COMMITTENTE

PROGETTAZIONE:

CUP: J84H17000930009

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA

IN - tombini e sifoni ferroviari

Relazione di calcolo opere provvisionali IN38

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

NM 2 5 0 3 D 2 6 C L I N 0 0 0 3 0 0 9 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Prima Emissione	G.Coppa	Aprile 2020	P.Scarano	Aprile 2020	M. Berlingieri	Aprile 2020	A.Perego April e 2 020
		10		1.02				DOTT, NG.
								Sez Settori: a) civile earnoientate b) index piale c) dell'informazione
								N: A32428

File:NM2503D26CLIN0003009A.doc	n. Elab.:
·	

Relazione di calcolo opere provvisionali IN38

COMMESSA NM25

LOTTO 03 D 26

CODIFICA CL

DOCUMENTO iN 00 03 009

REV.

FOGLIO 2 di 125

INDICE

2.	DESCRIZIONE DELL'OPERA	4
3.	DOCUMENTI DI RIFERIMENTO	F
3.1		
4.	UNITÀ DI MISURA	
т. 5.	CARATTERISTICHE DEI MATERIALI	
5.1	CALCESTRUZZO	
5.1		
5.3		
5.4		
6.	PARAMETRI GEOTECNICI	
7.	OPERA PROVVISIONALE	
7.1		
	7.1.1 Programmi per l'analisi automatica	
	7.1.2 Modelli di calcolo	
7.2	ANALISI DEI CARICHI	14
	7.2.1 Condizioni di carico elementari	14
7.3	COMBINAZIONI DI CARICO	17
7.4	ANALISI DEI RISULTATI	19
	7.4.1 Analisi delle sollecitazioni	19
	7.4.2 Analisi degli spostamenti	22
	7.4.3 Sforzi nei tiranti	23
7.5	VERIFICHE DI STABILITÀ GLOBALE	24
7.6	VERIFICHE GEOTECNICHE	25
7.7	VERIFICA DEI TIRANTI DI ANCORAGGIO	25
	7.7.1 Lunghezza libera	25
	7.7.2 Lunghezza della fondazione dell'ancoraggio	26

Relazione di calcolo opere provvisionali IN38

COMMESSA NM25

CODIFICA

CL

LOTTO

03 D 26

DOCUMENTO **iN 00 03 009**

REV. F

Α

FOGLIO 3 di 125

	7.7.3	Armatura	29
7.8	VE	RIFICHE STRUTTURALI	30
	7.8.1	Micropali	30
	7.8.2	Trave di contrasto	30
7.9	VE	RIFICHE AGLI STATI LIMITE DI ESERCIZIO	32
Ω	ALLE(ATO OPERA PROVIVISIONALE	36

1. PREMESSA

La presente relazione di calcolo viene emessa nell'ambito della redazione degli elaborati tecnici relativi al Progetto definitivo del Raddoppio Ferroviario Codogno-Cremona-Mantova.

Oggetto della presente relazione sono le analisi e le verifiche statiche dell'opere provvisionali previste per la realizzazione del tombino IN38.

2. DESCRIZIONE DELL'OPERA

L'opera presenta altezze di scavo pari a circa 3.85m. La paratia è costituita da micropali Ø 300 mm, posti ad interasse 0.4m ed armati con un tubo Ø 244.5mm di spessore s=12.5mm. In sommità è prevista la realizzazione di un cordolo 50 cm x 50 cm, all'interno del quale i micropali risultano annegati per 30cm. E' previsto un ordine di tiranti tipo IRS posti ad interasse 2.00 m ed inclinati a 40° rispetto all'orizzontale, distante 0.50m dalla base del cordolo. Le principali caratteristiche geometriche sono riassunte di seguito.

Ø	Interasse	Arma	atura micropa	alo	Lunghez	Ordini	Interass	Incl	n.	Tiro	L _{liber}	L _{bulb}	Øperforazion	Travi
micropal	micropal				za	Tirant	e Tiranti		trefol	inizial	а	О	е	ripartizione
0	0				micropal	i			i	е				
					0									
		Ø	Sp.											
[mm]	[mm]	[mm]	[mm]	[m]	[m]		[m]	[°]		[kN]	[m]	[m]	[mm]	
300	400	244.5	12	12.3	12	1	2.0	40	3	200	8	9	180	2HEB
300	.50			0			-)	_		J	. 50	160

Tabella 1 Caratteristiche Paratie

3. DOCUMENTI DI RIFERIMENTO

3.1 NORMATIVA

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le seguenti normative.

- [1] LEGGE n. 1086 05.11.1971: "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica";
- [2] Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle «Norme Tecniche per le Costruzioni»", G.U. Serie Generale n.42 del 20.02.2008, Supplemento Ordinario n.8;
- [3] Circolare 21 gennaio 2019 n.7 " Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018";
- [4] RFI DTC SI MA IFS 001 C del 21.12.2018 "Manuale di progettazione delle opere civili";
- [5] RFI DTC SI AM MA IFS 001 B del 21.12.2018 "Manuale di progettazione delle opere civili Sezione 1 Ambiente";
- [6] RFI DTC SI PS MA IFS 001 C del 21.12.2018 "Manuale di progettazione delle opere civili Sezione 2 – Ponti e Strutture";
- [7] RFI DTC SI CS MA IFS 001 C del 21.12.2018 "Capitolato generale tecnico di appalto delle opere civili";
- [8] 1299/2014/UE Specifiche tecniche d'interoperabilità per il sottosistema "Infrastruttura" del sistema ferroviario dell'Unione Europea (18/11/2014);
- [9] Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;
- [10] UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali;
- [11] UNI EN 1998-5: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici;
- [12] Legge. 2 febbraio 1974, n. 64. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;

- [13] UNI EN 1992-1-1 "Progettazione delle strutture di calcestruzzo";
- [14] UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".

4. UNITÀ DI MISURA

Le unità di misura usate nella presente relazione sono:

• lunghezze [m]

forze [kN]

momenti [kNm]

tensioni [MPa]

Relazione di calcolo opere provvisionali IN38

CODIFICA COMMESSA LOTTO DOCUMENTO NM25 03 D 26 CL iN 00 03 009

REV. FOGLIO 8 di 125

5. CARATTERISTICHE DEI MATERIALI

5.1 Calcestruzzo

Per la realizzazione del cordolo e del micropalo, si prevede l'utilizzo di calcestruzzo avente classe di resistenza 25/30 (R_{ck} ≥ 30 N/mm²) che presenta le seguenti caratteristiche:

Classe d'esposizione: XC2

C25/30 fck ≥ 25 MPa Rck ≥ 30 MPa

Resistenza caratteristica a compressione (cilindrica)

 $f_{ck} = 0.83 \times R_{ck} =$

24.90 N/mm²

Resistenza media a compressione

 $f_{cm} = f_{ck} + 8 =$

32.90 N/mm²

Modulo elastico

 $E_{cm}=22000 \times (f_{cm}/10)^{0.3} =$

31447 N/mm²

Resistenza di calcolo a compressione

 $f_{cd} = a_{cc} \times f_{ck}/\gamma_c = 0.85^* f_{ck}/1.5 = 14.11 \text{ N/mm}^2$

Resistenza a trazione media

 $f_{ctm} = 0.30 \times f_{ck}^{2/3} =$

2.56 N/mm²

Resistenza a trazione

 $f_{ctk} = 0.7 \times f_{ctm} =$

1.79 N/mm²

Resistenza a trazione di calcolo

 $f_{ctd} = f_{ctk} / \gamma_c =$

1.19 N/mm²

Calcestruzzo per magrone

Classe di resistenza = C12/15

Relazione di calcolo opere provvisionali IN38

COMMESSA LOTTO
NM25 03 D 26

CODIFICA CL

DOCUMENTO iN 00 03 009 REV. FOGLIO **A** 9 di 125

5.2 Acciaio per cemento armato

Tipo B450 (controllato in stabilimento)

f_{yk} = 450 MPa Tensione caratteristica di snervamento

 $f_{yd} = f_{yk} / 1.15 =$ 391.30 MPa Resistenza di calcolo

 $\sigma_s = 0.75 \text{ f}_{yk} = 337.50 \text{ MPa}$ Tensione limite in condizione di esercizio (comb. Rara)

E_s = 210000 MPa Modulo elastico

5.3 Acciaio armonico per tiranti

Si riassumono di seguito le caratteristiche dei tiranti previsti:

Diametro nominale 0.6"

Sezione nominale singolo trefolo 139 mm²

Tensione caratteristica di rottura f_{ptk} 1860 MPa

Tensione caratteristica all'1% di deformazione tot. f _{p(1)k} 1670 MPa

5.4 Acciaio per carpenteria metallica

Provvisionali Acciaio S275

6. PARAMETRI GEOTECNICI

Le caratteristiche geotecniche del terreno in situ, in accordo con Relazione Geotecnica sono di seguito riportati:

UNITA'	DA	Α	q _c	Nspt	γn	φ'	c'	Cu	G₀	OCR	CR	RR	Cαε	kν
(-)	(m pc)	(m pc)	(MPa)	(colpi/30cm)	(°)	(kPa)	(kPa)	(MPa)	(MPa)	(-)	(-)	(-)	(%)	[m/s]
WRs1 ⁽¹⁾	0.0	1-1.5	2-4	n.d	19.0	34	0	1	40	-	-	-	ı	2E-7
WRa1	0.0	4.0-6.5	1-3	14-18 ⁽²⁾	19.0	27	0	100	60	3.0	0.18	0.036	0.12	5E-8
WRa2	4.0-6.5	18.0- 22.0	0.8-1.2	6-16	19.0	25	0	50	50-70	2.0	0.16	0.032	0.15	1E-8
Rs1	18.0-22.0	23.0- 24.0	5-7	21,23 ⁽³⁾	19.0	33	0	-	110	-	-	-	-	5E-7
RMa	23.0-24.0	35.0	2-10	14-37	19.0	25	0	60 fino a 24 poi 100	90	1.0	-	-	-	1E-8

Profondità della falda: da 2.0 m da pc si alza progressivamente fino a valori pari a 0.5 m da pc al km 61+100, torna poi a valori di circa 2 m da pc al km 62+200.

Note:

- (1) Rinvenuto localmente in SCPTU14 e S5;
- (2) presenti due valori isolati pari a 7 e 35;
- (3) due soli valori disponibili.

Legenda

qc = valori di riferimento ottenuti da prove CPT/CPTU nella tratta in oggetto;

Nspt = valori di riferimento ottenuti da prove SPT nella tratta in oggetto;

- γ_n = peso di volume naturale;
- ϕ' = angolo di attrito "operativo";
- c' = intercetta di coesione "operativa;
- Cu = resistenza al taglio non drenata;
- G_0 = modulo di taglio iniziale riferito alle pressioni efficaci geostatiche;
- OCR = Grado di sovraconsolidazione;
- CR e RR = coefficienti di consolidazione primaria nel piano ϵ log (σ), CR = rapporto di compressione e RR rapporto di ricompressione;
- $c_{\alpha\epsilon}$ = coefficiente di consolidazione secondaria nel piano ϵ log(σ);
- k_v = coefficiente di permeabilità riferito a pressioni di consolidazione pari a quelle geostatiche e a problemi di flusso diretto principalmente nella direzione verticale.

Tabella 2 Stratigrafia e parametri geotecnici caratteristici – Tratta 3 dal km 59+900 al km 62+200

I parametri geotecnici impiegati per il rilevato ferroviario sono:

$\gamma =$	20.00	kN/m³	peso di volume naturale
φ' =	38	o	angolo di resistenza al taglio
c' =	0.00	kPa	coesione drenata

Durante la fase di costruzione si considera la quota di falda 0.50m al di sotto del fondo scavo.

7. OPERA PROVVISIONALE

7.1 MODELLAZIONE NUMERICA

7.1.1 Programmi per l'analisi automatica

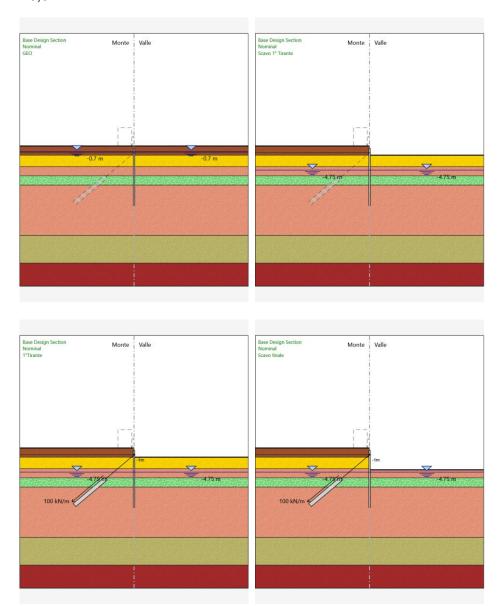
Lo stato tenso-deformativo della paratia è stato investigato mediante il software di calcolo PARATIEPLUS, programma non lineare agli elementi finiti per l'analisi di strutture di sostegno flessibili.

7.1.2 Modelli di calcolo

Si è considerato un comportamento piano nelle deformazioni, analizzando una striscia di parete di larghezza unitaria. La realizzazione dello scavo sostenuto da paratie è seguita in tutte le varie fasi attraverso un'analisi statica incrementale: ogni passo di carico coincide con una ben precisa configurazione caratterizzata da una quota di scavo, da un insieme di puntoni e tiranti applicati e da una ben precisa disposizione di carichi applicati.

Nella modellazione è stata implementata la seguente successione di step:

- Step 1: Condizione Geostatica In tale step vengono definiti i micropali;
- Step 2: Scavo per la realizzazione del 1° Tirante;
- Step 3: Realizzazione del 1° Tirante;
- Step 4: Scavo fino a quota fondo scavo;
- Step 5: Applicazione del carico ferroviario.


Nella definizione della quota di fondo scavo si è tenuto conto di quanto prescritto dalla normativa NTC 2018 § 6.5.2.2 approfondendo lo scavo. Infatti il modello geometrico deve tenere conto delle possibili variazioni del profilo del terreno a monte e a valle del paramento rispetto ai valori nominali.

Nel caso in cui la funzione di sostegno è affidata alla resistenza del volume di terreno a valle dell'opera, la quota di valle dove essere diminuita di una quantità pari al minore dei seguenti valori:

- 10% dell'altezza di terreno da sostenere nel caso di opere a sbalzo;

GRUPPO FERROVIE DELLO STATO ITALIANE			EA CODOG A - MANTO	NO – CREMO VA	NA – M	ANTOVA
Relazione di calcolo opere provvisionali IN38	COMMESSA	LOTTO 03 D 26	CODIFICA	DOCUMENTO	REV.	FOGLIO

- 10 % della differenza di quota fra il livello inferiore di vincolo e il fondo scavo nel caso di opere vincolate;
- 0,5 m.

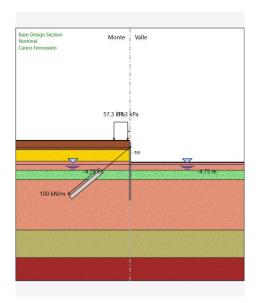


Tabella 3 – Stage di analisi

7.2 ANALISI DEI CARICHI

7.2.1 Condizioni di carico elementari

7.2.1.1 Peso Proprio

Il peso proprio della struttura è calcolato in base alla geometria degli elementi strutturali e al peso specifico assunto per i materiali:

$$\gamma_{cls}$$
=25.0 kN/m³

7.2.1.2 Ballast

La presenza della sovrastruttura ferroviaria è stata simulata cautelativamente ipotizzando il piano campagna ad una quota superiore di 0.50m rispetto all'estradosso del cordolo dei micropali.

7.2.1.3 Spinta statica delle terre

Nel modello di calcolo impiegato dal software di calcolo PARATIE, la spinta del terreno viene determinata investigando l'interazione statica tra terreno e la struttura deformabile a partire da uno stato di spinta a riposo del terreno sulla paratia.

I parametri che identificano il tipo di legge costitutiva possono essere distinti in due sottoclassi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo K_0 , il coefficiente di spinta attiva K_a e il coefficiente di spinta passiva K_p .

Il coefficiente di spinta a riposo fornisce lo stato tensionale presente in sito prima delle operazioni di scavo. Esso lega la tensione orizzontale efficace σ' h a quella verticale σ'_{\vee} attraverso la relazione:

$$\sigma'_h = K_0 \cdot \sigma'_v$$

 K_0 dipende dalla resistenza del terreno, attraverso il suo angolo di attrito efficace ϕ' e dalla sua storia geologica. Si può assumere che:

$$K_0 = K_0^{NC} \cdot (OCR)^m$$

dove

$$K_0^{NC} = 1 - \operatorname{sen} \phi'$$

è il coefficiente di spinta a riposo per un terreno normalconsolidato (OCR=1). OCR è il grado di sovraconsolidazione e m è un parametro empirico, di solito compreso tra 0.4 e 0.7.

I coefficienti di spinta attiva e passiva sono forniti dalla teoria di Rankine per una parete liscia dalle seguenti espressioni:

$$K_a = \tan^2(45 - \phi'/2)$$

$$K_p = \tan^2(45 + \phi'/2)$$

Per tener conto dell'angolo di attrito δ tra paratia e terreno il software PARATIE impiega per Ka e Kp la formulazione rispettivamente di Coulomb e Caquot – Kerisel.

Formulazione di Coulomb per ka

$$k_{a} = \frac{cos^{2}(\phi' - \beta)}{cos^{2}\beta \cdot cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{sen(\delta + \phi') \cdot sen(\phi' - i)}{cos(\beta + \delta) \cdot cos(\beta - i)}}\right]^{2}}$$

dove:

φ' è l'angolo di attrito del terreno

β è l'angolo d'inclinazione del diaframma rispetto alla verticale

δ è l'angolo di attrito paratia-terreno

i è l'angolo d'inclinazione del terreno a monte della paratia rispetto all'orizzontale Il valore limite della tensione orizzontale sarà pari a

$$\sigma'_h = K_a \cdot \sigma'_v - 2 \cdot c' \cdot \sqrt{K_a}$$

$$\sigma'_h = K_p \cdot \sigma'_v + 2 \cdot c' \cdot \sqrt{K_p}$$

a seconda che il collasso avvenga in spinta attiva o passiva rispettivamente. c' è la coesione drenata del terreno.

