

IMPIANTO EOLICO "PERILLO SOPRANO"

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA ELETTRICA DA FONTE EOLICA, DELLE OPERE CONNESSE E DELLE STRUTTURE INDISPENSABILI, AI SENSI DEL D.LGS. N. 387 DEL 2003, COMPOSTO DA N° 10 AEROGENERATORI PER UNA POTENZA COMPLESSIVA DI 56 MW, SITO NEI COMUNI DI MONTEMILONE-VENOSA (PZ)

COD REG	DESCRIZIONE
PERSOP001	
SCALA DI RAPP.	A.11_Relazione preliminare strutture

PROPONENTE		CONSULENTE	
MILLEK SRL, VIA TADINO N. 52 20124 MILANO P.IVA 09702620965 MAIL : info@millek.it PEC : postmaster@pec.millek.it	milleK	Sectore: Civie - Ambientale Information VE IEEE	Corso Cornelio Tacito n.111 - 05100 Terni (TR) - P.Iva 01640650550 PEC: renovaprogetti@pec.it Ing. Daniele Cavallo Ordine deglli Ingegneri della Provincia di Brindisi N.1220

REDATTO	VERIFICATO	APPROVATO	REV	REV	REV
			DATA	DATA	
			09/09/2020		

INDICE

A.11.1	OGGETTO E SCOPO	3
A.11.2	CARATTERIZZAZIONE DEL SITO	5
A.11.2.1	Inquadramento territoriale	5
A.11.2.2	Inquadramento geologico ed idrogeologico	6
A.11.2.3	Caratterizzazione geotecnica del sottosuolo	9
A.11.3	IPOTESI DI PROGETTO DELLA FONDAZIONE 1	0
A.11.4	MODELLO DI CALCOLO 1	1
A.11.4.1	NORME DI RIFERIMENTO 1	4
A.11.4.2	MATERIALI STRUTTURALI 1	4
A.11.5	ANALISI DEI CARICHI 1	4
A.11.5.1	Azioni derivanti dalla sovrastruttura1	5
A.11.5.2	Peso proprio della fondazione1	6
A.11.5.3	Peso proprio del riempimento1	6
A.11.5.4	Azione sismica1	7
A.11.5.5	Approcci di progetto e combinazioni di carico1	9
A.11.6	VERIFICHE DI SICUREZZA GLOBALI/GEOTECNICHE	2
A.11.6.1	GAPPING 2	2
A.11.6.2	RIBALTAMENTO	3
A.11.6.3	CARICO LIMITE	3
A.11.6.4	SLITTAMENTO 2	8
A.11.6.5	VALUTAZIONE MODULO DI REAZIONE (WINKLER)	9
A.11.6.6	VALUTAZIONE DEI CEDIMENTI	0
A.11.7	VERIFICHE STRUTTURALI	1
A.11.7.1	RISULTATI DELL'ANALISI	1
A.11.7.2	VERIFICHE DI RESISTENZA A FLESSIONE	9
A.11.7.3	DIMENSIONAMENTO DELLE ARMATURE SUPERIORI	9
A.11.7.4	DIMENSIONAMENTO DELLE ARMATURE INFERIORI 4	0
A.11.7.5	DIMENSIONAMENTO DELLE ARMATURE CIRCONFERENZIALI SUPERIORI	2
A.11.7.6	DIMENSIONAMENTO DELLE ARMATURE CIRCONFERENZIALI INFERIORI	3
A.11.7.7	VERIFICA A TAGLIO	4

A.11.7.8 VERIFICHE TENSIONALI /DI FESSURAZIONE	. 45
A.11.7.9 VERIFICHE SUL LEMBO INFERIORE	. 46
A.11.7.10 VERIFICHE SUL LEMBO SUPERIORE	. 48

A.11.1 OGGETTO E SCOPO

Lo scopo di questa relazione è di illustrare i criteri adottati per il dimensionamento strutturale delle fondazioni delle torri eoliche inserite nel progetto del parco eolico denominato "Pelillo Soprano", di potenza nominale 56MWp, che la società proponente Millek srl ha intenzione di realizzare in agro di Montemilone e Venosa (PZ).

Questa fase progettuale ha carattere preliminare, pertanto dovranno essere rimandati alla fase esecutiva gli aspetti più dettagliati e peculiari dell'opera. In questa fase si illustreranno le ipotesi di partenza dalle quali si è partiti per il pre-dimensionamento delle strutture fondali, nonché gli esiti delle verifiche strutturali e geotecniche.

L'aerogeneratore inserito nel progetto è il VESTAS V150 5,6MWp, le cui caratteristiche tecniche sono illustrate di seguito:

Figura 1: Geometria dell'aereogeneratore Vestas V150 - vista frontale

Figura 2: Geometria dell'aereogeneratore Vestas V150 – vista laterale

Il progetto della fondazione scaturisce dai valori delle sollecitazioni impresse dall'aerogeneratore alla base; questi valori vengono forniti dalla società costruttrice delle torri, sulla base delle evidenze sperimentali da loro riscontrate.

A.11.2 CARATTERIZZAZIONE DEL SITO

A.11.2.1 Inquadramento territoriale

L'area interessata dalla costruzione del Parco eolico riguarda i comuni di Montemilone e Venosa (PZ); essa si colloca a sud-ovest del centro abitato di Montemilone, a circa 7 km in linea d'aria dalla cittadina di Montemilone, 8 km dalla città di Venosa e 9 km dalla citta di Lavello; in un territorio pianeggiante o con lievi ondulazioni, a quote variabili tra i 360 e i 390 m s.l.m. sul lato nord della SS 655, in corrispondenza dell'intersezione con la SP18 Ofantina e la SP Montemilone – Venosa.

Il sito dell'impianto può essere identificato attraverso le seguenti coordinate geografiche:

Latitudine 40.991949°N Longitudine 15.917874°E.

Figura 1 Inquadramento generale su ortofoto - ubicazione aerogeneratori

Figura 2_Inquadramento generale su CTR - ubicazione aerogeneratori

A.11.2.2 Inquadramento geologico ed idrogeologico

Dal punto di vista geologico, l'area oggetto di studio ricade al limite tra il Foglio 187 "Melfi" ed il Foglio 175 "Cerignola" della Carta Geologica d'Italia (scala 1:100000), ed i depositi che vi affiorano fanno parte del ciclo deposizionale dell'Avanfossa Bradanica, serie regressiva e trasgressiva sui Calcari di Altamura e sui Flysch della Catena Appenninica.

Di seguito si riporta lo stralcio del Foglio 187 "Melfi" della Carta Geologica d'Italia (scala 1:100000) in cui vengono mostrati il terreno di sedime del parco.

Figura 3_ Stralcio del Foglio 187 "Melfi" della Carta Geologica d'Italia, scala 1:100000 relativo all'area parco

La ricostruzione litostratigrafica, scaturita dal rilevamento geologico di superficie esteso ad un'area più ampia rispetto a quella strettamente interessata dal progetto in epigrafe, ha messo in evidenza le caratteristiche peculiari delle formazioni seguenti:

- a) Litofacies Conglomeratico Sabbiosa del Monte Vulture: costituita da conglomerati sabbiosi di colore rosso ad elementi vulcanici, massivi e a stratificazione incrociata concava. Il limite inferiore è rappresentato da una superficie erosiva che interessa tutta la successione quaternaria dell'Avanfossa Bradanica.
- b) Litofacies Conglomeratica: depositi conglomeratici, anche ferrettizzati, ad elementi poligenici del Flysch con ciottoli di medie e grandi dimensioni per lo più incoerenti o debolmenti cementati in matrice prevalentemente sabbioso-limosa di colore giallastro-rossastro; l'assetto è generalmente massivo e con stratificazione obliqua e incrociata concava, con lenti sabbioso-siltose a laminazione incrociata e piano-parallela, e livelli argilloso-siltosi ricchi di resti di piante (facies alluvionale di tipo braided). Già al di sotto di qualche decimetro dal piano campagna, affiorano essenzialmente strati massivi ben cementati con buone caratteristiche litotecniche che sono solo parzialmente compromesse dalla intercalazione, anche centimetrica, di livelli sabbiosi e/o limosi argillitici, nonché dalle discontinuità primarie e secondarie quali giunti di stratificazione e fratturazione. Il loro spessore è di

qualche decina di metri. Limite inferiore marcatamente erosivo.

c) Litofacies Sabbiosa: costituite da alternanze di strati e livelli di sabbie calcareoquarzose, sabbie fini, sabbie limose, e sabbie-argillose giallastre nella loro parte alterata, grigio-chiaro azzurrognole, in quella integra. Si presentano generalmente sottilmente stratificate e laminate, con laminazione parallela. A più altezze si rinvengono corpi lenticolari costituiti da microconglomerati a matrice sabbiosa, gradati e talora amalgamati, o vi si intercalano strati decimetrici di siltiti ed arenarie. Abbondanti sono le intercalazioni di resti fossiliferi carbonatici. Il loro spessore è compreso da 25 a 30 m.

I litotipi affioranti nell'area di interesse (Litofacies Conglomeratico Sabbiosa del Monte Vulture, Litofacies Conglomeratica e Litofacies Sabbiosa) sono considerati come **terreni mediamente permeabili** (coefficiente di permeabilità dell'ordine di K = $10^{-4} - 10^{-5}$ m/s), in quanto, anche se contraddistinti da alta porosità primaria, risultano comunque costituiti da una granulometria assortita con grado di addensamento o di litificazione non trascurabile che tende ad aumentare con la profondità, e questo controlla l'infiltrazione nel sottosuolo.

