COMMITTENTE:

PROGETTAZIONE:

CUP: J84H17000930009

U.O. ARCHITETTURA STAZIONI E TERRITORIO

PROGETTO DEFINITIVO

RADDOPPIO LINEA CODOGNO-CREMONA-MANTOVA
TRATTA PIADENA-MANTOVA

FV14 - FERMATA DI CASTELLUCCHIO OPERE D'ARTE MINORI - PENSILINE

Relazione di calcolo della pensilina ferroviaria

SCALA:
-

 COMMESSA
 LOTTO
 FASE
 ENTE
 TIPO DOC.
 OPERA/DISCIPLINA
 PROGR.
 REV.

 N M 2 5
 0 3
 D
 4 4
 C L
 F V 1 4 0 0
 0 0 1
 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	F. Serrau	Aprile	M. De Vita	Aprile	M. Berlingeri	Aprile	R. Marino
	4		2020	1/4 1	2020	1110	2020	April 2020
	4	No per		Mar)		N		G. S.
						,)		Para Para Para Para Para Para Para Para
								RASSI AND No. 23
								TA TE
								一
								. ARK
								0.0
File: NI	M2503D44CLFV1400001A							n. Elab.:

INDICE

1	PRE	MESSA	6
2	SCO	PO DEL DOCUMENTO	6
3	DOC	CUMENTAZIONE DI RIFERIMENTO	7
	3.1	NORMATIVA DI RIFERIMENTO	7
	3.2	ELABORATI DI RIFERIMENTO	9
4	MA	TERIALI	10
	4.1	ACCIAIO DA CARPENTERIA METALLICA S275	10
	4.2	TIRAFONDI	11
	4.3	BULLONI	11
	4.4	ALLETTAMENTO PIASTRA DI BASE	11
	4.5	SALDATURE	11
5	CAR	ATTERIZZAZIONE SISMICA DEL SITO	12
	5.1	VITA NOMINALE E CLASSE D'USO	12
	5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	13
	5.3	CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA	14
6	DES	CRIZIONE DELL'OPERA	15
	6.1	GENERALITÀ	15
	6.2	UNITÀ DI MISURA	17
	6.3	MODELO DI CALCOLO	17
	6.3.1	Codice di calcolo	17
	6.3.2	Affidabilità dei codici di calcolo	17
	6.3.3	Informazioni generali sull'elaborazione	17
	6.3.4	Tipo di analisi svolta	17

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 3 di 99

	$6.4 \qquad A$	ANALISI DEI CARICHI	22
	6.4.1	Peso proprio della struttura	22
	6.4.2	Carichi permanenti non strutturali	22
	6.4.3	Carichi variabili	22
	6.4.4	Azione termica	22
	6.4.5	Carico della neve sulla copertura	22
	6.4.6	Azione del vento	23
	6.4.7	Pressione aerodinamica dovuta al passaggio dei treni	30
	6.4.8	Carichi di pali TE (Tensione Elettrica)	37
	6.4.9	Azione sismica	37
	6.5	COMBINAZIONI DI CARICO	42
7	RISUI	TATI ANALISI	53
	7.1 F	RISULTATI DELL'ANALISI MODALE	53
	7.2 S	STATI LIMITE ULTIMO (SLU)	54
	7.2.1	Inviluppo diagrammi delle sollecitazioni di progetto	54
	7.3 S	TATI LIMITE DI ESERCIZIO (SLE)	59
8	CRITI	ERI GENERALI PER LE VERIFICHE STRUTTURALI	59
9	VERII	FICHE DELLE MEMBRATURE METALLICHE	60
	9.1.1	Verifiche delle colonne HEB360	61
	9.1.2	Verifiche delle mensole (H400x300)	63
	9.1.3	Verifiche delle travi longitudinali HEA260	65
	9.1.4	Verifiche degli arcarecci IPE 180	67
	9.1.5	Verifiche degli arcarecci IPE 200	69
	9.1.6	Verifiche dei controventi 2L70x70x7	71
	9.2 V	JERIFICHE TABELLE OUTPUT COMPLETE	73

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	4 di 99

10	VEF	RIFICHE DI DEFORMABILITÀ	75
1	0.1	VERIFICHE DI SPOSTAMENTI VERTICALI	75
1	0.2	VERIFICHE DI SPOSTAMENTI LATERALI	77
1	0.3	VERIFICHE DI RIGIDEZZA	80
1	0.4	VERIFICHE DEL GIUNTO STRUTTURALE	83
1	0.5	VERIFICHE DI BUCKLING SENCONDO LA CIRCOLARE APPLICATIVA C4.2.3.4	86
1	0.6	VERIFICHE DEGLI EFFETTI DELLE NON-LINEARITÀ GEOMETRICHE SECONDO NTC18 §7.3.1	88
11	VEF	RIFICA DEI TIRAFONDI	89
1	1.1	VERIFICHE DELL'ACCIAIO	89
1	2	GENERALE	90
1	3	GEOMETRIA	90
	14	COLONNA	90
	15	PLINTO DELLA COLONNA	91
	16	ANCORAGGIO	91
	17	COEFFICIENTI DI MATERIALE	91
	18	PLINTO DI FONDAZIONE	91
	19	SALDATURE	92
2	0	CARICHI	92
2	1	RISULTATI	92
	22	ZONA DI COMPRESSIONE	92
	23	ZONA IN TRAZIONE	93
	24	CONTROLLO DELLA RESISTENZA DEL GIUNTO	94
	25	TAGLIO	94
	26	SALDATURE TRA LA COLONNA E LA PIASTRA DELLA BASE	95
	27	RIGIDEZZA DEL GIUNTO	95

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 5 di 99

28	IL COMPONENTE PIÙ DEBOLE:	96
28.1	VERIFICHE NEL CLS	97

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	6 di 99

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del Raddoppio linea Codogno – Cremona – Mantova, tratta Piadena - Mantova. Le Analisi e Verifiche nel seguito esposte fanno in particolare riferimento alle pensiline previste in corrispondenza della fermata "Castellucchio".

La descrizione degli interventi che segue è da leggersi congiuntamente all'analisi degli elaborati di progetto a cui si fa riferimento implicito.

La presente relazione si riferisce alle opere civili previste per la realizzazione della fermata ferroviaria "Castellucchio".

Le opere strutturali previste possono differenziarsi in base alla loro tipologia come:

- Pensilina metallica disposta a protezione di una parte della banchina lato binario dispari per una lunghezza complessiva di 70 metri circa

2 SCOPO DEL DOCUMENTO

Il presente documento ha per oggetto il calcolo strutturale delle pensiline da realizzarsi nell'ambito dell'intervento Raddoppio della linea Codogno – Cremona – Mantova, in particolare la stazione ferroviaria di "Castellucchio".

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

REV.

Α

FOGLIO

7 di 99

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO

NM25 03 D 44 CLFV1400001

3 DOCUMENTAZIONE DI RIFERIMENTO

3.1 Normativa di riferimento

- Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica;
- Circ. Min. LL.PP.14 Febbraio 1974, n. 11951 Applicazione della L. 5 novembre 1971, n. 1086";
- Legge 2 febbario 1974 n. 64, recante provvedimenti per le costruzioni co particolari prescrizioni per le zone sismiche;
- D. M. Min. II. TT. del 17 gennaio 2018 Norme tecniche per le costruzioni;
- CIRCOLARE 21 gennaio 2019, n.7 Istruzioni per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 17 gennaio 2018.
- UNI ENV 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica
 Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici";
- EUROCODICE 2- UNI EN 1992-1-1 Novembre 2005
- RFI DTC INC PO SP IFS 001 A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie
- RFI DTC INC PO SP IFS 003 A Specifica per la verifica a fatica dei ponti ferroviari
- RFI DTC INC CS LG IFS 001 A Linee guida per il collaudo statico delle opere in terra
- RFI DTC INC PO SP IFS 002 A Specifica per la progettazione e l'esecuzione di cavalcavia e passerelle pedonali sulla sede ferroviaria
- RFI DTC INC PO SP IFS 004 A Specifica per la progettazione e l'esecuzione di impalcati ferroviari a travi in ferro a doppio T incorporate nel calcestruzzo
- RFI DTC INC PO SP IFS 005 A Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia
 - Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	8 di 99

- Regolamento (UE) N. 1300/2014/UE Specifiche Tecniche di Interoperabilità per l'accessibilità del sistema ferroviario dell'Unione europea per le persone con disabilità e le persone a mobilità ridotta del 18/11/2014, modificato con il Regolamento di esecuzione (UE) N° 2019/772 della Commissione del 16 maggio 2019;
- Regolamento (UE) N° 1303/2014 della Commissione del 18 novembre 2014 relativo alla specifica tecnica di interoperabilità concernente la "sicurezza nelle gallerie ferroviarie" del sistema ferroviario dell'Unione europea, rettificato dal Regolamento (UE) 2016/912 del 9 giugno 2016 e modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019
- Regolamento UE N. 1301/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «Energia» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di Esecuzione (UE) 2018/868 del 13 giugno 2018 e dal successivo Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019
- Regolamento (UE) N. 2016/919 della Commissione del 27 maggio 2016 relativo alla specifica tecnica di interoperabilità per i sottosistemi "controllo-comando e segnalamento" del sistema ferroviario nell'Unione europea modificata con la Rettifica del 15 giugno 2016 e dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;
- REGOLAMENTO DI ESECUZIONE (UE) 2019/772 DELLA COMMISSIONE del 16 maggio 2019 che modifica il regolamento (UE) n. 1300/2014 per quanto riguarda l'inventario delle attività al fine di individuare le barriere all'accessibilità, fornire informazioni agli utenti e monitorare e valutare i progressi compiuti in materia di accessibilità.
- REGOLAMENTO DI ESECUZIONE (UE) 2019/776 DELLA COMMISSIONE del 16 maggio 2019 che modifica i regolamenti (UE) n. 321/2013, (UE) n. 1299/2014, (UE) n. 1301/2014, (UE) n. 1302/2014, (UE) n. 1303/2014 e (UE) 2016/919 della Commissione e la decisione di esecuzione 2011/665/UE della Commissione per quanto riguarda l'allineamento alla direttiva (UE) 2016/797 del Parlamento europeo e del Consiglio e l'attuazione di obiettivi specifici stabili nella decisione delegata (UE) 2017/1471 della Commissione.

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA 03 NM25

D 44

DOCUMENTO

REV.

FOGLIO

9 di 99 CLFV1400001 Α

Elaborati di riferimento 3.2

Titolo	scala																					
Pensiline – Relazione di calcolo pensilina ferroviaria a singolo pilastro simmetrica	-	N	M	2	5	0	3	D	4	4	С	L	F	V	1	4	0	0	0	0	1	A
Pensiline – Relazione di calcolo pensilina ferroviaria a singolo pilastro asimmetrica	1	N	M	2	5	0	3	D	4	4	С	L	F	V	1	4	0	0	0	0	2	A
Carpenteria piano terra - pensilina ferroviaria	1:100	N	M	2	5	0	3	D	4	4	P	A	F	V	1	4	0	0	0	0	7	A
Carpenteria copertura - pensilina ferroviaria	1:100	N	M	2	5	0	3	D	4	4	P	A	F	V	1	4	0	0	0	0	8	A
Carpenteria - sezioni longitudinali e trasversali - pensilina ferroviaria	1:50	N	M	2	5	0	3	D	4	4	W	В	F	V	1	4	0	0	0	0	1	A
Relazione di calcolo fondazione	-	N	M	2	5	0	3	D	2	6	С	L	F	V	1	4	В	0	0	1	1	Α
Planimetria fondazioni	1:100	N	M	2	5	0	3	D	2	6	P	A	F	V	1	4	В	0	0	1	1	A
Carpenteria fondazioni	1:50	N	M	2	5	0	3	D	2	6	P	В	F	V	1	4	N	0	0	1	2	Α

4 MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

4.1 Acciaio da carpenteria metallica S275

ACCIAIO DA CARPENTER	RIA METALLICA - Rif.	4.1.4.1 e 11.3.	4 NTC		
Classe Acciaio			s[275]
Modulo di elasticità			E _f = [210000	N/mm²
Modulo di Poisson:			v= [0.3]
Coefficiente di dilatazio	ne lineare		α= [0.00001	°C ⁻¹
Modulo di elasticità tras	sversale		G =[80769	N/mm²
Densita		γ= 7850	$Kg/m^3 =$	76.98	KN/m ³
Spessore massimo elem	<u>enti</u>			<40	mm
Tensione caratteristica (allo snervamento:		$f_{yk} = [$	275	N/mm²
Tensione caratteristica	di rottura:		f _{tk} =	430	N/mm ²
C	coefficienti parziali	per le verific	che agli SL	U:	
[γ m0] Resistenza sezioni cl 1-4	[γ m1] Instabil	[γ m1] membrature	Instabilità e ponti ferr. e rad.	[γ n Resistenza se	
1.05	1.05	1.	.10	1.2	25

Classe di esecuzione (UNI EN 1090, RFI DTC SI PS SP IFS 002 B): EXC2

4.2 Tirafondi

- Barre interamente filettate con filettatura metrica ISO a passo grosso, di caratteristiche meccaniche equivalenti alla classe 8.8 secondo UNI EN ISO 898 parte I
- dadi con caratteristiche Meccaniche equivalenti alla classe 8 secondo UNI EN 898 parte II conformi per le caratteristiche dimensionali alla ISO 4032
- rondelle in acciaio temperato e rinvenuto HV 300 conformi per le caratteristiche dimensionali alla UNI EN ISO 7089

4.3 Bulloni

- Caratteristiche meccaniche: classe 8.8 secondo UNI EN ISO 898 parte I
- Dadi con caratteristiche meccaniche equivalenti alla classe 8 secondo UNI EN 898 parte II conformi per le caratteristiche dimensionali alla ISO 4032
- Rondelle in acciaio temperato e rinvenuto HV 300 conformi per le caratteristiche dimensionali alla UNI EN ISO 7089

NOTE:

- i bulloni dovranno essere montati con una rosetta sotto la testa e sotto il dado
- i tirafondi dovranno essere montati con una rosetta sotto il dado
- i tirafondi dovranno essere montati con dado e controdado. Qualora il controdado non fosse compatibile con la geometria e gli ingombri del collegamento, si dovranno prevedere dadi ribassati o idonei dispositive di antisvitamento.

4.4 Allettamento piastra di base

Realizato con malta tipo Emaco S55 o equivalente.

4.5 Saldature

Procedimenti di saldatura omologati e qualificati (tipo automatico ad arco sommerso o altri che verranno concordati e accettati dall'ente appaltante) conformi a RFI DTC SI SP IFS 001 D, capitolo 6.6.7 e UNI EN 1090-2.

5 CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

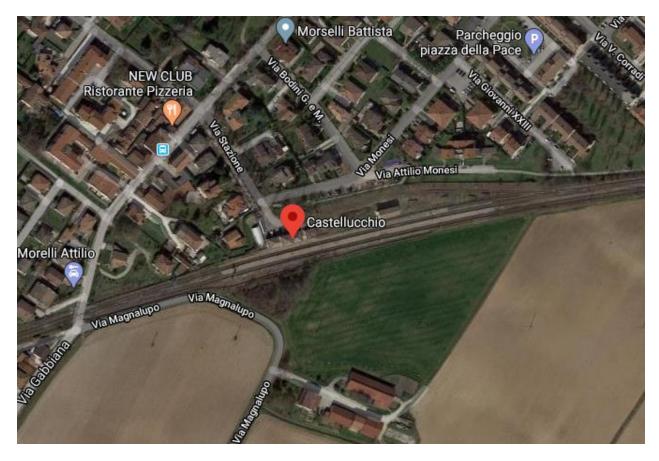


Figura 1 – Configurazione planimetrica tracciato

Le coordinate del sito sono:

45°08'39.48"N

10°38'51"E

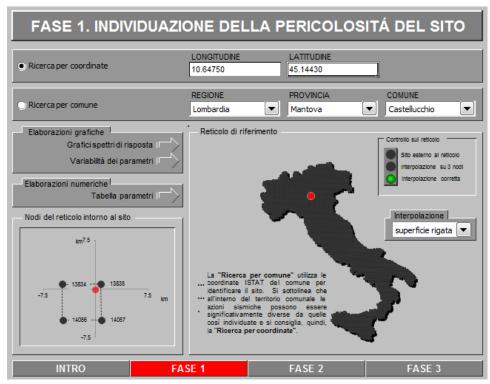
5.1 Vita nominale e classe d'uso

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purché

soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU).

Per l'opera in oggetto si considera una vita nominale: VN = 50 anni. Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_u = 1.5$.

I parametri di pericolosità sismica vengono quindi valutati in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R 0 ovvero:


$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 50x1.5 = 75$ anni.

5.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 17.01.2018, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 17-01-18, si ottiene per il sito in esame:

SLATO	T _R	a _g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	45	0.038	2.566	0.245
SLD	75	0.045	2.556	0.274
SLV	712	0.100	2.591	0.309
SLC	1462	0.128	2.556	0.313

Tabella di riepilogo Parametri di pericolosità sismica

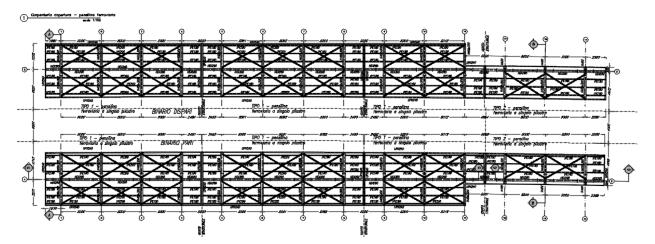
5.3 Categoria di sottosuolo e categoria topografica

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al punto 3.2.2 del DM 17.01.18. Per il caso in esame si è assunta una categoria di sottosuolo di tipo C e una classe Topografica T1.

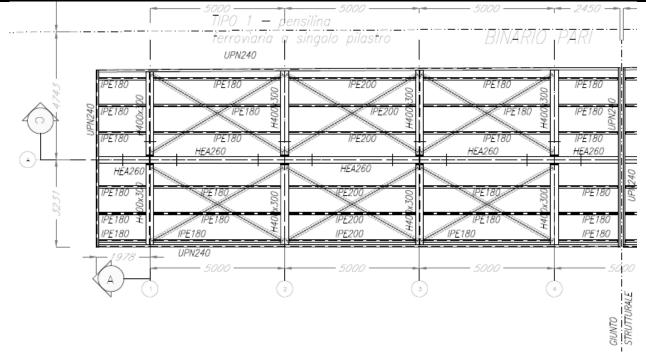
RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	15 di 99

6 DESCRIZIONE DELL'OPERA


6.1 Generalità

La presente relazione ha per scopo il dimensionameto delle pensiline in corrispondenza del binario sud. Le analisi svolte per le suddette strutture sono valide anche per quelle in corrispondenza del binario nord, le quali presentano le medesime caratteristiche geometriche, rispetto alla struttura in esame. La struttura metallica è composta da una struttura intelaita, che si estende per un totale di 14 assi strutturali, disposte ad un interasse di 5.0 m tra di loro. La lunghezza totale della struttura è pari a circa 70m, di cui si possono distinguere due tipologie strutturali distinte, le cui sezioni trasversali sono esposte nelle figure seguenti. Sono stati previsti tre giunti strutturali, da realizzarsi in mezzeria tra le assi strutturali 4-5, 8-9 e 11-12.

La tipologia in esame consiste di una struttura intelaiata a mensola simmetrica (circa 3.70m sul lato binario), che si estende tra le assi strutturali 1–4 e 5-8. In direzione trasversale la struttura è composta da un pilastro HEB360 per asse, su cui appoggiano le travi principali, incastrate nel pilastro, le cui sezioni sono del tipo composto e sviluppano un'altezza massima pari a 400mm. Parte dei pilastri (assi strutturali 1-2 6-7) apppoggiano su platea di fondazione F1 di dimensioni pari a 2.25x7.0x0.6m, mentre l'altra parte in corrispondenza del sottopasso, appoggia su allargamenti appositi del muro del sottopasso. In direzione longitudinale, i pilastri sono uniti in testa tramite una trave secondaria HEA260. Il nodo strutturale di unione trave secondaria e pilastro è del tipo rigido in direzione longitudinale. Sulle travi principali, longitudinalmente appoggiano arcarecci IPE180-IPE200 ogni 1.0m circa. La connesione è incernierata su tutti gli arcarecci, tranne quelli bordo, per i quali è stata adottata una connessione rigida.

 $Figura\ 2-In quadramento\ planimetrico$

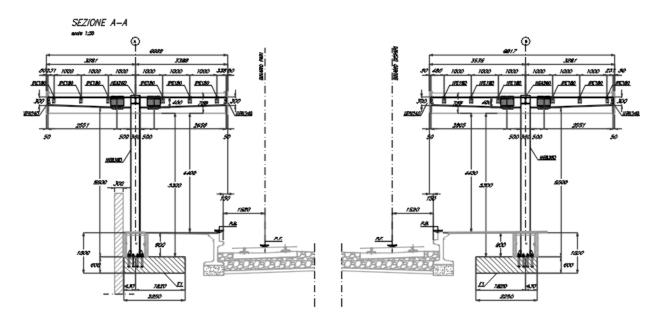


Figura 3 – Sezioni trasversali

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO

NM25 03 D 44 CLFV1400001

DOCUMENTO REV. FOGLIO CLFV1400001 A 17 di 99

6.2 Unità di misura

Nel seguito si adotteranno le seguenti unità di misura:

• per le lunghezze ⇒ m, mm

• per i carichi \Rightarrow kN, kN/m², kN/m³

per le azioni di calcolo
 ⇒ kN, kNm

per le tensioni \Rightarrow MPa

6.3 Modelo di calcolo

6.3.1 Codice di calcolo

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.21.0.2 prodotto, distribuito ed assistito da Computers and Structures. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse. I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

6.3.2 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche. degli algoritmi impiegati e l'individuazione dei campi d'impiego.