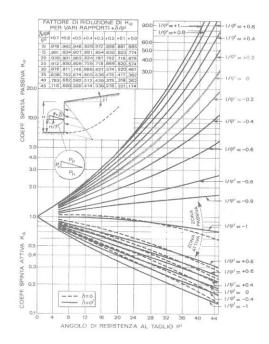


Figura 1 – Formulazione di Caquot – Kerisel per Kp che considera superfici di rottura curvilinee

7.2.1.4 Spinta da sovraccarico accidentale

Le azioni indotte dal traffico ferroviario agenti a monte della paratia, LM71 o SW/2, sono assunte pari ad un carico uniformemente distribuito su una lunghezza di 3m ad un livello di 0.70 m dal piano del ferro. Il coefficiente di amplificazione dinamica è stato assunto pari a 1.

Il modello di carico LM71 è costituito dalla presenza del locomotore con gli assi da 250kN disposti ad interesse longitudinale pari ad 1.60m e da un carico distribuito di 80kN/m. Il coefficiente di adattamento è pari a 1.1. Il carico complessivo agente vale pertanto:

$$q_{LM71} = (250 \text{ kN x 4}) \text{ x } 1.1 / (6.4 \text{ x 3}) = 57.29 \text{ kPa}$$

Il treno di carico SW/2 è pari a 150 kN/m, con coefficiente di adattamento è pari a 1.0.

$$Q_{SW/2} = 150 \text{ kN x } 1.0 \text{ /(3)} = 50.00 \text{ kPa}$$

Nell'analisi condotta tale treno di carico non risulta dimensionante.

7.2.1.5 Azione sismica

Le verifiche sono state omesse in quanto il progetto prevede che il periodo di costruzione duri meno di 2 anni.

FOGLIO

17 di 125

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 NM25
 03 D 26
 CL
 IN 00 03 009
 A

7.3 COMBINAZIONI DI CARICO

La verifica di stabilità globale del complesso opera di sostegno-terreno è stata effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Le rimanenti verifiche sono state effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti:

Combinazione 1: (A1+M1+R1)

• Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II, con i coefficienti γ_R del gruppo R1 pari all'unità. In particolare nelle verifiche nei confronti di stati limite ultimi geotecnici, si è considerato lo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno. Le analisi sono state condotte con la Combinazione 2 (A2+M2+R1), nella quale i parametri di resistenza del terreno sono ridotti tramite i coefficienti parziali del gruppo M2, i coefficienti γ_R sulla resistenza globale (R1) sono unitari e le sole azioni variabili sono amplificate con i coefficienti del gruppo A2. Nelle verifiche nei confronti di stati limite per raggiungimento della resistenza negli elementi strutturali, tenendo in conto di eventuali puntoni o strutture di controventamento, l'analisi sono state svolte utilizzando la Combinazione 1 (A1+M1+R1), nella quale i coefficienti sui parametri di resistenza del terreno (M1) e sulla resistenza globale del sistema (R1) sono unitari, mentre le azioni permanenti e variabili sono amplificate mediante i coefficienti parziali del gruppo A1.

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

<i>"</i> 1								
Coefficiente								
favorevoli	γG1	0,90	1,00	1,00				
sfavorevoli		1,10	1,35	1,00				
favorevoli	γG2	0,00	0,00	0,00				
sfavorevoli		1,50	1,50	1,30				
favorevoli	γв	0,90	1,00	1,00				
sfavorevoli		1,50	1,50	1,30				
favorevoli	γο	0,00	0,00	0,00				
sfavorevoli	. ~	1,45	1,45	1,25				
favorevoli	γOi	0,00	0,00	0,00				
sfavorevoli	. ~	1,50	1,50	1,30				
favorevole	γP	0,90	1,00	1,00				
sfavorevo-		1,00(5)	1,00(6)	1,00				
le								
favorevole	γCe	0,00	0,00	0,00				
sfavorevo-	d	1,20	1,20	1,00				
le								
	favorevoli sfavorevoli favorevoli sfavorevoli favorevoli sfavorevoli favorevoli sfavorevoli favorevoli sfavorevole sfavorevole sfavorevole sfavorevole	favorevoli sfavorevoli favorevoli favorevole sfavorevole favorevole	favorevoli γG1 0,90 sfavorevoli 1,10 favorevoli γG2 0,00 sfavorevoli 1,50 favorevoli γB 0,90 sfavorevoli 1,50 favorevoli γQ 0,00 sfavorevoli 1,45 favorevoli γQi 0,00 sfavorevoli 1,50 favorevole γP 0,90 sfavorevole γP 0,90 sfavorevole γCe 0,00 sfavorevole γCe 0,00 sfavorevole γCe 1,20	favorevoli γG1 0,90 1,00 sfavorevoli 1,10 1,35 favorevoli γG2 0,00 0,00 sfavorevoli 1,50 1,50 favorevoli 1,50 1,50 sfavorevoli 1,50 1,50 favorevoli γQ 0,00 0,00 sfavorevoli 1,45 1,45 favorevoli 1,50 1,50 favorevole γP 0,90 1,00 sfavorevole γP 0,90 1,00 sfavorevole γCe 0,00 0,00 sfavorevole d 1,20 1,20				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tabella 4– Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU (Tab.5.2.V NTC2018)

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{ m M}$		
Tangente dell'angolo di resistenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 5- Coefficienti parziali per i parametri geotecnici del terreno (Tab.6.2.II NTC2018)

	., .
COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

Tabella 6: Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo (Tabella 6.8.I – NTC 2018)

7.4 ANALISI DEI RISULTATI

7.4.1 Analisi delle sollecitazioni

Nei paragrafi seguenti si riportano i risultati delle analisi condotte per i diversi modelli implementati, con le indicazioni dei valori massimi delle sollecitazioni flettenti e taglianti e delle rispettive profondità. I valori riportati sono relativi all'analisi al metro lineare.

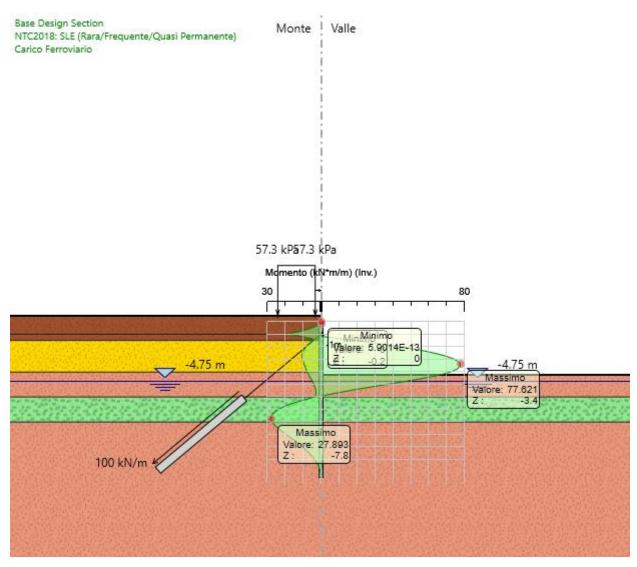


Figura 2 – Modello SLE: Inviluppo Diagramma del Momento

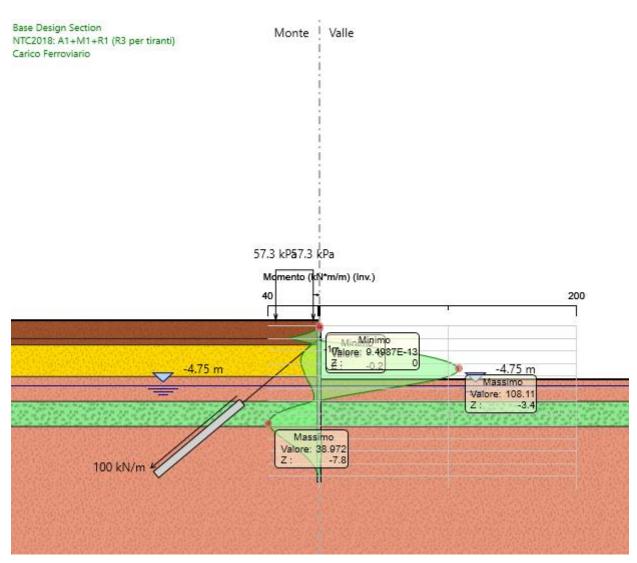


Figura 3 – Modello SLU: Inviluppo Diagramma del Momento

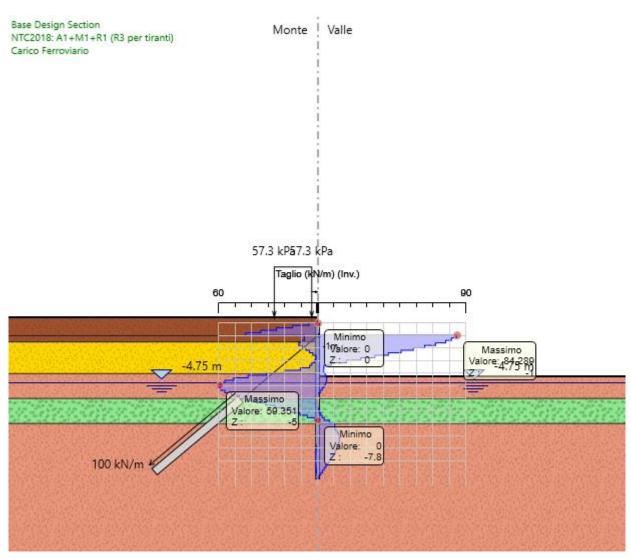


Figura 4 – Modello SLU: Inviluppo Diagramma del Taglio

7.4.2 Analisi degli spostamenti

Di seguito si forniscono le indicazioni dei valori massimi degli spostamenti.

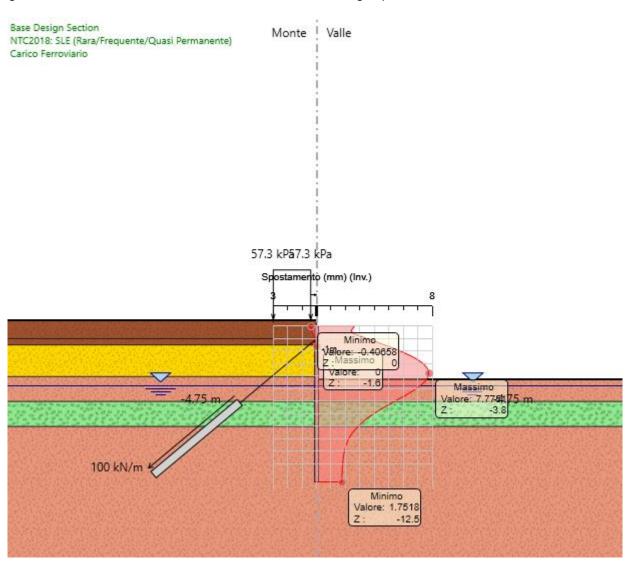


Figura 5 – Modello SLE: Inviluppo degli spostamenti

Lo spostamento massimo risulta pari a circa 8 mm.

7.4.3 Sforzi nei tiranti

Di seguito si forniscono le indicazioni dei valori massimi di sollecitazione.

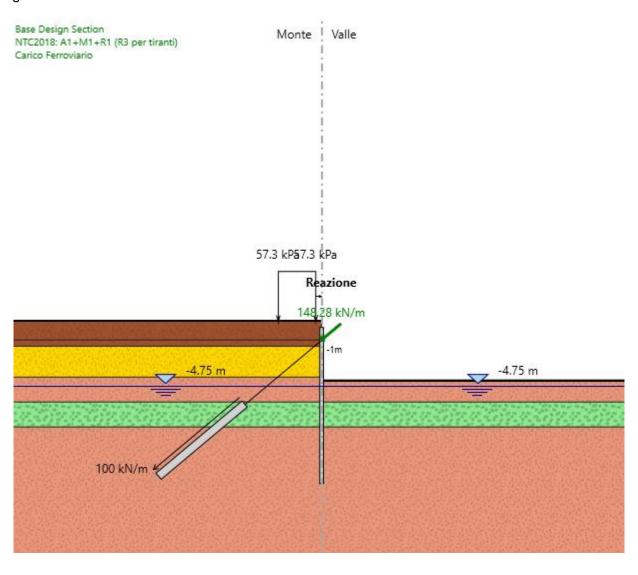


Figura 6 – Modello SLU: Inviluppo Sollecitazioni nei Tiranti

7.5 VERIFICHE DI STABILITÀ GLOBALE

In accordo alle NTC – par. 6.5.3.1.2, le verifiche di stabilità globale dell'insieme terreno-opera è stata condotta secondo l'Approccio 1 – combinazione 2 (A2 + M2 + R2), tenendo conto dei coefficienti parziali riportati alle tabelle 6.2.I, 6.2.II e 6.8.1 delle suddette NTC.

I risultati ottenuti assicurano sulla stabilità globale dell'opera, garantendo, lungo tutte le superfici di scivolamento analizzate, dei coefficienti di sicurezza conformi a quanto richiesto dalle NTC.

L'analisi di stabilità globale della berlinese tirantata è stata condotta mediante il programma Paratie Plus, applicando il metodo di Bishop. Le superfici analizzate presentano coefficiente di sicurezza minimo pari a 1.36.

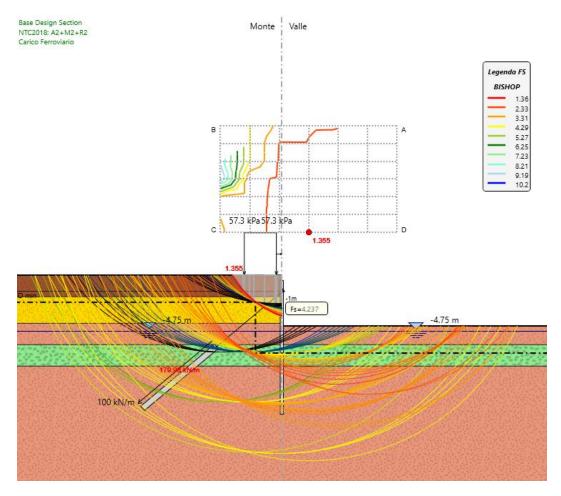


Figura 7 – Risultati dell'analisi di stabilità globale

7.6 VERIFICHE GEOTECNICHE

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Max. Rapporto Spinte (Efficace/Passiva): 0.36

Combinazione A2+M2+R1

7.7 VERIFICA DEI TIRANTI DI ANCORAGGIO

7.7.1 Lunghezza libera

La lunghezza libera dei tiranti è calcolata imponendo che l'ancoraggio sia posizionato oltre la potenziale superficie di rottura inclinata di 45 - Ø/2 sull'orizzontale.

$$L_{lib} = (h_{paratia} - h_{tirante}) \frac{sen(45 - \varphi/2)}{sen(45 + \varphi/2 + \theta)}$$

dove:

h_{paratia} = altezza della paratia;

 $h_{tirante}$ = quota del tirante rispetto alla testa della paratia;

φ = angolo di attrito del terreno;

θ = inclinazione del tirante sull'orizzontale.

CONDIZIONE STATICA			
h _{paratia}	=	12	m
$\begin{array}{c} h \ \ \text{tirante_Testa_Paratia} \\ \phi \\ \theta \end{array}$	= = =	1 25 40	m °
L _{lib_min}	=	6.26	m

L_{libera} di progettto = 8.00 m

7.7.2 Lunghezza della fondazione dell'ancoraggio

Il dimensionamento geotecnico ed in particolare la verifica allo sfilamento della fondazione dell'ancoraggio è stata svolta confrontando la massima azione di progetto sviluppata in tutti gli stage di analisi, con la resistenza di progetto, in accordo a quanto previsto dalle NTC2018 paragrafo 6.6 e 7.11.6.

La resistenza allo sfilamento T_{lim} è calcolata in base alla seguente relazione:

$$T_{lim} = \pi \Phi_{perf} \alpha L_{fond} \tau_{lim}$$

in cui:

 Φ_{perf} diametro della perforazione, pari a 180mm;

α coefficiente moltiplicativo per il calcolo del diametro del bulbo;

L_{fond} lunghezza di ancoraggio di progetto;

τ_{lim} tensione limite allo sfilamento (dipendente dai terreni interessati).

La tensione limite τ_{lim} di progetto è stata calcolata nel rispetto delle NTC2018 (§ 6.6.2), considerando valori di aderenza limite, come indicato negli abachi seguenti in cui le curve AL.1 e SG.1 sono valide per bulbi realizzati con iniezioni ripetute (IRS), mentre le curve AL.2 e SG.2 per bulbi realizzati con iniezioni semplici (IGU).

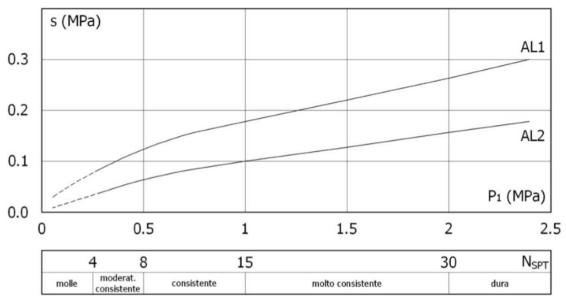


Figura 8 – Abaco per il calcolo della tensione limite (s) per argille e limi

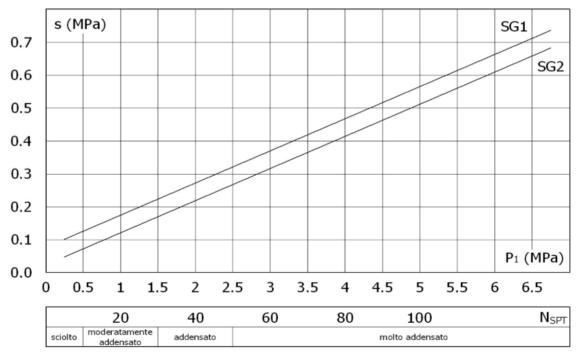


Figura 9 – Abaco per il calcolo della tensione limite (s) per sabbie e ghiaie

Il valore di aderenza limite assunto conservativamente nelle verifiche geotecniche è pari a 100kPa. Il coefficiente α per la determinazione del diametro del bulbo nei terreni in esame è assunto pari a 1.4 (tiranti IRS).