Le acque meteoriche che raggiungono il suolo, sono ripartite tra quelle che vengono convogliate nel reticolo superficiale e quelle che si infiltrano nel sottosuolo, in funzione della permeabilità dei terreni interessati. Nel caso specifico i terreni delle formazioni sabbiose e sabbioso-conglomeratiche (complesso idrogeologico I – Terreni mediamente permeabili) garantiscono l'infiltrazione di acqua che, dalle osservazioni condotte, tende ad accumularsi in corrispondenza del contatto col substrato argilloso pressoché impermeabile, a profondità comprese tra i 50 e i 70 m dal p.c., laddove lo spessore del complesso più permeabile assume spessore massimo.

In ogni caso, per la definizione completa dei caratteri idrogeologici si rimanda alle successive fasi di progettazione ed, in particolare, in seguito alla realizzazione delle indagini geognostiche dirette ed indirette e all'istallazione dei piezometri, si potranno ottenere, con maggior dettaglio, indicazioni sulle escursioni piezometriche di eventuali falde.

Per verificare la fattibilità geologica del progetto, dunque, le informazioni che qui si presentano devono ritenersi valide nei limiti che questa prima fase cognitiva pone, ovvero acquisizione di dati e notizie preliminari. Si rimanda al successivo grado di approfondimento della progettazione (progetto esecutivo) la verifica puntuale delle caratteristiche litologiche, geotecniche, idrogeologiche e sismiche dei terreni del substrato, che potrà confermare quanto si espone di seguito e che, inoltre, consentirà di redigere una cartografia di maggior dettaglio.

A.11.2.3 Caratterizzazione geotecnica del sottosuolo

Ai fini della definizione del modello <u>geotecnico</u> del sottosuolo, le analisi praticate in questa fase consistono in:

- Indagini geofisiche: n.01 MASW; n.02 sismiche a rifrazione in onda P;
- n.05 Prove penetrometriche statiche leggere (Cone Penetration Test);
- n.02 Sondaggi meccanici a carotaggio continuo con prelievo di campioni indisturbati da sottoporre ad analisi e prove geotecniche di laboratorio;

Sulla scorta di quanto emerso dalla campagna di indagini condotta sul sito, i parametri geotecnici medi da considerare sono:

peso di volumeγ = 18.70	kN/m³
peso di volume saturoγs = 19.00	kN/m³
coesione efficacec' = 25/28	kN/m²
angolo d'attrito	0

Attraverso opportune correlazioni si sono, inoltre, fatte le seguenti assunzioni:

coesione non drenataCu = 200	kN/m²
modulo di Young E = 20	N/mm²

A.11.3 IPOTESI DI PROGETTO DELLA FONDAZIONE

Le fondazione in progetto è in calcestruzzo armato, con pianta di forma circolare di diametro De = 24.50 m, a spessore variabile da un minimo di 1mt, sul bordo esterno, ad un massimo di 3mt in corrispondenza della zona centrale di attacco della parte in elevazione della torre.

Figura 4_sezione qualitativa plinto fondazione

La base della torre è solidarizzata alla struttura fondale mediante un sistema di tirafondi (anchor cages) pre-tesi ed annegati nel getto del plinto di fondazione.

Figura 5_immagine tipo posa anchor cages

Figura 6_immagine tipo armature plinto

In questa fase progettuale si è optato per fondazioni di tipo superficiale, con piano di posa impostato a -3mt dal piano campagna.

A.11.4 MODELLO DI CALCOLO

La fondazione è stata modellata con elementi finiti tipo "shell-thick" vincolati su suolo elastico alla Winkler e bloccati in modo isostatico contro le labilità di piano. La costante di sottofondo k (di Winkler) è stata calcolata come riportato al A.11.1.3.3;

Il terreno è considerato col modello alla Winkler – molle non reagenti a trazione, pertanto le verifiche condotte sono di tipo non lineare.

I carichi provenienti dalla struttura in elevazione (Fz, Fx, Fy, Mz, Mx, My) vengono applicati ad un nodo centrale posto ad una quota superiore rispetto al piano medio della piastra; questo nodo è collegato, attraverso una serie di elementi rigidi, alla corona di nodi (indicati con C nella figura 9) cui corrisponde l'attacco della torre alla fondazione.

Figura 7_modello di calcolo a elementi finiti

Figura 8_vista solida del modello FEM

Figura 9_nodo centrale connesso rigidamente

Figura 10_vista render del modello

A.11.4.1 NORME DI RIFERIMENTO

[1] DM 17/01/2018 - Nuove norme tecniche per le costruzioni

[2] Circ. 21 Gennaio 2019, n. 7/C.S.LL.PP.

A.11.4.2 MATERIALI STRUTTURALI

CALCESTRUZZO STRUTTURALE

Classe di resistenza	C28/	′35 (Rck > =	35 N/mm²)
Classe di esposizione	XC2	- Prospetto	4 UNI 11104
Dosaggio di cemento	>=3	20kg/mc d	'impasto
Rapporto A/C	< = C),55	
Contenuto max di cloruri (CI 0,2	0%	
Dimensione max inerti	25 r	nm	
Consistenza	S4		
Copriferro min	50 m	ım	
Rck		35	N/mm²
fck		29.05	N/mm²
γс		1.50	
αcc		0.85	
fcd		16.46	N/mm²
fctm		2.83	N/mm²
fctd		1.32	N/mm²
v1		0.50	
f'cd		8.23	N/mm²
Ecm		32'588.11	N/mm²

ACCIAIO PER ARMATURE

Тіро	B 450 C	
fy	450.00	N/mm²
ft	540.00	N/mm²
γs	1.15	
fyd	391.30	N/mm²
Es	210'000.00	N/mm²
εyd	1.86	‰

A.11.5 ANALISI DEI CARICHI

I carichi considerati nel modello sono:

1) I carichi provenienti dalla struttura in elevazione (Fz, Fx, Fy, Mz, Mx, My);

- 2) Il peso proprio della fondazione (calcolato in automatico dal software di calcolo)
- 3) Il peso del terreno di rinterro (sovraccarico permanente)

A.11.5.1 Azioni derivanti dalla sovrastruttura

Il documento 0074-8846 VER 01 - «Combine Foundation loads - V150 - 4.0/4.2 MW, Mk3E, IEC3B, 105 m» riporta gli scarichi in fondazione derivanti dall'aereogeneratore, in accordo con le indicazioni delle norme adottate.

I carichi sono non fattorizzati ("excl. PLF") pertanto ad essi sono da applicare i "Partial Load Factor" riportati nella 3° colonna, e che sono in accordo con quanto riportato nella norma [5] tabella 3 § 7.6.2.1 (sotto riprodotta come tabella 11).

Characte	Characteristic Extreme										
Lead	LC/Family	PLF	Туре	Mbt	Mzt	FndFr	Fzt	Ref			
Sensor	[-]	[-]	[-]	[kNm]	[kNm]	[kN]	[kN]	[-]			
Mbt	23CoEogVra4(fam180)	1.10	Abs	125500	-698.8	1176	-4946	[2]			
Mzt	22VOGHWO300(fam168)	1.10	Abs	21970	-10060	203.9	-4774	[2]			
FndFr	23CoEogVra5(fam181)	1.10	Abs	125300	-536.4	1201	-4961	[2]			
Fzt	22VOGHWO200(fam167)	1.10	Abs	36490	1621	367.4	-5040	[1]			

Tabella 1: Scarichi in fondazione - Condizioni di carico Abnormal

Characteristic Extreme									
Lead	LC/Family	PLF	Туре	Mbt	Mzt	FndFr	Fzt	Ref	
Sensor	[-]	[-]	[-]	[kNm]	[kNm]	[kN]	[kN]	[-]	
Mbt	32PREogVra11(fam242)	1.35	Abs	106000	-498.6	968.4	-4936	[1]	
Mzt	21RPY8Vo1a00(fam116)	1.35	Abs	36880	-9622	343.8	-4840	[2]	
FndFr	14EcdVrpa00(fam54)	1.35	Abs	98730	-1765	973.7	-4946	[2]	
Fzt	12IceUHWO100(fam27)	1.35	Abs	37170	2040	379.6	-5094	[2]	

Tabella 2: Scarico in fondazione - Condizioni di carico Normal

Production loads									
		Char. load	Prob.:1e-2	Prob.:1e-4		Ref			
Mres	[kNm]	106000.00	73172.11	81799.59	[1]	[2]	[1]		
Mz	[kNm]	-9622.07	-4079.72	-6879.56	[2]	[1]	[1]		
Fres	[kN]	973.74	679.73	777.36	[2]	[2]	[2]		
Fz	[kN]	-5094.38	-4979.90	-5012.99	[2]	[2]	[2]		

Tabella 3: Scarico in fondazione - Riepilogo delle massimi caratteristici delle componenti

Table 3 - Partial safety factors for loads y_f

	Favourable loads		
Type of			
Normal (N)	Abnormal (A)	Transport and erection (T)	All design situations
1,35	1,1	1,5	0,9

Tabella 4: Coefficienti di combinazione previsti dalla specifica tecnica [5]

A.11.5.2 Peso proprio della fondazione

La geometria della fondazione è di seguito definita:

Diametro del plinto di fondazione:	De	=	24.00	m
Diametro esterno del piedistallo:	Di	=	5.50	m
Diametro interno del piedistallo:	Dint	=	3.00	m
Altezza minima plinto (al bordo):	Hedge	=	1.50	m
Altezza massima plinto (al centro):	Hslab	=	3.30	m
Altezza massima plinto + piedistallo:	Н	=	3.60	m
Scalino esterno del piedistallo:	H - Hslab	=	0.30	m
Scalino interno del piedistallo:	Hint	=	0.20	m
Pendenza estradosso soletta:	α	=	19.46	%
Pendenza profilo terreno:	δ	=	2.00	%
Ricoprimento minimo:	\mathbf{H} backfill,mir	n =	0.30	m

Tabella 5: Geometria del plinto

I volume del plinto è di 1.032,19 m³ pertanto il peso è pari a 25.804,75 kN.