6.3.3 Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

6.3.4 Tipo di analisi svolta

L'analisi condotta è una analisi 3D in cui la struttura viene discretizzata in elementi tipo trave. Il modello è sviluppato per entrambe le tipologie di pensilina, descritte nel punto precedente. L'analisi strutturale rispetto alle azioni sismiche è condotta con il metodo dell'analisi dinamica lineare a spettro di risposta secondo le disposizioni del capitolo 7 del DM 17/01/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Nelle figure seguenti si riportano alcune immagini rappresentative del modello geometrico della struttura:

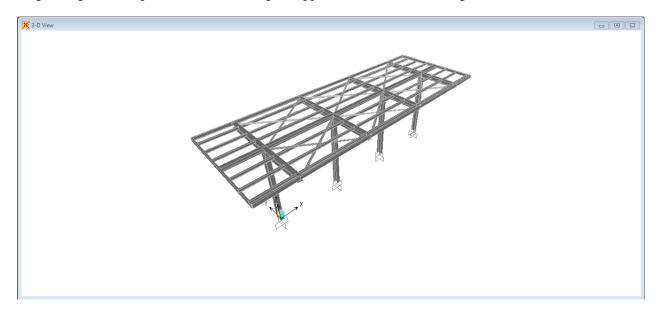


Figura 4 – Vista assonometrica

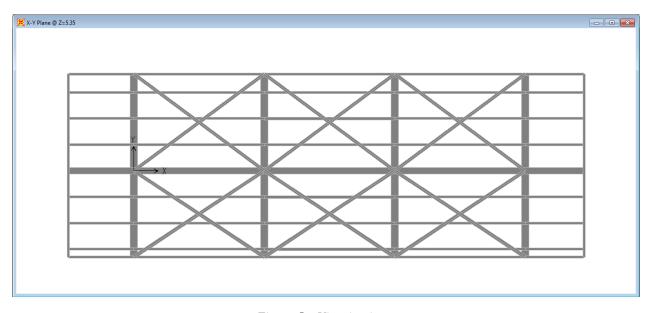


Figura 5 – Vista in pianta

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 19 di 99

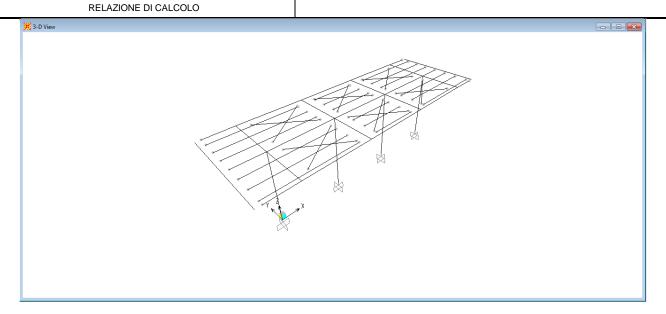


Figura 6 –Vincoli interni

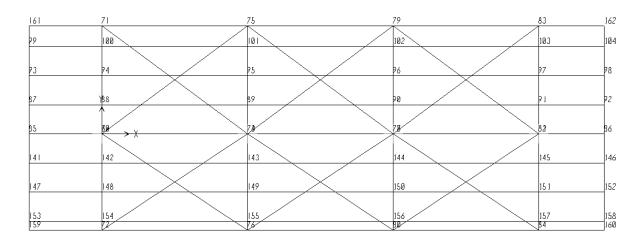


Figura 7 – Numerazione nodi di copertura

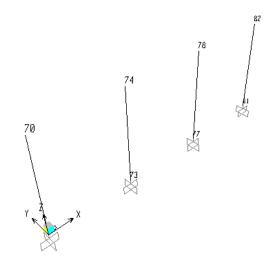


Figura 8 – Numerazione nodi di pilastri

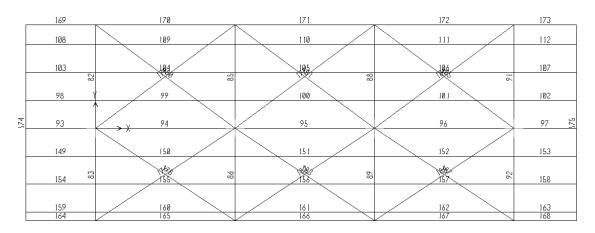


Figura 9 – Numerazione aste di copertura

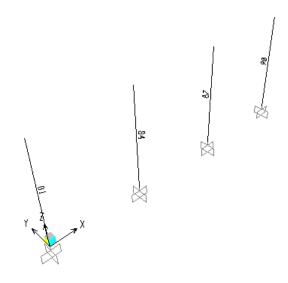


Figura 10 – Numerazione aste dei pilastri

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	22 di 99

6.4 Analisi dei carichi

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

6.4.1 Peso proprio della struttura

Le sollecitazioni indotte dal peso della struttura sono valutate automaticamente dal programma a partire dal peso specifico dell'acciaio assunto pari a 7850 kg/m³.

(CONDIZIONE PESO-PROPRIO)

6.4.2 Carichi permanenti non strutturali

Peso permanenti portati dal solaio di copertura della pensilina sono stati valutati assumendo cautelativamente: $p=1.20 \text{ N/m}^2$

(CONDIZIONE COPERTURA)

6.4.3 Carichi variabili

Il carico variabile di manutenzione agente sulla copertura della pensilina è q=0.5 KN/m² (categoria H1).

(CONDIZIONE CARICHI_VARIABILI)

6.4.4 Azione termica

Si applica la variazione uniforme della temperatura di ±25° alle membrature in acciaio

Il coefficiente di dilatazione termica vale α =0.00001

(CONDIZIONE TEMPERATURA)

6.4.5 Carico della neve sulla copertura

Le azioni della neve sono definite al capitolo 3.4 delle NTC2018. Il carico provocato dalla neve sulle coperture è definito dall'espressione seguente:

$$q_s = \mu_i \times C_e \times C_t \times q_{sk}$$

dove:

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	23 di 99

μ_i - Coefficiente di forma della copertura;

C_e - Coefficiente di esposizione;

C_t - Coefficiente termico;

 q_{sk} - Valore di riferimento del carico neve al suolo.

Il coefficiente di forma μ_i , avendo la falda un'inclinazione nulla rispetto all'orizzontale, risulta essere pari a 0.8.

Per un altitudine pari a circa 40 m s.l.m., si ottiene q_{sk} uguale a 1.00 kN/m².

Ponendo coefficiente di esposizione $C_e = 1$ e il coefficiente termico $C_t = 1$, ne deriva un carico neve in copertura pari a:

 $q_s = 0.8 \ x \ 1.0 \ x \ 1 \ x \ 1 = 0.8 \ kN/m^2$

(CONDIZIONE NEVE)

6.4.6 Azione del vento

AZIONE DEL VENTO PAR. 3.3 NTC18

DEFINIZIONE DEI DATI

zona:

1) Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della provincia di Trieste)

Classe di rugosità del terreno:

 D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	24 di 99

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinchè una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la classe permanga intorno alla costruzione per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione. Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe più sfavorevole.

Nelle fasce entro i 40km dalla costa delle zone 1,2,3,4,5 e 6 la categoria di esposizione è indipendente dall'altitudine del sito.

a, (altitudine sul livello del mare della costruzione):

Distanza dalla costa

T_R (Tempo di ritorno): Categoria di esposizione

	40	[m]
ĺ	150	[km]
	50	[anni]
]	I	

ZONE 1,2,3,4,5								
-	mare s	~	30 km	500m	750m			
Α		IV	IV	٧	٧	V		
В		Ш	III	IV	IV	IV		
С		*	III	III	IV	IV		
D	1	Ш	Ш	II	III	**		
-	0-44-1144-0-4							

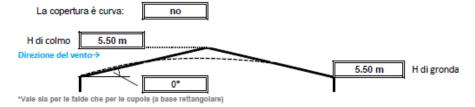
*	Categoria II in zona 1,2,3,4 Categoria III in zona 5
**	Categoria III in zona 2,3,4,5
	Categoria IV in zona 1

		ZONA	6			
-		co	sta		500 <u>m</u>	
		mare -		^	ブ	
		2 km	10 km	30 km	_	
$\left\{ \right.$	Α		III	IV	V	٧
ł	В		II	III	IV	IV
\cdot	С		Ш	III	III	IV
$\ $	D	ı	ı	II	II	III

	ZONE	7,8			ZONA	9
	mare 1.5 km	0.5 km	ata		mare <	costa
Α			IV	A		-
В			IV	В		- 1
С			III	С		- 1
D	I	П	*	D	ı	- 1
* C	ategoria	II in zon	a 8			

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA


OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	25 di 99

Altezza del colmo della copertura, rispetto al suolo e inclinazione della falda sopravento

E' consigliabile calcolare la pressione del vento per ogni facciata del fabbricato modificando i parametri per ogni caso. Nel caso di studio su prospetto di timpano, la valutazione della pressione del vento si conduce come se la copertura fosse piana e la parete alta fino alla linea di colmo. Nel caso di coperture a padiglione, la valutazione delle pressioni si esegue su ogni facciata del fabbricato utilizzando di volta in volta l'angolo della falda investito dal vento. Nel caso di coperture curve, si deve inserire l'angolo della retta tangente al bordo della copertura, in sostanza l'angolo di attacco della copertura. (per cupole a tutto sesto l'angolo è di 90°, per cupole a sesto ribassato è minore di 90°). Nel caso di studio su prospetto piano l'analisi si conduce come su prospetto di timpano. Si osserva che oltre alle pressioni andrebbe considerata anche la forza tangenziale esercitata dal vento sul fabbricato. Generalmente essa si trascura, è necessaria modellarla solo per grandi coperture piane ad esempio: coperture di grandi capannoni industriali. Il foglio di calcolo è utilizzabile per fabbricati a base rettangolare.

CALCOLO VELOCITA' DI RIFERIMENTO DEL VENTO §3.3.2.

Zona	v _{b,0} [m/s]	a _o [m]	ks	C _a
1	25	1000	0.4	1.000

CALCOLO VELOCITA' DI RIFERIMENTO DEL VENTO §3.3.2.

Zona	v _{b,0} [m/s]	a _o [m]	ks	C _a
1	25	1000	0.4	1.000

 $v_b = v_{0,0} * ca$ $ca = 1 ext{ per as } \le a0$ $ca = 1 + ks (as/a0 - 1) ext{ per } a_0 < a_s \le 1500 ext{ m}$

v_b (velocità base di riferimento) 25.00 m/s

V_r = v_b * cr

Cr coefficiente di ritomo
1.00
v_r (velocità di riferimento)
25.02 m/s

PRESSIONE CINETICA DI RIFERIMENTO §3.3.6.

 q_r (pressione cinetica di riferimento [N/mq]) $q_r = 1/2 \cdot p \cdot v_r^2$ ($\rho = 1,25 \text{ kg/m}^3$)

Pressione cinetica di riferimento qr 391.20 [N/m²]

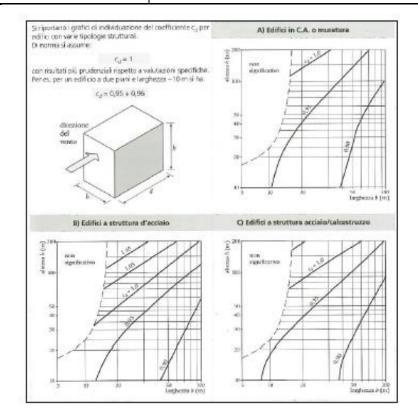
CALCOLO DEI COEFFICIENTI

Coefficiente dinamico [§3.3.8]

Cd	1.00

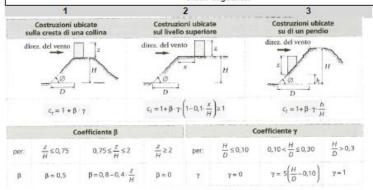
Esso può essere assunto cautelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA


TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 26 di 99

Coefficiente Topografico (Orografico)

Il coefficiente topografico si assume di norma uguale ad 1, sia per zone pianeggianti, ondulate, collinose e montane. Nel caso di costruzioni che sorgono presso la sommità di colline o pendii isolati si procede nel modo seguente:

Caso selezionato:

Condizione non isolata

Ct

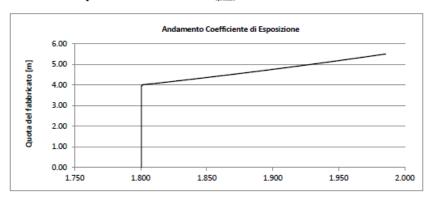
RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	27 di 99

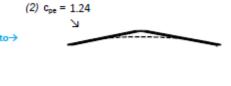

Coefficiente di esposizione [§3.3.7]

Il coefficiente di esposizione dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito (e quindi dalla classe di rugosità del terreno) ove sorge la costruzione; per altezze non maggiori di z=200m valgono le seguenti espressioni

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) [7 + c_t \cdot \ln(z/z_0)]$	per z ≥ z _{min}
$c_e(z) = c_e(z_{min})$	per z < z _{min}

k _r	z _o [m]	z _{min} [m]
0.19	0.05	4.00

Coefficiente di esposizione minimo Coefficiente di esposizione alla gronda Coefficiente di esposizione al colmo c_{e,min} 1.80 z < 4.00 c_{e,grouds} 1.99 z = 5.50 c_{e,colmo} 1.99 z = 5.50


6.4.6.1 Superifici orizzontali parallele al binario

Tettoia ad uno spiovente

Configurazione più svantaggiosa

Configurazione /

Cp
0.00
Cp
1.24
C _P
0.00
Ср
0.00

Configurazione A

Cp
0.00
Cp
-1.24
Ср
0.00
Cp
0.00

→
Direzione del vento→
→

Configurazione B

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	28 di 99

PRESSIONI DEL VENTO

Combinazione più sfavorevole per pareti e copertura:

Valori massimi della pressione per ogni elemento

p (pressione del vento) = $q_r \cdot c_d \cdot c_t \cdot c_e \cdot c_p$

c_d (coefficiente dinamico) c_t (coefficiente topografico) c_e (coefficiente di esposizione)

С

c_p (coefficiente di forma)

	p [kN/m²]	Cd	Ct	C.	Ср	P [kN/m²]
(1) par. sopravent.	0.391	1.00	1.00	1.985	0.00	0.00
(2) cop. sopravent.	0.391	1.00	1.00	1.985	1.24	0.96
(3) cop. Sottovent.	0.391	1.00	1.00	1.985	0.00	0.00
(4) par. sottovent.	0.391	1.00	1.00	1.985	0.00	0.00

(2) copertura sopravento

± 0.96 kN/mq

Direzione del vento→

NOTA: La somma della pressione dovuta al carico del vento ed a quello della pressione aerodinamica dei treni sulle superfici orizzontali non deve essere minore a 1.5kN/m². (§5.2.3.2.2 NTC2018)

In ogni caso le azioni aerodinamiche devono essere cumulate con l'azione del vento. L'azione risultante dovrà essere maggiore di un valore minimo, funzione della velocità della linea e comunque di 1,5 kN/m² sia nella verifica agli SLE (combinazione caratteristica) sia nella verifica agli SLU con $\gamma_Q = 1,00$ e $\gamma_Q = 1,00$.

Nel caso specifico si ha:

$$p = 0.391 \times 1.0 \times 1.0 \times 1.985 \times 1.24 = 0.96$$

$$p+q_{3k} = 0.96 + 0.41 = 1.37 \text{ kN/m}^2$$

La pressione sulle superfici orizzontali dovuta al carico del vento è stata incrementata a $p = 1.09 \text{ kN/m}^2$

6.4.6.2 Superifici verticali parallele al binario

6.4.6.2.1 Carico di vento agente sulla fascia perimetrale

Nel caso in esame la fascia perimetrale della pensilina può essere assimilata a una trave a parete piena. In base al punto C3.3.10.4.1 il coefficiente di forma c_p si determina in base la parametro

$$\phi = S_p/S = 1 \rightarrow c_p = 2.4 - 1 = 1.4$$

La pressione del vento sulla fascia perimetrale di copertura vale dunque:

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	29 di 99

 $p = 0.391 \times 1.0 \times 1.0 \times 1.985 \times 1.4 = 1.09 \text{ kN/m}^2$

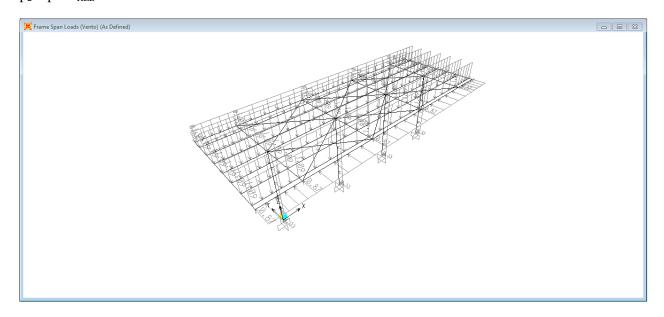
A favore di sicurezza, l'altezza della fascia si assume essere pari a 0.8m. Nello specifico si ha:

$$p_1 = p \ x \ h_{\rm fascia \ perimetrale} = 1.09 \ x \ 0.8 = 0.87 \ kN/m$$

6.4.6.2.2 Carico di vento agente sui pilastri HEB360/450

Nel caso specifico si esamina una trave a parete piena. In base al punto C3.3.10.4.1 il coefficiente di forma c_p si determina in base la parametro

$$\phi = S_p/S = 1 \longrightarrow c_p = 2.4 - 1 = 1.4$$

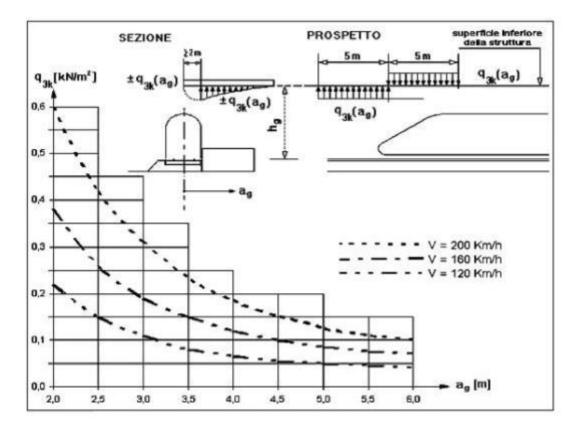

La pressione del vento sui montanti HEB360/450 vale dunque:

$$p = 0.391 \times 1.0 \times 1.0 \times 1.985 \times 1.4 = 1.09 \text{ kN/m}^2$$

La larghezza dei profili HEB360 ed HEB450 è pari a 0.3m.

Nello specifico si ha:

$$p_2 = p \ x \ b_{HEB} = 1.09 \ x \ 0.3 = 0.33 \ kN/m$$


(CONDIZIONE VENTO)

6.4.7 Pressione aerodinamica dovuta al passaggio dei treni

6.4.7.1 Superifici orizzontali parallele al binario

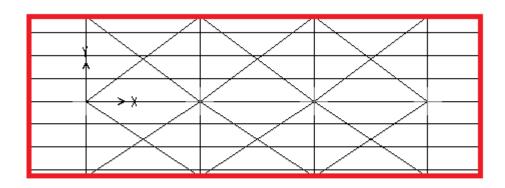
I valori caratteristici dell'azione \pm q_{3k} , relativi a superfici orizzontali adiacenti il binario sono forniti al punto 5.2.2.7 delle NTC. In particolare per superfici orizzontali poste in adiacenza al binario vale la figura 5.2.10

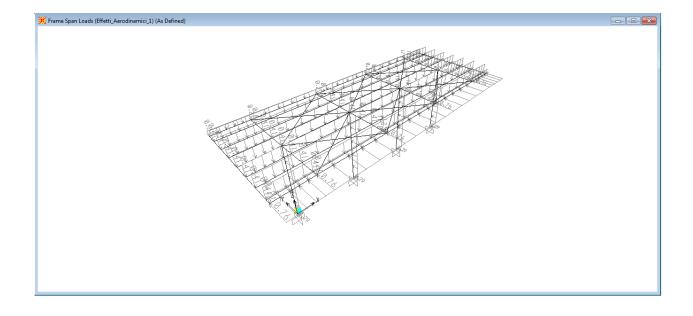
Se la distanza h_G supera i 3.80 m l'azione q_{3k} può essere ridotta del fattore k₃:

$$k_3 = (7.5 - h_G) / 3.7 = (7.5 - 4.95) / 3.7 = 0.68$$

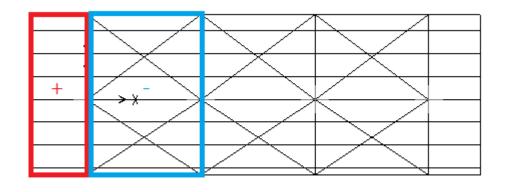
Nel caso in esame assumendo per sicurezza una velocità pari a 200 km/h e una distanza pari $a_{\rm g}$ 2 metri si ottiene una pressione pari a $q_{3k} = 0.68$ x 0.60 = 0.41 kN/m²

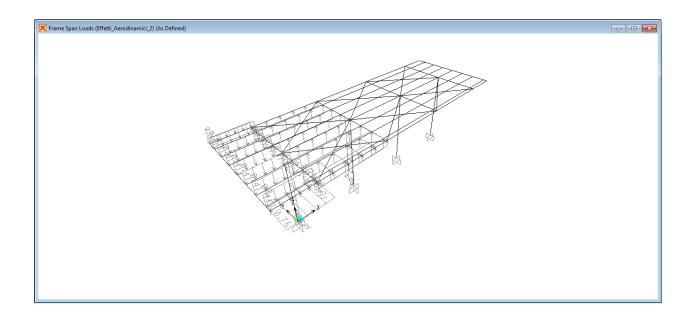
La misura assunta per la distanza tra pensilina e convoglio viene assunta a favore di sicurezza pari a 2 metri che rappresenta il valore al quale corrisponde la massima pressione.

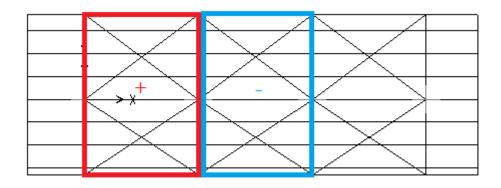

Tali pressioni sono state considerate nel modello come carichi lineari applicati ai telai, coerentemente con le aree di influenza di ciascun telaio.

