COMMITTENTE:

PROGETTAZIONE:

SCALA:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA DITTAINO – CATENANUOVA

VI20 (ex VI12) - Doppio Binario

Relazione di calcolo Spalle

									-
COMN	MESSA	LOTTO FAS	E ENTE	TIPO DOC.	OPERA/I	DISCIPLIN <i>I</i>	A PROG	R. REV	√.
R S	3 E	5 0 D	0 9	C L	V I 2	2 0 0 4	0 0	1 A	
Rev.	D	escrizione (Redatto	Data	Verificato	Data	Approvato	Data	A torizzato Data

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	A torizzato Data
A	Emissione Esecutiva	Abbasciano	Novembre 2019	A. Ferri	Novembre 2019	F. Sparacino	Novembre 2019	A. ≟ittozzi ≕Vo le≔bre 2019
						-		K S.p.A.
								ALPER illi e Ga ing. An ing. An ing. An ing. An
								Pere Ch Dott. Pott.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 2 di 68

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE DELL'OPERA	4
	1.1.1	Aspetti legati alle opere di fondazione	4
2	RIFI	ERIMENTI NORMATIVI	7
	2.1	DOCUMENTI DI RIFERIMENTO	7
3	MA	ΓERIALI	8
	3.1	Verifica S.L.E.	9
	3.1.1	Verifiche alle tensioni	9
	3.1.2	2 Verifiche a fessurazione	9
4	ANA	ALISI E VERIFICHE SPALLA	11
	4.1	Generalità	11
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE SPALLE.	11
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	11
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	15
	4.5	GEOMETRIA DELLA SPALLA	16
	4.6	Analisi dei carichi	19
	4.6.1	Peso proprio elementi strutturali	19
	4.6.2	? Carichi trasmessi dall'impalcato	19
	4.6.3	3 Azione del Vento	21
	4.6.4	4 Carichi da traffico verticali	22
	4.6.5	5 Effetti dinamici	23
	4.6.6	6 Carichi da traffico orizzontali	23
	4.6.7	7 Spinta statica del terrapieno	24
	4.6.8	Sovraccarico sul terrapieno	25
	4.6.9	Spinta del sovraccarico accidentale condizioni statiche	26

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 3 di 68

4.6.1	10	Azione sismica	27
4.6.1	11	Incremento di spinta del terrapieno	33
4.6.1	12	Inerzie strutturali	33
4.6.	13	Calcolo delle sollecitazioni in testa pali	33
4.6.	14	Riepilogo risultati	34
4.7	So	OLLECITAZIONI	39
4.7.	1	Muro paraghiaia	39
4.7.2	2	Muro frontale	41
4.7.3	3	Plinto di fondazione	43
4.8	P	ALI DI FONDAZIONE	45
4.9	V	ERIFICHE DEGLI ELEMENTI STRUTTURALI	46
4.9.1	1	Paraghiaia	49
4.9.2	2	Muro frontale	55
4.9.3	3	Zattera di fondazione	61
4.9.4	4	Palo di fondazione L=22.0m	64

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle spalle del viadotto ferroviario VI20 della tratta ferroviaria Palomba-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare si tratterà la spalla A che presenta l'altezza del paramento maggiore e gli appoggi "fissi" dell'impalcato.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 14 gennaio 2008.

1.1 Descrizione dell'opera

Il ponte VI20 attraversa un corso d'acqua maggiore su cui è prevista una sistemazione idraulica ed interferisce con una fognatura esistente che sarà riposizionata al di sotto del ponte all'interno di uno scatolare di protezione in c.a..

Il ponte è previsto a doppio binario dal km 14+033.90 (asse giunto spalla A) al km 14+051.30 per uno sviluppo complessivo di 17.90m ed è costituito da un'unica campata isostatica di luce teorica 17.00m.

Il ponte viene eseguito in corrispondenza della linea storica, le due spalle realizzate in c.a. hanno un'altezza del fusto di circa 7.50m.

L'impalcato è del tipo a travi incorporate con 19 travi metalliche HEB900 inglobate in un getto in opera di c.a.. La larghezza complessiva è pari a 13.70m e su di esso gravano 2 binari posti ad interasse pari a 4.0m, in maniera simmetrica rispetto alla mezzeria del viadotto. L distanza tra il piano ferro e l'intradosso impalcato risulta pari a 1.853 m.

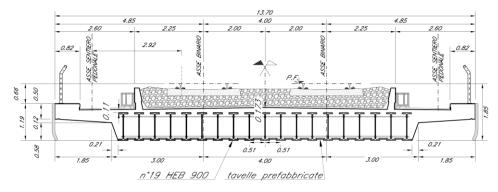
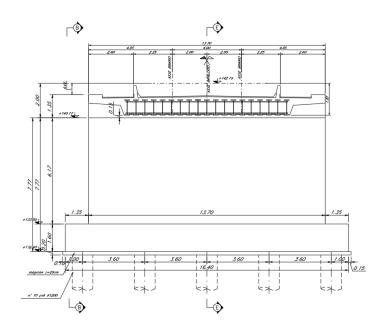
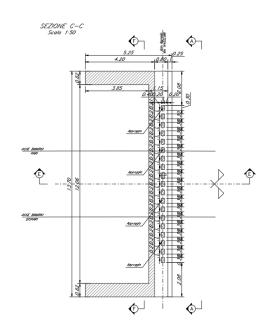


Figura 1 - Sezione trasversale

1.1.1 Aspetti legati alle opere di fondazione

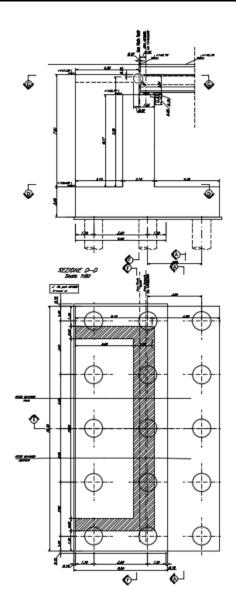

Le fondazioni sono realizzate con plinti su pali di grande diametro, e per la realizzazione degli scavi sono previste opere di protezione.



RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 5 di 68



RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 6 di 68

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 7 di 68

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 14 gennaio 2008, «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture, Circolare n°617 02 febbraio 2009, Istruzioni per l'Applicazione delle «Norme tecniche per le costruzioni».
- Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2
 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3
 Corpo Stradale
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

2.1 Documenti di riferimento

- Relazione geotecnica e di calcolo delle fondazioni RS3E50D09RBVI2003001A
- Analisi risposta sismica locale RS3E50D09RBVI2003002A

RELAZIONE DI CALCOLO SPALLE

LOTTO COMMESSA **CODIFICA DOCUMENTO** REV. **FOGLIO** RS3E 50 D 09 CL VI 20 04 001 8 di 68 Α

3 **MATERIALI**

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

- Calcestruzzo magro e getto di livellamento
- CLASSE DI RESISTENZA MINIMA C12/15
- TIPO CEMENTO CEM I÷V CLASSE DI ESPOSIZIONE AMBIENTALE : XO
 - Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni

- CLASSE DI RESISTENZA MINIMA C25/30
 TIPO CEMENTO CEM III÷V
 RAPPORTO A/C : ≤ 0.60
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
 COPRIFERRO MINIMO = 60 mm

- DIAMETRO MASSIMO INERTI: 32 mm
 - Calcestruzzo fondazioni armate

- CLASSE DI RESISTENZA MINIMA C25/30 TIPO CEMENTO CEM III÷V RAPPORTO A/C : ≤ 0.60 CLASSE MINIMA DI CONSISTENZA : S4 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 40mm
- DIAMETRO INERTI: 25 mm
 - Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle
- CLASSE DI RESISTENZA MINIMA C32/40
- TIPO CEMENTO CEM III+V RAPPORTO A/C : < 0.50 CLASSE MINIMA DI CONSISTENZA :
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC4
- COPRIFERRO MINIMO = 50mm
- DIAMETRO INERTI: 25 mm
 - Acciaio ordinario per calcestruzzo armato

IN BARRE E RETI ELETTROSALDATE

B450C saldabile che presenta le seguenti caratteristiche :

— Tensione di snervamento caratteristica fyk > 450 N/mm²

— Tensione caratteristica a rottura ftk > 540 N/mm²

 $1.15 \le ftk/fyk < 1.35$

(*): I VALORI DI COPRIFERRO RIPORTATI SI RIFERISCONO AD OPERE. CON VITA NOMINALE DI 75 ANNI. PER COSTRUZIONI CON VITA NOMINALE. DI 100 ANNI TALI VALORI DOVRANNO ESSERE AUMENTATI DI 5 mm.

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{sk};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{sk}$.

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di			Armatura					
	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile				
esigenza			Stato limite	wd	Stato limite	wd		
2	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃		
a	Ordinarie	quasi permanente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂		

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 20 04 001	Α	10 di 68

h	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
	Aggiessive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
	Wiolto Agglessive	quasi permanente	decompressione	-	ap. fessure \(\leq \)	$\leq w_1$

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE				
Ordinarie	X0, XC1, XC2, XC3, XF1				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3				
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4				

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 617/09.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 11 di 68

4 ANALISI E VERIFICHE SPALLA

4.1 Generalità

La spalla presentano una configurazione a paramento di spessore 1.40 m e muri di risvolto per il contenimento del rilevato retrostante di spessore 0.82 m. L'altezza della spalla A (escluso paraghiaia) è pari a 6.17 m.

Entrambe le spalle hanno in testa un paraghiaia di spessore 0.35 m ed altezza di circa 1.22 cm dalla testa muro frontale.

Le fondazioni sono realizzate su pali di diametro 1.20m collegate in testa da una platea di spessore 2.00 m.

Il calcolo è stato effettuato per la spalla A, con altezza di paramento maggiore estendendo i risultati anche all'altra.

Per le verifiche dei singoli elementi della spalla (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

4.2 Modelli a mensola per la verifica delle spalle

Le sollecitazioni di verifica della spalla sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle spinte del terreno di riempimento e del sovraccarico in condizioni sia statiche che sismiche e le azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Tutti i muri sono considerati sconnessi fra loro per la valutazione delle sollecitazioni alla base e quindi le azioni provenienti dall'impalcato sono applicate solamente al muro frontale. Tale schema pur risultando cautelativo, non fornisce sovrastime eccessive nel calcolo dei quantitativi di armatura previsti.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali muro paraghiaia e muro frontale che vengono tutti modellati come delle mensole incastrate alla base.

Per il plinto di fondazione, si è utilizzato un modello tirante-puntone per l'analisi e la verifica dello zoccolo anteriore al muro frontale.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC08, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 20 04 001	Α	12 di 68

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

RELAZIONE DI CALCOLO SPALLE

LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** 13 di 68 RS3E 50 D 09 CL VI 20 04 001 Α

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 20 04 001	Α	14 di 68	

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80 ⁽³⁾	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi , alle verifiche strutturali.