A.11.5.3 Peso proprio del riempimento

È previsto un rinterro al di sopra e a fianco del plinto di fondazione, da realizzarsi con materiale drenante di buone caratteristiche meccaniche. Si assume, in sede di analisi, un peso di volume pari a 17.5 kN/m³, e si assegna questo peso come pressione verticale variabile applicata sigli elementi shell che modellano il plinto, secondo quanto riportato nella successiva tabella 13.

Raggio	Raggio	H = spessore	q riempim.		
interno [m]	esterno [m]	riempim. [m]	[kN/m ²]		
2.750	4.600	0.62	8.31		
4.600	6.450	0.95	13.89		
6.450	8.300	1.27	19.50		
8.300	10.150	1.59	25.13		
10.150	12.000	1.92	30.76		

Tabella 6_carichi dovuti al riempimento

Figura 3: Distribuzione delle pressioni dovute al riempimento sul plinto

Il peso totale del riempimento è pari a 9.574 kN.

A.11.5.4 Azione sismica

Dal punto di vista sismico l'area in oggetto è classificata come zona sismica 2 (O.P.C.M. 3274/'03); si riportano le seguenti ipotesi di caratterizzazione sismica del sito e dell'opera in oggetto:

Zona sismica	Zona 2
Vita nominale	50 anni
Classe d'uso	IV
Cu	2,0
Periodo di riferimento per l'azione sismica – $V_R = V_N * C_U$	100 anni

Categoria suolo di fondazione	С
Categoria topografica	T1 (i < 15°)

In funzione dei dati sopra riportati si calcolano i parametri utili alla costruzione dello spettro elastico di progetto:

Stati limite		P	T _R	ag	Fo	Tc [*]
		FVR	[anni]	[m/s2]	[-]	[s]
Stati limite di	SLO	81%	30	0,037g	2,420	0,278
esercizio	SLD	63%	35	0,039g	2,423	0,289
Stati limite	SLV	10%	332	0,085g	2,635	0,429
ultimi	SLC	5%	682	0,104g	2,729	0,456

Figura 4: Spettri elastici di progetto

In linea generale nelle strutture eoliche l'azione orizzontale prevalente è quella dovuta ai venti, pertanto, a meno di valutazioni più specifiche, l'azione sismica è trascurabile in questo tipo di analisi.

Ai fini della presente relazione si fa riferimento a scenari di progetto non sismici, assumendo come carichi dimensionanti quelli calcolati con le simulazioni di cui al § 6.3 - scenari di progetto non sismici previsti dalla norma [5], condizioni di carico di tipo Normal/Abnormal.

A.11.5.5 Approcci di progetto e combinazioni di carico

Per le verifiche geotecniche si fa riferimento all'approccio 2, in accordo la combinazione A1+M1+R3 e le tabelle seguenti:

CARICHI	EFFETTO	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole		0,9	1,0	1,0
	Sfavorevole	∦GI	1,1	1,3	1,0
Dormonanti non strutturali (l)	Favorevole		0,0	0,0	0,0
r çı mançını non su utturan	Sfavorevole	IG2	1,5	1,5	1,3
Vorinhili	Favorevole		0,0	0,0	0,0
y ariadin	Sfavorevole	עני] עני	1,5	1,5	1,3

VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
	PARZIALE	PARZIALE	PARZIALE
	(R 1)	(R2)	(R3)
Capacità portante	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R} = 1.8$	$\gamma_{\rm R} = 2,3$
Scorrimento	$\gamma_{\rm R} = 1.0$	$\gamma_{\rm R} = 1,1$	$\gamma_{\rm R} = 1,1$

Nella logica del metodo degli Stati Limite ogni azione è stata classificata in base al tipo di "sorgente" e al tipo di carico. Ciò anche nell'ottica di operare una corretta applicazione della norma [5], specifica per gli aerogeneratori, assieme con i criteri di progettazione previsti dalla norma [1] valida per tutte le costruzioni civili ed industriali.

AZIONE	TIPO DI CARICO	NORMA DI	COEFFICIENTI PARZIALI γ _F		
		RIFERIMENTO	STR-GEO	EQU	
Peso proprio fondazione	Permanente fondazione	[1]	1,00 / 1,30	0,90	
Peso terreno riempimento	Permanente fondazione	[1]	0,80 / 1,50	0,80	
Peso aerogeneratore [Fzt]	Permanente aerogener.	[5]	0,90 / ^{1,10} 1,35	0,90	
Vento aerogen. [FndFr]	Variabile aerogeneratore	[5]	/ ^{1,10} 1,35	/ ^{1,10} 1,35	

Tabella 7: Possibili valori dei coefficienti parziali delle azioni adottati nel presente progetto

Nella tabella a seguire si riporta l'elenco completo delle combinazioni di carico adottate nelle verifiche della fondazione dell'aerogeneratore in oggetto. Le ultime 6 colonne "N", "V", "M" indicano:

"N" – carichi permanenti dell'aerogeneratore (indicati con F_{zi} in tabella 8 e tabella 9) "V","M" – azione derivante dal vento agente sull'aerogeneratore, valutata secondo [5] Il pedice "Nor" oppure "Abn" identifica il tipo di combinazione in accordo con [5].

Combinazione		Peso proprio	Peso del terreno di	Componenti dello scarico derivante dall'aerogeneratore					
	combinazione	fondazione	riempimento	NNor	NAbn	VNor	VAbn	MNor	MAbn
1	Normal SLU1	1,30	1,50	1,35		1,35		1,35	
2	Normal SLU2	1,00	1,00	0,90		1,35		1,35	
3	Abnormal 1.10	1,30	1,50		1,10		1,10		1,10
4	Abnormal 0.90	1,00	1,00		0,90		1,10		1,10
5	Normal EQU	0,90	0,00	0,90		1,35		1,35	
6	Abnormal EQU	0,90	0,00		0,90		1,10		1,10
7	Normal	1,00	1,00	1,00		1,00		1,00	
8	Abnormal	1,00	1,00		1,00		1,00		1,00
9	Quasi permanente	1,00	1,00	1.00		1,00		1,00	

Tabella 8: Coefficienti parziali delle azioni utilizzati ai fini del presente progetto

Come si può notare, in queste combinazioni (che, come si è detto, sono state analizzate in assumendo la non linearità del modello) le prime 4 sono riconducibili a stati limite ultimi e, pertanto, sono state adottate per le verifiche di resistenza STR/GEO. Anche la 5 – 6 sono riconducibili a stati limite ultimi, ma di tipo EQU, pertanto sono state utilizzate unicamente nelle verifiche a ribaltamento.

Nella combinazione 7 gli scarichi N_{Nor}, V_{Nor} e M_{Nor} si riferiscono ai valori riportati in tabella 10 (valori caratteristici), pertanto la combinazione 7 è stata adottata per la valutazione delle tensioni (SLE R) su calcestruzzo e armatura, oltre che per la valutazione dei cedimenti di fondazione.

L'assenza di dati relativi all'azione del vento con tempo di ritorno tipici dei valori frequenti/quasi permanenti costituisce un limite in questa fase di progettazione, non permettendo di condurre le verifiche di fessurazione rispetto a valori plausibili delle sollecitazioni in fondazione. Queste verifiche sono, pertanto, state condotte assumendo i momenti flettenti della combinazione rara (n. 7, peraltro coincidente con la 8 per quanto detto). Per lo stesso motivo, le verifiche di gapping (di cui al 6.2) saranno condotte per le combinazioni 7, 8 e 9, assumendo per la combinazione quasi permanente gli stessi valori di scarico della 7.

Nella tabelle a seguire si riporta un riepilogo dei fattori parziali, dei coefficienti e fattori di sicurezza.

Verifica		Tipo di combinazione			Coefficienti parziali delle azioni γ?					
				Peso proprio	Riempimento	Fz	Н	М		
	Carico limite	Approceio 2	A1+M1+R3	Abnormal 2	1.00	1.00	0.90	1.10	1.10	
GEO (abnormal)	Carico limite	Approccio 2	A1+M1+R3	Abnormal 1	1.30	1.50	1.10	1.10	1.10	
(abilointal)	Scorrimento	Approceio 2	A1+M1+R3	Abnormal 2	1.00	1.00	0.90	1.10	1.10	
050	Carico limite	Approceio 2	A1+M1+R3	Normal SLU2	1.00	1.00	0.90	1.35	1.35	
(normal)	Carico limite	Approceio 2	A1+M1+R3	Normal SLU1	1.30	1.50	1.35	1.35	1.35	
(normal)	Scorrimento	Approceio 2	A1+M1+R3	Normal SLU2	1.00	1.00	0.90	1.35	1.35	
	Pibaltamento	IEC	normal case	Normal EQU	0.90	0.00	0.90	1.35	1.35	
5011	Ribaltamento	IEC	abnormal case	Abnorm.EQU	0.90	0.00	0.90	1.10	1.10	
LQU	Ganning	IEC	normal case	Normal	1.00	1.00	1.00	1.00	1.00	
	Gapping	IEC	abnormal case	Abnormal	1.00	1.00	1.00	1.00	1.00	

Verifica		Tipo di combinazione		Coefficiente materiale (terreno) γ ?			~?	ES	
				tan(φ')	c'	Cu	Υ?	г.э.	
650	Carico limite	Approccio 2	A1+M1+R3	Abnormal 2	1.00	1.00	1.00	2.30	3.11
(abnormal)	Carico limite	Approccio 2	A1+M1+R3	Abnormal 1	1.00	1.00	1.00	2.30	-
(abriornal)	Scorrimento	Approccio 2	A1+M1+R3	Abnormal 2	1.00	1.00	1.00	1.10	2.77
050	Carico limite	Approccio 2	A1+M1+R3	Normal SLU2	1.00	1.00	1.00	2.30	2.91
(normal)	Carico limite	Approccio 2	A1+M1+R3	Normal SLU1	1.00	1.00	1.00	2.30	3.01
(normal)	Scorrimento	Approccio 2	A1+M1+R3	Normal SLU2	1.00	1.00	1.00	1.10	2.37
	Ribaltamento	IEC	normal case	Normal EQU					2.25
EQU		IEC	abnormal case	Abnorm.EQU					2.33
	Gapping	IEC	normal case	Normal					1.11
		IEC	abnormal case	Abnormal					2.19

A.11.6 VERIFICHE DI SICUREZZA GLOBALI/GEOTECNICHE

Le verifiche riguardanti la sicurezza degli elementi strutturali sono state eseguite in accordo con il metodo degli stati limite di cui ai cap. 2, 4 e 6 di [1], tenendo conto delle ulteriori richieste prestazionali previste nella normativa di settore [5].