TERRENO	Valori di α				
	IRS	IGU			
Ghiaia	1.8	1.3 - 1.4			
Ghiaia sabbiosa	1.6 - 1.8	1.2 - 1.4			
sabbia ghiaiosa	1.5 - 1.6	1.2 - 1.3			
Sabbia grossa	1.4 - 1.5	1.1 - 1.2			
Sabbia media	1.4 - 1.5	1.1 - 1.2			
Sabbia fine	1.4 - 1.5	1.1 -1.2			
Sabbia limosa	1.4 - 1.5	1.1 - 1.2			
Limo	1.4 - 1.6	1.1 - 1.2			
Argilla	1.8 - 2.0	1.2			
Marne	1.8	1.1 - 1.2			
Calcari marnosi	1.8	1.1 - 1.2			
Calcari alterati o fratturati	1.8	1.1 - 1.2			
Roccia alterata e/o fratturata	1.2	1.1			

Tabella 7 – Tablla per il calcolo di α

I valori caratteristici delle resistenze sono stati quindi dedotti ricorrendo al fattore di correlazione ξ_3 funzione del numero di profili di indagine come esposto in tabella 6.6.III delle NTC2018. Il fattore ξ_3 utilizzato nelle verifiche geotecniche è pari a 1.80.

Infine la resistenza unitaria di progetto R_{ad} , è ottenuta applicando alla resistenza caratteristica i coefficienti parziali γ_r riportati nella tabella 6.6.1 delle NTC 2018. In particolare per i tiranti provvisori in esame è assunto γ_r pari a 1.1. Si riportano di seguito i risultati delle verifiche, con riferimento alle dimensioni della fondazione indicata nella Tabella 8.

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Sfruttamento GEO	Verifica
I TIRANTE	1°Tirante	200	360	0.556	√

I TIRANTE	Scavo finale	207	360	0.574	\checkmark
I TIRANTE	Carico Ferroviario	223	360	0.619	√

Tabella 8 - Verifiche geotecniche dei tiranti

7.7.3 Armatura

La verifica strutturale dell'ancoraggio è stata effettuata controllando la trazione del tratto libero costituito dai trefoli in acciaio armonico. Nello specifico, il tiro di progetto deve risultare inferiore alla resistenza di progetto a trazione del tratto libero, calcolata come segue:

 $R_d = A_{trefoli} x f_{p(1)k}/v_r$

Dove:

A_{trefoli} = area complessiva degli n trefoli aventi ognuno area trasversale di 139 mm²

 $f_{p(1)k}$ = resistenza caratteristica allo 0.1% di deformazione (tensione di snervamento)

γ_r = fattore parziale di resistenza dell'acciaio pari a 1.15

La verifica suddetta è condotta considerando le azioni sollecitanti sul tirante ottenute dall'approccio A1+M1+R3.

Nel rispetto della gerarchia delle resistenze, come prescritto dalle NTC al 6.6.2, essendo previsto l'impiego di trefoli in acciaio armonico, è stato verificato che la capacità del bulbo a sfilamento sia inferiore alla capacità strutturale propria del tratto libero.

Si riportano di seguito i risultati delle verifiche per la condizione più gravosa. Si rimanda all'allegato di calcolo per maggiori dettagli.

Tirante	Stage	Sollecitazione (kN)	Resistenza STR (kN)	Sfruttamento STR	Verifica	Gerarchia delle resistenze
I TIRANTE	1°Tirante	270	606	0.446	$\sqrt{}$	\checkmark
I TIRANTE	Scavo finale	279	606	0.461	~	\checkmark
I TIRANTE	Carico Ferroviario	297	606	0.49	\checkmark	\checkmark

Tabella 9 – Verifiche strutturali dei tiranti

7.8 VERIFICHE STRUTTURALI

7.8.1 Micropali

Di seguito si riporta la verifica della paratia costituita da micropali Φ 300 interasse 0.40m armati con profili tubolari Φ 244.5 spessore 12.5mm.

Combinazione A1+M1+R1

Max. momento (assoluto) [kNm/m]	108.11	Z = -3.4m
---------------------------------	--------	-----------

Max. taglio [kN/m] Z = -1.2m

Massimo sfruttamento in flessione 0.245

Massimo sfruttamento a taglio 0.038

7.8.2 Trave di contrasto

La verifica delle travi di ripartizione è stata effettuata considerando tutte le azioni sui tiranti di ogni ordine per tutte le fasi di calcolo. Il comportamento globale della trave è schematizzabile come quello di trave semplicemente appoggiata in corrispondenza delle testate dei tiranti. Si considera quindi un carico uniformemente distribuito sulla trave che equilibra le reazioni dei tiranti ricavate dal programma di calcolo.

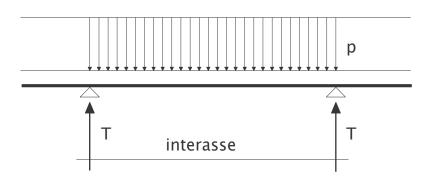


Figura 10 - Modello di calcolo delle travi di ripartizione

GRUPPO FERROVIE DELLO STATO ITALIANE			EA CODOG A - MANTO	NO – CREMO VA	NA – M	ANTOVA
Relazione di calcolo opere provvisionali IN38	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
The state of the s	NM25	03 D 26	CL	iN 00 03 009	Α	31 di 125

Si riportano di seguito le verifiche per la condizione più gravosa. Si rimanda all'allegato di calcolo per ulteriori dettagli.

Trave di Ripartizion e	Connession e	Sezion e	Material e	Pass o orizz. (m)	Stage	Carico distribuit o (kN/m)	Sfruttament o Momento	Sfruttament o taglio	Instabilit à	Verific a
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	2	1°Tirante	135	0.427	0.347	0	V
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	2	Scavo finale	139.56	0.442	0.359	0	V
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	2	Carico Ferroviari o	148.28	0.469	0.381	0	V

Tabella 10 – Verifiche travi di contrasto

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 IN 00 03 009
 A
 32 di 125

7.9 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Le caratteristiche di deformabilità delle opere di sostegno della trincea devono essere tali da garantire che al passaggio dei convogli sul binario a monte delle paratie la geometria dell'armamento risponda ai livelli qualitativi fissati dagli standard di cui al documento RFI TCAR ST AR 01 001 D.

Nel caso particolare, i parametri indicati dal suddetto documento sui quali ha influenza la deformazione della paratia sono il difetto di sopraelevazione ΔH , lo scarto di livello trasversale SCARTXL e lo sghembo γ , che devono rispettare i limiti indicati nei paragrafi 6 e 7 della parte III (livelli di qualità geometrica correnti) della RFI TCAR ST AR 01 001 D.

In dettaglio, per il 1° livello di qualità (geometria del binario che non richiede la programmazione di interventi correttivi) devono essere verificate le seguenti diseguaglianze:

 $\Delta H \ll 10 \text{ mm}$ SCARTXL $\ll 4 \text{ mm per}$ 16

160 km/h < V <= 300 km/h

 $\gamma_{3m} < 4.5\%$

 $\gamma_{9m} < 3.5\%$

per V <= 200 km/h

A vantaggio di sicurezza possiamo assumere che il binario subisca deformazioni nel punto ubicato in corrispondenza della sezione di calcolo della paratia e che tali deformazioni si esauriscano già 3 m prima e 3 m dopo tale punto. Con tale assunzione, neutralizzando l'eventuale contributo della sopraelevazione di progetto h, lo scarto di livello trasversale SCARTXL coincide con il livello trasversale XL e quest'ultimo coincide a sua volta con ΔH . In tali condizioni il vincolo da rispettare è quello di 4 mm sul valore di SCARTXL, le limitazioni su ΔH , γ 3m e γ 9m risultando soddisfatte di conseguenza.

In base alla definizione di XL, pertanto, occorre verificare che non superi i 4 mm la differenza di abbassamento del terreno a tergo della paratia fra due punti distanti fra loro 1.5 m ed ubicati in corrispondenza delle due rotaie del binario più vicino all'opera di sostegno.

Il software PARATIE PLUS offre, come strumento di post-processing, un collegamento tra i risultati prodotti dall'analisi del comportamento laterale e i cedimenti in superficie, sfruttando alcune delle correlazioni di letteratura. Il metodo utilizzato è quello di Boone & Westland (2005).

Dai risultati forniti dal software sono stati estrapolati i valori dei cedimenti superficiali nella fase di calcolo corrispondente all'applicazione del carico da traffico e quelli alla fase antecedente. Dalla differenza dei suddetti valori sono stati ottenuti i cedimenti relativi al solo carico da traffico, sui quali sono stati calcolati gli scarti tra punti a distanza 1.5 m.

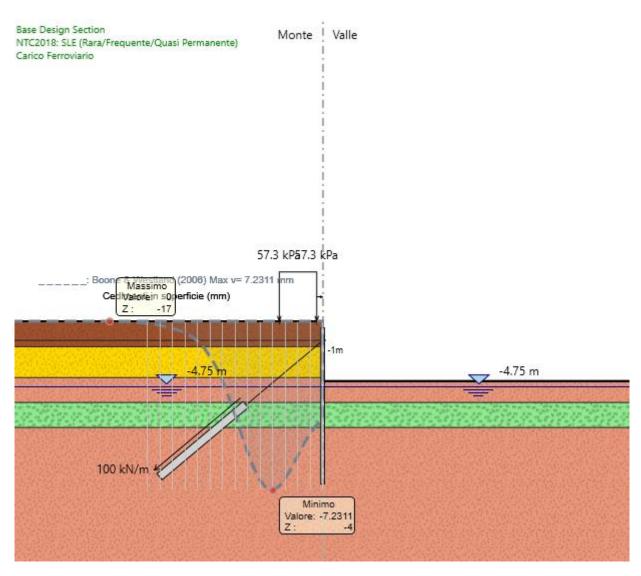


Figura 11 - Cedimenti superficiali - Fase: applicazione del carico da traffico

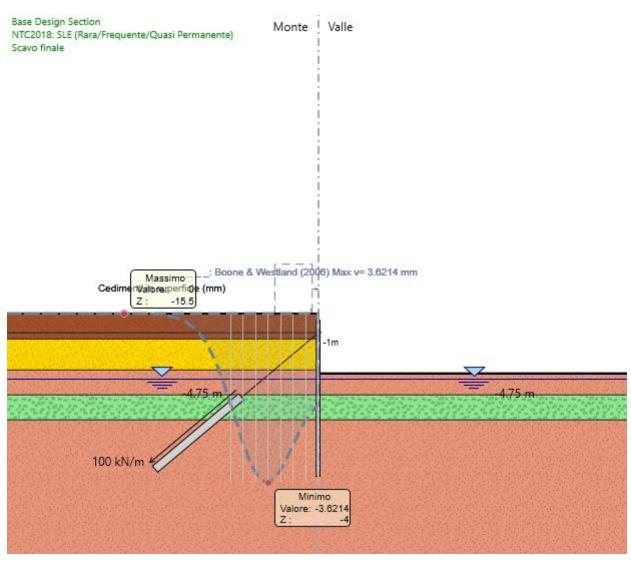


Figura 12 - Cedimenti superficiali - Fase: raggiungimento fondo scavo

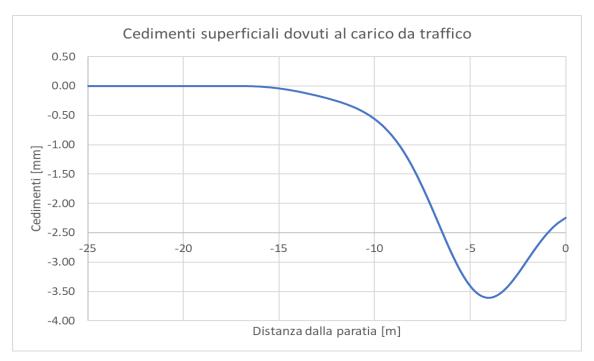


Figura 13 - Cedimenti indotti dal carico ferroviario

Dall'analisi condotta risulta:

 $SCARTXL_{MAX} = 0.7 \text{ mm} \le 4.00 \text{mm}$

La verifica risulta quindi soddisfatta.

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 IN 00 03 009
 A
 36 di 125

8. ALLEGATO - OPERA PROVVISIONALE

1. Descrizione della Stratigrafia e degli Strati di Terreno

Tipo : HORIZONTAL Quota : 10 m OCR : 1

Tipo: HORIZONTAL Quota: -1 m OCR: 1

Tipo: HORIZONTAL Quota: -1.5 m

OCR:1

Tipo: HORIZONTAL Quota: -4 m OCR: 1

Tipo: HORIZONTAL Quota:-6 m OCR:1

Tipo: HORIZONTAL Quota: -8 m OCR: 1

Tipo: HORIZONTAL Quota: -19 m OCR: 1

Tipo : HORIZONTAL Quota : -25 m

OCR:1

Strato di Terreno	Terreno	γ dry	γ sat	ø' ø	icvøp c' Su	Modulo Elastico Eu	Evc	Eur	Ah Av exp	Pa I	Rur/Rvc Rvc	Ku	Kvc	Kur
		kN/m ³	³kN/m	3 •	°°kPakPa		kPa	kPa	ı	ιРа	kPa	κN/m³	kN/m³	kN/m³
1	RILEVATO FERROVIARIO	20	20	38	0	Constant	15000	24000						
2	RILEVATO FERROVIARIO	20	20	38	0	Constant	15000	24000						
3	WRA1	19	19	27	0	Constant	15000	24000						
4	WRA2	19	19	25	0	Constant	25000	40000						
5	WRS2	19	19	33	0	Constant	30000	48000						
6	WRA2	19	19	25	0	Constant	25000	40000						
7	RS1	19	19	33	0	Constant	40000	64000						
8	RMA	19	19	25	0	Constant	35000	56000						

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 IN 00 03 009
 A
 38 di 125

2. Descrizione Pareti

X:0 m

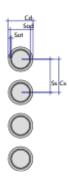
Quota in alto : 0 m Quota di fondo : -12.5 m

Muro di sinistra

Sezione: Micropalo

Area equivalente: 0.0458495132158937 m

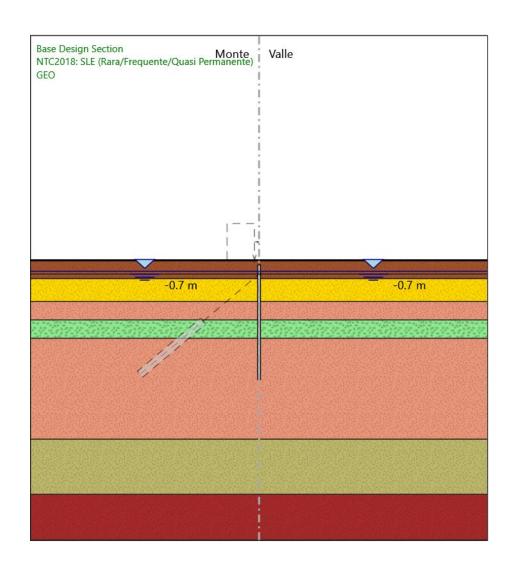
Inerzia equivalente : 0.0003 m⁴/m Materiale calcestruzzo : C25/30


Tipo sezione : Tangent Spaziatura : 0.4 m Diametro : 0.3 m

Efficacia: 1
Materiale acciaio: S275

Sezione: 0.2445x0.0125

Tipo sezione : O Spaziatura : 0.4 m Spessore : 0.0125 m Diametro : 0.2445 m



ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			EA CODOG A - MANTO	NO – CREMO VA	NA – M	ANTOVA
Relazione di calcolo opere provvisionali IN38	COMMESSA NM25	LOTTO 03 D 26	CODIFICA CL	DOCUMENTO iN 00 03 009	REV.	FOGLIO 40 di 125

3. Fasi di Calcolo

3.1. GEO

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 IN 00 03 009
 A
 41 di 125

GEO

Scavo

Muro di sinistra

Lato monte : 0.5 m Lato valle : 0.5 m

Linea di scavo di sinistra (Orizzontale)

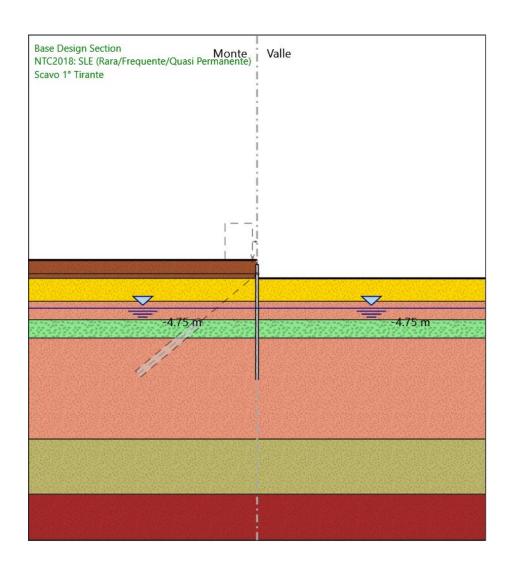
0.5 m

Linea di scavo di destra (Orizzontale)

