

COMUNE DI CATANZARO

PROGETTAZIONE

DIVISIONE IMPIANTI

engineering

🧻 giaconsulting

Via Belvedere 8/10 30035 Mirano (VE) www.fm-ingegneria-com fm@fm-ingegneria.com

Via Belvedere 8/10 30035 Mirano (VE) www.fm-ingegneria-com divisioneimpianti@fm-ingegneria.com

Napoli Via Filangieri, 11 sispi.ced@sispinet.it

80131 Napoli Viale DEGLI ASTRONAUTI, 8 amministrazione@giaconsulting.it

tel 041-5785711

tel 041-5785711 fax 041-4355933

tel. +39 081 412641

tel. +39 081 0383761

PROGETTO

COMUNE DI CATANZARO LAVORI DI COMPLETAMENTO DELLE OPERE INTERNE DEL PORTO DI CATANZARO MARINA

EMISSIONE

PROGETTO DEFINITIVO

DISCIPLINA

STRUTTURE

TITOLO

C - VIABILITA' E RAMPA DI ACCESSO Relazione di calcolo

REV.	DATA	FILE	OGGETTO	DIS.	APPR.
1	7/10/2019	1259_C01_1.doc	Riscontro lettera prot. no. 86962/19	R. Bullo	T. Tassi
2					
3					
4					
5					
6					
7					
- 2					

ELABORATO N.

C01

DATA:	SCALA:	FILE:	J.N.
22/07/2019	-	1259_C01_0.doc	1259/19
PROGETTO	DISEGNO	VERIFICA	APPROVAZIONE
L. Masiero	R. Bullo	L. Masiero	T. Tassi

INDICE

1	PREMESSA	4
2	NORMATIVA DI RIFERIMENTO	5
2.1	LEGGI, DECRETI E CIRCOLARI	5
2.2	NORME E ISTRUZIONI NAZIONALI	
2.3	NORMATIVA EUROPEA ED INTERNAZIONALE	
3	CARATTERISTICHE DEI MATERIALI	7
3.1	CALCESTRUZZO	7
3.2	ACCIAIO PER ARMATURE	
4	OPERE GEOTECNICHE	10
4.1	VITA NOMINALE E CLASSE D'USO	10
4.2	ANALISI DEI CARICHI	
4.3	SOFTWARE DI CALCOLO	
4.4	BERLINESE DI PALI - LATO NORD	
4.5	CRITERI DI VERIFICA MURI DI SOSTEGNO	
5	CABINA ENEL	
5.1	CONDIZIONI ELEMENTARI DI CARICO	
5.2	ANALISI DEI CARICHI	
5.3	ANALISI MODALE	_
5.4 5.5	RESISTENZA AL FUOCO DEGLI ELEMENTI STRUTTURALICOMBINAZIONI DI CARICO	
5.6	MODELLO DI CALCOLO	
5.7	VERIFICHE	
6	FUTURA AREA COMMERCIALE	
6.1	CONDIZIONI ELEMENTARI DI CARICO	
6.2	ANALISI DEI CARICHI	
6.3	MODELLO DI CALCOLO	
6.4	COMBINAZIONI DI CARICO	
6.5	ANALISI MODALE	
6.6	RESISTENZA AL FUOCO DEGLI ELEMENTI STRUTTURALI	
6.7	VERIFICHE	97

Relazione di calcolo

1259_C01.docx 3 di 113

1 PREMESSA

La presente relazione riguarda le verifiche nell'ambito del progetto definitivo relativo alle strutture del porto di Catanzaro Marina - Lavori di completamento delle opere interne portuali. Le opere da realizzare definite nel presente documento riguardano:

- la costruzione di una berlinese di pali a sostegno della strada esistente, posizionata a nord dell'area di interesse;
- un muro di sostegno a protezione della rampa, posizionata ad est;
- inserimento di un locale tecnico sotto rampa denominato "Cabina Enel";
- futura area commerciale.

Figura 2. Keyplan interventi di progetto - lato nord

1259_C01.docx 4 di 113

2 NORMATIVA DI RIFERIMENTO

Il progetto strutturale degli interventi è stato condotto nell'ambito del Metodo Semiprobabilistico agli Stati Limite. Si è fatto riferimento, nella progettazione, alla vigente normativa Italiana ed in particolare a:

- DM del 17/01/2018 Norme Tecniche per le Costruzioni (nel seguito denominate NTC)
- Circolare 21 gennaio 2019 N.7 / C.S.LL.PP.
- Norma di prodotto (marcatura CE)

Circa le indicazioni applicative considerate per l'ottenimento dei requisiti prestazionali prescritti nel DM del 17/01/2018, ci si è riferiti, quando non direttamente alle indicazioni delle Norme Tecniche stesse, a normative di comprovata validità e ad altri documenti tecnici elencati nel seguito.

In particolare, per quel che riguarda le Verifiche Strutturali, le indicazioni fornite dagli Eurocodici, con le relative Appendici Nazionali, costituiscono indicazioni di comprovata validità e forniscono il sistematico supporto applicativo delle norme.

2.1 LEGGI, DECRETI E CIRCOLARI

- L. 5.11.1971, nº 1086 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- D.M. 17.01.2018 "Norme tecniche per le costruzioni".
- Circolare 21 gennaio 2019, n. 7 "Istruzioni per l'applicazione delle Nuove norme tecniche" per le costruzioni" di cui al D.M. 17 gennaio 2018
- D.M. 16.02.07 "Classificazione e resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione".
- D.M. LL. PP. 11.3.1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Circ. Min. LL. PP. 24.9.88 "Istruzioni riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Associazione Geotecnica Italiana (1977) "Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche".
- Raccomandazioni A.I.C.A.P. (1993) "Ancoraggi nei terreni e nelle rocce".

2.2 NORME E ISTRUZIONI NAZIONALI

- UNI EN 206-1:2016 "Calcestruzzo: specificazione, prestazione produzione e conformità".
- UNI EN 11104:2016 "Calcestruzzo: specificazione, prestazione produzione e conformità. Istruzioni

2.3 NORMATIVA EUROPEA ED INTERNAZIONALE

- UNI EN 1990 Eurocodice 0 "Criteri generali di progettazione strutturale".
- UNI EN 1991 Eurocodice 1 "Azioni sulle strutture".
- UNI EN 1992 Eurocodice 2 "Progettazione delle strutture di calcestruzzo".
- UNI EN 1993 Eurocodice 3 "Progettazione delle strutture di acciaio".
- UNI EN 1994 Eurocodice 4 "Progettazione delle strutture composte acciaio-calcestruzzo".
- UNI EN 1994 Eurocodice 5 "Progettazione delle strutture in legno".

1259_C01.docx 5 di 113

- UNI EN 1997 Eurocodice 7 "Progettazione geotecnica".
- UNI EN 1998 Eurocodice 8 "Progettazione delle strutture per la resistenza sismica".
- UNI EN 1999 Eurocodice 9 "Progettazione delle strutture in alluminio".
- BS6349 "Maritime works"
- Recommendation of the Committee for Waterfront Structures EAU, Sixth English Edition (EAU 1990)
- PIANC 2002 "Guidlines for the Design of Fenders Systems"

1259_C01.docx 6 di 113

3 CARATTERISTICHE DEI MATERIALI

3.1 CALCESTRUZZO

3.1.1 CALCESTRUZZO PER BERLINESE DI PALI E STRUTTURE IN ELEVAZIONE

CALCESTRUZZO - Rif. DM 17/01/2018			
classe di resistenza	С	32/40	
resistenza cubica caratteristica a compressione	R _{ck}	40,00	MPa
peso specifico	ρ		kN/mc
classe d'esposizione		XS1	- 1
coeff. espansione termica lineare	α	1x10 ⁻⁵	°C-1
coeff. di Poisson	ufess	0,00	
	unon fess	0,20	
modulo elastico secante	E _{cm}	33346	MPa
resistenza cilindrica caratteristica a compressione	f _{ck}	32,00	MPa
resistenza cilindrica media a compressione	f_{cm}	40,00	MPa
coeff. parziale per resistenze SLU	γc	1,50	
coeff. riduttivo per resistenze di lunga durata	$lpha_{ t CC}$	0,85	
resistenza media a trazione assiale	f_{ctm}	3,02	MPa
resistenza media a trazione per flessione	f_{cfm}	3,63	MPa
resistenza caratteristica a trazione frattile 5%	$f_{ctk,0.05} \\$	2,12	MPa
resistenza caratteristica a trazione frattile 95%	$f_{ctk,0.95}$	3,93	MPa
resistenza di calcolo a compressione	f _{cd}	18,13	MPa
resistenza di calcolo a compressione per spessori < 5cm	f _{cd,sp<5}	14,51	MPa
resistenza di calcolo a trazione	f _{ctd}	1,41	MPa
resistenza di calcolo a trazione per spessori < 5cm	f _{ctd,sp<5}	_ 1,13	
tensione ammissibile per combinazione caratteristica (rara)	$\sigma_{c,rara}$	19,20	MPa
tensione ammissibile per combinazione caratteristica (rara) per spessori < 5cm	σc,rara,sp<5	15,36	MPa
tensione ammissibile per combinazione quasi permanente	$\sigma_{c,q.p.}$	14,40	MPa
tensione ammissibile per combinazione quasi permanente per spessori < 5cm	$\sigma_{c,q.p.,sp<5}$	11,52	MPa
resistenza tangenziale caratteristica di aderenza per barre Ø≤32	f_{bk}	4,76	MPa
resistenza tangenziale di calcolo di aderenza per barre Ø≤32	f _{bd}	3,18	MPa

1259_C01.docx 7 di 113

PRESCRIZIONI MINIME CALCESTRUZZO - UNI11104:2016 + UNI EN206-1:2016 Classe d'esposizione (1)

classe d'esposizione		XS1	
condizioni ambientali (NTC18 §4.1.2.2.4.2)		Aggressivo	_
massimo rapporto acqua/cemento	a/c	0,50	
classe minima di resistenza	classe	C32/40	
contenuto minimo di cemento	cemento	340	Kg/mc
contenuto minimo d'aria	aria	-	%
altre prescrizioni		-	

La classe d'esposizione XS1 è compatibile con corrosione indotta da cloruri presenti nell'acqua di mare per un ambiente esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare in strutture come: calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità.

3.1.2 CALCESTRUZZO PER FONDAZIONE DEL MURO E FONDAZIONE DEL LOCALE TECNICO

CALCESTRUZZO - Rif. DM 17/01/2018			
classe di resistenza	C	35/45	
resistenza cubica caratteristica a compressione	R_{ck}	45,00	
peso specifico	ρ		kN/mc
classe d'esposizione		XS3	a a -1
coeff. espansione termica lineare	α	1x10 ⁻⁵	°C-1
coeff. di Poisson	uf ess	0,00	
	unon fess	0,20	
modulo elastico secante	E _{cm}	34077	
resistenza cilindrica caratteristica a compressione	f _{ck}	35,00	MPa
resistenza cilindrica media a compressione	f_{cm}	43,00	MPa
coeff. parziale per resistenze SLU	γς	1,50	
coeff. riduttivo per resistenze di lunga durata	$lpha_{ t CC}$	0,85	
resistenza media a trazione assiale	$f_{\rm ctm}$	3,21	MPa
resistenza media a trazione per flessione	f_{cfm}	3,85	MPa
resistenza caratteristica a trazione frattile 5%	$f_{ctk,0.05}$	2,25	MPa
resistenza caratteristica a trazione frattile 95%	$f_{ctk,0.95}$	4,17	MPa
resistenza di calcolo a compressione	f _{cd}	19,83	MPa
resistenza di calcolo a compressione per spessori < 5cm	f _{cd,sp<5}	15,87	
resistenza di calcolo a trazione	f _{ctd}	1,50	
resistenza di calcolo a trazione per spessori < 5cm	f _{ctd,sp<5}	_ *	MPa
tensione ammissibile per combinazione caratteristica (rara)	$\sigma_{\text{c,rara}}$	21,00	MPa
tensione ammissibile per combinazione caratteristica (rara) per spessori < 5cm	σc,rara,sp<5	16,80 _	
tensione ammissibile per combinazione quasi permanente	σc,q.p.	15,75	MPa
tensione ammissibile per combinazione quasi permanente	σc,q.p.,sp<5	12,60	MPa
per spessori < 5cm			
resistenza tangenziale caratteristica di aderenza per barre Ø≤32	f _{bk}	5,06	MPa
resistenza tangenziale di calcolo di aderenza per barre Ø≤32	f _{bd}	3,37	MPa

1259_C01.docx 8 di 113

Classe d'esposizione (2)

classe d'esposizione		XS3	
condizioni ambientali (NTC18 §4.1.2.2.4.2)		Molto aggressivo	
massimo rapporto acqua/cemento	a/c	0,45	
classe minima di resistenza	classe	C35/45	
contenuto minimo di cemento	cemento	360	Kg/mc
contenuto minimo d'aria	aria	-	%
altre prescrizioni		-	

La classe d'esposizione XS3 è compatibile con corrosione indotta da cloruri presenti nell'acqua di mare per un ambiente zone esposte agli spruzzi o alle marea in strutture come: calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alle zone soggette agli spruzzi ed onde del mare.

Prescrizioni minime complessive secondo UNI11104:2016 e UNI EN206-1:2016

classi d'esposizione considerate		XS1+XS3	
condizioni ambientali (NTC18 §4.1.2.2.4.2)		Molto aggressivo	
massimo rapporto acqua/cemento	a/c	0,45	
classe minima di resistenza	classe	C35/45	
contenuto minimo di cemento	cemento	360	Kg/mc
contenuto minimo d'aria	aria	0	%
altre prescrizioni		-	

3.2 ACCIAIO PER ARMATURE

ACCIAIO DA C.A.

tipo		B450C	
coeff. parziale per le resistenze SLU	γм	1,15	
resistenza caratteristica a snervamento	f_{yk}	450,00	MPa
resistenza caratteristica a rottura	f_{tk}	540,00	MPa
rapporto $(f_t / f_y)_k$	1,15 ≤	$(f_t / f_y)_k$	≤ 1,35
rapporto $(f_y / f_{y,nom})_k$		$(f_y / f_{y,nom})_k$	≤ 1,25
allungamento (A _{gt}) _k	$(A_{gt})_k$	≥ 7,50 %	
resistenza di calcolo	\mathbf{f}_{yd}	391,30	MPa
tensione per combinazione caratteristica (rara)	σs,rara	360,00	MPa

1259_C01.docx 9 di 113

4 OPERE GEOTECNICHE

4.1 VITA NOMINALE E CLASSE D'USO

VITA NOMINALE

La vita nominale V_N dell'opera corrisponde al numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere utilizzata per lo scopo al quale è destinata. Nelle previsioni progettuali dunque, se le condizioni ambientali e d'uso sono rimaste nei limiti previsti, non prima della fine di detto periodo saranno necessari interventi di manutenzione straordinaria per ripristinare le capacità di durata della costruzione. Con riferimento alla tabella 2.4.1 delle NTC 17/01/2018, si assume, per la costruzione in oggetto, una vita nominale corrispondente a:

V_N ≤ 50 anni

corrispondente ad un tipo di costruzione

2

che si riferisce a:

"Costruzioni con livelli di prestazioni ordinari"

CLASSE D'USO

In riferimento alle conseguenze di un eventuale collasso o di una perdita di operatività dell'opera (§2.4.2 NTC 17/01/2018) la struttura si classifica in:

Classe III Cu= 1,5

Tale classe si riferisce a:

"Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso."

1259_C01.docx 10 di 113

4.2 ANALISI DEI CARICHI

4.2.1 PESO PROPRIO

Si considerano i seguenti pesi propri degli elementi strutturali:

Calcestruzzo γ =25.0 KN/m³ Acciaio γ =78.5 KN/m³

4.2.2 CARICHI

Carichi pedonali Ambienti suscettibili di affollamento, Cat. C5

Carico distribuito: $q_k = 5.0 \text{ kN/mq}$ Carico orizzontale: $H_k = 3.0 \text{ kN/m}$

Azioni accidentali su banchina

Stato limite di esercizio, combinazione rara (NTC'18):

 20 kN/mq, agente su pavimentazione per le verifiche in condizione di esercizio della struttura.

Stato limite ultimo, combinazione A1 (NTC'18, §6): amplificazione del carico per il fattore γ_Q per le verifiche strutturali dell'opera.

Condizioni sismiche: in condizioni sismiche si considera una riduzione del carico rispetto al valore di progetto (NTC'18, §2.5.3)

4.2.3 SISMA

Si esegue una ricerca per coordinate del sito oggetto d'intervento. La tabella seguente indica la posizione geografica del sito con le corrispondenti coordinate puntuali.

Si opera nell'ipotesi di infrastruttura di importanza normale, con vita nominale prevista corrispondente a: $V_{N=50}$ anni

1259_C01.docx 11 di 113

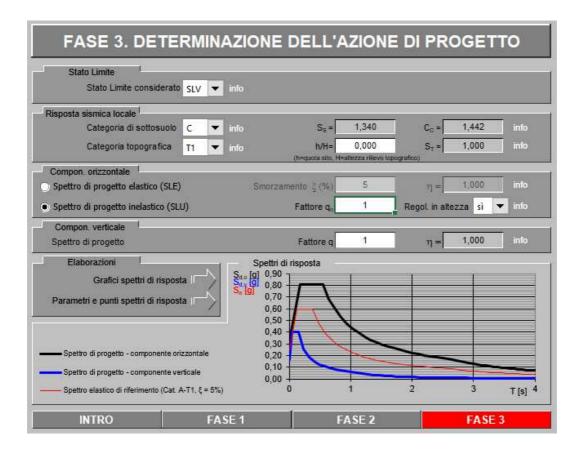
La struttura si considera di Classe d'uso III, corrispondente ad una costruzione con affollamenti significativi. Si applica dunque un coefficiente:

Cu=1.5

Il periodo di riferimento dell'azione sismica corrisponde dunque a:

$V_R=V_NxC_U=100x1.0=75$ anni

La seguente tabella indica i periodi di ritorno previsti, in relazione alla probabilità assegnata, per i diversi stati limite da considerare nelle analisi.


Si riportano, nella tabella seguente, i valori di accelerazione di picco e gli altri parametri significativi degli spettri di progetto, per i diversi stati limiti da analizzare.

STATO	T _R	ag	Fo	Tc*
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0,070	2,332	0,302
SLD	101	0,091	2,343	0,322
SLV	949	0,247	2,430	0,382
SLC	1950	0,323	2,458	0,407

La struttura in esame si considera cautelativamente in campo elastico: q=1.0

1259_C01.docx 12 di 113

In accordo al D.M. 17 gennaio 2018, in mancanza di sondaggi geognostici, si ritiene che l'area rientri in **Categoria di suolo C** (*Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti*)

1259_C01.docx 13 di 113

STATO LIMITE - SLV

Si riportano nel seguito i parametri di calcolo e i grafici corrispondenti agli spettri di progetto da considerare nelle analisi per lo Stato Limite corrispondente alla perdita di vite umane – SLV.

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipen	denti
-------------------	-------

STATO LIMITE	SLV
a _o	0,247 g
F _o	2,430
T _c *	0,382 s
Ss	1,340
C _C	1,442
S _T	1,000
q	1,000

Parametri dipendenti

S	1,340
η	1,000
T _B	0,184 s
T _C	0,551 s
T _D	2,586 s

Espressioni dei parametri dipendenti

S = S S	(NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{\prime}$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_{_R} / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_{B} & \quad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \left(1 - \frac{T}{T_{B}} \right) \right] \\ T_{B} \leq T < T_{C} & \quad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \\ T_{C} \leq T < T_{D} & \quad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T} \right) \\ T_{D} \leq T & \quad S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti	dell	o s	pet	tro	di	ris	pos	ta

	T [e]	Se [n]
	T [s]	Se [g]
T⊳ ∢	0,000	0,331
	0,184	0,803
Tc◀	0,551	0,803
	0,648	0,683
	0,745	0,594
	0,8 4 2 0,939	0,526
		0,472
	1,036 1,133	0,427
	1,133	0,391
	1,326	0,360 0,334
	1,423	0,334
	1,520	0,291
	1,617	0,231
	1,714	0,274
	1,811	0,236
	1,908	0,244
	2,005	0,232
	2,102	0,211
	2,199	0,201
	2,296	0,193
	2,393	0,185
	2,489	0,178
T₀◀	2,586	0,171
	2,654	0,163
	2,721	0,155
	2,788	0,147
	2,856	0,140
	2,923	0,134
	2,990	0,128
	3,058	0,122
	3,125	0,117
	3,192	0,112
	3,260	0,108
	3,327	0,103
	3,394	0,099
	3,461	0,096
	3,529	0,092
	3,596	0,089
	3,663	0,085
	3,731	0,082
	3,798	0,079
	3,865	0,077
	3,933	0,074
	4,000	0,072

1259_C01.docx 14 di 113

STATO LIMITE - SLD

Si riportano nel seguito i parametri corrispondenti agli spettri di progetto da considerare nelle analisi per lo Stato Limite di Danno – SLD.

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LD

Parametri indipendenti

STATO LIMITE	SLD
a _o	0,091 g
F _o	2,343
T _c *	0,322 s
Ss	1,500
C _C	1,526
S _T	1,000
q	1,000

Parametri dipendenti

S	1,500
η	1,000
T _B	0,164 s
T _C	0,491 s
Tn	1,962 s

Espressioni dei parametri dipendenti

 $S = S_S \cdot S_T$ (NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C/3$ (NTC-07 Eq. 3.2.8)

 $T_c = C_c \cdot T_c'$ (NTC-07 Eq. 3.2.7)

 $T_0 = 4,0 \cdot a_x / g + 1,6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq & T < T_B \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ & T_B \leq & T < T_C \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ & T_C \leq & T < T_D \\ & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ & T_D \leq & T \\ \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T (-1	Ca (a)		
	T [s]	Se [g]		
ا ـ ـ	0,000	0,136		
T⊳ ∢	0,164	0,318		
Tc◀	0,491	0,318		
	0,561	0,279		
	0,631	0,248		
	0,701	0,223		
	0,772	0,203		
	0,842	0,186		
	0,912	0,172		
	0,982	0,159		
	1,052	0,149		
	1,122	0,139		
	1,192	0,131		
	1,262	0,124		
	1,332	0,117		
	1,402	0,112		
	1,472	0,106		
	1,542	0,101		
	1,612	0,097		
	1,682	0,093		
	1,752	0,089		
	1,822	0,086		
т	1,892	0,083		
T₀◀─	1,962	0,080		
	2,059	0,072		
	2,156	0,066		
	2,253	0,060		
	2,350	0,056		
	2,448	0,051		
	2,545	0,047		
	2,642	0,044		
	2,739	0,041		
	2,836	0,038		
	2,933	0,036		
	3,030	0,033		
	3,127	0,031		
	3,224	0,030		
	3,321	0,028		
	3,418 3,515	0,026 0,025		
	3,612	0,025		
	3,709			
	3,806	0,022 0,021		
	3,903	0,021		
	4,000	0,020		
	4,000	0,010		

1259_C01.docx 15 di 113

4.3 SOFTWARE DI CALCOLO

Le elaborazioni mediante calcolatore sono state eseguite con l'ausilio dei seguenti programmi:

- PresFLE+® prodotto da CONCRETE s.r.l., via della Pieve 19, 35121 Padova. Questo software è
 utilizzato per il calcolo e la verifica delle sezioni in calcestruzzo armato;
- Paratie (copyrigh Harpaceass.r.l. Viale Richard,1 20143 Milano), per le verifiche delle opere di sostegno;
- Slide 2D versione 2015 (copyrigh program by Plaxis bv P.O. Box 572, 2600 AN Delft, Netherlands) per il calcolo dei cedimenti in stato piano di deformazione.

I programmi vengono usati dalla scrivente in forza di regolari licenze d'uso e sono testati periodicamente mediante procedure di controllo codificate, tali da verificare l'attendibilità delle applicazioni e dei risultati ottenuti ed individuare eventuali vizi ed anomalie.

Grazie alla raffinatezza dei modelli di calcolo è stato possibile analizzare il comportamento di tutti gli elementi compositivi delle stesse, considerando l'effettivo contributo alla rigidezza complessiva del sistema fornito da ciascun componente elementare. I criteri di modellazione prevedono la riproduzione fedele delle strutture così come sono state progettate e si prescrive siano realizzate.

1259_C01.docx 16 di 113

4.4 BERLINESE DI PALI - LATO NORD

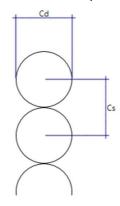
Il presente capitolo riporta le verifiche geotecniche e strutturali di una berlinese di pali in c.a. costituita da pali aventi diametro pari a 800 mm e lunghezza L=13.0 m. Le analisi sono state condotte con il software 'PARATIE PLUS 16.1, il quale permette di simulare in stato bidimensionale l'opera di progetto, a partire dallo stato di fatto. Data la geometria dell'opera, si è condotta un'analisi in stato piano di deformazione, mediante elementi "plate" di rigidezza assiale e flessionale equivalente.

4.4.1 DATI DI INPUT

Nella modellazione si è considerato quanto segue:

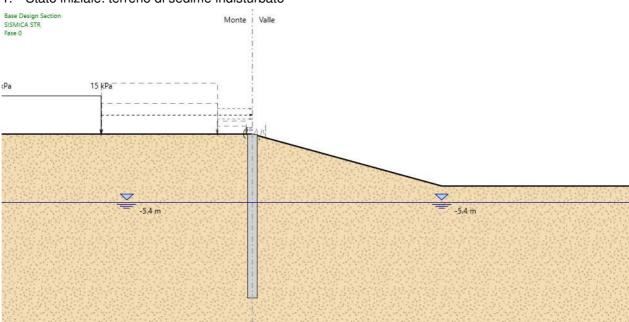
Terreni

Strato di Terreno	Terreno	γ dry	γ sat	ø'	c'	Modulo Elastico	Evc	Eur
		kN/m³	kN/m³	۰	kPa		kPa	kPa
1	Sabbia	19	20	35	0	Constant	30000	48000

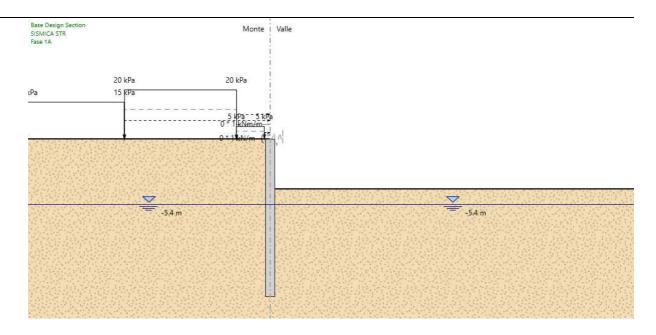

- Falda: Posta a -5.4 m rispetto al piano campagna del tratto di monte e -1.30 m rispetto al tratto di valle.

- Berlinese di pali in c.a:

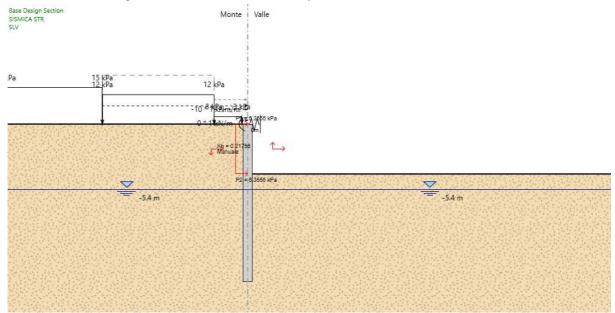
Diametro
 Interasse
 Lunghezza
 Modulo di Young
 Cd = 800 mm
 L=13.0 m
 Modulo di Young
 Coefficiente di Poisson
 V = 0.2


Oceniciente di l'oisson

o C32/40


Le fasi simulate nel software Paratie Plus sono le seguenti:

1. Stato iniziale: terreno di sedime indisturbato

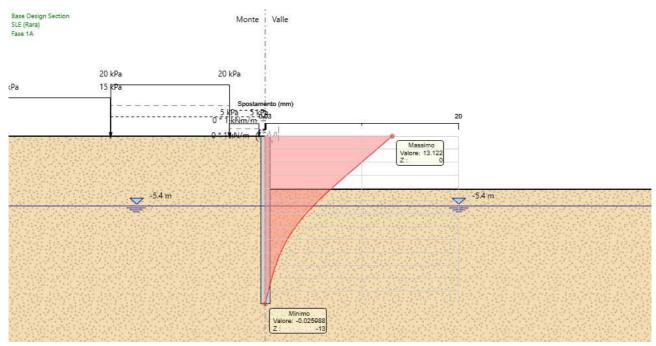


2. Fase 1_Esecuzione dei pali in c.a e scavo del terreno a valle (SLE - SLU): a favore di sicurezza, si considera lo stato precedente all'esecuzione dell'impalcato a valle che causa una reazione vincolare opposta allo spostamento del palo.

1259_C01.docx 17 di 113

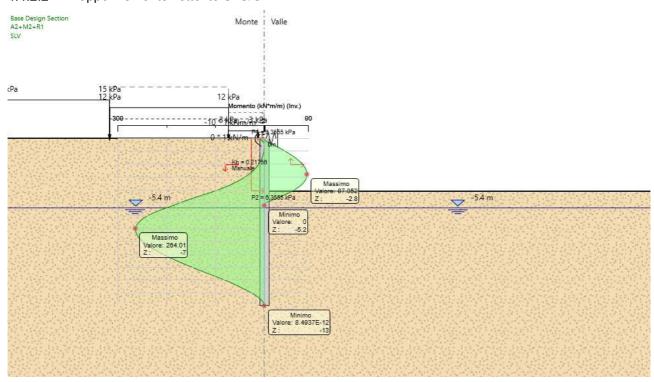
- 3. Sisma (SLD SLV): Viene in questo caso considerato il vincolo in testa alla palificata dovuto all'impalcato adibito a futura area commerciale.
 - Si considera una rigidezza traslazionale pari a 15500 kN/m, determinata come rapporto tra la sollecitazione di taglio della struttura a valle e lo spostamento che lo stesso subisce.

I carichi considerati nel modello di calcolo sono i seguenti:

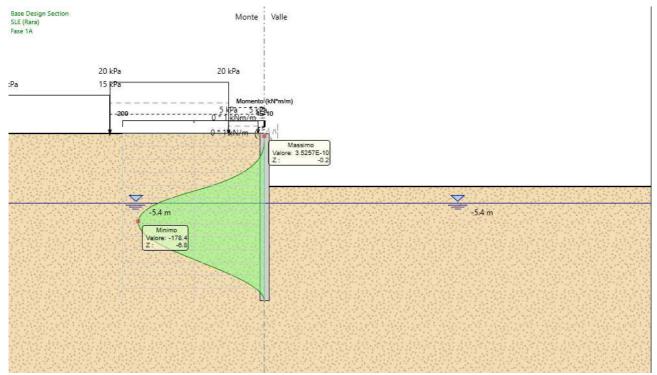

- Spinta del terreno (St) calcolata direttamente dal codice di calcolo;
- Carico distribuito accidentale: q=20 kN/mq (carico stradale), q=5 kN/mq (carico folla)
- Azioni sismiche

1259_C01.docx 18 di 113

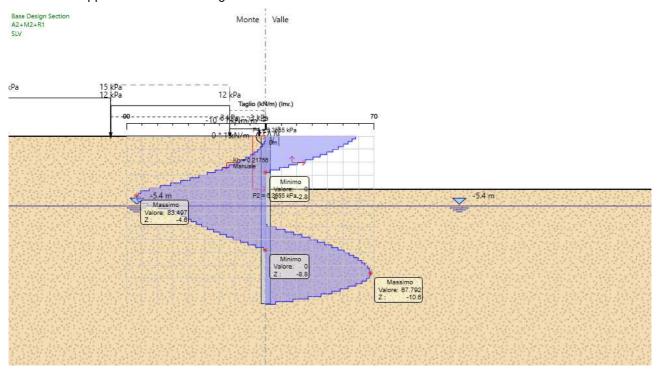
4.4.2 RISULTATI DELLE ANALISI


Si riportano i valori delle sollecitazioni e degli spostamenti orizzontali del diaframma nella configurazione finale di fondo scavo, con sovraccarichi allo stato limite di esercizio (rara) e allo stato limite ultimo (SLU) e sismico (SLV).

4.4.2.1 Deformazioni SLE

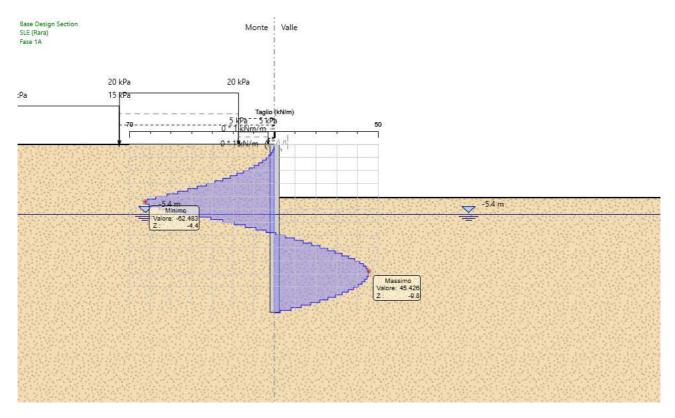

Le simulazioni evidenziano spostamenti massimi in orizzontale dell'ordine di 13.12 mm allo stato limite di esercizio.

4.4.2.2 Inviluppo momento flettente SLU/SLV

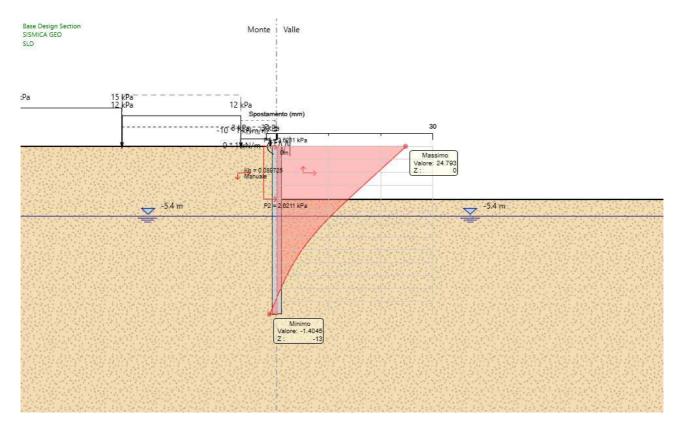


1259_C01.docx 19 di 113

4.4.2.3 Inviluppo momento flettente SLE



4.4.2.4 Inviluppo sollecitazioni di taglio SLU/SLV



1259_C01.docx 20 di 113

4.4.2.5 Inviluppo sollecitazioni di taglio SLE

4.4.2.6 Deformazioni SLD

Allo stato limite di danno SLD lo spostamento orizzontale di 24.8 mm risulta inferiori a $u_s < 0.005H = 0.065 m = 65.0 mm$

1259_C01.docx 21 di 113

4.4.3 ANALISI DI STABILITÀ GLOBALE A2M2R2

Le verifiche di stabilità globale sono state effettuate con il metodo di Bishop con l'ausilio del software Slide in accordo con quanto riportato nel D.M. 17 Gennaio 2018 - "Norme Tecniche per le costruzioni".

Il metodo assume che la superficie di scivolamento possa essere assimilata ad un arco di circonferenza. Se si considera la massa interessata dallo scivolamento suddivisa in n conci, il fattore di sicurezza può essere espresso in termini di momenti generati dalle forze agenti sui singoli conci rispetto al centro della circonferenza stessa

dove:

- $M_R = r \cdot \sum_{i=1}^n W_i \cdot \sin \alpha_i$: momento delle forze ribaltanti;
- $M_S = \sum_{i=1}^n (c + \sigma_i \cdot \tan \varphi_i) \cdot \Delta l_i$: momento stabilizzante;
- r: raggio del concio considerato;
- Δl_i : lunghezza della base del concio considerato.