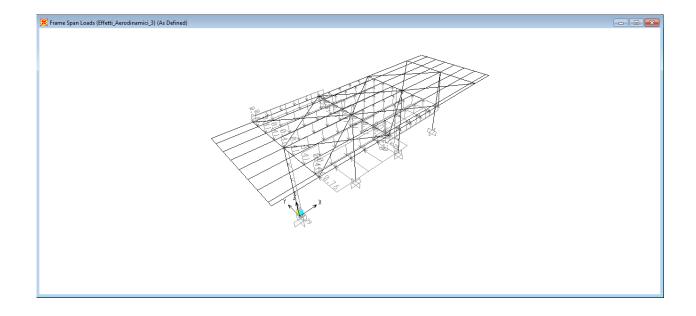

Sono state considerate differenti distribuzioni di pressione aerodinamica sugli elementi strutturali, ciascuna corrispondente ad una particolare configurazione del traffico ferroviario ai lati della pensilina.

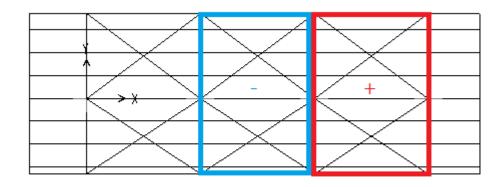
Nello specifico, sono stati individuati nº 4 casi (- depressione, + pressione):

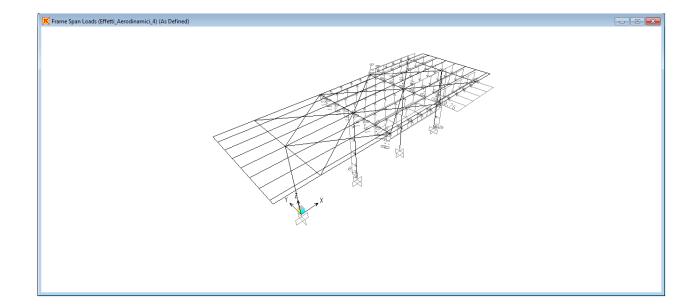

- Condizione di carico 1: (EFFETTI_AERODINAMICI_1) – Pressione applicata lungo tutto lo sviluppo della pensilina cautelativamente.



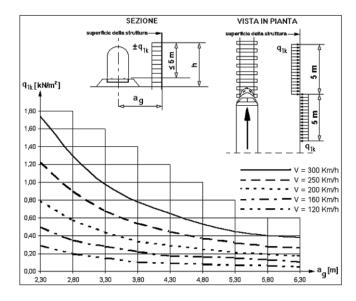

- Condizione di carico 2: (EFFETTI_AERODINAMICI_2)




- Condizione di carico 3: (EFFETTI_AERODINAMICI_3)



- Condizione di carico 4: (EFFETTI_AERODINAMICI_4)



6.4.7.2 Superifici verticali parallele al binario

I valori caratteristici dell'azione $\pm q_{1k}$ relativi a superfici verticali parallele al binario sono forniti nella figura seguente, in funzione della distanza ag dall'asse del binario più vicino.

Nel caso in esame assumendo per sicurezza una velocità pari a 200 km/h e una distanza pari $a_g = 2m$ si ottiene:

$$q_{1k} = 0.80 \text{ kN/m}^2$$

Il suddetto valore è relativo a treni con forme aerodinamiche sfavorevoli; per i casi di forme aerodinamiche favorevoli, questi valori dovranno essere corretti per mezzo del fattore k_1 , ove:

 $k_1 = 0.85$ per convogli formati da carrozze con sagoma arrotondata;

 $k_1 = 0.60$ per treni aerodinamici.

Nel caso in esame si assume conservativamente $k_1 = 0.85$.

Se l'altezza di un elemento strutturale (o parte della sua superficie di influenza) è ≤ 1.0 m o se la larghezza è ≤ 2.50 m, l'azione q_{1k} deve essere incrementata del fattore $k_2 = 1.3$.

Nel caso in esame l'altezza dei pilastri è > 2.50 m, quindi l'azione q_{1k} non và essere incrementata del fattore k_2 .

Complessivamente si ottiene quindi:

$$q_{1k} = 0.80 \times 0.85 = 0.68 \text{ kN/m}^2$$

6.4.7.2.1 Pressione aerodinamica agente sulla fascia perimetrale

La pressione aerodinamica sulla fascia perimetrale si calcola con la variante del coefficiente di forma.

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	36 di 99

Nel caso in esame la fascia perimetrale della pensilina può essere assimilata a una trave a parete piena. In base al punto C3.3.10.4.1 il coefficiente di forma c_p si determina in base al parametro

$$\phi = S_p \! / S = 1 \ \, \longrightarrow c_p = 2.4 \text{ -1} = 1.4$$

La pressione aerodinamica sulla fascia perimetrale di copertura vale dunque:

$$q_1 = 0.68 \text{ x } 1.4 = 0.95 \text{ kN/m}^2$$

A favore di sicurezza, l'altezza della fascia si assume essere pari a 0.8m. Nello specifico si ha:

$$q_1{}^{{}^{\prime}}=q_1~x~h_{\text{fascia perimetrale}}=0.95~x~0.8=0.76~kN/m$$

6.4.7.2.2 Carico di vento agente sui pilastri HEB360/450

Nel caso specifico si esamina una trave a parete piena. In base al punto C3.3.10.4.1 il coefficiente di forma c_p si determina in base la parametro

$$\phi = S_p/S = 1 \rightarrow c_p = 2.4 - 1 = 1.4$$

La pressione aerodinamica sui pilastri è dunque pari a:

$$q_1 = 0.68 \text{ x } 1.4 = 0.95 \text{ kN/m}^2$$

La larghezza dei profili HEB360 ed HEB450 è pari a 0.3m.

Nello specifico si ha:

$$q_1$$
'' = $q_1 \times b_{HEB} = 0.95 \times 0.3 = 0.29 \text{ kN/m}$

6.4.8 Carichi di pali TE (Tensione Elettrica)

6.4.8.1 Carichi caratteristici alla base delle paline TE che insistono sui pilastri della pensilina:

 N_{TE} = 18.5 kN (CONDIZIONE Nte)

V_{TE,tras}= 12 kN; M_{TE,tras}= 54 kN.m (CONDIZIONE V1te)

 $V_{TE,long}$ = 3 kN; $M_{TE,long}$ = 5 kN.m (CONDIZIONE V2te)

Le forze sono ubicate nel punto superiorie del pilastro maggiormente sollecitato a favore di sicurezza.

6.4.8.2 Rottura della catenaria

Si dovrà considerare l'eventualità che si verifichi la rottura della catenaria nel punto più sfavorevole per la struttura. La forza trasmessa alla struttura in conseguenza di un simile evento si considerà come una forza di natura statica agente in direzione parallela all'asse dei binari, di intensità pari a 20kN e applicata sui sostegni alla quota del filo.

Il carico trasmesso alla struttura, dalla rottura della catenaria, è di natura eccezionale.

La forza è ubicata nel punto superiorie del pilastro maggiormente sollecitato a favore di sicurezza.

(ROTTURA_CATENARIA)

6.4.9 Azione sismica

Sulla base di quanto riportato al paragrafo 6 si riporta nel seguito lo spettro elastico e di progetto allo SLV utilizzato per condurre l'analisi dinamica lineare della struttura. Seguono i parametri considerati nel calcolo sismico della pensilina:

Parametri e punti dello spettro di risposta orizzontale per lo stato limite:

STATO LIMITE

Parametri indipendenti

a_g	0.100 g
F _o	2.591
T _C	0.309 s
S _S	1.500
C _C	1.547
S _T	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.159 s
Tc	0.478 s
T _D	2.000 s

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.150
T _B ◀	0.159	0.389
Tc◀	0.478	0.389
	0.551	0.337
	0.623	0.298
	0.696	0.267
	0.768	0.242
	0.840	0.221
	0.913	0.204
	0.985	0.189
	1.058	0.176
	1.130	0.164
	1.203	0.154
	1.275	0.146
	1.348	0.138
	1.420	0.131

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	38 di 99

Espressioni dei parametri dipendenti

 $S = S_S \cdot S_T$

(NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C / 3$

(NTC-07 Eq. 3.2.8)

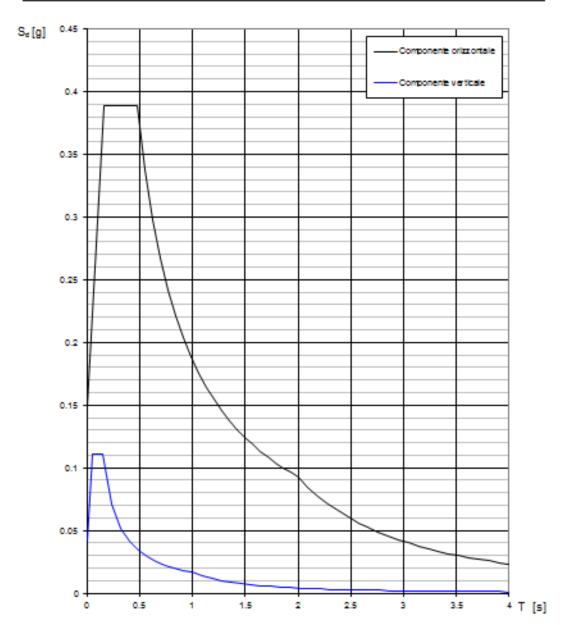
 $\mathbf{T}_{\mathtt{C}} = \mathbf{C}_{\mathtt{C}} \cdot \mathbf{T}_{\mathtt{C}}^*$

(NTC-07 Eq. 3.2.7)

 $T_D = 4.0 \cdot a_g / g + 1.6$

(NTC-07 Eq. 3.2.9)

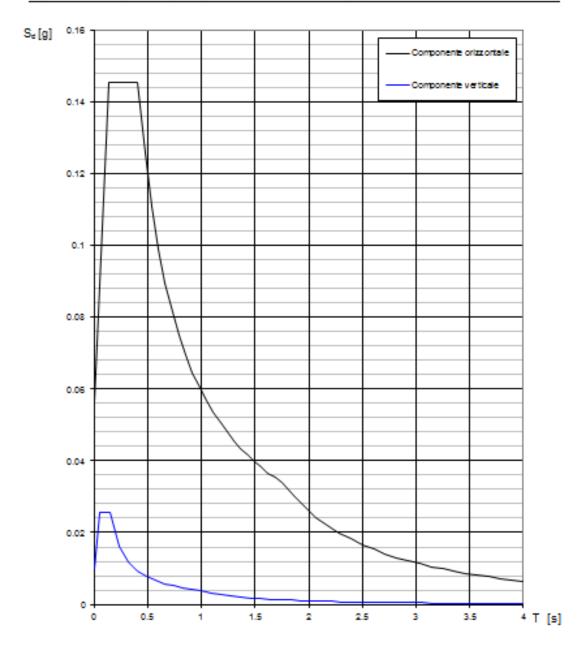
Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)


$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_D &\leq T \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $\boldsymbol{S}_{e}(T)$ sostituendo $\boldsymbol{\eta}$ con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

	1.493	0.124
	1.565	0.119
	1.638	0.113
	1.710	0.109
	1.783	0.104
	1.855	0.100
	1.928	0.096
T _D ◀	2.000	0.093
	2.095	0.085
	2.190	0.077
	2.286	0.071
	2.381	0.066
	2.476	0.061
	2.571	0.056
	2.667	0.052
	2.762	0.049
	2.857	0.046
	2.952	0.043
	3.048	0.040
	3.143	0.038
	3.238	0.035
	3.333	0.033
	3.429	0.032
	3.524	0.030
	3.619	0.028
	3.714	0.027
	3.810	0.026
	3.905	0.024
	4.000	0.023

Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLV



Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLD

Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLO

NOTA: La costruzione oggetto della presente relazione, soggetta all'azione sismica, è stata progettata considerando un comportamento strutturale in campo elastico. Il fattore di struttura utilizzato per le componenti orizzontali e verticali dell'azione sismica è pari a 1.

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	42 di 99

6.5 Combinazioni di carico

Ai fini della determinazione delle sollecitazioni di verifica, le azioni elementari descritte al precedente paragrafo, vanno combinate nei vari stati limite di verifica previsti (Esercizio, Stati limite Ultimo statico e Sismico) in accordo a quanto previsto al punto 2.5.3 delle NTC18, tenendo conto dell'approccio di verifica scelto; a tal fine, si riportano per maggiore chiarezza le espressioni generali dei criteri di combinazione delle azioni definiti al 2.5.3 delle DM 17.01.18:

- Combinazione fondamentale. generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione caratteristica (rara). generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \; Q_{k2} + \psi_{03} \; Q_{k3} + \ldots$$

- Combinazione frequente generalmente impiegata per gli stati limite di esercizio (SLE) reversibili;

$$G_1 + G_2 + P + \psi_{11} Q_{k1} + \psi_{22} Q_{k2} + \psi_{23} Q_{k3} + \dots$$

- Combinazione quasi permanente. generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} Q_{k1} + \psi_{22} Q_{k2} + \psi_{23} Q_{k3} + \dots$$

- Combinazione sismica. impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \; Q_{k1} + \psi_{22} \; Q_{k2} + \ldots$$

dove:

$$E=\pm~1.00\times E_x\pm~0.30\times E_Y\pm0.30\times E_Z\,oppure$$

$$E = \pm 0.30 \times E_x \pm 1.00 \times E_y \pm 0.30 \times E_z$$
 oppure

$$E = \pm 1.00 \times E_x \pm 0.30 \times E_Y \pm 1.00 \times E_Z$$

avendo indicato con Ex, EY e EZ rispettivamente le componenti orizzontali (X e Y) e verticale (Z) dell'azione sismica.

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

$$G_1 + G_2 + P + \ A_d + \psi_{21} \ Q_{k1} + \psi_{22} \ Q_{k2} + \dots$$

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 43 di 99

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficiente			EQU ⁽¹⁾	A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast(3)	favorevoli	ΥВ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γο	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli		1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	~	1,50	1,50	1,30
Precompressione	favorevole	$\gamma_{\mathbf{P}}$	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	1e				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

 ${f Tab.~5.2.VI}$ - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψο	ψ_{i}	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_{k}	0,60	0,60	0,50

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψοj	ψ_{ij}	ψ_{2j}
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 44 CLFV1400001 A 44 di 99

RELAZIONE DI CALCOLO

Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili	da val	utarsi ca	so per
Categoria K – Coperture per usi speciali (impianti, eliporti,)	caso		
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Nello specifico si ha:

Gruppo	Tipo	γ	Ψ ₀	Ψ ₁	Ψ ₂
Carichi permanenti strutturali	Permanente	1.35/1.00	1	1	1
Carichi permanenti non-strutturali	Permanente	1.5/0.8*	1	1	1
Variabile - Catenaria	Variabile	1.5	0.8	0.5	0
Temperatura	Variabile	1.5	0.6	0.5	0.5
Neve (<1000mslm)	Variabile	1.5	0.5	0.2	0
Vento	Variabile	1.5	0.6	0.5	0
Variabili-copertura (cat. H1) - Carico distribuito	Variabile	1.5	0	0	0
Variabili-Pressione aerodinamica	Variabile	1.45	0.8	0.5	0
Rottura - Catenaria	Accidentale	1	0	0	0
Sisma X-Y-Z	Sismico	1	ı	ı	-

^{*} Nel caso in cui si ha una condizione di sottovento si è ipotizzato un coefficiente di sicurezza del carico NON-STRUTT pari ad 0.8 anziché 0, ipotizzando che l'assenza della superficie riduca il carico di sottovento a valori trascurabili.

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO NM25 03 D 44

REV. FOGLIO CLFV1400001 Α 45 di 99

Nello specifico si ha:

Condizione di carico	Tipo
MODAL	LinModal
PESO_PROPRIO	LinStatic
COPERTURA	LinStatic
CARICHI_VARIABILI	LinStatic
NTE	LinStatic
V1TE	LinStatic
V2TE	LinStatic
ROTTURA_CATENARIA	LinStatic
EFFETTI_AERODINAMICI_1	LinStatic
EFFETTI_AERODINAMICI_2	LinStatic
EFFETTI_AERODINAMICI_3	LinStatic
EFFETTI_AERODINAMICI_4	LinStatic
NEVE	LinStatic
VENTO	LinStatic
SLV_U1	LinRespSpec
SLV_U2	LinRespSpec
SLV_U3	LinRespSpec
SLD_U1	LinRespSpec
SLD_U2	LinRespSpec
SLD_U3	LinRespSpec
TEMPERATURA	LinStatic

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 46 di 99

		KEL	AZIUI	NE DI	CAL	COLC	,																	
		Peso_Proprio	Copertura	Neve	Vento	Effetti_Aerodinamici_1	Effetti_Aerodinamici_2	Effetti_Aerodinamici_3	Effetti_Aerodinamici_4	Carichi_variabili	Temperatura	SLV_U1	SLV_U2	SLV_U3	SLD_U1	SLD_U2	SLD_U3	Nte	V1te	V2te	Rottura_catenaria	SLO_U1	SLO_U2	SLO_U3
	_		T	· ·			~	~	~	~	T	~	~	~	~	~	~	~	~	~	~	~	~	~
SLU_01	Ψ	1.35	1.5	1.5 1	1.5 0.6	1.45 0.8					1.5 -0.6													
SLU 02	γ	1.35	1.5	1.5	1.5	0.0	1.45				1.5													
3LU_02	ψ	1	1	1	0.6		0.8				-0.6													
SLU_03	γ	1.35	1.5	1.5	1.5			1.45			1.5													
	ψ	1.35	1.5	1.5	0.6 1.5			0.8	1.45		-0.6 1.5													
SLU_04	ψ	1	1	1	0.6				0.8		-0.6													
SLU_05	γ	1.35	1.5	1.5	1.5						1.5													
	ψ	1.35	1.5	1.5	0.6						-0.6													
SLU_06	Ψ	1.33	1.5	1.5	1.5 0.6																			
C111 07	γ	1.35	1.5	1.5							1.5													
SLU_07	ψ	1	1	1							-0.6													
SLU_08	Ψ	1.35	1.5	1.5	1.5	1.45 0.8					1.5 -0.6													
	γ	1.35	1.5	0.5 1.5	1.5	0.8	1.45				1.5													
SLU_09	ψ	1	1	0.5	1		0.8				-0.6													
SLU_10	γ	1.35	1.5	1.5	1.5			1.45			1.5													
	ψ	1.35	1.5	0.5 1.5	1.5			0.8	1.45		-0.6 1.5													
SLU_11	Ψ	1.33	1.3	0.5	1.3				0.8		-0.6													
SIII 12	γ	1.35	1.5	1.5	1.5						1.5													
SLU_12	ψ	1	1	0.5	1						-0.6													
SLU_13	γ ψ	1.35	1.5	1.5 0.5	1.5 1																			
	γ	1.35	1.5	0.5	1.5						1.5													
SLU_14	ψ	1	1		1						-0.6													
SLU_15	Υ	1.35	1.5		1.5						1.5													
	ψ	1.35	0.8		1.5						0.6 1.5													
SLU_16	ψ	1	1		-1						-0.6													
SLU_17	γ	1.35	0.8		1.5						1.5													
	ψ	1.35	1.5		-1 1.5	1.45					0.6 1.5													
SLU_18	Ψ	1.33	1.5		1.5	0.8					-0.6													
SLU_19	γ	1.35	1.5		1.5	1.45					1.5													
310_13	ψ	1	1		1	0.8					0.6													
SLU_20	Ψ	1.35	1.5		1.5		1.45 0.8				1.5 -0.6													
CILL 24	γ	1.35	1.5		1.5		1.45				1.5													
SLU_21	ψ	1	1		1		0.8				0.6													
SLU_22	γ ψ	1.35	1.5		1.5 1			1.45 0.8			1.5 -0.6													
2111 22	γ	1.35	1.5		1.5			1.45			1.5													
SLU_23	ψ	1	1		1			0.8			0.6													
SLU_24	γ	1.35	1.5		1.5				1.45		1.5 -0.6													
	ψ	1.35	1.5		1.5				0.8 1.45		1.5													
SLU_25	ψ	1	1		1				0.8		0.6													
SLU_26	γ	1.35	0.8			1.45					1.5													
	ψ	1.35	0.8		-1 1.5	0.8 1.45					-0.6 1.5													
SLU_27	Ψ	1.35	1		-1	0.8					0.6													
SLU_28	γ	1.35	0.8		1.5		1.45				1.5													
310_26	ψ	1	1		-1		0.8				-0.6													
SLU_29	γ ψ	1.35	0.8		1.5 -1		1.45 0.8				1.5 0.6													
61 66	γ	1.35	0.8		1.5		5.0	1.45			1.5													
SLU_30	ψ	1	1		-1			0.8			-0.6													