Le verifiche esposte nel seguito si fondano sui dati di calcolo forniti dal progettista della parte in elevazione, e che sono riassunti nelle successive tabelle (§ 6.3).

Sono state condotte le verifiche seguenti:

- 1) verifiche globali di ribaltamento
- 2) verifiche globali di gapping (parzializzazione delle pressioni sul piano di appoggio)
- 3) verifiche geotecniche di resistenza a slittamento e carico limite
- 4) valutazioni dei cedimenti massimi assoluti e differenziali
- 5) valutazione della costante di Winkler
- 6) verifiche di resistenza a flessione / taglio della piastra di fondazione
- 7) verifiche a fessurazione della piastra di fondazione

A.11.6.1 GAPPING

La verifica di GAPPING è condotta assumendo che in combinazione 9 (quasi permanente, che nel nostro caso, coincide con la Normal) si abbia un'impronta sul terreno pari al 100 % della sagoma del plinto. Per le combinazioni 7 e 8 si assume, invece, che l'impronta possa ridursi fino al 50% della sagoma del plinto. Per garantire il 100% di sezione reagente occorre che la risultante abbia un'eccentricità massima e non superiore a 0,125 D - essendo D pari al diametro del plinto - mentre per garantire che la porzione compressa sia non inferiore al 50% dell'area di base del plinto occorre limitare l'eccentricità a 0,294 D. Di seguito si riportano le verifiche di gapping rispetto alla combinazione Qp, Normal e Abnormal tutte non fattorizzate.

	TC	OWER BOTTO	М	FOUNDATION BOTTOM		
		(CHARACTER	ISTIC VALUI	ES	
	Q.p.	Normal	Abnormal $FC = 1$	Q.p.	Normal	Abnormal FC = 1
Fz	5'094.00	5'094.00	5'040.00	40'472.32	40'472.32	40'418.32
Fxy	973.00	973.00	1'201.00	973.00	973.00	1'201.00
Мху	106'000.00	106'000.00	125'500.00	109'823.89	109'823.89	130'219.93
		D	ESIGN VALU	ES (FACTORI	ED)	
Fz	5'094.00	5'094.00	5'040.00	40'472.32	40'472.32	40'418.32
Fxy	973.00	973.00	1'201.00	973.00	973.00	1'201.00
Мху	106'000.00	106'000.00	125'500.00	109'823.89	109'823.89	130'219.93

Tabella 9: Analisi scarichi in fondazione – Tower bottom (= estradosso) e Foundation bottom (intradosso plinto)

		QP	Normal	Abnormal
Eccentricity	e [m] =	2.71	2.71	3.22
	(e / D) =	0.113	0.113	0.134
	(e / D) max	0.125	0.294	0.294
Check	FS =	1.1056	2.600	2.190

Tabella 10: Verifica di Gapping

A.11.6.2 RIBALTAMENTO

La verifica a ribaltamento è dettagliata nelle seguenti tabelle.

	Peso proprio	Riempimento	Fz	Н	М
Normal EQU	0.90	0.00	0.90	1.35	1.35
Abnor. EQU	0.90	0.00	0.90	1.10	1.10

Tabella 11: Coefficienti di combinazione per la verifica a ribaltamento

	Normal EQU	Abnor. EQU
Mo (overturning) [kNm]	148'262.25	143'241.92
Ms (stabilizing) [kNm]	333'706.47	333'123.27
FS = Ms / Mo	2.251	2.326

Tabella 12: Verifica a ribaltamento

A.11.6.3 CARICO LIMITE

Le verifiche a carico limite, per condizioni drenate e non drenate, sono dettagliate nelle successive tabelle. Si è adottato il metodo di verifica di cui all'appendice D di [4].

Γ

SCARICHI DI PROGETTO PER VERIFICHE DI PORTANZA							
	Deserver	Disaminanta					
	Peso proprio	Riempimento	FZ	<u>H</u>	IVI		
Normal SLU2	1.00	1.00	0.90	1.35	1.35		
Normal SLU1	1.30	1.50	1.35	1.35	1.35		
Abnormal 2	1.00	1.00	0.90	1.10	1.10		
Abnormal 1	1.30	1.50	1.10	1.10	1.10		

		TOWER B	OTTOM		FOUNDATION BOTTOM			
	Norm	al SLU	Abnormal SLU		Normal SLU		Abnormal SLU	
Fz	4'584.60	6'876.90	4'536.00	5'544.00	39'962.92	54'783.44	39'914.32	53'450.54
Fxy	1'313.55	1'313.55	1'321.10	1'321.10	1'313.55	1'313.55	1'321.10	1'321.10
Mxy	143'100.00	143'100.00	138'050.00	138'050.00	148'262.25	148'262.25	143'241.92	143'241.92

Tabella 13: Analisi scarichi in fondazione

VERTICAL BEARING	CAPAC	ITY CHECK drained VR01 - L	layer 1 💌 Abnormal 2
Soil unit weight	γ		18.70 kPa
Backfilling unit weight	γ*		17.50 kPa
Friction angle	φ'		22.0°
Effective cohesion	c'		25.00 kPa
Undrained cohesion	Cu		200 kPa
Design bending moment	Mxy		143'242 kNm
Design torque moment	Mz		12'172.60 kNm
Design vertical load	Fz		39'914 kN
Design tangential load	Н		1'321 kN
Radius	R		12.00 m
Depth of foundation	D		m
Eccentricity	e	Mxy/Fz	3.59 m
Ellipse minor axes	Be	2*(R -e)	16.82 m
Ellipse major axes	Le	$2 R [1-(1-Be/2R)^2]^{1/2}$	22.90 m
Effective loaded area	Aeff	$2*[R^2 \operatorname{arccos}(e/R)-e^*(R^2 - e^2)^{1/2}]$	282.73 m ²
Effective lenght	Leff	$(Aeff^*Le/Be)^{1/2}$	19.62 m
Effective width	Beff	Leff*Be/Le	14.41 m
Horizontal force	H'	$2*M_z/I_{eff}+[H^2+(2*M_z/I_{eff})^2]^{1/2}$	3'053.40 kN
Inclination of foundation	η		0.0°
Nc	Nc	(7.82 - 1) / tan (22.0°)	= 16.883
Ng	Nq	tan (90 + 22.0° / 2)² exp (π * tan (22.0°))	= 7.821
Νγ	Νγ	2 * (7.82 - 1) * tan (22.0°)	= 5.512
Shape factor	Sc	(1.28 * 7.82 - 1)/(7.82 - 1)	= 1.316
Shape factor	Sq	1 + 14.41 / 19.62 * sen (22.0°)	= 1.275
Shape factor	Sγ	1 - 0.3 * 14.41 / 19.62	= 0.780
Load inclination factor	ic	0.92 - (1 - 0.92)/(16.88 - 1)	= 0.912
Load inclination factor	iq (1 - 3'053.4 / (39'914 + 282.73 * 25.0 / tan (22.0°)))^1.58	= 0.917
Load inclination factor	iγ (1	-3'053.4 / (39'914 + 282.73 * 25.0 / tan (22°)))^(1.58+1)	= 0.869
Found. inclination fact.	bc	1.0 - (1 - 1.0)/(16.88 * tan (22.0°))	= 1.000
Found. inclination fact.	bq	(1 - rad(0.0°) * tan (22.0°)) ²	= 1.000
Found. inclination fact.	bγ	1.0	= 1.000
Backfill pressure	q'	17.5 * 0.0	= 0.00 kPa
Component c	-	25.0 * 16.88 * 1.32 * 0.91 * 1.0	= 506.516 kPa
Component q		0.0 * 7.82 * 1.28 * 0.92 * 1.0	= 0.000 kPa
Component γ		18.7 * 14.41/2 * 5.51 * 0.78 * 0.87 * 1.0	= 502.971 kPa
Resistance factor	γR		2.300
Design bearing capacity	qrd	(506.52 + 0.0 + 502.97)/2.3	= 439 kPa
Design pressure	qsd	39'914.32 / 282.73	= 141 kPa
Bearing check	FS	438.91 / 141.17	= 3.109 > 1 OK

Tabella 14: Verifica a carico limite in condizioni drenate – Combinazione Abnormal 2 (4)