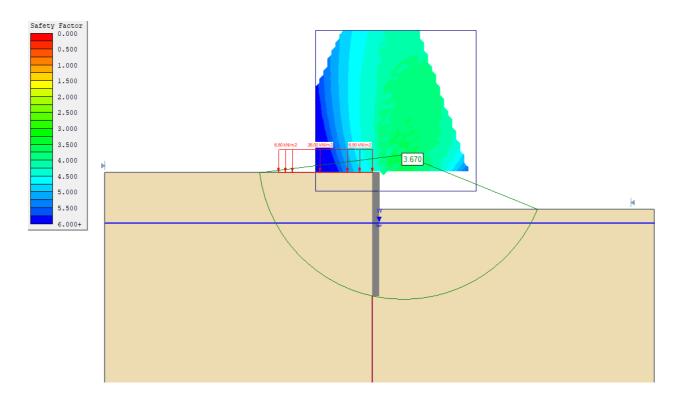
Nel metodo di Bishop si assume che le azioni agenti all'interfaccia dei conci abbiano risultante orizzontale, perciò, se si esprime la resistenza mobilizzata come un'aliquota della resistenza al taglio tramite il fattore di sicurezza (assunto uguale a quello dell'equazione generale), si ricava dall'equilibrio alla traslazione verticale:

$$N_{i} = \frac{W_{i} - u_{i} \cdot \Delta x_{i} - (1/FS) \cdot c \cdot \Delta x_{i} \cdot \tan \alpha_{i}}{\cos \alpha_{i} \cdot [1 + (\tan \alpha_{i} \cdot \tan \varphi_{i})/FS]}$$

Si ottiene quindi:

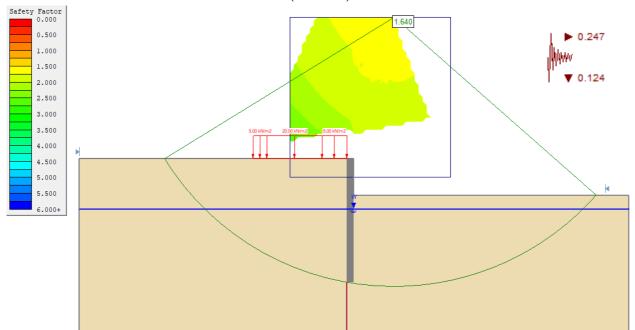
$$FS = \frac{\sum_{i=1}^{n} \left[c \cdot \Delta x_i + \left(W_i - u_i \cdot \Delta x_i \right) \cdot \tan \alpha_i \right] \cdot \left[1/M_i(\alpha) \right]}{\sum_{i=1}^{n} W_i \cdot \sin \alpha_i}$$

dove:


$$M_i(\alpha) = \cos\alpha_i \cdot \left(1 + \frac{\tan\alpha_i \cdot \tan\varphi_i}{FS}\right)$$

Parametri geotecnici combinazione A2M2R2:

Strato di Terreno	Terreno	γ dry kN/m³	Strenght Type kN/m³	ø' °	c' kPa
1	Sabbia	19	Mohr-Coulomb	29	0
2	Calcestruzzo	25	Infinite strenght	(a favore di sicurezza)	-


1259_C01.docx 22 di 113

Analisi di stabilità in combinazione statica SLU (A2M2R2):

coefficiente di sicurezza FS = 3.67 > 1.1 = R2

Analisi di stabilità in combinazione sismica SLV (A2M2R2)

coefficiente di sicurezza FS = 1.64 > 1.1 = R2

1259_C01.docx 23 di 113

4.4.4 VERIFICA DI CAPACITÀ PORTANTE

Il valore di progetto Rd della resistenza si ottiene a partire dal valore caratteristico Rk applicando i coefficienti parziali γ_R della Tab. 6.4.Il del DM 17/01/2018.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
	infissi		trivellati	continua
	$\gamma_{\mathbf{R}}$	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	$\gamma_{\rm st}$	1,25	1,25	1,25

La resistenza caratteristica Rk del palo singolo può essere dedotta da:

- a) risultati di prove di carico statico di progetto su pali pilota:
- b) metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici, oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito (prove penetrometriche, pressiometriche, ecc.);
- c) risultati di prove dinamiche di progetto, ad alto livello di deformazione, eseguite su pali pilota.
- a) Se il valore caratteristico della resistenza a compressione del palo, $R_{c,k}$, o a trazione, $R_{t,k}$, è dedotto dai corrispondenti valori $R_{c,m}$ o $R_{t,m}$, ottenuti elaborando i risultati di una o più prove di carico di progetto, il valore caratteristico della resistenza a compressione e a trazione è pari al minore dei valori ottenuti applicando i fattori di correlazione ξ riportati nella Tab. 6.4.III, in funzione del numero n di prove di carico su pali pilota:

$$R_{c,k} = \min \left\{ \frac{\left(R_{c,m}\right)_{media}}{\xi_1}; \frac{\left(R_{c,m}\right)_{\min}}{\xi_2} \right\}$$

$$R_{t,k} = \min \left\{ \frac{\left(R_{t,m}\right)_{media}}{\xi_1}; \frac{\left(R_{t,m}\right)_{\min}}{\xi_2} \right\}$$

Tab. 6.4.III - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove di carico statico su pali pilota

Numero di prove di carico	1	2	3	4	≥5
ξ ₁	1,40	1,30	1,20	1,10	1,0
ξ_2	1,40	1,20	1,05	1,00	1,0

b) Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) è dato dal minore dei valori ottenuti applicando alle resistenze calcolate $R_{c,cal}$ (o $R_{t,cal}$) i fattori di correlazione ξ riportati nella Tab. 6.4.IV, in funzione del numero $_n$ di verticali di indagine:

$$R_{c,k} = \min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_{3}}; \frac{\left(R_{c,cal}\right)_{\min}}{\xi_{4}} \right\}$$

$$R_{t,k} = \min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_{3}}; \frac{\left(R_{t,cal}\right)_{\min}}{\xi_{4}} \right\}$$

1259_C01.docx 24 di 113

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Nell'ambito dello stesso sistema di fondazione, il numero di verticali d'indagine da considerare per la scelta dei coefficienti ξ (Tab. 6.4.IV DM14/01/2008) deve corrispondere al numero di verticali lungo le quali la singola indagine (sondaggio con prelievo di campioni indisturbati, prove penetrometriche, ecc.) sia stata spinta ad una profondità superiore alla lunghezza dei pali, in grado di consentire una completa identificazione del modello geotecnico di sottosuolo.

Il numero di verticali di indagine con i requisiti necessari deve essere riferito al volume significativo. Ciò significa, ad esempio che per gli edifici il volume significativo deve essere riferito a ciascun corpo di fabbrica, mentre per un'opera lineare, come un viadotto, il volume significativo riguarda ogni singola fondazione (Circolare 2 febbraio 2009, n.617).

c) Se il valore caratteristico della resistenza $R_{c,k}$ è dedotto dal valore $R_{c,m}$ ottenuto elaborando i risultati di una o più prove dinamiche di progetto ad alto livello di deformazione, il valore caratteristico della resistenza compressione è pari al minore dei valori ottenuti applicando i fattori di correlazione ξ riportati nella Tab. 6.4.V, in funzione del numero n di prove dinamiche eseguite su pali pilota:

$$R_{c,k} = \min \left\{ \frac{\left(R_{c,m}\right)_{media}}{\xi_5}; \frac{\left(R_{c,m}\right)_{\min}}{\xi_6} \right\}$$

Tab. 6.4.V - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove dinamiche su pali pilota

Numero di prove di carico	≥ 2	≥5	≥ 10	≥ 15	≥ 20
- ξ ₅	1,60	1,50	1,45	1,42	1,40
ξ ₆	1,50	1,35	1,30	1,25	1,25

4.4.4.1 Sollecitazioni agenti:

Lo sforzo normale agente sul palo è dovuto al carico della struttura adibita a futura area commerciale:

SLU = 60 kN

SLE = 40 kN

1259_C01.docx 25 di 113

4.4.4.2 Capacità portante verticale

Coefficienti di riduzione per la determinazione della resistenza caratteristica dei pali dai risultati di prove in sito:

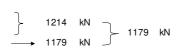
Numero di verticali indagate										
	Valore	1	2	3	4	5	7	10		
ζ3	1,5	1,7	1,65	1,6	1,55	1,5	1,45	1,4	1	
ζ4	1,34	1,7	1,55	1,48	1,42	1,34	1,28	1,21	1	

Coefficienti parziali yR per il calcolo della resistenza di progetto:

Resistenza	Simbolo ₇	Valore (A1- M1)	Pali infissi	Pali trivel.	Pali ad elica cont.	TA
Punta	γ,	1,35	1,15	1,35	1,3	2,5
Laterale (compressione)	γs	1,15	1,15	1,15	1,15	2,5
Totale (compressione)	γı	1,25	1,15	1,3	1,25	2,5
Laterale in trazione	γ _{st}	1,25	1,25	1,25	1,25	3

Modello geotecnico

Tipo di terreno	Quota Tetto [m.s.l.m.]	Quota Base [m s.l.m.]	Prof. Tetto [m]	Prof. Base [m]	γ (kN/m ³)	p' [kPa _]	diametro palo [m]	ф _{medio}	Cu _{media} [kPa]	Q _s (kPa)	α	k (_{фmed})	tan (_{\$med})	Q _{laterale} (media) (kN)
0	0,00	-1,00	0,00	1,00	8,00	4,00	0,80	35			0,00	1,20	0,700	8
1	-1,00	-2,00	1,00	2,00	8,00	12,00	0,80	35			0,00	1,20	0,700	25
2	-2,00	-3,00	2,00	3,00	8,00	20,00	0,80	35			0,00	1,20	0,700	42
3	-3,00	-5,00	3,00	5,00	8,00	32,00	0,80	35			0,00	1,20	0,700	135
4	-5,00	-7,00	5,00	7,00	8,00	48,00	0,80	35			0,00	1,20	0,700	203
5	-7,00	-9,00	7,00	9,00	8,00	64,00	0,80	35			0,00	1,20	0,700	270
7	-9,00	-11,00	9,00	11,00	8,00	80,00	0,80	35			0,00	1,20	0,700	338
8	-11,00	-13,00	11,00	13,00	8,00	96,00	0,80	35			0,00	1,20	0,700	405
Tensione	-13,00	-13,00	13,00	13,00		104,00								
														1427


Calcolo Peso del Palo

L _{tratto fuori falda} (m)	5,50
L _{tratto sotto falda} (m)	7,50
Wp (peso del palo) (kN)	126

SLU_DA2 (D.M. 17.01.2018)

Calcolo Resistenza di progetto a Compressione (A1-M1)

Calcolo Rc,cal media	kN	Q/γ_R
Nq (medio)	15	
Nc		
Qb resistenza roccia		
Q _{laterale, media}	1427	
Q _{laterale ,media} / ζ ₃	951	827
Q _{punta,media}	784	
Q _{punta,media} / ζ ₃	522	387
Q _{c,tot, calc,media} / ζ ₃	1474	1179

Calcolo Resistenza di progetto a Trazione (A1-M1)

Calcolo Rc,cal media	kN	Q/ _{YR}	Ī				
Q _{laterale, media}	1427		Ī	7	761	kN	A questo valore si deve aggiungere il peso del palo
Q _{laterale .media} / ζ ₃	951	761	Ī.	J			

SLE_rara (D.M. 17.01.2018)

Calcolo Q_{amm} a compressione (SLE_rara)

15

Calcolo Qtot	kN	Q/Fs	
Q _{laterale}	1427	571	Ī
Q _{punta}	784	313	Ì
Q _{tot,res}	2211	884	-

884 kΝ A questo valore si deve sotrarre il peso del palo

Calcolo Q_{amm} a trazione (SLE_rara)

Calcolo Qlaterale 1427 476 476 kΝ A questo valore si deve aggiungere il peso del palo

CONFRONTO RISULTATI

Rd,c (COMPRESSIONE) Rd,t (TRAZIONE) A) B) (D.M. 17.01.2018) (D.M. 17.01.2018) SLU_DA2 (A1_M1_R3) Qamm (COMPRESSIONE) Qamm (TRAZIONE) SLE_rara C) (D.M. 88) D) (D.M. 88)

La verifica risulta ampiamente soddisfatta

1259_C01.docx 26 di 113

4.4.5 VERIFICHE STRUTTURALI PALI

SEZIONE A-A Scala 1:100 PACCHETTO PAVIMENTAZIONE TIPO 1 (Vedere Tav. B24) CANALETTA PER RACCOLTA ACQUE STRADA ESISTENTE A520 A527 BERLINESE DI PALI Ø800mm INT. 800mm L=13.00m PACCHETTO PAVIMENTAZIONE TIPO 4 MAGRONE #100mm PACCHETTO PAVIMENTAZIONE TIPO 4 PACCHETTO PAVIMENTAZIONE TIPO 4 MAGRONE #100mm PACCHETTO PAVIMENTAZIONE TIPO 1 (Vedere Tav. B24) CANALETTA PER RACCOLTA ACQUE MAGRONE #100mm PACCHETTO PAVIMENTAZIONE TIPO 1 (Vedere Tav. B24) MAGRONE #100mm PACCHETTO PAVIMENTAZIONE TIPO 1 (Vedere Tav. B24) MAGRONE #100mm PACCHETTO PAVIMENTAZIONE TIPO 1 (Vedere Tav. B24) MAGRONE #100mm PACCHETTO PAVIMENTAZIONE TIPO 1 MAGRONE #100mm PACCHETTO PAVIMENTAZIONE TIPO 1 MAGRONE #100mm PACCHETTO PAVIMENTAZIONE TIPO 1 PACCHETTO PAVIMENTAZIONE TIPO 1 MAGRONE #100mm PACCHETTO PAVIMENTAZIONE

Figura 3. Sezione di progetto - Berlinese di pali - lato nord

Geometria sezione L=13.0 m

Sezione di verifica Ø8000 mm

Armatura lato mare 20Ø16 mm

Staffe Ø10/200 mm

Verifica di stato limite ultimo nella famiglia SLU:

Comb.	Mx(daN*cm)	My(daN*cm)	N(daN)	CS,Ncost	CS,Mx/My cost
1	2640100	0	0	1.834>1	1.834>1

Valutazione delle tensioni nella famiglia SLE:

Comb	Mx(daN*cm)	My(daN*cm)	N(daN)	sc,max(daN/cmq)	sf,max(daN/cmq)	sp,min(daN/cmq)	sp,max(daN/cmq)
2	1704000	0	0	-58.4	1969.4	0.0	0.0

Verifiche a fessurazione:

Unità di misura daN, cm Sollecitazioni riferite al baricentro

Mx	My	N	Es/Ec	Wm(mm)	Wk(mm)	Sm(mm)	Epsilon	fctd	K1	K2	Beta1	Beta2
1704000	0	0	15	0.2275	0.2275	404	5.6269E-04	14.1	0.4	0.5	1	0.8

1259_C01.docx 27 di 113

Verifiche a taglio

Staffe Ø10/200 mm

RESISTENZA DI ELEMENTI CON ARMATURA A TAGLIO

Sollecitazioni					
sforzo di taglio sollecitante	V_{Ed}	83,49	kN		
sforzo assiale sollecitante (+ comp, - traz)	N_{Ed}	0,00	kN		
Geometria della sezione					
larghezza minima	b_w	80,00	cm		
altezza	h	80,00	cm		
copriferro al centro barra	C	7,00	cm		
altezza utile	d	73,00	cm		
area totale di calcestruzzo	A_c	6400,00	cm ²		
Resistenza a taglio		000/40			
classe di resistenza del calcestruzzo	£	C32/40	MD-		
resistenza cilindrica caratt. a compressione	f _{ck}	32,00	MPa		
resistenza di calcolo a compressione	f_{cd}	18,13	MPa		
resistenza di calcolo a compressione ridotta	f_{cd}	9,07	MPa		
tipo di acciaio		B450C			
resistenza di calcolo	f_{yd}	391,30	MPa		
Armatura a taglio	$n_{b,sw}$	Φ [mm]	s[cm]	α [°]	$A_{sw}[mm^2]$
posizione 1	2	12	25	90	226,19
posizione 2	0	0	20	90	0,00
posizione 3	0	0	20	90	0,00
angolo puntoni di cls rispetto asse elemento	ϑ	45,0	0		
1 \leq cot ϑ \leq 2.50	ս ctg ծ	1,00			
$\sigma_{cp} = N_{Ed} / A_c \le 0.2 \text{ x f}_{cd}$	σср	0,00	MPa		
coeff. maggiorativo	$lpha_{ t C}$	1			
coeff. riduttivo per fessurazione a taglio	ν	0,5			
resistenza a taglio-trazione	V_{Rsd}	193,84	kN		
resistenza a taglio-compressione	V_{Rcd}	1985,60	kN		
limite superiore della resistenza a taglio	$V_{\text{Rd},\text{max}}$	2647,47	kN		
Resistenza a taglio con armatura specific		193,84	kN		
≥ VEd - VERIFICATO					

OK

1259_C01.docx 28 di 113

4.5 CRITERI DI VERIFICA MURI DI SOSTEGNO

4.5.1 MURI DI SOSTEGNO IN CONDIZIONI STATICHE

6.5.3.1.1 Muri di sostegno

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLUI di tipo geotecnico (GEO)
 - scorrimento sul piano di posa;
 - collasso per carico limite del complesso fondazione-terreno;
 - ribaltamento;
 - stabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata, analogamente a quanto previsto al § 6.8, secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Nella verifica a ribaltamento i coefficienti R3 della Tab. 6.5.I si applicano agli effetti delle azioni stabilizzanti.

Tab. 6.5.I - Coefficienti parziali γ_k per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1,1$
Ribaltamento	γ _R = 1,15
Resistenza del terreno a valle	$\gamma_{R} = 1.4$

In generale, le ipotesi di calcolo delle spinte devono essere giustificate sulla base dei prevedibili spostamenti relativi manufattoterreno, oppure determinate con un'analisi dell'interazione terreno-struttura. Le spinte devono tenere conto del sovraccarico e dell'inclinazione del piano campagna, dell'inclinazione del paramento rispetto alla verticale, delle pressioni interstiziali e degli effetti

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

Tab. 6.2.1 - Conference par enter per le neutone o per l'effetto delle neutone					
	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G ₁	Favorevole	ΥG1	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G ₂ ⁽¹⁾	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	$\gamma_{\scriptscriptstyle Qi}$	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽i) Per i carichi permanenti G1 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γςι

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γe	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

1259_C01.docx 29 di 113

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
ΥR	1,1

della filtrazione nel terreno. Nel calcolo della spinta si può tenere conto dell'attrito che si sviluppa fra parete e terreno. I valori assunti per il relativo coefficiente di attrito devono essere giustificati in base alla natura dei materiali a contatto e all'effettivo grado di mobilitazione.

Ai fini della verifica alla traslazione sul piano di posa di muri di sostegno con fondazioni superficiali, non si deve in generale considerare il contributo della resistenza passiva del terreno antistante il muro. In casi particolari, da giustificare con considerazioni relative alle caratteristiche meccaniche dei terreni e alle modalità costruttive, la presa in conto di un'aliquota (comunque non superiore al 50%) di tale resistenza è subordinata all'assunzione di effettiva permanenza di tale contributo, nonché alla verifica che gli spostamenti necessari alla mobilitazione di tale aliquota siano compatibili con le prestazioni attese dell'opera.

Nel caso di strutture miste o composite, le verifiche di stabilità globale devono essere accompagnate da verifiche di stabilità locale e di funzionalità e durabilità degli elementi singoli.

6.5.3.1.2 Paratie

Per le paratie si devono considerare almeno i seguenti stati limite ultimi, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLUI di tipo geotecnico (GEO) e di tipo idraulico (UPL e HYD)
 - collasso per rotazione intomo a un punto dell'opera (atto di moto rigido);
 - collasso per carico limite verticale;
 - sfilamento di uno o più ancoraggi;
 - instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
 - instabilità del fondo scavo per sollevamento;
 - sifonamento del fondo scavo;
 - instabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza in uno o più ancoraggi;
 - raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;
 - raggiungimento della resistenza strutturale della paratia.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Le verifiche nei riguardi degli stati limite idraulici (UPL e HYD) devono essere eseguite come descritto nel § 6.2.4.2.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti:

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II, con i coefficienti γπ del gruppo R1 pari all'unità

Per le paratie, i calcoli di progetto devono comprendere la verifica degli eventuali ancoraggi, puntoni o strutture di controventamento.

Fermo restando quanto specificato nel § 6.5.3.1.1 per il calcolo delle spinte, per valori dell'angolo d'attrito tra terreno e parete $\delta > \varphi'/2$, ai fini della valutazione della resistenza passiva è necessario tener conto della non planarità delle superfici di scorrimento.

6.5.3.2 Verifiche di esercizio (SLE)

In tutti i casi, nelle condizioni di esercizio, gli spostamenti dell'opera di sostegno e del terreno circostante devono essere valutati per verificame la compatibilità con la funzionalità dell'opera e con la sicurezza e funzionalità di manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali.

In presenza di manufatti particolarmente sensibili agli spostamenti dell'opera di sostegno, deve essere sviluppata una specifica analisi dell'interazione tra opere e terreno, tenendo conto della sequenza delle fasi costruttive.

1259_C01.docx 30 di 113

4.5.2 MURI DI SOSTEGNO IN CONDIZIONI SISMICHE

7.11.6.2 Muri di sostegno

I sistemi di drenaggio a tergo della struttura devono essere in grado di tollerare gli spostamenti transitori e permanenti indotti dal sisma, senza che sia pregiudicata la loro funzionalità.

7.11.6.2.1 Metodi di analisi

A meno di specifiche analisi dinamiche, l'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante i metodi pseudo-statici e i metodi degli spostamenti.

Se la struttura può spostarsi, l'analisi pseudo-statica si esegue mediante i metodi dell'equilibrio limite. Il modello di calcolo deve comprendere l'opera di sostegno, il volume di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo, e gli eventuali sovraccarichi agenti sul volume suddetto.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale $k_{\rm h}$ e verticale $k_{\rm v}$ possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{\sigma}$$
 [7.11.6]

$$k_v = \pm 0.5 \cdot k_h$$
 [7.11.7]

dove

β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$\mathbf{a}_{\text{max}} = \mathbf{S} \cdot \mathbf{a}_{g} = (\mathbf{S}_{S} \cdot \mathbf{S}_{T}) \cdot \mathbf{a}_{g}$$
 [7.11.8]

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_S), di cui al § 3.2.3.2;

 $a_{\mathrm{g}}^{}$ = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 $\beta_m = 0.38$ nelle verifiche allo stato limite ultimo (SLV)

 $\beta_m = 0.47$ nelle verifiche allo stato limite di esercizio (SLD).

Per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario. I valori del coefficiente β_m possono essere incrementati in ragione di particolari caratteristiche prestazionali del muro, prendendo a riferimento il diagramma di Figura 7.11.3 di cui al successivo § 7.11.6.3.2.

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (§ 7.11.1) e utilizzando valori di β_m incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

1259_C01.docx 31 di 113

7.11.6.2.2 Verifiche di sicurezza

Per muri di sostegno ubicati in corrispondenza di versanti o in prossimità di pendii naturali devono essere soddisfatte le condizioni di stabilità del pendio, in presenza della nuova opera, con i metodi di analisi di cui al § 7.11.3.5. Deve inoltre essere soddisfatta la verifica di stabilità del complesso muro-terreno con i criteri indicati al § 7.11.4 nonché le verifiche di sicurezza delle fondazioni riportate al § 7.11.5.

Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni nel rispetto della condizione [6.2.1], ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici (§ 7.11.1) e impiegando le resistenze di progetto con i coefficienti parziali γ_R indicati nella tabella 7.11.III.

Tab. 7.11.III - Coefficienti parziali γκ per le verifiche degli stati limite (SLV) dei muri di sostegno.

Verifica	Coefficiente parziale γ _R
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2

Le azioni da considerare nelle analisi di sicurezza delle fondazioni sono fornite dalla spinta esercitata dal terrapieno, dalle azioni gravitazionali permanenti e dalle azioni inerziali agenti nel muro, nel terreno e negli eventuali sovraccarichi.

La verifica nei confronti dello stato limite di scorrimento può essere eseguita anche con il metodo degli spostamenti (§ 7.11.3.5.2). L'accelerazione critica deve essere valutata utilizzando i valori caratteristici dei parametri di resistenza. Le condizioni dell'opera possono essere riferite al raggiungimento di uno stato limite ultimo (SLV) o di esercizio (SLD) in dipendenza del valore di soglia dello spostamento. La valutazione delle condizioni di sicurezza è effettuata mediante il confronto tra lo spostamento calcolato e il corrispondente valore di soglia. I criteri di scelta dei valori limite di spostamento devono essere illustrati e giustificati dal progettista.

In aggiunta alle verifiche di sicurezza nei confronti degli stati limite ultimi *SLV*, devono essere condotte verifiche nei confronti degli stati limite di esercizio *SLD*. In particolare, gli spostamenti permanenti indotti dal sisma devono essere compatibili con la funzionalità dell'opera e con quella di eventuali strutture o infrastrutture interagenti con essa.

4.5.3 DESCRIZIONE DELLA NORMATIVA SISMICA

In zona sismica per l'opera di sostegno viene condotta una analisi pseudostatica secondo quanto previsto dalla normativa vigente (D.M. 17/01/2018 NTC, paragrafo 7.11.6).

Nell'analisi pseudostatica, l'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, pari al prodotto delle forze di gravità moltiplicate per un coefficiente sismico.

I coefficienti sismici orizzontali e verticali, applicati a tutte le masse potenzialmente instabili, sono calcolati rispettivamente come:

$$k_h = \beta_m \cdot (a_{max}/g)$$
 [7.11.6]

$$k_v = \pm 0.5 \cdot k_h$$
 [7.11.7]

$$a_{\text{max}} = S_{S} \cdot S_{T} \cdot a_{g} \qquad [7.11.8]$$

Dove: β_m è il coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} è l'accelerazione orizzontale massima attesa al sito;

g è l'accelerazione di gravità;

Ss è il coefficiente di amplificazione stratigrafica, in funzione dei terreni del sito (§3.2.3.2);

S_T è il coefficiente di amplificazione topografica, in funzione del pendio (§3.2.3.2);

a_q è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.

1259_C01.docx 32 di 113

I valori di β_m sono 0.38 nelle verifiche allo stato limite ultimo (SLV), 0.47 nelle verifiche allo stato limite di esercizio (SLD); per muri non liberi di subire spostamenti relativi rispetto al terreno assume valore unitario.

Il coefficiente S_s di amplificazione stratigrafica è funzione dei terreni del sito ed ha valore unitario sul terreno di riferimento; i valori minimi e massimi di S_s sono riportati nella normativa in Tab. 3.2.IV.

Il coefficiente S_T di amplificazione topografica è maggiore di 1 per strutture in sommità di un pendio o in cresta, mentre è unitario negli altri casi; i valori massimi di S_T sono riportati nella normativa in Tab. 3.2.V, in funzione della categoria topografica della superficie.

I coefficienti sismici sopra definiti sono considerati costanti lungo l'altezza del muro.

L'incremento di spinta dovuto al sisma può venire assunto agente nello stesso punto di quella statica, nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, oppure a metà altezza dell'opera, negli altri casi.

La spinta totale di progetto E_d agente sull'opera di sostegno è data da:

$$E_d = \frac{1}{2} \cdot \gamma \cdot (1 \pm k_v) \cdot K \cdot h^2 + E_{ws}$$

dove: γè il peso specifico del terreno;

K è il coefficiente di spinta del terreno;

h è l'altezza del muro;

Ews è la spinta idrostatica;

Il coefficiente di spinta del terreno viene calcolato come nel caso statico ma con le seguenti modifiche*:

- nel caso di terreno sotto falda, applicando una rotazione al profilo del muro e degli strati di terreno, secondo le espressioni

$$\tan \theta_A = \frac{\gamma}{\gamma - \gamma_w} \cdot \frac{k_h}{1 + k_v}$$
 e $\tan \theta_B = \frac{\gamma}{\gamma - \gamma_w} \cdot \frac{k_h}{1 - k_v}$

dove: γ è il peso specifico del terreno saturo;

γ_w è il peso specifico dell'acqua;

- nel caso di terreno sopra falda, applicando una rotazione al profilo del muro e degli strati di terreno, secondo le espressioni

$$\tan \theta_A = \frac{k_h}{1 + k_v} \qquad \tan \theta_B = \frac{k_h}{1 - k_v}$$

*eccetto il metodo di Mononobe-Okabe, che include il sisma in modo nativo nella formulazione.

L'acqua interstiziale viene considerata non libera all'interno dello scheletro solido del terreno, trattando quindi quest'ultimo come un mezzo monofase. In presenza di acqua libera sulla faccia del muro viene aggiunta la sovrapressione (considerata agente nel caso peggiore, cioè da monte verso valle) dovuta all'effetto idrodinamico, secondo la relazione:

$$q(z) = \frac{7}{8} \cdot k_h \cdot \gamma_w \cdot \sqrt{h \cdot z}$$

dove: h è l'altezza totale della zona interessata dall'acqua libera;

z è la distanza dal pelo libero dell'acqua;

1259_C01.docx 33 di 113

4.5.4 STABILITÀ GLOBALE

In presenza di sisma viene condotta una analisi pseudo-statica secondo quanto previsto dalla normativa vigente (D.M. 17/01/2018 NTC, paragrafo 7.11.3.5, 7.11.4), secondo cui l'azione sismica è rappresentata da un'azione statica equivalente, proporzionale al peso del volume di terreno instabile ed ai coefficienti sismici orizzontale e verticale:

 $k_h = \beta_s \cdot (a_{max}/g) \qquad [7.11.3]$

 $k_v = \pm 0.5 \cdot k_h$ [7.11.4]

 $a_{\text{max}} = S_S \cdot S_T \cdot a_g \qquad [7.11.5]$

Dove: β_s è il coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} è l'accelerazione orizzontale massima attesa al sito, in funzione della zona sismica;

g è l'accelerazione di gravità;

Ss è il coefficiente di amplificazione stratigrafica, in funzione dei terreni del sito;

S_T è il coefficiente di amplificazione topografica, in funzione del pendio;

aq è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.

I valori di β_s sono riportati nella normativa in Tab. 7.11.I, in funzione della categoria di sottosuolo e della accelerazione orizzontale massima ag.

Il coefficiente S_s di amplificazione stratigrafica è funzione dei terreni del sito ed ha valore unitario sul terreno di riferimento; i valori minimi e massimi di S_s sono riportati nella normativa in Tab. 3.2.IV.

Il coefficiente S_T di amplificazione topografica è maggiore di 1 per strutture in sommità di un pendio o in cresta, mentre è unitario negli altri casi; i valori massimi di S_T sono riportati nella normativa in Tab. 3.2.V, in funzione della categoria topografica della superficie.

Il calcolo viene condotto nelle combinazioni stabilite dal progettista, con i coefficienti parziali sulle azioni, sui materiali e resistenze indicati; di default vengono create combinazioni per il caso statico e sismico.

4.5.5 DESCRIZIONE DEL METODO DI CALCOLO DELLE SPINTE

La teoria di Mononobe-Okabe fa uso del *metodo dell'equilibrio limite* e può essere considerata una estensione del metodo di Coulomb, in cui alle usuali spinte al contorno del cuneo instabile di terreno vengono sommate anche le azioni inerziali orizzontali e verticali dovute all'accelerazione delle masse.

- Le ipotesi che stanno alla base del metodo sono quindi:
- Terreno isotropo, omogeneo e dotato di attrito e/o coesione.
- Terreno che, a causa degli spostamenti del muro, si trova in uno stato di equilibrio plastico.
- Superfice di rottura piana.
- Superficie superiore del cuneo anche inclinata ma di forma piana.
- La resistenza per attrito e per coesione si sviluppa uniformemente lungo la superficie di rottura.
- Può esistere attrito tra paramento del muro e terreno, che si sviluppa al primo spostamento del muro
- Il paramento del muro può essere inclinato ma non spezzato in più parti.
- L'effetto delle accelerazioni kh e kv viene intrinsecamente considerato nel baricentro del cuneo instabile.

Le spinte Attiva e Passiva si calcolano come:

1259_C01.docx 34 di 113

$$P_{a/p} = \frac{1}{2} \gamma \cdot h^2 \cdot (1 - k_v) \cdot K_{a/p}$$

il coefficiente $K_{a/p}$ viene calcolato utilizzando la formulazione di Mononobe-Okabe proposta nell'ordinanza 3274 e successiva correzione 3316, in cui i simboli usati sono:

 ϕ = angolo di attrito interno del terreno.

 ψ = angolo di inclinazione rispetto all'orizzontale della parete interessata del muro.

 β = angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno.

 δ = angolo di attrito terreno-muro.

 θ = angolo di rotazione addizionale definito come segue.

$$\tan(\theta) = \frac{k_h}{1\mu k_v}$$

Il coefficiente per stati di spinta attiva si divide in due casi:

$$K_{a} = \frac{\sin^{2}(\psi + \phi - \theta)}{\cos \theta \cdot \sin^{2} \psi \cdot \sin(\psi - \theta - \delta) \cdot \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\sin(\psi - \theta - \delta) \cdot \sin(\psi + \beta)}}\right]^{2}}$$

$$\beta > \phi - \theta : \qquad K_{a} = \frac{\sin^{2}(\psi + \phi - \theta)}{\cos \theta \cdot \sin^{2} \psi \cdot \sin(\psi - \theta - \delta)}$$

Il coefficiente per stati di spinta passiva è invece:

$$K_{p} = \frac{\sin^{2}(\psi + \phi - \theta)}{\cos \theta \cdot \sin^{2} \psi \cdot \sin(\psi + \theta) \cdot \left[1 - \sqrt{\frac{\sin(\phi) \cdot \sin(\phi + \beta - \theta)}{\sin(\psi + \beta) \cdot \sin(\psi + \theta)}}\right]^{2}}$$

Nel caso di accelerazione sismica solo orizzontale l'angolo θ è unico e la spinta attiva e passiva risulta univocamente determinata; viceversa le formule forniscono due distinti valori, che corrispondono alla presenza di accelerazione sismica verticale verso l'alto e verso il basso.

4.5.6 DESCRIZIONE DEL METODO DI CALCOLO DELLA PORTANZA

La capacità portante viene valutata attraverso la formula di Brinch-Hansen, nel caso generale:

$$Q_{\text{lim}} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + \frac{1}{2} \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma$$

Nel caso di terreno eminentemente coesivo ($\phi = 0$) tale relazione diventa:

$$Q_{\text{lim}} = (2 + \pi) \cdot c_u \cdot (1 + s'_c + d'_c - i'_c - b'_c - g'_c) + q$$

dove:

 γ = peso di volume dello strato di fondazione;

B = larghezza efficace della fondazione (depurata dell'eventuale eccentricità del carico B = B_f - 2e);

L = lunghezza efficace della fondazione (depurata dell'eventuale eccentricità del carico L = L_f - 2e);

c = coesione dello strato di fondazione:

cu = coesione non drenata dello strato di fondazione;

q = sovraccarico del terreno sovrastante il piano di fondazione;

N_y, N_c, N_q = fattori di capacità portante;

sy, sc, sq = fattori di forma della fondazione;

dy, dc, dq = fattori di profondità del piano di posa della fondazione.

i_y, i_c, i_q = fattori di inclinazione del carico;

by, bc, bq = fattori di inclinazione della base della fondazione;

1259_C01.docx 35 di 113

gy, gc, gq = fattori di inclinazione del piano campagna;

Per la teoria di Brinch-Hansen i coefficienti sopra definiti assumono le espressioni che seguono:

$$\begin{split} N_c &= \left(N_q - 1\right) \cdot ctg\phi \;; \quad N_q = tg^2 \bigg(45^o + \frac{\phi}{2}\bigg) \cdot e^{(\pi \cdot tg\phi)} \;; \quad N_\gamma = 1.5 \cdot \left(N_q - 1\right) \cdot tg\phi \\ s_c &= 1 + \frac{B}{L} \cdot \frac{N_q}{N_c} \;; \quad s'_c = 0.2 \cdot \frac{B}{L} \;; \quad s_q = 1 + \frac{B}{L} \cdot tg\phi \;; \quad s_\gamma = 1 - 0.4 \cdot \frac{B}{L} \\ d_c &= 1 + 0.4 \cdot k \;; \quad d'_c = 0.4 \cdot k \;; \quad d_q = 1 + 2 \cdot k \cdot tg\phi \cdot \left(1 - \sin\phi\right)^2 \;; \quad d_\gamma = 1 \\ i_c &= i_q - \frac{1 - i_q}{N_q - 1} \;; \quad i_c = 0.5 - 0.5 \sqrt{1 - \frac{H}{B \cdot L \cdot c_a}} \;; \quad i_q = \left(1 - \frac{0.5 \cdot H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\right)^5 \;; \\ i_\gamma &= \left(1 - \frac{0.7 \cdot H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\right)^5 \;\; (\text{se $\eta = 0$}); \quad i_\gamma = \left(1 - \frac{\left(0.7 - \eta^o / 450^o\right) \cdot H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\right)^5 \;\; (\text{se $\eta > 0$}) \\ g_c &= 1 - \frac{\beta^o}{147^o} \;; \quad g'_c = \frac{\beta^o}{147^o} \;; \quad g_q = \left(1 - 0.5 \cdot tg\beta\right)^5 \;; \quad g_\gamma = g_q \\ b_c &= 1 - \frac{\eta^o}{147^o} \;; \quad b'_c = \frac{\eta^o}{147^o} \;; \quad b_q = e^{\left(-2 \cdot \eta \cdot tg\phi\right)} \;; \quad b_\gamma = e^{\left(-2 \cdot 7 \cdot \eta \cdot tg\phi\right)} \\ dove: \quad k &= \frac{D}{B_f} \;\; (\text{se $\theta > 1$}); \quad k = arctg \left(\frac{D}{B_f}\right) \;\; (\text{se $\theta > 1$}) \end{split}$$

nelle quali si sono considerati i seguenti dati:

φ = angolo di attrito dello strato di fondazione;

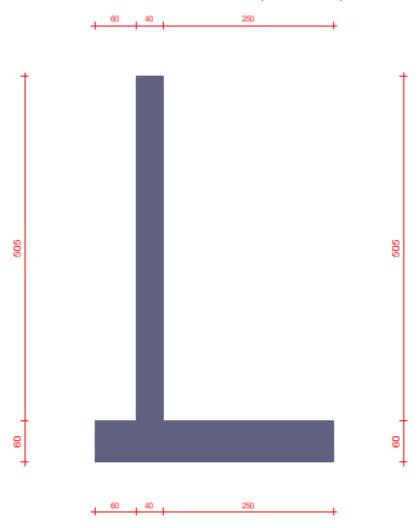
ca = aderenza alla base della fondazione;

 η = inclinazione del piano di posa della fondazione sull'orizzontale (η = 0 se orizzontale);

 β = inclinazione del pendio;

H = componente orizzontale del carico trasmesso sul piano di posa della fondazione;

V = componente verticale del carico trasmesso sul piano di posa della fondazione;


D = profondità della fondazione.