0.5 m

Falda acquifera

Falda di sinistra : -0.7 m Falda di destra : -0.7 m


Elementi strutturali

Paratia: Micropalo sx

X:0 m

3.2. Scavo 1° Tirante

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 IN 00 03 009
 A
 43 di 125

Scavo

Muro di sinistra

Lato monte : 0.5 m Lato valle : -1.5 m

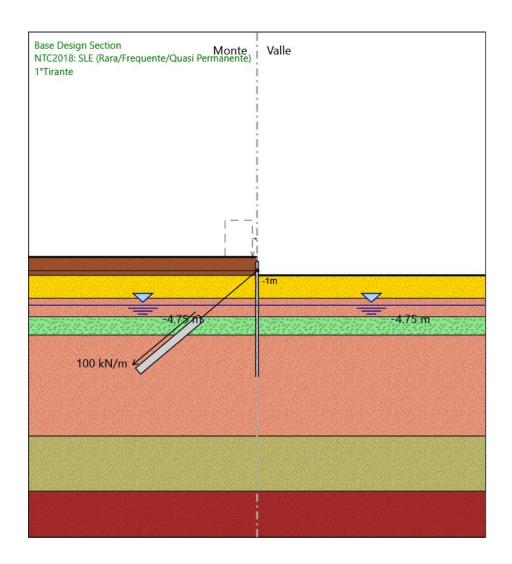
Linea di scavo di sinistra (Orizzontale)

0.5 m

Linea di scavo di destra (Orizzontale)

-1.5 m

Falda acquifera


Falda di sinistra : -4.75 m Falda di destra : -4.75 m

Elementi strutturali

Paratia: Micropalo sx

X:0 m

3.3. 1°Tirante

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 IN 00 03 009
 A
 45 di 125

Scavo

Muro di sinistra

Lato monte : 0.5 m Lato valle : -1.5 m

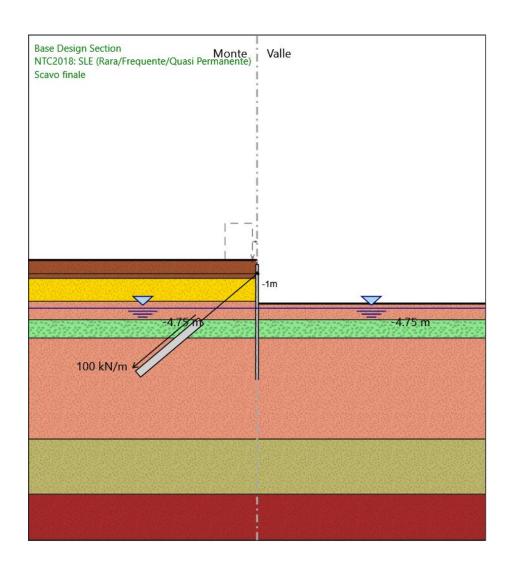
Linea di scavo di sinistra (Orizzontale)

0.5 m

Linea di scavo di destra (Orizzontale)

-1.5 m

Falda acquifera


Falda di sinistra : -4.75 m Falda di destra : -4.75 m

Elementi strutturali

Paratia: Micropalo sx

X:0 m

3.4. Scavo finale

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 IN 00 03 009
 A
 47 di 125

Scavo

Muro di sinistra

Lato monte : 0.5 m Lato valle : -4.25 m

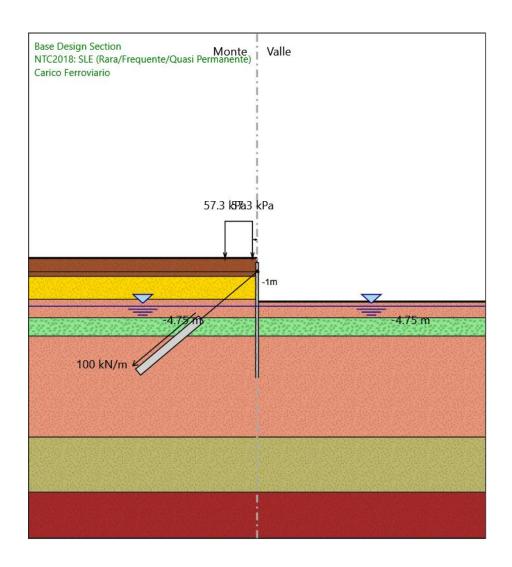
Linea di scavo di sinistra (Orizzontale)

0.5 m

Linea di scavo di destra (Orizzontale)

-4.25 m

Falda acquifera


Falda di sinistra : -4.75 m Falda di destra : -4.75 m

Elementi strutturali

Paratia: Micropalo sx

X:0 m

3.5. Carico Ferroviario

Relazione di calcolo opere provvisionali IN38

COMMESSA NM25 LOTTO

03 D 26

CODIFICA CL DOCUMENTO **iN 00 03 009**

REV. FOGLIO

A 49 di 125

Scavo

Muro di sinistra

Lato monte : 0.5 m Lato valle : -4.25 m

Linea di scavo di sinistra (Orizzontale)

0.5 m

Linea di scavo di destra (Orizzontale)

-4.25 m

Falda acquifera

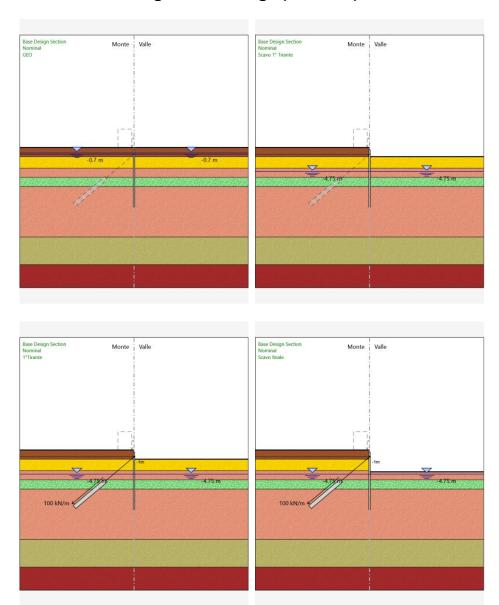
Falda di sinistra : -4.75 m Falda di destra : -4.75 m

Carichi

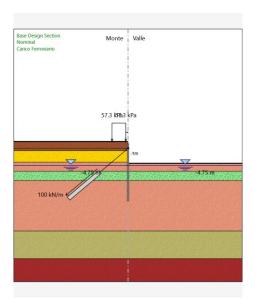
Carico lineare in superficie: Carico sx

X iniziale : -3.5 m X finale : -0.5 m

Pressione iniziale : 57.3 kPa Pressione finale : 57.3 kPa


Elementi strutturali

Paratia: Micropalo sx


X:0 m

3.6. Tabella Configurazione Stage (Nominal)

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			EA CODOG A - MANTO	NO – CREMO VA	NA – M	ANTOVA
Relazione di calcolo opere provvisionali IN38	COMMESSA NM25	LOTTO 03 D 26	CODIFICA	DOCUMENTO iN 00 03 009	REV.	FOGLIO 52 di 125

4. Descrizione Coefficienti Design Assumption

Coefficienti A

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Permane	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seism	Acqua	Acqua	nti	enti	Destabiliz	nti	nti	Destabiliz
	$(F_dead_load$	(F_dead_loa	(F_live_load_	(F_live_load	_load)	Lato	Lato	Destabili	Stabilizz	zanti	Destabiliz	Stabilizz	zanti
	_unfavour)	d_favour)	unfavour)	_favour)		Monte	Valle	zzanti	anti	(F_UPL_Q	zanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_G	(F_UPL_	DStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	DStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Freque nte/Quasi													
Permanente)													
NTC2018:	1.35	1	1.45	1	0	1.3	1	1	1	1	1.35	1	1
A1+M1+R1													
(R3 per													
tiranti)													
NTC2018:	1	1	1.25	0	0	1.25	1	1	1	1.25	1	1	1.25
A2+M2+R1													
NTC2018:	1	1	1.25	0	0	1.25	1	1	1	1.25	1	1	1.25
A2+M2+R2													

Coefficienti M

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: A2+M2+R2	1.25	1.25	1.4	1	1

Coefficienti R

Nome	Parziale resistenza terreno (es. Kp)	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	(F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE	1	1	1	1
(Rara/Frequente/Quasi				
Permanente)				
NTC2018: A1+M1+R1 (R3 per	1	1.2	1.1	1

Relazione di calcolo opere provvisionali IN38

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 IN 00 03 009
 A
 53 di 125

Nome Simbolo	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls) yRe	Parziale resistenza Tiranti permanenti (F_Anch_P) yap	Parziale resistenza Tiranti temporanei (F_Anch_T) yat	Parziale elementi strutturali (F_wall)
tiranti)				
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: A2+M2+R2	1	1.2	1.1	1

4.1. Risultati NTC2018: SLE (Rara/Frequente/Quasi Permanente)

4.1.1. Tabella Spostamento NTC2018: SLE (Rara/Frequente/Quasi Permanente) - LEFT Stage: GEO

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente) Tipo	o Risultato: Spostamen	to Muro: LEFT
Stage	Z (m)	Spostamento (mm)
GEO	0	0
GEO	-0.2	0
GEO	-0.4	0
GEO	-0.6	0
GEO	-0.8	0
GEO	-1	0
GEO	-1.2	0
GEO	-1.4	0
GEO	-1.6	0
GEO	-1.8	0
GEO	-2	0
GEO	-2.2	0
GEO	-2.4	0
GEO	-2.6	0
GEO	-2.8	0
GEO	-3	0
GEO	-3.2	0
GEO	-3.4	0
GEO	-3.6	0
GEO	-3.8	0
GEO	-4	0
GEO	-4.2	0
GEO	-4.4	0
GEO	-4.6	0
GEO	-4.8	0
GEO	-5	0
GEO	-5.2	0
GEO	-5.4	0
GEO	-5.6	0
GEO	-5.8	0
GEO	-6	0
GEO	-6.2	0
GEO	-6.4	0
GEO	-6.6	0
GEO	-6.8	0
GEO	-7	0
GEO	-7.2	0
GEO	-7.4	0
GEO	-7.6	0
GEO	-7.8	0
GEO	-8	0
GEO	-8.2	0
GEO	-8.4	0
GEO	-8.6	0
GEO	-8.8	0
GEO	-9	0
GEO	-9.2	0
GEO	-9.4	0
GEO	-9.6	0
GEO	-9.8	0
	- -	-

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Perman	ente) Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento (mm)
GEO	-10	0
GEO	-10.2	0
GEO	-10.4	0
GEO	-10.6	0
GEO	-10.8	0
GEO	-11	0
GEO	-11.2	0
GEO	-11.4	0
GEO	-11.6	0
GEO	-11.8	0
GEO	-12	0
GEO	-12.2	0
GEO	-12.4	0
GEO	-12.5	0

4.1.2. Tabella Risultati Paratia NTC2018: SLE (Rara/Frequente/Quasi Permanente) - Left Wall - Stage: GEO

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permano	ente) Risultati Paratia	Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
GEO	0	0	0
GEO	-0.2	0	0
GEO	-0.4	0	0
GEO	-0.6	0	0
GEO	-0.8	0	0
GEO	-1	0	0
GEO	-1.2	0	0
GEO	-1.4	0	0
GEO	-1.6	0	0
GEO	-1.8	0	0
GEO	-2	0	0
GEO	-2.2	0	0
GEO	-2.4	0	0
GEO	-2.6	0	0
GEO	-2.8	0	0
GEO	-3	0	0
GEO	-3.2	0	0
GEO	-3.4	0	0
GEO	-3.6	0	0
GEO	-3.8	0	0
GEO	-4	0	0
GEO	-4.2	0	0
GEO	-4.4	0	0
GEO	-4.6	0	0
GEO	-4.8	0	0
GEO	-5	0	0
GEO	-5.2	0	0
GEO	-5.4	0	0
GEO	-5.6	0	0
GEO	-5.8	0	0
GEO	-6	0	0
GEO	-6.2	0	0
GEO	-6.4	0	0
GEO	-6.6	0	0
GEO	-6.8	0	0
GEO	-7	0	0
GEO	-7.2	0	0
GEO	-7.4	0	0
GEO	-7.6	0	0
GEO	-7.8	0	0
GEO	-8	0	0
GEO	-8.2	0	0
GEO	-8.4	0	0
GEO	-8.6	0	0
GEO	-8.8	0	0
GEO	-9	0	0
GEO	-9.2	0	0
GEO	-9.4	0	0
GEO	-9.6	0	0
GEO	-9.8	0	0
GEO	-10	0	0
GEO	-10.2	0	0

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Peri	manente) Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
GEO	-10.4	0	0
GEO	-10.6	0	0
GEO	-10.8	0	0
GEO	-11	0	0
GEO	-11.2	0	0
GEO	-11.4	0	0
GEO	-11.6	0	0
GEO	-11.8	0	0
GEO	-12	0	0
GEO	-12.2	0	0
GEO	-12.4	0	0
GEO	-12.5	0	0

4.1.3. Tabella Spostamento NTC2018: SLE (Rara/Frequente/Quasi Permanente) - LEFT Stage: Scavo 1° Tirante

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente) Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento (mm)
Scavo 1° Tirante	0	2.65
Scavo 1° Tirante	-0.2	2.52
Scavo 1° Tirante	-0.4	2.4
Scavo 1° Tirante	-0.6	2.28
Scavo 1° Tirante	-0.8	2.15
Scavo 1° Tirante	-1	2.03
Scavo 1° Tirante	-1.2	1.91
Scavo 1° Tirante	-1.4	1.79
Scavo 1° Tirante	-1.6	1.67
Scavo 1° Tirante	-1.8	1.56
Scavo 1° Tirante	-2	1.45
Scavo 1° Tirante	-2.2	1.34
Scavo 1° Tirante	-2.4	1.25
Scavo 1° Tirante	-2.6	1.16
Scavo 1° Tirante	-2.8	1.07
Scavo 1° Tirante	-3	1
Scavo 1° Tirante	-3.2	0.93
Scavo 1° Tirante	-3.4	0.87
Scavo 1° Tirante	-3.6	0.81
Scavo 1° Tirante	-3.8	0.76
Scavo 1° Tirante	-4	0.72
Scavo 1° Tirante	-4.2	0.68
Scavo 1° Tirante	-4.4	0.64
Scavo 1° Tirante	-4.6	0.61
Scavo 1° Tirante	-4.8	0.59
Scavo 1° Tirante	-5	0.56
Scavo 1° Tirante	-5.2	0.54
Scavo 1° Tirante	-5.4	0.53
Scavo 1° Tirante	-5.6	0.51
Scavo 1° Tirante	-5.8	0.5
Scavo 1° Tirante	-6	0.49
Scavo 1° Tirante	-6.2	0.48
Scavo 1° Tirante	-6.4	0.47
Scavo 1° Tirante	-6.6	0.47
Scavo 1° Tirante	-6.8	0.47
Scavo 1° Tirante	-7	0.47
Scavo 1° Tirante	-7.2	0.47
Scavo 1° Tirante	-7.4	0.48
Scavo 1° Tirante	-7.6	0.49
Scavo 1° Tirante	-7.8	0.5
Scavo 1° Tirante	-8	0.51
Scavo 1° Tirante	-8.2	0.52
Scavo 1° Tirante	-8.4	0.53
Scavo 1° Tirante	-8.6	0.55
Scavo 1° Tirante	-8.8	0.56
Scavo 1° Tirante	-9	0.58
Scavo 1° Tirante	-9.2	0.59
Scavo 1° Tirante	-9.4	0.6
Scavo 1° Tirante	-9.6	0.61
Scavo 1° Tirante	-9.8	0.62
Scavo 1° Tirante	-10	0.63
Scavo 1° Tirante	-10.2	0.63

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permane	nte) Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento (mm)
Scavo 1° Tirante	-10.4	0.64
Scavo 1° Tirante	-10.6	0.64
Scavo 1° Tirante	-10.8	0.65
Scavo 1° Tirante	-11	0.65
Scavo 1° Tirante	-11.2	0.66
Scavo 1° Tirante	-11.4	0.66
Scavo 1° Tirante	-11.6	0.66
Scavo 1° Tirante	-11.8	0.67
Scavo 1° Tirante	-12	0.67
Scavo 1° Tirante	-12.2	0.67
Scavo 1° Tirante	-12.4	0.67
Scavo 1° Tirante	-12.5	0.67