		Condition Soil paramete	rs Loa	d comb.
VERTICAL BEARING	CAPA	CITY CHECK drained 🔽 PR01 - Lay	er 1 💌 Norm	nal SLU2 💌
Soil unit weight	γ		18.70	kPa
Backfilling unit weight	γ^*		17.50	kPa
Friction angle	φ'		22.0°	
Effective cohesion	c'		25.00	kPa
Undrained cohesion	Cu		200	kPa
Design bending moment	Mxy		148'262	kNm
Design torque moment	Mz		17'536.10	kNm
Design vertical load	Fz		39'963	kN
Design tangential load	Н		1'314	kN
Radius	R		12.00	m
Depth of doundation	D			m
Eccentricity	e	Mxy/Fz	3.71	m
Ellipse minor axes	Be	2*(R-e)	16.58	m
Ellipse major axes	Le	2 R [1-(1-Be/2R) ²] ^{1/2}	22.82	m
Effective loaded area	Aeff	$2*[R^2 \operatorname{arccos}(e/R)-e^*(R^2 - e^2)^{1/2}]$	277.19	m²
Effective lenght	Leff	$(Aeff^*Le/Be)^{1/2}$	19.53	m
Effective width	Beff	Leff*Be/Le	14.19	m
Horizontal force	\mathbf{H}'	$2*M_z/I_{eff}+[H^2+(2*M_z/I_{eff})^2]^{1/2}$	4'020.07	kN
Inclination of foundation	η		0.0°	
Nc	Nc	(7.82 - 1) / tan (22.0°) =	16.883	
Nq	Nq	tan (90 + 22.0° / 2)² ex p (π * tan (22.0°)) =	7.821	
Νγ	Νγ	2 * (7.82 - 1) * tan (22.0°) =	5.512	
Shape factor	Sc	(1.27 * 7.82 - 1) / (7.82 - 1) =	1.312	
Shape factor	Sq	1 + 14.19 / 19.53 * sen (22.0°) =	1.272	
Shape factor	Sγ	1 - 0.3 * 14.19 / 19.53 =	0.782	
Load inclination factor	ic	0.89 - (1 - 0.89)/(16.88 - 1) =	0.884	
Load inclination factor	iq	(1 - 4'020.07 / (39'963 + 277.19 * 25.0 / tan (22.0°)))^1.58 =	0.891	
Load inclination factor	iγ	(1-4'020.07 / (39'963 + 277.19 * 25.0 / tan (22°)))^(1.58+1) =	0.828	
Found. inclination fact.	bc	1.0 - (1 - 1.0)/(16.88 * tan (22.0°)) =	1.000	
Found. inclination fact.	bq	(1 - rad(0.0°) * tan (22.0°)) ² =	1.000	
Found. inclination fact.	bγ	1.0 =	1.000	
Backfill pressure	q'	17.5 * 0.0 =	0.00	kPa
Component c		25.0 * 16.88 * 1.31 * 0.88 * 1.0 =	489.683	kPa
Component q		0.0 * 7.82 * 1.27 * 0.89 * 1.0 =	0.000	kPa
Component y		18.7 * 14.19/2 * 5.51 * 0.78 * 0.83 * 1.0 =	473.785	kPa
Resistance factor	γR		2.300	
Design bearing capacity	qrd	(489.68 + 0.0 + 473.79)/2.3 =	419	kPa
Design pressure	qsd	39'962.92 / 277.19 =	144	kPa
Bearing check	FS	418.9 / 144.17 =	2.906	>1OK

Tabella 15: Verifica a carico limite in condizioni drenate – Combinazione Normal SLU 2

		Conditio	n Soil parameters	Loa	ld comb.
VERTICAL BEARING	CAPACITY	CHECK undrained	PR01 - Layer	1 💌 Norm	al SLU1 👤
				10.70	15
Soil unit weight	γ			18.70	kPa
Backfilling unit weight	γ*			17.50	kPa
Friction angle	φ'			22.0°	
Effective cohesion	c'			25.00	kPa
Undrained cohesion	Cu			200	kPa
Design bending moment	Mxy			148'262	kNm
Design torque moment	Mz			17'536.10	kNm
Design vertical load	Fz			54'783	kN
Design tangential load	Н			1'314	kN
Radius	R			12.00	m
Depth of doundation	D				m
Eccentricity	e	M_{xy}/F_z		2.71	m
Ellipse minor axes	Be	2*(R-e)		18.59	m
Ellipse major axes	Le	2 R [1-(1-Be/2R) ²] ^{1/2}	2	23.38	m
Effective loaded area	Aeff	2*[R ² arccos(e/R)-e	$e^*(R^2 - e^2)^{1/2}]$	323.60	m²
Effective lenght	Leff	$(Aeff^{Le}/Be)^{1/2}$		20.18	m
Effective width	Beff	Leff*Be/Le		16.04	m
Horizontal force	Η'	2*Mz/Ieff+[H ² +(2*N	$I_z/Ieff)^2$] ^{1/2}	3'917.14	kN
Inclination of foundation	η			0.0°	
Nc	Nc		2 + π =	5.142	
Nq	$\mathbf{N}\mathbf{q}$		1 =	1.000	
Νγ	N_{γ}		0 =	0.000	
Shape factor	Sc	1 + 0.2 *	(16.04 / 20.18) =	1.159	
Shape factor	Sq		1 =	1.000	
Shape factor	Sγ		1 =	1.000	
Load inclination factor	ic	1/2 * [1 + √(1 - 3'917.	14 / 323.6 / 200.0)] =	0.985	
Load inclination factor	iq		1 =	1.000	
Load inclination factor	iγ		1 =	1.000	
Found. inclination fact.	bc	1 - 2 * rad	$(0.0^{\circ}) / (2 + \pi) =$	1.000	
Found. inclination fact.	bq		1 =	1.000	
Found. inclination fact.	bγ		1 =	1.000	
Backfill pressure	q'		17.5 * 0.0 =	0.00	kPa
Component c	-	200.0 * 5.14 * 1	.16 * 0.98 * 1.0 =	1'173.496	kPa
Component q		0.0 * 1.0	* 1.0 * 1.0 * 1.0 =	0.000	kPa
Component γ		18.7 * 16.04/2 * 0.0 *	* 1.0 * 1.0 * 1.0 =	0.000	kPa
Resistance factor	γR		-	2.300	
Design bearing capacity	, G rd	(1'173.5 -	+ 0.0 + 0.0)/2.3 =	510	kPa
Design pressure	Qsd	54	783.44 / 323.6 =	169	kPa
0 1 1 1 1 1 1 1 1	1.1	•			

Tabella 16: Verifica a carico limite in condizioni non drenate – Combinazione Normal SLU 1

A.11.6.4 SLITTAMENTO

Di seguito di dettaglia la verifica a slittamento.

	DEAD	BACKFILL	Fz	Н	М
Normal SLU2	1.00	1.00	0.90	1.35	1.35
Abnormal 2	1.00	1.00	0.90	1.10	1.10

	TOWER	BOTTOM	FOUNDATION BOTTOM		
	Normal SLU2	Abnormal 2	Normal SLU2	Abnormal 2	
Fz	4'584.60	4'536.00	39'962.92	39'914.32	
Fxy	1'313.55	1'321.10	1'313.55	1'321.10	
Mxy	143'100.00	138'050.00	148'262.25	143'241.92	

Tabella 17: Analisi scarichi in fondazione

SLIDING CHECK		Condition Soil parameter drained PR01 - Laye	s Loa r 1 🔻 Abno	ad comb. ormal 2
Soil unit weight	γ		18.70	kPa
Backfilling unit weight	γ^*		17.50	kPa
Undrained cohesion	Cu		200	kPa
Design bending moment	Mxy		143'242	kNm
Design torque moment	Mz		14'288.67	kNm
Design vertical load	Fz		39'914	kN
Design tangential load	Н		1'321	kN
Radius	R		12.00	m
Eccentricity	e	Mxy/Fz	3.59	m
Ellipse minor axes	Be	2*(R-e)	16.82	m
Ellipse major axes	Le	2 R [1-(1-Be/2R) ²] ^{1/2}	22.90	m
Effective loaded area	Aeff	$2*[R^2 \arccos(e/R)-e^*(R^2 - e^2)^{1/2}]$	282.73	m²
Effective lenght	Leff	$(Aeff^{*}Le/Be)^{1/2}$	19.62	m
Effective width	Beff	Leff*Be/Le	14.41	m
Horizontal force	H'	$2*M_z/I_{eff}+[H^2+(2*M_z/I_{eff})^2]^{1/2}$	3'423.10	kN
Friction angle	φ'		22.0°	
Structground friction	δ'	2/3 * 22° =	14.7°	
Undrained adhesion	Ca		200	kPa
Resistance factor	γr		1.100	1
Design sliding resist.	Rd	$Fz \tan(\delta) / \gamma? =$	9'497	kN
Sliding check	FS	9'496.83 / 3'423.1 =	2.774	>10K

Tabella 18: Verifica a slittamento – Combinazione Abnormal SLU 2

SLIDING CHECK		Condition Soil parameter drained V PR01 - Laye	rs Loa	ad comb.
Soil unit weight	γ		18.70	kPa
Backfilling unit weight	γ*		17.50	kPa
Undrained cohesion	Cu		200	kPa
Design bending moment	Mxy		148'262	kNm
Design torque moment	Mz		17'536.10	kNm
Design vertical load	Fz		39'963	kN
Design tangential load	Н		1'314	kN
Radius	R		12.00	m
Eccentricity	e	Mxy/Fz	3.71	m
Ellipse minor axes	Be	2*(R-e)	16.58	m
Ellipse major axes	Le	$2 \text{ R} [1-(1-\text{Be}/2\text{R})^2]^{1/2}$	22.82	m
Effective loaded area	Aeff	$2*[R^2 \arccos(e/R)-e^*(R^2 - e^2)^{1/2}]$	277.19	m²
Effective lenght	Leff	$(Aeff^{Le}/Be)^{1/2}$	19.53	m
Effective width	Beff	Leff*Be/Le	14.19	m
Horizontal force	H'	$2*M_z/I_{eff}+[H^2+(2*M_z/I_{eff})^2]^{1/2}$	4'020.07	kN
Friction angle	φ'		22.0°	
Structground friction	δ'	2/3 * 22° =	14.7°	
Undrained adhesion	Ca		200	kPa
Resistance factor	γR		1.100)
Design sliding resist.	Rd	Fz tan(δ) / γ ? =	9'508	kN
Sliding check	FS	9'508.39 / 4'020.07 =	2.365	>1OK

Tabella 19: Verifica a slittamento – Combinazione Normal SLU 2

A.11.6.5 VALUTAZIONE MODULO DI REAZIONE (WINKLER)

VALUTAZIONE MODULO DI REAZIONE SOTTOFONDO (WINKLER)

۲

0

n. stratigraphy 1

- on stratum over bedrock on stratum over half-space
- embledded in stratum over bedrock

Parameter	Symbol	Expression / note	Va	lue
Static shear modulus	G		7.69	N/mm²
Static Young modulus	Е		20.00	N/mm²
Poisson ratio	v		0.30	-
Foundation radius	R		12.00	m
Thickness of layer	Н		120.00	m
	αr	(for circular rigid foundation)		-
Winkler modulus	Kw	$\frac{4GR}{1-\nu}(1+1.28\frac{R}{H})\frac{1}{\pi R^2}$	1'315.21	kN/m³

Tabella 20: Valutazione della costante di Winkler

A.11.6.6 VALUTAZIONE DEI CEDIMENTI

Il cedimento medio in combinazione SLE Rara (Normal) si assume pari al rapporto tra la pressione media e la costante di Winkler di ui al punto precedente.