1259_C01.docx 36 di 113

^{*} in presenza di inclinazione dei carichi elevata, a favore di sicurezza, non sono stati usati i coeff. s_i insieme a i_i.

4.5.7 MURO DI SOSTEGNO - RAMPA DI ACCESSO EST

4.5.7.1 MURO DI SOSTEGNO DI TIPO 1 (H MAX= 5 M)

4.5.7.2 Analisi dei carichi

4.5.7.3 Peso proprio

Il peso proprio degli elementi strutturali della struttura viene calcolato automaticamente dal programma considerando un peso specifico di 25 KN/m³.

4.5.7.4 Carichi accidentali

Nelle verifiche si considera un carico uniformemente distribuito pari a 20 kN/m2 pari al carico utilizzato nel caso di ambienti affollati.

4.5.7.5 Spinte statiche delle terre

Le spinte statiche delle terre vengono valutate con coefficiente di spinta attiva K_a. Si considereranno in ogni caso le spinte dovute alla componente sismica come specificato nel paragrafo seguente.

4.5.7.6 Spinte sismiche delle terre

Le spinte sismiche delle terre sono valutate secondo §7.11.6.2.1 NTC: l'azione sismica è valutata considerando la trattazione di Mononobe-Okabe. Le sovraspinte orizzontali si considerano sempre agenti verso l'esterno della struttura.

1259_C01.docx 37 di 113

La determinazione dei coefficienti sismici per il calcolo dei muri di sostegno è stata condotta in accordo al paragrafo 7.11.6.2.1 del DM 17/01/2018; in particolare, assumendo:

Coefficiente di deformabilità β_m = 0.38

Risulta:

$$k_h = \beta_m \frac{a_{max}}{g} = 0.102$$

 $k_v = \pm 0.5 k_h = 0.051$

4.5.7.7 Geometria del muro

La descrizione della geometria del muro si avvale di una duplice rappresentazione, una schematica, tramite la sezione trasversale, e l'altra in forma analitica tramite le dimensioni principali degli elementi costituenti. Il piano di posa della fondazione è a quota -0.24 m slmm.

4.5.7.8 Rappresentazione analitica

Il muro viene convenzionalmente suddiviso in blocchi principali ed eventuali accessori.

Ingombro globale

Larghezza totale del muro: 350 cm Altezza totale del muro: 565 cm Peso specifico del muro: 2500 daN/m3 Peso specifico delle falde: 1000 daN/m3

Paramento

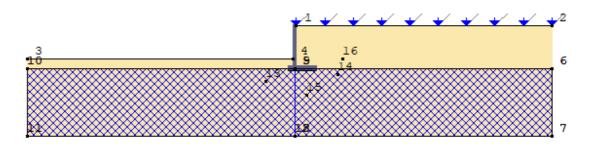
Base inf.: 40 cm Base sup.: 40 cm Altezza: 505 cm Disassamento: 0 cm

Mensola sinistra in fondazione

Larghezza: 60 cm Alt.interna: 60 cm Alt.esterna: 60 cm Disassamento: 0 cm

Zoccolo centrale in fondazione

Larghezza: 40 cm Altezza a sx: 60 cm Altezza a dx: 60 cm Sfalsamento: 0 cm


Mensola destra in fondazione

Larghezza: 250 cm Alt.interna: 60 cm Alt.esterna: 60 cm Disassamento: 0 cm

4.5.7.9 Caratteristiche dei terreni

N	Denominazione	Gsat	Gnat	Fi	Ċ	Cnd	Delta	Al	OCR	Ko	E	G
1	Sabbia densa	2100	1900	36.00	0.000	0.000	0.00	0.00	1.00	0.41	500	200

1259_C01.docx 38 di 113

4.5.7.10 Carichi uniformi

Comp.permanente di carico uniforme a monte : 0 daN/cm² Comp.variabile di carico uniforme a monte: -0.20 daN/cm²

4.5.7.11 Tensioni trasmesse sul terreno

Moltiplicatore spinta passiva per equilibrio: 1

Pressione limite sul terreno per abbassamento: 2.5 daN/cm2

Eccentricità rispetto al baricentro della fondazione: 65.9 cm (comb. SIS-1)

Momento rispetto al baricentro della fondazione: 23274 daN cm (comb. SIS-1)

Larghezza reagente minima in fondazione: 327 cm (comb. SIS-1)

Tensione max sul terreno allo spigolo di valle: 2.2 daN/cmq (comb. STR-4) Tensione max sul terreno allo spigolo di monte: 0.94 daN/cmq (comb. STR-3)

4.5.7.12 Verifica allo scorrimento sul piano di posa

Combinazione che ha prodotto il valore peggiore: SIS-2

Verifica condotta in condizioni drenate (a lungo termine)

Moltiplicatore spinta passiva per traslazione: 0

Coefficiente di attrito caratteristico terreno-fondazione: 0.36

Coefficiente di attrito di progetto terreno-fondazione: 0.39

Sforzo normale sul piano di posa della fondazione: 113 daN

Sforzo tangenziale positivo all'intradosso della fondazione: 0 daN

Sforzo tangenziale negativo all'intradosso della fondazione: 40 daN

Coefficiente parziale gammaR scorrimento: 1

Coefficiente limite verifica alla traslazione: 1

Coefficiente di sicurezza alla traslazione: 1.09

4.5.7.13 Verifica a ribaltamento

Combinazione che ha prodotto il valore peggiore: EQU-3

Moltiplicatore spinta passiva per ribaltamento: 0

Momento ribaltante rispetto allo spigolo di valle: 42848 daN cm

Momento stabilizzante rispetto a spigolo di valle: -69680 daN cm

Coefficiente parziale gammaR ribaltamento: 1 Coefficiente limite verifica al ribaltamento: 1

Coefficiente di sicurezza al ribaltamento: 1.63

4.5.7.14 Verifica di collasso per carico limite del complesso fondazione-terreno

Combinazione che ha prodotto il valore peggiore: SIS-1

Verifica condotta in condizioni drenate (a lungo termine)

Moltiplicatore spinta passiva per portanza terreno: 0

Inclinazione media del pendio circostante la fondazione: 0 °

1259_C01.docx 39 di 113

Relazione di calcolo

Profondità del piano di posa: 140 cm

Sovraccarico agente sul piano di posa: 0.271 daN/cm2 Angolo di attrito di progetto del suolo di fondazione: 36 °

Peso specifico di progetto del suolo di fondazione: 0.0011 daN/cm3

Inclinazione della risultante rispetto alla normale: 23.5 °

Base efficace: 201 cm

Carico tangenziale al piano di posa: 153.8 daN/cm

Carico di progetto della fondazione (normale al P.P.): 353.4 daN/cm

Carico ultimo della fondazione: 807 daN/cm

Lunghezza Fondazione per verifica carico limite: 1000 cm

Coefficiente parziale gammaR carico limite: 1.2 Coefficiente limite verifica al carico limite: 1 Coefficiente di sicurezza al carico limite: 1.9

Tabella dei coefficienti di capacità portante

Coefficienti	Coesione	Sovraccarico	Attrito
Coefficienti di capacità portante	$N_{c} = 51$	$N_{q} = 38$	Ng= 40
Coefficienti di forma	s _c = 1	s _q = 1	s _g = 1
Coefficienti di profondità	d _c = 1.16	d _q = 1.1	d _g = 1
Coefficienti di inclinazione del carico	i _c = 0.27	i _q = 0.29	i _g = 0.16
Coefficienti di inclinazione del piano di posa della fondazione	b _c = 1	b _q = 1	b _g = 1
Coefficienti di inclinazione del pendio	g _c = 1	g _q = 1	g _g = 1

4.5.7.15 Verifica di sollevamento idraulico (Stato limite UPL - upload)

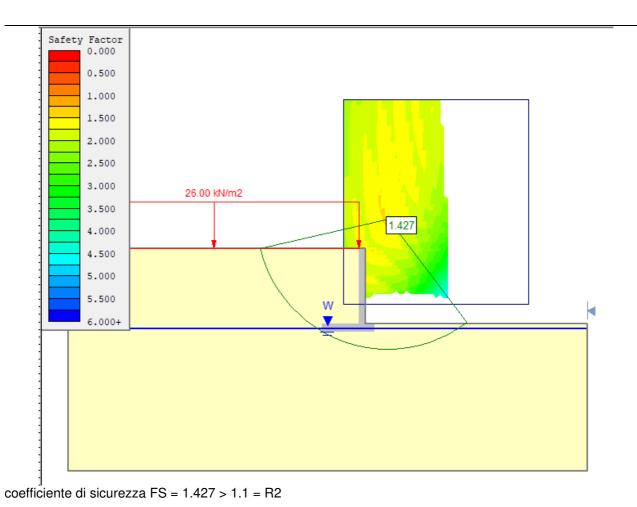
Combinazione che ha prodotto il valore peggiore: STR-1

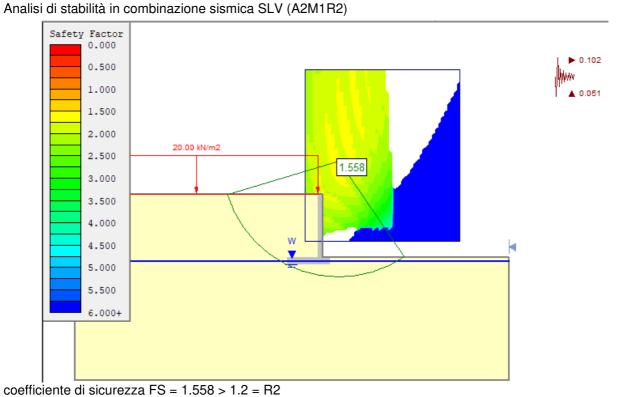
Forza stabilizzante sovrastante il piano posa (Rd): -346.8 daN/cm

Sottospinta idraulica verticale (Ed): 8.4 daN/cm Coefficiente limite verifica al sollevamento (upload): 1 Coefficiente di sicurezza al sollevamento (upload): 41.28

4.5.7.16 Analisi di stabilità globale

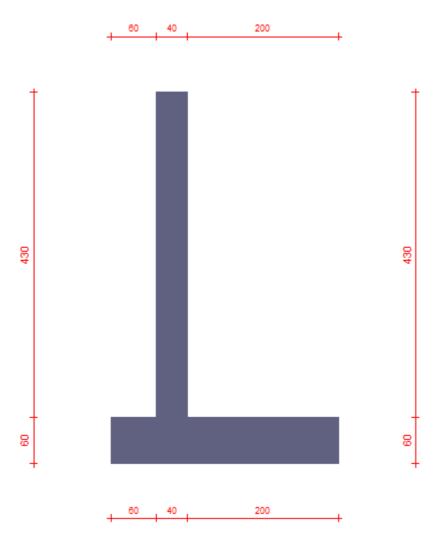
Parametri geotecnici combinazione A2M2R2:


Strato di Terreno	Terreno	γ dry	Strenght Type	ø'	c'
		kN/m³	kN/m³	٥	kPa
1	Sabbia	19	Mohr-Coulomb	29	0
2	Calcestruzzo	25	Infinite strenght	-	-


Parametri geotecnici combinazione sismica:

Strato di Terreno	Terreno	γ dry	Strenght Type	ø'	c'
		kN/m³	kN/m³	0	kPa
1	Sabbia	19	Mohr-Coulomb	35	0
2	Calcestruzzo	25	Infinite strenght	-	-

Analisi di stabilità in combinazione statica SLU (A2M2R2):


1259_C01.docx 40 di 113

1259_C01.docx 41 di 113

4.5.8 MURO DI SOSTEGNO DI TIPO 2 (H MAX= 4 M)

4.5.8.1 Analisi dei carichi

4.5.8.2 Peso proprio

Il peso proprio degli elementi strutturali della struttura viene calcolato automaticamente dal programma considerando un peso specifico di 25 KN/m³.

4.5.8.3 Carichi accidentali

Nelle verifiche si considera un carico uniformemente distribuito pari a 20 kN/m2 pari al carico utilizzato nel caso di ambienti affollati.

4.5.8.4 Spinte statiche delle terre

Le spinte statiche delle terre vengono valutate con coefficiente di spinta attiva K_a. Si considereranno in ogni caso le spinte dovute alla componente sismica come specificato nel paragrafo seguente.

4.5.8.5 Spinte sismiche delle terre

Le spinte sismiche delle terre sono valutate secondo §7.11.6.2.1 NTC: l'azione sismica è valutata considerando la trattazione di Mononobe-Okabe. Le sovraspinte orizzontali si considerano sempre agenti verso l'esterno della struttura.

La determinazione dei coefficienti sismici per il calcolo dei muri di sostegno è stata condotta in accordo al paragrafo 7.11.6.2.1 del DM 17/01/2018; in particolare, assumendo:

1259_C01.docx 42 di 113

Coefficiente di deformabilità β_m = 0.38

Risulta:

$$k_h = \beta_m \frac{a_{max}}{g} = 0.102$$
$$k_v = \pm 0.5 k_h = 0.051$$

4.5.8.6 Geometria del muro

La descrizione della geometria del muro si avvale di una duplice rappresentazione, una schematica, tramite la sezione trasversale, e l'altra in forma analitica tramite le dimensioni principali degli elementi costituenti. Il piano di posa della fondazione è a quota -0.24 m slmm.

4.5.8.7 Rappresentazione analitica

Il muro viene convenzionalmente suddiviso in blocchi principali ed eventuali accessori.

Ingombro globale

Larghezza totale del muro: 300 cm Altezza totale del muro: 490 cm

Peso specifico del muro : 2500 daN/m3 Peso specifico delle falde : 1000 daN/m3

Paramento

Base inf.: 40 cm

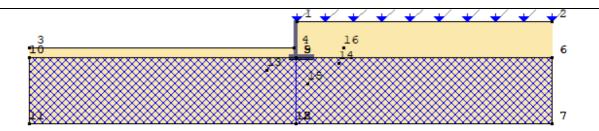
Base sup. : 40 cm
Altezza : 430 cm
Disassamento : 0 cm

Mensola sinistra in fondazione

Larghezza : 60 cm
Alt.interna : 60 cm
Alt.esterna : 60 cm
Disassamento : 0 cm

Zoccolo centrale in fondazione

Larghezza : 40 cm
Altezza a sx : 60 cm
Altezza a dx : 60 cm
Sfalsamento : 0 cm


Mensola destra in fondazione

Larghezza : 200 cm
Alt.interna : 60 cm
Alt.esterna : 60 cm
Disassamento : 0 cm

4.5.8.8 Caratteristiche dei terreni

N	Denominazione	Gsat	Gnat	Fi	C'	Cnd	Delta	Al	OCR	Ko	E	G
1	Sabbia densa	2100	1900	36.00	0.000	0.000	0.00	0.00	1.00	0.41	500	200

1259_C01.docx 43 di 113

4.5.8.9 Carichi uniformi

Comp.permanente di carico uniforme a monte : 0 daN/cm2 Comp.variabile di carico uniforme a monte : -0.20 daN/cm2

4.5.8.10 Tensioni trasmesse sul terreno

Moltiplicatore spinta passiva per equilibrio : 0

Pressione limite sul terreno per abbassamento
Eccentricità rispetto al baricentro della fondazione
Momento rispetto al baricentro della fondazione
Larghezza reagente minima in fondazione
Tensione max sul terreno allo spigolo di valle
Tensione max sul terreno allo spigolo di monte

: 2.5 daN/cm2
: 62.1 cm (comb. SIS-1)
: 264 cm (comb. SIS-1)
: 2.07 daN/cmq (comb. STR-4)
: 0.65 daN/cmq (comb. STR-3)

4.5.8.11 Verifica allo scorrimento sul piano di posa

Combinazione che ha prodotto il valore peggiore: SIS-1
Verifica condotta in condizioni drenate (a lungo termine)
Moltiplicatore spinta passiva per traslazione : 0
Coefficiente di attrito caratteristico terreno-fondazione : 0.45
Coefficiente di attrito di progetto terreno-fondazione : 0.45
Sforzo normale sul piano di posa della fondazione : 258 daN
Sforzo tangenziale positivo all'intradosso della fondazione : 0 daN
Sforzo tangenziale negativo all'intradosso della fondazione : 113 daN

Coefficiente parziale gammaR scorrimento : 1
Coefficiente limite verifica alla traslazione : 1
Coefficiente di sicurezza alla traslazione : 1.02

4.5.8.12 Verifica a ribaltamento

Combinazione che ha prodotto il valore peggiore: EQU-3 Moltiplicatore spinta passiva per ribaltamento : 0

Momento ribaltante rispetto allo spigolo di valle : 26732 daN cm Momento stabilizzante rispetto a spigolo di valle : -44026 daN cm

Coefficiente parziale gammaR ribaltamento : 1
Coefficiente limite verifica al ribaltamento : 1
Coefficiente di sicurezza al ribaltamento : 1.65

4.5.8.13 Verifica di collasso per carico limite del complesso fondazione-terreno

Combinazione che ha prodotto il valore peggiore: SIS-1 Verifica condotta in condizioni drenate (a lungo termine) Moltiplicatore spinta passiva per portanza terreno : 0 Inclinazione media del pendio circostante la fondazione : 0 ° Profondità del piano di posa : 140 cm

Sovraccarico agente sul piano di posa : 0.271 daN/cm2

Angolo di attrito di progetto del suolo di fondazione : 36 °

1259_C01.docx 44 di 113

Relazione di calcolo

Peso specifico di progetto del suolo di fondazione : 0.0011 daN/cm3

Inclinazione della risultante rispetto alla normale : 23.6 °

Base efficace : 176 cm

Carico tangenziale al piano di posa : 112.4 daN/cm Carico di progetto della fondazione (normale al P.P.) : 257.7 daN/cm

Carico ultimo della fondazione : 695.9 daN/cm Lunghezza Fondazione per verifica carico limite : 1000 cm

Coefficiente parziale gammaR carico limite : 1.2
Coefficiente limite verifica al carico limite : 1
Coefficiente di sicurezza al carico limite : 2.25

Tabella dei coefficienti di capacità portante

Coefficienti	Coesione	Sovraccarico	Attrito
Coefficienti di capacità portante	N _c = 51	N _q = 38	Ng= 40
Coefficienti di forma	s _c = 1	s _q = 1	s _g = 1
Coefficienti di profondità	$d_{c}=1.19$	d _q = 1.12	$d_g=1$
Coefficienti di inclinazione del carico	$i_c = 0.27$	i _q = 0.29	i _g = 0.16
Coefficienti di inclinazione del piano di posa della fondazione	b _c = 1	b _q = 1	b _g = 1
Coefficienti di inclinazione del pendio	g _c = 1	g _q = 1	g _g = 1

4.5.8.14 Verifica di sollevamento idraulico (Stato limite UPL - upload)

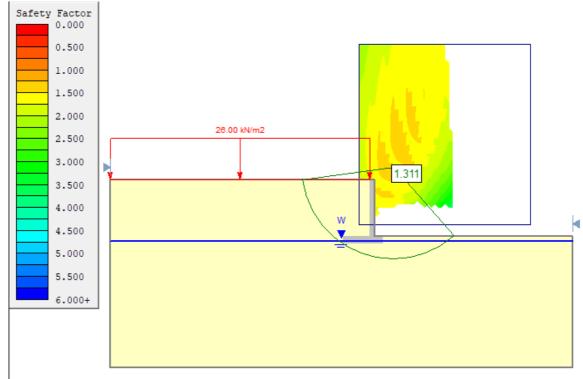
Combinazione che ha prodotto il valore peggiore: STR-1

Forza stabilizzante sovrastante il piano posa (Rd) : -252.9 daN/cm

Sottospinta idraulica verticale (Ed) : 7.2 daN/cm Coefficiente limite verifica al sollevamento (upload) : 1 Coefficiente di sicurezza al sollevamento (upload) : 35.13

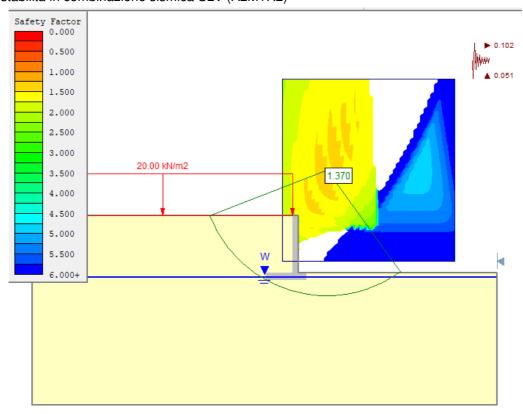
4.5.8.15 Analisi di stabilità globale

Parametri geotecnici combinazione A2M2R2:


Strato di Terreno	Terreno	γ dry	Strenght Type	ø'	c'
		kN/m³	kN/m³	۰	kPa
1	Sabbia	19	Mohr-Coulomb	29	0
2	Calcestruzzo	25	Infinite strenght	-	-

Parametri geotecnici caratteristici per combinazione sismica:

Strato di Terreno	Terreno	γ dry	Strenght Type	ø'	c'
		kN/m³	kN/m³	0	kPa
1	Sabbia	19	Mohr-Coulomb	35	0
2	Calcestruzzo	25	Infinite strenght	-	-


1259_C01.docx 45 di 113

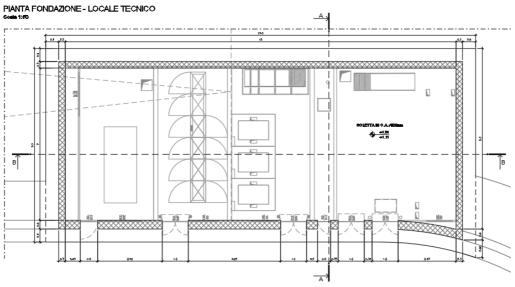
Analisi di stabilità in combinazione statica SLU (A2M2R2):

coefficiente di sicurezza FS = 1.311 > 1.1 = R2

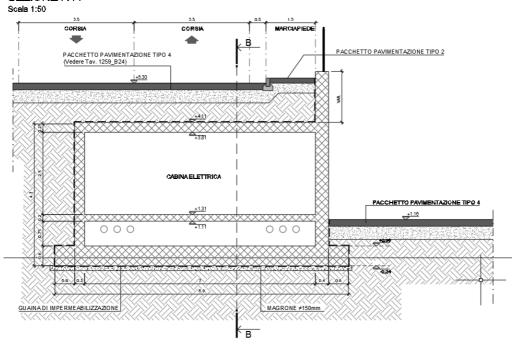
Analisi di stabilità in combinazione sismica SLV (A2M1R2)

coefficiente di sicurezza FS = 1.370 > 1.2 = R2

1259_C01.docx 46 di 113


5 CABINA ENEL

La cabina Enel è costituita da un rettangolo di dimensioni 18.60x7.70 m circa. L'edificio conta un solo piano di altezza pari a 3.70 m circa posto al di sotto di una rampa di accesso all'area portuale.


La fondazione è costituita da una platea di fondazione di spessore 60 cm, ribassata di 80 cm rispetto alla soletta portante di spessore 20 cm che è rialzata di 15 cm rispetto al piano campagna.

La struttura portante è costituita da pareti in calcestruzzo armato di spessore 30 e 40 cm, mentre il solaio di copertura è realizzato a soletta piena di spessore di 30 cm.

Nelle immagini seguenti vengono riportate le piante e sezioni del fabbricato:

SEZIONE A-A

1259_C01.docx 47 di 113

5.1 CONDIZIONI ELEMENTARI DI CARICO

Le condizioni elementari di carico sono cumulate secondo combinazioni di carico tali da risultare le più sfavorevoli ai fini delle singole verifiche, determinando quindi le azioni di calcolo da utilizzare per le verifiche allo Stato Limite Ultimo (SLU) e allo Stato Limite di Esercizio (SLE).

Le condizioni elementari di carico sono:

- peso proprio delle strutture $\gamma_{cls} = 25 \frac{kN}{m^2}$;
- carichi permanenti non strutturali (vedere specifico paragrafo analisi dei carichi);
- carichi variabili (per sola manutenzione e schema 1 carichi tandem);
- neve;
- vento;
- temperatura;
- sisma.

5.1.1 PESO PROPRIO DELLA STRUTTURA

Il peso proprio viene determinato in funzione delle dimensioni degli elementi strutturali e del peso specifico del materiale:

$$\gamma_{cls, armato} = 25 \text{ kN/m}^3$$

5.1.2 CARICHI PERMANENTI

I valori dei carichi permanenti di solaio e copertura sono riportati nello specifico al paragrafo delle analisi dei carichi.

5.1.3 CARICHI VARIABILI

I carichi variabili minimi sono prescritti dalla Normativa vigente in tabella 3.1.II D.M. 17.01.2018 e correlati alla destinazione d'uso dei locali.

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]	
	Ambienti ad uso commerciale	•			
D	Cat. D1 Negozi	4,00	4,00	2,00	
	Cat. D2 Centri Ommerciali, mercati, grandi magaz- zini	5,00	5,00	2,00	
	Scale comuni, balconi e ballatoi	Secondo	o categoria d'use	o servita	
	Aree per immagazzinamento e uso commerciale ed uso industriale				
E	Cat. E1 Aree per accumulo di merci e relative aree d'accesso, quali biblioteche, archivi, magazzini, depositi, laboratori manifatturieri	≥ 6,00	7,00	1,00*	
	Cat. E2 Ambienti ad uso industriale	da valutarsi caso per caso			
	Rimesse e aree per traffico di veicoli (esclusi i ponti)				
F-G	Cat. F Rimesse, aree per traffico, parcheggio e sosta di veicoli leggeri (peso a pieno carico fino a 30 kN)	2,50	2 x 10,00	1,00**	
r-G	Cat. G Aree per traffico e parcheggio di veicoli me- di (peso a pieno carico compreso fra 30 kN e 160	da valutarsi caso per caso e comunque non minori di			
	kN), quali rampe d'accesso, zone di carico e scarico merci.	5,00	2 x 50,00	1,00**	
	Coperture				
	Cat. H Coperture accessibili per sola manutenzione e riparazione	0,50	1,20	1,00	
H-I-K	Cat. I Coperture praticabili di ambienti di categoria d'uso compresa fra A e D	secondo categorie di appartenenza			
	Cat. K Coperture per usi speciali, quali impianti, eliporti.	da valutarsi caso per caso			

^{*} non comprende le azioni orizzontali eventualmente esercitate dai materiali immagazzinati.

1259_C01.docx 48 di 113

^{**} per i soli parapetti o partizioni nelle zone pedonali. Le azioni sulle barriere esercitate dagli automezzi dovranno essere valutate caso per caso.

Il carico dei veicoli e valutato secondo quanto prescritto dalla Normativa vigente al capitolo 5 del D.M 17.01.2018.

5.1.3.3.3 Schemi di Carico

Le azioni variabili del traffico, comprensive degli effetti dinamici, sono definite dai seguenti Schemi di Carico:

Schema di Carico 1:	quadrata e lato 0,40 schema è da assume	m, e da carichi unit re a riferimento sia pe m per corsia, dispost	ssi in tandem, applicati su impronte di pneumatico di forma ormemente distribuiti come mostrato in Fig. 5.1.2. Questo r le verifiche globali, sia per le verifiche locali, considerando o in asse alla corsia stessa. Il carico tandem, se presente, va			
Schema di Carico 2:	di larghezza 0,60 m e nomamente con asse	ed altezza 0,35 m, con longitudinale nella p	u specifiche impronte di pneumatico di forma rettangolare, ne mostrato in Fig. 5.1.2. Questo schema va considerato auto- osizione più gravosa ed è da assumere a riferimento solo per considererà il peso di una singola ruota di 200 kN.			
Schema di Carico 3:		rico isolato da 150 kN iedi non protetti da si	con impronta quadrata di lato 0,40 m. Si utilizza per verifi- curvia.			
Schema di Carico 4:		è costituito da un carico isolato da 10 kN con impronta quadrata di lato 0,10 m. Si utilizza per verifiche locali su marciapiedi protetti da sicurvia e sulle passerelle pedonali.				
Schema di Carico 5:	kN/m². Il valore di c	ombinazione è invece	intensità nominale, comprensiva degli effetti dinamici, di 5,0 di 2,5 kN/m². Il carico folla deve essere applicato su tutte le nza, inclusa l'area dello spartitraffico centrale, ove rilevante.			
Schemi di Carico 6.a, b,		ggiore di 300 m, ai fi	va al modello di carico principale, generalmente cautelativo, ni della statica complessiva del ponte, si può far riferimento			
	$q_{1,s} = 128,95 \left(\frac{1}{L}\right)^{0.35}$	[KN/m]	[5.1.1]			
	$q_{1,b} = 88.71 \left(\frac{1}{L}\right)^{0.38}$	[KN/m]	[5.1.2]			
	$q_{L,o} = 77,12 \left(\frac{1}{L}\right)^{0.36}$	[KN/m]	[5.1.3]			

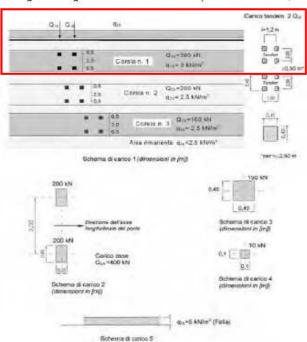
essendo L la lunghezza della zona caricata in m.

Categorie Stradali 5.1.3.3.4

5.1.3.3.4 Categorie otranan

Sulla base dei carichi mobili ammessi al transito, i ponti stradali si suddividono nelle due seguenti categorie:

ponti per il transito dei carichi mobili sopra indicati con il loro intero valore;


ponti per il transito dei soli carichi associati allo Schema 5 (ponti pedonali).

L'accesso ai ponti pedonali di carichi diversi da quelli di progetto deve essere materialmente impedito.

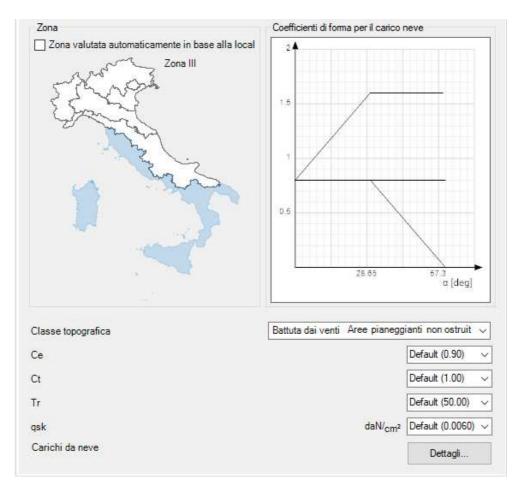
Se necessario, il progetto potrà specificatamente considerare uno o più veicoli speciali rappresentativi, per geometria e carichi-asse, dei veicoli eccezionali previsti sul ponte. Detti veicoli speciali e le relative regole di combinazione possono essere appositamente specificati caso per caso o dedotti da normative di comprovata validità.

Disposizione dei carichi mobili per realizzare le condizioni di carico più gravose

Il numero delle colonne di carichi mobili da considerare nel calcolo è quello massimo compatibile con la larghezza della superficie carrabile, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna corsia in 3,00 m

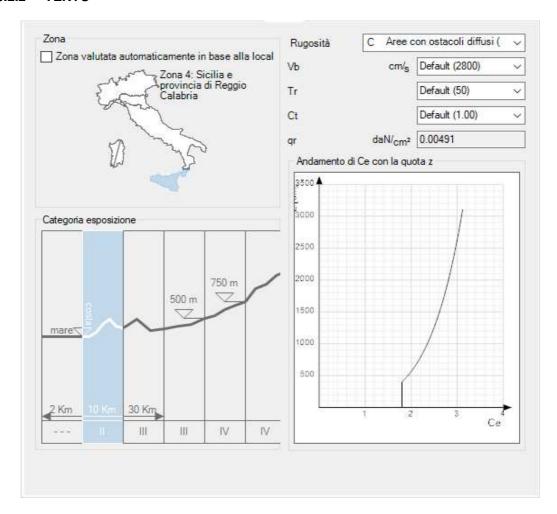
1259_C01.docx 49 di 113 In caso di analisi sismica, parte dei carichi variabili è considerata massa sismica tramite un coefficiente convenzionale ψ_{2j} come definito nelle Norme Tecniche.

5.2 ANALISI DEI CARICHI


Cabina Enel

Peso proprio soletta (sp=25 cm)p ₁ =	6.25	kN/m²
Sovraccarico permanente (impianti+tramezzi)p2 =	8.00	kN/m²
Impianti=	7.6	kN/m²
Tramezzi=	0.40	kN/m²
Sovraccarico accidentale (Sola manutenzione)q ₁ =	0.50	kN/m²

Copertura


Peso proprio (sp=30 cm)p1 =	7.50	kN/m²
Sovraccarico permanentep2 =	21.80	kN/m²
Terreno di rinterro (sp=60cm)=	11.40	kN/m²
Misto granulare (sp=40cm)=	6.40	kN/m²
Calcestruzzo drenante (sp=20cm)=	4.00	kN/m²
Sovraccarico accidentaleq1 =	20.00	kN/m²

5.2.1 **NEVE**

1259_C01.docx 50 di 113

5.2.2 **VENTO**

5.2.3 TEMPERATURA

In conformità a quanto prescritto dalla Normativa Italiana si adottano i seguenti valori di variazione termica:

Tab. 3.5.II – Valori di ΔT,, per gli edifici

Tipo di struttura	$\Delta T_{ m u}$
Strutture in c.a. e c.a.p. esposte	±15 °C
Strutture in c.a. e c.a.p. protette	± 10 °C
Strutture in acciaio esposte	± 25 °C
Strutture in acciaio protette	± 15 °C

5.2.4 SPINTA DEL TERRENO

La spinta esercitata dal terreno sulla struttura è stata considerata considerando le seguenti caratteristiche meccaniche del terreno:

$$\gamma_{terreno} = 19 \, kN/m^3$$

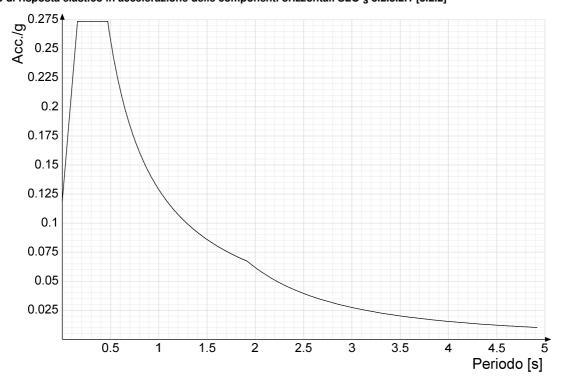
 $\varphi = 35^\circ$
 $k_0 = 1 - sen\varphi = 0.42$

5.2.5 SISMA

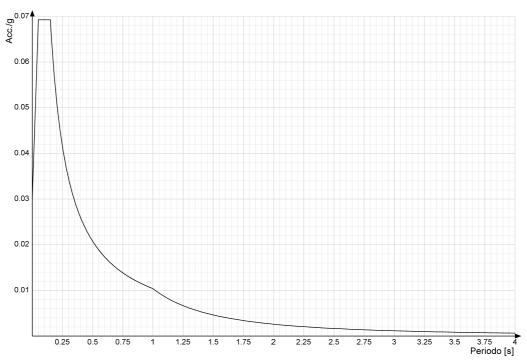
L'azioni sismiche di progetto sono valutate rispetto ai vari stati limite a partire dalla pericolosità del sito di costruzione.

