0	10.6	0.0	-65.0		
2	S	2.05	0.0	0.0	-2.0	0.0	-65.0	560	15.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

VI15 (ex VI07) - Singolo Binario

RELAZIONE DI CALCOLO PILE 3/3

2

S

-0.00002

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 15 05 003
 A
 55 di 55

0.00001 (0.00001) 451 0.003 (0.20) 4688.86

0.00

1/				sempre fe	ssurata	anche nel o	caso in cui la trazione minima del ca	alcestruz	zo sia inferiore a fo	ctm			
Ver.			Esito della verifica Massima defermazione unitario di trazione nel salsestruzza (trazione) valutata in sezione fessurata										
e1			Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata										
e2							zo (trazione -) valutata in sezione fe	essurata					
k1		= 0.8 per ba		J		. , .							
kt							equenti [cfr. eq.(7.9)EC2]						
k2		= 0.5 per fles	sione; =(e1 +	e2)/(2*e1) per tra	zione ecce	ntrica [eq.(7.13)EC2]						
k3		= 3.400 Coef	f. in eq.(7.11)	come da	annessi	nazionali							
k4		= 0.425 Coef	f. in eq.(7.11)	come da	annessi	nazionali							
Ø							nell'area efficace Ac eff [eq.(7.11)E0	221					
Cf								•					
e sm	ı - e cm	Differenza tra	Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]										
						S [(7.9)E	C2 e (C4.1.8)NTC]						
sr ma	ax	Massima dist					\ f/= -\ \ / - \ \ / -						
wk							:m) [(7.8)EC2 e (C4.1.7)NTC]. Valoi	re limite i	ra parentesi				
Mx fe	ess.						l'asse X [kNm]						
My fe	ess.	Componente	momento di _l	prima fess	urazion	e intorno al	l'asse Y [kNm]						
Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess		
1	S	-0.00037	0						0.000 (0.20)	1865.59	0.00		

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

87

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.41	0.0	0.0	11.9	0.0	-65.0		
2	S	1.79	0.0	0.0	2.6	0.0	-65.0		

0.500 26.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

0

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	-0.00037	0					0.000 (0.20)	1839.46	0.00
2	S	-0.00069	0					0.000 (0.20)	1412.45	0.00