La pressione media, sulla base dell'analisi di carichi esposta ai punti precedenti, vale

 $Q_{MEDIA,SLE}$ = 40472/(3,1416*12^2) =89 kN/m² Cedimento elastico medio atteso = 100 * 80 / 1315 ≈ 6 cm.

Il cedimento differenziale massimo atteso, sempre in combinazione rara, secondo la formulazione di Bowles:

Parameter	Symbol	Expression / note	Value
Poisson ratio	v		
Static Young modulus	Е	(Layer 1)	20.00 N/mm ²
		(Layer 2)	0.00 N/mm ²
		(mean value)	20.00 N/mm ²
Thickness of Layer 1	t 1	(Layer 1)	120.00 m
Bending moment (Qp)	М	(normal quasi permanent)	109'823.89 kNm
Influence factor	Ιθ	(rigid circular spread foundation)	5.53
Static rotation	tan(θ)	$\tan(\theta) = \frac{(1-\nu^2)}{E} \frac{M}{B^2 L} I_{\theta}$	2.00 mm/m

Tabella 21: Valutazione del cedimento massimo differenziale (rotazione) in combinazione SLE rara (Normal)

A.11.7 VERIFICHE STRUTTURALI

A.11.7.1 RISULTATI DELL'ANALISI

A seguire si riportano le tabelle relative alle sollecitazioni di piastra, ottenute dall'analisi strutturale in accordo ai criteri di modellazione su esposti. Nel seguito si assume la convenzione che considera:

- i momenti radiali di piastra indicati con M11 o anche come M2
- i momenti circonferenziali di piastra con M22 o anche come M1

Momenti di piastra (valori	M ₁₁₍₊₎	M ₁₁₍₋₎	M ₂₂₍₊₎	M ₂₂₍₋₎
max/min)	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]
Normal SLU 1	9'976.29	-7'246.51	6'050.36	-3'142.56
Normal SLU 2	9'664.23	-7'503.30	5'552.23	-3'653.56
Abnormal 0,9	10'239.19	-7'927.33	5'790.81	-3'970.22
Abnormal 1,1	10'262.49	-7'987.51	6'083.09	-3'658.01

Tabella 22: Valori massimi dei momenti di piastra

Figura 5: Momento Massimo M11 Normal SLU 1 [kNm/m]

Figura 6: Momento Massimo M11 Normal SLU 2 [kNm/m]

Figura 7: Momento Massimo M11 ABNORMAL 0.9 [kNm/m]

Figura 8: Momento Massimo M11 ABNORMAL 1.10 [kNm/m]

Figura 9: Momento Massimo M22 Normal SLU 1 [kNm/m]

Figura 10: Momento Massimo M₂₂ Normal ELU 2 [kNm/m]

Figura 11: Momento Massimo M₂₂ ABNORMAL 0.9 [kNm/m]

	SOLLECITAZIONI DI PIASTRA							
	Raggio [m]	2.200	2.750	4.600	6.450	8.300	10.150	12.000
MOMENTI RADIALI	M2(+) [kNm/m]	9'976.3	7'510.8	3'582.1	1'791.9	743.0	167.2	-17.9
NORMAL SLU1	M2(-) [kNm/m]	-7'246.5	-5'219.7	-2'340.2	-1'152.9	-476.6	-106.9	11.6
MOMENTI RADIALI	M2(+) [kNm/m]	9'664.2	7'257.4	3'461.4	1'735.7	721.8	163.0	-17.1
NORMAL SLU2	M2(-) [kNm/m]	-7'503.3	-5'404.8	-2'371.8	-1'114.5	-422.3	-82.9	10.1
MOMENTI RADIALI	M2(+) [kNm/m]	10'239.2	7'692.2	3'675.6	1'845.5	768.4	173.8	-18.1
ABNORMAL 0.9	M2(-) [kNm/m]	-7'927.3	-5'694.7	-2'467.9	-1'140.2	-427.5	-83.4	10.4
MOMENTI RADIALI	M2(+) [kNm/m]	10'262.5	7'703.7	3'664.6	1'834.6	762.0	172.0	-18.3
ABNORMAL 1.10	M2(-) [kNm/m]	-7'987.5	-5'785.9	-2'610.9	-1'285.8	-530.3	-118.5	13.0
TAGLIO RADIALE	M2(+) [kNm/m]	4'522.9	3'316.8	1'656.7	879.3	509.6	242.8	120.8
NORMAL SLU1	M2(-) [kNm/m]	4'077.2	2'587.9	1'186.7	585.1	329.9	156.0	77.5
TAGLIO RADIALE	M2(+) [kNm/m]	4'454.9	3'212.4	1'594.1	844.4	490.8	234.7	117.1
NORMAL SLU2	M2(-) [kNm/m]	4'144.0	2'701.2	1'252.5	612.7	327.7	140.5	62.8
TAGLIO RADIALE	M2(+) [kNm/m]	4'713.7	3'394.5	1'684.8	893.7	520.4	249.2	124.5
ABNORMAL 0.9	M2(-) [kNm/m]	4'397.9	2'875.5	1'331.7	644.2	338.4	143.6	63.9
TAGLIO RADIALE	M2(+) [kNm/m]	4'737.2	3'426.1	1'700.6	899.2	521.2	248.8	124.0
ABNORMAL 1.10	M2(-) [kNm/m]	4'376.1	2'830.8	1'312.5	652.6	368.3	173.8	86.1
	Raggio [m]	2.200	2.750	4.600	6.450	8.300	10.150	12.000
MOMENTI RADIALI	M2(+) [kNm/m]	7'315.3	5'504.0	2'626.1	1'315.4	546.2	123.0	-13.1
QP SLE	M2(-) [kNm/m]	-5'442.4	-3'926.0	-1'760.8	-865.9	-357.2	-80.0	8.8

	Raggio [m]	2.200	2.750	4.600	6.450	8.300	10.150	12.000
MOMENTI CIRCONF.	M2(+) [kNm/m]	6'050.4	5'106.2	2'863.9	1'590.2	804.6	343.1	119.5
NORMAL SLU1	M2(-) [kNm/m]	-3'142.6	-2'637.2	-1'437.8	-745.7	-346.3	-125.2	-30.5
MOMENTI CIRCONF.	M2(+) [kNm/m]	5'552.2	4'684.7	2'629.2	1'451.4	727.6	304.2	102.1
NORMAL SLU2	M2(-) [kNm/m]	-3'653.6	-3'073.5	-1'685.2	-898.6	-439.8	-185.3	-66.7
MOMENTI CIRCONF.	M2(+) [kNm/m]	5'790.8	4'885.7	2'744.0	1'512.4	755.9	313.8	103.9
ABNORMAL 0.9	M2(-) [kNm/m]	-3'970.2	-3'342.3	-1'834.4	-985.7	-490.2	-212.5	-79.7
MOMENTI CIRCONF.	M2(+) [kNm/m]	6'083.1	5'133.5	2'878.2	1'594.3	804.2	340.7	117.2
ABNORMAL 1.10	M2(-) [kNm/m]	-3'658.0	-3'071.7	-1'680.1	-880.9	-415.4	-155.5	-41.6

Tabella 23: Valori massimi/minimi delle sollecitazioni di piastra in funzione della distanza R dal centro del plinto

A.11.7.2 VERIFICHE DI RESISTENZA A FLESSIONE

L'armatura tesa è stata dimensionata secondo la nota formula

 $A_s = M_{ed}/(0.9*d*f_{yd})$

essendo

d = altezza utile M_{ed} = momento di progetto di piastra

L'armatura principale (radiale) è stata dimensionata tenendo conto dei minimi normativi previsti per le travi nel cap. 4 di [1].

 $A_{Smin_{ELU}} = 0,26 (f_{ctm} / f_{yk}) b d$

Non sono, invece, stati tenuti in considerazione i minimi normativi di cui al cap. 7 della stessa norma, avendo optato per una progettazione in campo elastico (fattore di struttura q = 1).