	A2-SLU-N max gr.1	A2 - SLU - MT max gr.1	A2-SLU-MI max gr.1	A2 - SLU - N max gr.3	A2-SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	A2 - SLU Gmin - N max gr.1	A2 - SLU Gmin - MT max gr.1	A2 - SLU Gmin - ML max gr.1	A2 - SLU Gmin - N max 8r.3	A2 - SLU Gmin - MT max gr.3	A2 - SLU Gmin - ML max gr.3	A2 - SLU G min - Vento ponte scarico	A1 - SLU - N max gr.1	A1-SLU - MT max gr.1	A1-SLU-ML max gr.1	A1-SLU-N max gr.3	A1-SLU - MT max gr.3	A1-SLU - MI max gr.3	A1 - SLU - Vento ponte scarico	A1-SLU Gmin - N max 8r.1	A1-SLU Gmin-MT max gr.1	A1 - SLU Gmin - ML max gr.1	A1-SLU Gmin-N max gr.3	A1-SLU Gmin-MT max gr.3	A1-SLU Gmin- ML max 8r.3	A1 - SLU Gmin - Vento ponte scarico
Peso proprio gl	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35							1.00
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50							0.00
Ballast	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00	1.00			1.00
Comb. Nmax Qv	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00					0.00
Comb. Nmax Q frenatura	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00				0.00
Comb. Nmax Q centrifuga	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00				0.00
Comb. Nmax Q serpeggio	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00
Comb. MTmax Qv	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Q frenatura	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Q centrifuga	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00
Comb. MTmax Q serpeggio	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00
Comb. MLmax Qv	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00
Comb. MLmax Q frenatura	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00
Comb. MLmax Q centrifuga	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00
Comb. MLmax Q serpeggio	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00	0.00	1.50
Vento Ponte Carico	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.00
Attrito permanente	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00
Attrito carichi mobili	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 20 04 001	Α	15 di 68	

SLE rara - N max gr.1	SLE rara - MT max gr.1	SLE rara - Ml max gr.1	SLE rara - N max gr.3	SLE rara - MT max gr.3	SLE rara - ML max gr.3	SLE rara - Vento ponte scarico	SLE freq N max gr.1	SLE freq MT max gr.1	SLE freq ML max gr.1	SLE freq N max gr.3	SLE freq MT max gr.3	SLE freq ML max gr.3	SLE freq Vento ponte scarico	SLE quasi permanente	SLV - N max	SLV - MT max	SLV - ML max	SLV - MT max	SLV - ML max	SLV - N min	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Peso proprio gl
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Permanenti G2
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Ballast
1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.20	Comb. Nmax Qv
0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.20	Comb. Nmax Q frenatura
1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.20	Comb. Nmax Q centrifuga
1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.20	Comb. Nmax Q serpeggio
0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	0.00	Comb. MTmax Qv
0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	0.00	Comb. MTmax Q frenatura
0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	0.00	Comb. MTmax Q centrifuga
0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	0.00	Comb. MTmax Q serpeggio
0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	Comb. MLmax Qv
0.00	0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q frenatura
0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q centrifuga
0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q serpeggio
0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Scarico
0.60	0.60	0.60	0.60	0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento Ponte Carico
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50		Attrito permanente
1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.20	0.20	0.20	0.20	0.20		Attrito carichi mobili
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.30	1.00		Sisma longitudinale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	1.00	0.30		Sisma trasversale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	-0.30	-0.30	-1.00	Sisma verticale

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- Lunghezze = m
- Forze = kN

4.5 Geometria della spalla

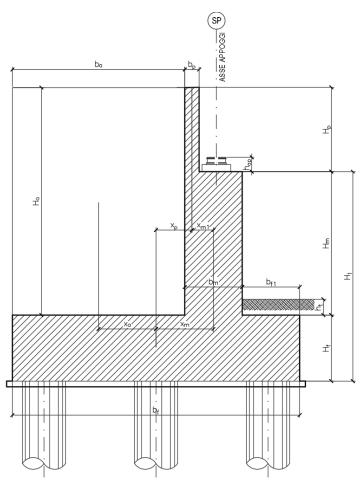


Figura 1 – Significato dei simboli: sezione tipologica

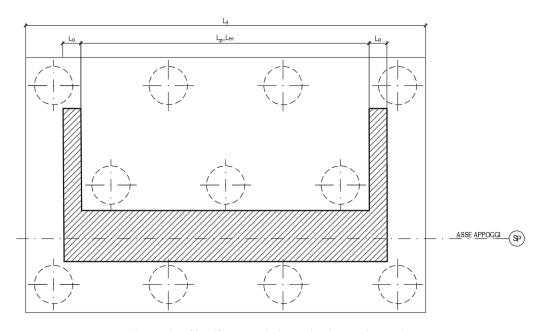


Figura 2 – Significato dei simboli: pianta tipologica

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 18 di 68

Generali			
Peso cls	γ _{c1s}	25	kN/m^3
Peso terreno	γt	20	kN/m ³
Sovraccarico accidentale sul rilevato	q _{acc}	53.0	kN/m ²
Altezza appoggio + baggiolo	h _{ap}	0.45	m
Distanza piano appoggi-intradosso plinto	H ₁	8.62	m
Paraghiaia			
Altezza	Нp	1.22	m
Lunghezza lungo asse X	b _p	0.35	m
Lunghezza lungo asse Y	L _p	12.06	m
Distanza tra i muri andatori dir. Y		12.06	m
Coordinata X del baricentro rispetto fondazione	Хp	-0.78	m
Muro frontale			
Altezza	H_m	6.17	m
Lunghezza lungo asse X	b_m	1.40	m
Lunghezza lungo asse Y	L_m	12.10	m
Coordinata X del baricentro rispetto fondazione	x _m	-0.25	m
Coordinata X del baricentro rispetto paraghiaia	x _{ml}	-0.52	m
Distanza asse baggioli- asse muro frontale		0.15	m
Plinto			
Altezza	$H_{\rm f}$	2.00	m
Lunghezza lungo asse X	b_f	9.60	m
Lunghezza lungo asse Y	$L_{\rm f}$	16.40	m
Mensola anteriore plinto	$\mathfrak{b}_{\mathrm{fl}}$	4.35	m
Spessore ricoprimento medio	\mathbf{h}_{t}	1.00	m
Distanza asse baggioli - baricentro plinto		-0.10	m
Muro andatore		1	
Altezza	Ha	7.39	m
Lunghezza di un singolo muro lungo asse Y	La	0.82	m
Lunghezza di un singolo muro lungo asse X	b _a	3.85	m
Coordinata X del baricentro rispetto fondazione	Xa	-2.88	m
Terreno			
Angolo d'attrito interno (φ)		35	0
Coefficiente per il calcolo della spinta a riposo	•	Ko= 0.426	
Sisma			
S _s		1.870	
a _g		0.175	
Coefficiente riduttivo		1.00	
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.327	
Mononobe e Okabe	K_{AE}	0.571	
Coefficiente per sisma verticale	\mathbf{k}_{v}	0.164	

Tabella 2 – Dati di input

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

> Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato			
N° Binari		2	
Lunghezza	L	17.9	m
Peso Proprio	G1	360	kN/m
Permanenti portati	G2	185	kN/m
Ballast	G2	0	kN/m
n° totale appoggi sulla spalla	n	5	
Reazione appoggio i = (G1*L/2)/n	Ri	644.4	kN
Reazione appoggio i = (G2*L/2)/n	Ri	331.2	kN
Reazione appoggio i = (G2*L/2)/n (ballast)	Ri	0	kN

4.6.2 Carichi trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, che ripartiti con il metodo Courbon sul singolo appoggio forniscono i risultati in tabella seguente.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 20 di 68

Appoggio		A			В			C			D			E		
Descrizione carico	FZ	FX	FY	biz												
Descrizione canco	[kN]	[m]														
Peso proprio g1	644			644			644			644			644			0.00
Permanenti G2	331			331			331			331			331			0.00
Ballast																0.00
Comb. Nmax Qv	518			566			517			565			516			0.00
Comb. Nmax Q frenatura		204			204			204			204			204		1.85
Comb. Nmax Q centrifuga																0.00
Comb. Nmax Q serpeggio			0			35			35			35				1.85
Comb. MTmax Qv	512			393			259			173			7			0.00
Comb. MTmax Q frenatura		125			125			125			125					1.85
Comb. MTmax Q centrifuga																0.00
Comb. MTmax Q serpeggio			0			17			17			17				1.85
Comb. MLmax Qv	518			566			517			565			516			0.00
Comb. MLmax Q frenatura		204			204			204			204			204		1.85
Comb. MLmax Q centrifuga																0.00
Comb. MLmax Q serpeggio			0			35			35			35				1.85
Vento Ponte Scarico			0			36			36			36				1.08
Vento Ponte Carico			0			45			45			45				1.28
Attrito permanente		29	29		29	29		29	29		29	29		29	29	0.00
Attrito carichi mobili		16	16		17	17		16	16		17	17		15	15	0.00
Sisma longitudinale		706			713			706			712			706		1.20
Sisma trasversale			353			356			353			356			353	1.20
Sisma verticale	177			178			177			178			177			0.00

REV.

Α

FOGLIO

21 di 68

RELAZIONE DI CALCOLO SPALLE

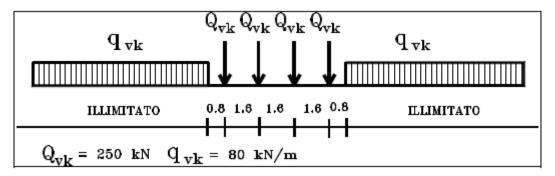
COMMESSA LOTTO CODIFICA DOCUMENTO

RS3E 50 D 09 CL VI 20 04 001

4.6.3 Azione del Vento

Azione del Vent	o - generale -	NTC e EC 1-1-4:2005
-----------------	----------------	---------------------

Conditions (neutropeins a series)		scarico	carico	
Condizione (ponte carico o scarico) Altitudine sul livello del mare		250	250	
Zona	as Z	4	4	m
Parametri	Vb,0	28	28	m/s
Parametri	a0	500	500	m m
Parametri	ks	0.36	0.36	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 * (1+ ks(as/ao-1)	28	28	m/s
Periodo di ritorno considerato	TR	112.5	112.5	anni
renodo di intollo considerato				аши
***	αR	1.05	1.05	,
Velocità di riferimento	Vb(TR)	29.28	29.28	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*ρ*vb²	0.54	0.54	kN/mo
Classe di rugostità del terreno		D	D	
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		<750	<750	m
Categoria di esposizione del sito	Cat	II	II	
Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.19	0.19	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Zilliri	13.4	13.4	m
Coefficiente di topografia	ct	15.4	1	ш
Coefficiente di esposizione (z)	ce(z)	2.54	2.54	
Larghezza impalcato	b	13.7	13.7	m
Altezza impalcato	h1	1.2	1.9	m
Altezza impaicato Altezza treno o parapetto	h2	1.5	4	m
Altezza tetilo o parapetto Altezza totale impalcato (comprese le barriere o treno)	dtot	2.7	5.9	m
Rapporto di forma	b/dtot	5.07	2.32	***
Coefficiente di forza (figura 8.3 EC)	cfx	1.30	1.80	
evenience a roma (ngala 6.5 20)	CIA .	1.50	2.00	
Riepilogo				
Pressione cinetica di riferimento	qb	0.54	0.54	kN/mo
Coefficiente di esposizione	ce	2.54	2.54	
	cfx	1.30	1.80	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	đ	2.7	5.9	m
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1	d f=prodotto	2.7 4.8	5.9 14.5	kN/m
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente	d f=prodotto p=f/d	2.7 4.8 1.77	5.9 14.5 2.46	kN/m kN/m
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/l Pressione statica equivalente Pressione statica equivalente (minima considerata)	d f=prodotto p=f/d pmin	2.7 4.8 1.77 1.5	5.9 14.5 2.46 1.5	kN/m kN/mo kN/mo
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/l Pressione statica equivalente Pressione statica equivalente (minima considerata)	d f=prodotto p=f/d	2.7 4.8 1.77	5.9 14.5 2.46	kN/m kN/m
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente Pressione statica equivalente (minima considerata) Forza statica equivalente a m/1 considerata	d f=prodotto p=f/d pmin	2.7 4.8 1.77 1.5	5.9 14.5 2.46 1.5	kN/m kN/mo kN/mo
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente Pressione statica equivalente (minima considerata) Forza statica equivalente a m/1 considerata Vento impalcato a ponte scarico	d f=prodotto p=f/d pmin	2.7 4.8 1.77 1.5	5.9 14.5 2.46 1.5	kN/m kN/mo kN/mo
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente Pressione statica equivalente (minima considerata) Forza statica equivalente a m/1 considerata Vento impalcato a ponte scarico Forza statica equivalente	d f=prodotto p=f/d pmin f	2.7 4.8 1.77 1.5 4.8	5.9 14.5 2.46 1.5	kN/m kN/mo kN/mo kN/m
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente Pressione statica equivalente (minima considerata) Forza statica equivalente a m/1 considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato	d f=prodotto p=f/d pmin f	2.7 4.8 1.77 1.5 4.8	5.9 14.5 2.46 1.5	kN/m kN/mo kN/mo kN/m kN/m
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente Pressione statica equivalente (minima considerata) Forza statica equivalente a m/1 considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi	d f=prodotto p=f/d pmin f	2.7 4.8 1.77 1.5 4.8 4.8	5.9 14.5 2.46 1.5	kN/m kN/mo kN/mo kN/m kN/m
Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente Pressione statica equivalente (minima considerata) Forza statica equivalente a m/1 considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi Vento impalcato a ponte carico	d f=prodotto p=f/d pmin f f L FT=f*L/2	2.7 4.8 1.77 1.5 4.8 4.8 17.9 43	5.9 14.5 2.46 1.5	kN/m kN/mc kN/mc kN/m kN/m
Coefficiente di forza Altezza di riferimento (EC punto 8.3.1 (4) e (5)) Forza statica equivalente a m/1 Pressione statica equivalente Pressione statica equivalente (minima considerata) Forza statica equivalente a m/1 considerata Vento impalcato a ponte scarico Forza statica equivalente Luce impalcato Forza trasversale al piano appoggi Vento impalcato a ponte carico Forza statica equivalente Luce impalcato a ponte carico Forza statica equivalente Luce impalcato	d f=prodotto p=f/d pmin f	2.7 4.8 1.77 1.5 4.8 4.8	5.9 14.5 2.46 1.5	kN/m kN/mo kN/mo kN/m kN/m


4.6.4 Carichi da traffico verticali

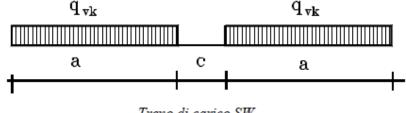
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2.

Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Treno di carico LM 71


Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito</u>: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

Treno di carico SW

Tipo di Carico	$q_{vk}[kN/m]$	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario.

Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001 A).

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1,10
SW/0	1,10
SW/2	1,00

4.6.5 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 14.1.2008 che per l'opera in esame riporta:

[....] Pile con snellezza $\lambda \le 30$, spalle, fondazioni, muri di sostegno e spinte del terreno possono essere calcolate assumendo coefficienti dinamici unitari.

4.6.6 Carichi da traffico orizzontali

Frenatura					
L	17.9	m			
Leale	17.9	per Treno LM 71			
	15	per Treno SW/0			
	17.9	per SW/2			
Qlb,k	393.8	per Treno LM 71			
Qlb,k	330	per Treno SW/0			
Q1b,k	626.5	per SW/2			
Qlb,k (filtrata)per Treno LM 71	394	kN			
Qlb,k (filtrata)per Treno SW/0	330	kN			
Qlb,k(filtrata)per SW/2	627	kN			

Avviamento						
L	17.9	m				
Leale	17.9	per Treno LM 71				
	15	per Treno SW/0				
	17.9	per SW/2				
Qla,k	649.77	per Treno LM 71				
Qla,k	544.5	per Treno SW/0				
Qla,k	590.7	per SW/2				
Qla,k (filtrata)per Treno LM 71	650	kN				
Qla,k (filtrata)per Treno SW/0	545	kN				
Qla,k(filtrata)per SW/2	591	kN				

<u>Serpeggio</u>							
FT=100kN /2	50	kN*m					
Treno LM 71							
α	1.1						
FT*α	55	kN					
Treno SW/0							
α	1.1						
FT*α	55	kN					
Treno SW/2							
α	1						
FT*α	50	kN					

4.6.7 Spinta statica del terrapieno

A tergo della spalla, applicato sulla zattera posteriore, viene considerato un carico pari al peso del rinterro calcolato con un peso di volume pari a $\gamma = 20 \text{ kN/m}^3$

L'espressione della spinta esercitata da un terrapieno di peso specifico γ, su una parete di altezza H, risulta:

$$S_o = 1/2 * \gamma * H^2 * K_o$$
 (spinta per metro lineare di spalla)

l'utilizzo di Ko è determinato dall'impossibilità, da parte della spalla, di subire spostamenti; si assume $K_o=1$ - sen ϕ .

Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete).

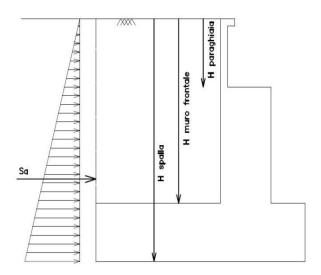


Fig. 1 Spinta statica terreno di rinterro

RELAZIONE DI CALCOLO SPALLE

COMMESSA I	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 20 04 001	Α	25 di 68

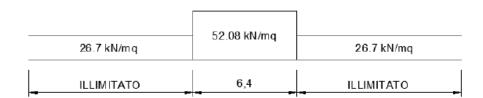
Per il terreno di riempimento si considera lo standard per rilevati ferroviari e si assegnano le seguenti caratteristiche meccaniche:

$$\gamma = 20 \text{ kN/m}^3$$

$$\varphi'=35^{\circ}$$

$$c' = 0$$

4.6.8 Sovraccarico sul terrapieno

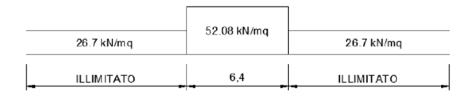

Nell'analisi delle azioni è stato inoltre considerato il contributo, in termini di sovraccarico verticale in fondazione e di spinta, del sovraccarico accidentale eventualmente presente a tergo spalla.

$$q = 53 \text{ kN/ m}^2$$

$$S_q = {\color{red}53*0.426} = 22.58 \; kN/m^2$$

Il valore del sovraccarico è determinate come di seguito descritto:

Considerando la distribuzione trasversale dei carichi su una larghezza di 3.0 m secondo quanto previsto da EN 1991 – 2:2003/AC:2010, si ricava il carico equivalente unitario agente alla quota della piattaforma ferroviaria:



A tali carichi si deve applicare il coefficiente α relativo alle categorie S.T.I. come indicato nella tabella 11 di seguito riportata:

Tabella 11				
Fattore alfa (α) per la progettazione di strutture nuove				
Tipo di traffico Valore minimo del fattore alfa (α)				
P1, P2, P3, P4	1,0			
P5	0,91			
P6	0,83			
P1520	Punto in sospeso			
P1600	1,1			
F1, F2, F3	1,0			
F4	0,91			
F1520	Punto in sospeso			
F1600	1,1			
	<u> </u>			

Nel caso in esame, il coefficiente α è pari ad 1.0 perché le categorie di traffico sono P2-P4 per il traffico passeggeri ed F1 per il traffico merci per cui, alle opere si applicano i seguenti carichi equivalenti:

4.6.9 Spinta del sovraccarico accidentale condizioni statiche

In aggiunta in condizioni statiche si considera un sovraccarico accidentale pari a $Q = 53 \text{ kN/m}^2$ gravante sulla spalla e sul cuneo di spinta a tergo di essa

La presenza del sovraccarico Q genera una spinta pari a:

$$S_{\alpha} = Q \cdot H \cdot K_{o}$$

Tale spinta è applicata ad una altezza pari a H/2.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 27 di 68

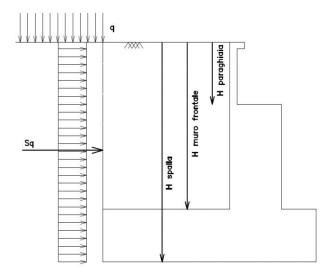


Fig. 2: Spinta statica sovraccarico accidentale

4.6.10 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

> Azioni sismiche sulla Spalla

Per la valutazione dell'azione sismica associata ai carichi fissi propri e permanenti /accidentali agenti sulle spalle si utilizza il metodo dell'analisi pseudostatica in cui il sisma è rappresentato da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k_h (coefficiente sismico orizzontale) o k_v (coefficiente sismico verticale) secondo quanto di seguito indicato:

Forza sismica orizzontale $F_h = k_h W$

Forza sismica verticale $F_v = k_v W$

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 28 di 68

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_v = \pm 0.5 \cdot k_h$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g} \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2;

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Con riferimento al valore da assegnare al coefficiente β_m , si è fatto riferimento alle indicazioni di cui alla Tabella 7.1.II riportata nella stessa sezione della norma, tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso delle spalle del viadotto in questione che in virtù della elevata rigidezza sia del sistema di fondazione che della parte in elevazione, è interessata da spostamenti trascurabili durante l'evento sismico) un valore del coefficiente β_m pari ad 1.0.

Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso alla spalla e non subisce deformazioni o movimenti relativi rispetto ad essa.

Sovraspinta sismica del terreno

Per il calcolo della spinta del terreno sulle opere di sostegno, occorre tenere presente che la mobilitazione della spinta attiva avviene per spostamenti di entità contenuta, come si evince dalla seguente tabella desunta dall'EC7 - Parte 1 - Annesso C (C.3 "Movements to mobilise limit earth pressures):

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 29 di 68

Table C.1 - Ratios v₃/h

Kind	l of	v _a /h	v₃/h
wall	movement	loose soil	dense soil
		%	%
a)	V _a	0,4 to 0,5	0,1 to 0,2
b)	V _a	0,2	0,05 to 0,1
c)	V _a	0,8 to 1,0	0,2 to 0,5
d)	Va de	0,4 to 0,5	0,1 to 0,2
where v _a	is the wall motion to mobilise act is the height of the wall	ive earth pressure	

In condizioni sismiche, l'entità degli spostamenti dipende principalmente dall'intensità dell'azione sismica e dalla rigidezza del sistema pali-terreno; pertanto, la possibilità di ammettere la mobilitazione della spinta attiva è subordinata alla valutazione degli spostamenti dell'opera e potrà essere valutata caso per caso. Cautelativamente, la valutazione degli spostamenti, da effettuarsi calcolando le spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche, sarà riferita alla base dell'opera (i.e. alla sommità della palificata) e il confronto con i valori di riferimento per la mobilitazione della spinta attiva sarà effettuato in accordo con lo schema b) della tabella estratta dall'EC7 per terreni addensati (rilevati stradali e ferroviari). L'altezza *h* rispetto alla quale effettuare la verifica corrisponde all'altezza totale dell'opera su cui agisce la spinta del terreno, comprensiva dello spessore della fondazione.

Qualora, a seguito della verifica dell'entità degli spostamenti, non ricorressero le condizioni di spinta attiva, si procederà al calcolo delle spinte considerando la somma della spinta statica a riposo e dell'incremento di spinta sismica valutata con la teoria di Wood, secondo le indicazioni contenute nell'EC8 – Parte 5 – Annesso E (E.9 "Force due to earth pressure for rigid structures"):

 $\Delta S_S = (a_{max}/g) \cdot \gamma \cdot H^2$

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 20 04 001	Α	30 di 68

Tale risultante è applicata ad un'altezza pari ad H/2.

Qualora, a seguito della verifica dell'entità degli spostamenti, ricorressero le condizioni di spinta attiva, si confermerà la correttezza dell'ipotesi di calcolo delle spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche.

Per la valutazione del coefficiente di spinta attiva in condizioni statiche si farà in generale riferimento alla formulazione di Muller – Breslau:

$$k_a = \frac{\cos^2(\alpha + \phi)}{\cos^2\alpha \cdot \cos(\alpha - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}{\cos(\alpha - \delta) \cdot \cos(\alpha + \beta)}}\right]^2}$$

$$\alpha = \text{inclinazione del paramento di monte rispetto alla verticale}$$

$$\beta = \text{inclinazione del pendio di monte rispetto al piano}$$

- angolo di attrito interno del terreno

- δ = angolo di attrito terra-muro

Per la valutazione del coefficiente di spinta attiva in condizioni sismiche si farà riferimento alla formulazione di Mononobe-Okabe:

$$k_{a} = \frac{\cos^{2}(\phi - \alpha - \theta)}{\cos \theta \cdot \cos^{2}\alpha \cdot \cos(\delta + \alpha + \theta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\cos(\delta + \alpha + \theta) \cdot \cos(\beta - \alpha)}}\right]^{2}} \qquad \text{se } \beta \leq \phi - \theta$$

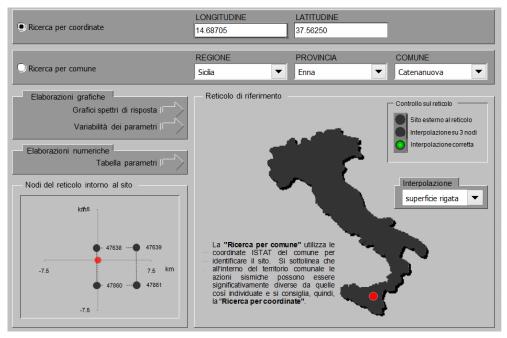
$$k_a = \frac{\cos^2(\phi - \alpha - \mathcal{G})}{\cos \mathcal{G} \cdot \cos^2 \alpha \cdot \cos(\delta + \alpha + \mathcal{G})}$$
 se $\beta > \phi - \theta$

dove θ = angolo sismico, definito secondo la seguente espressione (in assenza di falda) in funzione dei coefficienti sismici k_h e k_v :

$$\tan \theta = k_h / (1 \pm k_v)$$

Nella determinazione dei coefficienti sismici k_h e k_v , per le spalle di ponti e viadotti ferroviari fondate su pali si porrà $\beta_m = 1$ in accordo con l'EC8-5.