1259_C01.docx 51 di 113

5.2.5.1 **DEFINIZIONE STATI LIMITE D.M. 17/01/18**

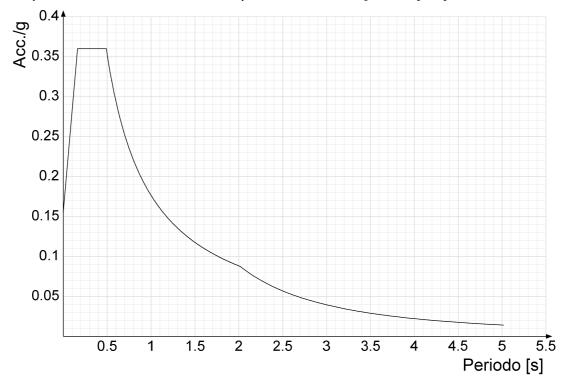

```
Metodo di analisi
Tipo di costruzione
                                                                                            D.M. 17-01-18 (N.T.C.)
                                                                                            2 - Costruzioni con livelli di prestazioni ordinari
Classe d'uso
                                                                                            III
۷r
                                                                                            75
Tipo di analisi
Località
                                                                                            Catanzaro lido; Latitudine ED50 38,8918° (38° 53' 30'');
Longitudine
                                                                                            ED50 16,5995° (16° 35' 58''); Altitudine s.l.m. 1 m.
Categoria del suolo
                                                                                            C - Depositi di terreni a grana grossa mediamente
addensati o terreni
                                                                                            a grana fina mediamente consistenti
Categoria topografica
                                                                                            T1 – Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i<=15° \,
Ss orizzontale SLO
                                                                                            1.5
Tb orizzontale SLO
                                                                                            0.157
                                                                                                                                 [s]
Tc orizzontale SLO
                                                                                                                                 [s]
Td orizzontale SLO
                                                                                            1.917
                                                                                                                                 [s]
Ss orizzontale SLD
                                                                                            1.5
Tb orizzontale SLD
                                                                                            0.164
                                                                                                                                 [s]
                                                                                            0.491
2.015
Tc orizzontale SLD
Td orizzontale SLD
                                                                                                                                 [s]
Ss orizzontale SLV
                                                                                            1.2814
Tb orizzontale SLV
                                                                                            0.183
                                                                                                                                 [s]
Tc orizzontale SLV
                                                                                            0.55
                                                                                                                                 [s]
Td orizzontale SLV
                                                                                            2.744
Ss verticale
Tb verticale
                                                                                            0.05
                                                                                                                                 [s]
Tc verticale
                                                                                            0.15
Td verticale
                                                                                                                                 [s]
PVr SLO (%)
Tr SLO
                                                                                            45.16
Ag/g SLO
                                                                                            0.0792
Fo SLO
                                                                                            2.303
Tc* SLO
                                                                                            0.302
                                                                                                                                 [s]
PVr SLD (%)
                                                                                            63
Tr SLD
                                                                                            75.43
Ag/g SLD
                                                                                            0.1038
Fo SLD
                                                                                            2.312
Tc* SLD
                                                                                            0.321
                                                                                                                                 [s]
PVr SLV (%)
                                                                                            10
Tr SLV
                                                                                            711.84
Ag/g SLV
Fo SLV
                                                                                            0.2859
Tc* SLV
                                                                                            0.381
                                                                                                                                 [s]
Smorzamento viscoso (%)
Classe di duttilità
                                                                                            CD"B"
Rotazione del sisma
Quota dello '0' sismico
                                                                                            0
                                                                                                                                 [deg]
                                                                                            0
                                                                                                                                 [mm]
Regolarità in pianta
                                                                                            Si
Regolarità in elevazione Edificio C.A.
                                                                                            Si
                                                                                            Si
Tipologia C.A.
αu/α1 C.A.
                                                                                            Strutture a pareti accoppiate q0=3.0*\alphau/\alpha1
                                                                                            Strutture a pareti accoppiate o miste equivalenti a pareti
\alpha u/\alpha 1=1.2
Kw
                                                                                            0.515
Edificio esistente
                                                                                            No
                                                                                            0.09819
T1,x
T1,y
λ SLO,x
                                                                                            0.22884
                                                                                                                                 [s]
λ SLO,y
λ SLD.x
λ SLD,y
λ SLV,x
λ SLV,y
Numero modi
                                                                                            30
Metodo di Ritz
                                                                                            applicato
Limite spostamenti interpiano SLD
                                                                                            0.005
Fattore di comportamento per sisma SLD X
Fattore di comportamento per sisma SLD Y
                                                                                            1.24
Fattore di comportamento per sisma SLV X
                                                                                            1.85
Fattore di comportamento per sisma SLV Y
```

1259_C01.docx 52 di 113

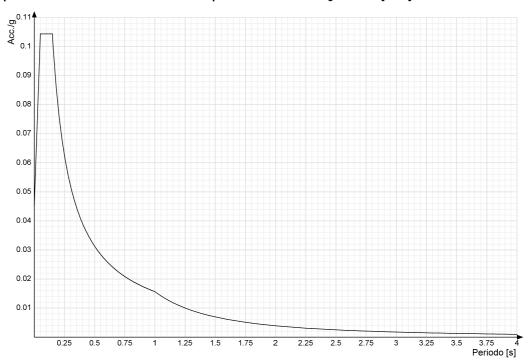

5.2.5.2 **SPETTRI D.M. 17-01-18**

Acc./g: Accelerazione spettrale normalizzata ottenuta dividendo l'accelerazione spettrale per l'accelerazione di gravità. Periodo: Periodo di vibrazione.

Spettro di risposta elastico in accelerazione delle componenti orizzontali SLO § 3.2.3.2.1 [3.2.2]

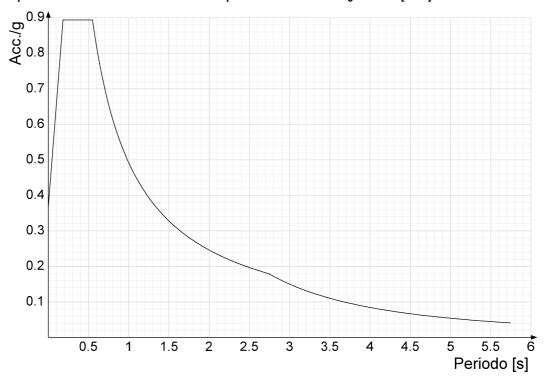


Spettro di risposta elastico in accelerazione della componente verticale SLO § 3.2.3.2.2 [3.2.8]

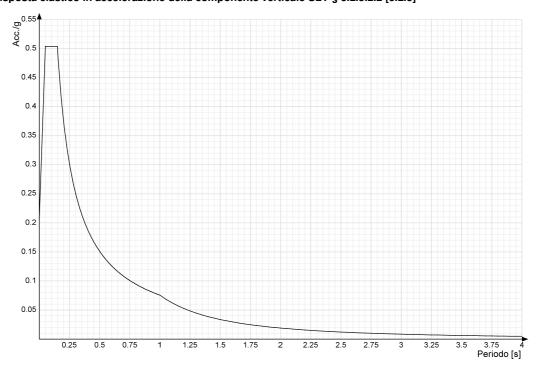


1259_C01.docx 53 di 113

Spettro di risposta elastico in accelerazione delle componenti orizzontali SLD § 3.2.3.2.1 [3.2.2]

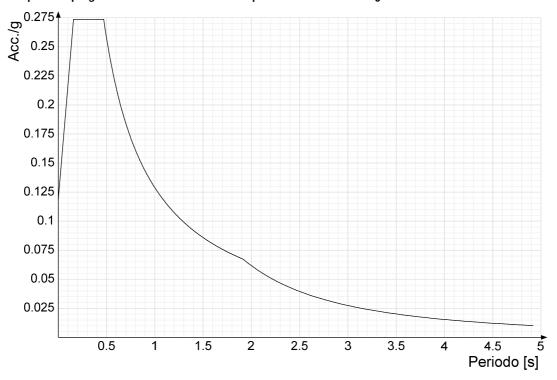


Spettro di risposta elastico in accelerazione della componente verticale SLD § 3.2.3.2.2 [3.2.8]

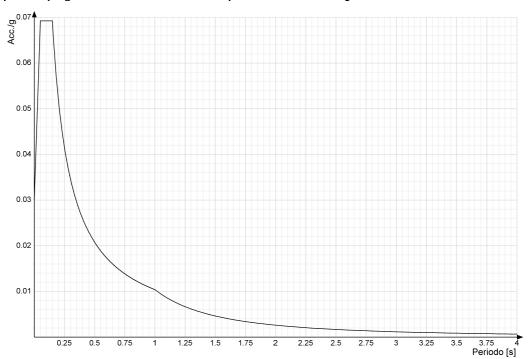


1259_C01.docx 54 di 113

Spettro di risposta elastico in accelerazione delle componenti orizzontali SLV § 3.2.3.2.1 [3.2.2]



Spettro di risposta elastico in accelerazione della componente verticale SLV § 3.2.3.2.2 [3.2.8]

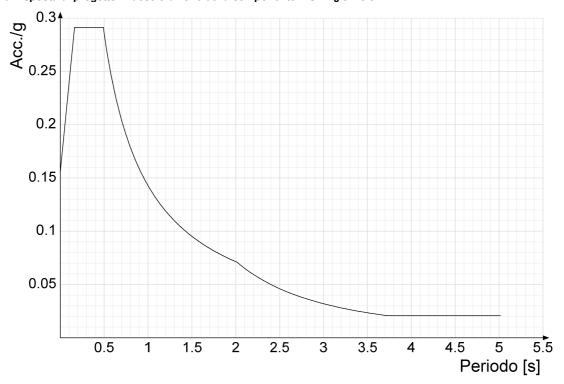


1259_C01.docx 55 di 113

Spettro di risposta di progetto in accelerazione delle componenti orizzontali SLO § 3.2.3.4

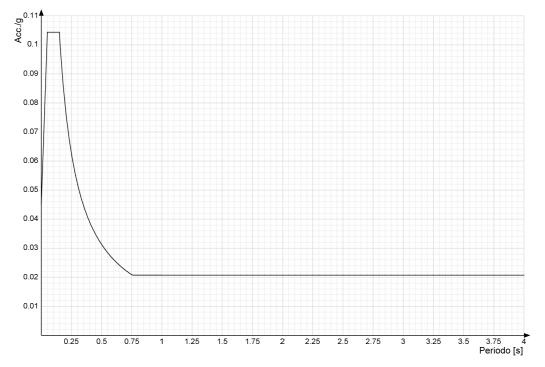


Spettro di risposta di progetto in accelerazione della componente verticale SLO § 3.2.3.4

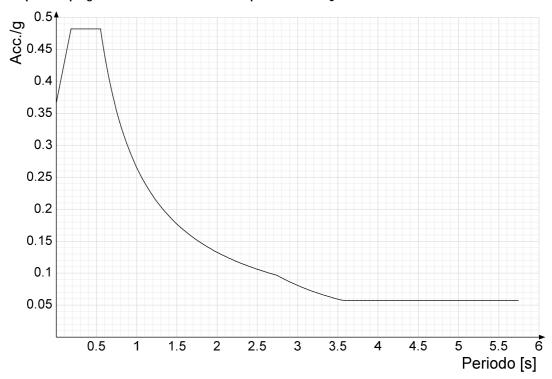


1259_C01.docx 56 di 113

Spettro di risposta di progetto in accelerazione della componente X SLD § 3.2.3.5

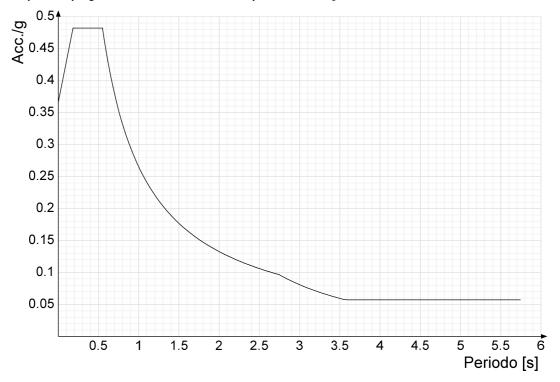


Spettro di risposta di progetto in accelerazione della componente Y SLD § 3.2.3.5

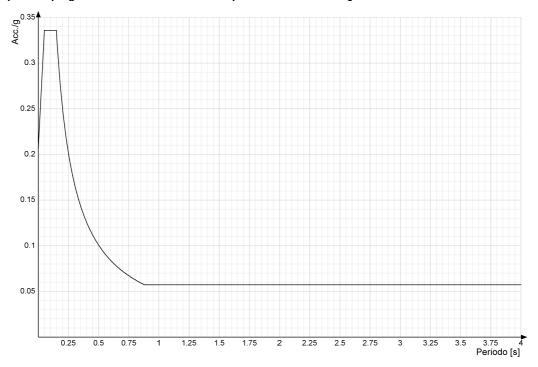


1259_C01.docx 57 di 113

Spettro di risposta di progetto in accelerazione della componente verticale SLD § 3.2.3.5

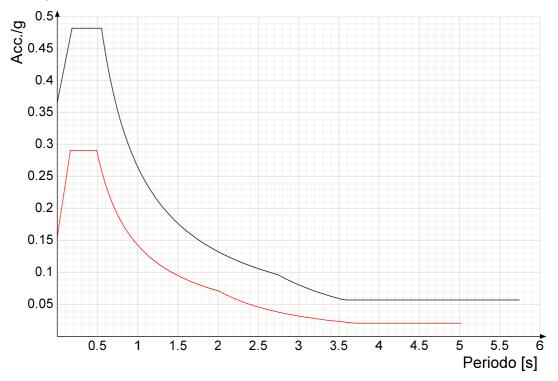


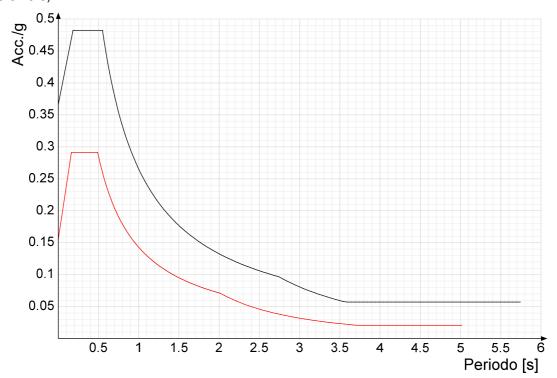
Spettro di risposta di progetto in accelerazione della componente X SLV § 3.2.3.5



1259_C01.docx 58 di 113

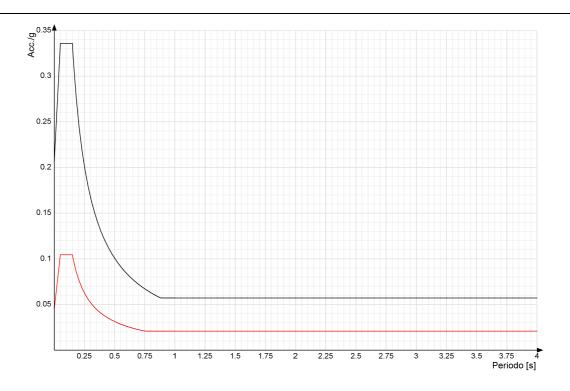
Spettro di risposta di progetto in accelerazione della componente Y SLV § 3.2.3.5


Spettro di risposta di progetto in accelerazione della componente verticale SLV § 3.2.3.5


1259_C01.docx 59 di 113

Confronti spettri SLV-SLD

Vengono confrontati lo spettro Spettro di risposta di progetto in accelerazione della componente X SLD § 3.2.3.5 (di colore rosso) e Spettro di risposta di progetto in accelerazione della componente X SLV § 3.2.3.5 (di colore nero).



Vengono confrontati lo spettro Spettro di risposta di progetto in accelerazione della componente Y SLD § 3.2.3.5 (di colore rosso) e Spettro di risposta di progetto in accelerazione della componente Y SLV § 3.2.3.5 (di colore nero).

Vengono confrontati lo spettro Spettro di risposta di progetto in accelerazione della componente verticale SLD § 3.2.3.5 (di colore rosso) e Spettro di risposta di progetto in accelerazione della componente verticale SLV § 3.2.3.5 (di colore nero).

1259_C01.docx 60 di 113

5.3 ANALISI MODALE

Le masse considerate nella modellazione seguono quanto indicato nel D.M. 17/01/2018 §3.2.4:

$$G_1 + G_2 + \sum_j \psi_{2j} Q_{kj}$$

Secondo quanto riportato nel D.M. 17/01/2018 §7.3.3.1, si esegue un'analisi lineare dinamica che consiste:

- nella determinazione dei modi di vibrare della costruzione, mediante analisi modale;
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare riportati;
- nella combinazione di questi effetti.

Sono stati considerati tutti i modi con massa partecipante significativa (superiore al 5%), tale che la massa totale sia superiore all'85%.

Si riportano di seguito alcune immagini del modello:

1259_C01.docx

Figura 4-Modello di calcolo

Modo: identificativo del modo di vibrare.

Periodo: periodo. [s]

Massa X: massa partecipante in direzione globale X. Il valore è adimensionale. Massa Y: massa partecipante in direzione globale Y. Il valore è adimensionale. Massa Z: massa partecipante in direzione globale Z. Il valore è adimensionale.

Massa rot. X: massa rotazionale partecipante attorno la direzione globale X. Il valore è adimensionale. Massa rot. Y: massa rotazionale partecipante attorno la direzione globale Y. Il valore è adimensionale. Massa rot. Z: massa rotazionale partecipante attorno la direzione globale Z. Il valore è adimensionale.

Massa sX: massa partecipante in direzione Sisma X. Il valore è adimensionale. Massa sY: massa partecipante in direzione Sisma Y. Il valore è adimensionale.

Totale masse partecipanti:

Traslazione X: 0.999101 Traslazione Y: 0.999528

Traslazione Z: 0

Rotazione X: 0.999975 Rotazione Y: 0.999904 Rotazione Z: 0.960909

Modo	Periodo	Massa X	Massa Y	Massa Z	Massa rot. X	Massa rot. Y	Massa rot. Z	Massa sX	Massa sY
1	0.228840535	0	0.848811932	0	0.997758388	0	0.501175302	0	0.848811932
2	0.098188834	0.854048037	0	0	0	0.998371368	0.067711977	0.854048037	0
3	0.030074241	0.000031566	0	0	0	0.000034953	0.222153721	0.000031566	0
4	0.026764166	0	0.031889791	0	0.000351984	0	0.01882919	0	0.031889791
5	0.022290026	0	0.080082945	0	0.00146797	0	0.047284518	0	0.080082945
6	0.019927714	0	0.000044057	0	0.000002783	0	0.000026012	0	0.000044057
7	0.014797816	0.000000439	0	0	0	0.00000305	0.037536392	0.000000439	0
8	0.013368983	0.000049693	0	0	0	0.000006455	0.02130375	0.000049693	0
9	0.012666395	0.094436915	0	0	0	0.000990368	0.008506717	0.094436915	0
10	0.011801479	0	0.000143991	0	0.000003894	0	0.000085015	0	0.000143991
11	0.011328369	0.003659404	0	0	0	0.000010155	0.000608526	0.003659404	0
12	0.011001536	0	0.000587495	0	0.000003632	0	0.000346955	0	0.000587495
13	0.010672811	0	0.009257795	0	0.000102515	0	0.005466072	0	0.009257795
14	0.010370808	0.001465577	0	0	0	0.00000018	0.000055357	0.001465577	0
15	0.009732582	0	0.001555635	0	0.000010263	0	0.000918726	0	0.001555635
16	0.009497364	0.005473458	0	0	0	0.000017335	0.001862564	0.005473458	0
17	0.008465628	0.00128427	0	0	0	0.000051655	0.002283173	0.00128427	0
18	0.008440464	0	0.002043521	0	0.0000183	0	0.001207724	0	0.002043521
19	0.007497999	0.000900902	0	0	0	0.000018332	0.003110295	0.000900902	0
20	0.007339102	0	0.004424979	0	0.000045495	0	0.002613037	0	0.004424979
21	0.005992627	0	0.00367171	0	0.0000336	0	0.002166194	0	0.00367171
22	0.005606915	0.001184406	0	0	0	0.000007616	0.000093881	0.001184406	0
23	0.004598276	0	0.004361195	0	0.000047389	0	0.002579236	0	0.004361195
24	0.004390264	0.016997594	0	0	0	0.000166386	0.002633097	0.016997594	0
25	0.003178772	0	0.006536076	0	0.000066929	0	0.003848113	0	0.006536076
26	0.002909015	0.011119275	0	0	0	0.000143307	0.00048578	0.011119275	0
27	0.001833636	0	0.006095973	0	0.000061824	0	0.003652546	0	0.006095973
28	0.001588847	0.008444908	0	0	0	0.00008116	0.002308689	0.008444908	0
29	0.001354033	0.000000002	0.000020875	0	0.000000027	0.000000036	0.000029019	0.000000002	0.000020875
30	0.000803036	0.000004793	0.000000005	0	0.000000137	0.000001432	0.000027258	0.000004793	0.000000005

RESISTENZA AL FUOCO DEGLI ELEMENTI STRUTTURALI 5.4

1259_C01.docx 62 di 113 La resistenza al fuoco di un elemento strutturale si esplica con la determinazione di tre parametri:

- R = stabilità; attitudine di un elemento da costruzione a conservare la resistenza meccanica sotto l'azione del fuoco. Equivale al tempo di rottura in minuti di un elemento strutturale sottoposto ad una curva tempo-temperatura;
- **E = tenuta**; attitudine di un elemento da costruzione a non lasciare passare né produrre fiamme, vapori o gas caldi sul lato non esposto se sottoposto all'azione del fuoco su un lato;
- I = isolamento termico; attitudine di un elemento da costruzione a ridurre, entro un dato limite, la trasmissione del calore.

Le combinazioni di carico adottate per le verifiche al fuoco sono quelle relative alle situazioni eccezionali:

$$F_d = G_k + P_k + A_d + \psi_{21}$$
 $Q_{k1} + \psi_{22}$ $Q_{k2} + \dots$

con

per sola manutenzione;

 $\psi_2 = 0$ $\psi_2 = 0$ per schemi 1 carichi (tandem).

1259 C01.docx 63 di 113

5.4.1 ELEMENTI STRUTTURALI

La verifica al fuoco è soddisfatta se è garantito il copriferro minimo a protezione delle barre d'armatura. Il D.M. 16/02/2007 - "Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi", determina le condizioni sufficienti per la classificazione degli elementi costruttivi resistenti al fuoco, quindi il copriferro minimo suddetto.

5.4.1.1 **PARETI REI 120**

D.6.3 La tabella seguente riporta i valori minimi (mm) dello spessore s e della distanza a dall'asse delle armature, alla superficie esposta sufficienti a garantire il requisito REI per le classi indicate di pareti portanti esposte su uno o due tan che rispettano le seguenti limitazioni.

 - altezza effettiva della pareta (da nodo a nodo) ≤ 6 m (per pareti di piani intermedi) ovvero ≤ 4,5 m (per pareti dell'ultimo piano);

Classe	Esposto su un lato	Esposto su due lati
30	s = 120 / a = 10	120 / 10
60	s = 130 / a = 10	140 / 10
90	s = 140 / a = 25	170 / 25
120	s = 160 / a = 35	220 / 35
180	s = 210 / a = 50	270 / 55
240	s = 270 / a = 60	350 / 60

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

D.6.4 La tabella seguente riporta i valori minimi (mm) dello spessore s sufficiente a garantire il requisito El per le classi indicate di pareti non portanti esposte su un lato che rispettano fe seguenti limitazioni:

⁻ rapporto tra altezza di libera inflessione e spessore inferiore a 40

Classe	Esposto su un lato
30	s = 60
60	s = 80
90	S = 100
120	S = 120
180	S = 150
240	S = 180 💙

1259_C01.docx 64 di 113

 ⁻ altezza effettiva della parete (da nodo a nodo) ≤ 6 m (per pareti di piani intermedi) ovvero ≤ 4,5 m (per pareti dell'ultimo piano);

5.4.1.2 **SOLAI REI 120**

D.5 Solette piene e solai alleggeriti

D.5.1 La tabella seguente riporta i valori minimi (mm) dello spessore totale H di solette e solai, della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito R per le classi indicate.

Classe	30	60	90	120	180	240
Solette piene con armatura monodirezionale	H = 80 / a = 10	120/ 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai misti di lamiera di acciaio con riempimento di calcestruzzo (1)	H = 80 / a = 10	120 / 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai a travetti con alleggerimento (2)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75
Solai a lastra con alleggerimento (3)	H = 160 / a = 15	200/30	240 / 35	240 / 45	300 / 60	300 / 75

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di H e a ne devono tenere conto nella seguente maniera: 10 mm di intonaco normale (definizione in D.4.1) equivale ad 10 mm di calcestruzzo; 10 mm di intonaco protettivo antincendio (definizione in D.4.1) equivale a 20 mm di calcestruzzo. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

- (1) In caso di lamiera grecata H rappresenta lo spessore medio della soletta. Il valore di a non comprende lo spessore della lamiera. La lamiera ha unicamente funzione di cassero. In caso contrario la lamiera va protetta secondo quanto indicato in D.7.1
- (2) Deve essere sempre presente uno strato di intonaco normale di spessore non inferiore a 20 mm ovvero uno strato di intonaco isolante di spessore non inferiore a 10 mm.
- (3) In caso di alleggerimento in polistirene o materiali affini prevedere opportuni sfoghi delle sovrapressioni

D.5.2 Per garantire i requisiti di tenuta e isolamento i solai di cui alla tabella D.5.1 devono presentare uno strato pieno di materiale isolante, non combustibile e con conducibilità termica non superiore a quella del calcestruzzo, di cui almeno una parte in calcestruzzo armato. La tabella seguente riporta i valori minimi (cm) dello spessore h dello strato di materiale isolante e della parte d di c.a., sufficienti a garantire i requisiti El per le classi indicate.

Classe	30	60	90	120	180	240
Tutte le tipologie	h = 60 / d = 40	60 / 40	100 / 50	100 / 50	150 / 60	150 / 60

In presenza di intonaco i valori di h è di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. In ogni caso a non deve mai essere inferiore a 40 mm.

In presenza di strati superiori di materiali di finitura incombustibile (massetto, malta di allettamento, pavimentazione, etc.) i valori di h ne possono tener conto

5.5 COMBINAZIONI DI CARICO

Si adottano le combinazioni prescritte dalla normativa vigente ed espresse simbolicamente come segue: **Stati Limite Ultimi SLU**

$$F_d = \gamma_g \cdot G_k + \gamma_p \cdot P_k + \gamma_q \cdot \left[Q_{1k} + \sum_{i=2}^{i=n} (\psi_{0i} \cdot Q_{ik}) \right] \qquad \text{per le azioni statiche SLU}$$

$$F_d = \gamma_I \cdot E + G_k + P_k + \sum_{i=1}^{i=n} (\psi_{2i} \cdot Q_{ik})$$
 per le azioni sismiche

Stati Limite di Esercizio - SLE

$$F_d = G_k + P_k + Q_{k1} + \psi_{02} \cdot Q_{k2} + \dots$$
 combinazione rara

$$F_d = G_k + P_k + \psi_{11}Q_{k1} + \psi_{22} \quad Q_{k2} + \dots$$
 combinazione frequente

$$F_d = G_k + P_k + \psi_{21} \cdot Q_{21} + \psi_{22} \cdot Q_{22} \dots$$
 combinazione quasi permanente

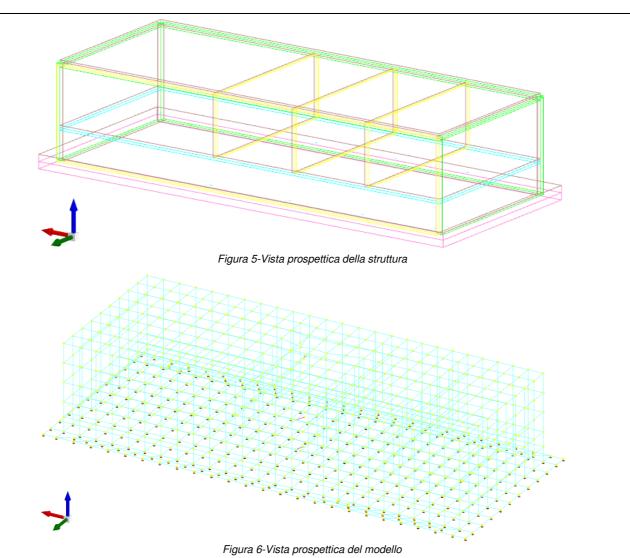
1259_C01.docx 65 di 113

con il seguente significato dei simboli:

```
G_k
                   valore caratteristico delle azioni permanenti
P_k
                   valore caratteristico della forza di precompressione
Q_{ik}
                   valore caratteristico dell'azione variabile i-esima
                   azione sismica
\gamma_g = 1.3 (1.0 se il suo contributo aumenta la sicurezza)
\gamma_0 = 0.9 (1.2 se il suo contributo diminuisce la sicurezza)
\gamma_{\rm q} = 1.5 \, (0.0 \, \text{se il suo contributo aumenta la sicurezza})
                   per azioni da traffico schema 1;
\psi_{0i} = 0.75
\psi_{1i} = 0.75
                   per azioni da traffico schema 1;
\psi_{2i} = 0.0
                   per azioni da traffico schema 1;
\psi_{0i} = 0.3
                   per sovraccarichi accidentali (Sola manutenzione);
\psi_{1i} = 0.0
                   per sovraccarichi accidentali (Sola manutenzione);
                   per sovraccarichi accidentali (Sola manutenzione);
\psi_{2i} = 0.0
\psi_{0i} = 0.5
                   per neve:
\psi_{1i}=0.2
                   per neve;
\psi_{2i} = 0
                   per neve;
\psi_{0i} = 0.6
                   per vento:
\psi_{1i} = 0.2
                   per vento;
\psi_{2i} = 0
                   per vento;
\psi_{0i} = 0.6
                   per variazione termica;
\psi_{1i}=0.5
                   per variazione termica;
\psi_{2i} = 0
                   per variazione termica;
```

5.6 MODELLO DI CALCOLO

Le elaborazioni mediante calcolatore sono state eseguite con l'ausilio del programma:


Sismicad 12.13 Build 7086.26108 – 1989-2018 Concrete S.r.l. (IT), Via Della Pieve, 19 – 35121 Padova (Italia). Licenza Fm Ingegneria S.P.A. Chiave 7236

Il programma è usato dallo scrivente in forza di regolari licenze d'uso e testato periodicamente mediante procedure di controllo codificate, tali da verificare l'attendibilità dell'applicazione e dei risultati ottenuti ed individuare eventuali vizi ed anomalie. Grazie alla raffinatezza dei modello di calcolo è stato possibile analizzare il comportamento di tutti gli elementi compositivi delle stesse, considerando l'effettivo contributo alla rigidezza complessiva del sistema fornito da ciascun componente elementare. I criteri di modellazione prevedono la riproduzione fedele delle strutture così come sono state progettate e si prescrive siano realizzate.

Il modello è composto da elementi plate per simulare fondazioni, pareti e solai. I carichi delle coperture sono schematizzati con carichi superficiali.

Le strutture di fondazione, sono stati vincolati alle traslazioni orizzontali con vincoli fissi e vincolati alla traslazione verticale con letto di molle.

1259_C01.docx 66 di 113

5.7 VERIFICHE

5.7.1 VERIFICA AGLI SPOSTAMENTI SOMMITALI AGLI SLO

Si riportano le mappe cromatiche raffiguranti gli spostamenti orizzontali agli SLO:

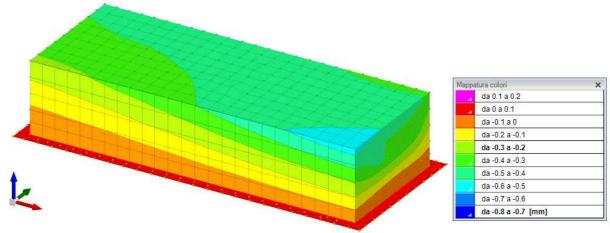


Figura 7-Mappa cromatica spostamenti orizzontali in direzione X | SLO

1259_C01.docx 67 di 113

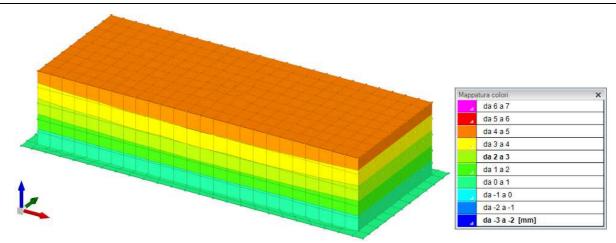


Figura 8-Mappa cromatica spostamenti orizzontali in direzioneY | SLO

Secondo quanto riportato dalla normativa vigente (D.M. 17/01/2018 §7.3.6.1), lo spostamento massimo orizzontale per costruzioni con tamponature fragili collegate rigidamente alla struttura soggetta ad azioni orizzontali deve rispettare il seguente limite:

Per le CU I e II ci si riferisce allo SLD (v. Tab. 7.3.III) e deve essere:

_	· · · · · · · · · · · · · · · · · · ·	,										
a)	per tamponature collegate rigidamente alla struttura, che interferiscono con la deformabilità della stessa:											
L	$qd_{_T} \leq 0,\!0050 \cdot h$	per tamponature fragili	[7.3.11a]									
Т	$qd \leq 0.0075 \cdot h$	per tamponature duttili	[7.3.11b]									

b) per tamponature progettate in modo da non subire danni a seguito di spostamenti d'interpiano d_{rp}, per effetto della loro deformabilità intrinseca oppure dei collegamenti alla struttura:

$$qd_r \le d_m \le 0.0100 \cdot h$$
 [7.3.12]

c) per costruzioni con struttura portante di muratura ordinaria

$$qd_{r} \leq 0,0020 \cdot h \tag{7.3.13}$$

 $\it d)~$ per costruzioni con struttura portante di muratura armata

$$qd_r \le 0.0030 \cdot h$$
 [7.3.14]

e) per costruzioni con struttura portante di muratura confinata

$$qd_{r} < 0.0025 \cdot h$$
 [7.3.15]

dove

h è l'altezza del piano.

Per le CU III e IV ci si riferisce allo SLO (v. Tab. 7.3.III) e gli spostamenti d'interpiano devono essere inferiori ai 2/3 dei limiti in precedenza indicati.

$$d_r \le 2/3 * 0.005 \cdot h/q = 2/3 * 0.005 * 3700/1.85 = 6.6 \, mm > 5mm$$

La verifica è soddisfatta.

