COMMITTENTE:

PROGETTAZIONE:

CUP: J84H17000930009

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA

VI - OPERE D'ARTE PRINCIPALI - Ponti e Viadotti VI03 (ex IN24) - VIADOTTO A CASSONE PORTA BALLAST L=14,50m Relazione di calcolo Spalle

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

NM25 00 D 26 CL VI0304 001 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Prima Emissione	G.Coppa	Aprile 2020	P.Scarano .	Aprile 2020	M. Berlingieri	Aprile 2020	A.Perego Aprile 2020
		7/10						DOTT, NG.
								Sez Settori:
								Mil 100

File: NM2503D26CLVI0304001A.doc n. Elab.:

Relazione di calcolo Spalle

COMMESSA NM25

LOTTO 03 D 26

CODIFICA CL DOCUMENTO
VI 03 04 001

REV.

FOGLIO 2 di 170

INDICE

1.	PREM	ESSA	5
2.		MENTI DI RIFERIMENTO	
2. 2.1		RMATIVA	
2.1		ABORATI DI PROGETTO	
		A DI MISURA	
3.			
4.		RIZIONE DELL'OPERA	
5.		TTERISTICHE DEI MATERIALI	
5.1		_CESTRUZZO	
	5.1.1	Strutture di elevazione	
	5.1.2	Strutture di fondazione	12
5.2	Ac	CIAIO PER CEMENTO ARMATO	13
5.3	Co	PRIFERRI MINIMI	13
6.	PARA	METRI SISMICI	14
7.	CARA	TTERIZZAZIONE GEOTECNICA	15
7.1	ST	RATIGRAFIA E PARAMETRI GEOTECNICI	15
8.	ANAL	ISI DEI CARICHI	16
8.1	CA	RICHI PERMANENTI STRUTTURALI G1	16
8.2	CA	RICHI PERMANENTI NON STRUTTURALI G2	16
	8.2.1	Massicciata, armamento e impermeabilizzazione G _{2,1}	16
	8.2.2	Altri carichi permanenti non strutturali G _{2,2}	17
8.3	SP	NTA DELLE TERRE G3	18
8.4	SP	NTA DA SOVRACCARICO ACCIDENTALE E PERMANENTE	19
8.5	CA	RICHI ACCIDENTALI Q1	20
	8.5.1	Effetti dinamici	20
	8.5.2	Carichi verticali	20
	8.5.3	Numero di treni contemporanei	23
8.6		ENO SCARICO Q2	

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 3 di 170

8.7	CARICHI SUI MARCIAPIEDI	24
8.8	AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE Q3	24
8.9	AZIONE CENTRIFUGA Q4	26
8.10	AZIONE LATERALE (SERPEGGIO) Q5	27
8.11	AZIONE DEL VENTO Q6	28
8.12	AZIONE SISMICHE E	33
	8.12.1 Spinta sismica	33
	8.12.2 Forze inerziali dovute al sisma	34
8.13	RIEPILOGO DEI CARICHI TRASMESSI DALL'IMPALCATO	34
9.	COMBINAZIONI DI CARICO	36
10.	CRITERI DI MODELLAZIONE	40
10.1	CALCOLO DEL MODULO DI REAZIONE ORIZZONTALE DEL TERRENO	41
11.	ANALISI DEI RISULTATI	43
12.	CRITERI DI VERIFICA	45
12.1	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO	45
	12.1.1 Verifiche a fessurazione	45
	12.1.2 Verifiche delle tensioni di esercizio	46
12.2	VERIFICHE AGLI STATI LIMITE ULTIMI	46
	12.2.1 Sollecitazioni flettenti	46
	12.2.2 Sollecitazioni taglianti	47
12.3	VERIFICHE GEOTECNICHE	48
13.	VERIFICHE	50
13.1	VERIFICA DEL MURO FRONTALE	50
	13.1.1 Verifica dell'armatura verticale	50
	13.1.2 Verifica dell'armatura orizzontale	55

Relazione di calcolo Spalle

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
NM25	03 D 36	CI	VI 03 04 001	^	4 di 170	

	13.1.3	Verifica a taglio	60
13.2	VEF	RIFICA DEL MURO PARAGHIAIA	61
	13.2.1	Verifica dell'armatura verticale	61
	13.2.2	Verifica dell'armatura orizzontale	65
	13.2.3	Verifica a taglio	69
13.3	VEF	RIFICA DEI MURI ANDATORI	71
	13.3.1	Verifica dell'armatura verticale	71
	13.3.2	Verifica dell'armatura orizzontale	75
	13.3.3	Verifica a taglio	80
13.4	VEF	RIFICA DEL PLINTO DI FONDAZIONE	81
	13.4.1	Verifica dell'armatura longitudinale	81
	13.4.2	Verifica dell'armatura trasversale	85
	13.4.3	Verifica a taglio e punzonamento	89
13.5	VEF	RIFICA DEI PALI DI FONDAZIONE	93
	13.5.1	Verifiche	94
13.6	VEF	RIFICHE GEOTECNICHE	99
	13.6.1	Verifiche di capacità portante	99
	13.6.2	Verifiche del carico limite orizzontale	103
13.7	VEF	RIFICA DEI BAGGIOLI	108
	13.7.1	Verifica pressione nel calcestuzzo	108
	13.7.2	Armatura a tranciamento	108
	13.7.3	Armatura trasversale	109
14.	VALUT	TAZIONE DELLE INCIDENZE	111
15	TARIII	ΔΤΙ	112

1. PREMESSA

La presente relazione afferisce ai calcoli e alle verifiche strutturali della spalla del viadotto "VI03", previsto nell'ambito della progettazione definitiva del Raddoppio Ferroviario Codogno-Cremona-Mantova ed ubicato dal km 71+360.10 al km 71+374.60 della linea ferroviaria.

L'opera è stata progettata coerentemente con quanto previsto dalla normativa vigente, D.M. 17/01/18 e dalla Circolare Applicativa.

2. DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVA

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le seguenti normative.

- LEGGE n. 1086 05.11.1971: "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle «Norme Tecniche per le Costruzioni»", G.U. Serie Generale n.42 del 20.02.2008, Supplemento Ordinario n.8.
- Circolare 21 gennaio 2019 n.7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018";
- RFI DTC SI MA IFS 001 C del 21.12.2018 "Manuale di progettazione delle opere civili".
- RFI DTC SI AM MA IFS 001 B del 21.12.2018 "Manuale di progettazione delle opere civili Sezione 1 Ambiente".
- RFI DTC SI PS MA IFS 001 C del 21.12.2018 "Manuale di progettazione delle opere civili Sezione 2 Ponti e Strutture".
- RFI DTC SI CS MA IFS 001 C del 21.12.2018 "Capitolato generale tecnico di appalto delle opere civili".
- UNI EN 1990: Eurocodice: Criteri generali di progettazione strutturale;
- UNI EN 1991-1-1: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili;
- UNI EN 1991-1-4: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento;
- UNI EN 1992-1-1: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1992-2: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi;
- UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali;
- UNI-EN 1998-1: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-5: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici;
- Legge. 2 febbraio 1974, n. 64. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- UNI EN 1992-1-1 "Progettazione delle strutture di calcestruzzo";
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019

2.2 ELABORATI DI PROGETTO

Pianta fondazioni e sezione longitudinale	N	М	2	5	0	3	D	2	6	Р	Α	٧	I	0	3	0	0	0	0	1	Α
Pianta impalcato e prospetto longitudinale	N	М	2	5	0	3	D	2	6	Р	Α	٧	ı	0	3	0	4	0	0	1	Α
Planimetria di progetto su cartografia	N	М	2	5	0	3	D	2	6	Р	9	٧	I	0	3	0	4	0	0	1	Α
Planimetria di progetto su ortofoto	N	М	2	5	0	3	D	2	6	Р	9	٧	I	0	3	0	4	0	0	2	Α
Pianta scavi	N	М	2	5	0	3	D	2	6	Р	9	٧	I	0	3	0	4	0	0	3	Α
Carpenteria metallica impalcato	N	М	2	5	0	3	D	2	6	В	Z	٧	I	0	3	0	7	0	0	1	Α
Carpenteria impalcato - Sezioni	N	М	2	5	0	3	D	2	6	В	Z	٧	I	0	3	0	7	0	0	2	Α
Carpenteria spalla A	N	М	2	5	0	3	D	2	6	В	В	٧	I	0	3	0	4	0	0	1	Α
Carpenteria spalla B	N	М	2	5	0	3	D	2	6	В	В	٧	I	0	3	0	4	0	0	2	Α
Relazione geotecnica generale	N	М	2	5	0	3	D	2	6	G	Ε	G	Ε	0	0	0	6	0	0	1	Α

3. UNITÀ DI MISURA

Le unità di misura usate nella presente relazione sono:

• lunghezze [m]

• forze [kN]

• momenti [kNm]

• tensioni [MPa]

4. DESCRIZIONE DELL'OPERA

Il viadotto in corrispondenza della spalla in esame è realizzato da un impalcato a doppia vasca che prevede l'impiego di cassoni in acciaio con rivestimento interno in c.a. ed appartiene alla categoria degli impalcati a cassone a via inferiore con armamento su ballast.

Il ponte è costituito da un'unica campata di luce agli appoggi pari a 14.50m. Ciascuna vasca ospita un singolo binario, come mostrato in figura:

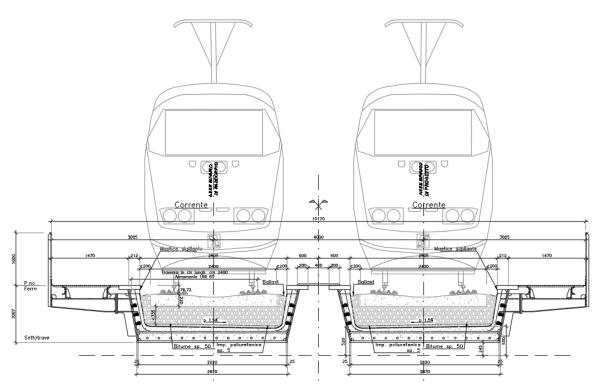


Figura 1 - Sezione trasversale dell'impalcato

Il vincolo dell'impalcato con le sottostrutture è realizzato, per ciascuna vasca, mediante il seguente schema:

- su un lato sono previsti un appoggio fisso a rigidezza variabile e uno di tipo unidirezionale con possibilità di scorrimento in senso trasversale;
- sul lato opposto sono previsti un appoggio unidirezionale, con possibilità di scorrimento in senso longitudinale, e un appoggio multidirezionale.

Nella Figura di seguito lo schema di vincolo dell'impalcato in esame.

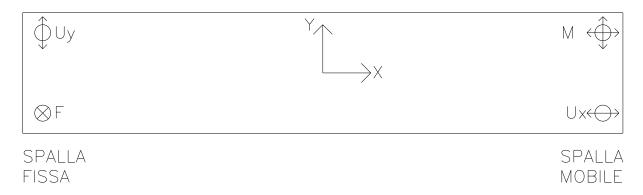


Figura 2 Schema di vincolo dell'impalcato tipo

Le sottostrutture sono di tipo tradizionale:

- Spalla A fissa, poggia su 9 pali di diametro Ø 1500;
- Spalla B mobile, poggia su 9 pali di diametro Ø 1500;

La spalla A è caratterizzata da un'altezza massima pari a 8.00m dallo spiccato di fondazione. Il muro frontale è alto 6.65m, spesso 1.60m e presenta una larghezza di 8.85m. Il muro paraghiaia ha uno spessore di 0.40m ed un'altezza massima di 1.35m.

La fondazione di tipo indiretto è costituita da un plinto su pali. La platea ha uno spessore 2.00m e presenta dimensioni in pianta 12.00x12.00 rispettivamente in direzione trasversale e longitudinale. La palificata si compone di 9 pali Ø 1500 di lunghezza 39m.

I due muri andatori hanno uno spessore di 1.20m ed un'altezza pari 8.70m.

La spalla B presenta le medesime caratteristiche geometriche della spalla A; si farà quindi riferimento a quest'ultima per il dimensionamento delle strutture.

Si riporta di seguito una tabella riassuntiva della geometria della spalla analizzata.

GEOMETRIA SPALLA			
Muro Frontale			
Spessore	Fr_sp	1.60	m
Lunghezza	Fr_lung	8.85	m
Altezza quota baggioli	Fr_h	6.65	m
Altezza totale	Fr_htot	8.00	m
Paraghiaia			
Spessore	Par_sp	0.40	m
Lunghezza	Par_lung	8.85	m
Altezza	Par_h	1.35	m
Distanza filo paraghiaia - filo muro frontale (=0 se il paraghiaia sta a filo muro frontale)	Sp_paragh	0.60	m
Muri di risvolto sezione 1			
Spessore	Risv1_sp	1.20	m
Lunghezza	Risv1_lung	8.70	m

Altezza	Risv1_h	6.65	m
Muri di risvolto sezione 2			
Spessore	Risv2_sp	0.50	m
Lunghezza	Risv2_lung	8.70	m
Altezza	Risv2_h	1.35	m
Altezza totale	Risv_htot	8.00	m
Terreno			
Altezza terreno da estradosso plinto	$H_{terreno}$	8.00	m
Spessore ricoprimento zattera di valle	$H_{rinterro}$	1.00	m
Plinto di fondazione			
Spessore plinto di fondazione	$H_{ m plinto}$	2.00	m
Altezza totale di spinta	H_{tot}	10.00	m
Lunghezza longitudinale	$\mathrm{B}_{\mathrm{long}}$	12.00	m
Larghezza trasversale	B_{trasv}	12.00	m
Sporgenza della platea oltre il muro frontale	S_p	2.50	m
Sporgenza della platea oltre il muro andatore	$A_{\rm p}$	0.98	m
Pali			
Numero pali	n°pali	9	-
Diametro Pali	Øpali	1.50	m
Interasse trasversale pali	int. _{trasv}	4.50	m
Interasse longitudinale pali	int. _{Long}	4.50	m

Tabella 1 Riepilogo delle caratteristiche geometriche della spalla

Si riportano a seguire le immagini della carpenteria dell'opera in oggetto, per maggiori dettagli si rimanda agli elaborati grafici.

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 11 di 170



Figure 1 Carpenteria spalla A

5. CARATTERISTICHE DEI MATERIALI

5.1 Calcestruzzo

5.1.1 Strutture di elevazione

Per il getto degli elementi di elevazione della spalla si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC4

C32/40 fck ≥ 32 MPa Rck ≥ 40 MPa Classe minima di consistenza: S4

In accordo con le norme vigenti, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R_{ck}	40	N/mm^2
Resistenza caratteristica cilindrica a 28 giorni	$f_{ck} = 0.83\ R_{ck}$	33.20	N/mm^2
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	41.20	N/mm^2
Resistenza di calcolo breve durata	$f_{cd\;(Breve\;durata)} = f_{ck} \: / \: 1.5$	22.13	N/mm^2
Resistenza di calcolo lunga durata	$f_{cd\;(Lungo\;durata)} = 0.85\;f_{cd}$	18.81	N/mm^2
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	3.10	N/mm^2
Resistenza caratteristica a trazione	$f_{ctk\;0,05} = 0.7\;f_{ctm}$	2.17	N/mm^2
Resistenza media a trazione per flessione	$f_{cfm}\!=1.2\;f_{ctm}$	3.72	N/mm^2
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk\;0,05} \; / \; 1.5$	1.45	N/mm^2
Modulo di Young	$E = 22000 \; (f_{cm}/10)^{0.3}$	33643	N/mm^2

5.1.2 Strutture di fondazione

Per il getto delle fondazioni e dei pali si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC2

C25/30 fck ≥ 25 MPa Rck ≥ 30 MPa

Classe minima di consistenza: S4

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	13 di 170

In accordo con le norme vigenti, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R_{ck}	30	N/mm^2
Resistenza caratteristica cilindrica a 28 giorni	$f_{ck} = 0.83\ R_{ck}$	24.90	N/mm^2
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	32.90	N/mm^2
Resistenza di calcolo breve durata	$f_{cd \; (Breve \; durata)} = f_{ck} \; / \; 1.5$	16.60	N/mm^2
Resistenza di calcolo lunga durata	$f_{cd \; (Lungo \; durata)} = 0.85 \; f_{cd}$	14.11	N/mm^2
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	2.56	N/mm^2
Resistenza caratteristica a trazione	$f_{ctk~0,05}=0.7~f_{ctm}$	1.79	N/mm^2
Resistenza media a trazione per flessione	$f_{cfm}\!=1.2\;f_{ctm}$	3.07	N/mm^2
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk\ 0,05} \ / \ 1.5$	1.19	N/mm^2
Modulo di Young	$E = 22000 \; (f_{cm}/10)^{0.3}$	31447	N/mm^2

5.2 Acciaio per cemento armato

Tipo B450 (controllato in stabilimento)

 f_{yk} = 450 MPa Tensione caratteristica di snervamento

 $f_{yd} = f_{yk} / 1.15 = 391.30 \text{ MPa}$ Resistenza di calcolo

 $\sigma_s = 0.75 \; f_{yk} = 337.50 \; MPa$ Tensione limite in condizione di esercizio (comb. Rara)

 $E_s = 210000 \text{ MPa}$ Modulo elastico

5.3 Copriferri minimi

Si riportano di seguito i copriferri minimi per le strutture in calcestruzzo armato:

Strutture di elevazione 5.0 cm Plinto di fondazione 4.0 cm Pali di fondazione 6.0 cm

6. PARAMETRI SISMICI

Per la definizione dell'azione sismica occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato. La vita nominale (V_N) dell'opera è stata assunta pari a 50 anni. La classe d'uso assunta è la II. Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso, vale:

$$V_R = V_N x C_u = 50 x 1 = 50 anni.$$

Il valore di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente, è:

 P_{VR} (SLV)=10%.

Il periodo di ritorno dell'azione sismica T_R espresso in anni vale:

$$T_R (SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 475 \text{ anni.}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di ag, F₀, T*c:

- ullet $a_g \rightarrow accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;$
- $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S \rightarrow coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_t);

Il calcolo viene eseguito con il metodo pseudostatico (N.T.C. par. 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

I valori delle caratteristiche sismiche per lo SLV (T_R= 475 anni) sono i seguenti:

 $\begin{array}{lll} \mbox{latitudine} & = 45.127559; \\ \mbox{longitudine} & = 10.369862; \\ \mbox{a}_g & = 0.083 \ g; \\ \mbox{F}_0 & = 2.613; \\ \mbox{T*c} & = 0.311 \ s. \end{array}$

Il sottosuolo su cui insiste l'opera ricade in categoria sismica "C" e categoria topografica "T1". I coefficienti di amplificazione stratigrafica e topografica risultano quindi:

 $\begin{array}{ll} S_S & = 1.5; \\ S_T & = 1.00. \\ a_{max} & = 1.182 \; m/s^2. \end{array}$

7. CARATTERIZZAZIONE GEOTECNICA

7.1 Stratigrafia e parametri geotecnici

Le caratteristiche geotecniche del terreno in situ, in accordo con Relazione Geotecnica sono di seguito riportati:

	UNITA'		Ws1	WRa2	WRs2	WRa2	Rs1
Stratigrafia	DA	[m P.C.]	0.0	3.0	6.5	13.5	25.5
Straugrana	A	[m P.C.]	3.0	6.5	13.5	25.5	40.0
	$\gamma_{\rm n}$	$[kN/m^3]$	19.0	19.0	19.0	19.0	19.0
	φ'	[°]	33.0	25.0	33.0	25.0	33.0
Parametri di	c'	[kPa]	0	0	0	0	0
resistenza	$\mathbf{c}_{\mathbf{u}}$	[kPa]	-	50 fino a 9 m da pc 70 oltre 9 m da pc	-	50 fino a 10 m da pc 60 oltre 10 m da pc	-
	G_0	[MPa]	40.0-70.0	60.0 fino a 14 m da pc 80.0 oltre 16.3 m da pc	70.0	60-80	120.0
	NSPT		5-30	150.0 fino a 14 m da pc 200.0 oltre 16.3 m da pc	8-9	12-20	8-30
Parametri di deformabilità	$\mathbf{E_{op2}}$	[MPa]	20.0-35.0	30.0 fino a 14 m da pc 40.0 oltre 16.3 m da pc	50.0	25.0	60.0
	OCR	[-]	-	2.0	-	2.0	-
	CR	[-]	-	0.160	-	0.160	-
	RR	[-]	-	0.032	=	0.032	-
	Cae	[%]	-	0.150	=	0.150	-
	k _v (*)	[m/s]	2.00E-07	1.00E-08	5.00E-07	1.00E-08	5.00E-07

Tabella 2: Caratterizzazione geotecnica

I parametri geotecnici impiegati per il rilevato ferroviario sono:

 $\gamma = 20.00 \text{ kN/m}^3$ peso di volume naturale $\phi' = 38 \,^{\circ}$ angolo di resistenza al taglio

c' = 0.00 kPa coesione drenata

Si individua la presenza di falda a quota 1.5 m da p.c.

8. ANALISI DEI CARICHI

L'analisi dei carichi che interessano la spalla in esame è stata effettuata considerando le azioni provenienti dall' impalcato afferente e quelle direttamente applicate sulla spalla.

I carichi trasmessi dall' impalcato sono relativi alle condizioni di carico elementari, opportunamente combinate secondo le vigenti normative, analizzate nel dettaglio nella relazione di calcolo dell'impalcato, a cui si rimanda per maggiori approfondimenti.

8.1 CARICHI PERMANENTI STRUTTURALI G₁

Nei carichi permanenti strutturali sono compresi il peso proprio della spalla, il peso del terreno compreso tra i muri andatori, il peso del terreno sulla zattera di valle ed i carichi permanenti strutturali trasmessi dall'impalcato. Si adotta un peso per unità di volume del calcestruzzo pari a 25 kN/m³.

I carichi permanenti strutturali trasmetti al piano di appoggio del muro frontale dall'impalcato sono esplicitati nella specifica relazione di calcolo, si rimanda al riepilogo dei carichi trasmessi dall'impalcato al paragrafo 8.13 della presente relazione.

Si riportano di seguito i dati considerati per il calcolo del peso proprio degli elementi strutturali di impalcato:

Il peso a metro lineare della sola vasca in acciaio è pari a: 0.2732mq x 25 kN/mc x 1.15 = 24.7 kN/m.

L'unico carico G1 applicato al modello è quello relativo agli irrigidimenti trasversali calcolato come di seguito:

	Α	L - s	Int	Peso a ml
	mq	m	m	kN/m
Inferiori	0.00914	2.783	0.495	4.0
Laterali	0.16122	0.02	0.495	0.5
				4.5
			x 1.15 =	5.23

^{*} il contributo della pendenza trasversale è computato in "Carichi permanenti non strutturali"

8.2 CARICHI PERMANENTI NON STRUTTURALI G₂

I carichi permanenti non strutturali trasmessi al piano di appoggi del muro frontale dall'impalcato sono esplicitati nella specifica relazione di calcolo, si rimanda al riepilogo dei carichi trasmessi dall'impalcato al paragrafo 8.13 della presente relazione.

8.2.1 Massicciata, armamento e impermeabilizzazione $G_{2.1}$

La determinazione dei carichi permanenti portati relativi al peso della massicciata, dell'armamento e dell'impermeabilizzazione si è effettuata assumendo convenzionalmente un peso specifico di 18,0kN/m³, applicato su tutta la larghezza media compresa fra i muretti paraballast, pari a 7.95m, per un'altezza media fra piano del ferro (P.F.) ed estradosso impalcato pari a 0,80 m.

Nella Tabella di seguito si riporta la sintesi del calcolo.

Risulta:

Peso al metro cubo della massicciata G2_{mass} 18 kN/m³

Altezza media hmass 0,8 m

Larghezza media Lmass 2,85 m

Carico al metro lineare g2_{mass} 41,04 kN/m

8.2.2 Altri carichi permanenti non strutturali $G_{2,2}$

Strato di c.a.

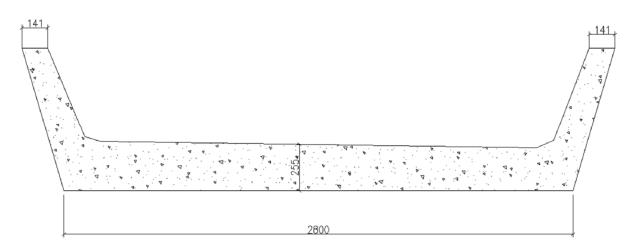


Figure 2 Dimensioni dello strato di c.a. presente all'interno del cassone metallico

Peso al metro cubo del cls γ_{cls} 25 kN/m³

Area Acls 0.92 m^2

Carico al metro lineare (longit) g2cls 23 kN/m

Passerella

Il collegamento tra la lamiera striata e la mensola dell'impalcato è costituito da 2 UPN 140, da 2 angolari 200x100x12 e da 2 fazzoletti triangolari interni con passo 250 mm.

La lamiera striata ha peso a mq di 0.39 kN/mq e una larghezza di 1.23m.

Si riporta di seguito il calcolo dei carichi dei vari elementi costituenti la passerella per unità di lunghezza ed il momento rispetto al baricentro dell'impalcato:

Interasse sostegni 0.99 m

Distanza baricentro passerella da baricentro vasca 2.4 m							
Distanza barreentro pass	sciciia da o	aricentro vasca	2.4	111			
2 UPN 140	0.32	kN/m					
2 angolari	0.55	kN/m					
2 fazzoletti	0.02	kN/m					
Lamiera striata	0.48	kN/m					
Anima sostegno	0.18	kN/m					
Ala inf sostegno	0.16	kN/m					
Ala sup sostegno	0.16	kN/m					
Parapetto	0.31	kN/m					
	2.17	kN/m					
x 1.15	2.50	kN/m					
Momento	5.99	kNm/m					

8.3 SPINTA DELLE TERRE G3

Le spinte del terreno a monte degli elementi verticali della spalla sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a $S = \frac{1}{2} \cdot k_o \cdot \gamma \cdot H^2$, applicata ad 1/3 dal basso.

Si deve notare che essendo presente una fondazione su pali si ipotizza che la spalla sia impedita di traslare rispetto al terreno. Si considera quindi il coefficiente di spinta a riposo.

Angolo di attrito terreno	φ'	38.00	0
Coesione del terreno	c'	0.00	kPa
Peso per unità di volume del terreno	γ	20.00	kN/m^3
Coeff. di spinta in quiete $k_0=(1-sen\Phi')$	\mathbf{k}_0	0.384	-
	ı		
Altezza terreno da estradosso plinto	$H_{\text{terreno}} \\$	8.00	m
Spessore plinto di fondazione	$H_{ m plinto}$	2.00	m

Altezza totale di spinta Spessore ricoprimento zattera di valle	$H_{tot} \\ H_{rinterro}$	10.00 1.00	m m
Pressione orizzontale efficace estradosso plinto	$\sigma'_{ ext{or_ter}}$	61.49	kPa
Pressione orizzontale efficace intradosso plinto	$\sigma'_{ m or_ter}$ $\sigma'_{ m or_ter}$	76.87	kPa
Pressione verticale efficace zattera di monte		160.00	kPa
Pressione verticale efficace zattera di valle	$\sigma'_{ ext{v_riemp.}}$ $\sigma'_{ ext{v_riemp.}}$	20.00	kPa
Spinta del terreno in cond. Statiche	Sor_ter	384.34	kN/m

8.4 SPINTA DA SOVRACCARICO ACCIDENTALE E PERMANENTE

Si considera la presenza di un sovraccarico accidentale a tergo della spalla uniformemente distribuito e di intensità pari q=40 kPa.

Come riportato nel Capitolato il carico verticale a livello del piano di regolamento (posto a circa 0,70 m al di sotto del piano del ferro) su rilevato a tergo della spalla può essere assunto uniformemente distribuito su una larghezza di 3,0 m. Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

Il valore della spinta risultante al metro è dunque pari ad:

$$S = k_o \cdot q \cdot H$$

Per il sovraccarico permanente (ballast) si considera un carico uniformemente distribuito in funzione del peso specifico e dello spessore dell'armamento ferroviario.

Per il caso in esame si ottengono le seguenti sollecitazioni agenti:

Spinta per effetto del ballast (al metro)	$S_{or_q.perm}$	61.49	kN/m
Pressione orizzontale per effetto del ballast	$\sigma'_{q.perm}$	6.15	kPa
Sovraccarico ballast	q perm	16.00	kPa
Peso specifico massicciata	γ	20.00	kN/m^3
Spessore ballast	s	0.80	m
Spinta per effetto degli accidentali (al metro)	$\mathbf{S}_{\mathrm{or_q.acc}}$	153.74	kN/m
Pressione orizzontale per effetto degli accidentali	σ' _{q.acc}	15.37	kPa
Sovraccarico accidentale uniformemente distribuito	q acc	40.00	kPa

8.5 CARICHI ACCIDENTALI Q1

Nel presente paragrafo si esegue l'analisi delle azioni verticali associate ai convogli ferroviari per il tramite della definizione di modelli di carico di tipo "teorico" (modelli di carico LM71 e SW rappresentativi del traffico normale e pesante rispettivamente), di seguito descritti.

I valori caratteristici dei carichi attribuiti ai modelli di carico sono stati moltiplicati per il coefficiente " α ", assunto come da Tabella seguente, in accordo con il "Manuale di progettazione delle opere civili":

Modello di carico	Coefficiente α
LM71	1.1
SW/0	1.1
SW/2	1

Tabella 3 Coefficiente di adattamento α – Tab. 2.5.1.4.1-1 – Manuale di progettazione delle opere civili

8.5.1 Effetti dinamici

Secondo quanto riportato al par. 2.5.1.4.2.5 del "Manuale di progettazione delle opere civili", che riprende integralmente i contenuti del par. 5.2.2.2.3 del DM 17.1.2018, il coefficiente di incremento dinamico dei modelli di carico teorici adottato è:

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73$$

INCREMENTO DINAMICO DEI CARICHI TEORICI			
Lunghezza caratteristica	LΦ	14.50	m
Coefficiente di incremento dinamico (linee con normale standard manutentivo)	Φ3	1.34	

8.5.2 Carichi verticali

Le azioni variabili verticali associate ai convogli ferroviari sono state definite in accordo con il par. 2.5.1.4.1. del "Manuale di progettazione delle opere civili" che riprende integralmente i contenuti dei par. 5.2.2.2.1.1 e 5.2.2.2.1.2 del DM 17.1.2018. I treni di carico adottati schematizzano gli effetti statici prodotti dal traffico ferroviario normale (treno di carico LM71) e pesante (treno di carico SW).

TRENO DI CARICO LM71

• Distribuzione longitudinale dei carichi assiali Q_{vk}

 $q_{vk}=80\ kN\!/\!m$

 $Q_{vk} = 250 \; kN$

 $\alpha = 1.1$ (coefficiente di adattamento)

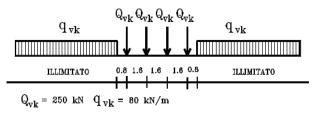


Figura 3 Treno di carico LM71

• Distribuzione trasversale dei carichi

Le azioni si sono distribuite trasversalmente eseguendo una diffusione del carico 4/1 attraverso la massicciata ed 1/1 dalla superficie di estradosso fino al piano medio della soletta. Si ha una ripartizione trasversale del carico su una larghezza b pari a:

Larghezza traversa	Lt	2300	mm
Spessore traversa	St	170	mm
Spessore ballast	Sb	300	mm
Sup rifermento cls	bcls	2450	mm
Spessore Cls	Scls	250	mm
Sup di riferimento	b	2950	mm

Essendo la piastra inferiore di larghezza pari a 2800mm i carichi si considerano diffusi su tutta la larghezza della piastra, ovvero

Brif = 2800 mm

Per il modello di carico LM71 è prevista una eccentricità del carico rispetto all'asse del binario, dipendente dallo scartamento s, per tenere conto dello spostamento dei carichi; pertanto, essa è indipendente dal tipo di struttura e di armamento.

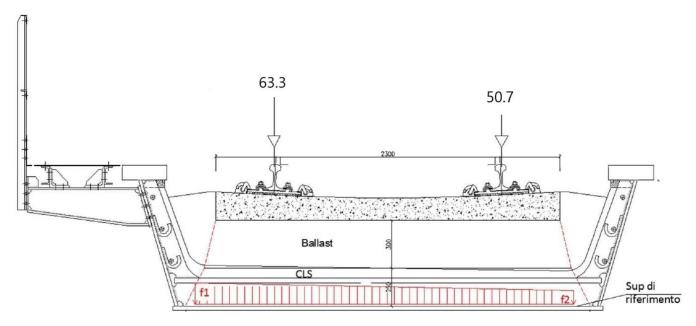
Tale eccentricità è calcolata sulla base del rapporto massimo fra i carichi afferenti a due ruote appartenenti al medesimo asse che deve essere

QV2/QV1=1,25

e risulta quindi pari a s/18 con s=1435mm (scartamento standard).