4.1.4. Tabella Risultati Paratia NTC2018: SLE (Rara/Frequente/Quasi Permanente) - Left Wall - Stage: Scavo 1° Tirante

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Perman	ente) Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Scavo 1° Tirante	0	0	-0.2
Scavo 1° Tirante	-0.2	-0.04	-0.2
Scavo 1° Tirante	-0.4	-0.19	-0.74
Scavo 1° Tirante	-0.6	-0.48	-1.45
Scavo 1° Tirante	-0.8	-0.94	-2.31
Scavo 1° Tirante	-1	-1.61	-3.33
Scavo 1° Tirante	-1.2	-2.51	-4.51
Scavo 1° Tirante	-1.4	-3.68	-5.84
Scavo 1° Tirante	-1.6	-5.14	-7.33
Scavo 1° Tirante	-1.8	-6.83	-8.46
Scavo 1° Tirante	-2	-8.2	-6.84
Scavo 1° Tirante	-2.2	-9.25	-5.22
Scavo 1° Tirante	-2.4	-9.98	-3.65
Scavo 1° Tirante	-2.6	-10.4	-2.13
Scavo 1° Tirante	-2.8	-10.54	-0.68
Scavo 1° Tirante	-3	-10.4	0.72
Scavo 1° Tirante	-3.2	-10.02	1.86
Scavo 1° Tirante	-3.4	-9.51	2.58
Scavo 1° Tirante	-3.6	-8.93	2.89
Scavo 1° Tirante	-3.8	-8.37	2.81
Scavo 1° Tirante	-4	-7.89	2.39
Scavo 1° Tirante	-4.2	-7.21	3.39
Scavo 1° Tirante	-4.4	-6.42	3.97
Scavo 1° Tirante	-4.6	-5.59	4.15
Scavo 1° Tirante	-4.8	-4.8	3.96
Scavo 1° Tirante	-5	-4.09	3.51
Scavo 1° Tirante	-5.2	-3.51	2.89
Scavo 1° Tirante	-5.4	-3.09	2.12
Scavo 1° Tirante	-5.6	-2.85	1.21
Scavo 1° Tirante	-5.8	-2.81	0.19
Scavo 1° Tirante	-6	-2.99	-0.92
Scavo 1° Tirante	-6.2	-3.42	-2.12
Scavo 1° Tirante	-6.4	-3.71	-1.46
Scavo 1° Tirante	-6.6	-3.88	-0.86
Scavo 1° Tirante	-6.8	-3.94	-0.3
Scavo 1° Tirante	-7	-3.89	0.26
Scavo 1° Tirante	-7.2	-3.72	0.82
Scavo 1° Tirante	-7.4	-3.44	1.42
Scavo 1° Tirante	-7.6	-3.02	2.08
Scavo 1° Tirante	-7.8	-2.46	2.82
Scavo 1° Tirante	-8	-1.73	3.66
Scavo 1° Tirante	-8.2	-0.81	4.61
Scavo 1° Tirante	-8.4	-0.07	3.68
Scavo 1° Tirante	-8.6	0.5	2.85
Scavo 1° Tirante	-8.8	0.92	2.12
Scavo 1° Tirante	-9	1.22	1.49
Scavo 1° Tirante	-9.2	1.42	0.96
Scavo 1° Tirante	-9.4	1.52	0.51
Scavo 1° Tirante	-9.6	1.55	0.15
Scavo 1° Tirante	-9.8	1.52	-0.15
Scavo 1° Tirante	-10	1.44	-0.38
Scavo 1° Tirante	-10.2	1.33	-0.55

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permane	ente) Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Scavo 1° Tirante	-10.4	1.2	-0.67
Scavo 1° Tirante	-10.6	1.05	-0.75
Scavo 1° Tirante	-10.8	0.89	-0.79
Scavo 1° Tirante	-11	0.73	-0.79
Scavo 1° Tirante	-11.2	0.58	-0.77
Scavo 1° Tirante	-11.4	0.43	-0.72
Scavo 1° Tirante	-11.6	0.3	-0.65
Scavo 1° Tirante	-11.8	0.19	-0.56
Scavo 1° Tirante	-12	0.1	-0.45
Scavo 1° Tirante	-12.2	0.04	-0.32
Scavo 1° Tirante	-12.4	0	-0.17
Scavo 1° Tirante	-12.5	0	-0.04

4.1.5. Tabella Spostamento NTC2018: SLE (Rara/Frequente/Quasi Permanente) - LEFT Stage: 1°Tirante

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente) Tip	oo Risultato: Spostament	o Muro: LEFT
Stage	Z (m)	Spostamento (mm)
1°Tirante	0	-0.41
1°Tirante	-0.2	-0.36
1°Tirante	-0.4	-0.32
1°Tirante	-0.6	-0.27
1°Tirante	-0.8	-0.22
1°Tirante	-1	-0.15
1°Tirante	-1.2	-0.08
1°Tirante	-1.4	0
1°Tirante	-1.6	0.08
1°Tirante	-1.8	0.16
1°Tirante	-2	0.24
1°Tirante	-2.2	0.31
1°Tirante	-2.4	0.38
1°Tirante	-2.6	0.44
1°Tirante	-2.8	0.5
1°Tirante	-3	0.54
1°Tirante	-3.2	0.58
1°Tirante	-3.4	0.61
1°Tirante	-3.6	0.63
1°Tirante	-3.8	0.65
	-5.6 -4	
1°Tirante	-4 -4.2	0.66
1°Tirante 1°Tirante	-4.2 -4.4	0.66
	-4.4 -4.6	0.66
1°Tirante 1°Tirante		0.66
	-4.8	0.65
1°Tirante	-5 5.2	0.64
1°Tirante	-5.2	0.63
1°Tirante	-5.4	0.62
1°Tirante	-5.6	0.6
1°Tirante	-5.8	0.58
1°Tirante	-6 6.3	0.57
1°Tirante	-6.2	0.55
1°Tirante	-6.4	0.54
1°Tirante	-6.6	0.53
1°Tirante	-6.8	0.52
1°Tirante	-7	0.51
1°Tirante	-7.2	0.51
1°Tirante	-7.4	0.51
1°Tirante	-7.6	0.51
1°Tirante	-7.8	0.51
1°Tirante	-8	0.52
1°Tirante	-8.2	0.53
1°Tirante	-8.4	0.54
1°Tirante	-8.6	0.55
1°Tirante	-8.8	0.56
1°Tirante	-9	0.57
1°Tirante	-9.2	0.59
1°Tirante	-9.4	0.6
1°Tirante	-9.6	0.61
1°Tirante	-9.8	0.61
1°Tirante	-10	0.62
1°Tirante	-10.2	0.63
1°Tirante	-10.4	0.64

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanen	ite) Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento (mm)
1°Tirante	-10.6	0.64
1°Tirante	-10.8	0.65
1°Tirante	-11	0.65
1°Tirante	-11.2	0.65
1°Tirante	-11.4	0.66
1°Tirante	-11.6	0.66
1°Tirante	-11.8	0.66
1°Tirante	-12	0.67
1°Tirante	-12.2	0.67
1°Tirante	-12.4	0.67
1°Tirante	-12.5	0.67

4.1.6. Tabella Risultati Paratia NTC2018: SLE (Rara/Frequente/Quasi Permanente) - Left Wall - Stage: 1°Tirante

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permai	nente) Risultati Parat	ia Muro: LEFT	
Stage	, Z (m)	Momento (kN*m/r	m) Taglio (kN/m)
1°Tirante	0	0	-3.79
1°Tirante	-0.2	-0.76	-3.79
1°Tirante	-0.4	-3	-11.19
1°Tirante	-0.6	-6.68	-18.41
1°Tirante	-0.8	-11.77	-25.45
1°Tirante	-1	-18.23	-32.3
1°Tirante	-1.2	-10.69	37.67
1°Tirante	-1.4	-4.44	31.26
1°Tirante	-1.6	0.58	25.1
1°Tirante	-1.8	4.37	18.92
1°Tirante	-2	7.19	14.11
1°Tirante	-2.2	9.18	9.99
1°Tirante	-2.4	10.48	6.48
1°Tirante	-2.6	11.19	3.54
1°Tirante	-2.8	11.45	1.32
1°Tirante	-3	11.4	-0.26
1°Tirante	-3.2	11.11	-1.46
1°Tirante	-3.4	10.6	-2.54
1°Tirante	-3.6	9.89	-3.55
1°Tirante	-3.8	8.98	-4.54
1°Tirante	-4	7.88	-5.53
1°Tirante	-4.2	6.87	-5.01
1°Tirante	-4.4	5.97	-4.54
1°Tirante	-4.6	5.13	-4.2
1°Tirante	-4.8	4.32	-4.05
1°Tirante	-5	3.51	-4.03
1°Tirante	-5.2	2.69	-4.09
1°Tirante	-5.4	1.85	-4.23
1°Tirante	-5.6	0.95	-4.48
1°Tirante	-5.8	-0.02	-4.83
1°Tirante	-6	-1.08	-5.31
1°Tirante	-6.2	-2.26	-5.9
1°Tirante	-6.4	-3.16	-4.53
1°Tirante	-6.6	-3.82	-3.29
1°Tirante	-6.8	-4.25	-2.16
1°Tirante	-7	-4.48	-1.12
1°Tirante	-7.2	-4.51	-0.13
1°Tirante	-7.4	-4.34	0.82
1°Tirante	-7.6	-3.99	1.77
1°Tirante	-7.8	-3.44	2.74
1°Tirante	-8	-2.69	3.76
1°Tirante	-8.2	-1.72	4.85
1°Tirante	-8.4	-0.92	4
1°Tirante	-8.6	-0.27	3.22
1°Tirante	-8.8	0.23	2.52
1°Tirante	-9	0.61	1.91
1°Tirante	-9.2	0.89	1.37
1°Tirante	-9.4	1.07	0.9
1°Tirante	-9.6	1.17	0.51
1°Tirante	-9.8	1.21	0.18
1°Tirante	-10	1.19	-0.08
1°Tirante	-10.2	1.13	-0.29

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Pern	nanente) Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/r	n) Taglio (kN/m)
1°Tirante	-10.4	1.04	-0.45
1°Tirante	-10.6	0.93	-0.56
1°Tirante	-10.8	0.81	-0.63
1°Tirante	-11	0.67	-0.67
1°Tirante	-11.2	0.54	-0.67
1°Tirante	-11.4	0.41	-0.65
1°Tirante	-11.6	0.29	-0.6
1°Tirante	-11.8	0.18	-0.52
1°Tirante	-12	0.1	-0.43
1°Tirante	-12.2	0.04	-0.31
1°Tirante	-12.4	0	-0.16
1°Tirante	-12.5	0	-0.04

4.1.7. Tabella Spostamento NTC2018: SLE (Rara/Frequente/Quasi Permanente) - LEFT Stage: Scavo finale

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente) Tipo	Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento (mm)
Scavo finale	0	-0.21
Scavo finale	-0.2	0.06
Scavo finale	-0.4	0.33
Scavo finale	-0.6	0.6
Scavo finale	-0.8	0.88
Scavo finale	-1	1.17
Scavo finale	-1.2	1.46
Scavo finale	-1.4	1.76
Scavo finale	-1.6	2.06
Scavo finale	-1.8	2.35
Scavo finale	-2	2.63
Scavo finale	-2.2	2.89
Scavo finale	-2.4	3.14
Scavo finale	-2.6	3.36
Scavo finale	-2.8	3.55
Scavo finale	-3	3.72
Scavo finale	-3.2	3.85
Scavo finale	-3.4	3.95
Scavo finale	-3.6	4.02
Scavo finale	-3.8	4.06
Scavo finale	-4	4.06
Scavo finale	-4.2	4.03
Scavo finale	-4.4	3.98
Scavo finale	-4.6	3.9
Scavo finale	-4.8	3.8
Scavo finale	-5	3.68
Scavo finale	-5.2	3.54
Scavo finale	-5.4	3.4
Scavo finale	-5.6	3.24
Scavo finale	-5.8	3.09
Scavo finale	-6	2.93
Scavo finale	-6.2	2.78
Scavo finale	-6.4	2.63
Scavo finale	-6.6	2.49
Scavo finale	-6.8	2.36
Scavo finale	-7	2.23
Scavo finale	, -7.2	2.12
Scavo finale	-7.4	2.02
Scavo finale	-7.6	1.93
Scavo finale	-7.8	1.85
Scavo finale	-8	1.78
Scavo finale	-8.2	1.73
Scavo finale	-8.4	1.68
Scavo finale	-8.6	1.64
Scavo finale	-8.8	1.61
Scavo finale	-9	1.58
Scavo finale	-9.2	1.56
Scavo finale	-9.4	1.54
Scavo finale	-9.6	1.53
Scavo finale	-9.8	1.53
Scavo finale	-10	1.52
Scavo finale	-10.2	1.52
Scavo Illiaic	-10.2	1.52

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permane	ente) Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento (mm)
Scavo finale	-10.4	1.52
Scavo finale	-10.6	1.52
Scavo finale	-10.8	1.52
Scavo finale	-11	1.52
Scavo finale	-11.2	1.52
Scavo finale	-11.4	1.53
Scavo finale	-11.6	1.53
Scavo finale	-11.8	1.54
Scavo finale	-12	1.54
Scavo finale	-12.2	1.54
Scavo finale	-12.4	1.55
Scavo finale	-12.5	1.55

4.1.8. Tabella Risultati Paratia NTC2018: SLE (Rara/Frequente/Quasi Permanente) - Left Wall - Stage: Scavo finale

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permane	nte) Risultati Paratia	Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Scavo finale	0	0	-3.64
Scavo finale	-0.2	-0.73	-3.64
Scavo finale	-0.4	-2.81	-10.39
Scavo finale	-0.6	-6.13	-16.61
Scavo finale	-0.8	-10.59	-22.3
Scavo finale	-1	-16.08	-27.44
Scavo finale	-1.2	-6.64	47.16
Scavo finale	-1.4	1.99	43.16
Scavo finale	-1.6	9.94	39.74
Scavo finale	-1.8	17.11	35.88
Scavo finale	-2	23.58	32.33
Scavo finale	-2.2	29.39	29.07
Scavo finale	-2.4	34.53	25.68
Scavo finale	-2.6	38.94	22.05
Scavo finale	-2.8	42.57	18.18
Scavo finale	-3	45.38	14.06
Scavo finale	-3.2	47.33	9.7
Scavo finale	-3.4	48.35	5.11
Scavo finale	-3.6	48.4	0.27
Scavo finale	-3.8	47.44	-4.82
Scavo finale	-4	45.41	-10.14
Scavo finale	-4.2	42.17	-16.19
Scavo finale	-4.4	37.67	-22.51
Scavo finale	-4.6	32.25	-27.07
Scavo finale	-4.8	26.41	-29.2
Scavo finale	-5	20.57	-29.21
Scavo finale	-5.2	14.96	-28.08
Scavo finale	-5.4	9.76	-25.97
Scavo finale	-5.6	4.98	-23.9
Scavo finale	-5.8	0.61	-21.88
Scavo finale	-6	-3.38	-19.93
Scavo finale	-6.2	-7	-18.1
Scavo finale	-6.4	-10.04	-15.19
Scavo finale	-6.6	-12.51	-12.37
Scavo finale	-6.8	-14.43	-9.61
Scavo finale	-7	-15.82	-6.92
Scavo finale	-7.2	-16.68	-4.32
Scavo finale	-7.4	-17.05	-1.82
Scavo finale	-7.6	-16.92	0.62
Scavo finale	-7.8	-16.32	3
Scavo finale	-8	-15.25	5.35
Scavo finale	-8.2	-13.72	7.68
Scavo finale	-8.4	-12.22	7.49
Scavo finale	-8.6	-10.78	7.18
Scavo finale	-8.8	-9.42	6.79
Scavo finale	-9	-8.16	6.34
Scavo finale	-9.2	-6.99	5.84
Scavo finale	-9.4	-5.92	5.33
Scavo finale	-9.6	-4.96	4.81
Scavo finale	-9.8	-4.1	4.29
Scavo finale	-10	-3.34	3.79
Scavo finale	-10.2	-2.68	3.31

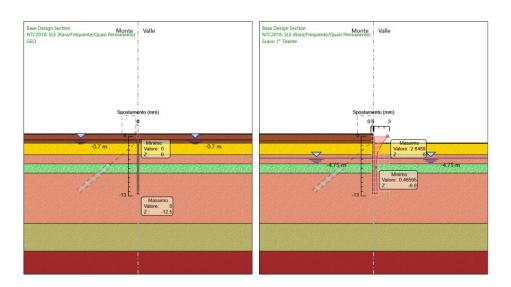
Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Perm	anente) Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Scavo finale	-10.4	-2.11	2.85
Scavo finale	-10.6	-1.63	2.43
Scavo finale	-10.8	-1.22	2.03
Scavo finale	-11	-0.89	1.67
Scavo finale	-11.2	-0.62	1.34
Scavo finale	-11.4	-0.41	1.05
Scavo finale	-11.6	-0.25	0.79
Scavo finale	-11.8	-0.14	0.56
Scavo finale	-12	-0.06	0.37
Scavo finale	-12.2	-0.02	0.21
Scavo finale	-12.4	0	0.09
Scavo finale	-12.5	0	0.02

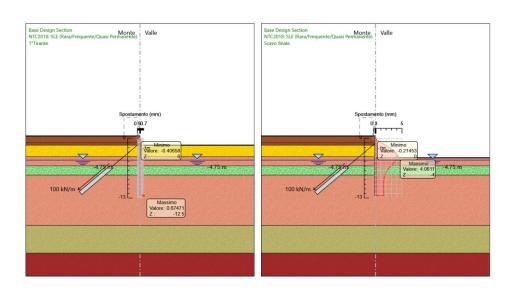
4.1.9. Tabella Spostamento NTC2018: SLE (Rara/Frequente/Quasi Permanente) - LEFT Stage: Carico Ferroviario

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permane	ente) Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento (mm)
Carico Ferroviario	0	1.17
Carico Ferroviario	-0.2	1.62
Carico Ferroviario	-0.4	2.08
Carico Ferroviario	-0.6	2.54
Carico Ferroviario	-0.8	3
Carico Ferroviario	-1	3.47
Carico Ferroviario	-1.2	3.95
Carico Ferroviario	-1.4	4.42
Carico Ferroviario	-1.6	4.89
Carico Ferroviario	-1.8	5.34
Carico Ferroviario	-2	5.76
Carico Ferroviario	-2.2	6.16
Carico Ferroviario	-2.4	6.53
Carico Ferroviario	-2.6	6.85
Carico Ferroviario	-2.8	7.13
Carico Ferroviario	-3	7.36
Carico Ferroviario	-3.2	7.54
Carico Ferroviario	-3.4	7.67
Carico Ferroviario	-3.6	7.75
Carico Ferroviario	-3.8	7.78
Carico Ferroviario	-4	7.75
Carico Ferroviario	-4.2	7.67
Carico Ferroviario	-4.4	7.55
Carico Ferroviario	-4.6	7.38
Carico Ferroviario	-4.8	7.18
Carico Ferroviario	-5	6.94
Carico Ferroviario	-5.2	6.68
Carico Ferroviario	-5.4	6.4
Carico Ferroviario	-5.6	6.1
Carico Ferroviario	-5.8	5.8
Carico Ferroviario	-6	5.49
Carico Ferroviario	-6.2	5.18
Carico Ferroviario	-6.4	4.87
Carico Ferroviario	-6.6	4.58
Carico Ferroviario	-6.8	4.29
Carico Ferroviario	-7	4.02
Carico Ferroviario	-7.2	3.76
Carico Ferroviario	-7.4	3.53
Carico Ferroviario	-7.6	3.3
Carico Ferroviario	-7.8	3.1
Carico Ferroviario	-8	2.92
Carico Ferroviario	-8.2	2.76
Carico Ferroviario	-8.4	2.61
Carico Ferroviario	-8.6	2.48
Carico Ferroviario	-8.8	2.37
Carico Ferroviario	-9	2.27
Carico Ferroviario	-9.2	2.18
Carico Ferroviario	-9.4	2.11
Carico Ferroviario	-9.6	2.05
Carico Ferroviario	-9.8	2
Carico Ferroviario	-10	1.96
Carico Ferroviario	-10.2	1.92
	-	-