5.7.2 VERIFICA AGLI SPOSTAMENTI SOMMITALI AGLI SLE

Si riportano le mappe cromatiche raffiguranti gli spostamenti massimi orizzontali agli SLE

1259_C01.docx 68 di 113

 d_r è lo spostamento di interpiano, cioè la differenza tra gli spostamenti del solaio superiore e del solaio inferiore, calcolati, nel caso di analisi lineare, secondo il \S 7.3.4, sul modello di calcolo non comprensivo delle tamponature,

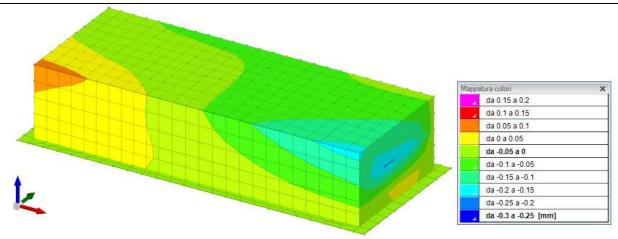


Figura 9-Mappa cromatica spostamenti orizzontali in direzione X | SLE

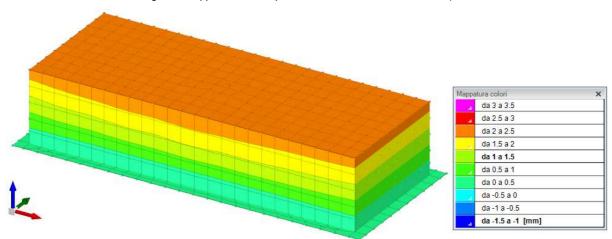


Figura 10-Mappa cromatica spostamenti orizzontali in direzione Y | SLE

Secondo quanto riportato dalla normativa vigente (D.M. 17/01/2018 \$4.2.4.2), lo spostamento massimo per costruzioni ordinarie soggette ad azioni orizzontali deve rispettare il seguente limite: H/300 = 3700/300 = 12.3 mm > 2 mm

La verifica è soddisfatta.

5.7.3 VERIFICA DELLE PARETI IN C.A.

nod.: nodo del modello FEM

sez.: tipo di sezione (o = orizzontale, v = verticale)

B: base della sezione

H: altezza della sezione

Af+: area di acciaio dal lato B (inferiore per le piastre))

Af-: area di acciaio dal lato A (superiore per le piastre))

c+: copriferro dal lato B (inferiore per le piastre))

c-: copriferro dal lato A (superiore per le piastre))

sc: tensione sul calcestruzzo in esercizio

comb: combinazione di carico c.s.: coefficiente di sicurezza

N: sforzo normale di calcolo M: momento flettente di calcolo

Mu: momento flettente ultimo **Nu**: sforzo normale ultimo

sf: tensione sull'acciaio in esercizio

Wk: apertura caratteristica delle fessure

Sm: distanza media fra le fessure

st: sigma a trazione nel calcestruzzo in condizioni non fessurate

fck: resistenza caratteristica cilindrica del calcestruzzo

fcd: resistenza a compressione di calcolo del calcestruzzo

fctd: resistenza a trazione di calcolo del calcestruzzo

Hcr: altezza critica

q.Hcr: *quota della sezione alla altezza critica

1259_C01.docx 69 di 113

M Wk (mm) Wlim

hw: altezza della parete lw: lunghezza della parete n.p.: numero di piani hs: altezza dell'interpiano

 ${\it Mxd}$: momento di progetto attorno all'asse x (fuori piano) ${\it Myd}$: momento di progetto attorno all'asse y (nel piano)

NEd: sforzo normale di progetto

MEd: Momento flettente di progetto di progetto

VEd: sforzo di taglio di progetto

Ngrav.: sforzo normale dovuto ai carichi gravitazionali NReale.: sforzo normale derivante dall'analisi

VRcd: resistenza a taglio dovuta alle bielle di calcestruzzo

epsilon: coefficiente di maggiorazione del taglio derivante dall'analisi

αS: MEd/(VEd*lw) formula 7.4.15

At: area tesa di acciaio

roh: rapporto tra area della sezione orizzotale dell'armatura di anima e l'area della sezione di calcestruzzo rov: rapporto tra area della sezione verticale dell'armatura di anima e l'area della sezione di calcestruzzo

VRsd: resistenza a taglio della sezione con armature

Somma(Asj)- Ai: somma delle aree delle barre verticali che attraversano la superficie di scorrimento

csi: altezza della parte compressa normalizzata all'altezza della sezione

Vdd: contributo dell'effetto spinotto delle armature verticali

Vfd: contributo della resistenza per attrito

Vid: contributo delle armature inclinate presenti alla base

VRd,s: valore di progetto della resistenza a taglio nei confronti dello scorrimento

M01: momento flettente inferiore per verifica instabilità M02: momento flettente superiore per verifica instabilità etot: eccentricità complessiva EC2 12.6.5.2 (12.12)

Fi: coefficiente riduttivo EC2 12.6.5.2 (12.11)

I0: lunghezza libera di inflessione beta: coefficiente EC2 12.6.5.1 (12.9)

Nrd: resistenza di progetto EC2 12.6.5.2 (12.10)

I,lim: snellezza limite EC2 12.6.5.1 (4)

At: area di calcestruzzo del traverso in parete con blocco cassero in legno

Vr,cls: resistenza a taglio in assenza di armatura orizzontale in parete con blocco cassero in legno

Mu: momento resistente ultimo del singolo traverso in parete con blocco cassero in legno

Hp: resistenza a trazione dell'elemento teso in parete con blocco cassero in legno

R: fattore di efficienza in parete con blocco cassero in legno

Vr,s: contributo alla resistenza a taglio della armatura orizzontale in parete con blocco cassero in legno

Vrd: resistenza a taglio per trazione del diagonale in parete con blocco cassero in legno

I: luce netta della trave di collegamento

h: altezza della trave di collegamento

b: spessore della trave di collegamento

d: altezza utile della trave di collegamento Asi: area complessiva della armatura a X

M,plast: momenti resistenti della trave a filo appoggio

T,plast: sforzi di taglio nella trave derivanti da gerarchia delle resistenze

5.7.3.1 **PARETE sp= 30 cm**

Parete a "Fondazione - Piano strada"

Parete fra le coordinate in pianta (-103;-89) (-103;651) da quota -60 a quota 385 Valori in daN, cm $c32/40:\ rck\ 400$ fyk 4500

Verific	ca di st	ato	limite	ultim	Э									
nod s	sez B	Н	Af+	Af-	C+	c-	c.s.		comb	N	M	Nu	Mu	
188	0 100	30	12.7	12.7	6.5	6.5	2.693		8 SLU	-35804	766165	-96404	2062971	
	v 80	30	7.0	7.0	4.8	4.8	9.337	1	1 SLV	3737	30963	34896	289108	
968	0 100	30	12.7	12.7	6.5	6.5	2.057		8 SLU	-14413	712685	-29651	1466146	
	v 65	30	7.0	7.0	4.8	4.8	7.767		3 SLV	5046	29343	39190	227900	
994	0 100	30	12.7	12.7	6.5	6.5	2.049		8 SLU	-14694	717540	-30113	1470512	
	v 65	30	7.0	7.0	4.8	4.8	8.070		3 SLV	4764	29514	38445	238181	
Verific	ca di st	ato	limite	danno	Resi	stenza								
nod s	sez B	Н	Af+	Af-	C+	C-	c.s.		comb	N	M	Nu	Mu	
188	0 100	30	12.7	12.7	6.5	6.5	4.469		1 SLD	-23166	474888	-103522	2122128	
	v 80	30	7.0	7.0	4.8	4.8	11.891	1	1 SLD	2591	28961	30812	344383	
968	0 100	30	12.7	12.7	6.5	6.5	3.555		3 SLD	-7384	403477	-26251	1434458	
	v 65	30	7.0	7.0	4.8	4.8	11.191		3 SLD	3048	26489	34111	296438	
994	0 100	30	12.7	12.7	6.5	6.5	3.576		3 SLD	-7607	403610	-27205	1443365	
	v 65	30	7.0	7.0	4.8	4.8	11.692		3 SLD	2850	26249	33326	306907	
Combina	azione r	ara												
nod s	sez B	Н	Af+	Af-	C+	c-	sc	С		N	M sf	С	N	
st Sm (r	nm) c													

1259_C01.docx 70 di 113

188	o 100 30	12.7	12.7	6.5	6.5	-60.9 2	2 ra	-2.51E04	5.33E05	1037.2	2 ra	-2.51E04	5.33E05	0.00999	.00
25.9	0.0 1 ra										_				
3.2	v 80 30 0.0 1 ra	7.0	7.0	4.8	4.8	-5.4 2	2 ra	6.79E02	3.68E04	279.8	2 ra	6.79E02	3.68E04	0.00999	.00
3.2 968	0.0 1 ra 0 100 30	12 7	12 7	6 5	6 5	-57 3 3	ra	-9.87E03	/ 8/F05	1/3/ 0	2 ra	_9 87F03	4 84F05	0.00999	0.0
27.6	0.0 1 ra	12.7	12.7	0.5	0.5	37.3 2	. <u>.</u>	J.07E03	4.04603	1131.0	2 10	J.07E03	4.04E03	0.00555	•00
	v 65 30	7.0	7.0	4.8	4.8	-4.2 2	2 ra	1.47E03	2.88E04	291.4	2 ra	1.47E03	2.88E04	0.00999	.00
3.5	0.0 1 ra														
994	o 100 30	12.7	12.7	6.5	6.5	-57.7 2	2 ra	-1.01E04	4.87E05	1439.1	2 ra	-1.01E04	4.87E05	0.00999	.00
27.8	0.0 1 ra														
0 5	v 65 30	7.0	7.0	4.8	4.8	-4.5 2	2 ra	1.33E03	3.00E04	287.4	2 ra	1.33E03	3.00E04	0.00999	.00
3.5	0.0 1 ra														
Combin	Combinazione frequente														
nod	-	Af+	Af-	c+	c-	sc	С	N	М	sf	С	N	М	Wk (mm) Wk	lim
st Sm(, ,	
188	o 100 30	12.7	12.7	6.5	6.5	-54.2 2	2 fr	-2.20E04	4.73E05	932.5	2 fr	-2.20E04	4.73E05	0.00 0	.30
23.1	0.0 1 fr														
	v 80 30	7.0	7.0	4.8	4.8	-4.6 2	2 fr	7.74E02	3.20E04	257.5	2 fr	7.74E02	3.20E04	0.00 0	.30
2.9	0.0 1 fr o 100 30	10 7	10 7	c -	<i>c</i> -	40.0		0.06503	4 01 00 5	1000 4	۰ .	0.06503	4 01705	0 00 0	20
968 24.2	0.0 1 fr	12.7	12.7	6.5	6.5	-49.9 2	ı ir	-8.06E03	4.21EU5	1268.4	z ir	-8.06E03	4.21EU5	0.00 0	.30
24.2	v 65 30	7.0	7 0	4 8	4 8	-3 7 3) fr	1.01E03	2 46E04	229 7	2 fr	1 01E03	2 46E04	0.00 0	30
2.9	0.0 1 fr	,.0	,.0	1.0	1.0	3.7 2		1.01203	2.10001	223.7	2 11	1.01203	2.10001	0.00 0	• 50
994	o 100 30	12.7	12.7	6.5	6.5	-50.0 2	2 fr	-8.24E03	4.22E05	1265.4	2 fr	-8.24E03	4.22E05	0.00 0	.30
24.2	0.0 1 fr														
	v 65 30	7.0	7.0	4.8	4.8	-3.8 2	2 fr	8.94E02	2.44E04	219.9	2 fr	8.94E02	2.44E04	0.00 0	.30
2.8	0.0 1 fr														
Combin	azione quasi	n 0 22m 0	nonto												
	sez B H	-		c+	C-	8.0	C	N	М	s f	С	N	М	Wk (mm) Wk	lim
st Sm(ALI	AL	Ci	C	30	C	N	11	31	C	14	1.1	WK (Hull) WK	T TIII
188	0 100 30	12.7	12.7	6.5	6.5	-51.5 2	2 q.	-2.08E04	4.50E05	890.7	2 q.	-2.08E04	4.50E05	0.00 0	.20
22.0	0.0 1 q.						-				-				
	v 80 30	7.0	7.0	4.8	4.8	-4.4 2	q.	-3.78E03	3.42E04	248.5	2 q.	8.12E02	3.02E04	0.00 0	.20
2.7	0.0 1 q.														
968	0 100 30	12.7	12.7	6.5	6.5	-47.0 2	q.	-7.33E03	3.96E05	1203.8	2 q.	-7.33E03	3.96E05	0.00 0	.20
22.8	0.0 1 q. v 65 30	7 0	7 0	1 0	1 0	_3 E ′	. ~	8.24E02	2 20504	205 0	2 ~	0 24502	2 20504	0.00 0	20
2.6	0.0 1 q.	7.0	7.0	4.0	4.0	-3.5 2	٠ ٩٠	0.24EU2	Z.Z9E04	203.0	2 4.	0.24602	Z.Z9EU4	0.00 0	.20
994	-	12.7	12.7	6.5	6.5	-47.0	2 a.	-7.52E03	3.96E05	1195.9	2 a.	-7.52E03	3.96E05	0.00 0	.20
22.8	0.0 1 q.						-1.				-1.				
	v 65 30	7.0	7.0	4.8	4.8	-3.5 2	2 q.	7.21E02	2.22E04	192.9	2 q.	7.21E02	2.22E04	0.00 0	.20
2.5	0.0 1 q.						_				_				

Parete a "Fondazione - Piano strada"

Parete fra le coordinate in pianta (-118;631) (1742;631) da quota -60 a quota 385
Valori in daN, cm
C32/40: rck 400
fyk 4500

Verifi	ca di	sta	ato	limite	ultim	10													
nod	sez	В	Η	Af+	Af-	c+	c-	c.s.		C	omb	N	M	N.	u	Mu			
1113	0 1	00	40	12.7	12.7	6.5	6.5	1.246	5	8	SLU	-23308	1688647	-2903	5 21	03538			
	v	65	40	7.0	7.0	4.8	4.8	2.525	5	11	SLV	17736	79687	4478	6 2	01218			
1114	0 1	00	40	12.7	12.7	6.5	6.5	1.219)	8	SLU	-23462	1720031	-2860	9 20	97408			
	v	65	40	7.0	7.0	4.8	4.8	2.668	3	11	SLV	16228	86173	4329	4 2	29892			
1115	0 1	00	40	12.7	12.7	6.5	6.5	1.291		8	SLU	-20938	1607494	-2702	3 20	74722			
	V	65	40	7.0	7.0	4.8	4.8	2.882	2	11	SLV	13778	103318	3971	1 2	97774			
Verifi	ca di	sta	ato	limite	danno	Resi	stens	za.											
nod		В	Н	Af+	Af-	c+	c-	c.s.		_	omb	N	М	N	13	Mu			
1113	0 1		40	12.7	12.7	6.5	6.5	2.540			SLD	-11519	829493	-2925		06596			
	v		40	7.0	7.0	4.8	4.8	3.400			SLD	12226	77323	4156		62869			
1114	o 1	00	40	12.7	12.7	6.5	6.5	2.451			SLD	-11613	854973	-2845	8 20	95215			
	v	65	40	7.0	7.0	4.8	4.8	3.653	3	11	SLD	10962	79750	4004	9 2	91355			
1115	o 1	00	40	12.7	12.7	6.5	6.5	2.613	3	7	SLD	-10234	792430	-2674	1 20	70513			
	v	65	40	7.0	7.0	4.8	4.8	3.879)	11	SLD	9097	97903	3528	6 3	79751			
Combin	azion	e ra	ara																
nod		В		Af+	Af-	c+	c-	sc	С		N	N	1 sf	С		N	М	Wk (mm) Wlim
st Sm (c				0.	0		•			-	. 01	Ü				*****	,
1113			40	12.7	12.7	6.5	6.5	-75.2.2	ra	-1.	59E04	1.15E06	5 2380.4	2 ra -1	.59E0	4 1.	15E06	0.2	6999.00
0.0 4					,	0.0	0.0	70.2 2			0,201	1.1020	. 2000.1		.0,20		10200	0.2	0333.00
	v			7.0	7.0	4.8	4.8	-8.3 2	ra	3.	29E03	1.02E05	689.5	2 ra 3	.29E0	3 1.	02E05	0.0	0999.00
6.8	0.0																		
1114	0 1	00	40	12.7	12.7	6.5	6.5	-76.6 2	ra	-1.	60E04	1.17E06	5 2431.4	2 ra -1	.60E0	4 1.	17E06	0.3	1999.00
0.0 4	79.4	2 ra	a																
	v	65	40	7.0	7.0	4.8	4.8	-10.9 2	ra	1.	37E03	1.18E05	621.9	2 ra 1	.37E0	3 1.	18E05	0.0	0999.00
7.0	0.0	1 ra	a																
1115	0 1	00	40	12.7	12.7	6.5	6.5	-71.6 2	ra	-1.	43E04	1.09E06	2297.6	2 ra -1	.43E0	4 1.	09E06	0.3	0999.00
0.0 4	80.0	2 ra	a																
	v	65	40	7.0	7.0	4.8	4.8	-13.6 2	ra	6.	49E02	1.44E05	682.5	2 ra 6	.49E0	2 1.	44E05	0.0	0999.00

1259_C01.docx 71 di 113

8.1	0.0 1 ra														
Combin	azione frequ	ente													
nod	sez B H	Af+	Af-	C+	c-	sc	С	N	M	sf	С	N	M	Wk (mm)	Wklim
st Sm(mm) c														
1113	o 100 40	12.7	12.7	6.5	6.5	-59.8	2 fr	-1.28E04	9.14E05	1887.1	2 fr	-1.28E04	9.14E05	0.00	0.30
29.5	0.0 1 fr														
	v 65 40	7.0	7.0	4.8	4.8	-5.9	2 fr	3.60E03	8.09E04	621.0	2 fr	3.60E03	8.09E04	0.00	0.30
5.8	0.0 1 fr														
	0 100 40	12.7	12.7	6.5	6.5	-60.9	2 fr	-1.28E04	9.32E05	1931.1	2 fr	-1.28E04	9.32E05	0.00	0.30
30.1	0.0 1 fr														
	v 65 40	7.0	7.0	4.8	4.8	-8.6	2 fr	1.82E03	9.59E04	555.5	2 fr	1.82E03	9.59E04	0.00	0.30
5.9	0.0 1 fr														
1115	0 100 40	12.7	12.7	6.5	6.5	-56.6	2 fr	-1.14E04	8.66E05	1814.7	2 fr	-1.14E04	8.66E05	0.00	0.30
28.1	0.0 1 fr														
	v 65 40	7.0	7.0	4.8	4.8	-10.7	2 fr	1.07E03	1.15E05	584.0	2 fr	1.07E03	1.15E05	0.00	0.30
6.7	0.0 1 fr														
Combin	azione quasi	perma	nente												
nod	sez B H	Af+	Af-	C+	C-	sc	С	N	M	sf	С	N	M	Wk (mm)	Wklim
st Sm(mm) c														
1113	0 100 40	12.7	12.7	6.5	6.5	-53.6	2 q.	-1.15E04	8.20E05	1689.8	2 q.	-1.15E04	8.20E05	0.00	0.20
26.4	0.0 1 q.														
	v 65 40	7.0	7.0	4.8	4.8	-4.8	2 q.	3.72E03	7.25E04	593.8	2 q.	3.72E03	7.25E04	0.00	0.20
5.3	0.0 1 q.	40 5				5.4. B	_	4 45=04	0 00=05	4.004 0			0 00=05	0 00	
	0 100 40	12.7	12.7	6.5	6.5	-54./	2 q.	-1.15E04	8.36EU5	1/31.0	2 q.	-1.15E04	8.36E05	0.00	0.20
27.0	0.0 1 q.										_			0 00	
	v 65 40	7.0	7.0	4.8	4.8	-/.6	∠ q.	2.00E03	8.69E04	529.2	∠ q.	2.00E03	8.69E04	0.00	0.20
5.5	0.0 1 q.	10 7	10 7	<i>C</i> =	C =	FO 7	o	1 00004	7 75505	1.001 0	2	1 00004	7 75805	0 00	0 00
25.1	o 100 40 0.0 1 q.	12./	12./	0.5	0.5	-50.7	∠ q.	-1.02E04	/./SEUS	1021.6	∠ q.	-1.02EU4	/./SEUS	0.00	0.20
23.1	v 65 40	7.0	7 0	1 0	1 0	0 5	2 ~	1.24E03	1 02505	E 1 1 7	2 ~	1 24502	1 02505	0 00	0.20
6.1	0.0 1 q.	7.0	7.0	4.8	4.8	-9.5	۷ q.	1.24EU3	1.03E03	344.7	۷ q.	1.24EU3	I.03E05	0.00	0.20
0.1	0.0 ± q.														

Parete a "Fondazione - Piano strada"

Parete fra le coordinate in pianta (1727;651) (1727;-89) da quota -60 a quota 385 Valori in daN, cm C32/40: rck 400 fyk 4500

Verifi	ca di st	ato	limite	ultim	.0										
nod	sez B	Н	Af+	Af-	c+	c-	C.S.	comb	N	M	Nu	Mu			
988	o 100	30	16.0	16.0		7.1	1.155	8 SLU		1413696		1633268			
	v 65	30	9.7	9.7	5.7	5.7	11.630	15 SLV	2095	55081	24370	640611			
1014	o 100	30	15.6	15.6	7.0	7.0	1.126	8 SLU		1425251		1604138			
	v 65	30	11.5	11.5	6.0	6.0	11.723	8 SLU	-3530	119381		1399514			
1041	o 100	30	13.4	13.4	6.6	6.6	1.095	8 SLU	-19864			1435857			
	v 65	30	7.0	7.0	4.8	4.8	7.218	8 SLU	-3266	130121	-23571	939195			
Verifi	ca di st	ato	limite	danno	Resi	stenz	za								
nod	sez B	Н	Af+	Af-	c+	c-	c.s.	comb	N	M	Nu	Mu			
988	o 100	30	16.0	16.0	7.1	7.1	2.227	13 SLD	-10831	729358	-24119	1624256			
	v 65	30	9.7	9.7	5.7	5.7	17.022	13 SLD	527	46697	8971	794849			
1014	0 100	30	15.6	15.6	7.0	7.0	2.164	15 SLD	-11092	737388	-24005	1595845			
	v 65	30	11.5	11.5	6.0	6.0	16.111	15 SLD	-96	63742	-1543	1026947			
1041	0 100	30	13.4	13.4	6.6	6.6	2.117	15 SLD	-10056	676336	-21286	1431618			
	v 65	30	7.0	7.0	4.8	4.8	11.107	15 SLD	-348	65546	-3868	728053			
Combin	azione r														
nod			Af+	Af-	c+	c-	sc	c N	N	4 sf	С	N	M	Wk (mm) W	lim
st Sm(ALT	AL-	CT	C-	SC	C IN	r	1 51	C	IN	11	WK (IIIIII) W	TIII
988			16 0	16 0	7 1	7 1-	-108 7 2 r	a -1.49E04	9 61E0	5 2601 1	2 ra -1 4	9E04 9	61E05	0 1499	9 00
	68.5 2 r		10.0	10.0	, • =		1001, 2 1	u 1.13201	3.01200			3201 3.	01200	0.1.00	J. 00
	v 65		9.7	9.7	5.7	5.7	-9.9 2 r	a -1.69E03	6.30E04	1 229.9	2 ra -1.6	9E03 6.	30E04	0.0099	9.00
5.2	0.0 1 r														
1014	0 100	30	15.6	15.6	7.0	7.0-	-110.3 2 r	a -1.51E04	9.69E05	5 2667.6	2 ra -1.5	1E04 9.	69E05	0.0899	9.00
0.0	95.3 2 r	a													
	v 65	30	11.5	11.5	6.0	6.0	-12.2 2 r	a -2.32E03	8.11E04	1 258.3	2 ra -2.3	2E03 8.	11E04	0.0099	9.00
6.6	0.0 1 r														
1041			13.4	13.4	6.6	6.6-	-104.9 2 r	a -1.36E04	8.91E05	5 2732.1	2 ra -1.3	6E04 8.	91E05	0.1599	9.00
0.0 1	54.4 2 r														
	v 65		7.0	7.0	4.8	4.8	-14.9 2 r	a -2.15E03	8.84E04	4 408.3	2 ra -2.1	5E03 8.	84E04	0.0099	9.00
7.5	0.0 1 r	a													
Combin	azione f	real	iente												
nod		Н		Af-	c+	c-	sc	c N	1	4 sf	Ċ	N	М	Wk (mm) W	klim
st Sm (-	_		-	_		-			(,	
988			16.0	16.0	7.1	7.1	-89.5 2 f	r -1.19E04	7.91E05	5 2152.5	2 fr -1.1	9E04 7.	91E05	0.11	0.30
	68.6 2 f														
	v 65		9.7	9.7	5.7	5.7	-7.8 2 f	r -2.15E03	5.01E04	1 158.2	2 fr -1.5	8E03 4.	76E04	0.00	0.30
3.8	0.0 1 f														
1014	o 100	30	15.6	15.6	7.0	7.0	-91.0 2 f	r -1.22E04	7.99E05	5 2210.5	2 fr -1.2	2E04 7.	99E05	0.06	0.30
0.0	95.3 2 f	r													

1259_C01.docx 72 di 113

v 65 30	11.5	11.5	6.0	6.0	-9.7 2	fr	-2.20E03	6.46E04	190.7 2	fr	-2.20E03	6.46E04	0.00	0.30
5.1 0.0 1 fr														
1041 0 100 30	13.4	13.4	6.6	6.6	-86.3 2	fr	-1.10E04	7.34E05	2255.2 2	fr	-1.10E04	7.34E05	0.12	0.30
0.0 154.4 2 fr														
v 65 30	7.0	7.0	4.8	4.8	-11.3 2	fr	-2.08E03	6.76E04	283.1 2	fr	-2.08E03	6.76E04	0.00	0.30
5.5 0.0 1 fr														
Combinazione quasi	perma	nente												
nod sez B H	Af+	Af-	c+	c-	sc	С	N	M	sf	С	N	M	Wk (mm)	Wklim
st Sm (mm) c														
988 o 100 30	16.0	16.0	7.1	7.1	-81.9 2	q.	-1.08E04	7.24E05	1973.1 2	q.	-1.08E04	7.24E05	0.10	0.20
0.0 168.6 2 q.						-				-				
v 65 30	9.7	9.7	5.7	5.7	-7.0 2	q.	-2.10E03	4.52E04	129.7 2	q.	-1.53E03	4.14E04	0.00	0.20
3.3 0.0 1 q.						-				-				
1014 o 100 30	15.6	15.6	7.0	7.0	-83.3 2	a.	-1.10E04	7.31E05	2027.6 2	a.	-1.10E04	7.31E05	0.06	0.20
0.0 95.4 2 q.						-				-				
v 65 30	11.5	11.5	6.0	6.0	-8.7 2	a.	-2.16E03	5.81E04	163.8 2	a.	-2.16E03	5.81E04	0.00	0.20
4.5 0.0 1 q.						1				1				
1041 o 100 30	13.4	13.4	6.6	6.6	-78.9 2	a.	-9.95E03	6.70E05	2064.4 2	a.	-9.95E03	6.70E05	0.11	0.20
0.0 154.5 2 q.						1				1				
v 65 30	7.0	7.0	4.8	4.8	-9.9.2	a.	-2.05E03	5.93E04	233.4.2	a.	-2.05E03	5.93E04	0.00	0.20
4.7 0.0 1 q.				0		1.				-1.			2.00	
o.o i q.														

5.7.3.2 **PARETE sp= 40 cm**

Parete a "Fondazione - Piano strada"

Parete fra le coordinate in pianta (1742;-69) (-118;-69) da quota -60 a quota 385 Valori in daN, cm C32/40: rck 400 fyk 4500

Verifi	ca di st	a+0	limite	. 111+im	0								
nod		Н	Af+	Af-	.c+	c-	c.s.	comb	N	М	Nu	Mu	
55	o 100	40	12.7	12.7		6.5			-25631	1673785	-33101	2161627	
55					6.5		1.291	8 SLU					
	v 80	40	7.0	7.0	4.8	4.8	7.327	8 SLU	-4146	199997	-30374	1465355	
67	o 100	40	29.9	29.9	8.2	8.2	1.338	8 SLU	-32585	2914476	-43596	3899234	
	v 80	40	20.9	20.9	7.0	7.0	6.335	8 SLU	-4293	448937	-27198	2844217	
72	o 100	40	16.2	16.2	7.1	7.1	1.386	8 SLU	-27876	1861180	-38644	2580074	
	v 80	40	7.0	7.0	4.8	4.8	7.316	8 SLU	-3040	182780	-22244	1337214	
887	o 100	40	12.7	12.7	6.5	6.5	1.129	8 SLU	-23386	1829007	-26414	2065853	
	v 65	40	7.0	7.0	4.8	4.8	13.021	9 SLV	527	65488	6867	852738	
888	o 100	40	12.7	12.7	6.5	6.5	1.141	8 SLU	-23472	1815378	-26779	2071178	
	v 65	40	7.0	7.0	4.8	4.8	10.995	9 SLV	363	81717	3991	898473	
			, • 0	,	1.0	1.0	10.330	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000	01,1,	0331	030170	
Verifi	ca di st	ato	limite	danno	Resi	stenz	za						
nod	sez B	Н	Af+	Af-	c+	c-	c.s.	comb	N	M	Nu	Mu	
55	o 100	40	12.7	12.7	6.5	6.5	1.687	7 SLD	-10280	1147485	-17339	1935431	
	v 80	40	7.0	7.0	4.8	4.8	9.914	11 SLD	-1829	128324	-18133		
67	0 100	40	29.9	29.9	8.2	8.2	1.709	11 SLD	-12999	2128908	-22215	3638070	
0 1	v 80	40	20.9	20.9	7.0	7.0	8.445	11 SLD	-3363	338687	-28403		
72		40			7.1	7.1		11 SLD			-21108		
12	0 100		16.2	16.2			1.856		-11375	1261369		2340776	
	v 80	40	7.0	7.0	4.8	4.8	11.213	11 SLD	-2045	120220		1348036	
887	o 100	40	12.7	12.7	6.5	6.5	2.252	5 SLD	-11570	914918	-26060	2060737	
	v 65	40	7.0	7.0	4.8	4.8	20.613	7 SLD	-21656	52420	-446391	1080518	
888	o 100	40	12.7	12.7	6.5	6.5	2.255	5 SLD	-11545	913633	-26038	2060515	
	v 65	40	7.0	7.0	4.8	4.8	21.479	7 SLD	-20783	35201	-446391	756086	
	azione r												
nod		Н	Af+	Af-	c+	c-	SC (c N		M sf	С	N	M Wk(mm) Wlim
st Sm(mm) c	:											
55	o 100	40	12.7	12.7	6.5	6.5	-75.9 2 ra	a -1.82E04	1.16E0	6 2321.4	2 ra -1.8	2E04 1.16	E06 0.28999.00
0.0 4	52.2 2 r	a											
	v 80	40	7.0	7.0	4.8	4.8	-12.0 2 ra	a -2.88E03	1.39E0	5 416.5	2 ra -2.8	8E03 1.39	E05 0.00999.00
5.4	0.0 1 r	a											
67	0 100		29.9	29.9	8.2	8.2-	-101.5 2 ra	a -2.30E04	2.01E0	6 2286.4	2 ra -2.3	0E04 2.01	E06 0.08999.00
	01.6 2 r		23.3	23.3	0.2	0.2	101.0 2 1		2.0120	0 2200.1	2 24 2.0	0201 2.01	200 0.00333.00
0.0 1	v 80		20 0	20 0	7 0	7 0	-18.8 2 ra	-2 03503	3 0050	5 /0/ 0	2 22 -2 0	3E03 3.09	E05 0.00999.00
12.3	0.0 1		20.9	20.9	7.0	7.0	-10.0 2 16	a -2.95E05	3.09E0	J 494.0	Z 1a -2.3	3E03 3.09	E03 0.00999.00
			1.0	1.0	7 1	7 1	70 0 0	1 07504	1 0000	6 0101 0	0 1 0	7804 1 00	TO 6 1 2000 00
72			16.2	16.2	/.1	/.1	-/8.9 2 ra	a -1.9/E04	1.29EU	6 2181.8	2 ra -1.9	7E04 1.29	E06 0.13999.00
0.0 2	04.6 2 r												
	v 80	40	7.0	7.0	4.8	4.8	-11.1 2 ra	a -2.06E03	1.28E0	5 420.7	2 ra -2.0	6E03 1.28	E05 0.00999.00
5.1	0.0 1 r	a											
887	o 100	40	12.7	12.7	6.5	6.5	-81.4 2 ra	a -1.60E04	1.24E0	6 2621.8	2 ra -1.6	0E04 1.24	E06 0.34999.00
0.0 4	80.1 2 r	a											
	v 65		7.0	7.0	4.8	4.8	-9.1 2 ra	a -1.36E04	8.49E0	4 -45.8	1 ra -1.3	0E04 4.06	E04 0.00999.00
0.0	0.0 1 r												
888	0.011		12.7	12.7	6.5	6 =	-80 8 2 ~	a =1 60E04	1 2450	6 2506 5	2 ra -1 4	0E04 1.24	E06 0.33999.00
			14.1	14.7	0.5	0.5	00.0 2 1	a ·1.00±04	1.2450	0 2330.3	∠ та -1.0	ODU4 1.24	E00 0.33999.00
0.0 4	74.4 2 r		7.0	7 0	4 0	4 0	0 0 2	- 1 04504	0 0750	4 50 0	1 1 0	404 0 70	E04 0 00000 00
0 0	v 65		7.0	7.0	4.8	4.8	-8.9 Z ra	a -1.24EU4	8.8/EU	4 -50.2	1 ra -1.2	4E04 2.78	E04 0.00999.00
0.2	0.0 1 r	d											