Tenendo conto che l'aliquota dei suindicati carichi sull'interasse di 0.495 m, e considerando l'incremento dinamico $\phi=1.34$ vale:

ptot = 110.6 kN


SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA					
Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Troidzione di balbolo opalic	NM25	03 D 26	CL	VI 03 04 001	Α	22 di 170

risulta:

kN kN

Qv2	Qv1	chek
63.3	50.7	1.25

La distribuzione lineare sulla piastra metallica non sarà più uniforme ma avrà andamento lineare tra i valori tensionali f1 ed f2.

f1=45.9 kN/m

f2=36.7 kN/m

TRENO DI CARICO SW/2

• Distribuzione longitudinale dei carichi

 $q_{\nu k}=150\;kN/m$

 $\alpha = 1.0$ (coefficiente di adattamento)

Tipo di Carico	$q_{vk} [kN/m]$	a [m]	c [m]
SW/2	150	25,0	7,0

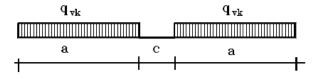


Figura 4 Treno di carico SW/2

• Distribuzione trasversale dei carichi

SW/2:

Carico distribuito	q_{vk}	150 [KN/m]
Estensione carico	a	25 [m]
Distanza tra i carichi distribuiti	b	7 [m]
Coefficiente alfa	α	1
Carico distribuito	$q_{vk} x \alpha x \phi$	201.0 [KN/m]

8.5.3 Numero di treni contemporanei

Conformemente a quanto riportato nel par. 5.2.3.1.2-Tab.5.2.III del DM 17.1.2018, si sono considerati due treni contemportanei sull'impalcato, sia per il traffico normale che per quello pesante.

Numero	Binari	Traffico normale		Traffico
di binari	Carichi	caso a(1)	caso b(1)	pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0")	1,0 (LM 71"+"SW/0") -	
2	secondo	1,0 (LM 71"+"SW/0")	-	1,0 (LM 71"+"SW/0")
	Primo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 (LM 71"+"SW/0")
	Altri	-	0,75 (LM 71"+"SW/0")	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Tabella 4 Carichi mobili in funzione del numero di binari presenti sul ponte -Tab.5.2.III del DM 17.1.2018

I carichi accidentali trasmessi al piano di appoggio del muro frontale dall'impalcato sono esplicitati nella specifica relazione di calcolo, si rimanda al riepilogo dei carichi trasmessi dall'impalcato al paragrafo 8.13 della presente relazione.

⁽²⁾ Salvo i casi in cui sia esplicitamente escluso

8.6 TRENO SCARICO Q₂

La condizione di "Treno Scarico" è stata simulata con un carico uniformemente distribuito, in accordo con quanto previsto al par. 5.2.2.2.1.3 del DM 17.1.2018.

Treno scarico Q ₂	Q_2	10.00	kN/m	

8.7 CARICHI SUI MARCIAPIEDI

I marciapiedi non aperti al pubblico sono utilizzati solo da personale autorizzato. I carichi accidentali sono schematizzati da un carico uniformemente distribuito del valore di 10,0 KN/m2. Questo carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e deve essere applicato sopra i marciapiedi in modo da dar luogo agli effetti locali più sfavorevoli. A questo tipo di carico distribuito non si applica l'incremento dinamico.

Carico accidentale distribuito marciapiedi $q_m = 10 \text{ [KN/m}^2\text{]}$

Essendo la larghezza del marciapiede pari a 1,50m il carico al metro lineare risulta essere q_m = 15 kN/m

Il momento per unità di lunghezza rispetto al baricentro dell'impalcato è pari a:

 $q_m \times d = 15 \text{ kN/m} \times 2.4 \text{m} = 36 \text{ kNm/m}$

8.8 AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE Q3

L'azione di frenatura ed avviamento dei treni è definita secondo quanto riportato nel par. 2.5.1.4.3.3 del "Manuale di progettazione delle opere civili".

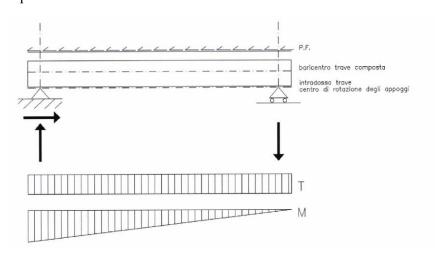


Figura 5 Sollecitazioni indotte da frenatura e avviamento dei treni

I valori caratteristici da considerare, da moltiplicare per i coefficienti di adattamento α , sono:

Relazione di calcolo Spalle

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 VI 03 04 001
 A
 25 di 170

Avviamento:

Q1a,k = 33 [kN/m] x L [m] \le 1000 KN per modelli di carico LM71, SW/0, SW/2

Frenatura:

Q1b,k = $20 \text{ [kN/m]} \times \text{L [m]} \le 6000 \text{ KN per modelli di carico LM71, SW/0}$

Q1b, $k = 35 [kN/m] \times L [m]$ per modelli di carico SW/2

Le azioni di frenatura e di avviamento vengono combinate con i relativi carichi verticali.

La forza di avviamento si considera applicata ai primi 30.3 m di convoglio, mentre la forza di frenatura si considererà distribuita su tutta la lunghezza del ponte, per una lunghezza massima di 300 m.

Nel caso in questione le forze si applicano a tutta l'estensione longitudinale dell'impalcato.

I valori caratteristici dell'azione di frenatura e di quella di avviamento devono essere moltiplicati per α , ma non devono essere moltiplicati per ϕ .

Risulta quindi quanto segue.

AVVIAMENTO

	FX	My	Fx/mi	My/mi
LM71	564.46	304.8	36.3	19.6
SW/0	564.46	304.8	36.3	19.6
SW/2	513.15	276.8	33.0	17.8

FRENATURA

	Fx	My	Fx/ml	My/ml
LM71	342.1	185.0	22.0	11.9
SW/0	342.1	185.0	22.0	11.9
SW/2	544.25	293.9	35.0	18.9

Le azioni sono state calcolate a partire dall'intera lunghezza del ponte pari a L=15.55m

I momenti sono relativi al trasporto delle forze lungo l'asse baricentrico dell'impalcato.

Per ciascun modello di carico sono stati considerati gli effetti maggiori tra l'avviamento e la frenatura:

LM71 e SW/0: avviamento

SW/2: frenatura

Nel caso di ponti a doppio binario sono stati considerati due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura.

Le azioni di avviamento e frenatura trasmesse al piano di appoggio del muro frontale dall'impalcato sono esplicitati nella specifica relazione di calcolo, si rimanda al riepilogo dei carichi trasmessi dall'impalcato al paragrafo 8.13 della presente relazione.

8.9 AZIONE CENTRIFUGA Q4

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente su tutta l'estensione del tratto in curva. La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1.80m al di sopra del P.F..

Il valore caratteristico della forza centrifuga si dertermina in accordo con le seguenti espressioni:

$$Q_{tk} = \frac{v^2}{g \cdot r} (f \cdot Q_{vk}) = \frac{v^2}{127 * r} (f \cdot Q_{vk})$$

$$q_{tk} = \frac{v^2}{g \cdot r} (f \cdot q_{vk}) = \frac{v^2}{127 * r} (f \cdot q_{vk})$$

dove:

- Q_{tk}-q_{tk} è il valore caratteristico della forza centrifuga, espresso in kN/m;
- Q_{vk} - q_{vk} è il valore caratteristico dei carichi verticali ferroviari, espresso in kN/m;
- V è la velocità di progetto, espressa in km/h;
- f è un fattore di riduzione;
- r è il raggio di curvatura, espresso in m.

L'azione centrifuga viene determinata per i modelli di carico LM71 e SW/2 associando alle grandezze precedentemente indicate quanto contenuto nella tabella 2.5.1.4.3.1-1 del "Manuale di progettazione delle opere civili".

Per quanto riguarda il modello di carico SW/2 si è assunta una velocità V uguale a 100 km/h, un valore di f pari ad 1 ed il valore di α pari a 1.

Per il modello di carico LM71, essendo la velocità di progetto superiore ai 120 km/h, sono stati considerati due casi:

- Modello di carico LM71 e forza centrifuga per V= 120 km/h in accordo con le formule precedenti dove f = 1;
- Modello di carico LM71 e forza centrifuga calcolata secondo le precedenti espressioni per la massima velocità di progetto (V=140 km/h).

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA					
Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Trefazione di calcolo opalic	NM25	03 D 26	CL	VI 03 04 001	Α	27 di 170

La forza centrifuga, in accordo con quanto prescritto nel "Manuale di progettazione delle opere civili", non è stata incrementata dai coefficienti dinamici.

Tabella 5 Parametri per determinazione della forza centrifuga - Tab. 2.5.1.3.1-1 – Manuale di progettazione delle opere civili

	Massima velocità della		Azio	ne centri	fuga basata su:	traffico verticale
Valore di α	linea [Km/h]	v	α	f		associato
SW/2	≥ 100	100	1	1	1 x 1 x SW/2	
	< 100	V	1	1	1 x 1 x SW/2	Фх1хSW/2
		V	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	* - n - 1 -
	≤ 120	V	α	1	α x 1 x (LM71"+"SW/0)	Φ x α x 1 x (LM71"+"SW/0)

Nel caso in esame, l'impalcato si sviluppa interamente in rettilineo; pertanto l'azione centrifuga risulta trascurabile.

8.10 AZIONE LATERALE (SERPEGGIO) Q₅

L'azione laterale associata al serpeggio è definita secondo quanto riportato nel par. 2.5.1.4.3.2 del "Manuale di progettazione delle opere civili", che riprende il par. 5.2.2.3.2 del DM 17.1.2018, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommita della rotaia piu alta, perpendicolarmente all'asse del binario, del valore di 100 kN.

Q_{sk}	100	kN
distanza testa binario - G impalcato	0.54	m

		F=Qsk	X
a		a	M
		(kN)	(kNm)
1.1	LM71	110	59.4
1.1	SW/0	110	59.4
1	SW/2	100	54

Si rimanda al riepilogo dei carichi trasmessi dall'impalcato al paragrafo 8.13 della presente relazione.

8.11 AZIONE DEL VENTO Q6

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici.

Usualmente tali azioni sono convenzionalmente ricondotte ad azioni statiche equivalenti dirette secondo due assi principali della struttura, tali azioni esercitano normalmente all'elemento di parete o di copertura, pressioni e depressioni p (indicate rispettivamente con segno positivo e negativo) di intensità calcolate con la seguente espressione:

$$p = q_b c_e c_p c_d$$

- q_b = pressione cinetica di riferimento;
- c_e = coefficiente di esposizione;
- c_p = coefficiente di forma (o coefficiente aerodinamico);
- c_d = coefficiente dinamico.

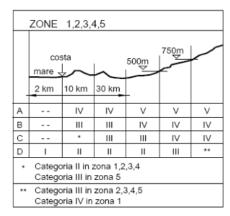


Figure 3 Definizione della categoria di esposizione

Categoria di esposizione del sito	k _r	z ₀ [m]	z _{min} [m]
I	0,17	0,01	2
п	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
v	0,23	0,70	12

Figure 4 Schema per la definizione della categoria di esposizione – cfr. NTC18

La pressione del vento è stata calcolata ai sensi delle NTC 2018; la normativa suddivide il territorio italiano in zone per le quali sono assegnati i parametri di base $v_{b,0}$, a_0 , k_a . Con riferimento a tali parametri è possibile calcolare la velocità di riferimento v_b , vale a dire il valore caratteristico della velocità del vento a 10 m dal suolo su un terreno di categoria di esposizione II, mediata su dieci minuti e riferita ad un periodo di ritorno di 50 anni v_b .

Tab. 3.3.I -Valori dei parametri $v_{b,0}$, a_{0} , k_{s}

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	$k_{\mathfrak{s}}$
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

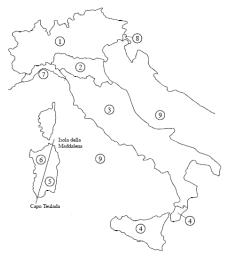


Figura 3.3.1 – Mappa delle zone in cui è suddiviso il territorio italiano

Figure 5 Mappa delle zone in cui è suddiviso il territorio italiano e valori dei parametri di riferimento (tab. 3.3.1 NTC2018).

I dettagli del calcolo sono di seguito riportati:

Zona - Regione	Zona	[-]	1
Velocità di riferimento - Valore caratteristico	V _{b,0}	[m/s]	25
Parametro legato all'altitudine della zona	a_0	[m]	1000
Parametro funzione della zona	ks	[1/s]	0.40

Altitudine	a_{s}	[m]	30
Velocità di riferimento per un periodo di ritorno di 50 anni	V _b	[m/s]	25
Tempo di ritorno	T_R	[anni]	50
Coefficiente correttivo per il tempo di ritorno	CR	[-]	1.00
Velocità di riferimento per il periodo di ritorno definito	$v_r(T_R)$	[m/s]	25.02

Densità dell'aria	ρ	[kg/m ³]	1.25
Pressione cinetica di riferimento	q _b	$[N/m^2]$	391.20

8.11.1.1 Categoria di esposizione

Il coefficiente di esposizione c_s dipende dall'altezza della costruzione z sul suolo del punto considerato, dalla rugosità e dalla topografia del terreno, dalla categoria di esposizione del sito ove sorge la costruzione.

Il coefficiente di esposizione ce varia lungo la quota fuori terra (z) della costruzione ed è dato dalla formula:

$$c_e(z) = k_r^2 \cdot c_t \cdot \ln\left(\frac{z}{z_0}\right) \left[7 + c_t \cdot \ln\left(\frac{z}{z_0}\right)\right] \quad \text{per } z > z_{\text{min}}$$

$$c_e(z) = c_e(z_{\min})$$
 per $z < z_{\min}$

Dove:

 k_r , z_0 , z_{min} sono assegnati in funzione della categoria di esposizione del sito ove sorge la costruzione;

z è l'altezza della struttura (somma dell'altezza della barriera antirumore e del rilevato su cui è installata);

*c*_t è il coefficiente di topografia.

In mancanza di analisi che tengano conto sia della direzione di provenienza del vento sia delle variazioni di rugosità del terreno, la categoria di esposizione è assegnata in funzione della posizione geografica del sito ove sorge la costruzione e della classe di rugosità del terreno.


Nelle fasce entro i 40 km dalla costa delle zone 1, 2, 3, 4, 5, e 6, la categoria di esposizione è indipendente dall'altitudine del sito.

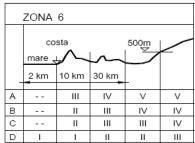


Tabella 3.3.III - Classi di rugosità del terreno

Tubella Sicilli Ciassi ai ragosia	
Classe di rugosità del terreno	Descrizione
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15m
В	Aree urbane (non di classe A), suburbane, industriali e boschive
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D
D	Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,)

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinché una costruzione possa dirsi ubicata in classe A o B è necessario che la situazione che contraddistingue la classe permanga intorno alla costruzione per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione. Laddove sussistano dubbi sulla scelta della classe di rugosità, a meno di analisi dettagliate, verrà assegnata la classe più sfavorevole.

	ZONE 7,8									
	mare	cos	ata							
_	1.5 km	0.5 km	-							
Α			IV							
В			IV							
С			III							
D	I	II	*							
		II in zon III in zon								

	ZONA	9
		costa
	mare <	_/
Α		I
В		
С		- 1
D	I	I

Tabella 3.3.II – Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	\mathbf{k}_{r}	Z ₀ [m]	z _{min} [m]
I	0,17	0,01	2
П	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

Figura 3.3.3 - Andamento del coefficiente di esposizione c_e con la quota (per $c_t = 1$)

Classe di rugosità del terreno	Classe _{rug}	[-]	С
Categoria di esposizione del sito	Cat _{esp}	[-]	III
	k _r	[-]	0.20
Parametri per la definizione del coeff. di esposizione	Z ₀	[m]	0.10
	Zmin	[m]	5.00

Tabella 6 Categoria di esposizione

Coefficiente di esposizione minimo	$c_{e,min}$	2.27	z < 5.00
Coefficiente di esposizione alla gronda	C _{e,gronda}	2.55	z = 7.00
Coefficiente di esposizione al colmo	C _{e,Colmo}	2.55	z = 7.00

8.11.1.2 Coefficienti dinamico

Il coefficiente dinamico c_d permette di tenere in conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alle vibrazioni strutturali. Nelle strutture analizzate viene considerato cautelativamente un coefficiente dinamico pari a $c_d = 1.0$.

8.11.1.3 Coefficiente di topografia

Nelle strutture analizzate viene considerato un coefficiente di topografia unitario.

8.11.1.4 Coefficiente di forma

Si assume un coefficiente di forma pari a $c_p=1.2$.

8.11.1.5 Pressione del vento

qь	0.391	kN/mq	
C _e	2.55		Coefficiente di esposizione calcolato per z = 7m
Cp	1.2		Coefficiente di forma
C _d	1		Coefficiente dinamico
Р	1.19	kN/mq	Pressione del vento

In tal modo le azioni del vento e relativi momenti di trasporto al baricentro dell'impalcato sono i seguenti:

	H vento	R vento	Braccio	M vento
	m	kN/m	m	kNm/m
Ponte scarico	1	1.19	0	0
Ponte carico	5	5.98	2.02	12.08

8.12 AZIONE SISMICHE E

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudo-statica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

8.12.1 Spinta sismica

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è stata calcolata con la teoria di Mononobe Okabe ed applicata ad una quota pari ad H/2.

Sa,E =
$$\frac{1}{2} \cdot \gamma$$
 (1± k_v) H² K_{A,E},

L'incremento sismico è stato considerato concomitante con la spinta statica calcolata con i coefficienti di spinta attiva.

8.12.2 Forze inerziali dovute al sisma

In condizioni sismiche si devono considerare le azioni orizzontali agenti sulla spalla dovute all'inerzia degli elementi strutturali dell'opera e del terreno. Tale risultante è pari ad:

 $F_h\!=k_h\cdot\,W$

Coefficiente kh sismico spinta orizzontale: ßm·S _S ·S _T ·Ag/g	\mathbf{k}_{h}	0.13	-
Coefficiente di riduzione dell'accelerazione massima	$\beta_{\rm m}$	1.00	-
Coeff. Per effetto amplificazione topografica	S_{T}	1.00	-
Coeff. Per effetto amplificazione stratigrafica	S_s	1.5	-
Accelerazione sismica SLV	$a_{\rm g}$	0.086	g

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \psi_{2i} Q_{ki}$$

Dove nel caso specifico si assumerà, per i carichi dovuti al transito dei mezzi, $\psi_{2j} = 0.2$.

Le forze d'inerzia associate ai carichi permanenti strutturali e non strutturali e ai carichi accidentali trasmessi dall'impalcato sono esplicitate nella specifica relazione di calcolo, si rimanda al riepilogo dei carichi trasmessi dall'impalcato al paragrafo 8.13 della presente relazione.

8.13 RIEPILOGO DEI CARICHI TRASMESSI DALL'IMPALCATO

Si riporta di seguito un prospetto rieplogativo di tutte le azioni trasmesse dall'impalcato alla spalla in corrispondenza della sommità del muro di testata.

Per le azioni sismiche trasmesse dall'impalcato si evidenzia che oltre alla massa efficace dell'impalcato, è stata considerata un'aliquota pari al 20% del carico dovuto al transito dei treni, ottenuto tenendo conto dello scenario più gravoso tra quello che vede la presenza sui due binari di due treni di carico LM71 e quello caratterizzato da un treno LM71 e da un treno tipo SW/2.

CASI DI CARICO		AP	P. 1 a (FIS	. 1 a (FISSO) APP. 2a (FISSO)		SO)	AP	APP. 1b (FISSO)			APP. 2b (FISSO)		
Sigla	Descrizione	N	Ht	Hl	N	Ht	Hl	N	Ht	Hl	N	Ht	Hl
-	-	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
Sisma Long - q=1	Azione sismica SLV in dir.longitudinale (±) *	0	0	256	0	0	256	0	0	256	0	0	256
Sisma Trasv - q=1	Azione sismica SLV in dir. trasversale (±) *	0	128	0	0	128	0	0	128	0	0	128	0
Sisma Vert - q=1	Azione sismica SLV in dir.verticale (±) *	64	0	0	64	0	0	64	0	0	64	0	0

^{*} Per ottenere l'effetto più gravoso sulla spalla, i carichi verticali indotti dal sisma possono essere considerati alternativamente positivi o negativi indipendentemente dagli altri appoggi dello stesso allineamento.

Tabella 7 Riepilogo azioni trasmesse dall'impalcato in condizioni sismiche

Si riporta di seguito la sintesi degli scarichi espletati dagli appoggi d'impalcato sulla spalla, per ciascuna delle condizioni di carico elementari analizzate. Le grandezze che figurano nella Tabella di seguito fanno riferimento alle seguenti azioni trasmesse dagli appoggi:

- N Reazione verticale (positiva, se diretta verso il basso);
- Ht Reazione orizzontale, in direzione trasversale rispetto all'asse del viadotto;
- Hl Reazione orizzontale, in direzione parallela all'asse del viadotto.

CASI DI CARICO			APP. 1 a (FISSO)			APP. 2a (FISSO)			APP. 1b (FISSO)			APP. 2b (FISSO)		
Sigla	Tipologia	Descrizione	N	Ht	HI	N	Ht	HI	N	Ht	HI	N	Ht	HI
-	-	-	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
G1	Carichi permanenti strutturali	Peso proprio travi+soletta	108	0	0	108	0	0	108	0	0	108	0	0
G2	Carichi permanenti non strutturali	Ballast e armamento	263	0	0	263	0	0	263	0	0	263	0	0
Q3,a B1-SW2	Avviamento treno	Azione di avviamento per treno SW/2 su binario 1	0	0	257	0	0	257	0	0	0	0	0	0
Q3,f B2-LM71	Frenatura treno	Azione di frenatura per treno LM71 su binario 2	0	0	0	0	0	0	0	0	-171	0	0	-171
Q5 B1-SW2	Serpeggio	Azione di serpeggio per treno SW/2 su binario 1	0	0	0	0	50	0	0	0	0	0	0	0
Q5 B2-LM71	Serpeggio	Azione di serpeggio per treno LM71 su binario 2	0	0	0	0	0	0	0	0	0	0	55	0
Q6	Vento	Azione del vento	0	22	0	0	22	0	0	22	0	0	22	0
LM71_B2	Traffico ferroviario	Carico verticale per treno LM71 su binario 2	0	0	0	0	0	0	520	0	0	520	0	0
SW2_B1	Traffico ferroviario	Carico verticale per treno SW/2 su binario 1	729	0	0	729	0	0	0	0	0	0	0	0

Tabella 8 Scarichi espletati dagli appoggi per le singole condizioni di carico – Lato fisso

CASI DI CARICO			APP. 3a (MULTIDIR.)			APP. 4a (UNIDIR. LONG)			APP. 3b (MULTIDIR.)			APP. 4b (UNIDIR. LONG)		
Sigla	Tipologia	Descrizione	N	Ht	Hl	N	Ht	HI	N	Ht	HI	N	Ht	Hl
-	-	-	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN	kN
G1	Carichi permanenti strutturali	Peso proprio travi+soletta	108	0	0	108	0	0	108	0	0	108	0	0
G2	Carichi permanenti non strutturali	Ballast e armamento	263	0	0	263	0	0	263	0	0	263	0	0
Q3,a B1-SW2	Avviamento treno	Azione di avviamento per treno SW/2 su binario 1	0	0	0	0	0	0	0	0	0	0	0	0
Q3,f B2-LM71	Frenatura treno	Azione di frenatura per treno LM71 su binario 2	0	0	0	0	0	0	0	0	0	0	0	0
Q5 B1-SW2	Serpeggio	Azione di serpeggio per treno SW/2 su binario 1	0	0	0	0	50	0	0	0	0	0	0	0
Q5 B2-LM71	Serpeggio	Azione di serpeggio per treno LM71 su binario 2	0	0	0	0	0	0	0	0	0	0	55	0
Q6	Vento	Azione del vento	0	0	0	0	43	0	0	0	0	0	43	0
LM71_B2	Traffico ferroviario	Carico verticale per treno LM71 su binario 2	0	0	0	0	0	0	520	0	0	520	0	0
SW2_B1	Traffico ferroviario	Carico verticale per treno SW/2 su binario 1	729	0	0	729	0	0	0	0	0	0	0	0

Tabella 9 Scarichi espletati dagli appoggi per le singole condizioni di carico – Lato mobile

9. COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni:

• Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

• Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

• Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

• Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Per le combinazioni di carico si è fatto riferimento al paragrafo 5.1.3.14 delle NTC18.

I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qj} e quelli dei coefficienti di combinazione Ψ_{ij} sono stati desunti dal par. 5.2.3.2.1 delle NTC18, relativo al capitolo sui 'Ponti ferroviari'. Di seguito si riportano le Tabelle di riferimento.

Per quanto riguarda il coefficiente di combinazione Ψ_{2j} relativo ai carichi dovuti al transito dei treni, si assume pari a 0.2 nelle combinazioni sismiche.

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo Spalle NM25 03 D 26 CL VI 03 04 001 Α 37 di 170

_	_	Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γр	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

<u>Tabella 10 Valori dei coefficienti parziali di sicurezza – Tabella 5.2.V NTC 2018</u>

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
redazione di calcolo opalic	NM25	03 D 26	CL	VI 03 04 001	Α	38 di 170

Azioni		Ψo	V 1	₩ 2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr1	0,80(2)	0,80(1)	0,0
Gruppi di	2 72	0,80(2)	0,80 ⁽¹⁾	-
carico	2 3	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 11 Valori dei coefficienti di combinazione- Tabella 5.2.VI NTC 2018

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	•	-
traffico	Centrifuga	(2(3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

<u>Tabella 12 Ulteriori valori dei coefficienti di combinazione – Tabella 5.2.VII del NTC 2018</u>

Conformemente con quanto prescritto al par.5.2.3.1.3 delle NCT18, gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella Tabella 5.2.IV delle NCT18, riportata di seguito.

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

⁽²⁾ Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont	ali		
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	1	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	ı	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	

Azione dominante

<u>Tabella 13 Valutazione dei carichi da traffico – Tabella 5.2.IV delle NCT18</u>

Si riportano di seguito le combinazioni delle azioni maggiormente significative per la determinazione delle sollecitazioni più gravose.

	COMBINAZIONI DI CARICO										
	1	2	3	4	5	6	7	8	9	10	11
CONDIZIONI DI CARICO	SLU01	SLU02	SLV01 (EL + 0.3ET)	SLV02 (EL - 0.3ET)	SLV03 (0.3 EL + ET)	SLV04 (- 0.3 EL + ET)	SLE RARA 01	SLE RARA 02	SLE FREQ 01	SLE FREQ 02	SLE PERM
Permanenti strutturali	1.35	1.35	1	1	1	1	1	1	1	1	1
Spinta statica	1.35	1.35	1	1	1	1	1	1	1	1	1
Permanenti non strutturali	1.5	1.5	1	1	1	1	1	1	1	1	1
Spinta permanenti	1.5	1.5	1	1	1	1	1	1	1	1	1
Azioni variabili da traffico	1.45	1.45	0.2	0.2	0.2	0.2	1	1	0.8	0.8	0
Spinta accidentali	1.45	1.45	0.2	0.2	0.2	0.2	1	1	0.8	0.8	0
Avviamento / Frenatura	0.725	1.45	0.2	0.2	0.2	0.2	0.5	1	0.4	0.8	0
Serpeggio	1.45	0.725	0.2	0.2	0.2	0.2	1	0.5	0.8	0.8	0
Vento	0.9	0.9	0	0	0	0	0.6	0.6	0	0	0
Sisma Long	0	0	1	1	0.3	-0.3	0	0	0	0	0
Sisma Trasv	0	0	0.3	-0.3	1	1	0	0	0	0	0

Tabella 14 Combinazioni di carico

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

10. CRITERI DI MODELLAZIONE

Le sollecitazioni di verifica della spalla sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle spinte del terreno di riempimento e del sovraccarico in condizioni sia statiche che sismiche e le azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Il calcolo della struttura è stato svolto utilizzando il programma di calcolo Straus7, schematizzando l'intera struttura con un modello tridimensionale.

Tutti gli elementi strutturali della spalla sono stati descritti come elementi bidimensionali a piastra (shell), mentre la palificata di sostegno è stata descritta con elementi monodimensionali a trave (frame).

Nella figura di seguito riportata si evidenzia il modello tridimensionale implementato in Straus7.

Gli assi di riferimento adottati sono:

- x = asse longitudinale rispetto all'asse del viadotto
- y = asse trasversale rispetto all'asse del viadotto
- z = asse verticale

Figure 6: Modellazione tridimensionale agli Elementi Finiti

Il terreno è stato schematizzato mediante una distribuzione di molle di diversa rigidezza a seconda del tipo di terreno che il palo attraversa. In particolare, il palo è stato modellato con elementi di tipo "frame"; su ciascuna asta

è stata applicata una di distribuzione lineare di molle con comportamento elastico lineare, con pari rigidezza nelle due direzioni ortogonali.

10.1 Calcolo del modulo di reazione orizzontale del terreno

Per terreni granulari i moduli di reazione orizzontale iniziali (E_{si}) alla Matlock & Reese (1960), sono stati valutati in accordo alla seguente espressione:

$$E_{si} = k_{hi} \cdot z \text{ [kPa]}$$

essendo:

 k_h = gradiente con la profondità del modulo di reazione orizzontale, riportato nella tabella seguente(cfr. Reese et al., 1974 e Elson, 1984)

z = profondità dal piano campagna originario.

Nel caso in esame, è possibile determinare tale parametro tramite la teoria di Vesic, esprimendo il modulo di sottofondo k_h in funzione dei parametri elastici della massa E_t e v_t con la relazione seguente:

$$\mathbf{k}_{h} = \left(\frac{E_{t}}{D_{p}}\right) \times 12 \sqrt[3]{\frac{E_{t} \times D^{4}}{E_{p}J_{p}}} \times \left(\frac{0.65}{1 - v_{t}^{2}}\right) \left[\begin{array}{c} \frac{kN}{m^{3}} \end{array}\right]$$

Nel caso in esame risulta:

 $k_h = 9949 \text{ kN/m}^3$

Nel caso di pali di fondazione posizionati in cresta ad una scarpata naturale o artificiale, i moduli di reazione orizzontali saranno ridotti di una quantità pari al rapporto tra il coefficiente di spinta passiva del terreno calcolato per un piano di campagna con inclinazione pari alla pendenza della scarpata e lo stesso parametro calcolato per un piano di campagna orizzontale.

In particolare, noto il coefficiente di spinta passiva nel caso di piano campagna orizzontale dalla formula:

$$K_{p} = \frac{1 + sen(\varphi)}{1 - sen(\varphi)}$$

e calcolando il coefficiente di spinta passiva nel caso di piano campagna con inclinazione ω nel modo seguente:

$$K_{\rho_{-}w} = \frac{\cos(\omega) + \sqrt{\cos(\omega)^2 - \cos(\varphi)^2}}{\cos(\omega) - \sqrt{\cos(\omega)^2 - \cos(\varphi)^2}}$$

si ricava il coefficiente di riduzione delle molle orizzontali per la presenza della scarpata dal rapporto dei due coefficienti di spinta passiva appena descritti:

Relazione di calcolo Spalle

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 VI 03 04 001
 A
 42 di 170

$$\eta = \frac{K_{p_{-}w}}{K_{p}}$$

Tale coefficiente di riduzione viene applicato fino ad una quota di 5 m dal piano di posa della fondazione. Per profondità superiori l'inclinazione della scarpata viene considerata ininfluente ai fini del calcolo della rigidezza delle molle orizzontali del terreno.

Nel caso di comportamento granulare del terreno, il valore della rigidezza K_{orizz} della molla orizzontale alla generica profondità z risulterà pari a

$$K_{orizz}(z) = \eta \cdot E(z) \cdot d = \eta \cdot k_{hi} \cdot z \cdot d \qquad \left[\frac{kN}{m}\right]$$

dove d è il diametro del palo di fondazione.

Nel caso di comportamento coesivo dei terreni, il modulo elastico del terreno viene calcolato con la seguente formula:

$$E_{coesivo} = 400 \cdot c_u \, [KPa]$$

dove c_u rappresenta la coesione non drenata minima del terreno considerato. In questo caso il valore della rigidezza della molla è costante con la profondità ed è soggetto anch'esso alla riduzione dovuta all'eventuale inclinazione della scarpata.