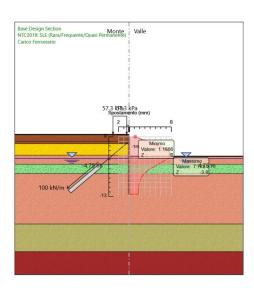
Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permaner	Muro: LEFT	
Stage	Z (m)	Spostamento (mm)
Carico Ferroviario	-10.4	1.89
Carico Ferroviario	-10.6	1.87
Carico Ferroviario	-10.8	1.85
Carico Ferroviario	-11	1.83
Carico Ferroviario	-11.2	1.81
Carico Ferroviario	-11.4	1.8
Carico Ferroviario	-11.6	1.79
Carico Ferroviario	-11.8	1.78
Carico Ferroviario	-12	1.77
Carico Ferroviario	-12.2	1.76
Carico Ferroviario	-12.4	1.76
Carico Ferroviario	-12.5	1.75

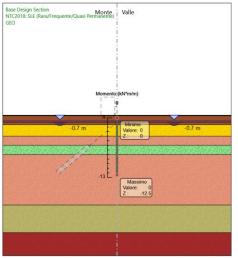
4.1.10. Tabella Risultati Paratia NTC2018: SLE (Rara/Frequente/Quasi Permanente) - Left Wall - Stage: Carico Ferroviario

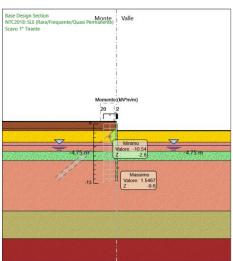

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanen	ite) Risultati Parat	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/r	m) Taglio (kN/m)
Carico Ferroviario	0	0	-2.76
Carico Ferroviario	-0.2	-0.55	-2.76
Carico Ferroviario	-0.4	-2.11	-7.78
Carico Ferroviario	-0.6	-4.59	-12.42
Carico Ferroviario	-0.8	-7.89	-16.48
Carico Ferroviario	-1	-11.88	-19.95
Carico Ferroviario	-1.2	0.31	60.95
Carico Ferroviario	-1.4	12.04	58.65
Carico Ferroviario	-1.6	23.27	56.13
Carico Ferroviario	-1.8	33.61	51.7
Carico Ferroviario	-2	43.01	47
Carico Ferroviario	-2.2	51.4	41.99
Carico Ferroviario	-2.4	58.74	36.68
Carico Ferroviario	-2.6	64.96	31.11
Carico Ferroviario	-2.8	70.01	25.26
Carico Ferroviario	-3	73.84	19.13
Carico Ferroviario	-3.2	76.39	12.74
Carico Ferroviario	-3.4	77.62	6.18
Carico Ferroviario	-3.6	77.51	-0.55
Carico Ferroviario	-3.8	76.02	-7.46
Carico Ferroviario	-4	73.11	-14.55
Carico Ferroviario	-4.2	68.62	-22.46
Carico Ferroviario	-4.4	62.5	-30.58
Carico Ferroviario	-4.6	55.12	-36.89
Carico Ferroviario	-4.8	46.98	-40.71
Carico Ferroviario	-5	38.51	-42.38
Carico Ferroviario	-5.2	29.94	-42.85
Carico Ferroviario	-5.4	21.51	-42.12
Carico Ferroviario	-5.6	13.47	-40.2
Carico Ferroviario	-5.8	6.05	-37.09
Carico Ferroviario	-6	-0.72	-33.86
Carico Ferroviario	-6.2	-6.88	-30.82
Carico Ferroviario	-6.4	-12.17	-26.43
Carico Ferroviario	-6.6	-16.62	-22.25
Carico Ferroviario	-6.8	-20.27	-18.28
Carico Ferroviario	-7	-23.17	-14.51
Carico Ferroviario	-7.2	-25.36	-10.91
Carico Ferroviario	-7.4	-26.85	-7.48
Carico Ferroviario	-7.6	-27.69	-4.19
Carico Ferroviario	-7.8	-27.89	-1.02
Carico Ferroviario	-8	-27.48	2.06
Carico Ferroviario	-8.2	-26.47	5.06
Carico Ferroviario	-8.4	-25.13	6.68
Carico Ferroviario	-8.4 -8.6	-23.56	7.89
	-8.8	-21.81	8.73
Carico Ferroviario Carico Ferroviario	-o.o -9	-21.81 -19.96	9.24
Carico Ferroviario	-9.2	-19.96	9.49
Carico Ferroviario	-9.2 -9.4	-16.16	9.49
Carico Ferroviario	-9.6 -9.8	-14.29 -12.48	9.36
Carico Ferroviario	-9.8 10	-12.48 10.75	9.05
Carico Ferroviario	-10	-10.75	8.63
Carico Ferroviario	-10.2	-9.13	8.12

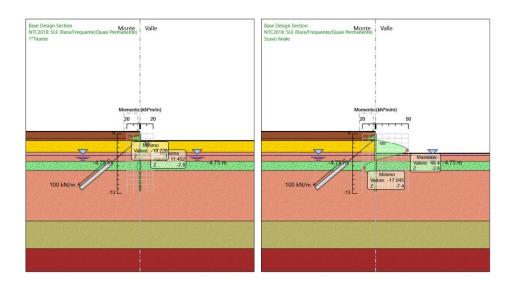


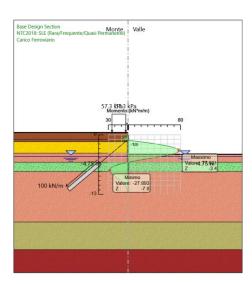
Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Perman	ente) Risultati Parat	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Carico Ferroviario	-10.4	-7.62	7.53
Carico Ferroviario	-10.6	-6.24	6.91
Carico Ferroviario	-10.8	-4.99	6.24
Carico Ferroviario	-11	-3.88	5.56
Carico Ferroviario	-11.2	-2.91	4.86
Carico Ferroviario	-11.4	-2.08	4.16
Carico Ferroviario	-11.6	-1.39	3.45
Carico Ferroviario	-11.8	-0.84	2.75
Carico Ferroviario	-12	-0.43	2.06
Carico Ferroviario	-12.2	-0.15	1.37
Carico Ferroviario	-12.4	-0.02	0.68
Carico Ferroviario	-12.5	0	0.17

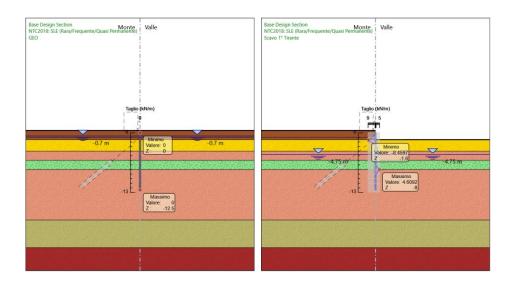


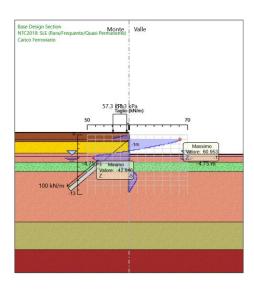

4.1.11. Tabella Grafici dei Risultati

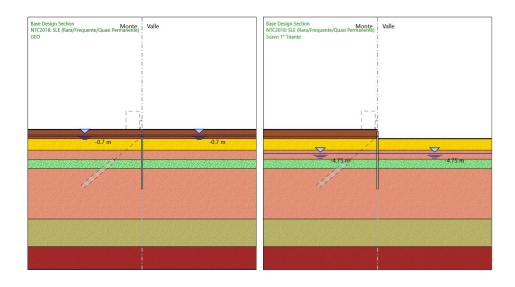


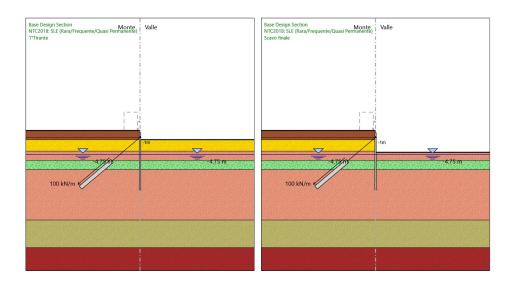


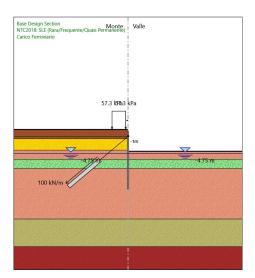


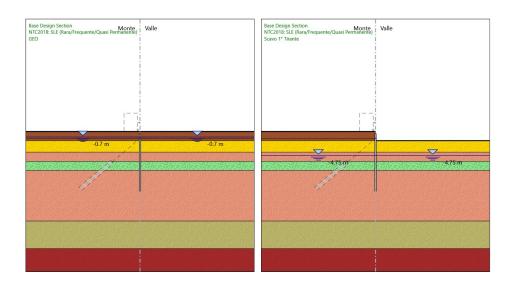


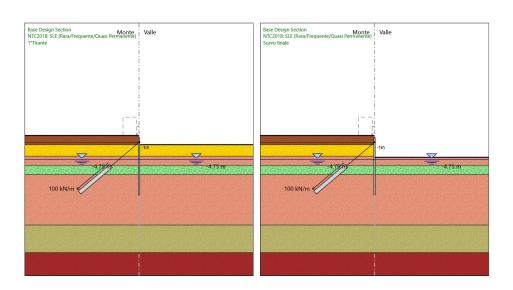


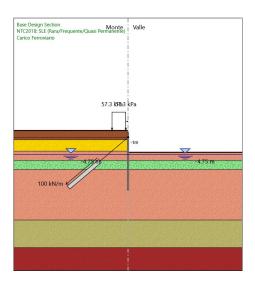












4.1.12. Risultati Elementi strutturali - NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente) Sollecitazione I TIRANT				
Stage	Forza (kN/m)			
1°Tirante	100			
Scavo finale	103.3758			
Carico Ferroviario	109.274			

4.2. Risultati NTC2018: A1+M1+R1 (R3 per tiranti)

4.2.1. Tabella Risultati Paratia NTC2018: A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: GEO

D NITC2040 A4 . NA4 . D4 / D2	"Note that be self-		
Design Assumption: NTC2018: A1+M1+R1 (R3 per tiran			
Stage	Z (m)	Momento (kN*m/m	
GEO	0	0	0
GEO	-0.2	0	0
GEO	-0.4	0	0
GEO	-0.6	0	0
GEO	-0.8	0	0
GEO	-1	0	0
GEO	-1.2	0	0
GEO	-1.4	0	0
GEO	-1.6	0	0
GEO	-1.8	0	0
GEO	-2	0	0
GEO	-2.2	0	0
GEO	-2.4	0	0
GEO	-2.6	0	0
GEO	-2.8	0	0
GEO	-3	0	0
GEO	-3.2	0	0
GEO	-3.4	0	0
GEO	-3.6	0	0
GEO	-3.8	0	0
GEO	-4	0	0
GEO	-4.2	0	0
GEO	-4.4	0	0
GEO	-4.6	0	0
GEO	-4.8	0	0
GEO	-5	0	0
GEO	-5.2	0	0
GEO	-5.4	0	0
GEO	-5.6	0	0
GEO	-5.8	0	0
GEO	-6	0	0
GEO	-6.2	0	0
GEO	-6.4	0	0
GEO	-6.6	0	0
GEO	-6.8	0	0
GEO	-7	0	0
GEO	-7.2	0	0
GEO	-7.4	0	0
GEO	-7.6	0	0
GEO	-7.8	0	0
GEO	-8	0	0
GEO	-8.2	0	0
GEO	-8.4	0	0
GEO	-8.6	0	0
GEO	-8.8	0	0
GEO	-9	0	0
GEO	-9.2	0	0
GEO	-9.4	0	0
GEO	-9.6	0	0
GEO	-9.8	0	0

Design Assumption: NTC2018: A1+M1+R1 (R3 per tiranti) Risultati Paratia Muro: LEFT				
Stage	Z (m)	Momento (kN*m/n	n)Taglio (kN/m)	
GEO	-10	0	0	
GEO	-10.2	0	0	
GEO	-10.4	0	0	
GEO	-10.6	0	0	
GEO	-10.8	0	0	
GEO	-11	0	0	
GEO	-11.2	0	0	
GEO	-11.4	0	0	
GEO	-11.6	0	0	
GEO	-11.8	0	0	
GEO	-12	0	0	
GEO	-12.2	0	0	
GEO	-12.4	0	0	
GEO	-12.5	0	0	

4.2.2. Tabella Risultati Paratia NTC2018: A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Scavo 1° Tirante

Design Assumption: NTC2018: A1+M1+R1 (R3 per tiranti) Risultati Paratia	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m)Taglio (kN/m)
Scavo 1° Tirante	0	0	-0.26
Scavo 1° Tirante	-0.2	-0.05	-0.26
Scavo 1° Tirante	-0.4	-0.25	-1.01
Scavo 1° Tirante	-0.6	-0.65	-1.96
Scavo 1° Tirante	-0.8	-1.27	-3.12
Scavo 1° Tirante	-1	-2.17	-4.5
Scavo 1° Tirante	-1.2	-3.39	-6.09
Scavo 1° Tirante	-1.4	-4.96	-7.89
Scavo 1° Tirante	-1.6	-6.94	-9.9
Scavo 1° Tirante	-1.8	-9.23	-11.42
Scavo 1° Tirante	-2	-11.07	-9.23
Scavo 1° Tirante	-2.2	-12.48	-7.05
Scavo 1° Tirante	-2.4	-13.47	-4.93
Scavo 1° Tirante	-2.6	-14.05	-2.88
Scavo 1° Tirante	-2.8	-14.23	-0.91
Scavo 1° Tirante	-3	-14.03	0.97
Scavo 1° Tirante	-3.2	-13.53	2.52
Scavo 1° Tirante	-3.4	-12.84	3.48
Scavo 1° Tirante	-3.6	-12.06	3.9
Scavo 1° Tirante	-3.8	-11.3	3.8
Scavo 1° Tirante	-4	-10.65	3.22
Scavo 1° Tirante	-4.2	-9.74	4.58
Scavo 1° Tirante	-4.4	-8.66	5.36
Scavo 1° Tirante	-4.6	-7.54	5.6
Scavo 1° Tirante	-4.8	-6.47	5.35
Scavo 1° Tirante	-5	-5.52	4.74
Scavo 1° Tirante	-5.2	-4.74	3.91
Scavo 1° Tirante	-5.4	-4.17	2.86
Scavo 1° Tirante	-5.6	-3.84	1.64
Scavo 1° Tirante	-5.8	-3.79	0.26
Scavo 1° Tirante	-6	-4.04	-1.24
Scavo 1° Tirante	-6.2	-4.61	-2.86
Scavo 1° Tirante	-6.4	-5.01	-1.97
Scavo 1° Tirante	-6.6	-5.24	-1.16
Scavo 1° Tirante	-6.8	-5.32	-0.4
Scavo 1° Tirante	-7	-5.25	0.35
Scavo 1° Tirante	-7.2	-5.03	1.11
Scavo 1° Tirante	-7.4	-4.64	1.92
Scavo 1° Tirante	-7.6	-4.08	2.81
Scavo 1° Tirante	-7.8	-3.32	3.81
Scavo 1° Tirante	-8	-2.33	4.94
Scavo 1° Tirante	-8.2	-1.09	6.22
Scavo 1° Tirante	-8.4	-0.1	4.97
Scavo 1° Tirante	-8.6	0.67	3.85
Scavo 1° Tirante	-8.8	1.25	2.87
Scavo 1° Tirante	-9	1.65	2.02
Scavo 1° Tirante	-9.2	1.91	1.3
Scavo 1° Tirante	-9.4	2.05	0.69
Scavo 1° Tirante	-9.6	2.09	0.2
Scavo 1° Tirante	-9.8	2.05	-0.2
Scavo 1° Tirante	-10	1.95	-0.51
Scavo 1° Tirante	-10.2	1.8	-0.74
Scavo 1° Tirante	-10.4	1.61	-0.91

Design Assumption: NTC2018: A1+M1+R1 (R3 per tiran	ti) Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n)Taglio (kN/m)
Scavo 1° Tirante	-10.6	1.41	-1.01
Scavo 1° Tirante	-10.8	1.2	-1.06
Scavo 1° Tirante	-11	0.99	-1.07
Scavo 1° Tirante	-11.2	0.78	-1.04
Scavo 1° Tirante	-11.4	0.58	-0.97
Scavo 1° Tirante	-11.6	0.41	-0.88
Scavo 1° Tirante	-11.8	0.26	-0.75
Scavo 1° Tirante	-12	0.14	-0.6
Scavo 1° Tirante	-12.2	0.05	-0.43
Scavo 1° Tirante	-12.4	0.01	-0.23
Scavo 1° Tirante	-12.5	0	-0.06