Combinazione frequente

1259_C01.docx 73 di 113

nod sez B H Af+	Af- c+	c- sc	C	N M	sf	С	N	M	Wk (mm)	Wklim
st Sm (mm) c										
55 0 100 40 12.7	12.7 6.5	6.5 -68.5	2 fr -1.5	1E04 1.05E06	2134.4 2	2 fr	-1.54E04	1.05E06	0.26	0.30
0.0 453.1 2 fr										
v 80 40 7.0	7.0 4.8	4.8 -10.8	2 fr -2.4	BE03 1.25E05	379.5 2	2 fr	-2.48E03	1.25E05	0.00	0.30
4.8 0.0 1 fr										
67 0 100 40 29.9	29.9 8.2	8.2 -92.5	2 fr -1.9	1E04 1.84E06	2113.2 2	2 fr	-1.94E04	1.84E06	0.07	0.30
0.0 101.8 2 fr										
	20.9 7.0	7.0 -17.3	2 fr -2.7	5E03 2.84E05	452.6 2	2 fr	-2.76E03	2.84E05	0.00	0.30
11.3 0.0 1 fr										
	16.2 7.1	7.1 -70.6	2 fr -1.6	5E04 1.15E06	1989.6 2	2 fr	-1.65E04	1.15E06	0.11	0.30
0.0 205.0 2 fr										
	7.0 4.8	4.8 -9.7	2 fr -2.13	2E03 1.12E05	345.9 2	2 fr	-2.12E03	1.12E05	0.00	0.30
4.4 0.0 1 fr										
	12.7 6.5	6.5 -65.8	2 fr -1.2	BE04 1.01E06	2122.2 2	2 fr	-1.28E04	1.01E06	0.27	0.30
0.0 480.2 2 fr										
v 65 40 7.0	7.0 4.8	4.8 -7.9	2 fr -1.3	3E04 6.28E04	-45.8 1	l fr	-1.30E04	4.06E04	0.00	0.30
0.0 0.0 1 fr										
888 0 100 40 12.7	12.7 6.5	6.5 -65.0	2 fr -1.2	3E04 9.94E05	2093.4 2	2 fr	-1.28E04	9.94E05	0.27	0.30
0.0 474.4 2 fr										
v 65 40 7.0	7.0 4.8	4.8 -7.7	2 fr -1.2	DE04 6.71E04	-50.2 1	l fr	-1.24E04	2.78E04	0.00	0.30
0.0 0.0 1 fr										
Combinazione quasi perman				N M	a f		N	M	TaTle (mm)	Wile 1 days
nod sez B H Af+	ente Af- c+	c- sc	С	N M	sf	С	N	М	Wk (mm)	Wklim
nod sez B H Af+ st Sm(mm) c	Af- c+									
nod sez B H Af+ st Sm(mm) c 55 o 100 40 12.7	Af- c+									Wklim
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5	6.5 -65.6	2 q1.4	3E04 1.00E06	2059.6 2	2 q.	-1.43E04	1.00E06	0.25	0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. *** v 80 40 7.0	Af- c+ 12.7 6.5	6.5 -65.6	2 q1.4		2059.6 2	2 q.	-1.43E04	1.00E06	0.25	
nod sez B H Af+ st Sm(mm) c 55 o 100 40 12.7 0.0 453.5 2 q. *** v 80 40 7.0 4.6 0.0 1 q.	Af- c+ 12.7 6.5 7.0 4.8	6.5 -65.6 4.8 -10.3	2 q1.43 2 q2.33	BE04 1.00E06 2E03 1.19E05	2059.6 2	2 q. 2 q.	-1.43E04 -2.32E03	1.00E06 1.19E05	0.25	0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. *** v 80 40 7.0 4.6 0.0 1 q. 67 o 100 40 29.9	Af- c+ 12.7 6.5 7.0 4.8	6.5 -65.6 4.8 -10.3	2 q1.43 2 q2.33	BE04 1.00E06 2E03 1.19E05	2059.6 2	2 q. 2 q.	-1.43E04 -2.32E03	1.00E06 1.19E05	0.25	0.20
nod sez B H Af+ st Sm(mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2	6.5 -65.6 4.8 -10.3 8.2 -88.9	2 q1.4 2 q2.3 2 q1.8	BE04 1.00E06 RE03 1.19E05 DE04 1.77E06	2059.6 2 364.6 2 2043.9 2	2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04	1.00E06 1.19E05 1.77E06	0.25	0.20 0.20 0.20
nod sez B H Af+ st Sm(mm) c 55 o 100 40 12.7 0.0 453.5 2 q. *** v 80 40 7.0 4.6 0.0 1 q. 67 o 100 40 29.9 0.0 102.0 2 q. v 80 40 20.9	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2	6.5 -65.6 4.8 -10.3 8.2 -88.9	2 q1.4 2 q2.3 2 q1.8	BE04 1.00E06 RE03 1.19E05 DE04 1.77E06	2059.6 2 364.6 2 2043.9 2	2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04	1.00E06 1.19E05 1.77E06	0.25	0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6	2 q1.4 2 q2.3 2 q1.8 2 q2.6	3E04 1.00E06 2E03 1.19E05 0E04 1.77E06 0E03 2.74E05	2059.6 2 364.6 2 2043.9 2 435.8 2	2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03	1.00E06 1.19E05 1.77E06 2.74E05	0.25 0.00 0.07 0.00	0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6	2 q1.4 2 q2.3 2 q1.8 2 q2.6	3E04 1.00E06 2E03 1.19E05 0E04 1.77E06 0E03 2.74E05	2059.6 2 364.6 2 2043.9 2 435.8 2	2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03	1.00E06 1.19E05 1.77E06 2.74E05	0.25 0.00 0.07 0.00	0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. *** v 80 40 7.0 4.6 0.0 1 q. 67 o 100 40 29.9 0.0 102.0 2 q. v 80 40 20.9 10.9 0.0 1 q. 72 o 100 40 16.2 0.0 205.3 2 q.	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3	2 q1.43 2 q2.33 2 q1.86 2 q2.66 2 q1.55	3E04 1.00E06 2E03 1.19E05 0E04 1.77E06 9E03 2.74E05 2E04 1.10E06	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2	2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06	0.25 0.00 0.07 0.00 0.10	0.20 0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. *** v 80 40 7.0 4.6 0.0 1 q. 67 o 100 40 29.9 0.0 102.0 2 q. v 80 40 20.9 10.9 0.0 1 q. 72 o 100 40 16.2 0.0 205.3 2 q. v 80 40 7.0	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3	2 q1.43 2 q2.33 2 q1.86 2 q2.66 2 q1.55	3E04 1.00E06 2E03 1.19E05 0E04 1.77E06 0E03 2.74E05	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2	2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06	0.25 0.00 0.07 0.00 0.10	0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1 7.0 4.8	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3 4.8 -9.1	2 q1.44 2 q2.33 2 q1.86 2 q2.66 2 q1.55 2 q2.11	3E04 1.00E06 2E03 1.19E05 0E04 1.77E06 0E03 2.74E05 2E04 1.10E06 5E03 1.05E05	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2 316.0 2	2 q. 2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04 -2.15E03	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06 1.05E05	0.25 0.00 0.07 0.00 0.10	0.20 0.20 0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1 7.0 4.8	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3 4.8 -9.1	2 q1.44 2 q2.33 2 q1.86 2 q2.66 2 q1.55 2 q2.11	3E04 1.00E06 2E03 1.19E05 0E04 1.77E06 9E03 2.74E05 2E04 1.10E06	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2 316.0 2	2 q. 2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04 -2.15E03	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06 1.05E05	0.25 0.00 0.07 0.00 0.10	0.20 0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1 7.0 4.8 12.7 6.5	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3 4.8 -9.1 6.5 -59.5	2 q1.43 2 q2.33 2 q1.86 2 q2.66 2 q1.55 2 q2.13 2 q1.16	3E04 1.00E06 2E03 1.19E05 2E04 1.77E06 3E03 2.74E05 2E04 1.10E06 3E03 1.05E05 3E04 9.10E05	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2 316.0 2 1922.5 2	2 q. 2 q. 2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04 -2.15E03 -1.16E04	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06 1.05E05 9.10E05	0.25 0.00 0.07 0.00 0.10 0.00	0.20 0.20 0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1 7.0 4.8 12.7 6.5	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3 4.8 -9.1 6.5 -59.5	2 q1.43 2 q2.33 2 q1.86 2 q2.66 2 q1.55 2 q2.13 2 q1.16	3E04 1.00E06 2E03 1.19E05 0E04 1.77E06 0E03 2.74E05 2E04 1.10E06 5E03 1.05E05	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2 316.0 2 1922.5 2	2 q. 2 q. 2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04 -2.15E03 -1.16E04	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06 1.05E05 9.10E05	0.25 0.00 0.07 0.00 0.10 0.00	0.20 0.20 0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1 7.0 4.8 12.7 6.5 7.0 4.8	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3 4.8 -9.1 6.5 -59.5 4.8 -7.4	2 q1.44 2 q2.33 2 q1.86 2 q2.66 2 q1.55 2 q2.15 2 q1.16 2 q1.35	3E04 1.00E06 2E03 1.19E05 3E04 1.77E06 3E03 2.74E05 2E04 1.10E06 3E03 1.05E05 3E04 9.10E05 2E04 5.39E04	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2 316.0 2 1922.5 2 -45.8 1	2 q. 2 q. 2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04 -2.15E03 -1.16E04 -1.30E04	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06 1.05E05 9.10E05 4.06E04	0.25 0.00 0.07 0.00 0.10 0.00	0.20 0.20 0.20 0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1 7.0 4.8 12.7 6.5 7.0 4.8	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3 4.8 -9.1 6.5 -59.5 4.8 -7.4	2 q1.44 2 q2.33 2 q1.86 2 q2.66 2 q1.55 2 q2.15 2 q1.16 2 q1.35	3E04 1.00E06 2E03 1.19E05 2E04 1.77E06 3E03 2.74E05 2E04 1.10E06 3E03 1.05E05 3E04 9.10E05	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2 316.0 2 1922.5 2 -45.8 1	2 q. 2 q. 2 q. 2 q. 2 q. 2 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04 -2.15E03 -1.16E04 -1.30E04	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06 1.05E05 9.10E05 4.06E04	0.25 0.00 0.07 0.00 0.10 0.00 0.00	0.20 0.20 0.20 0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1 7.0 4.8 12.7 6.5 7.0 4.8	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3 4.8 -9.1 6.5 -59.5 4.8 -7.4 6.5 -58.7	2 q1.44 2 q2.33 2 q1.86 2 q2.66 2 q1.55 2 q2.15 2 q1.16 2 q1.16 2 q1.16	3E04 1.00E06 2E03 1.19E05 3E04 1.77E06 3E03 2.74E05 2E04 1.10E06 3E03 1.05E05 3E04 9.10E05 2E04 5.39E04	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2 316.0 2 1922.5 2 -45.8 1 1892.5 2	2 q. 2 q. 2 q. 2 q. 2 q. 2 q. 1 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04 -2.15E03 -1.16E04 -1.30E04	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06 1.05E05 9.10E05 4.06E04 8.98E05	0.25 0.00 0.07 0.00 0.10 0.00 0.00 0.00	0.20 0.20 0.20 0.20 0.20 0.20 0.20
nod sez B H Af+ st Sm (mm) c 55 o 100 40 12.7 0.0 453.5 2 q. ***	Af- c+ 12.7 6.5 7.0 4.8 29.9 8.2 20.9 7.0 16.2 7.1 7.0 4.8 12.7 6.5 7.0 4.8	6.5 -65.6 4.8 -10.3 8.2 -88.9 7.0 -16.6 7.1 -67.3 4.8 -9.1 6.5 -59.5 4.8 -7.4 6.5 -58.7	2 q1.44 2 q2.33 2 q1.86 2 q2.66 2 q1.55 2 q2.15 2 q1.16 2 q1.16 2 q1.16	3E04 1.00E06 2E03 1.19E05 0E04 1.77E06 0E03 2.74E05 0E04 1.10E06 5E03 1.05E05 5E04 9.10E05 0E04 5.39E04 5E04 8.98E05	2059.6 2 364.6 2 2043.9 2 435.8 2 1912.8 2 316.0 2 1922.5 2 -45.8 1 1892.5 2	2 q. 2 q. 2 q. 2 q. 2 q. 2 q. 1 q.	-1.43E04 -2.32E03 -1.80E04 -2.69E03 -1.52E04 -2.15E03 -1.16E04 -1.30E04	1.00E06 1.19E05 1.77E06 2.74E05 1.10E06 1.05E05 9.10E05 4.06E04 8.98E05	0.25 0.00 0.07 0.00 0.10 0.00 0.00 0.00	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

1259_C01.docx 74 di 113

5.7.4 VERIFICA SOLETTE

5.7.4.1 PLATEA DI FONDAZIONE sp=60 cm

Verifiche condotte secondo D.M. 17-01-18 (N.T.C.)

Figura 11-Geometria platea di fondazione

Sistema di riferimento e direzioni di armatura

Le coordinate citate nel seguito sono espresse in un sistema di riferimento cartesiano con origine in (-1634; -1289; 0), direzione dell'asse X = (10; 0; 0), direzione dell'asse Y = (0; 10; 0).

Le direzioni X/Y di armatura e le sezioni X/Y di verifica sono individuate dagli assi del sistema di riferimento.

Verifiche nei nodi

Verifiche SLU flessione nei nodi

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
64	X	1000	600	1571	70	1571	70	SLU 8	295374.6	0	319577.5	0	1.0819	Si
65	X	1000	600	1571	70	1571	70	SLU 8	294867	0	319577.5	0	1.0838	Si
69	X	1000	600	1571	70	1571	70	SLU 8	293362	0	319577.5	0	1.0894	Si
63	X	1000	600	1571	70	1571	70	SLU 8	292858.8	0	319577.5	0	1.0912	Si
68	X	1000	600	1571	70	1571	70	SLU 8	292782.2	0	319577.5	0	1.0915	Si

Verifiche SLD Resistenza flessione nei nodi

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
65	X	1000	600	1571	70	1571	70	SLD 11	198566.5	0	299922.4	0	1.5104	Si
64	X	1000	600	1571	70	1571	70	SLD 7	198208.6	0	299922.4	0	1.5132	Si
68	X	1000	600	1571	70	1571	70	SLD 7	197985.7	0	299922.4	0	1.5149	Si
66	X	1000	600	1571	70	1571	70	SLD 11	197615.3	0	299922.4	0	1.5177	Si
67	X	1000	600	1571	70	1571	70	SLD 7	197097.8	0	299922.4	0	1.5217	Si

Verifiche SLE tensione calcestruzzo nei nodi

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	σc	σlim	Es/Ec	Verifica
64	X	1000	600	1571	70	1571	70	SLE QP 2	176366.6	0	-0.00258	0.01681	15	Si
65	X	1000	600	1571	70	1571	70	SLE QP 2	176211.3	0	-0.00258	0.01681	15	Si
68	X	1000	600	1571	70	1571	70	SLE QP 2	175224.4	0	-0.00257	0.01681	15	Si
69	X	1000	600	1571	70	1571	70	SLE QP 2	175181.5	0	-0.00256	0.01681	15	Si
66	X	1000	600	1571	70	1571	70	SLE QP 2	174861.3	0	-0.00256	0.01681	15	Si

Verifiche SLE tensione acciaio nei nodi

<u> </u>				<u> </u>	<u> </u>									
Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	σf	σlim	Es/Ec	Verifica
64	Х	1000	600	1571	70	1571	70	SLE RA 2	205172.2	0	0.03454	0.36	15	Si
65	Х	1000	600	1571	70	1571	70	SLE RA 2	204705	0	0.03446	0.36	15	Si
69	Х	1000	600	1571	70	1571	70	SLE RA 2	203672	0	0.03429	0.36	15	Si
63	Х	1000	600	1571	70	1571	70	SLE RA 2	203579	0	0.03427	0.36	15	Si
68	Х	1000	600	1571	70	1571	70	SLE RA 2	203236.6	0	0.03422	0.36	15	Si

5.7.4.2 **SOLETTA sp=20cm**

Nodo: indice del nodo di verifica **Dir.**: direzione della sezione di verifica

B: base della sezione rettangolare di verifica [mm]
H: altezza della sezione rettangolare di verifica [mm]

A. sup.: area barre armatura superiori [mm²]

C. sup.: distanza media delle barre superiori dal bordo superiore della sezione [mm]

A. inf.: area barre armatura inferiori [mm²]

C. inf.: distanza media delle barre inferiori dal bordo inferiore della sezione [mm]

Comb.: combinazione di verifica **M**: momento flettente [kN*mm] **N**: sforzo normale [kN]

Mu: momento flettente ultimo [kN*mm] **Nu**: sforzo normale ultimo [kN]

1259_C01.docx 75 di 113

Relazione di calcolo

c.s.: coefficiente di sicurezza Verifica: stato di verifica

σc: tensione nel calcestruzzo [kN/mm²] σlim: tensione limite [kN/mm²]

Es/Ec: coefficiente di omogenizzazione σf: tensione nell'acciaio d'armatura [kN/mm²]

ESM: deformazione unitaria media delle barre di armatura

Δmax: distanza massima tra le fessure [mm] Wd: valore di calcolo di apertura delle fessure [mm]

Le unità di misura delle verifiche elencate nel capitolo sono in [mm, kN] ove non espressamente specificato. Verifiche condotte secondo D.M. 17-01-18 (N.T.C.)

Figura 12-Piastra a piano terreno

Sistema di riferimento e direzioni di armatura

Le coordinate citate nel seguito sono espresse in un sistema di riferimento cartesiano con origine in (-1034; -689; 1200), direzione dell'asse X = (10, 0, 0), direzione dell'asse Y = (0, 10, 0).

Le direzioni X/Y di armatura e le sezioni X/Y di verifica sono individuate dagli assi del sistema di riferimento. Verifiche nei nodi

Verifiche SLU flessione nei nodi

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
682	X	1000	200	1005	64	1005	64	SLU 8	-56677.1	0	-59489.4	0	1.0496	Si
683	Х	1000	200	1005	64	1005	64	SLU 8	-56313.9	0	-59489.4	0	1.0564	Si
681	Х	1000	200	1005	64	1005	64	SLU 8	-50849.8	0	-59489.4	0	1.1699	Si
684	Х	1000	200	1005	64	1005	64	SLU 8	-49509.1	0	-59489.4	0	1.2016	Si
457	X	1000	200	1005	64	1005	64	SLU 8	-48888.7	0	-59489.4	0	1.2168	Si

Verifiche SLD Resistenza flessione nei nodi

Nodo	Dir.	В	H	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
682	X	1000	200	1005	64	1005	64	SLD 7	-40338.2	0	-59489.4	0	1.4748	Si
683	X	1000	200	1005	64	1005	64	SLD 7	-39678.7	0	-59489.4	0	1.4993	Si
681	X	1000	200	1005	64	1005	64	SLD 7	-36671.3	0	-59489.4	0	1.6222	Si
684	X	1000	200	1005	64	1005	64	SLD 7	-34951.6	0	-59489.4	0	1.7021	Si
457	X	1000	200	1005	64	1005	64	SLD 5	-34729	0	-59489.4	0	1.713	Si

Verifiche SLE tensione calcestruzzo nei nodi

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	σς	σlim	Es/Ec	Verifica
682	X	1000	200	1005	64	1005	64	SLE QP 2	-38453	0	-0.01316	0.01494	15	Si
683	X	1000	200	1005	64	1005	64	SLE QP 2	-38207.2	0	-0.01308	0.01494	15	Si
681	X	1000	200	1005	64	1005	64	SLE QP 2	-34486.7	0	-0.0118	0.01494	15	Si
684	X	1000	200	1005	64	1005	64	SLE QP 2	-33698.8	0	-0.01153	0.01494	15	Si
457	X	1000	200	1005	64	1005	64	SLE QP 2	-33257.2	0	-0.01138	0.01494	15	Si

Verifiche SLE tensione acciaio nei nodi

V CI IIICI II	OLL	CONSIGN	c accia	10 1101 11	oui									
Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	σf	σlim	Es/Ec	Verifica
682	Х	1000	200	1005	64	1005	64	SLE RA 2	-39590.1	0	0.31672	0.36	15	Si
683	Х	1000	200	1005	64	1005	64	SLE RA 2	-39358	0	0.31486	0.36	15	Si
681	Х	1000	200	1005	64	1005	64	SLE RA 2	-35495.3	0	0.28396	0.36	15	Si
684	Х	1000	200	1005	64	1005	64	SLE RA 2	-34604.6	0	0.27684	0.36	15	Si
457	Х	1000	200	1005	64	1005	64	SLE RA 2	-34408	0	0.27526	0.36	15	Si

5.7.4.3 SOLETTA DI COPERTURA sp=30 cm

Le coordinate citate nel seguito sono espresse in un sistema di riferimento cartesiano con origine in (-1.034; -0.689; 3.85), direzione dell'asse X = (0.01; 0; 0), direzione dell'asse Y = (0; 0.01; 0).

Le direzioni X/Y di armatura e le sezioni X/Y di verifica sono individuate dagli assi del sistema di riferimento.

Verifiche nei nodi

Verifiche SLU flessione nei nodi

Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
1068	Y	1	0.3	0.001725	0.05	0.001725	0.05	SLU 8	-	0	-	0	1.0864	Si
									143.2835		155.6621			

1259 C01.docx 76 di 113

Relazione di calcolo

360000

Si

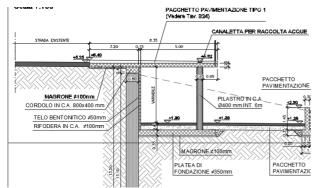
Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
1078	Y	1	0.3	0.001716	0.05	0.00167	0.05	SLU 8	-	0	-	0	1.0935	Si
010		-	0.0	0.000404	0.000	0.000640	0.000	07.77.0	141.7256		154.9701		1 1067	
919	Х	1	0.3	0.002494	0.069	0.002648	0.069	SLU 8	180.5687	0	199.8341	0	1.1067	Si
918	Х	1	0.3	0.002648	0.069	0.002494	0.069	SLU 8	185.3994	0	209.8922	0	1.1321	Si
917	Х	1	0.3	0.002648	0.069	0.002494	0.069	SLU 8	182.3154	0	210.1267	0	1.1525	Si
/erifich	e SLD	Resist	enza fl	essione	nei noc	łi		<u>l</u>	102.0101		210.1207	J		
Nodo	Dir.	В	H	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	Mu	Nu	c.s.	Verifica
1078	Y	1	0.3	0.001716	0.05	0.00167	0.05	SLD 15	-72.8999	0	-	0	2.1258	Si
919	Х	1	0.3	0.002494	0.069	0.002648	0.069	SLD 9	-90.9597	0	154.9701	0	2.197	Si
											199.8341			
1068	Y	1	0.3	0.001725	0.05	0.001725	0.05	SLD 11	-69.6288	0	155.6621	0	2.2356	Si
918	Х	1	0.3	0.002648	0.069	0.002494	0.069	SLD 5	-93.4975	0	209.8922	0	2.2449	Si
917	Х	1	0.3	0.002648	0.069	0.002494	0.069	SLD 5	-91.8354	0	=	0	2.2881	Si
/arifiah	- CI F	topoio	00 0010	estruzzo	noi no	<u>ا</u>					210.1267			
							0 !(0	M	NI NI			F-/F-	V:::
Nodo 918	Dir. X	B	H	A. sup. 0.002648	C. sup.	A. inf. 0.002494	C. inf.	Comb.	IVI –	N	σc -11373	σlim 19920	Es/Ec 15	Verifica Si
310	21	_	0.5	0.002040	0.003	0.002131	0.003	DDD IVI Z	126.1295	Ü	11373	13320	15	01
919	Х	1	0.3	0.002494	0.069	0.002648	0.069	SLE RA 2	122.8569	0	-11281	19920	15	Si
917	Х	1	0.3	0.002648	0.069	0.002494	0.069	SLE RA 2	-	0	-11182	19920	15	Si
918	Х	1	0.3	0.002648	0.069	0.002494	0.069	SLE QP 2	124.0167 -92.1821	0	-8312	14940	15	Si
919	X	1	0.3	0.002494	0.069	0.002648	0.060	SLE OP 2	-89.3512	0	-8204	14940	15	Si
						0.002646	0.069	SLE OF Z	-69.3312	0	-8204	14940	13	21
erifich/	e SLE	tensio	ne acci	aio nei r	nodi									
Nodo	Dir.	В	Н	A. sup.	C. sup.	A. inf.	C. inf.	Comb.	M	N	σf	σlim	Es/Ec	Verifica
1068	Y	1	0.3	0.001725	0.05	0.001725	0.05	SLE RA 2	-97.6278	0	263716	360000	15	Si
1078	Y	1	0.3	0.001716	0.05	0.00167	0.05	SLE RA 2	-96.3085	0	261433	360000	15	Si
919	Х	1	0.3	0.002494	0.069	0.002648	0.069	SLE RA 2	-	0	257949	360000	15	Si
919														
919	Х	1	0.3	0.002648	0.069	0.002494		SLE RA 2	122.8569	0	249812	360000	15	Si

1259_C01.docx 77 di 113

0.002648

0.002494

0.069


6 FUTURA AREA COMMERCIALE

La futura area commerciale è costituita da una platea di fondazione di spessore 35 cm, la struttura portante è costituita da pilastri circolari dal diametro di 40 cm e interasse di 6 m. A quota +4.5 m è realizzata soletta piena di spessore 25 cm.

La destinazione d'uso iniziale di tale struttura è quella di posteggio per veicoli. In un secondo momento è prevista la realizzazione di un'area commerciale per lo shopping.

La copertura è una passeggiata lungo-porto che prevede in corrispondenza dell'edificio denominato "Circolo nautico" (indicato in planimetria con il n°9), il cui tetto è un affaccio sul porto, una passerella che permette l'accesso alla copertura appunto del Circolo.

Nelle immagini seguenti vengono riportate le piante e sezioni della futura area commerciale:

CANALETTA PER RACCOLTA ACQUE

PACOMETTO PA/MeBITAZIONE TPO 1

Vivider Tax, 524

S120

Figura 13-Sezione tipo futura area commerciale

Figura 14-Sezione passerella di collegamento con circolo nautico

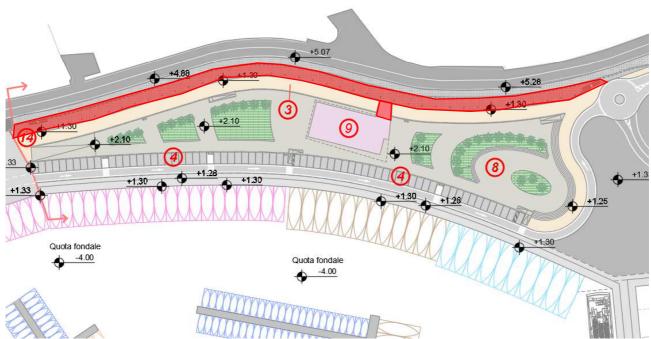


Figura 15 - Planimetria in cui è evidenziato in rosso la futura area commerciale

1259_C01.docx 78 di 113

6.1 CONDIZIONI ELEMENTARI DI CARICO

Le condizioni elementari di carico sono cumulate secondo combinazioni di carico tali da risultare le più sfavorevoli ai fini delle singole verifiche, determinando quindi le azioni di calcolo da utilizzare per le verifiche allo Stato Limite Ultimo (SLU) e allo Stato Limite di Esercizio (SLE).

Le condizioni elementari di carico sono:

- peso proprio delle strutture $\gamma_{cls} = 25 \frac{kN}{m^2}$
- carichi permanenti non strutturali (vedere specifico paragrafo analisi dei carichi);
- carichi variabili (Cat. C3, D1, e F);
- neve;
- vento;
- temperatura;
- sisma.

6.1.1 PESO PROPRIO DELLA STRUTTURA

Il peso proprio viene determinato in funzione delle dimensioni degli elementi strutturali e del peso specifico del materiale:

$$\gamma_{cls. armato} = 25 \text{ kN/m}^3$$

6.1.2 CARICHI PERMANENTI

I valori dei carichi permanenti di solaio e copertura sono riportati nello specifico al paragrafo delle analisi dei carichi.

6.1.3 CARICHI VARIABILI

I carichi variabili minimi sono prescritti dalla Normativa vigente in tabella 3.1.II D.M. 17.01.2018 e correlati alla destinazione d'uso dei locali.

Tab. 3.1.II - Valori dei sovraccarichi per le diverse categorie d'uso delle costruzioni

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]			
	Ambienti ad uso residenziale						
A	Aree per attività domestiche e residenziali; sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi (ad esclusione delle aree soggette ad affollamento), camere di degenza di ospedali	2,00	2,00	1,00			
	Scale comuni, balconi, ballatoi	4,00	4,00	2,00			
	Uffici						
В	Cat. B1 Uffici non aperti al pubblico	2,00	2,00	1,00			
D	Cat. B2 Uffici aperti al pubblico	3,00	2,00	1,00			
	Scale comuni, balconi e ballatoi	4,00	4,00	2,00			
	Ambienti suscettibili di affollamento						
	Cat. C1 Aree con tavoli, quali scuole, caffè, ristoran- ti, sale per banchetti, lettura e ricevimento	3,00	3,00	1,00			
	Cat. C2 Aree con posti a sedere fissi, quali chiese, teatri, cinema, sale per conferenze e attesa, aule universitarie e aule magne	4,00	4,00	2,00			
С	Cat. C3 Ambienti privi di ostacoli al movimento delle persone, quali musei, sale per esposizioni, aree d'accesso a uffici, ad alberghi e ospedali, ad atri di stazioni ferroviarie	5,00	5,00	3,00			
	Cat. C4. Aree con possibile svolgimento di attività fisiche, quali sale da ballo, palestre, palcoscenici.	5,00	5,00	3,00			
	Cat. C5. Aree suscettibili di grandi affollamenti, quali edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune, gradinate e piattaforme ferroviarie.	5,00	5,00	3,00			
		l	tegoria d'uso se				
	Scale comuni, balconi e ballatoi		seguenti limitazioni				
		≥ 4,00	≥ 4,00	≥ 2,00			

1259_C01.docx 79 di 113

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]									
	Ambienti ad uso commerciale												
	Cat. D1 Negozi	4,00	4,00	2,00									
D	Cat. D2 Centri @mmerciali, mercati, grandi magaz- zini	5,00	5,00	2,00									
	Scale comuni, balconi e ballatoi	Seconde	o categoria d'use	o servita									
	Aree per immagazzinamento e uso commerciale ed uso industriale												
E	Cat. E1 Aree per accumulo di merci e relative aree d'accesso, quali biblioteche, archivi, magazzini, depositi, laboratori manifatturieri	≥ 6,00	7,00	1,00*									
	Cat. E2 Ambienti ad uso industriale	da v	alutarsi caso per	caso									
	Rimesse e aree per traffico di veicoli (esclusi i												
F-G	Cat. F Rimesse, aree per traffico, parcheggio e sosta di veicoli leggeri (peso a pieno carico fino a 30 kN)	2,50	2 × 10,00	1,00**									
r-G	Cat. G Aree per traffico e parcheggio di veicoli me- di (peso a pieno carico compreso fra 30 kN e 160	da valutarsi caso per caso e comunque non minori di											
	kN), quali rampe d'accesso, zone di carico e scarico merci.	5,00	$2 \times 50,00$	1,00**									
	Coperture												
	Cat. H Coperture accessibili per sola manutenzione e riparazione	0,50	1,20	1,00									
H-I-K	Cat. I Coperture praticabili di ambienti di categoria d'uso compresa fra A e D	secondo categorie di appartenenza											
	Cat. K Coperture per usi speciali, quali impianti, eliporti.	da valutarsi caso per caso											
	Cat. K Coperture per usi speciali, quali impianti,	 li immagazzinat	i.										

^{**} per i soli parapetti o partizioni nelle zone pedonali. Le azioni sulle barriere esercitate dagli automezzi dovranno essere valutate caso per caso.

In caso di analisi sismica, parte dei carichi variabili è considerata massa sismica tramite un coefficiente convenzionale ψ_{2j} come definito nelle Norme Tecniche.

6.2 ANALISI DEI CARICHI

Soletta

Peso proprio soletta (sp=25 cm)p1 =	6.25	kN/m²
Sovraccarico permanentep2 =	2.50	kN/m²
Sovraccarico accidentale (Cat. C3)q1 =	5.00	kN/m²

Fondazione fase I

Peso proprio soletta (sp=35 cm)p ₁ =	8.75	kN/m²
Sovraccarico permanentep2 =	8.50	kN/m²
Sovraccarico accidentale (Cat. F)q1 =	2.50	kN/m²

Fondazione fase II

Peso proprio (sp=35 cm)p ₁ =	8.75	kN/m²
Sovraccarico permanentep2 =	3.00	kN/m²
Sovraccarico accidentale (Cat. D1)q ₁ =	4.00	kN/m²

1259_C01.docx 80 di 113

6.2.1 **NEVE**

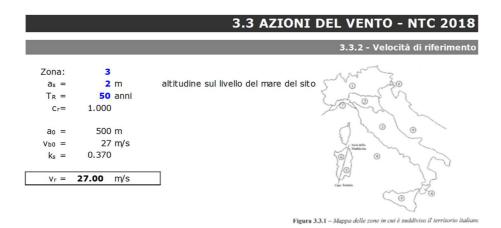
3.4.1 - Carico neve

Il carico provocato dalla neve sulle coperture sarà valutato mediante l'espressione (3.3.7):

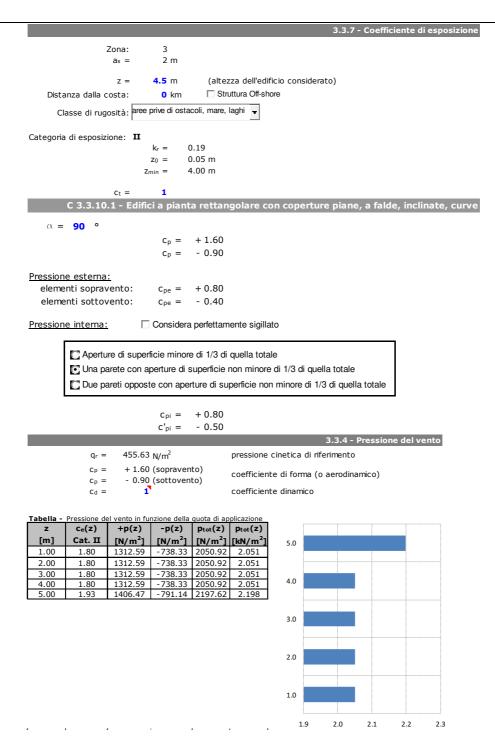
$$q_{s} = \mu_{i} \cdot q_{sk} \cdot C_{E} \cdot C_{t} = 0.8 \cdot 0.6 \cdot 1 \cdot 1 = 0.48 \text{ kN/m}^{2}$$
 (3.3.7)
$$\mu_{i} = 0.80 \text{ (valore massimo)}$$

$$q_{sk} = 0.60 \text{ kN/m}^{2}$$

 $\begin{array}{ll} q_{s\,k} = & 0.60 \; kN/m^2 \\ C_E = & 1 & (par. \; 3.4.4) \\ C_t = & \textbf{1} & (par. \; 3.4.5) \end{array}$


3.4.4 - Coefficiente di esposizione

Nomale


Tabella 3.4.I – Valori di C_E per diverse classi di topografia

Topografia	Descrizione	CE
Battuta dai venti	Aree pianeggianti non ostruite esposte su tutti i lati, senza costruzioni o alberi più alti.	0,9
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1,0
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti	1,1

6.2.2 **VENTO**

1259_C01.docx 81 di 113

6.2.3 TEMPERATURA

In conformità a quanto prescritto dalla Normativa Italiana si adottano i seguenti valori di variazione termica:

Tab. 3.5.II – Valori di ΔT_u per gli edifici

Tipo di struttura	ΔT _u
Strutture in c.a. e c.a.p. esposte	± 15 °C
Strutture in c.a. e c.a.p. protette	± 10 °C
Strutture in acciaio esposte	± 25 °C
Strutture in acciaio protette	± 15 °C

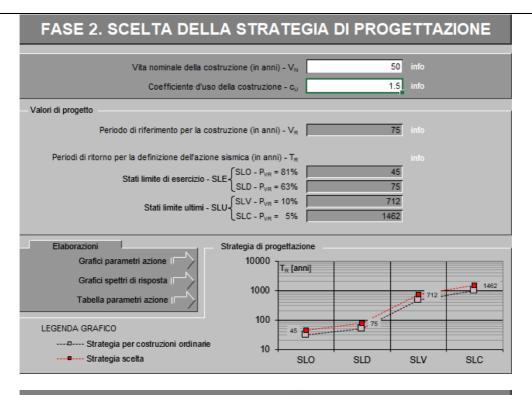
1259_C01.docx 82 di 113

6.2.4 SPINTA SOMMITALE DEL PALO

In corrispondenza palo-soletta è stata applicata una azione orizzontale dovuta al sovraccarico permanente e a quello accidentale, pari a:

 $q_{SP}=11~kN/m; \\ q_{SA}=20.2~kN/m.$

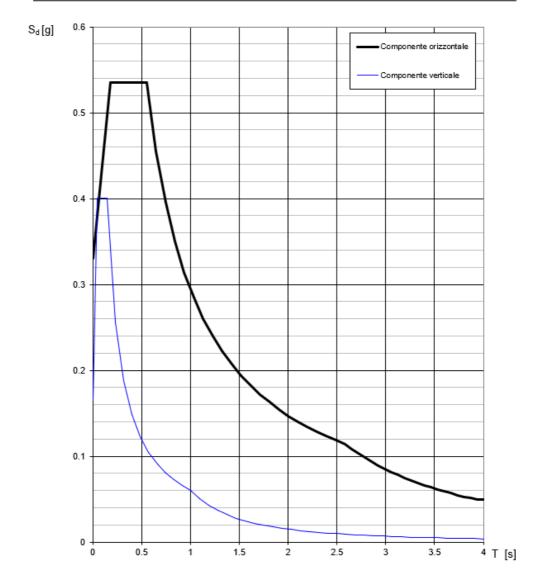
Con lo scopo di poter considerare il palo vincolato in sommità.


6.2.5 SISMA

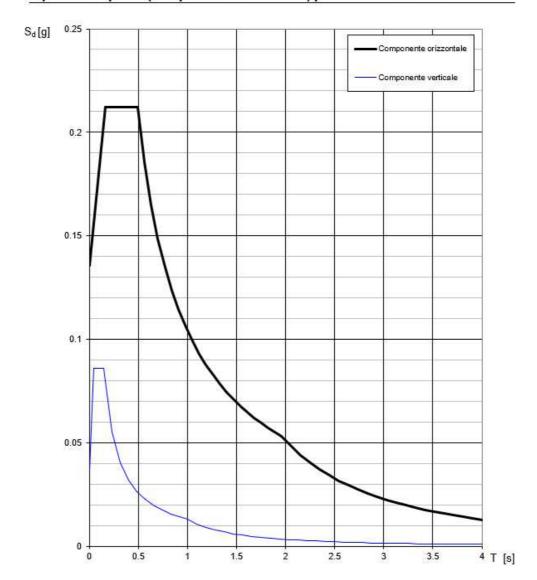
L'azioni sismiche di progetto sono valutate rispetto ai vari stati limite a partire dalla pericolosità del sito di costruzione.