In questo caso il valore della rigidezza della molla risulterà pari a

$$K_{\text{orizz_coesivo}} = \eta \cdot E_{\text{coesivo}} \cdot d \qquad \left[\frac{kN}{m} \right]$$

11. ANALISI DEI RISULTATI

Nei paragrafi successivi si riportano le sollecitazioni relative agli elementi strutturali della spalla. In particolare nelle Tabelle riportate di seguito lo sforzo normale è di compressione se positivo.

Tabella 15 Sollecitazioni elementi in elevazione

Muro frontale Attacco platea di fondazione		N	M _{vert}	Mor	T
Sp=1.6m		[kN/m]	[kNm/m]	[kNm/m]	[kN/m]
CLY	SLU	1066	1331	1099	579
SLV	SLV	828	1301	1157	637
	RARA	755	955	656	-
SLE	FREQ	693	900	595	-
	QPERM	447	679	366	-

Muro Paraghiaia Attacco muro frontale		N	$\mathbf{M}_{ ext{vert}}$	M_{or}	T
Sp=0.4m		[kN/m]	[kNm/m]	[kNm/m]	[kN/m]
CI V	SLU	18	36	47	53
SLV	SLV	14	52	57	91
	RARA	14	25	33	-
SLE	FREQ	14	22	29	-
	QPERM	14	9	17	-

Muri laterali Attacco platea di fondazione		N	$\mathbf{M}_{ ext{vert}}$	Mor	T
Sp=1.2m		[kN/m]	[kNm/m]	[kNm/m]	[kN/m]
SLV	SLU	292	1290	827	638
SLV	SLV	216	1528	1029	698
	RARA	216	907	583	1
SLE	FREQ	216	847	531	ı
	QPERM	216	611	324	1

Tabella 16 Sollecitazioni elementi di fondazione

Solettone di fondazione		N	M _{long}	M _{trasv}	T
	Sp=2m	[kN/m]	[kNm/m]	[kNm/m]	[kN/m]
CLV	SLU	0	1469	1198	1972
SLV	SLV	0	1467	2156	2771
SLE	RARA	0	1053	885	-
	FREQ	0	989	827	-

	i de la companya de				
Q	PERM	0	736	674	-

Pali di fondazione		N _{min}	N _{max}	M	T
	D=1.5m	[kN]	[kN]	[kNm]	[kN]
SLV	SLU	4551	7242	3304	947
	SLV	1068	6923	5097	1505
SLE	RARA	3390	5252	2380	681
	FREQ	3427	5067	2264	645
	QPERM	3576	4305	1801	504

12. CRITERI DI VERIFICA

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali.

12.1 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Tabella 17 Descrizione delle condizioni ambientali (Tab. 4.1.III delle NTC18)

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

12.1.1 Verifiche a fessurazione

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.4 del DM 17.1.2018, tenendo inoltre conto delle ulteriori prescrizioni riportate nel "Manuale di progettazione delle opere civili" – par.2.6.2, relative alla progettazione di cavalcavia sulla sede ferroviaria.

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture:

Compai di	Condizioni	Combinazione	Armatura				
		di azioni	Sensibile	Poco sensibile			
esigenze	ашолентац	di azioni	Stato limite	Wd	Stato limite	Wd	
	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	≤ w ₃	
a Ordinarie	Ordinarie	quasi permanente	ap. fessure	$\leq \mathbf{w}_1$	ap. fessure	$\leq w_2$	
ь	Aggregation	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
b Aggressive		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
_	Malta agreenies	frequente	formazione fessure	-	ap. fessure	$\leq w_1$	
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Figura 6 Criteri di scelta dello stato limite di fessurazione - Tabella 4.1.IV del DM 17.1.2018

Nella Tabella sopra riportata, w₁=0.2mm, w₂=0.3mm; w₃=0.4mm.

Più restrittivi risultano i limiti di apertura delle fessure riportati nel "Manuale di progettazione delle opere civili". L'apertura convenzionale delle fessure, calcolata con la combinazione SLE frequente, deve risultare:

- a) δ_f ≤ w₁ per strutture in condizioni ambientali aggressive e molto aggressive, così come identificate nel par. 4.1.2.2.4.2 del DM 17.01.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- δ_f ≤ w₂ per strutture in condizioni ambientali ordinarie secondo il citato paragrafo del DM 17.01.2018.

Risulta:

• Stato limite di fessurazione: $w_d \le w_1 = 0.2 \text{ mm}$ - combinazione frequente.

12.1.2 Verifiche delle tensioni di esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti, di seguito riportati.

Le prescrizioni riportate di seguito fanno riferimento al par. 2.5.1.8.3.2.1 del "Manuale di progettazione delle opere civili".

La massima tensione di compressione del calcestruzzo oc, deve rispettare la limitazione seguente:

- $\sigma c < 0.55$ fck per combinazione caratteristica (rara)
- $\sigma c < 0.40$ fck per combinazione quasi permanente.

Per l'acciaio ordinario, la tensione massima σs per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

• $\sigma s < 0.75 \text{ fyk}$

dove fyk per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

12.2 VERIFICHE AGLI STATI LIMITE ULTIMI

12.2.1 Sollecitazioni flettenti

La verifica agli SLU è stata realizzata attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabola-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 ($\sigma_{max} = 0.85 \times 0.83 \times Rck/1.5$);
- legame costitutivo dell'armatura d'acciaio elastico-perfettamente plastico con deformazione limite di rottura a 0.01 ($\sigma_{max} = fyk / 1.15$).

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 VI 03 04 001
 A
 47 di 170

Relazione di calcolo Spalle

12.2.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con la seguente espressione:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \, \cdot b_w d$$

 $k = 1 + (200/d)^{1/2} \le 2$

 $v_{min} = 0.035k^{3/2} f_{ck}^{1/2}$

dove:

d è l'altezza utile della sezione (in mm);

 $\rho_1 = \text{Asl }/(bw \times d)$ è il rapporto geometrico di armatura longitudinale (≤ 0.02);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0,2~f_{cd}$);

b_w è la larghezza minima della sezione (in mm).

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le ctg\theta \le 2.5$$

La verifica di resistenza (SLU) è soddisfatta se è verificata la seguente relazione:

 $V_{Rd} \geq V_{Ed}$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

La resistenza di calcolo a "taglio trazione" dell'armatura trasversale è stata calcolata con la seguente relazione:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

La resistenza di calcolo a "taglio compressione" del calcestruzzo d'anima è stata calcolata con la seguente relazione:

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$$

La resistenza al taglio della trave è la minore delle due relazioni sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

In cui:

d è l'altezza utile della sezione;

RADDOPPIO LINEA	CODOGNO – CREMONA – MANTOVA
TRATTA PIADENA -	MANTOVA

CODIFICA

COMMISSION	LOTTO	OODII IOA	DOCOMENTO	ILV.	TOOLIO
NM25	03 D 26	CL	VI 03 04 001	Α	48 di 170

DOCUMENTO

b_w è la larghezza minima della sezione;

 σ_{cp} è la tensione media di compressione della sezione;

A_{sw} è l'area dell'armatura trasversale;

S è interasse tra due armature trasversali consecutive;

α è è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;

f'cd è la resistenza a compressione ridotta del calcestruzzo d'anima (f'cd=0.5fcd);

 α è un coefficiente maggiorativo par ad 1 per membrature non compresse.

12.3 VERIFICHE GEOTECNICHE

Conformemente con quanto prescritto nel par. 6.4.3.1 delle NTC18, le verifiche geotecniche devono essere effettuate con riferimento ai seguenti stati limite:

SLU di tipo geotecnico (GEO):

Relazione di calcolo Spalle

- collasso per carico limite della palificata nei riguardi dei carichi assiali;
- collasso per carico limite della palificata nei riguardi dei carichi trasversali;
- collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione.

Le verifiche a carico limite verticale dei pali vengono svolte secondo la metodologia degli stati limite ultimi, in accordo alla normativa vigente.

La verifica della capacità portante dei pali, per carichi verticali, è soddisfatta se:

$$F_{cd} < R_{cd}$$

essendo:

$$R_{cd} = R_k / \gamma_R$$

dove:

 F_{cd} = carico assiale di compressione di progetto;

 R_{cd} = capacità portante di progetto nei confronti dei carichi assiali;

 R_k = valore caratteristico della capacità portante limite del palo.

In particolare, in accordo con le NTC18 (cfr. §6.4.3.1.1), le verifiche di capacità portante dei pali agli stati limite ultimi (SLU) vengono condotte con riferimento all'Approccio 2 con la Combinazione 1 (A1 + M1 + R3), mediante il confronto dei massimi valori di sforzo normale sui pali, di compressione e di trazione, con le curve di capacità portante relative alla progressiva in esame. Il soddisfacimento della verifica consente la determinazione della lunghezza dei pali.

In aggiunta alle verifiche di portanza richieste dalle NTC18, è stata verificata la seguente relazione, in accordo con il par. 2.5.1.9.3 del 'Manuale di progettazione delle opere civili' - RFI DTC SI MA IFS 001 A:

$$R_{c,cal,LAT}/1,\!25>N_{ag}$$

dove $R_{c,cal,LAT}$ è la resistenza laterale di calcolo e N_{ag} è il carico agente sul palo determinato per la combinazione caratteristica (rara) impiegata per le verifiche agli stati limiti di esercizio (SLE).

Per quanto riguarda la verifica a carico limite orizzontale dei pali, questa è stata condotta tramite il metodo di Broms, 1964, secondo il quale, per pali lunghi (ipotesi che si configura per tutti i pali in esame), in terreni incoerenti sotto falda, non liberi di ruotare in testa, vale la seguente formulazione:

$$H = k_p \gamma d^3 \sqrt[3]{\left(3.676 \frac{M_y}{k_p \gamma d^4}\right)^2}$$

in cui:

H = carico limite orizzontale del palo

 K_p = coefficiente di spinta passiva

D = diametro del palo

L = lunghezza del palo

M_v = momenro di plasticizzazione del palo

Il valore di H, ridotto per i coefficienti di normativa come riportato di seguito, dovrà essere confrontato con il massimo valore agente in testa palo dalle combinazioni SLU-SLV (V_{pd}):

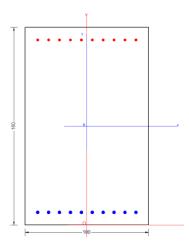
$$H \lim = \frac{H}{\xi \cdot \gamma_T} \ge Vpd$$

Con ξ funzione del numero di verticali indagate per l'opera in esame e γ_T secondo l'approccio considerato. In analogia con il carico limite verticale, per il carico limite orizzontale si considera l'Approccio 2, pertanto il coefficiente γ_T sarà pari a 1.3.

13. VERIFICHE

Le verifiche strutturali allo stato limite ultimo e allo stato limite di esercizio sono state svolte, seguendo i criteri esposti in precedenza, con il codice di calcolo RC-SEC, per le condizioni di carico più gravose.

In particolare nelle verifiche riportate di seguito lo sforzo normale è di compressione se positivo.


13.1 VERIFICA DEL MURO FRONTALE

Si adotta l'armatura di seguito descritta:

ARMATURA				
Armatura	Armatura	Armatura		
verticale	orizzontale	taglio		
Arm. tesa	Arm. tesa			
10Ø26	10Ø26	Ø14/20x40		
Arm. Compressa	Arm. Compressa	Ø1 1/20X 10		
10Ø20	10Ø20			

La sezione risulta verificata con l'armatura prevista.

13.1.1 Verifica dell'armatura verticale

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.810	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm²

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	51 di 170

Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C Tipo:

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa

Deform. ultima di progetto Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Classe Conglomerato:		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	160.0
3	50.0	160.0
4	50.0	0.0

DATI BARRE ISOLATE

Ν

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-39.7	10.3	26
2	-39.7	149.7	20
3	39.7	149.7	20
4	39.7	10.3	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Barra Ini. N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia

Mx con verso positivo se tale da comprimere il lembo sup. della sez.

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	52 di 170

Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	2990.00	0.00	0.00	0.00
2	400.00	3270.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 930.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 920.00 (1586.17) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 880.00 (1586.17) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 9.0 cm Interferro netto minimo barre longitudinali: 6.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 53 di 170

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	2990.00	0.00	0.00	2992.90	0.00	1.00	53.1(26.8)
2	S	400.00	3270.00	0.00	400.22	3271.72	0.00	1.00	53.1(28.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X Y O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.079	-50.0	160.0	0.00045	-39.7	149.7	-0.04088	-39.7	10.3
2	0.00350	0.088	-50.0	160.0	0.00076	-39.7	149.7	-0.03636	-39.7	10.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb b x/d C.Rid. С 0.000000000 0.000296484 -0.043937369 0.079 0.700 0.000000000 2 0.000266248 -0.039099620 0.088 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

As eff.

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 2.97 -50.0 160.0 -127.7 30.9 10.3 2564 53.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 54 di 170

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

e2 k2 Ø e1 Cf Comb. Ver e sm - e cm sr max wk Mx fess My fess S 1 -0.00070 0 0.500 26.0 90 0.00038 (0.00038) 519 0.199 (0.20) 1586.17 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

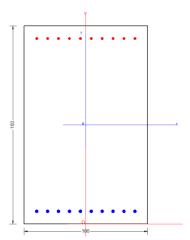
1 S 2.94 -50.0 160.0 -126.3 30.9 10.3 2600 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess 1 S -0.00069 0 0.500 26.0 90 0.00038 (0.00038) 522 0.198 (0.20) 1586.17 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.


1 S 2.81 50.0 160.0 -120.8 30.9 10.3 2578 53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr	max	wk	Mx fess	My fess
1	S	-0.00066	0	0.500	26.0	90	0.00036 (0.00036)	521	0.189 (0.20)	1586.17	0.00

13.1.2 Verifica dell'armatura orizzontale

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:		C32/40

Resis. compr. di progetto fcd: 18.810 MPa Def.unit. max resistenza ec2: 0.0020 0.0035 Def.unit. ultima ecu: Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm
Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa
Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

450.00 MPa

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00 MPa

391.30 MPa

0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 160.0

3	50.0	160.0
4	50.0	0.0

DATI BARRE ISOLATE

X [cm]	Y [cm]	DiamØ[mm]
-42.3	7.7	26
-42.3	152.3	20
42.3	152.3	20
42.3	7.7	26
	-42.3 -42.3 42.3	-42.3 7.7 -42.3 152.3 42.3 152.3

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

 N°Barre
 Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressi Momento flettente [kNm] intorno all'asse x princ. d'inerzia							
Му		con verso positivo se tale da comprimere il lembo sup. della se Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della							
Vy		Componente del	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y						
Vx		Componente del	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	Му	Vy	Vx				
1	0.00	3000.00	0.00	0.00	0.00				
2	400.00	3300.00	0.00	0.00	0.00				

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 1300.00
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

 Relazione di calcolo Spalle
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 VI 03 04 001
 A
 57 di 170

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 $N^{\circ}Comb.$ N Mx My

1 0.00 1320.00 (1605.52) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx M

1 0.00 1170.00 (1605.52) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 6.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	ver	N	IVIX	My	N Kes	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	3000.00	0.00	0.00	3057.82	0.00	1.02	53.1(27.3)
2	S	400.00	3300.00	0.00	399.77	3344.17	0.00	1.01	53.1(28.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif. X.Y.O sez.)

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	58 di 170

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.067	-50.0	160.0	0.00085	-42.3	152.3	-0.04900	-42.3	7.7
2	0.00350	0.075	-50.0	160.0	0.00116	-42.3	152.3	-0.04287	-42.3	7.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000344694	-0.051651056	0.067	0.700
2	0.000000000	0.000304450	-0.045212030	0.075	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ascissa, Ordinata [cm] della barra corrisp. a St min (sistema rif. X,Y,O)

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 3.99
 -50.0
 160.0
 -174.7
 -4.7
 7.7
 1900
 53.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. e2 k2 Ø Cf Ver e1 e sm - e cm sr max wk Mx fess My fess 1 S -0.00093 0 0.500 26.0 0.00052 (0.00052) 0.197 (0.20) 1605.52 0.00 64 376

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 4.05 -50.0 160.0 -177.3 -4.7 7.7 1900 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf wk Mx fess My fess e sm - e cm sr max 1 S -0.00095 0 0.500 26.0 0.00053 (0.00053) 376 0.200 (0.20) 1605.52 64 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 3.59 -50.0 160.0 -157.2 -42.3 7.7 1900 53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

e2 Comb. Ver e1 k2 Ø Cf e sm - e cm sr max wk Mx fess My fess 1 S -0.00084 0 0.500 26.0 0.00053 (0.00047) 376 0.198 (0.20) 1605.52 0.00 64

CODIFICA COMMESSA LOTTO DOCUMENTO REV. FOGLIO Relazione di calcolo Spalle NM25 03 D 26 60 di 170 CL VI 03 04 001 Α

13.1.3 Verifica a taglio

SEZIONE					
bw	=	100	cm		
h =	160	cm			
C =	10.3	cm			
d =	h-c	=	149.7	cm	
MATERIA	LI				
fywd	=	391.30	MPa		
Rck	=	40	MPa		
gc=	1.5				
fck	=	0.83xRck	=	33.2	MPa
fcd	=	0.85xfck/gc	=	18.81	MPa
ARMATUR	RE A	TAGLIO			
øst	=	14			
braccia	=	2.5			
øst2	=	0			
braccia	=	0			
passo	=	20	cm		
(Asw/s)	=	19.242	cm2 / m		
à = ´	90	°(!	90° staffe ve	erticali)	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot q

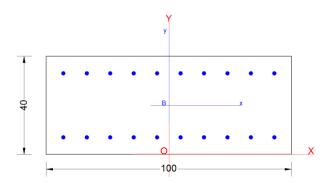
cot(q) = 3.3916.43

q= 16.43
IPOTESI: 1<= cot q <= 2.5 Rottura bilanciata VRsd=VRcd

VRsd = 3439.15(KN)

VRcd = 3439.15(KN)

VRd = 3439 min(VRsd, VRcd) (KN)


13.2 VERIFICA DEL MURO PARAGHIAIA

Si adotta l'armatura di seguito descritta:

	ARMATURA	
Armatura	Armatura	
verticale	verticale orizzontale	
Arm. tesa	Arm. tesa	
10Ø16	10Ø16	Ø12/2040
Arm. Compressa	Arm. Compressa	Ø12/20x40
10Ø16	10Ø16	

La sezione risulta verificata con l'armatura prevista.

13.2.1 Verifica dell'armatura verticale

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.810	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa

FOGLIO

62 di 170

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Classe Conglo	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.4	8.6	16
2	-41.4	31.4	16
3	41.4	31.4	16
4	41.4	8.6	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione N°Barra Fin.

N°Barre

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)						
Mx		Momento flettent	e [kNm] intorno all'a	asse x princ. d'inerzi	a		
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.					
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	Му	Vy	Vx		
1	0.00	240.00	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 90.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 90.00 (94.82) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 90.00 (94.82) 0.00 (0.00)

RISULTATI DEL CALCOLO

As Tesa

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx, Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

 $N^{\circ}Comb$ Ver N Mx My N Res Mx Res My Res Mis.Sic. As Tesa

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 64 di 170

1 S 0.00 240.00 0.00 0.00 240.42 0.00 1.00 40.2(5.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	
Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O s Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O	sez.)
Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O	
, ,	sez.)
	sez.)
es max Deform. unit. massima nell'acciaio (positiva se di compress.)	
Xs max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Ý,O Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O	

N°Comb	ec max	x/d	xc max	Yc max	es min	Xs min	YS MIN	es max	xs max	Ys max
1	0.00350	0.226	-50.0	40.0	-0.00074	41.4	31.4	-0.01197	-41.4	8.6

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000492538 -0.016201520 0.226 0.723

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 5.58 -50.0 40.0 -163.6 -32.2 8.6 999 20.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver.	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 65 di 170

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Ver e1 e2 k2 Cf Comb. e sm - e cm sr max Mx fess My fess S -0.00116 0.500 16.0 0.00049 (0.00049) 0 78 400 0.196 (0.20) 0.00 94.82

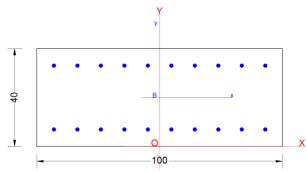
COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Sf min Xs min Ys min N°Comb Ver Sc max Xc max Yc max Ac eff. As eff. S 1 -163.6 -32.2 999 20.1 5.58 -50.0 40.0 8.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

k2 Cf Comb. Ver e1 e2 Ø e sm - e cm sr max Mx fess My fess S -0.00116 0 0.500 16.0 78 0.00049 (0.00049) 400 0.196 (0.20) 94.82 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)


N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 5.58 -50.0 40.0 -163.6 -32.2 8.6 999 20.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

e2 Cf Comb. Ver e1 k2 Ø e sm - e cm sr max Mx fess My fess S -0.00116 0 0.500 16.0 78 0.00049 (0.00049) 0.196 (0.20) 94.82 0.00

13.2.2 Verifica dell'armatura orizzontale

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40
Resis. compr. di progetto fcd: 18.810 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	66 di 170

Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Мра Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm B450C Tipo: Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 2000000 Modulo Elastico Ef daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	40.0
3	50.0	40.0
4	50.0	0.0

DATI BARRE ISOLATE

ACCIAIO -

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.0	7.0	16
2	-43.0	33.0	16
3	43.0	33.0	16
4	43.0	7.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazion

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	16
2	2	3	8	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) N Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia Му con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ d'inerzia x ٧x N°Comb. Ν Mx My Vy ٧x 0.00 240.00 0.00 0.00 1 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 110.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 110.00 (98.47) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 105.00 (98.47) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.2 cm Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** Relazione di calcolo Spalle NM25 03 D 26 CL VI 03 04 001 Α 68 di 170

S = combinazione verificata / N = combin. non verificata V/er

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Мх Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Μv Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν Mx My N Res Mx Res My Res Mis.Sic. As Tesa 1 S 0.00 240.00 0.00 0.00 246.40 0.00 1.03 20.1(5.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb Xc max Yc max Ys min Ys max ec max x/d es min Xs min es max Xs max 0.00350 0.190 -50.0 40.0 -0.00041 43.0 33.0 -0.01494 -43.0 7.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O qen. a. b. c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid. 0.00000000 1 0.000558782 -0.018851271 0.190 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 6.00 50.0 40.0 -189.3 -43.0 1000 20.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 69 di 170

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess 1 S -0.00124 0 0.500 16.0 62 0.00057 (0.00057) 346 0.197 (0.20) 98.47 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 6.00 50.0 40.0 -189.3 -43.0 7.0 1000 20.1 1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 Cf e sm - e cm sr max wk Mx fess My fess S -0.00124 0 0.500 16.0 0.00057 (0.00057) 0.00 1 62 346 0.197 (0.20) 98.47

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 40.0 20.1 5.73 -50.0 -180.7 -33.4 7 0 1000

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

31.4

cm

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess S -0.00119 0 0.500 62 0.00056 (0.00054) 0.00 1 16.0 346 0.193 (0.20) 98.47

13.2.3 Verifica a taglio

SEZIO	NE		
bw	=	100	cm
h	=	40	cm
С	=	8.6	cm
d	=	h-c	=

MATERIALI

fywd = 391.30 MPa

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 70 di 170

Rck = 40 MPa

gc = 1.5

fck = 0.83xRck = 33.2 MPa

fcd = 0.85xfck/gc = 18.81 MPa

ARMATURE A TAGLIO

øst = 12 braccia = 2.5 øst2 = 0

braccia = 0

 $passo = 20 cm \\ (Asw/s) = 14.137 cm²$

(Asw / s) = 14.137 cm2 / m a = 90 ° (90° staffe verticali)

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot q

cot(q) = 4.00

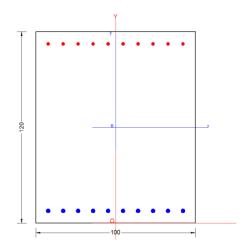
q= 14.03

IPOTESI: 1<= cot q <= 2.5 Rottura bilanciata VRsd=VRcd

VRsd = 625.41 (KN)

VRcd = 625.41 (KN)

VRd = 625 (KN) min(VRsd, VRcd)


13.3 VERIFICA DEI MURI ANDATORI

Si adotta l'armatura di seguito descritta:

ARMATURA						
Armatura	Armatura	Armatura				
verticale	orizzontale	taglio				
Arm. tesa	Arm. tesa					
10Ø26	10Ø26					
Arm.	Arm.	Ø14/20x40				
Compressa	Compressa					
10Ø20	10Ø20					

La sezione risulta verificata con l'armatura prevista.

13.3.1 Verifica dell'armatura verticale

B450C

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Tipo:

ACCIAIO -

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.810	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo opalie	NM25	03 D 26	CL	VI 03 04 001	Α	72 di 170

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 2000000

Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

.

Poligonale C32/40	Forma del Dominio: Classe Conglomerato:	
Y [cm]	X [cm]	N°vertice:
0.0	-50.0	1
120.0	-50.0	2
120.0	50.0	3
0.0	50.0	1

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-39.7	10.3	26
2	-39.7	109.7	20
3	39.7	109.7	20
4	39.7	10.3	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Darra Ini N°Darra Fin

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia Mx con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Му Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	2160.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 670.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 0.00 660.00 (923.51) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 0.00 660.00 (923.51) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 9.0 cm Interferro netto minimo barre longitudinali: 6.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 74 di 170

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν Mx My N Res My Res Mis.Sic. Mx Res As Tesa 1 S 0.00 2160.00 0.00 0.00 2161.98 0.00 1.00 53.1(19.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec max x/d Xc max Yc max es min Xs min Ys min es max Xs max Ys max 0.00350 0.108 -50.0 120.0 0.00045 -39.7 109.7 -0.02902 -39.7 10.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000296472 -0.032076590 0.108 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 3.51
 50.0
 120.0
 -127.4
 -30.9
 10.3
 2550
 53.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Cf e2 k2 Ø e sm - e cm sr max Comb. Ver e1 Mx fess My fess 1 S -0.00072 0 0.500 26.0 90 0.00038 (0.00038) 518 0.198 (0.20) 923.51 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

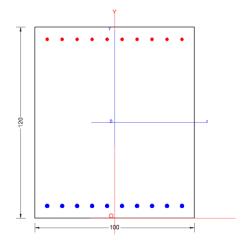
 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 3.46
 50.0
 120.0
 -125.5
 -30.9
 10.3
 2580
 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Cf Comb. Ver e2 k2 Ø e1 e sm - e cm sr max Mx fess My fess S -0.00071 0.500 26.0 90 0.00038 (0.00038) 521 0.196 (0.20) 923.51 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)


N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 3.46 50.0 120.0 -125.5 -30.9 10.3 2580 53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Cf Comb. Ver e1 e2 k2 Ø e sm - e cm sr max Mx fess My fess 1 S -0.00071 0.500 26.0 90 0.00038 (0.00038) 0.196 (0.20) 923.51 0.00 521

13.3.2 Verifica dell'armatura orizzontale

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	76 di 170

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40 Resis. compr. di progetto fcd: 18.810 MPa

Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo
Modulo Elastico Normale Ec: 33643.0 MPa
Resis. media a trazione fctm: 3.100 MPa
Coeff. Omogen. S.L.E.: 15.00

Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 199.20 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm
Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa
Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	120.0
3	50.0	120.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-42.3	7.7	26
2	-42.3	112.3	20
3	42.3	112.3	20
4	42.3	77	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	77 di 170

Ø	Diametro in mm delle barre della generazione			
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Momento fletten con verso positiv Momento fletteni con verso positiv Componente del	kN] applicato nel Ba te [kNm] intorno all'a ro se tale da comprir te [kNm] intorno all'a ro se tale da comprir Taglio [kN] parallela Taglio [kN] parallela	isse x princ. d'inerzia mere il lembo sup. d isse y princ. d'inerzia mere il lembo destro a all'asse princ.d'ine	a lella sez. a o della sez. rzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	2225.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 960.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 930.00 (942.15) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)			
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione			
Му		rno all'asse y princ. d'inerzia (comprimere il lembo destro d	(tra parentesi Mom.Fessurazione) ella sezione	
N°Comb.	N	Mx	Му	

 Relazione di calcolo Spalle
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 VI 03 04 001
 A
 78 di 170

1 0.00 850.00 (942.15) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 6.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν Mx N Res Mx Res My Res Mis.Sic. As Tesa S 0.00 2225.00 0.00 0.00 2226.84 0.00 1.00 53.1(20.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione x/d Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Xc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max es min Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec max x/d Xc max Yc max es min Xs min Ys min es max Xs max Ys max 0.00350 0.090 0.00085 -0.03521 1 -50.0 120.0 -42.3 112.3 -42.3 7.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000344688 -0.037862567 0.090 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 79 di 170

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
As eff.
As eff.
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 4.77 50.0 120.0 -177.1 -23.5 7.7 1900 53.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. e1 e2 k2 Ø Cf Ver Mx fess My fess e sm - e cm sr max wk S -0.00097 0 0.500 26.0 1 64 0.00053 (0.00053) 376 0.200 (0.20) 942.15 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 4.62 50.0 120.0 -171.6 -42.3 7.7 1931 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Cf Comb. Ver e1 e2 k2 Ø e sm - e cm sr max Mx fess My fess S -0.000940 0.500 26.0 64 0.00051 (0.00051) 378 0.195 (0.20) 942.15 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 4.22 50.0 120.0 -156.8 -32.9 7.7 1900 53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00086	0	0.500	26.0	64	0.00053 (0.00047)	376	0.197 (0.20)	942.15	0.00

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 80 di 170

13.3.3 Verifica a taglio

SEZIONE

c = 10.3 cmd = h-c = 109.7 cm

MATERIALI

fywd = 391.30 MPa

Rck = 40 MPa

gc = 1.5

fck = 0.83xRck = 33.2 MPa

fcd = 0.85xfck/gc = 18.81 MPa

ARMATURE A TAGLIO

øst = 14 braccia = 2.5 øst2 = 0 braccia = 0

passo = 20 cm

(Asw/s) = 19.242 cm2/m

a = 90 ° (90° staffe verticali)

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot q

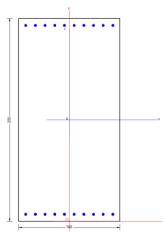
cot(q) = 3.39q = 16.43

IPOTESI 1 1<= cot q <= 2.5 Rottura bilanciata VRsd=VRcd

VRsd = 2520.20 (KN)

VRcd = 2520.20 (KN)

VRd = 2520 (KN) min(VRsd, VRcd)


13.4 VERIFICA DEL PLINTO DI FONDAZIONE

Si adotta l'armatura di seguito descritta:

ARMATURA				
Armatura longitudinale	Armatura trasversale	Armatura taglio		
Arm. tesa	Arm. tesa	tagno		
10Ø26	10Ø26			
Arm.	Arm.	Ø16/20x40		
Compressa	Compressa			
10Ø26	10Ø20			

La sezione risulta verificata con l'armatura prevista.

13.4.1 Verifica dell'armatura longitudinale

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C25/30 14.110 0.0020 0.0035 Parabola-Rettangolo	MPa
	Modulo Elastico Normale Ec:	31447.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	149.40	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa

Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

REV.