Le forze di inerzia agenti sulla massa della struttura e del terreno presente sulla sua fondazione saranno valutate applicando l'accelerazione massima al suolo ag S.

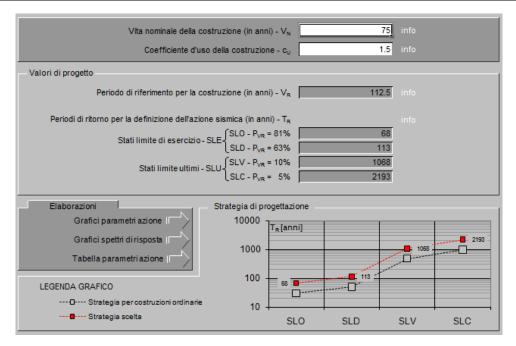

La spinta totale di progetto Ed esercitata dal terrapieno ed agente sull'opera di sostegno in condizioni sismiche è dunque data dalla somma della spinta a riposo, della spinta sismica e della spinta statica data dal sovraccarico accidentale combinata al 20% così come riportato nella Tabella 5.2.V delle NTC2008.

$$E_d = S_{stat} + 0.2 \cdot S_q + \Delta S_s$$

Infine, nel caso specifico non essendo presente la falda a tergo dell'opera, la spinta idrostatica è nulla.

Valori di progetto

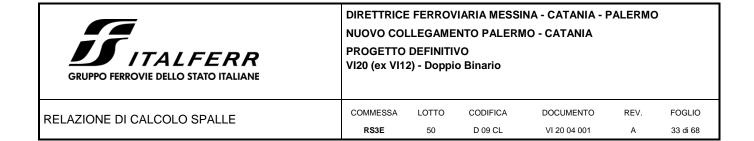
La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:


I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 32 di 68


Parametri indipendenti

STATO LIMITE	SLV					
a _α	0.175 g					
F°	2.502					
T _C *	0.526 s					
SS	1.437					
CC	1.298					
S _T	1.000					
م	1.000					

Parametri dipendenti

S	1.437
η	1.000
T _B	0.228 s
T _C	0.683 s
T _D	2.301 s

Dalla risposta sismica locale risulta invece (estratto dalla relazione geotecnica allegata al progetto) si ricava il valore del parametro S pari ad 1.87; tale valore risulta maggiore del valore di Normativa.

4.6.11 Incremento di spinta del terrapieno

Avendo valutato preliminarmente l'entità dello spostamento della struttura in fase sismica, e ricorrendo le condizioni sovra descritte (EC7 - Parte 1 - Annesso C), l'incremento di spinta del terrapieno viene valutato secondo la teoria di Mononobe-Okabe. (si veda relazione la RS3E50D09RBVI1803001A)

Mononobe e Okabe					
Inclinazione Paramento	α	90.0			
Angolo d'attrito interno	φ	35.0	0		
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.327			
Coefficiente per sisma verticale	\mathbf{k}_{v}	0.164			
θ (+k _v)		15.7			
θ (- k_v)		21.4			
Mononobe e Okabe (+k _v)	KAE	0.461			
Mononobe e Okabe (-k _v)	K _{AE}	0.571	·		

4.6.12 Inerzie strutturali

Si valutano le inerzie legate alla massa degli elementi strutturali con la seguente formula:

$$F_i = k_h \cdot W_{str}$$

4.6.13 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, $n \in I$ numero di pali e II, II sono le inerzie longitudinale e trasversale della palificata

$$J_{l} = \sum y_{i}^{2} \qquad \qquad J_{t} = \sum x_{i}^{2}$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

RELAZIONE DI CALCOLO SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 20 04 001	Α	34 di 68

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.14 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max} , N_{min} , T ed M.

 RELAZIONE DI CALCOLO SPALLE
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 35 di 68

Fase statica

PARAGHIAIA

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	F_X	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	129			0.00	0.00	0.61	0	0
Rinterro	g3		77		0.00	0.00	0.41	0	31
					0.00	0.00	1.22	0	0
Sovr. acc. sul rilevato			333		0.00	0.00	0.61	0	203

SPICCATO MURO FRONTALE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		F _Z	F _X [kN]	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x [kNm]	M _y [kNm]
		[KLV]	[KLV]	[KLV]	[m]	[m]	[111]	KIVIII	[KI VIII]
Paraghiaia	g1	129	0	0	-0.52		6.78	0	-67
Muro frontale	g1	2967	0	0			3.09	0	0
Totale Permanenti		3096	0	0				0	-67
Rinterro	g3		3200	0			2.46	0	7882
Sovr. acc. sul rilevato			2014	0			3.70	0	7443

FONDAZIONE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizion	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	129			-0.78	0.00	8.78	0	-100
Muro frontale	g1	2967			-0.25	0.00	5.09	0	-742
Plinto	g ₁	7872			0.00	0.00	1.00	0	0
Muri andatori	g1	1167			-2.88	0.00	5.70	0	-3360
Totale Permanenti		12134						0	-4202
Rinterro	g3	6885			-2.88	0.00	5.70	0	-19830
Ricop. Plinto	g3	1706			2.88	0.00	2.50	0	4914
Sovr. acc. sul rilevato		2461			-2.88	0.00	9.39	0	-7087
* Il sovraccarico ac	ccidentale a terg	o della spal	lla è da con	siderarsi pr	esente in	tutte 1	e combi	nazioni	

 Rinterro
 g3
 5166
 -2.88
 0.00
 3.13
 0
 16170

 Sovr. acc. sul rilevato
 2559
 0.00
 0.00
 4.70
 0
 12016

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 36 di 68

Fase sismica Mononobe-Okabe / ka

PARAGHIAIA

AZIONI SU SPALLA [kN,m]

~	~	**	а	Si	tu.	~

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	129			0.00	0.00	0.61	0	0
Rinterro	g3		49		0.00	0.00	0.41	0	20
					0.00	0.00	1.22	0	0
Sovr. acc. sul rilevato			211		0.00	0.00	0.61	0	129

cond sismica x

Descrizione carico		F_Z	F_X	$\mathbf{F}_{\mathbf{Y}}$	b _{ix}	b _{iy}	b _{iz}	$\mathbf{M}_{\mathbf{x}}$	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	0	42	0	0.00	0.00	0.61	0	26
Rinterro	Inerzia		371				0.61	0	226
	Sovraspinta		61				0.41	0	25
Rinterro [totale]			432					0	251
Sovr. acc. sul rilevato			211		0.00	0.00	0.61	0	129
Totale generale			686					0	406

cond sismica y

Descrizione carico		Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q 6	0	0	42	0.00	0.00	0.61	26	0

cond sismica vert

Descrizione carico		Fz	F_X	F_{Y}	b _{ix}	b _{iy}	b _{iz}	M_x	M_{y}
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	21	0	0	0.00	0.00	0.61	0	0

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 37 di 68

SPICCATO MURO FRONTALE

AZIONI SU SPALLA [kN,m]

cond statica									
Descrizion		Fz	F_X	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizione carico		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	129	0	0	-0.52		6.78	0	-67
Muro frontale	g1	2967	0	0			3.09	0	0
Total	e Permanenti	3096	0	0				0	-67
Rinterro	g3		2033	0			2.46	0	5009
Sovr. acc. sul rilevato			1280	0			3.70	0	4730

cond sismica x

Descrizion		Fz	FX	F_{Y}	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizion	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6		42		-0.52	0.00	6.78	0	286
Muro frontale	q6		971		0.00	0.00	3.09	0	2996
Rinterro	Inerzia		2253				3.70	0	8326
	Sovraspinta		2252				2.46	0	5546
Rinterro [totale]			4505					0	13872
Sovr. acc. sul rilevato			1280				3.70	0	4730
Totale generale			6798					0	21883

cond sismica y

Descrizione carico		F_Z	F_X	F _Y	b_{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6			42	-0.52	0.00	6.78	286	0
Muro frontale	q6			971	0.00	0.00	3.09	2996	0
Rinterro					0.00	0.00	0.00	0	0
Totale generale				1013				3281	0

cond sismica vert

Descrizione carico		Fz	F_X	F_{Y}	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	qб	21			-0.52	0.00	6.78	0	-11
Muro frontale	q6	486			0.00	0.00	3.09	0	0
Totale generale		507						0	-11

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 38 di 68

FONDAZIONE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizion	o carico	Fz	F_X	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y			
Descrizioni	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]			
Paraghiaia	g1	129			-0.78	0.00	8.78	0	-100			
Muro frontale	g1	2967			-0.25	0.00	5.09	0	-742			
Plinto	g ₁	7872			0.00	0.00	1.00	0	0			
Muri andatori	g1	1167			-2.88	0.00	5.70	0	-3360			
Tota	ale Permanenti	12134						0	-4202			
Rinterro	g3	6885			-2.88	0.00	5.70	0	-19830			
Ricop. Plinto	g3	1706			2.88	0.00	2.50	0	4914			
Sovr. acc. sul rileva	ato	2461			-2.88	0.00	9.39	0	-7087			
* Il sovraccarico ac	ccidentale a terg	o della spai	lla è da con	siderarsi pr	esente in	tutte 1	e combi	nazioni				
Rinterro	g3		3283		-2.88	0.00	3.13	0	10276			
Sovr. acc. sul rileva	ato		1626		0.00	0.00	4.70	0	7636			

AZIONI SU SPALLA [kN,m]

cond sismica x

cond sisinica x			_						
Descrizion	ne carico	FZ	FX	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
	ic cance	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	Q 6		42		-0.78	0.00	8.78	0	370
Muro frontale	q 6		971		-0.25	0.00	5.09	0	4938
Plinto	Q6		2576		0.00	0.00	1.00	0	2576
Muri andatori	q 6		382		-2.88	0.00	5.70	0	2174
Rinterro	Inerzia		2253		-2.88	0.00	5.70	0	12832
	Sovraspinta		3635		-2.88	0.00	3.13	0	11378
Rinterro [totale]			5888				5.70	0	24210
Sovr. acc. sul rilevato			1626		-2.88		5.70	0	7636
Totale generale			11486						41904

cond sismica y									
Descrizion	e carico	Fz	FX	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizion	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q ₆			42	-0.78	0.00	8.78	370	0
Muro frontale	q 6			971	-0.25	0.00	5.09	4938	0
Plinto	q 6			2576	0.00	0.00	1.00	2576	0
Muri andatori	q 6			382	-2.88	0.00	5.70	2174	0
Rinterro	Inerzia			2253	0.00		5.70	12832	0
	Sovraspinta			371			3.13	1161	0
Rinterro [totale]				2624				13993	0
Sovr. acc. sul rilevato				1626	-2.88		9.39	15272	0
	Totale generale			8222				39323	0

cond sismica vert

Docorizi	Descrizione carico		FX	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizione canco		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q ₆	21			-0.78	0.00	8.78	0.00	-16
Muro frontale	q 6	486			-0.25	0.00	5.09	0.00	-121
Plinto	q 6	1288			0.00	0.00	1.00	0.00	0
Muri andatori	q ₆	191			-2.88	0.00	5.70	0.00	-550
Rinterro	q ₆	1127			0.00	0.00	0.00	0.00	0
Ricop. Plinto	q ₆	279			2.88	0.00	2.50	0.00	804
	Totale generale	3391						0.00	116

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3E 50 D 09 CL VI 20 04 001 A 39 di 68

4.7 Sollecitazioni

4.7.1 Muro paraghiaia

In condizioni statiche il muro paraghiaia è sollecitato dalla spinta del rilevato, dalla spinta dei sovraccarichi accidentali, dai sovraccarichi mobili agenti sulla mensola del muro e dall'azione di frenatura. In condizioni sismiche il muro paraghiaia è sollecitato dalla spinta sismica del rilevato, dalle masse del muro. Il modello di calcolo utilizzato è quello di mensola incastrata al muro frontale.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 40 di 68