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

NM25 03 D 44 CLFV1400001 A

COMMESSA LOTTO CODIFICA DOCUMENTO

REV. FOGLIO

47 di 99

		RFI	A710	NF I	DI CA	I COI	0						NIVI25		03		D 44			V14000	
			- (2.0	,,,	J. 0/ (_
CIII 21	γ	1.35	0.8		1.5			1.45			1.5										
SLU_31	ψ	1	1		-1			0.8			0.6										
	γ	1.35	0.8		1.5				1.45		1.5										т
SLU_32	ψ	1	1		-1				0.8		-0.6										Н
	_																		-	-	Н
SLU_33	γ	1.35	0.8		1.5				1.45		1.5										Н
	ψ	1	1		-1				0.8		0.6										
	γ	1.35	1.5	1.5	1.5	1.45					1.5										
SLU_34	ψ	1	1	0.5	0.6	1					-0.6										т
						1	4 45												-		⊬
SLU_35	γ	1.35	1.5	1.5	1.5		1.45				1.5								-		⊢
	ψ	1	1	0.5	0.6		1				-0.6										
	γ	1.35	1.5	1.5	1.5			1.45			1.5										
SLU_36	ψ	1	1	0.5	0.6			1			-0.6										
			1.5	1.5					1.45		1.5								_	_	Н
SLU_37	γ	1.35			1.5																H
_	ψ	1	1	0.5	0.6				1		-0.6										L
CIII 20	γ	1.35	1.5	1.5	1.5					1.5	1.5										
SLU_38	ψ	1	1	0.5	0.6					1	-0.6										
	γ	1.35	1.5	1.5	1.5	1.45				1.5	1.5										H
SLU_39																			-	-	Н
	ψ	1	1	0.5	0.6	0.8				1	-0.6										╙
CIII 40	γ	1.35	1.5	1.5	1.5		1.45			1.5	1.5										
SLU_40	ψ	1	1	0.5	0.6		0.8			1	-0.6										
	γ	1.35	1.5	1.5	1.5			1.45		1.5	1.5										П
SLU_41																					Н
	ψ	1	1	0.5	0.6			0.8		1	-0.6								-		H
SLU_42	γ	1.35	1.5	1.5	1.5				1.45	1.5	1.5										L
JLU_42	ψ	1	1	0.5	0.6				0.8	1	-0.6										
	γ	1.35	1.5		1.5						1.5										Г
SLU_43																			_	_	H
	ψ	1	1		0.6						-1			_		-			-		+
SLU_44	γ	1.35	1.5		1.5						1.5										L
520	ψ	1	1		0.6						1										
	γ	1.35	0.8		1.5						1.5										
SLU_45	ψ	1	1		-0.6						-1										т
																					Н
SLU_46	γ	1.35	0.8		1.5						1.5										L
	ψ	1	1		-0.6						1										
	γ	1.35	1.5		1.5	1.45					1.5										
SLU_47	ψ	1	1		0.6	0.8					-1										Т
	_																				Н
SLU_48	γ	1.35	1.5		1.5	1.45					1.5								-		H
	ψ	1	1		0.6	0.8					1										
6111 40	γ	1.35	1.5		1.5		1.45				1.5										
SLU_49	ψ	1	1		0.6		0.8				-1										
	γ	1.35	1.5		1.5		1.45				1.5										Т
SLU_50					0.6						1								_	_	Н
	ψ	1	1				0.8												-		H
SLU_51	γ	1.35	1.5		1.5			1.45			1.5								_		L
520_51	ψ	1	1		0.6			0.8			-1										
	γ	1.35	1.5		1.5			1.45			1.5										
SLU_52	ψ	1	1		0.6			0.8			1										Т
								0.0	4 45										-	-	H
SLU_53	γ	1.35	1.5		1.5				1.45		1.5										L
	ψ	1	1		0.6				0.8		-1										
CIII 5 *	γ	1.35	1.5		1.5				1.45		1.5										
SLU_54	ψ	1	1		0.6				0.8		1										Г
	_	1.35	0.8		1.5	1 //			5.0		1.5						-				Н
SLU_55	γ					1.45								_		-			-		\vdash
	ψ	1	1		-0.6	0.8					-1										L
SIII F6	γ	1.35	0.8		1.5	1.45					1.5										
SLU_56	ψ	1	1		-0.6	0.8					1										
	γ	1.35	0.8		1.5		1.45				1.5										Ħ
SLU_57	ψ	1.33			-0.6		0.8				-1								+		Н
			1													-			-		+
SLU_58	γ	1.35	0.8		1.5		1.45				1.5										L
520_50	ψ	1	1		-0.6		0.8				1										
	γ	1.35	0.8		1.5			1.45			1.5										
SLU_59	ψ	1	1		-0.6			0.8			-1										Г
																			-		Н
SLU_60	γ	1.35	0.8		1.5			1.45			1.5								-	-	\vdash
	ψ	1	1		-0.6			0.8			1										L
CIII C1	γ	1.35	0.8		1.5				1.45		1.5										
SLU_61	ψ	1	1		-0.6				0.8		-1										
	_				1.5				1.45		1.5								-		H
SLU_62	γ	1.35	0.8												_			_	+	_	Н
	ψ	1	1		-0.6				0.8		1										L
CIV 1	γ	1	1									1	1	1							
SLV_1	ψ	1	1									1	0.3	0.3							
	_	1	1									1	1	1							Н
SLV_2	γ														_		-	-	+		Н
	ψ	1	1									-1	0.3	0.3							₽
SIV 2	γ	1	1									1	1	1							
SLV_3	ψ	1	1									1	-0.3	0.3							
	γ	1	1									1	1	1							t
CINCA			1									1	0.3		_				-	-	Н
SLV_4	ψ	1																			

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

FOGLIO 48 di 99

GRUPPO	FERRO	VIE DI	LLO	STA	ATO I	ITALI	ANE			-	TRA	TT	ΑI	PIADENA:	-MANTOVA			
	OPERE D'ARTE MINORI - PENSILINE RELAZIONE DI CALCOLO									СОМ	MES	SSA	LOTTO	CODIFICA	DOCUMEN	ITO	REV.	
	F	RELAZ	IONE	E DI	CAL	COLO)				N	M25		03	D 44	CLFV14000	001	Α
SLV_5				-							1		1	1 -0.3				
SLV_6	γ	1 :	L								1		1	1				
SLV_7	_		L L								-1 1		0.3	-0.3 1				
	ψ		L	-							-1 1		0.3	0.3				
SLV_8	ψ	1 :	L								-1 1	C	0.3	-0.3 1				
SLV_9	ψ	1 :	L								0.3	3	1	0.3				
SLV_10	ψ		L L	+							-0.3		1	0.3				
SLV_11	γ		L								0.3		1 -1	1 0.3				
SLV_12	γ	1 :									1		1	1				
	Ψ		L L								0.3		1	-0.3 1				
SLV_13	ψ		L								0.3		-1 1	-0.3 1				
SLV_14	ψ	1 :	L								-0.3		-1	-0.3				
SLV_15	Ψ		L L								-0.3		1 -1	0.3				
SLV_16	γ	1									1		1	1				
	Ψ		L L								-0.3		1	-0.3 1				
SLV_17	ψ										0.3		0.3 1	1				
SLV_18	ψ	1 :	L								-0.3	3 0	0.3	1				
SLV_19	ψ		L								0.3		0.3	1 1				
SLV_20	γ										0.3		1	1 -1				
SLV_21	γ	1 :									1		1	1				
	ψ		L L	+							0.3		0.3	-1 1				
SLV_22	ψ		L								-0.3		0.3	-1				
SLV_23	ψ		L								-0.3		0.3	1				
SLV_24	ψ		L L	+							-0.3		1 0.3	1 -1				
SLE_R_01	γ	1 :		1	1	1				1								
SLE_R_02	ψ			1	0.6	0.8	1			-0.6 1)							
	ψ	1 :	_	1	0.6		0.8	1		-0.6	5							
SLE_R_03	ψ	1 :	L	1	0.6			0.8		-0.6								
SLE_R_04				1	0.6				0.8	-0.6								
SLE_R_05	γ		_	1	1 0.6					1 -0.6								
SLE_R_06	γ	1 :		1	1					-0.0)							
	ψ			1	0.6					1								
SLE_R_07	ψ	1 :	L	1	4					-0.6	5							
SLE_R_08	ψ	1 :	L (1).5	1	0.8				-0.6	5							
SLE_R_09				1).5	1		0.8			-0.6								_
SLE_R_10	γ	1 :	L	1	1			1		1								
SLE_R_11	γ	1 :	L).5 1	1			0.8	1	-0.6 1								
	ψ).5 1	1				0.8	-0.6 1								-
SLE_R_12	ψ	1 :	1 (0.5	1					-0.6								
SLE_R_13	ψ			1).5	1													
SLE_R_14	γ	1 :	L		1					-0.6								
SLE_R_15	γ	1 :	L		1					1								
3EE_I(_13	ψ	1 :	L		1					0.6								

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO OPERE D'ARTE MINORI - PENSILINE 49 di 99

	OPE	RE D	YARTI	= MIN	IORI -	PEN	SILIN	E				NM25	03	D 44		LFV140000°		A
		REL	AZIO	NE D	I CAL	COLO)								_		-	
SLE_R_16	γ ψ	1	0.8		1 -1						1 -0.6							
CLE D 17	γ	1	0.8		1						1							
SLE_R_17	ψ	1	1		-1 1	1					0.6							
SLE_R_18	γ ψ	1	1		1	0.8					-0.6							
SLE_R_19	γ ψ	1	1		1	0.8					0.6						-	
SLE_R_20	γ	1	1		1	0.0	1				1							
	Ψ	1	1		1		0.8				-0.6 1							-
SLE_R_21	ψ	1	1		1		0.8				0.6							
SLE_R_22	<u>γ</u> ψ	1	1		1			0.8			-0.6							
SLE_R_23	γ ψ	1	1		1			1 0.8			1 0.6							
SLE_R_24	γ	1	1		1			0.0	1		1							
	Ψ	1	1		1				0.8		-0.6 1							-
SLE_R_25	ψ	1	1		1				0.8		0.6							
SLE_R_26	<u>γ</u> ψ	1	0.8		-1	0.8					-0.6						-	
SLE_R_27	γ	1	0.8		1	1					1							
	Ψ	1	0.8		-1 1	0.8	1				0.6							-
SLE_R_28	ψ	1	1		-1		0.8				-0.6							
SLE_R_29	<u>γ</u> ψ	1	0.8		-1		0.8				0.6							
SLE_R_30	γ	1	0.8		1 -1			1 0.8			1							
SLE_R_31	ψ	1	0.8		1			1			-0.6 1							
3LL_K_31	ψ	1	0.8		-1 1			0.8	1		0.6						-	
SLE_R_32	ψ	1	1		-1				0.8		-0.6							
SLE_R_33	γ ψ	1	0.8		-1				0.8		0.6						-	
SLE_R_34	γ ψ	1	1	1	1	1					1 -0.6							
CLE D 3E	γ	1	1	0.5	0.6	1	1				1							
SLE_R_35	ψ	1	1	0.5	0.6		1	1			-0.6 1							
SLE_R_36	ψ	1	1	0.5	0.6			1			-0.6							
SLE_R_37	<u>γ</u> ψ	1	1	0.5	0.6				1		-0.6						-	
SLE_R_38	γ	1	1	1	1				-	1	1							
	Ψ	1	1	0.5	0.6	1				1	-0.6							-
SLE_R_39	ψ	1	1	0.5	0.6	0.8				1	-0.6							
SLE_R_40	γ ψ	1	1	0.5	0.6		0.8			1								
SLE_R_41	γ	1	1	1	1			1		1								
SLE_R_42	ψ	1	1	0.5	0.6			0.8	1		1							
	ψ	1	1	0.5	0.6				0.8	1	-0.6						-	-
SLE_R_43	ψ	1	1		0.6						-1							
SLE_R_44	γ ψ	1	1		0.6						1						-	+-
SLE_R_45	γ	1	0.8		1						1							
	ψ γ	1	0.8		-0.6 1						-1 1							
SLE_R_46	ψ	1	1		-0.6 1	1					1							\vdash
SLE_R_47	γ ψ	1	1		0.6	0.8					-1							
SLE_R_48	γ ψ	1	1		0.6	0.8					1						-	-
SLE_R_49	γ	1	1		1	5.6	1				1							
	ψ	1	1		0.6		0.8				-1 1						-	+
SLE_R_50	ψ	1	1		0.6		0.8				1							

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

FOGLIO 50 di 99

	O FERROV							TRATTA P	IADEN	4-IVI	ANTOVA		
		D'ARTE N				E		COMMESSA NM25	LOTTO 03		CODIFICA D 44	CUMENTO FV1400001	REV.
		LAZIONE		COLC)	1							
SLE_R_51	γ 1 ψ 1		0.6			0.8		1 -1					
SLE_R_52	γ 1 ψ 1		0.6			0.8		1					
SLE_R_53	γ 1	1	1				1	1					
SLE_R_54	ψ 1 γ 1		0.6				0.8	-1 1					
3LL_N_34	ψ 1 γ 1		0.6	1			0.8	1					
SLE_R_55	ψ 1	1	-0.6	0.8				-1					
SLE_R_56	γ 1 ψ 1		-0.6	0.8				1 1					
SLE_R_57	γ 1 ψ 1		-0.6		0.8			1 -1					
SLE_R_58	γ 1	0.8	1		1			1					
	ψ 1 γ 1		-0.6 1		0.8	1		1					
SLE_R_59	ψ 1	1	-0.6 1			0.8		-1 1					
SLE_R_60	γ 1 ψ 1	1	-0.6			0.8		1					
SLE_R_61	γ 1 ψ 1		-0.6				0.8	-1					
SLE_R_62	γ 1	0.8	1				1	1					
SLD_01	ψ 1 γ 1		-0.6				0.8	1	1	1	1		
	ψ 1 γ 1								1	0.3			
SLD_02	ψ 1	1							-1	0.3	0.3		
SLD_03	γ 1 ψ 1								1	-0.3			
SLD_04	γ 1 ψ 1								1	1			
SLD_05	γ 1	1							1	0.3	1		
	ψ 1 γ 1								1	-0.3 1			
SLD_06	ψ 1	1							-1	-0.3	-0.3		
SLD_07	γ 1 ψ 1								-1	-0.3			
SLD_08	γ 1 ψ 1								-1	0.3			
SLD_09	γ 1	1							1	1	1		
	ψ 1 γ 1								0.3	1			
SLD_10	ψ 1 γ 1	1							-0.3 1	1			
SLD_11	ψ 1	1							0.3	-1	0.3		
SLD_12	γ 1 ψ 1								0.3				
SLD_13	γ 1 ψ 1								0.3	1 -1			
SLD_14	γ 1	1							1	1	1		
	ψ 1 γ 1								-0.3 1	-1 1	-0.3		
SLD_15	ψ 1	1							-0.3	-1	. 0.3		
SLD_16	γ 1 ψ 1								-0.3				
SLD_17	γ 1 ψ 1								0.3				
SLD_18	γ 1	1							1	1	1		
SLD_19	ψ 1 γ 1	1							-0.3 1	0.3			
	ψ 1 γ 1	1							0.3				
SLD_20	ψ 1	1							0.3	0.3	-1		
SLD_21	γ 1 ψ 1								0.3				
SLD_22	γ 1	1							1	1	1		
	ψ 1 γ 1								-0.3 1	1			
SLD_23	ψ 1								-0.3				

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

FOGLIO 51 di 99

GRUPPO	FERROVIE	DELL	O STA	ATO ITALIAI	NE	TRATTA	PIADEN	A-M	ANTOVA	1				
	OPERE D'	ARTE	MINO	ORI - PENSI	LINE	COMMESSA NM25	LOTTO		CODIFICA D 44			IMENTO 1400001		REV.
	REL	AZIOI	NE DI	CALCOLO										
SLD_24	γ 1 ψ 1	1					-0.3	0.3	1 -1					
SLU_63	γ 1.35 ψ 1	1.5 1	1.5 0.5	1.5 0.6		1.5 0.6			1.5 1	1.5 1	1.5			
SLU_64	γ 1.35	1.5	1.5	1.5		1.5			1.5	1.5	1.5			
3LU_64	ψ 1 γ 1.35	1.5	0.5 1.5	0.6 1.5		-0.6 1.5			1.5	1.5	1.5			
SLU_65	ψ 1	1.3	0.5	0.6		0.6			1.3	-1	1.3			
SLU_66	γ 1.35 ψ 1	1.5	1.5 0.5	1.5 0.6		1.5 -0.6			1.5 1	1.5 -1	1.5			
SLU_67	γ 1.35	1.5	1.5	1.5		1.5			1.5	1.5	1.5			
	ψ 1 γ 1.35	1.5	0.5 1.5	0.6 1.5		0.6 1.5			1.5	1.5	-1 1.5			
SLU_68	ψ 1	1	0.5	0.6		-0.6			1	1	-1			
SLU_69	γ 1.35 ψ 1	1.5	1.5 0.5	0.6		1.5 0.6			1.5	1.5 -1	1.5 -1			
SLU_70	γ 1.35	1.5	1.5	1.5		1.5			1.5	1.5	1.5			
CIII 74	ψ 1 γ 1.35	1.5	0.5 1.5	0.6 1.5		-0.6 1.5			1.5	-1 1.5	-1 1.5			
SLU_71	ψ 1	1	1	0.6		0.6			0.6	0.6	0.6			
SLU_72	γ 1.35 ψ 1	1.5 1	1.5	1.5 0.6		1.5 -0.6			1.5 0.6	1.5 0.6	1.5 0.6			
SLU_73	γ 1.35 ψ 1	1.5	1.5	1.5 0.6		1.5 0.6			1.5 0.6	1.5 -0.6	1.5 0.6			
SLU_74	γ 1.35	1.5	1.5	1.5		1.5			1.5	1.5	1.5			
310_74	ψ 1 γ 1.35	1.5	1.5	0.6 1.5		-0.6 1.5			0.6 1.5	-0.6 1.5	0.6 1.5			
SLU_75	ψ 1.33	1	1.3	0.6		0.6			0.6	0.6	-0.6			
SLU_76	γ 1.35 ψ 1	1.5	1.5	1.5 0.6		1.5 -0.6			1.5 0.6	1.5 0.6	1.5 -0.6			
SLU_77	γ 1.35	1.5	1.5	1.5		1.5			1.5	1.5	1.5			
	ψ 1 γ 1.35	1.5	1.5	0.6 1.5		0.6 1.5			0.6 1.5	-0.6 1.5	-0.6 1.5			
SLU_78	ψ 1	1	1	0.6		-0.6			0.6	-0.6	-0.6			
ECCEZIONALE1	γ 1 ψ 1					0.5						1		
ECCEZIONALE2	γ 1 ψ 1					1 -0.5						1		
SLO_1	γ 1	1				-0.5						1	. 1	1
310_1	ψ 1 γ 1	1										1		
SLO_2	ψ 1	1										-1	0.3	0.3
SLO_3	γ 1 ψ 1	1										1		
SLO_4	γ 1	1										1	. 1	1
	ψ 1 γ 1	1										1		
SLO_5	ψ 1	1										1	-0.3	-0.3
SLO_6	γ 1 ψ 1	1										-1		
SLO_7	γ 1	1										1		
SLO_8	ψ 1 γ 1	1										-1 1		
	ψ 1 γ 1	1										-1 1		
SLO_9	ψ 1	1										0.3	1	0.3
SLO_10	γ 1 ψ 1	1										-0.3		
SLO_11	γ 1	1										1	. 1	1
	ψ 1 γ 1	1										0.3		
SLO_12	ψ 1	1										0.3	1	-0.3
SLO_13	γ 1 ψ 1	1										0.3		
SLO_14	γ 1	1										1	. 1	1
	ψ 1 γ 1	1										-0.3 1		
SLO_15	ψ 1	1										-0.3		0.3
SLO_16	γ 1 ψ 1	1										-0.3		

-1

TRATTA PIADENA-MANTOVA

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 53 di 99 NM25 03 D 44 CLFV1400001 Α

RISULTATI ANALISI

7.1 Risultati dell'analisi modale

TABLE: Mod	al Participa	iting Mass I	Ratios												
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ	SumRX	SumRY	SumRZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.616922	0.00126	0.00476	0.00000106	0.00126	0.00476	0.0000106	0.00636	0.00015	0.26184	0.00636	0.00015	0.26184
MODAL	Mode	2	0.546899	0.90673	0.06447	0.00002985	0.90799	0.06923	0.00003091	0.08624	0.24987	0.03715	0.09261	0.25002	0.29899
MODAL	Mode	3	0.546251	0.08822	0.64949	0.00017	0.99622	0.71872	0.0002	0.86867	0.02769	0.43297	0.96128	0.27771	0.73196
MODAL	Mode	4	0.224198	0.000004539	0.02789	0.00011	0.99622	0.74661	0.00031	0.0051	0.00000988	0.00193	0.96638	0.27772	0.73389
MODAL	Mode	5	0.209596	0.00041	0.00006992	0.000005349	0.99663	0.74668	0.00032	0.00001067	0.00012	0.00037	0.96639	0.27784	0.73426
MODAL	Mode	6	0.201919	0.00012	0.000004709	1.972E-07	0.99675	0.74668	0.00032	0.00006361	0.00008372	0.06171	0.96645	0.27793	0.79598
MODAL	Mode	7	0.196732	0.00137	0.00005143	0.000001359	0.99812	0.74674	0.00032	0.00000117	0.00079	0.00265	0.96645	0.27871	0.79862
MODAL	Mode	8	0.173694	9.589E-07	0.07285	0.00049	0.99812	0.81958	0.00081	0.0072	0.00047	0.07814	0.97365	0.27918	0.87676
MODAL	Mode	9	0.154041	4.715E-08	0.07555	0.00068	0.99812	0.89513	0.00148	0.01041	0.0004	0.06507	0.98406	0.27958	0.94183
MODAL	Mode	10	0.144047	3.643E-08	0.08926	0.00134	0.99812	0.9844	0.00282	0.01358	0.00004643	0.01463	0.99764	0.27963	0.95647

TABLE: Mod	al Load Partici	pation Rati	ios	
OutputCase	ItemType	Item	Static	Dynamic
Text	Text	Text	Percent	Percent
MODAL	Acceleration	UX	100	99.9999
MODAL	Acceleration	UY	100	99.9758
MODAL	Acceleration	UZ	98.7417	69.2827

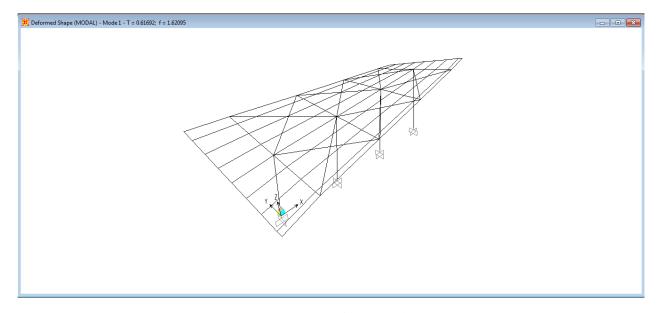
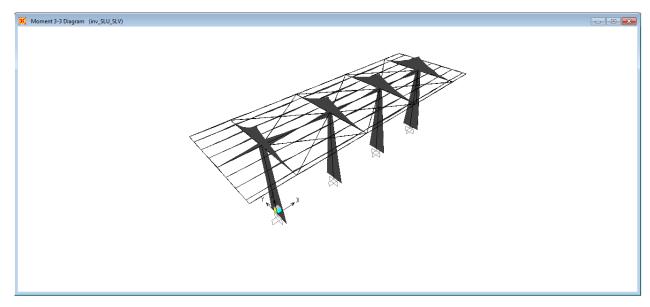