Α

FOGLIO

82 di 170

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C25/30	
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 200.0
3	50.0	200.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-43.1	6.9	26
2	-43.1	193.1	26
3	43.1	193.1	26
4	43.1	6.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione N°Barre Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Momento flettent con verso positiv Momento flettent con verso positiv Componente del	uric. (+ se di compre asse x princ. d'inerzi mere il lembo sup. d asse y princ. d'inerzi mere il lembo destro a all'asse princ.d'ine	inerzia sup. della sez. linerzia destro della sez. c.d'inerzia y		
N°Comb.	N	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x Mx My Vy				
1	0.00	3900.00	0.00	0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 1720.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 1690.00 (2060.09) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx M

1 0.00 1520.00 (2060.09) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.6 cm Interferro netto minimo barre longitudinali: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
relazione di calcolo opalic	NM25	03 D 26	CL	VI 03 04 001	Α	84 di 170

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	3900.00	0.00	0.00	3900.36	0.00	1.00	53.1(28.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00348	0.049	-50.0	200.0	0.00094	-43.1	193.1	-0.06750	-43.1	6.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000367563 -0.070036185 0.049 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata
Sc max Massima tensione (positiva se di compressione

Sc max

Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 3.40 50.0 200.0 -179.4 -43.1 6.9 1700 53.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

e sm - e cm

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= 0.5 per flessione; $=$ (e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 85 di 170

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

e2 k2 Ø Cf Comb. Ver e1 My fess e sm - e cm sr max wk Mx fess S -0.00094 0.500 26.0 56 0.00060 (0.00054) 332 0.200 (0.20) 0.00 2060.09

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

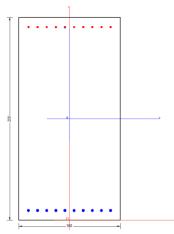
N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 3.34 50.0 200.0 -176.2 -43.1 6.9 1706 53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess S -0.00092 0.500 26.0 0.00059 (0.00053) 0.00 56 332 0.195 (0.20) 2060.09

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)


 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 3.00
 50.0
 200.0
 -158.5
 -33.5
 6.9
 1700
 53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fess My fess

13.4.2 Verifica dell'armatura trasversale

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30 Resis. compr. di progetto fcd: 14.110 MPa

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Nelazione di calcolo opalie	NM25	03 D 26	CL	VI 03 04 001	Α	86 di 170

Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 31447.0 MPa Resis. media a trazione fctm: 2.560 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 149.40 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Мра Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPa

Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito

Coeff. Aderenza istantaneo ß1*ß2: 1.00

Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do	Poligonale	
Classe Conglo	C25/30	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	200.0
3	50.0	200.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-40.5	9.5	26
2	-40.5	190.5	20
3	40.5	190.5	20
4	40.5	9.5	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26

2 2 3 8 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ. d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ. d'inerzia x

Comb. N Mx My Vy Vy Vx

N°Comb. N Mx My Vy Vx 1 0.00 3820.00 0.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 1310.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 0.00 1290.00 (1999.07) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 0.00 1240.00 (1999.07) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 88 di 170

Copriferro netto minimo barre longitudinali: 8.2 cm Interferro netto minimo barre longitudinali: 6.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb As Tesa Ver Ν Mx Му N Res My Res Mis.Sic. Mx Res S 1 0.00 3820.00 0.00 0.00 3821.21 0.00 1.00 53.1(28.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione ec max Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min es max Deform. unit. massima nell'acciaio (positiva se di compress.) Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb x/d Xc max Yc max Xs max Ys max ec max es min Xs min Ys min es max 0.00350 0.068 -50.0 200.0 0.00094 -40.5 190.5 -0.04778 -40.5 9.5 1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000269204 -0.050340718 0.068 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

As min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a St min (sistema rit. X, Y, O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 2.85 50.0 200.0 -139.9 -13.5 9.5 2371 53.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione v	riana accunta c	emnre fee	scurata a	nche nel caso	o in cui la trazione minima del calcestruzzo sia infe	riore a f	ctm	
Ver.	Esito della ve		ompro ioc	ourata a	mone ner oas	o in dana trazione minima dei daloccitazzo dia imo	noic a i	Ottili	
e1	Massima det	formazione uni	taria di tra	zione ne	el calcestruzzo	o (trazione -) valutata in sezione fessurata			
e2		Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata							
k1		= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]							
kt	= 0.4 per co	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]							
k2	= 0.5 per fles	= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]							
k3		= 3.400 Coeff. in eq.(7.11) come da annessi nazionali							
k4	= 0.425 Coe	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali							
Ø	Diametro [mi	m] equivalente	delle barı	e tese co	omprese nell'	area efficace Ac eff [eq.(7.11)EC2]			
Cf	Copriferro [m	nm] netto calco	lato con r	iferiment	o alla barra p	iù tesa			
e sm - e cm	Differenza tra	a le deformazio	oni medie	di acciai	o e calcestruz	zzo [(7.8)EC2 e (C4.1.7)NTC]			
	Tra parentes	si: valore minim	o = 0.6 S	max / Es	[(7.9)EC2 e	e (C4.1.8)NTC]			
sr max	Massima dis	tanza tra le fes	sure [mm	1	. ,	, , ,			
wk	Apertura fes	sure in mm cal	colata = s	r max*(e	sm - e_cm)	[(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parente	esi		
Mx fess.	Componente	e momento di p	rima fess	urazione	intorno all'as	se X [kNm]			
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]									
Comb. Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fe	

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00074	0	0.500	26.0	82	0.00042 (0.00042)	476	0.200 (0.20)	1999.07	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.81	50.0 200.0	-137.7	-22.5	9.5	2400	53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm si	r max	wk	Mx fess	My fess
1	S	-0.00073	0	0.500	26.0	82	0.00041 (0.00041)	479	0.198 (0.20)	1999.07	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.70	50.0 200.0	-132.4	-40.5	9.5	2360	53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fess My fess

13.4.3 Verifica a taglio e punzonamento

Si riportano di seguito le verifiche di resistenza a taglio e punzonamento per le situazioni più gravose per il plinto di fonazione.

Le verifiche nei confronti del punzonamento è svolta in accordo al paragrafo 4.1.2.3.5.4 delle NTC18, utilizzando le procedure riportate nell' UNI EN 1992-1-1, §6.4. Per il palo di bordo si è considerato un perimetro ridotto alla sola semicirconferenza ricadente all'interno della platea. Il calcolo è stato svolto con riferimento ad elementi privi di armatura specifica per il punzonamento.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SEZIONE					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b _w	=	100	cm		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h	=	200	cm		
MATERIALI f_{yvd} = 391.30 MPa R_{ck} = 30 MPa f_{cc} = 1.5 f_{ck} = 0.83xR _{ck} = 24.9 MPa f_{cd} = 0.85xf _{ck} / γ_c = 14.11 MPa ARMATURE A TAGLIO g_{st} = 16 0.00 <t< td=""><td>С</td><td>=</td><td>9.5</td><td>cm</td><td></td><td></td></t<>	С	=	9.5	cm		
R_{ck} = 30 MPa R_{ck} = 1.5 R_{ck} = 0.83x R_{ck} = 24.9 MPa R_{cd} = 0.85x r_{ck}/r_{c} = 14.11 MPa ARMATURE A TAGLIO R_{cd} = 16 Directia = 2.5 R_{st2} = 0 R_{cd} = 0.85x r_{ck}/r_{c} = 0 R_{cd} = 12.566 r_{cm}/r_{c}	d	=	h-c	=	190.5	cm
R_{ck} = 30 MPa Y_{c} = 1.5 Y_{ck} = 0.83x R_{ck} = 24.9 MPa Y_{cd} = 0.85x Y_{ck}/Y_{c} = 14.11 MPa Y_{cd} = 14.11 MPa Y_{cd} = 14.11 MPa Y_{cd} = 16 Y_{cd} = 0.85x Y_{ck}/Y_{c} = 17.11 MPa Y_{cd} = 16 Y_{cd} = 0 Y_{cd} = 12.566 Y_{cd} = 12.566 Y_{cd} = 12.566 Y_{cd} = 15.566 Y_{cd} = 15.	MATERIALI					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{y \text{ wd}}$	=	391.30	MPa		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R _{ck}	=	30	MPa		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	γς	=	1.5			
ARMATURE A TAGLIO \emptyset_{st} = 16 poraccia = 2.5 \emptyset_{st2} = 0 poraccia = 0 passo = 40 cm (A_{sw}/s) = 12.566 cm²/m	f _{ck}	=	0.83xR _{ck}	=	24.9	MPa
ARMATURE A TAGLIO \emptyset_{st} = 16 poraccia = 2.5 \emptyset_{st2} = 0 poraccia = 0 passo = 40 cm (A_{sw}/s) = 12.566 cm²/m	f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	14.11	MPa
\varnothing_{s12} = 0 oraccia = 0 oraccia = 0 oasso = 40 cm (A_{sw}/s) = 12.566 cm²/m	ARMATURE	A TAGLIC		1		
	Ø _{st}	=				
= 0 cm $=$ 0 cm $=$ $=$ 40 cm $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	braccia	=	2.5			
$(A_{sw}/s) = 40 cm (A_{sw}/s) = 12.566 cm2/m$	Ø _{st2}	=				
(A_{sw}/s) = 12.566 cm ² /m	braccia	=	_		•	
	passo	=	40			
α = 90 ° (90° staffe verticali)	(A_{sw}/s)	=	12.566			
	α	=	90	0	(90° staffe	verticali)

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 3.65$ $\theta = 15.31$ °

IPOTESI:	1<= 00	t $\theta \le 2.5$ Rottura bilanciata $V_{Rsd} = V_{Rcd}$
V _{Rsd} =	3080.07 <i>(KN)</i>	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$
V _{Rcd} =	3080.07 (KN)	$0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta)/(1 + ctg^{2}\theta)$
V _{Rd} =	3080 (KN)	$min(V_{Rsd}, VR_{cd})$

Poloziono di galcolo Spollo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	91 di 170

VERIFICA A PUNZONAMENTO PIASTRE EC2 -UNI EN 1992-1-1 - Caso palo d'angolo

DATI PALO

D	=	1500	mm		
Hp (piastra)	=	2000	mm		
cx (copriferro asse)	=	69	mm	Ī	
cy (copriferro asse)	=	95	mm		
dx	=	Hp-cx	=	1931	mm
dy	=	Нр-су	=	1905	mm
deff (altezza utilie media)	-	(dx+dy)/2	"	1918	mm
d1x (dist. asse colonna-bordo)	=	1500	mm		
d1y (dist. asse colonna-bordo)	=	1500	mm		
u1 (perimetro di verifica)	=	((2π((D/2)+2deff))/4)+d1x+d1y	=	10200.0	mm

TIPOLOGIA COLONNA

UBICAZIONE	
β	

	Α	•
=		1.5

MATERIALI

f _{ywd}	=	391.30	MPa	acciaio	
	_	<u> </u>		- -	
R _{ck}	=	30	MPa	cls	
γ _c	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	24.9	MPa
f _{cd}	=	0.85xf _{ck} /γ _c	=	14.11	MPa
f _{ctm}	=	0.3*(fck)^2/3	=	2.56	MPa
f _{ctk}	=	0.7*fctm	=	1.79	MPa
fetd	=	f _{ctl} /γ _c	=	1.19	MPa

ARMATURE LONGITUDINALI PER FLESSIONE PRESENTI NELLA PIASTRA

Ø _{lx}	=	26	mm
Numero arm x	=	10	1/m
A _{six}	=	5309.29	mm^2/m
leffy	=	13.01	m
A _{six}	=	69063.26	mm ²
\emptyset_{ly}	=	26	mm
Numero arm y	=	10	1/m
A _{sly}	=	5309.29	mm^2/m
leffx	=	13.01	mm
A _{sly}	=	69063.26	mm ²

diametro barre X
numero barre X a ml
area barre X a ml
larghezza efficace dir Y
acciaio X nella largh. efficace
diametro barre Y
numero barre Y a ml
area barre Ya ml
larghezza efficace dir X
acciaio Y nella largh. efficace

SOLLECITAZIONE DI CALCOLO

SFORZO NORMALE PALO	V _{Ed} =	4966	(KN)
TENSIONE TANGENZIALE DI CALCOLO			
tensione tangenziale	$v_{Ed} = \beta *Ved/(u1*d)$	0.38	MPa

ELEMENTI SENZA ARMATURA A TAGLIO

Crdc	=	0.12	$0,18/\gamma_{c}$
k	=	1.32	$1 + (200/d)^{1/2} \le 2$
vmin	=	0.266	
ρ_{lx}	=	0.0028	percentuale armatura tesa X
ρ_{ly}	=	0.0028	percentuale armatura tesaY
ρι	=	0.0028	percentuale media geometrica
$\sigma_{\!\scriptscriptstyle ext{CP}}$	=	0.0000	(MPa) tensione di compressione cls

TENSIONE TANGENZIALE LIMITE SENZA ARMATURA

	V _{Rd,c}	II	0.30	(MPa)	V _{min+0.15*σcp=}	0.27	(MPa)
	$v_{\rm Rd,c}$	=	0.30	(MPa)	resistenza a taglio cls non armato		cls non armato
Esito verifica		=	Verifica a punzonamento non soddisfatta. Armatura necessaria a taglio			saria a taglio	
Fattore di sicurezza	FS =	V _{Rd,c} /V _{Ed}	0.79				

ELEMENTI CON ARMATURA A TAGLIO

øst	=	16	mm	diametro spille
nbr	=	46		numero di spille su un perimetro
d	=	1918	mm	altezza utile media
α	=	90	٥	(spille verticali)
fywdeff	=	391.3	Мра	tensione limite acciaio
Asw	=	9177.5	mm ²	area di acciaio su un perimetro
sr	=	400	mm	passo radiale

	V _{Rd,CS}	=	1.55	(MPa)	resistenza a taglio cls con armatura
Esito verifica		=	Ok. Verifica soddisfatta		
Fattore di sicurezza	FS =	V _{Rd cs} /V _{Ed}	4.06		

13.5 VERIFICA DEI PALI DI FONDAZIONE

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida attraverso la relazione:

$$N = \frac{N}{n^{\circ}pali} + \frac{M_l}{I_l} \cdot x + \frac{M_t}{I_t} \cdot y$$

dove N, M_l , M_t , sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, n° pali è il numero di pali, J_l e J_t sono le inerzie longitudinale e trasversale della palificata:

$$J_l = \sum x_i^2 \qquad J_t = \sum y_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando:

$$T = \frac{\sqrt{H_l^2 + H_t^2}}{n^{\circ} pali}$$

dove H₁ e H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

I pali saranno armati con uno strato di 50Ø32+25Ø32 e con una spirale Ø14/10, necessari per soddisfare la verifica del carico limite orizzontale. Tale armatura costituisce la prima gabbia e si estende per 15 metri. La successiva gabbia sarà realizzata con un'armatura costituita da 25Ø26, fino a circa 25m dalla testa del palo, superiore al limite normativo del 1% dell'area di calcestruzzo per uno sviluppo di almeno 10 diametri. Infine le successive gabbie saranno costituite da 25Ø20, corrispondenti ad un'area complessiva dello 0.4% dell'area di calcestruzzo, pari al valore minimo previsto dalla normativa.

Si riassume di seguito l'armatura adottata.

ARMATURA						
Armatura 1	Armatura 2	Armatura 3	Armatura taglio			
50Ø32+25Ø32	25Ø26	25Ø20	Gabbia 1 Ø14/10 Gabbia 2 Ø14/20 Gabbia 3 Ø12/20			

La sezione risulta verificata con l'armatura prevista.

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 94 di 170

13.5.1 Verifiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

14.160 MPa Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': 7.080 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo 31475.0 Modulo Elastico Normale Ec: MPa Resis. media a trazione fctm: 2.560 MPa

Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 150.00 daN/cm²

Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm

Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa

Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPaDeform. ultima di progetto Epu:0.068

Modulo Elastico Ef 2000000 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 75.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	66.0	50	32
2	0.0	0.0	60.0	25	32

ARMATURE A TAGLIO

Relazione di calcolo Spalle

My

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA TRATTA PIADENA - MANTOVA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM25
 03 D 26
 CL
 VI 03 04 001
 A
 95 di 170

Diametro staffe: 14 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N			N] applicato nel Bar				
Mx		Momento flettente [kNm] intorno all'asse x pr con verso positivo se tale da comprimere il le					
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro de					
Vy			Taglio [kN] parallela				
Vx		Componente del	Taglio [kN] parallela	all'asse princ.d'ine	rzia x		
°Comb.	N	Mx	My	Vy	V		

N°Comb.	N	Mx	My	Vy	Vx
1	4551.00	3304.00	0.00	0.00	947.00
2	7242.00	3304.00	0.00	0.00	947.00
3	1068.00	5097.00	0.00	0.00	1505.00
4	6923.00	5097.00	0.00	0.00	1505.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3390.00	2380.00	0.00
2	5252.00	2380.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3427.00	2264.00 (2205.12)	0.00 (0.00)
2	5067.00	2264.00 (2876.97)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1	3576.00	1801.00 (2600.75)	0.00 (0.00)
2	4305.00	1801.00 (3073.82)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 2.8 cm Copriferro netto minimo staffe: 6.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	4551.00	3304.00	0.00	4550.85	9593.89	0.00	2.90 603.2(53.0)
2	S	7242.00	3304.00	0.00	7241.82	9736.16	0.00	2.95 603.2(53.0)
3	S	1068.00	5097.00	0.00	1067.75	8478.42	0.00	1.66 603.2(53.0)
4	S	6923.00	5097.00	0.00	6923.18	9781.38	0.00	1.92 603.2(53.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00188	0.0	75.0	0.00164	0.0	66.0	-0.00196	0.0	-66.0
2	0.00200	0.0	75.0	0.00176	0.0	66.0	-0.00179	0.0	-66.0
3	0.00154	0.0	75.0	0.00132	0.0	66.0	-0.00196	0.0	-66.0
4	0.00200	0.0	75.0	0.00176	0.0	66.0	-0.00182	0.0	-66.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
O D: 1	

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Trelazione di calcolo opalie	NM25	03 D 26	CL	VI 03 04 001	Α	97 di 170

 	-0.000159485	0.000027228	0.000000000	1
 	-0.000014735	0.000026863	0.000000000	2
 	-0.000318187	0.000024823	0.000000000	3
 	-0.000033521	0.000027114	0.000000000	4

VERIFICHE A TAGLIO

A.Eff

Diam. Staffe: 14 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
	_		2-21-1							-0.0(0.0)
1	S	0.00	3791.71	5506.19118	3.3 95.8	137.2	2.500	1.182	0.0	58.8(0.0)
2	S	0.00	3913.06	5395.74118	3.3 93.8	136.6	2.500	1.250	0.0	58.8(0.0)
3	S	0.00	3446.39	5659.31118	8.5 98.4	137.6	2.500	1.043	0.0	58.8(0.0)
4	S	0.00	3925.66	5410.02118	3.3 94.1	136.7	2.500	1.250	0.0	58.8(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.01	0.0	0.0	-57.9	0.0	-66.0	1557	96.5
2	S	6.40	0.0	0.0	-35.0	0.0	-66.0	966	64.3

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	98 di 170

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00034	0	0.500	32.0	74	0.00017 (0.00017)	339	0.059 (0.20)	2143.40	0.00
2	S	-0.00022	0	0.500	32.0	74	0.00011 (0.00011)	333	0.035 (0.20)	2839.52	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.76	0.0	0.0	-52.3	0.0	-66.0	1452	96.5
2	S	6.11	0.0	0.0	-32.6	0.0	-66.0	966	64.3

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max		wk	Mx fess	My fess
1	S	-0.00031	0	0.500	32.0	74	0.00016 (0.00016)	333	0.052 (0.20)	2205.12	0.00
2	S	-0.00020	0	0.500	32.0	74	0.00010 (0.00010)	333	0.033 (0.20)	2876.97	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.76	0.0	0.0	-30.9	0.0	-66.0	1105	96.5
2	S	4.93	0.0	0.0	-23.1	0.0	-66.0	832	56.3

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00019	0	0.500	32.0	74	0.00009 (0.00009)	314	0.029 (0.20)	2600.75	0.00
2	S	-0.00015	0	0.500	32.0	74	0.00007 (0.00007)	332	0.023 (0.20)	3073.82	0.00

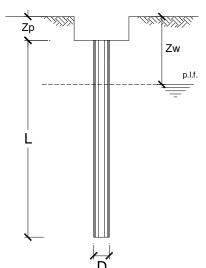
13.6 VERIFICHE GEOTECNICHE

13.6.1 Verifiche di capacità portante

Nelle seguenti tabelle si riporta la verifica di capacità portante dei pali della spalla in esame. Considerando un fattore di gruppo riduttivo della capacità portante η =0.80, si ottiene:

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: - OPERA:


DATI DI INPUT:

Diametro del Palo (D): Area del Palo (Ap): 1.767 (m²)1.50 (m) Quota testa Palo dal p.c. (z_p): 3.00 (m) Quota falda dal p.c. (z_w): 1.50 (m) 5390 1203.75 Carico Assiale Permanente (G): (kN) Carico Assiale variabile (Q): (kN)

Numero di strati $4\frac{\triangle}{2}$ Lpalo = 39.00 (m)

	coefficienti parz	iali	azi	ioni	resistenz	a laterale	e di base
	Metodo di calco	olo	permanenti	variabili	γь	γs	γs traz
	_		γg	γα			
A1+M1+R1			1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60
S	A1+M1+R3	0	1.35	1.50	1.35	1.15	1.25
	SISMA	0	1.00	1.00	1.35	1.15	1.25
DM88		0	1.00	1.00	1.00	1.00	1.00
definiti dal progettista		1.30	1.50	1.35	1.15	1.25	

n	1	2	3	4	5 (7	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PARAMETRI MEDI

Ctroto	Cnaaa		P	arametri	del terrer	10
Strato	Spess	Tipo di terreno	γ	C' med	φ' _{med}	C _{u med}
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)
1	3.50	WRa2	19.00			50.0
2	7.00	WRs2	19.00	0.0	33.0	
3	12.00	WRa2	19.00			60.0
4	16.50	Rs1	19.00	0.0	33.0	
5						
6						

C	coefficient	i di Calcol	0
k	μ	а	α
(-)	(-)	(-)	(-)
0.00	0.00		0.60
0.46	0.65		
0.00	0.00		0.60
0.46	0.65		

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

PARAMETRI MINIMI

Ctroto	Spess		P		del terrer	10
Strato	opess	Tipo di terreno	γ	C' _{min}	φ' _{min}	C _{u min}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	3.50	WRa2	19.00			60.0
2	7.00	WRs2	19.00	0.0	33.0	
3	12.00	WRa2	19.00			60.0
4	16.50	Rs1	19.00	0.0	33.0	
5						
6						

C	oefficient	i di Calcol	0
k	μ	а	α
(-)	(-)	(-)	(-)
0.00	0.00		0.60
0.46	0.65		
0.00	0.00		0.60
0.46	0.65		

RISULTATI

Strato	Spess				media			minima (solo SLU)				
Strato	opess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	3.50	WRa2	494.8					593.8				
2	7.00	WRs2	1024.2					1024.2				
3	12.00	WRa2	2035.8					2035.8				
4	16.50	Rs1	7329.1	12.42	0.00	4881.7	8626.7	7329.1	12.42	0.00	4881.7	8626.7
5												
6												

CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE MED	<u>IA</u>	CAPACITA' PORTANTE MINIMA			
$Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$	base	R _{b;cal med} =	8626.7 (kN)	base	R _{b;cal min} =	8626.7 (kN)	
Nd = 8812.6 (kN)	laterale	R _{s;cal med} =	10883.9 (kN)	laterale	R _{s;cal min} =	10982.8 (kN)	
	totale	R _{c;cal med} =	19510.5 (kN)	totale	R _{c;cal min} =	19609.5 (kN)	

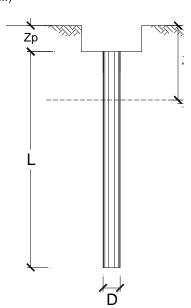
CAPACITA' PORTANTE CARATTERISTIC	<u>:A</u>	CAPACITA' PORTANTE DI PROGETTO		
$R_{b,k} = Min(R_{b,cal med}/\xi_3; R_{b,cal min}/\xi_4)$	= 5228.3 (kN)	$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$	Fs = Ro	c,dη / Nd
$R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4)$	= 6596.3 (kN)	$R_{c,d} = 9608.7 \text{ (kN)}$	Fs =	1.09
$R_{c,k} = R_{b,k} + R_{s,k}$	= 11824.6 (kN)			

Agli SLE si è verificato che il rapporto tra la resistenza laterale e il carico assiale in combinazione caratteristica risulti maggiore di 1.25, come prescritto dalla normativa ferroviaria

SPALLA		FONDAZION	SFORZI NEI PALI						
Onoro	Cm alla	lla Condizione terreno -	D _{pali}	N _{pali}	L _{pali}	Combinaziona	N	Ql	Ql/N _{min}
Opera	Spalla		[m]	[-]	[m]	Combinazione	[kN]	[kN]	[-]
VI03	A	Non Liquefacibile	1.5	9	39	SLE	5252	6596	1.26

DATI DI INPUT:

Diametro del Palo (D): 1.50 (m) Area del Palo (Ap): 1.767 (m²)


Quota testa Palo dal p.c. (z_p) : 3.00 (m) Quota falda dal p.c. (z_w) : 1.50 (m)

Carico Assiale Permanente (G): 5390 (kN) Carico Assiale variabile (Q): 1203.75 (kN)

Numero di strati 4 $\stackrel{+}{\Rightarrow}$ Lpalo = 39.00 (m)

	coefficienti parz	iali	azi	ioni	resistenz	resistenza laterale e di base			
	Metodo di calcolo		permanenti	variabili	γb	γs	γs traz		
			γ̈́G	γο			70 002		
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00		
⊃	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60		
SL	A1+M1+R3	0	1.35	1.50	1.35	1.15	1.25		
	SISMA	0	1.00	1.00	1.35	1.15	1.25		
DM88		0	1.00	1.00	1.00	1.00	1.00		
definiti dal progettista		1.30	1.50	1.35	1.15	1.25			

n	10	2	3	4	5 (7	≥10 O	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PARAMETRI MEDI

Strata	Spess		P	arametri	del terren	10
Strato	opess	Tipo di terreno	γ	C' med	φ' _{med}	C _{u med}
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)
1	3.50	WRa2	19.00		25.0	
2	7.00	WRs2	19.00		33.0	
3	12.00	WRa2	19.00		25.0	
4	16.50	Rs1	19.00		33.0	
5						
6						

C	oefficient	i di Calcol	0
k	μ	а	α
(-)	(-)	(-)	(-)
0.58	0.47		
0.46	0.65		
0.58	0.47		
0.46	0.65		

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del plinto)

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 102 di 170

PARAMETRI MINIMI

Ctroto	Cnasa		P		del terrer	10
Strato	Spess	Tipo di terreno	γ	c' _{min}	φ' _{min}	C _{u min}
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)
1	3.50	WRa2	19.00		25.0	
2	7.00	WRs2	19.00		33.0	
3	12.00	WRa2	19.00		25.0	
4	16.50	Rs1	19.00		33.0	
5						
6						

C	Coefficienti di Calcolo								
k	μ	а	α						
(-)	(-)	(-)	(-)						
0.58	0.47								
0.46	0.65								
0.58	0.47								
0.46	0.65								

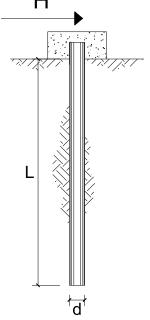
RISULTATI

Strato	Spess	2000		media				minima (solo SLU)				
Strato	opess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	3.50	WRa2	256.4					256.4				
2	7.00	WRs2	1024.2					1024.2				
3	12.00	WRa2	2900.4					2900.4				
4	16.50	Rs1	7329.1	12.42	0.00	4881.7	8626.7	7329.1	12.42	0.00	4881.7	8626.7
5												
6												

CARICO ASSIALE AGENTE	CAPACIT	CAPACITA' PORTANTE MEDIA CAPACITA' PORTANTE MEDIA			CAPACITA' PORTANTE MINIMA		
$Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$	base	R _{b;cal med} =	8626.7 (kN)	base	R _{b;cal min} =	8626.7 (kN)	
Nd = 8812.6 (kN)	laterale	R _{s;cal med} =	11510.1 (kN)	laterale	R _{s;cal min} =	11510.1 (kN)	
	totale	R _{c:cal med} =	20136.8 (kN)	totale	R _{c:cal min} =	20136.8 (kN)	

CAPACITA' PORTANTE CARATTERISTICA	<u>7</u>	CAPACITA' PORTANTE DI PROGETTO		
$R_{b,k} = Min(R_{b,cal med}/\xi_3; R_{b,cal min}/\xi_4)$	5228.3 (kN)	$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$	Fs = Ro	c,dη / Nd
$R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4)=$	6975.8 (kN)	$R_{c,d} = 9938.7 (kN)$	Fs =	1.13
$R_{c,k} = R_{b,k} + R_{s,k} =$	12204.1 (kN)			

13.6.2 Verifiche del carico limite orizzontale


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA: VI03

TEORIA DI BASE:

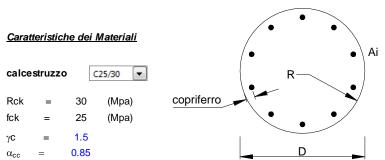
(Broms, 1964)

СО	efficienti parz	iali	Α		M	R
М	Metodo di calcolo			variabili	$\gamma_{\phi'}$	γт
				γο	- 1	
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti da	l progettista	0	1.30	1.50	1.25	1.00

n	٥-	2	3	4	50	7	≥10	T.A.	prog.
ξ	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.40
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.40

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO


NM25 03 D 26 CL VI 03 04 001 A 104 di 170

Calcolo del momento di plasticizzazione di una sezione circolare

Diametro = 1500 (mm)

Raggio = 750 (mm)

Sforzo Normale = 1033.26 (kN)

 $fcd = \alpha_{cc} fck / \gamma c =$ 14.17 (Mpa)

Acciaio

tipo di acciaio B450C 🔻

fyk = 450 (Mpa)

 $\gamma s = 1.15$

fyd = fyk / γ s = 391.3 (Mpa)

= 206000 (Mpa)

 $\varepsilon_{ys} = 0.190\%$ $\varepsilon_{tik} = 10.000\%$

Armature

numero			diametro (mn	n)	area (mm²)	copriferro (mm)
50		ф	32	•	40212	90
25	•	ф	32		20106	154
0	٥	ф	0	•	0	30

Calcolo

Momento di Plasticizzazione

My = 11607.7 (kN m)

Inserisci

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 105 di 170

DATI DI INPUT:

Lunghezza del palo L = 39.00 (m)

Diametro del palo d = 1.50 (m)

Momento di plasticizzazione della sezione My = 11607.69 (kN m)

Angolo di attrito del terreno ϕ'_{med} = 29.00 (°) ϕ'_{min} = 25.00 (°)

Angolo di attrito di calcolo del terreno $\phi'_{med,d}$ = 29.00 (°) $\phi'_{min,d}$ = 25.00 (°)

Coeff. di spinta passiva (kp = $(1+\sin\varphi')/(1-\sin\varphi')$) kp _{med} = 2.88 (-) kp _{min} = 2.46 (-)

Peso di unità di volume (con falda $\gamma = \gamma'$) $\gamma = 9.00$ (kN/m³)

Carico Assiale Permanente (G): G = 1881.25 (kN)

Carico Assiale variabile (Q): Q = (kN)

Palo corto:

H1 _{med}= 88768.17 (kN) H1 _{min}= 75889.13 (kN)

Palo intermedio:

 $H2_{med}$ = 29887.02 (kN) $H2_{min}$ = 25594.01 (kN)

Palo lungo:

 $H3_{med} = 4137.71$ (kN) $H3_{min} = 3927.06$ (kN)

 $H_{med} = 4137.71$ (kN) palo lungo $H_{min} = 3927.06$ (kN) palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 2507.70$ (kN)

 $H_d = H_k/\gamma_T = 1929.00$ (kN)

 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 1881.25$ (kN)

FS = Hd / Fd = 1.03

Relazione di calcolo Spalle

COMMESSA NM25

LOTTO

03 D 26

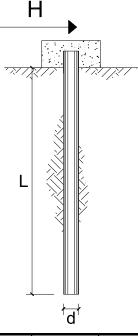
CODIFICA CL

DOCUMENTO VI 03 04 001

REV. Α

FOGLIO 106 di 170

CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI COESIVI


PALI CON ROTAZIONE IN TESTA IMPEDITA

TEORIA DI BASE:

(Broms, 1964)

coefficienti parziali			Α		М	R
Metodo di calcolo			permanenti	variabili	γcu	γт
motodo di carcolo			γg	γQ	/cu	71
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
SISMA		•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti dal progettista		0	1.30	1.50	1.40	1.00

n	٦0	2	% ()	40	50	70	200	T.A.	prog.
ξ	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
<u></u> <i>ξ</i> ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

Palo corto:
$$H = 9c_u d^2 \left(\frac{L}{d} - 1.5\right)$$

$$\begin{split} & \underline{\textit{Palo intermedio:}} & \qquad \qquad H = -9c_u d^2 \Biggl(\frac{L}{d} + 1.5 \Biggr) + 9c_u d^2 \sqrt{2 \biggl(\frac{L}{d} \biggr)^2 + \frac{4}{9} \frac{M_y}{c_u d^3} + 4.5} \\ & \qquad \qquad \underline{\textit{Palo lungo:}} & \qquad \qquad H = -13.5c_u d^2 + c_u d^2 \sqrt{182.25 + 36 \frac{M_y}{c_u d^3}} \end{split}$$

Palo lungo:
$$H = -13.5c_{u}d^{2} + c_{u}d^{2}\sqrt{182.25 + 36\frac{M_{y}}{c_{u}d^{3}}}$$

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 107 di 170

DATI DI INPUT:

Lunghezza del palo L = 39.00 (m)

Diametro del palo d = 1.50 (m)

Momento di plasticizzazione della sezione My = 11607.69 (kN m)

Coesione non drenata $c_{u med} = 50.00$ (kPa) $c_{u min} = 50.00$ (kPa)

Carico Assiale Permanente (G): G = 1881.25 (kN)

Carico Assiale variabile (Q): Q = (kN)

Palo corto:

H1 _{med}= 24806.25 (kN) H1 _{min}= 24806.25 (kN)

Palo intermedio:

 $H2_{med}$ = 9865.20 (kN) $H2_{min}$ = 9865.20 (kN)

Palo lungo:

 $H3_{med}$ 4281.88 (kN) $H3_{min}$ 4281.88 (kN)

 $H_{med} = 4281.88$ (kN) palo lungo $H_{min} = 4281.88$ (kN) palo lungo

 $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) = 2595.08$ (kN)

 $H_d = H_k/\gamma_T = 1996.22$ (kN)

 $F_d = G \cdot \gamma_G + Q \cdot \gamma_Q = 1881.25$ (kN)

FS = Hd / Fd = 1.06

13.7 VERIFICA DEI BAGGIOLI

Il dimensionamento e la verifica dell'armatura a tranciamento e di quella trasversale a fenditura dei baggioli, è stato eseguito in funzione delle massime azioni registrate sugli apparecchi di appoggio allo Stato Limite Ultimo (condizioni statiche) e allo Stato Limite di Salvaguardia della Vita (SLV) da spettro elastico (condizioni sismiche).