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL PARAGHIAIA

A2 - SLU - N max gr.1 A2 - SLU - MT max gr.1	Nz 129 129 129	Tx 515	Ту	Mx	My
A2 - SLU - MT max gr.1	129	515			
			0	0	294
	129	515	0	0	294
A2 - SLU - ML max gr.1		515	0	0	294
A2 - SLU - N max gr.3	129	515	0	0	294
A2 - SLU - MT max gr.3	129	515	0	0	294
A2 - SLU - ML max gr.3	129	515	0	0	294
A2 - SLU - Vento ponte scarico	129	100	0	0	40
A2 - SLU Gmin - N max gr.1	129	416	0	0	254
A2 - SLU Gmin - MT max gr.1	129	416	0	0	254
A2 - SLU Gmin - ML max gr.1	129	416	0	0	254
A2 - SLU Gmin - N max gr.3	129	416	0	0	254
A2 - SLU Gmin - MT max gr.3	129	416	0	0	254
A2 - SLU Gmin - ML max gr.3	129	416	0	0	254
A2 - SLU Gmin - Vento ponte scarico	129	0	0	0	0
A1 - SLU - N max gr.1	174	597	0	0	341
A1 - SLU - MT max gr.1	174	597	0	0	341
A1 - SLU - ML max gr.1	174	597	0	0	341
A1 - SLU - N max gr.3	174	597	0	0	341
A1 - SLU - MT max gr.3	174	597	0	0	341
A1 - SLU - ML max gr.3	174	597	0	0	341
A1 - SLU - Vento ponte scarico	174	115	0	0	47
A1 - SLU Gmin - N max gr.1	129	482	0	0	294
A1 - SLU Gmin - MT max gr.1	129	482	0	0	294
A1 - SLU Gmin - ML max gr.1	129	482	0	0	294
A1 - SLU Gmin - N max gr.3	129	482	0	0	294
A1 - SLU Gmin - MT max gr.3	129	482	0	0	294
A1 - SLU Gmin - ML max gr.3	129	482	0	0	294
A1 - SLU Gmin - Vento ponte scarico	129	0	0	0	0
SLE rara - N max gr.1	129	409	0	0	234
SLE rara - MT max gr.1	129	409	0	0	234
SLE rara - ML max gr.1	129	409	0	0	234
SLE rara - N max gr.3	129	409	0	0	234
SLE rara - MT max gr.3	129	409	0	0	234
SLE rara - ML max gr.3	129	409	0	0	234
SLE rara - Vento ponte scarico	129	409	0	0	234
SLE freq N max gr.1	129	409	0	0	234
SLE freq MT max gr.1	129	409	0	0	234
SLE freq ML max gr.1	129	409	0	0	234
SLE freq N max gr.3	129	409	0	0	234
SLE freq MT max gr.3	129	409	0	0	234
SLE freq ML max gr.3	129	409	0	0	234
SLE freq Vento ponte scarico	129	77	0	0	31
SLE quasi permanente	129	77	0	0	31
SLV - N max	150	233	13	8	129
SLV - MT max gr.1	135	233	42	26	129
SLV - ML max gr.1	135	565	13	8	322
SLV - MT max gr.3	122	233	42	26	129
SLV - ML max gr.3	122	565	13	8	322
SLV - Nin max gr.3	108	233	13	8	129

Tabella 3 – Sollecitazioni alla base del muro paraghiaia

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A

FOGLIO

41 di 68

4.7.2 Muro frontale

Le sollecitazioni riportate nella seguente tabella sono state ottenute dal modello di calcolo descritto nei paragrafi precedenti.

Per la verifica del muro frontale, a quota spiccato, tali azioni possono essere considerate uniformemente distribuite in quanto l'altezza del muro frontale è tale che nell' ipotesi di ripartizione a 45°, tali scarichi si ripartiscono uniformemente alla base del muro

Ai carichi prima riportati, si aggiungono il peso proprio del muro frontale, del muro paraghiaia e la spinta del terreno e del sovraccarico sul rilevato a tergo.

Si ottengono quindi le seguenti sollecitazioni, con riferimento alle combinazioni maggiormente significative.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 42 di 68

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL MURO FRONTALE NzTxТy Mx My A2 - SLU - N max gr.1 A2 - SLU - MT max gr.1 A2 - SLU - ML max gr.1 A2 - SLU - N max gr.3 A2 - SLU - MT max gr.3 A2 - SLU - ML max gr.3 A2 - SLU - Vento ponte scarico A2 - SLU Gmin - N max gr.1 A2 - SLU Gmin - MT max gr.1 A2 - SLU Gmin - ML max gr.1 A2 - SLU Gmin - N max gr.3 A2 - SLU Gmin - MT max gr.3 A2 - SLU Gmin - ML max gr.3 A2 - SLU Gmin - Vento ponte scarico A1 - SLU - N max gr.1 A1 - SLU - MT max gr.1 A1 - SLU - ML max gr.1 A1 - SLU - N max gr.3 A1 - SLU - MT max gr.3 A1 - SLU - ML max gr.3 A1 - SLU - Vento ponte scarico A1 - SLU Gmin - N max gr.1 A1 - SLU Gmin - MT max gr.1 A1 - SLU Gmin - ML max gr.1 A1 - SLU Gmin - N max gr.3 A1 - SLU Gmin - MT max gr.3 A1 - SLU Gmin - ML max gr.3 A1 - SLU Gmin - Vento ponte scarico SLE rara - N max gr.1 SLE rara - MT max gr.1 SLE rara - ML max gr.1 SLE rara - N max gr.3 SLE rara - MT max gr.3 SLE rara - ML max gr.3 SLE rara - Vento ponte scarico SLE freq.- N max gr.1 SLE freq.- MT max gr.1 SLE freq.- ML max gr.1 SLE freq.- N max gr.3 SLE freq.- MT max gr.3 SLE freq.- ML max gr.3 SLE freq.- Vento ponte scarico SLE quasi permanente SLV - N max SLV - MT max gr.1 SLV - ML max gr.1 SLV - MT max gr.3 SLV - ML max gr.3 SLV - N min

Tabella 4 – Sollecitazioni alla base del muro frontale

Le sollecitazioni in direzione trasversale risultano trascurabili rispetto a quelle in direzione longitudinale, tenuto anche conto della geometria della sezione del muro frontale.

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3E 50 D 09 CL VI 20 04 001 A 43 di 68

4.7.3 Plinto di fondazione

In questo paragrafo si riporta la determinazione delle sollecitazioni in quota testa pali che si ottengono sommando, alle azioni provenienti dall'impalcato, la risultante e il momento risultante dei pesi della struttura, del terreno interno alla spalla e delle spinte dovute al rilevato rispetto al baricentro del plinto. In condizioni sismiche si è tenuto conto dell'incremento di spinta delle inerzie.

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 44 di 68

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE

	Nz	Tx	Ту	Mx	Му
A2 - SLU - N max gr.1	35106	10799	483	4557	11520
A2 - SLU - MT max gr.1	33434	10474	416	6831	8284
A2 - SLU - ML max gr.1	35106	10799	483	4557	11520
A2 - SLU - N max gr.3	35106	11437	418	3870	18194
A2 - SLU - MT max gr.3	33434	10787	384	6498	11556
A2 - SLU - ML max gr.3	35106	11437	418	3870	18194
A2 - SLU - Vento ponte scarico	28678	6862	287	2623	-1848
A2 - SLU Gmin - N max gr.1	21785	4084	483	4557	10105
A2 - SLU Gmin - MT max gr.1	20112	3759	416	6831	6869
A2 - SLU Gmin - ML max gr.1	21785	4084	483	4557	10105
A2 - SLU Gmin - N max gr.3	21785	4721	418	3870	16780
A2 - SLU Gmin - MT max gr.3	20112	4071	384	6498	10141
A2 - SLU Gmin - ML max gr.3	21785	4721	418	3870	16780
A2 - SLU Gmin - Vento ponte scarico	15356	146	287	2623	-3263
A1 - SLU - N max gr.1	43559	12514	588	5520	12734
A1 - SLU - MT max gr.1	41619	12137	510	8158	8981
A1 - SLU - ML max gr.1	43559	12514	588	5520	12734
A1 - SLU - N max gr.3	43559	13254	512	4723	20487
A1 - SLU - MT max gr.3	41619	12500	473	7770	12782
A1 - SLU - ML max gr.3	43559	13254	512	4723	20487
A1 - SLU - Vento ponte scarico	36102	7947	360	3274	-2772
A1 - SLU Gmin - N max gr.1	22814	4765	588	5520	12685
A1 - SLU Gmin - MT max gr.1	20873	4388	510	8158	8932
A1 - SLU Gmin - ML max gr.1	22814	4765	588	5520	12685
A1 - SLU Gmin - N max gr.3	22814	5505	512	4723	20438
A1 - SLU Gmin - MT max gr.3	20873	4751	473	7770	12733
A1 - SLU Gmin - ML max gr.3	22814	5505	512	4723	20438
A1 - SLU Gmin - Vento ponte scarico	15356	146	308	2833	-3263
SLE rara - N max gr.1	30746	8462	413	3866	8520
SLE rara - MT max gr.1	29408	8202	359	5685	5931
SLE rara - ML max gr.1	30746	8462	413	3866	8520
SLE rara - N max gr.3	30746	8972	360	3316	13859
SLE rara - MT max gr.3	29408	8452	333	5418	8549
SLE rara - ML max gr.3	30746	8972	360	3316	13859
SLE rara - Vento ponte scarico	28064	7872	254	2309	2755
SLE freq N max gr.1	29674	8226	258	2343	6214
SLE freq MT max gr.1	29140	8136	252	4159	5296
SLE freq ML max gr.1	29674	8226	258	2343	6214
SLE freq N max gr.3	29674	8532	226	2013	9417
SLE freq MT max gr.3	29140	8336	231	3945	7390
SLE freq ML max gr.3	29674	8532	226	2013	9417
SLE freq Vento ponte scarico	25604	5312	200	1785	-2174
SLE quasi permanente	25604	5312	146	1261	-2174
SLV - N max	30909	7922	2718	14343	14379
SLV - MT max gr.1	27648	7818	8792	45859	13298
SLV - ML max gr.1	27915	17304	2718	14343	62705
SLV - MT max gr.3	25081	7818	8792	45859	13281
SLV - ML max gr.3	25349	17304	2718	14342	62689
SLV - N min	22355	7922	2718	14342	14323

Tabella 5 – Sollecitazioni ad intradosso del baricentro fondazione

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARICE	NTRO DE	LLA PAL	IFICATA					
C.C.	N	T _x	T_{y}	M_x	M_{y}	$N_{\rm max/palo}$	$N_{\min/palo}$	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
Al - SLU - N max gr.1	43559	12514	588	5520	12734	3360	2448	835
Al - SLU - MT max gr.1	41619	12137	510	8158	8981	3175	2374	810
A1 - SLU - ML max gr.1	43559	12514	588	5520	12734	3360	2448	835
A1 - SLU - N max gr.3	43559	13254	512	4723	20487	3560	2247	884
A1 - SLU - MT max gr.3	41619	12500	473	7770	12782	3274	2276	834
A1 - SLU - ML max gr.3	43559	13254	512	4723	20487	3560	2247	884
A1 - SLU - Vento ponte scarico	36102	7947	360	3274	-2772	2544	2269	530
Al - SLU Gmin - N max gr.1	22814	4765	588	5520	12685	1975	1066	320
A1 - SLU Gmin - MT max gr.1	20873	4388	510	8158	8932	1791	992	294
A1 - SLU Gmin - ML max gr.1	22814	4765	588	5520	12685	1975	1066	320
A1 - SLU Gmin - N max gr.3	22814	5505	512	4723	20438	2176	866	369
A1 - SLU Gmin - MT max gr.3	20873	4751	473	7770	12733	1889	894	318
A1 - SLU Gmin - ML max gr.3	22814	5505	512	4723	20438	2176	866	369
A1 - SLU Gmin - Vento ponte scarico	15356	146	308	2833	-3263	1167	881	23

Tabella 6 - Sollecitazioni massime sul singolo palo C.C. SLU

SOLL. TOTALI NE	L BARICE	NTRO DE	ELLA PAL	IFICATA				
C.C.	N	T _x	T _y	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLV - N max	30909	7922	2718	14343	14379	2726	1396	558
SLV - MT max gr.1	27648	7818	8792	45859	13298	3062	625	784
SLV - ML max gr.1	27915	17304	2718	14343	62705	3868	-146	1168
SLV - MT max gr.3	25081	7818	8792	45859	13281	2890	454	784
SLV - ML max gr.3	25349	17304	2718	14342	62689	3697	-317	1168
SLV - N min	22355	7922	2718	14342	14323	2154	827	558