6.2.5.1 **DEFINIZIONE STATI LIMITE D.M. 17/01/18**

1259_C01.docx 83 di 113



1259_C01.docx 84 di 113


6.2.5.2 **SPETTRI D.M. 17-01-18**

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV

1259_C01.docx 85 di 113

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD

6.2.1 CARICHI APPLICATI AL MODELLO

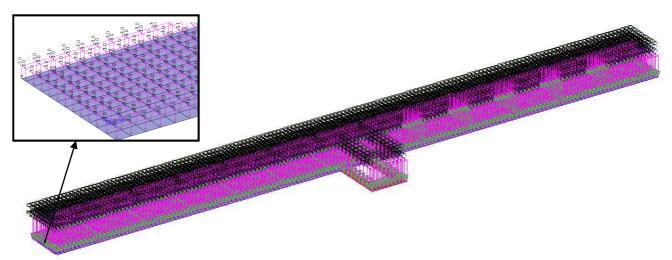


Figura 16 - Sovraccarico permanete su fondazione

1259_C01.docx 86 di 113

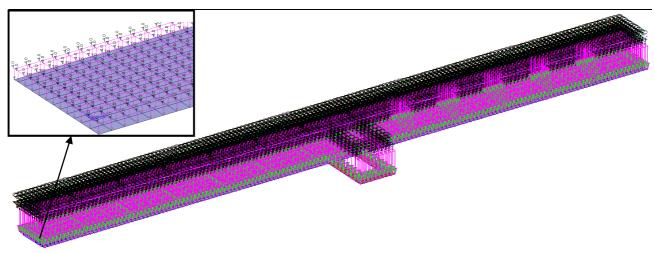


Figura 17 - Sovraccarico accidentale in fondazione

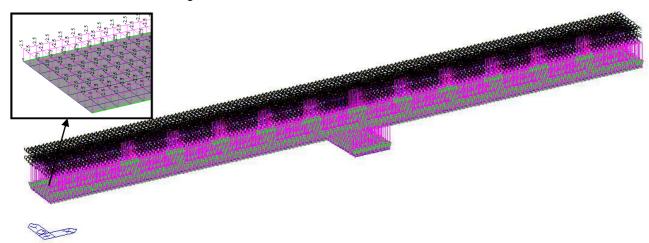


Figura 18 - Sovraccarico permanente solaio +4.5 m

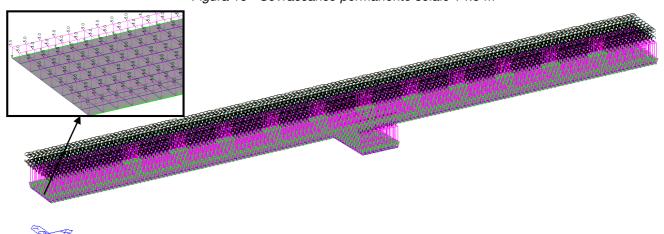


Figura 19 - Sovraccarico accidentale solaio +4 .5 m

1259_C01.docx 87 di 113

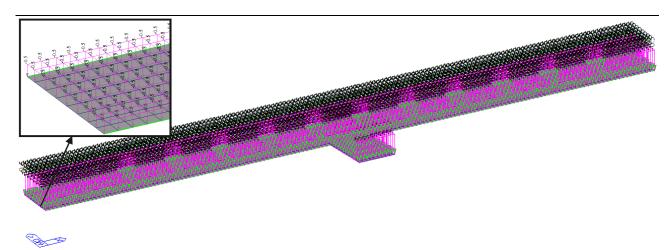


Figura 20 - Carico da neve su solaio a +4.5 m

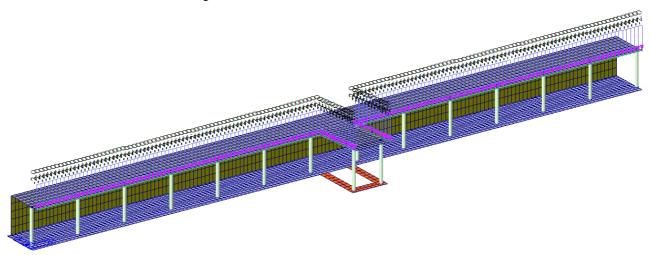


Figura 21 - Sovraccarico permanente ringhiera

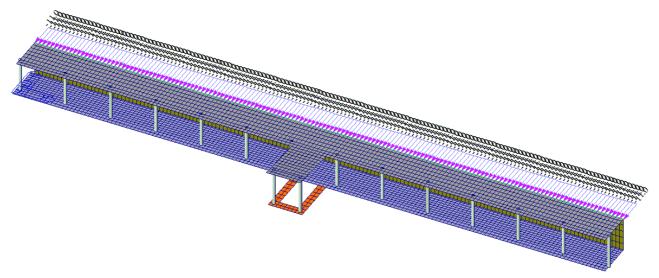


Figura 22 - Sovraccarico permanente dovuto alla spinta sommitale del palo

1259_C01.docx 88 di 113

Figura 23 - Sovraccarico accidentale dovuto alla spinta sommitale del palo

6.3 MODELLO DI CALCOLO

Le elaborazioni mediante calcolatore sono state eseguite con l'ausilio del programma:

 Midas Gen 2019 v2.1 sviluppato in Corea del Sud e distribuito in Italia da CSP Fea s.c. via Zuccherificio, 5/D - 35042 Este (PD) Italy - P.I. 04057560288. Questo software è utilizzato per l'analisi delle sollecitazioni degli elementi strutturali.

Il programma è usato dallo scrivente in forza di regolari licenze d'uso e testato periodicamente mediante procedure di controllo codificate, tali da verificare l'attendibilità dell'applicazione e dei risultati ottenuti ed individuare eventuali vizi ed anomalie. Grazie alla raffinatezza dei modello di calcolo è stato possibile analizzare il comportamento di tutti gli elementi compositivi delle stesse, considerando l'effettivo contributo alla rigidezza complessiva del sistema fornito da ciascun componente elementare. I criteri di modellazione prevedono la riproduzione fedele delle strutture così come sono state progettate e si prescrive siano realizzate.

Il modello è composto da elementi plate per simulare fondazioni, pareti e solai, con elementi beam per i pilastri. I carichi sono applicati come pressioni distribuite sulla superfice.

Le strutture di fondazione sono state vincolate alle traslazioni orizzontali, con vincoli fissi e alla traslazione verticale, con letto di molle (k_w =2.30 kg/cm³).

1259_C01.docx 89 di 113

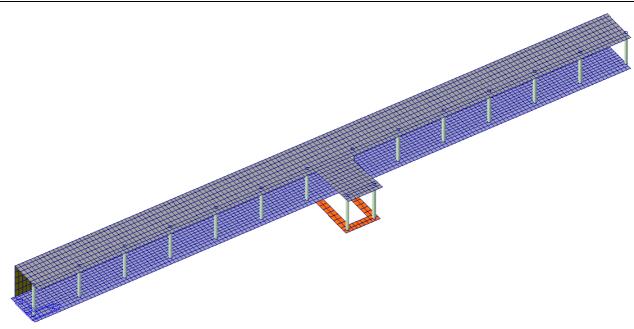


Figura 24-Vista prospettica del modello

6.4 COMBINAZIONI DI CARICO

Si adottano le combinazioni prescritte dalla normativa vigente ed espresse simbolicamente come segue: **Stati Limite Ultimi SLU**

$$\begin{split} F_d &= \gamma_g \cdot G_k + \gamma_p \cdot P_k + \gamma_q \cdot \left[Q_{1k} + \sum_{i=2}^{i=n} (\psi_{0i} \cdot Q_{ik}) \right] \\ F_d &= \gamma_I \cdot E + G_k + P_k + \sum_{i=1}^{i=n} (\psi_{2i} \cdot Q_{ik}) \end{split} \qquad \text{per le azioni statiche SLU}$$

Stati Limite di Esercizio - SLE

$$F_d = G_k + P_k + Q_{k1} + \psi_{02} \cdot Q_{k2} + \dots$$
 combinazione rara
$$F_d = G_k + P_k + \psi_{11}Q_{k1} + \psi_{22} \quad Q_{k2} + \dots$$
 combinazione frequente
$$F_d = G_k + P_k + \psi_{21} \cdot Q_{21} + \psi_{22} \cdot Q_{22} \dots$$
 combinazione quasi permanente

con il seguente significato dei simboli:

Gk	vaiore caratteristico delle azioni permanenti
P_k	valore caratteristico della forza di precompressione
Q_{ik}	valore caratteristico dell'azione variabile i-esima
E	azione sismica
$\gamma_g = 1.3 (1.0 \text{ se})$	il suo contributo aumenta la sicurezza)
$\gamma_p = 0.9 (1.2 \text{ se})$	il suo contributo diminuisce la sicurezza)
$\gamma_{q} = 1.5 (0.0 \text{ se})$	il suo contributo aumenta la sicurezza)
$\psi_{0i} = 0.7$	per sovraccarico accidentale (Cat C);
$\psi_{1i} = 0.7$	per sovraccarico accidentale (Cat C);
$\psi_{2i} = 0.6$	per sovraccarico accidentale (Cat C);

1259_C01.docx 90 di 113

```
\psi_{0i} = 0.3
                   per sovraccarichi accidentali (Cat. D);
\psi_{1i}=0.0
                   per sovraccarichi accidentali (Cat. D);
\psi_{2i} = 0.0
                   per sovraccarichi accidentali (Cat. D);
                   per sovraccarichi accidentali (Cat. F);
\psi_{0i} = 0.7
\psi_{1i} = 0.7
                   per sovraccarichi accidentali (Cat. F);
                   per sovraccarichi accidentali (Cat. F);
\psi_{2i} = 0.6
\psi_{0i} = 0.5
                   per neve;
\psi_{1i}=0.2
                   per neve;
\psi_{2i} = 0
                   per neve;
\psi_{0i} = 0.6
                   per vento;
\psi_{1i}=0.2
                   per vento;
\psi_{2i} = 0
                   per vento;
\psi_{0i} = 0.6
                   per variazione termica;
\psi_{1i} = 0.5
                   per variazione termica;
\psi_{2i} = 0
                   per variazione termica;
```

General | Steel Design | Concrete Design | SRC Design | Cold Formed Steel Design | Footing Design | Aluminum Design |

	No	Name	Active	Type	Gp(ST)	Gk(ST)	Qk(ST)	Neve(ST)	SLD X(RS)	SLD Y(RS)	SLV X(RS)	SLV Y(RS)	SLO X(RS)	SLO Y(RS)	SLD X(ES)	SLD Y(ES)	SLV X(ES)	SLV Y(ES
- 1	1	gLCB1	Activ	Add	1.3000	1.3000	1.5000											
П	2	gLCB2	Activ	Add	1.3000	1.3000	1.5000	0.7500										
Т	3	gLCB3	Activ	Add	1.3000	1.3000	1.0500	1.5000										
	4	gLCB4	Activ	Add	1.0000	1.0000	0.6000				1.0000	0.3000					1.0000	0.300
П	5	gLCB5	Activ	Add	1.0000	1.0000	0.6000				1.0000	0.3000					-1.0000	-0.300
П	6	gLCB6	Activ	Add	1.0000	1.0000	0.6000				1.0000	-0.3000					1.0000	-0.300
\Box	7	gLCB7	Activ	Add	1.0000	1.0000	0.6000				1.0000	-0.3000					-1.0000	0.300
П	8	gLCB8	Activ	Add	1.0000	1.0000	0.6000				0.3000	1.0000					0.3000	1.000
П	9	gLCB9	Activ	Add	1.0000	1.0000	0.6000				0.3000	1.0000					-0.3000	-1.000
П	10	gLCB10	Activ	Add	1.0000	1.0000	0.6000				-0.3000	1.0000					-0.3000	1.000
П	11	gLCB11	Activ	Add	1.0000	1.0000	0.6000				-0.3000	1.0000					0.3000	-1.000
\neg	12	gLCB12	Activ	Add	1.0000	1.0000	0.6000				1.0000	0.3000					1.0000	-0.300
П	13	gLCB13	Activ	Add	1.0000	1.0000	0.6000				1.0000	0.3000					-1.0000	0.300
П	14	gLCB14	Activ	Add	1.0000	1.0000	0.6000				1.0000	-0.3000					1.0000	0.300
\neg	15	gLCB15	Activ	Add	1.0000	1.0000	0.6000				1.0000	-0.3000					-1.0000	-0.300
П	16	gLCB16	Activ	Add	1.0000	1.0000	0.6000				0.3000	1.0000					-0.3000	1.000
П	17	gLCB17	Activ	Add	1.0000	1.0000	0.6000				0.3000	1.0000					0.3000	-1.000
\neg	18	gLCB18	Activ	Add	1.0000	1.0000	0.6000				-0.3000	1.0000					0.3000	1.000
П	19	gLCB19	Activ	Add	1.0000	1.0000	0.6000				-0.3000	1.0000					-0.3000	-1.000
T	20	gLCB20	Activ	Add	1.0000	1.0000	0.6000				-1.0000	-0.3000					-1.0000	-0.300
\neg	21	gLCB21	Activ	Add	1.0000	1.0000	0.6000				-1.0000	-0.3000					1.0000	0.300
\neg	22	gLCB22	Activ	Add	1.0000	1.0000	0.6000				-1.0000	0.3000					-1.0000	0.300
T	23	gLCB23	Activ	Add	1.0000	1.0000	0.6000				-1.0000	0.3000					1.0000	-0.300
\neg	24	gLCB24	Activ	Add	1.0000	1.0000	0.6000				-0.3000	-1.0000					-0.3000	-1.000
\neg	25	gLCB25	Activ	Add	1.0000	1.0000	0.6000				-0.3000	-1.0000					0.3000	1.000
T	26	gLCB26	Activ	Add	1.0000	1.0000	0.6000				0.3000	-1.0000					0.3000	-1.000
ヿ	27	gLCB27	Activ	Add	1.0000	1.0000	0.6000				0.3000	-1.0000					-0.3000	1.000
\neg	28	gLCB28	Activ	Add	1.0000	1.0000	0.6000				-1.0000	-0.3000					-1.0000	0.300
			Activ	Add	1.0000	1.0000	0.6000				-1.0000	-0.3000					1.0000	-0.300
ヿ	30	gLCB30	Activ	Add	1.0000	1.0000	0.6000				-1.0000	0.3000					-1.0000	-0.300
		gLCB31		Add	1.0000		0.6000				-1.0000	0.3000					1.0000	0.300
7		gLCB32		Add	1.0000		0.6000				-0.3000	-1.0000					0.3000	-1.000
7		gLCB33		Add	1.0000		0.6000				-0.3000	-1.0000					-0.3000	1.000
\dashv		gLCB34		Add	1.0000		0.6000				0.3000	-1.0000					-0.3000	-1.000
\dashv		gLCB35		Add		1.0000	0.6000				0.3000	-1.0000					0.3000	1.000

1259_C01.docx 91 di 113

General | Steel Design | Concrete Design | SRC Design | Cold Formed Steel Design | Footing Design | Aluminum Design |

No	Name	Active	Туре	Gp(ST)	Gk(ST)	Qk(ST)	Neve(ST)	SLD X(RS)	SLD Y(RS)	SLV X(RS)	SLV Y(RS)	SLO X(RS)	SLO Y(RS)	SLD X(ES)	SLD Y(ES)
36	gLCB36	Activ	Add	1.0000	1.0000	1.0000									
37	gLCB37	Activ	Add	1.0000	1.0000	1.0000	0.5000								
38	gLCB38	Activ	Add	1.0000	1.0000	0.7000	1.0000								
39	gLCB39	Activ	Add	1.0000	1.0000	0.7000									
40	gLCB40	Activ	Add	1.0000	1.0000	0.6000	0.2000								
41	gLCB41	Activ	Add	1.0000	1.0000	0.6000									
42	STL EN	Activ	Envelo												
43	STL EN	Activ	Envelo												
44	SLV	Activ	Envelo												
45	gLCB42	Activ	Add	1.0000	1.0000	0.6000		1.0000	0.3000					1.0000	0.3000
46	gLCB43	Activ	Add	1.0000	1.0000	0.6000		1.0000	0.3000					-1.0000	-0.3000
47	gLCB44	Activ	Add	1.0000	1.0000	0.6000		1.0000	-0.3000					1.0000	-0.3000
48	gLCB45	Activ	Add	1.0000	1.0000	0.6000		1.0000	-0.3000					-1.0000	0.3000
49	gLCB46	Activ	Add	1.0000	1.0000	0.6000		0.3000	1.0000					0.3000	1.0000
50	gLCB47	Activ	Add	1.0000	1.0000	0.6000		0.3000	1.0000					-0.3000	-1.0000
51	gLCB48	Activ	Add	1.0000	1.0000	0.6000		-0.3000	1.0000					-0.3000	1.0000
52	gLCB49	Activ	Add	1.0000	1.0000	0.6000		-0.3000	1.0000					0.3000	-1.0000
53	gLCB50	Activ	Add	1.0000	1.0000	0.6000		1.0000	0.3000					1.0000	-0.3000
54	gLCB51	Activ	Add	1.0000	1.0000	0.6000		1.0000	0.3000					-1.0000	0.3000
55	gLCB52	Activ	Add	1.0000	1.0000	0.6000		1.0000	-0.3000					1.0000	0.3000
56	gLCB53	Activ	Add	1.0000	1.0000	0.6000		1.0000	-0.3000					-1.0000	-0.3000
57	gLCB54	Activ	Add	1.0000	1.0000	0.6000		0.3000	1.0000					-0.3000	1.0000
58	gLCB55	Activ	Add	1.0000	1.0000	0.6000		0.3000	1.0000					0.3000	-1.0000
59	gLCB56	Activ	Add	1.0000	1.0000	0.6000		-0.3000	1.0000					0.3000	1.0000
60	gLCB57	Activ	Add	1.0000	1.0000	0.6000		-0.3000	1.0000					-0.3000	-1.0000
61	gLCB58	Activ	Add	1.0000	1.0000	0.6000		-1.0000	-0.3000					-1.0000	-0.3000
62	gLCB59	Activ	Add	1.0000	1.0000	0.6000		-1.0000	-0.3000					1.0000	0.3000
63	gLCB60	Activ	Add	1.0000	1.0000	0.6000		-1.0000	0.3000					-1.0000	0.3000
64	gLCB61	Activ	Add	1.0000	1.0000	0.6000		-1.0000	0.3000					1.0000	-0.3000
65	gLCB62	Activ	Add	1.0000	1.0000	0.6000		-0.3000	-1.0000					-0.3000	-1.0000
66	gLCB63	Activ	Add	1.0000	1.0000	0.6000		-0.3000	-1.0000					0.3000	1.0000
67	gLCB64	Activ	Add	1.0000	1.0000	0.6000		0.3000	-1.0000					0.3000	-1.0000
68	gLCB65	Activ	Add	1.0000	1.0000	0.6000		0.3000	-1.0000					-0.3000	1.0000
69	gLCB66	Activ	Add	1.0000	1.0000	0.6000		-1.0000	-0.3000					-1.0000	0.3000
70		Activ	Add	1.0000	1.0000	0.6000		-1.0000	-0.3000					1.0000	-0.3000
71	gLCB68	Activ	Add	1.0000	1.0000	0.6000		-1.0000	0.3000					-1.0000	-0.3000
72	_	Activ	Add	1.0000	1.0000	0.6000		-1.0000	0.3000					1.0000	0.3000
73			Add	1.0000				-0.3000	-1.0000					0.3000	-1.0000
General Stool Docion			1				. 1								

General Steel Design | Concrete Design | SRC Design | Cold Formed Steel Design | Footing Design | Aluminum Design |

Loud	COIIIDII	ididoii	List
	L	\neg	

No	Name	Active	Type	Gp(ST)	Gk(ST)	Qk(ST)	Neve(ST)	SLD X(RS)	SLD Y(RS)	SLV X(RS)	SLV Y(RS)	SLO X(RS)	SLO Y(RS)	SLD X(ES)	SLD Y(ES)	SLV X(ES)	SLV Y(ES)	SLO X(ES)	SLO Y(ES
57	gLCB54	Activ	Add	1.0000	1.0000	0.6000		0.3000	1.0000					-0.3000	1.0000				
58	gLCB55	Activ	Add	1.0000	1.0000	0.6000		0.3000	1.0000					0.3000	-1.0000				
59	gLCB56	Activ	Add	1.0000	1.0000	0.6000		-0.3000	1.0000					0.3000	1.0000				
60	gLCB57	Activ	Add	1.0000	1.0000	0.6000		-0.3000	1.0000					-0.3000	-1.0000				
61	gLCB58	Activ	Add	1.0000	1.0000	0.6000		-1.0000	-0.3000					-1.0000	-0.3000				
62	gLCB59	Activ	Add	1.0000	1.0000	0.6000		-1.0000	-0.3000					1.0000	0.3000				
63	gLCB60	Activ	Add	1.0000	1.0000	0.6000		-1.0000	0.3000					-1.0000	0.3000				
64	gLCB61	Activ	Add	1.0000	1.0000	0.6000		-1.0000	0.3000					1.0000	-0.3000				
65	gLCB62	Activ	Add	1.0000	1.0000	0.6000		-0.3000	-1.0000					-0.3000	-1.0000				
66	gLCB63	Activ	Add	1.0000	1.0000	0.6000		-0.3000	-1.0000					0.3000	1.0000				
67	gLCB64	Activ	Add	1.0000	1.0000	0.6000		0.3000	-1.0000					0.3000	-1.0000				
68	gLCB65	Activ	Add	1.0000	1.0000	0.6000		0.3000	-1.0000					-0.3000	1.0000				
69	gLCB66	Activ	Add	1.0000	1.0000	0.6000		-1.0000	-0.3000					-1.0000	0.3000				
70	qLCB67	Activ	Add	1.0000	1.0000	0.6000		-1.0000	-0.3000					1.0000	-0.3000				
71	gLCB68	Activ	Add	1.0000	1.0000	0.6000		-1.0000	0.3000					-1.0000	-0.3000				
72	gLCB69	Activ	Add	1.0000	1.0000	0.6000		-1.0000	0.3000					1.0000	0.3000				
73	gLCB70	Activ	Add	1.0000	1.0000	0.6000		-0.3000	-1.0000					0.3000	-1.0000				
74	Env SL	Activ	Envelo																
75		Activ	Add	1.0000	1.0000	0.6000						1.0000	0.3000					1.0000	0.300
76		Activ	Add	1.0000	1.0000	0.6000						1.0000	0.3000					-1.0000	-0.300
77		Activ	Add	1.0000	1.0000	0.6000						1.0000	-0.3000					1.0000	-0.300
78		Activ	Add	1.0000	1.0000	0.6000						1.0000	-0.3000					-1.0000	0.300
79		Activ	Add	1.0000	1.0000	0.6000						0.3000	1.0000					0.3000	1.000
80		Activ	Add	1.0000	1.0000	0.6000						0.3000	1.0000					-0.3000	-1.000
81	glcb77	Activ	Add	1.0000	1.0000	0.6000						-0.3000	1.0000					-0.3000	1.000
82		Activ	Add	1.0000	1.0000	0.6000						-0.3000	1.0000					0.3000	-1.000
83		Activ	Add	1.0000	1.0000	0.6000						1.0000	0.3000					1.0000	-0.300
84	glcb80	Activ	Add	1.0000	1.0000	0.6000						1.0000	0.3000					-1.0000	0.300
85		Activ	Add	1.0000	1.0000	0.6000						1.0000	-0.3000					1.0000	0.300
86		Activ	Add	1.0000	1.0000	0.6000						1.0000	-0.3000					-1.0000	-0.300
87	glcb83	Activ	Add	1.0000	1.0000	0.6000						0.3000	1.0000			<u>~</u>		-0.3000	1.000
88		Activ	Add	1.0000	1.0000	0.6000						0.3000	1.0000					0.3000	-1.000
89		Activ	Add	1.0000	1.0000	0.6000						-0.3000	1.0000					0.3000	1.000
90		Activ	Add	1.0000	1.0000	0.6000						-0.3000	1.0000					-0.3000	-1.000
91	glcb87	Activ	Add	1.0000	1.0000	0.6000						-1.0000	-0.3000					-1.0000	-0.300
92		Activ	Add	1.0000	1.0000	0.6000						-1.0000	-0.3000					1.0000	0.300
92			Add	1.0000		0.6000							0.3000					-1.0000	
		Activ	Add	1.0000	1.0000	0.6000						-1.0000 -1.0000	0.3000						0.300
94		Activ				0.6000							-1.0000					1.0000 -0.3000	-0.300
		Activ	Add	1.0000	1.0000							-0.3000							-1.000
96		Activ	Add	1.0000	1.0000	0.6000						-0.3000	-1.0000					0.3000	1.000
97	glcb93	Activ	Add	1.0000	1.0000	0.6000						0.3000	-1.0000					0.3000	-1.000
98	3	Activ	Add	1.0000	1.0000	0.6000						0.3000	-1.0000					-0.3000	1.000
99	-	Activ	Add	1.0000	1.0000	0.6000						-1.0000	-0.3000					-1.0000	0.300
100	-	Activ	Add	1.0000	1.0000	0.6000						-1.0000	-0.3000					1.0000	-0.300
101	glcb97	Activ	Add	1.0000	1.0000	0.6000						-1.0000	0.3000					-1.0000	-0.300
102		Activ	Add	1.0000	1.0000	0.6000						-1.0000	0.3000					1.0000	0.300
103	glcb99	Activ	Add	1.0000	1.0000	0.6000						-0.3000	-1.0000					0.3000	-1.000

1259_C01.docx 92 di 113

6.5 ANALISI MODALE

Le masse considerate nella modellazione seguono quanto indicato nel D.M. 17/01/2018 §3.2.4:

$$G_1 + G_2 + \sum_j \psi_{2j} Q_{kj}$$

Secondo quanto riportato nel D.M. 17/01/2018 §7.3.3.1, si esegue un'analisi lineare dinamica che consiste:

- nella determinazione dei modi di vibrare della costruzione, mediante analisi modale;
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare riportati;
- nella combinazione di questi effetti.

Sono stati considerati tutti i modi con massa partecipante significativa (superiore al 5%), tale che la massa totale sia superiore all'85%.

Si riportano di seguito alcune immagini del modello:

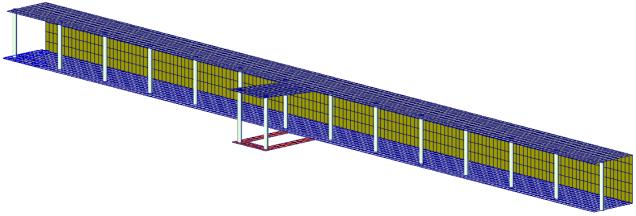


Figura 25-Modello di calcolo

Si riportano i risultati dell'analisi vibrazionale della struttura e della massa partecipante raggiunta (si evidenzia la sola componente Y in quanto la rigidezza nella direzione X è elevatissima)

		EI	GENVALUE ANA	LYSIS		
Mode	Frequ	ency	Period	Tolerance		
No	(rad/sec)	(cycle/sec)	(sec)	Tolerance		
1	76.4942	12.1744	0.0821	0.0000e+000		
2	101.1913	16.1051	0.0621	0.0000e+000		
3	103.7094	16.5059	0.0606	0.0000e+000		
4	117.1538	18.6456	0.0536	0.0000e+000		
5	117.2336	18.6583	0.0536	0.0000e+000		
6	121.6650	19.3636	0.0516	0.0000e+000		
7	122.0539	19.4255	0.0515	0.0000e+000		
8	129.4413	20.6012	0.0485	0.0000e+000		
9	130.4343	20.7593	0.0482	0.0000e+000		
10	139.0784	22.1350	0.0452	0.0000e+000		
110	748.0454	119.0551	0.0084	0.0000e+000		
111	748.2264	119.0839	0.0084	0.0000e+000		
112	750.0341	119.3716	0.0084	0.0000e+000		
113	756.3852	120.3824	0.0083	0.0000e+000		
114	758.7635	120.7610	0.0083	0.0000e+000		
115	764.2302	121.6310	0.0082	0.0000e+000		
116	765.8741	121.8927	0.0082	0.0000e+000		
117	767.8583	122.2084	0.0082	0.0000e+000		
118	772.6288	122.9677	0.0081	0.0000e+000		
119	777.7523	123.7831	0.0081	0.0000e+000		
120	778.1448	123.8456	0.0081	0.0000e+000		
121	780.1804	124.1696	0.0081	0.0000e+000		
122	784.3960	124.8405	0.0080	0.0000e+000		
123	785.1615	124.9623	0.0080	0.0000e+000		
124	786.8222	125.2266	0.0080	0.0000e+000		
125	787.1269	125.2751	0.0080	0.0000e+000		

1259_C01.docx 93 di 113

				MODA	L PARTICIPA	TION MASSI	S PRINTOUT	Г				
Mode	Mode TRAN-X				TRA	N-Z	ROT	TN-X	ROT	N-Y	ROT	N-Z
No	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	0.0007	0.0007	0.0124	0.0124	1.4863	1.4863	0.0402	0.0402	0.0003	0.0003	0.0002	0.0002
- 2	0.0001	0.0008	77.1547	77.1671	0.2904	1.7768	0.9252	0.9654	0.0000	0.0003	0.0152	0.0154
	0.5702	0.5710	0.0148	77.1819	0.0002	1.7769	0.0002	≥9656	0.0437	0.0440	79.4205	79.4359
4	0.0001	0.5710	0.0866	77.2685	0.1541	1.9310	0.0088	0.9744	0.0001	0.0441	0.0008	79.4367
	0.0043	0.5753	0.0003	77.2688	0.0008	1.9318	0.0000	0.9744	0.0090	0.0531	0.4324	79.8692
(0.0002	0.5755	0.0781	77.3469	0.3025	2.2343	0.0020	0.9764	0.0000	0.0532	0.0070	79.8762
1	0.0013	0.5768	0.0007	77.3477	0.0025	2.2368	0.0000	0.9765	0.0055	0.0586	0.2005	80.0767
	0.0018	0.5786	0.0070	77.3547	0.0282	2.2650	0.0105	0.9870	0.0011	0.0597	0.0004	80.0771
(0.0020	0.5806	0.0001	77.3548	0.0011	2.2661	0.0001	0.9871	0.0051	0.0648	0.1017	80.1787
10	0.0046	0.5852	0.0735	77.4283	0.8662	3.1323	0.0008	0.9879	0.0017	0.0665	0.0116	80.1903
110	0.0050	88.5454	0.2299	81.2776	0.0420	23.8707	0.0119	52.2817	0.0036	34.9262	0.0011	82.9501
111	0.0028	88.5482	0.0012	81.2789	0.0001	23.8709	0.0000	52.2817	0.3123	35.2385	0.3043	83.2544
112	0.0478	88.5960	0.0040	81.2828	0.0003	23.8712	0.0102	52.2918	0.0244	35.2629	0.0004	83.2548
113	0.0016	88.5977	0.0134	81.2962	0.0000	23.8712	0.0019	52.2938	0.0001	35.2629	0.0000	83.2548
114	0.0048	88.6024	0.0001	81.2963	0.0000	23.8712	0.0004	52.2941	0.0236	35.2866	0.1230	83.3777
115	0.0022	88.6046	0.0058	81.3021	0.0123	23.8835	1.4986	53.7927	0.0000	35.2866	0.0000	83.3777
116	0.0008	88.6055	0.2079	81.5101	0.0013	23.8847	0.0306	53.8233	0.0000	35.2866	0.0001	83.3779
117	0.0055	88.6110	0.0024	81.5125	0.0000	23.8848	0.0099	53.8333	0.1582	35.4448	0.5773	83.9552
118	0.0003	88.6112	0.0080	81.5205	0.0000	23.8848	0.0139	53.8472	0.0001	35.4449	1.6828	85.6380
119	0.0094	88.6206	0.0024	81.5229	0.0000	23.8848	0.0012	53.8484	0.4034	35.8483	2.6003	88.2383
120	0.0000	88.6206	1.0305	82.5534	0.0250	23.9098	1.9084	55.7568	0.0001	35.8484	0.0005	88.2388
121	0.0000	88.6207	2.4956	85.0490	0.0709	23.9807	7.7208	63.4776	0.0266	35.8750	0.0001	88.2389
122	0.0004	88.6210	0.9999	86.0488	0.0283	24.0089	3.6167	67.0943	0.1258	36.0008	0.0010	88.2399
123	0.3727	88.9937	0.0003	86.0491	0.0005	24.0094	0.0216	67.1159	53.7358	89.7366	0.0153	88.2552
124	0.0004	88.9941	0.1999	86.2491	0.0006	24.0101	0.5384	67.6543	0.0146	89.7512	0.0402	88.2955
125	0.0021	88.9963	1.9146	88.1636	0.0296	24.0396	6.5985	74.2529	0.0633	89.8145	0.0084	88.3038

6.6 RESISTENZA AL FUOCO DEGLI ELEMENTI STRUTTURALI

La resistenza al fuoco di un elemento strutturale si esplica con la determinazione di tre parametri:

- **R** = **stabilità**; attitudine di un elemento da costruzione a conservare la resistenza meccanica sotto l'azione del fuoco. Equivale al tempo di rottura in minuti di un elemento strutturale sottoposto ad una curva tempo-temperatura;
- **E = tenuta**; attitudine di un elemento da costruzione a non lasciare passare né produrre fiamme, vapori o gas caldi sul lato non esposto se sottoposto all'azione del fuoco su un lato;
- I = isolamento termico; attitudine di un elemento da costruzione a ridurre, entro un dato limite, la trasmissione del calore.

Le combinazioni di carico adottate per le verifiche al fuoco sono quelle relative alle situazioni eccezionali:

$$F_d = G_k + P_k + A_d + \psi_{21}$$
 $Q_{k1} + \psi_{22}$ $Q_{k2} + \dots$

con

 $\psi_2 = 0.6$ per sovraccarico accidentale (Cat C, D e F).

6.6.1 ELEMENTI STRUTTURALI

La verifica al fuoco è soddisfatta se è garantito il copriferro minimo a protezione delle barre d'armatura. Il D.M. 16/02/2007 - "Classificazione di resistenza al fuoco di prodotti ed elementi costruttivi", determina le condizioni sufficienti per la classificazione degli elementi costruttivi resistenti al fuoco, quindi il copriferro minimo suddetto.

6.6.1.1 **PARETI REI 120**

D.6.3 La tabella seguente riporta i valori minimi (mm) dello spessore si e della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito REI per le classi indicate di pareti portanti esposte su uno o due tan che rispettano le seguenti limitazioni.

 - altezza effettiva della pareta (da nodo a nodo) ≤ 6 m (per pareti di piani intermedi) ovvero ≤ 4,5 m (per pareti dell'ultimo piano);

Classe	Esposto su un lato	Esposto su due lati
30	s = 120 / a = 10	120 / 10
60	s = 130 / a = 10	140 / 10
90	s = 140 / a = 25	170 / 25
120	s = 160 / a = 35	220 / 35
180	s = 210 / a = 50	270 / 55
240	s = 270 / a = 60	350 / 60

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

D.6.4 La tabella seguente riporta i valori minimi (mm) dello spessore s sufficiente a garantire il requisito El per le classi indicate di pareti non portanti esposte su un lato che rispettano fe seguenti limitazioni:

⁻ rapporto tra altezza di libera inflessione e spessore inferiore a 40

Classe	Esposto su un lato
30	s = 60
60	s = 80
90	S = 100
120	S = 120
180	S = 150
240	S = 180 💙

1259_C01.docx 95 di 113

 ⁻ altezza effettiva della pareta (da nodo a nodo) ≤ 6 m (per pareti di piani intermedi) ovvero ≤ 4,5 m (per pareti dell'ultimo piano);

6.6.1.2 **SOLAI REI 120**

D.5 Solette piene e solai alleggeriti

D.5.1 La tabella seguente riporta i valori minimi (mm) dello spessore totale H di solette e solai, della distanza a dall'asse delle armature alla superficie esposta sufficienti a garantire il requisito R per le classi indicate.