Si riporta di seguito una tabella riassuntiva delle geometrie dei baggioli della spalla analizzata:

APPARECCHIO D'APPOGGIO GEOMETRIA						
	a appoggio	d baggiolo	$\mathbf{h}_{\mathrm{bag}}$			
	[mm]	[mm]	[mm]			
APP. 1 a (UNIDIR. TRASV)	750	750	245			
APP. 2a (FISSO)	750	750	245			
APP. 1b (UNIDIR. TRASV)	750	750	245			
APP. 2b (FISSO)	750	750	245			

Tabella 18 Geometria baggioli

13.7.1 Verifica pressione nel calcestuzzo

Si riporta di seguito la verifica.

VERIFICA A PRESSIONE NEL CALCESTRUZZO								
Reazione verticale dell'appoggio	P	1597	kN					
Dimensione appoggio	a	0.75	m					
Dimensione baggiolo	d	0.75	m					
Area caricata	Acar	0.56	m²					
Tensione nel calcetruzzo	Scls	2.84	MPa	< 0	< 0.45f _{ck} =	$< 0.45f_{ck} = 14.9$	$< 0.45f_{ck} = 14.9 MPa$	$< 0.45f_{ck} = 14.9 MPa Ok.$

13.7.2 Armatura a tranciamento

L'armatura longitudinale si dimensiona a tranciamento.

Si riporta di seguito la verifica.

DIMENSIONAMENTO ARMATURA A TRANCIAMENTO (LONGITUDINALE)								
Massimo taglio agente	Т	458kN						
Tensione snervamento acciaio	f_d	391.30MPa						
Area minima	A	20.27cm ²						
Numero di bracci	n	22 -						
Diametro	ф	20mm						
Area resistente	A_{R}	69.08cm ²						
Fattore di sicrurezza	Fs	3.41 -						

13.7.3 Armatura trasversale

L'armatura trasversale si dimensiona in base alla forza di fenditura.

Il baggiolo di dimensione d su cui è poggiato l'apparecchio di appoggio di dimensione a soggetto ad una forza P avrà un andamento delle isostatiche di compressione di questo tipo:

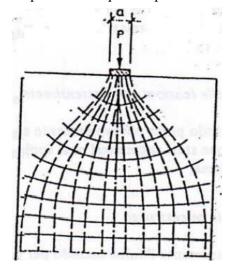
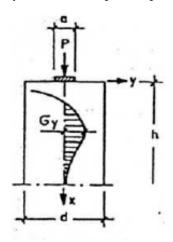



Figura 7 Andamento delle isostatiche di compressione

La curva delle tensioni di trazione trasversale σ_y risulta essere quella riportata nella Figura di seguito.

<u>Figura 8 Curva delle tensioni di trazione trasversale σ_y </u>

Con l'area delle tensioni di trazione si ottiene la forza di fenditura $T=\int \sigma_y dx$ con la quale si deve dimensionare l'armatura. Tale forza è pari a:

$$T = 0.25 \cdot P \cdot (1 - \frac{a}{d})$$

Di seguito si esibisce la verifica dell'armatura resistente alla massima forza di fenditura.

DIMENSIONAMENTO ARMATURA TRASVERSALE								
Massima forza di fenditura	F _{fend}	53	kN					
Tensione snervamento acciaio	f_d	391.30	MPa					
Area minima	A	1.36	cm ²					
Diametro	ф	20	mm					
Altezza utile di disposizione dell'armatura	h	16	cm					
Passo	S	10.0	cm					
Area resistente	A_R	12.56	cm ²					
Dimensione baggiolo	d	0.75	m					
Dimensione appoggio	a	0.65	m					
Rapporto d/a	d/a	1.15	-					
Altezza baggiolo	X	0.25	m					
Rapporto x/d	x/d	0.33	-					
Fattore di sicrurezza	Fs	9.23	-					

14. VALUTAZIONE DELLE INCIDENZE

Si riportano, di seguito, i risultati ottenuti dalla valutazione delle incidenze degli elementi che costituiscono la spalla.

		Arr	matura long	itudinal	е		Armatura tr	asversal	е		Spilli				Incidenza di	
Elemento	Spessore [m]	Lato	Diametro [mm]	N°	Peso [kg/m]	Lato	Diametro [mm]	N°	Peso [kg/m]	Diametro [mm]	No No	Peso [kg/m]	Sommano progetto [kg/m³]			
Fondazione	2.00	LATO A	26	10	41.68	LATO A	26	10	41.68	16 20x4	20v40	12.5	19.725	169.43	110	
Tondazione	2.00	LATO B	26	10	41.68	LATO B	20	10	24.66		10	10	16 20x40	12.5	10.720	100.40
Muro frontale	1.60	LATO A	26	10	41.68	LATO A	26	10	41.68	1.4	1.4	14 20x40	12.5	15.1	147.78	120
Mul o II ontale	1.60	LATO B	20	10	24.66	LATO B	20	10	24.66	14	20x40		12.5	10.1	147.70	.20
Mura paraghisis	0.40	LATO A	16	10	15.78	LATO A	16	10	15.78	12	20,40	12.5	11.1	74.22	405	
Muro paraghiaia	0.40	LATO B	16	10	15.78	LATO B	16	10	15.78	12	20x40	12.5	5 11.1	74.22	195	
		LATO A	26	10	41.68	LATO A	26	10	41.68							
Muri andatori	1.20	LATO B	20	10	24.66	LATO B	20	10	24.66	14	20x40	12.5	15.1	147.78	160	

			Armatura verticale			Armatura a taglio			Incidenza
Elemento	Diametro [m]	Gabbia	Diametro [mm]	N°	L [m]	Diametro [mm]	Passo [m]	Peso [kg]	di progetto [kg/m³]
		Gabbia 1	32	75	15	14	0.10		
Pali	1.5	Gabbia 2	26	25	10	14	0.20	9844.475	170
		Gabbia 3	20	25	14	12	0.20		

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 112 di 170

<i>15</i> .	TABUL	ATI

/_____

/ STRAUS7 MODEL EXCHANGE FILE

*I*_____

/ MODEL INFORMATION

FileFormat Straus7.2.3.3

ModelName "VI03 01"

Title ""

Project ""

Author ""

Reference ""

Comments ""

/ ______

/ UNITS

LengthUnit m

MassUnit kg

EnergyUnit J

PressureUnit kPa

ForceUnit kN

TemperatureUnit C

/_____

RADDOPPIO LINEA CODOGNO – CREMONA – MANTOVA

TRATTA PIADENA - MANTOVA

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 113 di 170

/ GROUP DEFINITIONS

Group 1 16711680 "\\Model"

Group 2 3407692 "PALI"

Group 3 3407846 "FONDAZIONE"

Group 4 16757299 "PARAMENTO"

Group 5 16724966 "PARAGHIAIA"

Group 6 6750003 "MURI ANDATORI"

/ FREEDOM CASE DEFINITIONS

FreedomCase 1 0 1 "Freedom Case 1"

/

/ LOAD CASE DEFINITIONS

LoadCase 14 1 "Peso proprio"

Gravity 3 -9.8100000000000E+0

LCInclude 3

LoadCase 19 0 "Permanenti strutturali imp."

LCInclude 3

LoadCase 2 0 "Spinta statica"

LCInclude 3

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 114 di 170

LoadCase 1 0 "Ricoprimento terreno-fond"

LCInclude 3

LoadCase 3 0 "Permanenti non strutturali Imp"

LCInclude 3

LoadCase 4 0 "Spinta Permanenti"

LCInclude 3

LoadCase 5 0 "Azioni Variabili Imp"

LCInclude 3

LoadCase 6 0 "Spinta variabili"

LCInclude 3

LoadCase 7 0 "Avviamento/Frenatura"

LCInclude 3

LoadCase 8 0 "Centrifuga"

LCInclude 3

LoadCase 9 0 "Serpeggio"

LCInclude 3

LoadCase 10 0 "Vento"

LCInclude 3

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 115 di 170

LoadCase 11 0 "Azioni parassite"

LCInclude 3

LoadCase 12 0 "Sisma Long"

LCInclude 3

LoadCase 13 0 "Sisma Trasv"

LCInclude 3

LoadCase 15 0 "Inerzia Long Terreno"

LCInclude 3

LoadCase 16 0 "Inerzia Trasv terreno"

LCInclude 3

LoadCase 17 2 "Inerzia Long strutture"

LCInclude 3

LoadCase 18 2 "Inerzia Trasv strutture"

Acceleration 0.0000000000000E+0 3.1784400000000E+0 0.000000000000E+0

LCInclude 3

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 116 di 170

LoadCaseCombination 20 "SLU01"

- 14 1.3500000000000E+0
- 19 1.3500000000000E+0
- 2 1.3500000000000E+0
- 1 1.3500000000000E+0
- 3 1.5000000000000E+0
- 4 1.5000000000000E+0
- 5 1.4500000000000E+0
- 6 1.4500000000000E+0
- 7 7.2500000000000E-1
- 8 1.4500000000000E+0
- 9 1.450000000000E+0
- 10 9.0000000000000E-1
- 11 1.2000000000000E+0

LoadCaseCombination 21 "SLU02"

- 14 1.3500000000000E+0
- 19 1.3500000000000E+0
- 2 1.3500000000000E+0
- 1 1.3500000000000E+0
- 3 1.5000000000000E+0
- 4 1.5000000000000E+0
- 5 1.4500000000000E+0
- 6 1.4500000000000E+0
- 7 1.4500000000000E+0
- 8 7.2500000000000E-1

Delegione di colcole Chelle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	117 di 170

9 7.2500000000000E-1

10 9.0000000000000E-1

11 1.2000000000000E+0

LoadCaseCombination 22 "SLV01 (EL + 0.3ET)"

14 1.0000000000000E+0

19 1.0000000000000E+0

- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0
- 5 2.0000000000000E-1
- 6 2.0000000000000E-1
- 7 2.0000000000000E-1
- 8 2.0000000000000E-1
- 9 2.0000000000000E-1
- 12 1.0000000000000E+0
- 13 3.0000000000000E-1
- 15 1.0000000000000E+0
- 16 3.0000000000000E-1
- 17 1.0000000000000E+0
- 18 3.0000000000000E-1

LoadCaseCombination 23 "SLV02 (EL - 0.3ET)"

14 1.0000000000000E+0

19 1.0000000000000E+0

2 1.0000000000000E+0

Deleviene di celecle Chelle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	118 di 170

- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0
- 5 2.0000000000000E-1
- 6 2.0000000000000E-1
- 7 2.0000000000000E-1
- 8 2.0000000000000E-1
- 9 2.0000000000000E-1
- 12 1.0000000000000E+0
- 13 -3.0000000000000E-1
- 15 1.0000000000000E+0
- 16 -3.0000000000000E-1
- 17 1.0000000000000E+0
- 18 -3.0000000000000E-1

LoadCaseCombination 24 "SLV03 (0.3 EL + ET)"

- 14 1.0000000000000E+0
- 19 1.000000000000E+0
- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0
- 5 2.0000000000000E-1
- 6 2.0000000000000E-1
- 7 2.0000000000000E-1
- 8 2.0000000000000E-1
- 9 2.0000000000000E-1

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	119 di 170

- 12 3.0000000000000E-1
- 13 1.0000000000000E+0
- 15 3.0000000000000E-1
- 16 1.000000000000E+0
- 17 3.0000000000000E-1
- 18 1.0000000000000E+0

LoadCaseCombination 25 "SLV04 (-0.3 EL + ET)"

- 14 1.0000000000000E+0
- 19 1.0000000000000E+0
- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0
- 5 2.0000000000000E-1
- 6 2.0000000000000E-1
- 7 2.0000000000000E-1
- 8 2.0000000000000E-1
- 9 2.0000000000000E-1
- 12 -3.0000000000000E-1
- 13 1.0000000000000E+0
- 15 -3.0000000000000E-1
- 16 1.0000000000000E+0
- 17 -3.0000000000000E-1
- 18 1.0000000000000E+0

LoadCaseCombination 26 "SLE RARA 01"

Relazione di calcolo Spalle	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo Spalle	NM25	03 D 26	CL	VI 03 04 001	Α	120 di 170

- 14 1.0000000000000E+0
- 19 1.000000000000E+0
- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0
- 5 1.0000000000000E+0
- 6 1.000000000000E+0
- 7 5.0000000000000E-1
- 8 1.0000000000000E+0
- 9 1.000000000000E+0
- 10 6.0000000000000E-1
- 11 1.000000000000E+0

LoadCaseCombination 27 "SLE RARA 02"

- 14 1.0000000000000E+0
- 19 1.0000000000000E+0
- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- $4 \qquad 1.00000000000000E+0$
- 5 1.0000000000000E+0
- 6 1.000000000000E+0
- 7 1.0000000000000E+0
- 8 5.0000000000000E-1
- 9 5.0000000000000E-1
- 10 6.0000000000000E-1

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 121 di 170

11 1.000000000000E+0

LoadCaseCombination 28 "SLE FREQ 01"

- 14 1.0000000000000E+0
- 19 1.0000000000000E+0
- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0
- 5 8.0000000000000E-1
- 6 8.0000000000000E-1
- 7 4.0000000000000E-1
- 8 8.0000000000000E-1
- 9 8.0000000000000E-1
- 11 1.0000000000000E+0

LoadCaseCombination 29 "SLE FREQ 02"

- 14 1.0000000000000E+0
- 19 1.0000000000000E+0
- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0
- 5 8.0000000000000E-1
- 6 8.0000000000000E-1
- 7 8.0000000000000E-1
- 8 4.0000000000000E-1

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 122 di 170

- 9 8.0000000000000E-1
- 11 1.000000000000E+0

LoadCaseCombination 30 "SLE PERM"

- 14 1.0000000000000E+0
- 19 1.0000000000000E+0
- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0

LoadCaseCombination 31 "PERMANENTI"

- 14 1.0000000000000E+0
- 19 1.0000000000000E+0
- 2 1.0000000000000E+0
- 1 1.000000000000E+0
- 3 1.0000000000000E+0
- 4 1.0000000000000E+0
- 11 1.0000000000000E+0

LoadCaseCombination 32 "ACC"

- 5 1.0000000000000E+0
- 6 1.000000000000E+0
- 7 1.0000000000000E+0
- 8 1.0000000000000E+0
- 9 1.000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 123 di 170

*1*______

/ RESULT CASE ENVELOPES

LoadCaseEnvelope "ENV_SLU" Abs

ON 20

ON 21

LoadCaseEnvelope "ENV_SLV" Abs

ON 22

ON 23

ON 24

ON 25

LoadCaseEnvelope "ENV_SLERARA" Abs

ON 26

ON 27

LoadCaseEnvelope "ENV_SLEF" Abs

ON 28

ON 29

LoadCaseEnvelope "SLEQP" Abs

ON 30

/_____

/ COORDINATE SYSTEM DEFINITIONS

CoordSys 1 "Global XYZ" Global XYZ

/_____

/ NODE COORDINATES

Node	1	1.12500000002328E+1	1.57499999946430E+0	0.0000000000000E+0
Node	2	1.16253168354192E+1	1.57499999928967E+0	0.0000000000000E+0
Node	3	1.20006336451042E+1	1.57499999899863E+0	0.0000000000000E+0
Node	4	1.20006336451042E+1	1.04999999924698E+0	0.0000000000000E+0
Node	5	1.20006336451042E+1	5.24999999495331E-1	0.0000000000000E+0
Node	6	1.20006336451042E+1	-2.56316301516790E-10	0.0000000000000E+0
Node	7	1.15288075235439E+1	-2.56316301516790E-10	0.0000000000000E+0
Node	8	1.10569814019836E+1	-2.56316301516790E-10	0.0000000000000E+0
Node	9	1.05851552804233E+1	-2.56316301516790E-10	0.0000000000000E+0
Node	10	1.01133291588630E+1	-2.56316301516790E-10	0.0000000000000E+0
Node	11	9.64150303730275E+0	-2.56316301516790E-10	0.0000000000000E+0
Node	12	9.16967691574245E+0	-2.56316301516790E-10	0.0000000000000E+0
Node	13	8.69785079418215E+0	-2.56316301516790E-10	0.0000000000000E+0
Node	14	8.69785079418215E+0	5.24999999409892E-1	0.0000000000000E+0
Node	15	8.69785079418215E+0	1.04999999920426E+0	0.0000000000000E+0
Node	16	8.69785079418215E+0	1.57499999899863E+0	0.0000000000000E+0
Node	17	9.22392539720749E+0	1.57499999917325E+0	0.0000000000000E+0
Node	18	9.75000000023282E+0	1.57499999946430E+0	0.0000000000000E+0
Node	19	9.97032112644371E+0	1.04401950014110E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 125 di 170

Node	20	1.05000000002328E+1	8.24999999464291E-1	0.0000000000000E+0
Node	21	1.10296788740219E+1	1.04401950014110E+0	0.0000000000000E+0
Node	22	1.10433301380027E+1	5.22009749942394E-1	0.0000000000000E+0
Node	23	1.05958162169516E+1	4.42152666098993E-1	0.0000000000000E+0
Node	24	1.15324114640031E+1	5.18371808486669E-1	0.0000000000000E+0
Node	25	1.15468647670196E+1	1.04703739843516E+0	0.0000000000000E+0
Node	26	1.02447696668055E+1	4.42160828915491E-1	0.0000000000000E+0
Node	27	9.80591208187323E+0	5.22009749942394E-1	0.0000000000000E+0
Node	28	9.22892130820211E+0	5.17650654234594E-1	0.0000000000000E+0
Node	29	9.28024615708751E+0	1.04666374078483E+0	0.0000000000000E+0
Node	30	2.25000000023283E+0	1.57499999946430E+0	0.0000000000000E+0
Node	31	2.75000000032014E+0	1.57499999947116E+0	0.0000000000000E+0
Node	32	3.25000000031044E+0	1.57499999946852E+0	0.0000000000000E+0
Node	33	3.75000000030074E+0	1.57499999946588E+0	0.0000000000000E+0
Node	34	4.25000000029103E+0	1.57499999946324E+0	0.0000000000000E+0
Node	35	4.75000000028133E+0	1.57499999946060E+0	0.0000000000000E+0
Node	36	5.25000000023282E+0	1.57499999946430E+0	0.0000000000000E+0
Node	37	5.47032112644371E+0	1.04401950014110E+0	0.0000000000000E+0
Node	38	6.00000000023282E+0	8.24999999464291E-1	0.0000000000000E+0
Node	39	6.52967887402193E+0	1.04401949990861E+0	0.0000000000000E+0
Node	40	6.75000000023282E+0	1.57499999899863E+0	0.0000000000000E+0
Node	41	7.23696269872016E+0	1.57499999903743E+0	0.0000000000000E+0
Node	42	7.72392539720749E+0	1.57499999901415E+0	0.0000000000000E+0
Node	43	8.21088809569482E+0	1.57499999899086E+0	0.0000000000000E+0
Node	44	8.18620599554216E+0	-1.72621182654165E-10	0.0000000000000E+0
Node	45	7.67456119690218E+0	-1.67390237725251E-10	0.0000000000000E+0
Node	46	7.16291639826219E+0	-1.62159292796337E-10	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 126 di 170

Node	47	6.65127159962220E+0	-1.56928347867423E-10	0.000000000000E+0
Node	48	6.13962680098221E+0	-1.51697402938508E-10	0.000000000000E+0
Node	49	5.62798200234222E+0	-1.46466458009594E-10	0.000000000000E+0
Node	50	5.11633720370223E+0	-1.41235513080680E-10	0.000000000000E+0
Node	51	4.60469240506225E+0	-1.36004568151766E-10	0.000000000000E+0
Node	52	4.09304760642226E+0	-1.30773623222852E-10	0.000000000000E+0
Node	53	3.58140280778227E+0	-1.25542678293938E-10	0.000000000000E+0
Node	54	3.06975800914228E+0	-1.20311733365024E-10	0.000000000000E+0
Node	55	2.55811321050229E+0	-1.15080788436109E-10	0.000000000000E+0
Node	56	2.04646841186231E+0	-1.09849843507195E-10	0.000000000000E+0
Node	57	1.53482361322232E+0	-1.04618898578281E-10	0.000000000000E+0
Node	58	1.02317881458233E+0	-9.93879536493676E-11	0.000000000000E+0
Node	59	5.11534015942342E-1	-9.41570087204535E-11	0.0000000000000E+0
Node	60	-1.10782697646527E-4	0.0000000000000E+0	0.0000000000000E+0
Node	61	-1.10782697646527E-4	5.24999999666208E-1	0.0000000000000E+0
Node	62	-1.10782697646527E-4	1.04999999933242E+0	0.0000000000000E+0
Node	63	-1.10782697646527E-4	1.57499999899863E+0	0.0000000000000E+0
Node	64	3.74944608728782E-1	1.57499999911188E+0	0.0000000000000E+0
Node	65	7.50000000232820E-1	1.57499999946430E+0	0.000000000000E+0
Node	66	9.70321126443714E-1	1.04401950014110E+0	0.0000000000000E+0
Node	67	1.50000000023282E+0	8.24999999464291E-1	0.000000000000E+0
Node	68	2.02967887402193E+0	1.04401950014110E+0	0.0000000000000E+0
Node	69	6.06981340060752E+0	4.12499999732146E-1	0.000000000000E+0
Node	70	5.54915156439297E+0	5.22009750070552E-1	0.000000000000E+0
Node	71	5.02280684519576E+0	5.22831791582388E-1	0.0000000000000E+0
Node	72	4.51625229805315E+0	5.30750471972238E-1	0.0000000000000E+0
Node	73	4.03208560941347E+0	5.45849803911111E-1	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 127 di 170

Node	74	1.51741180672757E+0	4.12499999732146E-1	0.0000000000000E+0
Node	75	9.96749970513021E-1	5.22009750070552E-1	0.0000000000000E+0
Node	76	4.92681076010168E-1	5.20791307670694E-1	0.0000000000000E+0
Node	77	4.59422807754267E-1	1.04743762505773E+0	0.0000000000000E+0
Node	78	2.49087035880097E+0	7.86853325879644E-1	0.0000000000000E+0
Node	79	2.02017285642823E+0	5.77280471731345E-1	0.0000000000000E+0
Node	80	3.57489642802096E+0	5.89940431130569E-1	0.0000000000000E+0
Node	81	3.94435797050038E+0	1.06279622826566E+0	0.0000000000000E+0
Node	82	4.40563583028669E+0	1.05438984806888E+0	0.0000000000000E+0
Node	83	4.91211555170097E+0	1.04904247654675E+0	0.0000000000000E+0
Node	84	3.15987900468756E+0	7.87499999499313E-1	0.0000000000000E+0
Node	85	3.61193774931004E+0	1.07513231763618E+0	0.0000000000000E+0
Node	86	7.05739498362635E+0	7.97899507923346E-1	0.0000000000000E+0
Node	87	6.57593583986727E+0	5.80340664703631E-1	0.0000000000000E+0
Node	88	8.22348420477341E+0	5.78398653194877E-1	0.0000000000000E+0
Node	89	8.22839892210910E+0	9.98457237510809E-1	0.0000000000000E+0
Node	90	7.78148110726021E+0	7.90137375773370E-1	0.0000000000000E+0
Node	91	1.12499999893903E+1	1.04248724690340E+1	0.0000000000000E+0
Node	92	1.16253169116729E+1	1.04248724690340E+1	0.0000000000000E+0
Node	93	1.20006336961069E+1	1.04248724690340E+1	0.0000000000000E+0
Node	94	1.20006336774713E+1	9.93321288736539E+0	0.0000000000000E+0
Node	95	1.20006336764905E+1	9.44155330569676E+0	0.0000000000000E+0
Node	96	1.20006336755097E+1	8.94989372402812E+0	0.0000000000000E+0
Node	97	1.20006336745288E+1	8.45823414235949E+0	0.0000000000000E+0
Node	98	1.20006336735480E+1	7.96657456069086E+0	0.0000000000000E+0
Node	99	1.20006336725672E+1	7.47491497902222E+0	0.0000000000000E+0
Node	100	1.20006336715864E+1	6.98325539735359E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 128 di 170

Node	101	1.20006336706055E+1	6.49159581568496E+0	0.0000000000000E+0
Node	102	1.20006336696247E+1	5.99993623401632E+0	0.0000000000000E+0
Node	103	1.20006336686439E+1	5.50827665234769E+0	0.0000000000000E+0
Node	104	1.20006336676631E+1	5.01661707067906E+0	0.0000000000000E+0
Node	105	1.20006336666823E+1	4.52495748901042E+0	0.0000000000000E+0
Node	106	1.20006336657014E+1	4.03329790734179E+0	0.0000000000000E+0
Node	107	1.20006336647206E+1	3.54163832567316E+0	0.0000000000000E+0
Node	108	1.20006336637398E+1	3.04997874400453E+0	0.0000000000000E+0
Node	109	1.20006336627590E+1	2.55831916233589E+0	0.0000000000000E+0
Node	110	1.20006336617782E+1	2.06665958066726E+0	0.0000000000000E+0
Node	111	1.10296788740219E+1	2.10598049878748E+0	0.0000000000000E+0
Node	112	1.05000000002328E+1	2.32499999946429E+0	0.0000000000000E+0
Node	113	9.97032112644371E+0	2.10598049878748E+0	0.0000000000000E+0
Node	114	8.69785079418215E+0	2.06665958066726E+0	0.0000000000000E+0
Node	115	8.69785079418215E+0	2.55831916233589E+0	0.0000000000000E+0
Node	116	8.69785079418215E+0	3.04997874400452E+0	0.0000000000000E+0
Node	117	8.69785079418215E+0	3.54163832567316E+0	0.0000000000000E+0
Node	118	8.69785079418215E+0	4.03329790734179E+0	0.0000000000000E+0
Node	119	8.69785079418215E+0	4.52495748901042E+0	0.0000000000000E+0
Node	120	8.69785079418215E+0	5.01661707067906E+0	0.0000000000000E+0
Node	121	8.69785079418215E+0	5.50827665234769E+0	0.0000000000000E+0
Node	122	8.69785079418215E+0	5.99993623401632E+0	0.0000000000000E+0
Node	123	8.69785079418215E+0	6.49159581568496E+0	0.0000000000000E+0
Node	124	8.69785079418215E+0	6.98325539735359E+0	0.0000000000000E+0
Node	125	8.69785079418215E+0	7.47491497902222E+0	0.0000000000000E+0
Node	126	8.69785079418215E+0	7.96657456069086E+0	0.0000000000000E+0
Node	127	8.69785079418215E+0	8.45823414235949E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 129 di 170

Node	128	8.69785079418215E+0	8.94989372402812E+0	0.0000000000000E+0
Node	129	8.69785079418215E+0	9.44155330569676E+0	0.0000000000000E+0
Node	130	8.69785079418215E+0	9.93321288736539E+0	0.0000000000000E+0
Node	131	8.69785079418215E+0	1.04248724690340E+1	0.0000000000000E+0
Node	132	9.22392539991843E+0	1.04248724690340E+1	0.0000000000000E+0
Node	133	9.75000001107527E+0	1.04248724690340E+1	0.0000000000000E+0
Node	134	9.97034366536563E+0	9.89398043734731E+0	0.0000000000000E+0
Node	135	1.05000000002328E+1	9.67499999816044E+0	0.0000000000000E+0
Node	136	1.10296563338028E+1	9.89396518016131E+0	0.0000000000000E+0
Node	137	1.05006336453370E+1	5.24999999927840E+0	1.28068222693400E-13
Node	138	1.10303125191261E+1	5.46901949995521E+0	6.41193764749914E-14
Node	139	1.12506336453370E+1	5.99999999927840E+0	1.28068222693400E-13
Node	140	1.10316141446602E+1	6.52967887306751E+0	6.42045152963753E-14
Node	141	1.05006336453370E+1	6.74999999927840E+0	1.28238752949983E-13
Node	142	9.97095477154796E+0	6.53098049860159E+0	6.42047679101900E-14
Node	143	9.75063364533707E+0	5.99999999927840E+0	1.28068222693400E-13
Node	144	9.96965314601388E+0	5.47032112548929E+0	6.41193764749914E-14
Node	145	9.07160266089633E+0	5.99985341619064E+0	0.0000000000000E+0
Node	146	9.51455684731963E+0	5.06383531184179E+0	0.0000000000000E+0
Node	147	1.05985493932419E+1	4.47934653379491E+0	0.0000000000000E+0
Node	148	1.14165411258039E+1	6.90569409048082E+0	0.0000000000000E+0
Node	149	1.05793341554454E+1	7.50608833194177E+0	0.0000000000000E+0
Node	150	9.22424221975961E+0	6.24579790748168E+0	0.0000000000000E+0
Node	151	1.01263735981067E+1	4.77683343408956E+0	0.0000000000000E+0
Node	152	1.09152919319355E+1	4.83871023841921E+0	0.0000000000000E+0
Node	153	1.16256336707220E+1	6.24579790748168E+0	0.0000000000000E+0
Node	154	1.09058276880879E+1	7.15312148487964E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 130 di 170

Node	155	1.01184502059428E+1	7.21547312305750E+0	0.0000000000000E+0
Node	156	9.29304492347253E+0	2.08080298552783E+0	0.0000000000000E+0
Node	157	9.28008237605675E+0	2.57557186365795E+0	0.0000000000000E+0
Node	158	9.25916339837074E+0	3.05697874546424E+0	0.0000000000000E+0
Node	159	9.24702269267589E+0	3.52741936520034E+0	0.0000000000000E+0
Node	160	9.26168927114576E+0	3.98945931147737E+0	0.0000000000000E+0
Node	161	9.34127655398256E+0	4.47382658375603E+0	0.0000000000000E+0
Node	162	9.22424221975961E+0	5.75413832581305E+0	0.0000000000000E+0
Node	163	9.51438117945779E+0	6.93579299467169E+0	0.0000000000000E+0
Node	164	9.33673354412507E+0	7.52089527480184E+0	0.0000000000000E+0
Node	165	9.25534311112676E+0	8.00231162032887E+0	0.0000000000000E+0
Node	166	9.24163729119104E+0	8.46066229214561E+0	0.0000000000000E+0
Node	167	9.29534754781535E+0	9.91544720811247E+0	0.0000000000000E+0
Node	168	9.90563634226084E+0	9.35583369704840E+0	0.0000000000000E+0
Node	169	1.05509943500153E+1	9.22782259648894E+0	0.0000000000000E+0
Node	170	1.14846142970998E+1	9.93268477178191E+0	0.0000000000000E+0
Node	171	1.12828728505460E+1	9.47867919260342E+0	0.0000000000000E+0
Node	172	9.28924779298242E+0	9.40972893792566E+0	0.0000000000000E+0
Node	173	9.25965136235095E+0	8.92756082120490E+0	0.0000000000000E+0
Node	174	9.81193702457747E+0	8.89180871565420E+0	0.0000000000000E+0
Node	175	1.03301700916023E+1	8.83136661960248E+0	0.0000000000000E+0
Node	176	1.13511332919609E+1	8.89961895900952E+0	0.0000000000000E+0
Node	177	1.15353249281617E+1	2.08493726040140E+0	0.0000000000000E+0
Node	178	1.07375827753715E+1	8.79949572512255E+0	0.0000000000000E+0
Node	179	1.09541651258232E+1	2.62570369136628E+0	0.0000000000000E+0
Node	180	1.04171630287577E+1	2.66626476618463E+0	0.0000000000000E+0
Node	181	9.87017563973409E+0	2.60595436489270E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 131 di 170