Figura 11 – Modo principale

7.2 Stati Limite Ultimo (SLU)

7.2.1 Inviluppo diagrammi delle sollecitazioni di progetto

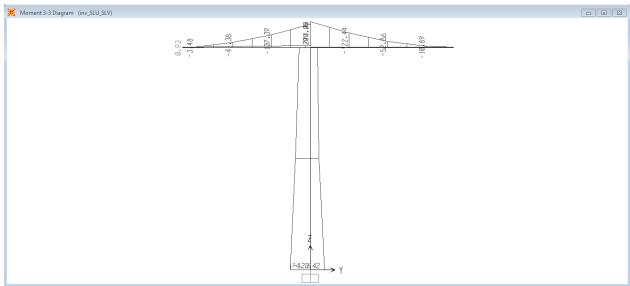
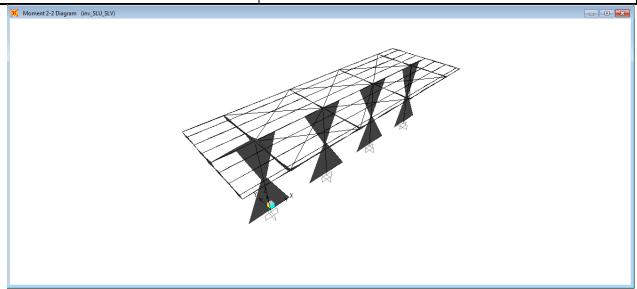


Figura 12 – Momenti flettenti (asse maggiore) da INV_SLU-SLV [KN.m]

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA


TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 55 di 99

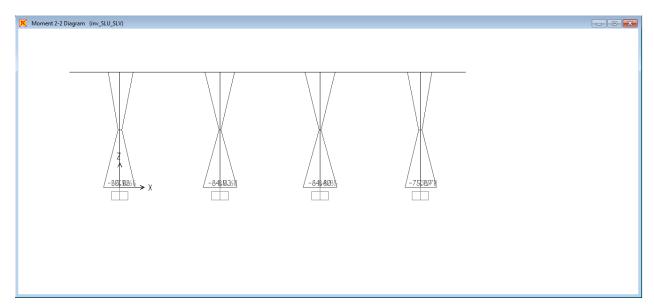
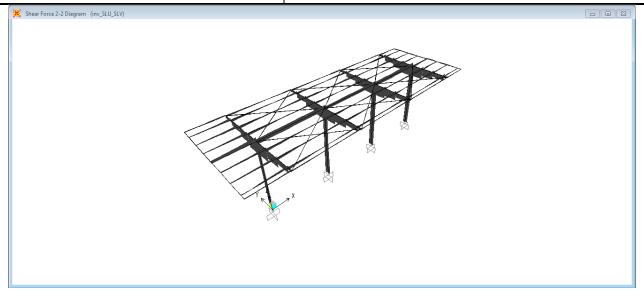



Figura 13 – Momenti flettenti (asse minore) da INV_SLU-SLV [KN.m]

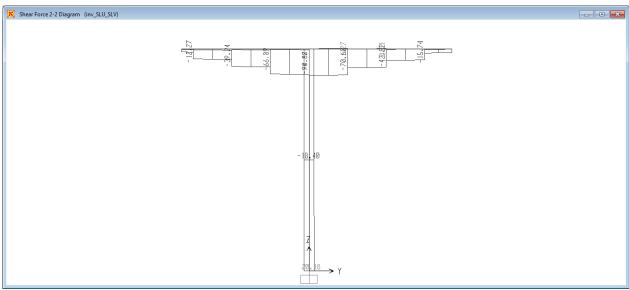
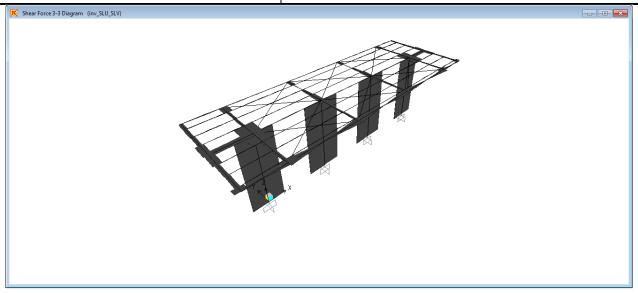



Figura 14 – Taglio (asse maggiore) da INV_SLU-SLV [kN]

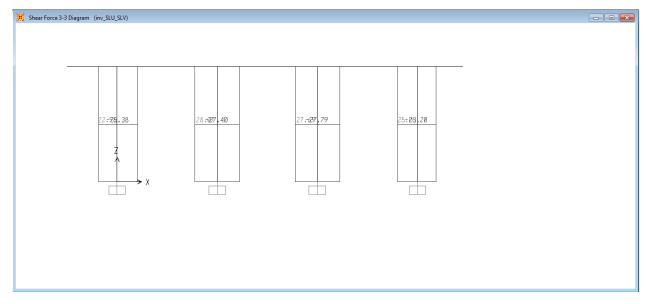
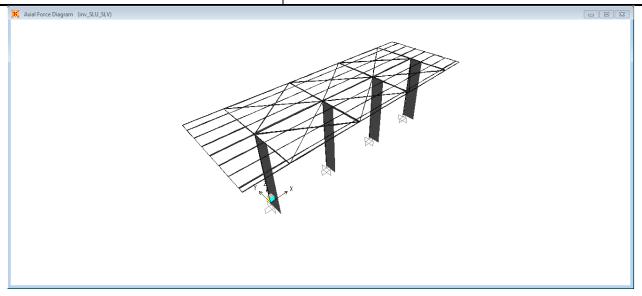



Figura 15 – Taglio (asse minore) da INV_SLU-SLV [kN]

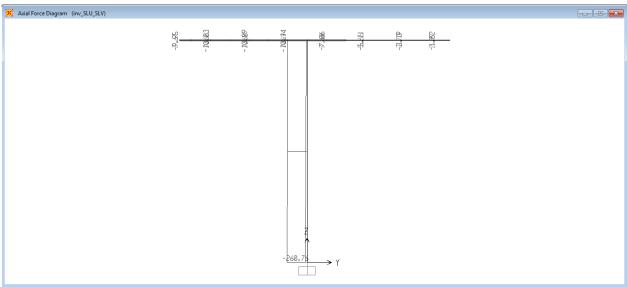


Figura 16 – Sforzi normali da INV_SLU-SLV [kN]

7.3 Stati Limite di Esercizio (SLE)

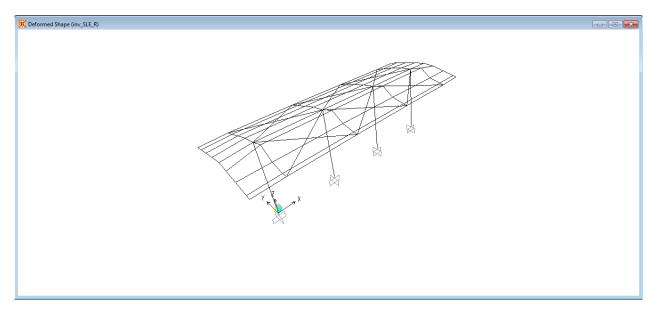


Figura 17 – Deformazioni verticali da INV_SLE_Rara [mm]

8 CRITERI GENERALI PER LE VERIFICHE STRUTTURALI

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per le condizioni SLU, sia per quelle SLE, sono quelli definiti al par. 4.2 del DM 17.01.18.

9 VERIFICHE DELLE MEMBRATURE METALLICHE

In seguito si riportano i risultati delle verifiche di resistenza delle membrature metalliche. Le verifiche sono state effetuate tramite il modulo "Steel Frame Design" del programma SAP2000

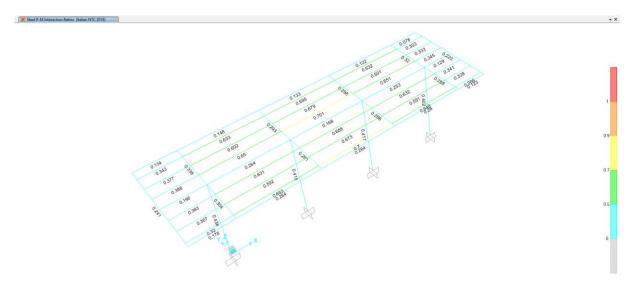


Figura 18 – Tasso di sfruttamento delle membrature

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

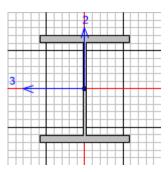
LOTTO

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

NM25 03

COMMESSA

CODIFICA DO


DOCUMENTO REV.

CLFV1400001 A

FOGLIO 61 di 99

9.1.1 Verifiche delle colonne HEB360

Seguono le verifiche di resistenza strutturale della sezione, che contraddisingue i pilastri della struttura della pensilina condotte con il software SAP2000 (si considera la sezione maggiormente sollecitata).


```
Italian NTC 2018 STEEL SECTION CHECK
                                         (Summary for Combo and Station)
Units : KN, m, C
Frame: 81
Length: 5.75
Loc: 2.875
                  X Mid: 0.
Y Mid: 0.
Z Mid: 2.875
                                     Combo: SLU 76
                                                              Design Type: Column
                                                              Frame Type: Non Dissipative Rolled: Yes
                                     Shape: HE360B
                                     Class: Class 1
Interaction=Method B
                                     MultiResponse=Envelopes
                                                                             P-Delta Done? No
Consider Torsion? No
GammaM0=1.05
                  GammaM1=1.05
                                   GammaM2=1.25
                  RLLF=1.
                                     PLLF=0.
                                                        D/C Lim=1.
An/Aq=1.
Aeff=0.018
                  eNy=0.
                                     eNz=0.
A=0.018
                  Iyy=4.319E-04
                                     iyy=0.154
                                                        Wel, yy=0.002
                                                                            Weff, yy=0.002
                                                                            Weff, zz=6.760E-04
It=2.980E-06
                  Izz=1.014E-04
                                     izz=0.075
                                                        Wel, zz=6.760E-04
                                                                            Av, y=0.014
Iw=2.888E-06
                  Iyz=0.
                                     h=0.36
                                                        Wpl,yy=0.003
E=210000000.
                  f_{v}=275000.
                                     fu=430000.
                                                        Wpl,zz=0.001
                                                                            Av, z=0.006
STRESS CHECK FORCES & MOMENTS
    Location
                         Ned
                                   Med, yy
                                               Med,zz
                                                             Ved, z
                                                                         Ved, y
                                                                                        Ted
    2.875
                    -252.824
                                 119.588
                                                2.997
                                                            17.779
                                                                         -4.366
                                                                                      -0.047
PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eg C4.2.38)
    D/C Ratio: 0.438 = 0.116 + 0.298 + 0.024 < 1. OK
= NEd/(Chi_z NRk/GammaM1) + kzy (My, Ed+NEd eNy)/(Chi_LT My, Rk/GammaM1)
                            + kzz (Mz, Ed+NEd eNz) / (Mz, Rk/GammaM1)
                                                                         (NTC Eq C4.2.38)
AXIAL FORCE DESIGN
                         Ned
                                   Nc, Rd
                                                Nt,Rd
                       Force
                                 Capacity
                                             Capacity
                    -252.824
                                 4740.476
                                              4740.476
    Axial
                      Npl,Rd
                                    Nu, Rd
                                                 Ncr, T
                                                            Ncr, TF
                                                                          An/Ag
                                5603.76
                                            11838.741
                    4740.476
                                                         11838.741
                       Alpha
                                            LambdaBar
               Curve
                                                               Phi
                                                                           Chi
                                                                                      Nb, Rd
                        0.34
                                27074.881
                                                             0.631
                                                                        0.914
                                                                                   4335.138
    Major (y-y)
                 b
                                               0.429
                                27074.881
                                                 0.429
    MajorB(y-y)
                   b
                        0.34
                                                             0.631
                                                                          0.914
                                                                                   4335.138
    Minor (z-z)
                                 3796.997
                                                 1.145
                                                             1.387
                        0.49
                                                                          0.461
                                                                                   2184.795
```

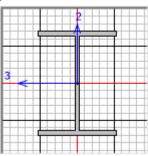

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA-MANTOVA

			INALIA	FIADEINA-II	MANIOVA			
OPERF D	'ARTE MINORI - F	ENSILINE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
0. 2.12 5	7		NM25	03	D 44	CLFV1400001	Α	62 di 99
REL	AZIONE DI CALC	OLO						
MinorB(z-z)	c 0.49	10908.715	0.675	0.845	0.74	3507.007		
Torsional TF	c 0.49	11838.741	0.648	0.82	0.756	3585.371		
MENT DESIGN								
	Med	Med, span	Mm, Ed	Meq, Ed				
	Moment	Moment	Moment	Moment				
Major (y-y)	119.588	174.168	119.588	155.464				
Minor (z-z)	2.997	15.551	2.997	6.22				
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd				
	Capacity		Capacity	Capacity				
Major (y-y)	702.69	702.69	702.69	578.005				
Minor (z-z)	270.286	270.286	270.286					
Cı	urve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr		
LTB	b 0.34	0.695	0.826	0.823	1.326	1526.178		
	kyy	kyz	kzy	kzz				
Factors	0.759	0.253	0.99	0.422				
AR DESIGN								
2111 2201011	Ved	Ted	Vc, Rd	Stress	Status			
	Force	Torsion		Ratio	Check			
Major (z)	17.779	0.047	921.818	0.019	OK			
Minor (y)	4.366	0.047	2141.522	0.002	OK			
	Vpl,Rd	Eta	LambdabarW					
Reduction	921.818	1.	0.309					
Minor (y)	Force 17.779 4.366 Vpl,Rd	Torsion 0.047 0.047	Capacity 921.818 2141.522 LambdabarW	Ratio 0.019	Check OK			

La verifica ha esito positivo!

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA


OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 63 di 99

9.1.2 Verifiche delle mensole (H400x300)

Seguono le verifiche di resistenza strutturale della sezione che contraddisingue le mensole della struttura della pensilina condotte con il software SAP2000 (si considera la sezione maggiormente sollecitata).


```
Italian NTC 2018 STEEL SECTION CHECK
                                      (Summary for Combo and Station)
Units : KN, m, C
Frame: 82
Length: 3.7
Loc: 3.7
                X Mid: 0.
Y Mid: 1.85
Z Mid: 5.75
                                   Combo: SLU_39
Shape: Mensola 3.7m
                                                          Design Type: Beam
                                                           Frame Type: Non Dissipative
                                   Class: Class 1
Interaction=Method B
                                   MultiResponse=Envelopes
                                                                         P-Delta Done? No
Consider Torsion? No
GammaM0=1.05
                  GammaM1=1.05
                                   GammaM2=1.25
An/Ag=1.
                 RLLF=1.
                                   PLLF=0.
                                                     D/C Lim=1.
Aeff=0.016
                                   eNz=0.
                  Iyy=2.576E-04
                                                                        Weff,yy=0.002
A=0.016
                                   iyy=0.127
                                                     Wel, yy=0.002
                                                     Wel,zz=6.005E-04 Weff,zz=6.005E-04
It=1.815E-06
                  Izz=9.007E-05
                                   izz=0.075
                                                    Wp1, yy=0.002 Av, y=0.012
Wp1, zz=9.146E-04 Av, z=0.004
Iw=1.765E-06
                                   h=0.3
                  Iyz=0.
                fy=275000.
E=210000000.
                                   fu=430000.
STRESS CHECK FORCES & MOMENTS
                        Ned
                                                         Ved, z
    Location
                                 Med,yy
                                             Med,zz
                                                                      Ved, y
                                  -0.441
                       0.861
                                                                                 -0.325
    PMM DEMAND/CAPACITY RATIO
                                                                     (NTC Eq C4.2.38)
AXIAL FORCE DESIGN
                        Ned
                                  Nc, Rd
                                              Nt, Rd
                       Force
                              Capacity
                                          Capacity
    Axial
                       0.861
                              4164.286
                                          4164.286
                                                                      An/Ag
                      Npl,Rd
                                  Nu, Rd
                                                         Ncr, TF
                                              Ncr, T
                             Nu, Rd NCI, 1 101, 12
4922.64 174056.703 174056.703
                    4164.286
                                          LambdaBar
               Curve
                       Alpha
                                                                                 Nb, Rd
                                                                 0.951
0.951
1.
                             38995.175
38995.175
                                                                               3960.986
    Major (y-y)
                  b
                        0.34
                                              0.335
    MajorB(y-y)
                        0.34
                                              0.335
                                                          0.579
                                                                              3960.986
                                                                    1.
                C
                             186687.083
    Minor (z-z)
                       0.49
                                              0.153
                                                            0.5
                                                                              4164.286
                       0.49 186687.083
                                             0.153
    MinorB(z-z)
                                                            0.5
                                                                              4164.286
    Torsional TF c
                      0.49 174056.703
                                             0.158
                                                          0.502
                                                                              4164.286
```


MOMENT DESIGN	Med	Med,span	Mm,Ed	Meq,Ed		
Major (y-y) Minor (z-z)		Moment -222.238	Moment	Moment		
Major (y-y) Minor (z-z)		Capacity 506.393		Mb,Rd Capacity 506.393		
LTB	Curve AlphaLT c 0.49		PhiLT 0.488	ChiLT 1.	psi 1.384	Mcr 36885.39
Factors	kyy 0.43		kzy 0.753	kzz 0.888		
SHEAR DESIGN						
Major (z) Minor (y)	Ved Force 14.454 3.33	Torsion 0.325	Vc,Rd Capacity 589.722 1814.529	Stress Ratio 0.025 0.002	Status Check OK OK	
Reduction	Vpl,Rd 589.722		LambdabarW 0.211			
CONNECTION SHEA	AR FORCES FOR	BEAMS				
Major (V2)	VMajor Left 99.474	Right				

La verifica ha esito positivo!

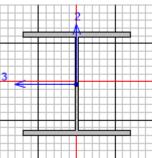
Minor (z-z)

0.49

PROGETTO DEFINITIVO

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA


OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

LOTTO COMMESSA CODIFICA DOCUMENTO RFV FOGLIO CLFV1400001 65 di 99 NM25 03 D 44 Α

9.1.3 Verifiche delle travi longitudinali HEA260

Seguono le verifiche di resistenza strutturale della sezione che contraddisingue le travi longitudinali della struttura della pensilina condotte con il software SAP2000 (si considera la sezione maggiormente sollecitata).


```
Italian NTC 2018 STEEL SECTION CHECK
                                          (Summary for Combo and Station)
Units : KN, m, C
                     X Mid: 2.5
Y Mid: 0.
Z Mid: 5.75
 Frame: 94
                                       Combo: SLV 8
                                                                    Design Type: Beam
Length: 5.
Loc : 5.
                                        Shape: HE260A
Class: Class 1
                                                                   Frame Type: Non Dissipative Rolled: Yes
          5.
 Interaction=Method B
                                         MultiResponse=Envelopes
                                                                                    P-Delta Done? No
 Consider Torsion? No
 GammaM0=1.05
                     GammaM1=1.05
                                         GammaM2=1.25
An/Aq=1.
                     RLLF=1.
                                         PLLF=0.
                                                             D/C Lim=1.
                     eNy=0.
Iyy=1.045E-04
 Aeff=0.009
                                         eNz=0.
 A=0.009
                                         iyy=0.11
                                                             Wel, yy=8.360E-04
                                                                                    Weff, yy=8.360E-04
                                       iyy=0.11
izz=0.065
                     Izz=3.668E-05
 It=0.
                                                             Wel, zz=2.822E-04
                                                                                  Weff, zz=2.822E-04
                                                             Wpl, yy=9.200E-04
                                                                                    Av, y=0.007
                                         h=0.25
 Iw=0.
                     Ivz=0.
                     fy=275000.
 E=210000000.
                                         fu=430000.
                                                             Wpl, zz=4.300E-04
                                                                                   Av, z=0.003
 STRESS CHECK FORCES & MOMENTS
                                      Med, yy
                                                                   Ved, z
                                                    Med,zz
                                                                                 Ved. v
                                                                                                Ted
     Location
                            Ned
                                                                                             -0.003
                           1.057
                                      -43.533
                                                    -0.312
                                                                 -14.895
                                                                                 -0.14
                     TY RATIO (Governing Equation NTC Eq C4.2.38) 0.264 = 0. + 0.26 + 0.003 < 1.
 PMM DEMAND/CAPACITY RATIO
     D/C Ratio:
                                                                               OK
                          = NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1)
+ kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaM1) (NTC Eq C4.2.38)
 AXIAL FORCE DESIGN
                            Ned
                                       Nc.Rd
                                                     Nt.Rd
                           Force
                                     Capacity
                                                  Capacity
     Axial
                           1.057
                                     2273.333
                                                  2273.333
                         Npl,Rd
                                        Nu.Rd
                                                      Ncr.T
                                                                  Ncr, TF
                                                                                 An/Ag
                       2273.333
                                    2687.328
                                                 5327.95
                                                                 5327.95
                                                 LambdaBar
                          Alpha
                                                                     Phi
                                                                                  Chi
                                                                                              Nb, Rd
                  Curve
                                          Ncr
                           0.34
                                     8663.539
     Major (y-y)
                      b
                                                     0.525
                                                                   0.693
                                                                                 0.873
                                                                                           1984.658
     MajorB(y-y)
                                     8663.539
                                                                   0.693
                                                                                 0.873
                                                      0.525
                      b
                                                                                           1984.658
                                     3040.944
                                                     0.886
                                                                                 0.608
                                                                                           1383,261
```

1.061

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

GRUPPO FERROVIE	DELLO SIAIO IIA	ALIANE	TRATTA	PIADENA-N	MANTOVA			
OPERE D'	ARTE MINORI - P	ENSILINE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
			NM25	03	D 44	CLFV1400001	Α	66 di 99
REL	AZIONE DI CALCO	DLO						
MinorB(z-z)	c 0.49	3040.944	0.886	1.061	0.608			
Torsional TF	c 0.49	5327.95	0.669	0.839	0.744	1690.387		
MOMENT DESIGN								
	Med	Med, span	Mm, Ed	Meq, Ed				
	Moment	Moment	Moment	Moment				
Major (y-y)	-43.533	-58.718	-43.533	-56.593				
Minor (z-z)	-0.312	-0.419	-0.366	-0.377				
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd				
	Capacity	Capacity	Capacity	Capacity				
Major (y-y)	240.952	240.952	240.952	225.576				
Minor (z-z)	112.619	112.619	112.619					
Cu	rve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr		
LTB	b 0.34	0.454	0.646	0.936	2.394	1228.907		
	kyy	kyz	kzy	kzz				
Factors	0.4	0.539	1.	0.898				
SHEAR DESIGN								
	Ved	Ted	Vc,Rd	Stress	Status			
	Force	Torsion	Capacity	Ratio	Check			
Major (z)	21.631	0.003	434.542	0.05	OK			
Minor (y)	0.147	0.003	1057.341	0.	OK			
	Vpl,Rd	Eta	LambdabarW					
Reduction	434.542	1.	0.369					

CONNECTION SHEAR FORCES FOR BEAMS

VMajor VMajor Left Right Major (V2) 24.236 21.631

La verifica ha esito positivo!