Classe	30	60	90	120	180	240
Solette piene con armatura monodirezionale	H = 80 / a = 10	120/ 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai misti di lamiera di acciaio con riempimento di calcestruzzo (1)	H = 80 / a = 10	120 / 20	120 / 30	160 / 40	200 / 55	240 / 65
Solai a travetti con alleggerimento (2)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75
Solai a lastra con alleggerimento (3)	H = 160 / a = 15	200 / 30	240 / 35	240 / 45	300 / 60	300 / 75

I valori di a devono essere non inferiori ai minimi di regolamento per le opere di c.a. e c.a.p. In caso di armatura pre-tesa aumentare i valori di a di 15 mm. In presenza di intonaco i valori di H e a ne devono tenere conto nella seguente maniera: 10 mm di intonaco normale (definizione in D.4.1) equivale ad 10 mm di calcestruzzo; 10 mm di intonaco protettivo antincendio (definizione in D.4.1) equivale a 20 mm di calcestruzzo. Per ricoprimenti di calcestruzzo superiori a 50 mm prevedere una armatura diffusa aggiuntiva che assicuri la stabilità del ricoprimento.

- (1) In caso di lamiera grecata H rappresenta lo spessore medio della soletta. Il valore di a non comprende lo spessore della lamiera, La lamiera ha unicamente funzione di cassero. In caso contrario la lamiera va protetta secondo quanto indicato in D.7.1
- (2) Deve essere sempre presente uno strato di intonaco normale di spessore non inferiore a 20 mm ovvero uno strato di intonaco isolante di spessore non inferiore a 10 mm.
- (3) In caso di alleggerimento in polistirene o materiali affini prevedere opportuni sfoghi delle sovrapressioni.

D.5.2 Per garantire i requisiti di tenuta e isolamento i solai di cui alla tabella D.5.1 devono presentare uno strato pieno di materiale isolante, non combustibile e con conducibilità termica non superiore a quella del calcestruzzo, di cui almeno una parte in calcestruzzo armato. La tabella seguente riporta i valori minimi (cm) dello spessore h dello strato di materiale isolante e della parte d di c.a., sufficienti a garantire i requisiti El per le classi indicate.

Classe	30	60	90	120	180	240
Tutte le tipologie	h = 60 / d = 40	60 / 40	100 / 50	100 / 50	150 / 60	150 / 60

In presenza di intonaco i valori di h e di a ne possono tenere conto nella maniera indicata nella tabella D.5.1. In ogni caso a non deve mai essere inferiore a 40 mm.

In presenza di strati superiori di materiali di finitura incombustibile (massetto, malta di allettamento, pavimentazione, etc.) i valori di h ne possono tener conto

1259_C01.docx 96 di 113

6.7 VERIFICHE

6.7.1 VERIFICA AGLI SPOSTAMENTI SOMMITALI AGLI SLO

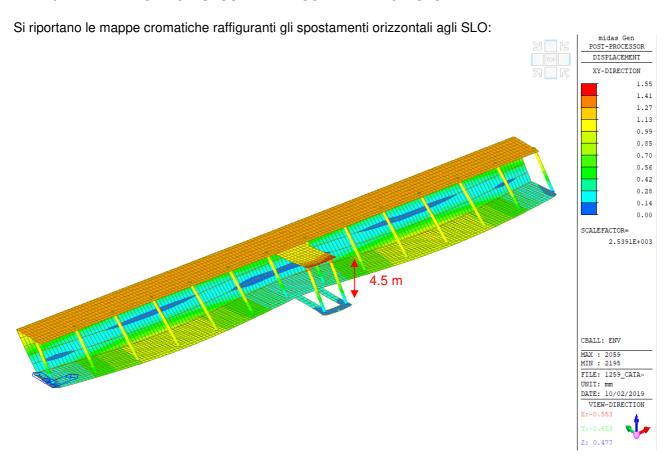


Figura 26-Mappa cromatica spostamenti orizzontali in direzione Y | SLO

Secondo quanto riportato dalla normativa vigente (D.M. 17/01/2018 §7.3.6.1), lo spostamento massimo orizzontale per costruzioni con tamponature fragili collegate rigidamente alla struttura soggetta ad azioni orizzontali la cui Classe d'Uso (CU) è III deve rispettare il seguente limite:

1259_C01.docx 97 di 113

Per le CU I e II ci si riferisce allo SLD	(v. Tab. 7.3.III) e deve essere:
---	------------------	------------------

	a) per tamponature collegate rigidamente alla struttura, che interferiscono con la deformabilità della stessa:							
$qd_{_{T}} \leq 0.0050 \cdot h \qquad \text{per tamponature fragili} \qquad \qquad [7.3.11a]$								
Ī	$qd_{r} \leq 0.0075 \cdot h$	per tamponature duttili	[7.3.11b]					

b) per tamponature progettate in modo da non subire danni a seguito di spostamenti d'interpiano d_{rp} , per effetto della loro deformabilità intrinseca oppure dei collegamenti alla struttura:

$$qd_{_{\rm T}} \leq d_{_{\rm I\! p}} \leq 0,\!0100 \cdot h \tag{7.3.12}$$

c) per costruzioni con struttura portante di muratura ordinaria

$$qd_r \le 0,0020 \cdot h$$
 [7.3.13]

d) per costruzioni con struttura portante di muratura armata

$$qd_r \le 0,0030 \cdot h$$
 [7.3.14]

e) per costruzioni con struttura portante di muratura confinata

$$qd_r < 0.0025 \cdot h$$
 [7.3.15]

dove

 d_r è lo spostamento di interpiano, cioè la differenza tra gli spostamenti del solaio superiore e del solaio inferiore, calcolati, nel caso di analisi lineare, secondo il \S 7.3.4, sul modello di calcolo non comprensivo delle tamponature,

h è l'altezza del piano.

Per le CU III e IV ci si riferisce allo SLO (v. Tab. 7.3.III) e gli spostamenti d'interpiano devono essere inferiori ai 2/3 dei limiti in precedenza indicati.

$$d_r \le 0.005 \cdot h/q = 2/3 * 0.005 * 4500/1.5 = 10 \ mm > 1.55 mm$$

La verifica è soddisfatta.

6.7.2 VERIFICA AGLI SPOSTAMENTI SOMMITALI AGLI SLE

Si riportano le mappe cromatiche raffiguranti gli spostamenti massimi orizzontali agli SLE

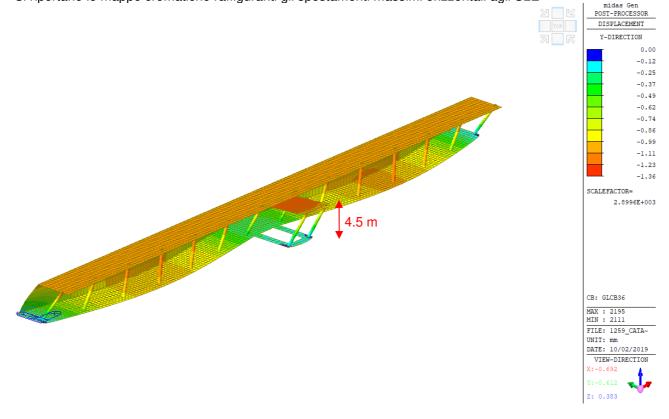
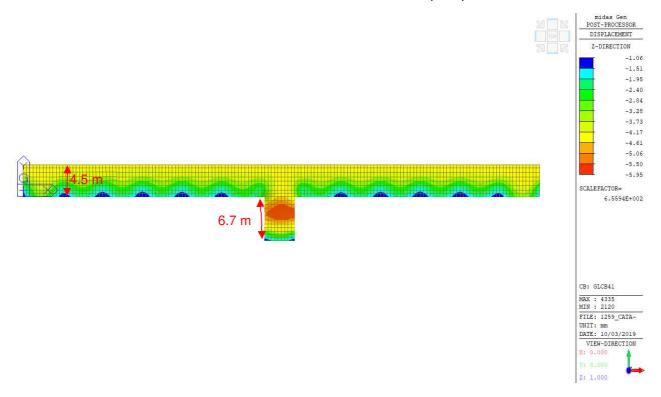


Figura 27-Mappa cromatica spostamenti orizzontali in direzione Y | SLE


1259_C01.docx 98 di 113

Secondo quanto riportato dalla normativa vigente (D.M. 17/01/2018 §4.2.4.2), lo spostamento massimo per costruzioni ordinarie soggette ad azioni orizzontali deve rispettare il seguente limite:

H/300 = 4500/300 = 15 mm > 1.40 mm

6.7.1 VERIFICA AGLI SPOSTAMENTI VERTICALI AGLI SLE

La soletta di spessore di 250mm viene realizzata in opera in C.A. Al fine della verifica degli spostamenti verticali si considerano le massime deformazioni verticali ottenute in condizione quasi permanente:

Freccia elastica

Posto L = 6.70 m, si ricava:

$$f_{elastica} = 5.95 \; mm \le \frac{L}{300} = \frac{6700}{300} = 22.30 \; mm$$

Posto L = 4.50 m, si ricava:

$$f_{elastica} = 5.40 \; mm \le \frac{L}{300} = \frac{4500}{300} = 15.00 \; mm$$

Freccia lungo termine (viscosa)

Il coefficiente di viscosità a tempo infinito per una umidità relativa di circa il 75%, viene calcolato in conformità al D.M. 17/01/2018, come segue:

- parametro h₀ stimato per la soletta: $h_0 = 2 \cdot {^A_c}/{_u} = 2 \cdot {^{250000}}/{_{2000}} = 250 \, mm$
- tempo di messa in carico: $t_0 = 15 \ giorni$
- coefficiente di viscosità (atmosfera con umidità relativa 75%): $\phi(+\infty) = \left[\frac{(2.4 + 2.2)}{2}\right] = 2.3$

1259_C01.docx 99 di 113

I valori precedenti sono desunti facendo riferimento a quanto riportato nel D.M. 17.01.2018 - Cap.11, §11.2.10.7:

Tabella 11.2.VI – Valori di $\phi(\infty, t_0)$. Atmosfera con umidità relativa di circa il 75%

t ₀	$h_0 \le 75 \text{ mm}$	$h_0 = 150$	$h_0 = 300$	$h_0 \ge 600$
3 giorni	3,5	3,2	3,0	2,8
7 giorni	2,9	2,7	2,5	2,3
15 giorni	2,6	2,4	2,2	2,1
30 giorni	2,3	2,1	1,9	1,8
≥ 60giorni	2,0	1,8	1,7	1,6

$$f_{viscosa} = 2.30 \cdot 5.95 \ mm = 13.67 \ mm \le \frac{L}{250} = \frac{6700}{250} = 26.80 \ mm$$

$$f_{viscosa} = 2.30 \cdot 5.40 \ mm = 12.42 \ mm \le \frac{L}{250} = \frac{4500}{250} = 18.00 \ mm$$

La verifica è soddisfatta.

1259_C01.docx 100 di 113

6.7.2 CEDIMENTI DELLA PLATEA

La platea di fondazione è stata modellata considerando il terreno come un letto di molle dato dalla $K_w=2.30 \, kg/cm^3$ alla Winkler. Per tali valori si riportano i cedimenti elementari:

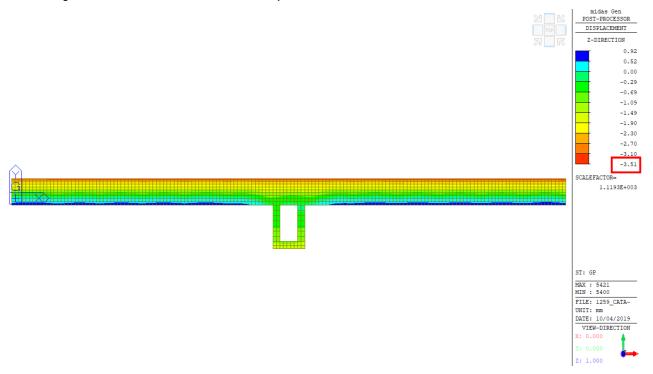


Figura 28 - Cedimento durante la fase di costruzione dei pesi propri

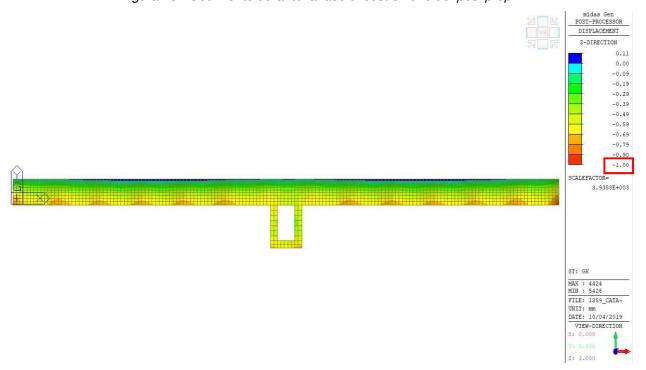


Figura 29 - Cedimento relativo ai carichi permanenti

Il cedimento medio che si ha in fase di costruzione, dato dal peso proprio e dal permanente, ammonta a:

$$\delta_z = \delta_{z,PP} + \delta_{z,SVP} = 3.51 + 1.00 = 4.51 \, mm$$

1259_C01.docx 101 di 113

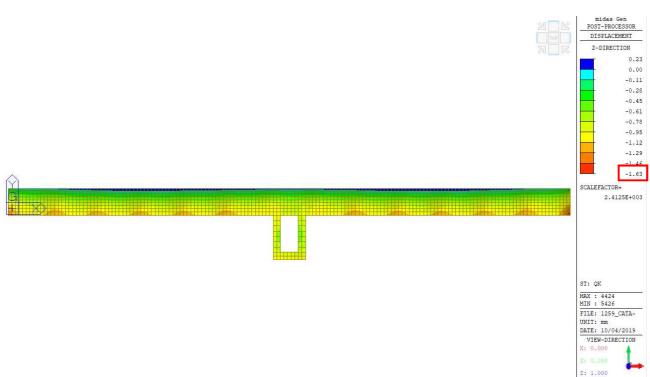


Figura 30 - Cedimento relativo ai carichi accidentali

Il cedimento dovuto ai carichi accidentali risulta essere un cedimento elastico per il quale il terreno si comporta in maniera indifferente.

1259_C01.docx 102 di 113

6.7.3 VERIFICA PILASTRI φ 40

1. Design Condition

Design Code : Eurocode2:04 & NTC2018 UNIT SYSTEM : kN, mm

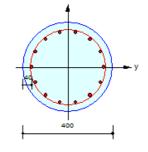
Member Number : 1208 (PM), 3 (Shear)

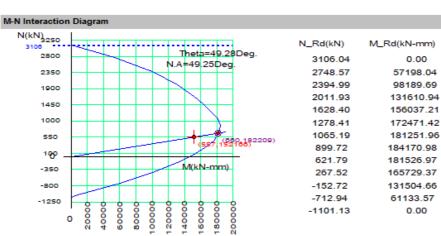
Material Data : fck = 0.032, fyk = 0.45, fyw = 0.45 kN/mm^2

Column Height : 4500 mm Section Property : Fi 400 (No : 1)

Rebar Pattern : 14 - 3 - P16 Ast = 2814 mm^2 (Rhost = 0.022)

2. Design for Axial and Flexure


Load Combination: 2 (I) Concentric Max. Axial Load Axial Load Ratio


Moment Ratio

N_Rdmax = 3106.04 kN N_Ed / N_Rd = 556.655 / 659.977

N_Ed / N_Rd = 556.655 / 659.977 = 0.843 < 1.000 O.K M_Ed / M_Rd = 152166 / 182209 = 0.835 < 1.000 O.K M_Edy / M_Rdy = 99328.6 / 118859 = 0.836 < 1.000 O.K

M_Edz / M_Rdz = 115275 / 138104 = 0.835 < 1.000 O.K

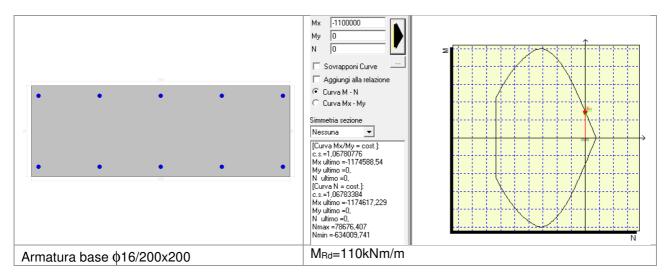
Design for Shear

[END]	y: 2 (J)	z: 2(J)
Applied Shear Force (V_Ed)	19.6672 kN	19.6672 kN
Shear Ratio (V_Ed/V_Rdc)	19.6672 / 108.591 = 0.181	19.6672 / 108.591 = 0.181
Shear Ratio (V_Ed/V_Rds)	19.6672 / 130.333 = 0.151	19.6672 / 130.333 = 0.151
Shear Ratio (V_Ed/V_Rdmax)	19.6672 / 372.316 = 0.053	19.6672 / 372.316 = 0.053
Shear Ratio	0.181 < 1.000 O.K	0.181 < 1.000 O.K
Asw-H_use	0.00050 mm^2/m, 2-P8 @200	0.00050 mm^2/m, 2-P8 @200

[MIDDLE] y: 2 (1/2) z: 2 (1/2) Applied Shear Force (V_Ed) 19.6672 kN 19.6672 kN 19.6672 / 109.898 = 0.179 19.6672 / 109.898 = 0.179 Shear Ratio (V_Ed/V_Rdc) Shear Ratio (V_Ed/V_Rds) 19.6672 / 130.333 = 0.151 19.6672 / 130.333 = 0.151 Shear Ratio (V_Ed/V_Rdmax) 19.6672 / 372.316 = 0.053 19.6672 / 372.316 = 0.053 Shear Ratio 0.179 < 1.000 O.K 0.179 < 1.000 O.K Asw-H_use 0.00050 mm^2/m, 2-P8 @200 0.00050 mm^2/m, 2-P8 @200

4. Serviceability: Stress Limit Check

	Load Combination	Stress(s)	Allowable Stress(sa)	Stress Ratio(s/sa)
Concrete (Tensile)	-	0.00	0.00	0.0000
Concrete (Compression)	37(C)	0.01	0.02	0.2830
	41(Q)	0.00	0.01	0.2558
Rebar	-	0.03	0.36	0.0961
Check Linear Creep	41(Q)	0.00	0.01	Linear Creep


6.7.4 VERIFICA SOLETTE

6.7.4.1 PLATEA DI FONDAZIONE sp=35 cm

La platea di fondazione ha uno spessore di 350 mm ed è armata con ϕ 16/200 su entrambe le facce e in entrambe le direzioni. Dove necessario è aggiunta armatura di infittimento ϕ 12/200.

1259_C01.docx 103 di 113

La verifica allo SLU delle sezioni di larghezza di 1 m viene effettuata per il momento massimo e risulta:

Seguono le mappe cromatiche dei momenti con colorazione limitata al momento resistente esplicato dall'armatura \phi16/200.

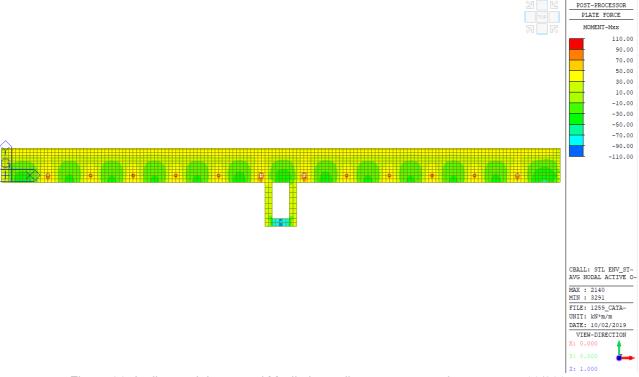
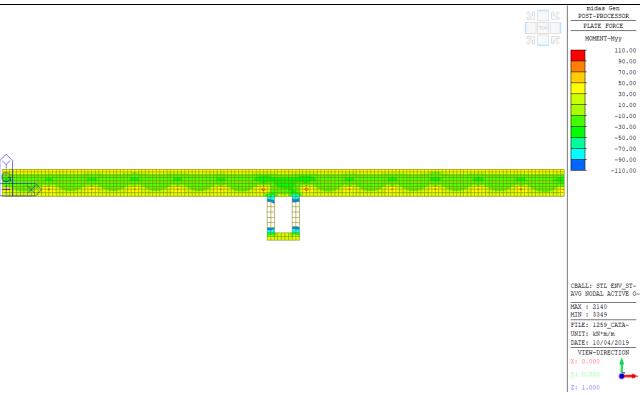
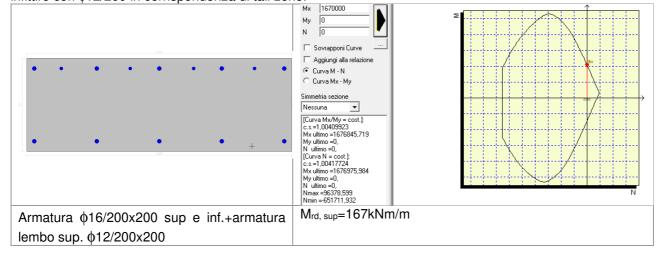
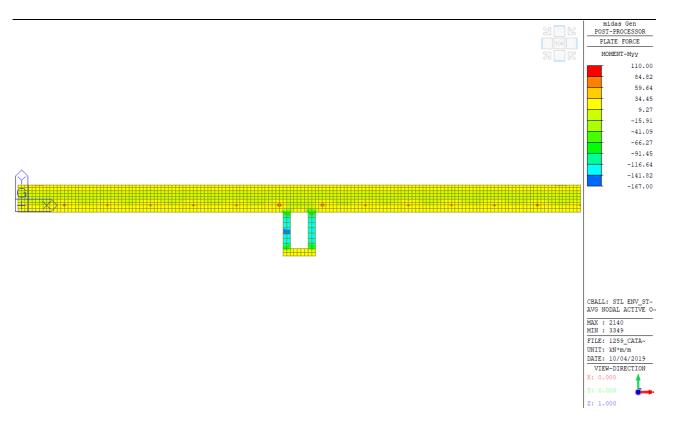


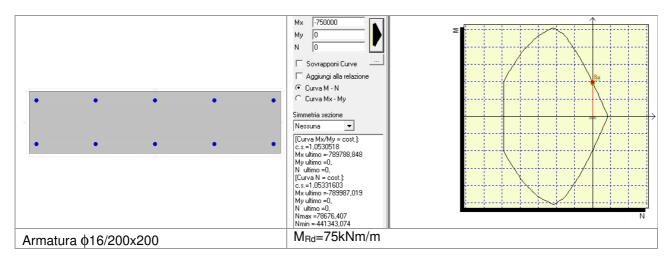
Figura 31- Inviluppo dei momenti M_{xx} limitato alle zone coperte da armatura ϕ 16/200

1259_C01.docx 104 di 113


Figura 32- Inviluppo dei momenti M_{yy} limitato alle zone coperte da armatura $\phi 16/200$

Dove la mappa cromatica è di colore bianco il momento sollecitante è maggiore del momento resistente. Serve infittire con ϕ 12/200 in corrispondenza di tali zone.


Segue la mappa cromatica con colorazione dei momenti resistenti con armatura infittita nella sola direzione non verificata.

1259_C01.docx 105 di 113

6.7.4.2 SOLETTA DI COPERTURA sp=25 cm

La soletta di copertura ha uno spessore di 250 mm ed è armata con ϕ 16/200 su entrambe le facce e in entrambe le direzioni. Dove necessario è aggiunta armatura di infittimento ϕ 20/200. La verifica allo SLU delle sezioni di larghezza di 1 m viene effettuata per il momento massimo e risulta:

Seguono le mappe cromatiche dei momenti con colorazione limitata al momento resistente esplicato dall'armatura ϕ 16/200.

1259_C01.docx 106 di 113

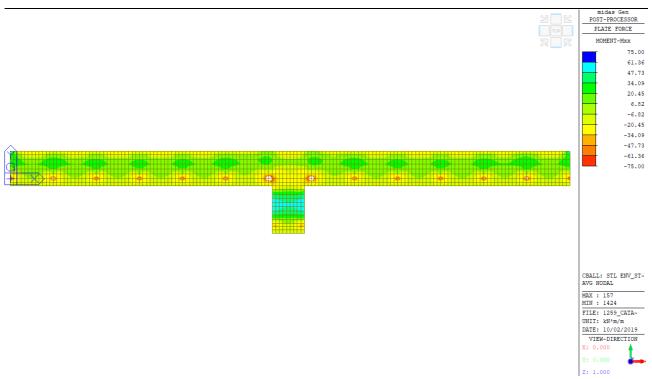
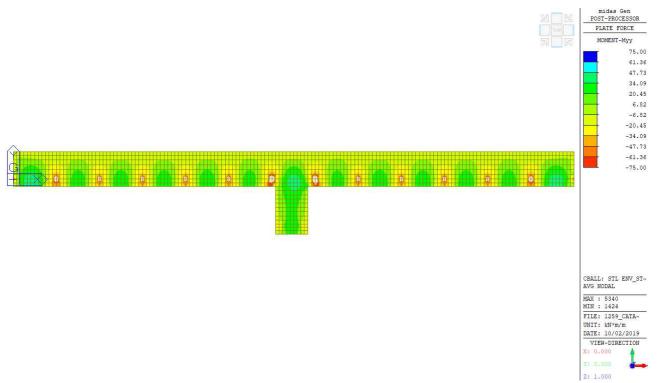
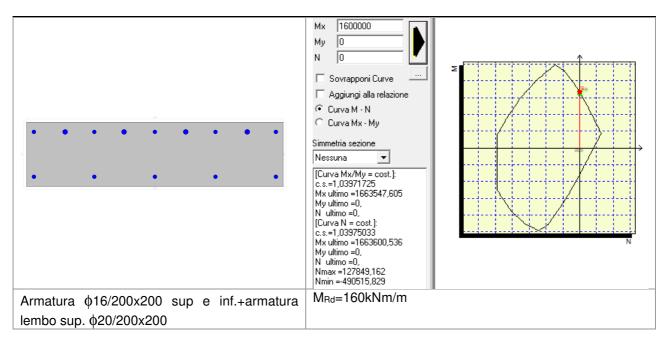
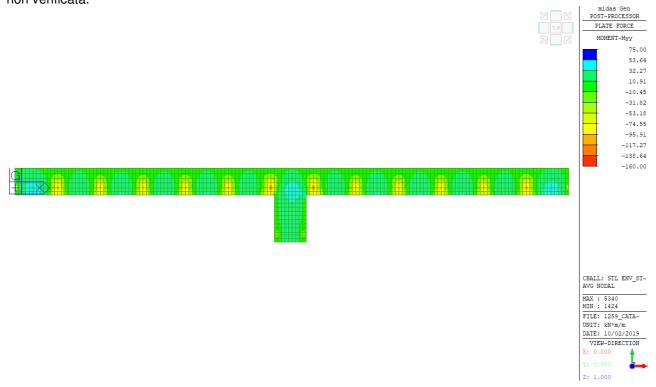


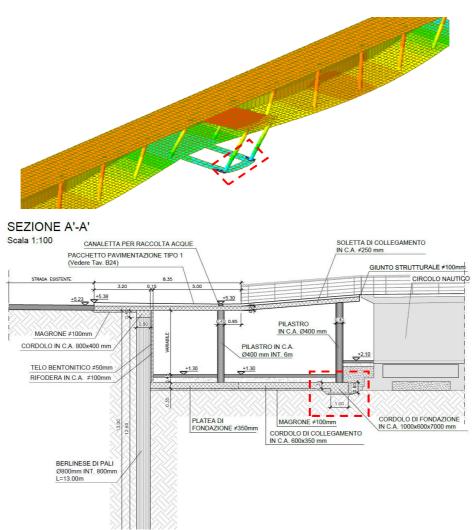
Figura 33- Inviluppo dei momenti M_{xx} limitato alle zone coperte da armatura $\phi 16/200$


Figura 34- Inviluppo dei momenti M_{yy} limitato alle zone coperte da armatura φ16/200

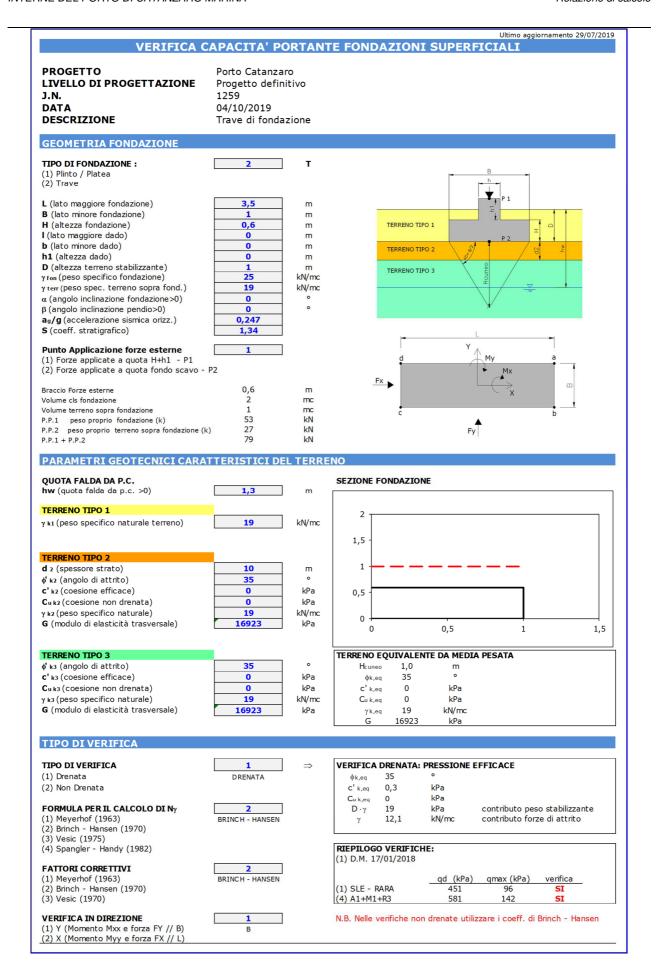
Dove la mappa cromatica è di colore bianco il momento sollecitante è maggiore del momento resistente. Serve infittire con ϕ 20/200 in corrispondenza di tali zone.

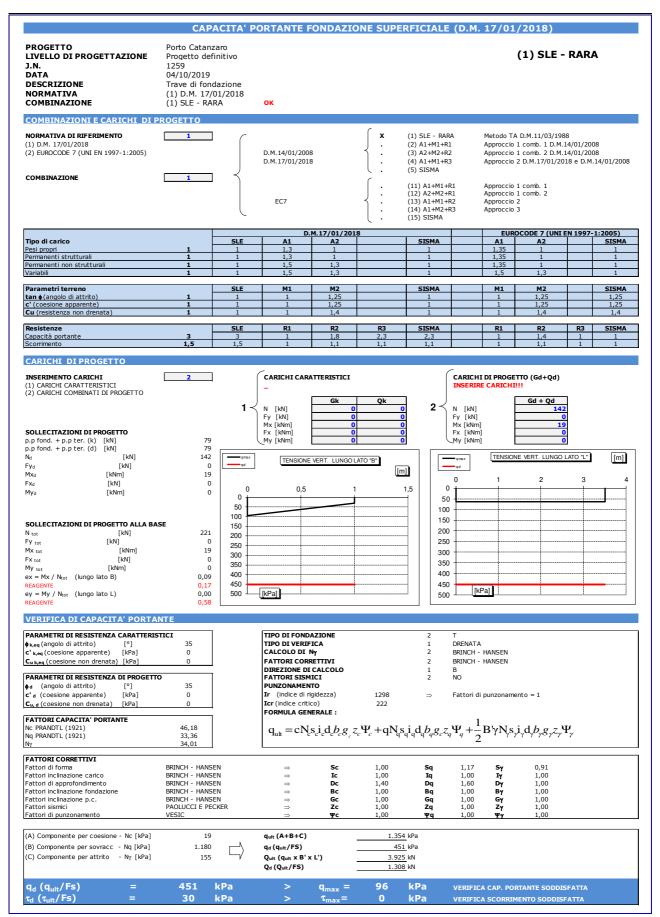
1259_C01.docx 107 di 113


Segue la mappa cromatica con colorazione dei momenti resistenti con armatura infittita nella sola direzione non verificata.

1259_C01.docx 108 di 113

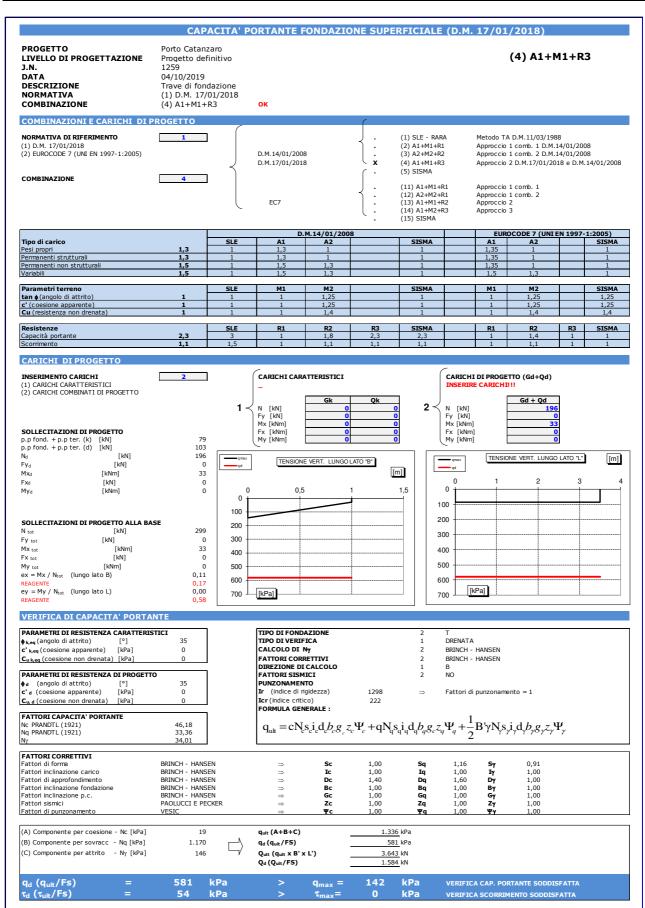
6.7.5 CAPACITA' PORTANTE TRAVE ROVESCIA


Si riportano le verifiche a capacità portante per la trave di fondazione sostenente i pilastri della soletta di collegamento tra belvedere e circolo nautico.

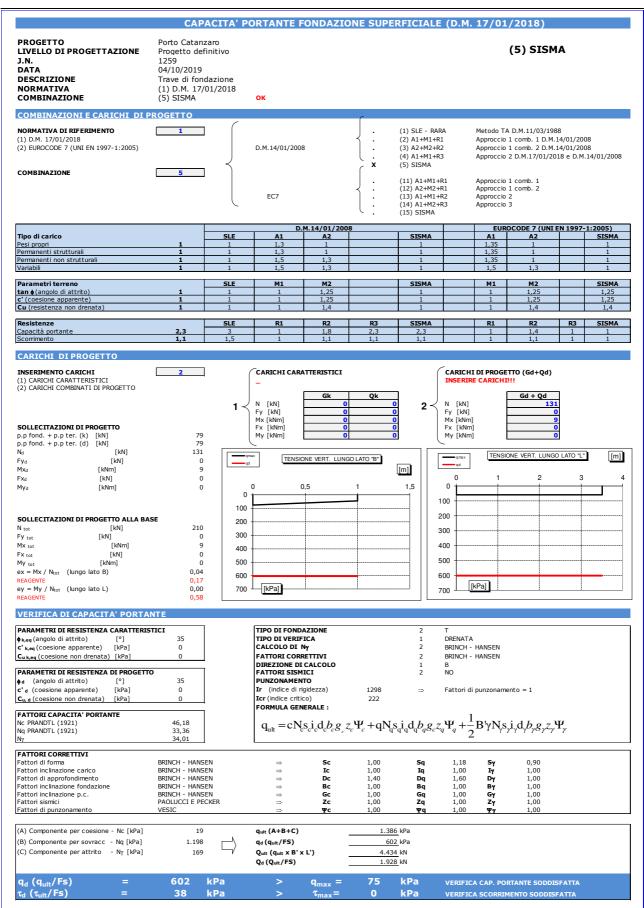

I carichi al piede del pilastro sono riportati nella seguente tabella:

	SLE	SLU	SLV
N [kN]	-142	-196	-131
M [kNm]	19	33	9

1259_C01.docx 109 di 113



1259_C01.docx 110 di 113


La verifica agli SLE risulta soddisfatta in quanto la capacità portante risulta pari a 451 kPa > 96 kPa agenti

1259_C01.docx 111 di 113

La verifica agli SLU risulta soddisfatta in quanto la capacità portante risulta pari a 581 kPa > 142 kPa agenti

1259_C01.docx 112 di 113

La verifica risulta soddisfatta in quanto la capacità portante risulta pari a 602 kPa > 75 kPa agenti.

1259_C01.docx 113 di 113