Node	182	1.13849439484324E+1	8.37155143913119E+0	0.0000000000000E+0
Node	183	1.14644995711889E+1	7.88408116715935E+0	0.0000000000000E+0
Node	184	1.15017659678948E+1	7.42866172607904E+0	0.0000000000000E+0
Node	185	1.16256336707220E+1	5.75413832581305E+0	0.0000000000000E+0
Node	186	1.14183883824595E+1	5.09066946556764E+0	0.0000000000000E+0
Node	187	1.15126162963443E+1	4.56428967911316E+0	0.0000000000000E+0
Node	188	1.14871911769675E+1	4.10553704409010E+0	0.0000000000000E+0
Node	189	1.14312049857248E+1	3.61644823940765E+0	0.0000000000000E+0
Node	190	1.17339775497580E+1	5.99948606436185E+0	0.0000000000000E+0
Node	191	1.14856702688469E+1	2.59210896315222E+0	0.0000000000000E+0
Node	192	1.14510096543038E+1	3.09907130193116E+0	0.0000000000000E+0
Node	193	1.08841483316664E+1	3.13846053734080E+0	0.0000000000000E+0
Node	194	1.03430484559997E+1	3.10803645403332E+0	0.0000000000000E+0
Node	195	9.81131873669814E+0	3.07401622334955E+0	0.0000000000000E+0
Node	196	1.11271462920538E+1	7.45105291218757E+0	0.0000000000000E+0
Node	197	1.09737885627084E+1	7.77149518723504E+0	0.0000000000000E+0
Node	198	1.07263134628236E+1	8.24622501471639E+0	0.0000000000000E+0
Node	199	1.03192701650426E+1	7.88426353259489E+0	0.0000000000000E+0
Node	200	9.87975481409678E+0	7.67029907018462E+0	0.0000000000000E+0
Node	201	9.74584208520311E+0	8.06107946528730E+0	0.0000000000000E+0
Node	202	9.75475925334048E+0	8.45497049434644E+0	0.0000000000000E+0
Node	203	1.02245091972211E+1	8.41052032044540E+0	0.0000000000000E+0
Node	204	1.00953488082553E+1	8.11726184547510E+0	0.0000000000000E+0
Node	205	9.76899984808124E+0	3.51997535975278E+0	0.0000000000000E+0
Node	206	9.76085961736093E+0	3.92152460343258E+0	0.0000000000000E+0
Node	207	9.89296703755134E+0	4.31634988010256E+0	0.0000000000000E+0
Node	208	1.03485594968198E+1	4.09261853369027E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 132 di 170

Node	209	1.11440853328129E+1	4.53652227615223E+0	0.000000000000E+0
Node	210	1.10039725461056E+1	4.20922392898058E+0	0.000000000000E+0
Node	211	1.07853152355795E+1	3.72084427650120E+0	0.0000000000000E+0
Node	212	1.02556512649140E+1	3.55210559569970E+0	0.0000000000000E+0
Node	213	1.01209943479022E+1	3.85610993268359E+0	0.0000000000000E+0
Node	214	2.24999998939038E+0	1.04248724690340E+1	0.0000000000000E+0
Node	215	2.74999998396940E+0	1.04248724690340E+1	0.0000000000000E+0
Node	216	3.24999998939058E+0	1.04248724690340E+1	0.0000000000000E+0
Node	217	3.74999999481175E+0	1.04248724690340E+1	0.0000000000000E+0
Node	218	4.25000000023293E+0	1.04248724690340E+1	0.0000000000000E+0
Node	219	4.75000000565410E+0	1.04248724690340E+1	0.0000000000000E+0
Node	220	5.25000001107527E+0	1.04248724690340E+1	0.000000000000E+0
Node	221	5.47034366536563E+0	9.89398043734731E+0	0.0000000000000E+0
Node	222	6.00000000023282E+0	9.67499999816044E+0	0.0000000000000E+0
Node	223	6.52965633380287E+0	9.89396518016131E+0	0.0000000000000E+0
Node	224	6.74999998939037E+0	1.04248724690340E+1	0.0000000000000E+0
Node	225	7.23696268621096E+0	1.04248724690343E+1	0.0000000000000E+0
Node	226	7.72392538886803E+0	1.04248724690342E+1	0.0000000000000E+0
Node	227	8.21088809152509E+0	1.04248724690341E+1	0.0000000000000E+0
Node	228	6.52967887402193E+0	2.10598049866637E+0	0.0000000000000E+0
Node	229	6.00000000023282E+0	2.32499999946429E+0	0.0000000000000E+0
Node	230	5.47032112644371E+0	2.10598049878748E+0	0.0000000000000E+0
Node	231	2.02967887402193E+0	2.10598049878748E+0	0.0000000000000E+0
Node	232	1.50000000023282E+0	2.32499999946429E+0	0.0000000000000E+0
Node	233	9.70321126443711E-1	2.10598049878748E+0	0.0000000000000E+0
Node	234	-1.10782697646527E-4	2.06665958066726E+0	0.0000000000000E+0
Node	235	-1.10782697646527E-4	2.55831916233589E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 133 di 170

Node	236	-1.10782697646527E-4	3.04997874400452E+0	0.0000000000000E+0
Node	237	-1.10782697646527E-4	3.54163832567316E+0	0.0000000000000E+0
Node	238	-1.10782697646527E-4	4.03329790734179E+0	0.0000000000000E+0
Node	239	-1.10782697646527E-4	4.52495748901042E+0	0.0000000000000E+0
Node	240	-1.10782697646527E-4	5.01661707067906E+0	0.0000000000000E+0
Node	241	-1.10782697646527E-4	5.50827665234769E+0	0.0000000000000E+0
Node	242	-1.10782697646527E-4	5.99993623401632E+0	0.0000000000000E+0
Node	243	-1.10782697646527E-4	6.49159581568496E+0	0.0000000000000E+0
Node	244	-1.10782697646527E-4	6.98325539735359E+0	0.0000000000000E+0
Node	245	-1.10782697646527E-4	7.47491497902222E+0	0.0000000000000E+0
Node	246	-1.10782697646527E-4	7.96657456069086E+0	0.0000000000000E+0
Node	247	-1.10782697646527E-4	8.45823414235949E+0	0.0000000000000E+0
Node	248	-1.10782697646527E-4	8.94989372402812E+0	0.0000000000000E+0
Node	249	-1.10782697646527E-4	9.44155330569676E+0	0.0000000000000E+0
Node	250	-1.10782697646527E-4	9.93321288736539E+0	0.0000000000000E+0
Node	251	-1.10782697646527E-4	1.04248724690340E+1	0.0000000000000E+0
Node	252	3.74950189979550E-1	1.04248724690340E+1	0.0000000000000000E+0
Node	253	7.50000011075272E-1	1.04248724690340E+1	0.0000000000000000E+0
Node	254	9.70343665365624E-1	9.89398043734731E+0	0.000000000000E+0
Node	255	1.50000000023282E+0	9.67499999816044E+0	0.0000000000000E+0
Node	256	2.02965633380286E+0	9.89396518016131E+0	0.0000000000000E+0
Node	257	1.50063364533707E+0	5.24999999927840E+0	1.28068222693400E-13
Node	258	2.03031251912618E+0	5.46901949995521E+0	6.41193764749914E-14
Node	259	2.25063364533707E+0	5.99999999927840E+0	1.28068222693400E-13
Node	260	2.03161414466026E+0	6.52967887306751E+0	6.42045152963753E-14
Node	261	1.50063364533706E+0	6.74999999927840E+0	1.28238752949983E-13
Node	262	9.70954771547958E-1	6.53098049860159E+0	6.42047679101900E-14

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 134 di 170

Node	263	7.50633645337068E-1	5.99999999927840E+0	1.28068222693400E-13
Node	264	9.69653146013877E-1	5.47032112548929E+0	6.41193764749914E-14
Node	265	6.00063364533707E+0	5.24999999927840E+0	1.28068222693400E-13
Node	266	6.53031251912618E+0	5.46901949995521E+0	6.41193764749914E-14
Node	267	6.75063364533707E+0	5.99999999927840E+0	1.28068222693400E-13
Node	268	6.53161414466026E+0	6.52967887306751E+0	6.42045152963753E-14
Node	269	6.00063364533706E+0	6.74999999927840E+0	1.28238752949983E-13
Node	270	5.47095477154796E+0	6.53098049860159E+0	6.42047679101900E-14
Node	271	5.25063364533707E+0	5.99999999927840E+0	1.28068222693400E-13
Node	272	5.46965314601388E+0	5.47032112548929E+0	6.41193764749914E-14
Node	273	5.11646437187765E+0	6.90603482102907E+0	0.000000000000E+0
Node	274	4.44457503239779E+0	6.03117854647283E+0	0.000000000000E+0
Node	275	5.14074803849955E+0	5.14425680720858E+0	0.0000000000000E+0
Node	276	6.02344233343713E+0	4.43093437997099E+0	0.000000000000E+0
Node	277	6.90073301265207E+0	5.12779187603050E+0	0.000000000000E+0
Node	278	7.53013628336416E+0	5.99331082061925E+0	0.000000000000E+0
Node	279	6.90477824240619E+0	6.86634863429458E+0	0.0000000000000E+0
Node	280	6.09070554384904E+0	7.66140204081810E+0	0.000000000000E+0
Node	281	4.79270418705871E+0	6.44422646302280E+0	0.000000000000E+0
Node	282	4.81886887460984E+0	5.60669706741105E+0	0.000000000000E+0
Node	283	5.60009716635012E+0	4.82590629080698E+0	0.000000000000E+0
Node	284	6.46615626136730E+0	4.79163376986062E+0	0.000000000000E+0
Node	285	7.20512895442670E+0	5.60561194287010E+0	0.0000000000000E+0
Node	286	7.20614603809863E+0	6.38383340657309E+0	0.000000000000E+0
Node	287	6.48753513551332E+0	7.21666185073367E+0	0.0000000000000E+0
Node	288	5.60227395255484E+0	7.26724366299166E+0	0.0000000000000E+0
Node	289	5.76307564082791E-1	5.08730608385814E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 135 di 170

Node	290	1.35134612523875E+0	4.38978343711483E+0	0.0000000000000E+0
Node	291	2.48715806490266E+0	5.00883381864210E+0	0.000000000000E+0
Node	292	3.03293305684737E+0	6.26577556480363E+0	0.0000000000000E+0
Node	293	2.35529046596542E+0	6.88116611630111E+0	0.0000000000000E+0
Node	294	1.53552673014415E+0	7.63478558749541E+0	0.0000000000000E+0
Node	295	3.75261431319711E-1	5.75413832581305E+0	0.0000000000000E+0
Node	296	1.06283906302983E+0	4.81172523808260E+0	0.0000000000000E+0
Node	297	1.85921985044172E+0	4.68360665868039E+0	0.0000000000000E+0
Node	298	2.82578037756060E+0	5.67389750022268E+0	0.0000000000000E+0
Node	299	2.61170958559042E+0	6.49352685937863E+0	0.0000000000000E+0
Node	300	1.92552380249832E+0	7.21576634316011E+0	0.0000000000000E+0
Node	301	1.10774567422381E+0	7.23886526421545E+0	0.0000000000000E+0
Node	302	8.17009582178829E+0	9.87211362521972E+0	0.0000000000000E+0
Node	303	8.20585818016002E+0	9.38795298645646E+0	0.0000000000000E+0
Node	304	8.25108379125873E+0	8.93091586526651E+0	0.0000000000000E+0
Node	305	8.26472651728363E+0	8.50902398250479E+0	0.0000000000000E+0
Node	306	8.16504226513696E+0	8.07842510898228E+0	0.0000000000000E+0
Node	307	8.13487832172567E+0	6.89647075455698E+0	0.0000000000000E+0
Node	308	8.24630063557698E+0	6.41259909768058E+0	0.0000000000000E+0
Node	309	8.29832812933658E+0	5.99480155622495E+0	0.0000000000000E+0
Node	310	8.13592750236491E+0	5.08152273966796E+0	0.0000000000000E+0
Node	311	7.96013839293945E+0	4.43286511954781E+0	0.0000000000000E+0
Node	312	8.10020604943158E+0	3.91796623073992E+0	0.0000000000000E+0
Node	313	8.23587624178712E+0	3.37057949933499E+0	0.0000000000000E+0
Node	314	8.39983339279917E+0	3.03327386592726E+0	0.0000000000000E+0
Node	315	8.26559587235829E+0	2.67911212450616E+0	0.0000000000000E+0
Node	316	8.21921506429820E+0	2.13553950723819E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 136 di 170

Node	317	7.70238428565309E+0	2.22127656609600E+0	0.0000000000000E+0
Node	318	7.12093879799856E+0	2.18527682288575E+0	0.0000000000000E+0
Node	319	6.40384170399571E+0	2.70340392908503E+0	0.0000000000000E+0
Node	320	5.86813368842648E+0	2.63462152695473E+0	0.0000000000000E+0
Node	321	4.94350730720811E+0	2.22036503846248E+0	0.0000000000000E+0
Node	322	5.37547872146688E+0	2.45683677672852E+0	0.0000000000000E+0
Node	323	7.01455815841057E+0	2.83871244338518E+0	0.0000000000000E+0
Node	324	6.20299609512384E+0	3.23430124721274E+0	0.0000000000000E+0
Node	325	5.69234002180170E+0	3.05252191969101E+0	0.0000000000000E+0
Node	326	5.21756223007242E+0	2.86469296655953E+0	0.0000000000000E+0
Node	327	4.36578855685156E+0	2.31232316091008E+0	0.0000000000000E+0
Node	328	4.75594813104558E+0	2.65168475688770E+0	0.0000000000000E+0
Node	329	3.76342612485116E+0	2.20585559949850E+0	0.0000000000000E+0
Node	330	3.22450541465529E+0	2.23714654532022E+0	0.0000000000000E+0
Node	331	2.63105947231834E+0	2.19041334504641E+0	0.000000000000E+0
Node	332	1.86959006512929E+0	2.71237641912353E+0	0.000000000000E+0
Node	333	1.20958665087140E+0	2.58420885158908E+0	0.0000000000000E+0
Node	334	4.77498628233873E-1	2.08358608260359E+0	0.0000000000000E+0
Node	335	5.64839560421838E-1	2.58670425196101E+0	0.000000000000E+0
Node	336	2.51816671809409E+0	2.84209795974770E+0	0.000000000000E+0
Node	337	1.72092801752973E+0	3.31721836636985E+0	0.0000000000000E+0
Node	338	1.13802822097075E+0	3.18687391463926E+0	0.000000000000E+0
Node	339	5.63232888360641E-1	3.11469426413509E+0	0.000000000000E+0
Node	340	4.55666904284890E-1	9.91694459744694E+0	0.000000000000E+0
Node	341	9.77120841115767E-1	9.37920046510856E+0	0.0000000000000E+0
Node	342	1.50578579218334E+0	9.30949807678966E+0	0.0000000000000E+0
Node	343	2.57096281116515E+0	9.73563534445127E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 137 di 170

Node	344	2.09594456224627E+0	9.34189264662804E+0	0.0000000000000E+0
Node	345	4.77467584180294E-1	9.41571849526354E+0	0.0000000000000E+0
Node	346	4.77896582122971E-1	8.92556837952413E+0	0.0000000000000E+0
Node	347	9.54863786631343E-1	8.89761075025625E+0	0.0000000000000E+0
Node	348	1.45069622422424E+0	8.84225514138330E+0	0.0000000000000E+0
Node	349	1.97680337091175E+0	8.82159038789191E+0	0.0000000000000E+0
Node	350	3.09176191616218E+0	9.75886252360448E+0	0.0000000000000E+0
Node	351	2.39889201730624E+0	8.95013097871019E+0	0.0000000000000E+0
Node	352	5.26258967263848E-1	3.62010041685184E+0	0.0000000000000E+0
Node	353	4.82369863901461E-1	4.09714542765292E+0	0.0000000000000E+0
Node	354	4.70099746394734E-1	4.55702897623490E+0	0.0000000000000E+0
Node	355	2.65960731627578E-1	6.00124532061001E+0	0.0000000000000E+0
Node	356	3.75261431319711E-1	6.24579790748168E+0	0.0000000000000E+0
Node	357	5.82119007594660E-1	6.92505257666660E+0	0.0000000000000E+0
Node	358	4.80808078211497E-1	7.49423246456306E+0	0.0000000000000E+0
Node	359	5.27061449369706E-1	7.92953860680979E+0	0.0000000000000E+0
Node	360	4.79704736454114E-1	8.43919783895068E+0	0.0000000000000E+0
Node	361	2.88747378541520E+0	9.25857454486502E+0	0.0000000000000E+0
Node	362	3.65990475114596E+0	9.61708501987994E+0	0.0000000000000E+0
Node	363	4.30520299343596E+0	9.69210270259002E+0	0.0000000000000E+0
Node	364	4.89924519117036E+0	9.79407146385916E+0	0.0000000000000E+0
Node	365	5.63343485762340E+0	9.32782138042112E+0	0.0000000000000E+0
Node	366	6.14073857657972E+0	9.38031036802951E+0	0.0000000000000E+0
Node	367	7.01164032054742E+0	9.88071203503192E+0	0.0000000000000E+0
Node	368	6.71417857277703E+0	9.46158497494586E+0	0.0000000000000E+0
Node	369	5.07358561012555E+0	9.16615103546111E+0	0.0000000000000E+0
Node	370	5.84904904232022E+0	8.87084958006903E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 138 di 170

Node	371	6.21826910072458E+0	9.05815994260464E+0	0.0000000000000E+0
Node	372	6.67283785844942E+0	8.92712334438165E+0	0.0000000000000E+0
Node	373	7.56578621982680E+0	9.74241615802299E+0	0.0000000000000E+0
Node	374	7.22010614722163E+0	9.22786550209688E+0	0.0000000000000E+0
Node	375	5.20596230636995E+0	7.75471953084123E+0	0.0000000000000E+0
Node	376	4.72283665498085E+0	7.33914017418911E+0	0.0000000000000E+0
Node	377	4.36176653707929E+0	6.84323416669890E+0	0.0000000000000E+0
Node	378	4.08855800217458E+0	6.38498897365850E+0	0.0000000000000E+0
Node	379	3.89716035200248E+0	6.05207276029953E+0	0.0000000000000E+0
Node	380	4.07816906574802E+0	5.68880168179898E+0	0.0000000000000E+0
Node	381	4.44089639656176E+0	5.25404421452174E+0	0.0000000000000E+0
Node	382	4.82609268996083E+0	4.83538603170544E+0	0.0000000000000E+0
Node	383	5.23423844428899E+0	4.47717365001152E+0	0.0000000000000E+0
Node	384	5.60750150523644E+0	4.11339887742063E+0	0.0000000000000E+0
Node	385	5.92795269772980E+0	3.70452680922415E+0	0.0000000000000E+0
Node	386	6.42001440079466E+0	3.99279858179574E+0	0.0000000000000E+0
Node	387	6.93863372548398E+0	4.35656955254436E+0	0.0000000000000E+0
Node	388	7.35987167292221E+0	4.80500674012360E+0	0.0000000000000E+0
Node	389	7.63898980010546E+0	5.30186706747713E+0	0.0000000000000E+0
Node	390	7.85461462622404E+0	5.71542472208489E+0	0.0000000000000E+0
Node	391	8.00256333898006E+0	5.99254285505558E+0	0.0000000000000E+0
Node	392	7.85465551470727E+0	6.26837321094891E+0	0.0000000000000E+0
Node	393	7.63977211006665E+0	6.67695641216988E+0	0.0000000000000E+0
Node	394	7.36432810874538E+0	7.16162032699099E+0	0.0000000000000E+0
Node	395	6.95835102388156E+0	7.59200938827827E+0	0.0000000000000E+0
Node	396	6.56546267042853E+0	8.03510478468180E+0	0.0000000000000E+0
Node	397	6.19507742696350E+0	8.48774183888259E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 139 di 170

Node	398	5.70755041689948E+0	8.12659786486529E+0	0.0000000000000E+0
Node	399	7.95558974707690E+0	7.51307211102389E+0	0.0000000000000E+0
Node	400	7.41944093298807E+0	7.95789401719425E+0	0.0000000000000E+0
Node	401	7.02429169087018E+0	8.40427585104115E+0	0.0000000000000E+0
Node	402	5.35234300900834E+0	8.61099998238177E+0	0.0000000000000E+0
Node	403	4.79365722501210E+0	8.28749805258017E+0	0.0000000000000E+0
Node	404	4.21252923547587E+0	7.85596307404518E+0	0.0000000000000E+0
Node	405	3.84826959055287E+0	7.20934690529475E+0	0.0000000000000E+0
Node	406	3.65583579178061E+0	6.62005905106757E+0	0.0000000000000E+0
Node	407	3.52786953389375E+0	6.08706761029322E+0	0.0000000000000E+0
Node	408	3.53426549178143E+0	5.42552914191428E+0	0.0000000000000E+0
Node	409	4.04219912202597E+0	4.88977273063056E+0	0.0000000000000E+0
Node	410	4.48822430796351E+0	4.46732237505840E+0	0.0000000000000E+0
Node	411	4.90152906522171E+0	4.13277364878812E+0	0.0000000000000E+0
Node	412	5.24176707029953E+0	3.83821430300374E+0	0.0000000000000E+0
Node	413	5.47788324203885E+0	3.47417700873267E+0	0.0000000000000E+0
Node	414	6.78697565075933E+0	3.47602884800071E+0	0.0000000000000E+0
Node	415	7.50672465564602E+0	3.83496034055934E+0	0.0000000000000E+0
Node	416	8.24673102223259E+0	5.57474170096783E+0	0.0000000000000E+0
Node	417	7.74537771850106E+0	2.98923191463647E+0	0.0000000000000E+0
Node	418	7.70533803255062E+0	9.30780049889750E+0	0.0000000000000E+0
Node	419	7.83754780881439E+0	8.87781957519934E+0	0.0000000000000E+0
Node	420	7.94684315613522E+0	8.56979119343379E+0	0.0000000000000E+0
Node	421	7.74382956164887E+0	8.32636680390599E+0	0.0000000000000E+0
Node	422	7.45232102829778E+0	8.70617338794290E+0	0.0000000000000E+0
Node	423	8.20138566002006E-1	4.51742560541102E+0	0.0000000000000E+0
Node	424	9.25706211551510E-1	4.18216944683802E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 140 di 170

Node	425	1.04308894899540E+0	3.71972486532866E+0	0.0000000000000E+0
Node	426	1.55761937593195E+0	3.88163240485830E+0	0.0000000000000E+0
Node	427	2.09471253780522E+0	4.08377158632206E+0	0.0000000000000E+0
Node	428	3.07991134022986E+0	4.34827639725164E+0	0.0000000000000E+0
Node	429	3.16637273034470E+0	6.80861028931999E+0	0.0000000000000E+0
Node	430	2.81148707790240E+0	6.83348797574622E+0	0.0000000000000E+0
Node	431	2.66181011084311E+0	7.20825336588512E+0	0.0000000000000E+0
Node	432	2.31344914421545E+0	7.60093894629297E+0	0.0000000000000E+0
Node	433	1.96517193547010E+0	8.15436277748148E+0	0.0000000000000E+0
Node	434	1.36746678743733E+0	8.34159783668024E+0	0.0000000000000E+0
Node	435	1.14366550838437E+0	7.93014796512460E+0	0.0000000000000E+0
Node	436	8.14217159876336E-1	7.64753090415065E+0	0.0000000000000E+0
Node	437	2.64225908522876E+0	4.28051339493301E+0	0.0000000000000E+0
Node	438	3.20212251825742E+0	4.79918007971559E+0	0.0000000000000E+0
Node	439	2.31332012692835E+0	3.48388155288851E+0	0.0000000000000E+0
Node	440	2.90261523248949E+0	3.67816395369891E+0	0.0000000000000E+0
Node	441	3.39535241720341E+0	3.96513571710631E+0	0.0000000000000E+0
Node	442	3.70612372500181E+0	4.41649946602159E+0	0.0000000000000E+0
Node	443	4.18132968287534E+0	4.01160036193170E+0	0.000000000000E+0
Node	444	4.63866123422564E+0	3.74558345214681E+0	0.0000000000000E+0
Node	445	4.97615444587916E+0	3.62811619553199E+0	0.0000000000000E+0
Node	446	5.04280567355743E+0	3.29498528455604E+0	0.0000000000000E+0
Node	447	4.11485424085650E+0	2.90791382735458E+0	0.0000000000000E+0
Node	448	3.71158491859196E+0	2.69773909237324E+0	0.0000000000000E+0
Node	449	3.25170482795258E+0	2.97608827270064E+0	0.0000000000000E+0
Node	450	3.88903038622535E+0	3.41497364413473E+0	0.0000000000000E+0
Node	451	4.49118749268410E+0	3.20540581160843E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 141 di 170

Node	452	9.14857361940074E-1	8.44402394288040E+0	0.0000000000000E+0
Node	453	2.63961414759405E+0	8.38142653475503E+0	0.0000000000000E+0
Node	454	8.60908076333418E-1	8.10040097988185E+0	0.0000000000000E+0
Node	455	4.41385358300933E+0	8.93352101857556E+0	0.0000000000000E+0
Node	456	2.70585734599938E+0	7.83314102185043E+0	0.0000000000000E+0
Node	457	3.49436897754802E+0	8.59336664903977E+0	0.0000000000000E+0
Node	458	3.17135009029914E+0	7.52544436830306E+0	0.0000000000000E+0
Node	459	8.69785079418215E+0	1.09498237473247E+1	0.0000000000000E+0
Node	460	8.69785079418215E+0	1.14748934455186E+1	0.0000000000000E+0
Node	461	8.69785079418215E+0	1.19999904713824E+1	0.0000000000000E+0
Node	462	9.16967696396950E+0	1.19999904713824E+1	0.0000000000000E+0
Node	463	9.64150313375685E+0	1.19999904713824E+1	0.0000000000000E+0
Node	464	1.01133293035442E+1	1.19999904713824E+1	0.0000000000000E+0
Node	465	1.05851554733315E+1	1.19999904713824E+1	0.0000000000000E+0
Node	466	1.10569816431189E+1	1.19999904713824E+1	0.0000000000000E+0
Node	467	1.15288078129062E+1	1.19999904713824E+1	0.0000000000000E+0
Node	468	1.20006339826936E+1	1.19999904713824E+1	0.000000000000E+0
Node	469	1.20006339008017E+1	1.14750422250743E+1	0.000000000000E+0
Node	470	1.20006338598608E+1	1.09499846725115E+1	0.0000000000000E+0
Node	471	1.10296788685984E+1	1.09559167061524E+1	0.0000000000000E+0
Node	472	1.05000000002328E+1	1.11749999981604E+1	0.0000000000000E+0
Node	473	9.97032112915003E+0	1.09559486656965E+1	0.0000000000000E+0
Node	474	9.28081733274852E+0	1.09536092660735E+1	0.0000000000000E+0
Node	475	9.23117201858195E+0	1.14835447654998E+1	0.0000000000000E+0
Node	476	9.80591213010028E+0	1.14779854844330E+1	0.0000000000000E+0
Node	477	1.03066646518885E+1	1.15874952347714E+1	0.0000000000000E+0
Node	478	1.06603622370117E+1	1.16511939204354E+1	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 142 di 170

Node	479	1.10534460391240E+1	1.16249476442488E+1	0.0000000000000E+0
Node	480	1.14335348124189E+1	1.14836531439906E+1	0.0000000000000E+0
Node	481	1.15221063511046E+1	1.09535616678225E+1	0.0000000000000E+0
Node	482	1.10638719425829E+1	1.13651384101564E+1	0.0000000000000E+0
Node	483	1.07407595051345E+1	1.13968497955737E+1	0.0000000000000E+0
Node	484	-1.15565101377715E-4	1.09498207108577E+1	0.0000000000000E+0
Node	485	-1.17956303243309E-4	1.14748782634501E+1	0.0000000000000E+0
Node	486	-1.27521110705686E-4	1.19999904713824E+1	0.0000000000000E+0
Node	487	5.11518262141815E-1	1.19999904713824E+1	0.0000000000000E+0
Node	488	1.02316404539434E+0	1.19999904713824E+1	0.0000000000000E+0
Node	489	1.53480982864686E+0	1.19999904713824E+1	0.000000000000E+0
Node	490	2.04645561189938E+0	1.19999904713824E+1	0.000000000000E+0
Node	491	2.55810139515190E+0	1.19999904713824E+1	0.0000000000000E+0
Node	492	3.06974717840442E+0	1.19999904713824E+1	0.000000000000E+0
Node	493	3.58139296165694E+0	1.19999904713824E+1	0.000000000000E+0
Node	494	4.09303874490946E+0	1.19999904713824E+1	0.000000000000E+0
Node	495	4.60468452816198E+0	1.19999904713824E+1	0.000000000000E+0
Node	496	5.11633031141450E+0	1.19999904713824E+1	0.000000000000E+0
Node	497	5.62797609466703E+0	1.19999904713824E+1	0.000000000000E+0
Node	498	6.13962187791955E+0	1.19999904713824E+1	0.000000000000E+0
Node	499	6.65126766117207E+0	1.19999904713824E+1	0.000000000000E+0
Node	500	7.16291344442459E+0	1.19999904713824E+1	0.000000000000E+0
Node	501	7.67455922767711E+0	1.19999904713824E+1	0.0000000000000E+0
Node	502	8.18620501092963E+0	1.19999904713824E+1	0.000000000000E+0
Node	503	6.52967886859843E+0	1.09559167061524E+1	0.0000000000000E+0
Node	504	6.00000000023282E+0	1.11749999981604E+1	0.0000000000000E+0
Node	505	5.47032113185633E+0	1.09559168341794E+1	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 143 di 170

Node	506	2.02967886859843E+0	1.09559167061524E+1	0.0000000000000E+0
Node	507	1.50000000023282E+0	1.11749999981604E+1	0.0000000000000E+0
Node	508	9.70321129150032E-1	1.09559486656965E+1	0.0000000000000E+0
Node	509	8.18831878043519E+0	1.14756139562441E+1	0.0000000000000E+0
Node	510	8.19565908967799E+0	1.09504891969232E+1	0.0000000000000E+0
Node	511	7.68569529058425E+0	1.09514886411193E+1	0.0000000000000E+0
Node	512	7.14966611908390E+0	1.09534570948127E+1	0.0000000000000E+0
Node	513	6.59047326759700E+0	1.14779854844330E+1	0.0000000000000E+0
Node	514	6.06981093907618E+0	1.15874952347714E+1	0.0000000000000E+0
Node	515	4.83253846869910E+0	1.10884392440705E+1	0.0000000000000E+0
Node	516	5.54914861055537E+0	1.14779854844330E+1	0.0000000000000E+0
Node	517	7.14647366810083E+0	1.14814340523233E+1	0.0000000000000E+0
Node	518	4.23871545075757E+0	1.09971439478340E+1	0.0000000000000E+0
Node	519	5.04166912627472E+0	1.15321671584517E+1	0.0000000000000E+0
Node	520	7.67356022695098E+0	1.14770250194046E+1	0.0000000000000E+0
Node	521	4.66198664340085E+0	1.15319046184230E+1	0.0000000000000E+0
Node	522	3.70534516845678E+0	1.09680606787013E+1	0.0000000000000E+0
Node	523	3.18018266695460E+0	1.09575695437180E+1	0.0000000000000E+0
Node	524	2.63747183968765E+0	1.09549978241065E+1	0.0000000000000E+0
Node	525	2.03806724296065E+0	1.14779854844330E+1	0.0000000000000E+0
Node	526	1.51740491443984E+0	1.15874952347714E+1	0.0000000000000E+0
Node	527	5.21500406428595E-1	1.10115967685177E+1	0.0000000000000E+0
Node	528	9.96742585919025E-1	1.14779854844330E+1	0.0000000000000E+0
Node	529	2.58918691611302E+0	1.14808658637927E+1	0.0000000000000E+0
Node	530	3.83971429686751E-1	1.13603090012804E+1	0.0000000000000E+0
Node	531	3.12151584523263E+0	1.14821946043766E+1	0.0000000000000E+0
Node	532	3.64500874605937E+0	1.14893920196404E+1	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 144 di 170