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

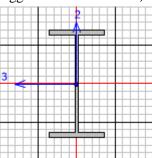
CODIFICA

TRATTA PIADENA-MANTOVA

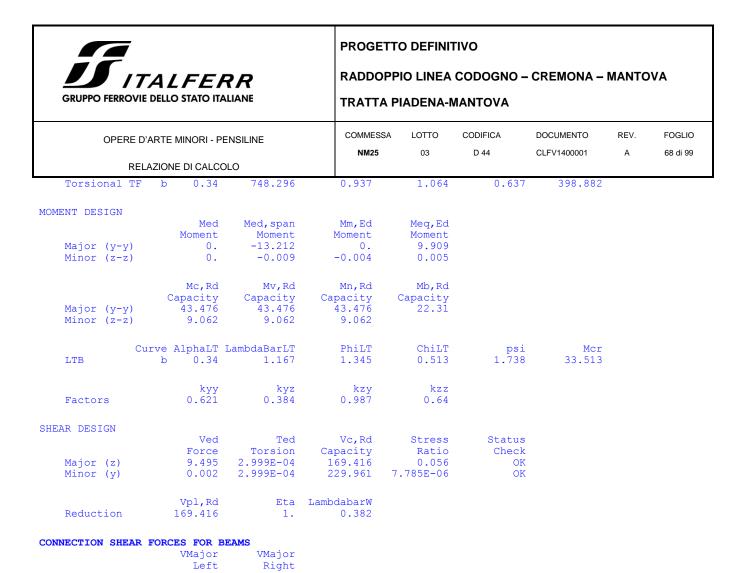
OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

COMMESSA LOTTO
NM25 03

D 44 CLFV1400001


DOCUMENTO

REV. FOGLIO


A 67 di 99

9.1.4 Verifiche degli arcarecci IPE 180

Seguono le verifiche di resistenza strutturale della sezione scelta per gli arcarecci longitudinali condotte con il software SAP2000 (si considera la sezione maggiormente sollecitata).


```
Italian NTC 2018 STEEL SECTION CHECK
                                           (Summary for Combo and Station)
Units : KN, m, C
Frame: 109
Length: 5.
                   X Mid: 2.5
Y Mid: 3.
Z Mid: 5.35
                                      Combo: SLU_39
Shape: IPE180
                                                                Design Type: Beam
                                                                Frame Type: Non Dissipative
                                      Class: Class 1
Loc : 5.
                                                                Rolled : Yes
Interaction=Method B
                                      MultiResponse=Envelopes
                                                                               P-Delta Done? No
Consider Torsion? No
GammaM0=1.05
                                      GammaM2=1.25
                   GammaM1=1.05
An/Aq=1.
                   RLLF=1.
                                       PLLF=0.
                                                          D/C Lim=1.
Aeff=0.002
                   eNy=0.
                                       eNz=0.
                   Iyy=1.317E-05
                                       iyy=0.074
A=0.002
                                                          Wel,yy=1.463E-04
                                                                                Weff, yy=1.463E-04
It=0.
                   Izz=1.010E-06
                                       izz=0.021
                                                          Wel,zz=2.220E-05
                                                                                Weff, zz=2.220E-05
                                                          Wpl,yy=1.660E-04
Wpl,zz=3.460E-05
                                                                                Av, y=0.002
Iw=0.
                   Iyz=0.
                                       h=0.18
E=210000000.
                   fy=275000.
                                       fu=430000.
                                                                                Av, z=0.001
STRESS CHECK FORCES & MOMENTS
    Location
                                    Med, yy
                                                 Med,zz
                                                                Ved, z
                                                                            Ved, y
    5.
                        -3.352
                                                                9.495
                                                                            -0.002
                                                                                     2.999E-04
PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38)
    D/C Ratio: 0.633 = 0.047 + 0.585 + 0. < 1. OK = NEd/(Chi_z NRk/GammaM1) + kzy (My, Ed+NEd eNy)/(Chi_LT My, Rk/GammaM1)
                             + kzz (Mz, Ed+NEd eNz) / (Mz, Rk/GammaM1)
                                                                             (NTC Eq C4.2.38)
AXIAL FORCE DESIGN
                          Ned
                                    Nc, Rd
                                                  Nt, Rd
                        Force
                                  Capacity
                                               Capacity
    Axial
                        -3.352
                                   625.952
                                                 625.952
                       Npl,Rd
                                     Nu, Rd
                                                              Ncr, TF
                                                                             An/Aq
                                                   Ncr.T
                       625.952
                                   739.944
                                                748.296
                                                              748.296
                        Alpha
                                              LambdaBar
                                                                  Phi
                                                                              Chi
                                                                                          Nb, Rd
    Major (y-y)
                  a
                        0.21
                                  1091.855
                                               0.776
                                                               0.861
                                                                            0.809
                                                                                        506.524
                                                               0.861
                                                                                       506.524
                          0.21
                                  1091.855
                                                   0.776
                                                                            0.809
    MajorB(y-y)
                    a
    Minor (z-z)
                          0.34
                                   83.734
                                                   2.802
                                                                4.867
                                                                            0.113
                                                                                         70.756
                                                   2.802
    MinorB(z-z)
                         0.34
                                    83.734
                                                                4.867
                                                                            0.113
                                                                                         70.756
```


La verifica ha esito positivo!

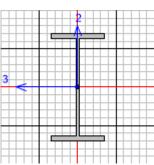
14.78

9.495

Major (V2)

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA


OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 69 di 99

9.1.5 Verifiche degli arcarecci IPE 200

Italian NTC 2018 Units : KN, m,	STEEL SECTION CH	ECK (Summary for	Combo and Station)	
Frame: 100 Length: 5. Loc: 5.	X Mid: 7.5 Y Mid: 1. Z Mid: 5.75	Combo: SLU_39 Shape: IPE200 Class: Class 1	Design Type: Frame Type: Rolled : Yes	Beam Non Dissipative
Interaction=Metho Consider Torsion		MultiResponse=En	velopes	P-Delta Done? No
GammaM0=1.05 An/Ag=1.	GammaM1=1.05 RLLF=1.	GammaM2=1.25 PLLF=0.	D/C Lim=1.	
Aeff=0.003 A=0.003 It=0. Iw=0. E=210000000.	eNy=0. Iyy=1.943E-05 Izz=1.420E-06 Iyz=0. fy=275000.	eNz=0. iyy=0.083 izz=0.022 h=0.2 fu=430000.	Wel, yy=1.943E-04 Wel, zz=2.840E-05 Wpl, yy=2.210E-04 Wpl, zz=4.460E-05	Weff, yy=1.943E-04 Weff, zz=2.840E-05 Av, y=0.002 Av, z=0.001
STRESS CHECK FORG Location 5.	CES & MOMENTS Ned -3.336	Med, yy Med, zz 0.	•	ed,y Ted 0. 1.083E-05
	0.701 = 0.034 + = NEd/(Chi		1. Ol zy (My, Ed+NEd eNy)/(0	K Chi_LT My,Rk/GammaM1) NTC Eq C4.2.38)
AXIAL FORCE DESIG	GN			
Axial		Nc,Rd Nt,Rd apacity 746.429 746.429		
	Npl,Rd 746.429	Nu,Rd Ncr,T 882.36 911.527		n/Ag 1.
Major (y-y) MajorB(y-y) Minor (z-z) MinorB(z-z) Torsional TF	a 0.21 1 b 0.34 b 0.34 b 0.34	Ncr LambdaBar 610.838 0.698 610.838 0.698 117.725 2.58 117.725 2.58 911.527 0.927	0.796 0 0.796 0 4.233 0 4.233 0 1.054 0	Chi Nb,Rd .849 633.64 .849 633.64 .132 98.349 .132 98.349 .644 480.425
	Mad M	and annual Man Dal	Mow Ed	

Mm, Ed

Meq, Ed

Med, span

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA-MANTOVA

TRATTA FIADENA-MIANTOVA								
OPERE D'ARTE MINORI - PENSILINE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
			NM25	03	D 44	CLFV1400001	Α	70 di 99
RE	ELAZIONE DI CALC	OLO						
	Moment	Moment	Moment	Moment				
Major (y-y)	0.	15.321	0.	11.491				
Minor (z-z)	0.	0.	0.	0.				
	Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd				
	Capacity	Capacity	Capacity	Capacity				
Major (y-y)	57.881	57.881	57.881	22.872				
Minor (z-z)	11.681	11.681	11.681					
(Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	psi	Mcr		
LTB	b 0.34	1.378	1.649	0.395	1.143			
	kyy	kyz	kzy	kzz				
Factors	0.952		0.995	1.047				
HEAR DESIGN								
	Ved	Ted	Vc, Rd	Stress	Status			
	Force	Torsion	Capacity	Ratio	Check			
Major (z)	12.257		211.937	0.058	OK			
Minor (y)	0.	1.083E-05	275.99	0.	OK			

CONNECTION SHEAR FORCES FOR BEAMS

VMajor VMajor Left Right Major (V2) 12.257 12.257

Vpl,Rd Eta LambdabarW Reduction 211.937 1. 0.403

La verifica ha esito positivo!

9.1.6 Verifiche dei controventi 2L70x70x7

I controventi vengono modellati con elementi frame a cui si assegnano dei release di tipo M2-M3 ed un modulo elastico dimezzato. Nel modello di calcolo sono stati considerati reagenti sia a trazione, che a compressione nell'ambito dell'analisi statica lineare. Le verifiche di resistenza, comunque, sono eseguite con il doppio dello sforzo assiale agente del controvento.

Seguono le verifiche di resistenza strutturale della sezione scelta per i controventi condotte con un calcolo manuale (si considera la sezione maggiormente sollecitata).

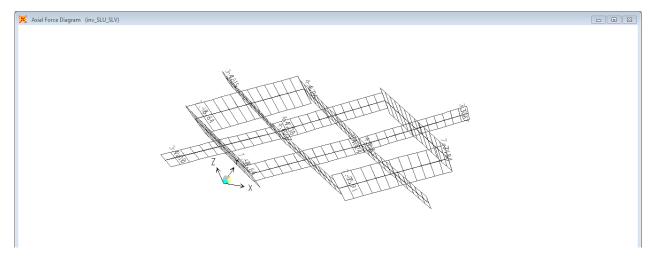
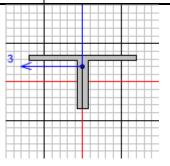


Figura 19 – Sforzi normali da INV-SLV [kN]


RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	72 di 99

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C

Interaction=Method B
 Consider Torsion? No

MultiResponse=Envelopes

P-Delta Done? No

GammaM0=1.05	GammaM1=1.05	GammaM2=1.25			
An/Ag=1.	RLLF=1.	PLLF=0.	D/C Lim=1.		
Aeff=0.002	eNv=0.	eNz=0.			
A=0.002	Ivv=0.	iyy=0.021	Wel, vv=1.682E-05	Weff, vv=1.682E-05	
Tt=0.	Izz=1.576E-06	izz=0.029	Wel,zz=2.251E-05	Weff,zz=2.251E-05	
Tw=0.	Ivz=0.	h=0.07	Wpl, vv=3.120E-05	Av, v=8.134E-04	
E=105000000.	fy=275000.	fu=430000.	Wpl,zz=3.705E-05	Av, z=9.800E-04	
	-1 -:			,	
Ivz=0.	Imax=1.576E-06	imax=0.029	Wel,zz,maj=2.251E-	0.5	
<u> </u>			Wel,zz,min=1.682E-05		
Rot= 90. deg	<pre>Imin=0.</pre>	imin=0.021			

Numero elemento: 179

Sforzo assiale massimo: N=8.64 kN (comb. inv_SLV dal modelo SAP2000)

 $N_{Ed} = 2 \times N = 17.28 \text{ kN}$

 $N_{Rd}\!\!=A \; x \; f_y\!/\gamma_{M0} = 429.12 \; kN$

 $N_{Ed} < N_{Rd} \\$

La verifica ha esito positivo!

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA

NM25 03 D 44

DOCUMENTO CLFV1400001 REV. FOGLIO

A 73 di 99

9.2 Verifiche tabelle output complete

		TABLE: Steel Design 1 - Summary Data - Italian NTC 2018									
DesignSect	DesignType	Status	Ratio	RatioTyp e	Combo						
Text	Text	Text	Unitles s	Text	Text						
HE360B	Column	No Messages	0.44	PMM	SLU_76						
Mensola 3.7m	Beam	No Messages	0.34	PMM	SLU_39						
Mensola 3.7m	Beam	No Messages	0.30	PMM	SLU_39						
HE360B	Column	No Messages	0.41	PMM	SLV_1						
Mensola 3.7m	Beam	No Messages	0.29	PMM	SLU_39						
Mensola 3.7m	Beam	No Messages	0.26	PMM	SLU_39						
HE360B	Column	No Messages	0.42	PMM	SLV_1						
Mensola 3.7m	Beam	No Messages	0.30	PMM	SLU_39						
Mensola 3.7m	Beam	No Messages	0.27	PMM	SLU_39						
HE360B	Column	No Messages	0.40	PMM	SLV_1						
Mensola 3.7m	Beam	No Messages	0.32	PMM	SLU_71						
Mensola 3.7m	Beam	No Messages	0.29	PMM	SLU_39						
HE260A	Beam	No Messages	0.20	PMM	SLU_09						
HE260A	Beam	No Messages	0.26	PMM	SLV_1						
HE260A	Beam	No Messages	0.17	PMM	SLV_1						
HE260A	Beam	No Messages	0.25	PMM	SLV_1						
HE260A	Beam	No Messages	0.13	PMM	SLU_76						
IPE180	Beam	No Messages	0.39	PMM	SLU_75						
IPE180	Beam	No Messages	0.65	PMM	SLU_75						
IPE200	Beam	No Messages	0.70	PMM	SLU_39						
IPE180	Beam	No Messages	0.65	PMM	SLU_71						
IPE180	Beam	No Messages	0.35	PMM	SLU_71						
IPE180	Beam	No Messages	0.38	PMM	SLU_75						
IPE180	Beam	No Messages	0.60	PMM	SLU_39						
IPE200	Beam	No Messages	0.68	PMM	SLU_39						
IPE180	Beam	No Messages	0.60	PMM	SLU_39						
IPE180	Beam	No Messages	0.33	PMM	 SLU_71						
IPE180	Beam	No Messages	0.34	PMM	 SLU_75						
IPE180	Beam	No Messages	0.63	PMM	 SLU_39						
IPE200	Beam	No Messages	0.69	PMM	 SLU_39						
IPE180	Beam	No Messages	0.63	PMM	 SLU_42						
IPE180		No Messages		PMM	 SLU_73						
IPE180					SLU_77						
	Text HE360B Mensola 3.7m Mensola 3.7m HE360B Mensola 3.7m Mensola 3.7m Mensola 3.7m Mensola 3.7m Mensola 3.7m Mensola 3.7m Mesola 3.7m M	Text Text HE360B Column Mensola 3.7m Beam HE360B Column Mensola 3.7m Beam HE360B Column Mensola 3.7m Beam Mensola 3.7m Beam HE260A Beam HE260A Beam HE260A Beam HE260A Beam IPE180 Beam	Text Text Text HE360B Column No Messages Mensola 3.7m Beam No Messages Messola 3.7m Beam No Messages HE260A Beam No Messages HE260A Beam No Messages HE260A Beam No Messages IPE180 Beam No Messages	Text Text Text s Unitles s HE360B Column No Messages 0.44 Mensola 3.7m Beam No Messages 0.34 Mensola 3.7m Beam No Messages 0.30 HE360B Column No Messages 0.29 Mensola 3.7m Beam No Messages 0.26 HE360B Column No Messages 0.26 Mensola 3.7m Beam No Messages 0.20 Mensola 3.7m Beam No Messages 0.27 HE360B Column No Messages 0.22 Mensola 3.7m Beam No Messages 0.29 HE260A Beam No Messages 0.20 HE260A Beam No Messages 0.26 HE260A Beam No Messages 0.13 IPE	Text Text Text Text s PMM Mensola 3.7m Beam No Messages 0.30 PMM PMM						

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 74 di 99

	KELAZIONE E	JI CALCOLO				
150	IPE180	Beam	No Messages	0.63	PMM	SLU_41
151	IPE200	Beam	No Messages	0.69	PMM	SLU_39
152	IPE180	Beam	No Messages	0.63	PMM	SLU_42
153	IPE180	Beam	No Messages	0.34	PMM	SLU_71
154	IPE180	Beam	No Messages	0.37	PMM	SLU_77
155	IPE180	Beam	No Messages	0.59	PMM	SLU_39
156	IPE200	Beam	No Messages	0.67	PMM	SLU_39
157	IPE180	Beam	No Messages	0.59	PMM	SLU_39
158	IPE180	Beam	No Messages	0.33	PMM	SLU_73
159	IPE180	Beam	No Messages	0.32	PMM	SLU_77
160	IPE180	Beam	No Messages	0.65	PMM	SLU_77
161	IPE200	Beam	No Messages	0.70	PMM	SLU_39
162	IPE180	Beam	No Messages	0.65	PMM	SLU_39
163	IPE180	Beam	No Messages	0.29	PMM	SLU_73
164	UPN240	Beam	No Messages	0.18	PMM	SLU_09
165	UPN240	Beam	No Messages	0.26	PMM	SLU_77
166	UPN240	Beam	No Messages	0.26	PMM	SLU_77
167	UPN240	Beam	No Messages	0.26	PMM	SLU_72
168	UPN240	Beam	No Messages	0.12	PMM	SLU_73
169	UPN240	Beam	No Messages	0.13	PMM	SLU_09
170	UPN240	Beam	No Messages	0.15	PMM	SLU_40
171	UPN240	Beam	No Messages	0.13	PMM	SLU_67
172	UPN240	Beam	No Messages	0.12	PMM	SLU_42
173	UPN240	Beam	No Messages	0.08	PMM	SLV_9
174	UPN240	Beam	No Messages	0.24	PMM	SLV_1
175	UPN240	Beam	No Messages	0.22	PMM	SLV_1
176	2L70X7/0/	Beam	No Messages	0.56	PMM	SLU_67
177	2L70X7/0/	Beam	No Messages	0.45	PMM	SLV_1
178	2L70X7/0/	Beam	No Messages	0.70	PMM	SLU_69
179	2L70X7/0/	Beam	No Messages	0.79	PMM	SLU_67
180	2L70X7/0/	Beam	No Messages	0.62	PMM	SLU_69
181	2L70X7/0/	Beam	No Messages	0.46	PMM	SLU_63
182	2L70X7/0/	Beam	No Messages	0.42	PMM	SLU_65
183	2L70X7/0/	Beam	No Messages	0.41	PMM	SLV_1
184	2L70X7/0/	Beam	No Messages	0.60	PMM	SLV_1
185	2L70X7/0/	Beam	No Messages	0.65	PMM	SLV_1
186	2L70X7/0/	Beam	No Messages	0.49	PMM	SLU_65
187	2L70X7/0/	Beam	No Messages	0.44	PMM	SLU_63

10 VERIFICHE DI DEFORMABILITÀ

10.1 Verifiche di spostamenti verticali

Gli spostamenti attesi in copertura dati dalla combinazione SLE rara governante e dai carichi permanenti risultano pari a 17 mm e 4.2mm:

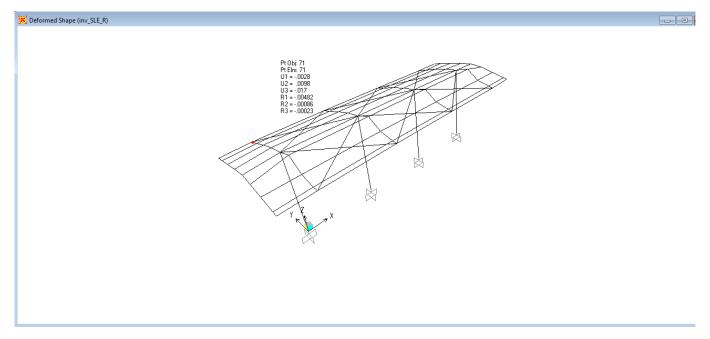


Figura 20 – Spostamenti massimi attesi

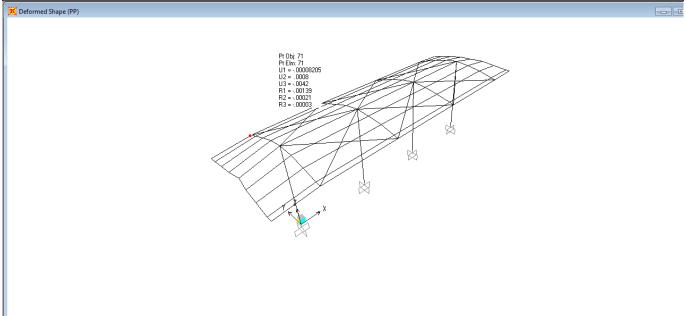


Figura 21 – Spostamenti massimi dai carichi permanenti

La verifica secondo il §4.2.4.2.1 del DM2018 fornisce i seguenti risultati:

- spostamento elastico dovuto ai carichi variabili δ_2 = 17 - 4.2 = 12.8 mm

- spostamento massimo nello stato finale $\delta_{max} = 17 \text{ mm}$

La deformabilità degli elementi della copertura è pertanto:

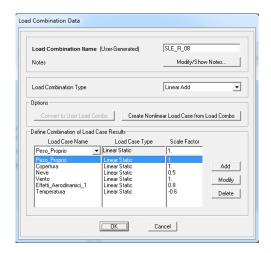
 $L/\delta_2 = 2x3700/17 = 435$ $L/\delta_{max} = 2x3700/12.8 = 578$

 $L/435 \le L/250$ $L/578 \le L/200$

lunghezza dello sbalzo= 3.7m

Si ha dunque: L=2x3.7 = 7.40m

La verifica risulta soddisfatta.