Tabella 7 – Sollecitazioni massime sul singolo palo C.C. SLV

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA									
C.C.	N	T_x	T_{y}	M_x	$M_{\rm y}$	$N_{\rm max/palo}$	N _{min/palo}	T _{/palo}	
n°	kN	kN	kN	kNm	kNm	kN	kN	kN	
SLE rara - N max gr.1	30746	8462	413	3866	8520	2587	1655	565	
SLE rara - MT max gr.1	29408	8202	359	5685	5931	2446	1686	547	
SLE rara - ML max gr.1	30746	8462	413	3866	8520	2587	1655	565	
SLE rara - N max gr.3	30746	8972	360	3316	13859	2814	1408	599	
SLE rara - MT max gr.3	29408	8452	333	5418	8549	2557	1565	564	
SLE rara - ML max gr.3	30746	8972	360	3316	13859	2814	1408	599	
SLE rara - Vento ponte scarico	28064	7872	254	2309	2755	2084	1743	525	

 $Tabella\ 8-Sollecitazioni\ massime\ sul\ singolo\ palo\ C.C.\ SLE$

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della spalla (muro frontale, muro paraghiaia, ...) vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL PARAGHIAIA							
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	129	515	0	0	294
S	Tx,A _{max}	A2 - SLU - N max gr.1	129	515	0	0	294
SLU GEO	Ty,A _{max}	A2 - SLU - N max gr.1	129	515	0	0	294
S	Mxx max	A2 - SLU - N max gr.1	129	515	0	0	294
	Myy max	A2 - SLU - N max gr.1	129	515	0	0	294
	Nz,A_{max}	A1 - SLU - N max gr.1	174	597	0	0	341
氏	Tx,A _{max}	A1 - SLU - N max gr.1	174	597	0	0	341
SLU STR	Ty,A _{max}	A1 - SLU - N max gr.1	174	597	0	0	341
SI	Mxx max	A1 - SLU - N max gr.1	174	597	0	0	341
	Myy max	A1 - SLU - N max gr.1	174	597	0	0	341
	Nz,A _{max}	SLE rara - N max gr.1	129	409	0	0	234
RA	Tx,A _{max}	SLE rara - N max gr.1	129	409	0	0	234
SLE RARA	Ty,A _{max}	SLE rara - N max gr.1	129	409	0	0	234
SLE	Mxx max	SLE rara - N max gr.1	129	409	0	0	234
52	Myy max	SLE rara - N max gr.1	129	409	0	0	234
臣	Nz,A _{max}	SLE freq N max gr.1	129	409	0	0	234
SLE FREQENTE	Tx,A _{max}	SLE freq N max gr.1	129	409	0	0	234
SEQ.	Ty,A _{max}	SLE freq N max gr.1	129	409	0	0	234
E FF	Mxx max	SLE freq N max gr.1	129	409	0	0	234
S	Myy max	SLE freq N max gr.1	129	409	0	0	234
SLE Q.P.	J.J. same	SLE quasi permanente	129	77	0	0	31
	Nz,A _{max}	SLV - N max	150	233	13	8	129
_	Tx,A _{max}	SLV - ML max gr.1	135	565	13	8	322
SLV	Ty,A _{max}	SLV - MT max gr.1	135	233	42	26	129
	Mxx max	SLV - MT max gr.1	135	233	42	26	129
	Myy max	SLV - ML max gr.1	135	565	13	8	322

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO REV.
VI 20 04 001 A

V. FOGLIO 47 di 68

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL MURO FRONTALE

INTERNA ALLA BASE DEL MURO FRONTALE							
Nz,A Tx,A Ty,A Mxx M							Myy
			[kN]	[kN]	[kN]	[kNm]	[kNm]
_	Nz,A _{max}	A2 - SLU - N max gr.1	11823	7562	483	3590	27826
SLU GEO	Tx,A _{max}	A2 - SLU - N max gr.3	11823	8199	418	3034	33226
Ď	Ty,A _{max}	A2 - SLU - N max gr.1	11823	7562	483	3590	27826
22	Mxx max	A2 - SLU - MT max gr.1	10150	7237	416	5999	24823
	Myy max	A2 - SLU - N max gr.3	11823	8199	418	3034	33226
	Nz,A _{max}	A1 - SLU - N max gr.1	14902	8774	588	4344	32476
TR	Tx , A_{max}	A1 - SLU - N max gr.3	14902	9515	512	3699	38749
SLU STR	$Ty,\!A_{max}$	A1 - SLU - N max gr.1	14902	8774	588	4344	32476
S	Mxx max	A1 - SLU Gmin - MT max gr.1	8267	3597	510	7138	16651
	Myy max	A1 - SLU - N max gr.3	14902	9515	512	3699	38749
	Nz, A_{max}	SLE rara - N max gr.1	10656	5951	413	3040	22213
SLE RARA	Tx,A _{max}	SLE rara - N max gr.3	10656	6461	360	2596	26532
3 R/	Ty,A_{max}	SLE rara - N max gr.1	10656	5951	413	3040	22213
SLI	Mxx_{max}	SLE rara - MT max gr.1	9318	5691	359	4968	19810
	Myy_{max}	SLE rara - N max gr.3	10656	6461	360	2596	26532
TE	$Nz,\!A_{\text{max}}$	SLE freq N max gr.1	9583	5715	258	1828	20111
SLE FREQENTE	Tx, A_{max}	SLE freq N max gr.3	9583	6021	226	1561	22703
RE($Ty,\!A_{max}$	SLE freq N max gr.1	9583	5715	258	1828	20111
F F	Mxx_{max}	SLE freq MT max gr.1	9049	5625	252	3656	19239
SI	Myy max	SLE freq N max gr.3	9583	6021	226	1561	22703
SLE Q.P.		SLE quasi permanente	7974	3346	146	969	9516
	Nz,A_{max}	SLV - N max	9902	5301	946	5912	22600
	Tx,A _{max}	SLV - ML max gr.1	8928	11644	946	5912	53919
SLV	Ty,A _{max}	SLV - MT max gr.1	8660	5197	2884	18293	21594
	Mxx max	SLV - MT max gr.1	8660	5197	2884	18293	21594
	Myy_{max}	SLV - ML max gr.1	8928	11644	946	5912	53919

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 48 di 68

CARATTERISTICHE DELLA SOLLECITAZIONE

INTERNA INTRADOSSO FONDAZIONE							
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	35106	10799	483	4557	11520
8	Tx,A _{max}	A2 - SLU - N max gr.3	35106	11437	418	3870	18194
SLU GEO	Ty,A _{max}	A2 - SLU - N max gr.1	35106	10799	483	4557	11520
돐	Mxx max	A2 - SLU - MT max gr.1	33434	10474	416	6831	8284
	Myy_{max}	A2 - SLU - N max gr.3	35106	11437	418	3870	18194
	Nz, A_{max}	A1 - SLU - N max gr.1	43559	12514	588	5520	12734
E.	Tx,A _{max}	A1 - SLU - N max gr.3	43559	13254	512	4723	20487
SLU STR	Ty,A _{max}	A1 - SLU - N max gr.1	43559	12514	588	5520	12734
돐	Mxx max	A1 - SLU - MT max gr.1	41619	12137	510	8158	8981
	Myy max	A1 - SLU - N max gr.3	43559	13254	512	4723	20487
	Nz,A _{max}	SLE rara - N max gr.1	30746	8462	413	3866	8520
K.A	Tx,A _{max}	SLE rara - N max gr.3	30746	8972	360	3316	13859
SLE RARA	Ty,A _{max}	SLE rara - N max gr.1	30746	8462	413	3866	8520
SE	Mxx max	SLE rara - MT max gr.1	29408	8202	359	5685	5931
	Myy max	SLE rara - N max gr.3	30746	8972	360	3316	13859
TE	Nz, A_{max}	SLE freq N max gr.1	29674	8226	258	2343	6214
EN	Tx , A_{max}	SLE freq N max gr.3	29674	8532	226	2013	9417
Æ	Ty,A _{max}	SLE freq N max gr.1	29674	8226	258	2343	6214
SLE FREQENTE	Mxx max	SLE freq MT max gr.1	29140	8136	252	4159	5296
52	Myy max	SLE freq N max gr.3	29674	8532	226	2013	9417
SLE Q.P.		SLE quasi permanente	25604	5312	146	1261	-2174
	Nz,A _{max}	SLV - N max	30909	7922	2718	14343	14379
	Tx,A _{max}	SLV - ML max gr.1	27915	17304	2718	14343	62705
SLV	Ty,A _{max}	SLV - MT max gr.1	27648	7818	8792	45859	13298
	Mxx max	SLV - MT max gr.1	27648	7818	8792	45859	13298
	Myy max	SLV - ML max gr.1	27915	17304	2718	14343	62705

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A

FOGLIO

49 di 68

4.9.1 Paraghiaia

Viene verificata la sezione di incastro con lo spiccato del muro frontale. Nella determinazione dei momenti flettenti di verifica il muro paraghiaia viene considerato come una mensola incastrata allo spiccato del muro frontale, trascurando a favore di sicurezza gli effetti dovuti alla eventuale presenza dei muri di risvolto.

Caratteristiche della sezione:

Sezione rettangolare 35x1370 cm

Armatura verticale

 $A_s = \phi 20/10$ (lato controterra)

 $A'_s = \phi 16/20$ (lato esterno)

Armatura orizzontale

 $A_s = \phi 14/20$

 $A'_{s} = \phi 12/20$

CALCESTRUZZO -

La verifica a taglio è soddisfatta come elemento non armato a taglio. Si prevede comunque un minimo di armatura a taglio costituita da spilli $9\emptyset 8/m^2$

C32/40

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classe:

	Resis. compr. di progetto fcd:	18.800	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA REV. DOCUMENTO FOGLIO RS3E 50 D 09 CL VI 20 04 001 50 di 68 Α

Classe Conglo	omerato:	C32/40
N°vertice:	X [cm]	Y [cm]
1	-17.5	0.0
2	-17.5	1370.0
3	17.5	1370.0
4	17.5	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-8.7	8.8	20
2	-8.7	1361.2	20
3	8.7	1361.2	20
4	8.7	8.8	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Barra Ini. N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	136	20
2	3	4	136	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	My	Vy	Vx		
1	174.00	0.00	341.00	0.00	597.00		
2	174.00	0.00	341.00	0.00	597.00		
3	174.00	0.00	341.00	0.00	597.00		
4	174.00	0.00	341.00	0.00	597.00		
5	174.00	0.00	341.00	0.00	597.00		
6	150.00	8.00	129.00	13.00	233.00		
7	135.00	8.00	322.00	13.00	565.00		
8	135.00	26.00	129.00	42.00	233.00		
9	135.00	26.00	129.00	42.00	233.00		
10	135.00	8.00	322.00	13.00	565.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI20 (ex VI12) - Doppio Binario

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA

RS3E 50 D 09 CL

DOCUMENTO
VI 20 04 001

REV. FOGLIO A 51 di 68

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	129.00	0.00	234.00
2	129.00	0.00	234.00
3	129.00	0.00	234.00
4	129.00	0.00	234.00
5	129.00	0.00	234.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	129.00	0.00 (0.00)	234.00 (1060.57)
2	129.00	0.00 (0.00)	234.00 (1060.57)
3	129.00	0.00 (0.00)	234.00 (1060.57)
4	129.00	0.00 (0.00)	234.00 (1060.57)
5	129.00	0.00 (0.00)	234.00 (1060.57)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 129.00 0.00 (0.00) 31.00 (1322.17)

RISULTATI DEL CALCOLO

Му

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.8 cm Interferro netto minimo barre longitudinali: 7.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