Node	533	4.16394977356619E+0	1.15062714095902E+1	0.0000000000000E+0
Node	534	1.50000000023275E+0	1.04248724690340E+1	6.5000000000000E+0
Node	535	1.12500000023279E+0	1.04249362335972E+1	6.5000000000000E+0
Node	536	7.50000000232824E-1	1.04249999981604E+1	6.5000000000000E+0
Node	537	7.50000000232824E-1	1.04249999981604E+1	7.0000000000000E+0
Node	538	7.50000000232824E-1	1.04249999981604E+1	7.5000000000000E+0
Node	539	7.50000000232824E-1	1.04249999981604E+1	8.000000000000E+0
Node	540	1.12500000023279E+0	1.04249362335972E+1	8.000000000000E+0
Node	541	1.50000000023275E+0	1.04248724690340E+1	8.000000000000E+0
Node	542	1.50000000023275E+0	1.04248724690340E+1	7.5000000000000E+0
Node	543	1.50000000023275E+0	1.04248724690340E+1	7.0000000000000E+0
Node	544	1.12500000023279E+0	1.04249362335972E+1	7.0000000000000E+0
Node	545	1.12500000023279E+0	1.04249362335972E+1	7.5000000000000E+0
Node	546	1.50000000023275E+0	1.04248724690340E+1	0.000000000000E+0
Node	547	1.12500001197910E+0	1.04248724690337E+1	0.000000000000E+0
Node	548	7.50000008899922E-1	1.04248980555541E+1	5.00000000096235E-1
Node	549	7.50000008336393E-1	1.04249046837908E+1	1.00000000019247E+0
Node	550	7.50000007772864E-1	1.04249113120275E+1	1.50000000028870E+0
Node	551	7.50000007209336E-1	1.04249179402643E+1	2.00000000038494E+0
Node	552	7.50000006645807E-1	1.04249245685010E+1	2.50000000048117E+0
Node	553	7.50000006082279E-1	1.04249311967378E+1	3.00000000057741E+0
Node	554	7.50000005518750E-1	1.04249378249745E+1	3.50000000067364E+0
Node	555	7.50000004955221E-1	1.04249444532112E+1	4.00000000076988E+0
Node	556	7.50000004391693E-1	1.04249510814480E+1	4.50000000086611E+0
Node	557	7.50000003828164E-1	1.04249577096847E+1	5.00000000096235E+0
Node	558	7.50000003264635E-1	1.04249643379215E+1	5.50000000105858E+0
Node	559	7.50000002701107E-1	1.04249709661582E+1	6.00000000115482E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 145 di 170

Node	560	1.50000000023275E+0	1.04248724690340E+1	6.0000000000000E+0
Node	561	1.50000000023275E+0	1.04248724690340E+1	5.5000000000000E+0
Node	562	1.50000000023275E+0	1.04248724690340E+1	5.0000000000000E+0
Node	563	1.50000000023275E+0	1.04248724690340E+1	4.5000000000000E+0
Node	564	1.50000000023275E+0	1.04248724690340E+1	4.0000000000000E+0
Node	565	1.50000000023275E+0	1.04248724690340E+1	3.5000000000000E+0
Node	566	1.50000000023275E+0	1.04248724690340E+1	3.0000000000000E+0
Node	567	1.50000000023275E+0	1.04248724690340E+1	2.50000000000000E+0
Node	568	1.50000000023275E+0	1.04248724690340E+1	2.00000000000000E+0
Node	569	1.50000000023275E+0	1.04248724690340E+1	1.50000000000000E+0
Node	570	1.50000000023275E+0	1.04248724690340E+1	1.0000000000000E+0
Node	571	1.50000000023275E+0	1.04248724690340E+1	5.0000000000000E-1
Node	572	1.12500000313399E+0	1.04249362335967E+1	5.00000000048117E-1
Node	573	1.12500000023279E+0	1.04249362335972E+1	1.00000000009624E+0
Node	574	1.12500000023279E+0	1.04249362335972E+1	1.50000000014435E+0
Node	575	1.12500000023279E+0	1.04249362335972E+1	2.00000000019247E+0
Node	576	1.12500000023279E+0	1.04249362335972E+1	2.50000000024059E+0
Node	577	1.12500000023279E+0	1.04249362335972E+1	3.00000000028871E+0
Node	578	1.12500000023279E+0	1.04249362335972E+1	3.50000000033682E+0
Node	579	1.12500000023279E+0	1.04249362335972E+1	4.00000000038494E+0
Node	580	1.12500000023279E+0	1.04249362335972E+1	4.50000000043306E+0
Node	581	1.12500000023279E+0	1.04249362335972E+1	5.00000000048118E+0
Node	582	1.12500000023279E+0	1.04249362335972E+1	5.50000000052929E+0
Node	583	1.12500000023279E+0	1.04249362335972E+1	6.00000000041003E+0
Node	584	1.08750000002328E+1	1.57499999946429E+0	0.0000000000000E+0
Node	585	1.05000000002328E+1	1.57499999946429E+0	0.0000000000000E+0
Node	586	1.05000000002328E+1	1.19999999946429E+0	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 146 di 170

Node	587	1.01250000002328E+1	1.57499999946429E+0	0.0000000000000E+0
Node	588	1.01984403756364E+1	1.27300649968989E+0	0.0000000000000E+0
Node	589	1.05000000002328E+1	1.94999999946429E+0	0.0000000000000E+0
Node	590	1.08015596248291E+1	1.87699349923869E+0	0.0000000000000E+0
Node	591	6.37500000023282E+0	1.57499999927026E+0	0.0000000000000E+0
Node	592	6.00000000023282E+0	1.57499999946429E+0	0.0000000000000E+0
Node	593	6.00000000023282E+0	1.19999999946429E+0	0.0000000000000E+0
Node	594	5.62500000023282E+0	1.57499999946429E+0	0.0000000000000E+0
Node	595	5.69844037563645E+0	1.27300649968989E+0	0.0000000000000E+0
Node	596	6.00000000023281E+0	1.94999999946429E+0	0.0000000000000E+0
Node	597	6.30155962482920E+0	1.87699349923869E+0	0.0000000000000E+0
Node	598	1.87500000023283E+0	1.57499999946429E+0	0.0000000000000E+0
Node	599	1.50000000023282E+0	1.57499999946429E+0	0.0000000000000E+0
Node	600	1.50000000023282E+0	1.19999999946429E+0	0.0000000000000E+0
Node	601	1.12500000023282E+0	1.57499999946429E+0	0.0000000000000E+0
Node	602	1.19844037563645E+0	1.27300649968989E+0	0.0000000000000E+0
Node	603	1.50000000023281E+0	1.94999999946429E+0	0.0000000000000E+0
Node	604	1.80155962482920E+0	1.87699349923869E+0	0.0000000000000E+0
Node	605	1.08756336453370E+1	5.99999999927840E+0	1.28132171539619E-13
Node	606	1.05006336453370E+1	5.99999999927840E+0	1.28238752949983E-13
Node	607	1.05006336453370E+1	5.62499999927840E+0	1.28174804103764E-13
Node	608	1.01256336453370E+1	5.99999999927840E+0	1.28174804103764E-13
Node	609	1.01986401455626E+1	5.69844037468203E+0	1.28238752949983E-13
Node	610	1.05006336453370E+1	6.37499999927840E+0	1.28238752949983E-13
Node	611	1.08026271451114E+1	6.30155962387477E+0	1.28238752949983E-13
Node	612	6.37563364533706E+0	5.99999999927840E+0	1.28132171539619E-13
Node	613	6.00063364533706E+0	5.99999999927840E+0	1.28238752949983E-13

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 147 di 170

Node	614	6.00063364533706E+0	5.62499999927840E+0	1.28174804103764E-13
Node	615	5.62563364533706E+0	5.99999999927840E+0	1.28174804103764E-13
Node	616	5.69864014556267E+0	5.69844037468203E+0	1.28238752949983E-13
Node	617	6.00063364533706E+0	6.37499999927840E+0	1.28238752949983E-13
Node	618	6.30262714511146E+0	6.30155962387477E+0	1.28238752949983E-13
Node	619	1.87563364533706E+0	5.99999999927840E+0	1.28132171539619E-13
Node	620	1.50063364533706E+0	5.99999999927840E+0	1.28238752949983E-13
Node	621	1.50063364533706E+0	5.62499999927840E+0	1.28174804103764E-13
Node	622	1.12563364533706E+0	5.99999999927840E+0	1.28174804103764E-13
Node	623	1.19864014556267E+0	5.69844037468203E+0	1.28238752949983E-13
Node	624	1.50063364533706E+0	6.37499999927840E+0	1.28238752949983E-13
Node	625	1.80262714511146E+0	6.30155962387477E+0	1.28238752949983E-13
Node	626	1.08749999934567E+1	1.04249202978767E+1	0.0000000000000E+0
Node	627	1.05000000002328E+1	1.04249999981604E+1	0.0000000000000E+0
Node	628	1.05000000002328E+1	1.00499999981604E+1	0.0000000000000E+0
Node	629	1.01250000042987E+1	1.04249521747381E+1	0.0000000000000E+0
Node	630	1.01984403756364E+1	1.01230064983860E+1	0.0000000000000E+0
Node	631	1.05000000002328E+1	1.07999999981604E+1	0.0000000000000E+0
Node	632	1.08015596248291E+1	1.07269934979348E+1	0.0000000000000E+0
Node	633	6.37506600560136E+0	1.04248990386576E+1	0.0000000000000E+0
Node	634	6.00015841156705E+0	1.04249362335972E+1	0.0000000000000E+0
Node	635	6.00009899746026E+0	1.00499601492759E+1	0.0000000000000E+0
Node	636	5.62509241275401E+0	1.04249096607531E+1	0.0000000000000E+0
Node	637	5.69844037563645E+0	1.01230064983860E+1	0.0000000000000E+0
Node	638	6.00005940364114E+0	1.07999760867881E+1	0.0000000000000E+0
Node	639	6.30155962482919E+0	1.07269934979348E+1	0.0000000000000E+0
Node	640	1.87499999932954E+0	1.04248724690340E+1	0.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 148 di 170

Node	641	1.50000000023279E+0	1.07999521760927E+1	0.0000000000000E+0
Node	642	1.80155962663626E+0	1.07269934979348E+1	0.0000000000000E+0
Node	643	2.25000000023282E+0	1.04248724690340E+1	6.5000000000000E+0
Node	644	1.87500000023279E+0	1.04248724690340E+1	6.5000000000000E+0
Node	645	1.87500000023279E+0	1.04248724690340E+1	8.0000000000000E+0
Node	646	2.25000000023282E+0	1.04248724690340E+1	8.0000000000000E+0
Node	647	2.25000000023282E+0	1.04248724690340E+1	7.5000000000000E+0
Node	648	2.25000000023282E+0	1.04248724690340E+1	7.0000000000000E+0
Node	649	1.87500000023279E+0	1.04248724690340E+1	7.0000000000000E+0
Node	650	1.87500000023279E+0	1.04248724690340E+1	7.5000000000000E+0
Node	651	2.24999999805757E+0	1.04248724690340E+1	6.0000000000000E+0
Node	652	2.24999999749403E+0	1.04248724690340E+1	5.5000000000000E+0
Node	653	2.24999999693050E+0	1.04248724690340E+1	5.0000000000000E+0
Node	654	2.24999999636696E+0	1.04248724690340E+1	4.5000000000000E+0
Node	655	2.24999999580342E+0	1.04248724690340E+1	4.0000000000000E+0
Node	656	2.24999999523989E+0	1.04248724690340E+1	3.5000000000000E+0
Node	657	2.24999999467635E+0	1.04248724690340E+1	3.0000000000000E+0
Node	658	2.24999999411281E+0	1.04248724690340E+1	2.5000000000000E+0
Node	659	2.24999999354928E+0	1.04248724690340E+1	2.00000000000000E+0
Node	660	2.24999999298574E+0	1.04248724690340E+1	1.5000000000000E+0
Node	661	2.24999999242220E+0	1.04248724690340E+1	1.0000000000000E+0
Node	662	2.24999999185867E+0	1.04248724690340E+1	5.0000000000000E-1
Node	663	1.87500000168339E+0	1.04248724690340E+1	5.0000000000000E-1
Node	664	1.87500000023279E+0	1.04248724690340E+1	1.0000000000000E+0
Node	665	1.87500000023279E+0	1.04248724690340E+1	1.5000000000000E+0
Node	666	1.87500000023279E+0	1.04248724690340E+1	2.00000000000000E+0
Node	667	1.87500000023279E+0	1.04248724690340E+1	2.50000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 149 di 170

Node	668	1.87500000023279E+0	1.04248724690340E+1	3.0000000000000E+0
Node	669	1.87500000023279E+0	1.04248724690340E+1	3.5000000000000E+0
Node	670	1.87500000023279E+0	1.04248724690340E+1	4.0000000000000E+0
Node	671	1.87500000023279E+0	1.04248724690340E+1	4.50000000000000E+0
Node	672	1.87500000023279E+0	1.04248724690340E+1	5.0000000000000E+0
Node	673	1.87500000023279E+0	1.04248724690340E+1	5.5000000000000E+0
Node	674	1.87500000023279E+0	1.04248724690340E+1	6.0000000000000E+0
Node	675	5.25000001107528E+0	1.04248724690340E+1	6.5000000000000E+0
Node	676	4.75000000926820E+0	1.04248724690340E+1	6.5000000000000E+0
Node	677	4.25000000746113E+0	1.04248724690340E+1	6.5000000000000E+0
Node	678	3.75000000565405E+0	1.04248724690340E+1	6.5000000000000E+0
Node	679	3.25000000384697E+0	1.04248724690340E+1	6.5000000000000E+0
Node	680	2.75000000203990E+0	1.04248724690340E+1	6.5000000000000E+0
Node	681	2.75000000203990E+0	1.04248724690340E+1	8.0000000000000E+0
Node	682	3.25000000384697E+0	1.04248724690340E+1	8.0000000000000E+0
Node	683	3.75000000565405E+0	1.04248724690340E+1	8.0000000000000E+0
Node	684	4.25000000746113E+0	1.04248724690340E+1	8.0000000000000E+0
Node	685	4.75000000926820E+0	1.04248724690340E+1	8.0000000000000E+0
Node	686	5.25000001107528E+0	1.04248724690340E+1	8.0000000000000E+0
Node	687	5.25000001107528E+0	1.04248724690340E+1	7.5000000000000E+0
Node	688	5.25000001107528E+0	1.04248724690340E+1	7.0000000000000E+0
Node	689	4.75000000926820E+0	1.04248724690340E+1	7.0000000000000E+0
Node	690	4.25000000746113E+0	1.04248724690340E+1	7.0000000000000E+0
Node	691	3.75000000565405E+0	1.04248724690340E+1	7.0000000000000E+0
Node	692	3.25000000384697E+0	1.04248724690340E+1	7.0000000000000E+0
Node	693	2.75000000203990E+0	1.04248724690340E+1	7.0000000000000E+0
Node	694	4.75000000926820E+0	1.04248724690340E+1	7.5000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 150 di 170

Node	695	4.25000000746113E+0	1 04249724600240E+1	7 5000000000000000000000000000000000000
11000		4.23000000740113L+0	1.04248724690340E+1	7.5000000000000E+0
Node	696	3.75000000565405E+0	1.04248724690340E+1	7.5000000000000E+0
Node	697	3.25000000384697E+0	1.04248724690340E+1	7.5000000000000E+0
Node	698	2.75000000203990E+0	1.04248724690340E+1	7.5000000000000E+0
Node	699	5.25000001107528E+0	1.04248724690340E+1	6.0000000000000E+0
Node	700	5.25000001107528E+0	1.04248724690340E+1	5.5000000000000E+0
Node	701	5.25000001107528E+0	1.04248724690340E+1	5.0000000000000E+0
Node	702	5.25000001107527E+0	1.04248724690340E+1	4.5000000000000E+0
Node	703	5.25000001107527E+0	1.04248724690340E+1	4.0000000000000E+0
Node	704	5.25000001107527E+0	1.04248724690340E+1	3.5000000000000E+0
Node	705	5.25000001107527E+0	1.04248724690340E+1	3.0000000000000E+0
Node	706	5.25000001107527E+0	1.04248724690340E+1	2.50000000000000E+0
Node	707	5.25000001107527E+0	1.04248724690340E+1	2.00000000000000E+0
Node	708	5.25000001107527E+0	1.04248724690340E+1	1.5000000000000E+0
Node	709	5.25000001107527E+0	1.04248724690340E+1	1.0000000000000E+0
Node	710	5.25000001107527E+0	1.04248724690340E+1	5.0000000000000E-1
Node	711	4.75000000784555E+0	1.04248724690340E+1	5.00000000017884E-1
Node	712	4.25000000469509E+0	1.04248724690340E+1	5.00000000036284E-1
Node	713	3.75000000177337E+0	1.04248724690340E+1	5.00000000048047E-1
Node	714	3.24999999935881E+0	1.04248724690340E+1	5.00000000046938E-1
Node	715	2.74999999813679E+0	1.04248724690340E+1	5.00000000030714E-1
Node	716	4.75000000815071E+0	1.04248724690340E+1	1.00000000003525E+0
Node	717	4.25000000534430E+0	1.04248724690340E+1	1.000000000007016E+0
Node	718	3.75000000286416E+0	1.04248724690340E+1	1.00000000008975E+0
Node	719	3.25000000097250E+0	1.04248724690340E+1	1.00000000008315E+0
Node	720	2.74999999999973E+0	1.04248724690340E+1	1.00000000005068E+0
Node	721	4.75000000836756E+0	1.04248724690340E+1	1.50000000004392E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 151 di 170

Node	722	4.25000000578661E+0	1.04248724690340E+1	1.50000000008320E+0
Node	723	3.75000000354823E+0	1.04248724690340E+1	1.50000000009798E+0
Node	724	3.25000000183916E+0	1.04248724690340E+1	1.500000000008029E+0
Node	725	2.75000000076148E+0	1.04248724690340E+1	1.50000000003859E+0
Node	726	4.75000000851962E+0	1.04248724690340E+1	2.00000000004027E+0
Node	727	4.25000000608625E+0	1.04248724690340E+1	2.000000000007021E+0
Node	728	3.75000000397394E+0	1.04248724690340E+1	2.00000000007239E+0
Node	729	3.25000000231239E+0	1.04248724690340E+1	2.00000000004511E+0
Node	730	2.75000000111007E+0	1.04248724690340E+1	2.00000000000894E+0
Node	731	4.75000000863366E+0	1.04248724690340E+1	2.50000000003022E+0
Node	732	4.25000000630282E+0	1.04248724690340E+1	2.50000000004860E+0
Node	733	3.75000000425879E+0	1.04248724690340E+1	2.50000000004102E+0
Node	734	3.25000000259734E+0	1.04248724690340E+1	2.50000000001317E+0
Node	735	2.75000000129685E+0	1.04248724690340E+1	2.4999999999987E+0
Node	736	4.75000000872707E+0	1.04248724690340E+1	3.00000000002221E+0
Node	737	4.25000000647644E+0	1.04248724690340E+1	3.00000000003293E+0
Node	738	3.75000000447625E+0	1.04248724690340E+1	3.00000000002028E+0
Node	739	3.25000000280138E+0	1.04248724690340E+1	2.9999999999428E+0
Node	740	2.75000000142277E+0	1.04248724690340E+1	2.99999999998156E+0
Node	741	4.75000000881027E+0	1.04248724690340E+1	3.50000000001794E+0
Node	742	4.25000000662956E+0	1.04248724690340E+1	3.50000000002510E+0
Node	743	3.75000000466339E+0	1.04248724690340E+1	3.50000000001043E+0
Node	744	3.25000000297165E+0	1.04248724690340E+1	3.49999999998581E+0
Node	745	2.75000000152523E+0	1.04248724690340E+1	3.49999999997767E+0
Node	746	4.75000000888865E+0	1.04248724690340E+1	4.00000000001658E+0
Node	747	4.25000000677332E+0	1.04248724690340E+1	4.00000000002293E+0
Node	748	3.75000000483732E+0	1.04248724690340E+1	4.00000000000791E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 152 di 170

Node	749	3.25000000312796E+0	1.04248724690340E+1	3.99999999998382E+0
Node	750	2.75000000161849E+0	1.04248724690340E+1	3.99999999997691E+0
Node	751	4.75000000896474E+0	1.04248724690340E+1	4.50000000001660E+0
Node	752	4.25000000691268E+0	1.04248724690340E+1	4.50000000002340E+0
Node	753	3.75000000500523E+0	1.04248724690340E+1	4.50000000000890E+0
Node	754	3.25000000327814E+0	1.04248724690340E+1	4.49999999998505E+0
Node	755	2.75000000170781E+0	1.04248724690340E+1	4.49999999997782E+0
Node	756	4.75000000903965E+0	1.04248724690340E+1	5.00000000001642E+0
Node	757	4.25000000704963E+0	1.04248724690340E+1	5.00000000002363E+0
Node	758	3.75000000516970E+0	1.04248724690340E+1	5.00000000001018E+0
Node	759	3.25000000342473E+0	1.04248724690340E+1	4.99999999998725E+0
Node	760	2.75000000179474E+0	1.04248724690340E+1	4.99999999997968E+0
Node	761	4.75000000911411E+0	1.04248724690340E+1	5.50000000001454E+0
Node	762	4.25000000718514E+0	1.04248724690340E+1	5.50000000002105E+0
Node	763	3.75000000533149E+0	1.04248724690340E+1	5.50000000000941E+0
Node	764	3.25000000356797E+0	1.04248724690340E+1	5.49999999998949E+0
Node	765	2.75000000187913E+0	1.04248724690340E+1	5.49999999998280E+0
Node	766	4.75000000918931E+0	1.04248724690340E+1	6.00000000000955E+0
Node	767	4.25000000732079E+0	1.04248724690340E+1	6.00000000001364E+0
Node	768	3.75000000549158E+0	1.04248724690340E+1	6.00000000000570E+0
Node	769	3.25000000370784E+0	1.04248724690340E+1	5.99999999999279E+0
Node	770	2.75000000196047E+0	1.04248724690340E+1	5.99999999998876E+0
Node	771	6.00031682290128E+0	1.04248724690340E+1	6.50000000000000E+0
Node	772	5.62515841698828E+0	1.04248724690340E+1	6.50000000000000E+0
Node	773	5.62515841698828E+0	1.04248724690340E+1	8.0000000000000E+0
Node	774	6.00031682290128E+0	1.04248724690340E+1	8.0000000000000E+0
Node	775	6.00031682290128E+0	1.04248724690340E+1	7.50000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 153 di 170

Node	776	6.00031682290128E+0	1.04248724690340E+1	7.0000000000000E+0
Node	777	5.62515841698828E+0	1.04248724690340E+1	7.0000000000000E+0
Node	778	5.62515841698828E+0	1.04248724690340E+1	7.5000000000000E+0
Node	779	6.00028504183321E+0	1.04248852617166E+1	6.0000000000000E+0
Node	780	6.00027680839591E+0	1.04248885758831E+1	5.5000000000000E+0
Node	781	6.00026857495861E+0	1.04248918900496E+1	5.0000000000000E+0
Node	782	6.00026034152130E+0	1.04248952042160E+1	4.5000000000000E+0
Node	783	6.00025210808400E+0	1.04248985183825E+1	4.0000000000000E+0
Node	784	6.00024387464670E+0	1.04249018325490E+1	3.5000000000000E+0
Node	785	6.00023564120939E+0	1.04249051467155E+1	3.0000000000000E+0
Node	786	6.00022740777209E+0	1.04249084608819E+1	2.50000000000000E+0
Node	787	6.00021917433479E+0	1.04249117750484E+1	2.00000000000000E+0
Node	788	6.00021094089749E+0	1.04249150892149E+1	1.5000000000000E+0
Node	789	6.00020270746018E+0	1.04249184033814E+1	1.0000000000000E+0
Node	790	6.00019447402288E+0	1.04249217175478E+1	5.0000000000000E-1
Node	791	5.62515841698828E+0	1.04248724690340E+1	5.00000000000000E-1
Node	792	5.62515841698828E+0	1.04248724690340E+1	1.0000000000000E+0
Node	793	5.62515841698828E+0	1.04248724690340E+1	1.5000000000000E+0
Node	794	5.62515841698828E+0	1.04248724690340E+1	2.00000000000000E+0
Node	795	5.62515841698828E+0	1.04248724690340E+1	2.50000000000000E+0
Node	796	5.62515841698828E+0	1.04248724690340E+1	3.0000000000000E+0
Node	797	5.62515841698828E+0	1.04248724690340E+1	3.5000000000000E+0
Node	798	5.62515841698828E+0	1.04248724690340E+1	4.0000000000000E+0
Node	799	5.62515841698828E+0	1.04248724690340E+1	4.50000000000000E+0
Node	800	5.62515841698828E+0	1.04248724690340E+1	5.0000000000000E+0
Node	801	5.62515841698828E+0	1.04248724690340E+1	5.5000000000000E+0
Node	802	5.62515841698828E+0	1.04248724690340E+1	6.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 154 di 170

Node	803	6.75000000023282E+0	1.04249999981604E+1	6.5000000000000E+0
Node	804	6.75000000023282E+0	1.04249999981604E+1	8.000000000000E+0
Node	805	6.75000000023282E+0	1.04249999981604E+1	7.5000000000000E+0
Node	806	6.75000000023282E+0	1.04249999981604E+1	7.0000000000000E+0
Node	807	6.74999999805757E+0	1.04249744127951E+1	5.9999999999376E+0
Node	808	6.74999999749403E+0	1.04249677844622E+1	5.49999999980753E+0
Node	809	6.74999999693050E+0	1.04249611561292E+1	4.99999999971130E+0
Node	810	6.74999999636696E+0	1.04249545277962E+1	4.49999999961506E+0
Node	811	6.74999999580342E+0	1.04249478994633E+1	3.9999999951883E+0
Node	812	6.74999999523989E+0	1.04249412711303E+1	3.49999999942259E+0
Node	813	6.74999999467635E+0	1.04249346427973E+1	2.99999999932636E+0
Node	814	6.74999999411281E+0	1.04249280144644E+1	2.49999999923012E+0
Node	815	6.74999999354928E+0	1.04249213861314E+1	1.99999999913389E+0
Node	816	6.74999999298574E+0	1.04249147577985E+1	1.49999999903765E+0
Node	817	6.74999999242220E+0	1.04249081294655E+1	9.999999998941416E-1
Node	818	6.74999999185867E+0	1.04249015011325E+1	4.99999998845182E-1
Node	819	6.37515836954979E+0	1.04249362335900E+1	4.999999999590159E-1
Node	820	6.37515841156705E+0	1.04249362335972E+1	9.99999999470708E-1
Node	821	6.37515841156705E+0	1.04249362335972E+1	1.49999999951883E+0
Node	822	6.37515841156705E+0	1.04249362335972E+1	1.99999999956694E+0
Node	823	6.37515841156705E+0	1.04249362335972E+1	2.49999999961506E+0
Node	824	6.37515841156705E+0	1.04249362335972E+1	2.99999999966318E+0
Node	825	6.37515841156705E+0	1.04249362335972E+1	3.49999999971129E+0
Node	826	6.37515841156705E+0	1.04249362335972E+1	3.99999999975941E+0
Node	827	6.37515841156705E+0	1.04249362335972E+1	4.49999999980753E+0
Node	828	6.37515841156705E+0	1.04249362335972E+1	4.99999999985565E+0
Node	829	6.37515841156705E+0	1.04249362335972E+1	5.49999999990376E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 155 di 170

Node	830	6.27497339467451E+0	1.04249191910543E+1	5.9999999995188E+0
Node	831	8.69785079418215E+0	1.04248724690340E+1	6.5000000000000E+0
Node	832	8.21088809569482E+0	1.04249043513156E+1	6.5000000000000E+0
Node	833	7.72392539720749E+0	1.04249362335972E+1	6.5000000000000E+0
Node	834	7.23696269872016E+0	1.04249681158788E+1	6.5000000000000E+0
Node	835	7.23696269872016E+0	1.04249681158788E+1	8.0000000000000E+0
Node	836	7.72392539720749E+0	1.04249362335972E+1	8.0000000000000E+0
Node	837	8.21088809569482E+0	1.04249043513156E+1	8.0000000000000E+0
Node	838	8.69785079418215E+0	1.04248724690340E+1	8.0000000000000E+0
Node	839	8.69785079418215E+0	1.04248724690340E+1	7.50000000000000E+0
Node	840	8.69785079418215E+0	1.04248724690340E+1	7.0000000000000E+0
Node	841	8.21088809569482E+0	1.04249043513156E+1	7.0000000000000E+0
Node	842	7.72392539720749E+0	1.04249362335972E+1	7.0000000000000E+0
Node	843	7.23696269872016E+0	1.04249681158788E+1	7.0000000000000E+0
Node	844	8.21088809569482E+0	1.04249043513156E+1	7.50000000000000E+0
Node	845	7.72392539720749E+0	1.04249362335972E+1	7.50000000000000E+0
Node	846	7.23696269872016E+0	1.04249681158788E+1	7.5000000000000E+0
Node	847	8.69785079418215E+0	1.04248724690340E+1	6.0000000000000E+0
Node	848	8.69785079418215E+0	1.04248724690340E+1	5.5000000000000E+0
Node	849	8.69785079418215E+0	1.04248724690340E+1	5.0000000000000E+0
Node	850	8.69785079418215E+0	1.04248724690340E+1	4.50000000000000E+0
Node	851	8.69785079418215E+0	1.04248724690340E+1	4.0000000000000E+0
Node	852	8.69785079418215E+0	1.04248724690340E+1	3.5000000000000E+0
Node	853	8.69785079418215E+0	1.04248724690340E+1	3.0000000000000E+0
Node	854	8.69785079418215E+0	1.04248724690340E+1	2.50000000000000E+0
Node	855	8.69785079418215E+0	1.04248724690340E+1	2.00000000000000E+0
Node	856	8.69785079418215E+0	1.04248724690340E+1	1.5000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 156 di 170

Node	857	8.69785079418215E+0	1.04248724690340E+1	1.0000000000000E+0
Node	858	8.69785079418215E+0	1.04248724690340E+1	5.0000000000000E-1
Node	859	8.21088809469422E+0	1.04249043513156E+1	4.99999999924302E-1
Node	860	7.72392539542360E+0	1.04249362335973E+1	4.99999999805137E-1
Node	861	7.23696269682433E+0	1.04249681158789E+1	4.99999999534895E-1
Node	862	8.21088809514321E+0	1.04249043513156E+1	9.99999999892072E-1
Node	863	7.72392539630518E+0	1.04249362335972E+1	9.99999999738427E-1
Node	864	7.23696269792539E+0	1.04249681158788E+1	9.99999999443905E-1
Node	865	8.21088809539428E+0	1.04249043513156E+1	1.49999999988263E+0
Node	866	7.72392539674043E+0	1.04249362335972E+1	1.49999999972090E+0
Node	867	7.23696269834934E+0	1.04249681158788E+1	1.49999999943640E+0
Node	868	8.21088809551930E+0	1.04249043513156E+1	1.99999999987123E+0
Node	869	7.72392539693940E+0	1.04249362335972E+1	1.99999999969772E+0
Node	870	7.23696269851687E+0	1.04249681158788E+1	1.99999999944049E+0
Node	871	8.21088809557781E+0	1.04249043513156E+1	2.49999999985874E+0
Node	872	7.72392539702791E+0	1.04249362335972E+1	2.49999999968661E+0
Node	873	7.23696269858496E+0	1.04249681158788E+1	2.49999999946819E+0
Node	874	8.21088809560758E+0	1.04249043513156E+1	2.99999999985676E+0
Node	875	7.72392539707236E+0	1.04249362335972E+1	2.99999999969606E+0
Node	876	7.23696269861806E+0	1.04249681158788E+1	2.99999999951388E+0
Node	877	8.21088809562592E+0	1.04249043513156E+1	3.49999999986510E+0
Node	878	7.72392539710024E+0	1.04249362335972E+1	3.49999999972193E+0
Node	879	7.23696269863897E+0	1.04249681158788E+1	3.49999999957136E+0
Node	880	8.21088809563992E+0	1.04249043513156E+1	3.99999999988098E+0
Node	881	7.72392539712208E+0	1.04249362335972E+1	3.99999999975887E+0
Node	882	7.23696269865566E+0	1.04249681158788E+1	3.99999999963619E+0
Node	883	8.21088809565224E+0	1.04249043513156E+1	4.49999999990162E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 157 di 170