A.11.7.3 DIMENSIONAMENTO DELLE ARMATURE SUPERIORI

	r _i	h = altezza	d = altezza	M ₂	$2\pi r_i M_2$	f yd
JP.	[m]	[m]	utile [m]	[kNm/m]	[kNm]	[N/mm ²]
E SI	2.200	3.600	3.510	7'246.51	100'117.79	391.30
IAL	2.750	3.300	3.210	5'219.68	90'143.86	391.30
RAD	4.600	2.940	2.850	2'340.24	67'604.94	391.30
RA	6.450	2.580	2.490	1'114.47	45'142.57	391.30
٨TU	8.300	2.220	2.130	422.27	22'010.42	391.30
SM A	10.150	1.860	1.770	82.92	5'285.39	391.30
AF	12.000	1.500	1.410	-13.01	-980.68	391.30

As da calcolo	${f A}$ cls	As',min [mm²]	n.Ø 26	n.Ø 32	n.Ø 32	n.Ø 32
[mm ²]	[mm ²]	(0,26 f _{ctm} / f _{yk} A _{cls})	calcolo	disposta	disposta	disposta
80'992.90	49'737'600	81'156	153	120	60	
79'739.58	56'991'000	92'774	151	120	60	
67'356.01	84'930'720	137'782	127	120	60	
51'478.95	104'505'480	168'791	97	120	60	60
29'342.12	115'715'280	185'801	56	120	60	60
8'479.04	118'560'120	188'812	16	120	60	60
-1'974.93	113'040'000	177'824	-4	120	60	60

CHECK	interferro min/max	$\mathbf{As}_{,calcolo}$	$As,min \ [mm^2/m]$	\mathbf{A} s,disposta	As, min fessuraz
	netto orizz. [cm]	[mm²/m]	(0,26 f _{ctm} / f _{yk} A _{cls})	[mm²/m]	[mm²/m]
OK	8.3 / 19.8	5'862.25	5'874.04	10'472.73	4'119.42
OK	11.2 / 25.6	4'617.23	5'371.98	8'378.18	3'776.14
OK	8.8 / 20.9	2'331.63	4'769.52	5'008.70	3'364.19
OK	13.7	1'270.90	4'167.05	4'762.79	2'952.25
OK	18.5	562.93	3'564.59	3'701.20	2'540.31
OK	23.4	133.02	2'962.12	3'026.60	2'128.37
OK	28.2	-26.21	2'359.66	2'560.00	1'716.43

Tabella 24: Dimensionamento e verifica dei minimi normativi per i ferri radiali superiori (3 strati Ø32)

Si dispongono 120Ø32 radiali su primo strato e 60Ø32 su secondo strato, entrambi per tutta la lunghezza radiale, in sovrapposizione con 60Ø32 efficaci a partire dalla sezione di raggio R=4,60 m.

A.11.7.4 DIMENSIONAMENTO DELLE ARMATURE INFERIORI

	r _i	\mathbf{h} = altezza	\mathbf{d} = altezza	M ₂	$2\pi r_i M_2$	f yd
NF.	[m]	[m]	utile [m]	[kNm/m]	[kNm]	[N/mm ²]
LE II	2.200	3.600	3.510	10'262.49	141'786.61	391.30
IAI	2.750	3.300	3.210	7'703.75	133'043.68	391.30
RAI	4.600	2.940	2.850	3'675.60	106'180.78	391.30
RA	6.450	2.580	2.490	1'845.49	74'753.53	391.30
٨TU	8.300	2.220	2.130	768.38	40'050.82	391.30
MA	10.150	1.860	1.770	173.80	11'078.30	391.30
AR	12.000	1.500	1.410	-17.10	-1'288.77	391.30

As da calcolo	A cls	As,min [mm²]	n.Ø 26	n.Ø 28	n.Ø 32	n.Ø 32
[mm ²]	[mm ²]	(0,26 f _{ctm} / f _{yk} A _{cls})	calcolo	disposta	disposta	disposta
114'701.98	49'737'600	81'156	217	88	140	
117'687.96	56'991'000	92'774	222	88	140	
105'789.82	84'930'720	137'782	200	88	140	
85'246.23	104'505'480	168'791	161	88		176
53'391.80	115'715'280	185'801	101	88		176
17'772.26	118'560'120	188'812	34	88		176
-2'595.37	113'040'000	177'824	-5	88		176

CHECK	interferro min/max	As,calcolo	As,min [mm²/m]	\mathbf{A} S,disposta	As, min fessuraz
	netto orizz. [cm]	[mm²/m]	(0,26 fctm / fyk AcIs)	[mm²/m]	[mm²/m]
OK	6.7 / 12.9	8'302.11	5'874.04	12'065.45	4'119.42
OK	9.1 / 16.8	6'814.59	5'371.98	9'652.36	3'776.14
OK	17.4 / 30.0	3'662.07	4'769.52	5'770.43	3'364.19
OK	12.3	2'104.53	4'167.05	4'829.77	2'952.25
OK	16.7	1'024.32	3'564.59	3'753.25	2'540.31
OK	21.1	278.82	2'962.12	3'069.16	2'128.37
OK	25.5	-34.44	2'359.66	2'596.00	1'716.43

Tabella 25: Dimensionamento e verifica dei minimi normativi per i ferri radiali inferiori (3 strati Ø32)

Figura 13: Area armatura radiale inferiore: da calcolo, minima (da norma), effettivamamente disposta e da fessurazione

A.11.7.5 DIMENSIONAMENTO DELLE ARMATURE CIRCONFERENZIALI SUPERIORI

	r _i	$\mathbf{h}_{\mathbf{i}} = altezza$	d ∗ = altezza
	[m]	sez. [m]	utile [m]
SUF	2.200	3.600	3.510
RA JZ.	3.675	3.120	3.030
NTU REN	5.525	2.760	2.670
IM/	H 7.375	2.400	2.310
AR CON	10.150	1.860	1.770
CIR			

M ₁	f yd	As',calcolo	n.Ø 25 / m
[kNm/m]	[N/mm ²]	[mm²/m]	(strett. necessaria)
3'142.56	391.30	2542.25	6
2'037.52	391.30	1909.43	4
1'091.78	391.30	1161.10	3
546.04	391.30	671.20	2
167.33	391.30	268.44	1

A cls	\mathbf{A} s',min [mm²/m]	As',min fessuraz.
[mm ²]	20% As,long,inf	[mm²/m]
3'600'000	2095	4119.42
3'120'000	1339	3570.17
2'760'000	977	3158.22
2'400'000	846	2746.28
1'860'000	673	2128.37

n.Ø 25 / m	n.Ø 25 / sect.	n.Ø 25 / m	As',disposta	CHECK
(min)	disposta	disposta	[mm ² /m]	
5.18	16	12.80	6283.19	OK
3.89	9	4.86	2388.03	OK
2.37	8	4.32	2122.70	OK
1.73	7	3.78	1857.36	OK
1.38	14	3.78	1857.36	OK

Tabella 26: Dimensionamento e verifica dei minimi normativi per i ferri circonferenziali superiori

A.11.7.6 DIMENSIONAMENTO DELLE ARMATURE CIRCONFERENZIALI INFERIORI

	r _i	$\mathbf{h}_{\mathbf{i}} = altezza$	d ∗ = altezza
	[m]	sez. [m]	utile [m]
INF	2.200	3.600	3.510
IRA NZ.	3.675	3.120	3.030
ATU EREI	5.525	2.760	2.670
NFE NFE	7.375	2.400	2.310
AF	10.150	1.860	1.770
CIR			

M ₁	M1 fyd		n.Ø 25 / m	
[kNm/m]	[N/mm ²]	[mm²/m]	(strett. necessaria)	
6'083.09	391.30	4921.08	11	
4'005.82	391.30	3753.98	8	
2'236.24	391.30	2378.21	5	
1'199.47	391.30	1474.41	4	
422.39	391.30	677.61	2	

${f A}$ cls	\mathbf{A} s,min [mm²/m]	As,min fessuraz.		
[mm ²]	20% As,long,inf	[mm²/m]		
3'600'000	2413	4119.42		
3'120'000	1542	3570.17		
2'760'000	1060	3158.22		
2'400'000	858	2746.28		
1'860'000	682	2128.37		

n.Ø 25 / m	n.Ø 25 / sect.	n.Ø 25 / m	A s,disposta	CHECK
(min)	disposta	disposta	[mm ² /m]	
10.03	14	11.20	5497.79	ОК
7.65	15	8.11	3980.06	OK
4.85	9	5.38	2643.17	ОК
3.01	6	4.62	2265.57	OK
1.39	11	3.85	1887.98	OK

Tabella 27: Dimensionamento e verifica dei minimi normativi per i ferri circonferenziali inferiori

A.11.7.7 VERIFICA A TAGLIO

A seguire si riportano le verifiche a taglio di piastra, agente sulle sezioni aventi normale parallela alla direzione radiale. Si dispone un'armatura trasversale costituita da staffe a 2 braccia Ø 20

Ai fini della verifica si procede secondo due step:

1) verifica dell'effettiva necessità di armatura trasversale

2) valutazione, se richiesta, dell'area di armatura trasversale per unità di superficie (armatura trasversale di piastra).

Resistenza a taglio senza armatura trasversale								
Raggio	VEd	d altezza utile	A s,rad	K < 2	al < 20/	VRd,c	VRd,c > VEd	
[m]	[kN/m]	[m]	[cm²/m]	K < 2	pi < 2 %	[kN/m]	Armatura a taglio	
2.75	3'426	3.21	96.52	1.250	0.301 %	1'002	Richiesta	
4.60	1'701	2.85	57.70	1.265	0.202 %	789	Richiesta	
6.45	899	2.49	48.30	1.283	0.194 %	694	Richiesta	
8.30	521	2.13	37.53	1.306	0.176 %	610	Non richiesta	
10.15	249	1.77	30.69	1.336	0.173 %	524	Non richiesta	
12.00	125	1.41	25.96	1.377	0.184 %	437	Non richiesta	

Tabella 28: Verifica a taglio in assenza di armatura trasversale

Resistenza con armatura trasversale								
(Asw/S)min	Passo	Passo	Asw/s	Check				
[cm ² /m ²]	circonfer.	radiale	[cm²/m²]					
12.12	0.29 m	0.65 m	33.57	ОК				
6.78	0.48 m	0.65 m	20.07	ОК				
4.10	0.68 m	0.65 m	14.31	ОК				
2.78	0.87 m	0.65 m 11.12		ОК				
1.60								
1.00								

Tabella 29: Dimensionamento dell'armatura trasversale (a taglio) di piastra

A.11.7.8 VERIFICHE TENSIONALI /DI FESSURAZIONE

Le verifiche a fessurazione sono state condotte nella combinazione RARA, assieme alle verifiche dei limiti tensionali di esercizio.