Segue una tabella riassuntiva delle verifiche di deformabilità degli elementi strutturali:

	Elementi	$\delta_{\text{max}}[\text{mm}]$	δ_2 [mm]	$\delta_1[mm]$	L[mm]	L/200 [mm]	L/250 [mm]	Verifica
1	HEA 260 - travi longitudinali - mezzeria	2.1	1.3	0.8	5000	25	20	OK
2	HEA 260 - travi longitudinali - mensola	5.7	4.7	1.0	2x2500	25	20	OK
3	IPE 200 - travi lungitudinali - mezzeria	6.5	6.0	0.5	5000	25	20	OK
4	IPE 180 - travi lungitudinali - mezzeria	4.4	4.3	0.1	5000	25	20	OK
5	IPE 180 - travi lungitudinali - mensola	4.4	3.4	1.0	2x2500	25	20	OK

10.2 Verifiche di spostamenti laterali

Gli spostamenti laterali massimi in testa ai pilastri, in direzione Y, dovuti a forze orizzontali, risultanti dalla combinazione SLE_08, sono pari a 9.2 mm.

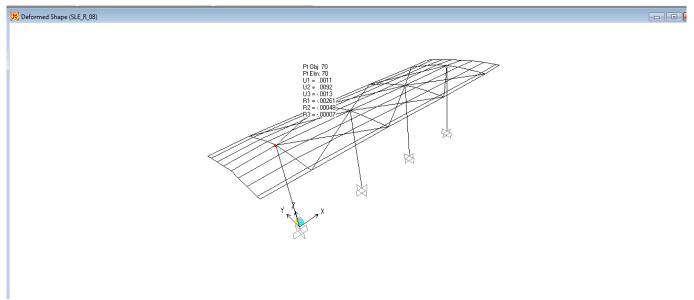
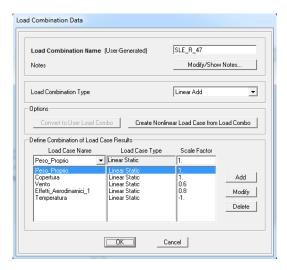



Figura 22 – Spostamenti massimi Y per il SLE_08

Gli spostamenti laterali massimi in testa ai pilastri, in direzione X, dovuti a forze orizzontali, risultanti dalla combinazione SLE47, sono pari a 2.4 mm.

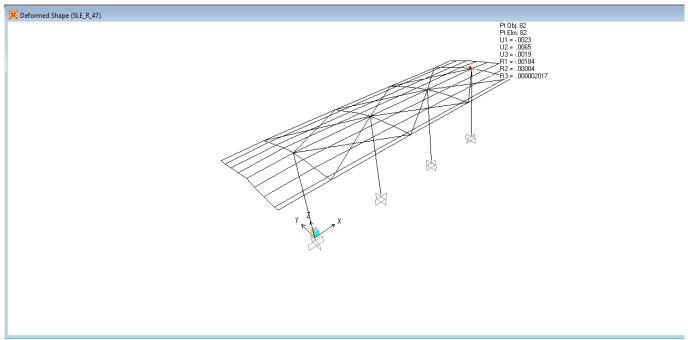


Figura 23 – Spostamenti massimi X per il SLE_47

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

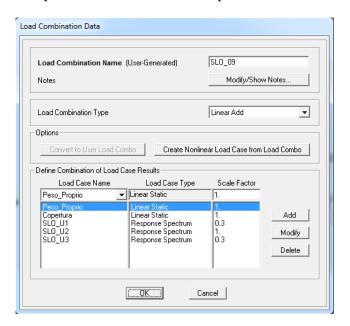
OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	79 di 99

La verifica secondo il §4.2.4.2.2 del DM2018 fornisce i seguenti risultati:

spostamento laterale massimo dovuto ai carichi variabili δ =17.4 mm

 $\delta/h \leq 1/300$


 δ =9.2 mm \leq 5750/300=19.2 mm

La verifica risulta soddisfatta.

10.3 Verifiche di rigidezza

Gli spostamenti laterali in testa ai pilastri, in direzione Y, risultanti dalla combinazione SLO_9, sono pari a 7 mm.

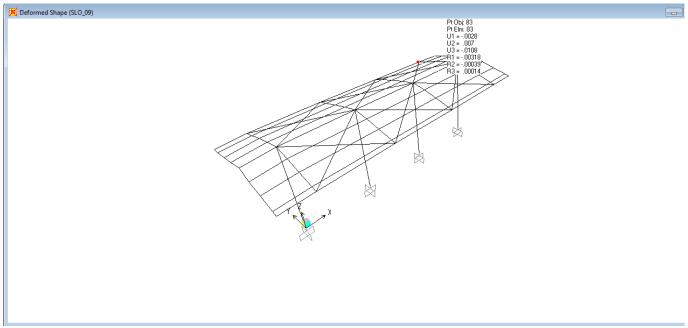
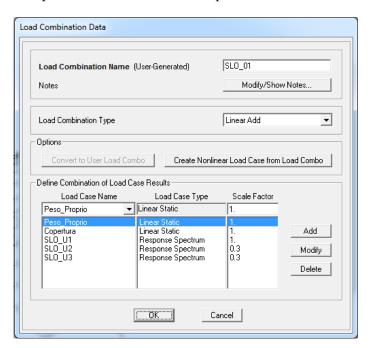



Figura 24 – Spostamenti massimi Y per il SLO_9

Gli spostamenti laterali in testa ai pilastri, in direzione X, risultanti dalla combinazione SLO_1, sono pari a 8 mm.

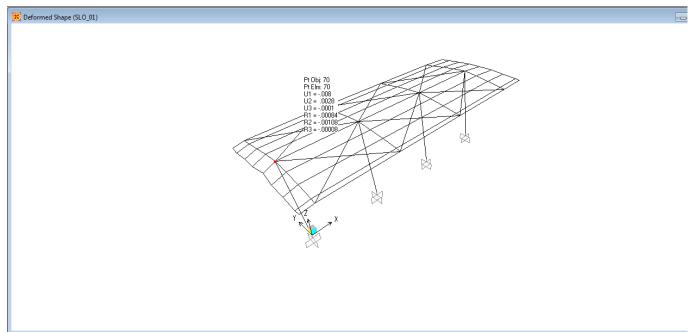


Figura 25 – Spostamenti massimi X per il SLO_1

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	82 di 99

La verifica secondo il §7.3.6.1 del DM2018 fornisce i seguenti risultati:

 $q.dr \le 0.005x2/3xh$

dr=8 mm <0.005x2/3x5750=19.2 mm

La verifica risulta soddisfatta.

10.4 Verifiche del giunto strutturale

Gli spostamenti laterali in copertura, dovuti alle combinazioni SLV sono pari a 30.8 mm.

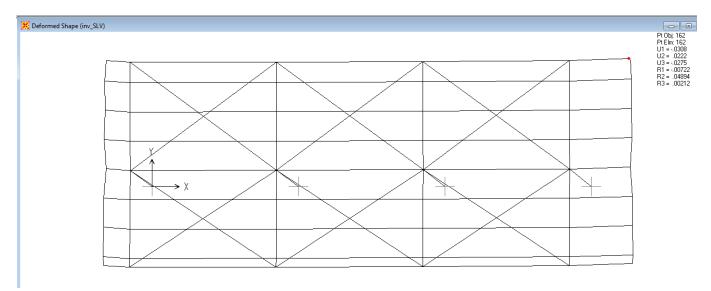


Figura 26 – Spostamenti massimi tipologia 1 per gli SLV

Gli spostamenti laterali in copertura, della tipologia adiacente, dovuti alle combinazioni SLV sono pari a 34.9 mm.

Elab. Rif NM2503D44CLFV1400002A §10.4

Gli spostamenti laterali in copertura, dovuti allo carico Temperatura sono pari a 2.8 mm.

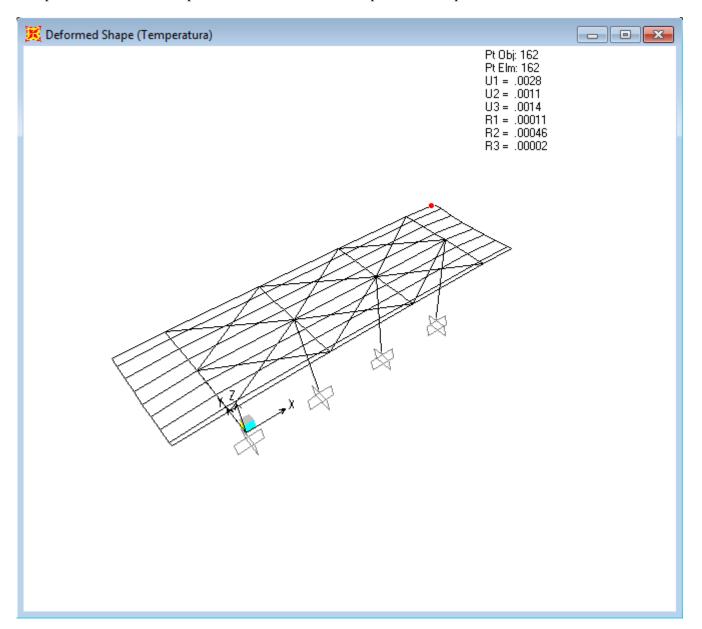


Figura 27 – Spostamenti massimi per il Temperatura

Gli spostamenti laterali in copertura, della tipologia adiacente, dovuti alla temperatura sono pari a 2.2 mm.

Elab. Rif NM2503D44CLFV1400002A §10.4

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

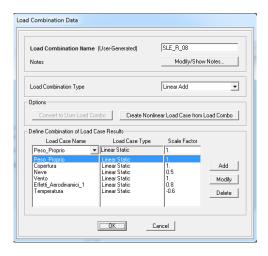
RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	85 di 99

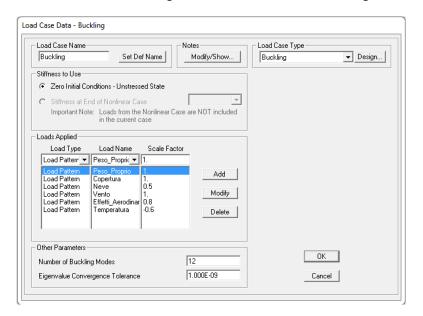
$$d_{SLV}\!\!=30.8\!+\!34.9=65.7~mm \qquad \qquad d_{T}\!\!=2.8\!+\!2.2=5~mm$$

$$d_T = 2.8 + 2.2 = 5 \text{ mm}$$

Il giunto tra i moduli della pensilina è di 100 mm.


$$d_{SLV}\!\!+d_T\!\!=70.7~mm<100~mm$$

La verifica risulta soddisfatta.



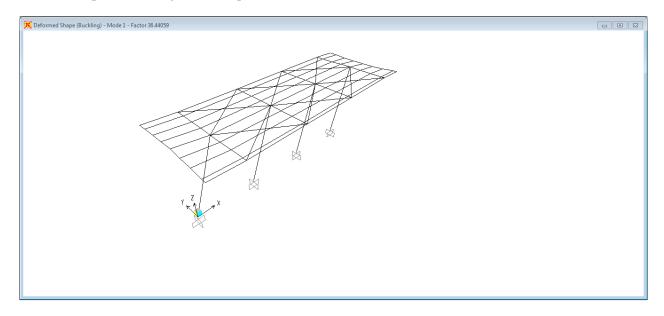
10.5 Verifiche di buckling sencondo la Circolare Applicativa C4.2.3.4

L'analisi di buckling è stata condotta per la combinazioni di carico SLE Rare più gravose, sia in termini di spostamenti verticali, che di orizzontali massimi, le quali, nel caso della tipologia in esame, sono stati sviluppati dalla combinazione SLE_R_08, che include le seguenti condizioni di carico:

La combinazione buckling è stata determinata nel modo seguente:

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA


OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 87 di 99

La struttura presenta il seguente comportamento:

Dalla figura si evince, che $\alpha_{cr} = 36 > 10$.

L'analisi globale della struttura può essere eseguita con la teoria del primo ordine.

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

D 44

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE RELAZIONE DI CALCOLO

LOTTO CODIFICA COMMESSA NM25 03

DOCUMENTO CLFV1400001

REV. FOGLIO

88 di 99 Α

Verifiche degli effetti delle non-linearità geometriche secondo NTC18 §7.3.1

Le non linarità geometriche, sono prese in conto tramite il fattore θ , che è definito nel modo seguente:

 $\theta = P \times d_{Er} / V \times h;$

dove:

h = 5.75m - l'altezza del piano in esame rispetto a quota estradosso fondazione (punto d'incastro della struttura)

 $d_{Er} = 0.031m$ – spostamento orizzontale del piano agli SLV

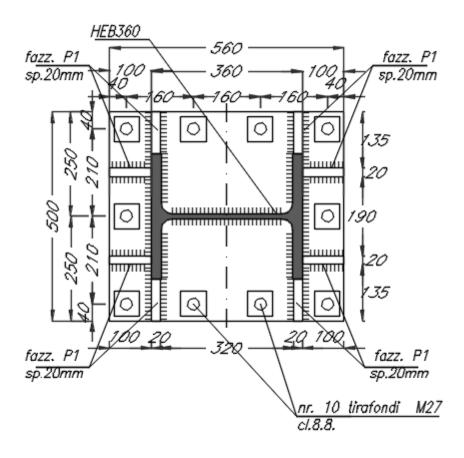
TABLE: Jo	TABLE: Joint Displacements									
Joint 🔻	OutputCa 🔻	CaseType ▼	StepTy -	U1 🛂	U2 🔽	U3 🔽	R1 🔽	R2 🔻	R3 🔽	
Text	Text	Text	Text	m	m	m	Radians	Radians	Radians	
161	SLV 1	Combination	Max	0.03124	0.008066	0.004084	0.001609	0.047077	0.00208	

P = 385 kN è il carico verticale totale

V = 104 kN è il carico orizzontale totale in direzione dello spostamento del piano

: Joint Rea	actions								
Joint	OutputCase	CaseType	StepType	F1	F2	F3	M1	M2	M3
69	SLV_1	Combination	Max	22.956	6.602	110.535	49.6183	75.6649	0.0097
73	SLV_1	Combination	Max	28.067	6.617	83.444	47.212	85.5985	0.0093
77	SLV_1	Combination	Max	27.688	6.717	84.806	48.1409	84.8482	0.0094
81	SLV_1	Combination	Max	25.049	7.108	105.716	53.5014	79.7004	0.0105
				V		Р			
				103.76		384.501			

Si ha, dunque:


 $\theta = 385 \times 0.031/104 \times 5.75 = 0.02 < 0.1$ – Gli effetti delle non linarità geometriche possono essere trascurate.

11 VERIFICA DEI TIRAFONDI

11.1 Verifiche dell'acciaio

Le verifiche della connesione è stata effettuata tramite il programma Autodesk Robot Structural Analysis Professional 2019.

Sollecitazioni di progetto:

TABLE: Jo	int Reactions								
Joint 🔻	OutputCa 🔻	CaseTyp€▼	StepTy ▼	F1 🔽	F2 🔽	F3 🔻	M1 →	M2 🔽	M3 🔻
Text	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
69	SLU 75	Combination		-0.985	-20.182	260.735	174.1554	1.9233	0.0471

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

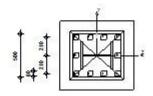
TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	90 di 99

Autodesk Robot Structural Analysis Professional 2019


Calcolo del plinto della colonna incastrato

Eurocode 3: EN 1993-1-8:2005/AC:2009

Coefficiente 0.62

12 **GENERALE**

N. giunto: Nome del

1

giunto

Fixed column base

13 **G**EOMETRIA

14 **COLONNA**

Profilato:			нев 360
$L_c =$	5.00	[m]	Lunghezza della colonna
$\alpha =$	0.0	[Deg]	Angolo d'inclinazione
$h_c =$	360	[mm]	Altezza della sezione della colonna
$b_{fc} =$	300	[mm]	Larghezza della sezione della colonna
$t_{wc} =$	13	[mm]	Spessore dell'anima della sezione della colonna
$t_{fc} =$	23	[mm]	Spessore dell'ala della sezione della colonna
r _c =	27	[mm]	Raggio di raccordo della sezione della colonna
$A_c =$	180.63	[cm ²]	Area della sezione della colonna
$I_{yc} =$	43193.50	[cm ⁴]	Momento di inerzia della sezione della colonna
Materiale	s: S 275		
$f_{yc} =$	275.00	[MPa]	Resistenza
$f_{uc} =$	430.00	[MPa]	Limite di resistenza del materiale

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.
NM25	03	D 44	CLEV/1/100001	Δ

FOGLIO

91 di 99

15 PLINTO DELLA COLONNA

Materiale: S 275

 $f_{ypd} = 275.00$ [MPa] Resistenza

 $f_{upd} = 430.00$ [MPa] Limite di resistenza del materiale

16 ANCORAGGIO

Il piano di taglio attraversa la parte FILETTATA del bullone.

Classe = 8.8 Classe di ancoraggi $f_{yb} = 640.00$ [MPa] Limite di plasticità del materia

 $f_{yb} = 640.00$ [MPa] Limite di plasticità del materiale del bullone $f_{ub} = 800.00$ [MPa] Resistenza del materiale del bullone alla trazione

trazione

d = 27 [mm] Diametro del bullone

 $A_s = 4.59$ [cm²] Area della sezione efficace del bullone

160;160 [mm]

 $A_v =$ 5.73 [cm²] Area della sezione del bullone $n_H =$ 4 Numero di colonne dei bulloni $n_V =$ 3 Numero di file di bulloni

Distanza orizzontale e_{Hi}

--

Distanza verticale $e_{Vi} = 210 \text{ [mm]}$

Dimensioni di ancoraggi

 $L_1 = 100$ [mm] $L_2 = 490$ [mm] $L_3 = 50$ [mm]

Piastrina di resistenza

Materiale: S 275

 $f_y = 275.00$ [MPa] Resistenza

Rondella

17 <u>COEFFICIENTI DI MATERIALE</u>

γмо =	1.00	Coefficiente di sicurezza parziale
γ _{M2} =	1.25	Coefficiente di sicurezza parziale
γc =	1.50	Coefficiente di sicurezza parziale

18 PLINTO DI FONDAZIONE

L =	860	[mm]	Lunghezza del plinto
B =	800	[mm]	Larghezza del plinto
H =	600	[mm]	Altezza del plinto

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	92 di 99

Calcestruzzo

Class c30/37

 $f_{ck} = 30.00$ [MPa] Resistenza caratteristica alla compressione

Getto di sigillatura

 $t_g = 30$ [mm] Spessore del getto di sigillatura

 $\begin{array}{lll} f_{\text{ck,g}} = & 12.00 & \text{[MPa]} & \text{Resistenza caratteristica alla compressione} \\ C_{\text{f,d}} = & 0.30 & \text{Coeff. di attrito tra la piastra di base e il} \\ & \text{calcestruzzo} \end{array}$

19 SALDATURE

 $a_p = 10$ [mm] Piastra principale del plinto della colonna

20 CARICHI

Condizione Calcolo manuale.