Node	884	7.72392539714163E+0	1.04249362335972E+1	4.49999999980253E+0
Node	885	7.23696269867081E+0	1.04249681158788E+1	4.49999999970533E+0
Node	886	8.21088809566374E+0	1.04249043513156E+1	4.99999999992494E+0
Node	887	7.72392539715996E+0	1.04249362335972E+1	4.99999999984982E+0
Node	888	7.23696269868508E+0	1.04249681158788E+1	4.99999999977680E+0
Node	889	8.21088809567454E+0	1.04249043513156E+1	5.49999999994956E+0
Node	890	7.72392539717708E+0	1.04249362335972E+1	5.49999999989887E+0
Node	891	7.23696269869827E+0	1.04249681158788E+1	5.49999999984964E+0
Node	892	8.21088809568471E+0	1.04249043513156E+1	5.99999999997471E+0
Node	893	7.72392539719274E+0	1.04249362335972E+1	5.99999999994892E+0
Node	894	7.23696269870993E+0	1.04249681158788E+1	5.99999999992381E+0
Node	895	8.69785079418215E+0	1.57499999899863E+0	6.50000000000000E+0
Node	896	8.69785079418215E+0	2.06665958066726E+0	6.5000000000000E+0
Node	897	8.69785079418215E+0	2.55831916233589E+0	6.50000000000000E+0
Node	898	8.69785079418215E+0	3.04997874400453E+0	6.50000000000000E+0
Node	899	8.69785079418215E+0	3.54163832567316E+0	6.50000000000000E+0
Node	900	8.69785079418215E+0	4.03329790734179E+0	6.50000000000000E+0
Node	901	8.69785079418215E+0	4.52495748901042E+0	6.5000000000000E+0
Node	902	8.69785079418215E+0	5.01661707067906E+0	6.50000000000000E+0
Node	903	8.69785079418215E+0	5.50827665234769E+0	6.50000000000000E+0
Node	904	8.69785079418215E+0	5.99993623401632E+0	6.50000000000000E+0
Node	905	8.69785079418215E+0	6.49159581568496E+0	6.50000000000000E+0
Node	906	8.69785079418215E+0	6.98325539735359E+0	6.50000000000000E+0
Node	907	8.69785079418215E+0	7.47491497902222E+0	6.50000000000000E+0
Node	908	8.69785079418215E+0	7.96657456069085E+0	6.50000000000000E+0
Node	909	8.69785079418215E+0	8.45823414235949E+0	6.50000000000000E+0
Node	910	8.69785079418215E+0	8.94989372402812E+0	6.5000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 158 di 170

Node	911	8.69785079418215E+0	9.44155330569675E+0	6.5000000000000E+0
Node	912	8.69785079418215E+0	9.93321288736539E+0	6.5000000000000E+0
Node	913	8.69785079418215E+0	9.93321288736539E+0	8.000000000000E+0
Node	914	8.69785079418215E+0	9.44155330569676E+0	8.000000000000E+0
Node	915	8.69785079418215E+0	8.94989372402812E+0	8.000000000000E+0
Node	916	8.69785079418215E+0	8.45823414235949E+0	8.000000000000E+0
Node	917	8.69785079418215E+0	7.96657456069086E+0	8.000000000000E+0
Node	918	8.69785079418215E+0	7.47491497902223E+0	8.000000000000E+0
Node	919	8.69785079418215E+0	6.98325539735359E+0	8.0000000000000E+0
Node	920	8.69785079418215E+0	6.49159581568496E+0	8.0000000000000E+0
Node	921	8.69785079418215E+0	5.99993623401633E+0	8.000000000000E+0
Node	922	8.69785079418215E+0	5.50827665234769E+0	8.000000000000E+0
Node	923	8.69785079418215E+0	5.01661707067906E+0	8.0000000000000E+0
Node	924	8.69785079418215E+0	4.52495748901043E+0	8.000000000000E+0
Node	925	8.69785079418215E+0	4.03329790734179E+0	8.000000000000E+0
Node	926	8.69785079418215E+0	3.54163832567316E+0	8.000000000000E+0
Node	927	8.69785079418215E+0	3.04997874400453E+0	8.000000000000E+0
Node	928	8.69785079418215E+0	2.55831916233589E+0	8.0000000000000E+0
Node	929	8.69785079418215E+0	2.06665958066726E+0	8.000000000000E+0
Node	930	8.69785079418215E+0	1.57499999899863E+0	8.000000000000E+0
Node	931	8.69785079418215E+0	1.57499999899863E+0	7.5000000000000E+0
Node	932	8.69785079418215E+0	1.57499999899863E+0	7.0000000000000E+0
Node	933	8.69785079418215E+0	2.06665958066726E+0	7.0000000000000E+0
Node	934	8.69785079418215E+0	2.55831916233589E+0	7.0000000000000E+0
Node	935	8.69785079418215E+0	3.04997874400453E+0	7.0000000000000E+0
Node	936	8.69785079418215E+0	3.54163832567316E+0	7.0000000000000E+0
Node	937	8.69785079418215E+0	4.03329790734179E+0	7.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 159 di 170

Node	938	8.69785079418215E+0	4.52495748901043E+0	7.0000000000000E+0
Node	939	8.69785079418215E+0	5.01661707067906E+0	7.0000000000000E+0
Node	940	8.69785079418215E+0	5.50827665234769E+0	7.0000000000000E+0
Node	941	8.69785079418215E+0	5.99993623401632E+0	7.0000000000000E+0
Node	942	8.69785079418215E+0	6.49159581568496E+0	7.0000000000000E+0
Node	943	8.69785079418215E+0	6.98325539735359E+0	7.0000000000000E+0
Node	944	8.69785079418215E+0	7.47491497902222E+0	7.0000000000000E+0
Node	945	8.69785079418215E+0	7.96657456069086E+0	7.0000000000000E+0
Node	946	8.69785079418215E+0	8.45823414235949E+0	7.0000000000000E+0
Node	947	8.69785079418215E+0	8.94989372402812E+0	7.0000000000000E+0
Node	948	8.69785079418215E+0	9.44155330569675E+0	7.0000000000000E+0
Node	949	8.69785079418215E+0	9.93321288736539E+0	7.0000000000000E+0
Node	950	8.69785079418215E+0	2.06665958066726E+0	7.5000000000000E+0
Node	951	8.69785079418215E+0	2.55831916233589E+0	7.5000000000000E+0
Node	952	8.69785079418215E+0	3.04997874400453E+0	7.5000000000000E+0
Node	953	8.69785079418215E+0	3.54163832567316E+0	7.5000000000000E+0
Node	954	8.69785079418215E+0	4.03329790734179E+0	7.5000000000000E+0
Node	955	8.69785079418215E+0	4.52495748901043E+0	7.5000000000000E+0
Node	956	8.69785079418215E+0	5.01661707067906E+0	7.5000000000000E+0
Node	957	8.69785079418215E+0	5.50827665234769E+0	7.5000000000000E+0
Node	958	8.69785079418215E+0	5.99993623401633E+0	7.5000000000000E+0
Node	959	8.69785079418215E+0	6.49159581568496E+0	7.5000000000000E+0
Node	960	8.69785079418215E+0	6.98325539735359E+0	7.5000000000000E+0
Node	961	8.69785079418215E+0	7.47491497902222E+0	7.5000000000000E+0
Node	962	8.69785079418215E+0	7.96657456069086E+0	7.5000000000000E+0
Node	963	8.69785079418215E+0	8.45823414235949E+0	7.5000000000000E+0
Node	964	8.69785079418215E+0	8.94989372402812E+0	7.5000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 160 di 170

Node	965	8.69785079418215E+0	9.44155330569675E+0	7.5000000000000E+0
Node	966	8.69785079418215E+0	9.93321288736539E+0	7.5000000000000E+0
Node	967	3.74936239561059E-1	1.04249999981604E+1	6.5000000000000E+0
Node	968	-1.27521110705686E-4	1.04249999981604E+1	6.5000000000000E+0
Node	969	-1.27521110705686E-4	1.04249999981604E+1	7.0000000000000E+0
Node	970	-1.27521110705686E-4	1.04249999981604E+1	7.5000000000000E+0
Node	971	-1.27521110705686E-4	1.04249999981604E+1	8.0000000000000E+0
Node	972	3.74936239561059E-1	1.04249999981604E+1	8.0000000000000E+0
Node	973	3.74936239561059E-1	1.04249999981604E+1	7.0000000000000E+0
Node	974	3.74936239561059E-1	1.04249999981604E+1	7.5000000000000E+0
Node	975	8.69785079418215E+0	1.57499999899863E+0	6.0000000000000E+0
Node	976	8.69785079418215E+0	1.57499999899863E+0	5.5000000000000E+0
Node	977	8.69785079418215E+0	1.57499999899863E+0	5.0000000000000E+0
Node	978	8.69785079418215E+0	1.57499999899863E+0	4.50000000000000E+0
Node	979	8.69785079418215E+0	1.57499999899863E+0	4.0000000000000E+0
Node	980	8.69785079418215E+0	1.57499999899863E+0	3.5000000000000E+0
Node	981	8.69785079418215E+0	1.57499999899863E+0	3.0000000000000E+0
Node	982	8.69785079418215E+0	1.57499999899863E+0	2.5000000000000E+0
Node	983	8.69785079418215E+0	1.57499999899863E+0	2.0000000000000E+0
Node	984	8.69785079418215E+0	1.57499999899863E+0	1.50000000000000E+0
Node	985	8.69785079418215E+0	1.57499999899863E+0	1.0000000000000E+0
Node	986	8.69785079418215E+0	1.57499999899863E+0	5.00000000000000E-1
Node	987	8.69785079418215E+0	2.06665958066726E+0	5.0000000000000E-1
Node	988	8.69785079418215E+0	2.55831916233589E+0	5.00000000000000E-1
Node	989	8.69785079418215E+0	3.04997874400453E+0	5.0000000000000E-1
Node	990	8.69785079418215E+0	3.54163832567316E+0	5.00000000000000E-1
Node	991	8.69785079418215E+0	4.03329790734179E+0	5.0000000000000E-1

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 161 di 170

Node	992	8.69785079418215E+0	4.52495748901042E+0	5.0000000000000E-1
Node	993	8.69785079418215E+0	5.01661707067906E+0	5.0000000000000E-1
Node	994	8.69785079418215E+0	5.50827665234769E+0	5.0000000000000E-1
Node	995	8.69785079418215E+0	5.99993623401632E+0	5.0000000000000E-1
Node	996	8.69785079418215E+0	6.49159581568496E+0	5.0000000000000E-1
Node	997	8.69785079418215E+0	6.98325539735359E+0	5.0000000000000E-1
Node	998	8.69785079418215E+0	7.47491497902222E+0	5.0000000000000E-1
Node	999	8.69785079418215E+0	7.96657456069086E+0	5.0000000000000E-1
Node	1000	8.69785079418215E+0	8.45823414235949E+0	5.0000000000000E-1
Node	1001	8.69785079418215E+0	8.94989372402812E+0	5.0000000000000E-1
Node	1002	8.69785079418215E+0	9.44155330569676E+0	5.0000000000000E-1
Node	1003	8.69785079418215E+0	9.93321288736539E+0	5.0000000000000E-1
Node	1004	8.69785079418215E+0	2.06665958066726E+0	1.0000000000000E+0
Node	1005	8.69785079418215E+0	2.55831916233589E+0	1.0000000000000E+0
Node	1006	8.69785079418215E+0	3.04997874400452E+0	1.0000000000000E+0
Node	1007	8.69785079418215E+0	3.54163832567316E+0	1.0000000000000E+0
Node	1008	8.69785079418215E+0	4.03329790734179E+0	1.0000000000000E+0
Node	1009	8.69785079418215E+0	4.52495748901042E+0	1.0000000000000E+0
Node	1010	8.69785079418215E+0	5.01661707067906E+0	1.0000000000000E+0
Node	1011	8.69785079418215E+0	5.50827665234769E+0	1.0000000000000E+0
Node	1012	8.69785079418215E+0	5.99993623401632E+0	1.0000000000000E+0
Node	1013	8.69785079418215E+0	6.49159581568496E+0	1.0000000000000E+0
Node	1014	8.69785079418215E+0	6.98325539735359E+0	1.0000000000000E+0
Node	1015	8.69785079418215E+0	7.47491497902222E+0	1.0000000000000E+0
Node	1016	8.69785079418215E+0	7.96657456069086E+0	1.0000000000000E+0
Node	1017	8.69785079418215E+0	8.45823414235949E+0	1.0000000000000E+0
Node	1018	8.69785079418215E+0	8.94989372402812E+0	1.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 162 di 170

Node	1019	8.69785079418215E+0	9.44155330569676E+0	1.0000000000000E+0
Node	1020	8.69785079418215E+0	9.93321288736539E+0	1.0000000000000E+0
Node	1021	8.69785079418215E+0	2.06665958066726E+0	1.50000000000000E+0
Node	1022	8.69785079418215E+0	2.55831916233589E+0	1.5000000000000E+0
Node	1023	8.69785079418215E+0	3.04997874400452E+0	1.5000000000000E+0
Node	1024	8.69785079418215E+0	3.54163832567316E+0	1.5000000000000E+0
Node	1025	8.69785079418215E+0	4.03329790734179E+0	1.5000000000000E+0
Node	1026	8.69785079418215E+0	4.52495748901042E+0	1.5000000000000E+0
Node	1027	8.69785079418215E+0	5.01661707067906E+0	1.5000000000000E+0
Node	1028	8.69785079418215E+0	5.50827665234769E+0	1.5000000000000E+0
Node	1029	8.69785079418215E+0	5.99993623401632E+0	1.5000000000000E+0
Node	1030	8.69785079418215E+0	6.49159581568496E+0	1.5000000000000E+0
Node	1031	8.69785079418215E+0	6.98325539735359E+0	1.5000000000000E+0
Node	1032	8.69785079418215E+0	7.47491497902222E+0	1.5000000000000E+0
Node	1033	8.69785079418215E+0	7.96657456069086E+0	1.5000000000000E+0
Node	1034	8.69785079418215E+0	8.45823414235949E+0	1.5000000000000E+0
Node	1035	8.69785079418215E+0	8.94989372402812E+0	1.5000000000000E+0
Node	1036	8.69785079418215E+0	9.44155330569676E+0	1.5000000000000E+0
Node	1037	8.69785079418215E+0	9.93321288736539E+0	1.5000000000000E+0
Node	1038	8.69785079418215E+0	2.06665958066726E+0	2.0000000000000E+0
Node	1039	8.69785079418215E+0	2.55831916233589E+0	2.0000000000000E+0
Node	1040	8.69785079418215E+0	3.04997874400452E+0	2.0000000000000E+0
Node	1041	8.69785079418215E+0	3.54163832567316E+0	2.0000000000000E+0
Node	1042	8.69785079418215E+0	4.03329790734179E+0	2.0000000000000E+0
Node	1043	8.69785079418215E+0	4.52495748901042E+0	2.0000000000000E+0
Node	1044	8.69785079418215E+0	5.01661707067906E+0	2.0000000000000E+0
Node	1045	8.69785079418215E+0	5.50827665234769E+0	2.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 163 di 170

Node	1046	8.69785079418215E+0	5.99993623401632E+0	2.0000000000000E+0
Node	1047	8.69785079418215E+0	6.49159581568496E+0	2.0000000000000E+0
Node	1048	8.69785079418215E+0	6.98325539735359E+0	2.0000000000000E+0
Node	1049	8.69785079418215E+0	7.47491497902222E+0	2.0000000000000E+0
Node	1050	8.69785079418215E+0	7.96657456069086E+0	2.0000000000000E+0
Node	1051	8.69785079418215E+0	8.45823414235949E+0	2.0000000000000E+0
Node	1052	8.69785079418215E+0	8.94989372402812E+0	2.0000000000000E+0
Node	1053	8.69785079418215E+0	9.44155330569676E+0	2.0000000000000E+0
Node	1054	8.69785079418215E+0	9.93321288736539E+0	2.0000000000000E+0
Node	1055	8.69785079418215E+0	2.06665958066726E+0	2.5000000000000E+0
Node	1056	8.69785079418215E+0	2.55831916233589E+0	2.50000000000000E+0
Node	1057	8.69785079418215E+0	3.04997874400452E+0	2.5000000000000E+0
Node	1058	8.69785079418215E+0	3.54163832567316E+0	2.5000000000000E+0
Node	1059	8.69785079418215E+0	4.03329790734179E+0	2.5000000000000E+0
Node	1060	8.69785079418215E+0	4.52495748901042E+0	2.5000000000000E+0
Node	1061	8.69785079418215E+0	5.01661707067906E+0	2.5000000000000E+0
Node	1062	8.69785079418215E+0	5.50827665234769E+0	2.5000000000000E+0
Node	1063	8.69785079418215E+0	5.99993623401632E+0	2.5000000000000E+0
Node	1064	8.69785079418215E+0	6.49159581568496E+0	2.5000000000000E+0
Node	1065	8.69785079418215E+0	6.98325539735359E+0	2.5000000000000E+0
Node	1066	8.69785079418215E+0	7.47491497902222E+0	2.5000000000000E+0
Node	1067	8.69785079418215E+0	7.96657456069086E+0	2.5000000000000E+0
Node	1068	8.69785079418215E+0	8.45823414235949E+0	2.5000000000000E+0
Node	1069	8.69785079418215E+0	8.94989372402812E+0	2.5000000000000E+0
Node	1070	8.69785079418215E+0	9.44155330569675E+0	2.50000000000000E+0
Node	1071	8.69785079418215E+0	9.93321288736539E+0	2.5000000000000E+0
Node	1072	8.69785079418215E+0	2.06665958066726E+0	3.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 164 di 170

Node	1073	8.69785079418215E+0	2.55831916233589E+0	3.0000000000000E+0
Node	1074	8.69785079418215E+0	3.04997874400452E+0	3.0000000000000E+0
Node	1075	8.69785079418215E+0	3.54163832567316E+0	3.0000000000000E+0
Node	1076	8.69785079418215E+0	4.03329790734179E+0	3.0000000000000E+0
Node	1077	8.69785079418215E+0	4.52495748901042E+0	3.0000000000000E+0
Node	1078	8.69785079418215E+0	5.01661707067906E+0	3.0000000000000E+0
Node	1079	8.69785079418215E+0	5.50827665234769E+0	3.0000000000000E+0
Node	1080	8.69785079418215E+0	5.99993623401632E+0	3.0000000000000E+0
Node	1081	8.69785079418215E+0	6.49159581568496E+0	3.0000000000000E+0
Node	1082	8.69785079418215E+0	6.98325539735359E+0	3.0000000000000E+0
Node	1083	8.69785079418215E+0	7.47491497902222E+0	3.0000000000000E+0
Node	1084	8.69785079418215E+0	7.96657456069086E+0	3.0000000000000E+0
Node	1085	8.69785079418215E+0	8.45823414235949E+0	3.0000000000000E+0
Node	1086	8.69785079418215E+0	8.94989372402812E+0	3.0000000000000E+0
Node	1087	8.69785079418215E+0	9.44155330569676E+0	3.0000000000000E+0
Node	1088	8.69785079418215E+0	9.93321288736539E+0	3.0000000000000E+0
Node	1089	8.69785079418215E+0	2.06665958066726E+0	3.5000000000000E+0
Node	1090	8.69785079418215E+0	2.55831916233589E+0	3.5000000000000E+0
Node	1091	8.69785079418215E+0	3.04997874400452E+0	3.5000000000000E+0
Node	1092	8.69785079418215E+0	3.54163832567316E+0	3.5000000000000E+0
Node	1093	8.69785079418215E+0	4.03329790734179E+0	3.5000000000000E+0
Node	1094	8.69785079418215E+0	4.52495748901042E+0	3.5000000000000E+0
Node	1095	8.69785079418215E+0	5.01661707067906E+0	3.5000000000000E+0
Node	1096	8.69785079418215E+0	5.50827665234769E+0	3.5000000000000E+0
Node	1097	8.69785079418215E+0	5.99993623401632E+0	3.5000000000000E+0
Node	1098	8.69785079418215E+0	6.49159581568496E+0	3.5000000000000E+0
Node	1099	8.69785079418215E+0	6.98325539735359E+0	3.5000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 165 di 170

Node	1100	8.69785079418215E+0	7.47491497902222E+0	3.5000000000000E+0
Node	1101	8.69785079418215E+0	7.96657456069086E+0	3.5000000000000E+0
Node	1102	8.69785079418215E+0	8.45823414235949E+0	3.5000000000000E+0
Node	1103	8.69785079418215E+0	8.94989372402812E+0	3.5000000000000E+0
Node	1104	8.69785079418215E+0	9.44155330569675E+0	3.5000000000000E+0
Node	1105	8.69785079418215E+0	9.93321288736539E+0	3.5000000000000E+0
Node	1106	8.69785079418215E+0	2.06665958066726E+0	4.0000000000000E+0
Node	1107	8.69785079418215E+0	2.55831916233589E+0	4.0000000000000E+0
Node	1108	8.69785079418215E+0	3.04997874400452E+0	4.0000000000000E+0
Node	1109	8.69785079418215E+0	3.54163832567316E+0	4.0000000000000E+0
Node	1110	8.69785079418215E+0	4.03329790734179E+0	4.0000000000000E+0
Node	1111	8.69785079418215E+0	4.52495748901042E+0	4.0000000000000E+0
Node	1112	8.69785079418215E+0	5.01661707067906E+0	4.0000000000000E+0
Node	1113	8.69785079418215E+0	5.50827665234769E+0	4.0000000000000E+0
Node	1114	8.69785079418215E+0	5.99993623401632E+0	4.0000000000000E+0
Node	1115	8.69785079418215E+0	6.49159581568495E+0	4.0000000000000E+0
Node	1116	8.69785079418215E+0	6.98325539735359E+0	4.0000000000000E+0
Node	1117	8.69785079418215E+0	7.47491497902222E+0	4.0000000000000E+0
Node	1118	8.69785079418215E+0	7.96657456069085E+0	4.0000000000000E+0
Node	1119	8.69785079418215E+0	8.45823414235949E+0	4.0000000000000E+0
Node	1120	8.69785079418215E+0	8.94989372402812E+0	4.0000000000000E+0
Node	1121	8.69785079418215E+0	9.44155330569675E+0	4.0000000000000E+0
Node	1122	8.69785079418215E+0	9.93321288736539E+0	4.0000000000000E+0
Node	1123	8.69785079418215E+0	2.06665958066726E+0	4.5000000000000E+0
Node	1124	8.69785079418215E+0	2.55831916233589E+0	4.5000000000000E+0
Node	1125	8.69785079418215E+0	3.04997874400452E+0	4.5000000000000E+0
Node	1126	8.69785079418215E+0	3.54163832567316E+0	4.5000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 166 di 170

Node	1127	8.69785079418215E+0	4.03329790734179E+0	4.5000000000000E+0
Node	1128	8.69785079418215E+0	4.52495748901042E+0	4.5000000000000E+0
Node	1129	8.69785079418215E+0	5.01661707067906E+0	4.5000000000000E+0
Node	1130	8.69785079418215E+0	5.50827665234769E+0	4.50000000000000E+0
Node	1131	8.69785079418215E+0	5.99993623401632E+0	4.50000000000000E+0
Node	1132	8.69785079418215E+0	6.49159581568495E+0	4.5000000000000E+0
Node	1133	8.69785079418215E+0	6.98325539735359E+0	4.5000000000000E+0
Node	1134	8.69785079418215E+0	7.47491497902222E+0	4.5000000000000E+0
Node	1135	8.69785079418215E+0	7.96657456069085E+0	4.5000000000000E+0
Node	1136	8.69785079418215E+0	8.45823414235949E+0	4.50000000000000E+0
Node	1137	8.69785079418215E+0	8.94989372402812E+0	4.5000000000000E+0
Node	1138	8.69785079418215E+0	9.44155330569675E+0	4.5000000000000E+0
Node	1139	8.69785079418215E+0	9.93321288736539E+0	4.5000000000000E+0
Node	1140	8.69785079418215E+0	2.06665958066726E+0	5.0000000000000E+0
Node	1141	8.69785079418215E+0	2.55831916233589E+0	5.0000000000000E+0
Node	1142	8.69785079418215E+0	3.04997874400452E+0	5.0000000000000E+0
Node	1143	8.69785079418215E+0	3.54163832567316E+0	5.0000000000000E+0
Node	1144	8.69785079418215E+0	4.03329790734179E+0	5.0000000000000E+0
Node	1145	8.69785079418215E+0	4.52495748901042E+0	5.0000000000000E+0
Node	1146	8.69785079418215E+0	5.01661707067906E+0	5.0000000000000E+0
Node	1147	8.69785079418215E+0	5.50827665234769E+0	5.0000000000000E+0
Node	1148	8.69785079418215E+0	5.99993623401632E+0	5.0000000000000E+0
Node	1149	8.69785079418215E+0	6.49159581568495E+0	5.0000000000000E+0
Node	1150	8.69785079418215E+0	6.98325539735359E+0	5.0000000000000E+0
Node	1151	8.69785079418215E+0	7.47491497902222E+0	5.0000000000000E+0
Node	1152	8.69785079418215E+0	7.96657456069085E+0	5.0000000000000E+0
Node	1153	8.69785079418215E+0	8.45823414235949E+0	5.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 167 di 170

Node	1154	8.69785079418215E+0	8.94989372402812E+0	5.0000000000000E+0
Node	1155	8.69785079418215E+0	9.44155330569675E+0	5.0000000000000E+0
Node	1156	8.69785079418215E+0	9.93321288736539E+0	5.0000000000000E+0
Node	1157	8.69785079418215E+0	2.06665958066726E+0	5.5000000000000E+0
Node	1158	8.69785079418215E+0	2.55831916233589E+0	5.5000000000000E+0
Node	1159	8.69785079418215E+0	3.04997874400452E+0	5.5000000000000E+0
Node	1160	8.69785079418215E+0	3.54163832567316E+0	5.5000000000000E+0
Node	1161	8.69785079418215E+0	4.03329790734179E+0	5.5000000000000E+0
Node	1162	8.69785079418215E+0	4.52495748901042E+0	5.5000000000000E+0
Node	1163	8.69785079418215E+0	5.01661707067906E+0	5.5000000000000E+0
Node	1164	8.69785079418215E+0	5.50827665234769E+0	5.5000000000000E+0
Node	1165	8.69785079418215E+0	5.99993623401632E+0	5.5000000000000E+0
Node	1166	8.69785079418215E+0	6.49159581568495E+0	5.5000000000000E+0
Node	1167	8.69785079418215E+0	6.98325539735359E+0	5.5000000000000E+0
Node	1168	8.69785079418215E+0	7.47491497902222E+0	5.5000000000000E+0
Node	1169	8.69785079418215E+0	7.96657456069085E+0	5.5000000000000E+0
Node	1170	8.69785079418215E+0	8.45823414235949E+0	5.5000000000000E+0
Node	1171	8.69785079418215E+0	8.94989372402812E+0	5.5000000000000E+0
Node	1172	8.69785079418215E+0	9.44155330569675E+0	5.5000000000000E+0
Node	1173	8.69785079418215E+0	9.93321288736539E+0	5.5000000000000E+0
Node	1174	8.69785079418215E+0	2.06665958066726E+0	6.0000000000000E+0
Node	1175	8.69785079418215E+0	2.55831916233589E+0	6.0000000000000E+0
Node	1176	8.69785079418215E+0	3.04997874400452E+0	6.0000000000000E+0
Node	1177	8.69785079418215E+0	3.54163832567316E+0	6.0000000000000E+0
Node	1178	8.69785079418215E+0	4.03329790734179E+0	6.0000000000000E+0
Node	1179	8.69785079418215E+0	4.52495748901042E+0	6.0000000000000E+0
Node	1180	8.69785079418215E+0	5.01661707067906E+0	6.0000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 168 di 170

Node	1181	8.69785079418215E+0	5.50827665234769E+0	6.0000000000000E+0
Node	1182	8.69785079418215E+0	5.99993623401632E+0	6.0000000000000E+0
Node	1183	8.69785079418215E+0	6.49159581568495E+0	6.0000000000000E+0
Node	1184	8.69785079418215E+0	6.98325539735359E+0	6.00000000000000E+0
Node	1185	8.69785079418215E+0	7.47491497902222E+0	6.00000000000000E+0
Node	1186	8.69785079418215E+0	7.96657456069085E+0	6.0000000000000E+0
Node	1187	8.69785079418215E+0	8.45823414235949E+0	6.0000000000000E+0
Node	1188	8.69785079418215E+0	8.94989372402812E+0	6.0000000000000E+0
Node	1189	8.69785079418215E+0	9.44155330569675E+0	6.0000000000000E+0
Node	1190	8.69785079418215E+0	9.93321288736539E+0	6.0000000000000E+0
Node	1191	-1.12070573619486E-4	1.04248822812962E+1	5.00000000097893E-1
Node	1192	-1.13358118376943E-4	1.04248920910349E+1	1.00000000019579E+0
Node	1193	-1.14645663134399E-4	1.04249019007736E+1	1.50000000029368E+0
Node	1194	-1.15933207891855E-4	1.04249117105122E+1	2.00000000039157E+0
Node	1195	-1.17220752649312E-4	1.04249215202509E+1	2.50000000048946E+0
Node	1196	-1.18508297406768E-4	1.04249313299896E+1	3.00000000058736E+0
Node	1197	-1.19795842164224E-4	1.04249411397283E+1	3.50000000068525E+0
Node	1198	-1.21083386921681E-4	1.04249509494670E+1	4.00000000078314E+0
Node	1199	-1.22370931679138E-4	1.04249607592057E+1	4.50000000088103E+0
Node	1200	-1.23658476436594E-4	1.04249705689444E+1	5.00000000097893E+0
Node	1201	-1.24946021194050E-4	1.04249803786830E+1	5.50000000107682E+0
Node	1202	-1.26233565951507E-4	1.04249901884217E+1	6.00000000117471E+0
Node	1203	3.74938477527049E-1	1.04249999981604E+1	5.00000000097064E-1
Node	1204	3.74936239561059E-1	1.04249999981604E+1	1.00000000019413E+0
Node	1205	3.74936239561059E-1	1.04249999981604E+1	1.50000000029119E+0
Node	1206	3.74936239561059E-1	1.04249999981604E+1	2.00000000038826E+0
Node	1207	3.74936239561059E-1	1.04249999981604E+1	2.50000000048532E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 169 di 170

Node	1208	3.74936239561059E-1	1.04249999981604E+1	3.00000000058238E+0
Node	1209	3.74936239561059E-1	1.04249999981604E+1	3.50000000067945E+0
Node	1210	3.74936239561059E-1	1.04249999981604E+1	4.00000000077651E+0
Node	1211	3.74936239561059E-1	1.04249999981604E+1	4.50000000087357E+0
Node	1212	3.74936239561059E-1	1.04249999981604E+1	5.00000000097064E+0
Node	1213	3.74936239561059E-1	1.04249999981604E+1	5.50000000106770E+0
Node	1214	3.74936239561059E-1	1.04249999981604E+1	6.00000000082713E+0
Node	1215	6.75000000023282E+0	1.57499999946429E+0	6.5000000000000E+0
Node	1216	7.23696269872016E+0	1.57499999934787E+0	6.50000000000000E+0
Node	1217	7.72392539720749E+0	1.57499999923146E+0	6.5000000000000E+0
Node	1218	8.21088809569482E+0	1.57499999911504E+0	6.5000000000000E+0
Node	1219	8.21088809569482E+0	1.57499999911504E+0	8.0000000000000E+0
Node	1220	7.72392539720749E+0	1.57499999923146E+0	8.0000000000000E+0
Node	1221	7.23696269872016E+0	1.57499999934787E+0	8.0000000000000E+0
Node	1222	6.75000000023282E+0	1.57499999946429E+0	8.0000000000000E+0
Node	1223	6.75000000023282E+0	1.57499999946429E+0	7.5000000000000E+0
Node	1224	6.75000000023282E+0	1.57499999946429E+0	7.0000000000000E+0
Node	1225	7.23696269872016E+0	1.57499999934787E+0	7.0000000000000E+0
Node	1226	7.72392539720749E+0	1.57499999923146E+0	7.0000000000000E+0
Node	1227	8.21088809569482E+0	1.57499999911504E+0	7.0000000000000E+0
Node	1228	7.23696269872016E+0	1.57499999934787E+0	7.5000000000000E+0
Node	1229	7.72392539720749E+0	1.57499999923146E+0	7.5000000000000E+0
Node	1230	8.21088809569482E+0	1.57499999911504E+0	7.5000000000000E+0
Node	1231	6.75000000023282E+0	1.57499999937087E+0	6.0000000000000E+0
Node	1232	6.75000000023282E+0	1.57499999934666E+0	5.5000000000000E+0
Node	1233	6.75000000023282E+0	1.57499999932246E+0	5.0000000000000E+0
Node	1234	6.75000000023282E+0	1.57499999929826E+0	4.5000000000000E+0

Relazione di calcolo Spalle

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

NM25 03 D 26 CL VI 03 04 001 A 170 di 170

Node	1235	6.75000000023282E+0	1.57499999927405E+0	4.0000000000000E+0
Node	1236	6.75000000023282E+0	1.57499999924985E+0	3.5000000000000E+0
Node	1237	6.75000000023282E+0	1.57499999922565E+0	3.0000000000000E+0
Node	1238	6.75000000023282E+0	1.57499999920145E+0	2.5000000000000E+0
Node	1239	6.75000000023282E+0	1.57499999917724E+0	2.0000000000000E+0
Node	1240	6.75000000023282E+0	1.57499999915304E+0	1.5000000000000E+0
Node	1241	6.75000000023282E+0	1.57499999912884E+0	1.0000000000000E+0
Node	1242	6.75000000023282E+0	1.57499999910463E+0	5.0000000000000E-1
Node	1243	7.23696269872016E+0	1.57499	