RELAZIONE DI CALCOLO SPALLE

LOTTO CODIFICA REV. COMMESSA DOCUMENTO **FOGLIO** RS3E 50 D 09 CL VI 20 04 001 52 di 68 Α

Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) My Res

Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Tesa
1	S	174.00	0.00	341.00	173.75	0.42	3900.45	11.41 433.5(85.9)
2	S	174.00	0.00	341.00	173.75	0.42	3900.45	11.41 433.5(85.9)
3	S	174.00	0.00	341.00	173.75	0.42	3900.45	11.41 433.5(85.9)
4	S	174.00	0.00	341.00	173.75	0.42	3900.45	11.41 433.5(85.9)
5	S	174.00	0.00	341.00	173.75	0.42	3900.45	11.41 433.5(85.9)
6	S	150.00	8.00	129.00	149.83	245.71	3907.34	30.14 433.5(85.9)
7	S	135.00	8.00	322.00	135.14	105.82	3900.71	12.09 433.5(85.9)
8	S	135.00	26.00	129.00	134.78	790.88	3920.44	30.26 433.5(85.9)
9	S	135.00	26.00	129.00	134.78	790.88	3920.44	30.26 433.5(85.9)
10	S	135.00	8.00	322.00	135.14	105.82	3900.71	12.09 433.5(85.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.325	17.5	1370.0	-0.00011	8.7	1361.2	-0.00726	-8.7	8.8
2	0.00350	0.325	17.5	1370.0	-0.00011	8.7	1361.2	-0.00726	-8.7	8.8
3	0.00350	0.325	17.5	1370.0	-0.00011	8.7	1361.2	-0.00726	-8.7	8.8
4	0.00350	0.325	17.5	1370.0	-0.00011	8.7	1361.2	-0.00726	-8.7	8.8
5	0.00350	0.325	17.5	1370.0	-0.00011	8.7	1361.2	-0.00726	-8.7	8.8
6	0.00350	0.325	17.5	1370.0	-0.00011	8.7	1361.2	-0.00728	-8.7	8.8
7	0.00350	0.325	17.5	1370.0	-0.00011	8.7	1361.2	-0.00728	-8.7	8.8
8	0.00350	0.324	17.5	1370.0	-0.00009	8.7	1361.2	-0.00729	-8.7	8.8
9	0.00350	0.324	17.5	1370.0	-0.00009	8.7	1361.2	-0.00729	-8.7	8.8
10	0.00350	0.325	17.5	1370.0	-0.00011	8.7	1361.2	-0.00728	-8.7	8.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 a, b, c x/d C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000410727	0.000000000	-0.003687780	0.325	0.847
2	0.000410727	0.000000000	-0.003687780	0.325	0.847
3	0.000410727	0.000000000	-0.003687780	0.325	0.847
4	0.000410727	0.000000000	-0.003687780	0.325	0.847
5	0.000410727	0.000000000	-0.003687780	0.325	0.847
6	0.000409831	0.000000028	-0.003710346	0.325	0.846
7	0.000410649	0.000000012	-0.003702856	0.325	0.846

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

PROGETTO DEFINITIVO

VI20 (ex VI12) - Doppio Binario

RELAZIONE DI CALCOLO SPALLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3E	50	D 09 CL	VI 20 04 001	Α	53 di 68

8	0.000407814	0.000000076	-0.003740904	0.324	0.846
9	0.000407814	0.000000076	-0.003740904	0.324	0.846
10	0.000410649	0.000000012	-0.003702856	0.325	0.846

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

S = comb.verificata a taglio/ N = comb. non verificata Ver Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta) Ved Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

Altezza utile sezione [cm] d Larghezza minima sezione [cm] bw

Rapporto geometrico di armatura longitudinale [<0.02] Ro Scp Tensione media di compressione nella sezione [Mpa]

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
1	S	597.00	3280.61	26.2	1370.0	0.0199	0.04
2	S	597.00	3280.61	26.2	1370.0	0.0199	0.04
3	S	597.00	3280.61	26.2	1370.0	0.0199	0.04
4	S	597.00	3280.61	26.2	1370.0	0.0199	0.04
5	S	597.00	3280.61	26.2	1370.0	0.0199	0.04
6	S	233.00	3277.92	26.2	1370.0	0.0199	0.03
7	S	565.00	3276.23	26.2	1370.0	0.0199	0.03
8	S	233.01	3276.24	26.2	1370.0	0.0199	0.03
9	S	233.01	3276.24	26.2	1370.0	0.0199	0.03
10	S	565.00	3276.23	26.2	1370.0	0.0199	0.03

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5
2	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5
3	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5
4	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5
5	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1

Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2

k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

		: DI C XI		
REL	AZIUNE	: DI CAI	LUULU	SPALLE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3E	50	D 09 CL	VI 20 04 001	Α	54 di 68	

	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi fx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]										
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57
2	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57
3	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57
4	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57
5	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max \	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5
2	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5
3	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5
4	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5
5	S	1.24	17.5	0.0	-23.1	-8.7	1351.3	13700	433.5

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57
2	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57
3	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57
4	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57
5	S	-0.00019	0	0.500	20.0	78	0.00007 (0.00007)	373	0.026 (0.20)	0.00	1060.57

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.17	17.5	0.0	-1.8	-8.7	1351.3	13700	433.5

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00002	0	0.500	20.0	78	0.00001 (0.00001)	373	0.002 (0.20)	0.00	1322.17

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 55 di 68

4.9.2 Muro frontale

Viene verificata la sezione di incastro con la platea di fondazione. Nella determinazione dei momenti flettenti di verifica il muro frontale viene considerato come una mensola incastrata nella platea di fondazione, trascurando a favore di sicurezza gli effetti dovuti alla eventuale presenza dei muri di risvolto.

C32/40

Caratteristiche della sezione:

Sezione rettangolare 140x1370 cm

Armatura verticale

 $A_s = \phi 26/10 + \phi 26/10$ (lato controterra)

 $A'_s = \phi 26/10$ (lato esterno)

Armatura orizzontale

CALCESTRUZZO -

 $A_s = \phi 20/20 + \phi 20/20$ (lato controterra)

 $A'_s = \phi 20/20$ (lato esterno)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classe:

0 0 _ 0	0.0000.	00=,.0	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 56 di 68

N°vertice:	X [cm]	Y [cm]
1	-70.0	0.0
2	-70.0	1370.0
3	70.0	1370.0
4	70.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-60.9	9.1	26
2	-60.9	1360.9	26
3	60.9	1360.9	26
4	60.9	9.1	26
5	-55.7	9.1	26
6	-55.7	1360.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	136	26
2	3	4	136	26
3	5	6	136	26

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 0.9 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	14902.00	4344.00	32476.00	588.00	8774.00
2	14902.00	3699.00	38749.00	512.00	9515.00
3	14902.00	4344.00	32476.00	588.00	8774.00
4	8267.00	7138.00	16651.00	510.00	3597.00
5	14902.00	3699.00	38749.00	512.00	9515.00
6	9902.00	5912.00	22600.00	946.00	5301.00

RELAZIONE DI CALCOLO SPALLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE PROPERTY OF THE PROPERTY O	RS3E	50	D 09 CL	VI 20 04 001	Α	57 di 68

7	8928.00	5912.00	53919.00	946.00	11644.00
8	8660.00	18293.00	21594.00	2884.00	5197.00
9	8660.00	18293.00	21594.00	2884.00	5197.00
10	8928.00	5912.00	53919.00	946.00	11644.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	10656.00	3040.00	22213.00
2	10656.00	2596.00	26532.00
3	10656.00	3040.00	22213.00
4	9318.00	4968.00	19810.00
5	10656.00	2596.00	26532.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	9583.00	1828.00 (2011.37)	20111.00 (22128.37)
2	9583.00	1561.00 (1502.67)	22703.00 (21854.60)
3	9583.00	1828.00 (2011.37)	20111.00 (22128.37)
4	9049.00	3656.00 (4140.56)	19239.00 (21788.89)
5	9583.00	1561.00 (1502.67)	22703.00 (21854.60)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 7974.00 969.00 (2509.80) 9516.00 (24647.32)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.8 cm Interferro netto minimo barre longitudinali: 2.6 cm Copriferro netto minimo staffe: 7.0 cm

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 58 di 68

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	14902.00	4344.00	32476.00	14901.79	10593.43	77507.23	2.372198.0(575.4)
2	S	14902.00	3699.00	38749.00	14902.15	7727.14	77538.13	1.992198.0(575.4)
3	S	14902.00	4344.00	32476.00	14901.79	10593.43	77507.23	2.372198.0(575.4)
4	S	8267.00	7138.00	16651.00	8266.97	31184.01	73675.77	4.372198.0(575.4)
5	S	14902.00	3699.00	38749.00	14902.15	7727.14	77538.13	1.992198.0(575.4)
6	S	9902.00	5912.00	22600.00	9902.08	19477.46	74690.83	3.272198.0(575.4)
7	S	8928.00	5912.00	53919.00	8927.75	7770.08	74228.39	1.372198.0(575.4)
8	S	8660.00	18293.00	21594.00	8660.02	61223.88	73518.23	3.362198.0(575.4)
9	S	8660.00	18293.00	21594.00	8660.02	61223.88	73518.23	3.362198.0(575.4)
10	S	8928.00	5912.00	53919.00	8927.75	7770.08	74228.39	1.372198.0(575.4)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	70.0	1370.0	0.00210	60.9	1360.9	-0.01698	-60.9	9.1
2	0.00350	70.0	1370.0	0.00207	60.9	1360.9	-0.01736	-60.9	9.1
3	0.00350	70.0	1370.0	0.00210	60.9	1360.9	-0.01698	-60.9	9.1
4	0.00350	70.0	1370.0	0.00214	60.9	1360.9	-0.01693	-60.9	9.1
5	0.00350	70.0	1370.0	0.00207	60.9	1360.9	-0.01736	-60.9	9.1
6	0.00350	70.0	1370.0	0.00206	60.9	1360.9	-0.01780	-60.9	9.1
7	0.00350	70.0	1370.0	0.00191	60.9	1360.9	-0.01965	-60.9	9.1
8	0.00350	70.0	1370.0	0.00240	60.9	1360.9	-0.01382	-60.9	9.1
9	0.00350	70.0	1370.0	0.00240	60.9	1360.9	-0.01382	-60.9	9.1
10	0.00350	70.0	1370 0	0.00191	60.9	1360.9	-0.01965	-60.9	9 1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

RELAZIONE DI CALCOLO SPALLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3E	50	D 09 CL	VI 20 04 001	Α	59 di 68

1	0.000153788	0.000000260	-0.007620764	
2	0.000157325	0.00000195	-0.007779218	
3	0.000153788	0.000000260	-0.007620764	
4	0.000149227	0.000000659	-0.007849300	
5	0.000157325	0.00000195	-0.007779218	
6	0.000158335	0.000000420	-0.008159140	
7	0.000175080	0.00000169	-0.008986599	
8	0.000120064	0.000001179	-0.006519380	
9	0.000120064	0.000001179	-0.006519380	
10	0.000175080	0.00000169	-0.008986599	

VERIFICHE A TAGLIO

bw

Ctg

As eff.

Diam. Staffe: 8 mm

Passo staffe: 0.9 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione

Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
	_									
1	S	8774.98	56544.90	13359.5113	1.4 122.3	1370.2	2.500	1.041	73.4	111.7(0.0)
2	S	9515.63	56579.73	13368.3213	1.4 122.3	1370.2	2.500	1.041	79.5	111.7(0.0)
3	S	8774.98	56544.90	13359.51131	1.4 122.3	1370.2	2.500	1.041	73.4	111.7(0.0)
4	S	3599.22	55725.55	13409.7213	1.8 122.7	1369.5	2.500	1.023	30.0	111.7(0.0)
5	S	9515.63	56579.73	13368.3213	1.4 122.3	1370.2	2.500	1.041	79.5	111.7(0.0)
6	S	5303.49	56037.54	13417.1213	1.9 122.8	1370.4	2.500	1.027	44.2	111.7(0.0)
7	S	11644.91	56054.63	13458.74132	2.3 123.2	1370.1	2.500	1.025	96.6	111.7(0.0)
8	S	5225.06	55431.38	13324.08131	1.0 121.9	1369.6	2.500	1.024	43.8	111.7(0.0)
9	S	5225.06	55431.38	13324.0813	1.0 121.9	1369.6	2.500	1.024	43.8	111.7(0.0)
10	S	11644.91	56054.63	13458.74132	2.3 123.2	1370.1	2.500	1.025	96.6	111.7(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure N°Comb Ver Xc max Yc max Sf min Xs min Ys min Sc max Ac eff. As eff.