-261.00 $N_{i,Ed} =$ [kN] Azione assiale -1.00 Azione tagliante $V_{j,Ed,y} =$ [kN] -21.00 Azione tagliante $V_{j,Ed,z} =$ [kN] 176.00 $M_{i,Ed,v} =$ [kN*m] Momento flettente $M_{j,Ed,z} =$ 2.00 [kN*m] Momento flettente

21 RISULTATI

22 ZONA DI COMPRESSIONE

COMPRESSIONE DEL CALCESTRUZZO

$f_{cd} = 2$	20.00 [MPa]	a] Resistenza di calcolo alla compressione EN 1992-1:[3.1.6.(1]			
$f_j = 2$	20 . 90 [MPa]	Resistenz base	za di calcolo del materiale del giunto sotto la piastra di	[6.2.5.(7)]	
$c = t_p \sqrt{c}$	$(f_{yp}/(3*f_j*\gamma_{M0}))$				
c =	63	[mm] La	arghezza dell'appoggio addizionale	[6.2.5.(4)]	
$b_{eff} =$	148	[mm] La	arghezza efficace della zona di contatto sotto l'ala	[6.2.5.(3)]	
$I_{eff} =$	426	[mm] Lu	unghezza efficace della zona di contatto sotto l'ala	[6.2.5.(3)]	
$A_{c0} =$	630.63	10:00	ona di contatto della piastra di base e della ondazione	EN 1992-1:[6.7.(3)]	
$A_{c1} =$	3555.72	[cm ²] A	rea di calcolo massima della ripartizione del carico	EN 1992-1:[6.7.(3)]	
$F_{rdu} = A$	$_{c0}$ * f_{cd} * $\sqrt{(A_{c1}/A)}$	$_{c0}) \le 3*A_{c0}*$	f_{cd}		
$F_{rdu} =$	2994.89	[kN]	Resistenza del calcestruzzo alla pressione	EN 1992-1:[6.7.(3)]	
$\beta_j =$	0.67		Coefficiente di riduzione per la compressione	[6.2.5.(7)]	
$f_{jd} = \beta_j^* F$	$=_{rdu}/(b_{eff}*I_{eff})$				
$f_{jd} =$	31.66	[MPa]	Resistenza di calcolo del materiale del giunto	[6.2.5.(7)]	
$A_{c,n} =$	1522.85	[cm ²]	Area di compressione efficace	[6.2.8.2.(1)]	
$A_{c,y} =$	630.63	[cm ²]	Area di flessione My	[6.2.8.3.(1)]	
$A_{c,z} =$	630.63	[cm ²]	Area di flessione Mz	[6.2.8.3.(1)]	
$F_{c,Rd,i} =$	$A_{C,i}^*f_{jd}$				
$F_{c,Rd,n} =$	4821.39	[kN]	Resistenza del calcestruzzo alla compressione	[6.2.8.2.(1)]	
$F_{c,Rd,y} =$	1996.59	[kN]	Resistenza del calcestruzzo alla flessione My	[6.2.8.3.(1)]	
$F_{c,Rd,z} =$	1996.59	[kN]	Resistenza del calcestruzzo alla flessione Mz	[6.2.8.3.(1)]	

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 93 di 99

[6.2.8.3]

ALA E ANIMA DELLA COLONNA IN COMPRESSIONE

CL = 1.	00	Classe di sezione	EN 1993-1-1:[5.5.2]
$W_{pl,y} = 2683.$	14 [cm ³]	Fattore plastico della sezione	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,y} = 737.$	86 [kN*m]	Resistenza di calcolo della sezione alla flessione	EN1993-1-1:[6.2.5]
$h_{f,y} = 3$	338 [mm]	Distanza tra i centri di gravità delle ali	[6.2.6.7.(1)]
$F_{c,fc,Rd,y} = M_{c,Rd,y}$	h _{f,y}		
$F_{c,fc,Rd,y} = 2186.$	26 [kN]	Resistenza dell'ala compressa e dell'anima	[6.2.6.7.(1)]
$W_{pl,z} = 1032$.	51 [cm ³]	Fattore plastico della sezione	EN1993-1-1:[6.2.5.(2)]
$M_{c,Rd,z} = 283.$	94 [kN*m]	Resistenza di calcolo della sezione alla flessione	EN1993-1-1:[6.2.5]
$h_{f,z} = 2$	213 [mm]	Distanza tra i centri di gravità delle ali	[6.2.6.7.(1)]
$F_{c,fc,Rd,z} = M_{c,Rd,z}$	h _{f,z}		
$F_{c,fc,Rd,z} = 1334$.	13 [kN]	Resistenza dell'ala compressa e dell'anima	[6.2.6.7.(1)]
RESISTENZA DE	EL PLINTO NE	ELLA ZONA COMPRESSA	
$N_{j,Rd} = F_{c,Rd,n}$			
$N_{j,Rd} = 4821.$	39 [kN]	Resistenza del plinto alla compressione assiale	[6.2.8.2.(1)]
$F_{C,Rd,y} = min(F_{c,Rd})$	$_{d,y}$, $F_{c,fc,Rd,y}$)		
$F_{C,Rd,y} = 1996.$	59 [kN]	Resistenza del plinto nella zona compressa	[6.2.8.3]

23 ZONA IN TRAZIONE

 $F_{C,Rd,z} = min(F_{c,Rd,z},F_{c,fc,Rd,z})$ $F_{C,Rd,z} = 1334.13 \text{ [kN]}$

ROTTURA DEL BULLONE D'ANCORAGGIO

$A_b =$	4.59	[cm ²]	Area efficace del bullone	[Tabella 3.4]	
$f_{ub} =$	800.00	[MPa]	Resistenza del materiale del bullone alla trazione	[Tabella 3.4]	
Beta =	0.85		Coefficiente di riduzione della resistenza del bullone	[3.6.1.(3)]	
$F_{t,Rd,s1} = beta*0.9*f_{ub}*A_b/\gamma_{M2}$					
$F_{t,Rd,s1} =$	224.73	[kN]	Resistenza del bullone alla rottura	[Tabella 3.4]	

Resistenza del plinto nella zona compressa

 $F_{t,Rd,s} = F_{t,Rd,s1}$

 $F_{t,Rd,s} = 224.73$ [kN] Resistenza del bullone alla rottura

RESISTENZA DELL'ANCORAGGIO ALLA TRAZIONE

 $F_{t,Rd} = F_{t,Rd,s} \\$

 $F_{t,Rd} = 224.73$ [kN] Resistenza dell'ancoraggio alla trazione

FLESSIONE DELLA PIASTRA DI BASE

Momento flettente M_{j,Ed,y}

$I_{eff,1} =$	227	[mm]	Lunghezza efficace per un bullone per il modo 1	[6.2.6.5]		
$I_{eff,2} =$	227	[mm]	Lunghezza efficace per un bullone per il modo 2	[6.2.6.5]		
m =	49	[mm]	Distanza del bullone dal bordo di irrigidimento	[6.2.6.5]		
$M_{pl,1,Rd} =$	14.07	[kN*m]	Resistenza plastica della piastra per il modo 1	[6.2.4]		
$M_{pl,2,Rd} =$	14.07	[kN*m]	Resistenza plastica della piastra per il modo 2	[6.2.4]		
$F_{T,1,Rd} =$	1155.86	[kN]	Resistenza della piastra per il modo 1	[6.2.4]		
$F_{T,2,Rd} =$	621.34	[kN]	Resistenza della piastra per il modo 2	[6.2.4]		
$F_{T,3,Rd} =$	674.18	[kN]	Resistenza della piastra per il modo 3	[6.2.4]		
$F_{t,pl,Rd,y} = min(F_{T,1,Rd}, F_{T,2,Rd}, F_{T,3,Rd})$						
$F_{t,pl,Rd,y} =$	621.34	[kN]	Resistenza della piastra in trazione	[6.2.4]		
Momento	Momento flettente M _{i.Ed.z}					

$I_{eff,1} =$	280	[mm]	Lunghezza efficace per un bullone per il modo 1	[6.2.6.5]
$I_{eff,2} =$	280	[mm]	Lunghezza efficace per un bullone per il modo 2	[6.2.6.5]
m =	192	[mm]	Distanza del bullone dal bordo di irrigidimento	[6.2.6.5]

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	94 di 99

Momento	flettente M	$\mathbf{I}_{j,Ed,z}$		
$I_{eff,1} =$	280	[mm]	Lunghezza efficace per un bullone per il modo 1	[6.2.6.5]
$M_{pl,1,Rd} =$	17.32	[kN*m]	Resistenza plastica della piastra per il modo 1	[6.2.4]
$M_{pl,2,Rd} =$	17.32	[kN*m]	Resistenza plastica della piastra per il modo 2	[6.2.4]
$F_{T,1,Rd} =$	360.12	[kN]	Resistenza della piastra per il modo 1	[6.2.4]
$F_{T,2,Rd} =$	303.77	[kN]	Resistenza della piastra per il modo 2	[6.2.4]
$F_{T,3,Rd} =$		[kN]	Resistenza della piastra per il modo 3	[6.2.4]
	$nin(F_{T,1,Rd}$,	$F_{T,2,Rd}$, F^{-}	T,3,Rd)	
$F_{t,pl,Rd,z} =$	303.77	[kN]	Resistenza della piastra in trazione	[6.2.4]
RESISTE	NZA DELL'	ANIMA D	ELLA COLONNA ALLA TRAZIONE	
Momento	flettente M	$I_{j, Ed, z}$		
$t_{wc} =$	13	[mm]	Spessore efficace dell'anima della colonna	[6.2.6.3.(8)]
$b_{eff,t,wc} =$	280	[mm]	Larghezza efficace dell'anima in trazione	[6.2.6.3.(2)]
$A_{vc} =$	60.60	[cm ²]	Area al taglio	EN1993-1-1:[6.2.6.(3)]
ω =	0.84		Coefficiente di riduzione per l'interazione con il taglio	[6.2.6.3.(4)]
	ω b _{eff,t,wc} t _{wc}	f_{yc} / γ_{M0}		
$F_{t,wc,Rd,z} =$	803.84	[kN]	Resistenza dell'anima della colonna	[6.2.6.3.(1)]
RESISTENZA DEL PLINTO NELLA ZONA IN TRAZIONE				
$F_{T,Rd,y} = F_t$ $F_{T,Rd,y} =$ $F_{T,Rd,y} = m$,pl,Rd,y 621.34 in(F _{t,pl,Rd,z} ,F	[kN]	Resistenza del plinto nella zona tesa	[6.2.8.3]
$F_{T,Rd,z} = III$	303.77	[kN]	Resistenza del plinto nella zona tesa	[6.2.8.3]

24 **CONTROLLO DELLA RESISTENZA DEL GIUNTO**

$N_{i,Ed} / N_{i,Rd}$	≤ 1,0 (6.24	.)	0.05 < 1.00	verificato	(0.05)
e _y =	674	[mm]	Eccentricità dell'azione assiale		[6.2.8.3]
$Z_{c,y} =$	169 240	[mm]	Braccio di leva F _{C,Rd,y}		[6.2.8.1.(2)]
$Z_{t,y} =$		[mm]	Braccio di leva F _{T,Rd,y}		[6.2.8.1.(3)]
$M_{j,Rd,y} =$	338.74	[kN*m]	Resistenza del giunto alla flessione		[6.2.8.3]
$M_{i,Ed,y} / M_{i,R}$	$a_{d,y} \le 1.0 (6.0)$.23)	0.52 < 1.00	verificato	(0.52)
$e_z =$	8	[mm]	Eccentricità dell'azione assiale		[6.2.8.3]
$z_{c,z} =$	106	[mm]	Braccio di leva F _{C,Rd,z}		[6.2.8.1.(2)]
$z_{t,z} =$	210	[mm]	Braccio di leva F _{T,Rd,z}		[6.2.8.1.(3)]
$M_{j,Rd,z} =$	19.07	[kN*m]	Resistenza del giunto alla flessione		[6.2.8.3]
$M_{i,Ed,z}$ / $M_{i,R}$	$a_{d,z} \le 1,0 (6)$.23)	0.10 < 1.00	verificato	(0.10)
$M_{i,Ed,y} / M_{i,R}$	$R_{d,y} + M_{i,Ed,z}$	$/ M_{i,Rd,z} \le $	1,0 0.62 < 1.00	verificato	(0.62)

25 **TAGLIO**

PRESSIONE DEL BULLONE D'ANCORAGGIO SULLA PIASTRA DI BASE

		_	
Tagli	o della	a forza	ViEdv

$\alpha_{d,y} = 0.46$	Coeff. di posizione dei bulloni: nella direzione del taglio	[Tabella 3.4]
$\alpha_{b,y} = 0.46$	Coeff. per il calcolo della resistenza F _{1,vb,Rd}	[Tabella 3.4]
$k_{1,y} = 2.16$	Coeff. di posizione dei bulloni: perpendicolari alla direzione del taglio	[Tabella 3.4]
$F_{1,vb,Rd,y} = k_{1,y}^* \alpha_t$	$_{\mathrm{p,y}}$ * $\mathrm{f_{up}}$ * $\mathrm{d^*t_p}$ / γ_{M2}	
$F_{1,vb,Rd,y}$ 276.9	Resistenza del bullone d'ancoraggio alla pressione sulla piastra di hase	[6.2.2.(7)]

RADDOPPIO LINEA CODOGNO - CREMONA - MANTOVA

TRATTA PIADENA-MANTOVA

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	95 di 99

[Tabella 3.4]

[Tabella 3.4]

[Tabella 3.4]

[6.2.2.(7)]

Taglio della forza V_{j,Ed,z} Coeff. di posizione dei bulloni: nella direzione del taglio $\alpha_{d,z} = 0.46$ $\alpha_{b,z} = 0.46$ Coeff. per il calcolo della resistenza F_{1,vb,Rd} Coeff. di posizione dei bulloni: perpendicolari alla direzione del $k_{1,z} = 2.16$ taglio

 $F_{1,vb,Rd,z} = k_{1,z}^* \alpha_{b,z}^* f_{up}^* d^* t_p / \gamma_{M2}$

F_{1,vb,Rd,z} 276.98 [kN] Resistenza del bullone d'ancoraggio alla pressione sulla piastra di [6.2.2.(7)]

TAGLIO DEL BULLONE D'ANCORAGGIO

$\alpha_b =$	0.25		Coeff. per il calcolo della resistenza F _{2,vb,Rd}	[6.2.2.(7)]
$A_{sb} =$	4.59	[cm ²]	Area della sezione efficace del bullone	[6.2.2.(7)]
$f_{ub} =$	800.00	[MPa]	Resistenza del materiale del bullone alla trazione	[6.2.2.(7)]
γ _{M2} =	1.25		Coefficiente di sicurezza parziale	[6.2.2.(7)]
$F_{2,vb,Rd} =$	$\alpha_b f_{ub} A_{sb} / \gamma_{M2}$	2		
_	72 05	rickii R	esistenza del bullone al taglio - senza effetto della	[6 2 2 (7)]

SLITTAMENTO DEL PLINTO

$C_{f,d} =$	0.30		Coeff. di attrito tra la piastra di base e il calcestruzzo	[6.2.2.(6)]
No Ed =	261.00	[kN]	Azione di compressione	[6.2.2.(6)]

 $F_{f,Rd} = C_{f,d}{}^{\ast}N_{c,Ed}$

 $F_{2,vb,Rd} = 72.85$

78.30 $F_{f,Rd} =$ [kN] Resistenza allo slittamento [6.2.2.(6)]

CONTROLLO DEL TAGLIO

 $V_{j,Rd,y} = n_b * min(F_{1,vb,Rd,y}, F_{2,vb,Rd}) + F_{f,Rd}$

 $V_{j,Rd,y} = 806.82$ [kN] Resistenza del giunto al taglio V_{i,Rd}

$V_{i,Ed,y} / V_{i,Rd,y} \le 1,0$		0.00 <	1.00	verificato	(0.00)
$V_{iRdz} = n_b * min(F_{1 vb Rd})$	z, F _{2 vb Rd}) + F _{f Rd}				

 $V_{j,Rd,z}$ = [kN] Resistenza del giunto al taglio V_{i,Rd}

$V_{i,Ed,z} / V_{i,Rd,z} \le 1,0$	0.03 < 1.00	verificato	(0.03)
$V_{iEdy}/V_{iEdy} + V_{iEdz}/V_{iEdz} \le 1.0$	0.03 < 1.00	verificato	(0.03)

26 SALDATURE TRA LA COLONNA E LA PIASTRA DELLA BASE

σ_{\perp} =	70.59	[MPa]	Sollecitazione n	ormale nella saldatura		[4.5.3.(7)]
τ_{\perp} =	70.59	[MPa]	Sollecitazione ta	angenziale perpendicolar	e	[4.5.3.(7)]
$\tau_{yII} =$	-0.09	[MPa]	Sollecitazione ta	angenziale parallela a V _{j,}	Ed,y	[4.5.3.(7)]
$\tau_{zII} =$	-3.33	[MPa]	Sollecitazione ta	angenziale parallela a V _{j,}	Ed,z	[4.5.3.(7)]
$\beta_W =$	0.85		Coefficiente do	uto alla resistenza		[4.5.3.(7)]
σ_{\perp} / (0.9*	$f_u/\gamma_{M2})) \le 1.0$	(4.1)		0.23 < 1.00	verificato	(0.23)
$\sqrt{(\sigma_{\perp}^2 + 3)}$	$1.0 (\tau_{yII}^2 + \tau_{\perp}^2)$) / (f _u /(β _W [*]	$(\gamma_{M2}))) \le 1.0 (4.1)$	0.35 < 1.00	verificato	(0.35)
			$(\gamma_{M2}))) \le 1.0 (4.1)$	0.29 < 1.00	verificato	(0.29)

27 RIGIDEZZA DEL GIUNTO

Momento flettente M_{i,Ed,v}

$b_{\text{eff}} =$	148	[mm]	Larghezza efficace della zona di contatto sotto l'ala	[6.2.5.(3)]
I _{eff} =	426	[mm]	Lunghezza efficace della zona di contatto sotto l'ala	[6.2.5.(3)]

 $k_{13,y} = E_c^* \sqrt{(b_{eff}^* l_{eff})/(1.275^* E)}$

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	96 di 99

k _{13,y} = 31 [mm] Coefficiente di rigidezza del calcestruzzo in compressione	[Tabella 6.11]
$l_{eff} =$ 227 [mm] Lunghezza efficace per un bullone per il modo 2 m = 49 [mm] Distanza del bullone dal bordo di irrigidimento $k_{15,y} = 0.850^* l_{eff}^* t_p^3 / (m^3)$	[6.2.6.5] [6.2.6.5]
k _{15,y} = 23 [mm] Coefficiente di rigidezza della piastra di base in trazione	[Tabella 6.11]
$L_b = 310$ [mm] Lunghezza efficace del bullone di ancoraggio $k_{16,y} = 1.6*A_b/L_b$	[Tabella 6.11]
k _{16,y} = 2 [mm] Coefficiente di rigidezza dell'ancoraggio in trazione	[Tabella 6.11]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	[5.2.2.5.(2)] [Tabella 6.12] [5.2.2.5] [5.2.2.5.(2)]
Momento flettente $M_{j,Ed,z}$ $k_{13,z} = E_c^* \sqrt{(A_{c,z})/(1.275^*E)}$	
$k_{13,z} = 31$ [mm] Coefficiente di rigidezza del calcestruzzo in compressione	[Tabella 6.11]
$l_{eff} =$ 280 [mm] Lunghezza efficace per un bullone per il modo 2 m = 192 [mm] Distanza del bullone dal bordo di irrigidimento $k_{15,z} = 0.850^* l_{eff}^* t_p^3 / (m^3)$	[6.2.6.5] [6.2.6.5]
k _{15,z} = 1 [mm] Coefficiente di rigidezza della piastra di base in trazione	[Tabella 6.11]
$L_b = 310$ [mm] Lunghezza efficace del bullone di ancoraggio $k_{16,z} = 1.6*A_b/L_b$	[Tabella 6.11]
k _{16,z} = 1.6 A ₀ /L ₀ Coefficiente di rigidezza dell'ancoraggio in trazione	[Tabella 6.11]
$\lambda_{0,z} = 0.77$ Snellezza della colonna	[5.2.2.5.(2)]
$S_{j,ini,z} = 147202.96$ [kN*m] Rigidezza di rotazione iniziale	[6.3.1.(4)]
$S_{j,rig,z} = 127779.12$ [kN*m] Rigidezza del giunto rigido	[5.2.2.5]
$S_{j,ini,z} \ge S_{j,rig,z}$ RIGIDO	[5.2.2.5.(2)]

28 <u>IL COMPONENTE PIÙ DEBOLE:</u>

PIASTRA DI BASE IN FLESSIONE

Giunto conforme alla norma

Coefficiente 0.62

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE
RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 97 di 99

28.1 Verifiche nel cls

Per il calcolo a stappo dei tirafondi di ancoraggio e dello strappo del cono in cls si fà riferimento alla DD_CEN_TS_1992-4-2-2009 – Design of fasteners for use in concrete – Part 4-2: Headed Fasteners.

Il calcolo è stato effettuato tramite un foglio excel

La forza di trazione nel un singolo tirafondo, maggiormente sollecitato è stata calcolata cautelativamente pari a:

$$N_{Ed} = M_{Ed,x} \ / \ n_x.b_x + M_{Ed,y} \ / \ n_y.b_y = 174 \ / \ 3.0.46 + \ 2/4.0.42 = \textbf{127 kN}$$

 $b_x = 0.46 \text{ m} - \text{interasse x tra le file estreme di tirafondi}$

 $b_v = 0.42 \text{ m} - \text{interasse y tra le file estreme di tirafondi}$

 $n_x = 3$ numero di tirafondi in singola fila

 $n_x = 4$ numero di tirafondi in singola fila

Il contributo della forza di compressione, agente nel giunto è stato omesso, a favore di sicurezza.

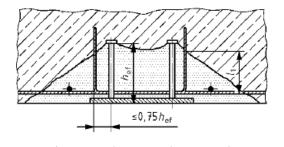
Si prevedono 2 uncini Ø12 per tirafondo, con lunghezzza d'ancoraggio l₁ pari a 500mm, per garantire la resistenza a strappo del cono di cls.

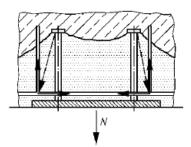
La verifica:

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE


RELAZIONE DI CALCOLO


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM25	03	D 44	CLFV1400001	Α	98 di 99

Sollecitazi	one di pro	getto							
$N_{Ed} =$	127	[kN]	forza assiale nel singolo tirafondo in zona di trazone						
1. Strappo	del singo	o tirafond	o di ancora	ggio dal ca	lcestruzzo	§ 6.2.3			
$N_{\rm Rk, p} = 6$	$0 \cdot A_h \cdot f_ck$	cube · $\psi_{ m ucr,}$	N						
Classe di r	esistenza	del calcest	ruzzo						
C30/37									
$f_{ck,cube} =$	30	[MPa]							
$f_{ctd} =$	1.35	[MPa]							
Tirafondi (di ancorag	gio							
M27									
d =	27	[mm]							
Dimension	ni della pia	astrina di r	esistenza						
I _p =	100	[mm]							
$b_p =$	100	[mm]							
$A_h = b_p . I_p -$	π .d 2 /4								
A _h =	94.27	[cm ²]							
ψ _{ucr,N} =	1.00	per calcestruzzi fessurati							
N _{Rk,p} =	1696.94	[kN]							
La verifica									
N _{Ed} =	127	<	N _{Rk,p} =	1696.94					
2. Strappo	del cono	di calcestru	JZZO						

2. Strappo del cono di calcestruzzo

Per garantire la resistenza a strappo del cono del cls, si provvede armatura secondo il pundo § 6.2.3 della DD_CEN_TS_1992-4-2-2009 – Design of fasteners for use in concrete - Part 4-2: Headed Fasteners

Solamente e staffe disposte a distanza minore di 0.75h_{ef} possono essere considerate effetive La lunghezza d'ancoraggio l₁ non deve essere minore a 4d_s per staffe piegate, comunque non fuori dal cono di strappo

$$N_{\text{Rd, a}} = \sum_{n} \frac{l_1 \cdot \pi \cdot d_s \cdot f_{\text{bd}}}{\alpha}$$

I₁ = 500 [mm] lunghezza di ancoraggio delle staffe

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA-MANTOVA

OPERE D'ARTE MINORI - PENSILINE

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03
 D 44
 CLFV1400001
 A
 99 di 99

$d_s =$	12	[mm]	diametro delle staffe							
n =	2		numero di staffe corrispondente ad un tirafondo							
α =	0.7		fattore d'influenza							
$f_{\rm bd} = 2,25$	$\eta_1 \eta_2 f_{\text{ctd}}$									
η ₁ =	0.7									
η ₂ =	1									
f _{bd} =	3.04	[MPa]								
N _{Rd,a} =	163.59	[kN]								
N _{Ed} =	127	<	N _{Rd,a} =	163.59						