4.2.3. Tabella Risultati Paratia NTC2018: A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 1°Tirante

Design Assumption: NTC2018: A1+M1+R1 (R3 per tiranti)	Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m)Taglio (kN/m)
1°Tirante	0	0	-5.11
1°Tirante	-0.2	-1.02	-5.11
1°Tirante	-0.4	-4.04	-15.1
1°Tirante	-0.4	-9.01	-24.85
1°Tirante	-0.8	-15.89	-34.36
1°Tirante	-0.8 -1	-24.61	-43.6
	-1.2		
1°Tirante 1°Tirante	-1.2 -1.4	-14.43 -5.99	50.85
			42.21
1°Tirante	-1.6	0.78	33.89
1°Tirante	-1.8	5.89	25.54
1°Tirante	-2 2.2	9.7	19.05
1°Tirante	-2.2	12.4	13.48
1°Tirante	-2.4	14.15	8.75
1°Tirante	-2.6	15.1	4.78
1°Tirante	-2.8	15.46	1.78
1°Tirante	-3	15.39	-0.35
1°Tirante	-3.2	15	-1.97
1°Tirante	-3.4	14.31	-3.43
1°Tirante	-3.6	13.35	-4.8
1°Tirante	-3.8	12.13	-6.12
1°Tirante	-4	10.63	-7.47
1°Tirante	-4.2	9.28	-6.76
1°Tirante	-4.4	8.06	-6.12
1°Tirante	-4.6	6.92	-5.67
1°Tirante	-4.8	5.83	-5.47
1°Tirante	-5	4.74	-5.44
1°Tirante	-5.2	3.63	-5.52
1°Tirante	-5.4	2.49	-5.71
1°Tirante	-5.6	1.28	-6.04
1°Tirante	-5.8	-0.02	-6.53
1°Tirante	-6	-1.45	-7.16
1°Tirante	-6.2	-3.05	-7.96
1°Tirante	-6.4	-4.27	-6.12
1°Tirante	-6.6	-5.16	-4.45
1°Tirante	-6.8	-5.74	-2.92
1°Tirante	-7	-6.05	-1.51
1°Tirante	-7.2	-6.08	-0.18
1°Tirante	-7.4	-5.86	1.11
1°Tirante	-7.6	-5.38	2.39
1°Tirante	-7.8	-4.64	3.7
1°Tirante	-8	-3.63	5.08
1°Tirante	-8.2	-2.32	6.55
1°Tirante	-8.4	-1.24	5.4
1°Tirante	-8.6	-0.37	4.35
1°Tirante	-8.8	0.31	3.41
1°Tirante	-9	0.83	2.57
1°Tirante	-9.2	1.2	1.84
1°Tirante	-9.4	1.44	1.22
1°Tirante	-9.6	1.58	0.69
1°Tirante	-9.8	1.63	0.25
1°Tirante	-10	1.61	-0.11
1°Tirante	-10.2	1.53	-0.39
1°Tirante	-10.4	1.41	-0.6
		· · -	2.0

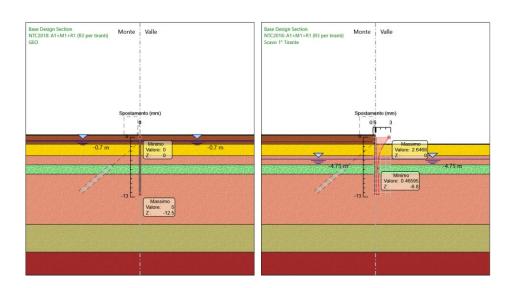
Design Assumption: NTC2018: A1+M1+R1 (R3 per tira	nti) Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
1°Tirante	-10.6	1.26	-0.75
1°Tirante	-10.8	1.09	-0.85
1°Tirante	-11	0.91	-0.9
1°Tirante	-11.2	0.73	-0.91
1°Tirante	-11.4	0.55	-0.87
1°Tirante	-11.6	0.39	-0.81
1°Tirante	-11.8	0.25	-0.71
1°Tirante	-12	0.13	-0.57
1°Tirante	-12.2	0.05	-0.41
1°Tirante	-12.4	0.01	-0.22
1°Tirante	-12.5	0	-0.06

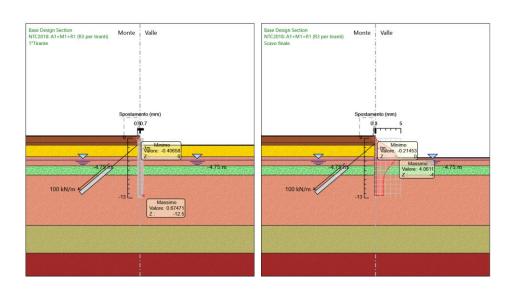
4.2.4. Tabella Risultati Paratia NTC2018: A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Scavo finale

Design Assumption: NTC2018: A1+M1+R1 (R3 per tirant	i) Risultati Parati	a Muro: LEFT	
Stage	z (m)	Momento (kN*m/n	n)Taglio (kN/m)
Scavo finale	0	0	-4.91
Scavo finale	-0.2	-0.98	-4.91 -4.91
Scavo finale	-0.2	-3.79	-14.02
Scavo finale	-0.4	-8.27	-22.42
Scavo finale	-0.8	-14.29	-30.1
Scavo finale	-0.8 -1	-14.29	-30.1
Scavo finale	-1.2	-8.97	63.67
Scavo finale	-1.4	2.68	58.26
Scavo finale	-1.6	13.41	53.64
Scavo finale	-1.8	23.1	48.43
Scavo finale	-1.8 -2	31.83	43.65
Scavo finale	-2.2	39.68	39.25
Scavo finale	-2.4	46.61	34.67
Scavo finale	-2.6	52.57	29.77
Scavo finale	-2.8	57.47	24.54
Scavo finale	-3	61.27	18.98
Scavo finale	-3.2	63.89	13.1
Scavo finale	-3.4	65.27	6.89
Scavo finale	-3.6	65.34	0.36
Scavo finale	-3.8	64.04	-6.5
Scavo finale	-4	61.3	-13.69
Scavo finale	-4.2	56.93	-21.86
Scavo finale	-4.4	50.85	-30.39
Scavo finale	-4.6	43.54	-36.55
Scavo finale	-4.8	35.66	-39.42
Scavo finale	-5	27.77	-39.44
Scavo finale	-5.2	20.19	-37.91
Scavo finale	-5.4	13.18	-35.05
Scavo finale	-5.6	6.73	-32.26
Scavo finale	-5.8	0.82	-29.54
Scavo finale	-6	-4.56	-26.91
Scavo finale	-6.2	-9.45	-24.43
Scavo finale	-6.4	-13.55	-20.51
Scavo finale	-6.6	-16.89	-16.7
Scavo finale	-6.8	-19.48	-12.98
Scavo finale	-7	-21.35	-9.34
Scavo finale	-7.2	-22.52	-5.84
Scavo finale	-7.4	-23.01	-2.45
Scavo finale	-7.6	-22.84	0.83
Scavo finale	-7.8	-22.04	4.05
Scavo finale	-8	-20.59	7.22
Scavo finale	-8.2	-18.52	10.37
Scavo finale	-8.4	-16.5	10.11
Scavo finale	-8.6	-14.56	9.7
Scavo finale	-8.8	-12.72	9.17
Scavo finale	-9	-11.01	8.55
Scavo finale	-9.2	-9.43	7.89
Scavo finale	-9.4	-7.99	7.19
Scavo finale	-9.6	-6.7	6.49
Scavo finale	-9.8	-5.54	5.8
Scavo finale	-10	-4.51	5.12
Scavo finale	-10.2	-3.62	4.47
Scavo finale	-10.4	-2.85	3.85

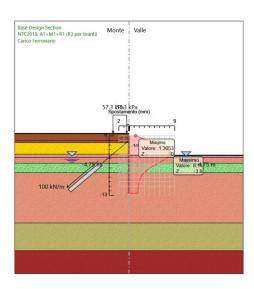
Design Assumption: NTC2018: A1+M1+R1 (R3 per tiranti) Risultati Paratia Muro: LEFT			
Stage	Z (m)	Momento (kN*m/m	n)Taglio (kN/m)
Scavo finale	-10.6	-2.2	3.28
Scavo finale	-10.8	-1.65	2.74
Scavo finale	-11	-1.2	2.25
Scavo finale	-11.2	-0.83	1.81
Scavo finale	-11.4	-0.55	1.42
Scavo finale	-11.6	-0.34	1.07
Scavo finale	-11.8	-0.19	0.76
Scavo finale	-12	-0.08	0.5
Scavo finale	-12.2	-0.03	0.29
Scavo finale	-12.4	0	0.12
Scavo finale	-12.5	0	0.03

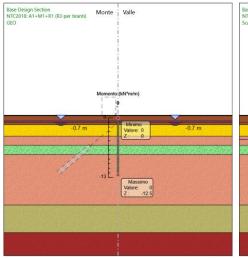
4.2.5. Tabella Risultati Paratia NTC2018: A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Carico Ferroviario

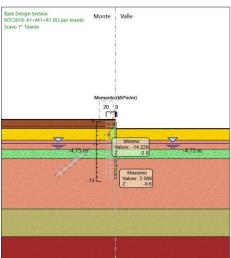

Design Assumption: NTC2018: A1+M1+R1 (R3 per tiranti)	Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m)Taglio (kN/m)
Carico Ferroviario	0	0	-3.61
Carico Ferroviario	-0.2	-0.72	-3.61
Carico Ferroviario	-0.4	-2.75	-10.12
Carico Ferroviario	-0.6	-5.97	-16.14
Carico Ferroviario	-0.8	-10.25	-21.37
Carico Ferroviario	-1	-15.41	-25.79
Carico Ferroviario	-1.2	1.45	84.29
Carico Ferroviario	-1.4	17.67	81.08
Carico Ferroviario	-1.6	33.18	77.57
Carico Ferroviario	-1.8	47.47	71.43
Carico Ferroviario	-2	60.44	64.89
Carico Ferroviario	-2.2	72.03	57.94
Carico Ferroviario	-2.4	82.15	50.59
Carico Ferroviario	-2.6	90.73	42.87
Carico Ferroviario	-2.8	97.68	34.77
Carico Ferroviario	-3	102.94	26.29
Carico Ferroviario	-3.2	106.43	17.46
Carico Ferroviario	-3.4	108.11	8.42
Carico Ferroviario	-3.6	107.94	-0.86
Carico Ferroviario	-3.8	105.87	-10.36
Carico Ferroviario	-4	101.85	-20.11
Carico Ferroviario	-4.2	95.65	-30.98
Carico Ferroviario	-4.4	87.23	-42.12
Carico Ferroviario	-4.6	77.07	-50.81
Carico Ferroviario	-4.8	65.84	-56.15
Carico Ferroviario	-5	54.13	-58.56
Carico Ferroviario	-5.2	42.26	-59.35
Carico Ferroviario	-5.4	30.55	-58.53
Carico Ferroviario	-5.6	19.33	-56.09
Carico Ferroviario	-5.8	8.93	-52.04
Carico Ferroviario	-6	-0.57	-47.49
Carico Ferroviario	-6.2	-9.22	-43.21
Carico Ferroviario	-6.4	-16.63	-37.08
Carico Ferroviario	-6.6	-22.88	-31.25
Carico Ferroviario	-6.8	-28.03	-25.72
Carico Ferroviario	-7	-32.12	-20.48
Carico Ferroviario	-7.2	-35.22	-15.49
Carico Ferroviario	-7.4	-37.37	-10.74
Carico Ferroviario	-7.6	-38.61	-6.19
Carico Ferroviario	-7.8	-38.97	-1.82
Carico Ferroviario	-8	-38.49	2.4
Carico Ferroviario	-8.2	-37.19	6.51
Carico Ferroviario	-8.4	-35.44	8.73
Carico Ferroviario	-8.6	-33.32	10.59
Carico Ferroviario	-8.8	-30.95	11.9
Carico Ferroviario	-9	-28.4	12.74
Carico Ferroviario	-9.2	-25.76	13.18
Carico Ferroviario	-9.4	-23.1	13.3
Carico Ferroviario	-9.6	-20.47	13.15
Carico Ferroviario	-9.8	-17.91	12.78
Carico Ferroviario	-10	-15.47	12.23
Carico Ferroviario	-10.2	-13.16	11.55

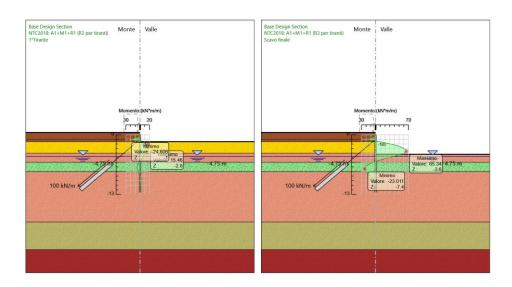


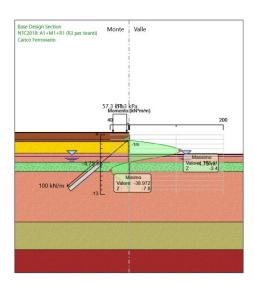
Design Assumption: NTC2018: A1+M1+R1 (R3 per tiran	iti) Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n)Taglio (kN/m)
Carico Ferroviario	-10.4	-11.01	10.76
Carico Ferroviario	-10.6	-9.03	9.89
Carico Ferroviario	-10.8	-7.24	8.96
Carico Ferroviario	-11	-5.64	8
Carico Ferroviario	-11.2	-4.23	7.02
Carico Ferroviario	-11.4	-3.03	6.02
Carico Ferroviario	-11.6	-2.03	5.01
Carico Ferroviario	-11.8	-1.22	4.01
Carico Ferroviario	-12	-0.62	3
Carico Ferroviario	-12.2	-0.22	2
Carico Ferroviario	-12.4	-0.02	1
Carico Ferroviario	-12.5	0	0.25

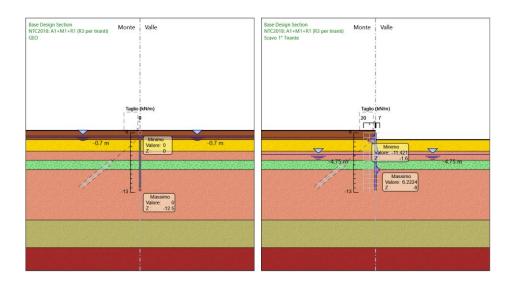


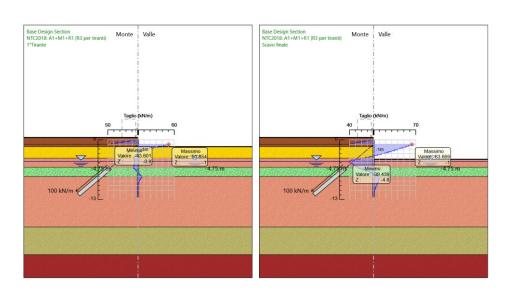

4.2.6. Tabella Grafici dei Risultati

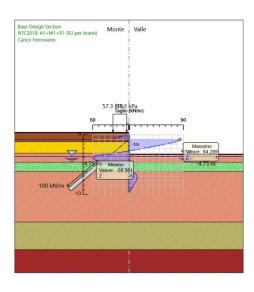


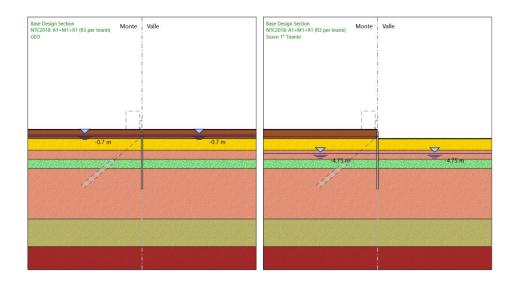


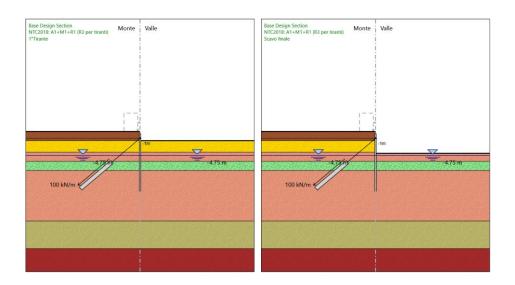


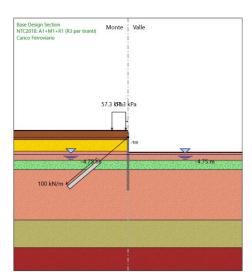


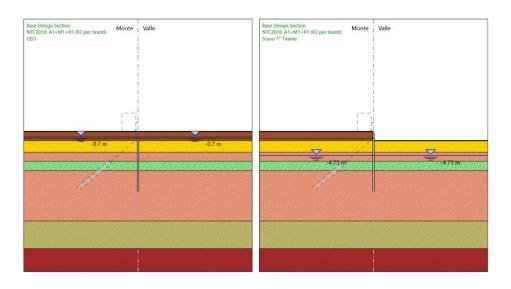


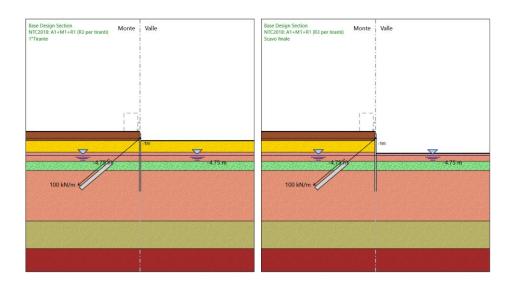


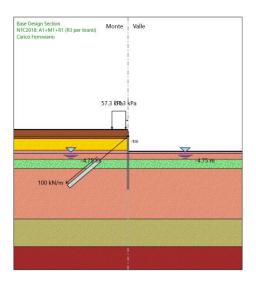












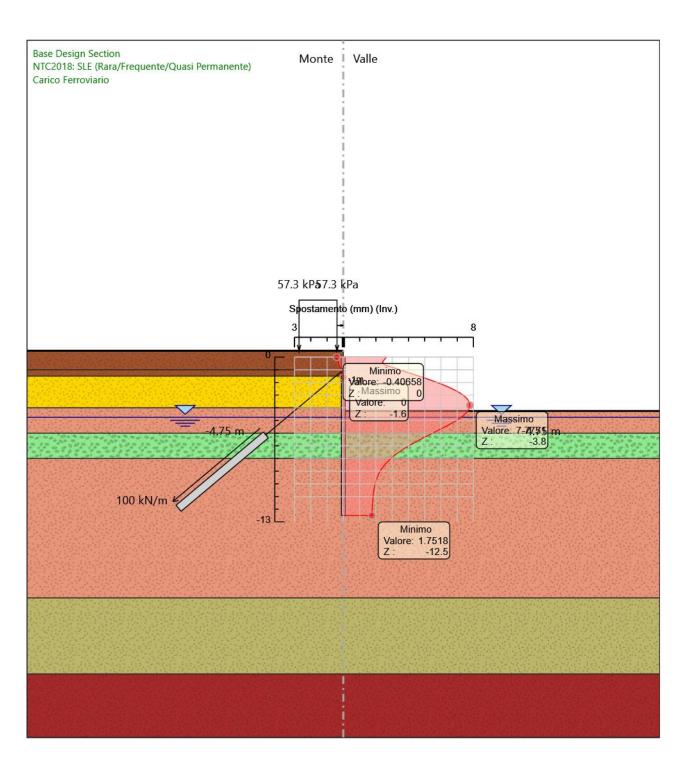
4.2.7. Risultati Elementi strutturali - NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018: A1+M1+R1 (R3 per tiranti) Sollecitazione I TIRANT				
Stage	Forza (kN/m)			
1°Tirante	135			
Scavo finale	139.55733			
Carico Ferroviario	148.27617			

5. Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

5.1. Tabella Inviluppi Spostamento Left Wall

Design Assumption: Nominal		
Z (m)	Lato sinistro (mm)	Lato destro (mm)
0	-0.407	2.647
-0.2	-0.362	2.523
-0.4	-0.316	2.399
-0.6	-0.268	2.541
-0.8	-0.216	3.004
-1	-0.155	3.472
-1.2	-0.083	3.947
-1.4	-0.004	4.421
-1.6	0	4.887
-1.8	0	5.337
-2	0	5.765
-2.2	0	6.163
-2.4	0	6.527
-2.6	0	6.85
-2.8	0	7.13
-3	0	7.362
-3.2	0	7.543
-3.4	0	7.673
-3.6	0	7.751
-3.8	0	7.775
-4	0	7.748
-4.2	0	7.671
-4.4	0	7.548
-4.6	0	7.382
-4.8	0	7.179
-5	0	6.944
-5.2	0	6.683
-5.4	0	6.401
-5.6	0	6.104
-5.8	0	5.799
-6	0	5.489
-6.2	0	5.179
-6.4	0	4.874
-6.6	0	4.578
-6.8	0	4.292
-7	0	4.02
-7.2	0	3.764
-7.4	0	3.525
-7.6	0	3.305
-7.8	0	3.103
-8	0	2.92
-8.2	0	2.756
-8.4	0	2.609
-8.6	0	2.48
-8.8	0	2.367
-9	0	2.269
-9.2	0	2.184
-9.4	0	2.112
-9.6	0	2.05
-9.8	0	1.999



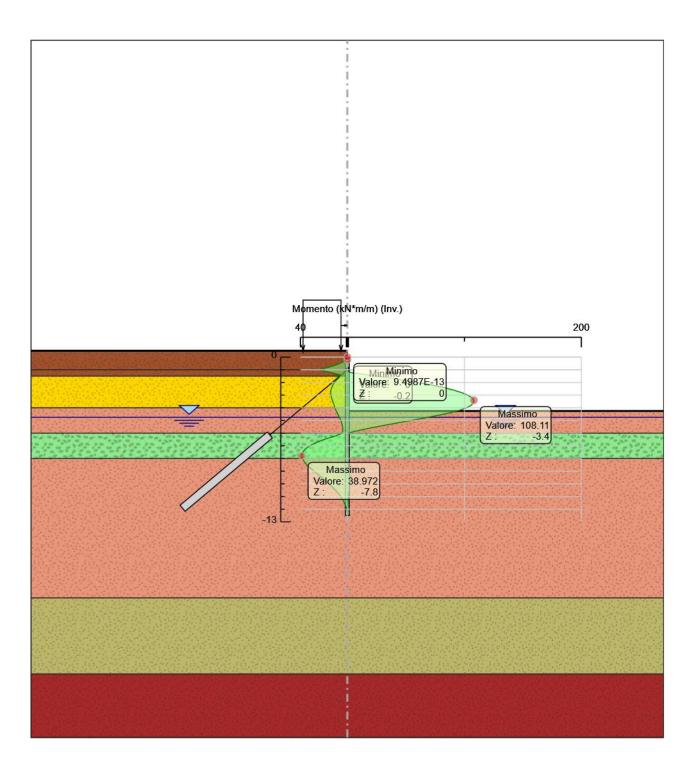
Design Assumption: Nomin	o Muro: LEFT	
Z (m)	Lato sinistro (mm)	Lato destro (mm)
-10	0	1.955
-10.2	0	1.92
-10.4	0	1.89
-10.6	0	1.866
-10.8	0	1.846
-11	0	1.829
-11.2	0	1.815
-11.4	0	1.803
-11.6	0	1.792
-11.8	0	1.783
-12	0	1.773
-12.2	0	1.765
-12.4	0	1.756
-12.5	0	1.752

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA				ANTOVA	
Relazione di calcolo opere provvisionali IN38	COMMESSA NM25	LOTTO 03 D 26	CODIFICA CL	DOCUMENTO iN 00 03 009	REV.	FOGLIO 102 di 125

5.2. Grafico Inviluppi Spostamento

5.3. Tabella Inviluppi Momento Micropalo sx

Design Assumption: Nomin	nal Invilunni: Momento	Muro: Micronalo sy
Z (m)	Lato sinistro (kN*m/m)	
0	0	
-0.2	1.023	0 0
-0.4	4.043	0
-0.4	9.014	0
-0.8	15.885	0
-0.8 -1	24.606	0
-1.2	14.435	1.451
-1.4	5.993	17.667
-1.6	6.943	33.181
-1.8	9.227	47.466
-2	11.074	60.444
-2.2	12.484	72.032
-2.4	13.47	82.15
-2.6	14.046	90.725
-2.8	14.229	97.68
-3	14.034	102.939
-3.2	13.531	106.432
-3.4	12.835	108.115
-3.6	12.056	107.943
-3.8	11.296	105.871
-3.8 -4	10.652	103.871
-4.2	9.736	95.653
-4.4	8.664	87.229
-4.6	7.544	77.066
-4.8	6.474	65.837
-5	5.525	54.126
-5.2	4.744	42.255
-5.4	4.171	30.55
-5.6	3.844	19.333
-5.8	3.791	8.925
-6	4.561	0
-6.2	9.447	0
-6.4	16.631	0
-6.6	22.882	0
-6.8	28.026	0
-7	32.122	0
-7.2	35.221	0
-7.4	37.369	0
-7.6	38.607	0
-7.8	38.972	0
-8	38.491	0
-8.2	37.189	0
-8.4	35.442	0
-8.6	33.325	0.674
-8.8	30.946	1.248
-9	28.398	1.652
-9.2	25.761	1.911
-9.4	23.1	2.049
-9.6	20.47	2.088
-9.8	17.914	2.048
-10	15.468	1.945
-10.2	13.159	1.797
-10.4	11.008	1.615
=***		×==



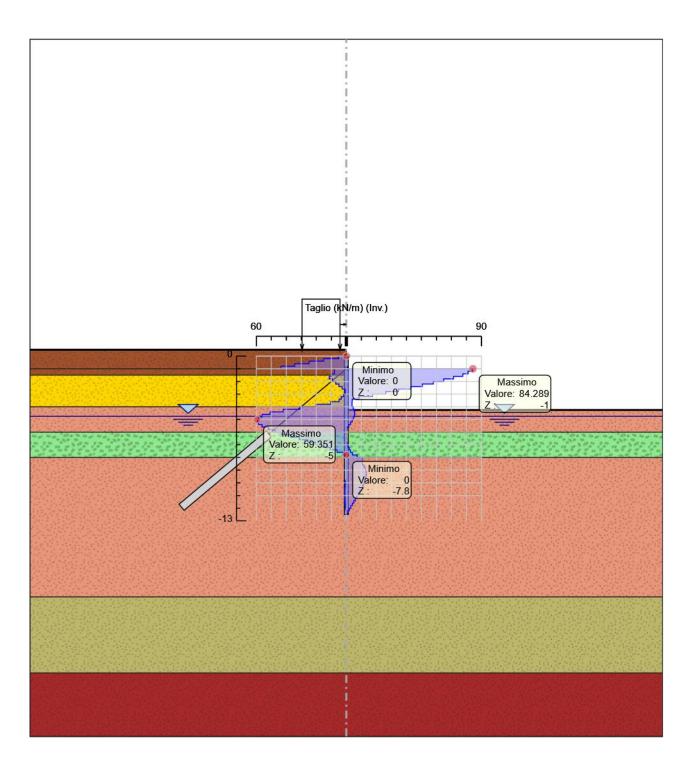
Design Assumption: Nominal	Inviluppi: Momento	Muro: Micropalo sx
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-10.6	9.03	1.413
-10.8	7.237	1.2
-11	5.636	0.985
-11.2	4.233	0.777
-11.4	3.029	0.582
-11.6	2.026	0.407
-11.8	1.224	0.256
-12	0.624	0.136
-12.2	0.225	0.051
-12.4	0.025	0.006
-12.5	0	0

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA					ANTOVA
Relazione di calcolo opere provvisionali IN38	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NM25	03 D 26	CL	iN 00 03 009	Α	106 di 125

5.4. Grafico Inviluppi Momento

5.5. Tabella Inviluppi Taglio Micropalo sx

Design Assumption: Nominal		
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
0	5.114	0
-0.2	15.103	0
-0.4	24.853	0
-0.6	34.357	0
-0.8	43.601	0
-1	43.601	84.289
-1.2	7.885	84.289
-1.4	9.896	81.08
-1.6	11.421	77.571
-1.8	11.421	71.426
-2	9.232	64.89
-2.2	7.053	57.941
-2.4	4.929	50.59
-2.6	2.881	42.875
-2.8	0.913	34.774
-3	1.972	26.294
-3.2	3.432	17.464
-3.4	4.795	8.416
-3.6	10.364	3.896
-3.8	20.11	3.799
-4	30.98	4.58
-4.2	42.121	5.359
-4.4	50.812	5.603
-4.6	56.145	5.603
-4.8	58.558	5.35
-5	59.351	4.745
-5.2	59.351	3.906
-5.4	58.526	2.862
-5.6	56.087	1.639
-5.8	52.038	0.263
-6	47.491	0
-6.2	43.215	0
-6.4	37.077	0
-6.6	31.251	0
-6.8	25.724	0.345
-7	20.479	1.106
-7.2	15.492	1.916
-7.4	10.74	2.807
-7.6	6.193	4.047
-7.8	1.823	7.216
-8	0	10.367
-8.2	0	10.367
-8.4	0	10.589
-8.6	0	11.896
-8.8	0	12.738
-9	0	13.185
-9.2	0	13.303
-9.4	0	13.303
-9.6	0.202	13.151
-9.8	0.512	12.779
-10	0.744	12.779
-10.2	0.908	11.546
-10.2	1.012	10.756
-10.4	1.012	10.730



Design Assumption: Nominal Z (m)	•	Muro: Micropalo sx Lato destro (kN/m)
-10.6	1.065	9.888
-10.8	1.072	8.965
-11	1.072	8.004
-11.2	1.04	7.019
-11.4	0.974	6.02
-11.6	0.877	5.014
-11.8	0.752	4.007
-12	0.601	3.001
-12.2	0.426	1.998
-12.4	0.226	0.998
-12.5	0.059	0.249

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			EA CODOG A - MANTO		MONA – MANTOVA	
Relazione di calcolo opere provvisionali IN38	COMMESSA NM25	LOTTO 03 D 26	CODIFICA CL	DOCUMENTO iN 00 03 009	REV.	FOGLIO 110 di 125

5.6. Grafico Inviluppi Taglio

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPI TRATTA I		NA – MANTOVA			
Relazione di calcolo opere provvisionali IN38	COMMESSA NM25	LOTTO 03 D 26	CODIFICA CL	DOCUMENTO iN 00 03 009	REV.	FOGLIO 112 di 125

5.7. Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
			%
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	GEO	Left Wall LEFT	12.71
NTC2018: A1+M1+R1 (R3 per tiranti)	Carico Ferroviar	io Left Wall RIGHT	34.22

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			EA CODOG A - MANTO	NO – CREMO VA	NA – M	ANTOVA
Relazione di calcolo opere provvisionali IN38	COMMESSA NM25	LOTTO 03 D 26	CODIFICA CL	DOCUMENTO iN 00 03 009	REV.	FOGLIO 113 di 125

5.8. Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro La		Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
NTC2018: A1+M1+R1 (R3 per tiranti)	Carico Ferroviario	Left Wall	LEFT	110.95
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	GEO	Left Wall I	RIGHT	170.54

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA CODOGNO – CREMONA – M TRATTA PIADENA - MANTOVA				NA – M	ANTOVA
Relazione di calcolo opere provvisionali IN38	COMMESSA NM25	LOTTO 03 D 26	CODIFICA CL	DOCUMENTO iN 00 03 009	REV.	FOGLIO 114 di 125

6. Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche						
Calcestruzzo	NTC					
Acciaio	NTC					
Tirante	NTC					

Coefficienti per Verifica Tiranti						
GEO FS	1					
ξa3	1.8					
γs	1.15					

6.1. Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	GEO Sc	cavo 1° Tirant	e 1°Tirante S	Scavo finale (Carico Ferroviario
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	V	V	V	V	V
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V
NTC2018: A2+M2+R1					
NTC2018: A2+M2+R2					

6.2.1. Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE	Tipo Risultato:				NTC2018		
(Rara/Frequente/Quasi Permanente)	Verifiche Tiranti				(ITA)		
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio	Resistenza Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR	Resistenze
I TIRANTE	1°Tirante	200	712.524	605.557	0.281	0.33	NO
I TIRANTE	Scavo finale	206.752	712.524	605.557	0.29	0.341	NO
I TIRANTE	Carico Ferroviario	218.548	712.524	605.557	0.307	0.361	NO

6.2.2. Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018:	Tipo Risultato:				NTC2018			
A1+M1+R1 (R3 per tiranti)	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEC	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
I TIRANTE	1°Tirante	270	359.86	605.557	0.75	0.446		
I TIRANTE	Scavo finale	279.115	359.86	605.557	0.776	0.461		
I TIRANTE	Carico Ferroviario	296.552	359.86	605.557	0.824	0.49		

6.2.3. Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption:	Tipo Risultato:				NTC2018			
NTC2018: A2+M2+R1	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
I TIRANTE	1°Tirante	200	359.86	605.557	0.556	0.33		
I TIRANTE	Scavo finale	206.689	359.86	605.557	0.574	0.341		
I TIRANTE	Carico Ferroviario	222.752	359.86	605.557	0.619	0.368		

6.2.4. Verifiche Tiranti NTC2018: A2+M2+R2

Design Assumption:	Tipo Risultato:				NTC2018			
NTC2018: A2+M2+R2	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
I TIRANTE	1°Tirante	200	359.86	605.557	0.556	0.33		
I TIRANTE	Scavo finale	206.689	359.86	605.557	0.574	0.341		
I TIRANTE	Carico Ferroviario	222.752	359.86	605.557	0.619	0.368		

6.2.5. Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato:								
	Verifiche Tiranti								
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio	Ratio	Resistenza	Gerarchia delle	Design Assumption
		(kN)	(kN)	(kN)	GEO	STR		Resistenze	
1	Carico Ferroviario	296.552	359.86	605.557	0.824	0.49			NTC2018: A1+M1+R1 (R3

6.3. Verifiche Travi di Ripartizione Nominal

Design Assumption:	Tipo Risultato: Verifiche Travi di								
Nominal	Ripartizione								
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	1°Tirante	100	0	0	0	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Scavo finale	103.376	0	0	0	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Carico Ferroviario	109.274	0	0	0	0

6.4. Verifiche Travi di Ripartizione NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE	Tipo Risultato:	NTC2018							
(Rara/Frequente/Quasi Permanente)	Verifiche Travi di	(ITA)							
	Ripartizione								
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico	Assiale	Ratio	Ratio	Instabilità
					distribuito	(kN)	momento	taglio	
					(kN/m)				_
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	1°Tirante	100	0	0.316	0.257	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Scavo finale	103.376	0	0.327	0.266	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Carico	109.274	0	0.346	0.281	0
				Ferroviario					

6.5. Verifiche Travi di Ripartizione NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018:	Tipo Risultato: Verifiche	NTC2018							
A1+M1+R1 (R3 per tiranti)	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico	Assiale	Ratio	Ratio	Instabilità
					distribuito	(kN)	momento	taglio	
					(kN/m)				
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	1°Tirante	135	0	0.427	0.347	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Scavo finale	139.557	0	0.442	0.359	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Carico Ferroviario	148.276	0	0.469	0.381	0

6.6. Verifiche Travi di Ripartizione NTC2018: A2+M2+R1

Design Assumption:	Tipo Risultato: Verifiche	NTC2018							
NTC2018: A2+M2+R1	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	1°Tirante	100	0	0.316	0.257	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Scavo finale	103.344	0	0.327	0.266	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Carico	111.376	0	0.352	0.286	0
				Ferroviario					

6.7. Verifiche Travi di Ripartizione NTC2018: A2+M2+R2

Design Assumption:	Tipo Risultato: Verifiche	NTC2018							
NTC2018: A2+M2+R2	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	1°Tirante	100	0	0.316	0.257	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Scavo finale	103.344	0	0.327	0.266	0
2 HEB 160 I TIRANTE	I TIRANTE	HE 160B	S275	Carico	111.376	0	0.352	0.286	0
				Ferroviario					