S 70.0 1370.0 -106.9 -60.9 1465.4 1 5.44 9.1 36946

RELAZIONE DI CALCOLO SPALLE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RS3E	50	D 09 CL	VI 20 04 001	Α	60 di 68	

2	S	6.38	70.0 1370.0	-133.0	-60.9	9.1	38117	1465.4
3	S	5.44	70.0 1370.0	-106.9	-60.9	9.1	36946	1465.4
4	S	4.94	70.0 1370.0	-97.2	-60.9	9.1	36076	1465.4
5	S	6.38	70.0 1370.0	-133.0	-60.9	9.1	38117	1465.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00060	0	0.500	26.0	78	0.00032 (0.00032)	377	0.121 (0.20)	3011.91	22007.73
2	S	-0.00074	0	0.500	26.0	78	0.00040 (0.00040)	380	0.152 (0.20)	2117.58	21642.39
3	S	-0.00060	0	0.500	26.0	78	0.00032 (0.00032)	377	0.121 (0.20)	3011.91	22007.73
4	S	-0.00054	0	0.500	26.0	78	0.00029 (0.00029)	374	0.109 (0.20)	5419.14	21608.92
5	S	-0.00074	0	0.500	26.0	78	0.00040 (0.00040)	380	0.152 (0.20)	2117.58	21642.39

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.89	70.0 1370.0	-96.4	-60.9	9.1	37375	1465.4
2	S	5.45	70.0 1370.0	-112.0	-60.9	9.1	38188	1465.4
3	S	4.89	70.0 1370.0	-96.4	-60.9	9.1	37375	1465.4
4	S	4.75	70.0 1370.0	-93.7	-60.9	9.1	36601	1465.4
5	S	5.45	70.0 1370.0	-112.0	-60.9	9.1	38188	1465.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00054	0	0.500	26.0	78	0.00029 (0.00029)	378	0.109 (0.20)	2011.37	22128.37
2	S	-0.00063	0	0.500	26.0	78	0.00034 (0.00034)	380	0.128 (0.20)	1502.67	21854.60
3	S	-0.00054	0	0.500	26.0	78	0.00029 (0.00029)	378	0.109 (0.20)	2011.37	22128.37
4	S	-0.00052	0	0.500	26.0	78	0.00028 (0.00028)	376	0.106 (0.20)	4140.56	21788.89
5	S	-0.00063	0	0.500	26.0	78	0.00034 (0.00034)	380	0.128 (0.20)	1502.67	21854.60

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.43	70.0 1370.0	-36.4	-60.9	9.1	33172	1465.4

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3E	50	D 09 CL	VI 20 04 001	Α	61 di 68

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max wk		Mx fess	My fess	
1	S	-0.00021	0	0.500	26.0	78	0.00011 (0.00011)	365	0.040 (0.20)	2509.80	24647.32

l'armatura minima posta in opera non rispetta i minimi previsti dalla norma per gli elementi "trave" di media duttilità

Per la verifica a taglio della sezione si considera l'area di ferro necessaria, come indicata dal codice di calcolo,e si assegna una armatura equivalente; in particolare si utilizzeranno:

Spille $9\phi 12/mq$ per metro di sezione.

4.9.3 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{max} = 3560kN$ (CC. SLU)

 $T_{max} = 884kN$ (CC. SLV)

 $N_{max} = 3868kN$ (CC. SLV)

 $T_{max} = 1168kN$ (CC. SLV)

4.9.3.1 Unghia anteriore platea fondazione

Il tacco anteriore del plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo anteriore del muro frontale, mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente), mentre l'altezza della biella compressa è stata valutata pari a 0.2 d_p (con d_paltezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 62 di 68

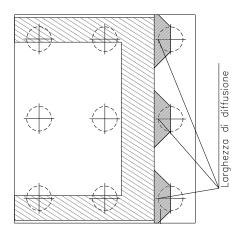
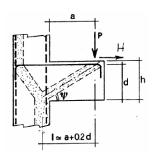



Figura 3 – Diffusione delle azioni dal palo al muro frontale

Di seguito si riportano i risultati delle verifiche strutturali del plinto di fondazione, condotte con riferimento al metodo usualmente utilizzato per la verifica delle mensole tozze, ovvero il metodo del tirante-puntone, di cui nel seguito si riporta lo schema e di verifica generale e relative formulazioni proposte a riguardo al C4.1.2.1.5 dalla Circolare Ministeriale n° 617/09.

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (PED, HED)

Pr : Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{_{R}}=P_{_{Rs}}=\!\left(A_{_{s}}f_{_{yd}}-H_{_{Ed}}\right)\!\frac{1}{\lambda}\qquad\lambda\!\!=\!\!ctg\psi\!\!\cong\!\!1/(0.9d).$$

Pr : Portanza mensola in termini di resistenza della Biella compressa

$$P_{Rc} = 0,4bdf_{cd} \frac{c}{1+\lambda^2} \ge P_{Rs}$$

CONDIZIONI DI VERIFICA

- $_{\text{1}}\quad P_{\text{R}}\geq P_{Ed}$
- $P_{Rc} \ge P_{Rs}$

RELAZIONE DI CALCOLO SPALLE

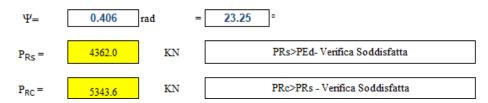
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 63 di 68

Dati di progetto

b(m)=	3.20	m	dimensione trasversale verifica
P_{Ed} (KN) =	3868.00	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	1168.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	3.60	m	distanza P da incastro
h(m) =	2.00	m	spessore mensola
$\delta(m) =$	0.10	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	1.90	m	altezza utile
1(m) =	3.98	m	a+0,2d
λ =	2.33		$\lambda = \operatorname{ctg} \psi \cong I/(0.9d)$.

Tipo di mensola (Valutazione coefficiente c)


Caratteristiche Materiali

fcd=	14.1	MPa	Calcestruzzo
fvd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	24.0	p1(cm) = 10.0	θ1°= 0.0
Αφ i (mm²) =	452.39	nb tot 1=	32.0	Aφ TOT (mm²) = 14476.45	$A\phi CAL(mm^2) = 14476.45$
Registro tipo	R2				
n° R2=	1	φ2(mm) =	24.0	p2(cm) = 10.0	$\theta 2^{\circ} = 0.0$
Aφ i (mm²) =	452.39	nb tot 2 =	32.0	$A\phi$ TOT (mm ²) = 14476.45	$A\phi CAL(mm^2) = 14476.45$
Registro tipo	R3				
n° R3=	0	φ3(mm) =	24.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	452.39	nb tot 3 =	0.0	$A\phi$ TOT (mm ²) = 0.00	$A\phi$ CAL(mm ²) = 0.00

Verifiche di resistenza

RELAZIONE DI CALCOLO SPALLE

LOTTO CODIFICA COMMESSA DOCUMENTO RS3E D 09 CL 50 VI 20 04 001

REV. **FOGLIO** 64 di 68 Α

4.9.4 Palo di fondazione L=22.0m

Viene verificata la sezione di incastro con la platea di fondazione.

Il momento flettente agente in testa palo viene derivato dal taglio in testa palo nell'ipotesi di elasticità lineare sia per il palo che per il terreno. Risulta

 $M=T\ast\alpha$

 $\alpha = 2.57$ (vedi relazione geotecnica)

 $N_{max} = 3868 \; kN$ T = 1168 kNM = 2468 * 2.57 = 3001 kNm

 $N_{min} = -317 \text{ kN}$ M = 2468 * 2.57 = 3001 kNmT = 1168 kN

 $M_{max} = 2468 * 2.57 = 3001 \text{ kNm}$ N = -317 kNT = 1168 kN

Caratteristiche della sezione:

Sezione circolare Ø 120 cm

 $A_s = 30 + 30 \phi 26$ staffe *\phi*14/15

La lunghezza del palo è pari a L = 22.00m

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 65 di 68

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen. Ø **Xcentro** Ycentro Raggio **N°Barre** 0.0 0.0 50.0 30 26 1 2 0.0 0.0 45.0 30 26

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 15.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	3560.00	2273.00	0.00	884.00	0.00
2	866.00	2273.00	0.00	884.00	0.00
3	3868.00	3001.00	0.00	1168.00	0.00
4	-317.00	3001.00	0.00	1168.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му	
1	2814.00	1538.00	0.00	
2	1408.00	1538.00	0.00	

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

PROGETTO DEFINITIVO

VI20 (ex VI12) - Doppio Binario

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 66 di 68

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 2489.00
 1462.00 (916.96)
 0.00 (0.00)

 2
 1542.00
 1462.00 (801.39)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.7 cm Interferro netto minimo barre longitudinali: 2.4 cm Copriferro netto minimo staffe: 7.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compre

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	3560.00	2273.00	0.00	3560.06	5183.61	0.00	2.28 318.6(33.9)
2	S	866.00	2273.00	0.00	866.14	4821.15	0.00	2.12 318.6(33.9)
3	S	3868.00	3001.00	0.00	3868.00	5214.28	0.00	1.74 318.6(33.9)
4	S	-317.00	3001.00	0.00	-316.93	4582.06	0.00	1.53 318.6(33.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Defense welt recesions del consistent a communication
Deform. unit. massima del conglomerato a compressione
Deform. unit. massima del conglomerato a compressione
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	60.0	0.00283	0.0	50.0	-0.00391	0.0	-50.0
2	0.00350	0.0	60.0	0.00269	0.0	50.0	-0.00540	0.0	-50.0
3	0.00350	0.0	60.0	0.00284	0.0	50.0	-0.00377	0.0	-50.0
4	0.00350	0.0	60.0	0.00261	0.0	50.0	-0.00625	0.0	-50.0

RELAZIONE DI CALCOLO SPALLE

COMMESSA LOTTO CODIFICA REV. FOGLIO **DOCUMENTO** RS3F 50 D 09 CL VI 20 04 001 67 di 68 Α

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. а С x/d 0.000067388 1 0.000000000 -0.000543306 0.000080930 0.000000000 -0.001355795 2 3 0.000000000 0.000066095 -0.000465725 4 0.000000000 0.000088608 -0.001816488

VERIFICHE A TAGLIO

Diam. Staffe: 14 mm

Passo staffe: 15.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

hw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh legat proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
							_			
1	S	884.00	2454.63	2876.02	92.1 75.4	109.1	2.500	1.222	12.0	39.0(0.0)
2	S	884.00	2213.08	3008.03	92.4 78.8	109.1	2.500	1.054	11.5	39.0(0.0)
3	S	1168.00	2481.86	2858.41	91.8 74.9	109.3	2.500	1.242	15.9	39.0(0.0)
4	S	1168.00	2114.59	3087.36	93.3 80.9	107.0	2.500	1.000	14.8	39.0(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	8.94	0.0	0.0	-89.8	0.0	-50.0	1045	42.5
2	S	8.64	0.0	0.0	-131.7	0.0	-50.0	1422	63.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

RELAZIONE DI CALCOLO SPALLE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3E
 50
 D 09 CL
 VI 20 04 001
 A
 68 di 68

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe My fe	SS.	Esito della ve Massima defor = 0.8 per bar = 0.4 per co = 0.5 per fles = 3.400 Coef = 0.425 Coef Diametro [mn Copriferro [m Differenza tra Tra parentesi Massima dist	erifica ormazione un mazione un rre ad adere mb. quasi p sione; =(e1 f. in eq.(7.11 f. in eq.(7.11 n] equivalen m] netto cal le deforma i: valore min anza tra le f sure in mm o momento d	nitaria di tra taria di tra nza miglio ermanenti + e2)/(2*e¹) come da l) come da te delle ba colato con zioni medicimo = 0.6 sessure [mr. alcolata = i prima fes	razione nizione nel rata [eq.(/ = 0.6 pe 1) per tra: annessi annessi rire tese ci riferimen e di accia Smax / E: m] sr max*(e surazione	el calcestruzzo calcestruzzo 7.11)EC2] er comb.frequizione eccentri nazionali comprese nel to alla barra i io e calcestrus [(7.9)EC2] e_sm - e_cm e intorno all'ai	zzo [(7.8)EC2 e (C4.1.7)NTC] e (C4.1.8)NTC]) [(7.8)EC2 e (C4.1.7)NTC]. Valo sse X [kNm]	e fessurat essurata	ta	ctm	
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1 2	S S	-0.00055 -0.00078	0	0.500 0.500	26.0 26.0	87 87	0.00027 (0.00027) 0.00044 (0.00040)	405 394	0.109 (0.20) 0.173 (0.20)	943.69 780.25	0.00 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	8.46	0.0	0.0	-90.5	0.0	-50.0	1083	42.5
2	S	8.26	0.0	0.0	-118.7	0.0	-50.0	1376	63.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max		wk	Mx fess	My fess
1	S	-0.00055	0	0.500	26.0	87	0.00027 (0.00027)	409	0.111 (0.20)	916.96	0.00
2	S	-0.00070	0	0.500	26.0	87	0.00038 (0.00036)	391	0.148 (0.20)	801.39	0.00