Figura 14: Momento radiale in combinazione SLE Rara [kNm/m]

Raggio	MED	base b	h = altezza	c'	с	As		d = altezz	za As'	
[m]	[kNm]	[mm]	[mm]	[mm]	[mm]	[mm²]	utile [m] [mm ²]	J
2.200	7'315	1'000	3'600	90	90	12'06	5	3'510	10'473	3
2.750	5'504	1'000	3'300	90	90	9'65	2	3'210	8'378	3
4.600	2'626	1'000	2'940	90	90	5'77	0	2'850	5'009)
6.450	1'315	1'000	2'580	90	90	4'83	0	2'490	4'763	3
8.300	546	1'000	2'220	90	90	3'75	3	2'130	3'701	l
10.150	123	1'000	1'860	90	90	3'06	9	1'770	3'027	7
12.000	13	1'000	1'500	90	90	2'59	6	1'410	2'560)
n	n'	yc	Sc	Sct		Ss'		Ss	Stot	
		[mm]	[mm ³]	[mm ³]		[mm³]		[mm ³]	[mm ³]	
15	1.00	1'810	1.64E+09	-1.60E+	09 2	.70E+08	-3	.08E+08	0.000	
15	1.00	1'658	1.38E+09	-1.35E+	09 1	.97E+08	-2	.25E+08	0.000	
15	1.00	1'475	1.09E+09	-1.07E+	09 1	.04E+08	-1	.19E+08	0.000	
15										1
	1.00	1'290	8.33E+08	-8.31E+	08 8	.58E+07	-8	.69E+07	0.000	
15	1.00 1.00	1'290 1'110	8.33E+08 6.16E+08	-8.31E+ -6.16E+	08 8 08 5	.58E+07 .66E+07	-8 -5	.69E+07 .74E+07	0.000 0.000	
15 15	1.00 1.00 1.00	1'290 1'110 930	8.33E+08 6.16E+08 4.33E+08	-8.31E+ -6.16E+ -4.32E+	08 8 08 5 08 3	.58E+07 .66E+07 .81E+07	-8 -5 -3	.69E+07 .74E+07 .87E+07	0.000 0.000 0.000	

A.11.7.9 VERIFICHE SUL LEMBO INFERIORE

	Ic	Ict	Is'	Is	Itot	Wi	Мо	Mo > MEd
	[mm ⁴]	[cm ³]	[kNm]					
1.	.98E+12	1.91E+12	4.65E+11	5.23E+11	4.88E+12	2'724'667	6'577	Non verif.
1.	.52E+12	1.47E+12	3.09E+11	3.49E+11	3.65E+12	2'225'011	5'371	Non verif.
1.	.07E+12	1.05E+12	1.44E+11	1.64E+11	2.43E+12	1'655'739	3'996	Verifica OK
7.	.16E+11	7.15E+11	1.03E+11	1.04E+11	1.64E+12	1'270'455	3'067	Verifica OK
4.	.56E+11	4.55E+11	5.78E+10	5.85E+10	1.03E+12	926'490	2'236	Verifica OK
2.	.68E+11	2.68E+11	3.21E+10	3.25E+10	6.01E+11	646'165	1'560	Verifica OK
1.	.41E+11	1.40E+11	1.67E+10	1.70E+10	3.15E+11	420'046	1'014	Verifica OK

La sezione risulta fessurata. Si provede alla valutazione delle tensioni e dell'ampiezza delle fessure.

n	yc	Sc	Ss'	
	[mm]	[mm ³]	[mm ³]	
15	851	3.62E+08	1.19E+08	
15	742	2.75E+08	8.20E+07	
15	568	1.62E+08	3.59E+07	
15	484	1.17E+08	2.82E+07	
15	400	8.01E+07	1.72E+07	
15	332	5.52E+07	1.10E+07	
15	-428	9.14E+07	-1.99E+07	

Ss	Stot	Ic	Is'	Is		Itot	Wi	σsr	σs]
[mm ³]	[mm ³]	[mm ⁴]	[mm ⁴]	[mm ⁴]	[$[mm^4]$	[cm ³]	[N/mm ²]	[N/mm²]	
-4.81E+08	0.000	2.05E+11	9.09E+10	1.28E+12	1.5	58E+12	573'226	202.76	187.94]
-3.57E+08	0.000	1.36E+11	5.34E+10	8.82E+11	1.0	07E+12	418'895	226.26	193.24	
-1.97E+08	0.000	6.12E+10	1.72E+10	4.51E+11	5.2	29E+11	223'055	315.71	172.88	
-1.45E+08	0.000	3.78E+10	1.11E+10	2.92E+11	3.4	40E+11	162'416	331.74	118.59	
-9.74E+07	0.000	2.14E+10	5.35E+09	1.68E+11	1.9	95E+11	107'255	364.99	74.29	
-6.62E+07	0.000	1.22E+10	2.66E+09	9.52E+10	1.1	10E+11	72'037	376.96	24.78	
-7.16E+07	0.000	-2.61E+10	1.03E+10	1.31E+11	1.1	16E+11	60'031	296.12	3.19	
σs / fyk	σc	σc / fck	ø	horiz.spaci	ng	heff	Esm	sm	Wk	
(≤0,80)	[N/mm²]	(≤0,60)	[mm]	s [mm]		[mm]		[m]	[mm]
0.52 - OK	3.95	0.29 - OK	32	157	'	225	0.65	% 0.16	0.17	6
0.54 - OK	3.81	0.28 - OK	32	196	5	225	0.63	% 0.17	5 0.18	88
0.48 - OK	2.82	0.21 - OK	32	328	3	225	-	-	-	-
0.33 - OK	1.87	0.14 - OK	28	154	Ļ	225	-	-	-	
0.21 - OK	1.12	0.08 - OK	28	198	3	225	-	-	-	-
0.07 - OK	0.37	0.03 - OK	28	242	2	225	-	-	-	
0.01 - OK	0.00	0 - OK	28	286	5	225	-	-	-	

A.11.7.10 VERIFICHE SUL LEMBO SUPERIORE									
	Raggio	Med	base b	As	d = altezza	As'			
	[m]	[kNm]	[mm]	[mm]	[mm]	[mm]	[mm ²]	utile [m]	[mm ²]
	2.200	5'442	1'000	3'600	90	90	10'473	3'510	12'065
	2.750	3'926	1'000	3'300	90	90	8'378	3'210	9'652
	4.600	1'761	1'000	2'940	90	90	5'009	2'850	5'770
	6.450	866	1'000	2'580	90	90	4'763	2'490	4'830
	8.300	357	1'000	2'220	90	90	3'701	2'130	3'753
	10.150	80	1'000	1'860	90	90	3'027	1'770	3'069
	12.000	9	1'000	1'500	90	90	2'560	1'410	2'596

n	n'	yc	Sc	Sct	Ss'	Ss	Stot
		[mm]	[mm ³]				
15	1.00	1'790	1.60E+09	-1.64E+09	3.08E+08	-2.70E+08	0.000
15	1.00	1'642	1.35E+09	-1.38E+09	2.25E+08	-1.97E+08	0.000
15	1.00	1'465	1.07E+09	-1.09E+09	1.19E+08	-1.04E+08	0.000
15	1.00	1'290	8.31E+08	-8.33E+08	8.69E+07	-8.58E+07	0.000
15	1.00	1'110	6.16E+08	-6.16E+08	5.74E+07	-5.66E+07	0.000
15	1.00	930	4.32E+08	-4.33E+08	3.87E+07	-3.81E+07	0.000
15	1.00	750	2.81E+08	-2.81E+08	2.57E+07	-2.54E+07	0.000

Ic	Ict	Is'	Is	Itot	Wi	Мо	Mo > MEd
$[mm^4]$	[mm ⁴]	$[mm^4]$	[mm ⁴]	$[mm^4]$	[cm ³]	[kNm]	
1.91E+12	1.98E+12	5.23E+11	4.65E+11	4.88E+12	2'693'441	6'501	Verifica OK
1.47E+12	1.52E+12	3.49E+11	3.09E+11	3.65E+12	2'202'603	5'316	Verifica OK
1.05E+12	1.07E+12	1.64E+11	1.44E+11	2.43E+12	1'644'326	3'969	Verifica OK
7.15E+11	7.16E+11	1.04E+11	1.03E+11	1.64E+12	1'269'584	3'064	Verifica OK
4.55E+11	4.56E+11	5.85E+10	5.78E+10	1.03E+12	925'921	2'235	Verifica OK
2.68E+11	2.68E+11	3.25E+10	3.21E+10	6.01E+11	645'783	1'559	Verifica OK
1.40E+11	1.41E+11	1.70E+10	1.67E+10	3.15E+11	419'792	1'013	Verifica OK
		n	yc	Sc	Ss'		
			[mm]	[mm ³]	[mm ³]		
		15	780	3.04E+08	1.25E+08		
		15	681	2.32E+08	8.56E+07		
		15	524	1.37E+08	3.76E+07		
		15	480	1.15E+08	2.83E+07		
		15	397	7.89E+07	1.73E+07		
		15	330	5.44E+07	1.10E+07		
		15	-426	9.06E+07	-2.01E+07		